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Abstract

Identical domain concepts reified in different (meta)modelling projects may be
named, represented and connected differently. It turns out that a transformation de-
fined for a particular metamodel cannot be directly used for another metamodel ;
that is, the reuse of transformations is restricted. To tackle this problem, in this
dissertation, we propose a solution for automatically migrating legacy transforma-
tions. Such a transformation is adapted to the new metamodel that has a slightly
different representation in comparison with the original one, while preserving the ori-
ginal semantics of the transformation. To this end, we first introduce MetaModMap,
a Domain Specific Language that allows the description of the correspondences of
intended semantics between the elements of two metamodels that model the same
domain. Then we provide a rewriting mechanism using these user-defined correspon-
dences to migrate the transformation automatically. The proposed solution uses a
graph-based model typing relation that enables safe adaptations. Our approach has
been prototyped with MOMENT2 and can be used with any framework based on the
same graph transformation paradigm.

Keywords : Transformation Reuse, Model Typing, Model-Driven Engineering





Résumé

Pour réaliser un modèle dans un domaine métier, les mêmes concepts peuvent être tra-
duits, nommés, représentés ou reliés différemment dans des méta-modèles différents.
Ainsi, une transformation définie pour un méta-modèle particulier ne peut pas être
utilisée pour un autre méta-modèle. La réutilisation des transformations est donc li-
mitée. Face à ce problème, nous proposons dans cette thèse une solution pour migrer
automatiquement les transformations existantes pour pouvoir les appliquer à un autre
méta-modèle. Une telle transformation est adaptée pour le nouveau méta-modèle
qui a une représentation légèrement différente par rapport à celle d’origine, tout en
préservant la sémantique de la transformation. À cette fin, nous introduisons d’abord
MetaModMap, un langage spécifique qui permet de décrire des correspondances de
la sémantique intentionnelle entre les éléments de deux méta-modèles qui modélisent
le même domaine. Ensuite, nous proposons un mécanisme de réécriture pour migrer
automatiquement la transformation en utilisant ces correspondances définies par l’uti-
lisateur. La solution proposée utilise une relation de typage de modèle basée sur des
graphes qui permet de faire des adaptations en toute sécurité. Notre approche a été
prototypée avec MOMENT2 et peut être utilisée pour d’autres frameworks basés sur
le même paradigme de transformation de modèles basé sur les graphes.

Mots-clés : Réutilisation de Transformation, Typage de Modèle, Ingénierie Di-
rigée par les Modèles
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1 Introduction

Dans l’Ingénierie Dirigée par les Modèles, une question essentielle est la possibilité
de réutiliser les transformations à travers des outils de modélisation. La réutilisation
de transformation est particulièrement nécessaire lorsque le même domaine peut être
modélisé différemment, ou lorsqu’il peut changer légèrement au fil du temps. Dans
ce travail, la réutilisation de transformation est obtenue quand une transformation
existante écrite pour un méta-modèle (MM) peut être utilisée systématiquement pour
un MM similaire. Les MMs sont similaires si on peut présenter une correspondance
entre leurs différentes représentations du même concept de modélisation.

Il existe deux stratégies principales permettant la réutilisation des transforma-
tions par rapport à l’évolution des MMs : l’adaptation de modèle et l’adaptation
de transformation. Dans la première stratégie [Kerboeuf 11], une transformation
supplémentaire est développée afin d’adapter les modèles du nouveau MM à confor-
mer au MM original et alors elle est composée avec la transformation existante en une
châıne. Dans la deuxième stratégie, la transformation existante à son tour est adaptée
pour être valide sur le nouveau MM. Cette stratégie s’appuie sur la co-évolution
métamodèle/transformation comme dans [Levendovszky 10]. Après une évolution,
une transformation pourrait devenir incompatible à la nouvelle version du MM en
raison de la modification du nom des éléments, de la valeur de multiplicité ou du
remplacement d’une relation par un nouveau type, etc.

Dans ce travail, nous proposons un processus d’adaptation à des transformations
définies basées sur la réécriture de graphes pour des MMs semblables. Un DSL, à
savoir MetaModMap, est introduit pour décrire les correspondances intentionnelles

1



2. Etude de Cas 2

entre des différentes représentations du même concept de modélisation. Ces corres-
pondances sont utilisées pour vérifier la substituabilité de MMs en utilisant un a
priori type-check basé sur la nature graphique cöıncidente entre des MMs et des
transformations. À la fin, elles sont utilisées pour effectuer l’adaptation de transfor-
mation.

Le reste de ce résumé est organisé de la façon suivante. Section 2 présente une
étude de cas. Section 3 décrit notre approche globale qui a été implémentée dans un
prototype. Section 4 illustre l’approche en utilisant ce prototype. Section 5 discute
des travaux connexes. Section 6 conclut et anticipe les travaux futurs.

2 Etude de Cas

2.1 Besoin de Réutilisation de Transformation

Une transformation dans laquelle les modèles de classe sont transformées en des
modèles relationnels (RDB) est considérée comme l’étude de cas. Le MM de source,
à savoir CDV1, d’un outil CASE conçevant des modèles de classe et le MM de cible
pour les modèles de RDB sont respectivement présentés dans la figure 1(a) et la
figure 1(c).

1234

CD2RDB

(c) MM de cible RDB(a) MM d’origine de source CDV1

(b) Nouveau MM de source CDV2

Figure 1 – Métamodèles de la transformation CD2RDB.

Si on veut transformer les modèles de classe conçus par un autre outil CASE
basé sur un nouveau MM, à savoir CDV2, cf. Figure 1(b), la transformation de-
vient incompatible avec le nouveau MM de source, il devrait ainsi être adaptée.
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L’automatisation de cette tâche est significative pour promouvoir la réutilisation de
transformation et pour éviter une adaptation manuelle fastidieuse et “error-prone”.

2.2 Choix de Langage de Transformation

La transformation CD2RDB est écrite en MOMENT2 1, un langage de transfor-
mation à base de graphes [Boronat 09]. Une transformation en MOMENT2 est donnée
comme un ensemble d’équations de modèle qui contiennent des patterns de graphe.
Nous avons choisi MOMENT2 pour l’implantation 2 car il fournit une manière de
définir des transformations à un haut niveau d’abstraction. Puisque nous considérons
que la similitude de MMs comme une similitude de graphes, des frameworks à base de
graphes sont plus pertinents que d’autres paradigmes pour étudier la substituabilité
de MMs. Un extrait de la transformation est indiqué dans la Figure 2.

1 transformation CD2RDB (cd : CDV1; rdb : RDB) {
2 rl InitAncestor {
3 nac cd noAncestor {
4 ...
5 };
6 lhs {
7 cd {
8 ...
9 }

10 };
11 rhs {
12 cd {
13 c1 : Class {
14 parent = c2 : Class {},
15 ancestors = c2 : Class {}
16 }
17 }
18 };
19 }
20 ...
21 rl DataTypeAttributeOfTopClass2Column

21 rl DataTypeAttributeOfTopClass2Column {
22 nac rdb noColumn {
23 ...
24 };
25 lhs {
26 cd {
27 c : Class {
28 name = cname,
29 ownedFeatures = a : Attribute {
30 name = aname,
31 type = p : PrimitiveDataType {
32 name = pname
33 }
34 }
35 }
36 }
37 ...
38 };
39 rhs {
40 ...
41 };
42 }

Figure 2 – Extrait du fichier CD2RDB.mgt.

2.3 Discussion

Lorsque le MM de source est changé, certains types, attributs, ou références
référés par la transformation ne peut être trouvés dans le nouveau MM en raison
de la différence de nom, cf. (1) (3) (4) dans la Figure 1(a) (b). En outre, la relation
parent est “réifiée” par la présence du type Généralisation, cf. (2), ce qui rend les pat-
terns existants utilisant cette relation deviennent incompatibles. Ces incompatibilités
limitent l’utilisation de la transformation pour les modèles de classe du nouveau MM,
même si l’intention du metamodeler sur les concepts de modélisation est en fait la
même chose. Cela suggère un besoin de décrire manuellement les correspondances de
l’intention du metamodeler entre les éléments de MMs. Ces correspondances peuvent

1. www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/
2. disponible à perso.telecom-bretagne.eu/quyetpham/softwares/
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alors être utilisées comme directives pour adapter la transformation en réponse à des
différences de MMs tout en préservant l’intention originale de la transformation.

3 Approche de Typage de Modèle basée sur les Graphes

Cette section présente globalement l’approche de réutiliser les transformations
alors que seuls les MMs de source sont changés. En particulier, pour réutiliser une
telle transformation, les quatre étapes suivantes doivent être effectuées :

1. Construire deux points de vue graphique, Graphe de Type avec Multiplicité
(TGM), pour le MM d’origine et de nouveau.

2. Déduire des parties effectives du TGM d’origine qui sont effectivement utilisées
par la transformation.

3. Décrire les correspondances entre les éléments de deux MMs à l’aide de notre
DSL. Cette tâche est assistée par un type-checker à l’aide des résultats des
étapes 1 et 2.

4. Exécuter un interpréteur qui adapte la transformation pour que cela fonctionne
avec le nouveau MM de source.

Étape 3 nécessite une saisie manuelle, les autres sont automatisées par l’outil. Les
sections suivantes donnent des détails sur ces étapes.

3.1 Graphe de Type avec Multiplicité

Les MMs sont conçus de manière concise en utilisant le héritage fournit en Ecore,
comme le montre Figure 1(a) (b). Cependant, cette représentation ne désigne pas
explicitement la topologie du graphe de MMs. Comme des frameworks à base de
graphe, par exemple MOMENT2, utilisent la nature de graphe de MMs pour définir
les transformations, des MMs basés sur Ecore ont besoin d’exhiber leur topologie.

Figure 3 – Métamodèle de TGMs.
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Pour ce faire, nous introduisons la vue Graphe de Type avec Multiplicité (TGM).
Cette abstraction, cf. Figure 3, est utilisée pour représenter la topologie de graphe
de MMs. Comme mentionné précédemment, les TGMs de MMs sont générés auto-
matiquement selon les règles suivantes :

1. Les types de données de base sont transformés en GNodes avec les mêmes noms
et la valeur de l’attribut primitive est mise à vrai.

2. Chaque type défini par l’utilisateur est transformé en un GNode avec le même
nom et la valeur de l’attribut primitive est mise à faux.

3. Les attributs et les références sont transformées en GEdges en tenant compte
transitivement des héritages.

4. Pour les références, si le méta-attribut upperBound est > 1 ou = -1, l’attri-
but de multiplicity correspondant à un GEdge est alors pris égal à la valeur
multi valued (dénote *), sinon il prend la valeur single valued (dénote 1).

Property

EBoolean

Class

Association

DataType

EString

name

primary

persistent

from [1]

type [1]

name

ownedTypes [*]

name

Package

name

name

to [1]

ancestors [*]

ownedProperties [*]

Generalization

generalization [1]

general [1]

ownedTypes [*]

Method

name

ownedMethods [*]

NamedElement

StructuralFeature

name

name

ow
ne

dA
ss

oc
ia
tio

ns
 [*

]

Type

ownedTypes [*]

type [1]

type [1]

name

Figure 4 – TGM du nouveau MM CDV2.

Figure 4 montre le TGM de CDV2. On peut utiliser n’importe quel sous-graphe
d’un TGM pour définir des patterns. Généralement, une transformation utilise seule-
ment un sous-graphe plutôt que tous les éléments du graphe, i.e. certains éléments
de MM sont ignorés. Cela nous amène à déduire des parties effectives d’un TGM qui
sont réellement utilisées par la transformation à l’étape 2.

Grâce à l’inclusion entre des graphes, nous pouvons utiliser des TGMs comme des
types de modèles d’où une approche de sous-typage est dérivé, comme illustré dans
Figure 5. Laissez TGM1 et TGM2 être les TGMs de MM1 et MM2, respectivement,
cf. (1), et TGMeff est un TGM effectif déduit de TGM1 et de la transformation,
cf. (2). Nous avons :

TGMeff ⊆m TGM2⇔MM2 � MM1 (1)

par une cartographie m entre les éléments de MM1, MM2. La relation de sous-typage
(�) entre MMs est partielle puisque le contexte d’utilisation (i.e. la transformation)
d’un type de modèle doit être pris en considération. En outre, il est non-isomorphe
car elle doit être dérivée par une correspondance entre les MMs.
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MM1

(original)

MM2

(new)

M2M transf.

(legacy)

M2M transf.

(adapted)

TGM1

(original)

TGM2

(new)

TGM

(eff.)

TGM

(mapped)

MMM def.

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<constrained>>

!

1

1

2

3

4

Figure 5 – Approche de sous-typage.

3.2 Inférence des TGMs Effectives

Les paragraphes suivants décrivent l’algorithme pour déduire un TGM effectif en
analysant les patterns d’une transformation.

Le principe est de ne conserver que GNode(s) et GEdge(s) correspondant à des
éléments du MM qui sont référés par des patterns, voir Figure 8 (en bas à gauche).
Initialement, tous les patterns sont collectés dans une liste. L’algorithme de visite
pour chaque pattern est réalisée de manière récursive, à partir du pattern d’objet
racine. A chaque pattern d’objet visité, le GNode correspondant à un type référé
sera ajouté à un ensemble de noeuds nécessaire. Tous les GEdge(s) correspondant à
des attributs ou des références référés de patterns de propriété doit être ajoutés dans
un ensemble d’arcs nécessaire. Lors qu’une visite un pattern de propriété qui réfère
à une référence, nous visitons récursivement le pattern d’objet inférieur. En fin, nous
obtenons les ensembles de noeuds et d’arcs nécessaires, qui est un sous-graphe du
TGM d’origine. Pour compléter ce processus, tous les noeuds et les arcs qui ne sont
pas référés par les patterns sont enlevés pour obtenir le TGM effectif.

Les contraintes sur Multiplicity nécessitent un traitement spécial. Nous observons
que un pattern défini en tant que un pattern singulier (par exemple entre deux types
A et B, e.g. o1 : A {refB = o2 : B {..}}) peut être appliqué aux relations singulier
(= 1) ou multiple (= *). Au contraire, lorsque des patterns multiples (par exemple,
o1 : A {refB = o2 : B {..}, refB = o3 : B {..}..}) sont définis, que relations multiple
peuvent s’appliquer. Cela conduit à l ’ordre où undefined valued (dénote ?) est le cas
le plus général :

undefined valued � single valued � multi valued (2)

Cet ordre résulte dans deux cas. Dans le premier cas où une relation singulier est
définie dans le MM d’origine, nous ne changeons pas la valeur de multiplicity dans
le TGM effectif puisque les relations multiples peuvent également être appliquées.
Dans le deuxième cas où une relation multiple est présente, on peut définir à la fois un
pattern singulier et multiple. Lorsqu’on utilise un pattern singulier, nous changeons la
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valeur de multiplicity de multi valued à undefined valued car tous les cas ne peuvent
pas être appliqués, sinon, la valeur de multiplicity est laissée à multi valued puisque
seulement les relations multiples peuvent être appliquées.

Attribute

EBoolean

Class

Association

PrimitiveDataType

EString

name

isPrimary

isPersistent

source [1]

type [1]

name

ownedTypes [?]

name

Package

name

name

target [1]

ancestors [*]

ownedFeatures [?]

parent [1]

Figure 6 – TGM effectif de CDV1.

Le TGM effectif déduit de CDV1 est donné dans Figure 6. Le TGM effectif
est utilisé comme une contrainte lors de la description des correspondances entre
les éléments de MMs dans notre DSL. Plus de détails sont donnés dans la section
suivante.

3.3 Un DSL pour la Description des Correspondances

Pour résoudre le problème mentionné dans la section 2.3, nous proposons un
langage dédié, appelé MetaModMap, pour le but d’exposer les correspondances entre
les éléments de MMs. Ensuite, nous fournissons un interpréteur qui est en charge de la
génération automatique d’une transformation existante à une nouvelle transformation
adaptée.

Pour l’étude de cas, les sortes suivantes de correspondance sont nécessaires :
trois liés au changement de noms, l’un sur la réification. La cartographie établit les
correspondances de nommage de type 1 : 1 pour chaque type, attribut et référence
requise dans le MM d’origine à, respectivement, un type, un attribut et une référence
dans le nouveau MM, cf. (1) (4) (3) de Listing 1. Pour supporter la réification,
un pattern de correspondance à partir d’une référence d’origine vers un nouveau
chemin est également fourni. Par exemple, l’élément de référence parent est réifié par
l’élément de type Generalization, cf. (2). Dans le sens de la théorie des graphes, ces
correspondances supportent d’identifier un morphisme entre deux graphes étiquetés
quand il y a des différences au nom de noeuds et d’arcs. Dans notre approche, ce
morphisme est entre un TGM effectif et celui d’un nouveau MM de source.
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Listing 1 – Une definition en MetaModMap : CDV1 vs. CDV2

1 import ”platform:/resource/CD2RDB/MTs/CD2RDB.mgt” ;
2 import ”platform:/resource/CD2RDB/MMs/CDV2.ecore” ;
3 mapping for CD2RDB ( CDV1ToCDV2 : CDV1 correspondsTo CDV2)
4 {
5 CDV1ToCDV2 {
6 concept PrimitiveDataType correspondsTo DataType; /∗ (1)∗/
7 concept Class correspondsTo Class {
8 att2att isPersistent correspondsTo persistent,
9 ref2ref ownedFeatures correspondsTo ownedProperties, /∗ (3)∗/

10 ref reification parent correspondsTo generalization . Generalization . general /∗ (2)∗/
11 };
12 concept Attribute correspondsTo Property {
13 att2att isPrimary correspondsTo primary /∗ (4)∗/
14 };
15 concept Association correspondsTo Association {
16 ref2ref source correspondsTo from,
17 ref2ref target correspondsTo to
18 }
19 }
20 }

Les correspondances sont décrites au niveau de Ecore. Toutefois, en ce qui concerne
l’inférence des TGMs effectives dans la section 3.2, ces descriptions sont imposées par
des contraintes supplémentaires pour assurer la validation des éléments de MM car-
tographiés. En particulier,

• seulement des types référés, c’est à dire ayant un correspondant GNode dans le
TGM effectif, peut être cartographiés sur des types dans le nouveau MM. Par
exemple, le type Operation ne peut pas être cartographié.
• des attributs doivent être mis en correspondance avec d’autres attributs ayant

le même type primitif. De même que pour les types, les attributs cartographiés
doit être présents dans le TGM effectif.

• seulement des références qui ont un correspondant GEdge dans le TGM effectif
peut être cartographiées.

De plus, une relation de sous-graphe basée sur le nom de TGMs est définie en
prenant en compte Multiplicity comme suit.

TGM sous-graphe : G
′

(N ′, E′) ⊆ G(N, E) alors que
• Node : ∀ n′ ∈ N

′

,∃ n ∈ N (n′.isMatch(n))
• Edge : ∀ e′ ∈ E′,∃ e ∈ E (

e′.[from/to].isMatch(e.[from/to]) ∧
e′.name = e.name ∧
e′.multiplicity.isMatch(e.multiplicity))

où undefined valued est “matched” à single valued et à multi valued ; et single valued
est “matched” à multi valued (cf. formule 2).

Ainsi, tous les noeuds et les arcs d’un TGM effectif, selon les correspondances,
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Figure 7 – TGM effectif cartographié.

peuvent trouver leur miroir dans le TGM du nouveau MM. La relation de sous-graphe
est vérifiée entre le TGM effectif cartographié, cf. Figure 7, et le TGM de CDV2,
cf. Figure 4. Cette relation est utilisée pour valider une définition en MetaModMap
pour la substituabilité de MMs (cf. la formule 1).

3.4 Adaptation de Transformation

Compte tenu d’une définition en MetaModMap et d’une transformation en MO-
MENT2, un moteur d’adaptation est en charge de relier des patterns se référant à
des éléments du MM d’origine à celles du nouveau MM, et puis de textualiser tout
le modèle de transformation de sortie dans un nouveau fichier. Le pseudo-code de
l’algorithme de re-liaison pour un pattern racine d’objet contre une cartographie de
concept est illustré dans l’algorithme en Page 10.

Une fois avoir obtenu le sous-typage entre MMs (cf. le formule 1) par la carto-
graphie, l’adaptation est effectuée pour tous les patterns. Nous faisons d’abord la
re-liaison basée sur les concordances, via la procédure rebindChangedElem() dans
l’algorithme en Page 10, et puis pour les éléments restants inchangés. Figure 8 (en
bas à gauche) représente des patterns en mémoire avant de faire la re-liaison. Basée
sur la cartographie, cf. le listing 1, nous relions la référence à ownedFeatures du MM
d’origine vers ownedProperties du nouveau MM, cf. la ligne 17 dans l’algorithme en
Page 10. De même, la référence à Attribute est transmise à Property. Cependant, une
réification de relation (un cas particulier de Ref2FeaturePath, cf. la ligne 18), e.g.
l’introduction du type Generalization, cause l’adaptation dans la fonction createGra-
phPattern(), cf. la ligne 20, plus complexe. Dans ce cas, nous créons une nouvelle paire
de patterns d’objet et de propriété, comme le montre Figure 8 (en bas à droite), et
puis les faire référer aux éléments Generalization et general, respectivement.

D’autre part, les éléments restants inchangés, comme Class et name, peuvent être
automatiquement relié aux éléments correspondants par leur nom, sans aucun soutien
de la cartographie. Figure 8 illustre un extrait des patterns en la représentation
textuelle et en mémoire avant et après l’adaptation.
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rebindChangedElem(conceptMap, ote)

Require: (1) la cartographie de concept conceptMap qui contient les correspondances entre
les deux concepts de type. (2) un pattern d’objet ote .

Ensure: Retourner le pattern d’objet relié en fonction de la cartographie
{Perform lookup at the being-visited object template expression.}

1: if conceptMap.conceptSource.equal(ote.referredClass) then
2: ote.referredClass ← conceptMap.conceptTarget
3: for all pte in ote.PropTempExps do
4: for all propertyMap in conceptMap.PropertyMaps do
5: if propertyMap.featureSource.equal(pte.referredProperty) then
6: if pte instanceof AttributeExp then
7: if propertyMap instanceof Att2Att then {Single attribute map}
8: pte.referredProperty ← propertyMap.featureTarget
9: else if propertyMap instanceof Att2FeaturePath then

10: topFeaturePathExp ← propertyMap.featureTarget
11: newPTE ← createGraphPattern(topFeaturePathExp, pte)
12: ote.PropTempExps ← ote.PropTempExps \ pte
13: ote.PropTempExps ← ote.PropTempExps ∪ newPTE
14: end if
15: else if pte instanceof ReferenceExp then
16: if propertyMap instanceof Ref2Ref then {Single reference map}
17: pte.referredProperty ← propertyMap.featureTarget
18: else if propertyMap instanceof Ref2FeaturePath then
19: topFeaturePathExp ← propertyMap.featureTarget
20: newPTE ← createGraphPattern(topFeaturePathExp, pte)
21: ote.PropTempExps ← ote.PropTempExps \ pte
22: ote.PropTempExps ← ote.PropTempExps ∪ newPTE
23: end if
24: end if
25: end if
26: end for
27: end for
28: end if
{call recursively for lower object template expressions}

29: for all pte in ote.PropTempExps do
30: if pte instanceof ReferenceExp then
31: rebindChangedElem(conceptMap, pte.value)
32: end if
33: end for
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1 rhs {
2 cd {
3 /∗ RHS graph patterns ∗/
4 c1 : Class { /∗ GP1 ∗/
5 parent = c2 : Class {},
6 ancestors = c2 : Class {}
7 }
8 }
9 };

10 ...
11
12 /∗ another rule ∗/
13 lhs {
14 cd {
15 /∗ LHS graph patterns ∗/
16 c : Class { /∗ GP2 ∗/
17 name = cname,
18 ownedFeatures = a : Attribute

{
19 name = aname,
20 ...
21 }
22 }
23 }
24 ...
25 };

1 rhs {
2 cd {
3 /∗ RHS graph patterns ∗/
4 c1 : Class { /∗ GP1 ∗/
5 generalization = c2 :

Generalization {
6 general = c2 : Class {}
7 },
8 ancestors = c2 : Class {}
9 }

10 }
11 };
12 /∗ another rule ∗/
13 lhs {
14 cd {
15 /∗ LHS graph patterns ∗/
16 c : Class { /∗ GP2 ∗/
17 name = cname,
18 ownedProperties = a :

Property {
19 name = aname,
20 ...
21 }
22 }
23 }
24 ...
25 };

<textualizing>
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:AE :RE

Class

ownedFeatures
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:RE :RE
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:RE
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general
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Class

ownedProperties:OTE

:AE

name

Property

<parsing>

MMM

GP1 GP2 GP1 GP2

Figure 8 – Extrait de la représentation textuelle et en mémoire des patterns de
graphe (modèle) dans le processus d’adaptation.

4 Adaptation de Transformation en Action

Comme prototype 3, nous avons développé un plugin de Eclipse 4 pour fonctionner
avec MOMENT2.

3. disponible à perso.telecom-bretagne.eu/quyetpham/softwares/
4. en utilisant XText à xtext.itemis.com
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4.1 Prototype de MetaModMap

Le plugin fournit un éditeur de texte, cf. Figure 9 pour notre DSL qui met
en oeuvre l’approche de typage présentée dans les sections 3.1, 3.2 et 3.3, et un
interpréteur pour adapter les transformations comme dans cette section.

origin. transf.

usage context

adapted transf.

Figure 9 – Editeur de MetaModMap.

L’éditeur est équipé du mécanisme de typage et ses aspects de validation et de
scoping fournissent des suggestions et des alertes pour les utilisateurs.

4.2 Exemple de Validation

Nous appliquons notre approche pour l’application simplifiée Gestion de Clients
inspirée de [Bézivin 05a] comme une étude de cas. La vue de schéma de classes de
cette application peut être modélisée dans les outils CASE différentes qui sont basés
sur les métamodèles différents, résultant en deux représentations, comme indiquées
dans Figure 10 (au milieu à gauche et à droite). Le même modèle intentionnel
d’entrée, cf. Figure 10 (en haut), est reifié en deux représentations différentes avec
le changement de nom (Attribute/Property, isPersistent/persistent, isPrimary/pri-
mary, ownedFeatures/ownedProperties) et une réification de relation (parent/gene-
ralization.Generalization.general).

Lorsqu’on change d’outil de conception, la transformation doit être adaptée.
Compte tenu d’une définition en MetaModMap, comme le montre le Listing 1, une
nouvelle transformation peuvent être généré par l’interprète de MetaModMap. Nous
obtenons, comme prévu, le même modèle de sortie comme dans Figure 10 (en bas)
pour tous les deux représentations du modèle intentionnelle d’entrée, en appliquant
respectivement la transformation d’origine et celle adaptée.
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Figure 10 – Modèles d’entrée et sortie de la transformation CD2RDB.

5 Travaux Connexes

Réutilisation de transformation grâce à l’adaptation en réponse aux changements
de métamodèle a été étudiée avec deux stratégies principales. Nous avons adopté la
première qui considère des transformations comme des bôıtes blanches et les trans-
forme. La deuxième stratégie regarde une transformation comme une bôıte noir et
génère des adaptateurs pour la transformation sans modifier l’original.

Dans la première stratégie, le concept de transformation générique présenté dans
[de Lara 10] qui est définie sur un MM emphconceptuel et ensuite spécialisé pour
un MM spécifique par un DSL de liaison simple, Cuadrado et al. [Cuadrado 11]
et Wimmer et al. [Wimmer 11] ont étendu le DSL de liaison pour hétérogénéités
structurelles de MMs. Les adaptations apportées dans [Wimmer 11] sont générées
en utilisant “helpers” d’ATL ou directement adaptée aux transformations. En rai-
son du manque de helpers en MOMENT2, les règles de transformations doivent être
directement adaptées dans notre approche. Néanmoins, avec les patterns de graphe
de MOMENT2, le processus n’a pas besoin de tenir compte des méta-attributs tels
que : ordered, lowerBound, sauf upperBound qui nécessite un traitement spécial. Par
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rapport à ces travaux, la substituabilité de MMs est définie clairement (et formelle-
ment) dans notre approche par TGM avec un mécanisme d’inférence pour le typage
de transformation.

En revanche, les approches présentées par Levendovszky et al. dans [Levendovszky 10]
et Di Ruscio et al. dans [Ruscio 11] s’appuie sur l’évolution de point de vue. L’ap-
proche adoptée dans [Levendovszky 10] est également dédiée pour le paradigme de
transformation de graphe, mise en oeuvre pour fonctionner avec GReAT 5. Toutefois,
le principe de la réutilisation n’est pas basé sur l’isomorphisme de graphes comme le
nôtre, mais sur les évolutions mineures de MMs. Par conséquent, quand une réference
et un type représentant le même concept de modélisation comme la paire parent/ge-
neralization.Generalization.general, le pattern original ne peut pas s’évoluer automa-
tiquement par leur outil, en opposition avec notre traitement dans lequel le pattern
adapté encore conserve, à un certain niveau, la topologie du graphe même de celle
de l’origine.

Les auteurs de [Ruscio 11] proposent EMFMigrate 6 pour évoluer des transfor-
mations écrites en ATL. Une paire de DSL est introduite pour la spécification de
différenciation de MMs (EDelta) et les règles de migration (personnalisable) (ATL-
Migrate). Les modèles de EDelta sont en fait la trace rétablie pour spécifier l’évolution
de MM de l’étape par étape. Les règles de migration pourraient être appliquées si
les patterns conditionnels sont “matched” sur le modèle de différence. Ensuite, les
informations extraites seront utilisées dans des règles de réécriture pour évoluer la
transformation. En comparaison avec leur solution, notre approche n’est pas basée
sur les traces de l’évolution de MMs, mais sur l’observation des différences de la
représentation de concepts de modélisation.

La deuxième stratégie considère une transformation en tant qu’une bôıte noire.
Kerboeuf et al. [Kerboeuf 11] présentent un DSL dédié pour l’adaptation qui gère
la copie ou la suppression des éléments d’un modèle conformemant à un nouveau
MM pour le faire devenir une instance du MM d’entrée d’un outil de transformation
endogène. Le mécanisme d’adaptation fournit également une trace pour transformer
la sortie de l’outil vers une instance du nouveau MM.

Outre les stratégies ci-dessus, Sen et al. proposent dans [Sen 10] une autre ap-
proche pour rendre une transformation réutilisable en étendant un MM. Elle se base
sur la fonction de tissage fournie dans Kermeta 7. Contrairement à notre approche qui
permet aux utilisateurs de définir des correspondances entre MMs à un niveau élevé
et en effectuant automatiquement des adaptations, les adaptations de cette approche
sont ajoutées par des utilisateurs au niveau du langage de transformation. Cette
approche utilise un mécanisme d’élagage de MM [Sen 09] pour réduire les besoins
sur l’adaptation via le tissage des aspects pour satisfaire au principe de typage dans
[Steel 07]. L’approche est similaire à notre solution, cependant, notre approche de
typage permet plus de flexibilité sur la multiplicité puisque nous appliquons l’ordre
dans la formule 2 alors que [Steel 07] utilise une comparaison d’égalité stricte.

5. www.isis.vanderbilt.edu/tools/GReAT
6. www.emfmigrate.org
7. www.kermeta.org
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6 Conclusion

Dans ce travail, nous avons présenté une approche de typage basée sur les graphes
pour les modèles et les transformations (sections 3.1 et 3.2) qui prend en compte le
problème de la multiplicité des associations. Cette approche a été utilisée avec succès
pour adapter automatiquement des transformations pour permettre leur réutilisation
lorsque les MMs sont différents. Ceci est possible grâce à un mapping, décrit avec
notre DSL MetaModMap, est exposé (sections 3.3 et 3.4). En outre, l’éditeur du DSL
est équipé d’un système d’alerte de suggestion qui est la conséquence de l’approche
de typage que nous proposons.

Il y a encore quelques problèmes dans l’approche présentée. Tout d’abord, nous
avons appliqué notre processus d’adaptation aux transformations exogènes lorsque
leurs métamodèles de source sont modifiés. D’autres cas dans lesquels les metamodels
de cible change doivent être étudiés plus. Néanmoins, nous pensons que le même
principe peut être utilisé en prenant composition en compte, par exemple, un objet
qui est à un type ne peut pas être créé en dehors de certains objets du type de
conteneur.

D’autre part, concernant l’expressivité, nous prévoyons d’étendre notre DSL pour
soutenir d’autres types de représentation différente de MM, par exemple un type est
divisé en plusieurs parts, en basant sur notre approche de typage à base de graphes.
Autrement dit, les correspondances définies dans notre DSL sont considérées comme
“zooms (in/out)” sur des noeuds, des arcs ou mineures sous-graphes connexes du
TGM effectif à condition que l’isomorphisme entre les TGMs de MMs est justifiée.
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1.1 General Context

With the explosion of advanced technologies in hardware and network, software
in pervasive systems that collaborate to provide services to society has become more
and more complex. Software in these systems operate in distributed environments
consisting of diverse devices and communicates using various interaction paradigms
[France 07a]. These software systems are often required on one hand to keep up
with constantly evolving business processes and on the other hand to adapt to the
changes in operating environments. Despite significant advanced programming lan-
guages supported within integrated development environments (IDEs), software de-
velopment using traditional code-centric technologies faces many challenges. Thus,
software development requires new methodologies, architectures, and infrastructures
to support changes to business processes that are defined at the business level and
propagated to the level of technological systems. In response to these requirements, a
modern trend in software engineering practice is to use models instead [Forward 08].

Model-centric or model-driven development (also known as Model-Driven Engi-
neering – MDE) provides techniques to realize and automate seamlessly the prop-
agation of changes from the business level to the technical level. Currently, there
is a variety of approaches, and standards with supported tools which realize this
methodology like OMG’s Model-Driven Architecture (MDA) [MDA 03], Microsoft’s
Software Factories [Greenfield 03], Agile Model-Driven Development [Ambler 12],
Domain-Oriented Programming [Thomas 03], or Model-Integrated Computing (MIC)
[Sztipanovits 97], and so forth. This software development methodology treats mod-

1



1.2. Problems and Challenge 2

els as primary artifacts to develop, uses these models to raise the level of abstraction
at which software developers create and evolve software, and reduces the complexity
of these artifacts by separation of concerns (aspects) of a system being developed.

1.2 Problems and Challenge

In order to foster software development in practice, Model Driven Engineer-
ing (MDE) [Kent 02] proposes the development of software systems using models
[Kuhne 06] as first-class citizens. In this software development perspective, “every-
thing is a model” [Bezevin 05] and model transformation [Sendall 03, Mens 06] is a
pivot activity that consists of transforming models of source to target modelling lan-
guage [Seidewitz Ed 03]. To specify a model transformation, one of the most appro-
priate approaches is to base on (linguistic) metamodels [Kuhne 06, Karagiannis 06]
which define abstract syntax of modelling languages. This choice is natural because
the metamodel-based transformation approach [Levendovszky 02] permits specifica-
tions of mappings focused on the syntactical (structure) translation in using pre-
defined elements in metamodels. Hence, a model transformation specification can be
applied to every model conforming structurally to the base metamodel. Since model
transformations are often not straightforward to specify and require a lot of invest-
ment and effort, it is necessary to be able to customize legacy model transformations
for our business and underlying operating environments in a timely manner to solve
the problems of interoperability that come from the modelling languages’ usage and
the recurring evolution of modelling languages. Also, software companies need to
reuse existing model transformations with as less effort as possible.

Problems. The differences of syntax (form) and semantics (meaning) in represen-
tation formats between modelling languages’ metamodels are main obstacles that
hinder the efficient customization and evolution of legacy model transformations.

• Modelling languages and their associated metamodels often differ over different
software companies, although they were developed to describe the same domain
of application. In this case, semantically similar concepts are probably reified
in different ways in different metamodels. As a result, a model transformation
tightly coupled with a metamodel cannot be used with another metamodel to
perform transformation on similar concepts.

• Another case is the recurring evolution of metamodels as their new versions are
released, e.g. the released versions of the metamodels for the UML modelling
languages from 1.5 to 2.0. Since model transformations are tightly coupled with
metamodel specifications, software companies not only have to deal with the
evolution of metamodels, but also with the evolution of model transformations.

Challenge. It is necessary to efficiently customize or evolve legacy model trans-
formations for supporting the use of various modelling languages, despite differences
in their syntax and semantics and the evolution of metamodels through different
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released versions.

1.3 Objective, Approach, and Contributions

This section identifies the objective to deal with the problems and challenges
in the scope of model transformation customization and evolution as described in
Section 1.2. Figure 1.1 gives a glance at the objective in different scenarios of this
dissertation. In following parts, we first describe the approach that we use to achieve
this objective, then we clarify the list of contributions of this thesis.

Evolution scenario 

Model

Transformations

Meta-

models

Meta-

models

Model

Transformations

<<customize>>

Software Com. A Software Com. B

Customization scenario 

Model

Transformations

Meta-

models

Meta-

models

Model

Transformations

Software Com. A

Difference Evolution

<<evolve>>

Domain of App. or Tech. C

Figure 1.1: Objective overview in different scenarios.

Model Transformation Customization and Evolution. Using different meta-
models in different software companies in a group results in the need to synchronize
model transformations owned by these companies (see the left part of Figure 1.1).
To assure the consistency between their model transformations, a company can cus-
tomize one from its partner company to align with the owned metamodels. Another
situation that necessitates the change of model transformations is the evolution of
metamodels by different released versions over the life-cycle of modelling languages
(see the right part of Figure 1.1). When a metamodel evolves, every legacy model
transformation specified upon the old version of the metamodel has to be adjusted.
In order to efficiently adapt model transformations, it is necessary to overcome the
heterogeneity in syntax and semantics of modelling languages.

Objective. Facilitate the reuse and evolution of model transformations to overcome
the syntactic and semantic differences in modelling languages.

Approach. To address this objective, we apply the design-science paradigm. Ac-
cording to Hevner [Hevner 04], most of the research methodologies in information sys-
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tems can be categorized into two paradigms: behavioral-science and design-science.
The behavioral-science paradigm seeks to develop and verify theories that explain or
predict human or organizational behavior, while the design-science paradigm seeks to
extend the boundaries of human and organizational capabilities by creating new and
innovative artifacts. Hence, following the design-science paradigm, we develop an
approach which provides mechanisms to automatically customize and evolve legacy
model transformations to overcome the differences in syntax and semantics of mod-
elling languages that benefit software companies with more efficient reuse and syn-
chronized model transformations. This approach is based on a small language which
exhibits the semantics bridge between different representations of the same or similar
concepts in modelling languages’ metamodels and on a particular interpreter of this
language to migrate legacy model transformations.

Literature Review at a Glance. Investigation in literature to increase the
re-usability of model transformations in response to changes in metamodels can be
categorized into two main strategies: model adaptation and transformation adapta-
tion. An additional transformation (specified in a new language coupled with its
own particular interpreter) is developed to adapt models of the new metamodel to
conform to the original metamodel in the former strategy (cf., e.g. [Kerboeuf 11]).
The additional transformation and its coupled-inverse transformation are then com-
posed with the legacy transformation i.e. Tinverse ◦ Tlegacy ◦ Tadapt; for reuse. In
this strategy, the new model transformation is composed of the legacy model trans-
formation and the additional interoperability transformations, which are specified in
different transformation languages. As a consequence, the obtained model transfor-
mations become more complex and difficult to manage for further adaptation because
of heterogeneities in using different languages to specify model transformations.

In the latter strategy, the main idea is to adapt the legacy transformation itself to
be valid on the new metamodel. This strategy is widely used to support metamod-
el/transformation co-evolution [Mendez 10, Levendovszky 10]. After an evolution
on metamodel, any transformation written for the previous version of a metamodel
might become inconsistent when being used for the new version. For instance, the
name meta-attribute of a metamodel element may be changed or a relation element
among type elements may be replaced by a new type element in the new version
of metamodel. Some of these evolutions may be identified and used as directives
for a transformation adaptation process, i.e. Tlegacy Tadapted. One advantage of
this approach is that the adaptation is executed only once to obtain a new reliable
transformation in the same monolithic transformation language for permanent reuse.

