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resumé en français : Cette thèse présente un ensemble d’expériences de QED
en circuit (cQED), dans lesquelles des atomes artificiels basés sur des circuits
supraconducteurs sont couplés au champ électromagnétique d’un résonateur
micro-ondes. Ce résonateur agit comme appareil de mesure pour l’atome, per-
mettant d’illustrer des aspects fondamentaux de la physique quantique et de
développer des briques de base pour un processeur quantique.
Dans une première expérience nous suivons continuement l’évolution de l’atome
tout en variant l’intensité de la mesure. Nous observons la transition du régime
de mesure faible à celui de mesure forte, puis le gel de la dynamique du a
l’effet Zénon quantique. Dans le régime de mesure faible nous testons si l’atome
artificiel est en accord avec les hypothèses du réalisme macroscopique, à partir
desquelles Leggett et Garg ont déduit une inégalité de Bell en temps. La violation
de cette inégalité confirme que l’atome artificiel, bien que macroscopique, est un
objet quantique.
En ce qui concerne l’information quantique, nous avons enrichi l’architecture
cQED en démontrant un système de lecture haute fidélité en un coup pour le
qubit, un élément crucial pour un processeur quantique. Notre circuit utilise la
transition dynamique d’un résonateur non-linéaire. Le système couplé formé par
le qubit et le résonateur non linéaire permet en plus d’étudier l’interaction entre
couplage fort et effets non linéaires –amplification paramétrique, sqeezing...–
ouvrant un nouveau sujet : le cQED non linéaire.
Finalement, nous avons mis au point un circuit qui servirait d’intermédiaire pour
que deux qubits arbitraires interagissent : un résonateur micro-ondes a fréquence
accordable.

titre en anglais : Superconducting qubit in a resonator: test of the Leggett-Garg
inequality and single-shot readout

resumé en anglais : This thesis presents a series of circuit QED (cQED) exper-
iments, in which artificial atoms consisting of superconducting circuits are
strongly coupled to the electromagnetic field stored in a microwave resonator.
This resonator can be used as a measurement apparatus for the atom, allowing
both to address fundamental issues in quantum mechanics, and to develop build-
ing blocks for a quantum processor.
In a first experiment we continuously monitored the evolution of a quantum
system while varying the measurement strength. We observed the crossover
from weak to strong measurement regimes, and, ultimately, the freezing of the
dynamics by the Quantum Zeno Effect. In the weak measurement regime, we
probed if the artificial atom complies with the macroscopic realism hypotheses,
from which Leggett and Garg have derived a Bell’s inequality in time. The
violation of this inequality confirms that although macroscopic, the artificial
atom is a truly quantum object.
On the quantum information side, we have enriched the proposed cQED quan-
tum processor architecture by demonstrating a high fidelity single-shot qubit
readout, a crucial element for quantum processors. This new circuit relies on a
dynamical transition of a non-linear resonator. The coupled system formed by
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the qubit and the non-linear resonator allows in addition to investigate the inter-
play between strong coupling and non-linear effects –parametric amplification,
squeezing...– opening the new field of non-linear cQED.
Finally we have operated a circuit which would potentially be able to mediate
operations between two arbitrary qubits: a superconducting resonator which is
tunable in frequency.

mots clés en français : information quantique, electrodynamique quantique,
circuit quantique, jonction Josephson, théorie de la mesure, réalisme macro-
scopique, cohérence quantique, lecture d’un bit quantique

mots clés en anglais : quantum information, quantum electrodynamics, quan-
tum circuit, Josephson junction, measurement theory, macroscopic realism, quan-
tum coherence, qubit readout
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0
R É S U M É E N F R A N Ç A I S

0.1 Des circuits électriques pour réaliser des expériences de

physique quantique fondamentale et d’information quan-
tique

Cette thèse présente une série d’expériences réalisées avec des atomes artificiels
constitués de circuits électriques. Ces expériences ont le double but d’illustrer des
questions fondamentales de la mécanique quantique et développer des composants
pour un futur processeur quantique. Les expériences réalisées avec de tels systèmes
quantiques artificiels ont été amorcées dans les années 1980 dans le but d’éclaircir si
les variables électriques collectives avaient ou non une nature véritablement quantique.
Une fois ceci établi1 le domaine bénéficie de l’invention de l’ordinateur quantique2,3 et
de la recherche de systèmes à deux niveaux (TLS) avec des longs temps de cohérence
pour former de éléments de mémoire quantiques ou Qubits. A partir de la première
observation d’une dynamique cohérente dans un circuit supraconducteur simple,
la boîte à paires de Cooper (CPB)4, des progrès spectaculaires ont été réalisés sur
les différents types de qubits supraconducteurs5,6,7 dans des groupes de recherche
partout dans le monde6,8,9.

(a) QED en cavité

(b) QED en circuit

Figure 0.1: En CQED (a) une cavité électromagnétique

fortement réfléchissante (en vert) est traversée par des

atomes (en rose), qui interagissent avec le champ (en bleu).

Le dispositif de cQED (b) est analogue : un atome artificiel

construit avec un circuit supraconducteur contenant des

jonctions Josephson est couplé au champ électromagnétique

d’un résonateur supraconducteur.

Une étape importante de ce développe-
ment à eu lieu en 2004 dans le
groupe de R. Schoelkopf à Yale, qui
a réussi à reproduire avec des circuit
supraconducteurs10,11 des expériences
d’électrodynamique quantique en cavité
(CQED)12,13, un champ de la physique
atomique lequel étudie l’interaction
d’atomes individuels avec un nombre ré-
duit de photons stockés dans une cavité
résonante (Fig. 0.1a). Par analogie, dans
cette nouvelle discipline appelée électro-
dynamique quantique en circuit (cQED,
Fig. 0.1b), l’atome est remplacé par une
CPB et la cavité par un résonateur micro-
ondes planaire. Ces deux disciplines
permettent d’explorer l’interaction de la
matière et du rayonnement à son niveau
le plus fondamental. Dans le régime
de couplage fort, où l’interaction entre
l’atome et le champ domine tous les pro-
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cessus dissipatifs, des phénomènes in-
téressants apparaissent : par exemple quand la résonance de la cavité est accordée
à la ligne d’émission des atomes, tout photon émis par l’atome est stocké dans la
cavité et réabsorbé par l’atome successivement ; l’émission spontanée devient ainsi
réversible14. L’étude d’une telle dynamique cohérente entre un atome à deux niveaux
et un mode du champ de la cavité (un oscillateur harmonique), permet d’explorer
les aspects les plus fondamentaux de la physique quantique : comment une mesure
projette-t-elle la superposition de plusieurs états sur un d’entre eux ? Comment
l’état d’un système évolue tandis qu’il est observé ? Pouvons nous prouver la nature
véritablement quantique d’un système à partir des mesures réalisées sur celui-ci ?
Nous avons abordé ces questions dans les expériences présentées dans la Section 0.3
et décrites dans le Chapitre 3.

En ce qui concerne le traitement quantique de l’information, nous avons enrichi
l’architecture cQED (Section 0.4) en opérant un circuit de lecture haute fidélité de l’état
du qubit, un élément critique pour construire un ordinateur quantique efficace. Cette
expérience, discutée dans la Section 0.4.1, est basée sur l’utilisation d’un résonateur
non-linéaire, qui n’était pas présent en cQED standard. En plus de permettre une
amélioration du système de lecture, ce nouveau circuit constitue un système idéal
pour étudier l’interaction entre couplage fort et les effets non linéaires –amplification
paramétrique, squeezing...– ouvrant un nouveau domaine de recherche qui pourrait
être nommé cQED non-linéaire. Tous ces aspects sont décrits dans le Chapitre 4.

Finalement pour aller vers des architectures multi-qubit en cQED, nous avons
opéré un circuit qui pourrait potentiellement médier les opérations entre deux qubits
arbitraires : un résonateur supraconducteur accordable en fréquence. Ce dispositif est
présenté dans la Section 0.4.2 et décrit dans le Chapitre 5.

0.2 CQED avec des atomes artificiels macroscopiques

Pour la plupart des objets macroscopiques on n’observe pas de propriétés purement
quantiques, telles que les superpositions d’états, Ceci est dû à l’inévitable couplage
entre les différents degrés de liberté des grands objets, qui entraînent la disparition des
cohérences dans des temps extrêmement courts. Cependant, dans un supraconducteur,
les degrés de liberté des différents électrons ne décohèrent pas individuellement mais
sont liés entre eux formant des les variables collectives, telles que les tensions et les
courants, qui restent cohérentes pendant des temps atteignant plusieurs µs s’ils sont
bien isolés de l’environnement électromagnétique. Le circuit supraconducteur le le
plus simple, un résonateur LC, a ainsi déjà un spectre d’énergie avec des niveaux
discrets équi-espacés. Pour obtenir un spectre anharmonique semblable à celui d’un
atome, il est nécessaire d’introduire un élément non-linéaire et sans pertes : la jonction
Josephson. Celle-ci consiste en deux électrodes supraconductrices couplées le par une
fine couche d’isolant (Fig. 0.2a).

Le type particulier d’atome artificiel utilisé dans cette thèse dérive de la Boîte
à paires de Cooper (CPB, voir la Fig. 0.2b), un circuit développé dans le groupe
Quantronique15 et qui est composé d’une jonction Josephson raccordant une électrode
isolée (l’île) à un réservoir.
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Insulating layer

EJ,CJ

CJ

Superconductor

EJ

(a) La jonction Josephson

CJV EJ

Cg

(b) La boîte à paires de
Cooper

2Cg

 ½CB

2Cg

V

½CB

EJ()

(c) Le transmon

Figure 0.2: (a) Une jonction Josephson

est composée par deux électrodes supra-

conductrices séparées par une mince

couche d’isolant. Son symbole élec-

trique (à gauche) représente un conden-

sateur en parallèle avec une élément

tunnel (à droite). (b) La CPB est for-

mée par une île (violet) raccordée à un

réservoir à travers une jonction Joseph-

son. L’île est couplé capacitivement à

la porte Vg (orange). La CPB est carac-

térisée par son énergie Josephson EJ et

son énergie de charge EC = (2e)2/2CΣ

avec CΣ = CJ + Cg. (c) Le transmon

est une CPB avec EJ(Φ) accordable et

shuntée par un condensateur externe

CB pour diminuer EC.

La CPB est caractérisée par deux échelles d’énergie
: l’énergie Josephson EJ et l’énergie de charge EC. Il a
d’abord été opéré dans la limite EC ≫ EJ où l’énergie des
états propres correspondent à la présence ou l’absence
d’une paire de Cooper supplémentaire sur l’île. À la fin
des années 1990, Nakamura et ses collègues ont réussi à
observer les oscillations Rabi entre ses deux états de plus
basse énergie4. Peu de temps après, le Quantronium
(une CPB avec EJ ∼ EC)6,16 fournissait une méthode de
lecture en un coup, et permettait une nette amélioration
des temps de cohérence grâce à une stratégie appelée
de points de travail optimaux. Le Quantronium permit
d’effectuer toutes les manipulations quantiques de base
sur un TLS ainsi que de réaliser une étude approfondie
de la décohérence17. Cependant à cause de son proces-
sus de fabrication complexe et sa sensibilité au bruit de
charge, les circuits contenant plus d’un Quantronium
se sont avérés très difficiles à opérer18. Par conséquent
nous utilisons dans cette thèse, une CPB dans la la limite
EJ ≫ EC, où elle devient insensible au bruit de charge.
Le circuit que nous avons utilisé, le transmon9,19, mis au
point à l’Université de Yale, atteint ce régime grâce à un
condensateur externe qui abaisse son énergie de charge
EC et qui en même temps permet un fort couplage capac-
itif à l’extérieur. Ces caractéristiques se traduisent par
une amélioration de la robustesse et la reproductibilité.

En cQED le transmon est couplé à un résonateur micro-
ondes. L’avantage de cette configuration par rapport à
la CQED est que tous les éléments sont fabriqués sur
la même puce : les expériences peuvent donc être effec-
tuées sans avoir à piéger des atomes et les manipuler
individuellement. En plus en cQED, le résonateur auquel
le transmon est couplé est un résonateur planaire, ce qui
permet d’atteindre des couplages plus fort qu’en CQED
en raison du confinement unidimensionnel des champs
et la grande taille du circuit qui constitue l’atome ar-
tificiel20. Ceci permet d’atteindre aisément le régime
de couplage fort et d’accéder à des constantes de cou-
plage non atteignables en optique quantique. Un autre
avantage important est la plus grande flexibilité dans
la conception car les paramètres du circuit peuvent être
déterminés au cours du processus de fabrication, con-
trairement à ceux d’un atome naturel où ceux-ci sont
fixes.

En plus de stocker le champ qui interagit avec le TLS,
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le résonateur agit également comme un filtre étroit qui
isole le TLS de bruit électromagnétique de l’environnement. Selon le rapport entre la
constante de couplage g et le désaccord de fréquence ∆ entre atome et résonateur, on
peut distinguer deux régimes:

• Régime résonant g ≫ ∆, où le résonateur et le TLS peuvent échanger de l’énergie
de façon cohérente et doivent être traités comme un système unique, une sorte
de molécule artificielle.

• Régime dispersif g ≪ ∆, où le TLS et le résonateur ne peuvent pas échanger
d’énergie, mais s’affectent l’un l’autre par des décalages de fréquence.

Dans le régime dispersif, le résonateur peut être utilisé comme un appareil de mesure
de l’état du TLS. En effet, en fonction de l’état TLS, la fréquence du résonateur
est déplacée d’une quantité χ (appelée cavity pull) vers le haut ou vers le bas. Ce
changement peut être détecté en envoyant une impulsion micro-ondes à l’entrée du
résonateur et en mesurant la phase du signal réfléchi. La quantité d’information
obtenue par cette procédure est proportionnelle au champ que cette impulsion créée
à l’intérieur du résonateur. Toutes les mesures de l’état du transmon effectuées dans
cette thèse sont basées sur ce principe.

D’autre part, la fréquence de transition du TLS diminue de 2χn lorsque le résonateur
contient n photons. Cet effet, appelé décalage de Stark alternatif, est utilisé dans cette
thèse pour calibrer le champ à l’intérieur du résonateur. Il explique également la
perturbation du TLS qu’entraîne la mesure : l’impulsion micro-ondes utilisée pour
sonder le cavity pull, crée un champ de n̄ photons dans la cavité. Les fluctuations
quantiques δn de ce champ –le bruit de grenaille– se traduisent par des fluctuations
2χδn de la fréquence de transition du TLS, et ces fluctuations sont responsables d’un
déphasage aléatoire dans l’état du TLS21,22. Comme le bruit de grenaille obéit à
une statistique de Poisson δn ∝ n̄ et donc la quantité d’information extraite et la
perturbation croissent proportionnellement toutes deux à l’énergie stockée dans le
résonateur.

Le chapitre 2 de cette thèse contient une description en profondeur de ces concepts
fondamentaux et de la mise en œuvre expérimentale du cQED.

0.3 Mesure et dynamique en cQED

Une situation idéale pour étudier l’effet de la mesure sur la dynamique d’un système
quantique est schématisée en Fig. 0.3a: un TLS piloté à sa fréquence de transition
réalise des oscillations de Rabi et, en même temps, son état d’énergie est continuelle-
ment mesuré par un détecteur. Dans une telle situation le TLS est soumis à deux
phénomènes concurrents: le pilotage tend à créer des superpositions des deux états
propres, tandis que la mesure tend à projeter l’état du TLS sur l’un de ces deux états
propres. Lorsque la mesure est comparativement faible, la dynamique du TLS n’est
que légèrement perturbée et conserve son comportement oscillatoire (en bleu dans
l’encart de la Fig. 0.3c). Inversement, dans le régime de mesure forte, l’information
est rapidement extraite du système et ceci résulte en une projection rapide sur l’état
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Figure 0.3: L’expérience de mesure continue. (a) Principe: un TLS effectue des oscillations de Rabi,

tout en étant mesuré continûment par un appareil de mesure. (b) Mise en œuvre en cQED: un

transmon (rose) est piloté par une source micro-ondes (orange) et couplé à un résonateur (vert). La

mesure continue est effectué en envoyant un ton micro-ondes au résonateur et en effectuant une

détection homodyne du signal réfléchi. Le spectre de bruit de ce signal réfléchi permet d’accéder à

la dynamique du TLS. (c) Spectres de bruit lorsque le TLS réalise des oscillations de Rabi à 5 MHz.

Les courbes correspondent à une mesure faible (n̄ = 0.23, bleu) jusqu’à une mesure forte (n̄ = 15.6,

rouge). Les courbes bleue et rouge esquissent les trajectoires quantiques pour les mesures faibles

et fortes. (d) Oscillations de Rabi moyennées à 2.5 MHz pour différentes forces de mesure. Le

ralentissement de la décroissance exponentielle qui est observé pour les plus fortes mesures est une

signature de QZE.
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propre du résultat mesuré, comme prévu par le postulat de la mesure. La dynamique
n’est alors plus du tout cohérente, et consiste au contraire en un ensemble de sauts
quantiques stochastiques entre les états propres23 (en rouge dans l’encart de la Fig.
0.3c).

La transition entre ces deux régimes a été largement discutée du point de vue
théorique24,25,26, mais aucun test expérimental a été réalisé avec une mésoscopique
système couplé à un détecteur de mesure continue. La configuration est idéale pour
cQED effectuer une telle étude parce que l’atome est fixé, permettant de réaliser
en continu expériences, et parce que la force de mesure peuvent facilement être
modifiées.

Dans le Chapitre 3 nous expliquons comment nous avons mis en œuvre une telle
expérience de mesure continue en cQED (voir Fig. 0.3b) avec un transmon couplé à un
résonateur qui sert de détecteur classique pour son état. Par le biais du cavity pull, la
fréquence du résonateur suit en permanence l’état du qubit : il est toutefois impossible
de suivre en permanence cette fréquence en moyennant les périodes successives de
l’oscillation de Rabi, car le déphasage induit par la mesure entre celles-ci donne lieu à
une moyenne nulle. Cependant, toutes l’information sur la dynamique du système
reste accessible dans le spectre de bruit mesuré à la sortie du résonateur, spectre que
nous acquérons en utilisant une configuration expérimentale originale.

La Fig. 0.3c montre les spectres de bruit mesurés pour différentes intensités de
mesure. Lorsque la mesure est faible (courbe bleue), le spectre consiste en un pic
lorentzien à la fréquence de Rabi, qui correspond à la dynamique oscillatoire du
système. En augmentant la force de mesure, ce pic perd de sa hauteur et s’élargit
progressivement à cause du déphasage induit par la mesure. En même temps, un
pic lorentzien croît à fréquence nulle ; pic qui est une signature des sauts quantiques
stochastiques qui se produisent dans le régime de mesure forte. Ces spectres de bruit
constituent les premières observations quantitatives de la transition entre la mesure
faible et forte dans un circuit mesuré de façon continue. Ils sont en très bon accord
avec les prédictions théoriques24.

Un effet intrinsèquement quantique : l’effet Zénon quantique

Dans le régime des sauts quantiques la dynamique est progressivement gelée par la
mesure : ceci constitue un effet intrinsèquement quantique connu sous le nom d’effet
Zénon quantique (QZE)27,28. Nous avons observé pour la première fois une signature
de cet effet dans un circuit quantique. Dans la Fig. 0.3d nous voyons comment les
oscillations de Rabi effectuées sous des intensités de mesure croissantes commencent
par perdre leur comportement oscillatoire (courbe bleue) pour devenir exponentielles
(courbe dorée). En augmentant encore plus l’intensité de la mesure (courbes orange
et rouge) le temps caractéristique de ces exponentielles augmente. Il s’agit là d’une
signature de l’inhibition de la transition vers l’état excitée |g〉 → |e〉 causée par des
mesures fortes et continues : le QZE.
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Violation de l’inégalité de Leggett-Garg: une preuve du caractère non-
classique du circuit
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Figure 0.4: (a) L’inégalité Leggett-Garg permet de tester la nature classique d’un système en le

mesurant continûment et formant la combinaison linéaire fLG des corrélateurs temporels du signal

du détecteur. Pour un système conforme aux hypothèses de macro-réalisme fLG ≤ 1. (b) Les données

expérimentales montrent une violation de l’inégalité (flèche verte), démontrant la nature non-classique

du circuit.

Le QZE est une première preuve du caractère quantique du TLS, mais une preuve
plus forte peut être obtenue dans le régime de mesure faible en testant si les résultats
des mesures sont conformes ou violent une inégalité introduite par Leggett et Garg29.
Cette inégalité est dérivé de deux hypothèses qui semblent naturelles pour les objets
macroscopiques:

1. Le macro-réalisme en soi: «Un objet macroscopique qui peut être dans deux (ou
plus) états macroscopiquement distincts, est à chaque moment de façon bien
définie dans un de ces états.» (citation littérale de Leggett30)

2. Mesure non invasive: «Il est possible en principe de déterminer dans lequel de ces
états se trouve le système sans affecter l’état lui-même, ni la dynamique future
du système.»

A partir de ces deux hypothèses, appelés hypothèse du macro-réalisme, Leggett et
Garg ont dérivé en 1985 une inégalité sur les corrélateurs temporels de mesures
projectives successives effectuées sur le système. Depuis plus de 20 ans, l’inégalité a
été largement discutée du point de vue théorique31,30,32,33 mais n’a jamais été testée
expérimentalement car les mesures projectives instantanées qu’il faudrait réaliser sont
difficiles à mettre en œuvre. L’inégalité Leggett-Garg est souvent décrite comme une
inégalité de Bell en temps, car elle implique des corrélations du signal du détecteur
pris à des moments différents, tandis que l’inégalité de Bell CHSH34 implique des
corrélations entre les mesures effectuées avec une séparation spatiale.
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Dans cette thèse nous décrivons l’une des premières violations expérimentales? 35,36

de l’inégalité de Leggett-Garg dans une forme dérivée par Korotkov et ses collègues32

et qui est adaptée à une mesure continue et faible de l’état du système. Dans le régime
de mesure faible et pendant que le TLS est piloté, nous acquerrons un spectre de
bruit du détecteur moyenné longuement (Fig. 0.4b encadré). Une unique expérience
de calibration permet de redimensionner ce spectre dans ses unités naturelles, et
d’en extraire les corrélateurs impliqués dans l’inégalité (Fig. 0.4b). Cette fonction
de corrélation temporelle est très bon accord avec les prédictions quantiques, et
dépasse la limite prévue par Leggett et Garg pour les systèmes compatibles avec le
macro-réalisme. Ceci fournit une preuve forte du caractère véritablement quantique
du système.

Notre violation de l’inégalité de Leggett-Garg ouvre des perspectives intéressantes.
Premièrement la même inégalité peut être déduite à partir d’hypothèses très dif-
férentes liées au déterminisme37,38. Nous expliquerons dans cette thèse comment la
violation de l’inégalité Leggett-Garg pourrai ainsi fournir un critère fort pour exclure
tout modèle de variables cachés déterministe. Nous discutons aussi comment la viola-
tion de l’inégalité peut être l’indice de l’existence d’une nouvelle ressource quantique,
de la même façon que la violation de la inégalité originelle Bell démontrait l’intrication
qui est utilisé aujourd’hui pour la cryptographie quantique. Plus précisément, l’excès
des corrélations qui est révélé par la violation de l’inégalité de Leggett-Garg suggère
que des systèmes de rétroaction quantique, consistant en l’analyse des données ac-
quises de manière continue et à la génération d’une certaine l’action en retour sur le
système pourrait être plus puissant que son analogue classique. Il permettrait ainsi
par exemple, de corriger le déphasage du TLS et maintenir une oscillation de Rabi
aussi longtemps que souhaité39. Toutefois, la mise en œuvre pratique de tels systèmes
nécessiterait des amplificateurs travaillant à la limite quantique40,41.

Caractérisation des excitations thermiques de l’atome artificiel
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Figure 0.5: (a) Les transitions |0〉 ↔ |1〉 du TLS peuvent être

observés avec une mesure continu du spectre. (b) Les populations

estimées à partir de ce spectre (cercles noirs) sont en bon accord

avec les prédictions théoriques pour les transitions provoquées par le

champ thermique dans la cavité (ligne rouge pointillée).

Les mesures continues constituent
également un outil utile pour car-
actériser les fluctuations d’état du
TLS dûs au champ thermique. En
effet, même aux très faibles tem-
pératures d’un cryostat à dilu-
tion l’atome artificiel est souvent
excité par le champ thermique
présent dans son environnement.
En conséquence, même en ab-
sence d’excitation extérieure, la
population ρee de l’état excité
|e〉 n’est pas nulle. Les fluctua-
tions thermiques n’étant pas re-
productibles d’une séquence ex-
périmentale à la suivante, elles
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ont pour seul effet de réduire
légèrement l’amplitude du signal

mesuré, réduction difficile à calibrer.
Dans le Chapitre 3, nous montrons qu’une mesure de la densité spectrale de

bruit à la sortie du résonateur telle que celle réalisée pour la expériences décrites ci-
dessus permet une évaluation directe de la population résiduelle due aux fluctuations
thermiques (voir Fig. 0.5) et de leur taux de décroissance42.

0.4 Une architecture cQED pour le processeur quantique

En plus de permettre de réaliser des expériences fondamentales de physique quan-
tique telles que celles décrites ci-dessus, la cQED fournit aussi des blocs de base
pour construire des dispositifs quantiques avec une application pratique. En effet, à
partir des années 1980, les caractéristiques particulières de la mécanique quantique
sont exploitées pour construire des dispositifs quantiques dont les capacités vont
au delà de celles de leurs homologues classiques. Un exemple est la cryptographie
quantique, qui fait usage du théorème de non-clonage pour empêcher l’espionnage
des communications43.

|O>

|1>

|O>

|1>1O

…
1O

U

U

(a) Processeur quantique générique

… …

(b) Architecture cQED

Figure 0.6: L’architecture d’un processeur quantique (a) et notre projet de mise en œuvre en cQED (b): un

ensemble de TLS (rose, implémentés avec des transmons) dont les états sont contrôlables par des transformations

unitaires (orange, implémentées avec des impulsions micro-ondes) et peut être couplé de façon configurable avec

les autres (violet, implémenté avec un résonateur accordable). Chaque TLS peut être mesuré dans la base propre

de l’énergie résultant 0 ou 1 (vert, implémenté avec un résonateur non linéaire relié à une ligne de lecture

multiplexée).

Le cQED offre une architecture prometteuse pour mettre en œuvre un autre concept,
l’ordinateur quantique, qui consisterait à traiter de l’information codée dans des états
quantiques3. On pourrait ainsi tirer profit du principe de superposition pour parvenir
à un parallélisme massif : si une opération est effectuée sur une superposition de
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tous les possibles entrées, toutes les sorties correspondantes sont obtenues en une
seule étape de calcul. En 1985, Deutsch a montré que, même si la mesure finale
sélectionne l’un seul des résultats, il est possible d’appliquer d’ingénieux schémas
d’interférence pour obtenir la solution de certains problèmes spécifiques beaucoup
plus rapidement qu’avec un ordinateur classique à la von Neumann2,44. En cQED
les qubits sont fabriqués par des techniques lithographiques : il semble donc facile
de construire un grand nombre d’entre eux. Cependant pour cela les systèmes de
lecture et couplage entre différent qubits devraient être capables de lire et coupler
un nombre croissant de qubits. Pour atteindre cette capacité de croissance nous avons
l’intention de coupler un résonateur à chaque qubit et l’utiliser pour lire son état avec
une impulsion à micro-ondes, comme expliqué ci-dessus. Ces résonateurs sont conçus
avec des fréquences différentes, de sorte qu’ils puissent être adressés en utilisant
une seule ligne d’entrée multiplexée en fréquence, en analogie avec ce qui est déjà
fait dans des matrices de détecteurs micro-ondes à inductance cinétique (MKIDs)45.
Toutefois, dans les expériences où le résonateur cQED est utilisé comme système
de lecture le taux d’erreurs de lecture est considérablement plus élevée que celui
nécessaire pour exécuter efficacement des algorithmes quantiques, ce qui compromet
le gain de vitesse de ceux-ci. Dans cette thèse, nous montrons comment un résonateur
non linéaire opéré comme amplificateur à bifurcation (JBA) peut sensiblement réduire
ce taux d’erreurs.

Avec ce système de lecture faible, l’architecture que nous envisageons pour un
processeur cQED est indiquée en Fig. 0.6. Elle consiste en une série de qubits,
implémentés avec transmons. Chaque qubit peut être individuellement contrôlé
pour réaliser des opérations unitaires, implémentées sous la forme de séquences
d’impulsions résonantes similaire à celles utilisées en RMN. Chaque qubit peut égale-
ment être lu individuellement grâce à un résonateur non linéaire dédié, qui est couplé
à une ligne d’entrée unique multiplexée en fréquence comme celles utilisées déjà dans
les expériences du Yale Qlab46. Finalement, les opérations à deux qubits peuvent être
effectuées entre toute paire de qubits grâce à un résonateur accordable servant de bus
de couplage47: pour médier l’interaction entre deux qubits, ce résonateur est d’abord
accordé avec le premier qubit, puis, une fois que l’état de ce qubit a été transférée vers
le résonateur, celui-ci est accordé avec le deuxième qubit pour effectuer l’opération.

0.4.1 Mesure cQED avec un détecteur d’échantillonage et retenue

Comme expliqué ci-dessus la mise en oeuvre d’un processeur quantique exige des
qubits avec des temps de cohérence longs ainsi qu’un circuit de lecture permettant de
caractériser l’état du qubit avec une faible probabilité d’erreur48. Un circuit de lecture
idéal effectuerait une mesure projective de l’état du qubit sur demande, et lorsqu’il
n’est pas sollicité sa présence ne devrait pas affecter la cohérence du qubit. Quand une
mesure est effectuée sur un état α |0〉+ β |1〉 elle devrait rendre 0 avec une probabilité
|α|2 et 1 avec une probabilité |β|2. L’état du qubit à la fin de la mesure devrait, quand
à lui, être |0〉 si 0 est lu et vice versa. Deux types d’erreurs sont susceptibles d’affecter
ce processus de lecture:
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Figure 0.7: Principe de la lecture haute fidélité en cQED (en haut): l’état du TLS (cercle rose) est

d’abord rapidement transféré (sample) sur l’état d’un détecteur bistable hystérétique (rectangle vert).

L’état de celui-ci est alors maintenu et caractérisé (hold). Implémentation en cQED (en bas): un

transmon (en rose) est couplé capacitivement à un résonateur coplanaire (vert bandes grisées), rendu

anharmonique par l’insertion d’une jonction Josephson (croix verte) en son milieu. Ce qubit est piloté

par une source micro-ondes Vd et mesurée par le résonateur opéré en JBA: une impulsion micro-ondes

avec une fréquence et forme spécifique est appliquée par une seconde source Vm. Cette impulsion est

réfléchie par le système et démodulée en homodyne pour obtenir ses deux quadratures I et Q. La deux

états du détecteur B̄ and B donnent lieu à des trajectoires très différentes de I (courbes turquoises et

mauves).

erreurs de lecture Elles consistent à détecter 0 lorsque |1〉 a été préparé avant
la lecture, ou vice versa. Si la probabilité de telles erreurs est suffisamment faible,
l’état du système peut être mesurée avec une séquence de lecture unique, sans
avoir à moyenner sur un ensemble d’expériences avec une préparation identique.
Un tel caractère de la lecture en un coup est hautement souhaitable pour pouvoir
exécuter efficacement des algorithmes quantiques et aussi pour caractériser avec
précision l’état du système, par exemple dans un test des inégalités de Bell.

action en retour sur le qubit En l’absence d’erreur, la lecture perturbe in-
évitablement le qubit par la compactification de son état α |0〉 + β |1〉 sur |0〉
si 0 est lu et vice versa. Une caractéristique souhaitable est qu’aucune autre
perturbation en plus de cette projection affecte l’état du qubit. Plus précisément,
le processus de mesure ne devrait pas induire de relaxation supplémentaire du
qubit, ou d’excitations parasites49. Un critère fort pour vérifier ceci consiste à
réaliser un ensemble de lectures successives et voir si elles donnent les mêmes
résultats : si c’est le cas la lecture est dite non-destructive (QND).

Dans cette thèse, nous démontrons pour la première fois la lecture haute fidélité d’un
transmon en cQED architecture avec seulement 6% d’erreurs consistant à lire 0 au
lieu de 1 et 2% d’erreurs dans le sens inverse. Cette lecture maintient les bonnes
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propriétés de cohérence du transmon, et n’induit aucune relaxation supplémentaire
du qubit au cours du processus de mesure.

Améliorer la fidélité sans perdre les bonnes propriétés de cohérence

Dans le régime dispersif du cQED le qubit est lu en utilisant le cavity pull, c’est à
dire, le décalage de fréquence du résonateur qui est différent selon que le qubit soit
dans |0〉 ou dans |1〉. La méthode de lecture dispersive standard consiste à détecter ce
changement de fréquence en mesurant la phase d’un pulse réfléchi par le résonateur.
A ce jour, cette méthode n’a pas permis d’atteindre une haute fidélité, car elle est
confrontée deux difficultés liées: la lecture doit être réalisée dans un laps de temps
beaucoup plus court que le temps T1 dans lequel le qubit relaxe de |1〉 à|0〉, et ceci
avec une puissance suffisamment basse pour éviter les excitations parasites. Ces
deux contraintes conduisent à un rapport signal-sur-bruit (SNR) trop faible pour
discriminer l’état d’un qubit avec une haute fidélité. Toutefois des progrès dans cette
directions ont été réalisés très récemment50.
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Figure 0.8: (a) Des oscillations de Rabi mesurées avec le JBA

atteignent 94% de visibilité. (b) Pour tester la perturbation intro-

duite par la lecture nous comparons le résultat de deux opérations

de lecture successives (rouge et bleu) à celui de l’exécution de la

seconde seulement (vert). La visibilité d’une seconde lecture (en

bleu) réalisée après une première lecture (en rouge) n’est pas pire

que la lecture seule (en vert), ce qui montre que la lecture est

potentiellement QND.

Dans le Chapitre 4, nous décrivons
un système de lecture qui est en
mesure de surmonter cette lim-
itation en utilisant le principe
d’échantillonnage et retenue (Fig.
0.7 en haut). La stratégie de ce
détecteur est de séparer le proces-
sus de mesure en deux périodes :
une première au cours de laquelle
l’état qubit est rapidement mappé
sur l’état détecteur avant de relaxer
(échantillonnage), et une seconde au
cours de laquelle l’état du détecteur
est maintenu aussi longtemps que
nécessaire pour pouvoir caractériser
l’état dans lequel était le qubit
(retenue). Cette stratégie nécessite
un système bistable hystérétique :
la bistabilité permet de faire corre-
spondre de façon univoque les état
du qubit avec les états du disposi-
tif de mesure. L’hystérésis permet
de maintenir l’état de l’appareil de
mesure aussi longtemps que néces-

saire afin le caractériser aussi finement que voulu.
Dans notre expérience ce système bistable est implémenté en insérant une jonction

Josephson au milieu du résonateur (Fig. 0.7 en bas), ce qui rend non-linéaire. En effet,
quand un résonateur non linéaire est forcé à ne fréquence légèrement en dessous
de sa fréquence de résonance, il apparaît un phénomène de bifurcation entre deux
solutions stables, caractérisées par des amplitudes différentes du champ à l’intérieur
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du résonateur. Un tel résonateur non-linéaire, nommé amplificateur Josephson à bi-
furcation (JBA)51,52, peut être opéré comme un détecteur d’échantillonnage et retenue
pour l’état du qubit pourvu que ses deux solutions soient mises en correspondance
avec les états du qubit par l’exécution d’une séquence approprié d’impulsions.

De cette façon, nous avons pu observer des oscillations de Rabi avec une visibilité de
94%53 (Fig. 0.8a). Cette visibilité est limitée principalement par la relaxation du qubit,
qui n’est pas intrinsèque au processus de lecture. Cette haute visibilité est obtenue
tout en gardant les bon temps de cohérence des qubits. En plus, aucune relaxation
supplémentaire n’a été observée au cours du processus de lecture (Fig. 0.8b), ce qui
suggère que ce système de lecture est potentiellement QND.

cQED non linéaire
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Figure 0.9: Spectre d’un qubit couplé à un ré-

sonateur non-linéaire pompé par un signal micro-

ondes. Diverses caractéristiques sans contrepartie

en cQED linéaire apparaissent: la bifurcation, des

raies spectrales doublet et triplet.

L’introduction d’un élément non-linéaire dans
le résonateur de lecture modifie son comporte-
ment de façon très remarquable. Cette modifi-
cation, qui nous a permis d’améliorer la fidél-
ité de la lecture, ouvre aussi le chemin à une
grande variété d’expériences qui visent à aller
au delà de la portée du modèle d’interaction
dispersif du cQED. Ces expériences de cQED
non-linéaire pourraient devenir un nouveau
terrain où sonder l’interaction entre couplage
fort et phénomènes non-linéaires.

Nous avons réalisé une première série
d’expériences où le TLS est utilisé comme
sonde pour le champ stockée dans le ré-
sonateur. Etant donné que l’effet Stark alter-
natif déplace la fréquence du TLS proportion-
nellement à l’amplitude du champ dans ré-
sonateur, nous pouvons caractériser le champ
établi dans le résonateur par une micro-onde
pompe en mesurant le spectre TLS. Avec une
telle technique, nous avons pu observer (Fig.
0.9) le saut de l’amplitude du champ à la bi-
furcation. Plusieurs autres caractéristiques
intéressantes révèlent la richesse de la physique de ce système : la plus frappante est
sans doute la présence de bandes latérales asymétriques autour de la fréquence de
transition du transmon. Nous avons interprété ces spectres par un modèle simple lié
à l’amplification paramétrique et le squeezing champ à l’intérieur du résonateur.

0.4.2 Un élément de couplage accordable entre qubits

En plus d’un circuit de lecture haute fidélité, dans notre architecture cQED nous
voulons que n’importe quelle paire de qubits soit capable d’interagir pour implé-
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Figure 0.10: Le résonateur accordable consiste en un résonateur λ/2 avec un SQUID au centre. Sa
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menter une porte quantique. Idéalement cette interaction doit être configurable pour
pouvoir implémenter une succession de portes quantiques. Une bonne façon de met-
tre en œuvre ce couplage en cQED est de coupler les différents qubits à un résonateur
commun qui agit comme bus de couplage. Les couplages peuvent alors être activés
et désactivés en réglant la fréquence de transition des qubits en résonance ou hors
résonance avec le résonateur : un tel schéma a été testé expérimentalement avec succès
par Silanpaa et al.54. L’architecture nous prévoyons, quant à nous, d’utiliser est légère-
ment différente47: pour garder les qubits à des points de travail fixes, nous préférons
avoir une résonateur accordable qui est mis en résonance et hors résonance avec les
différents qubits pour rendre les couplages effectifs. Un tel résonateur accordable
devrait:

• être accordable dans la plus large gamme possible de fréquences pour être en
mesure de coupler un grand nombre de qubits

• avoir aussi peu de pertes que possible pour éviter des erreurs dans les opérations
à deux qubits

• être rapidement accordables pour effectuer des opérations avant que les qubits
relaxent

Dans le Chapitre 5, nous décrivons comment nous avons conçu et mesuré un ré-
sonateur accordable supraconducteur contenant un SQUID en son milieu. Ce SQUID
se comporte comme une inductance dont la valeur est contrôlée par le flux magné-
tique qui le traverse. De cette manière (Fig. 0.10), nous avons accordé la fréquence de
résonance dans une gamme de 300 MHz au dessous de 1, 8 GHz et nous avons mesuré
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un facteur de qualité intrinsèque de 3 × 104 sur notre meilleur échantillon55, une
valeur suffisamment grande pour le faire fonctionner comme un élément de couplage,
mais un ordre de grandeur plus faible que pour un résonateur supraconducteur sans
SQUID.

Nous avons aussi observé une dégradation du facteur de qualité du résonateur
lorsqu’il est très désaccordé par rapport à sa fréquence de résonance nue. Nous
n’avons pas pu expliquer celle-ci comme un effet des valeurs typiques de bruit
en flux sur le SQUID, et nous l’interprétons comme un effet de la grande non-
linéarité du SQUID pour le grands désaccords, qui peut conduire à un élargissement
inhomogène de la résonance en raison des fluctuations thermiques dans le résonateur.
Cette dégradation semble fixer un compromis entre la plage d’accordabilité et le
facteur de qualité qui pourrait être un problème pour utiliser ces résonateurs comme
éléments de couplage. Le réglage rapide de la fréquence de résonance a été réalisée
à l’Université de Chalmers sur un échantillon très similaire56 en utilisant une ligne
de flux lithographiée sur la puce afin de modifier rapidement le flux magnétique qui
traverse le SQUID.

En conclusion les résonateurs supraconducteurs contenant un SQUID sont des
candidats prometteurs comme bus de couplage configurable pour l’architecture
cQED.
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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 Quantum physics and quantum

information experiments with circuits

This thesis presents a series of experiments performed with artificial atoms consisting
of superconducting electrical circuits, with the dual goal of addressing fundamental
issues in quantum mechanics, and of developing building blocks for a quantum
processor. Experiments using such artificial quantum systems were initiated in the
1980s in the purpose of testing the quantum nature of collective electrical variables,
which was at that time under debate. This being established1, the field was then
boosted by the invention of quantum computing2,3 and the subsequent need of
two-level systems (TLS) with long coherence times to form the quantum bits or
qubits. Since the first observation of coherent dynamics in a simple superconducting
circuit, the Cooper Pair Box (CPB)4, various superconducting qubit designs5,6,7 were
developed worldwide with spectacular progress6,8,9

(a) Cavity QED

(b) Circuit QED

Figure 1.1: The cavity QED setup (a) consists in a highly

reflective electromagnetic cavity (in green) crossed by atoms

(in pink), which interact with the stored field (in blue). By

analogy, in the circuit QED setup (b), an artificial atom

built with a superconducting circuit containing Joseph-

son junctions is coupled to the electromagnetic field of a

superconducting resonator.

An important landmark was passed
in 2004 when Schoelkopf’s group at
Yale reproduced with superconducting
circuits10,11 the experiments performed
in Cavity Quantum Electrodynamics
(CQED)12,13, a field of atomic physics
in which individual atoms interact with
one or a few photons stored in a res-
onant cavity (Fig. 1.1a). In the super-
conducting circuit analog to CQED, the
so-called circuit QED setup (Fig. 1.1b),
the atom is replaced by a CPB and the
cavity is an on-chip planar microwave
resonator. Cavity and circuit QED allow
to explore the light-matter interaction at
its most fundamental level. In the strong
coupling regime, where the atom-field
interaction overwhelms dissipative pro-
cesses, interesting phenomena occur: for
instance, when the cavity resonance is
tuned to the emission line of the atoms,
any photon emitted by the atom is stored
in the cavity and reabsorbed many times,
so that spontaneous emission becomes
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reversible14. The study of such coherent dynamics between a two-level atom and
the cavity mode (a harmonic oscillator), allows to investigate fundamental aspects of
quantum physics: how does a measurement project the superposition of several states
on one of them? How does the state of a system evolve while being continuously
observed? Can we prove the quantum nature of the system from the measurements
performed on it? We have addressed those questions in the experiments introduced
in Section 1.3 and described in Chapter 3.

On the quantum information side, we have enriched the proposed cQED quantum
processor architecture (Section 1.4) by demonstrating a high fidelity qubit readout, a
critical element for building an efficient quantum computer, as discussed in Section
1.4.1. This new circuit relies on the bistability of a non-linear resonator, which was
not present in the standard cQED setup. This new circuit constitutes an ideal system
to study the interplay between strong coupling and non-linear effects –parametric
amplification, squeezing...– opening a new field of research that could be nicknamed
non-linear cQED. All these aspects are described in Chapter 4.

Finally to make profit of the scalability of the number of qubits in cQED, we have
operated a circuit which would potentially be able to mediate operations between two
arbitrary qubits: a superconducting resonator which is tunable in frequency. Such a
tunable coupling bus is introduced in Section 1.4.2 and described in Chapter 5.

1.2 Cavity QED with macroscopic artificial atoms

Most of the macroscopic objects lack from purely quantum features, like state superpo-
sition, because of the unavoidable coupling between the different degrees of freedom
of large bodies, which make the coherences vanish in extremely short times. In a
superconductor however, the numerous degrees of freedom of single electrons do not
decohere individually but are tied together forming collective variables, like voltages
or currents, which remain coherent for times reaching several µs if they are well
isolated from the electromagnetic environment. The simplest superconducting circuit,
a LC resonator, already provides an energy spectrum with equally-spaced discrete
levels. To obtain an atom-like anharmonic energy spectrum, a non-linear and lossless
element is needed: the Josephson junction, which consists of two superconducting
electrodes coupled through a thin layer of insulating material (Fig. 1.2a).

The particular artificial-atom used in this thesis is derived from the Cooper Pair Box
(CPB, see Fig. 1.2b), a circuit developed in the Quantronics group15 which consists of
a capacitively biased Josephson junction connecting an isolated electrode (island) to a
reservoir. It is characterized by two energy scales: the tunneling Josephson energy
EJ and the charging energy EC. It was initially operated in the limit EC ≫ EJ where
the energy eigenstates correspond to the presence or absence of an additional Cooper
Pair on the island. At the end of the 1990s Nakamura and coworkers were able
to observe Rabi oscillations between its two lowest energy eigenstates4. Soon after,
the Quantronium6,16 (CPB with EJ ∼ EC) provided a single-shot readout method
and allowed, thanks to the so-called optimal working point strategy, a substantial
improvement in the coherence times.
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Insulating layer

EJ,CJ

CJ

Superconductor

EJ

(a) The Josephson junction

CJV EJ

Cg

(b) The Cooper pair box

2Cg

 ½CB

2Cg

V

½CB

EJ()

(c) The transmon

Figure 1.2: (a) A Josephson junction

consists of two superconducting elec-

trodes separated by a thin layer of in-

sulator. Its electrical symbol (left) rep-

resents a capacitor in parallel with an

element representing the tunnelling of

Cooper pairs (right). (b) The CPB

circuit is formed by an island (pur-

ple) connected to a reservoir through

a Josephson junction and capacitively

biased (orange). It is characterized by

its Josephson Energy EJ and its charg-

ing energy EC = (2e)2/2CΣ with

CΣ = CJ + Cg. (c) The transmon is a

split CPB (a CPB with tunable EJ(Φ))

shunted by an external capacitor CB to

decrease EC.

This allowed to perform all basic quantum manipula-
tions on a TLS as well as an in depth study of its deco-
herence17. However the complex fabrication process and
the sensitivity to charge noise hindered the operation of
circuits containing more than one Quantronium18.

As a result, in this thesis we use the Cooper Pair Box in
the limit EJ ≫ EC, where it becomes insensitive to charge
noise. The particular circuit we used, called transmon9,19

and pioneered at Yale, reaches this regime thanks to an
external capacitor which is added to lower the charging
energy EC, and which at the same time provides a good
capacitive coupling to the outside. All these features
result in an improved robustness and reproducibility.

In cQED the transmon is coupled to an on-chip mi-
crowave resonator. The advantage of this setup com-
pared to cavity QED is that all the elements are fabricated
on chip; experiments can thus be performed without the
challenging task of trapping and manipulating individ-
ual atoms. Moreover, in cQED, the resonator to which
the transmon is coupled is planar, yielding stronger cou-
pling than in CQED because of the 1D confinement of
the fields and the large size of the artificial atom cir-
cuit20. This allows to easily reach the strong coupling
regime and to access coupling constants unattainable in
quantum optics. Another substantial advantage is the
increased flexibility in the design because the circuit pa-
rameters, unlike atom ones, can be engineered during
the fabrication process.

Besides storing the field which interacts with the TLS,
this resonator also acts as a sharp filter, isolating the TLS
from electromagnetic noise from the measuring leads.
Depending on the ratio between the atom-resonator cou-
pling constant g and their frequency detuning ∆, two
regimes can be distinguished:

• Resonant regime g ≫ ∆: the resonator and TLS are
able to coherently exchange their energy and have
to be treated as a single system, a kind of artificial

molecule.

• Dispersive regime g ≪ ∆: the TLS and resonator
cannot exchange energy, but affect each other via
frequency shifts.

In the dispersive regime the resonator can be used as
a measurement apparatus for the TLS state. Indeed,
depending on the TLS state, the resonator frequency
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shifts up or down by an amount χ, the cavity pull. This shift can be detected by sending
a microwave pulse to the resonator and by measuring the phase of the reflected signal.
The amount of information obtained with this procedure is proportional to the intra-
resonator field created by this pulse. All the measurements of the transmon state
performed in this thesis are based on detecting such cavity pull.

On the other hand, the TLS transition frequency shifts by 2χn when the resonator
contains n photons. This effect, called AC-Stark shift, is used in this thesis to calibrate
in-situ the intra-resonator field. It also explains the perturbation of the TLS during the
measurement: the microwave pulse used to probe the cavity pull, builds up a field
of n̄ photons in the cavity. The quantum fluctuations δn of this field –its shot-noise–
translate to a fluctuating TLS transition frequency 2χδn, and results in a dephasing of
the TLS state21,22. Moreover, since the shot noise is Poissonian, δn ∝ n̄, and thus the
amount of extracted information and the resulting perturbation grow together with
the energy stored in the resonator.

The Chapter 2 of this thesis contains an in-depth description of fundamental
concepts and experimental implementation of circuit QED.

1.3 Measurement and dynamics in circuit QED

An ideal situation to study the effect of the measurement on the dynamics of a
quantum system is shown in Fig. 1.3a: a TLS driven resonantly undergoes Rabi
oscillations, while its energy state is being measured by a detector that is continuously
active. In such a situation the system is subject to two competing phenomena: the drive
tends to create superpositions of the two eigenstates, while the measurement tends
to project the TLS state onto one of them. When the measurement is weak enough,
the TLS dynamics is only slightly perturbed and keeps its oscillatory behaviour (blue
inset of Fig. 1.3c). Conversely, in the strong measurement regime the information is
quickly extracted from the system resulting in a rapid projection onto the eigenstate of
the measured outcome, as expected from the measurement postulate. The dynamics is
then no longer coherent and consists instead in a series of stochastic quantum jumps
between the eigenstates23 (red inset of Fig. 1.3c).

The crossover between these two regimes was widely discussed from a theoretical
point of view24,25,26 but no experimental test had been performed with a mesoscopic
system coupled to a continuously measuring detector. The cQED setup is ideal to
perform such a study because the atom is fixed, allowing to perform continuous
experiments, and because the measurement strength can easily be varied.

As explained in Chapter 3, we implemented such a continuous measurement
experiment in the cQED setup (see Fig. 1.3b) with a transmon TLS coupled to
a resonator which acts as a classical detector for the TLS state. Because of the
cavity pull, the resonator frequency continuously follows the state of the qubit. To
continuously monitor this frequency, we could not simply average the successive
periods of the Rabi oscillation, since the dephasing between them which is induced by
the measurement itself would produce a null average. However, all the information
on the system dynamics is present in the noise spectrum measured at the detector
output, which we acquire using a newly designed setup (in green).
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Figure 1.3: The continuous measurement experiment. (a) Principle: a driven TLS performs Rabi

oscillations while being continuously monitored by a measuring apparatus. (b) Implementation in

the cQED setup: a transmon TLS (pink) is driven by a microwave source (orange), and is coupled to

a resonator (green). The continuous measurement is performed by sending a microwave tone to the

resonator and by performing an homodyne detection of the reflected signal. The noise spectrum of this

reflected signal gives access to the dynamics of the TLS. (c) Noise spectra when the TLS performing

Rabi oscillations at 5 MHz. The curves range from weak measurement (n̄ = 0.23, blue) to strong

measurement (n̄ = 15.6, red). Blue and red inset curves sketch the quantum trajectories for weak and

strong measurements. (d) Ensemble-averaged Rabi oscillations at 2.5 MHz for different measurement

strengths. The slowdown of the exponential decay which is observed for the strongest measurements

is a signature of the QZE.
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Fig. 1.3c shows the noise spectra measured for increasing measurement strengths.
When the measurement is weak (blue curve) the spectrum shows a clear Lorentzian
peak at the Rabi frequency, which corresponds to the oscillatory dynamics of the
system. When increasing the measurement strength, this peak progressively decreases
and broadens because of measurement-induced dephasing. At the same time, a
Lorentzian at zero frequency grows, yielding the signature of the stochastic quantum
jumps in the strong measurement regime. These noise spectra constitute the first
quantitative observation of the transition from weak to strong measurement in a
continuously measured circuit. They are in very good agreement with the theoretical
predictions24.

A genuine effect of quantum measurement: the Quantum Zeno effect

In the quantum jump regime the dynamics is progressively frozen by the measurement,
a genuinely quantum effect known as Quantum Zeno Effect (QZE)27,28. We observed
for the first time a signature of this effect in a quantum circuit. On Fig. 1.3d we see
how Rabi oscillations performed under growing measurement strengths first lose
their oscillatory behaviour (blue curve) to become exponential (golden curve). Further
increases in the measurement strength (orange and red curves) increase the time
constant of the decay. This is a signature of the inhibition of the |g〉 → |e〉 transition
caused by the strong continuous measurements as expected from QZE.

Violation of the Leggett-Garg inequality: a proof of non-classicality
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The QZE is a first evidence of the quantumness of the TLS, but a stronger proof of
the genuine quantum nature of the TLS can be obtained in the weak measurement
regime by testing if our measurements comply or violate an inequality introduced
by Leggett and Garg29. This inequality is derived from two hypotheses which seem
natural for macroscopic objects:

1. Macrorealism per se: “A macroscopic object, which has available to it two or more
macroscopically distinct states, is at any given time in a definite one of those
states.” (citing literally from Leggett30)

2. Noninvasive measurability: “It is possible in principle to determine which of these
states the system is in without any effect on the state itself, or on the subsequent
system dynamics.”

From these two hypotheses, called macrorealism, Leggett and Garg derived in 1985

an inequality on the time-correlators of several successive projective measurements
performed on the system. For more than 20 years the inequality was widely discussed
theoretically31,30,32,33 but not tested experimentally because the immediate projective
measurements that it requires were difficult to implement. The Leggett-Garg inequal-
ity is often described as a Bell’s inequality in time, since it involves correlations of the
detector signal taken at different times, while the CHSH Bell inequality34 involves a
correlations between measurements performed with space separation.

In this thesis we provide one of the first experimental violations57,35,36 of the Leggett-
Garg inequality in a form derived by Korotkov and coworkers32 which is adapted to
a continuous and weak measurement setup. In the weak measurement regime, we
measure an averaged noise spectrum of the detector while the TLS is continuously
driven and monitored (Fig. 1.4b inset). A single calibration experiment allows to
rescale this spectrum in its natural units, and to extract the time-correlation function
involved in the inequality (Fig. 1.4b). This time correlation function is in very
good agreement with the quantum predictions, and exceeds the bound predicted by
Leggett and Garg for macrorealistic systems. This gives a strong proof of the system
non-classicality.

Our violation of this inequality opens interesting perspectives. First the Leggett-Garg
inequality can be deduced from very different hypotheses related to determinism37,38.
We explain further in this thesis how the violation of the Leggett-Garg inequality could
in this way provide a strong criterion to rule out any deterministic hidden-variables
models. We also discuss how the violation of the inequality could be witnessing
the existence of a quantum resource, in the same spirit that the violation of the
original Bell’s inequality demonstrated entanglement, which is used nowadays as a
quantum resource in quantum cryptography and computing. Specifically, the excess
of correlations which is revealed by the violation of Leggett-Garg inequality suggests
that quantum feedback schemes, consisting in analyzing the continuously acquired
data and feeding back a control signal onto the system, could be more powerful than
their classical analog allowing, for instance, to correct all the dephasing of the TLS and
maintain non-decaying Rabi oscillations39. However, the practical implementation of
such schemes require amplifiers working at the quantum limit40,41.
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Characterization of the thermal excitations of the artificial atom
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Figure 1.5: (a) The |0〉 ↔ |1〉 transitions of the TLS can be observed

with a continuous spectral measurement. (b) The populations esti-

mated from this spectra (black circles) are in good agreement with

the theoretical predictions for the transitions due to the thermal field

(red dashed line).

Continuous measurements consti-
tute also a useful tool for charac-
terizing fluctuations of the TLS
state due to the thermal field. In-
deed, even at the very low di-
lution cryostat temperatures the
cQED artificial atom is often ex-
cited by the thermal field present
in its environment. As a result, in
the absence of external excitation,
the population ρee of the excited
state |e〉 is not zero. However
since the thermal fluctuations are
not reproducible from one exper-
imental sequence to the next one,
they only reduce the amplitude
of the measured signal, which is
not easy to calibrate.

In Chapter 3 we show that the noise power measurement setup built for the
experiments described above allows a direct evaluation of the residual population
due to those thermal fluctuations (see Fig. 1.5) and of their decay rate42.

1.4 Circuit QED architecture for quantum computing

Besides these fundamental quantum physics experiments, the circuit QED setup also
provides various building blocks which can be used to design useful quantum devices.
Indeed, from the 1980s, it is known that the peculiar features of quantum mechanics
can be exploited to build quantum devices whose capabilities overcome classical ones.
A successful example is quantum cryptography, which makes use of the non-cloning

theorem to forbid eavesdropping on a communication channel43.
Circuit QED provides a promising architecture to implement another concept, the

quantum computer, which would process information encoded in quantum states3.
In this way it would make profit of the superposition principle to achieve a massive

parallelism: when an operation is performed on a superposition of all the possible
inputs, all the corresponding outputs are obtained in a single computational step.
In 1985 Deutsch showed that, even if the final measurement selects only one of the
results, it is possible to apply ingenious interference schemes to solve some specific
problems substantially faster than with a classical Von Neumann computer2,44. In
circuit QED the qubits are fabricated by lithographic techniques; it therefore seems
easy to build a large number of them. However their readout and coupling systems
should also be scalable.

To achieve this scalability for the readout, we plan to couple a resonator to each
qubit and use it to readout its state with a microwave pulse, as explained above. These
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resonators are designed with different frequencies, so that they can be addressed
using a single input line multiplexed in frequency, in analogy to what is already
done in arrays of Microwave Kinetic Inductance Detectors (MKIDs)45. However in
the experiments where the cQED resonator was used as a readout system the amount
of errors has been substantially higher than the one needed for efficiently running
quantum algorithms, undermining the speed gains of quantum algorithms. In this
thesis we demonstrate how using a non-linear resonator operated as a Josephson
bifurcation amplifier (JBA) can substantially improve this situation.

|O>

|1>

|O>

|1>1O

…
1O

U

U

(a) Generic quantum computer
… …

(b) cQED architecture

Figure 1.6: The quantum computer architecture (a) and our planned cQED implementation (b): a set of

TLSs (pink, implemented with transmons) whose states are controllable by unitary transformations (orange,

implemented with microwave pulses) can be controllably coupled with the others (purple, implemented with

tunable resonators). A measurement of each individual TLS in the energy eigenbasis can be performed resulting

either in 0 or 1 (green, implemented with a non-linear resonator connected to a multiplexed readout line).

With this readout, the architecture we envision for implementing a scalable cQED
processor is shown in Fig. 1.6. It consists in a set of TLS implemented with transmons,
each of them encoding a qubit. Each qubit can be controlled individually by unitary
operations, implemented as sequences of resonant driving pulses similar to NMR
ones. Each qubit can also be individually read by a dedicated non-linear resonator,
which is addressed through a single input line multiplexed in frequency as in the
Yale Qlab experiments46. Finally, two-qubit operations can be performed for any
pair of qubits, with a tunable resonator acting as a coupling bus47: to mediate their
interaction this resonator would be first tuned with one qubit and once the qubit state
has been transferred to it, it would be tuned with the second one to actually perform
the operation.
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1.4.1 Sample-and-hold measurement in cQED

As explained above a quantum processor requires qubits with long coherence times as
well as a circuit able to readout the qubit state with a low probability of error48. An
ideal readout circuit should perform a projective measurement of the qubit state on
demand. When not being operated its presence should not affect the qubit coherence.
When a measurement is performed on a state α |0〉+ β |1〉 it should return 0 with
probability |α|2 and 1 with probability |β|2 and the state at the end of the measurement
should be |0〉 if 0 is measured and vice versa. Two kinds of errors could affect this
readout process:
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Figure 1.7: Principle of a high fidelity single-shot readout in cQED (top): the state of the TLS (pink

circle) is first quickly mapped (sample) on the state of a bistable hysteretic detector (green rectangle).

The state of the latter is then hold and characterized. Circuit QED implementation (bottom): a

transmon (in pink) is capacitively coupled to a coplanar waveguide resonator (green grayed strips)

made anharmonic by inserting a Josephson junction (green cross) at its center. This qubit is coherently

driven by a microwave source Vd and is measured by operating the resonator as a cavity-JBA: a

microwave pulse with properly adjusted frequency and shape is applied by a second source Vm; this

pulse is reflected by the system and homodyne detected yielding the two quadratures I and Q. The

two detector states B̄ and B yield very different trajectories of I (turquoise and purple curves).

readout errors They consist in detecting 0 when |1〉 has been prepared before
the readout, or vice versa. If the probability of such errors is low enough, the
system state can be measured with a single readout sequence, without averaging
on an ensemble of identically prepared experiments. Such a single-shot character
of the readout is highly desirable to be able to efficiently run quantum algorithms
and also to accurately characterize the system state, for instance in a test of Bell’s
inequalities.

back-action on the qubit state In the absence of error the readout unavoid-
ably perturbs the qubit by collapsing its state α |0〉+ β |1〉 to |0〉 if 0 is read and
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vice versa. A desirable feature is that no other perturbation in addition to this
projection affects the qubit state. Specifically, the measurement process should
not induce extra relaxation of the qubit, or spurious excitations49. A strong
criterion for this consists in testing if a set of successive readouts return the same
result. If they do the readout is said to be Quantum Non-Demolition (QND).

In this thesis we demonstrate the first high-fidelity readout of a transmon qubit in a
cQED architecture with 6% errors consisting in reading 0 instead of 1 and 2% errors
in the reverse way. This readout keeps the good coherence properties of the transmon,
and induces no extra relaxation of the qubit during the measurement process.

Improving fidelity while keeping good coherence properties
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Figure 1.8: (a) Rabi oscillations measured with the JBA reach

94% visibility. (b) To test the perturbation introduced by the read-

out we compare the result of performing two successive readout

operations (red and blue) to the one of performing only the second

one (green). A second readout (in blue) after a first one (in red)

is not worse than a single readout (in green), showing that the

readout is potentially QND.

In the dispersive regime of cQED
the qubit is readout using the cav-
ity pull, that is, the different shift of
the resonator frequency in the |0〉
and |1〉 states. The standard dis-
persive readout method consists in
detecting the cavity pull by mea-
suring the phase of a microwave
pulse reflected from the resonator.
This method has failed up to date to
achieve high-fidelity, because it faces
two related difficulties: the readout
has to be completed in a time much
shorter than the time T1 in which
the qubit relaxes from |1〉 to |0〉 and
with a power low enough to avoid
spurious qubit transitions; these two
constraints lead to a signal-to-noise-
ratio (SNR) which is too low to dis-
criminate the qubit state with a high-
fidelity. We note however that very
recently progress has been made in
this direction50.

In Chapter 4 we describe a readout system able to overcome this limitation by using
a sample-and-hold detector (Fig. 1.7 top). The strategy of this detector is to separate
the measurement process in two parts: a first one during which the qubit state is
quickly mapped on the detector state before it relaxes (“sample”), and a second one
during which the detector state is held and probed during a time long enough to find
out which was the qubit state (“hold”). This strategy requires a bistable hysteretic
system. Bistability allows to unambiguously map the qubit state onto the state of the
measurement device. Hysteresis allows to hold the state of the measurement device
as long as needed to fully characterize it.
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In our experiment this bistable system is implemented by inserting a Josephson
junction in the middle of the resonator (Fig. 1.7 bottom), making it non-linear. Indeed,
when a non-linear resonator is driven slightly below its resonance frequency it shows
a bifurcation phenomenon between two stable solutions, characterized by different
amplitudes and phases of the intra-resonator field. Such a non-linear resonator,
named Josephson Bifurcation Amplifier (JBA)51,52, provides a sample-and-hold detector
for qubit if these two solutions are put in correspondence with the qubit states by
performing an appropriate set of pulses.

In such a way, we report a Rabi oscillations visibility of 94%53 (Fig. 1.8a) . This
visibility is limited mainly by the relaxation of the qubit, which is not intrinsic to
the readout process. This good visibility is achieved while keeping good coherence
times for the qubits. Furthermore no extra relaxation is observed during the readout
operation (Fig. 1.8b), which suggests that this readout is potentially QND.
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Figure 1.9: Spectrum of a qubit coupled to a pumped

non-linear resonator. Various features with no coun-

terpart in linear cQED appear: the bifurcation, dou-

blet and triplet spectral lines.

Non-linear cQED

The introduction of a non-linear element in
the readout resonator modifies its behaviour
dramatically. This modification, which al-
lowed us to improve the readout fidelity, also
opens the way to a wide variety of experi-
ments beyond the scope of the CQED disper-
sive interaction model. Such non-linear cQED

experiments might become a new playground
for probing the interplay between strong cou-
pling and non-linear phenomena.

We performed a first set of experiments in
which the TLS is used as a probe for the field
stored in the resonator. Since the TLS fre-
quency is AC-Stark shifted proportionally to
the amplitude of the intra-resonator field, we
could characterize the intra-resonator field
that result from pumping the cavity with a
microwave tone by measuring the TLS spec-
trum. With such a technique we observed

(Fig. 1.9) the sudden jump of the field amplitude at bifurcation. Several other interest-
ing features reveal the rich physics of the system. The most striking among them is
the presence of asymmetric sidebands around the transmon transition frequency. We
interpreted these spectra through a simple model related to parametric amplification
and squeezing of the intra-resonator field.

1.4.2 A tunable qubit coupler

In addition to a good readout circuit, our cQED scalable architecture requires that
any pair of qubits are able to interact for implementing a quantum gate. Ideally such
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an interaction should be configurable to implement any succession of quantum gates.
A good way to implement this coupling in cQED is to couple all the qubits to a
common resonator which acts as a coupling bus. The couplings can then be switched
on and off by tuning the qubits transition frequency in or out of resonance with the
resonator, as was experimentally demonstrated54. The architecture we plan to use47

is slightly different: to keep the qubits at fixed working points, we want to have a
tunable resonator which is brought in and out of resonance with each qubit to make
the couplings effective. Such a tunable resonator should:

• be tunable in the larger possible range to be able to couple many qubits

• have as little losses as possible to avoid errors in 2-qubit operations

• be tunable as fast as possible to perform operations much faster than qubit
relaxation
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Figure 1.10: The tunable resonator consists in a λ/2 resonator with a SQUID in its center. Its

resonance frequency varies in a large span as a function of the magnetic flux threading the SQUIDs.

In the Chapter 5 we describe how we operated a tunable superconducting resonator
containing a SQUID in its center. The SQUID behaves as a lumped inductance that
can be tuned by the flux threading it. In this way (Fig. 1.10) we tuned the resonance
frequency in a 300 MHz range below 1.8 GHz and we measured an intrinsic quality
factor of 3 × 104 on our best sample55, a value sufficiently large to operate it as a
coupling element, but an order of magnitude lower than for a bare superconducting
resonator.

However, when tuning the resonator far from its bare resonance frequency we
observed a degradation of the quality factor, which we could not explain as an effect
of the typical values of flux noise. We interpret it as an effect of the large non-linearity
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of the SQUID for large detunings, which can lead to an inhomogeneous broadening
of the resonance due to the thermal fluctuations of the resonator population. This
degradation seems to set a compromise between the tunability range and the quality
factor which could be a threat for using the resonator as a coupling element. Fast
tuning of the resonance frequency was performed at Chalmers University on a very
similar design56 by using an on-chip flux line to quickly vary the flux threading the
SQUID.

Summing up, superconducting resonators containing a SQUID as tuning element
are promising candidates as configurable coupling elements for the cQED scalable
architecture.
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2
C I R C U I T Q E D : T H E B U I L D I N G B L O C K S

The cQED architecture is composed of two basic elements : superconducting res-
onators and artificial atoms built with Josephson circuits. Along this chapter we
present the elements of theory and the techniques which lay the framework of all the
experiments described in this thesis.

We start by describing the superconducting coplanar resonators, which are used
as measurement devices for the artificial atoms in the following chapters. For this
purpose, a full quantum treatment of the input and output signals is introduced in
Section 2.1. In Section 2.2, we study the two-level systems (TLS) which is used in
our cQED experiments: the transmon. Coupling these circuits together results in the
Jaynes-Cummings Hamiltonian. In Section 2.3 we discuss both the resonant regime,
in which both elements can exchange energy, and the dispersive regime, in which
each one induces frequency shifts on the other. This dispersive regime is central to
the measurements schemes discussed in 2.4 and used in the rest of this thesis.

2.1 Superconducting resonators

2.1.1 Harmonic oscillators

The Fabry-Pérot resonators used in Cavity QED58,13, the lumped-element LC resonator
and the planar resonator used in circuit QED are different implementations of the
same model: the harmonic oscillator. When isolated, all these physical systems behave
as photon boxes storing the electromagnetic energy of one or several modes of the field.
Although the geometrical distribution of the fields varies from system to system, one
mode of any of these resonators is always described by the same Hamiltonian

Ĥ = h̄ωr (n̂ + 1/2) , (2.1)

where ωr is the natural frequency of the mode and n̂ the operator representing
the number of photons in this mode. The stationary states |n〉, called Fock states,
represent a well-defined number n of photons in the mode –for instance the vacuum
|0〉.

An example: the LC resonator

L C

V(t)

The simplest harmonic oscillator that can be built with super-
conducting circuits is the LC resonator, which comprises an
inductance L in parallel with a capacitor C.

The formalism to analyze circuits in a full quantum way
was introduced by Yurke and Denker59,60, who showed that
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the circuits should be described in terms of the generalized phase φ =
∫ t
−∞

V(τ)dτ

and charge q variables. For instance, the classical Lagrangian of the LC resonator is
written:

L(φ, φ̇) =
Cφ̇2

2
− φ2

2L
.

We first introduce the conjugate variable to φ: the charge q = C ∂tφ. To quantize the
circuit, we write the Hamiltonian

Ĥ =
q̂2

2C
+

φ̂2

2L

where we have introduced the operators φ̂ and q̂ corresponding to the phase and
charge, which obey

[
φ̂, q̂
]
= 2ih̄.
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Figure 2.1: Phase-plane representations of the four first

Fock states, by plotting for each polar angle θ the norm

of the wavefunction : |〈xθ |n〉|2

In order to write this Hamiltonian in the
canonical form Eq. 2.1, we define the nat-
ural pulsation ωr = 1/

√
LC and the char-

acteristic impedance Zc =
√

L/C. By intro-
ducing the annihilation operator

â = (Zcq̂ + iφ̂)/
√

2h̄Zc ,

which verifies
[
â, â†

]
= 1, we find

Ĥ = h̄ωr

(

â† â + 1/2
)

.

We calculate the voltage V̂ across the ca-
pacitor and the current ı̂ through the induc-
tance in terms of the field operators:

V̂ =
q̂

C
= ωr

√

h̄Zc

2

(

â† + â
)

ı̂ =
φ̂

L
= iωr

√

h̄

2Zc

(

â† − â
)

We now recall some useful results used in
this thesis, which can be found in more de-
tails in quantum optics textbooks61,62. The

field statistical properties are well displayed in a phase plane representation. A first
representation consists in defining for each polar angle θ the dimensionless field
quadratures:

X̂θ =
(

â e−iθ + â† eiθ
)

/2 ,

in function of which all the electrical variables q̂, φ̂, ı̂ and V̂ can be expressed.
Given some reference angle β, the orthogonal in-phase Î = X̂β and quadrature

Q̂ = X̂β+π/2 components span the phase plane and satisfy
[
Î, Q̂

]
= i/2. These
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components are used further in this thesis to characterize the TLS evolution. Pure
states can be represented in the phase plane by plotting radially for each polar angle
θ the square modulus of the wavefunction in the X̂θ basis1. For instance the first four
Fock states are plotted in Fig. 2.1.

Coherent states and classical evolution

When the field is in a Fock state, the average voltage and current in the LC resonator
are zero. However, when the resonator is coupled to an external classical source of
voltage or current, it is excited to a state for which the average voltage and current do
not vanish.

L CV(t)

More precisely, we consider the case of the LC
resonator coupled to a classical voltage source
V(t) = V0 cos(ωrt + ϕ) resonant with it. This
source introduces in the Hamiltonian a term

Ŵ(t) = V(t)q̂

≈ V0

2

√

h̄Zc

2

(

e−iωrte−iϕ â† + eiωrteiϕ â
)

within the rotating wave approximation (RWA).
If we now move to the frame rotating at ωr us-
ing the unitary transformation Û(t) = exp

(
−iωr â† ât/h̄

)
, the resulting term in the

interaction picture is

ŴI = Û†ŴÛ =
V0

2

√

h̄Zc

2

(

e−iϕ â† + eiϕ â
)

.

This term is time-invariant and corresponds to a time-evolution operator

T̂(t) = exp
(
−iŴit/h̄

)

= exp

[

−tV0

√

Zc

8h̄
(e−iϕ â† + eiϕ â)

]

= exp
[

α∗ â† + αâ
]

= D̂ (α)

with α = −eiϕtV0
√

Zc/(8h̄). Operators D̂ (α) are displacement operators that trans-
forms the vacuum |0〉 into the so-called coherent states |α〉 = D̂ (α) |0〉.

Remarkably these coherent states are eigenstates of the annihilation operator â |α〉 =
α |α〉. Then, when working with coherent modes and if we neglect the quantum
fluctuations, the annihilation and creation operators â and â† can be replaced by the
continuous classical field amplitudes α and α∗, making the connection between the
quantum and classical behaviour of the circuit. For this reason coherent states are
also named semi-classical states.

Another interesting property is that the uncertainties of coherent states are always
minimal, i.e. ∆q ∆φ = h̄/2 as for the vacuum. A coherent state can thus be represented

1A more formal representation of the states is the Wigner function13
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by a small uncertainty region in the phase plane. This region is centered at the
expectation values of the field quadratures:

〈
α
∣
∣ Î
∣
∣ α
〉
= Re(α)

〈
α
∣
∣Q̂
∣
∣ α
〉
= Im(α).
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Figure 2.2: Left: phase-plane representation of the coherent

state |α = 5i〉 and its evolution. The state uncertainty

region is represented as a shaded black disk. Right: the

voltage inside the resonator follows the evolution of the

I quadrature V(t) = (δV0) I(t), that is, a sinusoidal

evolution with some quantum noise due to the uncertainty

(black area).

Thus, the α-complex plane plays the role
of the phase plane for coherent states.
The uncertainty on any quadrature X̂θ

being

∆X̂θ = 1/2 ,

the uncertainty region has a circular shape
and a diameter 1/2 as shown in Fig. 2.2.

The free evolution of coherent states is
given by

|α(t)〉 =
∣
∣
∣αeiωrt

〉

,

which corresponds to a precession
around the origin of the phase plane at
an angular speed ωr, as shown in Fig.
2.2. The field quadratures, and conse-
quently all the electrical variables have
then an oscillatory behaviour at this an-
gular frequency ωr.

2.1.2 Transmission-line resonators

In our experiments we operate with signals in the microwave range. At such frequen-
cies, the wavelength becomes comparable to circuit size and the spatial propagation
of the signals becomes relevant. To take this into account in circuit theory a new
circuit element is introduced: the transmission line. This element is important for our
experiments in two ways. Firstly, it models all the microwave lines which we use to
couple the circuits to the external measurement fields. Secondly, the cQED resonator
itself is built using a section of transmission line, as explained below.

2.1.2.1 Transmission lines

A transmission line is a longitudinal structure which supports the propagation
of an electromagnetic mode. For a transverse-electromagnetic (TEM) mode each
infinitesimal segment of a transmission line can be modelled by the elementary circuit
shown in Fig. 2.3 where ℓ and c are the inductance and capacitance per unit-length.

The analysis of this circuit is conveniently performed by defining a local phase
φ(x, t) =

∫ t
−∞

V(x, τ)dτ. The voltage drop in each segment is then −∂xV(x, t) dx =
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−∂x∂tφ(x, t) dx, and the flux through the inductance −dx∂xφ(x, t). Using the constitu-
tive relation the local current is written ı(x, t) = −∂xφ(x, t)/ℓ yielding the Lagrangian

L =
∫

dx

[

c (∂tφ)
2

2
− (∂xφ)2

2ℓ

]

.

dx

l dx
c dx

V(x,t) I(x,t)

Figure 2.3: Each infinitesimal length dx of

a transmission line (in green) is equivalent

to the circuit shown in red.

The equation of motion is the wave equation

∂2
t φ − ℓc ∂2

xφ = 0 (2.2)

with a propagation speed c̄ = 1/
√
ℓc. Fourier trans-

forming in time, the resulting voltages and currents
follow the two wave equations

∂2
xV − β2V = 0

∂2
xı − β2ı = 0 ,

where β = ω/c̄ = ω
√
ℓc. Using those equations and

the constitutive relations to link voltages and currents
we find

V(x, ω) = V+(ω)e−iβx + V−(ω)eiβx

ı(x, ω) = Z−1
0

(

V+(ω)e−iβx − V−(ω)eiβx
)

,

where Z0 =
√
ℓ/c is the characteristic impedance of the line. V+(ω) and V−(ω) are the

complex amplitudes of the right and left propagating microwave fields deduced from
the boundary conditions. The voltage and current in the line are the superposition of
these two waves.

Using V(x, ω) and ı(x, ω), we can now deduce the impedance Zin(ω) seen from
the left of a line of length Λ terminated on the right by a load impedance ZL =
V(Λ, ω)/ı(Λ, ω):

Zin(ω) =
V(0, ω)

ı(0, ω)
= Z0

ZL cos(βΛ) + iZ0 sin(βΛ)

Z0 cos(βΛ) + iZL sin(βΛ)
. (2.3)

2.1.2.2 Transmission-line resonators

ȁ

dx

0 x

Figure 2.4: A section of length Λ of transmis-

sion line ended in open circuit constitutes a

microwave resonator.

In our experiments the resonator is built with a
segment of transmission line of length Λ termi-
nated with an open circuit at both sides (Fig. 2.4).
We show here that this structure is equivalent to
harmonic oscillator and find the physical character-
istics of its resonant modes.

Since the variable conjugated to the phase is the
charge density ̺ = c ∂tφ, the Hamiltonian takes the
form
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H =
∫
[

̺2

2c
+

(∂xφ)2

2ℓ

]

dx .

The open ends impose the boundary conditions: I(0, t) = I(Λ, t) = 0, and
∂xφ(0, t) = ∂xφ(Λ, t) = 0. Therefore, the spatial configuration of φ and ̺ in the
transmission line can be written:

φ(x, t) =

√

2
πk ∑

k

φk(t) cos
(

kπx

Λ

)

̺(x, t) =

√
2πk

Λ
∑
k

qk(t) cos
(

kπx

Λ

)

,

where each k term corresponds to a spatial mode. The pre-factors are chosen so that
φk and qk represent the phase and charge of an equivalent LC resonator. In these new
variables, the Hamiltonian writes:

H = ∑
k

πk

Λ

[

q2
k

2c
+

φ2
k

2ℓ

]

.

For each k the equivalent LC resonator has C = cΛ/(πk) and L = ℓΛ/(πk), and a
resonance frequency

ωk =
πk

Λ
√
ℓc

=
πkc̄

Λ
.

To quantize each of these LC resonators an annihilation operator

âk =

√

Z0

2h̄
q̂k + i

√

1
2h̄Z0

φ̂k ,

is introduced, satisfying
[
âk, â†

k

]
= 1. Thus, the phase and the current density can be

expressed by the operators

φ̂(x) = −i ∑
k

√

h̄Z0

πk

(

âk − â†
k

)

cos
(

kπx

Λ

)

ˆ̺(x) = ∑
k

1
Λ

√

h̄πk

Z0

(

âk + â†
k

)

cos
(

kπx

Λ

)

.

Finally the local voltages and currents inside the resonator are

V̂(x) =
ˆ̺(x)

c
= ∑

k

ωk

√

h̄Z0

πk

(

âk + â†
k

)

cos
(

kπx

Λ

)

(2.4)

ı̂(x) = −∂xφ̂(x)

ℓ
= ∑

k

−iωk

√

h̄πk

Z0

(

âk − â†
k

)

sin
(

kπx

Λ

)

. (2.5)
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In this thesis we use the first resonant mode k = 1 with resonance frequency

ωr = ω1 =
π

Λ
√
ℓc

=
πc̄

Λ
. (2.6)

The two following expressions for the total capacitance and inductance of the
resonator are often useful:

cΛ =
π

Z0ω1
(2.7)

ℓΛ =
πZ0

ω1
. (2.8)

2.1.3 Probing the dynamics of the resonator from the outside : input-output

theory

Port 1 Port 2

a1 a2

b1 b2

SV1 V2

(a) S-matrix characterization

κ1 κ2

κL

(b) Input-output theory framework

Figure 2.5: A microwave circuit couple to outside feeding

and measuring lines is typically modeled using the S-matrices

formalism. For a full quantum treatment the same circuit can

be analyzed within the input-output theory framework, adding

a channel for modelling the losses.

To characterize the resonators, we con-
nect them to voltage sources through
transmission lines as shown in Fig.
2.5a. Such situation is naturally de-
scribed in terms of input and output
waves. In the classical microwave
theory, each port i is associated to
an input ain,i and output aout,i power

waves63 defined by

ain,i =
1
2

Vi + Z0ıi
√

Re(Z0)
=

V+
i

√

Re(Z0)

aout,i =
1
2

Vi − Z∗
0 ıi

√

Re(Z0)
=

V−
i

√

Re(Z0)
.

Thus, following a scattering-matrix
approach, a linear device with N

ports can be modelled as a black box

with N2 ratios between its input and
output waves which fully character-
ize the behaviour of the device as seen
from the outside :

Sij =
aout,i

ain,j

∣
∣
∣
∣
∣
ak 6=j=0

.

The S matrix completely characterizes the transmission and reflexion measurements
that can be performed on a resonator in the classical regime. However, in this thesis we
investigate the quantum dynamics of a resonator coupled to an artificial atom circuit,
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and also the quantum back-action of the measurement. We therefore need a theoretical
framework providing a quantum counterpart of the scattering matrix formalism. This
full quantum treatment is provided by the input-output theory developed by Gardiner
and Collett64,65. This theory deals with the very general situation showed in Fig.
2.5b in which a quantum system described by its Hamiltonian Ĥ is coupled to a set
external fields with coupling strengths κi.

We will now apply it to the case of a resonator coupled through a single port,
following the treatment by Milburn and Walls62. The field in the transmission
line contains a continuum of modes, and thus is described as a bath with creation
and annihilation operators which satisfy the standard boson commutation relation
[b̂†(ω), b̂(ω′)] = δ(ω − ω′). In the rotating wave approximation, the linear coupling
between the external and internal modes is described by the Hamiltonian

ĤC =
∫

dω

√
κ1

2π

[

b̂(ω)â† − âb̂†(ω)
]

.

The Heisenberg equation of motion for the bath is thus

∂tb̂(ω) = −iωb̂(ω) +
√

κ1/2πâ. (2.9)

We can solve it by imposing an initial condition b̂0(ω) at time t0 < t, a situation which
corresponds to sending an incoming wave to the resonator, the field operator for this
incoming field is

âin(t) =
−1√
2π

∫

e−iω(t−t0)b̂0(ω)dω.

Physically this input field is of the same nature as the input waves V+ considered
above. The equation of motion of the intra-resonator field â can be written in terms of
these input fields and results in

∂t â(t) =

[
â(t), Ĥ

]

ih̄
− κ1

2
â(t) +

√
κ1 âin(t) (2.10)

where Ĥ is the Hamiltonian of the resonator. This equation has the form of a Langevin
equation for the damped intra-resonator field with a noise term brought by the input
field.

Instead of solving Eq. 2.9 with an initial condition, we can impose a final condition

b̂1(ω) at time t1 > t, it corresponds to getting an output wave from the resonator, and
the corresponding field operator is

âout(t) =
1√
2π

∫

e−iω(t−t1)b̂1(ω)dω .

Using again the equation of motion of the intra-resonator field with this final condi-
tion and inverted time, the relation between the input, output, and intra-resonator
fields is found to be

âout(t) + âin(t) =
√

κ1 â(t). (2.11)
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In our experiments the resonator is often coupled to more than one external field.
For these cases, the analysis performed above can be trivially extended for several
external fields, characterized by their input and output field operators âin,i and âout,i.
Specifically, the equation Eq. 2.10 becomes

∂t â(t) =

[
â(t), Ĥ

]

ih̄
−
(

∑
i

κi

2

)

â(t) + ∑
i

√
κi âin,i(t) (2.12)

and the equation Eq. 2.13 becomes for each port i:

âout,i(t) + âin,i(t) =
√

κi â(t). (2.13)

The input and output fields can be represented in the phase-plane, in the same way
as the intra-resonator field, with the components:

Îout = 1/2
(

â†
out + âout

)

Q̂out = i/2
(

â†
out − âout

)

.

2.1.3.1 Modelling the losses

The superconducting resonators we use are not ideal: even when they are not con-
nected to any external fields, the energy which is stored is progressively lost due
to various mechanisms which will be discussed in 2.1.5. A very natural way to
model these losses is to represent them as an additional virtual port L that brings
no excitation âin ,L = 0, but adds another damping term to Eq. 2.12. The coupling
constant κL represents in this case the damping of the energy in the isolated resonator.
This damping can also be expressed in the form of a quality factor QL = ωr/κL.

2.1.3.2 Measurements

Before using them in circuit QED experiments, resonators need to be characterized
by classical microwave reflexion or transmission measurements. We want here to
derive a few simple formulas yielding the reflexion and transmission coefficients of a
resonator. For that we will use the input-output relations Eq. 2.12 and Eq. 2.13 with
classical fields, that is, replacing creation and annihilation operators by the complex
amplitudes αin,out of the coherent fields used to probe the resonator at frequency
ω. These complex amplitudes αin,out are directly related to the input and output
microwave powers by

Pin,out = h̄ω |αin,out|2 .

We will consider in this thesis one-port resonators measured in reflexion and two-port
resonators measured in transmission.
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Reflexion measurements

The resonator is coupled to the measuring line with a coupling constant κ1 = κ, and
it has internal losses κL. Introducing the harmonic oscillator Hamiltonian in Eq. 2.12

and considering a single port and losses, we obtain

α̇(t) = −iωrα(t)−
(

κ + κL

2

)

α(t) +
√

καin,1(t) ,

and by Fourier transform

α(ω) =

[
2
√

κ

(κ + κL)− 2i (ω − ωr)

]

︸ ︷︷ ︸

ξ(ω)

αin,1(ω) . (2.14)

The square modulus of ξ(ω) has a Lorentzian shape as shown in Fig. 2.6a, with a
width determined by the total damping κ + κL. The average photon number in the
resonator is thus

n̄ =
4κ

h̄ωr (κ + κL)
2 Pin , (2.15)

and the phase undergoes a phase shift of π when crossing resonance as shown in Fig.
2.6a.

Using Eq. 2.13 we find the reflected field:

αout(ω) =

[
(κ − κL) + 2i (ω − ωr)

(κ + κL)− 2i (ω − ωr)

]

︸ ︷︷ ︸

ρ(ω)

αin(ω) , (2.16)

with ρ shown in Fig. 2.6b.
Depending on the rate between the coupling constant κ and the losses κL we can

define three regimes characterized by different behaviours of the reflexion ρ:

• The over-coupled regime (blue curves) defined by κ ≫ κL. In this regime |ρ| ≈ 1
for all frequencies and the phase ∠ρ undergoes a 2π shift at resonance :

∠ρ = 2 arctan
(

2
ω − ωr

κ

)

• The critical coupling regime (golden curves) defined by κ = κL. For this regime
the amplitude of ρ reaches 0 at resonance, while a discontinuity in its phase
brings a phase shift of π.

• The under-coupled regime (green curves) defined by κL ≫ κ. In this regime the
resonance corresponds to a dip in the amplitude of ρ and a shift < π in its phase.
The width of both the dip and the phase shift decrease when κL/κ increases.
We stress that an under-coupled resonator is particularly difficult to measure in
reflexion since both the amplitude and the phase differ very slightly from their
out-of-resonance value.
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(a) Intra-resonator field in reflexion measurements
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(b) Output field in reflexion measurements

Figure 2.6: Reflexion measurements (a) Frequency dependence of the intra-resonator field ξ (in units

of the input field) for κ =100κL(blue), 10κL(purple), κL(golden) and 0.1κL(green). (b) Frequency

dependence of the output field ρ (in units of the input field) for the same values of damping.

Transmission measurements

Some of the resonators operated during this thesis have separated input and output
ports, characterized by their coupling constants κ1 and κ2. Using Eq. 2.12 for the case
where the incoming signal is only on port 1 (αin,2 = 0), the intra-resonator field is:

α(ω) =

√
κ1

κ1 + κ2 + κL − 2i(ω − ωr)
αin,1(ω) ,

yielding at resonance an average intra-resonator field of

n̄ =
κ1

h̄ωr (κ1 + κ2 + κL)
2 Pin (2.17)

average photons. Using Eq. 2.13 we calculate the transmission from one port to the
other:

αout,2(ω) =

[
2
√

κ1κ2

κ1 + κ2 + κL − 2i(ω − ωr)

]

︸ ︷︷ ︸

τ(ω)

αin,1(ω) .
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(a) Output field in transmission measurements

Figure 2.7: Transmission measurements. Frequency dependence of the output field τ (in units of the

input field) for κ1 = κ2 =100κL(blue), 10κL(violet), κL(golden) and 0.1κL(green).

In our two-port resonators we often have κ1 = κ2 = κ/2 which results in a Lorentzian
response

αout,2(ω) =
κ

κ + κL − 2i(ω − ωr)
αin,1(ω) .

As for reflexion measurements, depending on the rate between the coupling constant
κ and the losses κL we can define three regimes characterized by different behaviours
of the transmission τ:

• The over-coupled regime (blue curves) defined by κ ≫ κL, in which |τ(ω)| is
a Lorentzian that almost reaches 1 at resonance if κ1 = κ2. The phase of τ(ω)
undergoes a π shift in phase at resonance, whose width, as well as the width of
the |τ(ω)| Lorentzian, are controlled by γ.

• The critical coupling regime (golden curves) defined by κ = κL. In this regime
the amplitude of τ(ω) reaches 2/3 at resonance and the widths are controlled by
both κ and κL.

• The under-coupled regime (green curves) defined by κL ≫ κ. In this regime
the amplitude of τ(ω) decreases when κL/κ grows and its width is essentially
controlled by κL.

Therefore to characterize the losses a slightly under-coupled regime κ . κL is the
most convenient, since the width of the Lorentzian |ρ| brings information on κL while
its amplitude is large enough to be measured.

Mapping the distributed resonator onto a RLC resonator

It is sometimes useful to map a transmission-line resonator to a Thévenin equivalent
lumped-element circuit with the same electrical properties as seen from a particular
location. For instance, the fundamental mode k = 1 of the transmission-line resonator
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of Fig. 2.8 seen from B1B2 is equivalent to an RLC circuit with an impedance:

ZRLC(ω) =
R

1 + i2Q ω−ωr
ωr

with the equivalence shown in the table. However, such a mapping is only valid for a
narrow frequency range around the resonance.

Zc

A1 A2

B1

B2

ʄ/4ʄ/4

Vs

ʄ/4
Zc B1

B2

Vs

Z0 Z0

C R L

Transmission line resonator RLC resonator

Resonance frequency ωr L =
2
π

Z0

ωr

Characteristic impedance Z0 C =
π

2
1

Z0ωr

Quality factor Q R =
2
π
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Figure 2.8: Top panel: a λ/2 transmission line resonator and the typical placements from which

equivalent circuits are calculated: the center of the resonator (green circuit); the input (red circuit).

Bottom panel: values of the elements for the equivalent circuit seen from the input B1B2 and

impedances of a transmission-line resonator (blue) and its equivalent LC resonator (red). These

impedances agree only in a narrow frequency range around the resonance.

In Fig. 2.8 the input impedance of a transmission-line resonator is compared to
its equivalent LC resonator as seen from the input port B1B2. As expected, the
impedances are very similar around the resonance and become more and more
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different when going apart from it, since the presence of higher order modes in a
transmission line resonator is qualitatively different from the LC resonator.

We also stress that this equivalent circuit depends on the specific nodes from which
the rest of the circuit is considered. For instance the equivalent circuit seen from
the nodes A1A2 does not preserve the currents and voltages passing through B1B2.
Therefore, the greatest care has to be taken when calculating with these equivalent
circuits.

2.1.4 Implementation

We explain here the implementation of the transmission-line resonators in a convenient
planar geometry: the coplanar-waveguide (CPW) (see 2.1.4.1). For this implemen-
tation we closely followed the work previously done in other groups66,67. We also
present their fabrication process (see 2.1.4.3), some elements on the microwave tech-
niques which are used to characterize them, which are the basis of the measurement
techniques introduced further in this thesis.

2.1.4.1 Resonator implementation

Our resonators operate in the gigahertz frequency range. This choice is made to
reduce the influence of thermal excitations. Indeed the samples are operated in a
dilution refrigerator (∼ 20 mK). To avoid spurious thermal population we need a
large enough frequency ωr/2π ≫ kBT/h ≃ 400 MHz, so we chose to work in the
4–8 GHz range.

The 4–8 GHz range correspond to the microwave IEEE C band. In such frequencies
a transmission line can be implemented using a wide variety of geometries. In cQED
experiments 2D geometries are preferred, since building the resonator on the surface
of a chip allows stronger coupling to artificial atoms.

There are two typical planar geometries: coplanar-stripline (CPS) and coplanar-
waveguide (CPW shown in Fig. 2.9). CPS geometry consists in two parallel conductors
separated by a gap while CPW is formed by a central conductor with ground planes
on both sides. We decided to use the unbalanced CPW geometry, similar to coaxial
cables delivering the signals, rather than CPS, which would require a balun for making
the transition to coaxial cables.

The configuration of the electrical and magnetic fields on a CPW line is shown in
Fig. 2.9. The effective dielectric constant felt by these fields can be estimated68 from
the dielectric constant of the substrate ǫrSǫ0 as ǫrǫ0 = ǫ0(1 + ǫrS)/2, The resulting
phase velocity is c̄ = c/

√
ǫr.

The resonator is defined as a λ/2 segment of transmission line terminated at both
ends by open circuits. Its length is then Λ = πc̄/ωr. The mode is well-confined and
quasi-1D. The characteristic impedance of the line can be exactly calculated from its
geometry68:

ZCPW
0 [Ω] =

30π√
ǫr

K
(√

1 − k2
)

K (k)
,
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Figure 2.9: Implementation of a superconducting resonator with a section of CPW line

where k = w/(w + 2g), with w and g the width and the gap defined in Fig. 2.9, and

K(k) =
∫ π/2

0

dθ
√

1 − k2 sin2 θ

the complete elliptic integral of the first kind. For the experiments presented in
this thesis we have used w = 10 µm and g = 5 µm, yielding Z0 ≃ 50 Ω on silicon
(ǫr = 11.9).

2.1.4.2 Capacitive coupling

Zc,i

Z0

Vi

ii
ʄ/4 λ/2

Z0

Z0 Cc,i

The specific way of coupling the resonators to
the measuring lines determines the coupling
strengths κi. In this section we want to obtain
a relationship between the parameters of the
specific coupling circuit and these coupling
strengths. We first consider the very general
case where the port i of a resonator is con-
nected to an impedance Zc,i. The coupling
constant κi is the ratio between the power
dissipated in this impedance and the energy
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stored in the line:

κi =
Pdiss,i

Estored
=

=
1/2 |Vi|2 Re

(
Z−1

c

)

1/4cΛ |Vi|2
=

2ωrZ0

π
Re
(

1
Zc

)

Since microwave components have standard impedances Z0 = 50Ω, typically of the
same order as the resonator characteristic impedance, a resonator that would be
directly coupled to a microwave line would be strongly damped κi/ωr ∼ 1.

Therefore, our resonators are connected to the external lines though a high impedance
element: a small coupling capacitor Cc. Such a capacitor acts as a semi-reflective
mirror in optics, inducing a strong impedance mismatch so that the signals are mostly
reflected on it, and the intra-resonator field is coupled to the outside with a coupling

κi =
2ωrZ0

π
Re
[(

Z0 − iω−1
r C−1

c

)−1
]

≈ 2ω3
r C2

c Z2
0

π
,

On the other hand the imaginary part of the impedance introduced by such a capacitor,
Im(Z−1

c ) ≈ ωrCc, shifts the resonance frequency to ωr = ω1/
√

1 + CcZcωr, slightly
below the natural frequency of the first mode ω1.

Since the value of these capacitors controls the coupling to the measuring lines,
their value should be carefully chosen for each purpose. If one wishes to study the
internal losses, for instance, the capacitors should place the resonator slightly in the
under-coupled regime (see 2.1.3.2). In the case of one-port resonators, in order to
obtain a coupling quality factor Qc = ωr/κ the coupling capacitor should be

Cc =

√
π

2Qc

1
Z0ωr

.

In the case of two-port resonators, Qc = ωr/κ = ωr/(κ1 + κ2) can be obtained with
two equal coupling capacitors

Cc1 = Cc2 =

√
π

4Qc

1
Z0ωr

.

We implement our coupling capacitors with an interdigitated design such as shown
in Fig. 2.9. The number of fingers, their length and spacing is chosen with the help of
a 2D+ electromagnetic simulator, Sonnet, to achieve the desired capacitance values.

2.1.4.3 Fabrication

The resonators are fabricated by optical lithography on a niobium thin-film. The
substrate used is a 2-inch high resistivity (> 1000 Ωcm) silicon wafer, covered with
50 nm of thermally grown SiO2. The lithography consists in five steps:
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Figure 2.10: Optical lithography pro-

cess

1. Sputtering of a niobium thin-film by a DC elec-
tric discharge in a low density (10−2 mbar) argon
plasma, that bombards a niobium target. The dura-
tion of the process determines the thickness of the
film: 100 nm to 200 nm in our case.

2. A layer of photosensitive resist (Shipley S1805) is
spun on the wafer and baked.

3. The wafer is UV-exposed through a chromium on
quartz mask and developed to dissolve the exposed
resist.

4. Etching of the uncovered niobium, by one of the
following two techniques:

a) Wet etching in a solution of HF, H2O and
FeCl3 with etching rate of 1 nm/s at room-
temperature.

b) Reactive-ion etching (RIE) with a SF6 plasma
at a pressure of 0.3 mbar and a power such
that the self-bias voltage is 30 V and the etching
rate 1 nm/s. We observed that adding O2 to
the plasma produces consistently low quality
factors, as low as 60 for high O2 densities. We
attribute this to the creation of a dissipative
niobium oxide on the surface of the sample.

5. Dissolution of the remaining resist.

This process is performed with wafers containing 40
chips, which are then diced on 3 × 10 mm2 chips, con-
taining each one two resonators such as the one shown in Fig. 2.9.

2.1.5 Characterization of the resonators

In this section we characterize the resonators to study the impact of the fabrication
process on the losses and optimize their quality factor.

2.1.5.1 Measurement techniques

Setup for measuring the resonators at 1.3 K

As shown in Fig. 2.11, to quickly characterize a resonator, it is placed in a small
refrigerator filled with helium which is pumped to lower the temperature down to
1.3 K –a temperature much lower than the niobium critical temperature in order to
reduce quasi-particle density.
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Figure 2.11: Setup for measuring the resonators at 1.3 K. The resonators are wire-bonded to a PCB

and placed inside a box (green), which metallic cover defines a small volume around the chip. The

whole is placed in a cryostat filled with liquid helium an pumped to lower the temperature. The input

and output ports are connected to a VNA which returns the the transmission of the resonator in

amplitude and phase. The measurement power is lowered to avoid the non-linear effects which yield

asymmetries in the response (violet curve), until reaching the linear regime (golden curve).

The resonators may be measured in reflexion or in transmission. Measurements in
reflexion are performed using a circulator as shown in Fig. 2.12, to separate the probe
signal sent to the sample from the reflected signal which is measured. Circulators
allow the propagation of signals in a given direction, the reverse way being attenuated
by typically 20 dB (a figure called isolation). Alternatively, if the input signal is high
enough (which is the case in our experiments), the circulator can be replaced by a
directional coupler69. This device attenuates the input signal, and delivers the output
signal to a different port with an isolation equal to its attenuation. This can be a
good choice for several reasons: contrary to circulators it is not magnetic, it is usually
smaller, and has a larger bandwidth.

In both cases we use a Vector Network Analyzer (VNA), an apparatus which
measures the scattering matrix of a two-port microwave circuit by sending a microwave
signal and detecting the amplitude and phase of the transmitted or reflected signal.
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As an example in Fig. 2.11 the typical transmission of an under-coupled resonator is
shown.

1 2

Sample

Figure 2.12: Measurement in reflex-

ion using a circulator.

In a particular setup –reflexion or transmission– a fit of
the resonance curves with the expected responses shown in
Table 2.13 yields the resonance frequency ωr, the coupling
quality factor Qc and the quality factor QL corresponding
to internal losses. We stress that in order to characterize
accurately QL, an under-coupled resonator is needed.

The microwave signal sent by the VNA creates an intra-
resonator field, which can be calculated with Eq. 2.15 or Eq.
2.17. If this intra-resonator field is high enough non-linear
effects may arise. These effects result in asymmetries in
the reflexion or transmission, as the ones shown in Fig.
2.132. To reduce the input power and avoid these effects,
an attenuator is inserted on the input line. On the output
line, an external low-noise microwave amplifier is used to
decrease the high input noise of the VNA.

In the following paragraphs we introduce the main mi-
crowave techniques which are used in the VNA measure-
ments. A good general introduction to microwave engineer-
ing is provided in Pozar69 and Collin70 books.

Homodyne demodulation: the field quadratures

To measure the S parameters the VNA internally uses homodyne demodulation. Since
we use this technique further in our experiments it is worth explaining it here. To
characterize an S parameter, the VNA sends a microwave signal Vi = Ai cos(ωt) of
frequency ω through one of its ports. In the absence of noise the output is a signal

Vo = Ao cos(ωt + ϕ) .

The goal is to obtain the amplitude of the response Ao/Ai and its phase ϕ. For
this purpose this signal is homodyned, that is, mixed with the same local oscillator
cos(ωt + Θ) or − sin(ωt + Θ) as used to produce the signal, dephased by Θ and with
a normalized amplitude. The result is low-pass filtered to eliminate the component at
frequency 2ω. The results are the in-phase and quadrature components

ID = Ao cos(ϕ − Θ)

QD = Ao sin(ϕ − Θ) .

Noise issues and averaging

The signals we use are typically very small to avoid non-linear effects as explained
above. A great care has then to be taken in order to obtain a good signal-to-noise ratio
(SNR), and a lock-in detection, provided by the VNA averaging mode, is needed.

2Peaks shifting both to the higher and the lower frequencies were observed
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Figure 2.13: Top panel: table showing the expected S parameters of a linear resonator measured in

transmission and in reflexion, in some expression we use the total quality factor Q−1
T = Q−1

c + Q−1
L .

Bottom panel: amplitude and phase of the transmission S21 for two resonators. On the left: over-

coupled resonator, note that |S21(ωr)| ≃ 1. On the right: under-coupled resonator, note that

|S21(ωr)| < 1. In both cases the fit of the response (in red) yields the resonance parameters written

in red. We stress that for over-coupled resonators the value of QL is strongly inaccurate.

This lock-in type detection consists in long-time averaging of the homodyne-detected
signals ID and QD. With this technique the signal can be recovered with virtually any
SNR3. The input of the homodyne demodulation is the signal

V(t) = Ao cos(ωt + ϕ) + Vn(t) ,

where Vn(t) represents a white noise voltage. The in-phase component is then

ID = Ao cos(ϕ)/2 + Vn(t) cos(ωt) .

Averaging over a long time τ ≫ ω−1 we obtain

1
τ

∫ τ

0
(Ao cos(ϕ)/2 + Vn(t) cos(ωt)) dt =

AO cos(ϕ)

2
︸ ︷︷ ︸

S

+
σn

2
√

τ
︸ ︷︷ ︸

N

,

3We say virtually because the time drifts of the parameters limit the gain of SNR when averaging the
signal over very long times
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where σn is the rms value of Vn. The SNR = S/N ∝
√

τ (in amplitude) can therefore
be raised as much as wanted by averaging during longer times.

From another point of view, the averaging amounts to detecting around ω with a
very small bandwidth B ∝ τ−1. Since the white noise power σ2

n is proportional to the
bandwidth B, one can suppress as much noise as wanted. However, measurements
may become too long to be practically performed. Moreover, long-term drifts on the
system may limit very long measurements, and 1/ f noises cannot be averaged out in
this way. A careful optimization of SNR is thus necessary.

2.1.5.2 Characterization of the resonator losses

Having a good understanding of the internal losses of resonators is important in
the perspective of coupling them to qubits. With this in mind, we present here
measurements of the resonance parameters as a function of the temperature and the
magnetic field.

Resistive losses in a superconductor

Superconductors are lossless only at zero frequency. At any non-zero frequency they
dissipate power71. Indeed, the transport of charges through the superconductor can
occur via two channels. A first lossless channel is the transport by the Cooper pairs. A
second dissipative channel is the transport by normal charge carriers –quasi-particles.
At DC frequency, transport by quasi-particles is perfectly shunted by the Cooper
pairs. At AC frequencies however the lossless channel presents a purely imaginary
inductive response to the passage of a current, which thus generates electric fields
that accelerate the quasi-particles causing dissipation. This dissipation is proportional
to the quasi-particle density, which is expected to diminish exponentially at low
temperatures.