Contributions. In order to extend the reuse capability, we develop the following
artifacts to support the customization and evolution of model transformations.

• We propose a novel notion of model type based on the graph nature of meta-
models, namely Type Graph with Multiplicity (TGM). We also introduce an
inference mechanism on the transformation, whose definition is based on the
respective metamodels. This mechanism allows to derive the effective model
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type in a specific context in which the transformation itself is used as a filter
to select the used metamodel elements. From this point, a sub-typing relation-
ship is defined between the effective model type and another model type of
the respective metamodel for checking substitution possibility in order to reuse
the transformation with the new metamodel. The proposed model typing ap-
proach is used as the theoretical basis to develop the language in our second
contribution.

• We develop the Metamodel-based Mapping (MetaModMap) approach, which
provides utilities to automatically deal with customization and evolution sce-
narios on model transformations. Our approach is based on the typing approach
(in our first contribution) and the semantic correspondences between (combi-
nations of) elements of metamodels. We implement a MetaModMap prototype
and experiment it using simple case studies.

• We develop concepts and techniques to reify the MetaModMap approach. First,
we provide a Higher-Order Transformation (HOT) [Mens 06] language for model
transformations specified in graph rewriting-based model transformation lan-
guages. The MOMENT2-GT language [Boronat 09] is chosen to describe model
transformations. Second, we implement a compatibility checking mechanism
between metamodels under a HOT definition and a migration algorithm in or-
der to rewrite model transformations. Thus, our approach promotes indirect
reuse of legacy model transformations.

Overall Contribution. We propose in this work a transformation migration ap-
proach to transformation reuse. Nevertheless, instead of analyzing metamodel evo-
lution as in related work, we consider the graph nature of metamodels and we align
metamodels that may have very different history (in the customization scenario).
The abstract graph view plays a centric role for defining metamodel substitution re-
lation. A higher-order model transformation language is proposed to specify intended
semantic correspondences between elements of the two metamodels under considera-
tion. Metamodel correspondences are defined by the users and used to check substi-
tution possibility. In the end, they are used to proceed the transformation migration
process.

1.4 Structure of Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 begins with explaining the core concepts employed in model-driven
engineering like models, metamodels and model transformations. Then, a case
study and existing approaches to supporting transformation reuse are discussed
regarding the identified challenge in Section 1.2.

• Chapter 3 formulates the approach of Metamodel-based Mapping (Meta-
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ModMap). First, we give theoretical basis for our approach. These notions
are: model type based on the graph nature of metamodels, the formal descrip-
tion of a mechanism to infer effective model type for transformations and the
initiative of model sub-typing definition via mappings. Second, we present the
MetaModMap language which provides a solution that is based on exhibiting
the semantic correspondences between different representation formats of meta-
models. The substitution ability between metamodels in the transformation is
based on the model sub-typing defined in our approach. MetaModeMap fos-
ters automated evolution, and customization of model transformations. The
approach will be presented with an illustration on the case study. Main contri-
butions in our approach are also discussed in detail in this chapter.

• Chapter 4 describes concepts and techniques used to implement a prototype
of MetaModMap which realizes the principles of our approach and explains it
working in application scenarios.

• Chapter 5 summarizes the contributions presented in the dissertation and
anticipates some perspectives of future work.

• Appendices A and B give some implementation details.
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2.1 Chapter Overview

This chapter describes the concepts and principles in Model-Driven Engineering
which are used in the context of this dissertation, then presents a motivating example
and finally discusses some approaches related to transformation reuse in the current
literature.

Section 2.2 first presents key notions in Model-Driven Engineering. Then, this
section describes the notion of Domain Specific Modelling Language (DSML), a basic
concept used in Model-Driven Engineering for separating of concerns of a system, a
particular methodology for Model-Driven Engineering. This section also focuses on
model transformations between model spaces specified by DSMLs and presents a
category of transformation approaches.

Section 2.3 introduces a concrete and simple case study on the need of model
transformation reuse problem. Then, by discussing on the characteristics of various
model transformation languages, we chose the most relevant transformation language
to realize our approach identified in Section 2.3.2. In the end, the transformation
reuse problem will be discussed in detail as the specific context of this thesis.

Section 2.4 presents some related approaches to address the problem of adapting
model transformations in response to changes in metamodels. These approaches are
categorized in: model adaptation, transformation adaptation and metamodel adapta-
tion strategies. The limitations and advantages of these approaches will be discussed

7
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in detail for each concrete related work to identify existing challenges which are
improved in this thesis.

Finally, Section 2.5 summarizes the content presented in the chapter.

2.2 Concepts in Model-Driven Engineering

This section provides the background knowledge relevant to the research domain
considered in this dissertation. First, Model-Driven Engineering (MDE), an emerg-
ing software development methodology in the recent decades, will be introduced.
This section then continues presenting the key notions used in MDE such as: model ;
metamodel and meta-metamodel, which are the first-class entities defined in the Meta-
Object Facility architecture. Next, Domain Specific Modelling Language (DSML), a
notion used to (meta-)model concerns of interest in various Model-Driven Engineer-
ing approaches, will be given, which includes the background information on the
main activities on models such as: refactoring, transforming and refinement. In the
end, this section focuses on presenting a particular kind of model transformation,
i.e. from a model space defined by a DSML to another one, which includes the cate-
gories of model transformation approaches dedicated particularly to model-to-model
transformation tasks.

2.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [Bézivin 03b] is a methodology which focuses
on raising the level of abstraction to alleviate the complexity in software development
process. The main characteristic of MDE to accomplish the abstraction requirement
is the use of model for representing the artefacts of a system under consideration
rather than employing the computing (or algorithmic) concepts. Thus, MDE covers
a range of software development approaches in which abstract models are created,
exploited and then transformed into more concrete implementations, ranging from
system skeletons to complete or deployable products.

Abstraction
level

Year80 90 2K

ASM, Fortran, C

CASE Tools

C++, Java, C#
Middle Platform

MDE, MDA

Figure 2.1: Software development methodology roadmap.

The history of software development methodology, cf. Figure 2.1, can be divided
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in four periods. From the invention of early programming languages and platform
technologies until in the 1980s, developers programmed on operating system plat-
forms, such as OS/360 and Unix equipped with Assembly and Fortran or C lan-
guages. Although these languages and platforms raised the level of abstraction, i.e.
shielded developers from complexities of programming to machine code or hardware,
they still employed a computing-oriented focus. Using these computing technologies
made a wide gap between the problem space of application domains, such as banking,
telecom and biology, etc., and the solution space provided by the technologies. As
a result, the developers at that period needed to spend much effort for realizing a
large-scale business problem into a technical solution.

Computer-Aided Software Engineering (CASE) [Chen 89] then was promoted as
an approach to enable developers to express their design choice by general-purpose
graphical programming representations rather than implementing directly in the first-
generation languages. In using the thorough analysers and synthesizers equipped
with CASE tools, developers can avoid errors incurred in programming by traditional
languages – for example, memory corruption or leaks when using languages like C –
and manually coding, debugging and porting program, respectively. However, CASE
did not have much success in practice. One of the reasons is that they did not
support many application domains effectively. Another reason is the lack of common
nowadays middle-ware platforms to integrate implementation codes of the complex,
distributed and large-scale systems on different platforms. This challenge limits the
capability to support multiple platforms in using CASE tools.

To fill the gap between business space and technical space. Since the 1990s, many
expressive Object-Oriented (OO) languages, such as C++, Java, C# have been used
to develop reusable class libraries and application framework platforms. Thus, these
application platforms have leveraged the abstraction of technical space and hence
facilitated developers in developing, maintaining and reusing middle-ware systems
[Booch 94]. Nevertheless, with the rapid growth of the complexity of platform tech-
nologies, such as .NET, J2EE and CORBA, thousands of classes were needed to reach
a desired level of expressiveness. As a result, porting implementation codes from a
platform technology to another one (or another version) is a really difficult issue.
In addition, using only OO languages is still unable to express the domain concepts
effectively.

There were a lot of efforts in the last decade to develop technologies in order to
address platform complexity and the need of expressing concepts of particular do-
mains for solving the problem-implementation gap [France 07b] that exists during
the software development process. As summarized by Schmidt [Schmidt 06], these
technologies use models as a centric concept and build development supporting facil-
ities around the model concept including: 1) Domain Specific Modelling Languages
(DSML) that are designed especially to express concepts within particular domains
or even the domain of middle-ware platform. These DSMLs allow developers to
work at the high-level abstraction rather than OO languages; 2) transformations and
generators equipped within DSMLs to handle the mapping of high-level abstraction
models to lower implementation details. These facilities have been fully shielding the
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developers from complexity of the technical solution space.

In recent years, organizations both in academy and industry, i.e. Object Man-
agement Group (OMG) [OMG 00] have been trying to give a clarity and consensus
for the basic notions to support building MDE-based frameworks. In consequence,
standard specifications such as: Meta-Object Facility (MOF) [MOF 06] which pro-
vides the way to develop DSMLs by using metamodels; Model-Driven Architecture
(MDA) [MDA 03] which guides how to mapping high-level models to lower-level ones
and Query/View/Transformation (QVT) [QVT 08] to give a standard on building a
high-level Model Transformation Languages was provided. Based on these guidelines,
many MDE meta-tools (e.g. GMF [GMF 11], MetaCase [MetaCase 11], amongst oth-
ers) have been developed which remain successful in both commercial and research
software development tools based on the model concept. In the following sections, a
review on the basic concepts in MDE such as: model, metamodel, meta-metamodel,
model transformation will be represented for more details.

2.2.2 Model

There are many discussions about the meaning of the notion “model” in the MDE
context. But the following definition is adopted in the scope of this dissertation:

“A model is an abstract representation of (some aspects of) a system under study
(SUS).” [Czarnecki 00]

According to the definition, models are used to reduce the complexity in order to
better understand the systems (not yet or already existing) which we want to develop
or maintain, respectively. Models are constructed to serve for the given purposes
such as representing human understandable specification of some particular aspects
or machine mechanically analysable description of aspects of interest [France 07b].
Although models cannot represent all aspects of the being-developed (or -maintained)
systems, they allow us to deal with the systems in a simplified manner, to avoid the
complexity of the solution spaces [Rothenberg 89]. Using models of a familiar domain
rather than implementation code helps a broader range of stakeholders, from system
engineers to experienced software architectures, to ensure that the software systems
meet user requirements [Schmidt 06].

The term “model” in MDE refers to all language-based formulated artifacts
[Kuhne 06], unlike, e.g. physical dimensional models, or opposed to mathemati-
cal models which are understood as an interpretation of a theory. However, when
using models, they can play as two different kinds of role. The two kinds of models
are token and type models [Kuhne 06] depending on their relationship to the system
being developed (maintained).
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2.2.2.1 Token models

A token model is a model whose elements capture singular (as opposed to uni-
versal) aspects of a system’s elements, i.e. they model individual properties of the
elements in the system under consideration.

University Library

MDE Prog. Signal

John Doe

has has has

borrowed
borrowed

borrowed

Representation Of

(System Under Study) (Model)

Figure 2.2: An example model of a library.

Figure 2.2 illustrates the relation “Representation Of ” between a token model
and an intended system of which the model will represent. In that figure (on the
right hand-side), we use depictions of the real world system for model elements for
illustrative purpose only, so the model can be regarded as real subject rather than
models themselves. This model is created by using a UML object diagram, cf. Fig-
ure 2.3 (at the bottom of the right hand-side), to capture the system’s elements (and
relationships between elements) of interest in a one-to-one mapping and represent
them with their individual attributes values, e.g. in this case the value of the title
attribute of each book is captured. In conclusion, the meaning of abstraction for
token models is a projection on the system being modelled.

Token models are typically referred to as “snapshot models” since they capture
a single configuration of a dynamic system, i.e. a system whose state changes over
the time. They also have other possible names such as: “representation models”
(because of the representation character) or “instance models” (as they are instances
as opposed to types).

2.2.2.2 Type models

Although using token models has many useful applications, e.g. capturing an
initial configuration of a modelled system for a simulation process or representing
information, which is a one-to-one mapping with a real system. However, they do
not reduce complex systems in concise descriptions [Kuhne 06]. Using “type models”
is thus more adequate for that requirement. For this reason, objects which have
the same properties can be classified into an object class – also referred to as a
concept. Hence, instead of memorizing all particular observations, the human mind
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just collects the concepts and their universal properties into a type model to model
the system under consideration. As a consequence, most of the models in MDE are
type models whose elements capture the universal aspects of a system’s elements by
means of a classification.
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Figure 2.3: Different kinds of model roles.

Figure 2.3 shows (at the top of the right hand-side) a type model for the modelled
library, created by a UML class diagram. Figure 2.4 and most other figures in this
dissertation use standard UML notation [Rumbaugh 99] with the meaning of objects,
classes, associations, dashed dependency lines with “instance-of ” stereotypes to de-
note instantiation, etc. As opposed to token models which represent all particular
elements of a system and their links, type models capture the types of interest and
their associations only. Thus, type models can also be called as “schema models”
or “classification models” [Kuhne 06]. The relation between token models and type
models is called Instance Of, as shown in the Figure 2.3.

2.2.3 Metamodel

A metamodel is defined in [Seidewitz Ed 03] as

“a specification model for which the systems under study being specified are models
in a certain modelling language”.

According to the definition, a modelling language is defined by a metamodel which
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plays a role as a type model for classifying a universe of models into different modelling
languages. A metamodel is not directly used to specify the systems under-study,
however, it defines a set of concepts of the modelling language (and relationships
between concepts) to express the possible model corresponding to (some particular
aspects of) the system. Thus, a model corresponding to a system plays a role as a
token model and is verified by the relation “Instance Of ” with the metamodel of the
modelling language.
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has 0..*

users 0..*
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Model Of
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· · ·
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Figure 2.4: A metamodel to model the Class aspect of the Library system.

In using the MDE methodology, a being-developed (or -maintained) system can
be modeled by considering different aspects (also called views). Figure 2.4 shows a
model (at bottom-right) of library, which is respected to the class view, suppose that
the system is reflected as an object-oriented software system. The definition of this
view is based on a metamodel (at top-right) with concepts of the modeling language
such as: Class, Association, etc. In addition to the class view, there are also other
views – the user interface view, the database view, etc. They can be interesting when
modelling a software system. Each view corresponds to a modelling language, which
is based on a particular metamodel and is used to model a particular aspect of a
system.

2.2.4 Meta-metamodel

A metamodel is itself a token model if we consider its described language as the
system under-study. Thus, it can be expressed in some modelling language. One
particular interesting case is when a metamodel of a certain modelling language uses
the same modelling language. That is, all elements in the metamodel can be expressed
in the same language that the metamodel is describing. Such a metamodel is called
a reflexive metamodel.

A meta-metamodel in that case is constructed by a minimal reflexive metamodel
[Seidewitz Ed 03] that uses the minimum set of elements of the modelling language.
That is, every modelling language’s metamodel elements can be expressed using this
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pushed

minimal set

(Reflexive metamodel)

(Meta-metamodel)

Figure 2.5: Illustration of a reflexive metamodel.

minimal set of modelling elements. However, if any element in this set is removed,
some essential metamodel elements could not be expressed.

The UML metamodel is an example of reflexive metamodel since it respects to
the previously mentioned characteristics. In fact, the entire UML’s abstract syn-
tax [UML 05] can be expressed by using a minimal subset of UML’s static-structure
modelling constructs – classes, packages, associations and generalizations, etc. – as
a meta-metamodel. Using this subset of UML, in addition to UML metamodel it-
self, various modelling language’s metamodels, to consider different aspects of the
being-developed (-maintained) system, can also be expressed as: database, user in-
terface, etc. Natural languages such as English, and the Object Constraint Language
(OCL) [OCL 06] are also used as complementary metamodelling languages to express
metamodels.

2.2.5 The MOF Metamodelling Architecture

In a similar vein as the aforementioned notions, OMG [OMG 00] proposed a spec-
ification of a metamodelling framework, called OMG Meta-Object Facility (OMG-
MOF) architecture, as a standard to develop model-driven systems. The OMG-MOF
specification adopts a four-layer metamodelling architecture, as shown in Figure 2.6,
to define specific modelling languages.

The top layer M3 is a specification of the metamodelling language – defined by
a reflexive metamodel, named Meta-Object Facility (MOF) [MOF 06] – that is used
to express metamodels in layer M2. Only a set of essential concepts (and a part of
relationships) of the MOF meta-metamodel is needed to create metamodels. Figure
2.7 presents an excerpt of the minimal set of MOF, named Essential MOF (EMOF)
meta-metamodel. This metamodel is reflexively and minimally specified, so no higher
layers are needed.

Metamodels defining modelling languages (for example, an abstract syntax model
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Figure 2.6: MOF four-layer metamodelling architecture.

in the UML specification [UML 05]), which reside in layer M2 of Figure 2.6, could
be expressed by instantiating basic meta-concepts of the (E)MOF meta-metamodel.
Then, we give particular names to define new concepts and relationships of the being-
constructed modelling language. For instance, to create a metamodel which defines
the abstract syntax of a modelling language for designing the database (i.e. a model
for a particular aspect) of a software system, basic meta-concepts such as Class,
Property of EMOF at layer M3, see Figure 2.7, will be instantiated to define modelling
concepts such as Table and Column, by means of a reflection mechanism from the
object-level to the concept-level. These concepts are connected by relationships,
e.g. the ownedColumns association (i.e. an instance of the Property concept of
EMOF) from the Table concept to the Column which is coupled with an inverse one.
Relationships may also express composition semantics, by setting the isComposite
attribute to true, for example in the case of the ownedColumns association, whereby
Column instance-objects are composed by a Table instance-object to control object
life-cycle. In addition, additional constraints can be added to the modelling language
for some specific requirements, usually specifying in OCL. In this example, Table
instances must have unique names and Column instances belonging to the same
Table instance ought to have exclusive names, etc.

In a similar way, models which appear at layer M1 can be expressed by instan-
tiating the concepts in a modelling language whose abstract syntax is defined by
a certain metamodel at the layer M2. For instance, in the case of the Database
Schema modelling language, an user-defined model in this language will represent
the database designed for the being-developed software system. This model, in fact,
contains objects which are instances of the concepts of the metamodel. This nature



2.2. Concepts in Model-Driven Engineering 16

NamedElement

name : String

Type DataType

BooleanString NaturalClass

isAbstract : Boolean

Property

lower : Natural
upper : Natural

isOrdered : Boolean

isComposite : Boolean

TypedElelemt

superClass 0..*ownedAttribute 0..*

owningClass 0..1

opposite 0..1

type 1..1

Figure 2.7: Excerpt of the EMOF meta-metamodel.

of instantiation is given by the metamodelling language, this case is MOF, which
also provides basic facilities to manipulate models at the metadata-level such as in-
trospection, intercession, etc. Of course, a particular modelling language need to be
added additional constraints into the structural definition of its metamodel in order
to validate a model. These constraints can be described in the OCL language of
OMG-MOF.

At the bottom level, layer M0 usually represents the run-time data, which could
be considered a token model of a system under-study. When systems are operated,
they change their states themselves. However, the “instance of ” relation of this level
against its higher level i.e. layer M1, is not common to all other levels in the modelling
world. Token models at this level is often checked by complex (structural and non-
structural) constraints in a specific technical platform, e.g. a database management
platform such as Oracle [Oracle 11] or MySQL [MySQL 11], while models at other
higher levels can be verified by means of a simplifier manner by syntactic checking
combined with OCL descriptions and an OCL query engine.

As the previous presentation, the OMG-MOF modelling framework has formal-
ized a mechanism to construct a hierarchical modelling world, presenting three layers
used in most cases when modelling a complex software system. With respect to the
main objective of MDE, i.e. filling the problem-implementation gap by means of
modelling, the most important contribution of the OMG-MOF hierarchy is an initia-
tive document to optimize the understanding of bringing the modelling idea to the
development of model-driven systems, i.e. systems used to develop systems. Other
more philosophical discussions in detail about modelling and model-driven engineer-
ing, including model relationship kinds and number of modelling-layers can be found
in [Seidewitz Ed 03], [Bézivin 04] and [Kuhne 06].

2.2.6 Domain Specific Modelling Language

As aforementioned in Section 2.2.1, having learned lessons from the failure of
CASE tools, i.e. using “one-size-fits-all” graphical representations is not effective
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to support many application domains because of too generic and non customizable
characteristics. MDE approaches today combine Domain Specific Modelling Lan-
guages (DSML) with transformation engines and generators [Schmidt 06]. A DSML
is a modelling language that is developed to express the requirements of a particular
business domain or the solutions of a certain technological domain. The basic use
of DSMLs in MDE approaches is that they foster the separation of concerns. When
dealing with a given system, one may observe and work with different models of the
same system, each one characterized by a given metamodel of a certain modelling lan-
guage [Bezevin 05]. Currently, this usage is realized in a variety of MDE approaches
like Model Driven Architecture (MDA) [MDA 03], Software Factories [Greenfield 03].
In the following, we present MDA approach proposed by OMG and Software Facto-
ries realized by Microsoft which are the most prominent representatives of the use of
DSMLs.

Model Driven Architecture

Model Driven Architecture is a trademark of OMG that specifies an MDE ap-
proach to build systems using models. Software development solutions under the
guideline of the approach MDA start with a description of the problem in terms
of the problem domain and then apply chains of transformations, which lead to a
model specifying the solution in terms of the solution domain. MDA is not a single
specification, but is a set of OMG standards like MOF, UML, SPEM, QVT, XMI,
etc.

According to [MDA 03, Kleppe 03], MDA initiatives described MDA as an MDE
approach building on a set of different kinds of artifacts: Computation Independent
Models (CIMs), Platform Independent Models (PIMs), Platform Specific Models
(PSMs), Platform Models (PMs) and executable code, in which the following three
kinds of models [Swithinbank 05] are used in most current MDA-based solutions:

• Computation Independent Model (CIM): A CIM is a view on a system
from the computation independent viewpoint. A CIM model describes the
business requirements of a being-developed (or -maintained) system and the
business context in which the system will be used. The model specifies what a
system will be used for, but does not show how it is implemented, neither does
it show the structure of the system. The model is often expressed in business
domain specific modelling languages with the vocabulary of the domain that
is familiar to the practitioners. By this way, CIMs plays an important role
where it bridges the gap between the experts of the application domain and
its requirements, and the experts of the design domain and construction of the
artifacts of the system.

• Platform Independent Model (PIM): A PIM is a view on a system from
the platform independent viewpoint. A PIM model describe how the system
will be constructed, but without reference to the technologies used to imple-
ment the system. The model does not specify the mechanisms used to build
the solution targeted to a specific platform. However, it exhibits a specified
degree of independence with certain platform and it may be more suited to be
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implemented by one platform rather than another, or it may be suitable for
implementation on many platforms.

• Platform Specific Model (PSM): A PSM is a view on the system from the
platform specific viewpoint. A PSM is a model of a solution from a particular
platform perspective. It includes both the details from the PIM that describe
how the CIM can be implemented, and details specifying how the implementa-
tion is realized into a specific platform.

The key concept of MDA is the transformation from PIMs to PSMs for particular
platforms. The process of transforming model of a modelling language to another
one of another language is called model transformation. When specifying a model
transformation, it is possible to integrate additional information that is described in
Platform Models (PM). Figure 2.8 illustrates a high-level view on a transformation
of a PIM, possibly with a PM, into a PSM, in which the empty bounding-box may
be additional information playing a role as PM.

gure 2-2 Model Transformation

PIM

PSM

Transformation

Figure 2.8: Transformation of a PIM to PSM (from [MDA 03]).

The MDA specification [MDA 03] does not treat these kinds of model as fixed
layers. That means PIMs and PSMs can be layered with each model being considered
as a PSM with respect to a more abstract-level model and a PIM with respect to
a more concrete-level model. For instance, we could have start building a software
with a high-level design model, then transform it into a detailed design model, and
finally to an implementation model. At each moment using the MDA transformation
pattern, we introduce further assumptions regrading the lower-implementation plat-
form. In this example, the detailed design model plays as a PSM with respect to the
high-level design model and as a PIM with respect to the implementation model.

In MDA, (domain specific) modelling languages for specifying above kinds of
models should be developed by the means of UML profiles or Meta Object Facility
(MOF). The current guideline of MDA promotes to develop modelling languages in
using of MOF instead of UML profiles [MDA 03]. The use of MOF as the common
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meta-modelling language to describe modelling languages has a lot of advantages.
As MOF is an OMG’s standard language to define metadata [MOF 06], it ensures
interoperability to exchange models and metamodels between MDA-based tools and
the ability to realize automated model transformations. MDA-based approaches
are not performed automatically by transformation engines. They use a mixture
of manual and automatic transformations in a chain [MDA 03].

In summary, MDA provides a guideline to develop software development ap-
proaches on building models that represent domain concepts directly rather than
computer technology concepts. These models are expressed in domain specific mod-
elling languages. These modelling languages may either be built on top of general
languages such as UML via the UML’s profile mechanism (see more detail on using
UML profile at [Moreira 04]) or through hierarchical metamodelling frameworks such
as MOF. In using frameworks that explicitly model assumptions about the business
domain and the technological environment, automated tools can analyse models for
flaws and transform them into implementations in concrete technological platforms.
This avoids the need to write a large amount of low-level code and eliminates the
error-prone caused by manual programming [Booch 04].

Software Factories

The term Software Factories [Greenfield 03] has been coined by Microsoft and is
an initiative towards MDE. This MDE approach promotes the use of DSLs (DSMLs),
which are software development languages that have been developed for particular
problem domains. In other words, a Software Factory is an IDE specifically configured
for the efficient development of a specific kind of application, i.e. applications in a
specific domain, e.g. applications in the Online eCommerce domain. According to
[Greenfield 03], the main infrastructure elements of a Software Factory are a software
factory schema and a software factory template which is based on the software factory
schema. The software factory template configures extensible tools, processes, and
content to form a product facility for the software product line.

Software factory schemas define viewpoints that are necessary for building
a system of the respective domain. A common approach to realize this is to use a grid,
as shown in Figure 2.9. In the figure, the columns define concerns, while the rows
define levels of abstraction. Each grid cell defines a viewpoint from which we can build
some aspect of the software. For each viewpoint, the schema identifies core artifacts
that must be developed to produce an application. These are DSLs with editing
tools to build models, refactorings that can improve models, or transformations that
support mapping models. Once the schema has been constructed, we can populate
it with development artifacts for a specific software product.

Such a schema is, therefore, a conceptual framework for separating the concerns
in the respective domain, based on abstraction level or position of each concern in the
architectural or development process. The schema also identifies the commonalities
as well as the differences among the applications in the domain defined by the schema.
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Figure 2.9: A grid for categorizing development artifacts (from [Greenfield 03]).

Software factory templates implement software factory schemas in the pre-
vious step. Schemas are basically on paper, i.e. describing the assets used to build
a family of products, thus we do not actually have these assets yet. Hence, we must
implement the software factory schema by defining the DSLs, patterns, frameworks,
and tools that are described in the documented schema. Then, these assets need to
be packaged and made available to application developers. All these assets form a
software factory template. They include code and metadata that will be loaded into
an Interactive Development Environment (IDE, usually Visual Studio) to configure
the IDE for developing the respective product family. Since assets of a software fac-
tory template are also software artifacts, we need to have the necessary tools to build
them. For DSLs development, tools for defining metamodels, concrete syntax, and
transformation are required to develop a software factory.

Summing up, similar to MDA approach, the Software Factories approach pro-
motes the direct representation of software artifacts by working with (business or
technical) domain concepts and advocates the automation by transforming models
between DSLs. The main difference between them is the Software Factories approach
is not based on open standards, like UML and MOF as the MDA approach.

DSMLs in MDA and Software Factories

As mentioned in [Bezevin 05], DSMLs facilitate the separation of concerns in
software system development. The use of DSMLs helps the software developers in
observing and working with different models of the same system, each one character-
ized by a given metamodel of the respective modelling language.
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However, there is a little difference between MDA and Software Factories in the
use and development of DSMLs. The MDA approach treats UML, which is a general
purpose modelling language for modelling software system, as the modelling language
of choice for most of application modelling, certainly with customization and exten-
sion via the UML Profiles mechanism [UML 05]. Nevertheless, the MDA approach
also acknowledges the value of custom languages in certain specialized circumstances.
This is the purpose of OMG Meta-Object Facility (MOF) [MOF 06] standard that
plays an important role to specify metamodels for DSMLs. UML itself is defined
using MOF and there are also other MOF-defined metamodels for other languages.
MDA acknowledges the value of non-UML based DSMLs as a necessary technique
to be applied judiciously [Swithinbank 05]. Two possible approaches for defining
domain specific modelling languages are illustrated in Figure 2.10.

MOF

UML

metamodel

UML

Profile
UML

Profile

Custom

metamodel
Custom

metamodel

UML-based modelsUML-based models UML-based modelsmodels based on

custom metamodel

real world

M3 meta-metamodel

M2 metamodel

M1 model

M0 reality

DSML

 definitions

Figure 2.10: DSML definition approaches proposed by OMG-MDA.

In contrast to MDA, the Software Factories approach suggests using UML for
developing sketches, white boarding and documentation, i.e. UML conceptual draw-
ings that do not directly relate to code. Instead, it recommends that non-UML based
DSMLs should be used for developing models at precise abstractions from which code
is generated or mappings between DSMLs [Microsoft 05]. Each DSML is positioned
in a cell of the table in Figure 2.9.

Each approach has its advantages and disadvantages. Defining a new non-UML
based language will produce notations that will perfectly fit the concepts and nature
of the specific domain. Nevertheless, this language does not respect semantics in
UML. As a consequence, available commercial UML tools cannot be used for drawing
diagrams, generating code, reverse engineering, etc. In contrast, using UML Profiles
to define metamodels may not provide such an elegant and perfectly matching nota-
tions as may be required for systems of the domain [Moreira 04]. Thus, decisions to
create a new language from scratch or to define a set of extensions to the standard
UML metamodel by using the UML Profiles mechanism are not always easy. Ac-
cording to [Swithinbank 05], there are arguments that illustrate further advantages
of defining new modelling language from scratch. Advantages of this alternative are:
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• Non-UML based DSMLs are designed to specific user groups, application do-
mains, context, and user groups. For that reason, it is easier for users to define
models since the language provides exactly the concepts of the domain that
they need for modelling. While UML Profiles only permit a limited amount
of customization. It is not possible to introduce new modelling concepts that
cannot be expressed by extending existing elements of the UML metamodel.

• The semantics of non-UML based DSMLs is better understandable to the ex-
perts of the application domain. Even to different stakeholders, it is easier to
interpret models right or the same way.

• The scope of non-UML based DSMLs is optimized to its application domain
and use. These languages guide the users towards directly certain types of
solutions. While the use of UML Profiles does require familiarity with UML
modelling concepts. In many cases, experts of the domain may have knowledge
that could be used for purposes of code generation, but they may not have the
expertise to express these concepts using UML’s concepts.

In this thesis, we restrict the reuse problem of transformations only for DSMLs
which are not based on the UML Profiles mechanism. As in the Figure 2.10, DSMLs
considered in this thesis are MOF-defined languages. More precisely, the metamodels
of these languages are designed in Eclipse Modelling Framework (EMF) [EMF 04], an
open source component of Eclipse, which provides a concrete implementation of MOF,
i.e. Ecore. It generates a Java implementation for working with the respective MOF-
defined language and basic Eclipse tooling to create instance models of the language.
Moreover, it is possible to design full graphical editors for the language. In the
following section, we will present the overview of model transformation and existing
approaches developed to define transformations. These approaches are synthesized
in different categorizes based on some previous review works in the literature.

2.2.7 Model Transformation

As aforementioned (see Section 2.2.6), MDE approaches like Model Driven Archi-
tecture [MDA 03], Software Factories [Greenfield 03] use models as first-class entities
in driving software development processes. In these approaches, model transforma-
tions play a key role since they make the seamless transition in the model space.
However, model transformations are a contentious topic, partly because they are
not very well understood, and partly because their merit in practical model-driven
development scenarios is not very clear [Stahl 06].

Model transformations become an important mechanism since it bridges some
abstraction gaps that occur in MDE, e.g. vertical model transformations refine ab-
stract models to more concrete models while horizontal model transformations de-
scribe mappings between model of the same or equivalent level of abstraction. Thus,
it is not surprising that there are many attempts to develop transformation languages
in both academia, open-source and commercial tools. According to [Czarnecki 06],
these languages are currently used in various application scenarios, including:
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• Generating lower-level models, (and eventually code,) from higher-level models
[Sendall 03, Kleppe 03]

• Mapping and synchronizing among models at the same level or different levels
of abstraction [Ivkovic 04]

• Creating query-based views of a system [Bull 05, Solberg 05]

• Model evolution tasks such as model refactoring [Sunye 01, Zhang 05]

• Reverse engineering of higher-level models from lower-level models or code
[Favre 04]

In what follows, we introduce model transformations, requirements, characteris-
tics, related approaches and tools based on the works in [Gardner 03] and [Czarnecki 03,
Czarnecki 06, Mens 06], respectively.

Model-to-model transformation – referred to as M2M transformation – is in-
formation on mapping from one model to another, described by a transformation
engineer, in order to automate a translation process by means of a transformation
engine. An M2M transformation reads a model to create another model. However,
the output model is typically based on a different metamodel than the input model.
The information encoded in such transformations is the descriptions on how the
modelling concepts defined in the source metamodel are mapped to the modelling
concepts defined in the target metamodel.

Meta-metamodel

MMM (MOF)

Transformation Metamodel

MMt (MOF-defined)

Source Metamodel

MMa (MOF-defined)

Target Metamodel

MMb (MOF-defined)

M2M Transformation

Mt :  MMa -> MMb

Source Model
Ma

Source Model
Ma

Source Model

Ma

Source Model
Ma

Source Model
Ma

Source Model

Mb

<<conformsTo>><<conformsTo>>

<<conformsTo>>

<<conformsTo>>

<<conformsTo>> <<conformsTo>><<executes>>

<<reads>> <<writes>>

Transformation Engine

<<uses>><<uses>>

Figure 2.11: Basic concepts of M2M transformation frameworks.

Since model transformations are defined to transform concepts of modelling lan-
guages, they must be defined with respect to the metamodels, as shown in Figure
2.11. In this figure, when the transformation engine executes a transformation Mt,
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input models like Ma conforming to the source metamodel MMa are transformed to
output models like Mb conforming to the target metamodel MMb. In general, model
transformations can be defined based on multiple source and target metamodels.
Since model transformations themselves are models [Bezevin 05], they conform to a
metamodel MMt which represents a model transformation language. This kind of
metamodel can be defined on the basis of MOF, like other ordinary metamodels.

Requirements on Transformation Languages

Before we delve into the details of model transformation approaches, it is useful
to discuss some important and perhaps obvious requirements for model transforma-
tion languages and their implementations. These requirements have been specified
in the literature, such as in [Sendall 03, Gardner 03, Czarnecki 06, Mens 06]. Au-
thors in [Gardner 03] provided a review on the submissions and recommendations
of QVT-RFP [QVT-RFP 05] and proposed concepts and requirements that they
thought necessary for a final adopted standard of the OMG-QVT language. From
this mentioned work, we introduce some of the most important items which provide
an overview of necessary requirements for application scenarios that transformation
languages should fulfil.

• Transformations should be written in a simple manner. A simple transfor-
mation is one that transforms single elements of the input model into single
elements of the output models.

• Transformation engines may have to support the trace of transformation exe-
cutions. Transactional transformations should be definable (commit, rollback),
which prevent an invalid model resulting from a transformation that has failed
during execution.

• Transformation should support the propagation of changes occurring in one
model to the other model. By this way, the changes made manually by model
designers can be maintained.

• Transformations should be able to implement incremental updates, i.e. the
target model is the same as the source model.

• Transformation languages should support the mechanism of reuse and extension
of generic transformations. It should provide mechanism to inherit and override
transformations and the ability to instantiate templates or patterns.

• The use of additional transformation data not contained in the source model,
but parametrized transformation process should be possible.

• Transformation languages should allow composing, decomposing transforma-
tions to support modularity.

• Bidirectional mapping should be supported.
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• A transformation language should allow to specify many-to-many transforma-
tions with multiple source and target models.

Beneath the request of OMG and many practical needs, a variety of languages
to model transformations have been proposed (and developed) over the last decade.
However, the mature status of model transformation frameworks are still not avail-
able, and this area of research continues to be a contentious subject. One is suggested
referring to [Czarnecki 06] for the list of model transformation frameworks which have
been published in literature and implemented in open-source and commercial tools.

Characteristics of Model Transformations

Since model transformations have been applied to various scenarios in model-
driven software development, they have many different characteristics. Authors in
[Mens 06] proposed a taxonomy of model transformations based on a multi-dimensional
classification which allows to characterize model transformations, to group and com-
pare between them. These dimensions are:

• Endogenous versus Exogenous: Endogenous transformations are transfor-
mations between models expressed in the same modelling language. Exogenous
transformations are transformations between models expressed using different
languages. In [Visser 01], endogenous transformations are also called rephras-
ing, whereas translations are referred to as exogenous transformations. Typical
examples of translation are synthesis of a higher-level specification into a lower-
level one, reverse engineering, i.e. the inverse of synthesis, and migration from
a program written in one language to another. Typical of rephrasing are op-
timization (i.e. improving certain operational qualities, while preserving the
intended semantics), Refactoring (i.e. changing internal structure of software
without changing it observable behaviour), simplification and normalization of
models.

• Horizontal versus Vertical: Horizontal transformations are transformations
where the source and target models reside at them same level of abstraction.
Typical examples are refactoring (an endogenous transformation), and migra-
tion (an exogenous transformation) when changing the version of modelling
languages. In contrast, vertical transformations are transformations where the
source and target models reside at different abstraction levels. A typical exam-
ple is refinement, where a specification is gradually refined into a full-fledged
implementation, by means of successive refinement steps that add more con-
crete details. Some concrete examples of application scenarios classified into
above dimensions are given in the Table 2.1.

• Syntactical versus Semantical: Syntactical transformations are transfor-
mations that merely transform the syntax while semantical transformations
take the semantics of the model into account and transform it through a more
sophisticated way. A typical example of syntactical transformations are im-
ports or exports of models in a specific format. Another example is a parser
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horizontal vertical

endogenous Refactoring Formal refinement

exogenous Language migration Code generation

Table 2.1: Two dimensions of transformations with examples [Mens 06].

which transforms the concrete syntax of a program (resp. model) in some
programming language (resp. modelling language) into an abstract syntax.
Then, a semantical transformation use the abstract syntax (i.e. the internal
representation of the program) to apply refactoring or optimization.

In addition to the above dimensions, model transformations also have other quan-
titative characteristics such as:

• Automation: This characteristic is observed to distinct between model trans-
formations that can be automated and model transformations that need to be
performed manually (or at least need a certain amount of human intervention).
The typical example of the latter is a transformation from requirement docu-
ments to a formal analysis model. As the requirements are usually expressed
in natural language, it is necessary to interpret the ambiguity, incompleteness
and inconsistency of the document by a manual intervention.

• Complexity: Model transformations in different scenarios may differ in their
complexity. Some transformations, such as simple model mappings or model
refactoring, could be considered as small, while others, like parsers, compilers
and code generators, are much more complex. As a consequence, different
scenarios of transformation application can require an entirely different set of
techniques and tools.

• Preservation: Although there is a wide range of different kinds of transfor-
mations. However, each transformation should preserve certain aspects of the
source model in the transformed target model, depending on the kind of trans-
formation. For example, the (external) behaviour of a program (or model) is
needed to be preserved in refactoring, while the structure is modified. The
technical space also heavily influences what needs to be preserved. For in-
stance, in case of a program transformation, we need to preserve the syntactic
well-formedness and the type correctness of the program.