The Mattis-Bardeen theory72, based on BCS theory, provides a quantitative treatment
of this simplified two-fluid vision. Here, our goal is to summarize all the results
needed to calculate the internal losses of a resonator73. The Mattis-Bardeen theory
yields analytical formula for the complex conductivity of a superconductor σ =
σ1 − iσ2 at frequency ω (valid if h̄ω < ∆(T)):

σ1

σN
=

2
h̄ω

∫ ∞

∆(T)
[ f (E)− f (E + h̄ω)] g(E)dE (2.18)

σ2

σN
= −i

2
h̄ω

∫ ∆(T)

max(∆(T)−h̄ω,−∆(T))
[1 − 2 f (E + h̄ω)] g(E)dE (2.19)

where σN is the normal state conductivity, f (E) is the Fermi-Dirac distribution at
energy E, ∆(T) is the temperature-dependent energy gap, and

g(E) = i
E(E + h̄ω) + ∆(T)2

√

(E + h̄ω)2 − ∆(T)2
√

∆(T)2 − E2
.
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The temperature dependence of σ1 and σ2 cause both the resonance frequency and
the quality factor of the resonator to vary in temperature. We now calculate this
dependence. The surface impedance ZS = RS + iLS of a superconducting film of
arbitrary thickness d is given by

ZS =

√

iµ0ω

σ1 − iσ2
coth

(
d

λ

√

1 + i
σ1

σ2

)

with λ(ω, T) the magnetic penetration depth

λ(ω, T) =
1√

µ0ωσ2
.

In the limit where σ2 ≫ σ1, we have

RS = µ0ωλ
σ1

2σ2
β coth

(
d

λ

)

LS = µ0λ coth
(

d

λ

)

where β = 1 + (2d/λ) / sinh (2d/λ) is a geometrical factor varying between 1 for
a very thin film and 2 for the bulk. A propagating wave in a coplanar waveguide
therefore sees a kinetic inductance per unit length ℓK = gCPW LS, where gCPW is
a geometry factor specific to the CPW geometry73, in addition to the geometric
inductance per unit length ℓ. The resonator frequency is finally given by

ωr =
π

Λ
√

(ℓ+ ℓK) c

so that its relative variation is

δωr

ωr
= −α

2
δℓK

ℓK
=

αβ

4
δσ2

σ2

where α = ℓK/(ℓK + ℓ) is a geometrical factor describing the fraction of kinetic to
total waveguide inductance. Analytical formulas exist allowing to explicitly calculate
α for a specific coplanar waveguide geometry, however it is much more precise to fit
it using the temperature dependence of the resonator frequency resulting from the
previous relation

ωr(T)

ωr(0)
=

(
σ2(T)

π∆(0)/(h̄ω)

)αβ/4

. (2.20)

The quality factor of the resonator is finally given by

Q =
ωΛ(ℓ+ ℓK)

R
=

1
α

ωLS

RS
=

2
αβ

σ2

σ1
. (2.21)
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Study in temperature

We have measured the temperature dependence of the resonance frequency ωr and
internal quality factor QL of a niobium coplanar resonator of thickness d = 130 nm,
with a measured critical temperature Tc = 7.98 K (see Fig. 2.14). The temperature
dependence of the resonator frequency is very well fitted with Eq. 2.20 for a reasonable
α = 1.6%. The quality factor predicted by Eq. 2.21 reproduces well the data in the
high temperature range, but saturates at low temperatures at a value around 105.
This saturation seems to indicate that the internal losses at low temperature are
dominated by an unknown source of dissipation that is not described by BCS theory.
Similar behavior has been observed in all coplanar waveguide resonators. This extra
dissipation may come from radiation or dielectric losses.
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Figure 2.14: Variation in temperature of the resonance frequency (on the top) and the quality factor

(on the bottom) of a niobium coplanar resonator of thickness t = 130 nm. Top panel: the measured

frequencies (red dots) are in very good agreement with the predictions of the Mattis-Bardeen model

(blue solid line). Bottom panel: the measured quality factors (red dots) disagree with the predictions

of the Mattis-Bardeen model (blue dashed line), but are very well reproduced by the Mattis-Bardeen

model plus an additional constant relaxation (blue solid line).
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Radiative losses

Since the resonator is 2D, the fields are not completely confined and they may radiate
energy to the outside contributing to the energy losses.

A first analysis of this radiation has been performed for CPW lines by Rutledge74.
He considers the surface waves on a chip whose thickness is of the same order of
magnitude of the wavelength of the stored electromagnetic modes. These surface
waves constitute a radiating source4. For the geometry, the materials and the typical
6 GHz frequency of our resonators he predicts a radiative quality factor Qrad ≃
8.6 × 106 with a dependence in frequency Qrad ∝ ω−2.

Vayonakis75 has performed a similar calculation with a different method. He
considered the CPW line gaps as an aperture antenna. To analyze the radiation, he
used the plane waves as a basis. The overlap of the CPW mode with these plane
waves allows to calculate the excitation of each of these radiated modes. The total
power carried away by all the propagative plane waves corresponds to the power
leaking to the open space. This estimation of the radiated power gives for our samples
a radiative quality factor Qrad ≃ 1.2 × 107, and the same scaling Qrad ∝ ω−2.

Both figures above are in good agreement together for our particular parameters,
and predict quality factors way above the ones observed. We can conclude that the
radiative losses do not constitute a relevant source of losses in our resonators.

Dielectric losses

The radiative and resistive losses do not explain the quality factors observed in our
resonators, limited below 106 at the lowest temperatures and powers. Other groups
have observed a similar limitation. In addition, the measured quality factor are
higher when measured with higher microwave powers76. This suggests that the
mechanism absorbing the energy can be saturated. The temperature dependence of
the quality factor reinforces this idea: indeed, it shows a maximum at an intermediate
temperature which corresponds to a saturation of the absorbing mechanism by
thermal excitations77,78.

A proposed explanation for this behaviour is the presence of two-level systems
(TLS) in the materials forming the resonators79. These TLS could also explain the
phase noise which appears in the electromagnetic field stored in the resonator80

and although their actual nature is not well known, it has been shown that they
number scale as the surface of the electrodes81. This suggests that an oxide covering
the surface of the superconductor, or maybe a dielectric layer in the substrate, may
contain glassy TLS systems which absorb energy. The link between the phase noise
induced by these TLS and the losses is not clear, although the oxides and the dielectric
layers are known to have quite high loss tangents at low temperatures82.

4The simplified expression is

Qrad =
128
π2

(ǫ + 1)

(ǫ − 1)2
c2K(k)K(k′)

(s + 2w)2 ω2
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The presence of absorbers in the surface of the chip may also explain why the
rejuvenating process setup by G. Ithier allows to improve the quality factors on newly
fabricated resonators up to an order of magnitude, and to recover original quality
factors in aged ones. This process consists in an mild etching of the chip surface with
a RIE mixture of 10 cc of argon and 20 cc of SF6 at 50 W and 1.33 × 10−2 mBar during
5 s.

Study in magnetic field

Finally we have also studied the variation of ωr and Q with magnetic field. Indeed,
artificial-atoms and tunable resonators are tuned by using a magnetic field; it is thus
important to know if this magnetic field has any effect on the resonator parameters.
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Figure 2.15: Variation of the resonance frequency and quality factor with magnetic field, at low

power.

The magnetic field has a minor influence on the resonance frequency, which de-
creases by less than 3 MHz in the strongest fields that we could apply, as shown on
Fig. 2.15. Qualitatively, this is a consequence of the kinetic inductance of the sample,
which becomes greater when a magnetic field is applied. Since the exact intensity of
the magnetic field on the surface of the sample and its spatial variations are unknown,
we cannot make a quantitative analysis of this effect. No relevant effects of these
fields on the quality factor were observed. We stress however that it is likely that
the presence of a magnetic field during the cooldown of the sample through the
superconducting transition would bring significant additional losses due to vortices
trapped in the thin-films.

2.2 The transmon artificial atom

A superconducting resonator already has well-defined energy levels. To obtain an
anharmonic atom-like spectra, in which individual levels can be addressed separately,
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we introduce some non-linearity in the circuit with a non-linear and loss-less circuit
element: the Josephson junction.

2.2.1 The Cooper-pair box: an anharmonic artificial atom

The specific Josephson circuit we used to implement artificial atoms in our experiments
is the transmon19 pioneered by Schoelkopf’s group at Yale. This circuit is a variant of
the Cooper Pair Box (CPB), a simple superconducting circuit developed in 1996 in
the Quantronics group15,83. In 1999 a team from NEC used the CPB to demonstrate
for the first time a coherent superposition of states4, although with a rather short
coherence time < 10 ns. During the following years important improvements on the
CPB were achieved: thanks to an in-depth investigation of the decoherence sources17

its coherence times reached the microsecond range. At the same time, the readout
circuit, which in the first circuits was dissipative and destroyed the state of the
CPB, was progressively improved towards circuits which were nearly single-shot, non-
dissipative –and where the remaining dissipation is off-chip–, and non-destructive16,84.
We recall here the most prominent properties of the CPB, closely following A. Cottet’s
thesis16 and the article by J. Koch et al.19.

Cg

EJ ,CJ CB

N

ɽ

Ng

Vg

Figure 2.16: The CPB: a superconducting is-

land (purple) is connected to a reservoir (blue)

through a Josephson junction with Josephson

energy EJ , and a capacitance CJ . This is-

land is also electrostatically coupled to ground

through a geometric capacitor CB, and to a

gate circuit through a capacitor Cg. The gate

circuit (yellow) can be used to induce an offset

charge Ng = CgVg/2e on the island.

As shown in Fig. 2.16 the Cooper pair box con-
sists of a superconducting island connected to a
reservoir through a Josephson junction with Joseph-
son energy EJ , and a capacitance CJ . This island is
also electrostatically coupled to ground through
a geometric capacitor CB, and to a gate circuit
through a capacitor Cg. The gate circuit can be
used to induce an offset charge Ng = CgVg/2e on
the island.

The only degree of freedom in this circuit is the
tunneling of Cooper pairs through the junction on
and off the island. The state of the system can
thus be described in terms of the number N̂ of
excess Cooper pairs on the island or its canonical
conjugate: the superconducting phase difference θ̂

across the junction. These circuit variables N̂ and
θ̂ satisfy the commutation relation

[
N̂, θ̂

]
= i and

are analog to the momentum and position of an
electron in a natural atom. Then, either variable
can be used to write the CPB Hamiltonian and
wavefunctions.

The dynamics of the CPB is governed by the competition between two phenomena:

• the Josephson effect responsible for the tunnelling of individual Cooper pairs
through the junction, with the following Hamiltonian

ĤJ = −EJ

2 ∑
n

(|N〉 〈N + 1|+ |N + 1〉 〈N|)
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where EJ = I0ϕ0, ϕ0 = h̄/(2e) is the reduced flux quantum and I0 the critical
current of the junction. In the phase basis, this term is simply written

ĤJ = −EJ cos θ̂

since |N + 1〉 = exp(iθ̂) |N〉.

• the Coulombic effect that tends to fix the number of Cooper pairs in the island.
For one Cooper pair the charging energy is EC = (2e)2/2CΣ where CΣ = CB +
CJ + Cg is the total capacity of the island. Thus, the Coulombic term is

ĤC = EC

(
N̂ − Ng

)2
= EC

(

−i
∂

∂θ
− Ng

)2

.

The Hamiltonian of the CPB is the sum of these two terms:

Ĥ = EC

(
N̂ − Ng

)2
+

EJ

2 ∑
N

(|N〉 〈N + 1|+ |N + 1〉 〈N|) . (2.22)

In the charge regime EC ≫ EJ , N̂ is a good quantum number, and the energy
eigenstates can be well approximated using only two nearest charge states. This
regime suffers from a serious drawback because it is sensitive to charge noise, which
dramatically reduces the coherence times as explained in 2.2.3.8.

This issue is solved in the regime EJ ≫ EC, which is reached in the so-called
transmon design by increasing the geometrical capacitance CB in order to decrease
the charging energy EC = 2e2/CΣ. In this EJ ≫ EC regime, many charge states
have to be taken into account to accurately write the energy eigenstates |k〉, and it
becomes convenient to move to a phase representation. In the phase eigenbasis the
Hamiltonian is written:

Ĥ = EC

(

−i
∂

∂θ
− Ng

)2

− EJ cos
(
θ̂
)

. (2.23)

In this basis the Schrödinger equation takes the form of a Mathieu equation and the
stationary solutions can be expressed exactly in terms of the Mathieu functions16.
Specifically the energy spectrum is

Ek =
EC

4
MA

[

k + 1 − (k − 1)(mod 2)+

+ 2Ng(−1)k,−2EJ

EC

]

where MA [r, q] stands for the characteristic value ar for even Mathieu functions5

with characteristic exponent r and parameter q.
This spectrum is anharmonic. To characterize the anharmonicity we define the

absolute and relative anharmonicities
5This value can be obtained with Mathematica function MathieuCharacteristicA[r,q]
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Figure 2.17: Relative anharmonicity αr as a

function of EJ/EC at ng = 1/2

α = E12 − E01 ,

αr =
E12 − E01

E01
.

where Eij = Ej − Ei.
The anharmonicity only depends on Ng and

EJ/EC. Its dependence on EJ/EC is shown in
Fig. 2.17. It starts by decreasing, crossing zero at
EJ/EC ≈ 9/4 and reaching its minimum αr = −0.1
at EJ/EC ≈ 4.4. In this thesis we work with
EJ/EC > 4.4, but at values not too large to stay
away from the asymptotic limit αr(EJ/EC → ∞) =
0.

Obtaining a tunable EJ : the split CPB

It is very convenient to make the CPB transition
frequency tunable in-situ. This is easily achieved

by adding a second Josephson junction in parallel with the first one, so that both form
a SQUID and EJ becomes tunable as a function of the flux Φ threading the SQUID’s
loop.

The split CPB is shown in Fig. 2.18. The two junctions have Josephson energies
EJ1 = EJ(1 + d)/2 and EJ2 = EJ(1 − d)/2 where EJ = EJ1 + EJ2 is the total Josephson
energy and d is the asymmetry. The Josephson part of the Hamiltonian can be written

ĤJ = −EJ1 cos
(
θ̂1
)
− EJ2 cos

(
θ̂2
)

where θ̂1 and θ̂2 are the superconducting phase differences across each of the junctions,
conjugate to the number of Cooper pairs transferred through each of them, N̂1 and
N̂2. Introducing the phase of the island θ̂ = (θ̂1 − θ̂2)/2, which is the conjugate of the
number of Cooper pairs in the island N̂ = N̂1 − N̂2, and δ̂ = θ̂1 + θ̂2, the complete
Hamiltonian is16

Ĥ = EC

(
N̂ − Ng

)2 − EJ

[

cos

(

δ̂

2

)

cos
(
θ̂
)
+ d sin

(

δ̂

2

)

sin
(
θ̂
)

]

Since the loop inductance is very small, the value of δ̂ is determined by the flux
quantization and can be considered a classical parameter δ, proportional to the flux
threading the SQUID loop: δ = Φ/ϕ0. The Hamiltonian then reduces to:

Ĥ = EC

(
1
i

∂

∂θ
− Ng

)2

− E∗
J (d, δ) cos

(
θ̂
)

(2.24)

which is exactly the same as for a CPB but with a Josephson energy E∗
J (d, δ) that is

tunable by varying the flux:

E∗
J (d, δ) = EJ

√

1 + d2 + (1 − d2) cos δ

2
.
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Figure 2.18: The split CPB

2.2.2 Coherent manipulation of the CPB

Because of the anharmonicity of the transmon, its two lowest energy eigenstates |g〉
and |e〉 can define a TLS, which can be operated as a qubit. One of the requirements
to implement quantum algorithms is to be able to manipulate each qubit state in any
desired way, implementing any single-qubit gate3. With the CPB such manipulations
are performed by using sequences of quasi-resonant gate pulses, in a way similar to
NMR6. In this section we summarize how to perform these manipulations, which are
routine operations used in the rest of this thesis.

Any pure state of the TLS is a linear combination |ψ〉 = α |g〉+ β |e〉 (with α,β ∈ C,
|α|2 + |β|2 = 1), which can be also written as

|ψ〉 = cos (θ/2) e−iϕ/2 |g〉+ sin (θ/2) eiϕ/2 |e〉 ,

with θ ∈ [0, π) and ϕ ∈ [0, 2π), the polar and azimuth angles in spherical coordinates.
The state of the qubit can be mapped to the points on a sphere of radius 1, the Bloch

sphere, with north pole corresponding to the state |0〉 and south pole to |1〉. The
corresponding position is

−→
ψ = −→ux sin θ cos ϕ +−→uy sin θ sin ϕ +−→uz cos θ.

The Bloch sphere is a useful tool to visualize the states as well as their evolution.
Indeed any operator acting on a two-level system can be expressed as

Â = −1/2
−→a · −→σ + Tr

(
Â
)

1

where −→σ = −→ux σ̂x +
−→uy σ̂y +

−→uz σ̂z. Using this representation
−→
h for the Hamiltonian,

the Schrödinger equation is equivalent to the precession

−̇→
ψ =

(−→
h ×−→

ψ
)

/h̄

The unperturbed Hamiltonian of the CPB, Ĥ0 = h̄ωgeσ̂z, corresponds then to a
precession of the state around the z axis at angular speed ωge. It is often convenient
to cancel this rotation by moving to a frame rotating at ωge.
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Figure 2.19: Coherent manipulations of

the TLS state with microwave pulses rep-

resented in the Bloch sphere rotating at the

microwave frequency ωp. (a)Rabi preces-

sion of the state induced by the microwave

pulse. (b)Ramsey precession of the state

when the pulse is tuned off.

In order to manipulate the state, a microwave pulse
Ap cos

(
ωpt + ϕp

)
is sent to the gate, creating a small

harmonic perturbation

ĤP = −2EC∆Ng cos
(
ωpt + ϕp

)
n̂

represented as a transverse field

2EC∆Ng |〈e |n̂| g〉| cos
(
ωpt + ϕp

)−→x .

In the frame rotating at ωp, this field becomes static
after neglecting terms rotating at 2ωp (RWA):

−→
H P = − h̄ωR0

2

(−→x cos ϕp +
−→y sin ϕp

)
−−→z h̄δω

2
,

where ωR0 = 2EC∆Ng |〈e |n̂| g〉| /h̄ is called the Rabi
frequency, and δω = ωge − ωp is the detuning be-
tween the TLS frequency and the applied microwave.
This field induces a Rabi precession of the state around
−→
H P at the Rabi frequency ωR =

√

ω2
R0 + δω2. When

the pulse is turned off, the evolution of the qubit con-
sists in a precession around z at an angular frequency
δω. Combining these two behaviours it is possible to
bring the state anywhere on the Bloch sphere.

2.2.3 Decoherence

The coupling of the transmon to its environment
causes the damping of its density matrix ρ towards its
thermal equilibrium value:

(

|α|2 αβ∗

α∗β |β|2

)

t≫Γ−1
1 , Γ−1

2−→




1 − e

h̄ωge
kBT 0

0 e
h̄ωge
kBT



 .

Although important progress has been made in recent years6,19,9, this damping
occurs in all superconducting circuits with characteristic times in the microsecond
range. This constitutes an important obstacle for implementing quantum processors
with superconducting circuits. In this section we analyze this important issue and the
different sources of decoherence.

This damping involves two processes:

• The energy relaxation consists in the decay of the diagonal part of ρ̂. This decay
involves the emission of the TLS excitation h̄ωge to the environment and it is
characterized by a relaxation rate Γ1 or relaxation time T1 = Γ−1

1 .
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• The decoherence consists in the decay of the non-diagonal elements

ρge(t) = ρ01(0)eiδωte−Γ1t/2 fz,R(t) .

This decay is most often exponential with a rate Γ2 and is caused by two in-
dependent phenomena: the relaxation, which contributes to it by Γ1/2 and
the pure dephasing of a superposition

(
|g〉+ eiϕ |e〉

)
/
√

2 (loss of ϕ), due to
random fluctuations of the transition frequency ωge which most often yields
fz,R(t) = exp(−Γφt). The decoherence is best characterized by a Ramsey se-
quence of two π/2 pulses followed by readout6.

Relaxation and decoherence have been studied in detail both experimentally17,85 and
theoretically19 for the CPB and other superconducting qubit designs86,87,88,8.

2.2.3.1 General formalism for studying decoherence

We summarize here the main results for the transmon adopting the general formal-
ism exposed in G. Ithier et al17. In this formalism we consider how the different
sources of decoherence induce noise in the variables λ entering the Hamiltonian 2.24

–fluctuations of the gate charge Ng, for instance. Each of these sources induces a
quantum noise δ̂λ = λ̂ − λ which can be characterized by its spectral density

Sλ(ω) =
1

2π

∫

δ̂λ(t)δ̂λ(t + τ)eiωτdτ

whose positive part Sλ(ω > 0) corresponds to an absorption of energy by the TLS
and vice versa.

We now derive the decoherence rates from these spectral densities. Assuming a
weak coupling of the transmon to its environment, the Hamiltonian Ĥ = −−→̂

σ · −→H /2
can be linearized and each source of noise yields a perturbation

ˆδH = − h̄

2

(−→
Dλ · −→̂σ

)

δ̂λ

where −1/2h̄
−→
Dλ · −→̂σ is the restriction of ∂Ĥ/∂λ to the |0〉 and |1〉 states. The lon-

gitudinal part Dλ,zσ̂z yields dephasing while the transverse part
−−→
Dλ,⊥ · −→̂σz yields

relaxation.

2.2.3.2 Relaxation

The relaxation rate Γ1 is given by the sum of energy absorption and emission, which
can be calculated from the Fermi golden rule:

Γ1 =
π

2
D2

λ,⊥
[

Sλ(ωge)
︸ ︷︷ ︸

TLS relaxation

+ Sλ(−ωge)
︸ ︷︷ ︸

TLS excitation

]
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2.2.3.3 Pure dephasing caused by white noise sources

For white noise the pure dephasing yields an exponential decay of the coherences:

fz,R(t) = exp(−Γφt)

with a pure dephasing rate Γφ which is calculated within Bloch-Redfield theory:

Γφ = πSδωge
(0) = πD2

λ,zSλ(0) (2.25)

2.2.3.4 Pure dephasing caused by 1/ f noise sources

The Bloch-Redfield approach fails when the noise has a singular spectral density at
ω = 0, as 1/ f noise has:

Sλ(ω) =
A2

|ω|
Then the evolution of the coherence ρge(t) has to be calculated directly17 and is

characterized by the function

fz,R(t) = exp
(

− t2

2
D2

λ,z

∫ ∞

−∞
Sλ(ω) sinc2

(
ωt

2

)

dω

)

.

In the case of 1/ f noise, a low cutoff frequency ωIR has to be introduced. It enters
only logarithmically in the calculations, and is determined by the exact measurement
protocol16. A rather good approximation is to consider that it is simply the rate at
which data points are produced.

Then:

fz,R(t) = exp
(

−t2D2
λ,z A2 |ln ωIRt|

)

.

A rough approximation can be made by substituting the logarithmic part by a constant.
Typically ωIR ≃ 1 Hz and t ≃ 1 µs, so |ln ωIRt| ≃ 13.8. yielding a Gaussian decay
exp(−Γ2

φt2) with a rate:

Γφ = 3.7A

∣
∣
∣
∣

∂ωge

∂λ

∣
∣
∣
∣

.

If the linear susceptibility Dλ,z vanishes, a second order perturbative expansion
is needed. In this case there is a crossover between two behaviours: at short times
t ≪ tc = 2/(A ∂ω2

ge/∂λ2) the decay is algebraic and on longer times t ≫ tc it becomes
exponential with a rate

Γφ =
A2π

2
∂2ωge

∂λ2 .

2.2.3.5 Pure dephasing during driven evolution
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Figure 2.20: The decoherence during

driven evolution is conveniently repre-

sented in a new eigenbasis |g′〉 , |e′〉 of

the TLS coupled to the field, which forms

an angle η = arctan (ωR0/δω) with the

former z axis. Effective relaxation Γ̃1 and

dephasing Γ̃φ rates are defined with respect

to this new basis.

During a driven evolution with a Rabi frequency ωR0
and detuning δω, the state precesses around an axis
forming an angle η = arctan (ωR0/δω) with the z axis.
The resulting relaxation rate17

Γ̃1 = ΓωR
sin2 η + Γ1

1 + cos2 η

2

and pure dephasing rate

Γ̃φ =
Γ1

2
sin2 η + Γφ cos2 η

depend on the rate

ΓωR
= πSδωge

(ωR) = πD2
λ,zSλ(ωR) ,

which shows that the relaxation rate becomes depen-
dent of the spectral density at the Rabi frequency. The
resulting decoherence rate, which gives the decay rate
of Rabi oscillations (for δω = 0) is

Γ̃2 = ΓR = 1/2Γ̃1 + Γ̃φ = 3/4Γ1 + 1/2ΓωR
. (2.26)

2.2.3.6 Sources of decoherence

The different sources of decoherence correspond to the external variables in the
Hamiltonian 2.24. These sources are:

• charge noise, which consists in a fluctuating contribution to Ng coming from
gate voltage noise, two-level fluctuators in the transmon and possibly the creation
of quasi-particles.

• flux noise on δ which comes from the universal 1/ f flux noise , as well as the
fluctuations of the current in the coil which generates the flux threading the
transmon loop.

• EJ noise coming from microscopic defects which create fluctuations of the the
CPB junction’s I0.

2.2.3.7 Relaxation

Through the gate circuit

The main mechanism for relaxation is the emission to the gate circuit. An advantage
of the cQED setup is that the gate circuit is filtered by the resonator that protects the
TLS from environmental noise, as analyzed below in 2.3.1.

Noting Zg(ω) the impedance seen from the gate, the fluctuations of gate voltage
are characterized by their spectral density

SVg (ω) =
h̄ω

2π

[

coth
(

h̄ω

2kBT

)

+ 1
]

Re
(
Zg(ω)

)
.
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The sensitivity to gate charge fluctuations is given by h̄DNg,⊥ = 4EC

〈
g
∣
∣N̂
∣
∣ e
〉
. The

resulting relaxation rate is

Γ
gate
1 =

π

2

∣
∣
∣DNg,⊥

∣
∣
∣

2
(

Cg

2e

)2 [
SVg

(
ωge

)
+ SVg

(
−ωge

)]

.

At low temperatures kBT ≪ h̄ωge, SVg(−ωge) becomes negligible, so that16

Γ
gate
1 = 16πβ2ωge

Re
(
Z(ωge)

)

RK
|〈g |n̂| e〉|2 , (2.27)

where RK = h/e2 and β = Cg/CΣ. This expression is used below to calculate the
relaxation of the transmon through the resonator (see 2.3.1).

Through on-chip flux lines

In our setup a coil is used for creating a magnetic flux Φ through the transmon loop
to tune its transition frequency ωge. However, in future experiments involving many
transmons, in order to control individually their transition frequencies, such coil
should be complemented with on-chip flux-lines. The fluctuations on the currents
flowing through these lines couple to the current in the transmon loop through their
mutual inductance M yielding a relaxation channel. The goal of this paragraph is to
calculate the relaxation rate associated to this channel.

The fluctuations of the flux-line current result in fluctuations of the flux, which are
characterized by the spectral density

SΦ/ϕ0(ω) =

(
M

ϕ0

)2

SI(ω) =

(
M

ϕ0

)2 h̄ω

2π
Re
(

1
Zcoil(ω)

) [

coth
(

h̄ω

2kBT

)

+ 1
]

.

The sensitivity to these fluctuations is

∣
∣DΦ/ϕ0,⊥

∣
∣ =

EJ

2

√

1 − (1 − d2) cos2

(
Φ

2ϕ0

)

,

so the resulting relaxation rate is

ΓFL
1 =

π

2
Sδω,⊥(ωge) =

π

2

∣
∣DΦ/ϕ0,⊥

∣
∣2 SΦ/ϕ0(ωge) .

Therefore, when designing flux lines, the mutual inductance has to be small enough
so that ΓFL

1 is a negligible contribution to the total relaxation rate.

Microscopic relaxation mechanisms: saturation of the relaxation time

Relaxation mechanisms of microscopic origin, and thus with rates which are not
easily calculated, seem to play an important role for the transmon. Indeed, in most
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experiments the relaxation through the resonator is not able to fully explain the
observed relaxation times9, which somehow seem to saturate at a sample-dependent
value, typically between 500 ns and some µs.

We have already seen seen in 2.1.5 that superconducting resonators also lose energy
in an unexplained way. For the resonators, this may be linked to mechanisms of
not yet understood phase noise induced by the dielectrics covering the surface of
the superconductors. A first hypothesis is that this very same mechanism could be
responsible for the excess relaxation observed in the transmon.

Another possible explanation is that the extra relaxation comes from non-equilibrium
quasi-particles which would poison the island and induce relaxation even in charge-
insensitive qubits89.

Some other relaxation mechanisms have been analyzed90 –the radiation of the
TLS electric and magnetic dipole, the dissipative currents created by induction on
non-superconducting metals around the sample– but their relaxation times should be
much longer than the ones measured.

2.2.3.8 Dephasing

EJ noise

The Josephson junctions of the transmon have fluctuations in their critical current I0
with 1/ f spectrum. The most accepted hypothesis is that these fluctuations come
from trapping and releasing of charges in microscopic defects of the barrier. The
presence of these charges affects the barrier height and thus the critical current as
analyzed by Van Harlingen et al.86.

The corresponding dephasing rate is:

Γ
δEJ

φ ∼ 3.7A

∣
∣
∣
∣

∂ωge

∂Ic

∣
∣
∣
∣
= 1.4Āωge ,

where Ā = A/I0 is the dimensionless amplitude of I0 fluctuations. For typical
parameters (Ā = 10−6 and ωge = 6 GHz) this dephasing time is Tφ ≃ 120 µs, much
longer than the experimental Tφ measured in this thesis.

Flux noise

Noise in the magnetic flux threading the transmon loop induces dephasing. Fluctua-
tions on the current of the coil circuit or fluctuations of the magnetic field also yield
this kind of noise.

A universal 1/ f flux noise, which is likely to be caused by microscopic mechanisms,
has been also observed and is currently a research topic91,92. It is characterized by a
typical amplitude A = 10−5Φ0, yielding a dephasing rate

ΓδΦ
φ ∼ 3.7A

∣
∣
∣
∣

∂ωge

∂Φ

∣
∣
∣
∣
= 3.7

πA

h̄Φ0

√

2EC

(
EJ1 + EJ2

)
∣
∣
∣
∣
sin
(

πΦ

Φ0

)

tan
(

πΦ

Φ0

)∣
∣
∣
∣
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valid for EJ ≫ EC. For representative values Φ = Φ0/4 and EJ = 30 GHz= 20 EC this
yields a dephasing time of Γ−1

φ ∼ 2 µs, whereas at sweet spot Φ = 0 this rate vanishes
and the second order contribution

ΓδΦ
φ ∼ A2π

2

∣
∣
∣
∣
∣

∂2ωge

∂Φ2

∣
∣
∣
∣
∣

yields Γ−1
φ ∼ 3.6 ms19 which is not relevant compared to other dephasing sources in

the experiment.

Charge noise

Charges hopping from a microscopic trapping site to another yielding 1/ f charge
noise have been a major problem for former charge qubits18. A first approach to
overcome this problem is to improve the materials and fabrication techniques88 in
order to suppress this effect, although up to now no significant suppression of 1/ f

charge noise has been achieved in this way.
Another approach consists in reducing the sensitivity of the CPB to such noise. This

was performed first in the Quantronium design by operating the TLS at precise biasing
points where it is insensitive to charge noise to the first order6. The transmon goes
one step further since the sensitivity to charge fluctuations decreases exponentially
with EJ/EC. Indeed

Γ
δNg

φ ∼ 3.7A

∣
∣
∣
∣

∂ωge

∂Ng

∣
∣
∣
∣

yields in the EJ ≫ EC regime19

Γ
δNg

φ ∼ 3.7
Aπ

h̄

∣
∣(ǫ1 − ǫ0) sin

(
2πNg

)∣
∣ . 3.7

Aπ

h̄
|ǫ1| ,

where ǫ1 is the amplitude of modulation in Ng of the first excited energy level m = 1.
For EJ ≫ EC the general expression of ǫm is

ǫm ≃ (−1)mEC
24m+3

m!

√

2
π

(
2EJ

EC

)m
2 +

3
4

exp

(

−
√

32EJ

EC

)

.

Therefore the sensitivity to charge noise is exponentially reduced when increasing

EJ/EC, yielding
(

Γ
δNg

φ

)−1
≃ 3 s for a transmon with typical parameters (EJ = 30 GHz,

EC = 1.4 GHz) and with A = 10−4 (from Zorin et al.93).

2.2.4 The transmon: perturbative approximation of the anharmonicity

Although it was introduced as a capacitively-shunted CPB working in the EJ ≫ EC

regime, the transmon admits a simpler description as an LC resonator with a non-linear

inductance –the Josephson junction. In this description, the transmon is treated as a
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harmonic oscillator, plus an anharmonic term that can be developed perturbatively19.
Even though it is only an approximate description compared to the more exact model
given above, this point of view gives an interesting complementary physical picture to
the transmon. It also yields simplified useful analytical results, valid in the EJ ≫ EC

limit.
The Hamiltonian Eq. 2.23 shows that the Josephson term is dominant and then that

the fluctuations of θ̂ are small. Thus we expand the cosine for small angles and obtain

Ĥ =
√

2EJEC

(

b̂†b̂ + 1/2
)

− EJ −
EC

3

(

b̂† + b̂
)4

+ O(b̂6),

where b̂ = (EJ/8EC)
1/4 θ̂ + i (EC/2EJ)

1/4 (N̂ − Ng

)
. Expanding the quartic term, we

find the first order approximation E
(1)
k for the energy levels:

E
(1)
k =

√

2EJEC (k + 1/2)− EC

(

2k4 + 2k + 1
)

.

This yields a convenient approximation for the anharmonicity:

α = E12 − E01 ≈
(

E
(1)
2 − E

(1)
1

)

−
(

E
(1)
1 − E

(1)
0

)

= EC ,

which can be refined by introducing higher order terms and developing to higher
orders in perturbation.

The matrix elements
∣
∣
〈

j + k
∣
∣N̂
∣
∣ j
〉∣
∣ determine the coupling of the transmon to the

resonator. A convenient approximation for those terms, obtained from N̂ − Ng =

−i (EJ/8EC)
1/4 (b̂ − b̂†), is

∣
∣
〈

j + k
∣
∣N̂
∣
∣ j
〉∣
∣ ≈







√

j + 1/2(k + 1)
(

EJ

8EC

) 1
4

k = ±1

0 otherwise .

It means that, like the harmonic oscillator, only adjacent levels are coupled and that
the coupling j ↔ j − 1 grows as

√
j. Note that expanding to further orders, the

elements
∣
∣
〈
2i
∣
∣N̂
∣
∣ 2j
〉∣
∣ (i and j being arbitrary integers) are much smaller than the

∣
∣
〈
2i + 1

∣
∣N̂
∣
∣ 2j
〉∣
∣ ones. Indeed, the application of N̂ to a state of even parity |2i〉 results

in a superposition of states of odd parity yielding a very small superposition with
states of even parity, and conversely.

We want to stress, however, that this convenient perturbative treatment is incomplete.
It does not reproduce any charging effects, since it disregards the periodicity in
phase of the wavefunction ψ(φ + 2π) = ψ(φ), assuming a variation of the phase
−∞ < φ < ∞. It is impossible in this perturbative approach to calculate, for instance,
the charge dispersion ǫm, and therefore to demonstrate the low sensitivity of the
transmon to charge noise. This is the reason why our study of the transmon was first
presented from the CPB perspective.
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2.3 Transmon-resonator coupling

2Cg 2Cg

ʄ/2

Cc

Figure 2.21: In our cQED architecture the transmon is capaci-

tively coupled to one of the resonator’s ends

In our experiments the transmon is
capacitively coupled to the voltage
V̂(Λ) at one of the resonator ends.
Thus, the gate charge Ng has two
components, the first coming from
a DC bias voltage VDC

g and the sec-
ond one to the oscillating resonator
voltage V̂(Λ) (Eq. 2.4):

Ng 2e = Cg

[

VDC
g + V̂(Λ)

]

.

The Hamiltonian Eq. 2.23 then becomes

Ĥ = EC

(

N̂ − NDC
g

)2
− E∗

J (δ, d) cos θ̂ −EC
Cg

e
N̂V̂(Λ)

︸ ︷︷ ︸

Ĥint

+EC
Cg

2e

[

V̂2(Λ)− 2NDC
g V̂(Λ)

]

.

The last term produces a renormalization of the resonator capacitance, whereas Ĥint

corresponds to the coupling between the resonator and the transmon, which can be
written as

Ĥint = −EC
Cg

e
N̂V̂(Λ) = −2e

Cg

CΣ

N̂

√

h̄ωr

Λc

(

â + â†
)

= −h̄g0N̂
(

â + â†
)

with h̄g0 = 2eβ
√

h̄ωr/Λc the coupling constant, and where we are only considering
the first resonator mode (â = â1). The Hamiltonian of the coupled system is then

ĤcQED = ĤCPB + h̄ωr

(

â† â + 1/2
)

︸ ︷︷ ︸

resonator

− h̄g0N̂
(

â + â†
)

︸ ︷︷ ︸

interaction

.

Now, in the RWA,

ĤcQED ≈
∞

∑
i=0

h̄ωi |i〉 〈i|+ h̄ωr

(

â† â + 1/2
)

+ h̄
∞

∑
i=0

gi,i+1

(

â |i + 1〉 〈i|+ â† |i〉 〈i + 1|
)

,

(2.28)

with gi,i+1 = g0
〈
i
∣
∣N̂
∣
∣ i + 1

〉
the coupling strength constant between transmon levels

i and i + 1 and h̄ωi the energy of the i-th transmon level. In some situations, it is
appropriate to restrict this Hamiltonian to the first two energy levels of the transmon,
which yields the Jaynes-Cummings Hamiltonian

ĤTLS =
h̄ω01

2
σ̂z + h̄ωr

(

â† â + 1/2
)

+ h̄g
(

σ̂+ â + σ̂− â†
)

, (2.29)

where g = g01 and ω01 = ω1 − ω0. In the rest of this section, we will detail the
most relevant physical consequences of this Jaynes-Cummings Hamiltonian for this

78



thesis. As we will see, they strongly depend on the ratio between the qubit-resonator
detuning ∆ = ωr − ω01 and g. We will also see in 2.3.3 that in the dispersive regime
|∆| ≫ g, the multi-level character of the transmon brings significant alterations to the
usual results of cavity QED physics.

2.3.1 Relaxation through the resonator: the Purcell effect

In cQED the gate of the CPB is connected to the resonator. Here we want to calculate
the CPB relaxation induced by its coupling to the 50 Ω environment through the
resonator.

An approximate and useful formula is obtained by modelling the distributed res-
onator by its equivalent lumped parallel RLC circuit seen from the CPB, as described in
Fig. 2.8. The impedance seen from the CPB is then ZRLC(ω) = R/(1+ 2j(ω − ωr)/κ),
with R = 2ωrZ0/(πκ). According toEq. 2.27, the CPB relaxation rate through the
gate circuit is governed by

Re
[
Z(ωge)

]
=

R

1 + (2∆/κ)2 =
Z0ωr

2π

κ

∆2 + κ2/4
.

Using Eq. 2.27 we obtain

Γ
gate
1 = 16πβ2ωge

Re
[
Z(ωge)

]

RK
|〈g |n̂| e〉|2 = 2π

ωge

Z0ω2
r

g2 Re
[
Z(ωge)

]

= κ
g2

∆2 + κ2/4
.

Therefore, the CPB relaxation to the gate is controlled by the resonator relaxation rate
κ. If the resonator has a very high Q (i.e. low κ), its response is sharply centered
around its resonance frequencies, reducing the emission to the environment. In this
sense, the resonator acts as a filter for the environmental noise that induces relaxation.
This is a manifestation of the so-called Purcell effect94, which can be used to control
the relaxation time of the transmon, provided that the other relaxation channels are
slow enough.

A more accurate calculation of the relaxation due to this mechanism which takes
into account higher order modes can be performed by using the complete expression
of the resonator impedance as seen from the transmon,

Re(Zres) = Re
[ −j

ωCg
+ Z0

ZL cos(βΛ) + iZ0 sin(βΛ)

Z0 cos(βΛ) + iZL sin(βΛ)

]

,

with ZL = Z0 − j/(ωCc) the load impedance that corresponds to the coupling capac-
itor and the Z0 line. Houck et al.85 demonstrated experimentally that it is possible
using such an analysis to account for the relaxation rate of the TLS until, for large
detunings ∆, some yet unexplained microscopic mechanism of relaxation become
predominant, producing a saturation of the relaxation time.

The resonator might also have parasitic modes, which have not been considered
in the analysis above. For instance, CPW resonators have an antisymmetric mode,

79



in which one of the ground planes has a finite voltage compared to the other. The
symmetric position of the qubit with respect to the symmetry plane in our circuits
was chosen in order to avoid couplings to those modes with uncontrolled impedances.

2.3.2 Resonant regime: vacuum Rabi splitting

In addition to affecting the relaxation properties of the TLS, the coupling to the
resonator strongly modifies its dynamics. When the TLS transition frequency matches
the resonator frequency (ωge = ωr), the TLS and resonator are able to coherently
exchange energy13. The coupled system energy eigenfunctions then are not anymore
separable resonator-TLS states but become instead coherent superpositions of the
qubit and photon (resonator) states, the so-called quton (|g, 1〉+ |e, 0〉) /

√
2 and phobit

(|g, 1〉 − |e, 0〉) /
√

2 as seen in Fig. 2.22.
The Jaynes-Cummings Hamiltonian (Eq. 2.29) can be exactly diagonalized13 in the

RWA, yielding the dressed eigenstates

|+, n〉 = cos θn |e, n〉+ sin θn |g, n + 1〉
|−, n〉 = − sin θn |e, n〉+ cos θn |g, n + 1〉

Figure 2.22: Anti-crossing between the resonator and

the TLS: the phase of the resonator as a function of the

frequency at the vicinity of the flux for which ∆ → 0.

with

θn = 1/2 cot

(

2g
√

n + 1
∆

)

and the eigenenergies

E±,n =h̄ω1 (n + 1)

± 1/2h̄
√

4g2 (n + 1) + ∆2 .

At resonance, ∆ = 0, an avoided crossing

of width 2g opens in the energy spectrum
between the levels of the resonator and the
TLS. , The most immediate manifestation
of this anti-crossing is visible in the central
curve of Fig. 2.22: the usual 2π shift at
resonance disappears, and is split in two
shifts separated by 2g: This phenomenon
is known as the vacuum Rabi splitting. This
splitting is the first manifestation of the
strong coupling regime (g ≫ Γ1, Γ2); its
observation at Yale in 200411 demonstrated

that cavity QED experiments could be performed with superconducting circuits,
opening the field of circuit QED.
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2.3.3 Dispersive regime: cavity pull and AC-Stark shift

The experiments performed in this thesis are mostly performed in the dispersive
regime, for which the TLS and resonator are far detuned (|∆| ≫ g) so that they do
not exchange energy, but only shift each other’s frequency.

To get insight into this regime, we diagonalize the Hamiltonian 2.28 by applying
the unitary transformation D̂ = exp

(
Ŝ − Ŝ†

)
with19

Ŝ = ∑
i

gi,i+1

ωi,i+1 − ωr
â |i + 1〉 〈i| ≈ χ01

g01
â |1〉 〈0|+ χ12

g12
â |2〉 〈1| ,

where ωi,j = ωj − ωi, χi,i+1 = g2
i,i+1/(ωi,i+1 − ωr) and neglecting the transmon levels

above the second one. Then, using the Baker-Campbell-Hausdorff relation

e−λX̂ ĤeλX̂ = Ĥ + λ
[
Ĥ, X̂

]
+ λ2 [[Ĥ, X̂

]
, X̂
]
+ O(λ3) ,

we obtain

Ĥe f f

h̄
=

D̂ĤD̂†

h̄
=

∞

∑
i=0

ωi |i〉 〈i|+ωr

(

â† â + 1/2
)

+
∞

∑
i=0

χi,i+1 |i + 1〉 〈i + 1|−χ01 â† â |0〉 〈0|

+
∞

∑
i=1

(χi−1,i − χi,i+1) â† â |i〉 〈i|+
∞

∑
i=1

ηi ââ |i + 2〉 〈i|+ O

[(
gi,i+1

∆i,i+1

)3
]

, (2.30)

where the last but one term that corresponds to two-photon transitions can be
neglected since

ηi =
gi,i+1gi+1,i+2 (2ωi+1 − ωi − ωi+2)

2 (ωi+1 − ωi − ωr) (ωi+2 − ωi+1 − ωr)
≪ χi,j .

Specifically if we keep only the two lowest energy levels |0〉 and |1〉, plus the shifts
induced by level |2〉, we get

Ĥdisp

h̄
= 1/2 (ω01 + χ01)

︸ ︷︷ ︸

ωge

σ̂z +(ωr − 1/2χ12)
︸ ︷︷ ︸

ωc

(

â† â + 1/2
)

+(χ01 − 1/2χ12)
︸ ︷︷ ︸

χ

σ̂z

(

â† â + 1/2
)

,

which is the Jaynes-Cummings dispersive Hamiltonian for a TLS, with renormalized
parameters, as the dispersive shift χ.

The coupling term χσ̂z â† â allows no energy exchange since it commutes with the
other terms in the Hamiltonian. However, it shifts the energy levels of both the
resonator and the atom. Indeed, this Hamiltonian may be written in the form

Ĥdisp =1/2h̄ωgeσ̂z ++ h̄ (ωc + χσ̂z)
(

â† â + 1/2
)

︸ ︷︷ ︸

pulled cavity

, (2.31)

where the term labelled as pulled cavity remains the Hamiltonian of a harmonic
oscillator, but with frequency ωc + χ when the TLS is in its |g〉 state and ωc − χ when
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it is in its |e〉 state. This TLS-dependent resonator shift, called cavity pull is used all
along this thesis for characterizing the TLS state. It is worth noting that due to the
renormalization of the resonator frequency to ωc, in contrast with the case of a TLS,
the uncoupled resonance frequency ωr of the resonator is not in the middle of the
resonator shifted lines the |g〉 and |e〉 states.

E

ge
r

+

ge
r



Figure 2.23: The cavity pull can be interpreted as a

shift of the resonator frequency induced by a change

in the polarizability of a dielectric particle –the TLS.

Reordering the terms in the dispersive
Hamiltonian 2.31 we obtain

Ĥdisp =h̄ωc

(

â† â + 1/2
)

+ (2.32)

+ 1/2h̄
[

ωge + χ
(

â† â + 1/2
)]

σ̂z
︸ ︷︷ ︸

shifted TLS

.

The term labelled shifted TLS corresponds
to a TLS transition frequency ω′

ge = ωge +
χ (n + 1/2), shifted by an amount proportional
to the number of photons stored in the res-
onator (the AC-Stark shift of atomic physics)
plus half a photon for the zero-point fluctu-
ations (Lamb shift). Experimentally, this AC-
Stark shift is particularly interesting since it
allows an in-situ calibration of the number of
photons stored in the resonator, as shown in
the next chapters.

2.3.3.1 Breakdown of the dispersive approxima-

tion

The diagonalization Eq. 2.30 is only approxi-
mate. Considering only the two lowest states of the TLS, an exact diagonalization6 of
the Hamiltonian 2.28 can be performed49 and yields:

Ĥexact =
h̄ωge

2
σ̂z + h̄ωc

(

â† â + 1/2
)

− h̄∆

2
σ̂z

(

1 −
√

1 +
4g2

∆2 ν̂

)

,

where ν̂ = â† â + |e〉 〈e| is the total number of excitations in the system. If this number
is low compared to ∆2/4g2 = ncrit which is called the critical number of photons,
the last term results in the dispersive term of Eq. 2.31. Conversely, if the number of
photons in the resonator n becomes comparable to ncrit, the linear approximation of
the dispersive Hamiltonian breaks down and the expression of the dispersive shifts
becomes dependent on n.

6With the unitary transformation

D̂e = exp




arctan

(

2g∆−1
√

â† â + |e〉 〈e|
)

2
√

â† â + |e〉 〈e|

(

â†σ̂− − âσ̂+
)




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2.3.3.2 Modelling the full system for ensemble-averaged measurements: the master equation

riȦ t
mE  e

riȦ t
mE  e

ID

+ (t)

g
TN

QD

VmVd

AAd G

Figure 2.24: Standard setup used for driving and measuring the TLS state.

Fig. 2.24 sketches the common situation in which the experiments described in
Chapter 3 and 4 are performed. It consists in connecting the TLS-resonator coupled
system to two sources: Vd which drives the TLS transition to control its state, and
Vm which allows to measure the TLS state by probing the cavity pull. According to
2.1.3, the measurement is still described in the input-output framework. However,
the quantum system being probed is no longer the resonator alone, but rather the
TLS-resonator coupled system, whose internal dynamics cannot anymore be described
by Eq. 2.12, but rather by the following master equation which replaces it, completely
describing the ensemble-averaged evolution of the density matrix:

∂tρ̂ = Lρ̂ = − i

h̄

[
ρ̂, Ĥ

]
+ κD[â]ρ̂ + Γ1D[σ̂−]ρ̂ + 1/2ΓφD[σ̂z]ρ̂ . (2.33)

The Lindblad super-operator L contains four terms: the first one represents the
Hamiltonian evolution. The Hamiltonian Ĥ is the Jaynes-Cummings dispersive
Hamiltonian, plus two terms representing the sources driving the resonator and the
TLS, written in the interaction picture:

Ĥ =1/2h̄
(
ωge − ωd

)
σ̂z + h̄ (ωc − ωm)

(

â† â + 1/2
)

+

+ h̄χ
(

â† â + 1/2
)

σ̂z+

+ Em(â† + â) + Ed (σ̂+ + σ̂−) .

The amplitudes of the drives Em = Vm/A and Ed are the amplitudes Vm and Vd sent
by the two microwave sources, but attenuated by the setup.

After this first term, the κD[â]ρ̂ term represents the damping of the resonator field.
It is written in terms of the collapse super-operator D[Ĉ] which is defined as:

D[Ĉ]ρ̂ = Ĉρ̂Ĉ† − 1/2ĈĈ†ρ̂ − 1/2ρ̂ĈĈ†.

The last two terms of the master equation represent respectively the relaxation and
dephasing of the TLS and are also written in terms of the collapse super-operator.
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In addition we want to compute the signal reflected on the cavity and detected.
Using the input-output relation Eq. 2.13 we obtain the output field

âout =
√

κâ(t) +
iEm√

κ

with the field quadratures X̂out = 1/2
√

κX̂, disregarding the component in Em which
brings no information on the TLS-resonator system.

To obtain the demodulated components XD we need to add the effect of the amplifier,
which, in the one hand, amplifies with a power gain G, and on the other hand, adds
noise, yielding a total noise ξX(t). However, the ensemble-averaging cancels this
noise, yielding:

E [ID] =
〈

ÎD

〉
=

√
G

〈

Îout cos Θ + Q̂out sin Θ

〉

=
√

κG
〈

ae−iΘ + a†eiΘ
〉

/2

E [QD] =
〈

Q̂D

〉
=

√
G

〈

− Îout sin Θ + Q̂out cos Θ

〉

=
√

κG
〈

−iae−iΘ + ia†eiΘ
〉

/2

where Θ is the phase of the local oscillator used for demodulation, and E [•] indicates
ensemble-averaging of classical signals and 〈•〉 the ensemble average over the density
matrix.

2.3.3.3 Following a single realization in the ensemble: the quantum trajectories framework

The master equation formalism presented above gives access to all ensemble-averaged
measurements of the system, and fully describes its dynamics if we don’t take into
account the information leaking out of the resonator due to the measurement. Now if
we want to consider the dynamics of a single realization inside the ensemble, taking
into account how the resonator-TLS state evolves under the acquisition of information,
we need to move to a more general framework, derived from the standard quantum
theory and known in the literature as quantum trajectories95, quantum Monte-Carlo
method13 or Bayesian theory96, which has been applied to circuit QED in many
articles23,97. This framework describes how the state of knowledge about an individual

quantum system evolves given the record of the measurements performed on it. These
successive measurements induce a succession of projections on new quantum states,
with a stochastic character due to the intrinsic randomness of each measurement
result. Therefore, the theory describes the measurement process with two coupled
stochastic differential equations:

• the first describes the output field at time t, which can be explicitly written as

XD(t) =
√

κG
〈

X̂ cos Θ + Ŷ sin Θ
〉

t
+ ξX(t) (2.34)

where the notation 〈•〉t describes the expectation value of an operator at time
t conditioned to all the previous measurement records (X) ≡ {Xout(t′)}t′<t,
and ξX(t) is a realization of a random process with white noise spectrum
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〈ξX(t + τ) ξX(t)〉 = 1/2S0 δ(τ) which describes the randomness of the measure-
ment XD(t). Very often these components XD(t) are expressed in units of the
average noise photons 1/2G S0, by introducing the quantum efficiency η = G/S0
and the reduced noise ξ̃X(t) = ξX(t)/

√
1/2S0:

X̃D(t) =
√

κη
〈
2X̂ cos Θ + 2Ŷ sin Θ

〉

t
+ ξ̃X(t) ,

• the second equation describes the evolution of the field inside a resonator condi-
tioned to a homodyne measurement of its outcome98. Applied to the resonator-
TLS system, this theory yields

∂tρ̂
(X) = Lρ̂(X) +

([

Ŷ, ρ̂(X)
]

+M
[
2X̂
]

ρ̂(X)
)√

κη ξ̃X(t) (2.35)

where ρ̂(X) is the resonator-TLS density matrix conditioned to the measurement
records (X) ≡ {Xout(t′)}t′<t, L is the resonator-TLS Lindblad operator given in
the previous section, which describes the ensemble-averaged evolution of the
density matrix, and M[ĉ] is the measurement super-operator defined as

M[ĉ] ρ̂ = 1/2 (ĉ − 〈ĉ〉t) ρ̂ + 1/2ρ̂ (ĉ − 〈ĉ〉t) .

This means that the evolution of the density matrix ρ̂(X) conditioned to the
measurement records (X), is the same than the usual density matrix of the
ensemble ρ̂, but adding the effect of the projection and the back-action associated
with the results of the measurements (X).

The master equation 2.33 is extensively used to analyze the TLS-resonator system in
the Chapter 3. The quantum trajectories formalism will be used to illustrate some
specific aspects of the TLS-resonator dynamics.

2.4 Measuring the TLS with a resonator

Since the cavity pull shifts the resonator frequency up or down depending on the
TLS state, we can characterize this state by measuring the resonance frequency of the
resonator. A convenient way to do so is to send a microwave pulse at frequency ωr

to the resonator input and to measure the relative phase ϕ̄ = arctan(QD/ID) of the
reflected pulse, where X̄D is obtained by time averaging XD(t) to reduce the influence
of the noise ξX. As shown in Fig. 2.25, when the TLS is in |g〉, the resonator frequency
is shifted to ωr + χ, yielding a reflected phase δϕ0 = 2 arctan(2χ/κ) in the ωr pulse.
Conversely, when the TLS is in |e〉, the resonator frequency is shifted down to ωr − χ,
yielding a phase −δϕ0 = −2 arctan(2χ/κ).

To implement these kind of measurements experimentally, some additional mi-
crowave techniques need to be introduced.

2.4.1 Microwave techniques for measuring the TLS-resonator coupled system

2.4.1.1 Microwave setup for the measurements performed in the dilution refrigerator

To study the TLS-resonator system, we use a dilution refrigerator at 20 mK. The
typical setup for performing measurements in this refrigerator is shown in Fig. 2.26.

85



0.95 1.00 1.05

 

  

 

/c




g

e

ϕϕ mV

ϕ(t) e
g

I

Q

Figure 2.25: The standard dispersive measurement technique. A resonant microwave pulse is sent

to resonator, the phase of the reflected pulse depends on the TLS |g〉 or |e〉 state. The noise coming

mainly from the cryogenic amplifier, introduces an uncertainty on the measured complex vector (red

and blue disks), which depend on the averaging time, and which can be of the same order or even

larger than the separation between the two vectors to be discriminated.

The aim of this setup is to reduce as much as possible the thermal and technical noise
reaching the sample and to get the best possible noise temperature at the output.

Low temperature

Room temperature

OUTIN

Figure 2.26: Typical setup to

perform measurements in the

dilution refrigerator. See the

text for description.

To reduce noise from the input line which reaches the
sample, this line contains several filters and successive
attenuators thermalized at several stages with decreasing
temperatures. If the last attenuator has a large value
(typically 20 dB), it fixes the noise temperature of the full
line, as explained below in 2.4.1.2.

To improve the noise temperature of the output line
and speedup the measurements, we use a cryogenic am-
plifier, as explained in 2.4.1.2. However, amplifiers can
inject noise backwards to their input. This noise consti-
tutes an important issue when operating the full TLS-
resonator system. To reduce its effect we insert between
the sample and the cryogenic amplifier two isolators,
that is, two circulators with one of their ports connected
to a 50 Ω charge, so that the signals are attenuated by
20 dB in the reverse direction.

2.4.1.2 SNR of cascaded amplifiers: interest of cryogenic

amplifiers

The noise of each microwave device can be character-
ized by its equivalent noise temperature. This temper-
ature TN corresponds to the temperature of the 50 Ω

matched resistor, which, connected to the input of the
noiseless quadrupole, produces the same noise σ2

n as the
quadrupole itself. For a quadrupole with power gain G,
the noise temperature is:
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TN =
σ2

n

G · kB · B
.

For some measurements we use a cascade of amplifiers or attenuators instead of a
single one. To analyze the noise in such a cascade, we use the equivalence69:

- TN1,G1 - TN2,G2 -

~
�

- TN = TN1 + TN2/G1

G = G1 · G2

-

From this equivalence, we see that the SNR depends mainly on the first amplifier

and on the last attenuator of the chain. Thus a key point in our experiments is to use a
cryogenic amplifier, an amplifier operated at cryogenic temperatures with a very low
noise temperature TN 1 ∼ 4 K, yielding a good overall TN ≃ TN 1.

2.4.1.3 Homodyne detection

A (t) cost+ϕ(t))

ID (t)
cost)

Ao(t) cost+ϕ(t))

QD (t)

cost)

To detect the phase of the microwave pulse which
is reflected on the resonator, we use a homodyne
detection scheme, following the same principle ex-
posed in 2.1.5.1. As shown in Fig. 2.24 the detec-
tion is performed in an IQ demodulator, a device
which mixes the input signal with the local oscilla-
tor cos(ωmt + Θ), yielding the ID(t) component of
the signal; and with the local oscillator dephased by
−π/2, − sin(ωmt + Θ), yielding the QD(t) component. The result is low-pass filtered
to eliminate the terms around 2ωm. The results are the in-phase and quadrature
components

ID(t) = Ao(t) cos(ϕ(t)− Θ)

QD(t) = Ao(t) sin(ϕ(t)− Θ) .

We stress that the temporal dependence of these signals is only limited by the
bandwidth of the low pass-filter used for suppressing the 2ωm terms.

2.4.1.4 Heterodyne detection of the phase

The measurements of the TLS state rely on the detection of the phase of a microwave
pulse reflected on the resonator. It is therefore very important to accurately measure
the phase. In our experiments, in order to avoid variations on the DC offsets of the IQ
demodulator, which may lead to a bad determination of this phase, we often use a
heterodyne demodulation technique to measure ϕ.
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A microwave tone of frequency ωc/2π is sent to the resonator input. The reflected
pulse is demodulated using a local oscillator detuned by ωIF/2π = 3.2 MHz from ωc.
The acquired signal is therefore an oscillating signal describing a periodic trajectory
in the IQ plane (a circle in the case of a perfect IQ demodulator). The ID(t) and QD(t)
signals are sampled, typically with tS = 1 ns sample period.
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Figure 2.27: Trajectories in the I − Q plane for a long heterodyne

pulse (blue). When the rotation is canceled we obtain the green

points. If the imperfections of the demodulation chain are corrected

as explained in the text (red), the signal is substantially improved.

Various imperfections can be cal-
ibrated and corrected at this stage:

• An imperfect orthogonality of
the ID and QD signals, i.e.
ID ∝ cos(ωIFt + φ0) whereas
QD ∝ sin(ωIFt + φ1) with
φ0 6= φ1

• An imbalance between the
gains of the ID and QD chains

• DC offsets in each chain

In our experiments these imperfec-
tions are calibrated by acquiring a
very long trace to get the correction
coefficients. Then the I[n] and Q[n]
data vectors are corrected for each
measurement yielding the two cor-
rected sets I′[n] and Q′[n], which

allow to extract the phase ϕ′[n] = arctan(Q′[n]/I′[n]). The phase is corrected for ωIF:

ϕ′′[n] = ϕ′[n]− ntSωIF

The resulting I′′[n] and Q′′[n] are averaged, and yield the estimated phase ϕ̄.

2.4.2 An example: TLS spectroscopy

As an example, the above measurement procedure allows to perform easily a spec-
troscopy of the TLS (see Fig. 2.28). To excite the TLS we send a long microwave pulse
Vd whose frequency ωd is scanned. If this pulse is resonant with the TLS transition
frequency ωge, it induces some steady-state population in the TLS excited state |e〉.
Now to detect this population a microwave pulse Vm is sent to the resonator: its
reflected phase undergoes a shift ±δϕ0 depending on the TLS |g〉 or |e〉 state as
explained above. Therefore, the average reflected phase of an ensemble of identically
prepared experiments, E[ϕ̄], shows a dip when ωd excites the TLS.

2.4.3 Limits of the standard dispersive measurement technique

To have a good accuracy in the determination of the TLS state, the SNR should be
as large as possible. The measurement pulse should then be as large as possible,
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Figure 2.28: The TLS spectroscopy is performed by scanning the frequency ωd of a long driving

pulse. When ωd ∼ ωge this drive creates some steady-state population ρee in the excited TLS state |e〉,
which induces a cavity pull. This cavity pull is detected as a small shift in the phase of a measuring

pulse.

although low enough to induce a resonator field lower than the critical photon number
ncrit. The duration of the pulse should also be long to improve the SNR by averaging,
although if it becomes comparable to the relaxation time Γ−1

1 the TLS may relax
during the measurement yielding a wrong result. Although it is still not possible
in cQED experiments to reach a SNR high enough to have a negligible error rate
and to characterize the state of the qubit in a single-shot, there is a way around this
issue which consists in averaging over the results of a large number of successive
realizations of the same experimental sequence. Such ensemble-averaged readout
procedure is extremely useful since it allows to characterize the state of the qubit: it is
the base of a large part of the experiments performed in the next chapter.

However, a large span of questions about this measurement procedure remain open.
Which kind of back-action does the measurement induce on the TLS state to make it
collapse? How does the measurement happens if a very low amplitude measurement
pulse is used? Is it possible to fully characterize the qubit state in a single-shot
measurement, without averaging over an ensemble of equal experiments?

In Chapter 3 we investigate the dynamics of the qubit while it is being measured to
answer the first two questions, among others. In Chapter 4 we demonstrate a different
readout procedure which is able to characterize the TLS state in a single experimental
sequence.
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Part II

T H E M E A S U R E M E N T I N C Q E D





3
M E A S U R E M E N T A N D D Y N A M I C S I N C I R C U I T Q E D

Quantum behaviour does not occur in Hilbert space:

it occurs in the laboratory.

— Asher Peres

g

e

Rν
TLS

Drive

Back-

action

Information

on the state

Measurement

apparatus

always active

Figure 3.1: Principle of the experi-

ments performed in this chapter: a

TLS is continuously measured by a

detector while performing Rabi os-

cillations.

An important prediction of quantum mechanics is that
a measuring apparatus unavoidably applies some back-
action to the system it measures. The measuring process
consists in a progressive acquisition of information about an
observable, which in parallel leads to the projection of the
system on the observable eigenspace corresponding to the
detector outcome. At the same time, the quantum coherence
is progressively erased until it is completely lost when the
measurement outcome is completely characterized.

In this chapter we discuss an experiment designed in
the goal of shedding light on the interplay between the
Hamiltonian evolution of a TLS and the state projection
induced by its measurement. This experiment, sketched in
Fig. 3.1, consists in continuously measuring a TLS while
it is performing Rabi oscillations in order to capture the
perturbation of its dynamics due to the measurement, under
different measuring strengths. The circuit QED setup is an
ideal framework for such an investigation for two reasons:
first because it contains a fixed artificial atom on which
truly continuous and non-destructive measurements can be
performed, and second, because the measurement strength
can be tuned in-situ by varying the power which is sent
to the resonator. This allows to explore the crossover from
weak measurements, which only slightly perturb the TLS
state, to much stronger ones, in which the TLS state is
blocked in an eigenstate and can only evolve by sudden
and stochastic quantum jumps.

It is possible to go further and to test, using a weak
and continuous measurement, if our system behaves as a
classical macroscopic object satisfying the so-called Leggett-
Garg inequality29. By demonstrating the violation of this
inequality, we show that the classical description is ruled out and that a quantum
description is needed, even for a macroscopic circuit. This constitutes one of the most
important results of this chapter.
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3.1 Predictions on the continuous weak measurement of a driven

TLS

Sudden projective measurements are at heart of quantum mechanics postulates. When
they occur, all the information about the measured observable is immediately acquired
and at the same time, the system state is suddenly projected onto the observable’s
eigenspace corresponding to this outcome. Compared to this, weak measurements
only extract some part of the information on the observable, and induce a partial
collapse of the state. The weak and continuous measurements which are performed
in this chapter are the continuous limit of such partial measurement process, in which
the extraction of information and the collapse occur as continuous processes.
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Figure 3.2: A double quantum dot (pink) monitored

by a quantum point contact (QPC, green) and the

predicted power spectra Si of the QPC current i(t),

for several measurement strengths Γm = ωR/100,

ωR/10, ωR/2 and 2ωR (from blue to red).

The first goal of our experiment is to probe
the theoretical predictions for the spectrum
of a TLS coupled to such a weak continuous
detector (Fig. 3.1). Indeed, Korotkov24 stud-
ied theoretically in great detail a very similar
system: a double quantum dot (DQD) whose
state is monitored by a quantum point contact
(QPC). In this situation (see Fig. 3.2), the cur-
rent i(t) flowing through the QPC depends
on the presence of the electron in the dot near-
est to the QPC or in the other one. Thus, the
current through the QPC provides a meter for
the DQD state and the following predictions
are made:

1. For weak measurements the power spec-
trum Si of i(t) contains a signature of the co-
herent dynamics of the system which consists
in a Lorentzian peak at the Rabi frequency ωR.
(blue curve in Fig. 3.2).

2. When raising the measurement strength
the Rabi peak decreases and broadens, and
another Lorentzian peak at zero frequency,
related to stochastic quantum jumps, starts to
grow (see Fig. 3.2 and Section 3.4).

3. The information contained in these Rabi peaks allows to test if the system complies
with the hypotheses of macrorealism as stated by Leggett and Garg29,32 (see Section
3.5).

4. The maximum signal-to-noise ratio which is obtained when continuously moni-
toring coherent oscillations is 4. This is the ratio between the maximum Rabi peak
height and the noise background if this background comes solely from the quantum
vacuum fluctuations (Fig. 3.2).

5. It is possible to build a quantum feedback scheme in which the signal obtained at
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the detector output is used to calculate an adequate reaction onto the system, which
corrects the dephasing of coherent oscillations better than any classical feedback
scheme (see 3.5.5.3).

Although these predictions have been extensively discussed in the literature99,100,101,
only two experiments which deal with the first of them are reported: Il’Ichev et al.102

observed an indirect signature of the Rabi peak with a flux qubit measured by an RF
oscillator, and Deblock et al.103 were able to observe a narrow peak at the frequency
of coherent charge oscillations of a CPB, using a SIS junction as detector.

Vd Vm

LO

RF

S(ʘ)
QD(t)

ID (t) ϕ(t)
TN

G

FFT

ϕ

FFT

Figure 3.3: Schematic of the cQED setup, of an ensemble-averaged

measurement scheme yielding ϕ(t) and a continuous measurement

scheme yielding S(ω).

The main goal of our experi-
ment is to test the Korotkov’s
predictions using our cQED
system instead of the DQD
system originally considered1.
For this purpose we imple-
mented the setup shown in
Fig. 3.3. In this setup a trans-
mon TLS is driven by an ex-
ternal microwave source Vd

and capacitively coupled to
a resonator. As described in
the former chapter, in the dis-
persive regime the resonance
frequency of the resonator is
shifted up or down by χ de-
pending on the TLS state. This shift is continuously monitored by a microwave
signal Vm which is continuously sent to the resonator input and gets reflected with a
different phase depending on the TLS state. The noise power spectrum of the ID and
QD components of this signal, which are obtained by IQ demodulation, contain the
signature of the TLS behaviour: a peak at the Rabi frequency.

3.2 Experimental implementation

In order to mimic the wide-band and weak detection of the DQD by the current in the
QPC with our setup, we have taken care that the superconducting resonator which
is used as measurement apparatus for the TLS has a large enough coupling to the
measuring lines so that it becomes quickly entangled with its environment, leading
to a fast decay of its coherences; in this way it behaves as a classical measurement
apparatus for the TLS state. Therefore we chose an over-coupled resonator with a
low Q ≃ Qc. Note that we could even imagine not to use a resonator at all, but
just a transmission line capacitively coupled to the TLS: in such an experiment, the
detection bandwidth would have been nearly infinite, and the system would have
been even more similar to the DQD-QPC, but on the other hand the amplitude of the

1The two latter predictions could not be tested since they require an amplifier working at the quantum
limit which is still a subject of active research nowadays40,41.
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signal would have been reduced and the experiment much longer.

3.2.1 The sample

80µm

80µm

BW = 30MHz

50µm

2µm

5 mm

Figure 3.4: The sample with panels zooming to its most important features

As shown in Fig. 3.4 the sample consists of a λ/2 CPW resonator with resonance
frequency ωr/2π ≈ 5.8 GHz. On one side of the resonator, we fabricate a transmon
(green rectangle), consisting in a split Cooper-pair box (orange rectangle) and a large
shunt capacitor (blue rectangle). The other side of the resonator is connected to the
input line through a coupling capacitor (red rectangle) that sets the quality factor
Q ≃ Qc ≈ 190, which corresponds to a κ/2π ≈ 30 MHz bandwidth. This large
bandwidth ensures that the resonator acts as a classical measurement apparatus for
the TLS.

The resonator is fabricated in niobium with the process described above (see 2.1.4.1).
The transmon is then patterned using e-beam lithography followed by a double-angle
evaporation of two aluminium thin-films. The first of these layers is oxidized to form
the junction insulator. The sample is then glued on a microwave printed-circuit board
made out of TMM10 ceramics. The whole is enclosed in a copper box and thermally
anchored to the mixing chamber of a dilution refrigerator at typically 20 mK (Fig. 3.5).

3.2.2 Measurement setup

The measurement setup is shown in Fig. 3.5. Two kinds of microwave signals are sent
to the sample through the same input line: measurement pulses with voltage Vm (in
green) and pulses to resonantly control the TLS state with voltage Vd (in pink). Both

96



ID

20dBMW

meas
MW 
drive

V V

V G=56dB

LO
ADC

QD

COIL

Vd Vm

300K

20dB
G=38dB

TN=4K

Vc
G=56dB

4K

DCͲ8
50

TN 4K

600mK30dB

GHz

18 K

1.4Ͳ20
GHz

4Ͳ8
GHz

18mK

10dB
50

Figure 3.5: Detailed schematics of the experimental setup

of them are shaped in a DC-coupled mixer: a continuous microwave tone (generated
by an Anritsu MG3692 microwave generator) is mixed with the DC pulses generated
by an arbitrary waveform generator (Tektronix AFG3252). These are combined and
sent through a microwave line which contains several filters and attenuators (67 dB
in total) thermalized at the different temperature stages of the cryostat. The signal
reflected on the sample is separated from the input signal by a cryogenic circulator. It
is routed through several isolators, a 4–8 GHz bandpass filter, a cryogenic amplifier
(CITCRYO1-12 from Caltech) with 38 dB gain and noise temperature TN = 4 K.

The signals are then amplified at room temperature with a total gain of 56 dB, and
finally mixed down using a I/Q mixer with a local oscillator synchronous to the
microwave tone used for generating the measurement microwave pulses. The ID and
QD quadratures are filtered, amplified and balanced with a precision better than
0.5%. They are finally sampled by an Acqiris DC282 fast digitizer and transferred to
a computer that processes them.

A superconducting coil is attached to the copper box containing the sample to vary
the flux. A very-low cutoff RL filter formed by the coil itself and a 50 Ω resistor filters
this line to reduce the thermal noise coming from room-temperature.
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3.2.3 Calibration of the resonator parameters

Due to the low Q of the resonator, it is not easy to calibrate its parameters. Indeed, an
over-coupled resonator measured in reflection yields no signature of the resonance in
amplitude but only a shift of 2π in the phase. Since the measuring lines have small
spurious resonances, the phase of the response contains a ripple in addition to the
resonator 2π shift. This is not a problem when the resonator has a large Q, since
the ripple, which is smooth compared to the resonator response, induces almost no
variation of the phase in the span where the 2π shift corresponding to the resonance
takes place. It is therefore easy to fit the width of the shift and deduce Q from it.
However, when the resonator has a low Q , it becomes very difficult to separate the
phase shift induced from the resonator from the ripple coming from the lines. Thus,
spectral measurements performed with a VNA yield uncertainties around 10% for Q.

To accurately measure the resonator parameters we used a different technique
consisting in sending to the resonator microwave pulses of different frequencies and
performing a time-resolved measurement of the reflected ID and QD quadratures.
When the pulse is nearly resonant, we observe an initial transient during which
the intra-resonator field builds up from the incoming field, whereas when it is very
detuned it is almost instantly reflected at resonator output. The color plot of the
power of the reflected pulses as a function of the microwave frequency is shown in
the Fig. 3.6.

To determine the resonator parameters we fit this surface with the response calcu-
lated for a certain resonance frequency ωr and quality factor Q. This is efficiently
performed by synthesizing the time-response of the resonator using an inverse Laplace
transform. First the response around resonance is calculated for the RLC-parallel
equivalent resonator:

Yr = Cs + R−1 + (Ls)−1

C(s) =
Y−1

r + C−1
c s−1 − Z0

Y−1
r + C−1

c s−1 + Z0
.

Yr

Z0

Cc

L C R

The time-response when the input is Iin(t) = cos(ωt)u(t) (where u(t) is the Heavi-
side step function) is

Iout(t) = L−1 [C(s) ⋆ L (cos(ωt))] =

[

L−1
(

C(s) ⋆
ω

s2 + ω2

)]2

where ⋆ indicates a convolution. The other quadrature is found similarly Qout(t) =
L−1 [C(s) ⋆ L (sin(ωt))] and thus, the resulting time envelope of the total reflected
power is P(t) = I2

out(t) + Q2
out(t).

The finite rising time of the microwave pulses has also to be take into account, and
can be simulated by convolving the time response with a triangle. We measured
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trise = 3.1 ± 0.1 ns with a fast quadratic detector and a 16 GHz oscilloscope.
The fit finally yields ωc/2π = 5.796 GHz and Q = 191 ± 5 (equivalent to a band-

width κ/2π = 30.3 ± 0.8 MHz) with very good agreement as shown in Fig. 3.6.
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Figure 3.6: Top: Amplitude and phase of the resonator reflexion S11: as expected for a reflexion

measurement on an over-coupled resonator, no signal is present in the amplitude and the phase shows

a 2π shift. The fit of the phase (in red) is not satisfactory because of the rippling due to parasitic

reflexions on the setup. Bottom: Normalized power reflected on the resonator for microwave pulses of

different frequencies: on the left, experimental data, on the right, best fit with the model described in

the text.

3.2.4 Choice of the working point

A spectroscopy of the system yield the spectrum shown in Fig. 3.7 for the resonator
and the first two transitions of the transmon. We fitted these spectra with the full
theoretical expressions of the dressed transmon levels to obtain the transmon and
coupling parameters which are shown in the figure.

We choose to work at a large detuning ∆ ≈ 500 MHz, far in the dispersive regime,
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Figure 3.7: Spectrum of the resonator and transmon’s first two transitions as a function of the

magnetic flux expressed as δ/2π. The fit (solid line) yields the parameters of the sample indicated in

the graph. The selected working point is indicated by a blue dash line.

while keeping a cavity pull χ ∝ ∆−1 large enough to detect easily the TLS state. At
this point we characterized the relaxation rate Γ−1

1 = 200± 10 ns, and the decoherence
rate Γ−1

2 = 150 ± 10 ns by a Ramsey experiment. In all the experiments reported in
this chapter the TLS will be biased at this same working point.

3.3 Measurement-induced dephasing

Before testing the continuous measurement predictions, we first probed our un-
derstanding of the back-action in ensemble-averaged measurements. Indeed, it is
well established that the quantum fluctuations in the readout pulse intensity lead
to dephasing of the TLS22. This was first demonstrated in Cavity QED104; a similar
experiment in circuit QED was performed at Yale21 by characterizing spectroscopically
the dephasing times of a qubit in the presence of a field in the resonator.

In this thesis, after introducing the theory for measurement-induced dephasing, we
discuss the experimental results obtained with a spectroscopic characterization, and
we extend this study to the dephasing of Rabi oscillations induced by the resonator
field. Compared to the spectroscopic investigation of dephasing, the study of Rabi
oscillations allows us to demonstrate an additional interesting effect that had been
previously overlooked: a reduction of the dephasing at high Rabi frequencies due to
filtering of the shot noise by the resonator.
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3.3.1 Theory of the measurement-induced dephasing

In this section, we discuss the situation where a TLS is dispersively coupled to a
resonator that is driven by a source at its resonance frequency, as described at the end
of Chapter 2 by the master equation (Eq. 2.33). We are interested here in the way the
intra-resonator field affects the quantum coherence of the TLS. The dephasing of the
TLS by the resonator field can be seen as occurring in two distinct steps:

• first, the TLS gets entangled with the resonator degrees of freedom;

• then, the entangled TLS-resonator state loses its coherence due to coupling of the
resonator to the measuring line.

Seen from the TLS alone, each of these two processes amounts to a loss of quantum
coherence ; however the coherence loss occurring in the first process is in principle
reversible since the TLS coherence is still stored in the coupled TLS-resonator state,
while the second process leads to an irreversible loss of coherence towards the heat
bath constituting the environment.

The time scales over which both processes occur strongly depend on the ratio
between the parameters characterizing the system:

• the resonator damping rate κ

• the dispersive coupling constant χ

• the TLS dephasing rate Γφ caused by other dephasing processes than coupling to
the resonator

We will here investigate three different limiting cases. In the limit where κ ≪ χ, Γφ,
the resonator field is not coupled to the environment during its interaction with
the TLS, so that the TLS loss of coherence is only due to its entanglement with
the resonator. In the opposite limit where χ, Γφ ≪ κ relevant for the experiments
discussed in this chapter, the resonator field leaks towards the environment before
it gets appreciably entangled with the TLS. A master equation for the qubit only
can be derived that yields an analytical formula for the dephasing rate. We also
show that this dephasing rate can be interpreted as being due to the shot-noise of the
intra-resonator field.

We will finally briefly discuss the most general case where both entanglement and
resonator field relaxation are relevant, which has been solved analytically in the case
where the TLS excited state probability stays constant.

3.3.1.1 Measurement-induced dephasing by a resonator of infinite quality factor

We first consider the situation of Fig. 3.8 where the resonator and TLS damping rates
are negligible compared to the dispersive constant χ so that only the TLS-resonator
Hamiltonian evolution needs to be considered. Even though this is far from the
experiments described in this chapter, this situation is very instructive to consider
because it yields analytical formula that give useful insight into the measurement
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process of a TLS by a resonator. This ideal situation is in particular precisely the one
implemented in cavity QED experiments, in which the resonator and atoms damping
times are much longer than the transit time of the atoms through the cavity, and also
in certain circuit QED experiments where a high-Q resonator is used. We will here
heavily rely on Brune et al.104 who deeply investigated this situation.
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Figure 3.8: Top: Sketch of the situation of a TLS mea-

sured by a resonator with an infinite-Q. Middle: TLS

absorption spectrum in the limit χ ≫ Γ2 showing resolved

photon-number splitting Lorentzian peaks. Bottom: TLS

absorption spectrum in the limit χ ≪ Γ2, for which it

becomes Gaussian.

We assume that before the experiment
a coherent state |α〉 was generated in
the resonator with mean photon number
n = |α|2, and that the TLS is prepared in
state (|g〉+ |e〉)/

√
2. Due to the disper-

sive coupling, the resonator frequency
is shifted by ±χ depending on the TLS
state, so that the field undergoes a TLS-
state dependent phase shift of ±χt after
an interaction time t. The TLS-resonator
entangled state can thus be written

|ψ(t)〉 =
∣
∣g, αg(t)

〉
+ |e, αe(t)〉√
2

where
∣
∣αg(t)

〉
= |α exp(iχt)〉 and

∣
∣αe(t)

〉
= |α exp(−iχt)〉. This state can

be seen as a sort of Schrödinger cat state
between a TLS and a mesoscopic detec-
tor, justifying the nickname of pointer

states for
∣
∣αg,e

〉
. It is then easy to show

that the TLS density matrix, obtained
after tracing out the field degrees of
freedom, has an off-diagonal coefficient
describing the TLS coherence fz,R(t)/2
given by

〈
αg(t)|αe(t)

〉
/2. The contrast

of Ramsey fringes obtained after a TLS-
resonator interaction of duration t is
then given by

| fz,R(t)| =
∣
∣
〈
αg(t)|αe(t)

〉∣
∣

= exp
(

−D(t)2/2
)

with D(t) =
∣
∣αg(t)− αe(t)

∣
∣ = 2

√
n sin χt the distance between the two pointer states.

At short times where sin χt ∼ χt, the TLS-resonator interaction can thus be seen as
inducing some Gaussian decay of the TLS coherence with a rate 2χ

√
n; we stress

however that the coherence is not truly lost but merely stored in the entanglement
with the resonator. Indeed, the coherence factor | fz,R(t)| is expected to exhibit periodic
revivals whenever χt is a multiple of π, fully restoring the initial TLS coherence. If
nevertheless the TLS intrinsic dephasing time Γ−1

φ is shorter than these revivals, the
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entanglement with the resonator will appear as a genuine dephasing process for the
TLS.

It is very instructive to discuss the counterpart of these effects in the spectral
domain22. Indeed, the TLS absorption spectrum should be the Fourier transform of
the coherence factor | fz,R(t)|. In the limit where the resonator damping is negligible,
the photon distribution

pn = exp
(

− |α|2
) |α|2n

n!

is stationary and the TLS absorption spectrum simply consists in the sum of Lorentzian
peaks of width 2Γ2 centered on the AC-Stark shifted TLS frequency ωge + 2χn and
weighted by pn. The resulting shape of the resonance clearly depends on the ratio
between χ and Γ2. If χ ≫ Γ2 all the TLS absorption peaks corresponding to different
photon numbers in the resonator are resolved (see Fig. 3.8 middle panel). The
observation of resolved photon-number splitting peaks therefore appears as the
spectral counterpart of revivals in the coherence factor of a TLS coupled to a resonator.
While the atom-cavity interaction time in cavity QED with Rydberg atoms is usually
too short to allow the direct observation of revivals in the Ramsey fringes, well-
resolved peaks corresponding to different photon numbers have been observed in
circuit QED with a transmon coupled to a high-Q resonator105.

In the opposite limit χ ≪ Γ2, the presence of the field in the resonator induces an
extra broadening of the peak by 2χ

√
n, directly given by the width of the Poissonian

photon distribution
√

n, in agreement once more with the discussion in the time
domain above. Note that at low photon numbers 2χ

√
n ≪ Γ2 the resonance shape

should still be Lorentzian with width 2Γ2, whereas at larger photon numbers 2χ
√

n ≫
Γ2 it should become Gaussian (see Fig. 3.8 bottom panel), directly reflecting the
Poissonian distribution of the photon number in the resonator. Such a crossover
between a Lorentzian and a Gaussian line-shape for increasing fields in the resonator
was indeed observed with a Cooper-Pair Box coupled to a high-Q resonator21.

3.3.1.2 Measurement-induced dephasing by a resonator of very low quality factor

The situation is somewhat different when the resonator damping rate can not be
neglected, and when the resonator is driven. Whereas in the high-Q case the pointer
states

∣
∣αg,e

〉
were evolving coherently under the action of the dispersive Hamiltonian

yielding periodic rephasings of the TLS, they now reach a stationary regime under
the combined action of the resonator damping and drive. This situation can only be
treated using the full TLS-resonator coupled system density matrix. Fortunately, in
the limit relevant for the experiments described in this chapter where χ, Γφ ≪ κ, an
effective master equation can be derived for the TLS only, yielding analytical formulas
for the measurement-induced dephasing rate. We follow here the treatment given by
Hutchison et al.97 based on an adiabatic elimination of the resonator field. We wish to
give the calculation in some detail because we will need it later in this chapter.

We start by recalling the master equation (Eq. 2.33):
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∂tρ̂ = Lρ̂ = − i

h̄

[
ρ̂, Ĥ

]
+ κD[â]ρ̂ + Γ1D[σ̂−]ρ̂ + 1/2ΓφD[σ̂z]ρ̂ .
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Figure 3.9: Sketch of the measurement process when the

resonator is strongly coupled to the environment. The two

pointer states
∣
∣αg

〉
and |αe〉 have a large overlap and thus

the resonator acts as a simple Markovian environment for

the TLS.

Note that we will consider here that the
measurement field is at the resonator fre-
quency ωm = ωc, so that the dispersive
Hamiltonian in the interaction picture
writes

Ĥ =1/2h̄
(
ωge − ωd

)
σ̂z+

+ h̄χ
(

â† â + 1/2
)

σ̂z+

+ Em(â† + â) + Ed (σ̂+ + σ̂−) .

We then move to the frame defined
by the displacement operator D̂(α) =
exp

(
αâ† − α∗ â

)
, with a displacement

field α = −2iEm/κ chosen to cancel ex-
actly the steady-state field that would
have built up in the resonator in the
absence of the TLS. The new master
equation in the displaced density matrix
ρ̂D(t) = D̂†(α)ρ̂(t)D̂(α) can be shown to
be

∂tρ̂
D = LDρ̂D = Lqρ̂D + κD[â]ρ̂D − iχ

[

(â† â + α∗ â + αâ†)σ̂z, ρ̂D
]

.

Here Lq is the Lindblad super-operator representing the dynamics of the qubit only

Lqρ̂ = −i
[
Ĥq, ρ̂

]
+

(

Γ1 + κ
g2

∆2

)

D
[
σ̂−] ρ̂ +

Γφ

2
D [σ̂z] ρ̂

and

Ĥq =
(ωge − ωd) + 2n̄χ

2
σ̂z + Ed

(
σ̂+ + σ̂−)

where n = |α|2 is the mean photon number of the intra-resonator field. We now make
an adiabatic approximation that consists in supposing that the quantum fluctuations
of the displaced resonator state are small. This is a good assumption in the case where
the resonator damping is large, because then the field state is then expected to stay
very close to |α〉 at all time. More precisely, we will suppose that the displaced matrix
elements in the photon number basis ρD

n,m scale as εn+m where ε = χ |α| /κ ≪ 1.
Expanding the displaced matrix to second order in ε yields

ρ̂D = ρ̂00 |0〉 〈0|+ ρ̂10 |1〉 〈0|+ ρ̂01 |0〉 〈1|+ ρ̂11 |1〉 〈1|+ ρ̂20 |2〉 〈0|+ ρ̂02 |0〉 〈2|+O
(

ε3
)
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and the reduced density matrix for the TLS is ρ̂q = Trfield
(
ρ̂D
)
= ρ̂00 + ρ̂11. Substitut-

ing in the master equation we obtain

∂tρ̂00 = Lqρ̂00 + κρ̂11 + iχ (αρ̂01σ̂z − α∗σ̂zρ̂10)

∂tρ̂10 = Lqρ̂10 − κρ̂10/2 + iαχ (ρ̂11σ̂z − σ̂zρ̂00)− iχ
(

σ̂zρ̂10 + α∗
√

2σ̂zρ̂20

)

∂tρ̂11 = Lqρ̂11 − κρ̂11 + iχ (α∗ρ̂10σ̂z − ασ̂zρ̂01)− iχ [σ̂z, ρ̂11]

∂tρ̂20 = Lqρ̂20 − κρ̂20 − iχ
(

2σ̂zρ̂20 + α
√

2σ̂zρ̂10

)

The off-diagonal matrix elements are damped at a rate κ but populated only at a
rate |α| χ/κ, and therefore decay much faster than the diagonal matrix elements. We
thus approximate the off-diagonal matrix elements by their steady-state values

ρ̂10 =
iαχ (ρ̂11σ̂z − σ̂zρ̂00)

κ/2

ρ̂20 =
−iαχ

√
2σ̂zρ̂10

κ
.

Substituting these expressions, we find that the TLS density matrix ρ̂q then verifies
the effective master equation

∂tρ̂q = −i
[

Ĥq, ρ̂q

]

+

(

Γ1 + κ
g2

∆2

)

D[σ̂−]ρ̂q +

(
Γφ + Γ

ph
φ

2

)

D[σ̂z]ρ̂q (3.1)

Let us now give the physical content of this equation. The ensemble-averaged qubit
dynamics is modified by the presence of the field in the resonator in three ways:

• the AC Stark shift 2χn of its resonance frequency (see 2.3.3),

• an additional relaxation rate due to the presence of the cavity, the Purcell damping
rate κg2/∆2 (see 2.3.1),

• an additional dephasing rate: the measurement induced dephasing Γ
ph
φ = 8nχ2/κ.

Note that the above derivation assumes ωR ≪ κ, which is not always the case in
our experiments.

It is also interesting to calculate the ensemble-averaged expectation of the detector
output signal quadratures after demodulation at an angle Θ with the signal. We first
note that

〈â(t)〉 = α + TrTLS

[

Trfield

[

âρ̂D(t)
]]

≃ α + TrTLS [ρ̂10(t)]

≃ α − 2iαχ

κ
TrTLS

[
σ̂zρ̂q(t)

]
= α − 2iαχ

κ
〈σ̂z(t)〉

Choosing Emto be real and positive so that α = −i |α|, we then have
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〈
ÎD

〉
=

√
κG
〈

ae−iΘ + a†eiΘ
〉

/2 = ID −
√

κG
2 |α| χ

κ
cos Θ 〈σ̂z(t)〉

〈
Q̂D

〉
=

√
κG
〈

−iae−iΘ + ia†eiΘ
〉

/2 = QD +
√

κG
2 |α| χ

κ
sin Θ 〈σ̂z(t)〉

with ID = − |α| sin Θ and QD = − |α| cos Θ. We see that in the low-Q limit, as
expected, the quadratures of the output signal measure directly the TLS state, which
at the same time obeys the effective master equation above. This has been used in
circuit QED experiments to measure ensemble-averaged Rabi oscillations with high
fidelity106. We note in particular that

√
(〈

ÎD

〉
− ID

)2
+
(〈

ÎD

〉
− ID

)2
=

∆V

2
〈σ̂z(t)〉 (3.2)

with ∆V/2 = 2
√

κG |α| χ/κ.
To shed light on the physical meaning of the extra dephasing term appearing in

Eq. 3.1, it is interesting to follow the analysis by Gambetta et al.22 and to derive this
dephasing rate from a simple reasoning based on the quantum fluctuations of the
photon number in the resonator. This analysis completely neglects the entanglement
occurring between the field and the resonator, an approximation valid in the low-Q
regime.

Dephasing caused by fluctuations of intra-resonator photon number

When a microwave pulse is sent to the resonator, the intra-resonator field which
builds up has a fluctuating number of photons n(t) = n̄ + δn(t) as a result of the
quantum fluctuations –the so-called shot noise. The shot-noise cause fluctuations in
the transition frequency of the TLS ωge via the AC-Stark shift:

ω′
ge(t) =

(
ωge + 2χn̄

)
+ 2χδn(t)

which result in a random dephasing found by integrating the frequency fluctuations
over time:

δϕ(t) = 2χ
∫ t

0
δn(τ)dτ .

To study this dephasing we analyze the time-evolution of the TLS coherence, which
is given by the correlator:

〈σ̂−(t) σ̂+(0)〉 = e−Γ2t
〈

e−iδϕ(t)
〉

,

where the first term results from other decoherence process and the second term
represents the measurement-induced dephasing only. Assuming that the statistics
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of δϕ(t) are Gaussian, the cumulant expansion
〈

e−iδϕ(t)
〉

= exp
[
−1/2

〈
δϕ2
〉]

is exact
and yields to:

〈σ̂−(t) σ̂+(0)〉 = exp
[

−Γ2t − 2χ2
∫ t

0

∫ t

0
〈δn(τ)δn(ς)〉 dτdς

]

.

The correlation function 〈δn(t1)δn(t2)〉 for a damped driven resonator is10

〈δn(t1)δn(t2)〉 = n̄e−
κ
2 |t1−t2|, (3.3)

yielding

〈σ̂−(t) σ̂+(0)〉 = exp
{

−Γ2t − 8n̄χ2

κ2

[

κ |t| − 2 + 2 exp
(

−κ

2
|t|
)]}

. (3.4)

Since Γ2 ≪ κ, the dephasing occurs slowly compared to κ, and for the relevant
timescales t ≫ κ−1, the total dephasing is exponential:

〈σ̂−(t) σ̂+(0)〉 ≈ exp
(

−(Γ2 + Γ
ph
φ )t

)

with the measurement-induced dephasing:

Γ
ph
φ =

8χ2

κ
n̄ = γ

ph
φ n̄. (3.5)

as already seen above. To summarize the measurement-induced dephasing in the
low-Q limit can be seen as arising from the incoming microwave pulse shot-noise.
We stress however that in this derivation it is assumed that the field has photon
number defined independently form the TLS. If however the two pointer states

∣
∣αg

〉

and |αe〉 have widely different amplitude as can happen if the resonator Q is larger,
this assumption does not hold anymore.

Calculation in the Bloch-Redfield formalism

This formula can also be derived in the Bloch-Redfield formalism introduced in 2.2.3
to study the dephasing induced by noise sources coupled to the TLS. In this formalism,
the dephasing introduced by the noise on some variable λ is found to be (Eq. 2.25):

Γφ = πD2
λ,zSλ(0)

where Sλ(ω) is the spectral density of the fluctuations of λ and Dλ,z is the sensitivity
of the longitudinal part of the Hamiltonian to the parameter λ. Here

Dn,z =
∂ωge

∂n
= 2χ

and the spectral density of shot noise found from the time-correlator 〈δn(t1)δn(t2)〉
(Eq. 3.3) is

Sn(ω) =
1

2π

2n̄ κ
2

(
κ
2

)2
+ ω2

(3.6)
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yielding the dephasing rate

Γ
ph
φ = πD2

n,zSn(0) = π(2χ)2 2n̄

πκ
=

8χ2n̄

κ

already found above (Eq. 3.5). This derivation has the advantage of providing also
the decay rate of Rabi oscillations ΓR, which is related to the noise spectrum Sn at the
Rabi frequency ωR, as explained in 2.2.3.5:

ΓR(ωR) =
3
4

Γ1 +
1
2

πD2
λ,zSλ(ωR) =

3
4

Γ1 +
4χ2n̄

κ

1

1 + (2ωR/κ)2 . (3.7)
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Figure 3.10: Sketch of the measurement process in the case

where its coupling with the environment is intermediate.

We describe below the experimen-
tal characterization of this Lorentzian
dependence on frequency of the measurement-
induced dephasing.

3.3.1.3 Intermediate case

In the above analyses we have supposed
either that the resonator was completely
isolated from the environment, or that
the coupling of the resonator with the en-
vironment is so stronger than the one to
the TLS, that the resonator state is almost
independent of the TLS state. But for
many situations we are between these
limiting cases (3.10). Fortunately Gam-
betta et al.23 studied the decay of the
coherences in this most general cQED sit-
uation, without making any additional
assumption apart from neglecting the

TLS relaxation and driving.
Starting from the master equation for cQED (Eq. 2.33), a master equation for the

evolution of the TLS alone can be deduced by using a polaron-like transformation. This
equation contains a time-dependent measurement-induced dephasing term which is
written:

Γ
ph
φ (t) = 2χ Im

[
αg(t)α

∗
e (t)

]
(3.8)

where the resonator coherent field amplitudes vary in time according to:

{

α̇e(t) = −iVm(t)− i(∆r + χ)αe(t)− 1/2καe(t)

α̇g(t) = −iVm(t)− i(∆r − χ)αg(t)− 1/2καg(t)
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In the low Q limit, the fields αi(t) reach very quickly their steady-state value, and
thus Γ

ph
φ (t) is constant for relevant timescales of the experiment (≫ κ−1). Thus,

Γ
ph
φ = 2χn̄ sin(2δϕ0)

and if the states have a large overlap δϕ ≪ 1 and we find the same

Γ
ph
φ =

8χ2n̄

κ

as above.
A last very interesting consequence of Eq. 3.8 is that in the steady-state regime (at

times t ≫ κ−1), when αg, e(t) reach their steady-state values αg, e, the dephasing rate
can be written as:

Γ
ph
φ =

κ

2

∣
∣αg − αe

∣
∣2 =

κ

2
D2
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Figure 3.11: TLS spectral line as a function of the

amplitude of a perturbing resonator field PP at res-

onator frequency ωc. The microwave pulse sequence

is sketched on the top. The curves at PP larger than

0 dB have been vertically shifted.

where D =
∣
∣αg − αe

∣
∣ is known as the distin-

guishability of the states. D2 represents the
amount of information about the TLS stored
in the resonator, and κD2 is the amount of in-
formation about the TLS leaking out of the res-
onator, illustrating the fundamental quantum
property that the extraction of information is
unavoidably accompanied by an equivalent
dephasing of the measured state.

3.3.2 Spectroscopic observation of the

AC-Stark shift and measurement-
induced dephasing

To verify our understanding of the mea-
surement induced dephasing, we character-
ize the TLS absorption spectrum while the
intra-resonator field contains n̄ photons in
average. To create this intra-resonator field,
a perturbing field is sent to the resonator
while performing the spectroscopy. The TLS
line is expected to be AC-Stark shifted to
ω′

ge(n̄) = ωge − 2χn̄ and broadened by the
measurement-induced dephasing.

Closely following the experiment performed
at Yale21, we measure the g → e spectral line
of the TLS in presence of a perturbing field
that creates a finite photon population in the
resonator. This is done, as shown at the top
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of Fig. 3.11, by sending a perturbing pulse at frequency ωc and power PP to the
resonator during the spectroscopic excitation of the TLS, which is performed with
a long Vd pulse whose frequency ωd/2π is scanned. After these pulses, a large
amplitude measurement pulse at ωc performs a projective measurement of the TLS
state as explained in 2.4.

The results (Fig. 3.11) show that, as expected, the TLS spectral line shifts down in
frequency and broadens as the power of the perturbing field PP is increased. To probe
if these shifts and broadenings are in quantitative agreement with the theory we need
first to calibrate the intra-resonator field in terms of the average number of photons n̄

and for that we need an accurate value of χ.

3.3.2.1 Determination of χ

In order to determine χ accurately we measure the phase shift 2δϕ0 = 4 arctan(2χ/κ)
on the reflected microwave signal which takes place when the TLS state changes
from |g〉 to |e〉. In this measurement, the resonator is probed continuously with a
low-amplitude field Vm with power PP. Then, a long pulse Vd at ωge saturates the
g → e transition. After an initial transient the population of g and e become almost
equal to 50% so that the detected phase shift should saturate at the value δϕ0.
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Figure 3.12: Ensemble averaged measurement of ϕ(t) when a driving pulse Vd saturates the g → e

transition starting from g. The measurement is continuous with n ∼ 2 photons. Upper inset:

spectroscopic line of the TLS. Lower inset: variation of δφ0 with the measurement frequency ωm.

To measure the corresponding phase shift the signal reflected onto the resonator is
mixed with a local oscillator detuned from Vm by 3.2 MHz: this heterodyne detection
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scheme avoids problems with the offsets of the IQ demodulator. The resulting beating
pattern in the two quadratures ID(t) and QD(t) is ensemble averaged over a few 105

identical sequences: the phase ϕ(t) = arctan (E [QD(t)] /E [ID(t)]) is plotted in Fig.
3.12. This plot yields a shift δφ0 = 12.5 ± 0.2 ° between no driving and saturation.
Note that the frequency of the measuring microwave ωm was scanned to find precisely
the frequency for which δφ0 is maximum, corresponding to the resonator frequency
ωc.

For converting this shift into a χ value, we take into account that:

• in the absence of microwave drive the TLS is not perfectly in its ground state |g〉
due to residual thermal excitation to |e〉. We calibrate this thermal population
ρth

ee = 0.02 ± 0.01 by measuring the noise spectrum with Vd being switched OFF
(see Section 3.6 below).

• the saturation induced by the driving field is slightly below 50% due to longi-
tudinal and transverse relaxation. The population ρsat

ee in the excited state at
saturation is indeed given by the steady state solution to Bloch equations

ρsat
ee =

1
2
−
(

1
2
− ρth

ee

)
1 + (Γ−1

2 δω)2

1 + (Γ−1
2 δω)2 + (ω2

RΓ−1
1 Γ−1

2 )
. (3.9)

Here ωR/2π = 10 MHz is fixed by the driving strength, Γ−1
1 = 200 ± 10 ns and

Γ−1
2 = 150 ± 10 ns are independently measured. Note that here, as in all the

following experiments, δω = 0 since an automated spectroscopy sequence is
programmed to measure ω′

ge(PP) just before the experiment, and to assign its
value to ωd. Finally we obtain ρsat

ee = 0.496 ± 0.001 instead of 0.5.

Taking these two effects into account, we calculate δφ0 = (0.95± 0.02)δϕ0. Maximizing
all the uncertainties including those on κ, we finally obtain χ/2π = κ tan(δϕ0/2)/4π =
1.75(−0.11/ + 0.14)MHz, which is also consistent with the TLS parameters deter-
mined by spectroscopy.

3.3.2.2 AC-Stark shift: in-situ calibration of n̄

The combination of the cavity-pull and AC-Stark shift provides a convenient way
to calibrate in-situ the average number of photons n̄ stored in the resonator when a
pulse of power PP is sent to it. Indeed, as shown in 3.13, the TLS frequency is AC-
stark shifted down proportionally to the power PP of the perturbing field. Since the
AC-Stark shift is −2χn̄, and we have obtained an accurate value of χ, the dependence
between PP and n̄ is immediately obtained (scale on top of 3.13).

3.3.2.3 Measurement induced-dephasing

Since the Q of our resonator is low, we expect the Eq. 3.5 to be valid and the spectral
line to be broadened by the measurement-induced dephasing reaching a width

(FWHM) ∆ω = 2
(

Γ2 + n̄γ
ph
φ

)

with γ
ph
φ = 8χ2/κ. The experimentally measured

widths of the spectral line are shown in 3.13, and are in good agreement with this
theoretical prediction.
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Figure 3.13: Quantitative analysis of Fig. 3.11

based on the measured χ value. Top: AC-Stark

shifted resonance ω′
ge as a function of the perturbing

power PP. The linear fit yields the n̄(PP) conversion

shown in the horizontal axes. Bottom: experimen-

tal (dots) and calculated (line) FWHM resonance

linewidth as a function of PP and n̄ respectively.

Note that this linear dependence in only
valid for small n̄ as the ones used in our ex-
periment and a saturation occurs for higher
values of n ≃ ncrit

21.

3.3.3 Characterization in frequency of

the measurement-induced dephas-
ing

The line broadening in the spectroscopic mea-
surements shown above gives access to the
measurement-induced dephasing. However,
as we deduced above (Eq. 3.7), the decay rate
of Rabi oscillations at Rabi frequency ωR is
sensitive to the spectral density of noise at ωR:
we thus expect to observe an interesting ef-
fect of reduction of the oscillations dephasing
rate at high ωR due to the filtering of the shot
noise by the resonator, which is not possible
to observe in the TLS spectral line.

To measure Rabi oscillations in presence of
a perturbing field, we use the sequence of
pulses shown on left inset of Fig. 3.14. During
a microwave pulse at ωc that builds up a per-
turbing intra-resonator field of n̄ photons, a
driving pulse of length ∆t induces a rotation
in the azimuthal plane of the Bloch sphere of
an angle ωR∆t. The frequency of this driving
pulse is set to the AC-Stark shifted TLS fre-

quency which is spectroscopically measured by an automated procedure for each
n̄. Just after the driving pulse ends, a large amplitude measurement pulse is used
for measuring the TLS state as explained in 2.4: the signal is time-averaged over the
measurement pulse, yielding the phase ϕ̄i(∆t). Repeating 104 times this procedure
yields an ensemble-averaged point ϕ̄(∆t) = E [ϕ̄i(∆t)]. Then ∆t is incremented to
produce the next point of the Rabi oscillation.

The resulting curves are shown in Fig. 3.14. For each Rabi frequency the oscillations
were acquired at different perturbing field powers PP. The qualitative behaviour is
the expected one: when increasing n̄, the Rabi oscillations decay more rapidly due to
the measurement-induced dephasing. At some point the oscillations are completely
washed out and replaced by an exponential decay. For even larger n, the damping
time constant increases, indicating an inhibition of the TLS transition from |g〉 to |e〉,
which is a signature of the Quantum Zeno Effect discussed below (see 3.3.3.1).

A quantitative analysis of these curves is performed by fitting each Rabi curve with
the analytical solution of Bloch equations107. In this fit the longitudinal decay time
Γ‖ is fixed to the independently measured relaxation rate Γ1 = (225 ± 10 ns)−1. The
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Figure 3.14: Ensemble-averaged Rabi oscillations performed in the presence of a perturbing field of

n̄ = 0, 1, 2, 5, 10 and 20 (blue to red) photons. The Rabi drive is varied to yield ωR/2π = 2.5, 5, 10
and 20 MHz . Fits to the solution of Bloch equations (thin black lines) yield the measurement-induced

dephasing rate Γ
ph
φ , after subtraction of other decoherence contributions deduced from the curve at

n̄ = 0.

transverse decay Γ⊥ rate is fitted, and compared to the theoretical predictions, using
the fact that, as explained in 2.2.3.5, the Rabi oscillations decay rate is

Γ̃2 = 3/4Γ1 + 1/2ΓωR
= 1/2 (Γ1 + Γ⊥) .

Thus this transverse rate Γ⊥ has two components:

Γ⊥(n̄) = Γ
ph
ωR

(n̄)
︸ ︷︷ ︸

measurement

+ Γ0
ωR

+ 1/2Γ1
︸ ︷︷ ︸

other dephasing+relaxation

.