The above taxonomy has introduced the important characteristics of model trans-
formations to give an overview of the requirements in the research domains of model
transformation. In what follows, the detailed features of existing transformation
languages will be presented via a hierarchical classification based on features dia-
grams. The following parts are synthesized from the work of Czarnecki and Helsen
in [Czarnecki 06].
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Features of Model Transformation Approaches

The earlier result of Czarnecki et al. on the variability of existing model trans-
formation languages was published in [Czarnecki 03]. The publication described and
clarified the most relevant terms and concepts to model transformations that have
been represented by using feature diagrams [Kang 90]. This taxonomy of transfor-
mation languages was revised in [Czarnecki 06]. An overview of key features of model
transformation languages is shown in the feature diagram (from [Czarnecki 06]), at
the second layer, in Figure 2.12. Note that this feature diagram treats model-to-model
and model-to-text approaches uniformly. We will distinguish them later in the clas-
sification of the “Categories of Model Transformation Approaches” section.
These key features in Figure 2.12 are summarized as follows:

Model 
Transformation

Specification
Transform-
ation Rules

Rule
Application
Control

Rule
Organization

Source-Target
Relationship

Incremen-
tality

Direction-
ality

Tracing

Symbol Explanation

Mandatory feature

Optional feature

Domain

BodyTyping

Variables Patterns Logic

Grouped feature

Or-group

[1..*]

[m..n]

Feature with cardinality

Figure 2.12: An excerpt of the feature diagram of model transformation languages
(for more details, see [Czarnecki 06]).

• Specification: Some transformation approaches provide a dedicated specifi-
cation mechanism, like preconditions and postconditions expressed in Object
Constraint Language (OCL) [OCL 06]. A particular transformation specifi-
cation may represent a function between source and target models and be
executable or describe relations and are not executable.

• Transformation Rules: Transformation rules are understood as a broad term
describing the smallest units of transformations. Rewriting rules are an example
where a left-hand side (LHS) accesses the source model, while a right-hand side
(RHS) expands the target model. In addition, transformation rules could be
functions, procedures or even templates.
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Transformation rules are defined over domains, see the third layer of the dia-
gram. A domain is a part of a rule responsible for accessing one of the models
on which the rule operates. Rules usually have a source and a target domain,
but they may also involve more than two domains. In this case, a set of domains
can be seen as one large composite domain; however it is useful to distinguish
among individual domains to meet the modularity requirement when writing
transformations.

Each domain has a body which can be divided into three subcategories: vari-
ables, patterns, and logic. Variables may hold elements from the source and/or
target models (or sometime intermediate elements). Patterns are model frag-
ments with zero or more variables. Sometimes, as in the case of using templates
to define rules, patterns can have not only variables embedded in the body, but
also expressions and statements of the transformation language. Patterns can
be strings, terms, or graph patterns, depending on the internal representation
of the models being transformed. Logic expresses computations and constraints
on model elements.

Variables and patterns defined in a transformation can be typed. Typing rules
may be defined syntactically or semantically. In the case of syntactic typ-
ing, a variable is associated with a metamodel element whose instances it can
hold, while semantic typing allows stronger properties to be asserted, such as
well-formedness rules (static semantics) and behavioral properties (dynamic
semantics). A type system for a transformation language could statically en-
sure for a transformation that the models produced will satisfy a certain set
of syntactic and semantic properties, provided the input models satisfy some
syntactic and semantics properties.

• Rule Application Control: Control mechanisms usually provide strategies
for two aspects: location determination and scheduling. Location determina-
tion is the strategy for determining the model locations to which transformation
rules are applied. Scheduling mechanisms determine the order in which indi-
vidual transformation rules are executed.

• Rule Organization: This comprises the structuring and composing issues
of transformation rules, such as modularization mechanisms (e.g. packaging
rules into modules and allowing to import them into other modules) and reuse
mechanisms (e.g. rule inheritance, module inheritance).

• Source-Target Relationship: This feature is concerned with issues such as
whether source and target are one and the same model or two different models.
For example, ATL [Bézivin 03a, Jouault 06] mandates the creation of a new
target model that has to be separated from source model. Nevertheless, one
can simulate an in-place transformation in ATL through an automatic copy
mechanism. Some other approaches, such as VIATRA [Varró 02, Varró 04] and
AGG [Taentzer 04], support only in-place update; that is, source and target are
always the same model. Yet, other approaches, such as QVT Relations [Bast 05]
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and MTF [IBM 05], allow creating a new model or updating an existing one,
in which QVT Relations also supports in-place update.

• Incrementality: This feature refers to the ability to update existing target
models based on changes in the source models. It involves three different fea-
tures: target incrementality, source incrementality, and preservation of user
edits in the target ; in which, the first one is the basic feature of all incremental
transformations. In these transformations, target models are created if they are
missing on the first execution. A subsequent execution with the same source
models as in the previous execution has to detect that the needed target ele-
ments already exist. This can be achieved by using traceability links. When
any source models are modified and the transformation is executed again, the
necessary changes to the target are determined and applied, while other target
elements are preserved.

• Directionality: Transformations may be unidirectional or multidirectional.
Unidirectional transformations could be executed in one direction only, in which
case a target model is computed (or updated) based on a source model. Mul-
tidirectional transformations can be executed in multiple directions, which is
particularly useful in the context of model synchronization. These transfor-
mations can be achieved by using multidirectional rules or by defining several
separate complementary unidirectional rules, one for each direction.

• Tracing: This is concerned with the mechanisms for recording different as-
pects of transformation execution, such as creating and maintaining trace links
between source and target model elements. Tracing can be understood as
the run-time footprint of transformation execution where it uses traceability
links to connect source and target elements. These links can be established by
recording the transformation rule and the source elements that were involved
in creating a given target element. Trace information is useful in performing
impact analysis (i.e. analyzing how changing one model would affect other
related models), determining the target of a transformation as in model syn-
chronization, model-based debugging (i.e. mapping the stepwise execution of
an implementation back to its high-level model), and debugging model trans-
formation themselves.

We have presented essential features provided by existing transformation lan-
guages that are based on the survey from 2006 [Czarnecki 06]. Although there have
been many other transformation languages (or transformation frameworks) developed
until now, they still comply with these features. The following section classifies model
transformations approaches into “major categories”, depending on which paradigm
they use to describe transformations rules.

Categories of Model Transformation Approaches

The previous section introduced necessary terms and concepts describing ma-
jor features that were provided in existing transformation approaches. We now
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present a classification of model transformation approaches, which is also based
on [Czarnecki 06]. At the top level, transformation approaches are distinguished
between model-to-model (M2M) and model-to-text (M2T) approaches. A model-to-
model transformation creates its target as an instance of the target metamodel, while
the target of a model-to-text transformation is just string. Model-to-text transfor-
mations are also referred to as model-to-platform or model-to-code transformations
[Stahl 06]. An overview of categories is shown hierarchically in Figure 2.13. In fol-
lowing parts, each category will be explained with examples of concrete realizations.

Transf. Approaches

M2M M2T

Direct
Manipulation

Structure-
driven

Operational
Template-
based

Relational
Graph-
transformation-
based

HybridOthers

Visitor-
based

Template-
based

Figure 2.13: Categorization of model transformation approaches.

Model-to-model approaches

The model-to-model category can be distinguished among direct-manipulation,
structure-driven, operational, template-based, relational, graph-transformation-based,
and hybrid approaches.

• Direct manipulation approach: Approaches in this category offer an inter-
nal model representation and some APIs to manipulate it. A typical example of
such a category is Java Metadata Interface (JMI) [JMI 02]. These approaches
are usually implemented as an object-oriented framework, which may also pro-
vide some minimal infrastructure, i.e. a set of abstract classes and interfaces to
be used in writing transformations. Using frameworks of this approach, users
themselves usually have to implement transformation rules, scheduling, tracing,
and others facilities, mostly from the beginning, in a programming language,
such as Java.

• Structure-driven approach: This category of approach has two distinct
phases: The first phase is concerned with creating the hierarchical structure
of the target model; whereas, the second phase sets the attributes and refer-
ences in the target. Rule scheduling and application strategy is determined by
the overall framework; users are only concerned with providing transformation
rules. An example of such a category is the M2M transformation framework
provided by OptimalJ [Compuware 05]. This framework provides incremental
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copiers that users have to subclass to define customized transformation rules.
Rules are not allowed to have side-effects, and scheduling is completely deter-
mined by the framework.

• Operational approach: Approaches in this category are similar to direct
manipulation approaches, but offer more dedicated support for model transfor-
mation. A typical solution in this category is to extend the used metamodelling
formalism, i.e. concepts in the meta-metamodel, with facilities for expressing
computations. Object Constraint Language (OCL) [OCL 06] is an example
providing a query language with imperative constructs extended from the con-
structs of the MOF meta-metamodel. Other examples in this category are
QVT Operational mappings [Bast 05], MTL [Vojtisek 04], C-SAW [Gray 06],
and Kermeta [Muller 05]. Specialized facilities such as tracing may be offered
through dedicated libraries.

• (Model-)Template-based approach: In this category, transformation rules
are defined by model templates which are models with embedded metacodes
that compute the variable parts of the resulting template instances. Model tem-
plate are usually expressed in the concrete syntax of the target language, which
helps the transformation designers to predict the result of template instanti-
ation. The metacodes can have the form of annotations on model elements.
They are conditions, iterations, and expressions, all being part of the metalan-
guage. Thus, OCL constructs can be used in the metalanguage to express these
annotations. A concrete model-template-based approach is given by Czarnecki
and Antkiewicz in [Czarnecki 05].

• Relational approach: This category groups declarative approaches in which
the main concept is mathematical relations. In general, relational approaches
can be seen as a form of constraint solving. Examples of this category are
QVT Relations [Bast 05], MTF [IBM 05], Kent Model Transformation Lan-
guage [Akehurst 02, Akehurst 10], Tefkat [Gerber 02, Lawley 06], and AMW
[Bézivin 05b]. The common idea in these approaches is to specify the relations
among source and target elements’ types using constraints. In its pure form,
such a specification is non-executable. However, declarative constraints can be
given executable semantics, as in logic programming. All of the relational ap-
proaches are side-effect-free and create target model elements implicitly. Most
of them require strict separation between source and target models; that is,
they do not allow in-place update.

• Graph-transformation-based approach: This category groups model trans-
formation approaches based on the theoretical work on graph transformations
[Taentzer 05]. In particular, this category operates on typed, attributed, la-
belled graphs [Andries 99], which can be thought of as formal representation
of simplified metamodels in the MOF-defined format. Concrete examples in-
clude AGG [Taentzer 04], AToM3 [Lara 02], VIATRA [Varró 02, Varró 04],
GReAT [Agrawal 03], UMLX [Willink 03], BOTL [Braun 03, Marschall 03],
MOLA [Kalnins 05], and Fujaba [Fujaba 97].
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Graph transformation rules have a left-hand side (LHS) and a right-hand side
(RHS) graph pattern. The LHS pattern is matched in the model being trans-
formed and replaced by the RHS pattern in place. The LHS often contains
conditions in addition to the LHS pattern, for example, negative conditions.
Some additional logic, such as computational logic in String and Numeric do-
mains, is needed to compute target attribute values, e.g. the name attribute
of model elements.

Graph patterns can be rendered in the concrete syntax of their respective source
or target modelling language (e.g. in VIATRA) or in the MOF-defined abstract
syntax (e.g. in AGG). The advantage of the concrete syntax is that it is more
familiar to experts working with a given modelling language than the abstract
syntax. However, it is easier to provide a default rendering for the abstract
syntax that will work for any metamodel, which is useful when no specialized
concrete syntax is available.

• Hybrid approach: Approaches in the hybrid category combine different tech-
niques from the previous categories. These techniques can be combined as sep-
arate components, such as in QVT [Bast 05] with three components: Relations,
Operational mappings, and Core; or in a fined-grained fashion at the level of
individual rules as in ATL [Bézivin 03a, Jouault 06] and YATL [Patrascoiu 04].
An individual rule described in ATL may be fully declarative, hybrid, or fully
imperative. In case of fully declarative, the LHS part consists of a set of syntac-
tically typed variables with an optional OCL constraint as filter or navigation
logic. The RHS contains a set of variables and some declarative logic to bind
the values of the attributes in the target elements. In a hybrid rule, the source
and target patterns are complemented with a block of imperative logic, which
runs after the application of the target pattern. A fully imperative rule (so-
called procedure) has a name, a set of formal parameters, and an imperative
body, but no pattern.

• Other approaches: In addition to the described categories, there are two more
approaches: transformation implemented using Extensible Stylesheet Language
Transformation (XSLT) [W3C 99] and the application of metaprogramming to
model transformation. Since models can be serialized as Extensible Markup
Language (XML) using the XML Metadata Interchange (XMI) [OMG 05],
model transformations can be implemented using XSLT, which is a standard
technology for transforming XML documents. Nevertheless, the use of XMI and
XSLT has scalability limitations. Manual implementation of model transforma-
tions in XSLT quickly leads to non-maintainable implementations because of
verbosity and poor readability of XMI and XSLT. A more promising direction
in applying traditional metaprogramming techniques to model transformations
is a domain-specific language for model transformations proposed in [Tratt 06],
which is embedded in a metaprogramming language.

Model-to-text approaches
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Model-to-text approaches are not only useful for code generation but also for
non-code artifacts such as structural documents. Code generation can be seen as a
special case of model-to-model transformations if one provides a metamodel for the
target programming language. Nevertheless, for practical of reusing existing compiler
technology and for simplicity, code is often fed into a compiler. In the model-to-text
category, we distinguish between visitor-based and template-based approaches.

• Visitor-based approach: A very basic code generation approach consists
in providing some visitor mechanism to traverse the internal representation
of a model and write text to text stream. A typical example for this cate-
gory is Jamda [JAMDA 03] – an object-oriented framework providing a set
of classes to represent UML models, an API for manipulating models, and a
visitor mechanism (CodeWriters) to generate code. Jamda does not support
the MOF-defined metamodels; however, new model element types can be in-
troduced by subclassing the existing java classes that represent the predefined
model element types. The most important benefit of using Jamda is the saving
of a huge amount of time, i.e. it takes much less time than writing the code by
hand from scratch.

• Template-based approach: Most of currently available MDA model com-
piler tools based on a templating approach, such as Xtend [Xtend 08], JET
[Popma 05], AndroMDA [AndroMDA 04], MetaEdit+ [MetaCase 00], and Op-
timalJ [Compuware 05]. A template usually consists of the target text contain-
ing splices of metacode to access information from the source and to perform
code selection and iterative expansion. There is no clear syntactic separation
between the LHS and RHS of a rule. The LHS can be understood as exe-
cutable logic to access source, and the RHS is the combination of untyped
string patterns with executable logic for code selection and iterative expansion.
Template-based approaches usually offer user-defined scheduling in the inter-
nal form of calling a template from within another template. Compared with a
visitor-based transformation, the structure of a template resembles more closely
the code to be generated. Templates lend themselves to iterative development
as they can be easily derived from examples.

Summing up, there are a lot of model transformation frameworks based on vari-
ous above categories. However, choosing an adequate approach in a specific context
of transformation is not an easy task. According to the recommendation of Gard-
ner et al. in [Gardner 03], for simple transformations and for identifying relations
between source and target model elements, a relational approach should be used. In
case of defining complex many-to-many transformations that involve detailed model
analysis, an operational approach seems to be preferable. In practice, a variety of
transformation languages, such as QVT or ATL, offer the possibility to combine
elements of both approaches in transformation specifications.
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2.3 Model Transformation Reuse

MDE approaches for software development are getting more sophisticated when
they foster the description of software systems using appropriate modelling for-
malisms and at different levels of abstraction. For example, the MDA approach pro-
poses developing software development approaches on building modelling languages
that represent domain concepts directly rather than computer technology concepts,
while Software Factories promotes the use of a set of specific modelling formalisms
for each group of products in a particular problem domains. As a result, there is an
explosion in developing specific modelling languages, serving the specific purposes of
the particular application domains and technology platforms. The application and
usage of Domain Specific Modelling Languages (DSMLs) is extremely efficient in the
context of automated system and code generation. Hence, model transformation be-
comes a key enablers in MDE approaches to transform models seamlessly between
different DSMLs and levels of abstraction.

Using DSMLs with specialized metamodels, i.e. different metamodels for the same
modelling language of a domain, in software development scenarios has a limitation
concerned with transformation developing. Since transformations are tightly coupled
to the metamodels that they are defined upon, thus with the use of different meta-
models for the language of the same domain, transformations already developed by
an organization cannot be directly used in another organization. In such a situation,
there is a need of customizing the legacy model transformation to avoid developing
a new transformation from scratch. Moreover, with the recurrent evolution of meta-
models in the organization, i.e. releasing a new version of a metamodel, it is necessary
to adjust existing model transformations built over the old metamodel version.

DSMLs are realized through metamodels that are an exact representation of do-
main concepts and a document describing the semantics of each element in the repre-
sentation. Since model transformations are defined over the concrete representation
of the metamodel, syntactic and semantic differences in representation formats hinder
the efficient reuse of existing model transformations. These differences occur recur-
rently by the evolution and the use of different metamodels in organizations. Since
transformations are also software artifacts, to enable their efficient reuse in different
contexts (i.e. different metamodels), it is essentially to develop migrating solutions
for model transformation reuse and evolution, independent of modelling languages.

In summary, a solution for automatically adjusting and reusing existing model
transformations is necessary, namely in the context of the evolution of metamodels
or the use of different metamodels. Such a solution helps avoid errors and tedious
tasks of developing new transformations. In the following parts, first, we present
a concrete case study to demonstrate the need of transformation reuse when using
different metamodels of the same modelled domain. Second, we give a brief view
of the transformation approach (language), i.e. MOMENT2-GT, which is further
chosen to describe transformations in this thesis. This section will be enclosed by a
discussion on the obstacles which hinder the reuse of model-to-model transformations.
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2.3.1 A Case Study

In order to illustrate the problem to be solved in this thesis, an exogenous
model-to-model transformation in which class models are transformed into relational
database models for a relational database management system (RDBMS) is under
consideration as the motivating example. In the context of the Software Factories
software development approach [Greenfield 03], one can consider this transformation
as a facility for automatically generating models from the object models viewpoint
of the Application concern at the logical layer into the database models viewpoint of
the Information concern at the implementation layer, see the table in Figure 2.9 of
Section 2.2.6.

Metamodels

(a) Source metamodel CDV1 in Ecore-defined representation

(b) Target metamodel RDB in Ecore-defined representation

Figure 2.14: Class models to relational database models transformation’s metamod-
els.

Figures 2.14a and 2.14b show the source and target metamodels expressed graph-
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ically in UML class diagram notation, respectively. Note that all metamodels in this
thesis are MOF-defined, More precisely Ecore [EMF 04] is used as a concrete imple-
mentation of MOF in Eclipse EMF modelling framework. Figure 2.14a gives a simpli-
fied metamodel for class models that includes the abstract concept of classifiers (Clas-
sifier), which comprises classes (Class) and primitive data type (PrimitiveDataType).
It also presents the abstract concept of structural features (StructuralFeature), which
comprises operations (Operation) and attributes (Attribute). Classifier and Struc-
turalFeature concepts are inherited concept name owned by the abstract concept of
named elements (NamedElement). There are inheritance links between concept Asso-
ciation, Package and the NamedElement concept. Packages contain classes, primitive
data types, and associations. Classes contain attributes and operations. Associations
define relationships between classes through concepts source and target owned by the
association. Classes can be marked as persistent (by setting the value of attribute
concept isPersistent) and so on attributes can be marked as primary or not by the
value of attribute concept isPrimary. We call this metamodel CDV1 (also referred to
as the original metamodel in this thesis) to distinguish with a new metamodel which
defines the same or similar concepts of the domain of class models.

Figure 2.14b shows a simple metamodel for defining relational database schemas
for a relational database management system. A schema (Schema) contains tables
(Table), and tables contain columns (Column). Attribute concept type of concept
Column has values of string. Every table has primary-key columns, to which are
pointed by the reference concept pkeys which is owned by concept Table. Addi-
tionally, the concept of foreign-keys is modelled by FKey which relates foreign-key
columns to tables.

Sample Models

Sample instance models of the metamodels using the UML object diagram no-
tation are shown in Figures 2.15a and 2.15b. The instance model in Figure 2.15a
represents a class model with one package, for simplicity we do not show the package
object in the diagram, containing four classes with values of attribute concept name:
‘Customer’, ‘Address’, ‘Order’, and ‘SpecialOrder’. While classes Customer, Order,
SpecialOrder are persistent by setting values of attribute concept isPersistent to true,
class Address is not. This model also defines two primitive data types, ‘INTEGER’
and ‘STRING’, to set values of reference concept type for attributes: ‘addr’, ‘name’,
‘order no’, ‘bonus’, owned by classes Address, Customer, Order, SpecialOrder, re-
spectively. The links between class Customer and classes Address, Order are rep-
resented by association named ‘address’ and ‘customer’, respectively. The value of
reference concept parent of class SpecialOrder is set to class Order to establish the
inheritance relation between them.

Figure 2.15b shows the instance model of the relational database model. The
instance model represents a schema, same as the above package, the schema object
is not shown in the diagram, that can be used to make Customer, Order objects
persistent. This model defines two tables, i.e. Customer and Order. Customer
table contains two columns, i.e. ‘name’ and ‘address addr’ with the type values are



2.3. Model Transformation Reuse 37

: PrimitiveDataType

name = 'INTEGER'

: PrimitiveDataType

name = 'STRING'
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type type type type
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ownedFeatures
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isPersistent = true isPersistent = falseisPersistent = true

(a) Sample input model in CDV1-defined representation

: Table

name = 'Customer'
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name = 'Order'
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name = 'name'

type = 'STRING'
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: Column

name = 'customer_name'

type = 'STRING'

: FKey

pkeyspkeys

cols cols

cols cols

pkeyspkeys

fkeyscols

cols
reference

(b) Sample out model in RDB-defined representation

Figure 2.15: Sample input/ouput models.

‘STRING’, that are also primary keys of the table. Order table has two primary keys,
i.e. ‘order no’ and ‘bonus’. This table also has a foreign key object which refers to the
‘customer name’ column. The foreign key refers to the Customer table. To achieve
this model from the class model, it is necessary to describe a transformation between
two metamodels. The informal description of this transformation is presented as
follows.

Class Models to Relational Database Models

As a case study, we consider transforming class models into relational database
models described in the previous paragraphs. Such a transformation needs to realize
at least the following main mappings:

1. Package-to-Schema: The root package in the class model should be mapped to
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a schema with the same name as the package.

2. Class-to-Table: A persistent class should be mapped to a table with the same
name as the class and all its attributes or associations to columns in the table. If
the type of an attribute (represented by reference concept type) or of an associ-
ation (represented by reference concept target of the type concept Association)
is another persistent class, a foreign key to the corresponding table is estab-
lished. Furthermore, the table should have primary-key columns corresponding
to transformed attributes marked as primary.

3. Attribute-to-Column: The class attributes have to be appropriately mapped to
columns, and some columns may need to be related to other tables by foreign
key definitions.

In addition, if class hierarchies are transformed, only the top classes are mapped
to tables. Additional attributes and associations of subclasses result in additional
columns of the tables corresponding to these top classes. To this end, it is necessary
to compute the transitive closure of class inheritance. The result closure is stored
in the value of the helper reference concept ancestors of subclasses. In the end,
attributes and associations of subclasses are transformed to columns of the top class’
table.

In the transformation, non-persistent classes are not mapped to tables. However,
it is necessary to preserve all information in the class model after transforming into
the relational database model. That means all attributes and associations of non-
persistent classes are distributed over tables stemming from persistent classes which
access non-persistent classes. To this end, it has to transform all attributes and
associations of connected non-persistent classes to columns of referring persistent
classes’ tables.

The above transformation would map the class model in Figure 2.15a to the re-
lational database model in Figure 2.15b. The result model has a schema, which is
not shown in the UML object diagram for simplicity, with the same name as the
package. The schema consists of two tables, one from the Customer class and the
other from class Order. The primary attribute name of class Customer is mapped
directly to the column name with the type is ‘STRING’ and is set as a primary key
of table Customer. Furthermore, the attribute addr of non-persistent class Address
is mapped to column address addr of table Customer because there is an associa-
tion address from class Customer to class Address. These results are handled by
mappings Class-to-Table and Attribute-to-Column and the above rule considering
non-persistent classes. Similarly, table Order has column order no corresponding to
the result of the Attribute-to-Column mapping. Moreover, the bonus column of the
table is achieved from attribute bonus of class SpecialOrder by taking into account
the inheritance relation with class Order. In the end, a foreign key is created that
points to column customer name derived from the customer association between two
persistent classes, Order and Customer.

Changing metamodel
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As a case study, we consider the case in which the original source metamodel
of the transformation will be replaced by another one, but always representing the
same or similar modelling concepts of the modelled domain. More precisely, one wants
to transform the same intentional class model (as shown in Figure 2.17), however,
designed by another CASE tool based on a different metamodel, without developing
a new transformation from scratch. This situation usually occurs when different
companies often use different modelling languages and tools to model problems in
their owned software development factory or in case of evolution of metamodels in
the same company, see Figure 1.1 of Chapter 1.

Figure 2.16: New source metamodel CDV2 in Ecore-defined representation.

Figure 2.16 show a new source expressed graphically in UML class diagram no-
tation as the previous metamodels, namely CDV2. As shown in this figure, this
metamodel defines a similar structure (or abstract syntax ) for class models in com-
parison with the original metamodel, but some modelling concepts are named differ-
ently. For example, the modelling concept attribute which is reified in the previous
metamodel as a type concept (a terminology from the Ecore technological space, i.e.
a named instance of Ecore::EClass metaclass) with the name ‘Attribute’ now is de-
fined as another one with the name ‘Property’. Moreover, modelling concepts may
be connected differently, as shown in the figure the reference concept parent defin-
ing the inheritance relationship between classes in the old metamodel is changed by
presenting a new type concept, namely ‘Generalization’. The legacy transformation
described in a certain transformation language will become inconsistent with the new
source metamodel because of these changes, thus should be adjusted or maintained.
Obviously, automating this task will significantly promote transformation reuse and
avoid a tedious and error-prone manual adaptation.

To describe the impact of metamodel change on the representation format of
models, Figure 2.18 shows the concrete representation in the format defined by the
new metamodel of the same intentional class model (Figure 2.17). The figure is
depicted in the UML object diagram annotation. Changes between two metamodels
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bonus : INTEGER

SpecialOrder
order_no : INTEGER

Order
name : STRING

Customer
addr : STRING

Address
customer address

Figure 2.17: Sample intentional input model designed by a CASE tool.

make the representation of the model changing slots’ names of instance objects in
comparison with the old representation, depicted in blue. Since metamodel-based
transformation languages define transformations using names of metamodel elements
and the object-oriented structure of metamodel, the transformation engine cannot
access to the model represented in another format to achieve and then compute values
in slots of instance objects. As a result, the difference in abstract syntax (i.e. different
metamodels) is the main obstacle which hinders the reuse of transformations even
though transformations are described for the objective of transforming intentional
models between modelling languages, and not for any exact representation format of
models.
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type type type type
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persistent = true

primary = trueprimary = true primary = true primary = true

persistent = true persistent = falsepersistent = true

: Generalization

generalization

Figure 2.18: Sample input model in CDV2-defined representation.

To summarize, there are a lot of cases where different companies use different
metamodels for the same modelled domain. Furthermore, over a period of time,
these companies will apply new versions of modelling languages, i.e. evolving their
metamodels, and modelling styles. Thus, existing transformations will need to be
maintained, and adjusted in order to avoid duplicating and to reduce the cost in
transformation development. The following section will give a short discussion on
the choice of transformation approach (language) to formally describe the transfor-
mation of the case study. This section will result in choosing the MOMENT2-GT
language as the transformation approach focused in this thesis. As MOMENT2-GT
is further important in our approach on transformation reuse, we also provide more
detail information. The description of the language is based on the publication of
MOMENT2-GT in [Boronat 09].
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2.3.2 Choice of Transformation Language

As aforementioned in Section 2.2.7, a transformation is constituted by a set of
transformation rules. However, transformation rules are understood as a broad term
describing the smallest unit of transformations. These rules can be functions, proce-
dures, (model) templates, or patterns depending on the paradigm employed in each
transformation approach. The way to define transformation rules in each paradigm
should be declarative, operational, or hybrid. While the declarative way is suitable to
describe simple transformations and provides concise constructs for identifying rela-
tions between source and target model elements. The operational approach is prefer-
able for the definition of complex transformations that have more sophisticated com-
putation. From this point of view, such a transformation as in the case study can be
described in transformation approaches which are in the graph-transformation-based
category [Taentzer 05], see the overview of categories of transformation approaches
in Figure 2.13. This category covers all approaches in which graph patterns are used
to define transformation rules. These approaches provide a declarative, intuitive way
for defining transformations. A quick introduction on graph-transformation-based
approaches can be found on page 31.

The transformation CD2RDB is written in MOMENT2-GT 1, a language based
on the main concepts of graph transformation systems and supporting directly EMF
model transformation [Boronat 09]. A MOMENT2-GT transformation is given as
a set of rules — also referred to as model equations/rewrites. Each model equa-
tion/rewrite contains Left-Hand Side model patterns, Right-Hand Side model pat-
terns, and Negative Application Condition model patterns for host models (under ma-
nipulation). MOMENT2-GT model patterns correspond to object template patterns
in the QVT [QVT 08] terminology, or graph patterns in the graph transformation
terminology.

Based on the graph transformation characteristic, MOMENT2-GT can specify a
model transformation at a high-level as the graph nature of metamodels to reduce the
gap between metamodel design and transformation implementation. Thus, since we
consider the metamodel similarity as graph similarity, graph-based model transfor-
mation frameworks, likes MOMENT2-GT, are more relevant than other lower-level
transformation paradigms to initially study the substitution relation of metamodels
in transformation. Moreover, MOMENT2-GT has been formalized into the rewrit-
ing logic framework Maude 2 which provides built-in tools for formal verification of
transformation. For these reasons, we chose MOMENT2-GT on which our imple-
mentation is based. However, the proposed approach can be used with any other
graph-based model transformation frameworks.

MOMENT2-GT Framework

MOMENT2-GT [Boronat 09] is a model transformation tool based on the Sin-
gle Pushout graph rewriting approach [Ehrig 06]. In MOMENT2-GT, EMF-based

1. http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/
2. http://maude.cs.uiuc.edu/

http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/
http://maude.cs.uiuc.edu/
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models are considered as graphs of which nodes are attributed and typed, taking
inheritance into account. A transformation definition is constituted by a set of pro-
duction rules, which are defined in a QVT-based textual format, where simple OCL
expressions are used either as guards in (possibly negative) application conditions
or as manipulation expressions for attribute values. Such a transformation defini-
tion in MOMENT2-GT is compiled into a rewrite theory in the Maude language
[Mart́ı-Oliet 07]. In MOMENT2-GT, transformation rules can be defined as either
deterministic or non-deterministic production rules and then projected into equa-
tions or rewriting rules in Maude, respectively. Since EMF models in this tool can
be treated as terms in the Maude algebraic framework, various Maude-based formal
analysis techniques [Mart́ı-Oliet 07] can be applied to perform model checking to
model-based systems, such as model checking of invariants or LTL model checking
(see model checking examples in MOMENT2-GT in [Boronat 09]), in a straightfor-
ward way.

As the input EMF model is represented as a term of a specific sort that is defined
in a rewriting theory, the execution of a compiled MOMENT2-GT transformation
definition can be handled by the Maude’s algorithm for term rewriting modulo as-
sociativity and commutativity matching. This process finishes when the host term
achieves a normal form (i.e. there is no more equations or rules match the term to
apply). The resulting term is then parsed by MOMENT2-GT to backward as an
output EMF model again.

Figure 2.19 presents a high-level view of the transformation process from a class
model to a relational model. Steps to perform a transformation process in MOMENT2-
GT are the following:

• (1) and (2): Both class and relational metamodels are specified at layer M2 by
means of the Ecore graphical editors provided in the EMF modelling framework.

• (3): The QVT-like MOMENT2-GT transformation is defined at layer M1, but
it relates the constructs of the source and the target metamodels. As a model,
the transformation defined by the user has to conform to the MOMENT2-GT
metamodel.

• (4): A class model is defined by means of the Reflective Model editor or a
graphical editor based on EMF. The model must be serialized in the XMI
representation.

• (5) and (6): Both metamodels are projected as algebraic specifications, i.e.
as Maude theories, by means of the interoperability bridges that have been
implemented in the MOMENT2-GT framework. This bridge is implemented
based on Ecore libraries provided in EMF.

• (7): The transformation is projected into the Maude code as a rewriting theory,
which contains the specification of the CD2RDB transformation operator and
its rewriting rules compiled from user-defined transformation rules.

• (8): The class model, which is defined in step (4) at layer M1, is projected as
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Figure 2.19: Steps performed in MOMENT2-GT (adapted from [Boronat 07]).

a term of the theory corresponding to the class metamodel (9).

• (10): Maude engine applies the CD2RDB operator through its term rewriting
mechanism, obtaining a term of the RDB theory (11). Thus, Maude is as an
underlying virtual machine for the MOMENT2-GT framework.

• (12): The last step parses the term (11), achieving an EMF-based model (13)
in layer M1, which conforms to the target metamodel defined at layer M2.

In the model transformation process, the user only defines the source and tar-
get metamodels (steps (1) and (2)), the MOMENT2-GT transformation between the
metamodels (step (3)) and the input model (step (4)). The other steps are automat-
ically carried out by the MOMENT2-GT framework.

Summing up, MOMENT2-GT provides a model transformation framework for
EMF-based models. Transformations in MOMENT2-GT are written in a textual
QVT-based language to describe rules by following the Single Pushout graph rewrit-
ing approach. The execution semantics of transformation rules are given through
a compilation of rules into rewriting rules within the Maude rewriting framework.
Rules in MOMENT2-GT language are purely declarative, i.e., the framework does
not use any control structure on the application of rules. In order to process each
match only once, MOMENT2-GT uses negative application conditions (NAC) and
OCL constraints, instead of maintaining instances of the applied rules to remem-
ber the matched nodes. In the end, formal analysis of transformation definitions is
available in MOMENT2-GT as provided by the underlying Maude engine.
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MOMENT2-GT Language

As the QVT-based language in the MOMENT2-GT tool is further important in
this thesis, we provide more detail information about the abstract syntax (i.e. the
language’s metamodel), the textual concrete syntax, and an informal description of
the execution semantics for the language’s constructs. The rewriting logic semantics
of the language in Maude are not presented. One can read [Boronat 09] for more
details on the compilation of a transformation definition into rewriting logic. In the
following paragraphs, the most important syntactic constructs of the language will
be introduced by using the UML class diagram annotation. Since MOMENT2-GT
has been implemented by using Xtext technology [Xtext 08], a partial concrete
syntax will be presented in Xtext Grammar, similar to EBNF Grammar, with
the motivating transformation implementation of the case study, i.e. the CD2RDB
transformation.

Transformation and ModelTypes In the MOMENT2-GT language a transfor-
mation (Transformation) between models is specified as a set of rule (Rule) that
specifies transition steps in a transformation, cf. Figure 2.20. A transformation can
be applied to models that conform to a model type (TypedModel), which is a speci-
fication what kind of model elements any conforming model can have. The types of
elements these models can have are restricted to those within the referenced package
of metamodels (the modelType reference). The models for which a transformation is
specified are parameters (the parameters containment reference) of the transforma-
tion.

Figure 2.20: MOMENT2-GT metamodel: transformation and model types.
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Listing 2.1: MOMENT2-GT Xtext Grammar: transformation and model types

import ”http://www.eclipse.org/emf/2002/Ecore” as ecore

2 Transformation :

(imports+=Import)+

4 ”transformation” name=ID ”(” parameters+=TypedModel (”;” parameters+=

TypedModel)∗ ”)”

6 ”{”

(rules+=Rule)+

8 ”}”

;

10 Import:

”import” importURI=STRING ”;”

12 ;

TypedModel:

14 name=ID ”:” modelType=[ecore::EPackage]

;

Listing 2.1 shows the corresponding concrete syntax for constructs in Figure 2.20.
A transformation is defined by providing a name, a list of parameters and a set of
rules. Each parameter is specified as “name=ID ”:” modelType=[ecore::EPackage]”,
where name is used in the transformation to refer to the model argument and an
EPackage is referenced by the meta-property name of the root package of the meta-
model. The cross reference mechanism is supported through the import mechanism
provided by Xtext.

Listing 2.2 specifies a transformation named CD2RDB between the model ar-
guments cd and rdb. The model argument cd declares the CDV1 package as its
metamodel, and the rdb model argument declares the RDB package as its meta-
model.

Listing 2.2: Transformation and model type declarations

1 import ”platform:/resource/CD2RDB/metamodels/CDV1.ecore”;

2 import ”platform:/resource/CD2RDB/metamodels/RDB.ecore”;

3 transformation CD2RDB ( cd : CDV1 ; rdb : RDB ) {

4 /∗ transformation Rule declarations ∗/

5

6 }

Rules and DomainPatterns Rules (Rule) in a transformation can be either
model equations or rewrites, distinguished by a boolean value of attribute isEqua-
tion, cf. Figure 2.21. A rule is provided by a name, a list of LHS domain patterns,
a list of RHS domain patterns and a list of NAC domain patterns (DomainPat-
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tern and NacDomainPattern). Each domain pattern has a list of object templates
(ObjectTemplateExp) and it refers to a model argument (the domain reference of
DomainPatternExp) of which the model type constraints graph patterns which can
be matched in a model of a given model type (TypedModel).

Figure 2.21: MOMENT2-GT metamodel: rules and domain patterns.

Listing 2.3: MOMENT2GT Xtext Grammar: rules and domain patterns

16 Rule:

(isEquation?=”eq”|”rl”) name=ID ”{”

18 (

(”nac” nacs+=NacDomainPattern ”;”)∗

20 ”lhs” ”{” (lhs+=DomainPattern)∗ ”}” ”;”

”rhs” ”{” (rhs+=DomainPattern)∗ ”}” ”;”

22 )

”}”

24 ;

DomainPatternExp:

26 DomainPattern | NacDomainPattern

;

28 DomainPattern:

domain=[TypedModel] ”{”

30 (objectTemplateList+=ObjectTemplateExp)∗

”}”

32 ;

NacDomainPattern:

34 domain=[TypedModel] name=ID ”{”

(objectTemplateList+=ObjectTemplateExp)∗

36 ”}”

;
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Listing 2.3 shows the corresponding concrete syntax for constructs in Figure 2.21.
A rule is defined as either an equation (by keyword eq) or a rewriting rule (by keyword
rl). The LHS, RHS, and NAC parts are distinguished by keywords lhs, rhs, nac,
respectively. The domain of a domain pattern is given by a name which refers to one
of model arguments.

Listing 2.4: Rule and domain pattern declarations
1 rl Package2Schema {

2 nac rdb noSchema {

3 /∗ Object Template specs. ∗/

4 s1 : Schema {

5 }

6 };

7 lhs {

8 cd {

9 /∗ Object Template specs. ∗/

10 p : Package {

11 name = pname

12 }

13 }

14 rdb {

15 }

16 };

17 rhs {

18 cd {

19 /∗ Object Template specs. ∗/

20 p : Package {

21 name = pname

22 }

23 }

24 rdb {

25 /∗ Object Template specs. ∗/

26 s : Schema {

27 name = pname

28 }

29 }

30 };

31 }

32 /∗ begin another rule ∗/

In Listing 2.4 the Package2Schema rule is constituted by a negative application
condition with a name noSchema for the rdb model argument, an LHS and a RHS
which define domain patterns over both model arguments cd and rdb. The model
types of these arguments, i.e. declared packages of metamodels, give constraints on
what types, attributes, reference links can be used to define graph patterns in a
domain pattern.