The measurement independent contribution Γ⊥(0) = Γ0
ωR

+ 1/2Γ1 coming from other
dephasing sources and from energy relaxation has to be the same for all the curves.
As shown in Fig. 3.15a, for each ωR the measured Γ

ph
ωR

(n̄) are proportional to n̄, as

expected. Their slopes γ
ph
ωR

are determined by fitting Γ
ph
ωR

(n̄) up to n̄ = 5 and are

shown in Fig. 3.15b: these γ
ph
ωR

follow a Lorentzian cutoff, as expected from theory,
showing that the shot noise is indeed filtered by the resonator. Their values are in
good agreement with the predictions of Eq. 3.7 using the independently measured
values of χ and κ. We thus have a full quantitative understanding of the measurement-
induced dephasing in our system and its dependence on frequency. Interestingly,
this frequency dependence follows the same cutoff as the signal, illustrating once
again the fundamental quantum property that the amount of information extracted is
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unavoidably accompanied by an equivalent amount of dephasing of the measured
state.
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Figure 3.15: (a) Measurement-induced dephasing rates Γ
ph
ωR

(n̄) extracted from Rabi oscillations (dots

with error bars on the left graph) for ωR/2π = 2.5, 5, 10 and 20 MHz (blue to red) show a linear

dependence with the measuring field at low n̄. Solid lines are linear fits of the data taken at n̄ ≤ 5 ,

yielding the measurement-induced dephasing rate per photon γ
ph
φ . These slopes γ

ph
ωR

are plotted in (b)

as a function of the Rabi frequency ωR (magenta dots on the right graph), showing that the dephasing

by measurement is filtered by the resonator response as predicted by Eq. 3.7. The comparison with

theoretical curves (magenta lines) and using only measured parameters (the two lines limiting the

grey area correspond to the lower and higher bounds of experimental uncertainties) is rater good, as

well as the comparison from the results of the numerical integration of the system master equation

(blue squares, see 3.4.4).

3.3.3.1 Quantum Zeno Effect
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Figure 3.16: Ensemble-averaged Rabi oscillations

at ωR/2π = 2.5 MHz and n̄ = 0, 1, 2, 5, 10
and 20 (blue to red) photons. The higher n̄ curves

show a slowdown of the TLS excitation which is

the signature of the Quantum Zeno Effect.

When the TLS is weakly driven and very
strongly measured (see first panel of Fig.
3.14, and Fig. 3.16 for the highest n̄), the
ensemble-averaged signal is no longer
oscillating but consists of an exponential
decay. When the power is further in-
creased the time-constant grows and the
time dependence at short times changes
from quadratic to approximately linear
with an increasing time constant, which
is a manifestation of the Quantum Zeno
effect27,108,28 (QZE).

The QZE is a progressive slow-down
of the dynamics of a system when it is
being measured. It comes as a conse-
quence of the measurement postulate:
after a measurement the system is reset
in the eigenstate corresponding to the
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measured outcome. Therefore, if measurements are repeated often enough, the sys-
tem is blocked in its initial state. This evokes the paradox of the arrow devised by Zeno
of Elea:

If everything is either in motion or at rest, if it is at rest when it occupies an equal

space, and if that which is in locomotion is at any precise instant occupying such a

space, the flying arrow is therefore motionless.

—Aristotle, Physics VI, 9

In principle it could be possible to block the system in any initial state in this way.
However, to overcome the relaxation which tends to collapse the TLS state to |g〉, the
measurement would need to be repeated in a timescale in which the qubit relaxation
is not linear but quadratic in time, a timescale which is of the order of the environment
correlation time. For the case of cQED these timescales are several orders of magnitude
shorter than the fastest measurement which can be performed. Therefore, in this
experiment, as well as in former ones performed with other systems28, only the
inhibition of a coherent excitation process is accessible experimentally.

3.4 Continuous measurements

1.0

Coherent

transient

Incoherent

steadyͲstate

 ee

0.0
Time

Figure 3.17: Ensemble-averaged Rabi oscillations

(in red) decay in amplitude until reaching zero

amplitude in the steady-state. However, the indi-

vidual trajectories of the ensemble (green curves)

keep oscillating: the null average of the ensemble

comes from the random dephasing between the

different trajectories.

In the experiments described above the link be-
tween measurement and dephasing is inferred
by mimicking the measurement field by sending
a microwave pulse at the resonator frequency
ωc . However, although the reflected perturb-
ing pulse contains some information on the TLS
state, this information is not used, and all our
knowledge of the system comes from a final
projective measurement performed with a high
amplitude microwave pulse. After this measure-
ment the oscillation is stopped, and the system
is prepared again in the same state. The oscil-
lations are therefore averaged over an ensemble
of identically prepared situations. To go further
in the study of the dynamics of the measured
system, we now want to monitor a single and

continuous Rabi oscillation, extracting the infor-
mation on the TLS state at the same time that
it is evolving. According to the theoretical pre-
dictions of Korotkov et al.24 the power spectrum
at the detector’s output should then contain a
Lorentzian peak at the Rabi frequency.

Moreover, such continuous measurement
brings more information on the system than the ensemble-averaged measurements
discussed above. Specifically, if we take the precession of a classical macro-spin, and a
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quantum TLS, the ensemble-averaged measurements performed on them can be equiv-
alent, in strong contrast with continuous measurement, which allow to distinguish
both situations as discussed below.

3.4.1 Theoretical predictions for the power spectrum of the detector

As seen in Fig. 3.14, ensemble-averaged Rabi oscillations decay after a time Γ−1
R

which becomes shorter when the measurement strength is increased. The reason for
such a decay is sketched in the Fig. 3.17: different realization of the oscillations in
the ensemble become progressively dephased, and thus their average tends to zero.
However, in each particular realization the TLS is still undergoing oscillations, which
leave a signature in the power spectrum at the detector output: a Lorentzian peak at
the Rabi frequency.

We now want to calculate the exact shape of this peak, i.e. the power spectrum
SX(ω) = F [KX(τ)] of the detected signal components XD(t) where X = I, Q,
depending on the Rabi frequency and the measurement strength. These power
spectra are given by the Fourier transform of the autocorrelation functions KX(τ) =
E [XD(t)XD(t + τ)] calculated when the system is in its steady-state. We will now
explain how these correlation functions can be computed analytically in the limiting
case where the resonator bandwidth is infinite, which would correspond to a very
low quality factor as is the case in our experiment. Note that similar calculations
have been performed using a great variety of methods25,109,24,110, for the situation of
a DQD measured by a QPC.

The link between the correlation function

KX(τ) = E [XD(t)XD(t + τ)]− E [XD(t)] E[XD(t + τ)]

involving a classical measurement record and the corresponding quadrature operators
X̂out of the fields leaking out of the resonator (given in the Heisenberg representation)
is

KX(τ) = G
[〈

: X̂out(t + τ) X̂out(t) :
〉
−
〈

X̂out(t + τ)
〉 〈

X̂out(t)
〉]

where :: indicates normal ordering of the operators (i.e. creation operators at the left
of all annihilation operators62). Using Îout(t) =

√
κ
(
â(t) + â†(t)

)
/2 and Q̂out(t) =

i
√

κ
(
â†(t)− â(t)

)
/2 + Em/

√
κ, one can show that

KI(τ) + KQ(τ) = G
[

κ Re
(〈

â†(t + τ)â(t)
〉)

− κ |〈â(t)〉|2
]

.

We therefore need to calculate the two-time correlation function
〈

â†(t + τ)â(t)
〉
. As

we will see, one can obtain a simple formula for this correlator in the low-Q limit.
We will use for that the adiabatic elimination technique described in 3.3.1.2 and in
Hutchinson et al.97 to rewrite this expression as a function of TLS operators only. As
explained above, the field is first rewritten as â(t) = α + b̂(t) where α = −2iEm/κ is a
classical field amplitude and b̂(t) contains the quantum fluctuations due to the TLS

116



dynamics. This yields K(τ) = KI(τ) + KQ(τ) = κ G Re
(〈

b̂†(t + τ)b̂(t)
〉)

. We then
rewrite

〈

b̂†(t + τ)b̂(t)
〉

= Tr
(

b̂† exp(LDτ)
[

b̂ ρ̂D(t)
])

where ρ̂D(t) is the steady-state displaced density matrix of the whole system, governed
by the Lindblad super-operator LD that describes the full master equation62. This can
be written

Tr
(

b̂† exp(LDτ)
[

b̂ ρ̂D(t)
])

= TrTLS[K
′]

with K′ = Trfield

(

b̂† exp(LDτ)
[

b̂ ρ̂D(t)
])

. We then note ρ̃(t) = b̂ ρ̂D(t), and ρ̃(t +

τ) = exp
(
LDτ

) [

b̂ ρ̂D(t)
]

. Given the expansion of the density matrix

ρ̂D = ρ̂00 |0〉 〈0|+ ρ̂10 |1〉 〈0|+ ρ̂01 |0〉 〈1|+ ρ̂11 |1〉 〈1|+ ρ̂20 |2〉 〈0|+ ρ̂02 |0〉 〈2|+O
(

ε3
)

in powers of ε = χ |α| /κ ≪ 1, we can restrict ourselves to the {|0〉 , |1〉} subspace so
that K′ = Trfield[b

† ρ̃(t + τ)] = 〈0| ρ̃(t + τ) |1〉 = ρ̃01(t + τ). This is the matrix element
we need to calculate to lowest order in ε.

From the ρ̂D expansion, we have : ρ̃(t) = b̂ ρ̂D(t) = ρ̂10(t) |0〉 〈0|+
√

2ρ̂20(t) |1〉 〈0|+
ρ̂11(t) |0〉 〈1|. Since ρ̃(t + τ) = exp

(
LDτ

)
(b ρD(t)) for any τ > 0, the equations of

motion for ρ̃ are the same as for ρ̂ so the same reasoning as done in the adiabatic
elimination can be done. In particular

ρ̃01 = −2iα∗χ

κ
(σ̂zρ̃11 − ρ̃00σ̂z) .

and to lowest order in ε,

ρ̃01(t + τ) ≃ 2iα∗χ

κ
ρ̃00(t + τ)σ̂z.

We now need to link ρ̃00(t + τ) to ρ̃00(t). For that we again use the fact that
ρ̃00(t + τ) ≃ ρ̃q(t + τ) where ρ̃q = ρ̃00 + ρ̃11. As already shown for the qubit density
matrix ρ̂q = ρ̂00 + ρ̂11, ρ̃q satisfies the qubit master equation with Lindblad super-
operator Lq so that

ρ̃q(t + τ) = exp
(
Lqτ

)
ρ̃q(t).

All this yields

ρ̃01(t + τ) =
2iα∗χ

κ

[
exp

(
Lqτ

)
ρ̃q(t)

]
σ̂z.
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Similarly, ρ̃q(t) ≃ ρ̃00(t) to lowest order in ε, with ρ̃00(t) = ρ̂10(t) ≃ (−2iαχ/κ)σ̂zρ̂00(t) ≃
(−2iαχ/κ)σ̂zρ̂q(t). Finally we obtain

ρ̃01(t + τ) =
4 |α|2 χ2

κ2

{
exp

(
Lqτ

) [
σ̂zρ̂q(t)

]}
σ̂z

yielding

K(τ) = κ G TrTLS
(
K′) = κ G

4 |α|2 χ2

κ2 TrTLS
({

exp
(
Lqτ

) [
σ̂zρ̂q(t)

]}
σ̂z

)
=

= G
4 |α|2 χ2

κ
TrTLS

(
σ̂z

{
exp

(
Lqτ

) [
σ̂zρ̂q(t)

]})
=

(
∆V

2

)2

〈σ̂z(t + τ)σ̂z(t)〉

so that

K(τ) = (∆V/2)2Kẑ(τ) (3.10)

with Kẑ(τ) = 〈σ̂z(t + τ)σ̂z(t)〉. We note that the coefficient linking both correlators
is simply the square of the coefficient (∆V/2) linking the ensemble-averaged signal
quadratures to 〈σ̂z(t)〉 as shown by 3.2. This will be used in the following to convert
measured power spectra into dimensionless spin units. We therefore find that in the
low quality factor limit, the two-time correlation function of the output homodyne
signal is directly given by the correlation function of σ̂z, with the TLS obeying the Bloch
equations as given by the effective master equation Eq. 3.1. Other demonstrations
of this result have been obtained by Korotkov for the case of the DQD measured
by a QPC109,24. The correlation function of a continuous and weak measurement
gives therefore the same quantity as if two successive and instantaneous projective
measurements were performed at time t and then at time t + τ, although yielding
much less signal. Kẑ(τ) can then be conveniently calculated as

Kẑ(τ) = 〈σ̂(0)σ̂(τ)〉 = p [σ(0) = −1] 〈σ̂(τ)〉σ(0)=+1 − p [σ(0) = −1] 〈σ̂(τ)〉σ(0)=−1

where p [σ(0) = ±1] is the probability that σ starts from ±1 at the initial time and
〈σ̂(τ)〉σ(0)=±1 is the evolution of the average value of σ̂ conditioned to the initial
state ±1, which can be directly determined by the Lindblad super-operator Lq. For a
TLS undergoing Rabi oscillations at frequency ωR with damping rate ΓR, we obtain
for instance that Kẑ(τ) = e−ΓRτ cos ωRτ. Using the most general formula giving the
analytical solutions for the transient of the Bloch equations calculated by Torrey107,
we obtain after Fourier transform the spectrum:

Sẑ(ω) =
4

[Γ2
‖ + (ω − ω̃R)2][Γ2

‖ + (ω + ω̃R)2]
·
{

Γ‖(1 − z2
st)(Γ

2
‖ + ω̃2

R + ω2)+

+
[

(1 − z2
st)(Γ‖ − Γ⊥)/2 − ω2

Rz2
st/Γ‖

]

(Γ2
‖ + ω̃2

R − ω2)
}

(3.11)
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In this expression Γ‖ and Γ⊥ are the transverse and longitudinal relaxation respectively

(discussed below), ω̃R =
√

ω2
R − 1/4(Γ‖ − Γ⊥)2 and zst = −(1 + Γ−1

1 Γ−1
2 ω2

R)
−1 is the

steady state solution.

3.4.2 Implementing a continuous measurement

3.4.2.1 Noise power spectrum measurement setup

We now describe our experimental implementation of a CW measurement. The
microwave sources: Vd, which drives the TLS and Vm, which measures its state,
are continuously turned on. The TLS state is thus continuously precessing in the
azimuthal plane of the Bloch sphere and, at the same time, the measurement is
continuously extracting information on its state and dephasing the oscillations.
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Figure 3.18: (a) Comparison of the noise spectrum obtained by a 25 MHz tone directly to the

acquisition board and performing an FFT, and the one obtained in a spectrum analyzer. The

amplitudes are slightly different due to calibration issues (.22 dB difference in the peaks) and the

different bandwidths of the two devices (different slopes of the noise background). (b) Noise spectra

acquired when Vd and Vm are both turned off (SOFF(ω), maroon curve) and both turned on (SON(ω),

red curve). Here ωR/2π = 10 MHz and n̄ = 1. The difference between ON and OFF shows a peak

at the Rabi frequency. (c) Pulse sequence used to subtract the amplifier noise. Both microwave sources

Vd and Vm are switched ON and OFF during TON = TOFF = 2.5 ms. Both quadratures are sampled,

their Fast Fourier Transform calculated, squared and summed to compute the power spectra SON and

SOFF. Dashed rectangles show the TSS = 5 µs waiting times for establishing the system steady state.
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In order to measure a noise spectrum, the signals ID and QD are sampled with
a period tS = 10 ns, which allows to recover the spectrum from DC to 50 MHz111.
To avoid aliasing, a low-pass filter with cut-off at 50 MHz is used before sampling.
Each set of 1024 data points form a bin X[n] = XD(n tS) (where X = I, Q) that
undergoes a discrete Fourier transform, yielding X(ω), with a frequency resolution
∆ω/2π = 50/512 MHz, sufficient for the features we are interested in. The Fourier
transform is performed using FFTW112. The noise spectrum SX(ω) is then obtained
by averaging |X(ω)|2 over a large number of successive experimental sequences
(typically 106).

We first verified that the noise spectrum obtained with the acquisition board and
our implementation of the FFT was equivalent to the one acquired on a spectrum
analyzer. For that we measured the same signal, consisting of a demodulated carrier
frequency used as marker on top of the cryogenic amplifier noise, with the acquisition
card and with the spectrum analyzer. As shown in Fig. 3.18a, we found an equal
marker power with both setups. The difference in noise power observed in Fig. 3.18

comes from a difference in bandwidth; the noise equivalent powers measured in both
setups are in fact equal to less than 0.5 dB.

A first test of this measuring procedure is shown in Fig. 3.18b. A noise spectrum is
first acquired with the drive and measuring sources Vd and Vm both OFF, yielding
the noise spectrum of the amplifier. Then, both sources are turned ON and a single
peak appears at the Rabi frequency known from ensemble-averaged measurements
performed with the same Vd. This Rabi peak is the signature of a steady-state
Rabi oscillation –the initial transient of which is observed in the ensemble-averaged
measurements performed above.

3.4.2.2 Corrections applied to the raw spectrum

We present here the data treatment applied to the raw spectra to convert them into
dimensionless spin units.

Amplifier noise subtraction

Since the noise from the amplifier is very large compared to this Rabi peak, it is
important to accurately subtract it. For this purpose, the use a “lock-in” technique
adapted for noise measurements. Each noise spectrum acquisition consists, as shown
in Fig. 3.18c, in alternate periods of duration 2.5 ms. During the first one the spectrum
SX,ON(ω) is acquired with both sources Vd and Vm on, whereas during the second
period the same spectrum is measured with both sources off yielding simply the
amplifier noise SX,OFF(ω). The duration of 2.5 ms is short enough that all the setup
drifts (in gain, power, ...) should be identical over two consecutive sequences and
therefore cancel out. However this duration is long enough compared to all relevant
timescales in our experiment so that the TLS is always measured in its steady-state
despite the modulation. Moreover, we took care to throw away the data measured in
a time window of 5 µs windows around each transition between two periods. The
spectra are acquired over a typical 20 minutes total duration.
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Figure 3.19: (a) The output line of the experimental setup is divided in two sections for analyzing its

frequency response. Inset: example of the fit of the temperature dependence of the output spectra for

ω/2π = 17.57 MHz. (b) Frequency response R(ω) of the measuring line, including the amplification

and demodulation chain. The error bar represent a constant maximum relative error.
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The spectrum obtained after this first correction is

S(ω) = (SI,ON(ω)− SI,OFF(ω)) +

+
(
SQ,ON(ω)− SQ,OFF(ω)

)
.

Setup frequency response

Our spectra extend over a bandwidth of ±30 MHz around a carrier frequency of
5.8 GHz. All the lines, microwave components, amplifiers, and demodulators used
in this experiment have a nominal bandwidth much broader than that and should
thus in principle have a flat frequency response. It is nevertheless desirable to correct
as well as possible for the possible measurement setup slight residual frequency
dependence R(ω) in order to obtain the best precision on the final spectra. This is
particularly important for the test of the Leggett-Garg inequality that is discussed
below.

Measuring this frequency dependence is rather difficult since we are only interested
in the output line of our setup that links the sample to the acquisition card whose
frequency response we want to measure at a few percent level. Our idea consists
in using “in-situ” white noise sources to illuminate the output line; the frequency
dependence of the resulting spectrum will therefore reflect the one of the output
line. We have used two such noise sources : one is the cryogenic amplifier, another
is the thermal noise coming out of the sample that can be heated up at a non-zero
temperature.

For this purpose the measuring line is regarded as two sections in series (Fig.
3.19a): section 1 between the resonator and the cryogenic amplifier with frequency
response R1(ω), and section 2 above the cryogenic amplifier input with frequency
response R2(ω) (including the amplifier gain G(ω)). The full line has a response
R(ω) = R1(ω)R2(ω) that is to be determined. All the responses are normalized to 1
at zero frequency. When the bottom of section 1 is at 20 mK, the noise spectrum of
the cryogenic amplifier dominates the noise seen from the measurement line output
SOFF(ω) = cR2(ω)kBTN(ω) where c is a dimensionless constant, making impossible
to calibrate R1(ω).

For determining R1(ω) a complementary set of measurements was performed: the
noise spectrum SOFF(ω, T) was acquired for several temperatures T of the bottom
part of section 1 between 20 mK and 1 K. This new measurement yields

SOFF(ω, T) = cR2(ω)

[

kBTN(ω) +
h̄ω

2
R1(ω) coth

(
h̄ω

2kBT

)]

= kBa(ω) + b(ω)
h̄ω

2
coth

(
h̄ω

2kBT

)

The fits of SOFF(ω, T) for each frequency ω (an example of fit is shown in Fig. 3.19a)
yields R1(ω)/TN(ω) = b(ω)/a(ω). Multiplying this quantity by SOFF(ω) yields
precisely R(ω) as shown in Fig. 3.19b (even the frequency dependence of the amplifier
noise temperature cancels out). As expected, the total frequency dependence of the
setup is less than 10% over our detection window. We now analyze the uncertainties
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associated with this analysis: although the error in measuring R2(ω)TN(ω) is less
than 0.3%, the error on R1(ω)/TN(ω) is larger: it is due to the imperfection of the
fits and to variations of the helium level in the cryostat. This absolute error increases
from 0 at ω = 0 to 1.4% at ω = 2π × 30 MHz. As an upper bound, we take a constant
relative error of ±1.5% over the whole 30 MHz range as shown in Fig. 3.19b.

After this second correction, we obtain a spectrum

SV(ω) =
S(ω)

R(ω)
.

Calibration of the detector sensitivity
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Figure 3.20: Calibration of the conversion factor ∆V/2 between

output demodulated voltage and spin units. A measurement

pulse Vm is applied with an amplitude corresponding to n̄ = 0.78.

After about one µs, a saturating pulse is applied at ωge during

about 2 µs. The V2(t) signal is measured and averaged over a few

105 identical sequences. Starting from a thermal mixture of 98%

g and 2% e, the TLS undergoes Rabi oscillations at about 20 MHz

before it reaches its steady state with 50% g and e population.

The steady-state output yield ∆V .

According to the predictions for
the correlation function 3.10, the
conversion factor ∆V(n)/2 be-
tween the demodulated output sig-
nals in Volts and spin units is
given by [∆V(n)]2 = [∆I(n)]2 +
[∆Q(n)]2, with ∆X(n) the change
in quadrature X when the TLS
state changes from |g〉 to |e〉. This
definition has the great advantage
of being insensitive to any drift
or jitter of the relative microwave
phase between the measurement
source Vm and the local oscillator
used for the demodulation. Since
(∆V(n)/2)2 is the normalization
factor used to rescale the spectra,
it is particularly important to de-
termine it with the best possible
precision.

Although it could be calcu-
lated from several independently
measured parameters, we found
more accurate to calibrate it
by direct measurement: we
thus ensemble average V2(t) =
[ION(t) − IOFF(t)]

2 + [QON(t) −
QOFF(t)]

2 under saturation of the
g → e transition (see Fig. 3.20).
In this experiment, Vm is always ON and only Vd is switched ON and OFF, and
ωR/2π = 20 MHz so that p(e)st = 0.499 ± 0.001; V2(t) varies from ǫ = 4E

[
ξ2

0

]
(with

E
[
ξ2

0

]
the variance of the noise on each X up to v2 + ε with v = [p(e)st − p(e)0]∆V

when saturation is reached. From Fig. 3.20, we obtain (∆V)2 = 10.29 ± 0.64 mV2 for
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n = 0.78.
Instead of performing a measurement as accurate for each value of n, we have

used ∆V(n) = ∆V(0.78)
√

n/0.78 at low n̄ according to 3.2. For n̄ > 3, we also take
into account corrections to the dispersive approximation, which is valid only for
n̄ ≪ ncrit = 3110 in our case. Using a model similar to that of Gambetta et al.23, we
keep the form of the dispersive Hamiltonian unchanged but use a modified dispersive
constant χ(n̄) = χ(0) (1 − λn̄) yielding a modified conversion factor ∆V(n̄) (1 − λn̄).
We determine λ = 7 · 10−3 both experimentally and theoretically. Note that this
correction gives noticeable effect only for n̄ = 15, and only a negligible correction for
the data discussed now.

This third correction yields a spectrum rescaled to dimensionless spin units

S̃z(ω) =
SV(ω)

(∆V(n̄)/2)2 .

We finally note that our measurements of the detector power spectrum are equiv-
alent, via Fourier transform, to measurements of the two-time correlation function
of the detector output as already explained. Other methods have been employed
more recently to obtain this correlation function113. Bozyigit et al.114 have measured
the two-time amplitude correlation function of a single-photon emitted by a qubit,
using two separate cryogenic amplifiers and an on-chip splitting of the field. Using
numerical data analysis based on FPGAs, the same authors have also managed to ob-
serve intensity correlations manifested by anti-bunching in the case of a single-photon
source.

3.4.3 Comparison with theoretical predictions

The four panels of Fig. 3.21 show the system output spectra S̃z(ω) for different
measurement strengths Vm. Inside each panel four spectra corresponding to values of
Vd yielding ωR/2π = 2.5, 5, 10, 20 MHz are shown.

Before comparing them to the theoretical predictions Eq. 3.11, we note that the
demonstration explicitly assumed a detector with infinite bandwidth. Despite the
resonator was designed with a low Q, the finite bandwidth has sizeable effects on
the spectra measured for Rabi frequencies of 10 and 20 MHz, as discussed in 3.3.3.
To our knowledge there are no derivations of analytical expressions taking into
account these effects, but they can be included in a phenomenological approach. This
phenomenological approach involves two modifications:

• the measured signal S̃z is filtered by the resonator Lorentzian response C(ω)
with frequency cutoff κ (dash-dot line in the first panel of Fig. 3.21). To include
this cutoff in the theoretical prediction we replace Eq. 3.11 by

S̃ẑ(ω) = Sẑ(ω)C(ω) =
Sẑ(ω)

1 +
(2ω

κ

)2 .
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• the transverse relaxation rate Γ‖ which should be taken into account is not the
static decoherence rate Γ2, but the driven decoherence rate

Γ‖ = Γ̃2 =
8κχ2n̄

κ2 + (2ωR)
2 + Γ0

ωR

introduced in 2.2.3.5.

The validity of this phenomenological approach was checked by numerical simulations
as explained in 3.4.4.
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Figure 3.21: Continuous monitoring of the TLS driven at different Rabi frequencies (ωR/2π = 2.5,

5, 10 and 20 MHz (from blue to red) and for different measurement strengths (n̄ = 0.23, 1.56, 3.9,

and 15.6). Each power spectrum is acquired in 40 to 80 minutes. The spectra S̃z(ω) are normalized

by correcting them from the frequency response of the measuring line and by converting the output

voltage into units of σz. Thick and thin color lines are respectively the experimental spectra and

those calculated from a theoretical analytical formula using only independently measured parameters

(including χ/2π = 1.8 MHz). Dashed black lines on top of the orange curves in (a,b,c) are Rabi

peaks obtained by numerical simulation with the same parameters. The dotted-dashed black curve in

a is the Lorentzian frequency response of the resonator.

The calculated spectra are shown with thinner color lines in Fig. 3.21. The agreement
between theory and experiment is good for low measurement strengths (n̄ ≤ 5), but
becomes only qualitative at larger n̄, probably due to the breakdown of the dispersive
approximation.
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3.4.4 Numerical simulations

In order to probe the phenomenological treatment of the resonator cut-off in the
theoretical predictions explained above, we performed a numerical simulation of the
full cQED setup for the situation of a TLS performing Rabi oscillations. To solve the
evolution of the density matrix ρ̂(t) we used a quantum optics simulation toolbox for
MatLab115 which allows to solve numerically the master equation (Eq. 2.33):

∂tρ̂ = Lρ̂ = −i
[
ρ̂, Ĥ

]
/h̄ + κD[â]ρ̂ + Γ1D[σ̂−]ρ̂ + 1/2ΓφD[σ̂z]ρ̂

with

Ĥ =1/2h̄
(
ωge − ωd

)
σ̂z + h̄ (ωr − ωm)

(

â† â + 1/2
)

+

+ h̄χ
(

â† â + 1/2
)

σ̂z+

+ Em(â† + â) + Ed (σ̂+ + σ̂−)

the dispersive driven Hamiltonian.
The solution to the master equation is computed in the basis made up of the direct

product of the two TLS states and of the first N Fock states of the resonator. We
checked empirically by repeating the simulations with different N that from N ≥ 10n̄

the solutions converge with good accuracy. We refined also the model by considering
the third level of the transmon.

Simulating the initial transient of Rabi oscillations

A first simulation was performed to confirm the validity of the dephasing rate
dependence in frequency Eq. 3.7. We simulated with the master equation the
ensemble averaged Rabi oscillations dephased by n̄ photons in the resonator, for
various Rabi frequencies ωR, with χ/2π = 1.8 MHz.

To simulate the transient Rabi oscillations the two sources Ed and Em are turned on
at the beginning of the simulation and the density matrix ρ(t) is used to find 〈σ̂z(t)〉.
The dephasing, which is fitted from the simulated oscillations (dark blue squares in
Fig. 3.15b) is clearly cut-off by the resonator response as observed in the experiment,
which confirms the prediction of Eq. 3.7.

Simulating the spectrum of a continuous measurement

To check if the theoretical expression Eq. 3.11 is indeed modified by a phenomenologi-
cal cut-off S̃ẑ(ω) = Sẑ(ω)C(ω), we simulate numerically the continuous measurement
of the Rabi oscillations. To obtain S̃ẑ(ω), we calculate the noise spectrum at the res-
onator output

Sout(ω) = F
(〈

: Îout(t + τ) Îout(t) :
〉
+
〈
: Q̂out(t + τ)Q̂out(t) :

〉)
=

= κF
(

Re
(〈

â†(t + τ)â(t)
〉

−
〈

â†(t + τ)
〉

〈â(t)〉
))
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Figure 3.22: Comparison between the analytical spectra S̃ẑ (solid lines) and numerical simulations

using the master equation as explained in the text (dashed black lines), for n̄ = 0.23 and 3.9, and

ωR/2π = 2.5, 5, 10, 20 MHz. The agreement is excellent.

Although the density matrix ρ̂ does not directly allow to find the correlation
functions, these can be computed from the quantum regression theorem62,65

〈
Â(t + τ)B̂(t)

〉
= Tr

[
Â exp (Lτ) B̂ρ̂(t)

]
.

Therefore, from a computational point of view, the correlation function
〈

â†(t + τ)â(t)
〉

is found by calculating the average of â†(τ) using as initial condition a matrix âρ̂(t).
The results are shown in Fig. 3.22. The conversion into spin units was done as in

the experiment, by calculating the output signal at saturation δV of a continuously
monitored Rabi oscillation. The agreement with the analytical formula is excellent for
all calculated curves.

Unfortunately it was not possible to simulate the strong measurement limit, since
the toolbox used for our simulations does not implement any memory optimization
code, and the 2GB of RAM present in the simulating computer were saturated when
trying to simulate in Hilbert spaces containing more than 10n̄ = 60 Fock states×3
transmon levels.

Going beyond the dispersive approximation

It would be of great interest to simulate the noise spectra with the full Hamiltonian of
the system –without the dispersive approximation– to clear up if the discrepancies
which appear between the predictions and the experiment for n̄ ≥ 5 are due to
the breakdown of the dispersive approximation when n̄ is a substantial fraction of
ncrit = 31. However, as explained above, the design of the toolbox imposes some
memory limitations, and, in addition, artefacts due to the high amplitude of qubit
driving terms prevented us to get accurate simulations for these situations.
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3.4.5 From weak to strong measurement crossover: quantum trajectories

When we acquire a series of spectra keeping a constant drive Vd and progressively
increasing the measurement strength Vm, we obtain the curves shown in Fig. 3.23.
For weak measurements we observe a Lorentzian peak at the Rabi frequency ωR

known from ensemble-averaged Rabi oscillations. The width of this peak corresponds
to the total dephasing, some part of which comes from the measurement itself.
When increasing the measurement strength this peak decreases and is progressively
broadened by the increased measurement-induced dephasing. At the same time a
Lorentzian at zero frequency starts to grow. Such a spectrum is the signature of
telegraphic noise.
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Figure 3.23: Crossover from weak to strong mea-

surement

To gain further insight on the physical mean-
ing of these spectra, it is convenient to analyze
the behaviour of the system in the quantum
trajectories framework. In this framework, as
explained in 2.3.3.3, the detector signal can be
written explicitly:

X̃D(t) =
√

κη
〈
2X̂ cos Θ ± 2Ŷ sin Θ

〉

t
+ ξ̃X(t) ,

where X = I, Q and ξ̃X(t) is a realization of
a random process with white noise spectrum
〈
ξ̃X(t + τ) ξ̃X(t)

〉
= δ(τ) which describes the

randomness of the measurement.
The stochastic master equation (SME) which

describes the evolution of the TLS alone (Eq.
3.1) is analog to the one of a quantum dot
coupled to a quantum point contact calculated
by Korotkov and Averin24. The evolution of

the diagonal elements of the density matrix conditioned to the measurement record
{XD(t

′)}t′<t is:

ρ̇gg(t) = −ρ̇ee(t) =−ωR Im
[
ρge(t)

]

︸ ︷︷ ︸

Rabi

+ Γ1ρee(t)
︸ ︷︷ ︸

relaxation

+ (3.12)

+
√

κηD2 cos
(
Θ − arg(αe − αg)

)
2ρgg(t)ρee(t)ξ̃X(t)

︸ ︷︷ ︸

measurement

The first two terms of this equation, which are the only ones present in the absence
of measurement, correspond to the TLS drive inducing the Rabi oscillations and the
TLS relaxation. The third term corresponds to the change of the expectation of the |g〉
and |e〉 states due to the acquisition of information, that is, the projection of the TLS
state along the z axis of the Bloch sphere. This projection is proportional to the state
distinguishability D2 and is stochastic due to the noise ξ̃X(t) which is present in the
measured signal.

The coherences evolve in a slightly more complicated way:
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ρ̇ge(t) =− iωaρge(t)
︸ ︷︷ ︸

free precession

+ i/2ωR

[
ρgg(t)− ρee(t)

]

︸ ︷︷ ︸

Rabi

−
(

Γ2 + Γ
ph
φ

)

ρge(t)
︸ ︷︷ ︸

decoherence

−

−√
κηD2 cos

(
Θ − arg(αe − αg)

) [
ρgg(t)− ρee(t)

]
ρge(t) ξ̃X(t)

︸ ︷︷ ︸

measurement

− (3.13)

− i
√

κηD2 sin
(
Θ − arg(αe − αg)

)
ρge(t) ξ̃X(t)

︸ ︷︷ ︸

related to n(t)

a

xσ
yσ y

zσ b

t (ȝs)

Figure 3.24: Time evolution of the expectation values of

σx(red), σy(green) and σz(blue) along a quantum trajectory

as simulated by Gambetta et al.23. The Rabi frequency is in

both cases ωR = 2.5 MHz. (a) corresponds to a weak measure-

ment with Γ
ph
φ = 0.9 MHz while (b) is a strong measurement

Γ
ph
φ = 20 MHz.

The first line corresponds to the
evolution of the coherences indepen-
dently of the measurement record: a
rotation at the effective TLS transition
frequency ωa in the laboratory frame,
the coherent Rabi oscillations induced
by the TLS drive, and the free deco-
herence with rate Γ2 plus a term due
to the measurement-induced dephas-
ing2. The second line is very similar to
the second term in Eq. 3.12 and also
corresponds to the projection of the
TLS along the z axis due to the mea-
surement. The third line corresponds
to the projection along an orthogo-
nal x axis, which brings no informa-
tion about the state of the system but
measures the TLS AC-Stark shift, that
is, the number n̄ of photons stored
in the resonator. We see that when
all the information on the TLS state
is along one quadrature (for instance
arg(αe − αg) = 0), the other quadra-
ture (for instance arg(αe − αg) = π/2)
only brings information about those
fluctuations.

The quantum trajectories are obtained as solutions of the SME (Eq. 3.12 and 3.13)
for a certain realization of noise. Their shape depend very much on the ratio between
the measurement strength D2 ∝ Γ

ph
φ and the Rabi frequency ωR. Indeed, as expected

from the terms in the SME above, the system is subject to two competing phenomena:
the drive tends to create superpositions of the two eigenstates, while the measurement
tends to project the state to one of them. This crossover has been extensively studied

2Note that formally this term should be written F−1
[

Γ2 + Γ
ph
φ (ω)

]

⋆ ρge(t). When writing it as

a product, Γ
ph
φ (ω) is the decoherence rate for the most relevant frequency: ωR for good Rabi

oscillations.
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with numerical simulations of the trajectories by Gambetta et al.23 In Fig. 3.24 two
trajectories corresponding to the limiting cases are shown.

When the measurement is weak enough (Fig. 3.24a) the dynamics of the system is
mainly controlled by the oscillatory terms of the SME. Then the dominant behaviour
are the coherent oscillations of the system state, which are only slightly perturbed by
the measurement acting as a diffusive term.

Conversely, in the strong measurement regime (Fig. 3.24b) the measurement terms
in the SME are dominant. As a result the information is quickly extracted from the
system resulting in a rapid projection to the eigenstate of the measured outcome, as
expected from the measurement postulate. Then, since the state cannot escape from
the attractors in the poles of the Bloch sphere, its only way to evolve is by a sudden
quantum jump and the evolution consists in a series of stochastic quantum jumps
between the eigenstates.

It was not possible in our experiment to observe these quantum jumps, because of
the poor signal-to-noise ratio of the state-of-the-art microwave amplifiers. However,
the power spectrum at the detector output (Fig. 3.23) shows an indirect signature of
quantum jumps in the spectral domain: a Lorentzian centered at zero frequency.

3.5 Non-classicality of the circuit: violation of a Bell’s in-
equality in time

The continuous measurements we implemented above provide a way to answer to
a very fundamental question: are the outcomes of the measurements performed on
our system truly random as quantum mechanics predict, or conversely, could they be
explained by a classical model?

A good way to rule out any classical model is to demonstrate the existence of a
genuine quantum property without classical analogue: entanglement, for instance.
The presence of entanglement can be witnessed with the Bell CHSH34 inequalities.
To test them (Fig. 3.25) the TLSs of an entangled pair are brought apart to reach a
space-like separated configuration, and the correlations between the measurements
performed on each side is compared to the maximal value possible for classical
correlations.

However there is a different situation in which the quantum nature of the system
can be tested with a single TLS. In this case the criterion to distinguish between
the classical behaviour and the quantum one is the Leggett-Garg inequality29. This
inequality appeared in the context of the debate about the existence of macroscopic
superpositions of states. It involves the correlations between several measurements
performed at different times on a single TLS (Fig. 3.26), in contrast to Bell’s inequal-
ity, which involves correlations between measurements performed in space-separated

regions. Therefore it is also named in the literature a Bell’s inequality in time. In this
section we report one of the first violations of this inequality with our circuit QED
system demonstrating its quantum nature.
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3.5.1 The CHSH Bell’s inequality

The usual CHSH Bell’s inequality consists in a quantitative criterion to test if a given
system complies with the local-realism hypotheses, that is

1. Locality: two events happening in space-like separated regions cannot have
influence on each other.

2. Realism: the measurement of a certain observable gives access to a preexisting
value whose existence does not depend on the fact of measuring or not.

The simplest situation (Fig. 3.25) in which the quantum predictions contradict the
inequality derived from these hypotheses is the case of a pair of TLS in a maximally
entangled state such as

∣
∣ψ−〉 = (|↑↓〉 − |↓↑〉)/

√
2 .

σA

θ θθ
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b2 b1 σB

A B A B
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Figure 3.25: Experimental test of the CHSH Bell’s inequal-

ity: two maximally entangled spins σA and σB are sent

to two spatially separated observers A and B. Each of the

observers measures with pick-up coils his spin along one

of two possible directions (a1 and a2 for A, and b1 and b2

for B); the four directions make angles θ as depicted. By

repeating this experiment on a statistical ensemble, a lin-

ear combination Σ of the four possible correlators between

measurements on a spin pair is computed. Local realism

requires −2 ≤ Σ ≤ 2, while quantum mechanics predicts

Σ = 2
√

2 for θ = 45°.

Each member of the pair is then dis-
tributed to two observers A and B, who
perform projective measurements of the
TLS spin σA,B

i = ±1 along one of two
directions ai (i = 1, 2) for A and bi for
B, with these directions forming angles
(a1, b1) = (b1, a2) = (a2, b2) ≡ θ, as
shown in Fig. 3.25. The two observers
then combine all their measurements to
compute the Bell sum

Σ(θ) = −K11 + K12 − K22 − K21

of the correlators Kij(θ) = 〈σA
i σB

j 〉. The
Bell’s theorem, based on a simple statis-
tical argument, states that according to
all local realistic theories

−2 ≤ Σ(θ) ≤ 2. (3.14)

However, standard quantum mechan-
ics predicts that this inequality is vio-
lated, with a maximum violation Σ(θ =
π/4) = 2

√
2. Many experimental tests,

those performed by A. Aspect and his
team116 in particular, have verified this
violation.

This inequality has also been tested with superconducting circuits117 and specifically
in the circuit QED setup118. Note that in these experiments, in contrast with Aspect’s
one, it was not possible to reach space-like separation between the TLS. In this case,
the violation of the CHSH inequality should rather be considered as a benchmark of
the possibility of producing entanglement in the system, and not as a fundamental
proof that the system fails to comply with the local-realism hypotheses stated above.
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3.5.2 The Leggett-Garg inequality

In the context of the debate on the existence of quantum superpositions of macroscop-
ically distinct states, Leggett and Garg29 proposed in 1985 an inequality which tests
the hypotheses of macrorealism, slightly different from those of local realism. These
two hypotheses, which seem quite natural for macroscopic classical bodies, are:

1. Macrorealism per se: A macroscopic object, which has available to it two or more
macroscopically distinct states, is at any given time in a definite one of those
states.

2. Noninvasive measurability: It is possible in principle to determine which of these
states the system is in without any effect on the state itself, or on the subsequent
system dynamics.

Now if we consider a two-valued observable evolving in time σ(t) = ±1 and three
successive times t1 < t2 < t3, the first property above allows to define the joint
probability densities ρ (σ(t1), σ(t3)) and ρ (σ(t1), σ(t2), σ(t3)). To be consistent with
one another, they should satisfy

∑
σ(t2)=±1

ρ (σ(t1), σ(t2), σ(t3)) = ρ (σ(t1), σ(t3)) .

V
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Figure 3.26: Experimental test of the Bell’s inequality in

time with weak measurement: a single spin σ undergoing

coherent oscillations at frequency ωR is continuously mea-

sured with a pick-up coil coupled to it so weakly that the time

for a complete projective measurement would be much longer

than the period of oscillations TR = 2π/ωR. From the noisy

time trace recorded in the steady state, one computes a lin-

ear combination fLG of the three time-averaged-correlators

between the readout outcomes at three times separated by τ.

Macrorealism requires fLG ≤ 1 for any τ, while quantum

mechanics predicts fLG = 1.5 at τ = TR/6.

The ensemble-averaged time-correlation
functions

Kij = E
[
σ(ti)σ(tj)

]

should satisfy the inequality

fLG = K12 + K23 − K13 ≥ 1 (3.15)

The second hypothesis stated above
means that the correlators Kij can ac-
tually be measured.

Quantum mechanics does not com-
ply with any of the two hypotheses
stated above. In a large number of sit-
uations it is theoretically possible to
find violations of the above inequal-
ity. The violation in CQED with Ryd-
berg atoms, for instance, is theoretically
analyzed by Huelga et al.31,119. Actu-
ally, Kofler and Brukner120 have demon-
strated that it can be violated by any
time-independent non-trivial Hamilto-
nian. One of the simplest situations in
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which such violation occurs is the precession of a spin 1/2 at the angular frequency
ωR. In this situation the correlators above are

Kij = E
[
σ(ti)σ(tj)

]
= pi=1

(

p
(i=1)
j=1 − p

(i=1)
j=−1

)

+ pi=−1

(

p
(i=−1)
j=−1 − p

(i=−1)
j=1

)

=

= cos
(
2ωR(tj − ti)

)

where pi=±1 = 1/2 stands for the probability of measuring σ(ti) = ±1 and p
(i=x)
j=y is

the conditional probability of measuring σ(tj) = y after measuring σ(ti) = x. Then

fLG = K12 +K23 −K13 = cos (2ωR(t2 − t1))+ cos (2ωR(t3 − t2))− cos (2ωR(t3 − t2))





V

Figure 3.27: The RF-SQUID (on the left) consists in a

superconducting loop interrupted by a Josephson junc-

tion. When flux-biased around Φ0/2, the Josephson

potential as a function of the flux (on the right) shows a

double well structure with two stable states correspond-

ing to currents flowing in opposite directions.

which for t2 − t1 = t3 − t2 = π/(6ωR)
yields fLG =

√
3 − 1/2 > 1.

Leggett and Garg proposal consisted in
testing the above inequality in a RF-SQUID
(Fig. 3.27), a superconducting loop inter-
rupted by a Josephson junction. Such a
circuit, when flux-biased around Φ0/2, has
two metastable states, coupled by tunnel-
ing, and corresponding to zero or one flux
quantum trapped in the loop. If the circuit
is initially prepared in one of this states,
it will display coherent oscillations that
would allow to test the Leggett-Garg in-
equality, and to probe if the quantum be-
haviour is maintained when the difference
between the fluxes on the two states be-
comes macroscopic.

3.5.3 A Leggett-Garg inequality adapted for weak continuous measurement

It is difficult to test the Leggett-Garg inequality 3.15 because it requires instantaneous
measurements to characterize the value of σ at a given time. Moreover, the hypothesis
of non-invasibility stated above can be violated not only by the projection which
is inherent to quantum measurements, but also by some trivial clumsiness in the
measurement setup. The suddenness of the measurement makes difficult to prove the
absence of that clumsiness loophole33.

In 2006 Korotkov and coworkers derived another version of the inequality32, which
relies on the same hypotheses but involves a continuous and weak measurement
instead of a fast projective one. They consider the situation of a system characterized
by a physical variable σ(t) with any value such that |σ(t)| ≤ 1. This upper bound
leads to the inequality

σ(t1)σ(t2) + σ(t1)σ(t3)− σ(t1)σ(t3) ≤ 1 (3.16)
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for t1 < t2 < t3. When making a continuous and weak broadband measurement of
σ(t) we collect a noisy signal

V(t) =
∆V

2
σ(t) + ξ(t)

where ∆V/2 is the sensitivity of the detector and ξ(t) a white noise, exactly as in Eq.
2.34. If we average V(t) we can obtain information on σ(t). In particular the time
correlator of V(t) is

KV(τ) = E [V(t)V(t + τ)] =

(
∆V

2

)2

E [σ(t)σ(t + τ)] +
∆V

2
E [ξ(t)σ(t + τ)]

where the correlator E [σ(t)ξ(t + τ)] = 0 trivially since the state of the system does not
anticipate the future noise. Since the measurement is considered to be non-invasive,
no correlation exists between the noise and the future measurements results:

E [ξ(t)σ(t + τ)] = 0 .

Even in the case of a weak continuous measurement in which the detector noise
linearly perturbs the energy of the monitored TLS the correlator above vanishes if
the system undergoes symmetric oscillations. From this, using Eq. 3.16 and calling
τ1 = t2 − t1 and τ2 = t3 − t2 we have the inequality

fLG(τ1, τ2) = KV(τ1) + KV(τ2)− KV(τ1 + τ2) ≤
(

∆V

2

)2

. (3.17)

It is worth noting that this inequality only involves the measurement of a single
time-correlator KV(τ) which is obtained by time-averaging, while in the test of the
original Leggett-Garg inequality, the correlators were ensemble-averaged over three
ensembles, each one prepared and measured in a different way. The test of this
inequality is then more straightforward in the weak measurement case.

Quantum mechanics predicts a violation of the above inequality for the situation of
a TLS continuously and weakly monitored while performing Rabi oscillations at ωR.
Indeed, as shown in 3.4.1, the detector output correlation function is then

KV(τ) =

(
∆V

2

)2

〈σ̂z(t + τ)σ̂z(t)〉 =
(

∆V

2

)2

exp (−ΓRτ) cos (ωRτ) .

Choosing τ1 = τ2 = τ ≪ 1/ΓR we have in the weak coupling regime ΓR ≪ ωR

fLG(τ) =

(
∆V

2

)2 [
1 + 2 cos (ωRt)− 2 cos2 (ωRt)

]

which violates maximally the inequality 3.17 with

fLG

(
π

3ωR

)

=
3
2

(
∆V

2

)2

.
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3.5.4 Experimental test

3.5.4.1 Data acquisition

In order to the test inequality 3.17, we measure a Rabi peak at ωR/2π = 10.6 MHz
with n = 0.78 photons and a 30 MHz detection window averaged over 13 hours.
To compare it to theoretical predictions and test the Leggett-Garg inequality, this
spectrum is corrected as explained above by subtracting the amplifier noise, correcting
for the setup frequency response R(ω), and dividing by the detector sensitivity
(∆V/2)2, yielding the spectrum S̃z(ω) shown in Fig. 3.28. We note that the spectrum
was taken at exactly the same measurement power as the accurate measurement of
∆V reported above and in the same conditions, so that the imprecision on the exact
value of n does not play any role. In order to verify that this calibration did not
drift, we measured ∆V immediately before and immediately after the acquisition
of the spectrum. The first measurement yields (∆V)2 = 10.29 ± 0.64 mV2 and the
second (∆V)2 = 10.59 ± 0.64 mV2. We thus take (∆V/2)2 = 2.61 ± 0.16 mV2 for the
conversion factor.

We defer the full discussion of the experimental uncertainties to 3.5.4.3, and will
now use these data to test the Leggett-Garg inequality.
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Figure 3.28: Experimental violation of the “Bell’s inequality in time”. (A) experimental (red) and

theoretical (blue) spectral densities Sz, calculated or measured at ω/2π = 10.6 MHz and n̄ = 0.78.

The experimental curve is obtained by correcting the raw S̃z spectrum (black line) , acquired in 13

hours with a 30 MHz bandwidth, from the frequency response of the resonator. The blue curve is

calculated with independently measured Γ−1
1 = 200 ns and Γ−1

2 = 150 ns. (B) experimental (dots)

and theoretical (blue line) Leggett-Garg quantity fLG(τ) = 2K(τ)− K(2τ), with K(τ) the signal

auto-correlation function obtained by inverse Fourier transform of the Sz curves in the left panel.

Green error bars correspond to the maximum systematic error associated with calibration and C(ω),

whereas red ones also include a two standard deviation wide statistical error ±2σ(τ) associated with

the experimental noise on S̃z. The Leggett-Garg inequality is violated (yellow region) at τ = 17 ns

(see green arrow) by 5σ.
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3.5.4.2 Violation of the Leggett-Garg inequality

Under macrorealistic assumptions, the only effect of the bandwidth of the resonator
would be to reduce the measured signal by its Lorentzian response function C(ω) =
1/[1 + (2ω/κ)2]; we thus correct the acquired spectrum by dividing the measured
spectral density S̃z(ω) by C(ω), yielding Sz(ω) the red curve in Fig. 3.28. The
experimental and theoretical Rabi peaks show good overall agreement despite residual
low-frequency noise discussed in Section 3.6. The corresponding time-correlators
K(τ) are found by Fourier transforming these spectrum. The Leggett-Garg quantity
fLG(τ) = 2K(τ)− K(2τ) is then calculated and plotted on the right of Fig. 3.28.

We first note that K(0) = fLG(0) = 1.01± 0.15, a value close to 1 that directly results
from the independent calibration of ∆V. Since K(0) represents the variance of σz(t)
and |σz(t)| ≤ 1, this confirms that at any time σz(t) = ±1 as expected for a quantum
TLS. This is in strong contrast with the case of a classical macro-spin as the one
shown in Fig. 3.26, which takes all the intermediate values during its transition from
z = −1 to z = +1, and would have given a variance K(0) = cos2(ωRt) = 1/2. This
variance K(0), therefore, brings substantial information on the nature of the system,
allowing to distinguish the case of a macro-spin to the one of a genuine quantum spin.
Conversely, ensemble-averaged Rabi oscillations such as those of Fig. 3.14 are the
same for both a quantum spin and a macro-spin and therefore provide no criterion
to distinguish both. This demonstrates the specific interest of correlation-function
measurements compared to time-domain ensemble averaged signals.

Most importantly, we observe that fLG(τ) goes above the classical limit of 1, reaching
1.44(±0.12) ± 2 × (σ = 0.065) at τ = 17 ns∼ π/3ωR and thus violating inequality
3.17 by 5 standard deviations. This maximum of fLG, slightly below the ideal value
of 1.5 in absence of decoherence, is a direct signature of the invasive character of the
measurement process, which projects partially but continuously the TLS towards the
state corresponding to the detector output. It is the interplay between this continuous
projection and the coherent dynamics that yields the violation of the inequality. More
quantitatively, the maximum of fLG is in agreement with the quantum prediction of
1.36 when taking into account the independently measured relaxation and dephasing
rates of the TLS. This violation of the Leggett-Garg inequality rules out a simple
interpretation of K(τ) as the correlation function of a classical macro-spin. It therefore
brings further evidence that a collective degree of freedom characterizing a Josephson
circuit behaves quantum-mechanically. It also demonstrates that the back-action of
a weak measurement, far from being only a noise that spoils quantum coherence
as could be deduced from ensemble averaged measurements, also reinforces the
correlations between measurements made at different times.