Graph Patterns LHS and RHS domain patterns can specify an arbitrarily com-
plex graph pattern by means of template expressions, i.e. Object Template Ex-
pressions (OTEs) (ObjectTemplateExp) and Property Template Expressions (PTEs)
(PropertyTemplateExp) as shown in Figure 2.22.

Object templates (ObjectTemplateExp) of a domain pattern can be viewed as
a graph of object nodes originating from an instance of the model type. In other
words, a domain pattern can be viewed as a set of variables that model elements
bound to those variables must satisfy to qualify as a valid binding of the pattern and
these variables may be used in other domain patterns. An object template can have
other object templates nested inside it to an arbitrary depth as long as the pattern is
satisfied with the topology constrained by the metamodel of the corresponding model
type. OTEs have a type specified by means of a class name which refers to an existing
class defined in the imported metamodels (referredClass). An OTE is specified by
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Figure 2.22: MOMENT2-GT metamodel: graph patterns.

a collection of PTEs (propertyTemplates), each corresponding to different properties
(attributes or (containment) references) of the referred class. PTEs are used to
specify constraints on the values of the slots of the model element matching the
container OTE. The constraint is given by either a simple OCL expression (OclExp)
for attributes or a nesting OTE for references. Simple OCL expressions can be a
variable (VariableExp), an instance value or simple operators on primitive types.

Listing 2.5: MOMENT2-GT Xtext Grammar: graph patterns

38 ObjectTemplateExp:

variable=VariableExp ”:” referredClass=[ecore::EClass] ”{”

40 (propertyTemplates+=PropertyTemplateExp (”,” propertyTemplates+=

PropertyTemplateExp)∗)?

42 ”}”

;

44 PropertyTemplateExp:

ReferenceExp | AttributeExp

46 ;

AttributeExp:

48 referredProperty=[ecore::EAttribute] ”=” (value=OclExp)

;

50 ReferenceExp:

referredProperty=[ecore::EReference] ”=” (value=ObjectTemplateExp)

52 ;

VariableExp :

54 name=ID

;
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Listing 2.5 shows the corresponding concrete syntax for the constructs in Fig-
ure 2.22. In this grammar, referredClass, referredProperty in ObjectTemplateExp
should be provided by names referencing to existing elements in the model type in
which the object template is defined.

The Class2Table rule in Listing 2.6 defines several OTEs specifying graph patterns
which will be used to match instance models. For example, in the LHS of the rule
one OTE is associated with the cd model argument, which is typed by metamodel
CDV1. Since there is not any reference definition from type concept Class to type
concept Package in the metamodel, we start defining the pattern from a root variable
p of type concept Package. Pattern matching will bind all the variables in the pattern
(i.e. p, pname, c, and cname). As the variable pname is used in another domain
pattern (i.e. the OTE associated with model argument rdb in the LHS), the matching
proceeds by filtering all of the objects of type Package in the instance model of cd,
selecting objects which have the same literal value of attribute name as one of any
object of type Schema in the under-manipulating model of rdb.

Listing 2.6: Graph patterns declarations
1 rl Class2Table {

2 nac rdb noTable {

3 t1 : Table {

4 name = cname

5 }

6 };

7 nac cd noParent {

8 c : Class {

9 parent = pClass : Class {

10 }

11 }

12 };

13 lhs {

14 cd {

15 p : Package {

16 name = pname,

17 ownedTypes = c : Class {

18 isPersistent = true,

19 name = cname

20 }

21 }

22 }

23 rdb {

24 s : Schema {

25 name = pname

26 }

27 }

28 };

29 rhs {

30 cd {

31 p : Package {

32 name = pname,

33 ownedTypes = c : Class {

34 isPersistent = true,

35 name = cname

36 }

37 }

38 }

39 rdb {

40 s : Schema {

41 name = pname,

42 ownedTables = t : Table {

43 name = cname

44 }

45 }

46 }

47 };

48 }

For property whose values are compared to nested object template expressions.
In the case of the property pattern ownedTypes = c : Class { isPersistent = true, ...}
for example, the matching proceeds by filtering all of objects of type Class of which



2.3. Model Transformation Reuse 50

object ids are in slot ownedTypes of the bound object of type Package, eliminating
any Class object with its isPersistent property not set to true.

For properties that are compared to variables (i.e. for attribute concepts), such
as name = cname, it arises in two cases. If the variable cname already has been
bound with a value, any filtered Class object in the previous step that does not have
the same value for its name attribute is eliminated. If the variable cname is always
free, as in the example, then it will get a binding to the value in the slot name for all
filtered Class objects. The value of cname will be used in another domain pattern,
i.e. for filtering out objects in other comparisons in LHS or creating new objects with
initial values and modifying attributes of existing identified objects in RHS.

Graph Rewriting Semantics The MOMENT2-GT language allows to specify
model transformations in a more declarative way based on a powerful graph rewriting
mechanism, i.e. the Single Pushout approach [Ehrig 06]. A transformation based on
graph-transformation in MOMENT2-GT is defined as a set of graph transformation
rules. Each graph transformation rule r : LHS → RHS consists of a pair of graph
patterns LHS, RHS which respect to the graph topology of metamodels. From a
high-level point of view, the LHS graph pattern presents the pre-conditions of the
rule, while the RHS graph pattern describes the post-conditions. LHS ∩ RHS defines
a graph part which has to exist to apply the rule, but is not changed. LHS \(LHS
∩ RHS ) defines the part to be deleted, while RHS \(LHS ∩ RHS ) defines the part
which should be created. Furthermore, a rule can specify modifications on attributes
of model objects.

The execution semantics of a rule first conducts a matching step. This step finds a
match of the LHS graph pattern in the current object graph (i.e. instance model) to
make bindings for free variables. Performing a rule is carried out in two steps. First,
based on bindings from the matching step, objects and links which are matched
by LHS \(LHS ∩ RHS ) are removed from the model. Second, the intermediate
model is glued with RHS \(LHS ∩ RHS ) to obtain the derived model. To this end,
bindings which are in LHS ∩ RHS is used to glue the intermediate model with newly
created objects and links. To restrict the application of rule with a match, additional
simple conditions can be defined over the variables of simple types in the LHS, in
the when part of a rule that we do not present in the grammar of MOMENT2-
GT language for simplicity. In addition, a special kind of application conditions are
negative application conditions which are often used to avoid performing the rule with
a match twice. This graph rewriting semantics has been implemented by a compiler
which compiles a MOMENT2-GT transformation definition into a rewriting theory
in the Maude framework.

In summary, the MOMENT2-GT framework proposes a transformation language,
which is based on the graph transformation paradigm. Transformation writers use
provided constructs of the language to describe a transformation in thinking about
the graph topology of metamodels, which is expressed in an object-oriented con-
crete syntax, e.g. the UML class diagram notation. The use of graph topology in
transformation writing makes the transformation description more declarative and
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representative. These features are useful to study the notion of metamodel similar-
ity when we consider the metamodel similarity is as graph similarity, thus derive a
substitution possibility between them. Furthermore, these constructs are expressive
enough to describe formally the transformation of the case study. For these reasons,
we chose MOMENT2-GT for our implementation. The following section backs to
the case study in which an original metamodel of a transformation is replaced by a
new metamodel (i.e. a different metamodel version of the same modelled domain),
and then discusses in detail where are exactly obstacles which hinder the reuse of a
legacy transformation.

2.3.3 Discussion

Developing and maintaining model transformations are a tedious and error-prone
tasks and require a deep knowledge of modelling languages (i.e. metamodels and their
semantics description). Thus, it is significant to support a solution that automates
model transformation adjustment task from a legacy transformation when changing
the metamodel of the modelling language to avoid developing a new transformation
from scratch. However, the main obstacle to maintenance of model transformations
is multiple representation formats of concepts in the same modelled domain, serving
the particular modelling tool in different companies or evolving over time even in the
same company. More precisely, this obstacles can be seen as the following points of
view.

• Different representation: The explosion in the use of Domain Specific Lan-
guages (DSLs) results in a variety of different languages and metamodels. There
is a common situation in which different companies develop their in-house meta-
models (abstract syntax) for specific domains. Since a concept of some domain
reflects a set of real world things which share the same properties, thus com-
panies often model the same domain, but in different metamodels even though
they use the same meta-metamodelling language, e.g. MOF. Also, new ver-
sions of metamodels, e.g. metamodel version for UML 1.x and UML 2.x, are
released over time. Whenever changing to a new version, the existing model
transformation defined based the old version might become incompatible, and
thus should be adapted or adjusted.

• Similar semantics: Since modelling a domain is something very intuitive, dif-
ferent people and companies may observer the same real word and define theirs
own concepts with different associated semantics. However, these concepts
can be considered that they have similar semantics because they classify the
same real world entities. As a transformation is defined to transform modelling
concepts, there is no reason that it cannot be used for transforming similar con-
cepts although transformations are described tightly coupled with metamodels
(abstract syntax). From this point of view, it is necessary to identify seman-
tics relation between concepts in order to provide directives for adjusting an
existing model transformation.
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Two above points of view reflect a phenomenon called heterogeneity between
metamodels in the metamodelling task. This phenomenon cannot be avoided since
metamodelling a domain is carried out by different people via human observation
on the real world. More precisely, heterogeneities occur if same (or similar) real
world concepts are reified in different ways resulting differently abstract syntaxes
(structures) expressed by metamodels. Back to the case study in Section 2.3.1, when
metamodel CDV2 replaces metamodel CDV1 in the transformation CD2RDB defined
in Section MOMENT-GT Language (at page 44 and detail is in Appendix 1.1),
intuitively, a human observation on the UML class diagram notation of these meta-
models can easily identify similar concepts between two metamodels. Figure 2.23 de-
picts certain concepts in two metamodels as examples need to be made inter-relation
by a human intervention. These relations (cf. (1)–(4)) show positions in metamodel
where the heterogeneity phenomenon occurs.

1234

original metamodel CDV1

new metamodel CDV2

Figure 2.23: Similar concepts between metamodels.
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As illustrated in Figure 2.23, there is no way that an existing transformation can
find new elements when the source metamodel is replaced by a different metamodel.
More precisely, “names” defined in the transformation that refer to type concepts,
attribute concepts, (composition) reference concepts (from the MOF (Ecore) ter-
minology) of the original metamodel cannot be bound automatically with those of
the new metamodel due to the lack of semantics bridges between similar concepts.
Heterogeneities shown in Figure 2.23 are detailed as the following.

(1) PrimitiveDataType ≡ DataType. The desired domain concept “Prim-
itive Type” which groups basic data types in the real world can be reified
differently in using Ecore technological space. More precisely, this “concept”
is realized as an instance of Ecore::EClass with the name meta-feature set to
‘PrimitiveDataType’ in the metamodel CDV1, whereas the same “concept” in
metamodel CDV2 has the name as ‘DataType’. From the semantics point of
view, these two type concepts describe the same “concept” in the real world.
However, without establishing an explicit semantics bridge between them, there
is no way that a transformation which uses the first type concept can be
switched to the second. Figure 2.24 shows the difference between two type
concepts in Ecore-defined data representation.

: EClass

name = 'PrimitveDataType'

abstract = false

: EClass

name = 'DataType'

abstract = false

UML Notation Ecore-defined representation

CDV1

CDV2

1 name diff. in
EClass objects

Figure 2.24: Similar type concepts (1) with different reifications in Ecore.

(2) isPrimary ≡ primary. In the context of two similar type concepts At-
tribute of metamodel CDV1 and Property of metamodel CDV2, the desired
“concept” which indicates that an attribute/property is primary or is not reified
by Ecore::EAttribute with different values for the name meta-feature. Although

UML Notation Ecore-defined representation

CDV1

CDV2

: EClass

name = 'Attribute'

abstract = false

: EClass

name = 'Property'

abstract = false

: EAttribute

name = 'isPrimary'

: EDataType

name = 'EBoolean'

eStructuralFeatures eAttributeType

: EAttribute

name = 'primary'

: EDataType

name = 'EBoolean'

eStructuralFeatures eType

name diff. in
EAttribute objects

2

Figure 2.25: Similar attribute concepts (2) with different reifications in Ecore.
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these attribute concepts have the same primitive type, i.e. EBoolean, a trans-
formation which refers to attribute concept isPrimary of the first metamodel
cannot understand that there is a similar concepts in the second metamodel
without a directive from human. Figure 2.25 shows the name difference be-
tween two attribute concepts, with an assumption that they are in the same
(or similar) type concepts.

(3) ownedFeatures ≡ ownedProperties. The compositional relation between
two real world concepts ‘Class’ and ‘Attribute’ is reified indirectly by an in-
stance of the Ecore::EReference meta-class of which the type property is set
to the abstract concept ‘StructuralFeature’. This abstract concept is special-

UML Notation Ecore-defined representation

CDV1

CDV2

: EClass

name = 'Class'

abstract = false

: EReference

name = 'ownedProperties'

lowerBound = 0

upperBound = -1

containment = true

: EClass

name = 'Property'

abstract = false

eStructuralFeatures

eType

: EClass

name = 'Class'

abstract = false

: EReference

name = 'ownedFeatures'

lowerBound = 0

upperBound = -1

containment = true

: EClass

name = 'StructuralFeature'

abstract = true

: EClass

name = 'Attribute'

abstract = false

eStructuralFeatures

eType

eSuperTypes3

name diff. in
EReference

 objects

Figure 2.26: Similar reference concepts (3) with different reifications in Ecore.

ized by type concept ‘Attribute’ via the inheritance mechanism provided in the
Ecore technological space, cf. Figure 2.26 for the Ecore-defined representation
of metamodel CDV1. In metamodel CDV2, the same compositional relation is
reified differently, i.e. directly rather than a hierarchy. In this context, reference
concepts between metamodels are not only reified with different names, but also
different target types. With an assumption that the semantics correspondence
between ‘Attribute’ of CDV1 and ‘Property’ of CDV2 has already identified,
there is no reason that a transformation uses reference type ‘ownedFeatures’ of
CDV1 cannot be applied for ‘ownedProperties’ in CDV2. The heterogeneities
which occur in the third situation are shown in Figure 2.26.

(4) parent ≡ generalization.Generalization.general. Finally, there is a het-
erogeneity when defining the generalization relation between classes. Whereas
in metamodel CDV1 this relation is refied by an instance of the Ecore::EReference
meta-class which is named as ‘parent’, it is reified by three instances of different
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Ecore meta-classes, i.e. reference concept ‘generalization’; type concept ‘Gen-
eralization’ and another reference concept ‘general’, in metamodel CDV2 cf.
Figure 2.27. Although these instances represent different structures (abstract

UML Notation

CDV1

CDV2

: EClass

name = 'Class'

abstract = false

: EReference

name = 'parent'

lowerBound = 0

upperBound = 1

containment = false

: EClass

name = 'Generalization'

abstract = false

eStructuralFeatures

eType

: EClass

name = 'Class'

abstract = false

: EReference

name = 'generalization'
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Figure 2.27: Similar concept groups (4) with different reifications in Ecore.

syntax) for models. However, a combination of them in metamodel CDV2 de-
scribes the same concept, i.e. the generalization relation between classes, as
done by reference type ‘parent’ of metamodel CDV1. Since transformations are
defined for transforming instances of domain concepts, it is necessary to solve
these heterogeneities. This enables to reuse knowledge encoded in the existing
transformation across metamodels which define different structures.

As illustrated in Figure 2.23, when the source metamodel of the motivating trans-
formation is changed, some “name” in the transformation which refers to the type
concepts, attribute concepts, or reference concepts of the original metamodel can-
not be found in the new metamodel due to the difference in name, cf. (1)(2)(3)
in Figure 2.23. Note that most of binding mechanisms provided in transformation
frameworks for transformation rules, e.g. MOMENT2 - see Listing 2.5 at page 48,
uses values of the name meta-feature of concepts. We call heterogeneities that arise
by only the difference in the name meta-feature isomorphic heterogeneities, because
they do not change the global graph topology of metamodels from the UML Class
Diagram notation view. In contrast, when the concept of ”generalization between
classes” is concretized by reference concept parent in the original metamodel and
by a combination of concepts (i.e. reference concept generalization, type concept
Generalization and reference concept general) in the new metamodel, we call that
heterogeneity non-isomorphic heterogeneity. Non-isomorphic heterogeneities affect
not only on the binding aspect, but also on the structural incompatibility problem
of transformation code, e.g. in MOMENT2 they make the legacy model patterns
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become incompatible to the new structure of the new metamodel. As a result, two
kinds of heterogeneities limit the use of the transformation for the new popular of
class models in the second format, i.e. CDV2, even when the metamodeler’s intent
on modelling concepts and relationships between them are actually the same. Thus,
to reuse knowledge encoded in existing transformations, there is a need to investigate
a solution to describe manually the correspondences of metamodeler’s intent between
metamodel elements with different representation. These correspondences then can
be used as directives to adapt the legacy transformation in response to heterogeneities
in metamodels while preserving the original intention of transformation.

Summing up, we have introduced basic concepts in the domain of Model Driven
Engineering in Section 2.2 and stated the problem of transformation reuse through a
case study in Section 2.3 that are further important in this thesis. The concepts and
definitions presented for modelling, metamodelling, and the use of Domain Specific
Modelling Languages (cf. Sections 2.2.2 2.2.3, 2.2.6, respectively) build a foundation
on the basis of which we develop our solution for model transformation reuse problem.
It is also important to understand transformation approaches in the literature, cf.
Section 2.2.7, since each approach has a particular solution at a certain abstraction
level in describing transformations. Transformation reuse means the reuse of knowl-
edge encoded in transformations defined in a particular approach, thus the knowledge
themselves have a level of abstraction. In the next section we give an introduction
on recent works in the literature which proposed different solutions for the problem
of transformation reuse, which is the main topic of this thesis.

2.4 Related Work

With the evolution of metamodels it is significant to deal with the evolution of var-
ious software artifacts in MDE, such as models, model transformations, constraints,
editors, etc. Since the main topic of this thesis focuses on the transformation reuse
aspect, i.e. the reuse of knowledge encoded in existing model transformations, we
will introduce a category on approaches that deal with to this problem, i.e. reuse
through adaptation. Transformation reuse through adaptation in response to meta-
model changes had been studied with two main different strategies. The first con-
siders transformations as white-boxes (i.e. transformations as models that can be
manipulated) and transforms them. The second strategy regards transformations as
black-boxes (transformations as tools) and generates adaptors for the transformation
without modifying the original one. Most approaches in both strategies are based
on establishing mappings that specify the delta (i.e. changes) between the old and
the new metamodel. From mappings, depending on the chosen strategy, existing
transformations might be adapted (or adjusted) to obtain new transformations that
can be executed directly on the model population of the new metamodel or should
be composed with generated adaptor transformations (i.e. intermediate transforma-
tions) that convert models of the old metamodel to the format defined by the new
metamodel.
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Categorization

We will classify several approaches have been proposed and already developed
in the recent years to provide direct supports for transformation reuse in the con-
text of metamodel evolution in MDE. Most of works in [de Lara 10, Cuadrado 11,
Wimmer 11, Levendovszky 10, Ruscio 11] and [Babau 11, Kerboeuf 11] fall into two
above strategies. We also introduce a complementary strategy for the work in
[Sen 10, Steel 07] which performs adaptation directly on metamodels since meta-
models in that approach have operational semantics like transformations. Note that
most of approaches presented here are proposed to solve a new requirement over the
recent years, i.e. transformation reuse problem in the context of MDE, and are devel-
oped concurrently with this thesis. Thus, excepting the approach in [Steel 07], others
approaches are considered as complementary sources to compare with our work. In
addition to above strategies, other categories (some of them is derived from the work
of [Rahm 01] on the schema matching problem in database application domains), are
explained as follows.

Mappings. We consider only mappings that are established to express correspon-
dences at metamodel level. From the metamodel mapping support point of view, the
following sub-categories are used to distinguish approaches.

• Cardinality: Mappings can be defined from one or more elements of one
metamodel to one or more elements of another, thus four cases are considered
including: 1:1, 1:m, n:1, and m:n.

• Total vs Partial Mapping: This sub-category indicates whether mappings
must be defined over the whole metamodels or only metamodel parts which
are really used in a specific context, i.e. in the transformation code. This sub-
category relates to the validation checking aspect when describing the map-
pings.

• Element vs Structure Mapping: Mappings can be defined for individual
metamodel elements, such as attribute concepts, type concepts, reference con-
cepts, or for combinations of metamodel elements, such as complex metamodel
structures.

• Constraint : Various kinds of constraints can be defined on metamodels and
their elements, such as value range on a certain data type, optionality, unique-
ness, types of relationships and cardinalities. In mapping approaches that take
constraints into account, constraints are usually understood as a part of struc-
tures, where the structure topology and different element kinds are used to
define mappings.

Transformation Language. This category considers which model transformation
languages (or paradigms) can be supported by the approaches. Two level abstractions
are used. The Paradigm dimension indicates which model transformation paradigms
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that the approach can support in principle. The Language dimension enumerates the
concrete transformation languages for which the approach has already been imple-
mented.

Application Scenarios. This category concerns scenarios directly supported by
the approaches. M2M transformations often means exogenous transformations in
which an output model is produced from an input model. In contrast, in-place up-
dates often are refactoring transformations which perform an optimization on models
without changing external behaviour theirs semantics.

Declaration automation. This category varies from the use of explicit mecha-
nisms without any automation supports in describing mappings to the use of implicit
mechanisms which are equipped with some reasoning mechanisms to produce au-
tomatically mappings. To this end, these approaches usually not only rely on the
metamodels, but also on auxiliary information, such as dictionaries; global ontologies,
which are integrated into the metamodel definitions.

2.4.1 Transformation adaptation

As aforementioned, in this strategy, from an existing model transformation, which
is described on the basis of old metamodels, a new model transformation is produced
for the new metamodels. To this end, transformations must be written in a certain
transformation language so that we can consider them as models to manipulate. We
call this strategy white-box transformation reuse mechanism.

Reusing Model Transformations across Heterogeneous Metamodels. The
work described in [Wimmer 11] presents an approach to transformation reuse via a
flexible binding mechanism being able to automatically resolve recurring structural
heterogeneities between metamodels. To this end, the binding models are analyzed
and required adaptors are automatically added to the transformation in order to
obtain a new adapted one.

This work is based on several previous works published in [de Lara 10, Cuadrado 11].
From the concept mechanism presented in [de Lara 10], i.e. a specific transformation
for a particular metamodel can be generated from a generic transformation defined
over a conceptual metamodel and a strict structural binding between the particular
and the conceptual metamodel, Cuadrado et al. [Cuadrado 11] has extended the
binding DSL for structural heterogeneities between metamodels, and then Wimmer
et al. [Wimmer 11] has continued improving the level of automation of the DSL.
First, the binding DSL proposed in [Cuadrado 11] has been improved by removing
complex OCL-related constructs. This allows users specifying binding definitions in a
simpler manner, thus the automation level of adaptation was also improved. Second,
OCL-based adapters which are scattered across the specific model transformation
as in the version of [Cuadrado 11] are replaced by composable adapters which are
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separately added into the generic model transformation. This improvement makes
adapted transformations become easier to maintain.

The approach for reusing model transformations across heterogeneous metamod-
els allows specifying 1:1 and 1:n bindings for metamodel elements. The binding
in this approach is defined totally to assure the new metamodel can be replaced in
every context (transformations) in which the old metamodel is declared. The ap-
proach allows defining bindings for single elements of the metamodels. Furthermore,
it is possible to describe some kinds of complex structure correspondence, e.g. an at-
tribute concept of a type concept in the old metamodel has a semantic equivalence (or
equality) in comparison with an attribute concept, which is resided in another type
concept of the new metamodel. The approach provides an adaptation mechanism,
which is able to overcome constraint on multiplicity. For example, a transformation
rule defined upon a reference, which is defined as single in the old metamodel can be
adapted by adding an adaptor which works with the reference defined as multiple in
the new metamodel. Constraints on value range of attributes can be defined through
a filtering mechanism. The approach supports the hybrid transformation paradigm,
i.e. having declarative parts and also imperative constructs for navigating in com-
plex computation, and has been implemented for the ATL language. The approach
solves the problem which occurs in model-to-model transformations (also called ex-
ogenous transformations). It currently supports only for the case in which the source
metamodel changes. In-place update transformations (also called endogenous trans-
formations) are not supported because this kind of transformation relates not only
to accessing desired information stored in objects, but also removing and creating
objects that have to respect complex constraints which are defined in metamodels,
such as composition, mandatory, etc. Bindings must be defined explicitly by the
users. There is neither any helping (or reasoning) mechanism for editing bindings
nor a notion of valid binding for checking user-defined inputs.

Semi-automated Evolution of DSML Model Transformation. The proposed
approach in [Levendovszky 10] introduces an evolution method for model transforma-
tions. This method is based on an assumption that a change description is available
in a modelling language specific to the evolution. Based on such a change descrip-
tion, their method is able to automate certain parts of the evolution. Moreover, the
method can automatically alert the user about the missing semantic information that
is not described in the change description for a later manual correction.

Concretely, a change description can be described in a migration DSL, i.e. Model
Change Language or MCL. The MCL language which has first been presented in
[Narayanan 09] is initially developed to manage the metamodel/model co-evolution
problem. The authors reuse this language to define minor changes that occur in an
evolved metamodel, in addition, provide an evolver tool for transformations rather
than models of the domain. The evolver tool interprets a change description written
in MCL language and performs migration steps on transformations defined upon
the old metamodel to obtain semi-migrated transformations. For this reason, we
categorize this approach into transformation migration strategy.
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The proposed approach in [Levendovszky 10] is also dedicated for graph rewriting-
based transformation paradigm, implemented in GReAT 3. In using the MCL lan-
guage, one can describe 1:1 and 1:n mappings between two different metamodel
versions of a modelling language. A change description is defined totally without
regarding any particular transformation. The language allows to define only map-
pings between single elements of metamodels, without supports for more complex
structural mappings. Mutliplicity contraction on references is not considered as the
work in [Wimmer 11]. The published paper of this work [Levendovszky 10] shown
only an example of an exogenous transformation in which a source metamodel can be
replaced by an evolved metamodel while the target metamodel has not any evolution.
Thus, we consider that this work currently supports only for varying source meta-
models. A metamodel of an in-place update transformation, in our point of view,
shares several characteristics as a target metamodel, thus the approach cannot sup-
port evolutions on this kind of transformation. Finally, concerning to the automation
in declaring a change description, users must define explicitly mapping by means the
MCL language without any suggestion mechanism.

The main difference of this approach in comparison with the one in [Wimmer 11]
is the additional support of partially automated transformation migration. For ex-
ample, in cases of attribute deletion that cause a lack of information, the evolver
tool will mark the deleted attribute in related code fragments of the transformation.
Then, it is necessary to have some corrections from a transformation developer. Ac-
cordingly, from a metamodel change description, an automated phase is performed
completely automatically, then a second manual phase is required, where someone
performs manual tasks to correct the semi-migrated transformation annotated with
suggestion marks.

Managing Co-evolution in MDE. Authors in [Ruscio 11] propose EMFMigrate 4

as a unified approach to the metamodel co-evolution problem with dependent arti-
facts such as models, transformations and tools. For ATL transformations, they
introduced a coupled DSLs which encompasses the specification of metamodel differ-
encing (EDelta) and (customizable) migration rules (ATLMigrate). EDelta models
are actually the recovered trace input by users to specify step-by-step metamodel
evolution. Migration rules might be applied if conditional patterns are matched on
the difference model. Then, the information extracted from the holds will be used in
rewriting rules to migrate transformations.

Similar to the approach in [Levendovszky 10], metamodel-changes which affect
the existing transformations are classified into three groups: 1) fully automated are
changes that we can migrate automatically existing transformations without user
intervention; 2) partially automated are changes that existing transformations can
be adapted automatically although some manual fine-correction is required; 3) fully
semantics are changes affecting transformations which cannot be automatically mi-
grated. All these changed can be described at a generic level by means of the meta-

3. http://www.isis.vanderbilt.edu/tools/GReAT
4. http://www.emfmigrate.org/

http://www.isis.vanderbilt.edu/tools/GReAT
http://www.emfmigrate.org/
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model differencing language, i.e. EDelta. For a specific metamodel evolution, generic
libraries written in the EDelta language are invoked through migration rules written
in the ALTMigrate language.

The approach is based on the idea of evolution for single elements, thus at some
level of abstraction, the approach supports to specify 1:1 and n:1 (merge references)
mappings between two versions of a metamodel. Because of without regrading the
usage context of metamodels, users have to specify every change occurred in the
evolution even though some metamodel elements may not be used in a considered
transformation. In using this coupled DSLs, a transformation migrator can only
make bridges for single elements between the original and the evolved metamodels.
In this approach, we do not see any support for the multiplicities contraction neither
for adding constraints into an adapted transformation. The work has been imple-
mented for transformations written in the ATL language, a language in the hybrid
transformation paradigm. The paper [Ruscio 11] shows only an exogenous transfor-
mation example in which the source metamodel evolves. Other cases such as varying
versions of a target metamodel or an in-place transformation are not considered in
this work. In similarly to two above approaches, migration rules (can be understood
as bindings at some level of abstraction) must be declared explicitly by a domain
experts. There is no mention of validation checking for migration rules.

2.4.2 Model adaptation

In the second strategy, a new model transformation is produced to transform mod-
els conforming to the old metamodels into models conforming to the new metamodel.
The produced model transformation is then composed (i.e. chaining model transfor-
mations) with the existing model transformation without modifying it. Transfor-
mations produced according to this strategy plays a role as adapters for executing
legacy model transformations to process models conforming to the new metamodel.
Since the strategy do not take the structure of existing model transformation into
consideration, i.e. independent of transformation languages, we call this black-box
model transformation reuse mechanism.

A DSML for Reversible Transformations. One of approaches in the second
strategy that considers a transformation as a black-box is proposed by Kerboeuf et
al. [Kerboeuf 11, Babau 11], which presents an adaptation DSL, named Modif, with
which handles copy or deletion of elements from a model conforming to a new meta-
model to make it become an instance model of the input metamodel of an endogenous
transformation tool. The adaptation transformation also provides a trace to recover
the output result of the transformation to an instance of the new metamodel.

Related to criteria in our classification, the adaptation language Modif allows
users to specify 1:1 operations in order to build a new metamodel from an existing
metamodel. These operations are separated into three families: 1) update operators
are dedicated to specify metamodel concept renaming or other changes in meta-
attributes; 2) deleting operators are used to indicate that a metamodel concept is no
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longer present in the new version of metamodel; 3) refactoring operators that enable
to state simple refactorings such as hidden a given type concept or flattening an
inheritance relationship. Operations proposed in Modif are fine-grained operations,
hence it should be necessary to apply these operations in many times to obtain an
expected new version of a metamodel. In addition to the operational semantics at the
metamodel level, the Modif tool also supports generating an adaptation transforma-
tion in order to translate the models complying with the first version of metamodel
to models complying the target version. Since transformations are considered as
black-box tools, thus a Modif specification must be defined totally even though most
of rewriting tools do not use all concepts defined in the input metamodel. From the
mapping point of view, Modif supports both bindings for single elements which are
present in two versions of the same metamodel by means of update operators, and
bindings for more complex structural differences by making the use of deleting opera-
tors and refactoring operators. The update operator when changing multiplicity from
multi to single keeps only the first element of the set, thus it results a loss of infor-
mation. Due to the respect to the second strategy, the approach can work with any
transformation paradigm. The transformation language Kermeta is used as a target
language for generated adaptation transformations from Modif specifications. The
extension of Modif in [Kerboeuf 11] makes the approach usable for in-place update
transformations. However, as well as other approaches, Modif specifications have to
be defined explicitly and they are not checked based on a validation principle.

Model Adaptation by Precise Detection of Metamodel Changes. The ap-
proach presented in [Garcés 09] by Garcés et al. captures different kinds of both
simple and complex matchings between metamodel concepts using matching models
that conform to the AtlanMod Matching Language (AML). An adaptation transfor-
mation can be derived from a matching model by means of a HOT. The approach
aims to support the model evolution scenario and the exchange of models. Unlike the
approach in [Kerboeuf 11, Babau 11], model transformation reuse is not supported
directly in this work. However, this could be realized by chaining a generated adap-
tation transformation with an exogenous transformation. This approach provides
an automatic heuristic matching process that enables user intervention to produce
matching models.

The matching models allows to use equivalence and difference mapping concepts.
Basic difference mapping concepts are Added and Deleted which mark a metamodel
element as deleted/added from/into an original metamodel. Equivalence mapping
concepts are those that enable to describe simple (elementary) mappings or more
complex mappings. Complex mappings are derived from Added and Deleted simple
mappings via a heuristic step in the whole matching process, e.g. a mapping can be
inferred for the case of reference reification by the adding of a new class. However,
final result mappings are merely 1:1 correspondences and exhaustive. According to
explanations in [Garcés 09], multiplicities defined on two references must be the same
(lower and upper bounds) to be able to assign a similarity value between them. In
regrading the context of transformation reuse, a generated adaptation transformation
derived from a matching model can be composed with exogenous transformation
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written in any languages. This work has chosen the ATL language as the target
language of generated adaptation transformations. It is possible to achieve matching
models by using heuristic inference libraries provided within the language, thus user
does not need to specify them explicitly.

As a conclusion, the common point among above approaches in both strategies is
trying to capture the changes between metamodels. These changes are described by
users in DSL languages and then used as directives for migration process, on either
models or transformations.

2.4.3 Metamodel adaptation

Reusable Model Transformations. Beside to above strategies, another approach
is also proposed in [Sen 10] by Sen et al. to make a transformation reusable by ex-
tending an original metamodel based on aspect weaving and derived property adding
provided in Kermeta 5. This approach uses a metamodel pruning mechanism [Sen 09]
to automatically remove unaffected metamodel elements in a legacy transformation
definition to obtain an effective metamodel. This mechanism helps reduce adap-
tation requirements via aspect weaving for satisfying the model typing principle in
[Steel 07]. After the metamodel adaptation process, a legacy transformation defini-
tion become usable for the new population of models without any modification on
transformations or models.

Based on the metamodel pruning mechanism used in their work, added adap-
tations can be declared in a partial manner. These adaptations are actually 1:1
bindings from the mapping point of view. In using complex navigation facilities sup-
ported directly in Kermeta, users can add or override accessor and mutator methods
to make bridges not only for single elements, but also between a single reference and
a reference path. The constraint related to the multiplicity has not been relaxed,
i.e. a reference defined as multiple cannot be matched against a single reference.
The approach is tightly coupled with the imperative language Kermeta which pro-
vides the AOP (Aspect-Oriented Programming) static introduction mechanism. Due
to the use of complex imperative constructs for the adding of derived properties in
classes, the approach can be applied to various kinds of transformations, from exoge-
nous to endogenous. Nevertheless, adaptation parts which are written in Kermeta
AOP-supports have to be added manually by users at the lower-level of an impera-
tive language. In order to support manual adaptation, Kermeta employs a validation
mechanism based on the model-type matching principle that has been originally pre-
sented in [Steel 07].

5. www.kermeta.org

www.kermeta.org
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Adaptation Strategy

transformations X X X NO NO NO

models NO NO NO X X NO

metamodels NO NO NO NO NO X

Mapping

Cardinality 1:1 1:n 1:1 1:n 1:1 n:1 1:1 1:1 1:1

Total vs. Par-
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Total Total Total Total Total Partial

Element vs.
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Element and several
structural supports

Element supports Element supports Element and several
structural supports
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Element and several
structural supports
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contraction,

properties filtering

Without
multiplicities

contraction support

Without
multiplicities

contraction support

Multiplicities
contraction (lost

information)

Without
multiplicities

contraction support

Without
multiplicities

contraction support

Transformation Language

Paradigm Hybrid (decl.& imp.) Graph
rewriting-based

Hybrid (decl.& imp.) Any Any Imperative with
AOP supports

Language ATL GReAT ATL – – Kermeta

Application Scenarios

M2M Transf. X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source, Target
MM change)

In-place Up. NO NO NO X NO X

Declaration Automation

explicit X (without checking) X (without checking
due to

semi-automation)

X (without checking
due to

semi-automation)

X (without checking) X (user intervention
but without
checking)

X (a priori checking)

implicit NO NO NO NO X (heuristic infer.) NO

Table 2.2: Related approaches to transformation reuse.
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2.4.4 Categorization Overview

Table 2.2 gives an overview of the approaches supporting transformation reuse
when metamodels change in the context of MDE. The categories that we presented
above are used in the table to classify the discussed approaches in previous sections.

2.5 State-of-the-Art Summary

In this chapter, we have presented basic concepts and principles in the domain of
Model-Driven Engineering that are used in this thesis. They are the key notions such
as: model, metamodel, meta-metamodel and the four-layered architecture Meta-Object
Facility of models. We have also present the notion of Domain Specific Language
(DSL) which is usually used in various MDE approaches based on the principle of
separation of concerns. The overview and a classification of model transformation
approaches (languages) are also provided.

Then, we introduce a concrete simple case study on the need of model transfomra-
tion reuse problem. We chose the MOMENT2 language among various languages as
the target transformation language on which our solution will be implemented. The
transformation reuse problem is discussed in detail on the motivating case study.

Finally, we have discussed the related approaches addressing to the problem of
model transformations reuse in response to changes in metamodels. These approaches
are based on different strategies: model adaptation, transformation adaptation and
metamodel adaptation. The limitations and also advantages are discussed in detail
for each concrete related work to justify existing issues in the model transformations
reuse problem which will be solved in the next chapter.





Chapter 3

A Graph-Based Model Typing

Approach

Contents

3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Graph Topology . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Typing Models and Transformations with Graphs . . . . . 74

3.4 Non-isomorphic Transformation Reuse . . . . . . . . . . . 96

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . 120

3.1 Chapter Overview

Since metamodels are considered as models, they are created to define the ab-
stract syntax (i.e. the structure aspect) of modelling languages. As transformations
are usually described at the abstract syntax level, thus tightly coupled with meta-
models, the word ‘metamodel’ is currently often used to denote some kind of “model
type”. The metamodel describes the rules and constraints that a model must fulfill
to be correct. The model is said to conform the metamodel. This point of view is
currently applied in all tools that handle models. This definition makes the reuse of
transformation difficult because of the strength of this definition of “type”.

In order to tackle this issue, we divide the model transformation reuse problem
into two sub-problems. The first sub-problem is the reuse of transformations when
alternative metamodels are slightly different and satisfy a “subtype” relationship. To
this end, we propose a type abstraction of models. This type abstraction, first, is
used to leverage the abstraction level of the notion “model type” and to relax some
constraints if possible, instead of using “metamodel” as usual and, second, to define a
“subtype” relation by taking the metamodel usage context (i.e. the transformation)
into account that derives the substitution between metamodels. The use of this type
abstraction is to allow more flexibility in the use of transformation when metamodels

67
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are seen as isomorphic in our notion of model type. The second sub-problem is
the reuse of transformations for metamodels which are more different that we call
non-isomorphic. The solution is to use the one proposed in the first sub-problem as
basic premises, then extends the transformation reuse possibility through a mapping
between metamodels in order to rewrite model transformations. The combination of
these solutions allows to improve transformation reuse across metamodel versions or
different metamodels used in different organizations.

This chapter gives a description on above solutions in detail in response to the
transformation reuse problem when changing metamodels. The first sub-problem and
its solution is presented in Sections 3.2 and 3.3 while Section 3.4 details the proposed
solution of the second sub-problem. Section 3.5 summarizes and discussion on the
whole proposed model typing approach.