It is interesting to discuss in what respect the assumptions made in analysing the
experimental data influence the final result: apart from simple corrections relying
on classical electromagnetism, we determine the main normalization factor ∆V by
saturating the TLS transition and assuming that the ensemble averaged spin, either
classical or quantum, obeys Bloch equations. We checked this assumption in Fig. 3.14

which shows in particular that the excursion of the signal when driving the spin is
symmetric around the saturation value, as it would be for classical macro-spins. The
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observed violation is thus not an artifact of our analysis framework, and represents
more than a mere self-consistency check of a quantum model.

3.5.4.3 Experimental uncertainties in the determination of fLG(τ)

As mentioned in the text, the experimental points fLG(τ) = 2K(τ)− K(2τ) of Fig.
3.28 are obtained from the inverse Fourier transform K(τ) of Sz(ω) = S̃z(ω)/C(ω)
with

S̃z(ω) =
SON(ω)− SOFF(ω)

R(ω)(∆V/2)2

with R(0) = C(0) = 1 and δV/2 being measured at zero frequency.
The systematic error bars on fLG(τ) (in green in Fig. 3.28) result from the sum of

the three maximum relative uncertainties:

• The uncertainty on the setup frequency response (see 3.4.2.1):∆R/R = ±1.5%

• The uncertainty on the detector sensitivity (see 3.4.2.2): ∆(∆V/2)2/(∆V/2)2 =
±6.1%

• The uncertainty on the resonator bandwidth (see 3.2.3): ∆C/C = 2(∆κ/κ)/[1 +
(κ/2ω)2] with ∆κ/κ = ±2.6%.

Note that the frequency dependent error ∆C/C is propagated exactly through the
calculation of fLG(τ) and contributes to ∆ fLG/ fLG by ±0.8% where inequation 3.17 is
violated. The total systematic error at that point is thus ±8.4%.

The statistical standard deviation on each fLG(τ) data point is computed by propa-
gating the statistical error on the measured Rabi spectrum through three steps

1. the division by the cavity filtering C(ω)

2. the definition of the inverse Fourier transform

3. the difference 2K(τ)− K(2τ)

Each point k = 1 to N of the Sz(ω) spectrum with bin size ∆ f = 100 kHz has
a constant standard deviation σ0 measured in the 22 − 30 MHz region where the
spectral density is zero. Consequently, the standard deviation on each point k of the
corrected spectrum is σk = σ0/C[2π∆ f (k − 1)]. Finally, the standard deviation σr on
each point r of fLG[τ = (r − 1)/(N∆ f )] is

σr = ∆ f

√
√
√
√σ2

k=1 + 4
N/2

∑
k=2

σ2
k

[

2 cos
2π(r − 1)(k − 1)

N
− cos

2π2(r − 1)(k − 1)
N

]2

.

A conventional 2σr statistical contribution is added to the systematic error to form the
total red error bars of Fig. 3.28. At the second point τ = 17 ns where inequation 3.17

is violated, the standard deviation s ≡ σ2 = 0.065, and the bottom of the systematic
error bar is 4.9 s above 1.
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3.5.5 Interpretation of the violation of the Leggett-Garg inequality

3.5.5.1 Macroscopic quantum superpositions states

The Leggett-Garg inequality was introduced with the aim of distinguishing between
classical macroscopic states and macroscopic quantum coherent states (MQCS), that
is, coherent superpositions of macroscopically-distinct states, often called Schrödinger
cats. Is our violation of the Leggett-Garg inequality a proof of the existence of the
existence of such MQCS?

The question is not to know if a superposition state has been observed, which is
demonstrated by the violation, but is about the degree of macroscopicity of the TLS |g〉
and |e〉 states whose superpositions are observed. These states are the states of a
macroscopic circuit, but are they macroscopic states, or is their difference so small
that they are essentially microscopic states that trivially obey quantum laws?

Leggett121,30 proposes to quantify the degree of macroscopicity or the macroscopic

distinctness of a physical variable, using two numbers, both of them being much larger
than one in truly macroscopic objects:

• The extensive difference L is the difference on the variable expectation value
between the two states. This difference should be expressed in some reference
units relevant at the atomic scale. For instance, two states which show some
difference in charge δq have an extensive difference L = δq/e which is expressed
in terms of the electron charge e.

• The disconnectivity D is a measure of the degree of entanglement of the state.
When the characterization of a state involves up to M-particle correlations, its
disconnectivity is D = M. This quantity is defined as an attempt to distinguish
a pure MQCS involving N particles, which has a form a |α〉N + b |β〉N from the
typical states found in macroscopic quantum phenomena which are of the form
(a |α〉+ b |β〉)N. Since these latter states can be factorized, their behaviour can
be explained by introducing only single and two-particle correlation functions
and in this case D = 2. In contrast with this, for the former states, N-particle
correlations have to be introduced and thus D = N.

As an example, in Cavity QED, a superposition of two coherent states with complex
amplitudes α and β can be built in the cavity:

|ψ〉 = a |α〉+ b |β〉

In this case the extensive difference is typically L = |α|2 − |β|2 in units of photons
–typically up to 5-10 photons. On the other hand, the field is not substantially
entangled with the electrons in the mirrors –otherwise, the decoherence time would
be extremely short– and then it is of the same order of magnitude D ∼ L ∼ 10. The
state is therefore far from being macroscopic.

In the case of an RF-SQUID (Fig. 3.27) which was considered in the Leggett and
Garg paper29, a simple analysis30 suggests that the states are much more macroscopic.
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Indeed the extensive difference can be taken in terms of the magnetic moment over
the flux quantum Φ0 which has a difference of typically L = 106–1010 between the
right and left wells depending on the sample parameters. The disconnectivity is of
the same order than the number of Cooper pairs which are different in the states
corresponding to the right and left wells. This number can be evaluated with the
difference of current between the two states, which is of the order of the magnetic
moment divided by h̄, and leads to D ∼ L. This analysis, however, may be too naive:
a precise calculation by Korsbakken et al.122 of the number of electrons whose state
change between the left and right branches results in a number of the order of 100,
which is far from being macroscopic. The subtlety is that the variation in the current
does not result from a large number of electrons which moment changes slightly, but
rather from a few ones which undergo a large variation of moment ∆p ∼ 2kF as a
consequence of the exclusion principle.

In the case of a transmon TLS, no exact calculation of D and L exist to our knowledge.
The difference in flux between the first two energy eigenstates of the transmon at
Φ = 1/4Φ0 is:

∆Φ = L
∂E01

∂Φ
= 4.2 × 10−22 Wb

The extensive difference expressed in units of the flux quantum is therefore very
small:

L =
∆Φ

Φ0
≃ 2 × 10−7

As analyzed by Leggett121 the disconnectivity of a CPB is D = 2 because the CPB
topology allows to describe the Josephson effect with two-electrons wave functions
localized either in one side or the other of the junction. Therefore, according to the
two Leggett criteria, our experiment does not involve superpositions of macroscopic

states but rather superpositions of microscopically-distinct states of a macroscopic body. To
summarize, what can be said to be macroscopic in our experiment?

• the size of the artificial atom circuit, the transmon, is macroscopic.

• according to the calculations performed above, the difference between the two
circuit states is on the microscopic scale.

• however the typical dipole matrix element between the two states is almost
macroscopic (∼ 104e a0).

3.5.5.2 Determinism

It is interesting to note that, whereas macro-realism is historically the framework in
which the Leggett-Garg inequality (Eq. 3.15) was derived, a more general framework
based on determinism yields the same result, as noticed by Zela38.

To be more specific we consider a dichotomic variable σ(t) = ±1 describing some
physical property, and the situation sketched in Fig. 3.29, where this variable is
measured several successive times. For instance, σ may be a magnetic moment
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measured in successive Stern-Gerlach apparatuses, each analyzing the moment along
an angle θi. The analysis of Zela is based on two hypotheses:

• Determinism: the evolution of the variable is governed by an equation of motion
at all times, so that its evolution results from some initial conditions noted λ.

• Non-contextuality: the value σi measured in a measurement apparatus i does not
depend on the full arrangement of all the measurement apparatuses. That is, the
particle does not know which are the measurements that will be performed on
it during the whole experimental sequence. However, the value σi can depend
on the setup of the former measurement apparatuses θj<i, which may have
introduced some back-action when measuring.

With these two hypotheses the value σi measured in a measurement apparatus i at
time t can be written as a function σ(λ, θi, θj<i, t) which is only dependent of

• the initial conditions λ.

• the setup of the former measurement apparatuses θj<i (which includes the times
tj<i at which they were performed).

• the setup of the measurement apparatus θi.

• the time tj<i at which the measurement is performed.

Since the setup of former measurement apparatus enters in this function, invasive
detectors can be described in this formalism, unlike in the original Leggett-Garg
inequality.

λ
θ1 θ2 θ3

t

σ1 σ2 σ3

Figure 3.29: Sketch of the successive measurements in

Zela’s model38.

The deduction of the inequality is
straightforward. The two-time correlator of
σ is

K(ti, tj) = E
[
σ(ti)σ(tj)

]

=
∫

P(λ)σ(ti, λ, θk≤i)σ(tj, λ, θl≤j)dλ

where the initial conditions have been
supposed to follow a classical distribu-
tion of probability P(λ). Now, since σ is
dichotomic, two measurements can only
yield four possible outcomes, and thus we
can decompose K(ti, tj) as:

K(ti, tj) =
[
C−1,−1(ti, tj) + C1,1(ti, tj)

]
−
[
C1,−1(ti, tj) + C−1,1(ti, tj)

]

where Cr,s(tj, tk) is the joint probability of measuring r at ti and s at tj.
Now when three successive measurements are performed at times t1 ≤ t2 ≤ t3, the

joint probability of getting the outcomes r1, r2 and r3 is:

Cr1,r2,r3(t1, t2, t3) =
∫

P(λ) σ(t1, λ, θ1) σ(t2, λ, θ1, θ2) σ(t3, λ, θ1, θ2, θ3)dλ .
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Using the relations Cr1,r3(t1, t3) = Cr1,−1,r3(t1, t2, t3)+Cr1,1,r3(t1, t2, t3) and Cri,ri
(ti, ti) =

1 and rearranging the terms yields31

K(t1, t2) + K(t2, t3)− K(t1, t3) ≤ 1

which happens to be the Leggett-Garg inequality.
Now to get more insight on the physical meaning of the inequality, it worths making

a comparison between these new hypotheses and the ones of the original Leggett-
Garg inequality. A noticeable difference concerns the back-action of the measurement
apparatus. One of the original hypotheses is the absence of back-action, whereas
with the new hypotheses the measurement can apply some back-action as far as
this back-action introduces only a deterministic perturbation of the evolution, which
can be treated as an additional initial condition. This suggests that the violation of
the Leggett-Garg inequality 3.15 by quantum systems is not a consequence of the
dichotomic character of σ, nor of projection of the state, but rather of the stochastic
choice of the measured outcome, which results in a stochastic back-action of the
measurement apparatus.

A further work by Lapiedra37 reduces the two above hypotheses to the sole de-
terminism, understood as the existence of a continuous trajectory σi(t) for each system

observable σi, even when they are being measured. In this sense, the violation of the
Leggett-Garg inequality would constitute a proof of the non-determinism, ruling out
all strictly deterministic hidden-variable models.

We stress however that these two developments lead to the original Leggett-Garg
inequalities and not to the weak-measurement version (Eq. 3.17) which was violated
in our experiment, and no direct way is known for obtaining the latter from the
former. However in this case also a classical back-action which mimics the quantum
one, for instance two attractors situated along the z axis to reproduce the projection
associated to the measurement of σz, create a telegraphic trajectory

σz(t) = lim
n→∞

(

sin2n+1(ωRt)
)

which does not violate the inequality. This suggests that, also in this case, the existence
of a deterministic back-action is not enough to bring a violation of the inequality.

3.5.5.3 The quantum feedback resource

The violation of the original Bell’s inequality brought an experimental evidence for the
non-classical correlations associated with entanglement. There peculiar correlations
are nowadays regarded as a resource for quantum cryptography and computing. Is
in the same way the violation of the Leggett-Garg inequality witnessing some useful
quantum resource?

Indeed, the violation of the inequality comes from the correlations not only of the
signal but also of the noise at the detector output with the state of the TLS. Can the
information contained in these noise correlations be used for some practical purpose?
Actually they can: in a feedback configuration, the full detector signal could be used
for outperforming any classical feedback scheme, which would only take into account
the result of the actual measurement.
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Figure 3.30: On the left: schematic of the simple quantum feedback scheme proposed by Korotkov123:

the detector ID and QD signals allow to calculate the phase ϕ which is feedback to the system

Hamiltonian by some appropriate driving. On the right (reproduced from Korotkov123): fidelities

of the system state with respect to a desired state. If the quantum efficiency is good, the quantum

feedback schemes (solid lines) would overcome the best classical feedback scheme (dashed line).

Korotkov and Ruskov39,123 analyzed several of these quantum feedback schemes3

and demonstrated that indeed analyzing the continuously acquired data and feeding
back a control signal onto the system, it is possible to correct with high fidelity
the measurement-induced dephasing of coherent oscillations and keep their phase
constant –with finite accuracy– forever. The Fig. 3.30 shows how this can be made
with a simple feedback loop which uses the phase of the detector output to generate
slightly different drives which stabilize the phase of the coherent oscillations.

However, to be able to perform such feedback experiments the quantum efficiency
of the measurement chain should allow to violate Leggett-Garg inequality in a single-
shot: this would require quantum-limited amplifiers which are presently a subject of
intense research40,41.

3.6 Characterizing the thermal fluctuations with a continuous

measurement

An interesting application of continuous measurements implemented in this chapter
is to characterize the thermal fluctuations of the TLS state. Indeed, in the absence
of any driving field, at temperatures in the 10 − 30 mK range and for typical qubit
resonance frequencies of a few GHz, there is at thermal equilibrium a small (typically
less than 1%) probability ρth

ee of finding the qubit in the excited state

ρth
ee =

1

exp
(

h̄ωge

kBT

)

+ 1

Besides it is well known in mesoscopic physics that the effective temperature T

of an electrical degree of freedom such as a superconducting qubit can be in some

3A comprehensive introduction to the quantum feedback schemes and their applications can be found
in a recent book by Wiseman and Milburn124.
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cases much larger than the temperature of the experiment, because it can be strongly
coupled to out-of-equilibrium electromagnetic radiation coming from the measuring
leads, while only weakly to the phonon bath. It is thus important to be able to
measure precisely the average excited state population of a single qubit.

This measurement is also important for quantum information purposes. Indeed the
implementation of large scale quantum algorithms requires that the qubit registers
are properly initialized at the beginning of each computation48, with all qubits lying
in their ground state |0〉. However in most superconducting qubit experiments, the
initialization is simply realized by waiting long enough before each experimental
sequence for the system to reach thermal equilibrium. Although the probability ρth

ee

of finding a qubit in the |1〉 state is usually considered negligible, given the recent
improvement of the overall fidelity of single125- and two-qubit gates126, the effect of
even small thermal fluctuations will require to be considered more quantitatively in
the near future.

3.6.1 Measuring the thermal fluctuations

The usual method for reading out the qubit state, using ensemble-averaged measure-
ments of the microwave signal, does not directly provide an absolute measurement
of the qubit thermal excitations. Indeed, when a thermal fluctuation brings the TLS
from the ground to the excited state, the field reflected on the resonator is the one
corresponding to the excited state, with the output field components I1 and Q1. In all
the cases where no thermal fluctuation occurs the field components are I0 = I1 and
Q0. Thus, the average phase shift between the states results to be

δϕ0(T) = arctan
[

Q1

I1

]

− arctan

[

Q0 + (Q1 − Q0)ρ
th
ee(T)

I1

]

.

Calibrating such small reduction of δϕ0 is very difficult experimentally. Moreover
δϕ0 (T = 0) is not measurable, so only an extrapolation of δϕ0(T) could provide an
estimation of ρth

ee .

However, using a continuous measurement scheme as the one described above
allows to directly measure the thermal population. Indeed the thermal fluctuations
of the qubit state are responsible for a measurable phase noise in the microwave
signal reflected by the resonator which can be accurately characterized by averaging
the noise spectra at the resonator output. The main difference with the continuous
measurements performed above is that the TLS not driven. It is worth noting also
that the mere presence of a continuous measurement of the qubit state has no effect
on the dynamics of thermal fluctuations because this dynamics is fully incoherent
and entirely governed by Markovian rate equations28. A similar characterization of
thermal population was performed on an ensemble of nuclear spins measured by a
SQUID amplifier127.
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3.6.2 Spectrum of a TLS coupled to a thermal bath

To extract the temperature from the spectrum of the continuous measurement of the
transmon we compute here the expected noise power spectrum for a TLS coupled to
a thermal bath.

We start by describing the TLS dynamics at thermal equilibrium by a simple rate
equation128

˙ρee = − ˙ρgg = −Γρee + Γ′ (ρgg − ρee

)
(3.18)

where Γ is the TLS spontaneous emission rate and Γ′ is the stimulated emission
rate. Assuming that the bath consists of a bosonic Markovian bath at temperature T,
as expected for the impedance of the electromagnetic environment, the stimulated
emission is proportional to the mean number of photons in the bath resonant with
the g → e transition Γ′ = Γnth which is

nth(T) =
[
exp(h̄ωge/kT)− 1

]−1

This yields a steady-state ( ˙ρee = 0) population of the qubit excited state

ρth
ee =

nth

1 + 2nth
(3.19)

Therefore Eq. 3.18, yields

ρee(t) =
[

ρee(0)− ρth
ee

]

e−tΓ(1+2nth) + ρth
ee (3.20)

The conversion to the σ̂z basis units in which the measurement is performed is
directly given by 〈σ̂z(t)〉 = 1 − 2ρee(t). In this σ̂z basis the correlation function is
written

Kz(t) = 〈σ̂z(t) σ̂z(0)〉 − 〈σ̂z(0)〉2

The first product can be calculated conveniently with the conditional expression

〈σ̂z(t) σ̂z(0)〉 =P (σz(0) = 1) 〈σ̂z(t)〉|σz(0)=1

− P (σz(0) = −1) 〈σ̂z(t)〉|σz(0)=−1 (3.21)

where P (σz(0) = 1) is the probability of starting with the TLS in the ground state.
Substituting Eq. 3.19 and Eq. 3.20 in Eq. 3.21 we find:

Kz(τ) = 4
(

1 − ρth
ee

)

ρth
ee exp (−Γ(1 + 2nth)τ) . (3.22)

The power spectrum is the Fourier transform of this expression;

Sz(ω) = 4
(

1 − ρth
ee

)

ρth
ee

Γ(1 + 2nth)

Γ2(1 + 2nth)2 + ω2 . (3.23)
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Note that these expressions are only approximate in the case of a transmon because
it is not a genuine two-level system but an anharmonic resonator with an infinite
number of excited states. Then the previous expressions are only valid in the limit
where the population of the higher excited states is negligible, which in our case
remains true up to temperatures around 100 mK.

3.6.3 Experimental characterization of the thermal fluctuations

To characterize the thermal fluctuations of the TLS state, we measure the detector
output noise spectrum for a series of temperatures TF. The spectra are acquired with
the same setup and procedure as described in 3.4.2.1, the only difference being that
the source Vd driving the TLS is now always turned off. As explained in 3.4.2.2,
the amplifier noise is subtracted from the measured spectrum, and the resulting
spectrum is corrected from the setup response R(ω) to yield SV(ω) which is plotted
in Fig. 3.31a for varying TF. Each spectrum is measured after waiting 15 minutes
thermalization time once the cryostat reaches TF. We also verify that the sample is
well thermalized by acquiring two noise spectra for each TF, one upon warming up
and the second upon cooling down, which are found to be nearly identical.
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Figure 3.31: (a) Noise spectra acquired for several temperatures TF (color solid lines) and Lorentzian

fits (dashed black lines). (b) Thermal population of the TLS as a function of temperature: comparison

of the experimental data (black dots) with the theoretical prediction (red dashed curve). (c) Relaxation

times as a function of temperature extracted from the widths of the Lorentzian spectra (blue dots)

compared to the predictions of the model discussed in the text (red dashed curve) taking Γ−1 =

T1,20mK = 226 ± 7 ns, independently measured in a pulsed experiment at 20 mK.

As seen in Fig. 3.31a, the measured noise spectra SV(ω) have a Lorentzian shape,
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with an amplitude rapidly increasing with temperature. This noise spectrum is

SV(ω) =

(
∆V

2

)2

Sz(ω) .

The amplitude A and width Γ1 of each spectrum are fitted with a Lorentzian model
A Γ1/(Γ2

1 + ω2). According to Eq. 3.23, the model predicts that A = ∆V2
(
1 − ρth

ee

)
ρth

ee

and Γ1 = Γ(1 + 2nth), which is the experimentally-accessible relaxation rate of the
system.

The detector sensitivity ∆V2 is experimentally calibrated as explained above. For
the power used in this experiment, which corresponds to n̄ ≃ 2.3 photons, this yields
∆V/2 = 2.76 ± 0.14 mV. In this way we can directly extract from the fits the thermally
excited state population ρee and the relaxation rates Γ1 as a function of the cryostat
temperature TF.

3.6.4 Analysis of the populations and the relaxation rates

The fitted population (dots in Fig. 3.31b) agrees with the theoretical average pop-
ulation ρth

ee (red dashed curve), calculated assuming two sources of radiation (Fig.
3.32): the thermal field corresponding to the temperature of the cryostat coldest stage
TF, with an average of nth(TF) photons, and the thermal field radiated by the 30 dB
attenuator thermalized at the still temperature TS = 600 ± 100 mK, and attenuated
(22 ± 0.5 dB) at 20 mK, contributing with nth (TS) /102.2 photons. At the lowest TF, we
find a thermally excited state population of 1 ± 0.5%, corresponding to an effective
temperature of 55 mK.

20mK

600mK

Figure 3.32: Model of the thermal envi-

ronment seen by the TLS: a first thermal

bath thermalized at cryostat temperature

is directly coupled to the TLS and a second

one, with much higher but constant tem-

perature radiates to the TLS through a line

containing 22 dB of attenuation.

At TF = 20 mK, the relaxation rate Γ−1
1 deduced

from the width of the Lorentzian noise spectrum (see
Fig. 3.31c) is found to be in excellent agreement with
the qubit relaxation time T1,20mK = 226 ± 7 ns, mea-
sured in a standard pulsed sequence. However, at
higher TF, we observe that the fitted width decreases,
which implies that the qubit energy relaxation time
increases with temperature. Unfortunately we did
not verify this surprising result with direct T1 mea-
surements at each temperature. This counter-intuitive
result disagrees with our model which predicts a re-
laxation rate Γ(nth) = Γ(1+ 2nth) (Eq. 3.18) increasing
with temperature due to stimulated emission by the
thermal field, yielding the red dashed curve in Fig.
3.31b (calculated with Γ = T−1

1,20mK). This indicates that
the qubit is not only coupled to its electromagnetic
environment but also to another type of bath, causing

some additional relaxation with a different temperature dependence.
Additional support for the existence of such unknown non-radiative decay channels

is that the measured relaxation time at 20 mK (226 ns) is significantly shorter than the
expected relaxation time due to relaxation into the the external impedance at zero
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temperature (600 ns), which indicates the existence of a non-radiative energy decay
channel. We finally note that a similar increase of the relaxation time with temperature
up to 150 mK was directly observed in a superconducting phase qubit, and attributed
to non-equilibrium quasi-particles in the superconducting metal electrodes89; a similar
scenario might explain our results. Note however, that if such relaxation channel
exists, the agreement of the populations with the model presented in Fig. 3.32 is
fortuitous.
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4
H I G H - F I D E L I T Y Q U B I T R E A D O U T A N D
N O N - L I N E A R C I R C U I T Q E D

In the goal of implementing quantum processors with a scalable architecture based
on superconducting circuits, the circuit QED architecture is particularly promising.
Indeed, the resonator isolates the qubits from their electromagnetic environment,
yielding longer and reproducible lifetimes, and, at the same time, it can be used to
readout the qubit state thanks to the cavity pull as explained in 2.4. However this
cQED dispersive readout method has never reached a signal-to-noise ratio sufficient
to allow a single shot readout for qubit, which is an important drawback in the
perspective of experiments involving several qubits.

In this chapter, we present a new readout circuit that allows high-fidelity single-
shot readout of the qubit state while keeping the good properties of cQED qubit
architecture. This is achieved by introducing some non-linearity in the readout
resonator to turn it into a bistable hysteretic system, known in the literature as the
Cavity Bifurcation Amplifier (CBA) and invented in Michel Devoret’s group at Yale129.
Here we show that this readout allows to reach high fidelities (up to 94%), without
affecting the qubit lifetimes or inducing spurious excitations. We also discuss the
readout parameter optimization, relying on the results of two experiments in which
the non-linearity was made tunable.

The introduction of a non-linear element in the resonator strongly modifies the
physics of the resonator-qubit coupled system. In particular, the qubit absorption
spectrum in the presence of a field in the resonator is strongly modified compared to
the linear resonator case. The observation of these phenomena and their theoretical
justification will be the subject of the last section of this chapter.

4.1 Fidelity of the dispersive readout method in cQED

4.1.1 The standard dispersive readout method

We first discuss the signal-to-noise achieved in the dispersive readout method that
was presented in the previous chapters in order to understand better its limitations.
This method consists in sending a microwave pulse to the resonator at its resonance
frequency ωc and to detect the phase of the reflected pulse, which is shifted by a
quantity ±δϕ0 depending on the qubit state. To appreciate the difficulty of this
detection, we stress that the measurement power Pm cannot be increased above a
power yielding ncrit inside the resonator49. The errors which may happen in this
detection scheme have two possible origins (4.1):

• a bad estimation of the phase shift due to the small signal and the large amount
of noise coming from the cryogenic amplifier (TN ≃ 4 K).
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• the relaxation of the qubit in a time T1 comparable to the readout process
duration.

Both sources of errors are linked: indeed, in order to improve the SNR the signal is
averaged during a certain time tm. The longer tm, the better is the phase estimation,
but also the higher is the probability that the qubit relaxes yielding an incorrect
readout.

T1 I

Q

0

1

Figure 4.1: The standard measurement

method is subject to two kind of errors:

a bad discrimination of the state due to

the high amplitude of noise (shown as a

large overlap between the two uncertainty

zones) and the relaxation the qubit (orange

arrow) during the measurement.

In order to make this reasoning quantitative, we now
estimate the readout fidelity of the dispersive readout
method. In order to infer the qubit state correctly, one
needs to resolve a phase shift of 2δϕ0 on a microwave
signal with amplitude n̄ . ncrit in the presence of the
noise of the cryogenic amplifier (TN ≃ 4 K). This leads
to a probability of error:

PN = 1/2 erfc (SNR)

The fidelity F = 1 − PN would be arbitrarily large if
the qubit were not subject to relaxation, since in this
case the SNR can be raised as much as wanted by
averaging during a long time (see 2.1.5.1).

The case of a qubit with a finite relaxation time T1 is
more complex. When the qubit is in its |0〉 or |1〉 state
respectively, the resonator field has a complex αg or
αe. The energy of the signal which characterizes the
qubit state is therefore

∣
∣αg − αe

∣
∣2 in units of photons,

and since the energy leaves the resonator at a rate κ, the power of the signal is:

S = κh̄ω
∣
∣αg − αe

∣
∣2

leading to a signal-to-noise ratio:

SNR(tm) =
S

N
= κ

h̄ω

kBTN

∣
∣αg − αe

∣
∣2 tm

where tm is the averaging time. The errors in such detection scheme are of two kinds:
first, the noise can lead to an incorrect determination of the phase with a probability:

PN(tm) = 1/2 erfc (SNR(tm))

And secondly, when the qubit is prepared in |1〉, it may relax before the measurement
is performed with a probability

PR(tm) = 1 − exp (−tmΓ1) .

Therefore, when the qubit is prepared in |0〉 the probability of error is

PE,0(tm) = PN(tm)
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and when it is prepared in |1〉 it is:

PE,1(tm) = PN(tm) + [1 − PN(tm)] PR(tm).

With the parameters of the sample used in this chapter (Γ−1
1 ≃ 500 ns, κ/2π ≃

10 MHz, ncrit ≃ 20 and so n̄ = 5 to avoid any spurious excitation and δϕ0 ∼ 10◦), we
find that the fidelity F(tm) = 1− 1/2PE,0(tm)− 1/2PE,1(tm) is maximal for tm = 0.26Γ−1

1 ,
with a maximum fidelity of F = 68%. This figure is rather far from the single-shot
fidelity and it is highly desirable to improve it. Indeed, the single-shot character of the
readout opens the way to operating quantum algorithms without jeopardizing their
speed gain by the need to repeat the experiment to get an accurate output, and allows
to characterize the immediate value of any qubit observable, providing a useful tool
for fundamental quantum physics experiments.

Note however that in even the absence of single shot measurement, averaging over an
ensemble of identically prepared experiments, provides an accurate characterization
of the qubit state, which has been very successfully used in most of the cQED
experiments realized up to the present. In the particular situation where several
qubits are coupled to the same resonator, Filipp et al.130. have shown that it is even
possible to reconstruct the full density matrix of the qubits, including its non-diagonal
elements, from ensemble-averaged measurements.

Various attempts to improve the readout fidelity have been reported: Gambetta et

al.131 performed a more detailed analysis of the standard readout procedure, and
proposed several modified readout schemes involving optimal filters at the detection
stage. A very recent experiment50 showed that a substantial improvement of the
fidelity up to 87% could be achieved without modifying the readout circuit.

We present in this chapter a modified readout circuit which yields fidelities up to
94%.

4.1.2 A sample-and-hold detector for improving the readout fidelity

0

1

Sample

Detect

10

B

B

Hold

A way to overcome the fidelity limitations of the dispersive
readout method is to break the link between the measuring and
averaging times by using a so-called sample-and-hold detector.
The strategy of this detector is to separate the measurement
process in two parts:

• a first step during which the qubit state is quickly mapped
on the detector state (sample). If this mapping is performed
much faster than the relaxation time T1 the amount of errors
induced by relaxation is substantially reduced.

• a second step during which the detector state is maintained
and measured until it is discriminated with certainty (hold).
If the detector is truly metastable, this step can be as long
as needed to reduce the errors to zero.

To operate a device as such a sample-and-hold detector, it should
be a bistable hysteretic system:
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• The bistability allows to unambiguously map the qubit state
onto the state of the measurement device

• The hysteresis allows to hold the state of the measurement
device as long as needed to determine it without any error

Michel Devoret’s group at Yale has invented and demonstrated a family of su-
perconducting circuits that behave as bistable hysteretic detectors: the Josephson
Bifurcation Amplifiers (JBA)51,132,129, which will be described in detail in the follow-
ing section. Josephson Bifurcation Amplifiers are oscillators made non-linear by using
the non-linearity of the Josephson inductance, which display dispersive bistability.
Josephson Bifurcation Amplifiers have been already employed to readout the state of a
Quantronium qubit84,133, and of a flux qubit134, the latter with 87% fidelity and QND
character. Here we show how we integrated a JBA to the circuit QED architecture
presented in previous chapters to obtain a single-shot readout of a transmon qubit.

4.2 Josephson Bifurcation Amplifiers: theoretical description

We now analyze the dynamics of driven non-linear oscillators with a cubic non-
linearity, and we show that they can display bistability. We then discuss the specific
implementation of non-linear oscillator used in our experiment: the Cavity Josephson
Bifurcation Amplifier (CBA).

4.2.1 The Duffing oscillator and the Josephson bifurcation amplifier

We first consider a simple pendulum of mass m, length l, periodically driven by a
force F0 at frequency ωm, as shown in Fig. 4.2a. The restoring force of this pendulum
is proportional to the sine of the angle ϑ it makes with the vertical:

ml2ϑ̈ + γϑ̇ + mgl sin (ϑ) = F(t) = F0 cos(ωmt),

where γϑ̇ is the friction force and g the gravity acceleration. For small oscillations ϑ ≪
1, the sine can be expanded to third order, resulting in a restoring force proportional

Parameter Pendulum JBA CBA

ωr

√
g
l

√
I0

ϕ0C

√
1

(Le+ϕ0/I0)Ce

Q 2ml2ωr
γ RCωr

πZ0
2Re

u(t)
√

ω2
r

4ωm∆m
ϑ(t)

√
ω2

r
4ωm∆m

θ(t)
√

pQ
2Ω

ωm
I0

q(t)

β
(

F
mgl

)2 ( ω2
r

4ωm∆m

)3 (
Im
I0

)2 ( ω2
r

4ωm∆m

)3 (
Ve

ϕ0ωm

)2 ( pQ
2Ω

)3

Table 4.1: Reduced non-linear resonator parameters129 for the three kinds of non-linear resonators

considered above
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to the displacement –as in a harmonic oscillator– plus a non-linear term which make
the oscillator frequency dependent on the dimensionless amplitude of the drive β:

ml2ϑ̈ + γϑ̇ + mgl

[

ϑ − ϑ3

3!

]

= F0 cos(ωmt)

l

mg

mgsin()ɶ .
F(t)

(a)

I(t) R C I0

(b)

Figure 4.2: The mechanical Duffing oscil-

lator (a) consists in a simple pendulum of

length l and mass m forming an angle ϑ(t)

with the vertical. This pendulum is sub-

ject to three forces: the gravity −gm−→u z,

a damping −γθ̇−→u θ and an external drive−→
F (t). The analog electrical circuit (the

Josephson bifurcation amplifier, b) consists

in a Josephson junction of critical current

I0 in parallel with a capacitor C, a resistor

R and a current source I(t).

Such a non-linear oscillator with cubic non-linearity
is known as the Duffing oscillator. We note imme-
diately that an exact electrical analog is a resonator
formed by a capacitor C in parallel with a resistor
R and with a Josephson junction (critical current I0)
that behaves as a non-linear inductance, driven by a
current source I(t) = Im cos(ωmt) (Fig. 4.2b). The
equation of motion of this circuit can indeed be writ-
ten:

Cϕ0θ̈ +
ϕ0

R
θ̇ + I0 sin θ = I(t) = Im cos(ωmt),

where θ now represents the phase across the junction
and ϕ0 = h̄/2e is the reduced flux quantum.

As we will see, both oscillators display bistability.
We first write the equations of motion in dimension-
less units using the transformations shown in Table
4.1, the drive detuning ∆m = ωr − ωm, the dimension-
less time τ = t∆m and the slowly varying envelope
u(τ):

∆m

ωm

d2u

dτ2 +

(
1

Qωm
+ 2i

)
du

dτ
+

[

2
(

ω2
r − ω2

m

2ωm∆m

)

+
1

Q∆m
− 2 |u|2

]

u = 2
√

β .

We then simplify these equations in the high-Q limit
Q ≫ 1: the drive is near resonance ∆m/ωm ≪ 1 and
thus ωm + ωr ≈ 2ωm, and u(τ) being small ü ≪ ωmu̇.
This yields:

du

dτ
= − u

Ω
− iu

(

|u|2 − 1
)

− i
√

β (4.1)

where we have introduced the reduced detuning Ω =
2Q∆m/ωr.

Bistability: the bifurcation points

The stationary solutions u̇ = 0 of Eq. 4.1 obey

u

Ω
+ iu

(

|u|2 − 1
)

= i
√

β(Ω) .
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Figure 4.3: Steady-state solutions of Eq. 4.1 (a) As a function of the drive β, for several values of Ω.
For Ω ≥

√
3 there are three real-valued solutions, the central one (dashed lines) unstable, while for

Ω ≤
√

3 there is only one. the The bifurcation points β∓are respectively the maximum and minimum

drive for which the lower and upper solutions exist. (b) As a function of the reduced frequency Ω, for

several values of β, with the two resonator states B̄ and B for Ω = 3 indicated.

Their square modulus |u|2 is solution of a 3rd degree equation

|u|2/Ω2 + |u|2
(

|u|2 − 1
)2

= β(Ω)

and is plotted in Fig. 4.3 for various (β, Ω) parameters. Depending on the (β, Ω)
parameter range, this equation has one or three solutions. More precisely, there
are three solutions when Ω >

√
3 and β−(Ω) ≤ β ≤ β+(Ω) where β±(Ω) are the

solution of dβ/d(|u|2) = 0 i.e.

β±(Ω) =
2
27

[

1 +
(

3
Ω

)2

±
(

1 − 3
Ω2

)3/2
]

.

In the rest of the (Ω, β) plane, only one solution exists. When three solutions exist, it
can easily be shown that the ones corresponding to the highest and lowest oscillations
amplitude are stable, whereas the intermediate is unstable. The system can thus be
in either one of two coexisting dynamical states for the same driving amplitude: it
is therefore bistable, and as such well suited for implementing a sample-and-hold
detector. We call B̄ (resp. B) the low (resp. the high) oscillation amplitude state
(see Fig. 4.3b). The points β±(Ω) at which the system can change state are called
bifurcation points.

Hysteresis

We have just seen that in the bistability region and under the same driving conditions
the oscillator can be in one of two states of oscillations. But what determines the
actual state of the oscillator?

154



0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5



|u
|2

+

B

B

B

B

Hold
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Following the Fig. 4.4 we first consider the
situation where we start with a very small
driving amplitude. When increasing the drive,
the amplitude u remains in the lower branch
since it is stable, which corresponds to the
state B̄, until reaching β+, where this solu-
tion suddenly disappears, and the amplitude
grows to reach the upper branch. This switch-
ing process between the two dynamical states
is called bifurcation.

In the reverse direction when starting with a
large amplitude drive β > β+ and lowering it,
the amplitude u stays in the upper branch B

since it is also stable until reaching β− where
this solution disappears, and u suddenly de-
creases to reach the lower branch B̄.

This process is therefore hysteretic, with a
hysteresis cycle shown in Fig. 4.4. This hys-
teresis is crucial in our experiment, since we
can hold the resonator state by keeping the drive between this two bifurcation points
β+ > β > β−.

4.2.2 The Cavity Bifurcation Amplifier

In our experiment the implementation of the Duffing oscillator is different from the
JBA circuit shown in Fig. 4.2b. Instead of a lumped-element resonator, we used the
coplanar transmission-line resonators that were described in earlier chapters and
which form the building block of cQED, with a Josephson junction inserted in the
middle. This implementation of Josephson Bifurcation Amplifier is called Cavity
Bifurcation Amplifier (CBA) and was also invented in Michel Devoret’s group at
Yale52. In this section we analyze the CBA circuit and its mapping to an RLC series
non-linear resonator (in 4.2.2.1), which is itself described in 4.2.2.2. Finally we present
the fabrication process and the setup used to perform the measurements.

4.2.2.1 A non-linear transmission-line resonator

ʄ/4

Cc Cc

ʄ/4
Z0

Vs

V /2V /2 V /2V /2

2L2L

A Cavity Bifurcation Amplifier (CBA) con-
sists in a λ/2 transmission-line resonator
(inductance per unit length ℓ, total length
Λ), which is made non-linear by inserting
in its middle a Josephson junction of crit-
ical current I0. This junction is equivalent
to a non-linear inductance whose value de-
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pends on the current ı through it:

LJ(ı) =
ϕ0

I0

√

1 − ı

I0
≈ LJ0

[

1 +
1
2

(
ı

I0

)2
]

(4.2)

Resonance frequency

Due to the presence of the Josephson inductance LJ(ı) in the center of the resonator,
the CBA resonance frequency ωr is shifted compared to the frequency of the same
resonator in the absence of the Josephson junction –the bare resonator frequency ω1–,
even in the low power regime when LJ(ı) ≈ LJ0. In Chapter 5, which deals with
tunable resonators, we calculate in detail the resonance frequency of a λ/2 resonator
containing in its center a SQUID (see 5.2.2). We use here the result of this calculation,
which yields the implicit expression for the resonance frequency:

Z0 tan
(

π

2
ωr − ω1

ω1

)

= −LJ0ωr

2

Lumped-element equivalent circuit

To allow the derivation of simple equations of motion for the CBA, we need the
lumped-element equivalent circuit which reproduces the behaviour of CBA in the
area of interest, that is around the resonance frequency ωr.

CeLeRe

Ve

ʄ/4

Cc

ʄ/4

Vs

Z0

CF LFRe
CFLF

Ve

Figure 4.5: Transformation of the CBA circuit in an

equivalent lumped-element circuit

This is the Thévenin equivalent circuit
seen from the junction. Indeed, this equiv-
alent circuit keeps:

• The current flowing through the junc-
tion, so that the junction non-linearity
is preserved by this transformation.

• The impedance seen from the junc-
tion, so that the biasing circuit current-
voltage relation is also preserved.

As shown in Fig. 4.5, the circuit seen from
the junction is:

• to the right: a λ/4 transmission-line
ended in open circuit, equivalent to
a series LC resonator with LF =
(πZ0)/(4ω1) and CF = 4/(πω1Z0).

• to the left of the junction, a λ/4
transmission-line loaded by a small
coupling capacitor Cc ≪ 1/(ωrZ0) in
series with a microwave source Vs with
Z0 = 50 Ω output impedance.
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The impedance seen from the junction is the series impedance of these two circuits,
which results as shown in Fig. 4.5 in a lumped non-linear RLC series resonator with
elements:

Le =
π

2
Z0

ω1

Ce =
2
π

1
Z0ω1

Re = Z3
0ω2

r C2
c

Ve = CcZ0ωrVm

These analytical expressions are the results of series of approximations valid in the
limit where the quality factor is high, and where Λℓ/LJ0 ≫ 1. To obtain more exact
expressions, one needs to solve numerically the problem of finding the (Re, Le, Ce, Ve)
circuit that approximates best the impedance and voltage seen from the junction.
Note that in the rest of this chapter all equivalent circuits are found numerically and
not using the formulas above.

4.2.2.2 The RLC-series Duffing resonator

Equations of motion

The CBA is equivalent to the RLC-series non-linear resonator shown in Fig. 4.5. We
will now show that once again, this circuit behaves as a Duffing oscillator and can
thus be used as a JBA. The dynamics of this circuit can be described in terms of the
charge q(t) stored in the capacitor plates with the following equation of motion:

[Le + LJ(ı)] q̈ + Req̇ +
q

Ce
= Ve cos (ωmt) . (4.3)

With the to second order expansion of the junction inductance (Eq. 4.2) and since
ı = q̇, this equation of motion becomes

(

Le + LJ + LJ
q̇2

2I2
0

)

q̈ + Req̇ +
q

Ce
= Ve cos (ωmt) .

We now define the total inductance Lt = Le + LJ the participation ratio p = LJ/Lt,
the linear resonance frequency ωr = 1/

√
LtCe and the quality factor Q = ωrLt/Re.

This leads to:

q̈ +
ωr

Q
q̇ + ω2

r q +
pq̇2q̈

2I2
0

=
Ve

Lt
cos (ωmt) .

We then write q(t) = Re(A(t)eiωmt), in which A(t) is a slowly varying function. so
that Ȧ ≪ iωm A. The equation of motion for such A(t) is then

Ȧ + ΓA − i∆m + i
pω3

m |A|2
4I2

0
A = −i

Ve

4ωmLt
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which, with the definitions of the dimensionless parameters Ω, β and u found in
Table 4.1, becomes

du

dτ
= − u

Ω
− iu

(

|u|2 − 1
)

− i
√

β .

This is equivalent to the general equation of Duffing oscillators (Eq. 4.1). So, despite
their different configuration, the series and parallel RLC non-linear resonators behave
in a very similar way.

Hamiltonian

Ce

Le I0

φ1
(φ2 ,q2)

We will now derive the Hamiltonian for this circuit, neglect-
ing dissipation which can be treated as for a linear resonator
by introducing a coupling to the electromagnetic environ-
ment. We thus simply consider the circuit consisting of the
series combination of the inductance Le, capacitance Ce, and
Josephson junction of critical current I0 (whose capacitance
is included inside the other circuit elements). We will write
the Hamiltonian as a function of the conjugate node variables (q2, φ2) shown on the
right. Denoting φ1 the generalized flux across the inductance Le, we have

HCBA =
φ2

1
2Le

− EJ cos
(

φ2 − φ1

ϕ0

)

+
q2

2
2Ce

.

Since the current ı flowing through the inductance and through the junction are
identical, we also have

ı =
φ1

L
= I0 sin

(
φ2 − φ1

ϕ0

)

yielding an implicit relation φ1 = g(φ2) between the two phases. The Hamiltonian
thus writes

HCBA =
[g(φ2)]

2

2Le
− EJ cos

φ2 − g(φ2)

ϕ0
+

q2
2

2Ce
.

By developing g(φ2) in powers of φ2 we can obtain the CBA Hamiltonian to any
order of Josephson junction non-linearity. For instance, to fourth order we obtain after
some rewriting

HCBA =
φ2

2
2Lt

+
q2

2
2Ce

− 1
24

p3 φ4
2

Lt ϕ2
0

.

To clarify this Hamiltonian, we will now write it in terms of the creation and
annihilation operators, using φ̂2 = δϕ0(â − â†) with δϕ0 = i

√
h̄Ze/2 and Ze =

√
L/Ce
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We see that the non-linear term φ4
2 once developed will yield products of creation

and annihilation operators to various powers. In the rotating wave approximation,
we will keep only those with equal annihilation and creation operators; all the others
will oscillate at frequencies 2ωr or higher. Re-arranging the terms in the Hamiltonian
yields finally

ĤCBA = h̄ωr â† â + h̄
K

2
(â†)2 â2 (4.4)

where

K = −πp3ωrZe

RK

is called the Kerr constant. In fact we will even need in the following the Hamiltonian
developed to the next order of junction non-linearity

ĤCBA = h̄ωr â† â + h̄
K

2
(â†)2 â2 + h̄

K′

3
(â†)3 â3 (4.5)

with

K′ = 2π2
(

10p

3
− 3
)

p5ωr

(
Zeq

RK

)2

.

4.3 Experimental implementation

4.3.1 The sample

As shown in Fig. 4.6 the sample consists in a λ/2 CPW resonator with a Josephson
junction inserted in its middle to make it non-linear. The resonance frequency is
ωr/2π ≈ 6.45 GHz, In the same way as in the former chapter, on one side of the
resonator we fabricated a transmon (green rectangle), consisting in a split Cooper-
pair box (orange rectangle) and a large shunt capacitor (blue rectangle). The other
side of the resonator is connected to the input line through a coupling capacitor
(red rectangle), which sets the quality factor Q = Qc ≈ 700 which corresponds to
a moderately large κ/2π ≈ 9.2 MHz bandwidth, a good compromise between the
degradation of the relaxation time T1 due to the Purcell effect (2.3.1) and a readout
fast enough compared to T1.

The resonator is fabricated on a 120 nm-thick niobium film with the same process
described in 2.1.4.1. The transmon and the Josephson junction of the CBA are
patterned at the same time by e-beam lithography and double-angle evaporation of
two aluminum thin-films, the first one being oxidized to form the junction tunnel
barrier.

The sample is then glued on a microwave printed-circuit board made out of TMM10

ceramics. The whole is is enclosed in a copper box and thermally anchored to the
mixing chamber of a dilution refrigerator at typically 20 mK.
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Figure 4.6: The sample with panels zooming to its most important features

4.3.2 Measurement setup

The measurement setup is shown in Fig. 4.7. As in the former chapter, two kinds of
microwave signals are sent to the sample thought the same input line:

• measurement pulses with voltage Vm (in green). The powers Pm given in this
chapter are arbitrarily referred to 0 dBm at the input of the dilution refrigerator.
The power of these pulses is controlled by a tunable attenuator which is a key
element to acquire the so-called S-curves which will be discussed below.

• pulses to resonantly control the TLS state with voltage Vd (in pink).

Both of them are shaped in a DC-coupled mixer: a microwave tone generated by an
Anritsu MG3692 microwave generator is mixed with the DC pulses generated by an
arbitrary waveform generator Tektronix AWG5004A. These two microwave signals are
combined and send to the input line of the refrigerator which contains several filters
and attenuators (77 dB in total), thermalized at the successive temperature stages.

The signal reflected on the sample is separated from the input signal by a cryogenic
circulator. It is then routed through several isolators and a 4–8 GHz bandpass filter,
to a cryogenic amplifier (CITCRYO1-12 from Caltech) with 38 dB gain and noise
temperature TN = 4 K. The output signals are then amplified at room temperature
with a total gain of 56 dB, and finally mixed down using a I/Q mixer with a local
oscillator synchronous with the microwave tone used for generating the measurement
microwave pulses. The resulting ID and QD quadratures are filtered, amplified,
sampled by an Acqiris DC282 fast digitizer and transferred to a computer that
processes them.
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Figure 4.7: Detailed schematics of the experimental setup

A superconducting coil is screwed on the copper box containing the sample to vary
the flux. A very-low cutoff RL filter formed by the coil itself and a 50 Ω resistor filters
this line to reduce the thermal noise coming from room-temperature.

4.4 Experimental characterization of the CBA

Before operating the non-linear resonator as a single-shot detector for the qubit, we
characterize its behaviour alone, by detuning the qubit far away from it. We first
study its bistability and hysteresis as a function of the detuning Ω and amplitude β.

In the vicinity of the bifurcation point β+ the transition B̄ → B can occur with a
finite probability. Indeed, the resonator acts as a semi-classical oscillator which may
be excited by thermal or quantum fluctuations and jump to the B state. We discuss
in this section how to measure the probability pB of switching to the B state in this
region, and so-called S-curves pB(β), which determine the sensitivity of the CBA.

4.4.1 Frequency response

At very low measurement power Pm the resonator’s response (blue curve in Fig. 4.8)
is the one of an over-coupled linear resonator: a constant amplitude, and a phase
shift of 2π symmetric around the resonance frequency. This low power measurement
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allows to determine the resonator linear resonance frequency ωr/2π = 6.4535 GHz
and its quality factor Q = Qc = 670. Comparing this resonance frequency with the
one of the bare resonator, we determine the junction critical current I0 = 750 nA, in
good agreement with the I0 of other junctions fabricated with the same process.
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Figure 4.8: Frequency response of the resonator at different

measurement powers.

When raising the power Pm the phase
of the reflected signal starts to show
some asymmetry and a higher slope
(dark blue to purple curves in Fig. 4.8).
For even higher powers a sudden jump
happens signalling the bifurcation from
B̄ to B state. This jump constitutes the
first signature of the resonator bistabil-
ity. The lowest power at which this jump
happens corresponds to the bifurcation
point β+, and the higher the power is
raised, the lower is the frequency at
which this jump appears, as predicted
by theory.

4.4.2 Bistability and hysteresis: the

(Ω, β) diagram

According to JBA theory, there is a re-
gion Ω >

√
3 and β−(Ω) < β < β+(Ω)

in the (Ω, β) plane where the transitions B̄ ↔ B are hysteretic. To find this region we
perform the experiment shown in Fig. 4.9, which consists in sending a microwave
pulse with a slow triangular envelope of 1 ms duration and measuring the phase of
the reflected signal. The first part of the triangle corresponds to a growing signal:
when the power reaches the bifurcation point β+, the transition B̄ → B occurs and a
jump in the phase is observed. The second part of triangle corresponds to a decreasing
signal: when the power reaches β−, the transition B → B̄ occurs and the phase shows
a jump. The difference between the reflected phases measured while the signal is
growing and decreasing –the hysteretic region– is shown in the bottom panel of Fig.
4.9. In this panel the frequency dependence of the jumps in phase corresponding to
the bifurcation is compared with the theoretical curves β+(Ω) and β−(Ω). To rescale
these curves in the signal units s(

√
mW) at the input of the dilution refrigerator, we

have used

• the Kerr constant K/2π = 625 kHz, whose value was experimentally determined
using the procedure explained in 4.7.1.3

• the total attenuation from the input of the dilution refrigerator to the input of the
CBA. We used for this attenuation the value 79.3 dB compatible with the known
attenuation of our setup.

The slight reduction of the hysteretic region in the experiment, as compared to the
theory, is likely to be due to the activation of the B̄ ↔ B transitions by thermal or
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Figure 4.9: Experimental characterization of CBA hysteresis. A microwave pulse with a slow

triangular envelope of 1 ms is sent to the CBA and we measure the phase of the reflected signal. The

first part of the triangle (orange rectangle) corresponds to a growing signal: when the power reaches

the bifurcation point β+, the transition B̄ → B occurs and a jump in the phase is observed. The

second part of triangle (purple rectangle) corresponds to a decreasing signal: when the power reaches

β−, the transition B → B̄ occurs and the phase shows a jump. The difference between the phases

observed in these two experiments (bottom panel) shows the hysteretic region. The agreement of the

theoretical bifurcation curves β+(Ω) and β−(Ω) (in red and blue respectively) with the experimental

data is rather good.
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quantum fluctuations as explained below.

4.4.3 Transitions between B̄ and B: the S-curves

The CBA behaves as a semi-classical oscillator which may be excited by the thermal
noise or by the quantum fluctuations which become dominant at very low tempera-
tures. Due to these fluctuations, the switching from B̄ to B is a stochastic phenomenon
occurring in a narrow region just below β+. Since it determines the sensitivity of the
CBA to the changes in parameters a good understanding of this narrow region is of
critical importance for operating our resonator as qubit readout.

In this section we first explain how we measure the probability pB of being in the B

state and how the pulses are shaped to make profit of the resonator hysteresis. We
then present the experimental data of pB as a function of the measurement power
–the so-called S-curves– and we analyze their width comparing them to simulations.

4.4.3.1 The shape of the measurement pulse

sample hold

PH
Pm

t

tR tH

Vm

tSR HS

To operate the resonator as a sample-and-hold detector, a
microwave pulse with an appropriate shape is used :

• The pulse rises linearly in a time tR similar to the
resonator rise-time κ−1.