More precisely, first, Section 3.2 gives an overview about the graph topology,
which is the common characteristic of metamodels in the object-oriented (meta-
)modelling methodology. The graph topology is analysed in the context of transfor-
mations where it is used as the underlying basis to describe transformations in graph
rewriting-based transformation frameworks.

Next, Section 3.3 introduces a notion of “model type”, i.e. Type Graph with
Multiplicity, that captures the graph topology of models plus some useful informa-
tion. As the use of this notion of “model type”, we present a typing function to
construct model types over metamodels. In addition, a “model subtype” relation
is also formally defined. This relation is used to check the substitution possibility
between metamodels that we call isomorphism in the space of our notion of “model
type”. We also provide an additional typing function for transformations, which pro-
duces what we call effective model types since this function analyses the real usage
context of a declared “model type” in transformations. As a consequence of the
“subtype” relation, the substitutability between metamodels should be checked be-
tween the effective model types of the declared metamodels and those of the replacing
metamodels.

Finally, Section 3.4 explains a reuse mechanism for more complex difference sit-
uations between metamodels, i.e. metamodels are different in element names or
partial graph topology that we call non-isomorphic. The proposed mechanism in-
cludes a mapping DSL language dedicated to describe semantic correspondences be-
tween metamodel elements or combinations of metamodel elements. Thanks to these
correspondences between metamodels and the typing mechanism in Section 3.3, an
adaptation engine can recognize important changes and proceed migrating existing
transformations when more complex differences occur.

3.2 Graph Topology

Models, in the context of object-oriented metamodeling paradigm, are a collection
of objects linked together using (bi-)directional relationships. From the data structure
point of view, the structure (objects and their relationships) of a models family are
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typically defined by a MOF (or MOF-like) metamodel. The main advantage of the use
of the object-oriented metamodeling paradigm is that object-oriented metamodels is
able to capture the structure of modeled systems, thus it is easy to understand them.
The natural physical structure of a system family is usually defined as the graph
topology constraints by means of object-oriented metamodels in the object-oriented
metamodeling paradigm or type graphs in the graph-based metamodeling paradigm.

From the semantics point of view, object-oriented metamodels are designed to
reflect concepts of the real world and relationships between concepts. To this end,
the MOF (or a MOF-like) meta-metamodeling language provides basic constructs
and their object-oriented semantics to define modelling concepts. In the EMF meta-
modeling framework, such constructs are realized in the Ecore meta-metamodel as
EClass, EAttribute, EReference, etc. with certain properties on them to provide ad-
ditional constraints such as: the abstract meta-attribute on the EClass construct,
the containment meta-attribute and the eOpposite meta-reference on the EReference
construct. As a consequence, when an Ecore-defined metamodel is reflected in the
object-oriented modeling space, e.g. using the UML Class Diagram notation, the re-
sult graphical representation provides a blueprint of the being-modeled systems. We
call the blueprint representation of a metamodel the graph topology constraints of
models. The graph topology constraints are widely used as the underlying footprint
to describe model transformations in graph rewriting-based transformation systems.

Since the model transformation reuse problem investigated in this thesis focuses
on particular transformations which are defined in graph rewriting-based transforma-
tion systems, e.g. the MOMENT2-GT framework. The following sections will give a
detail on the graph topology aspect, which is encoded in Ecore-defined metamodels
and in graph-based transformation definitions. From these analysis, the remaining
sections will present our model typing approach, which is based on the notion of
graph topology.

3.2.1 Graph Topology in Metamodels

This section will detail an analyse on the graph topology, which is encoded in
object-oriented metamodels. As aforementioned, metamodels are designed using the
object-oriented metamodeling paradigm provide a blueprint representation for the
natural physical structure of modeled systems. In using the UML Class Diagram
notation, a metamodel of a domain specific can show a view on graph topology
constraints based on which transformation writers define particular transformations.

In order to illustrate the graph topology and their similarity in metamodels, we
take the two alternative source Ecore-defined metamodels of the motivating case
study in Section 2.3.1. Figure 3.1 shows these two metamodels in the UML Class
Diagram notation that we can consider as the blueprint of the physical structure of
modeled systems. These two metamodels make the use of basic constructs of the
Ecore metamodeling language, i.e. EClass, EAttribute and EReference, to define do-
main modeling concepts and their relationships between them. Note that constructs
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original metamodel CDV1

new metamodel CDV2

the same graph topology

Figure 3.1: The same graph topology between metamodels.

which are used to declare user-defined metamodel operations are ignored because
they do not relate to the structure aspect of models. As an example, the original
source metamodel CDV1 defines a modeling concept named Class by instantiating
the EClass metamodeling concept of Ecore and gives the value ‘Class’ for the name
meta-attribute of the instantiated object. Similarly, the Attribute modeling concept
is also defined by the same way. A relationship is defined between these two modeling
concepts, but in an indirect manner, i.e. via a generalization mechanism provided
by Ecore. More precisely, an “abstract” modeling concept, i.e. StructuralFeature,
which generalizes the Attribute modeling concept is defined. Next, an instance of
the EReference metamodeling concept is created as a compositional part of the Class
modeling concept and is set the abstract concept StructuralFeature as the eType
value. Because of the generalization relation already defined between Attribute and
StructuralFeature, the relationship between Class and Attribute is inferred indirectly.
That means, an instance of the Class concept can have multiple links with several
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instances of the Attribute concept.

We can say these three above concepts and their relationships give a part of graph
topology constraints for models of the being-modeled systems. If one considers a
modeling concept in the UML Class Diagram plan as a node of a directed graph,
thus relationships (direct or indirect via generalization relations) form edges between
the graph nodes. The part of graph topology constraints, which is encoded by the
above elements of the metamodel CDV1 is illustrated in the gray bounding-box, cf.
the diagram at top of Figure 3.1.

The new metamodel CDV2 in fact defines the same part of graph topology con-
straints, cf. the gray bounding-box of the diagram at bottom of Figure 3.1, as the
original metamodel CDV1. One can see the Class and Property modeling concepts
form two graph nodes. However, an edge between them is now encoded directly
via an instance of EReference, thus not necessary to be inferred by a generalization
relation. In comparison with the original metamodel, although the new one has a
different configuration, i.e. Property is a similar concept of Attribute, the persistent
attribute concepts resided in the same concept Class have different names or type
concepts are connected differently, it has the same (or similar) graph topology as one
of the origin. Thus, at some level of abstraction, these two metamodels are called
similar in term of the graph topology constraints.

The graph topology is in fact an important attribute of metamodels which de-
scribes how graph patterns are defined and constrained when using a graph rewriting-
based transformation framework to design transformations. As a consequence, we
can consider the transformation reuse problem as reusing graph topology constraints
which are used by transformations for an alternative metamodel having an equiva-
lence on graph topology.

The next section will detail the usage of metamodels’ graph topology in defining
transformation in graph rewriting-based transformation frameworks. In particular,
the transformation example will be explained by using constructs of the MOMENT2-
GT language. These details present the relation between graph pattern definitions in
a transformation and graph topology of metamodels over which the transformation
is well defined.

3.2.2 Graph Topology in Graph-based Transformations

Metamodel-based transformations are defined tightly coupled with the structure
of metamodels, in other words that is the abstract syntax of the modeling language.
In particular, transformations written in graph rewriting-based approaches focus on
the graph topology attribute of metamodels and use it as the underlying footprint to
define graph patterns in a transformation rule.

In MOMENT2-GT, a graph pattern is defined by using the following language
constructs: ObjectTemplateExp, AttributeExp and ReferenceExp, cf. Figure 2.22 and
Listing 2.5 in Section MOMENT2-GT Language at page 44 for more details on
the abstract syntax and the textual concrete syntax of the MOMENT2-GT transfor-
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mation language. These language constructs are connected by a recursive contain-
ment mechanism that can be instantiated to forms a graph pattern definition. Thus,
a well-formed graph pattern definition is obviously constrained by graph topology
constraints of the declared metamodels in a transformation.

:ObjectTemplateExp

:AttributeExp :ReferenceExp

:ObjectTemplateExp

:AttributeExp

Class

ownedFeatures

name

Attribute

(c) A graph pattern in
in-memory representation

1 transformation CD2RDB (cd : CDV1; rdb : RDB) {
2 ...
3 cd {
4 c1 : Class {
5 parent = c2 : Class {},
6 ancestors = c2 : Class {}
7 }
8 }
9 ...

10 cd {
11 c : Class {
12 name = cname,
13 ownedFeatures = a : Attribute {
14 name = aname,
15 ...
16 }
17 }
18 }
19 ...
20 }

(b) A graph pattern in
textual representation

(a) metamodel CDV1

Figure 3.2: The graph topology in transformations.

Figure 3.2(a), Figure 3.2(b), Figure 3.2(c) shows the original source metamodel
of the motivating case study, an excerpt of some graph patterns in textual represen-
tation format (input by transformation writers) and the in-memory representation
(the abstract syntax representation after loading graph patterns in textual format) of
those graph patterns, respectively. As shown in the highlight part of Figure 3.2(b),
a transformation writer can define a graph pattern with an arbitrary depth in re-
grading the graph topology of the declared metamodel, cf. the gray bounding box
in Figure 3.2(a), and in making the use of template expressions, Object Template
Expression (OTEs) (ObjectTemplateExp), Property Template Expression including
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Attribute Expression (AEs) (AttributeExp) and Reference Expression (REs) (Refer-
enceExp). In this example, the indirect relationship between the Class type concept
and the Attribute type concept is used to define the graph pattern by making the
use of the ownedFeatures reference concept. In addition, attribute concepts of type
concepts might be used to constrain on the value of the slots of model elements
matching the object template expressions. As a consequence, the used part of graph
topology of the metamodel is encoded in memory by interconnected instance objects
of OTE, RE, AE constructs, cf. the gray bounding box in Figure 3.2(c). Each tem-
plate instance object refers to a metamodel element, either type concept or attribute
concept or reference concept, in respect to graph topology constraints of the declared
metamodels.

Although the graph topology of metamodels is an attribute fairly independent
to the name property of metamodel elements, however, without names a metamodel
element contains no meaning. As a result, the graph pattern, which is defined upon
these metamodel element has no meaning too, i.e. the transformation engine cannot
understand which objects of what concept kind we want to do a match. For that
reason, the textual graph patterns are usually defined by taking the name (which
plays a role as an identifier) of metamodel elements. Then, their in-memory reflection
in a particular graph rewriting-based transformation language, e.g. MOMENT2-
GT, maintains these names via references from template expression instances to real
metamodel elements through a static name-based binding mechanism, obviously in
respect to the metamodel definition.

From the graph topology perspective, one can recognize that graph patterns of
transformations encode used graph topologies which must respect to those of meta-
models. The encoded knowledge is reified through interconnected instance objects
of basic constructs of a graph rewriting-based transformation language; for example
in MOMENT2-GT these are OTE, RE, AE constructs. Although these objects are
hidden to users, they play a role as a wrapper on certain part of graph topology con-
straints that the transformation writer want to use. From this point of view, when
we alter the original metamodel by another metamodel which has a graph topology
equivalent to the original, these hidden objects can be reused because they encode
graph topology knowledge of the transformation. That is the notion of transforma-
tion reuse, which is focused in our approach, i.e. transformation reuse from the point
of view of the graph topology similarity between metamodels. The remaining issue
is that how to make wrapper objects be aware of new metamodel elements to rebind
these objects correctly. In other words, we should provide a rebinding mechanism
for instance objects of the transformation language’s constructs to make them usable
with new contexts, i.e. metamodels having similar graph topology to the original
one, if possible.

In the remainder of the chapter we give the overall theoretic part of our work on
the transformation reuse problem based on the coincident point of view of the graph
topology attribute between metamodels and graph rewriting-based transformation
approaches, presented in Sections 3.3–3.4. More precisely, in Section 3.3 we first
define a notion of model type that is based on graphs. Then, two typing functions
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for metamodels and transformations that result declared graph-based model types
and effective graph-based model types, respectively, are presented. These founda-
tions are introduced to solve the first sub-problem aforementioned in Section 3.1 for
alternative metamodels that we call isomorphic. That means metamodels have slight
differences in some meta-attributes of the constraint aspect, e.g. on multiplicity, or
in connections between type concepts, but define the same set of domain concepts.
Section 3.4 provides a solution to improve the re-usability of transformations when
alternative metamodels are more different (the second sub-problem mentioned in
Section 3.1), i.e. they do not define unify concepts, but rather similar or equivalent
concepts. The proposed solution includes a mapping language, which is dedicated to
establish correspondences between non-identical concepts defined in two alternative
metamodels, an underlying compatibility check mechanism based on our notion of
model type and a migration mechanism for transformations to be adapted to the new
metamodel context.

3.3 Typing Models and Transformations with Graphs

In this section we provide a simple structure as the type of models that is based
on the graph characteristic of metamodels. These model types are derived through
a model typing function upon metamodels. Furthermore, a subtype relation is also
established between metamodels based on a graph inclusion relation between the
derived model types. This derived relation declares that one metamodel may be
substituted for another under some conditions.

In order to extend the maximum possible flexibility and reuse of transformations,
we provide two additional mechanisms. The first one will be presented in Section 3.3.4
that is performed via a transformation typing function which infers a so-called effec-
tive model type for a derived declared model type. This typing function is used to
reduce constraints in a declared model type by an analyse on the actually used part
on this type. The second mechanism will be introduced in Section 3.4 that includes a
mapping DSL language, which is dedicated to describe the semantics correspondence
between alternative metamodels’ elements or combinations of these elements; and an
interpreter coupled with this language for migrating an existing transformation to a
new one which functions correctly with the new context of metamodels.

3.3.1 Type Graph with Multiplicity as Model Type

Metamodels are designed concisely by using inheritance provided in Ecore, as
shown in Figure 3.1 (cf. Section 3.2.1). However, this representation does not denote
explicitly the graph topology of metamodels. Since graph rewriting-based frame-
works, e.g. MOMENT2, use the graph nature of metamodels to define transforma-
tions, Ecore-defined metamodels need to exhibit their graph topology.

For this purpose, we introduce a type graph in considering multiplicity constraint,
namely Type Graph with Multiplicity (TGM) view. This abstraction, cf. Figure 3.3,
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Figure 3.3: Metamodel of TGMs.

is used as an explicit representation of relationships between type definitions in meta-
models when we consider each modelling type concept as a graph node and a direct
(or indirect) relationship between two type concepts as a graph edge between their
corresponding graph nodes. From this reflection, the use of TGM is to capture
the graph topology of a model family plus some useful meta-information like entity
names, property names, primitive types and multiplicity features.

Using this new graph structure for the notion of “model type” has two advan-
tages. First, this graph structure plays a role as a middle layer for the gap between
the metamodelling layer and the transformation layer. More precisely, from the graph
topology point of view, the relationships between modelling type concepts defined in
an Ecore-defined metamodel need to be (potentially) inferred from the inheritance
relation of Ecore, while defining a graph pattern in a transformation rule, it seems
only certain derived relationships are used. We call this situation redundancy gap in
which the inheritance relation makes an explosion of modelling concept relationships,
but only a subset of relationships is necessary from the transformation writer point
of view. This middle layer provides a buffer data layer that we can freely infer and
remove redundancies from two directions, i.e. Ecore-defined metamodels and trans-
formations, without modifying elements in the spaces of metamodelling languages
and transformation languages.

Second, by using a new graph structure, we can establish an abstraction level
of “model type” notion. In our work, this level is in fact based on the abstraction
level of the transformation language. For example, in the MOMENT2-GT language
the lowerBound meta-attribute on a property of a type concept is omitted in type
checking rules of the language because the semantics of the language is overcome
this constraint. Another example is related to the upperBound meta-attribute (also
called multiplicity attribute) that the language defines a semantics variation point at
compile time. That means the MOMENT2-GT compiler, depending on a concrete
value of upperBound, can vary the compilation behavior for an user-defined graph
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pattern. For this reason, depending on the transformation language, we can select
pertinent meta-attributes of the metamodelling language which have a semantics
variation point in the transformation language and add them into the graph structure.
In our work we consider the upperBound meta-attribute as an interesting semantics
variation point to add into the graph structure. This meta-attribute is leveraged to
the Multiplicity enumeration data type with three values: single valued, multi valued
and undefined valued. The semantics and the order relation of these values will be
detailed in the next following sections. Having established “model type” based on a
graph structure, we can define a relation between elements in the space of that graph
structure to answer the question about the substitutability between them.

The following section will introduce a typing function dedicated to infer the TGMs
from Ecore-defined metamodels that we call model typing function. The main oper-
ational semantics of this function is to produce a graph for a metamodel that rep-
resents explicitly the graph topology of the metamodel by flattening the inheritance
relations used in the metamodel. Furthermore, this function eliminates constraint
meta-attributes which do not affect the semantics with respect to the transformation
language, i.e. MOMENT2-GT. For constraint meta-attributes related to a semantics
variation point of the language, e.g. the upperBound meta-attribute, we leverage
their semantics by introducing a new smaller domain, e.g. the previously introduced
Multiplicity enumeration data type, and establishing an order relation between ele-
ments of the domain to verify the substitutability between TGMs.

3.3.2 Model Typing

Model types, i.e. TGM graphs in our notion, of metamodels are automatically
generated by means of a model typing function as previously mentioned. The gen-
eration is implemented as a particular complex transformation from the Ecore view,
i.e. the UML class diagram reflection, into the TGM view. Such a transformation
alleviates the use of inheritance and leverages abstraction level of some essential con-
straint meta-attributes of Ecore. The typing function τTGM is defined by construction
with the following algorithm over metamodels. We rely on an Ecore description of
metamodels. Followings are the basic rules of the algorithm:

1. The root package, i.e. an instance of EPackage, that contains all other elements
of a metamodel is transformed into a TGMRoot with the same name.

2. Used primitive data types (EString, EInt, EBoolean, etc.) are transformed into
Nodes with the same names and the primitive attribute set to true.

3. Each user-defined type is transformed into a Node with the same name and the
primitive attribute set to false.

4. Attributes and references are transformed into Edges by taking into account the
Ecore semantics of transitive inheritances to explicit in-directed relationships
between type concepts. Note that an attribute or a reference can have multiple
derived Edges when a (transitive) inheritance is used on the container of the
attribute or reference; or on the referenced type of the reference, c.f. Figure 3.4
for the illustration of this rule.
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5. When transforming references, if the value of the upperBound meta-attribute
is >1 or =-1, the Multiplicity attribute of the correspondingEdge(s) is then set
to multi valued (denoting ‘*’), otherwise it is set to single valued (denoting ‘1’).
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attrA
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Ecore-based MM TGM of MM

corresponding link

primitive node non-primitive node
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Figure 3.4: An example of transforming a metamodel to its derived TGM.

Note that setting the same name for the corresponding TGMRoot of a root pack-
age in the first rule is optional because this does not influence on the topology aspect
that we are interested in metamodels. In contrast, every step in basic rules (2), (3),
(4) must be respected when these rules construct the graph topology of a metamodel
that is based on names as identifiers of graph elements. The last rule leverages the
abstraction level of certain interesting meta-attributes. More precisely, in rule (5) the
semantics of the upperBound meta-attribute on a reference from the domain of inte-
gers is leveraged to a smaller domain having only three literal values, i.e. Multiplicity
enumeration data type.

Tracing

In order to stock the correspondence links between Ecore-defined metamodels’
elements and TGM views’ elements, we employ a generic interface named Trace,
cf. Listing 3.1, to instantiate a global trace for our typing system. A concrete
implementation of this interface is realized simply that allows to stock “one-to-many”
bidirectional relationship between two sets of objects. In using this interface, we
can find a corresponding metamodel element of a TGM view’s element by invoking
the getSourceElem method from the global trace object. On the contrary, the list
of corresponding TGM view’s elements of a metamodel element can be achieved
through the getTargetElems method from the global trace object. The details of an
implementation for the Trace interface is shown in Appendix 2.1.
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Listing 3.1: Model typing function: the Trace interface in the Java language

1 package typesystem.trace;
2
3 import java.util.List;
4
5 /∗∗
6 ∗ This interface represents a simple one to many
7 ∗ bi−directional mapping
8 ∗/
9 public interface Trace<SRC, TGT> {

10
11 /∗ get a source element ∗/
12 public SRC getSourceElem(TGT tgt);
13
14 /∗ get a list of target elements ∗/
15 public List<TGT> getTargetElems(SRC src);
16
17 /∗ store a trace ∗/
18 public void storeTrace(SRC src, TGT tgt);
19
20 /∗ remove a trace ∗/
21 public void removeTrace(SRC src, TGT tgt);
22
23 }

The model typing function is charged in creating a TGM model type for each
metamodel and uses a global trace for stocking corresponding links between them.

The Algorithm

The model typing algorithm (shown in Algorithm 1) has two inputs: (a) A meta-
model mm, i.e. an instance of EPackage, for typing into the TGM space; (b) The
initial global trace TRACES for keeping correspondences between metamodel ele-
ments and derived elements of the TGM view of the input metamodel.

The output of the algorithm is the TGM view tgm corresponding to the input
metamodel mm and all corresponding links stored in the global trace. We briefly
describe the working of the algorithm. Initially, cf. lines 1-2, the output TGM view
tgm is created for the input metamodel root package mm, and then, a corresponding
link between them is established and stored in the global trace. This step performs
Rule 1 of the model typing function as aforementioned. The rest of the algorithm is
divided into two main phases: (1) Creating non-primitive node for all user-defined
types in the input metamodel; (2) Creating edges for (derived) properties of user-
defined types, including attributes of a primitive type and references that refer to an
user-defined type. Each time a new element of the output TGM is created, we always
keep a link between it and the original element of the metamodel in the global trace.

The first phase of the algorithm implements Rule 3 that involves the creation of
non-primitive nodes corresponding to user-defined types, i.e. types that are assigned
an intentional semantics to describe a concept of the real world. These nodes are
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Algorithm 1 modelTypingFunction(mm, Traces)

Require: the root package mm which contains user-defined types
Ensure: the TGM of the input metamodel and corresponding links between them which are

stored in Traces

{Rule 1. Creating a TGMRoot corresponding to the mm package}
1: tgm← new TGMRoot(mm.name)
2: Traces← Traces ∪ (mm, tgm)

{Rule 3. Creating non-primitive GNodes for user-defined types}
3: for all eCl in mm.EClassifiers | eCl instanceof EClass do
4: node← new GNode(eCl.name,false)
5: tgm.Nodes ← tgm.Nodes ∪ node
6: Traces← Traces ∪ (eCl, node)
7: end for

{Rule 4. Creating GEdges for attributes and references of user-defined types}
8: for all eCl in mm.EClassifiers | fromNode ← Traces[eCl][0] do

9: for all eAtt in eCl.EAllAttributes do
10: edge ← new GEdge(eAtt.name)
11: edge.from ← fromNode

{Rule 2. Creating primitive GNodes for used primitive types}
12: if !tgm.Nodes.exist(n| (n.name==eAtt.type.name) ⇒ edge.to ← n) then
13: node← new GNode(eAtt.type.name,true)
14: tgm.Nodes ← tgm.Nodes ∪ node
15: edge.to ← node
16: end if
17: tgm.Edges ← tgm.Edges ∪ edge
18: Traces← Traces ∪ (eAtt, edge)
19: end for

20: for all eRef in eCl.EAllReferences do
21: for all subCl in getAllSubClasses(eRef .type) do
22: edge ← new GEdge(eRef .name)

{Rule 5. Abstracting the upper bound value of references}
23: if eRef .upperBound == 1 then
24: edge.multiplicity ← Multiplicity.SINGLE VALUED
25: else
26: edge.multiplicity ← Multiplicity.MULTI VALUED
27: end if

28: edge.from ← fromNode
29: toNode ← Traces[subCl][0]
30: edge.to ← toNode
31: tgm.Edges ← tgm.Edges ∪ edge
32: Traces← Traces ∪ (eRef, edge)
33: end for
34: end for
35: end for
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distinguished from those of primitive types, e.g. boolean or integer that has only
the semantics of calculation, by the primitive attribute. In the algorithm, we first
process user-defined types and leave primitive types for processing in the second
phase because we do not want to take into account primitive types which are not
used to construct user-defined types in the metamodel. From line 3 to line 7, we
browse all user-defined types defined in the metamodel, i.e. elements in the set
mm.ECLASSIFIERS that are instances of the EClass meta-class. For each type we
create an instance of type GNode with the same name of that type and add the
new instance into the set of nodes of the TGM root element tgm, i.e. tgm.NODES.
Simultaneously, a pair of that type and its node is added into the global trace.

The second phase of the algorithm implements Rule 4, 2 and 5 that consists of
the creation of edges corresponding to attributes, references between user-defined
types and primitive types and between user-defined types themselves, respectively.
From line 8 to line 35, we revisit all user-defined types of the metamodel and get si-
multaneously corresponding nodes for each type through the trace system TRACES.
We separate the processing of properties of a being-visited user-defined type into
two sub-phases: (1) creating edges for attributes; (2) creating edges for references.
Note that the process also takes into account properties which are derived from the
transitive inheritance between types thanks to EALLATTRIBUTES, EALLREFER-
ENCES and getAllSubClasses().

In the first sub-phase from line 9 to line 19, for each attribute of the type, including
all derived attributes from its transitive super types via the inheritance relation, an
object of the type GEdge is instantiated with the same name of the being-browsed
attribute, then we set the corresponding node of the being-visited type to the from
property of the new edge object. The next step relates to Rule 2 that processes for
only used primitive types by the metamodel. More precisely, we solely create a new
primitive node if the primitive type used to define the type property of the being-
browsed attribute has not already existed in the output TGM view. In case that
primitive node has already created, we set the node to the to property of the new
edge object. Otherwise, we create a new primitive node then add it into the set of
nodes of the TGM root elements. The final step includes adding the result edge into
the set of edges of the TGM root element and pushing the pair of the being-browsed
attribute and its derived edge into the global trace.

In the second sub-phase from line 20 to line 34, for each (derived) reference of the
type, similarly to the first sub-phase, but for each other type that has an (transitive)
inheritance relation with the type referred by the being-browsed reference, an object
of the type GEdge is instantiated. The next step relates to Rule 5 that abstracts the
interesting upper bound attribute of the being-browsed reference. More precisely,
if the upperBound value is equal to 1, then we assign SINGLE VALUED for the
multiplicity property of the new created edge. Otherwise, that property is set to
MULTI VALUED. Then, we configure the from property of the new edge such that
it refers to the corresponding node of the being-visited type, the to property to the
node corresponding to the being-visited subtype of the reference’s type. Finally, the
edge is added into the set of edges of the TGM root element and then the pair of
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being-browsed reference and its derived edge is pushed into the global trace.

Typing Judgement

The model typing function τTGM that is realized by Algorithm 1 is total by
construction and we have:

∀MM ∈ metamodels,∃G ∈ TGMs | τTGM (MM) = G

Note that we do not use directly the metamodel definition as the model type
representation like most other approaches. Instead, by using the above model typing
function, we shift the space of metamodels to another space in which constraints on
the graph topology of a model family are exhibited explicitly. In addition, the TGM
space gives to the notion of model type an interesting level of abstraction by selecting
only certain interesting non-topology constraints and making relaxations on them,
the constraint defined via upperBound attribute of references is an example. The
selection of the upperBound attribute on the multiplicity constraint of references in
our work is only a choice to show that we can choose a certain constraint attribute
of the metamodelling language as interesting point of view for the notion of model
type. From a selection, we can develop a computing language on models that can
accept a larger set of models as legal inputs. In respect of this point of view, our
model typing function introduces the judgement in an environment Γ for all model
M that conforms to MM, M is of type G:

Γ ⊢M :̂ MM Γ ⊢ G = τTGM (MM)

Γ ⊢M : G
(3.1)

In the above typing rule, the notation “ :̂ ” denotes the typical conformance
relation between a model and a metamodel, usually understood as the instantiation
relation while the notation “ : ” denotes the typing relation, which is defined in our
work, i.e. the TGM space. Figure 3.5 shows the TGMs of metamodel CDV1 and
CDV2.

Discussion on Model Type

Leverage Ecored-defined metamodels to a more abstraction type level such as
the TGM view has a major advantage. That is, the introduced model typing func-
tion τTGM (MM) is not a one-to-one (also referred as injective) function, therefore
an element in the TGM space can be derived from several different elements in the
Ecore space. As a result, if we have two metamodels MM1 and MM2 in the domain
defined by Ecore which have the same image G in the TGM space, then we can say
all models that conform either metamodel MM1 or MM2 has the same type G, cf.
Figure 3.6. Thus, a model transformation language that is developed at this level of
abstraction can accept a larger set of models as inputs of a transformation definition.
Among different transformation languages, MOMENT2-GT provides language con-
structs which have a semantics at the same abstraction level what we desire. Related
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Figure 3.5: TGMs of metamodels CDV1 and CDV2.
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to computations for primitive types, this language provides basic operators with sim-
ple typing rules, e.g. a variable declared as type String cannot be used as an Integer
variable. Moreover, the language focuses on the graph characteristic of metamod-
els and is able to overcome unimportant meta-attributes or in some cases provides
a flexible compilation depending on the meta-attributes’ values. In conclusion, the
TGM abstraction view is aimed, on one hand, to capture topology constraints of a
metamodel and on the other hand, to describe the semantic level in provided graph
pattern-related constructs of the MOMENT2-GT language.

MM1 MM2

G
τ T

G
M

(M
M

)

τT
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M
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Mi

Mj

model layer

metamodel layer

TGM layer

Figure 3.6: Models of different metamodels with the same model type.

3.3.3 Model Sub-typing

Having established a graph structure as TGM view with which we type models,
it is necessary to answer a remaining question: under what conditions may one TGM
model type be considered substitutable for another? In other words, we need to
define an order relation between elements in the TGM space. This relation is not
necessary to be total, but with such a relation, the acceptable set of models for a
transformation can be extensible by an earlier checking at each time we want to use
a transformation.

Sub-graph Overview

Thanks to the sub-graph relationship defined over graph, we make use of the
model typing function τTGM (MM) to derive a sub-typing for models. We consider
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that a GNode (resp. Vertex) is equal to another GNode (resp. Vertex) when their
names are equals. The multiplicity of GEdges information needs a special treatment.
We consider the following order over multiplicities:

undefined valued � single valued � multi valued (3.2)

This means that multi valued cardinality (‘*’) is more general than single valued
(‘1’) which is itself more general that the undefined situation, i.e. undefined valued.
The latter case which relates to how infer an undefined valued multiplicity for an edge
and the use of this value in typing will be discussed more detailed in Sections 3.3.4
and 3.4.1.

Hence, a GEdge with the same name as another one can be considered as equal in
the sub-graph algorithm when the multiplicity of the sub-graph candidate is smaller
than the super-graph multiplicity of the compared GEdge. If not, even with the
same name, edges are different. From the graph point of view, such a sub-graph
algorithm performs a look-up of mirrors for all nodes and edges of a sub-graph in
the super-graph. The look-up operation depends basically on the name property
of graph elements. Moreover, for edges the algorithm is also constrained with the
multiplicity property. The algorithm for checking sub-graph relation between two
TGM graphs is described in the Algorithm 2.

The Sub-graph Checking Algorithm

The sub-graph checking algorithm (shown in Algorithm 2) has two inputs: (a) A
TGM root element subTGM which is a sub-graph candidate; (b) Another TGM root
element supTGM which is a super-graph candidate. These root elements correspond
to metamodel root packages which have been already inferred by applying the model
typing function.

The output of the algorithm is a boolean value which indicates that the sub-
graph checking between two graph is successful or not. If, after this look-up process
is complete, every node and edge of the sub-graph candidate can find a mirror in
the super-graph, then the sub-graph checking is successful. Note that the matching
signature that we used is based on the name property of nodes and edges. Thus, since
the algorithm is only applied for checking graphs that are derived from metamodels
constrained by the uniqueness of name on concepts and properties, so each element in
the sub-graph candidate cannot find more than one in its mirror in the super-graph.
The algorithm is divided into main phases: (1) looking up correspondences in the
super-graph for nodes in the sub-graph; (2) looking up correspondences in the super-
graph for edges in the sub-graph. Each time an element of the sub-graph cannot
find a correspondence, the algorithm immediately exits and the checking process is
unsuccessful.

The first phase of the algorithm, cf. lines 1–11, involves to look up a correspon-
dence (or a mirror) in the super-graph for nodes of the sub-graph. The signature we
use to find a mirror node is based on the name and primitive properties of the type
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Algorithm 2 isTGMSubgraph(subTGM , supTGM)

Require: the subgraph candidate subTGM and the supergraph candidate supTGM . They
are instances of type TGMRoot and can be achieved from the global trace for each
metamodel root package.

Ensure: return false if it can not find any mirror for at least a graph element of the subgraph
candidate subTGM in the supergraph candidate supTGM , otherwise return true

{Looking up mirrors for all nodes of the subgraph in the supergraph}
1: for all subNode in subTGM .Nodes do
2: isFound ← false {Initially, each subNode has not any mirror in supTGM}

3: for all supNode in supTGM .Nodes do
4: if subNode.isMatch(supNode) then
5: isFound ← true
6: break
7: end if
8: end for

{exit if there is not any mirror in supTGM for the being-browsed subNode}
9: if isFound == false then

10: return false
11: end if
12: end for

{Looking up mirrors for all edges of the subgraph in the supergraph}
13: for all subEdge in subTGM .Edges do
14: isFound ← false {Initially, each subEdge has not any mirror in supTGM}

15: for all supEdge in supTGM .Edges do
16: if subEdge.isMatch(supEdge) then
17: isFound ← true
18: break
19: end if
20: end for

{exit if there is not any mirror in supTGM for the being-browsed subEdge}
21: if isFound == false then
22: return false
23: end if
24: end for

{If reach here, return true}
25: return true
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GNode. More precisely, the auxiliary method isMatch defined for type GNode has
the following semantics described in the OCL language:

1 context GNode def :
2 isMatch(n : GNode) : Boolean =
3 self.name = n.name
4 and self.primitive = n.primitive

Similarly, the second phase of the algorithm, cf. lines 12–22, involves to look up
a correspondence (or a mirror) in the super-graph for edges of the sub-graph. The
checking for matching edges require that they have the same name and matching mul-
tiplicity. In addition, their referred nodes (from/to) have to be matched, respectively.
The OCL semantics of the isMatch method defined for type GEdge is following:

1 context GEdge def :
2 isMatch(e : GEdge) : Boolean =
3 self.name = e.name
4 and self.from.isMatch(e.from)
5 and self.to.isMatch(e.to)
6 and self.multiplicity.isMatch(e.multiplicity)

The isMatch method defined for enumeration type Multiplicity implements the
order relation over multiplicity values in Formula 3.2.

Since the algorithm is based on cross-products of nodes and edges between two
graph structures, thus the matching algorithm is O(n2) complex and reasonable
costly. Even in the case of large Ecore-defined metamodels, the complexity is man-
ageable for derived TGM model types.

The Sub-typing Approach

Figure 3.7 illustrates our sub-typing approach. Lets M1 and M2 be two mod-
els that conform (are defined with reference) to MM1 and MM2, respectively. M1
(resp. M2) does not conform to MM2 (resp. MM1) since MM1 and MM2 are not
comparable in the Ecore space. Based on the model typing function proposed in
the previous section, our sub-typing approach introduces τ(MM1) and τ(MM2),
i.e. two graph views which derived from Ecore-defined metamodels. If we have
τ(MM2) ⊆ τ(MM1), then we can derive M1 : τ(MM1), M2 : τ(MM2) but also
M2 : τ(MM1).

More formally, we have:

τ(MM1) ⊆ τ(MM2)⇔MM2 � MM1 (3.3)

Intuitively, a metamodel MM2 is a subtype of a metamodel MM1 if and only if
the TGM model type derived from MM1 (i.e. τTGM (MM1)) is a sub-graph of its
derived TGM model type (i.e. τTGM (MM2)).
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Figure 3.7: Sub-typing approach.

Discussion on Model Sub-typing

Now back to the main problem of transformation reuse that is focused in this
thesis. Although we have already introduced a model typing function for metamodels
and a sub-typing mechanism based on that function, it is even not sufficient to
solve the transformation reuse problem. One reason is the redundancy when we
declared a metamodel as the constraint context in transformation designing. That
is, a transformation uses a small part of the declared metamodel. This argument
results to the need of typing also the transformation that produces the real model
type for an existing transformation. Intuitively, a real type of a transformation is
usually “smaller” than the declared type. In the next section, we will introduce such
a typing mechanism. Our transformation typing approach is based on metamodel
elements which are used to define a transformation, but results in an artifact at a
higher abstraction level than metamodel level, i.e. an element in the TGM space.

3.3.4 Model Transformation Typing

Model transformation languages are defined with references to metamodels as
constraints over model they accept as input or output parameters. This way of
defining transformations makes them hardly reusable when the source of the model
relies on a slightly different metamodel. In order to tackle this issue and accept more
models as input (or output), we propose in this thesis two typing functions for model
transformations.

First, considering a transformation as a “function” form one metamodel to an-
other metamodel (the second could be the same in case of so-called endogenous
transformations), we define the type of a transformation model as an arrow type
from the type derived from the input metamodel to the type derived from the output
metamodel. More formally, if T is a model transformation from MMi to MMo:

Γ ⊢ T : τTGM (MMi)→ τ ′

TGM ′(MMo) (3.4)
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The above arrow type could be generalized to multi-input, multi-output model
parameters. Note that we distinguish metamodels that have served as constraints for
input parameters and those that have served as constraints for output parameters
of a transformation. That is we are not allowed to create new objects in an input
model that conforms to an input metamodel, in contrast to the output model. This
distinction comes from the containment meta-attribute defined on a reference that
relates to the creation of object, i.e. an object cannot be created outside its container.
The model typing function τTGM that we introduced in Section 3.3.2 based on the
notion of model type TGM proposed in Section 3.3.1 focuses currently on reusing
an existing transformation when changing input metamodels. Thus, the constraint
on object creation is not in consideration. That is why we do not take into account
the containment meta-attribute as a selection to add to the set of properties of type
GEdge of the TGM graph structure. Thus, we do not apply the model typing function
τTGM for metamodels declared in output parameters. Model transformation reuse
when changing metamodels in output parameters requires more investigation. This
can be done by developing another model typing function τ ′

TGM ′ based on another
graph structure TGM′ by taking into account the containment meta-attribute.

The second typing function of model transformation relies on the code of the
transformation itself which encodes the transformation designer’s intention. We ob-
serve that most transformation do not use all concepts (entities and their attributes,
or associations) of the referenced metamodels. We call this the effective model type
as [Sen 09] for models. In the type-theoretic sense, it represents a super-type of the
declared type. The effective TGM model type is useful since it reduces constraints
on types of a legacy transformation and makes the set of substitutable metamodels
larger.

Γ ⊢ T : τeff (τTGM (MMi))→ τeff (τ ′

TGM ′(MMo)) (3.5)

The effective TGM model types of a transformation needs to be inferred from its
implementation. To this end, the function τeff in formula 3.5 have to implement an
algorithm that is dependent on the transformation language. We briefly describe it
in the context of MOMENT2-GT in the following paragraphs. This function takes
a metamodel and an existing transformation definition as main inputs to infer the
effective TGM model type instead of using directly the derived TGM model type as an
input as in formula 3.5. We remind that MOMENT2-GT describes a transformation
by using the graph pattern structure, cf. Section MOMENT2-GT Language at
page 44 for more detail on the graph pattern structure.

Algorithm Overview

In Figure 3.8, we present an overview of the effective TGM model type inference
mechanism. The inputs to the algorithm are: (1) A metamodel MM which has a
derived TGM model type through the application of the model typing function τTGM

introduced in Section 3.3.2. The derived model type is large, for instance the TGM
of simple metamodel such as CDV1 in our motivating example has 11 nodes and
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24 edges as shown in Figure 3.5 (at the top); (2) The transformation MT which
encodes the real usages of graph topology corresponding to the metamodel MM by
the transformation designer’s intention.

input

input
'' input ''

output

Metamodel MM Large TGM of MM

Transformation MTEffective TGM

τTGM (MM)

τeff (MM,MT )
<<uses>>

Figure 3.8: Transformation typing overview.

The output of the algorithm is an inferred effective TGM model type of the input
metamodel MM. This effective TGM model type contains only graph topology parts
used to define the transformation, cf. nodes and edges within the red bounding line of
the large TGM graph of MM. Some of attributes on reserved graph elements may be
changed during the inference process. For example, the multiplicity attribute on an
edge can be changed from multi valued to undefined valued when we find somewhere
in the transformation an usage that can be more abstracted. All other unused graph
elements are removed in the original large TGM graph and simultaneously in the
global trace. The pruned effective TGM graph is certainly a subset and presents a
supertype of the original large TGM graph. Note that in our approach we do not
infer (or modify) on the input metamodel, but on the derived model type from it.

The Algorithm

The transformation typing function τeff corresponds to the transfTypingFunction
function shown in Algorithm 3. This function takes three inputs: (a) A metamodel
mm that we want to infer the effective parts of its derived TGM model type; (b)
The transformation mt that is considered as an usage context on that metamodel;
(c) The global trace TRACES that already keeps correspondences between elements
of the metamodel and derived elements of the TGM model type of the metamodel.
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Algorithm 3 transfTypingFunction(mm, mt, Traces)

Require: (1) the metamodel mm to infer the effective TGM model type. (2) the trans-
formation mt as a usage context. (3) the global trace Traces stocks correspondences
between the metamodel and its original TGM model type.

Ensure: Return the effective TGM model type corresponding to the input metamodel in
taking into account usages encoded in the transformation.

1: Otestop ← collectTopOTES(mt,mm) {Collect top Otes constrained by mm}
2: Nodesreq, Edgesreq ← ∅ {Initialize require sets of nodes and edges}
3: Edgesmulti ← ∅ {Initialize sets of edges multi-used multiply in a graph pattern}
4: tgm ← Traces[mm][0] {Get the TGM model type of mm}

{Phase 1: Collect all required nodes and edges used in the transformation mt}
5: for all ote in Otestop do

6: objTETyping(tgm,ote,Nodesreq,Edgesreq,Edgesmulti,Traces)
{Visit recursively beginning at the top object template expression ote}

7: end for

{Phase 2: Remove all non-required graph elements}
{2.1: Remove non-primitive nodes and its edges not in required sets}

8: for all eCl in mm.EClassifiers | node ← Traces[eCl][0] do

9: if node /∈ Nodesreq then
10: Traces ← Traces \ (eCL,node) {for non-required nodes}
11: tgm.Nodes ← tgm.Nodes \ node
12: end if

13: for all p in eCl.EStructuralFeatures do
14: for all edge in Traces[p] | edge /∈ Edgesreq do
15: Traces ← Traces \ (p,edge) {for non-required edges}
16: tgm.Edges ← tgm.Edges \ edge
17: end for
18: end for
19: end for

{2.2: Remove primitive nodes not in the required set of nodes}
20: for all node in tgm.Nodes | node /∈ Nodesreq do
21: tgm.Nodes ← tgm.Nodes \ node
22: end for

{Phase 3: Infer multiplicity value on edges}
23: for all edge in tgm.Edges | edge /∈ Edgesmulti do
24: if edge.multiplicity == Multiplicity.MULTI VALUED then
25: edge.multiplicity ← Multiplicity.UNDEFINED VALUED
26: end if
27: end for
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The outputs of the function are: (a) The same TGM model type tgm of the input
metamodel, but without all elements, i.e. nodes and edges that are not used in the
usage context, i.e. the input transformation mt; (b) The global trace TRACES that
has been updated.

We briefly describe the inference process of the algorithm. The main idea of
the algorithm is first to detect all graph nodes and edges that are used in all user-
defined graph patterns of the transformation, then remove all unused nodes and edges
in the derived model type. To this end, initially we collect all top object template
expressions (OTE) that are constrained by the input metamodel mm. The algorithm
then is divided into three main phases: (1) Computing set of all required nodes
and edges by visiting all top object template expressions. This visitting process is
performed recursively due to the recursion on defining an object template expression.
The required sets of nodes and edges are accumulated over the visiting process; (2)
Removing all nodes and edges that are not in the required sets; (3) Inferring the
multiplicity value on edges that are multi-used, if any, based on a feedback from
the so far visiting process. We will go into details of Algorithm 3 in the further
paragraphs.

The initial phase, from lines 1–4, first collects all top object template expressions
into OTEStop by using an auxiliary function, i.e. collectTopOTES, with the transfor-
mation mt and the metamodel mm as inputs. Then, the sets of required nodes and
edges, i.e. NODESreq and EDGESreq, respectively, are initialized as empty sets. So
on for set EDGESmulti that will contain edges multi-used in graph patterns. In the
end of this phase, we obtain the derive TGM model type corresponding to the input
metamodel based on the global trace.

The first phase of the algorithm involves the computation of the entire set of
required nodes and edges that will be added into sets NODESreq and EDGESreq,
respectively. From lines 5–7, the initial sets NODESreq and EDGESreq are passed into
the objTETyping function, and accumulated over all top object template expressions
in the set OTEStop. The objTETyping function acts as a visitor that travel recursively
the entire graph pattern defined by the top object template expression. Algorithm 4
that details the mechanism of that function on selecting required nodes and edges
will be explained later. In addition to above arguments, this function also receives
others such as EDGESmulti and the global trace.

In the second phase of the algorithm we remove nodes and edges from the de-
rived TGM model type of the metamodel mm. From lines 8–12, we remove all nodes
that are not in NODESreq and simultaneously update TRACES by removing the
correspondence link between the node and its corresponding class. Similarly, from
lines 13–19 we remove all edges that are not in EDGESreq and simultaneously update
TRACES by removing the correspondence link between the edge and its correspond-
ing property. In the end, from lines 20–22 we remove all primitive nodes that are not
used without a need on updating TRACES.

The third phase of the algorithm consists of inferring multiplicity value on required
edges that are multi-used in a graph pattern, if any. So in theory, we face two
cases. In the first one where single relation is employed in the metamodel, we do
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not change the multiplicity value in the effective TGM since multiple relations also
can be applied. In the second case where a multiple relation is present, we can
use both single and multiple pattern constraints to define a model pattern. When
using single pattern constraints, we change the multiplicity value in the effective
TGM from multi valued to undefined valued (denoting ‘?’) since all cases can be
applied, otherwise, the value of multiplicity is left to multi valued since only multiple
relations can be applied. This rationale is in fact based on a semantics variation point
when defining a graph pattern in using the Object Template Expression construct of
the MOMENT2 language. In order to improve transformation reuse capability, we
exploit this semantics variation point and try to abstract this based on an analyse
on the real usage of the transformation designer. In practice, in the algorithm we
use EDGESmulti to stock edges that are multi-used in a graph pattern that are
detected in the visiting process described in Algorithm 4. From lines 23–27, we
scan all remaining edges, if the being scanned edge is in EDGESmulti and has the
current multiplicity value as MULTI VALUED, then changing its multiplicity value
to UNDEFINED VALUED.

Now we go in-depth on Algorithm 4 that describes the objTETyping function used
in the first phase of Algorithm 3. This function is the kernel of our transformation
typing approach that implements a semantics to detect all required nodes and edges
in the derived model type from a graph pattern definition in MOMENT2-GT.

The inputs of function objTETyping are: (a) A derived TGM model type tgm;
(b) An object template expression ote at some level in the being-processed graph
pattern; (c) A set of required nodes NODESreq; (d) A set of required EDGESreq,
(e) A set of edges that are multi-used EDGESmulti; (f) the global trace TRACES.
Among these inputs, NODESreq, EDGESreq, EDGESmulti are also outputs that ac-
cumulate required elements. The function is designed into three phases: (1) Adding
to NODESreq the node corresponding to the class referred by the being-visited object
template expression ote; (2) Adding to EDGESreq all edges used to define property
template expression of the ote, performing a depth-first visit when processing a refer-
ence template expression by invoking this function itself; (3) Computing edges that
are multi-used in the being-visited object template expression ote.

The first phase of the algorithm, from lines 1–3, first get the class referred by
the being-visited object template expression, then looks up in the global trace the
corresponding node that is called fromNode in this current context. Second, we add
fromNode to NODESreq. Note that by using a structure of type Set, the ∪ operator
will not add an element if it already exists in the list.

The second phase of the algorithm is divided into two alternative processes. To
begin, we initialize the set EDGESvisited as an empty list, cf. line 4. This list is
used to compute edges with multi-used in the third phase. The main processing
is performed by scanning all property template expressions that are defined in the
being-visited object template expression. In the first case (from lines 6–15), i.e. where
that property template expression is an attribute expression, we look up in the global
trace the corresponding edge of the referred attribute, then add it to EDGESreq and
the primitive node referred by it to NODESreq. In the second case (from lines 16–
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Algorithm 4 objTETyping(tgm,ote,Nodesreq,Edgesreq,Edgesmulti,Traces)

Require: (1) TGM model type tgm, (2) an object template expression ote, (3) the required
set of nodes, (4) the required set of edges, (5) the set of edges multi-used, (6) the global
trace.

Ensure: the required sets of nodes and edges that are used in the object template expression,
and a set of edges with multi-use in a graph pattern.

{Phase 1: add the node corresponding to the class referred by ote to Nodesreq}
1: referredClass ← ote.referredClass
2: fromNode ← Traces[referredClass][0]
3: Nodesreq ← Nodesreq ∪ fromNode

{Phase 2: add edges used to define property template exp. of ote to Edgesreq}
4: Edgesvisited ← ∅ {Initialize a list of visited edges, for counting edges multi-used}

5: for all pte in ote.PropTempExps do
6: if pte instanceof AttributeExp then
7: referredAttribute ← pte.referredProperty
8: if tgm.Nodes.exist(n | (n.name == referredAttribute.type.name) ⇒ toNode ←

n) then
9: for all edge in Traces[referredAttribute] do

10: if edge.from.equals(fromNode) and edge.to.equals(toNode) then
11: Edgesreq ← Edgesreq ∪ edge
12: Nodesreq ← Nodesreq ∪ toNode
13: end if
14: end for
15: end if
16: else if pte instanceof ReferenceExp then
17: referredReference ← pte.referredProperty
18: lowerOTE ← pte.value
19: referredLowerClass ← lowerOTE.referredClass
20: toNode ← Traces[referredLowerClass][0]
21: for all edge in Traces[referredReference] do
22: if edge.from.equals(fromNode) and edge.to.equals(toNode) then
23: Edgesreq ← Edgesreq ∪ edge
24: Edgesvisited.add(edge) {add to a list to treat multiplicity in phase 3}
25: end if
26: end for

{call recursively for the lower object template expression}
27: objTETyping(tgm,lowerOTE,Nodesreq,Edgesreq,Edgesmulti,Traces)
28: end if
29: end for

{Phase 3: add edges which are used more one time to the set of edges multi-used}
30: for all edge in Edgesvisited do
31: if Edgesvisited.count(edge) > 1 then
32: Edgesmulti ← Edgesmulti ∪ edge
33: end if
34: end for
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28), i.e. where that property template expression is a reference expression, we get the
lower object template expression that referred by the property template expression.
Next, the toNode corresponding to the class referred by the lower object template
expression is achieved from the global trace. We look up an edge in the list of
correspondence edges of the referred reference that its two endings are identical with
fromNode and toNode. Then, we add the found edge to EDGESreq and update it to
the list EDGESvisited. The final step of the second phase is invoking the objTETyping
function itself by passing the lower object template expression, cf. line 27.

In the third phase of the algorithm, we count the number of visited time for
edges that are used to define the being-visited object template expression. For those
with visited time number more than one, we add them to the set EDGESmulti. This
information is used to infer the multiplicity value of required edges in the third phase
of Algorithm 3.

Application on the Motivating Case Study

We apply the transformation typing function τeff for the source metamodel CDV1
in taking into account its usage context in the transformation CD2RDB. The inferred
effective TGM model type of metamodel CDV1 is given in Figure 3.9 (at the bottom).
This effective TGM model type is reduced a lot in comparison with the original one
(at the top of Figure 3.9). It contains only 7 nodes (including 2 primitive nodes) and
13 edges. In addition, some edges are modified on the multiplicity attribute to relax
the constraint on edges, e.g. the ownedTypes and ownedFeatures edges. The effective
TGM model type of CDV1 represents the real type for the input model parameter
after finishing the design of the transformation. In applying our sub-typing approach
in Section 3.3.3, whatever metamodel that has a derived type, which is satisfied
the sub-graph relation with that effective model type can safely replace directly the
metamodel CDV1 in the transformation CD2RDB without a need of adaptation.

Discussion on Model Transformation Typing

Providing a model transformation typing function as the τeff function facilitates
to complete a better solution for the first sub-problem mentioned in Section 3.1. It is
recalled that in the first sub-problem of the transformation reuse issue, with a given
solution we can only reuse transformation across isomorphic metamodels. That is,
metamodels must share a set of same modelling concepts (i.e. these concepts are
identical in names) and the same graph topology. These assumptions in fact are rare
in real situations where metamodels could arrive from different organizations. In
reality, even in a particular specific domain, organizations use different, but similar
modelling concepts, i.e. the meaning of two modelling concepts are the same or simi-
lar, but the names that they assign to them are different. Moreover, even in the same
modelling concept, the name of attributes may be defined differently and so on for
relationships between modelling concepts. In addition, the designs of a metamodel
for a specific domain in organizations are very different because metamodel design is
a human activity so it depends on different human decisions. For example, a relation-
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ship between two modelling concepts designed by an organization can be reified in
another organization through an additional concept. It is recalled that we classified
these situations in the second sub-problem in Section 3.1 in which metamodels are
called non-isomorphic.

For non-isomorphic metamodels, there is no way to reuse directly existing trans-
formations without modifying (or adapting) them. To this end, the adapting process
requires some additional directives from an external source. A simple and straightfor-
ward choice is to develop a mapping DSL language dedicated to describe semantic cor-
respondences between metamodel elements or combination of metamodel elements,
even they have different names or partial different topology. A mapping definition in
principle can be derived from a dictionary of synonyms or a global ontology shared
within organizations. However, using these resources requires another complex in-
ference process and needs a transformation from these spaces into the mapping DSL
space. Since semantics of a concept is a notion that is assigned by human, in this
thesis, we chose a solution in which a mapping definition is defined directly by a hu-
man input. After having an explicit mapping definition, we use the proposed typing
solution for the first sub-problem as primarily premises to validate the correctness
of the mapping definition. Obviously, a mapping definition should be correct or not
depending also on the adaptation semantics of the language that we can support.
The solution for the second sub-problem on developing a mapping DSL language will
be presented in the next section.

3.4 Non-isomorphic Transformation Reuse

The previous sections introduce model and model transformation typing func-
tions coupled with a sub-typing mechanism for models. Thanks to this abstraction
approach, the reuse capability of transformations is improved. In fact, it allows mod-
els that conforms to different metamodels to be used by a transformation when their
model type is a subtype of the effective model types used by the transformation.

The proposed typing calculus is very simple and it is dedicated to solve the first
sub-problem known in Section 3.1. This situation is also mentioned in a recent
publication [Guy 12] and is named isomorphic. More complex situations happen
when we want to reuse a transformation on models that conform to a metamodel
with different names or partial different topology (called non-isomorphic in [Guy 12]
or known as the second sub-problem in Section 3.1). This section presents a solution
to reuse transformations for the second sub-problem and when only their source
metamodels are changed (such as the motivating example). Particularly, to reuse
such a transformation, the following four steps need to be performed:

1. Build two graph-based views, i.e. TGM, for the original and new metamodels,
respectively.

2. Infer the effective parts of the original TGM that are actually used by the
transformation.
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3. Describe the correspondences between elements (or combinations of elements)
of two metamodels in a proposed mapping DSL language. This user task is
assisted and type-checked using the results of steps 1 and 2.

4. Execute an interpreter that adapts the transformation such that it works cor-
rectly with the new source metamodel.

While Step 3 requires manual input, the other steps could be automated by tools.
More precisely, Step 1 is performed by means of the model typing function presented
in Section 3.3.2; Step 2 applies the model transformation typing function that is
introduced in Section 3.3.4 and Step 4 will be carried out automatically by the HOT
of the language if the mapping definition is validated at the end of Step 3.
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(new)

M2M transf.
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(adapted)
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Figure 3.10: Overview of the non-isomorphic transformation reuse approach.

Figure 3.10 illustrates the overview of the non-isomorphic transformation reuse
approach. Let TGM1 and TGM2 be the TGMs of respectively non-isomorphic meta-
models MM1 and MM2, cf. (1) in Figure 3.10. We expect an implication:

TGM1 ⊆ TGM2⇔MM2 �/map MM1 (3.6)

through a mapping between elements of two metamodels MM1, MM2. However, the
graph inclusion relation ⊆ (detailed in Section 3.4.1 ) between TGM1 and TGM2 is
not directly checked. Instead, we analyse the legacy transformation to infer a smaller
sub-graph of TGM1 – referred to as the type of transformation models (cf. (2) in
Figure 3.10), namely TGMeff.. The graph inclusion relation is then verified between
TGMeff. and TGM2 after a mapping step, cf. (3) in Figure 3.10. If the relation is
satisfied, we adapt the transformation to achieve a new transformation based on the
mapping definition, cf. (4) in Figure 3.10. In respect to this process, the sub-typing
relation �/map between metamodels in fact is partial since the usage context (i.e.
the transformation) of a declared metamodel must be considered. Furthermore, it is
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non-isomorphic since it has to be derived through a mapping between metamodels.
For this reason, we call our transformation reuse approach non-isomorphic transfor-
mation reuse. The following sections respectively give details of steps 3 and 4.

3.4.1 DSL for Correspondence Description

As aforementioned in Section 2.3.3, the main obstacle that prevents the reuse of
knowledge encoded into an existing model transformation is a phenomenon called
heterogeneity between alternative metamodels. That is, there exists multiple rep-
resentation format of concepts in the same modelled domain or a domain might be
modelled by similar (or non-identical) concepts. Heterogeneity results to the different
abstract syntaxes (structures) expressed by metamodels in domain specific languages
of the same specific domain. Since model transformations are described tightly cou-
pled with metamodels (abstract syntax), it is difficult to rebind an existing model
transformation to elements of the new metamodel due to the lack of semantics bridge
between similar concepts, namely the mechanism, which is often used in defining a
transformation is basically the “name-based” binding.

To address these issues we propose a DSL language that is dedicated to ex-
plicitly declare the semantic correspondences between alternative (combinations of)
metamodel elements. Then, we also provide an interpreter for the DSL which en-
compasses automatic generation from a legacy transformation to a new adapted one.
The main idea of such a DSL is to foster the maintenance of model transformations,
despite structural and semantics differences of alternative metamodels. Differences
in representation format and in semantics are overcome by means of correspondence
patterns that are supported in the language. However, the interpretation semantics
of the language must respect to the typing principle that is introduced in Section 3.3.
The following paragraphs present the syntax and the semantics of our semantics
correspondence description language in detail.

Syntax

To better understand the abstract syntax of the mapping DSL language, we
recall the abstract syntax of the transformation language considered in this thesis,
i.e. MOMENT2-GT language. The structure and the semantics of transformation
language MOMENT2-GT has been presented in detail in Section 2.3.2. However, we
regroup main constructs of the language and the relation of these constructs to basic
constructs of meta-metamodel Ecore in Figure 3.11 in order to give a global view of
the language. Note that like most of other transformation languages, MOMENT2-
GT does not support directly the notion of model type. Instead, a declared model
variable, resp. an instance object of construct TypedModel, has a reference to an
EPackage instance, i.e. through the modelType reference. Since a package contains
all design concepts (including classes, attributes and references), a graph pattern
(represented by a recursive structure by means of constructs ObjectTemplateExp,
AttributeExp and ReferenceExp) which is defined in a corresponding model variable
has to respect the graph topology encoded in design concepts in the package. The
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graph topology (represented by the Type Graph with Multiplicity graph structure)
of a declared package and the effective used graph topology taking into account the
real usage context, i.e. the transformation definition, can be inferred by means of
two typing functions of our typing system provided in Sections 3.3.2 and 3.3.4.

ECOREMOMENT2-GT

Figure 3.11: Abstract syntax of transformation language MOMENT2-GT.

The abstract syntax of our mapping DSL language in fact is an extension of the
transformation language MOMENT2-GT. Figure 3.12 shows the metamodel, which
represents the abstract syntax of our mapping DSL language, namely MetaModMap.
As seen in the figure, the MetaModMapRoot construct is defined with the transfor-
mation reference which refers to the Transformation construct of the abstract syntax
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of MOMENT2-GT. This reference definition in fact is used to declare the context
usage of a metamodel that is in consideration. A MetaModMapRoot can contains
a list of mapping declarations for different metamodels that we want to replace. In
addition, a MetaModMapRoot also contains mapping rules corresponding to different
mapping declarations.

ECORE

MOMENT2-GT

METAMODMAP

Figure 3.12: Abstract syntax of correspondence language MetaModMap.

A Mapping represents a correspondence declaration between two metamodels in
consideration. A mapping declaration references (modelTypeSource, modelTypeTar-
get) the metamodels (represented by EPackage from Ecore) between which a mapping
rule will be specified in detail. A Mapping is referenced by a specific mapping rule
(a MapRule) which consists of ConceptMaps (conceptMapList). ConceptMaps de-
fine maps between classes (conceptSource, conceptTarget). A concept mapping can be
detailed by specifying PropertyMaps that are categorized in SingleMaps and Compos-
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iteMaps. A SingleMap can be either an attribute-to-attribute mapping (Att2Att) or
a reference-to-reference mapping (Ref2Ref), which has a mandatory source (feature-
Source) and a mandatory target (featureTarget) pointing to an Ecore attribute or an
Ecore reference, respectively. A CompositeMap can be either an Att2FeaturePath or
a Ref2FeaturePath. Both of Att2FeaturePaths or Ref2FeaturePaths have a manda-
tory source which refers to an Ecore attribute or an Ecore reference, respectively, how-
ever, the target of these mappings is a feature path (represented by FeaturePathExp).
FeaturePathExp is a recursive structure that represents a combination of connected
elements in a metamodel. More precisely, this data structure plays a role as a wrapper
for connected classes, attributes and references. In using such a structure, we can de-
fine a property mapping under the form: a graph edge is mapped onto a graph path.
As a result, the expressiveness of the mapping language is improved and moreover
the graph-based typing approach is still respected.

The concrete syntax of the mapping DSL language is defined in the Xtext gram-
mar language, an Extended Backus-Naur Form (EBNF)-like language, in Listings 3.2
and 3.3:

Listing 3.2: MetaModMap Xtext Grammar : mappings and mapping rules

import ”http://www.eclipse.org/emf/2002/Ecore” as ecore

2 import ”http://www.ac.uk/le/cs/moment2/mt/Moment2transformation” as moment2

MetaModMapRoot:

4 ”import” importURI=STRING ”;”

(imports+=Import)+

6 ”mapping for” transformation=[moment2::Transformation]

”(” mmaps+=Mapping (”;” mmaps+=Mapping)∗ ”)”

8 ”{”

(mapRules+=MapRule)+

10 ”}”

;

12 Import:

’import’ importURI=STRING ’;’

14 ;

Mapping :

16 name=ID ”:” modelTypeSource=[ecore::EPackage] ”correspondsTo”

modelTypeTarget=[ecore::EPackage]

18 ;

MapRule :

20 domain=[Mapping]

”{”

22 (conceptMapList+=ConceptMap (”;” conceptMapList+=ConceptMap)∗)?

”}”

24 ;
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Listing 3.3: MetaModMap Xtext Grammar : concept and property mappings

ConceptMap :

2 ”concept” conceptSource=[ecore::EClass] ”correspondsTo” conceptTarget=[ecore::EClass]

(”{”

4 propertyMapList+=PropertyMap (”,” propertyMapList+=PropertyMap)∗

”}”)?

6 ;

PropertyMap :

8 SingleMap | CompositeMap

;

10 SingleMap:

Att2Att | Ref2Ref

12 ;

CompositeMap:

14 Att2FeaturePath | Ref2FeaturePath

;

16 Att2Att:

”att2att” featureSource = [ecore::EAttribute] ”correspondsTo”

18 featureTarget = [ecore::EAttribute]

;

20 Ref2Ref:

”ref2ref” featureSource = [ecore::EReference] ”correspondsTo”

22 featureTarget = [ecore::EReference]

;

24 Att2FeaturePath:

”att reification” featureSource = [ecore::EAttribute] ”correspondsTo”

26 featureTarget = FeaturePathExp

;

28 Ref2FeaturePath:

”ref reification” featureSource = [ecore::EReference] ”correspondsTo”

30 featureTarget = FeaturePathExp

;

32 FeaturePathExp:

referredFeature = [ecore::EStructuralFeature] (”.” nextFeatureExp = FeatureExp)?

34 ;

FeatureExp :

36 referredClass= [ecore::EClass] ”.” nextFeaturePath = FeaturePathExp

;

The default nature of Xtext is to begin with a grammar definition, then uses
this to generate an Ecore-defined metamodel, a corresponding ANTLR-based parser
and an Eclipse-based text editor. In a grammar definition, Xtext allows to reference
existing metamodels (in our grammar that are the Ecore metamodel and MOMENT2-
GT metamodel) by using an import mechanism. Based on this feature, the generated
text editor supports the importation of existing artifacts of which elements can be



3.4. Non-isomorphic Transformation Reuse 103

referred (or bound). In using the text editor generated by Xtext, a mapping defi-
nition can be input by an user. The user defines semantics correspondence between
metamodel elements by referencing directly to them in the imported artifacts. In
this case, these artifacts are the transformation and metamodels in consideration.

Example

Applying the concrete syntax of the mapping DSL language to the motivating
case study in this thesis, see details in Section 2.3.3 at page 51 for the case study, we
can now specify the semantic correspondences between the metamodels CDV1 and
CDV2 (cf. Listing 3.4).

Listing 3.4: MetaModMap definition: CDV1 vs. CDV2

1 import ”platform:/resource/CD2RDB/MTs/CD2RDB.mgt” ;
2 import ”platform:/resource/CD2RDB/MMs/CDV2.ecore” ;
3
4 mapping for CD2RDB ( CDV1ToCDV2 : CDV1 correspondsTo CDV2)
5 {
6 /∗ Mapping rule from metamodel CDV1 onto metamodel CDV2 ∗/
7 CDV1ToCDV2 {
8 concept PrimitiveDataType correspondsTo DataType; /∗ (1)∗/
9 concept Class correspondsTo Class {

10 att2att isPersistent correspondsTo persistent,
11 ref2ref ownedFeatures correspondsTo ownedProperties, /∗ (3)∗/
12 ref reification parent correspondsTo generalization . Generalization . general /∗ (2)∗/
13 };
14 concept Attribute correspondsTo Property {
15 att2att isPrimary correspondsTo primary /∗ (4)∗/
16 };
17 concept Association correspondsTo Association {
18 ref2ref source correspondsTo from,
19 ref2ref target correspondsTo to
20 }
21 }
22 /∗ Define other mapping rules for other pairs of metamodels, if any ∗/
23 . . .
24 }

As seen in Listing 3.4, a mapping definition between two metamodels declares
only correspondences between different elements in two metamodels in consideration.
These declarations are declarative and stated locally. That is, from a type concept
in the original metamodel that has a different (but similar) semantics with a certain
type concept in the replacement metamodel, we make a correspondence between
them. Then, we go inside details of that type concept, i.e. property concepts nested
in that type concept, to make correspondences for their details, if necessary. For the
motivating example, only the following kinds of correspondence pattern are needed:
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three related to intuitive “renaming”, cf. (1) (3) (4), and one to relation (reference)
reification, cf. (2).

More precisely, the type concept PrimitiveDataType of metamodel CDV1 that is
actually used in transformation CD2RDB is mapped onto type concept DataType of
metamodel CDV2. For the type concept Class, due to the difference in properties of
that type concept in two metamodels, so two entities that are named Class may not
have the same semantics. Actually, the semantics of an entity is not only dependent
on its own semantics, but also on semantics of their properties. In this case, we
chose to make a correspondence between two entities even they have the same name
in two metamodels, then make correspondences between their different properties, if
any. Simple cases for mapping different properties between two entities Class are: the
isPersistent attribute of the first entity is mapped onto the persistent attribute of the
second entity; and the ownedFeatures reference is mapped onto the ownedProperties
reference. Similarly, we do correspondences for the pairs Attribute/Property and
Association/Association.

In order to support more complex cases, such as attribute reification or reference
reification, we provide two composite correspondence patterns that are from an at-
tribute to a feature path and from a reference to a feature path, represented by the
Att2FeaturePath and Ref2FeaturePath constructs, respectively.

To demonstrate the use of the Att2FeaturePath correspondence pattern, see Fig-
ure 3.13 in which the author attribute of class Book in the first metamodel in fact
represents the same semantics as one of the combination of the writer reference, the
Author class and the name attribute of such class in the second metamodel. For
this case, the semantic equivalence between them can be expressed by the provided
Att2FeaturePath correspondence pattern (cf. Listing 3.5).

MM1 MM2

Figure 3.13: Attribute reification example.

Listing 3.5: Mapping illustration for attribute reification.

1 . . .
2 concept Book correspondsTo Book {
3 att reification author correspondsTo writer . Author . name
4 }
5 . . .

There is not any similar case as the example given above in the motivating case
study, instead, we have a situation that needs to use the Ref2FeaturePath correspon-
dence pattern. See Figure 3.14 which extracts the interesting metamodel fragments of
two metamodels CDV1 and CDV2 that present similar semantics. More precisely, the
parent reference of class Class in metamodel CDV1 represents the same semantics
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as one of the combination of the generalization composite reference, the General-
ization class and the general reference of such class in metamodel CDV2. In fact,
this semantic correspondence can be represented explicitly in making the use of the
Ref2FeaturePath correspondence pattern as in Listing 3.6.

CDV1 CDV2

Figure 3.14: Reference reification example.

Listing 3.6: Mapping illustration for reference reification.

1 . . .
2 concept Class correspondsTo Class {
3 . . .
4 ref reification parent correspondsTo generalization . Generalization . general
5 }
6 . . .

In the graph-theoretic sense, semantic correspondence descriptions as those in
Listing 3.4 support the identification of a morphism between two labeled graphs,
note that we consider a metamodel as a graph by means of the TGM graph structure.
More precisely, this morphism is between an effective TGM graph of an input source
metamodel and the graph representation of the new source metamodel.

The adjusted model transformation that is generated by interpreting the mapping
definition (cf. Listing 3.4), taking into account the complete model transformation
of the motivating case study (cf. Appendix 1.1) as the subject to be manipulated,
can be found in Appendix 1.2.

Semantics

In order to work with the mapping DSL language, it is necessary to distinguish
the semantics of the language from two different levels. The first level considers
alternative metamodels as existing inputs and declares semantic correspondences
between their elements. At this level, these declarations are defined in a declarative
manner and the whole mapping definition is checked based on the graph typing
approach, which is proposed in previous sections. We call this model type compatibility
check semantics. The second level considers the existing transformation as the subject
to be manipulated. That is, based on semantic correspondence declarations at the
metamodel level, a modification engine will interpret the whole mapping definition
to rebind elements of the transformation model to elements of the new metamodel.
We call this transformation adaptation semantics of the language.

Another imagination to work with the mapping language is to consider the model
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type compatibility check semantics as those implemented in an a priori type check-
ing utility of advanced editors for programming languages, and the transformation
adaptation semantics as those implemented in their compiler. The main difference
in comparison with programming languages is users do not need to consider the op-
erational semantics of the mapping language, but only establishing semantic bridges
between two alternative metamodels’ elements. The advanced editor for the language
will give an early feedback validation to user. This feedback indicates that the map-
ping is possible or not, certainly, depending on the operational semantics provided
by the language. This utility is performed by a type system that implements the
model type compatibility check semantics.

The following part of this section will focus on the model type compatibility check
semantics and how it respects our graph-based model typing approach. The transfor-
mation adaptation semantics of the mapping language will be detailed in Section 3.4.2

Model type compatibility check semantics. We distinguish two kinds of check
semantics: (1) scoping check semantics and (2) validation check semantics. The scop-
ing check semantics relates to the use of an existing element in a certain context.
For example, in the most simple case, when defining a correspondence between type
concepts of two alternative metamodels, the left-hand side of the correspondence def-
inition can only refer to a certain type concept that is defined in the first metamodel,
and so on the right-hand side must point to a certain type concept that is in the
second metamodel. The validation check semantics relates to the semantics of the
compiler that are usually more complex than the scoping check semantics. Our type
system is an example, before interpreting the whole mapping definition, it is essen-
tial to infer the effective model types of the original metamodels, and perform other
additional tasks.

Scoping check semantics As described above, correspondences are described at
the metamodel level, i.e. making the use of elements in already existing Ecore-defined
metamodels. However, with respect to the effective TGM model type inference when
taking into account a real usage context, i.e. the existing transformation that we want
to reuse, these descriptions are imposed by some additional scoping constraints to
ensure the compatibility of mapped elements in their left-hand side parts. Concretely,

– Only type concepts that are used in the transformation, i.e. having a corre-
sponding GNode in the effective TGM model type, can be mapped to a certain
type concept defined in the new metamodel. In the motivating case study, type
concept Operation cannot be used in any correspondence definition.

– For both single and composite PropertyMaps, attribute concepts and reference
concepts have to be owned (taking into account inheritance) by the type concept
referred by the nesting type concept correspondence. In addition, they must
have at least a corresponding GEdge in the effective TGM model type.

The right-hand side parts of correspondence definitions have less scoping con-
straints than their left-hand side parts. Precisely,
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– The condition to use a type concept in the new metamodel to define a type
concept correspondence, i.e. a ConceptMap, is less constrained than the usage
condition of the original metamodel’s type concepts. That is any type concepts
defined in the new metamodel can be used in the right-hand side of a Con-
ceptMap as long as it has not been used in other correspondence definitions.

– For single PropertyMaps, similar to the left-hand side parts, attribute concepts
and reference concepts have to be owned (including transitive inheritance re-
lation) by the type concept referred by the right-hand side of the nesting type
concept correspondence.

– Composite PropertyMaps require more complex scoping constraints. More pre-
cisely, in the root FeaturePathExp object, which is owned by a CompositeMap
(featureTarget), the referred feature (referredFeature) must alwaysbe a refer-
ence concept of a mapped type concept. The type concept that is referred
by the next feature expression (FeatureExp) has to be the type of the referred
feature or a sub type concept of that type. In addition, the last referred feature
in a Att2FeaturePath must be an attribute concept, and in contrast the last
referred feature in a Ref2FeaturePath has to be a reference concept.

These above scoping checking semantics are defined precisely. Thus, they can be
implemented to support the scoping aspect of an advanced editor for the mapping
DSL language. The scoping aspect is a very important feature in most of modern
editors since we can provide more intelligent suggestions about what users can do in
the next steps.

Validation check semantics This kind of checking semantics is more tightly cou-
pled with our model typing approach that is based on the notion of graph similarity.
We recall that according to Section 3.3, we have proposed the TGM graph structure
as the notion of model type. In addition, based on the name of graph nodes and
graph edges, we defined a sub-graph relation between TGMs in taking multiplicity
values on graph edges into account. This relation can be formalized concisely as
follows:

TGM sub-graph ⊆ : G
′

(N ′, E′) ⊆ G(N, E) when

• Node: ∀ n′ ∈ N
′

,∃ n ∈ N (n′.isMatch(n))

• Edge: ∀ e′ ∈ E′,∃ e ∈ E (
e′.[from/to].isMatch(e.[from/to]) ∧
e′.name = e.name ∧
e′.multiplicity.isMatch(e.multiplicity))

Multiplicity order: ? � 1 � *

where, undefined valued is matched to both single valued and multi valued ; and sin-
gle valued is matched to multi valued (cf. formula 3.2).

Based on above definitions, the model type compatibility validation check seman-
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tics is performed at a coarse-grained level, i.e. between two alternative metamodels.
This task can be carried out by taking the (copy of the) effective TGM model type
corresponding to the original metamodel, then trying to rename graph nodes and
graph edges according to the mapping definition. In case of composite correspon-
dences, we need to perform renaming and create additional edges and nodes based
on the elements of the new metamodel, simultaneously. The final step is verifying
the TGM sub-graph relation between the mapped effective TGM model type, i.e. the
output from the previous step, with the TGM model type corresponding to the new
metamodel. Once this relation is validated, we can say the new metamodel is a sub-
type of the original metamodel in taking the transformation into account as following
formula 3.3 in Section 3.3.3. Otherwise, the mapping definition is considered as a
non-validated definition. That means though a user-defined semantics mapping, two
metamodels are still non-isomorphic. Thus, the mapping cannot be passed to the
interpreter that implements transformation adaptation semantics for migrating the
legacy transformation.

Figure 3.15 illustrates the inputs and the output of the mapping action semantics
in the TGM model type space for the motivating case study CD2RDB. The action
semantics has two input: (a) The effective TGM model type corresponding to meta-
model CDV1 when taking the legacy transformation definition into account, cf. at
the top of the figure; (b) The mapping definition which defines correspondence be-
tween elements of the original metamodel CDV1 and the new metamodel CDV2, cf.
in the middle of the figure. The output is the mapped effective TGM model type
according to the mapping definition. Note that in the output TGM, labels (i.e. the
name attribute of TGM graph elements) of modified graph nodes and graph edges
are represented as red labels and new-created graph nodes and edges are represented
in blue dotted-lines.

After the mapping according to the correspondence descriptions, all nodes and
edges of an effective TGM can find their mirror in the TGM model type of the
new metamodel. The sub-graph relation is verified between the mapped effective
TGM, cf. Figure 3.15 at the bottom, and the TGM of CDV2, cf. Figure 3.5 at
page 82 in Section 3.3.2. This relation is used as an underlying signature to validate a
MetaModMap correspondence definition for the substitution possibility between two
metamodels (cf. formula 3.3 at page 86). All these constraints will be implemented
in the scoping and validating aspects of the MetaModMap editor, which provides an
interactive warning-suggestion system to users.

As a conclusion, we can say the distance between two metamodels is close with
respect to a given mapping language when it is possible to exhibit a mapping between
these two metamodels. Listing 3.4 is an example of such a mapping showing that
CDV1 and CDV2 are two close metamodels w.r.t. MetaModMap.

3.4.2 Transformation Adaptation

Given a valid MetaModMap correspondence definition and a transformation writ-
ten in MOMENT2-GT, an adaptation interpreter is in charge of rebinding model
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patterns referring to elements of the original metamodel with those of the new one,
then textualizing the whole rebound transformation model into a new transformation
file. This process is possible and safe because through a valid user-defined semantics
mapping, two metamodels become isomorphic. Thus, the mapping can be passed to
the interpreter that implements transformation adaptation semantics for migrating
the legacy transformation.

Algorithm Overview

Figure 3.16 illustrates the overview of transformation adaptation mechanism. The
inputs of the algorithm are: (a) A mapping definition between two metamodels that
uses provided correspondence patterns in the MetaModMap language; (b) An original
transformation (already declared in the mapping definition) that refers to the original
metamodel. The output of the algorithm is an adapted transformation that can be
safely used to transform models which conform to the new metamodel.

The whole transformation adaptation semantics is performed in five main phases:
(1) Parsing the textual representation of the mapping definition in order to obtain its
in-memory representation, also referred as the mapping model; (2) Similarly, pars-
ing the textual representation of the legacy transformation definition to achieve the
transformation model; (3) Performing a rebinding process on graph pattern models
of the transformation model that relate to semantics-changed elements according to
the mapping model; (4) rebinding graph pattern models for remaining unchanged
elements based on names to reference elements in the new metamodel model; (5)
serializing the changed transformation model into the textual representation of the
transformation language. Three phases (1) and (2), (5) are realized in making use of
the text parsers of the mapping language and the transformation language, respec-
tively. The adaptation semantics of the algorithm mainly focuses on phases (3) and
(4) which manipulate the transformation at model level. The followings will present
phases (3) and (4) of the adaptation algorithm which do a rebinding action on graph
pattern models of the transformation model.