• A short plateau of duration tS during which the power
reaches its maximum value Pm, which is typically in
the vicinity of the bifurcation point, yielding –or not–
a transition B̄ → B.

• A long hold plateau of duration tH, with a power
slightly lower (typically PH = .85Pm) corresponding to β− < β < β+ such that
the resonator state does not change. The measurement is performed in a time
window during this part of the pulse.

4.4.3.2 Measuring pB: the probability of B state

The transition from B̄ to B is not infinitely sharp: we therefore need to measure the
probability pB of finding the resonator in its B state during the hold plateau –more
rigorously, the frequency of occurrence of B. Depending on which state (B̄ or B)
the resonator is, the demodulated the field components ID and QD averaged over a
time-window in the hold plateau are different. Therefore, two decision regions in the
(ID, QD) plane corresponding to the B̄ and B states can be defined. A simplification
consists in digitally transforming the (ID, QD) plane so that the region ID < 0
corresponds to B̄ and ID > 0 corresponds to B. The automated calibration procedure
to do so proceeds in three steps:

• First, Pm is ramped to find the specific value P50 at which pB = 1/2. A simple
algorithm for finding this point consists in measuring the total variance of
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Figure 4.10: To measure the probability pB of the B state the calibration procedure consists in finding

a point where pB = 1/2, and then rotate and displace the ID and QD axes to have the signals for both

states in the ID axis symmetric from the origin: the B̄ state in the negative part and the B state in the

positive part of the axis.

the signal σ2 = σ2
I + σ2

Q where σ2
I and σ2

Q are the variances of the ID and QD

components. The total variance is maximum at P50, indeed: when the resonator
is always in the B̄ state or in the B state (Fig. 4.10a and b), the variance σ = σn is
related to the noise, but when both states are present (Fig. 4.10c), the variance
includes the same component σn, plus a component d due to the separation
between the states d. If the states are well separated, d ≫ σn leading to a clear
maximum in the variance at P50.

• Then, Pm is set to P50, and the signal is digitally displaced and rotated in the IQ
plane to place the regions corresponding to the B̄ and B states aligned along the
ID axis and symmetric around zero (Fig. 4.10d).

• To determine which of the regions corresponds to B̄ and which to B, the power
is slightly increased: if the average ID grows, a rotation of π is performed, to
place B on the positive part of the ID axis.

After this calibration with Pm set to P50, the 2D histogram of the ID and QD is similar
to the one shown in Fig. 4.10d, where the measurements are grouped in two families
corresponding to the B̄ and B states. pB is measured by counting the number of traces
with ID larger or smaller than the threshold ID = 0.
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4.4.3.3 S-curves: experimental data

In order to determine the width of the B̄ → B transition we measure pB(Pm) by varying
the attenuation of the tunable attenuator. At very low Pm, we start by observing
pB ≃ 0. In the vicinity of the bifurcation point the probability starts growing (Fig.
4.11). Once the power corresponding to β+is reached, pB ≃ 1. The resulting curve
has the characteristic shape of an S and is thus nicknamed S-curve.

To confirm that this S-curve corresponds indeed to an evolution of the probability
of two well separated states, and not to some single-valued signal crossing the
threshold of detection, we acquire some time traces (Fig. 4.11 heavily filtered with
a 10 MHz low-pass filter), which show two clearly different families of trajectories.
Correspondingly, the histograms of the I component of the signal show two distinct
peaks corresponding to the states B̄ and B and nothing in between.
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Figure 4.11: During the hold plateau of the measurement pulse (top left), the I signal shows two

families of trajectories (shown in purple and turquoise). The bifurcation probability pB is found by

counting the number of trajectories of the B state. An S-curve consists in the measurement of pB

while varying a parameter (here the measurement power Pm). The histograms of the average field

amplitude in the measurement window are shown on the left, indicating a clear separation between

the two sets of curves corresponding to B̄ and B.

4.4.3.4 Theoretical results on the escape process

The transition from B̄ to B in the vicinity of the bifurcation point β+ may be activated
by thermal noise and quantum fluctuations, yielding some probability to escape
from the attractor corresponding to the B̄ solutions and to reach the B state. Several
authors have studied theoretically the dynamics of these escape processes for the
Duffing oscillator in the adiabatic limit135,136. Unfortunately to our knowledge no
theory deals with the actual situation in our experiment, which is far from being
adiabatic because the measurement pulse raises very quickly. Therefore we performed
numerical simulations of the escape process to compare them with experimental data.
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Figure 4.12: Simulated and experimental S-curves. The simulation is performed using the equivalent

circuit shown of top in which Ve feeds the measurement pulse to the circuit, while IN represents the

noise. The simulated S-curves show qualitative agreement wit the measured ones, although their

position Pm(pB = 0.5) is slightly different. In contrast, their widths have a good agreement with the

experimental data.

However for shedding some light on the switching process we present the theory of
adiabatic escape for CBA in Appendix A.

4.4.3.5 S-curves: numerical simulations

Since the analytical expressions are only valid for the adiabatic limit, the only way to
have a prediction for the non-adiabatic measurement pulses which are used in the
experiment is to perform a numerical simulation of the switching process.

The circuit we simulate is sketched in Fig. 4.12. The equation of motion of the
charge stored in the capacitor plates is (Eq. 4.3):

(Le + LJ(q̇)) q̈ + Req̇ +
q

Ce
= Ve(t) cos(ωmt) + Re IN(t) .

where Vm(t) is the envelope of the measurement pulse, which is slow compared to
ωm. Moving to dimensionless units for the time and the charge:

τ = ωrt

ζ = ωrq/I0 ,

we obtain
(

1 − p +
p

√

1 − ζ2

)

∂2
τζ +

∂τζ

Q
+ ζ = Ṽe(τ) cos

((

1 − Ω

2Q

)

τ

)

+ ṼN(τ)

with ṼN(τ) = Re IN(τ/ωr)/I0ωrLt and Ṽe(τ) = Ve(τ/ωr)/I0ωrLt. This second-order
differential equation can be written as a system of two first-order differential equa-
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tions:

∂τζ = η

∂τη =
1

1 − p + p/
√

1 − η2

[

− η

Q
− ζ + ṼN(τ) + Ṽe(τ) cos

((

1 − Ω

2Q

)

τ

)]

These equations are simulated numerically. The realizations of the Gaussian noise
ṼN(n∆τ) are generated for each step n using the Box-Muller method137. This method
allows to generate two Gaussian random variables by transforming two computer-
generated pseudo-random variables with a uniform distribution. The differential
equations are then numerically solved in discrete time steps ∆τ = 2π/501 using the
simple Euler method, which yields the following recursive relations:

ζn+1 = ζn + ηn∆τ

ηn+1 = ηn +
∆τ

1 − p + p/
√

1 − η2
n

[

−ηn

Q
− ζn+1+

+ Ṽe(n∆τ) cos
((

1 − Ω

2Q

)

τ

)

︸ ︷︷ ︸

measurement pulse

+ ṼN(n∆τ)
︸ ︷︷ ︸

noise

]

In Fig. 4.12 the S-curves simulated with the parameters of the sample are compared
to the actual experimental curves. The main difference is the position of the curves,
which for a yet unknown reason is not well reproduced in the simulation. However,
their widths, which play a critical role since they determine the sensitivity of the
bifurcation amplifier, are in good agreement with the experimental data.

4.5 Operating the CBA for qubit readout

4.5.1 Mapping the qubit state to the resonator

To use the CBA as a detector for the qubit a last ingredient is needed: a procedure
to quickly map the qubit states |0〉 or |1〉 to the resonator states B̄ or B respectively.
To do so we use the cavity pull, which shifts the bifurcation curves β±(ωm) by +χ

or −χ, yielding the bifurcation curves β±
0 (ωm) and β±

1 (ωm) for qubit states |0〉 or |1〉
respectively, as shown in Fig. 4.13. To exploit this shift in frequency to map the qubit
state on the resonator, we follow these steps:

• A value of Ω which is high enough to produce bifurcation is selected. The power
of the measuring pulse is first quickly raised to a value Pm which lies below β+

0
and above β+

1 , and kept at this value for some time to allow the CBA dynamics
to develop. If the qubit state is |1〉, the power is above β+

1 , and thus the resonator
ends in the B state. Conversely, if the qubit state is |0〉, the power is below β−

0 ,
and thus the resonator stays in the B̄ state.
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• The power is lowered to a value PH which lies below β+
1 but above and β−

0 , so
that the resonator undergoes no transition. This power is hold as long as needed
to average the resonator signal and discriminate with accuracy its state.

B
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Figure 4.13: The two phases of the CBA readout of the qubit. A first one (sample) consists in raising

the power until reaching the region which lies between the two bifurcation points β+
0 and β+

1 , which

causes a B̄ → B transition if the qubit state is |1〉 and no transition otherwise. Once the state of the

qubit is mapped to the resonator in such a way, a second phase (hold) consists in bringing the power

to a lower value PH, which lies between the bifurcation points β−
1 and β+

0 , where the resonator state

is kept constant.

4.5.2 Characterization of the qubit parameters

Using this technique, we perform the spectroscopy of the transmon with the sequence
of pulses sketched in Fig. 4.14: a first long pulse whose frequency ωd is scanned
saturates the |0〉 → |1〉 transition. Then, a CBA measurement pulse detects the
transmon state. When ωd ≃ ω01, the population of |1〉 raises, which translates to a
higher pB as shown in Fig. 4.14. Using this protocol, we performed a spectroscopy
while varying the flux threading the transmon. With a similar protocol, but with an
auxiliary pulse which saturates the |0〉 → |1〉 transition, we perform a spectroscopy
of the second energy level of the transmon. The lower left panel of Fig. 4.14 shows
the position of these two spectral lines as a function of the flux. By fitting them with
the expected dependence, we obtain the characteristic energies of the system, namely
the Josephson energy EJ = 24.9 GHz and the charging energy EC = 1.05 GHz.
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Figure 4.14: Characterization of the transmon characteristic energies and coupling to the resonator.

To characterize the qubit-resonator coupling constant, we characterize the phase of
the reflected signal as a function of the frequency and the flux though the transmon,
in the area of the anti-crossing. This yields the data of the lower-right panel of Fig.
4.14, which is fitted yielding g/2π = 45.7 ± 3 MHz.

4.5.3 High fidelity readout

In this section we present the highest fidelity we observed. We start by presenting
the S-curves for the |0〉 and |1〉 qubit states, which show a maximum fidelity of 88%.
We then analyze the remaining 12% which is mainly due to relaxation and we extract
an effective measurement time which gives some insight on the CBA measurement
dynamics. We finally present a further trick which allows to improve the fidelity
up to 94% by shelving the |1〉 state to |2〉, and present the variation of the fidelities
and lifetimes of the qubit with detuning, which show that CBA allows to have >80%
fidelity in a large span of qubit frequencies.

170



4.5.3.1 Maximum fidelity and contrast

Fig. 4.15 shows the S curves S0
ωm

and S1
ωm

acquired when the qubit is in its |0〉 and |1〉
states respectively for ∆/2π = 380 MHz and ∆m/2π = 17 MHz. For the S1

ωm
the qubit

is excited to |1〉 by a resonant π pulse of length tπ ≃ 15 ns. The contrast, defined
as the maximum difference between both curves, reaches 87% for a measurement
frequency ωm = ωc − 2π × 17 MHz.

01 = 6.07 GHz
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Figure 4.15: Best single-shot readout visibility of |1〉 level obtained at ∆/2π = 0.38 GHz and

∆m/2π = 17 MHz. (a) S-curves of the bifurcation probability pB(Pm), after preparing the qubit in

state |0〉 (solid line S0
ωm

) and in |1〉(solid line S1
ωm

) with the proper resonant π pulse. The maximum

difference between S0
ωm

and S1
ωm

(red vertical line) define the readout contrast of 87%. We also plot

the curves obtained for |0〉 when shifting the readout frequency ωm by 2χJBA = 4.1 ± 0.1 MHz (red

dashed line) in order to match at low pB the curves obtained for |1〉. (b) Rabi oscillations at 29 MHz

measured with our readout, as sketched on top. Dots are experimental values of pB(∆t) whereas the

solid line is a fit by an exponentially damped sine curve with a 0.5 µs decay time and an amplitude

of 87%. The total errors in the preparation and readout of the |0〉 and |1〉 states are 3.5% and 9.5%
respectively.

To interpret the power separation between the S-curves, we search the measurement
frequency ωm + ∆ω1 that makes S0

ωm+2χJBA
coincide with S1

ωm
at low bifurcation

probability. Since the difference between S0
ωm

and S1
ωm

comes from the qubit cavity
pull, 2χJBA is an indirect determination of the cavity pull 2χ. And indeed 2χJBA/2π =
4.1 MHz, in good agreement with the value 2χ/2π = 4.35 MHz calculated from the
experimental parameters. At high pB however the two S-curves do not coincide, but
S1

ωm
has some slope while S0

ωm+2χJBA
has reached pB = 1. This can be explained

taking into account that the qubit is subject to relaxation during the readout, and
therefore S1

ωm
is a linear combination of S0

ωm+2χJBA
and S0

ωm
, the latter weighted by

the population which has relaxed before the resonator reaches its final state and
the readout is finished. Actually, this factor is the dominant source of errors of this
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readout method.

Qubit relaxation during the measurement

We used a measurement pulse with tR = 15 ns, tS = 250 ns and tH = 700 ns, these
values being experimentally optimized for maximum contrast. Although tS is of the
same order of magnitude as Γ−1

1 , the observed relaxation-induced loss of contrast is
rather low, which may seem surprising.

To study further the qubit relaxation during the measurement we acquired a set of
S

ρee
ωm where ρee is the population of the excited state |1〉 at the beginning of the readout

pulse. We start exciting the qubit to |1〉 with a π pulse resonant to its transition
frequency. We then wait for a time ∆t during which the population of the excited
state decreases as ρee(∆t) = exp(−Γ1∆t) before the readout pulse is applied. The
resulting S-curves can be fitted with a linear combination

S
ρee

f ≡ ρ′ee(∆t) S0
ωm+2χJBA

+
[
1 − ρ′ee(∆t)

]
S0

ωm

where ρ′ee(∆t) is the effective population of the excited state seen by the readout.
Comparing the population before the readout ρee and the population seen by the
readout ρ′ee we can define an effective readout time tM so that the population seen by
the readout after ∆t is the same than the bare population after tM + ∆t. As shown in
Fig. 4.16 this process yields tM = 53 ns for ∆ = 360 MHz. This same result was found
for a much larger detuning of 700 MHz, while for ∆ = 200 MHz the readout time was
of only tM = 38 ns.

This reveals an interesting property of our readout: when the qubit is in state |1〉,
the JBA bifurcates with a high probability, implying that all bifurcation events occur
at the very beginning of the readout pulse (instead of being distributed exponentially
during tS). We nevertheless keep tS = 250 ns because the bifurcation process itself
needs such a duration to develop properly.

4.5.3.2 Improving fidelity with |1〉 → |2〉 shelving

Since the qubit relaxation during readout account for a large part of readout errors,
we implemented a technique that protects the qubit against relaxation in order to
further increase the readout contrast . This technique consists in transferring all the
population of state |1〉 into the next excited state of the transmon |2〉 making profit
of the very low decay rate from |2〉 to |0〉, which comes from the vanishingly-small
matrix element 〈0 |n̂| 2〉 of the transmon (see 2.2.4). With this technique, the relaxation
to |0〉 can only happen in two ways: during the short time during which the 1 → 2
excitation takes place, or afterwards, relaxing first from |2〉 to |1〉 and then to |0〉, a
double relaxation process which takes more time. Therefore, this technique, analogous
to electron shelving in atomic physics, and which has been already used with other
Josephson qubits5, leads to a decrease in the overall relaxation during the readout.

To implement this technique a π pulse resonant to the 1 → 2 transition and with a
length of typically 15 ns is sent just before the readout pulse. This yields the S-curve
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Figure 4.16: Determination of the effective measurement time. The qubit is excited by a π/2 pulse,

and after a wait time ∆t, a readout pulse is sent to the resonator (experimental sequence on the top

left). By repeating the same experiment while varying the measurement pulse power, S-curves are

taken for different ∆t. Fitting these S-curves with the model described in the text yields the evolution

of the excited state population as a function of the waiting time ∆t. Extrapolating this curve to

negative times, an effective readout time tM = 53 ns is found.

S2
!m shown in Fig. 4.17a with a 92% contrast. Figure 4.17b shows Rabi oscillations

between |0〉 and |1〉 obtained with a composite readout pulse comprising the 1 → 2
pulse for the qubit plus the standard readout pulse. The visibility, defined as the
fitted amplitude of the oscillations, is 94%, and the Rabi decay time is 0.5 µs. Of the
remaining 6% loss of visibility we estimate that about 4% is due to relaxation before
bifurcation and 2% to residual out-of-equilibrium population of |1〉 and to control
pulse imperfections.

To ensure that the 1 → 2 pulse hardly affects the |0〉 state, we record an S-curve
starting in |0〉 and applying a π pulse at ω12 (dotted blue S-curve of Fig. 4.17): it
reveals that this pulse induces a spurious population of the |1〉 state of order 1%.
We checked that this effect is corrected by using quality factor of the CBA resonator
Q = Qc and the non-linearity quantified by the critical current of the junction I0
affect the performance of the CBA readout, we measured several other samples with
different Qc, and a sample with a SQUID, instead of a Josephson junction in its
middle, which allowed to in-situ tune I0.

4.5.3.3 Trade-off between qubit coherence and readout fidelity

Is the high-fidelity described above effective in a large span of qubit-resonator detun-
ings ∆ = ωc − ω01? Indeed, besides acting as a qubit state detector the resonator also
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Figure 4.17: Best single-shot readout visibility obtained shelving to |2〉, at ∆/2π = 0.38 GHz and

∆m/2π = 17 MHz. Only elements added with comparison to 4.15 are commented. (a) S-curves of

the bifurcation probability pB(Pm), after preparing the qubit in state |2〉 (solid line labelled S2
ωm

) with

the proper resonant π pulses (top energy diagram). The maximum difference between S0
ωm

and S2
ωm

(green vertical line) define a readout contrast of 92%. The readout fidelity is thus increased by using

a composite readout where the measurement pulse is preceded by a π pulse at frequency ω12 that

transfers |1〉 to |2〉. The dotted blue curve obtained after a single π pulse at frequency ω12, starting

from |0〉, shows that this technique has almost no effect on |0〉. We also plot the curves obtained for

|0〉 when shifting the readout frequency ωm by 2χJBA
12 = 5.1 ± 0.1 MHz (green dashed line) in order

to match at low pB the curves obtained for |2〉. (b) Rabi oscillations at 29 MHz measured with our

composite readout, as sketched on top. Dots are experimental values of pB(∆t) whereas the solid line

is a fit by an exponentially damped sine curve with a 0.5 µs decay time and an amplitude of 94%
(best visibility). The total errors in the preparation and readout of the |0〉 and |1〉 states are 2% and

6.5% respectively.

serves as a filter protecting the qubit against spontaneous emission on the environ-
ment. When the resonator and the qubit are nearby, the cavity pull is large and thus
also separation between S0

ωm
and S1

ωm
curves. This would improve the contrast but

the relaxation is also faster, as explained in 2.3.1, and leads to a reduction in ρ′ee(∆t).
Conversely, when the resonator and the qubit are far detuned the relaxation becomes
lower, until reaching a saturation at Γ1 ≈ 700 ns, but the cavity pull is also reduced.

Fig. 4.18 presents a summary of our measurements of contrast and coherence times.
The qubit coherence times are measured using standard experimental sequences6.
For the relaxation time Γ−1

1 , we apply a π pulse and measure the qubit state after
a variable delay, yielding an exponentially decaying curve whose time constant is
Γ−1

1 . At small detuning ∆, Γ−1
1 is in quantitative agreement with calculations of

the spontaneous emission trough the resonator. However it presents a saturation,
similarly as observed in previous experiments85, but at a smaller value around 0.7 µs.
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Figure 4.18: Trade-off between qubit coherence and readout

fidelity. (a) Experimental relaxation time Γ−1
1 (red dots) and

dephasing time Γ−1
φ (violet dots) of the qubit as a function

of ω01 (or equivalently ∆/g). Error bars on Γ−1
φ result

from the maximum experimental uncertainties in Γ−1
1 and

Γ−1
2 . The solid red line is the value of Γ−1

1 obtained by

adding to the expected spontaneous emission through the

resonator (dashed red line) a relaxation channel of unknown

origin with Γ−1
1 = 0.7 µs (horizontal dotted line). The

blue line is the pure dephasing time Γ−1
φ corresponding to

a 1/ f flux noise with an amplitude set to 20 µϕ0/
√

Hz
at 1 Hz. (b - green data) Readout contrast with (dots) and

without (circles) |1〉 → |2〉 shelving. (b - blue data) Effective

cavity pull 2χJBA (squares). For the sake of comparison, the

predicted cavity pull 2χ in the dispersive approximation

is also shown in cyan, taking into account the maximal

experimental uncertainty on g. The pink area denotes the

region where the readout contrast is higher than 85%.

The effective cavity pull 2χJBA deter-
mined from the S-curves shifts is in
quantitative agreement with the value
of 2χ calculated from the sample param-
eters. The contrast varies with ∆ as antic-
ipated and shows a maximum of 92% at
∆/2π = 0.38 GHz, where Γ−1

1 = 0.5 µs.
Larger Γ−1

1 can be obtained at the ex-
pense of a lower contrast and recipro-
cally.

Another important figure of merit is
the pure dephasing time17 Γ−1

φ which
controls the lifetime of a superposition
of qubit states. Γ−1

φ is extracted from
Ramsey fringes experiments: two π/2
pulses are applied at a frequency slightly
off-resonance with the qubit and with
a variable delay; this yields an expo-
nentially damped oscillation whose time
constant is Γ−1

2 . We then extract the pure
dephasing contribution Γφ = Γ2 − 1/2Γ1
. Such pure dephasing Γφ shows a
smooth dependence on the qubit fre-
quency, in qualitative agreement with
the dephasing time deduced from a
1/ f flux noise of spectral density set
to 20 µϕ0/

√
Hz at 1 Hz, a value similar

to those reported elsewhere91,92. Note
that Γ−1

φ ≈ 2.5 ± 0.5 µs at the flux opti-
mal point (∆/2π ≈ −0.75 GHz, data not
shown in 4.18).

To summarize our circuit perfor-
mances, we obtained a 400 MHz fre-
quency range (pink area on Fig. 4.18)
where the readout contrast is higher than
85%, Γ−1

1 is between 0.7 µs and 0.3 µs,
and Γ−1

φ between 0.7 µs and 1.5 µs.

4.5.4 Is the CBA a Quantum Non De-
structive (QND) detector?

The readout unavoidably perturbs the
qubit by collapsing its state α |0〉+ β |1〉
to |0〉 if 0 is read and conversely. A desirable feature is that no other perturbation
in addition to this projection affects the qubit state. Specifically, the measurement
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process should not induce extra relaxation of the qubit, or spurious excitations49.
Indeed, former implementations of JBA readout on superconducting qubits show
a strong increase in relaxation when the resonator switches from the B̄ state to the
high-amplitude B state138,139.
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Figure 4.19: Checking the QND character with two successive readouts. The two protocols are

sketched on top: the first one with two successive readout pulses placed immediately after the control

Rabi pulse (red and blue dots), the second one with the second pulse only (green dots). The Rabi

oscillations pB(∆t) performed at ∆/2π = .25 GHz and ∆m/2π = 25 MHz with Pm = −30.5 dB

yield a loss of Rabi visibility between the red curve (83%) and the blue one (44%) due to qubit

relaxation during the first readout or the delay. However the lower visibility in the green curve (37%)

suggests that the qubit relaxation during the first readout is very low, since the protection against

relaxation due to the AC-Stark shift induced by the first measurement pulse is higher than than this

hypothetical effect.

A strong criterion for testing the back-action of the readout consists in performing a
set of successive readouts and checking if they yield the same result. If they indeed
do, the readout is said to be Quantum Non-Demolition (QND). For that purpose we
compare (at ∆ = 0.25 GHz) Rabi oscillations obtained with two different protocols:
the control pulse is either followed by two successive readout pulses yielding curves
R1 and R2, or by only the second readout pulse yielding curve R3 (see Fig. 4.19).
R2 and R3 exhibit almost the same loss of visibility compared to R1, indicating that
relaxation in the presence of the first readout pulse is the same as (and even slightly
lower than) in its absence.

In this experiment the readout is performed with a large detuning ∆m/2π = 25 MHz,
to reduce the total measurement duration. Indeed, as a larger readout detuning
implies a higher driving power and thus a higher reflected power, the signal to
noise ratio is increased which allows to shorten tH to 50 ns. We also used for these
data tR = 10 ns and tS = 40 ns to shorten the overall measurement time, which also
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decreases the maximal contrast to approx 83%. Finally, a delay time of 120 ns between
the two readout pulses has been optimized experimentally to empty the resonator of
all photons due to the first measurement, and thus avoid any spurious correlations
between the two outcomes of the sequence.

4.5.4.1 Modifications in qubit relaxation Γ1 due to the readout
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Figure 4.20: Top-panel: spectroscopic determination of the

qubit frequency ω01 when it is AC-Stark shifted by an auxil-

iary microwave with frequency ωm and power PP (protocol

on top, with ∆t = 0). The shift provides an in-situ esti-

mate of the average photon number n̄ in the resonator (right

scale) with a precision of ±30%. The bifurcation is seen as

a sudden jump. Bottom-panel: qubit relaxation time Γ−1
1

(measurement protocol on top, ramping ∆t and fitting the re-

sulting exponential to get its time constant Γ−1
1 ) in presence

of the same auxiliary field. Γ−1
1 does not show any strong

decrease even at power well above bifurcation.

In order to investigate further the influ-
ence of a readout pulse on the qubit re-
laxation, we measure Γ1 in presence of a
perturbing microwave field at the same
frequency ωm as readout and with a
power PP (see Fig. 4.20). We first roughly
estimate the intra-cavity mean photon
number n̄(PP) by measuring the AC-
Stark shifted qubit frequency ω01(PP)
as explained in 3.3.2.2. However the
correspondence between ω01(n̄) and n̄

is linear only for the low photon num-
bers n̄ ≪ ncrit, above ncrit the disper-
sive approximation breaks down, so we
obtained the exact dependence by nu-
merically diagonalizing the full Hamilto-
nian of the transmon coupled to a field
mode with n photons (as detailed below
in 4.7.1.2).

Bifurcation is clearly revealed by a sud-
den jump of n̄ from about 5-10 to 50-
100 photons. Meanwhile Γ−1

1 does not
show any decrease up to about 5 dB
above bifurcation. It even slightly in-
creases because the qubit frequency is
pushed away from the cavity, slowing
down spontaneous emission. This is in
strong contrast with all previous experi-
ments using a JBA readout138,139. These
results prove that our design achieves
very low back-action on the qubit. A
similar behavior was observed for most qubit frequencies, except at certain values of
PP and ω01 where dips in T1(PP) were occasionally observed above bifurcation (see
4.7.3 for more information on these dips).
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4.5.5 Conclusions about the CBA qubit readout

Using the CBA to readout a qubit allowed to reach a high fidelity while keeping the
good coherence properties of the cQED qubits and the QND character of the readout.
A crucial characteristic of this new design is its very low back-action during readout
compared to previous JBA designs- This is probably due to the fact that the qubit
frequency depends only on the slowly-varying photon number inside the resonator ,
yielding less relaxation than in previous experiments where the qubit was coupled to
a rapidly varying variable of the JBA (the intra-resonator current). Furthermore the
resonator was designed to make it bifurcate at a low photon number, thus avoiding
spurious qubit state transitions during readout.

These good characteristic of our readout circuit were reproduced in another sample
which was used to study further the optimal parameters for CBA (see the next section).
The high fidelities achieved should allow a test of Bell’s inequalities using two coupled
transmons, each one with its own CBA single-shot readout. Moreover, our method
could be used in a scalable quantum processor architecture, in which several transmon-
CBAs with staggered frequencies are read by frequency multiplexing.

4.6 Optimization of the CBA parameters

Is it possible to enhance further the fidelity of the readout by finely tuning the sample
parameters? The readout visibility depends from the separation and the slope of the
S-curves. The former is controlled by the cavity pull χ, however, as explained above,
this χ cannot be indefinitely increased, since this would yield also a larger relaxation
due to the Purcell effect.

Regarding the slope, four parameters play a role:

• The resonator quality factor Q

• The resonator anharmonicity controlled by the critical current of the junction I0

• The detuning ∆m between the resonator drive and its resonance frequency (ex-
pressed as Ω)

• The pulse shape

The influence of the pulse shape in the S-curve width is an interesting problem of
optimization which remains unexplored up to now. However, with the standard CBA
pulse shape, we studied in several conditions the dependence of the S-curves with
the times tR, tS and tH, yielding only slight gains in visibility ∼ 1%.

In order to study the influence of the three other parameters in the visibility, we
designed two new samples after the one which has been used before that we call
sample A. This new samples (that we call sample B and sample C) have a larger Q

than the sample A to check the influence of Q in the visibility. In addition, in order to
study the influence of I0, in samples B and C the resonator contains a SQUID in its
center instead on a single Josephson junction, allowing to tune in-situ I0 by varying
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the flux Φ:

I0(Φ) = 2I0 |cos (πΦ/Φ0)|

where I0 is the critical current of each of the junctions in the SQUID.

4.6.1 Study with fixed qubit frequency (sample B)

Sample B has tunable critical current with I0 (Φ = 0) = 1.2 µA and very large quality
factor Q (Φ = 0) = 1750 ± 50. Due to an unwanted cut in one of the arms of the
transmon, the transition frequency of the qubit ωge = 5.65 GHz is not tunable. The
dependence of the resonance frequency is as expected (see Section 5.2)

ω′
r(Φ) =

ωr

1 + 2ǫ(Φ)
.

To study the visibility without tuning the qubit we define a new parameter, the
potential visibility which is obtained as follows:

1. We measure the cavity pull χ for the different qubit-resonator detunings ∆(Φ) =
ωge − ω′

r(Φ),

2. We measure S-curves for different values of I0(Φ) and Ω with the qubit in its
ground state |0〉.

3. We obtain the S-curves for the excited state |1〉 by displacing 2χ in frequency the
S-curve for measured for |0〉. We stress that this procedure completely neglects
the effect of relaxation.

4. We calculate the potential visibility as the maximum difference between the two
S-curves.

The results on the potential visibility of this sample are that Ω has only a marginal
importance for maximizing the visibility. Conversely the anharmonicity plays an
important role: larger potential visibilities were obtained for the smaller anharmonici-
ties. Therefore it may be interesting to increase the critical current I0 of the resonator
junction. However, if we do so, the critical intra-resonator field at which the res-
onator bifurcates becomes also larger. Could this constitute a problem for the good
QND properties of the readout by increasing the qubit relaxation during the readout
procedure?

4.6.2 Study with variable qubit frequency (sample C)

In sample C the resonator ωr (Φ = 0) = 6.92 GHz is tunable with I0 (Φ = 0) = 1.3 µA
very similar to sample B. The quality factor Q (Φ = 0) = 1106 ± 20 GHz is between
the one of sample A and of sample B. The qubit was tunable, but the on-chip flux line
which controlled its flux independently from the flux of the resonator SQUID had
a very reduced coupling. Therefore we could not perform a systematic study of the
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Figure 4.21: Study of the visibility as a function of the detuning (top left): the cavity pull (blue

crosses) is very similar to the former sample (light blue data), the visibilities (in |1〉: red circles, using

the |1〉 → |2〉 transition: red disks), are slightly higher than in the former sample. At the highest

visibility point the potential visibility which could be obtained in the absence of relaxation is 99%
(black data in the top right panel). However, the QND character is slightly degraded compared to

former sample (bottom): when performing Rabi oscillations (protocol sketched at bottom left) the

presence of a measurement pulse induces a loss of amplitude (blue data) compared to the situation

where no measurement pulse is present (green data).

best readout conditions both in ∆ and in I0. However, because of the very different
periodicity of the variation of ωge(Φ) and I0(Φ), we were able to study a discrete
number of points which are representative of the full behaviour of the system.

The results of such a study are sketched in Fig. 4.21. We observed slightly higher
values of the raw visibility than those measured in the former samples. The potential
visibilities defined in 4.6.1 are at some working points over 99%, showing that the
only parameter which could allow to improve substantially the visibility is T1.

We also performed a study on two successive readouts to check the QND character,
and this is actually worse than the one observed in the previous sample. Specifi-
cally, the Rabi oscillations measured with a second readout pulse lose 16% of their
amplitude compared to the ones performed without a previous measurement pulse.
We have checked that the T1 in the range where the qubit is AC-Stark shifted by the
measurement pulse cannot account for such a loss, like it could happen if for instance
a two-level fluctuator was at the vicinity of this frequency. This loss in visibility could
therefore be the first sign of a compromise between the readout fidelity and the QND
character.

As a conclusion of this study, the main parameter which could allow further
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increases in the readout visibility is the qubit T1. The optimization of the other
parameters could bring small increases of the order of the percent, but some unwanted
compromises, like the one between the visibility and the QND character may arise.

4.7 Non-linear Jaynes-Cummings physics : strong coupling of a

non-linear resonator and a qubit

As we discussed in Section 3.3, when the resonator is linear the interaction between its
microwave field and the qubit is well understood theoretically22 and was first studied
experimentally at Yale21. Our results completely agree with these former studies: the
qubit spectroscopic line is shifted in frequency (AC-Stark shift) and broadened due to
the measurement back-action.
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Figure 4.22: Sketch of the AC-Stark experiment (top): three microwave tones are applied: a perturb-
ing field (P, in orange), a qubit drive (d, in pink), and a measurement pulse (m, in green), the

latter being amplified and demodulated. The timing for the pulses coming from these three sources

are shown on the middle. On the bottom: qubit spectroscopy pB(ωd) as a function of PP. Various

features with no counterpart in linear cQED appear: a jump corresponding to the bifurcation, a

double spectral line and the sudden extinction of the line for some specific power (on the right).

However, in the new circuit we use in this chapter for achieving high-fidelity readout
the resonator is not anymore linear. The understanding of the qubit-field interaction
in the case of a non-linear resonator is still largely lacking. Besides its practical interest
for quantum information processing, a better knowledge of this interaction is of high
fundamental interest: indeed it is the same as that of an atom strongly coupled to a
Kerr medium, a physical system yielding e.g. parametric amplification and squeezed
states of light. Such a situation, up to now out of reach with real atoms and lasers,
can easily be investigated using superconducting circuits since they provide non
linearities orders of magnitude larger than those available in atomic physics.

Our main goal here is to present first experimental investigations of this non-linear
cQED system, and to give an idea of the physical processes coming into play, without
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presenting a detailed and comprehensive theoretical explanation. We study the
absorption spectrum of the qubit while the resonator is driven by a microwave source
VP that establishes an intra-resonator field of n̄ photons in average (Fig. 4.22). As in
the linear resonator case studied in detail in Chapter 3, the qubit line is frequency-
shifted and broadened by the interaction with the field; however the dependence
of the qubit line frequency and width on the power and frequency of VP is found
to be strikingly modified by the resonator non-linearity. We show that we can
quantitatively understand the position of the lines, and use these measurements to
obtain the non-linear resonator parameters with high accuracy. The width of the lines
is well reproduced with a simple extension of the model for measurement-induced
dephasing of Chapter 3, showing that the link between measurement and dephasing
pertains even for non-linear resonators. Finally we show that at larger spectroscopy
power, additional lines appear in the spectrum. We identify the higher order physical
processes relevant for these lines.

4.7.1 AC-Stark shift with a non-linear resonator

In this paragraph we discuss the frequency shift and broadening of the qubit resonance
line in presence of a field in the non-linear resonator to which it is dispersively
coupled.

4.7.1.1 Experimental results

We start by presenting the experimental results that we will discuss in this section.
They were obtained with sample A, but similar effects were observed with all three
samples that have been measured. The experimental setup is the same as throughout
this chapter, but for the microwave pulse sequence, which is depicted in Fig. 4.22.
Qubit spectroscopy is performed with a microwave pulse from a source Vd at frequency
ωd, using a microwave power low enough not to saturate the qubit transition. During
this pulse, the resonator is driven close to its resonance frequency by a “pump”
microwave source VP of frequency ωP (corresponding to a reduced detuning Ω) and
power PP. To make sure that the resonator field has reached its steady-state during
the qubit spectroscopy, this pump pulse starts one microsecond before Vd is switched
on. Both pulses end up at the same time, so that the spectroscopy pulse lasts 1 µs and
the pump pulse 2 µs. The qubit state at the end of this experimental sequence is finally
measured with a third microwave pulse applied by a source Vm with fixed frequency
ωm, amplitude and temporal shape optimized for qubit readout as described in the
previous paragraphs. Moreover the readout pulse is applied 200 ns after switching
off the two other pulses, a time long enough to let the intra-resonator field relax
before readout, but shorter than the qubit relaxation time T1 = 700 ns. In this way,
the switching probability pB depends only on the qubit state and not at all on the
pump pulse amplitude. In all the experiments discussed in this section the qubit
frequency in absence of resonator field ω01 is fixed at ∆/2π = 725 MHz, much larger
than g/2π = 45 MHz so that the qubit-resonator coupling is far in the dispersive
regime, with χ/2π ≃ 0.8 MHz.
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panel, Ω = 4.9) and smaller (right panel, Ω = 0.7) than Ωc =
√
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and theoretical (line) photon numbers n̄ for the same values of Ω. The inset shows the corresponding

solutions of Eq. 4.6 in the resonator phase space.

Typical results are shown in Fig. Fig. 4.22. The two-dimensional graph shows pB

as a function of the qubit drive frequency ωd for various pump field input powers
PP. For each PP value pB shows a peak when ωd coincides with the qubit frequency
ω01(PP). This peak is AC-Stark shifted towards low frequencies, as expected for
increasing mean photon number n in the resonator. However it is not at all linear in
input power, as was the case for a linear resonator. The quantitative understanding
of the position and width of these peaks as a function of PP and Ω is the object of
this section. In addition to the qubit line, two additional weaker lines can be seen
around the qubits for certain driving conditions; these sidebands will be qualitatively
discussed in the next section.

4.7.1.2 Converting the qubit frequency into photon number

From now on, we will focus on two datasets, obtained for Ω = 4.9 and Ω = 0.7,
shown in Fig. 4.23. The qubit resonance frequency is shifted down when increasing
PP. For Ω = 4.9, an abrupt discontinuity in this AC-Stark shift strikingly evidences a
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sudden increase in the intra-cavity field as the resonator switches from B̄ to B. For
Ω = 0.7 the shift is continuous revealing that in these conditions the intra-resonator
field evolves smoothly from B̄ to B. In both cases, the line is broadened only in the
vicinity of B̄ to B transition.
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Figure 4.24: Conversion of the qubit line shift ∆ω01

to the average photon number n̄ in the resonator.

The different colors correspond to the number M of

transmon levels used in the Hamiltonian which is

diagonalized (colored numbers). From M = 5 the

solutions show almost no differences,

To analyze the data, we fit each peak with a
Lorentzian yielding the qubit frequency shift
∆ω01(PP) = ω01(PP)− ω01(0). According to
the AC-Stark shift theory discussed in chapter
2 and 3, the shift should be very simply re-
lated to n by the relation ∆ω01(PP) = 2χn(PP).
However this relation is only true as long
as n ≪ ncrit. Here ncrit = 65 and we mea-
sure frequency shifts of the same order as
2χncrit. In order to extract an accurate value
for n(PP), we therefore diagonalized numeri-
cally for the parameters of our experiment the
full “transmon-resonator” Hamiltonian

Ĥ = h̄
M−1

∑
i=0

nmax

∑
n=0

(
nωp + ωi

)
|i, n〉 〈i, n|+

+
(

gi

√
n |i, n + 1〉 〈i + 1, n|+ h.c.

)

where M is the total number of transmon
states and nMax the maximal number of Fock states considered. We also stress
that we had to consider a resonator at the frequency ωP of the pump field instead of
its resonance frequency ωr; the validity of this procedure is confirmed by a detailed
analysis performed by M. Boissonneault.

The resulting calculated frequency shift ∆ω01(n) is shown in Fig. Fig. 4.24, taking
into account various numbers of transmon levels. We see that taking into account only
2 levels yields completely wrong results, as already explained in Chapter 2. With three
levels, the frequency shifts are well predicted at low photon numbers but are wrong
by ∼ 10% around n = 50. Taking into account one more level solves the problem.
Using this numerical diagonalization we are thus able to numerically convert the
measured ∆ω01(PP) in the corresponding n(PP), yielding the graphs shown in the
lower part of Fig. Fig. 4.23.

4.7.1.3 Comparison with the theoretical non-linear resonator photon number

From the measured qubit frequency shift ∆ω01(PP) we therefore have obtained a
measurement of the intra-resonator photon number n(PP). We now wish to compare
it to the theoretical n(PP) dependence for the CBA alone. This is conveniently
obtained from the input-output theory using the CBA Hamiltonian Eq. 4.5. It yields
the steady-state intra-resonator field amplitude α as a function of the drive ǫP

i
(

Ω
κ

2
α + K|α|2α + K′|α|4α

)

+
κ

2
α = −iǫP . (4.6)
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where the drive is related to PP by the relation ǫP =
√

PP/(Ah̄ωP) with A the
total line attenuation. The mean photon number is then simply n = |α|2. We have
numerically adjusted the values of the two unknown parameters A and K to fit
n(PP). As can be seen in Fig. 4.23 we obtain a remarkable agreement with the data
for K f it/2π = −(625 ± 15) kHz and A f it = (110.8 ± 0.2) dB over the whole (Ω, PP)
parameter range, consistent with the design value K/2π = −750 ± 250 kHz and
with independent measurements of the line attenuation A = 111 ± 2 dB140. This
demonstrates that measuring the AC-Stark shift of a qubit is an accurate method
for characterizing its Kerr non linearity, yielding much higher precision than usual
methods based on parametric effects40, which are generally hindered by a poor
knowledge of the power at the resonator input.

4.7.1.4 Measurement-induced dephasing

We now investigate the qubit dephasing induced by the perturbing field. The qubit
linewidth ∆ω (FWHM) is directly related to the decoherence rate Γ2 by ∆ω = 2Γ2 +

2Γ
ph
φ , where Γ

ph
φ is the perturbing field contribution and Γ2 accounts for all other

decoherence processes. As illustrated in Fig. 4.25a for Ω = 4.9, the linewidth ∆ω

shows a sharp increase when the resonator is driven near bifurcation. On the other
hand an abrupt narrowing of the line occurs right above the bifurcation threshold, the
line staying narrow even at large photon numbers n̄ = 50. For Ω = 0.7, ∆ω shows a
smooth peak around the transition from B̄ to B as illustrated in Fig. 4.25b. In both
cases the intra-resonator field induces qubit dephasing mostly around the B̄ to B

transition, which is also the region where the JBA can be used as a qubit state detector
most effectively. This non-monotonic behavior is strikingly different from the case of
a linear resonator, where in all envisioned limits the dephasing rate increases with
the photon number.

This new dependence of the dephasing rate with the intra-resonator photon number
can nevertheless be described by a model very similar to the one described in Chapter
3 (see 3.3.1.3). There we had introduced the resonator pointer states

∣
∣αg

〉
or |αe〉 as

the qubit-dependent stationary states of the resonator field. The qubit dephasing rate
was then shown to be

Γ
ph
φ = κD2/2, (4.7)

with D =
∣
∣αg − αe

∣
∣, the distinguishability.

We will now investigate whether this simple formula could hold for our non-linear
resonator. Due to the non-linearity, the pointer states |αi〉 are expected to have a
much more complex dependence on the drive parameters, and exhibit some degree
of squeezing. Nevertheless we approximate them roughly by coherent states, with an
amplitude αi given by the stationary solutions of Eq. 4.6 with ωr replaced by the qubit
state dependent resonator frequency ωi. The predictions of Eq. 4.7, calculated without
any adjustable parameter, are shown in Fig. 4.25a and 4.25b. The agreement with
the experimental data is very good for Ω = 4.9, and semi-quantitative for Ω = 0.7,
possibly due to the neglect of squeezing, which becomes more important when
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Figure 4.25: (a) and (b): Measured (dots) and theoretical (line) line width for Ω = 4.9 and 0.7. (c)

and (d): Examples of single spectroscopy lines for Ω = 4.9 and 0.7 at values of PP indicated on the

upper panel by letters. Insets: zoom views of the phase plane representations of the coherent states αg

(blue) and αe (red) for the same working points. The radius of each disk is equal to 1.

closer to Ωc. Overall, the agreement is remarkable owing to the model simplicity,
reproducing very well the non-trivial dependence of the qubit linewidth on the drive
power over a large parameter range. Typical experimental spectra are shown in Fig.
4.25c and 4.25d, together with the graphical representation of the two pointer states,
confirming that the direct link between qubit line broadening and distinguishability
pertains even when the resonator is non-linear.

Despite the interest of our simple model, we can not expect this model to be valid
in certain regions of the resonator phase diagram:

• In the bistable region Ωg,e >
√

3 there is a small drive power range very close to
the bifurcation threshold where the two pointer states αi correspond to different
oscillator states; Eq. 4.7 then predicts dephasing rates much larger than observed.

• Around the critical point Ωi ≃
√

3, where the pointer states are expected to be
strongly squeezed.

A rigorous derivation of Eq. 4.7 and its limits will be provided in a future article by
Boissonneault et al.

4.7.2 Blue and red sidebands

After having discussed the frequency and width of the qubit resonance line in presence
of a field inside the non-linear resonator, we now turn to the study of the satellite
lines that appear at high spectroscopy powers around the qubit main line. This
effect is evident in Fig. 4.26 where two-dimensional plots of pB showing the qubit
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Figure 4.27: Degradation of the qubit coher-

ence due to the noise of the satellite line (data

at Ω = 2.8, PP = 2 dBm). Top panel: exam-

ples of Rabi oscillations measured at different ωR.

Bottom panel: decay time of Rabi oscillations as

a function of the Rabi precessing frequency ωR.

absorption spectrum for increasing pump power
PP are shown for increasing qubit drive power
Pd. Above bifurcation, the spectrum is observed
to consist of one main qubit line, surrounded
by two satellite peaks separated by the same
amount δω(PP) which increases with PP, and
with an asymmetric amplitude. Namely, the
peak at lower frequency has a larger amplitude
and area than the peak at higher frequency. In
the following we will present in more detail this
interesting phenomenon and provide a quali-
tative theoretical description in terms of two-
photon absorption and emission processes be-
tween the qubit and the quasi-energy levels of
the non-linear resonator.

Rabi oscillations in presence of a field

In order to obtain more insight into the pecu-
liar shape of the qubit resonance line shown in
Fig. 4.26, we have investigated the qubit coher-
ent dynamics in the presence of the field in the
resonator, at a given pump power PP = +2 dBm.
Rabi oscillations obtained by driving the qubit at
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resonance with the AC-Stark shifted qubit line
are shown in Fig. 4.27 for various Rabi frequencies. The most striking feature is a
sudden drop of the Rabi oscillations decay time TR when the Rabi frequency reaches
a certain value that turns out to be exactly the frequency δω of the separation between
the lines for this specific pump power. Since the decay of Rabi oscillations is essentially
governed by the noise power spectrum at its frequency as discussed in Chapters 2

and 3, it is natural to investigate whether the resonator itself does not generate noise
at this particular frequency δω.

Quasi-energy levels of the driven non-linear oscillator

We thus need to have a better understanding of the driven non-linear resonator
dynamics. This can be obtained by linearizing the CBA Hamiltonian around its steady-
state solution141. The driven CBA Hamiltonian in the Rotating Wave Approximation
writes

ĤCBAd = h̄∆P â† â + h̄
K

2

(

â†
)2

â2 + h̄
(

iEP â† − iE∗
P â
)

where ∆P = ωr − ωP is the pump field detuning from the resonator frequency, and
EP = ǫP/

√
κ is the pump field amplitude. We then write â = α + b̂, where α is the

solution of 4.6, and we linearize the resulting Hamiltonian yielding

ĤCBAl = h̄∆Pb̂†b̂ + 1/2h̄K
(

α∗2b̂2 + α2b̂†2 + 4 |α|2 b̂†b̂
)

.

This Hamiltonian can be diagonalized with a transformation of the Bogoliubov type

b̃ = µb̂ + νb̂†

b̃† = µ∗b̂† + ν∗b̂ .

Choosing

µ = cosh r

ν = e2iθ sinh r

we can see that the Hamiltonian can be rewritten

H̃CBAl = h̄∆′
Pb̃†b̃. (4.8)

provided we take (∆′
P, r, θ) as solutions of

∆′
P cosh 2r = ∆P + 2K |α|2

∆′
P sinh 2r e−2iθ = Kα∗2.
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This yields in particular the modulus of ∆′
P

∆′2
P =

(

∆P + 2K |α|2
)2

− K2 |α|2 (4.9)

while its sign can be found from the equations above. We stress that this analysis

is valid only provided
(

∆P + 2K |α|2
)2

− K2 |α|2 > 0, which will be the case in the
experiments discussed here.

To sum up, the driven non-linear resonator is equivalent around its stationary solu-
tion to an effective harmonic oscillator of frequency ω′

c = ωP + ∆′
P. The levels of this

effective oscillator are called the quasi-energies. The frequency ∆′
P also corresponds to

the attempt frequency used in annex A to derive the switching rates of the bifurcation
process. Note also that this analysis applies both in the situation where only one
stable solution exists for the oscillator and in the case where the system is bistable, in
which case two families of quasi-energy levels exist depending on the oscillator state.

It is very interesting to see how dissipation is transformed in the new b̃ basis. It is
possible to show141 that the new master equation, in the frame rotating at ω′

c, writes

∂tρ̂ = κ
(

|ν|2 + 1
)

D
[
b̃
]

ρ̂ + κ |ν|2 D
[

b̃†
]

ρ̂

describing this mode as being damped at the resonator rate κ but with an effective
temperature that leads to a thermal population of the quasi-energy levels with
an average number |ν|2. This emergence of an effective temperature whereas the
physical temperature of the sample is taken to be 0 K in this analysis is typical for
parametric processes and can be understood in terms of spontaneous parametric
down-conversion. Pairs of photons from the pump at frequency ωP are converted
into pairs of quasi-photons at frequencies ωP + ∆′

P and ωP − ∆′
P. Considering only one

of these frequencies and neglecting the correlations with the photons emitted at the
other frequency yields an effective thermal state.

Driven non-linear oscillator: noise spectrum and parametric gain

Because of these parametric effects, photons should permanently be emitted from the
resonator at frequencies ωP + ∆′

P and ωP − ∆′
P when it is driven at ωP, which should

be measurable in the resonator noise spectrum. In order to do this we have used
the very same setup as described in chapter 3 for continuously measuring the Rabi
oscillations. The resonator is driven at pump frequency ωP for various powers PP,
and its total noise spectrum is recorded after demodulation at ωP. Typical results are
shown in Fig. 4.28. They clearly show emission of photons at a frequency that depends
on the pump power, in good agreement with the expected ∆′

P(PP) dependence without
any adjustable parameter. We have also verified that this emission is phase-sensitive
as expected, and squeezing was observed on one of the quadratures (data not shown).

Besides amplifying and squeezing vacuum fluctuations, the driven non-linear
oscillator can also amplify a small input signal and be operated as a parametric
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amplifier. We have measured this gain in various pumping conditions, and obtained
a good agreement over the whole parameter range. In Fig. 4.28 we show only one
typical curve, showing that the amplifier has gain around ωP + ∆′

P and ωP − ∆′
P.
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Figure 4.28: On the left: noise spectrum at the resonator output as a function of the probe power

PP. On the right: characterization of the parametric amplification of a signal VS with the non-linear

resonator, pumped by VP: two spectral lines corresponding to the amplified signal (upper one) and

the idler (lower one) are shown.

Stokes and anti-stokes transitions

We now use our understanding of the non-linear dynamics to give a qualitative
account of the physical processes governing the appearance of the satellite peaks in
the qubit absorption spectrum. The coupling of the qubit to the driven CBA can
thus be envisioned as the dispersive coupling of the qubit to an effective harmonic
oscillator, with a pump-power-dependent frequency ω′

c = ωP + ∆′
P, and an effective

temperature characterized by its mean photon number |ν|2. This is reminiscent of
the simpler situation of a qubit at frequency ωge dispersively coupled to a linear
resonator of frequency ωr, which has been shown in142 to give rise to the appearance
of sideband transitions at the sum and difference frequency of the qubit and resonator
frequencies . The transition in absorption at ωS = ωge + ωr correspond to a so-
called “Stokes process” in which both the qubit and the resonator absorb one energy
quantum simultaneously, while those at ωAS = ωge − ωr correspond to an “anti-
Stokes” process in which the qubit is excited from ground to excited state while a
photon is emitted into the resonator mode. With a transmon qubit, these sidebands
can not be excited by directly sending microwaves at ωS or ωA for symmetry reasons,
however the Stokes (anti-Stokes) transition can be excited using two-photon transitions
with two microwave sources of frequencies such that their sum (difference) is equal
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to ωS (ωA)143. This has been used to generate entanglement between two transmon
qubits144,145.
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Figure 4.29: The triplet and diplet spectral lines on another sample. (a) Spectroscopic data as

a function of PP at Ω = 13.5 at high probing power. The full line shows the theoretical qubit

fundamental transition ωth
01 (with 5th order non-linearity taken into account). The dashed (resp.

dotted) line shows ωth
01 + ∆′ (resp. ωth

01 − ∆′) where ∆′ is the meta-resonator 0′ → 1′ transition

frequency. The discrepancies in the positions of these last lines could come from the inconsistency in

the non linearity orders used to calculate ωth
01 and ∆′. (b) Ratio of populations of |0′〉 and |1′〉 states:

experimental data (black dots) and prediction in the B̄ and B states (full lines).