Algorithm

The transformation model rebinding algorithm (shown in Algorithm 5) has two
inputs: (a) the map rule mapRule which contains details of correspondence defini-
tions between elements of two metamodels; (b) the transformation model mt which
will be rebound to the new metamodel. The output of the algorithm is the rebound
transformation model, i.e. all references to the original metamodel after the rebinding
process are forwarded to the elements of the new metamodels.

We briefly go through the steps of the algorithm. In the initial step, cf. lines 1–4,
we get the original metamodel and the new metamodel from the mapping declaration
of the mapping rule. Then, all top object template expressions (OTE) of the trans-
formation model that are constrained by the original metamodel are collected into
a list, i.e. Otestop. The remaining of the algorithm is divided into two main steps:
(1) The first step corresponds to phase 3 of the transformation adaptation semantics
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Figure 3.16: Overview of transformation adaptation algorithm.
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Algorithm 5 doRebind(mapRule, mt)

Require: (1) the map rule mapRule which contains correspondences between elements of
two metamodels. (2) the transformation model mt which will be rebound to the new
metamodel.

Ensure: Return the rebound transformation model.

1: mapDcl ← mapRule.domain{Get the mapping declaration of mapRule}
2: mmSrc ← mapDcl.modelTypeSource {Get root package of original metamodel}
3: mmTgt ← mapDcl.modelTypeTarget {Get root package of new metamodel}
4: Otestop ← collectTopOTES(mt,mmSrc) {Collect top Otes constrained by mmSrc}

{Phase 3: Rebind for semantic-changed elements}
5: for all conceptMap in mapRule.ConceptMaps do
6: for all ote in Otestop do

7: rebindChangedElem(conceptMap,ote) {Visit recursively beginning at the top object
template expression ote, cf. Algorithm 6.}

8: end for
9: end for

{Phase 4: Rebind for remaining unchanged elements}
10: for all ote in Otestop do

11: rebindUnchangedElem(ote,mmSrc,mmTgt) {Visit recursively beginning at the top ob-
ject template expression ote, cf. Algorithm 7.}

12: end for

shown in Figure 3.16. This step is charged of rebinding object template expressions
according to the mapping rule; (2) The second step corresponds to phase 4 of the
transformation adaptation semantics that does rebinding action mainly based on the
names of metamodel’s elements for the remaining unprocessed parts of OTEs.

The first step of the algorithm, cf. lines 5–9, involves the rebinding of references
in object template expressions that relate to the changed elements between two meta-
models. To begin with, for each mapping between two type concepts, we browse all
top object template expressions to look up elements that are in consideration by the
mapping. Each pair (conceptMap,ote) is passed into the rebindChangeElem proce-
dure. The rebindChangeElem procedure acts as a visitor that traverses recursively
the entire graph pattern defined by the top object template expression. Algorithm 6
that details the mechanism of that procedure on rebinding changed elements will be
explained later.

In the second step of the algorithm, cf. lines 10–12, we perform the rebinding
for the remaining unchanged elements. The inputs for this step are graph patterns
that have been rebound partially after the first step. Beginning with the top object
template expressions of these graph patterns, we re-visit them through the rebindUn-
changeElem procedure. Similarly to the rebindChangeElem procedure, this procedure
traverses the entire partial-rebound graph pattern to rebind remaining elements. The
semantics of this process will be detailed in Algorithm 7 in the next paragraphs.

Now we go in-depth on Algorithm 6 that describes the rebindChangeElem pro-
cedure used in the first step of Algorithm 5. This procedure is the kernel of our
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Algorithm 6 rebindChangedElem(conceptMap, ote)

Require: (1) the concept mapping conceptMap which contains the correspondences between
two type concepts. (2) the object template expression ote.

Ensure: Return the rebound object template expression according to the mapping.

{Perform lookup at the being-visited object template expression.}
1: if conceptMap.conceptSource.equal(ote.referredClass) then
2: ote.referredClass ← conceptMap.conceptTarget

3: for all pte in ote.PropTempExps do
4: for all propertyMap in conceptMap.PropertyMaps do
5: if propertyMap.featureSource.equal(pte.referredProperty) then

6: if pte instanceof AttributeExp then

7: if propertyMap instanceof Att2Att then {Single attribute map}
8: pte.referredProperty ← propertyMap.featureTarget

9: else if propertyMap instanceof Att2FeaturePath then {Attribute reifica-
tion map}

10: topFeaturePathExp ← propertyMap.featureTarget
11: newPTE ← createGraphPattern(topFeaturePathExp, pte)
12: ote.PropTempExps ← ote.PropTempExps \ pte
13: ote.PropTempExps ← ote.PropTempExps ∪ newPTE
14: end if

15: else if pte instanceof ReferenceExp then

16: if propertyMap instanceof Ref2Ref then {Single reference map}
17: pte.referredProperty ← propertyMap.featureTarget

18: else if propertyMap instanceof Ref2FeaturePath then {Reference reifica-
tion map}

19: topFeaturePathExp ← propertyMap.featureTarget
20: newPTE ← createGraphPattern(topFeaturePathExp, pte)
21: ote.PropTempExps ← ote.PropTempExps \ pte
22: ote.PropTempExps ← ote.PropTempExps ∪ newPTE
23: end if
24: end if

25: end if
26: end for
27: end for

28: end if

{call recursively for lower object template expressions}
29: for all pte in ote.PropTempExps do
30: if pte instanceof ReferenceExp then
31: rebindChangedElem(conceptMap, pte.value)
32: end if
33: end for
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rebinding approach that implements a semantic to process changed elements between
two metamodels.

The inputs of procedure rebindChangeElem are: (a) A concept mapping conceptMap
which defines the correspondences between two type concepts; (b) An object template
expression ote at some level in the being-processed graph pattern. The algorithm is
designed as a depth-first search process. That is if the being-visited object template
expression refers to the same type concept as the source type concept used in the
concept mapping definition, we will perform rebinding at that level of the graph
pattern, cf. lines 1–28. Then, we invoke this procedure itself for object template ex-
pressions at the lower level through reference template expressions (ReferenceExps)
of the already-visited object template expression ote, cf. lines 29–33.

The output at each level of the visiting process is an object template expression,
which is (partially) rebound according to the concept mapping, if any. The process
is divided in two phases. First, once having a match between the referred class
(referredClass) of the being-visited object template expression ote and the source type
concept (conceptSource) of the concept mapping (ConceptMap or CM) conceptMap,
the reference referredClass of that object template expression will be forwarded to
the target type concept (conceptTarget) of the concept mapping, cf. line 2 and
Figure 3.17 for an illustration example.

: OTE : CM

Attribute

Property

CDV1

CDV2

CDV1ToCDV2CD2RDB

Figure 3.17: Rebinding example for a type concept mapping.

Further, the rebinding is performed for property template expressions (PTEs) of
ote, cf. lines 3–27. Similarly, we look up a match between the referred property
(referredProperty) of a PTE declared in the being-visited object template expression
and the source feature (featureSource) of a property mapping (PropertyMap) declared
in the concept mapping, cf. lines 3–5. If there is a match, the rebinding process for
PTEs will be treated as the following cases:

The property mapping is a Att2Att mapping. This is the case that de-
fines a single mapping for two attribute concepts nested in two type concepts of two
metamodels. This case is processed after rebinding for its type concept mapping
container. Having a look at the mapping definition in Listing 3.4 (see page 103)
from lines 14–16, the type concept mapping between type concept Attribute of meta-
model CDV1 and type concept Property of metamodel CDV2 contains an attribute
concept mapping between attribute isPrimary and attribute primary. After rebind-
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: OTE : CM

Attribute

Property

CDV1

CDV2

CDV1ToCDV2CD2RDB

: Att2Att

isPrimitive

primitive
: AE

Figure 3.18: Rebinding example for a single attribute mapping.

ing for the pair (Attribute,Property) on the considering object template expression,
reference referredProperty of the interesting attribute expression (AttributeExp or
AE) is switched from isPrimary to primary according to the mapping definition (cf.
Figure 3.18 for the illustration).

The property mapping is a Ref2Ref mapping. Similar to single mapping for
attribute concepts, this case presents a semantics equivalence between two reference
concepts.

: OTE : CM

Class

Class

CDV1

CDV2

CDV1ToCDV2CD2RDB

: Ref2Ref

ownedFeatures

ownedProperties

: RE

Property

StructuralFeature

Figure 3.19: Rebinding example for a single reference mapping.

Having a look at the mapping definition in Listing 3.4 (cf. page 103) at line 12,
the ownedFeatures reference concept of type concept Class in metamodel CDV1 is
declared as equivalent to the ownedProperties of the same type concept Class in meta-
model CDV2. For this case, we preserve the current reference expression (RE) and
simply remove the link (referredProperty) referring to reference ownedFeatures then
re-establish this link to reference ownedProperties, see Figure 3.19 for the illustration
of this case.

The property mapping is a Att2FeaturePath mapping. This is the case that
defines a composite mapping for an attribute in the original metamodel that is reified
in several elements in the new metamodel.

Similarly, it is processed after rebinding for its type concept mapping container.
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: OTE
: CM

Book

Book

: Att2FP

author

: AE

Author

name

writer

: FPE

: FE

: FPE

: RE

: OTE

: AE

MM1

MM2

MM1ToMM2MT

createGraphPattern()

Figure 3.20: Rebinding example for a composite attribute mapping.

Having a look at the example in Figure 3.13 and a fragment of mapping in List-
ing 3.5, the author reference in metamodel MM1 is considered as an equivalence of
the combination of elements, i.e. writer.Author.name, in metamodel MM2. The dec-
laration of a combination of elements is supported by a recursive structure by means
of constructs FeaturePathExp (FPE) and FeatureExp (FE) of our DSL language. As
aforementioned, this data structure plays a role as a wrapper for connected classes,
attribute and references, however, in the form of graph paths. As a result, the above
mapping is considered as a mapping from a graph edge onto a graph path in our notion
of model type. To begin with, based on the definition declared in the right-hand side
of the property mapping, we create a graph pattern (more precisely, a graph path)
under the representation form of ReferenceExp (ER), ObjectTemplateExp (OTE)
and AttributeExp (AE) by means of auxiliary function createGraphPattern(). Then,
the original attribute expression is removed from its container to be replaced by the
new graph pattern. Note that when creating the new graph pattern, we preserve the
value property of the original attribute expression into the last attribute expression of
the new graph pattern. Figure 3.20 illustrates an example of rebinding for attribute
reification.

The property mapping is a Ref2FeaturePath mapping. This case often
occurs when one needs to detail a relationship between two type concepts. This is
performed by introducing one or more type concepts replacing a reference, however,
the connectivity between two type concepts in consideration is always preserved.
That is an indirect and transitive connection.

For the motivating case study, we have defined such a mapping to describe a
semantics equivalence between the parent reference in metamodel CDV1 and a com-
bination of elements, i.e. generalization.Generalization.general, in metamodel CDV2.
Similar to the case of attribute reification, the recursive structure based on constructs
FeaturePathExp and FeatureExp is used in the right-hand side of the correspondence
pattern Ref2FeaturePath to declare this equivalence. From the provided information,
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: OTE : CM

Class

Class

: Ref2FP

parent

: RE

Generalization

general

generalization

: FPE

: FE

: FPE

: RE

: OTE

: RE

createGraphPattern()

CDV1ToCDV2CD2RDB

CDV1

CDV2

Figure 3.21: Rebinding example for a composite reference mapping.

we create a graph path under the representation form of language MOMENT2-GT
by means of the createGraphPattern. In the end, the original reference expression
is removed from it container and replaced by the new graph path. Note that when
creating the new graph path, we preserve the value property, i.e. the lower object
template expression, of the original reference expression into the last reference ex-
pression of the new graph path. Figure 3.21 illustrates an example of rebinding for
reference reification.

Once having performed the rebinding for all changed elements by means of Algo-
rithm 6, the rebinding process will proceed for unchanged elements by Algorithm 7.
This algorithm acts as a visitor on a graph pattern which has been partially rebound
to the new metamodel and does the rebinding for the remaining parts of the graph
pattern. Details of the algorithm are described in the following.

The input of the rebindUnchangedElem procedure is composed of: (a) a partial-
rebound graph pattern, i.e. an object template expression ote at some level that has
been processed by procedure rebindChangeElem; (b) the root package of the original
metamodel mmSrc; (c) the root package of the new metamodel mmTgt. The output
at each level of the visiting process is an object template expression, which is (totally)
rebound to elements of the new metamodel mmTgt.

A depth-first search algorithm is employed to implement the procedure. This
algorithm is separated in two main phases: (1) performing rebinding for the being-
visited object template expression; (2) rebinding for property template expressions
contained in the object template expression.

In the first phase of the algorithm, cf. lines 1–4, we first verify whether the
referred class (via referredClass) of the begin-visited object template expression is
an entity that is nested in the root package of the original metamodel or not by
means of pseudo binary operator contain. This operator returns whether the second
object (operand) is directly or indirectly contained by the first object, i.e., whether
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Algorithm 7 rebindUnchangedElem(ote, mmSrc, mmTgt)

Require: (1) the object template expression ote. (2) the root package of original metamodel
mmSrc. (3) the root package of new metamodel mmTgt.

Ensure: Return the rebound object template expression.

{Visit and rebind at the being-visited object template expression.}
1: referredClass ← ote.referredClass
2: if mmSrc contain referredClass then {the referred class is still not rebound}
3: ote.referredClass ← mmTgt.getType(referredClass.name) {Get class by name}
4: end if

5: for all pte in ote.PropTempExps do

6: if pte instanceof AttributeExp then

7: referredAtt ← pte.referredProperty
8: if mmSrc contain referredAtt then {referred att. is still not rebound}
9: attTgt ← mmTgt.getFeature(referredClass.name,referredAtt.name)

10: pte.referredProperty ← attTgt
11: end if

12: else if pte instanceof ReferenceExp then

13: referredRef ← pte.referredProperty
14: if mmSrc contain referredRef then {referred ref. is still not rebound}
15: refTgt ← mmTgt.getFeature(referredClass.name,referredRef .name)
16: pte.referredProperty ← refTgt
17: end if

{call recursively for lower object template expressions.}
18: lowerOTE ← pte.value
19: rebindUnchangedElem(lowerOTE,mmSrc,mmTgt)
20: end if

21: end for

the second object is in the content tree of the first. If the referred class is contained
in the root package of the original metamodel, i.e. the referredClass reference is still
not rebound, thus we look up a class contained in the new metamodel that has the
same name as the original class and assign the found class to the value of reference
referredClass. The look-up functionality is realized by means of auxiliary function
getType() of packages.

In the second phase of the algorithm, cf. lines 5–20, the rebinding is proceeded
for property template expressions of ote. Similar to the processing in the first step,
for each property template expression (both an AttributeExp and a ReferenceExp),
the referred property (via referredProperty) is verified whether it is an entity in the
root package of the original metamodel or not. In case of un-rebound reference, we
do a look-up for a property having the same name, but in the new metamodel and
contained in the class with the same name of the original class (by means of auxil-
iary function getFeature() of packages). Next, the found property is assigned for the
value of referredProperty of the being-browsed property template expression. The
visiting process proceeds by invoking the procedure itself with a lower object tem-
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plate expression when the being-browsed property template expression is a reference
expression (ReferenceExp).

Application Example

Figure 3.22 shows the application of transformation adaptation semantics to (a
part of) graph patterns which are defined in the transformation of the case study
CD2RDB.

1 rhs {
2 cd {
3 /∗ RHS graph patterns ∗/
4 c1 : Class { /∗ GP1 ∗/
5 parent = c2 : Class {},
6 ancestors = c2 : Class {}
7 }
8 }
9 };

10 ...
11
12 /∗ another rule ∗/
13 lhs {
14 cd {
15 /∗ LHS graph patterns ∗/
16 c : Class { /∗ GP2 ∗/
17 name = cname,
18 ownedFeatures = a : Attribute

{
19 name = aname,
20 ...
21 }
22 }
23 }
24 ...
25 };

1 rhs {
2 cd {
3 /∗ RHS graph patterns ∗/
4 c1 : Class { /∗ GP1 ∗/
5 generalization = c2 :

Generalization {
6 general = c2 : Class {}
7 },
8 ancestors = c2 : Class {}
9 }

10 }
11 };
12 /∗ another rule ∗/
13 lhs {
14 cd {
15 /∗ LHS graph patterns ∗/
16 c : Class { /∗ GP2 ∗/
17 name = cname,
18 ownedProperties = a :

Property {
19 name = aname,
20 ...
21 }
22 }
23 }
24 ...
25 };

<textualizing>
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Class
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ancestors generalization

Class
:OTE

:RE

Generalization

general
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ownedProperties:OTE

:AE

name
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<parsing>

MMM

GP1 GP2 GP1 GP2

Figure 3.22: Excerpt of textual and in-memory representation of (model) graph pat-
terns in adaptation process.

The left part of the figure shows the textual definition and the in-memory repre-
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sentation of (a part of) two graph patterns of transformation CD2RDB, respectively.
The right part of the figure illustrates the textual definition and the in-memory rep-
resentation of these graph patterns after performing the rebinding action.

Once having established the sub-typing between metamodels (cf. formula 3.3)
via the mapping CDV1ToCDV2 in Listing 3.4, the adaptation on the original trans-
formation CD2RDB is performed for all graph patterns by means of the doRebind()
procedure in Algorithm 5. In this procedure, we do the rebinding for correspondences
first, through the rebindChangedElem() procedure in Algorithm 6, and then for the
remaining unchanged elements by means of procedure rebindUnchangedElem() in
Algorithm 7. For graph pattern GP2, from the in-memory representation (i.e. the
model level) of the transformation and based on the mapping definition, we rebind the
reference to ownedFeatures of the original metamodel CDV1 toward ownedProperties
of the new metamodel CDV2. This case is a single mapping between two references,
i.e. a Ref2Ref. Similarly, the reference to Attribute is forwarded to Property and
so on for the pair (Class, Class). For graph pattern GP1, a reference reification (a
Ref2FeaturePath), i.e. introducing the Generalization type, makes the adaptation
process more complex. In this case, after rebinding the root OTE, we create a graph
path to replace the original reference expression, as shown in Figure. 3.22. In the
end, for the remaining unchanged elements such as ancestors and name, both graph
patterns GP1 and GP2 can be automatically rebound based on these elements’ names
without any support from the mapping definition. For the full definition of the orig-
inal transformation CD2RDB and its adjusted version, one can see Appendixes 1.1
and 1.2.

3.5 Summary and Discussion

This chapter has presented an approach to more efficiently reuse model trans-
formations when changing their metamodel contexts. The approach is based on the
graph topology of metamodels and uses it to define a notion of model type. More
precisely, we have introduced a graph structure representation, i.e. Type Graph with
Multiplicity (TGM), to exhibit the graph topology of Ecore-defined metamodels by
flattening the Ecore inheritance relation between type concepts. Furthermore, this
notion of model type uses the upperBound meta-attribute that is defined in meta-
metamodel Ecore as an example on selecting interesting constraints to define a notion
of model type. A function that we call model typing function is also provided as a
particular transformation to leverage every metamodel in the Ecore space into the
more abstract space TGM.

From the proposed notion of model type, we show that the knowledge encoded in
transformations can be captured by means of a so-called transformation typing func-
tion which infers user-defined graph patterns of a transformation written in transfor-
mation language MOMENT2-GT. The inference process produces real used parts of
declared metamodels and also the abstraction level of the encoded knowledge. The
outputs of the process are presented in the TGM space as effective TGM model types.
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A notion of metamodel substitutability has also presented base on TGM model
types, thanks to a name-based graph inclusion relation. However, inferred effective
TGM model types are used to perform typing an existing transformation in place
of the declared metamodels or their corresponding TGM model types. As a result,
any metamodel whose the TGM image is a super-graph of the effective TGM of a
declared metamodel could be used in the transformation directly without a need of
adaptation. We call these cases isomorphic transformation reuse.

The simple above typing system in fact is insufficient to solve the problem of
transformation reuse when considering metamodels that are more heterogeneous, e.g.
name difference between elements or partial difference in topology. In order to extend
the reuse capability, we developed a mapping DSL language, namely MetaModMap,
dedicated to identify semantic correspondences between metamodel elements (also
supporting for simple combinations of elements) and to adapt transformations. The
language uses the proposed typing approach as primary premises to validate a map-
ping definition before the execution of a transformation adaptation. In making the
use of a mapping definition, users can more recuperate the knowledge encoded in
an existing transformation for a larger set of acceptable metamodels, nevertheless
it is necessary to perform an adaptation step. We call these cases non-isomorphic
transformation reuse.

As a conclusion, in this chapter we introduce a general solution for the problem
of transformation reuse, both without and with transformation adaptation. The
principles and also the mapping DSL language (MetaModMap), that have presented
here are implemented together in the next chapter to work with model transformation
language MOMENT2-GT.
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4.1 Chapter Overview

This chapter describes the prototype of a transformation migration toolkit which
provides support for transformation reuse via adaptation with end-user directives,
called the Metamodel Mapping toolkit or MetaModMap for short.

First, Section 4.2 introduces components involved in the toolkit including: an
Eclipse-based textual DSL editor that is used to define semantic correspondences be-
tween metamodels in consideration; and an additional interpreter used for automat-
ically migrating an existing transformation definition according to a valid mapping
definition defined in the textual DSL editor. The textual DSL editor is developed as
a projectional editor, that is a modern editor that allows users to edit the abstract
syntax tree representation (model) of the mapping definition directly, while integrat-
ing the default behaviour of a textual DSL editor to some extent on completion,
semantics and type checking. The user sees and edits text on the screen, however,
actually the edited text is only an illusion (a projection) of a model. The interpreter
acts as a Higher-Order Transformation (or HOT) [Mens 06], that means a program
takes an user-defined transformation model in form of the abstract syntax of some

123
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transformation language then transforms or re-factorizes it into another transforma-
tion model. In our context, the interpreter uses a mapping model as directives to
migrate an existing transformation model.

Next, Section 4.3 details the implementation of the MetaModMap toolkit. In
particular, we will describe, how the graph-based model typing approach introduced
in Chapter 3 can be implemented into some necessary run-time concepts of the text
editor. These run-time concepts are infrastructures for scoping and validation that
support user-oriented functionalities like auto-completion and on-the-fly error de-
tection when defining a mapping. Furthermore, we present how the interpreter is
integrated as an automatic code generator of the text editor for on-the-fly transfor-
mation migration. By such integration, we aim to provide an easy to use transforma-
tion migration toolkit within Eclipse to end-users. The adaptation process is made
automatic as much as possible, only requires some directives input from the user.

Then, Section 4.4 illustrates the use of the provided toolkit by describing an adap-
tation process for the motivating case study, i.e. adapting a transformation written to
transform class models into relational database models in which input models could
be designed in using two CASE Tools based on two different metamodels.

Finally, Section 4.6 summarizes the toolkit prototype 1.

4.2 Architecture of MetaModMap Toolkit

The goal of Metamodel Mapping toolkit (or MetaModMap) development is to
build an additional set of Eclipse plug-ins around the MOMENT2-GT framework to
make them available to migrate (or reuse via adaptation) existing model transfor-
mations written in the MOMENT2-GT language. Since framework MOMENT2-GT
has been developed based on Xtext, a DSL framework tool for developing textual
languages, thus Xtext DSL framework tool seems to be a suitable technology to
build the MetaModMap toolkit. Using the same language development technology
facilitates the integration of our toolkit into transformation framework MOMENT2-
GT. Figure 4.1 illustrates an overview on the architecture of the toolkit, which is
built to work with MOMENT2-GT and within the Eclipse platform.

The Eclipse Platform is structured around the concept of plug-ins, a mechanism
that allows to contribute additional functionalities to the system. Based on this
mechanism, new tools can be added to the platform by building plug-ins that extend
the system. As show in Figure 4.1, Eclipse Modelling Framework (EMF) is a new
tool added to the Eclipse system to provide a basic infrastructure for metamodeling
such as metamodel editing, code generating for metamodels and run-time essential
libraries. As a set of plug-ins, EMF provides on the one hand end-user facilities
to create, edit and store metamodels, on the other hand, it exports infrastructure
libraries that can be used to developing other tools.

1. Source code of the prototype, meta-models, transformations of the motivating example and a
demonstration video are available to download at [MetaModMap 11].
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Eclipse Platform

EMF
Xtext

MOMENT2-GT MetaModMap

Figure 4.1: MetaModMap architecture at a glance.

Xtext is a language development framework that is built upon the infrastructure
libraries of EMF and Eclipse Platform. The Xtext suite is composed of of end-user
facilities for defining textual concrete syntax of languages, a language component
generator and a core infrastructure. Xtext end-user facilities are constructed as
extensions that are plugged into GUI extension points of the Eclipse Platform, where
the language component generator automatically generates necessary components for
a particular language.

The MOMENT2-GT transformation framework is developed by using the Xtext

suite. The framework provides a textual editor plug-in that is an extension plugged
into the Editor extension point of the Eclipse Platform to write a transformation
definition. Most of components of the MOMENT2-GT editor are generated by the
Xtext generator and customized according to particular semantics of the MOMENT2-
GT language. For example, critical checks for a transformation definition could be
added into the scoping and validation components of the editor. In contrast to the
plug-in mechanism employed in Eclipse, Xtext uses a dependency injection mecha-
nism, with Google Guice, to manage bindings of concrete implementations to inter-
faces, thus a functionality can be easily extended its behavioral semantics over the
default implementation in the Xtext core infrastructure. In addition to the textual
transformation editor, the MOMENT2-GT framework also develops other plug-ins
providing GUI interfaces for configuring and launching a transformation by means of
a specific transformation engine.

Since MetaModMap toolkit is developed for migrating MOMENT2-GT transfor-
mations when changing metamodels, it can be considered as an auxiliary tool for the
MOMENT2-GT framework. Similar to MOMENT2-GT, the toolkit also provides
a textual editor as an Eclipse extension to define a mapping between metamodels.
The essential components generated by the Xtext suite for the mapping language
provide advance functionalities as those usually offered in modern IDEs. In this dis-
sertation, we focus on the scoping and validation aspects that would be present in a
modern textual editor to assist users in editing contents and report errors or warn-
ing in an on-the-fly manner. More precisely, check requirements in our graph-based



4.2. Architecture of MetaModMap Toolkit 126

typing approach is integrated into components related to these aspects and these
components are injected to the Xtext-based generated editor. In addition to these
important components, the generator component (also referred as a build component)
of the textual editor is extended by inserting our own interpreter. The interpreter
is responsible for the transformation to migrate once having a valid mapping on the
editor.

We give in the followings a brief introduction of Eclipse Plug-in Platform, followed
by a simple text editor plug-in example. Next, we present Xtext and its architec-
tural supports for automating the development of rich editors of textual languages
in the Eclipse platform. Furthermore, in Section 4.3.1 an overview of Xtext-based
development for the MetaModMap text editor will be explained. In the last Sec-
tion 4.3.2 the integration of the interpreter (a HOT) into the generator component
of the Xtext-based editor is presented.

4.2.1 Eclipse Plug-in Platform

The Eclipse Platform is built around the concept of plug-ins for integrating ad-
ditional functionality and extending the platform with bundles of code (or modules).
Additional functionality can be added in the form of code libraries (with public API
of Java classes), platform extensions through custom plug-ins. A plug-in itself can
add new content types by defining extension points, places where other plug-ins can
add functionality. Plug-ins can also provide new functions for existing content types
of the platform and plug-in specific UI contributions to the Eclipse workspace. When
an extended Eclipse Platform is launched, an Integrated Development Environment
(IDE) composed of available plug-ins is exposed to users.

Eclipse Platform

UI

Workbench

JFace

SWT

Workspace

Runetime

Core

Java Development Tools
(JDT)

Plugin Development Env.
(PDE)

Plugin A

Plugin B

Plugin C

Eclipse Project

An Extended Eclipse Project

Extension Point

Extension

Figure 4.2: Eclipse plug-in based platform architecture.

Figure 4.2 shows an architecture overview of Eclipse and its extension mechanism
through extension points and extensions. The Eclipse Platform is composed of
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the Core modules and the UI modules. The Runtime Core module implements the
run-time engine to start the platform base and dynamically discover and run plug-ins.
The workbench UI module implements the workbench UI and defines a number of
Eclipse Platform extension points that allow other plug-ins to contribute menu and
toolbar actions, custom views and editors. The Standard Widget Toolkit (SWT) is a
low-level, cross platform toolkit that supports platform integration and portable API.
In contrast, the JFace UI framework provides higher-level application constructs for
supporting dialogs, wizards, actions, user preferences, and widget management.

The standard Eclipse Project in fact is an extension of Eclipse Platform. That
means the project adds custom functionalities to pre-defined extension points of
Eclipse Platform. Eclipse Project provides two additional set of plug-ins that are
useful for plug-in development, i.e. Java Development Tools (JDT) and Plugin De-
velopment Environment (PDE). The JDT plug-ins extend the platform workbench by
providing a full featured Java development environment for editing, viewing, com-
piling, debugging, and running Java projects while PDE supplies specialized tools
that automate the creation, manipulation, debugging, and deploying of plug-ins and
extensions. These tools are also themselves examples of how new tools can be added
to the Eclipse Platform by building plug-ins that extend the core platform.

Similarly, an Eclipse-based IDE is an extended Eclipse Project. To develop such
an IDE for a particular purpose, we usually add additional plug-ins which connect to
extension points of Eclipse Platform. For example, a plug-in for certain language can
be plugged into the Eclipse Platform Editor extension point. Since plug-ins are im-
plemented in Java, JDT and PDE extensions are used as a development environment
to develop and deploy custom plug-ins.

Eclipse Plug-ins

Figure 4.3: The simplest project structure of an Eclipse plug-in.

In the Eclipse plug-in development environment, every Eclipse plug-in consists of
Java classes (could be packaged in JAR files after compiling) and two description files
defining the plug-in’s dependencies and extension points. The file MANIFEST.MF
provides information about the version, name, required plug-ins and some other
necessary configurations. The file plugin.xml describes contributions that the plug-in
will add to the Eclipse Platform extension points or to the extension points defined in
plugin.xml files of other plug-ins. The plug-in description file can declare any number



4.2. Architecture of MetaModMap Toolkit 128

of extension points and any number of extensions to one or more extension points in
other plug-ins. When a plug-in has no contributions to any extension points of other
plug-ins, we can consider it as a normal library, thus the plugin.xml file is omitted.

Figure 4.3 shows the simplest structure of a plug-in in which Java classes that
implement contributions or libraries are placed in the source folder (src). Listing 4.1
and 4.2 presents a content of the file MANIFEST.FM and an extension declaration
in file plugin.xml for contributing to the Eclipse Platform Editor extension point,
respectively.

Listing 4.1: Example Plug-in: MANIFEST.MF

1 Manifest−Version: 1.0

2 Bundle−ManifestVersion: 2

3 Bundle−Name: Example Plugin

4 Bundle−SymbolicName: Example Plugin; singleton:=true

5 Bundle−Version: 1.0.0.qualifier

6 Bundle−Activator: example plugin.Activator

7 Require−Bundle: org.eclipse.ui, org.eclipse.core.runtime, org.eclipse.jface.text, org.eclipse.ui.

editors

8 Bundle−ActivationPolicy: lazy

The MANIFEST.MF file shown in Listing 4.1 declares verbose information about
the plug-in and required plug-ins to be able to use this plug-in. Since the plug-in
provides an editor to the platform (see Listing 4.2) and the extension in this case is im-
plemented using libraries provided by some other plug-ins of the platform, so we need
org.eclipse.ui, org.eclipse.core.runtime, org.eclipse.jface.text, org.eclipse.ui.editors plug-
ins.

Listing 4.2: Example Plug-in: plugin.xml

1 <plugin>

2 <extension point=”org.eclipse.ui.editors”>

3 <editor

4 name=”Sample XML Editor”

5 extensions=”xml”

6 icon=”icons/sample.gif”

7 class=”example plugin.editors.XMLEditor”

8 id=”example plugin.editors.XMLEditor”>

9 </editor>

10 </extension>

11 </plugin>

As shown in Listing 4.2, the plugin.xml file declares a list of extension points to
which this plug-in contribute. In the example, only the org.eclipse.ui.editors exten-
sion point is declared to place an editor contribution into the UI workbench. The
editor element consists of a name, file extension name and a contribution class dec-
laration. The contribution class, in this case is example plugin.editors.XMLEditor,
is the plug-in’s implementation in Java. When a user double-clicks on a XML file,
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the class will be instantiated as a window for editing the file’s content. However, to
develop an editor, the Eclipse Platform provides some default implementation classes
which support essential features for an editor, for example the library provided in
the plug-in org.eclipse.ui.editors. Thus, all things to do is extends these classes, and
customize contribution classes for particular computations, without a need of writing
such classes from scratch.

Eclipse Platform-based Text Editor

In the followings, we describe briefly the principle to develop an Eclipse plug-in
that provides a text editor with basic features. The contribution class for the editor
will extend the concrete implementation class TextEditor that defines the behavior for
the standard platform text editor, such as presentation of text, syntax highlighting,
content assist features.

For the sake of simplicity, we will extend the Eclipse Platform with a model-
independent text editor. That means the edited content is not represented by a
structured resource, but directly in the buffer of the editor. Figure 4.4 gives an
overview of such an extension with a plug-in named myDSL.ui. The plug-in de-
scribes in the file plugin.xml that it has a contribution to the Eclipse Platform Editor
extension point.

Eclipse Platform

myDSL.ui

Eclipse

myDSL extended Eclipse

Eclipse Platform Editor extension point

myDSL Editor extension

Figure 4.4: An example extending Eclipse Project by adding a text editor function-
ality.

Listing 4.3: myDSL.ui Plug-in: plugin.xml

1 <plugin>

2 <extension point=”org.eclipse.ui.editors”>

3 <editor

4 class=”mydsl.ui.editors.myDSLEditor”

5 extensions=”myDSL”

6 icon=”icons/sample.gif”

7 id=”mydsl.ui.editors.myDSLEditor”

8 name=”My DSL Editor”>

9 </editor>

10 </extension>

11 </plugin>
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Listing 4.3 shows declarations in the file plugin.xml of the myDSL.ui plug-in. The
description defines the name’s extension of files, i.e. *.myDSL, which can be opened
by means of the editor. The contribution to the extension point is implemented in
the Java file myDSLEditor.java in the package mydsl.ui.editors.

As mentioned in the previous paragraphs, the contribution class myDSLEditor
could extend the default implementation class provided by the Eclipse Platform,
i.e. class TextEditor, without a need to implement the required interface defined
by the Eclipse Platform Editor extension point from scratch. As an example of
customization, we will focus on adding the syntax highlighting (coloring) aspect to the
editor. More precisely, we will explain how to implement our own contribution classes
to override the default behaviors on coloring keywords of the language provided in
basic classes of the platform.

As an illustration, let us take a part of the concrete syntax of the mapping lan-
guage presented in Section 3.4.1 of Chapter 3 and add syntax coloring to the editor
for *.myDSL files as follows:

• Cyan for keywords of the language

• Blue for string (quoted by “ ”)

• Green for single-line comments (preceded by //)

test.myDSL

Figure 4.5: Syntax coloring for the myDSL editor.

Figure 4.5 shows the editor with such a syntax highlight as specified above. To
this end, we can use Eclipse Platform APIs that help us add syntax coloring to
our editor. Figure 4.6 shows the relationship of basic classes that Eclipse Platform
provides and our necessary classes extending these classes for customization. The
myDSL.ui project contains there classes myDSLEditor, myDSLConfiguration and
myDSLScanner that extends basic classes TextEditor, SourceViewerConfiguration
and RuleBasedScanner, respectively. These extending classes provide the following
particular features for our editor:

• myDSLEditor - extends the default TextEditor class from Eclipse Platform.
The TextEditor class has a containment relationship with the default Source-
ViewerConfiguration class. By default, the SourceViewerConfiguration class
does not support syntax coloring. We will create our own class by extending
the SourceViewerConfiguration class and override some methods to add the
syntax coloring feature to the editor. In the myDSLEditor class, we change the
default SourceViewerConfiguration class by our extending SourceViewerCon-



4.2. Architecture of MetaModMap Toolkit 131

org.eclipse.ui.editors.text

mydsl.ui.editors

TextEditor

myDSLEditor

SourceViewer
Configuration

myDSLConfiguration

org.eclipse.jface.text.rules

RuleBasedScanner

myDSLScanner

Figure 4.6: Relationship of default implementation classes.

figuration class as in Listing 4.4.

Listing 4.4: myDSL.ui Plug-in: myDSLEditor.java

1 public class myDSLEditor extends TextEditor {

2 public myDSLEditor() {

3 super();

4 setSourceViewerConfiguration(new myDSLConfiguration());

5 }

6 }

• myDSLConfiguration - extends the default SourceViewerConfiguration class
from Eclipse Platform. Eclipse Platform uses the damage, repair, and reconcile
model to manage the visual representation in the editor. To customize these
models to our editor, we override the getPresentationReconciler() method of
SourceViewerConfiguration. The overriding method configures the Default-
DamagerRepairer as shown in line 14 in Listing 4.5 by taking myDSLScanner
as parameter (by invoking getScanner() method in lines 4 – 9). By such way,
tokens that we define in myDSLScanner are passed to DefaultDamagerRepairer
to repair the text that includes the color attribute.
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Listing 4.5: myDSL.ui Plug-in: myDSLConfiguration.java

1 public class myDSLConfiguration extends SourceViewerConfiguration {

2 private myDSLScanner scanner;

3 /∗ Define token scanner for DefaultDamagerRepairer ∗/

4 private ITokenScanner getScanner() {

5 if (scanner == null) {

6 scanner = new myDSLScanner();

7 }

8 return scanner;

9 }

10 /∗ Define reconciler for myDSLEditor ∗/

11 public IPresentationReconciler getPresentationReconciler(ISourceViewer sourceViewer

)

12 {

13 PresentationReconciler reconciler = new PresentationReconciler();

14 DefaultDamagerRepairer dr = new DefaultDamagerRepairer(getScanner());

15 reconciler.setDamager(dr, IDocument.DEFAULT CONTENT TYPE);

16 reconciler.setRepairer(dr, IDocument.DEFAULT CONTENT TYPE);

17 return reconciler;

18 }

19 }

• myDSLScanner - extends the default RuleBasedScanner class from Eclipse Plat-
form. The extending myDSLScanner class builds rules to detect different kinds
of tokens. In our case that is strings (” ”), single-line comments (//) and
keywords of the languages. The constructor of the class adds rule to detect
the patterns and associates color attributes with these patterns. The reconciler
uses attributes stored in tokens to repair the representation in the editor. For
example, in Listing 4.6 at lines 3, 10 and 17 we associate the color blue (RGB
0, 0, 255) with the token of strings. Similarly, the color green (RGB 0, 255,
0) is associated with the token of comments at lines 4, 11 and 15. Coloring
keywords needs a bit more complex treatment. From line 19 to line 22, we
use a WordRule to define general rule for normal text, then add keywords and
tokens of keywords into the word rule.