In our situation, Stokes transitions from |g, 0′〉 to |e, 1′〉 (where |0′〉 , |1′〉 refer to
the ground and first excited quasi-energy state of the driven CBA) can be similarly
excited using the cavity pump and the qubit drive sources to perform the two-photon
transition, under the resonance condition ωd + ωP = ωge + ω′

c, and anti-Stokes
processes from |g, 1′〉 to |e, 0′〉 can be excited when −ωd + ωP = −ωge + ω′

c. To verify
our understanding of these processes, we show in Fig. 4.29 a more detailed spectrum
of the qubit absorption around bifurcation, together with the predictions for the qubit
main resonance line and Stokes and anti-Stokes processes. The agreement is good.

The sidebands observed in the qubit spectrum give us another interesting test of the
non-linear resonator theory described above. They allow a direct estimation of the
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average photon number nth inside the “effective resonator”, by simply comparing the
areas of the Stokes and anti-Stokes sidebands. Indeed, it is well known from trapped
ions experiments that the ratio of the heights of Stokes and anti-Stokes sidebands
directly yields the ratio nth/(1 + nth)

146. Here we can thus compare this ratio to
the expected mean photon number |ν|2, which can be calculated without adjustable
parameter. This comparison is done in Fig. 4.29 and shows a quantitative agreement,
demonstrating in particular that the temperature of the mode observed here is not
due to a simple heating effect but truly to spontaneous parametric down-conversion.

This provides a full validation of our interpretation of the satellite peaks observed
in 4.29 as two-photon Stokes and anti-Stokes processes between the qubit and the
non-linear resonator quasi-energy states. More generally, it illustrates the richness of
phenomenon expected from the interplay between strong coupling and non-linear
and parametric effects found in non-linear circuit QED, and which are here only
starting to be unveiled.

4.7.3 Other features linked to the specific dynamics of non-linear oscilla-
tions

The study of the qubit spectrum in the presence of a field in the non-linear resonator
has also yielded other phenomena that we have not been able to understand but which
are undoubtedly linked to the interaction of the qubit and the resonator. Already
in 4.22, one can see that the qubit line vanishes for a certain pump drive power
PP, and reappears at larger power. We have studied the qubit energy relaxation
time T1 for various pump powers in the same conditions, and found that T1 is
reduced by one order of magnitude at the same point as the qubit line vanishes
as can be seen in Fig. 4.30b. One might think that this reduction in T1 is due to
a resonance in the environment at the specific frequency reached by the AC-Stark
shifted qubit resonance frequency. However, this extinction of the qubit line occurs at
different frequencies depending on the pump frequency ωP as can be seen in 4.22a.
In addition, this behaviour is perfectly reproducible even after one thermal cycling
to room-temperature of the sample, contrary to the usual two-level systems which
unavoidably change from one cool-down to another. All this seems to indicate that the
dynamics of the non-linear resonator in these specific resonant conditions cools down
the qubit; unfortunately we have not been able to provide a detailed explanation of
the mechanism by which this dynamical cooling operates.
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phenomena, which happen for much lower powers: the critical power PC which correspond to the

bifurcation is shown by a green arrow.

193





Part III

T O WA R D S A M U LT I - Q U B I T A R C H I T E C T U R E





5
T U N A B L E R E S O N AT O R S F O R C O U P L I N G Q U B I T S

5.1 Qubit interactions mediated by a tunable resonator

… …
Figure 5.1: A tunable resonator

(purple) can mediate the inter-

actions between several qubits

(pink), each one with a constant

transition frequency ω01.

The coherent coupling of two superconducting qubits through
a capacitor147,148,149,150, an inductor151 or a resonator152,153,54

has been demonstrated by several groups worldwide. By
violating the Bell’s inequality with two coupled qubits118, the
Yale group provided a strong proof of the coherent nature of
the coupling. In all these experiments the coupling is fixed but
it can be effectively switched on and off by tuning the qubit
transition frequencies in and out of resonance. This scheme
can in principle be extended to multi-qubit architectures154.

A more convenient scheme, however, might be to keep in-
stead the qubits at fixed transition frequencies and to tune the
coupling element –the resonator47 or the ancilla qubit155– for
bringing it in and out of resonance with each particular qubit.
In this part of the thesis we describe the operation of a tunable
resonator which could be used as a tunable coupling element
for cQED qubits, in an architecture (Fig. 5.1) very similar to
the one analyzed by Wallquist et al.47.

Example of operation: creation of a Bell’s state

To create a Bell state with two qubits coupled to a tunable
resonator as shown in Fig. 5.1, the following sequence of
operations is performed47:

1. All three elements are set to be far detuned. The initial state |e0g〉1,r,2 is prepared
by applying a π resonant control pulse to the first qubit.

2. The resonator is brought into resonance with the first qubit during a time
corresponding to π/2 or 3π/2 of a vacuum Rabi oscillation. This brings the

system to the
(

|e0〉1,r ± |g1〉1r

)

|g〉2 state.

3. The resonator is brought into resonance with the second qubit during a time
corresponding to π of a vacuum Rabi oscillation, so that it transfers its excitation
to the qubit. The resonator ends up being empty and can be factorized, yielding

the Bell state |Ψ±〉1,2 |0〉r =
(

|eg〉1,2 ± |ge〉1,2

)

|0〉r.

With a more complex protocol it is possible to implement a two-qubit control-phase
gate47 which, combined with 1-qubit operations, provides a universal set of quantum
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gates.

Requirements for the coupling resonator

In order to be used as a coupling bus for a multi-qubit architecture, a tunable resonator
should meet several requirements:

• In order to couple a large number of qubits, with different transition frequencies,
the resonator frequency should be tunable in a large range.

• An important source of imperfections in two-qubit operations comes from the
absorption of the energy in the coupling element. Therefore the resonator should
have as little losses as possible.

• Since the qubit decoherence time limits the duration of quantum algorithms, two-
quit operations should be performed as fast as possible. The resonator should
thus be tunable as fast as possible, although much slower than the resonance
frequency to avoid parametric excitation.

In this chapter we present a circuit design which fulfills the first two criteria and
potentially also the third one. Indeed, although our experimental setup did not allow
to test fast tuning, this was demonstrated in Chalmers with a very similar design56.

Studying the losses in Josephson circuits

Cc  Ccλ/4λ/4

Cc Ccλ/4λ/4
LJ

Figure 5.2: A SQUID acts as a tunable inductance con-

trolled by the magnetic flux threading its loop. Inserted

in the middle of a λ/2 resonator, it allows to tune the

resonance frequency.

An additional motivation for investigat-
ing tunable resonators with high qual-
ity factors is to obtain information on
the losses in Josephson circuits. As ex-
plained in 2.2.3.7, the sources of relax-
ation in Josephson qubits are not yet well
understood. Since tunable resonators
also contain Josephson junctions, they
are probably subject to the similar relax-
ation phenomena. Moreover, they consti-
tute ideal systems to study these losses
for two reasons: first because their high
quality factors, which make them sensi-
tive even to very small losses. Secondly,
because the control on the parameters is

better than in qubits, which are too complex to perform such systematic study. There-
fore studying the mechanisms which limit the quality factor of tunable resonators
may provide important clues for understanding the limits of the qubit relaxation time
T1.
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5.2 Tuning a resonator with a SQUID

In order to build a resonator with tunable resonance frequency we need a tunable
capacitor or a tunable inductance. Tunable capacitors are not easy to build, but
conversely the SQUID, a basic superconducting circuit element, acts as an tunable
inductor whose value LJ(Φ) depends on the magnetic flux Φ threading its loop.
Inserting a SQUID in the center of a λ/2 resonator (as shown in Fig. 5.2) makes its
frequency tunable.

5.2.1 The SQUID: a tunable inductor

Ib 
Ic0

Ic0

φ1

φ2

δ
i1

i2

Figure 5.3: Electrical scheme of a simple

SQUID

A SQUID consists in a superconducting loop in-
terrupted by two Josephson junctions (Fig. 5.3).
We derive here the variation of its inductance as a
function of the magnetic flux Φ threading its loop,
neglecting for the moment the geometric induc-
tance LL of such a loop, which will be considered
in the full treatment of 5.2.3.

We note φ1 and φ2 the superconducting phase dif-
ference across each of the junctions. Any magnetic
flux going through the loop produces a difference
between these phases:

Φ =
∫

B · dS =
∮

A · dr =

=
h̄

2e

∮

(∇θ) · dr = ϕ0(φ1 − φ2)

Introducing for the sake of simplicity the frustration f = πΦ/Φ0 and the auxiliary
phases φext = 1/2 (φ1 + φ2) and φint = 1/2 (φ1 − φ2):

{

φ1 = φext + φint = δ + f

φ2 = φext − φint = δ − f
.

In a balanced SQUID (in which the junctions have the same critical currents Ic1 =
Ic2 = Ic0) the Josephson equations yield

Ib = I1 + I2 = Ic1 sin (δ + f ) + Ic2 sin (δ − f ) = 2Ic0 cos f sin δ

V = ϕ0δ̇.

These equations have the same form than the Josephson equations of a single
junction of phase δ and critical current Ic(Φ) = 2Ic0 |cos f | .

In conclusion, as far as the self-inductance of the loop LL remains negligible com-
pared to LJ(Φ) and the bias current Ib is low compared to the critical current of the
SQUID Ic(Φ), a SQUID behaves as a flux-tunable inductor with an inductance

LJ(Φ) =
ϕ0

2Ic0 |cos f | .
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5.2.2 Resonance frequency of a λ/2 resonator containing a SQUID

Inserting the inductance LJ(Φ) of a SQUID in the middle of a λ/2 resonator changes
its resonance frequency from ω1 (without SQUID) to ωr(Φ). We will now calculate
this new resonance frequency by calculating its input impedance. We will use a trick
to simplify the calculation, and split by the thought the SQUID inductance in two
series inductances LJ(Φ)/2. By symmetry, the voltage at the middle point in-between
the two inductances should be zero. The resonance frequency ωr thus has to be the
same as that of a λ/4 resonator shortcut to ground by an impedance ZL = iLJ(Φ)ω/2.
The input impedance of such a circuit at ω, seen from the coupling capacitor, is

Zin = Z0
ZL + iZ0 tan βΛ

Z0 + iZL tan βΛ

where β = ω/
√
ℓc is the propagation constant. We now write ω = ω1 + δω so that

tan βΛ = −1/ tan(πδω/2ω1). This yields an input impedance

Zin = Z0

i
LJ(Φ)ω

2 − i Z0
tan(πδω/2ω1)

Z0 +
LJ(Φ)ω

2
1

tan(πδω/2ω1)

.

The resonance frequency is a pole of this input impedance given by the equation

Z0 tan
π(ωr(Φ)− ω1)

2ω1
+

LJ(Φ)ωr(Φ)

2
= 0. (5.1)

Expanding to the first order the tangent and using that lΛ = πZ0/ω1, one can obtain
the explicit expression

ωr(Φ) ≈ ω1
ℓΛ

ℓΛ + LJ(Φ)
=

ω1

1 + ǫ(Φ)
(5.2)

where ǫ(Φ) = LJ(Φ)/Λℓ.
This variation of the resonance frequency also affects the coupling quality factor

Qc. By computing the equivalent RLC parallel circuit, one can also find its first order
correction in ǫ(Φ):

Qc(Φ) ≈ Qc1 [1 + 4ǫ(Φ)] , (5.3)

where Qc1 is the bare coupling quality factor.

5.2.3 Full analysis of the SQUID inductance

In this paragraph we go further in the analysis of 5.2.1, considering the case of a
symmetrical DC SQUID with a geometric inductance LL as shown in Fig. 5.4 and
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computing the first order corrections due to LL, which were necessary to account for
our experimental data.

We start from the Josephson equations, which give the currents in each branch
Ii = Ic0 sin φi (i = 1, 2). The bias current Ib = I1 + I2 as shown in Fig. 5.4. On the
other hand, the presence of a circulating current J = (I1 − I2)/2 yields a difference
between the internal phase and the frustration:

φint = 1/2 (φ1 − φ2) = f − πLL J/Φ0 = f − πβ0 cos φint sin φext ,

Ib 
Ic0

Ic0

φ1

φ2

LL/4

δ
I1

I2

LL/4

LL/4

LL/4

Figure 5.4: Symmetrical DC SQUID

where we have introduced β0 = LL Ic0/Φ0. There-
fore the SQUID behaviour is controlled by the two
relations:

{

Ib = 2Ic0 cos φint sin φext

φint = f − πβ0 cos φext sin φint .
(5.4)

Our goal is to obtain the equivalent inductance
of the SQUID LJ = ϕ0δ̇/ İb. We first remark that δ

is obtained simply from φext, indeed

δ =
1
2

[

φ1 + φ2 +
LL

2ϕ0
(I1 + I2)

]

=
π

2
β0

Ib

Ic0
+ φext

and thus

LJ =
ϕ0πβ0

2Ic0
+ ϕ0

dφext

dIb
.

Therefore we only need to differentiate the relations 5.4 that give φint and φext as a
function of Ib and Φ :

dφext

dIb
=

1
2Ic0

[

cos φext cos φint − πβ0
sin2 φext sin2 φint0

1 + πβ0 cos φext0 cos φint0

]−1

≈ (5.5)

≈ 1
2Ic0

[

cos φext0 cos φint0 − πβ0 sin2 φext0 sin2 φint0

]−1
.

Now we need to develop φint and φext to second order in I2
b and to first order in β0

–still keeping the β0 I2
b terms. From Eq. 5.4 we obtain

sin φext ≈ Ib/ (2Ic0 cos φint)

φint ≈ f − πβ0 sin f

√

1 − [Ib/ (2Ic0 cos f )]2

which substituted in Eq. 5.5 and defining s(Φ) = Ib/Ic(Φ) yields

dφext

dIb
≈ 1

2Ic0

1
cos f + πβ0 sin2 f

[

1 +
s2(Φ)

2
(1 + πβ0 sin f tan f )

]

.
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Therefore we get an inductance consisting in a linear term plus a non-linear term:

LJ(Φ, Ib) = LJ0(Φ) + A(Φ)I2
b (5.6)

with

LJ0(Φ) =
ϕ0

Ic(Φ)

(

1 + πβ0
cos2 f − sin2 f

cos f

)

(5.7)

A(Φ) =
ϕ0

2I3
c (Φ)

. (5.8)

5.2.4 The linear regime

A SQUID behaves as a tunable inductance. This inductance, however, contains a
non-linear A(Φ)I2

b term. This unwanted non-linear term is hardly an issue for using a
SQUID-tuned resonator as coupling bus for qubits since the operation of such a device
involves only one photon stored in the resonator. However, when characterizing the
resonator, a large non-linearity A(Φ) require to probe the resonator with a power Pin

low enough to yield a ı(Λ/2) ≪ Ic(Φ). Specifically, when probing an over-coupled
resonator (γL ≪ γ) with an input power Pin the average intra-resonator field (Eq.
2.17) is:

n̄ ≈ Qc

h̄ω2
r

Pin .

Thus, the higher the coupling quality factor Qc, the more Pin has to be reduced
to remain in the linear regime. As a consequence the bare SNR = Pin/(kBTN) is
degraded, and longer averaging times are needed to characterize the resonator.

In all the data presented below, we have checked that Pin corresponds to the linear
regime by repeating the measurements with half the power and checking that the
transmission S21 remains constant.

The issues caused by the non-linearity becomes more significant as Φ approaches
Φ0/2 where the critical current Ic(Φ) vanishes. We analyze below the interesting
situation which occurs when Ic(Φ) becomes of the same order than the thermal
current fluctuations.

5.3 Implementation

5.3.1 Fabrication of tunable resonators

The tunable resonators are fabricated in the same way described in 2.1.4.3, but with
an additional gap in the center of the resonator for inserting the SQUID as shown in
Fig. 5.5.
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5µm
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Sample B Ic0=3µA each

20µm
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50µm


Sample A

Figure 5.5: Layout of the tunable resonators: Sample A contains a single SQUID, while sample B contains an

array of 7 SQUIDs.
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Figure 5.6: Experimental setup

The SQUIDs are fabricated by e-beam lithography and dou-
ble angle deposition (see 3.2.1). In order to have a good
aluminum-niobium contact, before depositing the aluminium
SQUID, the niobium surface is cleaned by argon ion-milling
(. 1018 neutralized 500 eV ions per cm2). The contact resis-
tance has been found in the ohm range, yielding large tunnel
junctions with negligible inductance.

5.3.2 Measurement setup

The experimental setup shown in Fig. 5.6 allows to measure
the resonator transmission for intra-resonator energies of a few
photons, which correspond to typical powers of −140 dBm at
resonator input. In this setup the resonators are thermalized to
the lowest temperature stage of a dilution refrigerator operated
at 40–60 mK. The measurements are performed with a room-
temperature VNA which characterizes the transmission S21 in
amplitude and phase as a function of the frequency. The input
line is strongly attenuated (120 to 160 dB in total) with cold
attenuators to protect the sample from external and thermal
noise, and filtered above 2 GHz. The output line contains
three cryogenic isolators, a cryogenic amplifier from Berkshire
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operated at 4 K (with TN = 3 K) and several room-temperature
amplifiers. Several filters are also used to reduce the average
noise power to avoid amplifier saturation due to the noise.

5.4 A first tunable resonator (Sample A)
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Figure 5.7: Sample A: after cool-down the amplitude and phase of the transmission are measured

(left) yielding a resonance frequency ωr/2π. This resonance frequency is tuned by varying the flux

applied to the sample (right).

A first experiment was performed with a tunable resonator
containing a single SQUID with Ic = 330 nA and large coupling capacitors Cc = 27 fF,
so that the quality factor is determined by Qc = 3.4 × 103.

After cooling down the sample we measured it with a VNA, yielding the S21
amplitude and phase curves shown on the left of Fig. 5.7. By fitting both the
amplitude and the phase of this transmission, we obtained the resonance frequency
ωr and the quality factor Q. When the flux though the SQUID loop is varied, the
resonance frequency shifts periodically, as shown on the right of Fig. 5.7.

Parameter Design Fitted

Quality factor Q (Φ = 0) 3.4 × 103 3.5 × 103

Critical current I0 375 nA 330 nA

Loop inductance LL 40 ± 10 pH -

Bare resonance frequency ω1/2π 1.8 GHz 1.805 GHz

Table 5.1: Parameters of the sample A

To characterize the tunability range, we measured the resonance frequency for
different values of the flux corresponding to the main flux period 0 < Φ/Φ0 < 1 as
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shown on the top of Fig. 5.8. This variation is fitted with Eq. 5.2 yielding a good
agreement over the full period. The fit parameters which are found are very similar
to the design values as shown in Table 5.1.
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Figure 5.8: Variation of the resonance frequency ωr and the quality factor Q of the tunable resonator

while varying the flux Φ across its first period.

The quality factor is in Fig. 5.8 bottom panel: it shows a plateau around integer
values of Φ/Φ0 where it is almost constant and equal to the coupling quality factor
Qc, whereas at Φ/Φ0 = 1/2 it shows a pronounced dip. This dip corresponds to a
broadening which is not expected according to Eq. 5.3. In the next section we analyze
a mechanism which may account for this unexpected effect: the thermal activation of
non-linear effects in the SQUID.

5.4.1 Explaining the drop of Q around Φ0/2

On the vicinity of Φ0/2 the critical current Ic becomes very low, and it is precisely in
this area that the quality factor drops down as shown in Fig. 5.8. This drop may thus
be linked to the dependence of the resonator frequency ωr with the current Ib though
the SQUID: since LJ(Φ, Ib) = LJ0(Φ) + A(Φ)I2

b , when Ib becomes comparable to Ic,
the non-linear component of LJ cannot be neglected and induces an Ib-dependent
shift of the resonance frequency. Now if Ic becomes so small that it is of the same
order than the thermal fluctuations of the current inside of the resonator, these
fluctuations induce a inhomogeneous broadening of the resonance δωr(Φ) which can
be represented by the equivalent quality factor

Qinh =
ωr(Φ)

δωr(Φ)

205



Non-linear resonance shift

In order to calculate the fluctuations δωr(Φ) of the resonance frequency we write
the equations of motion of the anharmonic oscillator. With this purpose we start by
building the equivalent circuit seen from the junction. As sketched in Fig. 5.9, we first
split the SQUID in a linear inductor LJ0(Φ) and a non-linear one LNL(Φ) = A(Φ) I2

b .
Then the biasing circuit is divided in two symmetric sub-circuits biased with a voltage
V/2. The Thévenin equivalent for the sub-circuit between points A and B is

VT = V/a

ZT = 2R0(1 − 2ε)/a2 + jπR0(1 + 2ε)(y − 1) ,

λ/4


Cc Cc

V

A

B

LJ0/2

VT

V/2

2ZT

A’

B’

R0
R0

V/2

LNL

A

B

A’

B’

LNL

λ/4 λ/4

LJ0/2

Cc R0CcR0 λ/4

Figure 5.9: Equivalent circuits of a SQUID tuned

resonator

with a = (CcR0ωr)−1 =
√

4Q/π, y =
ω/ωr(Φ), ε = LJ0(Φ)/Lreso, and keeping only
the highest order terms in a –an approxima-
tion valid in the limit Q ≫ 1. Finally, we find
a mapping of ZT with a series R′L′C′ circuit
by identifying the impedances:

1/
√

L′C′ = ωr(Φ)√
L′/C′ = πZ0(1 + 2ε)/2

R′ = 2R0(1 − 2ε)/a2.

The equation of motion for this oscillator is,
in the absence of drive,

0 =
q

C′ + R′q̇+ L′q̈

[

1 +
LNL

2L′ I2
c (Φ)

(
dq

dt

)2
]

,

which can be written in a dimensionless form by introducing a dimensionless time
τ = ωr(Φ)t and x = q

√

LNLω2
r (Φ)/2L′ I2

c (Φ), yielding

ẍ
(

1 + ẋ2
)

+ Q−1ẋ + x = 0 .

Now to find the resonance frequency of this dimensionless oscillator we follow
the same treatment than Landau uses in his mechanics textbook156 for the Duffing
oscillator. In the absence of non-linearity, the resonance frequency would be 1. Now
because of the cubic term, it is shifted to w = 1 + w(1) for an amplitude of drive a.
To determine the new w value one has to ensure that all higher order terms do not
contain any contribution at w but only at nw. Let us first rewrite the equation as

1
w2 ẍ + x = −ẍẋ2 −

(

1 − 1
w2

)

ẍ ,
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with x = x(1) + x(2), x(1)(τ) = a cos wτ being the linear solution x(2) the next order
term, we get:

¨x(2) + x(2) = w4a3(cos wτ − cos 3wτ)/4 + 2w(1)a cos wτ

where the term in cos wτ cancels if

w(1) = − a2

4(2 + a2)
≈ − a2

8
.

And since the energy of the oscillator is e = (1/2)(x2 + ẋ2) = a2/2, we obtain that
w = 1 − e/4. and thus

δωr = −ωr(Φ)

[
2ωr(Φ)

πR0(1 + 2ε)

]2 ϕ0

8I3
c (Φ)

E .

Thermal fluctuations of the resonance frequency

The fluctuations of the number of photons stored in the resonator are

¯δn2 = n̄2 − n̄2 = n̄ (n̄ + 1) ,

yielding the fluctuation of the energy
√

¯δE2 =
√

Ē2 + Ēh̄ωr(Φ) ,

where the average thermal energy is

Ē =
h̄ωr(Φ)

exp (h̄ωr(Φ)/kBT)− 1
.

The characteristic time of these fluctuations being the resonator damping time Q/ωr

with Q ≫ 1, a simple quasi-static analysis leads to an inhomogeneous broadening
with an equivalent quality factor

Q−1
inh(Φ) =

δωr(Φ,
√

¯δE2)

ωr(Φ)
= −

(
2ωr(Φ)

πZ0 [1 + 2ǫ(Φ)]

)2 ϕ0

8I3
c (Φ)

√
¯δE2 . (5.9)

Comparison with experimental data

Since the resonator is over-coupled, the effect of the quality factor QL coming from
the losses in the total quality factor is negligible. Therefore the total quality factor

Q(Φ) can be predicted to be Q(Φ) =
[

Q−1
c (Φ) + Q−1

inh(Φ)
]−1

where Qc(Φ) is given

by 5.3, and Q−1
inh by Eq. 5.9, with the sample temperature 60 mK. This prediction is

compared to the experimental data in Fig. 5.10, showing rather good agreement.
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Figure 5.10: Quality factors measured in the experiment 1

as a function of the flux : the blue disks correspond to the

lowest 50 ± 10mK temperature, golden disks correspond to

a hotter value and red disks to the hottest one. In these two

latter cases the sample temperature could not be determined

due to a dysfunction of the thermometer. Comparison with

theoretical prediction: the blue line corresponds to 60mK

and the red one to 200mK.

To check that the broadening by ther-
mal noise is the dominant mechanism
causing the dip in Q, we increased
the temperature of the sample and
measured the variation of Q in flux.
The maximum Q remains unchanged,
whereas the dip broadens. The data
taken at the highest temperature (red
circles) are best fitted by taking a temper-
ature of 200 mK in the model. However,
for this specific set of data, no quantita-
tive comparison with the sample temper-
ature was possible, since the thermome-
ters were out of order during this part
of the experiment.

Other sources of broadening

Although the mechanism described
above gives a satisfactory explanation
for the broadening, other mechanisms

could also yield a degradation of the quality factor at Φ/Φ0 = 1/2:

• the SQUID is highly sensitive to flux noise around Φ/Φ0 = 1/2. The universal
1/ f flux noise is therefore expected to cause a broadening of the resonance
in this region. However, the typical amplitude of the 1/ f flux noise which is
measured in other experiments91 (A = 10−5Φ0) would result in a broadening
several orders of magnitude smaller than the one observed, and the sensitivity of
the broadening to the temperature is difficult to explain with such mechanism.

• if there is a dissipative channel in the SQUID, an increase in the inductance LJ(Φ)
results in a higher voltage V across the SQUID and a higher dissipated power
V2/R. The Chalmers group suggested56 that a dissipative channel l–with Rs of
some kΩ– could exist due to sub-gap resonances of the junction. The variation of
these sub-gap resonances with the temperature of the sample could in this case
account for the variation in temperature of the broadening.

5.5 A high-Q tunable resonator (Sample B)

The sample A was over-coupled with Q ≃ Qc = 3500 to ensure that it was easy to
measure it in the linear regime. To study the internal losses we designed another
sample with a higher Qc = 6 × 105. In order to avoid the non-linear effects which
could arise when measuring a resonator with much larger Qc in the same conditions
of the former experiment, we reduced the amount of non-linearity by increasing the
critical current Ic0 of the SQUID junctions. To keep the same tunability range we
compensated the reduction of LJ(Φ) ∝ I−1

0 by fabricating a chain of several SQUIDs
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in series, as shown in Fig. 5.5. Specifically we built a chain of 7 SQUIDs in series, each

one with a critical current Ic0 = 7I
(sample A)
c0 ≃ 2.1 mA. To fabricate SQUIDs with such

a high critical current while keeping the same junctions geometry, we the insulator
oxide layer was fabricated with a much lower pressure of oxygen (0.1 mbar instead of
18.1 mbar in sample A).

5.5.1 Resonance parameters versus flux
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Figure 5.11: Resonance frequency (top panel, the blue disks are experimental data, the blue line the

fit) and quality factor (bottom panel: the blue circles are experimental data, the blue line the thermal

noise model prediction) of the high-Q tunable resonator (sample B) for the first flux period.

We characterized the resonance frequency and quality factor while scanning the flux
over the first period 0 < Φ < Φ0/2 as shown in the Fig. 5.11. The frequencies range
from 1.38 GHz to 1.78 GHz, that is, a tunability range of 400 MHz, 22% of ωr(0).

The fit of the resonance frequency is performed using the same expressions above
but with ǫ(Φ) = 7LJ(Φ)/(Λℓ) where LJ(Φ) is the inductance of a single SQUID. The
agreement is good, although slightly worse than for the sample A, probably due to
some dispersion of the loop areas of the different SQUIDs in the array. The fitted
value of the critical current Ic = 2.2 µA is close to the design value.

The maximum quality factor Q ≈ 3 · 104 is one order of magnitude larger than the
one of sample A, and it is lower than Qc = 6 × 105, which shows that it is limited by
the internal losses Q ≃ QL.

The variation of Q with the flux is similar to the sample A: it shows a stable a
plateau around integer flux quanta and a dip in the vicinity of half flux quanta. The
continuous line in the Fig. 5.11 represents the prediction of the model described
above for the sample temperature of 50 mK, and is in good overall agreement with
the experimental data, although slightly worse than for sample A. This is probably
due to the presence of several SQUIDs which parameters may have some dispersion.
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Parameter Design Fitted

Quality factor Q (Φ = 0) Qc = 6 × 105 3 × 104

Critical current I0 2.5 µA 2.2 µA

Loop inductance LL 20 ± 10 pH -

Bare resonance frequency ω1/2π 1.85 GHz 1.85 GHz

Table 5.2: Parameters of the sample B

5.5.2 Periodicity in flux

1,80

 

z
)

1,75

 

r /
 2

 (G
H

z

1,70

 



 

30000

Q

 
0 1 2 3 4 5

20000

/

 Q

/
0

Figure 5.12: Resonance frequency and quality factor of sample B for several flux periods (pink:

increasing Φ, purple: decreasing Φ). The difference between the orange and purple dots show some

hysteresis in the tuning,

To investigate the dependence of the maximum quality factor across different
periods of flux, a scan over several periods of flux was performed yielding the results
shown in Fig. 5.12.

The quality factor plateau remains at the same value across the different periods,
showing that the maximum Q does not depend on the flux. On the other hand, the
resonance frequencies for integer flux quanta vary from one flux period to another.
This is probably due to some dispersion in the parameters of the different SQUIDs
in the array: a dispersion in the loop areas of the different SQUIDs would indeed
lead to different fluxes threading them and an aperiodic response. The highest
resonance frequencies are attained in the period around Φ = 0, showing that this
period correspond to the minimum flux, since for zero flux the frequency is the
highest whatever the areas of the SQUIDs.
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5.5.3 Maximum quality factor and temperature dependence

In the sample B we have access the the quality factor QL due to the intra-resonator
losses. This quality factor QL ≃ 3 × 104 is one order of magnitude lower than the
quality factors QL observed in resonators without SQUIDs. Other groups also ave
observed quality factors QL ∼ 104 in tunable resonators containing SQUIDs with
Qc ≃ 2 × 104. It seems therefore that the introduction of a SQUID brings some
additional losses to the resonator. To obtain more information on these losses, we
measured the quality factor while varying the temperature of the sample.
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Figure 5.13: Sample B: resonance frequency (blue) and

quality factor (red) as a function of the temperature.

On Fig. 5.13 the maximum quality fac-
tors of the resonator (Φ = 0) are plotted
as a function of the temperature. At the
floor temperature –50 mK– the quality
factors are around 3 × 104, but when the
temperature is raised to 150 mK, they
surprisingly rise to ∼ 5 × 104. To check
a possible effect of the vortices trapped
in the aluminium film, we thermally cy-
cled the sample several times in zero
magnetic field, but the behaviour was
perfectly reproducible.

This effect, which remembers what
happens with bare resonators (see
2.1.5.2), may be caused by microscopic
two-level systems present in the junc-
tion’s barrier with transition frequency ∼ 1.8 GHz. With such an hypothesis the
variation of Q with temperature can be easily explained: at 150 mK, the thermal
fluctuations saturate those TLSs, inhibiting their absorption, whereas at lower temper-
atures, more TLSs are in their ground state and contribute to the intra-resonator field
relaxation. Another possible explanation would be the absorption of the resonator
energy by non-equilibrium quasi-particles89.
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6
F U T U R E D I R E C T I O N S

At the time of writing this thesis, the combined research efforts of all the groups
developing superconducting qubits worldwide have made them the most serious
candidates for implementing solid-state quantum processors. Over the last years,
substantial improvements have been achieved for the coherence times19,9, for the
fidelity of single-qubit125 and two-qubit gates, for the fidelity of the readout meth-
ods53,150. The progress made is evidenced by the demonstration of entanglement
of several superconducting qubits150,118 and, recently, by the operation of simple
quantum algorithms –Grover and Deutsch-Josza– with a superconducting circuit157.
This first demonstration of solid-state quantum computation on a very elementary
two-qubit processor qubits was nevertheless jeopardized by the need to repeat the
experiment due to the lack of a high fidelity and single shot readout of the qubits.
To go further beyond, i.e. to develop an operational quantum processor with a few
qubits, will request significant progress.

Fundamental quantum physics experiments have also been successfully performed
with superconducting quantum circuits in several groups using transmon qubits158,57,
but also phase qubits. Using a cQED setup with a superconducting phase qubit
coupled to a microwave resonator, the generation of arbitrary Fock states in the
resonator159,160 with photon number even higher than achieved in cavity QED, the
monitoring of their decoherence161, and the generation and probing of NOON states1

were successively demonstrated at UCSB.
We would like to finish this thesis by discussing about some of the future directions

of the domain that seem particularly important to us, and about the experiments that,
we believe, could bring a substantial progress to the field.

Controlling the relaxation of superconducting qubits

One of the most critical limitations for superconducting qubits is their comparatively
low coherence times compared to truly microscopic entities like ions, atoms or spins.
The relaxation channel through photon emission in the electromagnetic environment
of the qubits is understood, and its rate can be reduced by improving the microwave
design of the circuits. However, other limiting relaxation channels with unknown
origin are presently limiting the relaxation time of superconducting qubits in the
few microseconds range. The lack of understanding and control of these relaxation
channels is a serious threat for the development of superconducting processors. Two
mechanisms have been proposed to explain their origin, namely the presence of
impurities at the surface of the superconducting electrodes, and the presence of out-of-

1A NOON state is a superposition |n〉a |0〉b + |0〉a |n〉b of n photons in the electromagnetic mode a
and 0 in the mode b and vice versa.
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equilibrium quasi-particles in the superconductor. An important obstacle in probing
relaxation mechanisms and test possible counter-measures is the low reproducibility
of the qubit fabrication process: indeed, samples produced using the same recipe
show a large dispersion in their relaxation times.

In order to perform a systematic study of relaxation, it would be therefore highly
desirable to build qubits with different parameters but on the same chip. Frequency
multiplexing techniques like the ones described in Section 1.4, which have already
been successfully tested in Yale’s Qlab46, would allow to measure all the qubits
through a single microwave line. In this way, accurate statistics on the influence of
a given parameter on the lifetime could be obtained. This systematic study should
allow to conclude on the incidence of the surface impurities on Γ1 by varying the
surfaces and parameters of the qubit electrodes, and also on the incidence on the
quasi-particles by making gap engineering in the superconducting electrodes.

Another much simpler way to obtain valuable information on the losses in supercon-
ducting qubit circuits would be to investigate more in depth simpler superconducting
circuits such as microwave resonators and, in particular, tunable microwave resonators
incorporating Josephson junctions. For instance, the fact that tunable resonators seem
to have a lower quality factor than bare resonators indicates that Josephson junctions
may contribute to losses. A systematic study of the influence of the tuning SQUID
parameters on the magnitude of the losses could bring some clues on the dissipation
mechanisms in Josephson circuits. Even more interestingly, the quality factor of these
tunable resonators which is heavily degraded when tuning them far away from their
maximum resonance frequency, informs us on the flux noise in the SQUID. In this
case, introducing an asymmetry in the SQUID would reduce the influence of the flux
noise. An experiment probing a few tunable resonators built in the same chip but with
different asymmetries could tell if the flux noise is indeed the limiting mechanism
for the quality factor in tunable resonators. Once this issue solved, design variations
could clarify the influence of the different experimental parameters involving the
junctions –junction critical current, junction current density, contacts, etc.

ensemble of spins

i NV tin NV centers

Figure 6.1: An hybrid quantum system can be made by

coupling ensembles of spins in NV centers to supercon-

ducting qubits.

Hybrid systems: coupling

circuits to microscopic spins

We have seen that superconducting artifi-
cial atoms couple strongly to electromag-
netic fields, allowing fast single- and two-
qubit gates, and benefit from a large flex-
ibility in the design of their parameters,
although their coherence times constitute
an important limiting factor. On the other
hand, natural microscopic quantum sys-
tems –atoms, photons, electron or nuclear
spins– often benefit from a natural decou-
pling from environmental noise, which re-
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sults in much longer coherence times162.
It is thus appealing to take the best of

both worlds by combining artificial and natural quantum systems in hybrid quantum
circuits that would exhibit long coherence times while allowing rapid quantum state
manipulation. For instance, an hybrid architecture could be envisioned by combining
a superconducting quantum processor where operations would be performed and
a large set of microscopic elements acting as quantum memories for storing the
intermediate results of the computation.

Among the systems proposed to make such hybrid structures, paramagnetic electron
spins of nitrogen-vacancy (NV) centers163,164 in diamond are particularly appealing.
Indeed, coherent manipulation of these spins has attracted great interest in recent
years because of the possibility to monitor optically a single spin at room temperature,
and of their long coherence time, up to ms165. Recently, the strong coupling between
a superconducting resonator and an ensemble of NV spins, which behave as a
single effective spin, was demonstrated in the Quantronics group166, and similar
results were obtained for other spin systems167. These experiments open the way to
coherent transfer of energy mediated by a resonator between an effective spin and
superconducting qubits168,169, which would constitute the basic building block of an
hybrid architecture. Finally, in addition to the electron spin resonance, note that NV
centers have two very interesting internal degrees of freedom: their narrow optical
resonance, which might be used for converting coherently microwave into optical
quantum states of the field170, and their coupling to the nitrogen atom nuclear spin
could give access to coherence times much longer than with electron spins171.

Towards a scalable superconducting qubit architecture

The superconducting circuit in which a quantum algorithm was operated for the first
time157 contains only two qubits coupled and readout through the same resonator.
Although the same scheme was used to couple three qubits172, it seems difficult
to keep the same architecture while scaling up the number of qubits much further.
Furthermore, this architecture does not provide single shot qubit readout.

The architecture overseen in this thesis, where a set of superconducting qubits are
individually readout by a dedicated non-linear resonator and coupled together by a
tunable resonator, might be a better starting point to build a processor with 5-10 qubits
able to demonstrate more sophisticated algorithms44, and possibly to implement error
correction on a single qubit. Scaling up this architecture would however not be simple
since the qubits have to be detuned enough in order to avoid spurious interactions
between them, and have readout resonators with staggered frequencies.

To go further in the direction of a scalable architecture, we propose a cascaded
architecture (see Fig. 6.2) in which a tunable resonator mediates the interactions be-
tween several clusters of 5-10 qubits connected to a tunable resonator. The interaction
between qubits in different clusters would be performed through intermediate steps
in which the excitation of the qubit of one cluster is swapped (possibly partially) to its
coupling bus, then to the general coupling bus and finally to the coupling bus of the
cluster containing the target qubit. The overhead brought by this procedure increases
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Cluster 1 Cluster 2

Cluster 3

Figure 6.2: A scalable architecture for superconducting qubits based in cascading the couplings

between elementary processing units – the clusters. Here three clusters of three qubits are coupled

together,

the time needed for performing two qubit gates, but only logarithmically with the
total number of qubits.

Quantum optics with microwave photons

We discussed in this thesis the first experimental results on a TLS coupled to a non-
linear resonator. The physical effects found arise from the interplay between two
phenomena already thoroughly investigated in quantum optics, but independently:
non-linearity, which yields parametric amplification, optical bistability and squeezing,
and, on the other hand, strong coupling of an atom to an electromagnetic field. Circuit
QED thus allows to investigate interesting situations that combine these phenomena.
Investigating their interplay opens a broad variety of new experiments, for instance,
the study of the qubit dephasing when it interacts with squeezed resonator fields.
This type of experiment performed in electrical microwave circuits in which concepts
and phenomena well known in quantum optics play a central role is not an exception.
Combined with other recent ones, they tend to form a new field of quantum optics
in which microwave photons propagating along 1D transmission lines interact with
electrical circuits. Let us mention here a few recent results that contribute to enlarge
the tool-box available for quantum optics experiments in the microwave domain.

First, single photon sources have been operated by letting an excited TLS to emit
single photons in a transmission line173, and non-classical first and second order
coherence functions of the microwave field were characterized in ETH114 using
efficient digital signal processing. Indeed, mixing signals and digitizing mixed-down
signals is far easier than in optics, which allows to perform sophisticated signal
analysis. Note that photon counting has not been achieved yet, but is thought to be
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possible.
A very different kind of photon source has also been recently demonstrated in the

Quantronics group using a Josephson junction connected in series with a microwave
resonator with resonance ωr, and voltage biased below the gap. In this Coulomb
blockade regime of the Josephson junction, the transfer of a Cooper pair has to release
an energy 2eV in the junction environment, which yields one photon in the resonator
per pair when 2eV = h̄ωr . A more sophisticated circuit with a junction in series with
two resonators ωr1 and ωr2 could, in principle, produce pairs of entangled photons at
these frequencies. Scattering experiments of photons propagating on a transmission
line coupled to superconducting qubits has also been achieved recently, with the
demonstration of a microwave single photon switch174. Superconducting quantum
circuits are thus now opening the way to a quantum microwave engineering which a
large variety of tools and resources able to reproduce for microwave fields functions
well known in quantum optics, but also other impossible to difficult to achieve with
optical fields.

217





A P P E N D I X

219





A
A D I A B AT I C E S C A P E T H E O RY F O R C B A

We introduce here some theoretical tools which allow to calculate analytically, in
the adiabatic limit, the transition rates between B̄ and B due to thermal or quantum
fluctuations. This development follows closely Vijay’s thesis139, but is adapted to the
CBA case. Note that this theory is only applicable to the adiabatic case which is far
from our experiment in which the measurement pulse raises very fast. We did not
performed a specific experiment with slowly raising pulses to check the agreement
with this theory: such experiments have been previously performed by Vijay for
JBA139 and by Metcalfe for CBA46 and are in good agreement with theory.

A.1 Noise and CBA dynamics

The thermal and quantum fluctuations can be considered as a perturbation which
slightly changes the oscillation state of the CBA. In which conditions can this pertur-
bation lead to a transition between the B̄ and B states?

Several authors have studied the dynamics of the Duffing oscillator135,136 when
moving apart from the stable steady-states B̄ and B. they have shown that the phase
plane (q‖, q⊥) is divided in two basins of attraction in each of which the resonator
evolves towards the stable equilibrium point B̄ or B respectively. The frontier between
these two basins, so-called separatrix, contains the third solution of Eq. 4.1, the saddle
point through which it is easiest to escape from one basin of attraction to the other

A.2 The effect of noise on a driven CBA: parametric effects

We study now, in the particular case of CBA, how the noise perturb the solution,
and how this perturbation may allow to reach the saddle point and to transit to the
bifurcated state B. For this purpose, we consider the CBA equation of motion (Eq.
4.3) with the drive term written as an arbitrary input field ain(t), which contains the
usual drive, plus some noise:

q̈ + 2Γq̇ + ω2
r q +

p

2I2
c0

q̇2q̈ =
2
√

Z0

Lt
ain(t) (A.1)

Now to study the perturbation brought by the noise, which we represent as a pertur-
bation qN , we linearize the equation of motion around the steady-state driven solution
qm(t) = q0 sin(ωmt − θ). Replacing q(t) = qm(t) + qN(t) in the above equation yields:

¨qN [1 + α (1 + cos (2ωmt − 2θ))]+ 2 ˙qN [Γ − αωm sin (2ωmt − 2θ)]+ω2
r qN =

2
√

Rain(t)

Lt
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B

B

ϕS

S

q||

qŏ

S

Figure A.1: A CBA typical escape trajectory plotted in the phase plane (q‖, q⊥). The phase plane

consists in two basins of attraction of the B̄ and B states (cyan and purple regions respectively).

On their frontier (he separatrix, red dashed line), lies the saddle point S, the most probable point

for transiting from one basin of attraction to the other. The model described in the text shows how

the escape from one basin to the other in the vicinity of the bifurcation point can be treated as a 1D

problem in the direction ϕS, in which the the noise fluctuations are amplified (blue ellipse), and which

happens to be also the approximate direction of the saddle point.

where α = pq2
0ω2

m/
(
4I2

c0

)
. With a Fourier transform, within the RWA and with the

approximations ω/ωm ≈ 1, ωm/ωr ≈ 1 we obtain

(
ωr − ωm

Γ
︸ ︷︷ ︸

Ω

− ωm − ω

Γ
︸ ︷︷ ︸

−Ω− f

− αωr

2Γ
︸︷︷︸

2ǫ

−i

)

qN(ω)− ωαe−i2θ

4Γ
q†

N(2ωm − ω) =

√

2h̄

Rω0
︸ ︷︷ ︸

Ξ

ain(ω)

Now with f = (ω − ωr)/Γ, this yields

(Ω ∓ f − 2ǫ − i) qN(± f )− e−i2θǫ q†
N(∓ f ) = Ξain( f )

which is formally equivalent to the expression for JBA139. These two equations plus
their two conjugates have a solution

qN(± f )

Ξ
= A(± f )ain(± f ) + B(± f )a†

in(∓ f ) (A.2)

where

A( f ) =
Ω − 2ǫ + f + i

ǫ2 + (i + f )2 − (Ω − 2ǫ)2

B( f ) =
ǫei2θ

ǫ2 + (i + f )2 − (Ω − 2ǫ)2 .
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Eq. A.2 links creation and annihilation operators at frequencies which are symmetric
around ωr, a typical feature of parametric amplification.

Now, when the system is very close to the bifurcation point, it can be shown that
the fluctuations are maximally amplified in a direction ϕM which is almost the one
of the saddle point, and maximally de-amplified in the orthogonal direction. This
allows to neglect the effect of the fluctuations in this later direction, and to address
only the 1D problem along the direction ϕM. The variance of the noise along this
axis of maximal and minimal amplification can be calculated very similarly to JBA139,
yielding respectively:

〈

q2
N

〉

±
= CekBTe f f

√
√
√
√ (Ω − 2ǫ)2 + 1

(Ω − 2ǫ)2 + 1 ± ǫ
.

At the bifurcation points (ǫ = 1/3
(

2Ω ∓
√

Ω2 − 3
)

) the maximal fluctuation di-
verges, while the minimal one becomes kBTe f f /2Ec, i.e. it becomes squeezed by 3 dB
compared to the undriven resonator, the maximum squeezing which may be obtained
in the intra-resonator field175,

Expanding to the lowest order in Ω the fluctuation around the bifurcation point
yields:

〈

q2
N

〉

+
= CekBTe f f

1

2
√

3
√

1 − Vm

V+
bi f

whereas the same expansion yields for the distance to the saddle point

(qm − qS)
2 =

32e2

9
Ω

Q

(

1 − Vm

V+
bi f

)

.

Now the probability of escape from B̄ to B is reduced to a 1D escape through a
barrier, which is the standard Kramer’s problem176. The escape probability has an
Arrhenius form

Γesc =
ωa

2π
exp

(

1
3
(qm − qS)

2
〈
q2

N

〉

+

)

=
ωa

2π
exp




32e2

9
√

3

Ω

Q

1
CekBTe f f

(

1 − Vm

V+
bi f

)3/2


 (A.3)

where the factor 1/3 is due to the overestimation of the barrier in the harmonic
approximation177.

A.3 1D equivalent: the cubic meta-potential

An analysis equivalent to the above one was performed in the early 1980s by Dykman
and Krivoglaz177, who remarked that when the drive is near to the bifurcation point
β ∼ β+, the system dynamics becomes over-damped and one of the coordinates

223



becomes much slower than all the other time scales. Consequently Eq. 4.1 can be
approximated1 by a Langevin equation for an effective slow coordinate y(τ):

dy

dτ
= −dV

dτ
+ βN(t) (A.4)

equivalent to a massless Brownian particle subject to a random force βN(t) moving in
a cubic potential V(y) (shown in Fig. A.2)

V(y) = −1/3by3 + ξy

where

b(Ω) =
p(Ω)
√

β+

[

5p(Ω)− 3 + 3 (2p(Ω)− 1)2 (p(Ω)− 1)Ω2
]

 

 

V
(y

)

VV

y
b b

Figure A.2: The cubic meta-potential defined

by Dykman and Krivoglaz

with p(Ω) = 2/3 ± 1/3
√

1 − 3Ω−2 and

ξ(Ω, β) =
β+(Ω)− β

2
√

β+(Ω)
.

Approximating the harmonic oscillation of the
particle at the bottom of the potential, the oscillation
frequency is

ωmp = 2
√

bξ ≈ 4Q

3
√

3

∆2
m

ωr

In order for the above Langevin equation to be valid
the movements in the meta-potential should be
slow compared to the resonator dynamics: ωmp ≪
Γ. if it is the case, the switching from B̄ to B can be
modelled as the escape of the particle above the bar-
rier of the meta-potential well, and the probability

of escape can be found to be equivalent than the one obtained above (Eq. A.3).

1A similar approach can be used for studying the re-trapping from B to B̄ state at β ∼ β−
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B
TA B L E O F S Y M B O L S

B.1 Mathematical symbols

L() Laplace transform

F () Fourier transform

⋆ Convolution

u(t) Heaviside step function

ẋ or ∂tx Time derivative of x

E [•] or 〈•̂〉 Ensemble average (classical or quantum signals,
resp.)

x̄ Time average of x

B.2 Quantum formalism

ρ̂ Density matrix

L Lindblad super-operator

D[Â] Collapse super-operator

M[Â] Measurement super-operator

|•〉 State •

|α〉 Coherent state of complex amplitude α

|g〉 TLS ground state

|e〉 TLS excited state

K̂ Operator K

â† Creation operator

â Annihilation operator
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B.3 Circuit QED

ωr Resonator’s bare resonance frequency

κ Resonator’s bandwidth

κL Resonator’s internal losses

Q Resonator’s quality factor

Qc Resonator’s coupling quality factor

Zc Resonator’s characteristic impedance

Z0 Transmission line’s characteristic impedance

c̄ Wave velocity in the transmission line

β Propagation constant in a transmission line

Λ Length of a transmission line resonator

Cc Coupling capacitor

ϕ0 = h̄/(2e) Reduced flux quantum

Φ0 = h/(2e) Flux quantum

Ic Critical current of a Josephson junction

ω01 = ωge Transmon ground-to-excited transition frequency

ωi,j Transmon i → j transition frequency

Cg Gate capacitor

g Transmon-resonator coupling constant

TN Equivalent noise temperature

Tc Cryostat’s lowest stage temperature

Vm Microwave voltage used for measuring the resonator

Vd Microwave voltage used for driving the TLS

X = I, Q Intra-resonator field in-phase and quadrature
components

Xout = Iout,
Qout

In-phase and quadrature components at resonator
output

XD = ID, QD Demodulated field in-phase and quadrature
components

χ Dispersive cavity pull
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∆ = ωc − ω01 Resonator-TLS detuning

ωR Rabi frequency

Γ1 TLS relaxation rate

Γ2 TLS decoherence rate

Γφ TLS pure dephasing rate

fz,R(t) Decay of the coherences due to pure dephasing

ΓωR
TLS driven decoherence rate at ωR

Γ̃1 TLS driven relaxation rate

Γ̃2 = ΓR TLS driven decoherence rate

Γ̃φ TLS pure driven dephasing rate

Γ
ph
φ TLS measurement-induced dephasing

γ
ph
φ TLS measurement-induced dephasing per photon

ncrit Critical number of photons for the dispersive
approximation

δ = Φ/ϕ0 Split-CPB frustration

EC CPB charging energy

EJ CPB Josephson energy

n̄ Average number of photons stored in the resonator

∆r = ωr − ωd Resonator-drive detuning

ωd Resonator’s drive frequency

±δφ0 Observed resonator’s phase shift due to TLS

±δϕ0 Full resonator’s phase shift due to TLS

ρ̂th TLS steady-state density matrix at thermal
equilibrium

ρ̂sat TLS steady-state density matrix when saturated

ω̃a Lamb-shifted resonator frequency

ωa Lamb and AC-Stark shifted resonator frequency

D State distinguishability
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B.4 Non-linear cQED

∆r = ωr − ωm Resonator-drive detuning

S
ρee
ωm S-curve corresponding to |e〉 population ρee and ωm

2χJBA Frequency displacement of S-curves: effective cavity
pull

B̄ Low-amplitude state of a Duffing resonator

B High-amplitude state of a Duffing resonator

tM CBA effective measurement time

tR CBA measuring pulse rise time

tS CBA measuring pulse switching plateau length

tH CBA measuring pulse hold plateau length

PH CBA measuring pulse hold plateau power

B.5 Other physical quantities

ℓ Inductance per unit length of a transmission line

ℓK Kinetic inductance per unit length

c Capacitance per unit length of a transmission line

Tc Critical temperature of a superconductor

nn Quasi-particle density

TF Cryostat lowest stage temperature

L Leggett’s extensive difference

D Leggett’s disconnectivity
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