4.2. Architecture of MetaModMap Toolkit 133

Listing 4.6: myDSL.ui Plug-in: myDSLScanner.java

1 public class myDSLScanner extends RuleBasedScanner {

2 private static RGB KEYWORD = new RGB(0, 255, 255 ); /∗ cyan color ∗/

3 private static RGB STRING = new RGB(0, 0, 255 ); /∗ blue color ∗/

4 private static RGB COMMENT = new RGB(0, 255, 0 ); /∗ green color ∗/

5 private static RGB OTHER = new RGB(0, 0 , 0 ); /∗ black color ∗/

6

7 private static String[ ] fgKeywords = { ”import”, ”mapping”, ”for”, ”correspondsTo”

, ”concept”, ”att2att”};

8 public myDSLScanner() {

9 IToken keyword= new Token(new TextAttribute(new Color(Display.getCurrent(),

KEYWORD)));

10 IToken string= new Token(new TextAttribute(new Color(Display.getCurrent(),

STRING)));

11 IToken comment= new Token(new TextAttribute(new Color(Display.getCurrent(),

COMMENT)));

12 IToken other= new Token(new TextAttribute(new Color(Display.getCurrent(),

OTHER)));

13 List rules= new ArrayList();

14 /∗ Add rule for single line comments ∗/

15 rules.add(new EndOfLineRule(”//”, comment));

16 /∗ Add rule for strings ∗/

17 rules.add(new SingleLineRule(”‘‘”, ”’’”, string));

18 /∗ Add word rule for keywords ∗/

19 WordRule wordRule= new WordRule(new WordDetector(), other);

20 for (int i= 0; i < fgKeywords.length; i++)

21 wordRule.addWord(fgKeywords[i], keyword);

22 rules.add(wordRule);

23 /∗ Set up pattern list ∗/

24 IRule[ ] result= new IRule[rules.size()];

25 rules.toArray(result);

26 setRules(result);

27 }

28 }

At this moment, we have presented how to add an UI-related functionality of an
IDE extension into Eclipse Platform. Particularly, we demonstrate how to add the
syntax highlighting feature to the editor of a specific language by configuring the
SourceViewerConfiguration class through the overriding mechanism. Other custom
features can be plugged into an editor via the central hub SourceViewerConfiguration.
However, developing an IDE from Eclipse Platform’s APIs demands a lot of effort
into customizing functionalities. In the next section, we will present another solution
by means of Xtext, a DSL framework tool for developing textual languages. Since
Xtext provides APIs at a higher level for well-defined features in modern text editors
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and generators, using Xtext reduces the time to develop IDEs.

4.2.2 Language Development with Xtext

This section gives an overview of Xtext [Xtext 08], its architectural supports
for automating the development of rich editors of textual languages integrated in the
Eclipse platform. Xtext is a complete environment for development of programming
languages and domain specific languages that can be integrated in Eclipse Platform.
Xtext itself is implemented in Java and is based on Eclipse, EMF, and Antlr.

Superclass

Subclass

Class

Parser EMF metamodel Editor

XText Runtime

Xtext 

Generator

DSL 

Grammar

Figure 4.7: Overview of Xtext

Figure 4.7 gives an overview on the Xtext framework. The framework is com-
posed of a generator and a run-time environment. By using Xtext, developers can
describe their own languages in a simple EBNF-like grammar and the generator will
automatically create a parser, an EMF metamodel and a full-featured Eclipse Plat-
form text editor. After having generated artifacts, the developer can easily add new
features to a generated editor to extend its functionalities for some particular pur-
poses. The APIs of the language and its specific editor are generated as Eclipse plug-
ins; that means the generator contributes to create MANIFEST.MF files, plugin.xml
files and contributions classes in respecting the requirements of Eclipse Platform ex-
tension mechanism. Based on this feature, every tool developed by using Xtext can
be fully integrated in Eclipse Project. To manage generated artifacts, Xtext allows
developers to configure the generator using the Modeling Workflow Engine (MWE2).
A configuration file consumed by the Xtext generator is composed by fragments
(shown in Table 4.1) for generating artifacts such as parsers, serializers, the EMF
code of metamodel, content assist contribution, etc.

Dependency Management in Xtext

All IDE components created by the Xtext generator for a particular language are
assembled by means of the lightweight Dependency Injection (DI) framework Google
Guice. In Xtext, most of generated artifacts or built-in libraries are implemented
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Class Generated Artifacts

EcoreGeneratorFragment EMF code for generated models

XtextAntlrGeneratorFragment ANTLR grammar, parser, lexer

GrammarAccessFragment Access to the grammar

ResourceFactoryFragment EMF resource factory

ParseTreeConstructorFragment Model-to-text serialization

JavaScopingFragment Scoping

JavaValidatorFragment Model validation

FormatterFragment Code formatter

LabelProviderFragment Label provider

OutlineTreeProviderFragment Outline view configuration

JavaBasedContentAssistFragment Java-based content assist

XtextAntlrUiGeneratorFragment ANTLR-based Content assist helper

Table 4.1: Xtext standard fragments and artifacts

as services. A service is an object which implements a certain interface and Xtext

uses Guice to instantiate services and supply them to dependent ones. This means
basically that whenever some code is in need for functionality (or state) from another
component, all we need to do is to declare the dependency rather than stating how
to resolve it, i.e. obtaining that component without instantiating or binding the
component in an explicit manner.

For instance, the linking feature shipped within Xtext is implemented as a
service which allows to perform cross-links which are declared in an Xtext grammar.
This service requires a specification of linking semantics (usually provided via the
scoping API, i.e. IScopeProvider). To this end, the linking service declares a field
of type IScopeProvider (or in method or constructor), see Listing 4.7, and adds the
@Inject annotation:

Listing 4.7: Xtext: dependency declaration

1 public class DefaultLinkingService extends AbstractLinkingService {

2 @Inject

3 private IScopeProvider scopeProvider;

4 }

By such mechanism, any customization of the linking behavior can be described
by implementing another service implementing the IScopeProvider interface. It is
not the duty of the client code in somewhere to care about where the scopeProvider
comes from or how it is created. When class DefaultLinkingService is instantiated,
Guice sees that this instance requires an instance of IScopeProvider and assigns an
object to the specified field or method parameter. Of course, the object itself is
created by Guice. To this end, Guice needs to know how to instantiate real objects
for declared dependencies. This is done by means of so-called Modules. A Module
defines a set of mapping from types to their existing instance, instance providers or
concrete classes.
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Listing 4.8: Xtext: configuration of components

1 public class MyDSLUiModule implements Module {

2 @Override

3 public void configure(Binder binder) {

4 binder.bind(IScopeProvider.class).to(MyDSLScopeProvider.class);

5 }

6 }

Listing 4.8 shows an example on configuring a scoping component to the scoping
API. This configuration is described in a Module that can be generated by Xtext

generator when using the JavaScopingFragment class in Table 4.1. The generated
class MyDSLUiModule implements the Guice Module interface which requires an
implementation of a method called configure and gets a Binder passed in. That
binder provides APIs to define the mentioned mappings. In this case, we declare a
mapping from a type (i.e. the IScopeProvider interface) to a concrete class (i.e. the
MyDSLScopeProvider class) by means of APIs bind() and to() provided in the Guice
Binder interface.

To wire up an application with Guice, it is necessary to initialize an Injector
using the declared Guice modules. The root instance of the whole application should
be created by means of that injector. In a standalone mode, this is usually done
in the main method of the entry class. Listing 4.9 is an example of initialization
of a Guice-based application, the application is instantiated via the injector before
running provided functionalities.

Listing 4.9: Wiring up an application in standalone mode

1 public static void main(String[] args) {

2 /∗ Create the injector by passing an own Guice module ∗/

3 Injector injector = Guice.createInjector(new MyDSLUiModule());

4 /∗ Create an application by using the injector to wire up all dependencies ∗/

5 MyDSLApp app = injector.getInstance(MyDSLApp.class);

6 /∗ Now ready to use the application ∗/

7 app.run();

8 }

However, in Xtext the instantiation of the injector is generated automatically
for each language by the Xtext generator. All a developer needs to do is to define
the grammar of a language, then configure fragments in order to create essential ar-
tifacts for the editor. The developer can then customize default behaviors by adding
or overriding methods in generated artifacts without caring about how to manage de-
pendencies between them. This architecture makes Xtext artifacts easy to extend,
test and compose, thus reduces time for development of toolkits. In the following
paragraphs, we will explain the mechanism to integrate a Xtext-based editor appli-
cation into Eclipse Platform when using Guice for dependency management.
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Integrating a Xtext-based Editor into Eclipse

As aforementioned, the injector used to wire up a Xtext-based editor application
is generated automatically by the Xtext generator. The instruction which creates
a Guice Injector using the modules in line 3 of Listing 4.9 is placed in the generated
Activator file of the plug-in. In addition, the creation of the editor application for
each language (corresponding the instruction in line 5 of Listing 4.9) is configured
in an IExecutableExtensionFactory, which is used to create IExecutableExtensions
plugged into Eclipse Platform. By such way, every extension application, which is
created via extension points is managed by Guice, i.e. dependencies are declared and
injected upon creation of an extension.

As a language development framework, Xtext has provided a text editor default
implementation that extends the TextEdtior class of Eclipse Platform, i.e. XtextEd-
itor. The XtextEditor class and all run-time infrastructures of Xtext have declared
all necessary APIs and dependencies between APIs that can be wired up by Guice.
A language developer does not need to redefine a new editor at the Eclipse Platform
level. Instead, the developer customizes his own editor by adding or overriding meth-
ods in generated artifacts which will be wired up later by Guice. The only thing the
developer has to do in order to set up the editor plug-in is to prefix the XtextEditor
class with the generated factory’s name followed by a colon in the plugin.xml file as
in Listing 4.10.

Listing 4.10: Xtext-based myDSL.ui Plug-in: plugin.xml

1 <plugin>

2 <extension point=”org.eclipse.ui.editors”>

3 <editor

4 class=”MyDslExecutableExtensionFactory:mydsl.ui.editors.XtextEditor”

5 extensions=”myDSL”

6 icon=”icons/sample.gif”

7 id=”mydsl.ui.editors.myDSL”

8 name=”MyDSL Editor”>

9 </editor>

10 </extension>

11 </plugin>

In practice, the description file plugin.xml is generated by the Xtext generator.
In addition to the contribution extension to the Eclipse Platform Editor extension
point, the Xtext generator also generates many other necessary extensions that
are required for an advance IDE. In this dissertation, we focus only on the text
editor extension and how to integrate the theoretic parts of our approach into this
extension. For other generated extensions by Xtext, we do not customize theirs
default implementation.

Language Editor Customization in Xtext

The development of a textual language and its editor in using Xtext pass through
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several stages starting with the definition of a grammar file to the customization of
generated artifacts of a fully eclipse integrated text editor as you can see in Figure 4.7
at page 134. These stages are as follows:

• Defining a grammar, i.e. the concrete syntax of the language.

• Configuring generator fragments for creating Xtext artifacts.

• Customizing generated artifacts for run-time/IDE concepts, e.g. adding or
overriding rules for scoping and validating APIs.

• Developing a generator to translate the language to other languages or nota-
tions.

In order to develop a language, it is necessary to define a grammar for that
language. Xtext uses a simple EBNF-like grammar language for the description of
textual languages. The main idea is to describe the concrete syntax and Xtext will
generate an ANTLR parser to map the text (or a persistent input file) written in
the corresponding editor to an in-memory representation - the semantic model. The
next stage consists in defining fragments of the code generator for generating Xtext

artifacts, e.g. Scoping or Model validation artifact and others as listed in Table 4.1.
Generated artifacts usually extend default implementations shipped with APIs of
the Xtext framework, thus a language developer should customize these artifacts
to enrich the semantic behavior of the editor by adding or overriding methods in
respecting Xtext APIs. Finally, an indispensable stage is to develop a generator to
interpret the semantic of an input by translating it into other languages or notations.

In what follows we focus on the customization of generated Xtext artifacts and
the development of a generator. In particularly, we will mention the two most im-
portant artifacts that concern the integration of the theoretic parts of our approach,
i.e. the Scoping and Model Validation artifacts which are generated by JavaScop-
ingFragment and JavaValidatorFragment and the Generator artifact.

JavaScopingFragment – Scoping : The generated Scoping artifact, i.e. a scope
provider transitively implements the IScopeProvider API by extending the Abstract-
DeclarativeScopeProvider class, gives all operations needed for the semantic and
syntactical expressions defined in the grammar except for the cross-reference assign-
ments. Although Xtext allows to declare a cross-link in a grammar file by stating
the type of a referred element, it is not enough for the linking service (see Listing 4.7)
in a particular case where one needs to limit the domain of referable elements instead
of only declaring their type. For example, when defining a mapping in our approach
(see Listing 3.4 in Chapter 3 for the example) we should limit referable Ecore ele-
ments in taking into account a certain context, e.g. we allow users to only refer to
real used Ecore elements in a particular transformation – the transformation typing
mechanism. Such a sophisticated semantics can be described by adding declarative
methods in the generated scope provider, without this customization one can possibly
to write inconsistent assignments.

JavaValidatorFragment – Model validation: The generated Model validation
artifact, i.e. a custom validator extends the library class AbstractDeclarativeVal-
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idator, allows user to specify additional constraints specific for models (in-memory
representations). Static analysis or validation is an indispensable aspect when de-
veloping a modern editor for a language. It provides informative feedback as the
users of the language type a model definition. By default, Xtext provides several
levels of validation for a defined language. The automatic validation level regards
the syntactical validation done by the parser, the cross-link validation done by a
linker, which is often customized through the generated Scoping artifact, the con-
crete syntax validation done by a serializer that validates all constraints that are
implied by the defined grammar. The custom validation level is described manually
by the developer by adding methods annotated with the @Check annotation into a
custom validator class inheriting the AbstractDeclarativeValidator class. Based on
the reflective implementation of AbstractDeclarativeValidator, Xtext allows devel-
opers to write constraints in a declarative manner. That means annotated methods
will be invoked automatically when validation takes place. This is one of the most
interesting features when we need to add more semantically checks into some point
of the model without writing exhaustive if-else constructs. For example, the sub-
typing mechanism proposed in Section 3.3.3 of Chapter 3 can be integrated into the
MetaModMap editor by defining a validation rule in the generated Model validation
artifact.

All these levels of validation are performed in an on-the-fly mode while a lan-
guage’s user types the model. If there is an error in the model, the validator reports
an error message in the error-log/problem views of eclipse and the point in which the
error occurs is marked in the language editor.

Code generator : The run-time framework of Xtext provides a plug-in called
Xtext Builder (in bundle org.eclipse.xtext.builder) that declares an extension point
for building projects, i.e. the org.eclipse.xtext.builder.participant extension point.
This extension point defines the interface IXtextBuilderParticipant that is shipped
with a default implementation, i.e. the BuilderParticipant class. This class declares
a dependency via the IGenerator interface that can be implemented by the generated
Generator artifact. The dependency between BuilderParticipant and the generated
Generator artifact is also managed by Guice, thus it is necessary to declare a concrete
binding in the Guice configuration module of the language. A language developer
can use the BuilderParticipant class as a contribution that is plugged into the Xtext
Builder plug-in. By default, the generated Generator artifact is called by Xtext
Builder when saving (committing) the edited content in the editor to the file. When
invoking the generated Generator artifact, Xtext Builder passes the model (using
the generated ANTLR parser to obtain the in-memory representation of the textual
content) to the generator if no validation rule on the model is violated. It is an
interesting feature in order to realize a non-trivial scenario from model checking to
model interpreting in which model checking is customized in Scoping and Model
Validation artifacts while model interpreting is implemented in a generator.

As an example, the transformation adaptation algorithm (known as a HOT algo-
rithm) proposed in Section 3.4.2 of Chapter 3 can be realized in the custom imple-
mentation of the generated Generator artifact since the algorithm takes the model of
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a mapping definition and one of an original transformation definition as inputs. The
output of the algorithm is a model of an adapted transformation definition, thus can
be persisted to disk by means of the default implementation Xtext Serializer artifact.

Summing up, in this section we have introduced first the architecture to develop
a plain Eclipse editor as plug-ins. Next, language development in using Xtext

with an introduction for customizations has been presented. We particularly focus
on aspects that are related to our theoretic parts such as scoping, validating and
generator. In the next section, we will present the concrete implementation for a
prototype of the MetaModMap language. Based on focused aspects, the integration
of our model/transformation typing approach into scoping, validating aspect of the
MetaModMap editor will be explained first, and then the implementation of the
generator for a Higher-Order Transformation.

4.3 Realization of MetaModMap Toolkit

As aforementioned in the previous section, the MetaModMap toolkit is designed
to work with the MOMENT2-GT framework within the Eclipse platform. Thus, one
can consider MetaModMap as an additional set of plug-ins that extends MOMENT2-
GT IDE. These plug-ins could be integrated directly into Eclipse Platform via certain
well-defined interfaces in the platform’s extension points. Furthermore, the provided
functionality of MetaModMap is to migrate transformations written in MOMENT2-
GT language, thus the toolkit needs to understand the infrastructure APIs of the
language, e.g. the metamodel, the parser and much more. To this end, it is necessary
to declare this dependency between MetaModMap’s plug-ins and MOMENT2-GT’s
plug-ins.

Eclipse Platform

moment2.dsl.ui

Eclipse

MOMENT2-GT

Eclipse Platform Editor ext. point

METAMODMAP

metamodmap.dsl.ui

moment2.dsl

metamodmap.dsl
<requires>

<requires>

<requires>

Figure 4.8: Integration of MetaModMap editor into MOMENT2-GT.

Figure 4.8 gives an overview of the integration of the MetaModMap toolkit into
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the existing IDE MOMENT2-GT. In this figure, the MetaModMap language re-
sides logically over the MOMENT2-GT language. These two languages have inter-
language-cross-references, more precisely, a mapping definition can refer to a transfor-
mation definition to declare that the mapping is dedicated for a specific usage context,
i.e. the transformation. This feature is possibly realized with the Xtext’s supports in
cross-grammar definitions. Another side related to the structure of projects, Xtext

separates a generated language into two main plug-ins for modularity: an UI-related
plug-in that requires an infrastructure-related plug-in. As shown in Figure 4.8, in the
MOMENT2-GT layer the generated moment2.dsl.ui plug-in integrated into Eclipse
Platform via the Editor extension point requires the generated moment2.dsl plug-in.
The generated moment2.dsl plug-in contains most generated infrastructural artifacts
(see Table 4.1) that can be customized by the language developer. Similarly, the
METAMODMAP layer has the metamodmap.dsl.ui plug-in that requires the meta-
modmap.dsl plug-in. The cross-reference between two languages is supported by the
requirement declaration between the metamodmap.dsl plug-in and the moment2.dsl
plug-in.

In what follows we will present customization on considered artifacts in the meta-
modmap.dsl plug-in that are related to our theoretic parts presented in Chapter 3.
More precisely, the customization focuses on scoping and validation aspects in order
to support informative feedback from the editor to users. In addition, the implemen-
tation of an Higher-Order Transformation for the code generator interface will be
also explained in detail.

4.3.1 Xtext-based Editor for MetaModMap

Developing a new language with Xtext needs to define a grammar, then to use
a configured Xtext generator in order to create all artifacts for the language, see
Figure 4.7 for the Xtext workflow. As in the theoretic part presented in Chapter 3,
the MetaModMap language is designed to declare semantic correspondences between
Ecore-defined metamodels’ elements in taking a MOMENT2-GT transformation into
account, thus the grammar of MetaModMap requires references to the Ecore meta-
metamodel and the metamodel of MOMENT2-GT. This is done as in Listing 4.11
with provided supports of Xtext:

Listing 4.11: An excerpt of MetaModMap Xtext Grammar

1 import ”http://www.eclipse.org/emf/2002/Ecore” as ecore

2 import ”http://www.ac.uk/le/cs/moment2/Moment2transformation” as moment2

3 MetaModMapRoot:

4 ”import” importURI=STRING ”;”

5 (imports+=Import)+

6 ”mapping for” transformation=[moment2::Transformation]

7 ”(” mmaps+=Mapping (”;” mmaps+=Mapping)∗ ”)”

8 ”{”

9 (mapRules+=MapRule)+

10 ”}”
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11 ;

In the grammar, the Ecore meta-metamodel and the metamodel of MOMENT2-
GT are imported at the header and aliased as ecore and moment2, respectively.
Having these importations, every type defined in ecore and moment2 is available
and can be used to define cross references in our language. For example, to declare
the usage context (i.e. the transformation) for a mapping, line 6 in Listing 4.11
defines the cross-reference “transformation=[moment2::Transformation]” for the type
MetaModMapRoot. One can see Figure 3.12 and Listings 3.2, 3.3 in Chapter 3
for the whole abstract syntax and concrete syntax of the MetaModMap language,
respectively.

After generating the language from the grammar with the generator, we obtain
the language infrastructure and all customizable artifacts which are located in the
metamodmap.dsl plug-in, cf. Figure 4.8. We particularly consider the following
customizable artifacts that are related to scoping and validation aspects of the being-
developed editor:

• The Scoping artifact : the MetamodmapScopeProvider class extends the Ab-
stractDeclarativeScopeProvider class which implements interface IScopeProvider.
AbstractDeclarativeScopeProvider provides a mechanism which allows a lan-
guage developer to declare custom scoping rules in a declarative manner when
extending this class. MetamodmapScopeProvider is managed and wired up
into other parts by means of the following configuration in a Guice module:

Listing 4.12: Configuration for the custom scoping artifact

1 public class AbstractMetamodmapRuntimeModule extends DefaultRuntimeModule {

2 /∗ contributed by AbstractScopingFragment ∗/

3 public Class<? extends IScopeProvider> bindIScopeProvider() {

4 return MetamodmapScopeProvider.class;

5 }

6 }

• The Validation artifact : the MetamodmapJavaValidator class extends transi-
tively the AbstractDeclarativeValidator class which implements interface EMF’s
EValidator. AbstractDeclarativeValidator provides a mechanism which allows
to write constraints in a declarative manner with the @Check annotation when
extending this class. MetamodmapJavaValidator can be enable by adding the
following configuration in a Guice module of the language:

Listing 4.13: Configuration for the custom validation artifact

1 /∗ contributed by JavaValidatorFragment ∗/

2 @SingletonBinding(eager=true)

3 public Class<? extends MetamodmapJavaValidator> bindMetamodmapJavaValidator()
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4 { return MetamodmapJavaValidator.class; }

In practice, all Guice configurations are also generated automatically for the cor-
responding generator’s fragments. A language developer does not need to configure
manually dependencies, he just adds his own semantics to customizable generated
artifacts of the language.

Scoping Customization

The scoping check semantics presented in Chapter 3 (cf. page 106) is implemented
in a declarative manner in the generated scoping artifact, i.e. the MetamodmapScope-
Provider class that extends the AbstractDeclarativeScopeProvider class. The base
class AbstractDeclarativeScopeProvider allows to declare methods in the following
two signatures:

Listing 4.14: Two signatures of methods for scoping customization

1 IScope scope <RefDeclaringType> <Reference>(<ContextType> ctx, EReference ref)

2 IScope scope <TypeToReturn>(<ContextType> ctx, EReference ref)

The first method signature is used when evaluating the scope (the set of candi-
dates) for a specific cross-reference between types and the second one is used when
computing the scope for a given type and is applicable to all cross-references of that
type. The returned IScope should contains all candidate elements for the cross-
reference. A scope, which is nested in a single IScope contains values, is abstract
descriptions of real EObjects. One can see more details on using scoping of Xtext

at [Xtext 12].

We have implemented the scoping check semantics in using the two above method
signatures for cross-references of the MetaModMap language. For demonstration
purpose, we present here two examples of methods that are related to the integration
of the model typing algorithm (cf. Algorithm 1) and the model transformation typing
algorithm (cf. Algorithm 3) for filtering cross-references.

Listing 4.15: Method for the effective TGM model type inference

1 IScope scope Mapping(MetaModMapRoot ctx, EReference ref)

2 {

3 Transformation transformation = ctx.getTransformation();

4 Trace<EObject, EObject> trace = TraceImpl.getDefault();

5 for (Mapping map : context.getMmaps())

6 {

7 /∗ infer TGM type of source MM ∗/

8 EPackage mmSource = map.getModelTypeSource();

9 TypeChecker.modelTypingFunction(mmSource,trace);

10 /∗ Typing original MM by taking into account the transformation ∗/

11 TypeChecker.transfTypingFunction(mmSource,transformation,trace);

12 /∗ infer TGM type of target MM ∗/
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13 EPackage mmTarget = map.getModelTypeTarget();

14 TypeChecker.modelTypingFunction(mmTarget,trace);

15 }

16 /∗ return the default scope based on naming convention computed by \textsc{Xtext} ∗/

17 return super.delegateGetScope(ctx, ref);

18 }

The first example method performs the effective TGM model type inference when
an user begins defining inside details of a mapping. Listing 4.15 shows a simplifi-
cation of the method. The method scope Mapping() first adds typing functions, cf.
from line 3 to line 15, and then reuses the name-based scope computed by Xtext,
cf. line 17 in the listing. This method is invoked when the user types on the editor to
define a reference to an existing instance object of Mapping which has declared the
source metamodel and the target metamodel. For the sake of simplicity, we regroup
all methods related to our typing approach in the static class TypeChecker. The
modelTypingFunction() method, cf. Algorithm 1, is used in lines 9 and 14 to per-
form the inference of TGM model types for metamodels. The transfTypingFunction()
method, cf. Algorithm 3, is invoked in line 11 to infer the effective TGM model type
for a source metamodel in taking its usage context, i.e. the transformation in con-
sideration, into account. In order to keep corresponding links between metamodel’s
elements and elements of TGM model type, we use a shared trace object as declared
in line 4 of the listing. The implementation of the TraceImpl class is in Appendix 2.1.
The on-the-fly invocation of typing functions when referring a mapping is shown in
Figure 4.9.

Figure 4.9: Invocation of typing functions when referring to a mapping.

The second example method is declared in using the first signature in Listing 4.14
in order to compute the set of EClass objects that are referable by the conceptSource
reference of type ConceptMap. The method is implemented as shown in Listing 4.16.

Cross-references stated in a grammar by indicating the type of references is usually
insufficient to specify the complete linking semantics. For example, the declaration
“ConceptMap : conceptSource=[ecore::EClass]” in the MetaModMap grammar, cf.
Listing 3.3, states that for the reference conceptSource only instances of the type
ecore:EClass are allowed. However, this declaration does not say where to find the
classes. That is the duty of the scoping method scope ConceptMap conceptSource().
In that method we build the set of candidate classes from those in the source meta-
model, and then select only classes that have at least a corresponding link to the
corresponding TGM model type, cf. from line 3 to line 13 in Listing 4.16. Finally,



4.3. Realization of MetaModMap Toolkit 145

Listing 4.16: Scope computation for the conceptSource reference of ConceptMap

1 IScope scope ConceptMap conceptSource(ConceptMap ctx, EReference ref)
2 {
3 MapRule superCtx = (MapRule) ctx.eContainer();
4 /∗ get EClass objects contained in the corresponding modelType ∗/
5 EPackage modelType = superCtx.getDomain().getModelTypeSource();
6 EList<EClass> eClassList = new BasicEList<EClass>();
7 for(EClassifier cl : modelType.getEClassifiers()) {
8 if (cl instanceof EClass) {
9 if (TraceImpl.getDefault().getTargetElems(cl) != null) {

10 eClassList.add((EClass)cl); /∗ add a real used EClass in the candidate list ∗/
11 }
12 }
13 }
14 /∗ create the scope of candidates ∗/
15 Iterable<IEObjectDescription> scopedElems = Scopes.scopedElementsFor(eClassList);
16 return new SimpleScope(IScope.NULLSCOPE, scopedElems);
17 }

the computed candidate list is used to create the scope for the reference concept-
Source.

Figure 4.10: Scoping when defining a mapping between two concepts.

Figure 4.10 shows the computed scope popped up by means of the content assist
feature when we define a concept mapping. As you see in the figure, the proposal
contains only real used classes by the transformation. The unused class Operation
defined in metamodel CDV1 is not in the proposal list. Using such a scoping mech-
anism can avoid writing inconsistent assignments.

Validation Customization

The validation check semantics presented in Chapter 3 (cf. page 107) is imple-
mented in the generated validation artifact, i.e. the MetamodmapJavaValidator class
that extends transitively the AbstractDeclarativeValidator class. The base class Ab-
stractDeclarativeValidator allows to declare methods in order to add constraints into
a language with the @Check annotation. Recall that the model type compatibility
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validation check semantics is performed at a coarse-grained level, i.e. between two
metamodels referred in the instance object of Mapping, thus we add the following
method into the MetamodmapJavaValidator class:

Listing 4.17: Model type compatibility validation check method

1 @Check
2 public void isModelTypeCompatible(Mapping mapping)
3 {
4 if (!TypeChecker.isTGMCompatible(mapping)) {
5 error(”Model types are not compatible through the mapping”,
6 MetamodmapPackage.Literals.MAPPING NAME);
7 }
8 else {
9 info(”Model types are compatible through the mapping”,

10 MetamodmapPackage.Literals.MAPPING NAME);
11 }
12 }

The validator acts as a visitor. More precisely, when an instance object of Map-
ping is reached, the validator looks up all methods annotated with @Check and
invoke methods that declare a signature of type Mapping. The isModelTypeCom-
patible() method in Listing 4.17 just forwards the call to the isTGMCompatible()
method, which is implemented in the type checker. The isTGMCompatible() method
takes the entry object, i.e. the reached instance object of Mapping, then performs
mapping operations for the effective TGM model types of source metamodels ac-
cording to the details in the mapping definition. To the end, the TGM sub-graph
relation, cf. Algorithm 2, is verified between the mapped effective TGM model types
and those corresponding to new metamodels.

Figure 4.11: Model type compatibility validation at coarse-grained level.

Figure 4.11 shows how the MetaModMap validator checks the model type com-
patibility. When the validator is activated, it should be invoked if there is any change
on the user-input. In this figure, the pop-up notification says that the user-defined
mapping makes two metamodels become compatible at model type level, thus the
mapping definition is valid before passing it to the transformation adaptation phase.
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4.3.2 Higher-Order Transformation

As aforementioned in Section 4.2.2, Xtext provides a mechanism which allows
to integrate an on-the-fly interpreter (or compiler) into the editor of a language by
means of the Xtext Builder Participant extension point. In our case, since we adapt
a transformation itself based on provided directives in a mapping definition, the
interpreter is thus known as a Higher-Order Transformation or HOT. To extend this
extension point, it is necessary to register a builder participant in the plugin.xml
file. By default, the Xtext generator will create this registration in the UI-related
project for the MetaModMap language as in Listing 4.18.

Listing 4.18: metamodemap.dsl.ui Plug-in: plugin.xml

1 <plugin>

2 <extension point=”org.eclipse.xtext.builder.participant”>

3 <participant
4 class=”MetamodmapExecutableExtensionFactory:IXtextBuilderParticipant”>

5 </participant>
6 </extension>

7 </plugin>

In Listing 4.18, the generated factory is used to instantiate the participant for the
language. Xtext also provides a default implementation for the IXtextBuilderPar-
ticipant interface, i.e. the BuilderParticipant class which declares a dependency of
type IGenerator. Since the factory uses Guice to manage instantiations of dependen-
cies, the concrete bindings should be declared in the Guice modules of the language
as in Listing 4.19.

Listing 4.19: Concrete bindings in Guice modules of MetaModMap

1 /∗ contributed by GeneratorFragment ∗/
2 public Class<? extends IXtextBuilderParticipant> bindIXtextBuilderParticipant() {
3 return org.eclipse.xtext.builder.BuilderParticipant.class;
4 }
5
6 public Class<? extends org.eclipse.xtext.generator.IGenerator> bindIGenerator() {
7 return MetamodmapGenerator.class;
8 }

The MetamodmapGenerator class is the Generator artifact, which is generated
automatically by the Xtext generator. The customization of this class is realized by
adding an interpreter into the API method doGenerate() declared in type IGenerator.
Listing 4.20 shows the implementation of that method.
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Listing 4.20: Integration of a HOT interpreter for MetaModMap language

1 public class MetamodmapGenerator implements IGenerator {

2 public void doGenerate(Resource resource, IFileSystemAccess fsa) {

3 MetaModMapRoot mmmRoot = (MetaModMapRoot) resource.getContents().get(0);

4 Transformation transformation = mmmRoot.getTransformation();

5 /∗ adapt incrementally the model of transformation ∗/

6 for (MapRule mapRule : mmmRoot.getMapRules()) {

7 Interpreter.doRebind(mapRule, transformation);

8 }

9 /∗ TODO : serialize the adapted model of transformation ∗/

10 ...

11 }

12 }

The Xtext builder participant has defined an usage scenario for a generator.
In that scenario, the method doGenerate() will be invoked when an user commits
(saves) a valid mapping definition (i.e. a mapping without errors spawned during
the validating process). The caller (i.e. the builder participant) passes the whole
model (i.e. parsed editing content) under the structure of EMF Resource to the
receiver (i.e. the custom generator). From the passed resource, the root object
of the model can be achieved as in line 3 of Listing 4.20, and so on for the origi-
nal transformation as in line 4. Once having the transformation model, we iterate
all mapping rules defined for each pair of metamodels, then invoke the doRebind()
method, cf. Algorithm 5 in Chapter 3, to perform transformation adaptation in an
incremental manner. Note that for the sake of simplicity, we implemented the HOT
method (doRebind()) as static in the Interpreter class. The final step is to serialize
the adapted model of transformation into a persistent file respecting the concrete
syntax of the MOMENT2-GT language. This can be done by means of Xtext Seri-
alizer and, by default the adapted transformation file is saved in the same location
than the original transformation file.

4.4 Transformation Adaptation in Action

The complete proposed solution has been implemented into a prototype 2 to sup-
port our approach to transformation adaptation.

2. Source code of the prototype, screen shot, metamodels, transformations of the motivating
example and a demonstration video are available to download at http://perso.telecom-bretagne.eu/
quyetpham/softwares/.

http://perso.telecom-bretagne.eu/quyetpham/softwares/
http://perso.telecom-bretagne.eu/quyetpham/softwares/
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4.4.1 MetaModMap Prototype

The current version of the prototype is integrated into Eclipse as plug-ins to work
with framework MOMENT2-GT with an additional textual editor (cf. Fig. 4.12,
the DSL is developed by means of XText) which allows users to define intentional
semantic correspondences between alternative metamodels.

origin. transf.

usage context

adapted transf.

Figure 4.12: MetaModMap editor.

The prototype provides two main functionalities. First, an interactive warning-
suggestion system is provided to give informative feedback to users when they type
on the editor. This system implements the model type compatibility check semantics
that is theorized in the Chapter 3. Second, an interpreter is injected within the editor
to perform on-the-fly transformation adaptations (or HOTs). That is with a valid
mapping definition, a legacy transformation definition written in the MOMENT2-
GT language can be adapted to a new one for permanent use with another variant
of source metamodel. These functionalities are the most essential requirements in
nowadays modern editors.

4.4.2 Customer Management Case Study

Figure. 4.13 illustrates a scenario in which we need a transformation adaptation
toolkit to obtain target models from source models conforming to two metamodels
of the same domain (the same viewpoint of application systems). In this scenario
we assume that a software company, i.e. Company A, uses a design tool for a cer-
tain viewpoint in the application development process. The design tool is based
on a particular metamodel — is called the original source metamodel, i.e. models
produced by means of that tool is persisted in respect of the format defined by the
metamodel, cf. step (1) in the figure. The development process of the company is
automated by means of the execution of a transformation definition to obtain target
models that represent another viewpoint of systems. Although working on the same
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Figure 4.13: A scenario shows the need of a transformation adaptation toolkit.

source viewpoint, another company, i.e. Company B, might use a different design
tool based on a similar metamodel — we call the new source metamodel. Due to the
difference in the format defined by two metamodels, the legacy transformation defi-
nition cannot be used directly for Company B’s own source models. In order to reuse
knowledge that has been encoded in that transformation definition, an adaptation
for the transformation, cf. step (3) in the figure, can be carried out by means of the
MetaModMap toolkit. In the following, we will demonstrate this scenario through
the Customer Management example inspired by [Bézivin 05a] as a validation of our
toolkit prototype.

To validate the MetaModMap toolkit prototype, one can imagine the class dia-
gram view of the simple Customer Management application are modelled by means
of different CASE tools which are based on different metamodels. However, for the
sake of simplicity, these models are designed by using the same reflective model edi-
tor tool, i.e. Reflective Ecore Model Diagram Editor, thus they are persisted in the
portable format XMI. The resulting two models are shown partially in Fig. 4.14 (at
middle-left and middle-right), one can see their complete representation in the UML
object diagram notation in Figure 2.15a and Figure 2.18 of Section 2.3.1 in Chapter 2.
The input model in the first representation is transformed into the corresponding re-
lation database model through a transformation definition, cf. Appendix 1.1, for
some further processing. We expect, when the design tool is switched to another
one, the second representation is safely used to output the same identical relation
database model as the output of the legacy transformation.

However, the same intentional input model, cf. Fig. 4.14 (at top), has two dif-
ferent representations with renamings such as {(PrimitiveDataType/DataType)},
{(Attribute/Property), (isPrimary/primary)}, {(isPersistent/persistent), (ownedFea-
tures/ownedProperties)}, {(source/from), (target,to)} and a relation reification {(par-
ent/generalization.Generalization.general)}. These changes make the transformation
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Figure 4.14: CD2RDB transformation’s in/out models.

engine cannot access to the model represented in the new format to achieve and
then compute values in slots of instance objects if the engine uses directly the legacy
transformation definition. Due to these obstacles, the legacy transformation needs
to be adapted. This work can be done by using the MetaModMap toolkit. Given
a MetaModMap definition, as shown in Fig. 4.12, the new transformation can be
generated automatically by the MetaModMap interpreter, cf. Appendix 1.2 for the
adapted transformation definition. We obtain, as expected, the same output model
shown in Fig. 4.14 (at bottom) for both two representations of the intentional input
model, applying respectively the legacy transformation and the generated one.

4.5 Comparison to Transformation Reuse Approaches

Transformation reuse through adaptation in response to metamodel changes had
been studied with two main different strategies. In our publication [Pham 12], we
adopted in the first one that considers transformations as white-boxes and transforms
them. The second strategy regards transformations as black-boxes and generates
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adaptors for the transformation without modifying the original one.

Within the first strategy, following the concept mechanism presented in [de Lara 10],
i.e. a specific transformation for a particular metamodel can be generated from a
generic transformation defined on a conceptual metamodel and a strict structural
binding between the particular and the conceptual metamodels, Sanchez Cuadrado
et al. [Cuadrado 11] and Wimmer et al. [Wimmer 11] have extended the binding
DSL for structural heterogeneities in independent metamodels. The adaptations in
[Wimmer 11] are automatically either generated under the form of helpers provided
by ATL or directly adapted in the specific transformation from the binding. Due to
the lack of helpers in MOMENT2-GT, only model patterns must be adapted them-
selves in our approach. Nevertheless, with the support of variation points in model
patterns, the adaptation process does not need to take into account meta-attributes
on Ecore-based relations between types such as: ordered ; lowerBound, except up-
perBound which is needed a special treatment. Related to the expressiveness, the
number of binding/correspondence patterns provided in [Wimmer 11] is more than
our current DSL version (actually, other patterns have been being developed), how-
ever, the abstraction level is actually the same. In comparison with these works, the
substitution between metamodels is defined clearly (and formally) in our approach
by simple graph structure TGM coupled with its effective inference mechanism on
transformations. This graph structure is used to implement the scoping and validat-
ing aspect of the DSL editor, which provides a more interactive warning-suggestion
system to users when they define correspondences.

In contrast to our approach and those proposed in [Cuadrado 11, Wimmer 11],
i.e. transformation reuse for metamodels with different history, approaches presented
in [Mendez 10, Levendovszky 10, Ruscio 11] focus on metamodel/transformation co-
evolution. In [Mendez 10], Mendez et al. present a classification of typical changes
and their impact on transformations when metamodels evolve while Levendovszky et
al. [Levendovszky 10] and Di Ruscio et al. [Ruscio 11] propose adaptation solutions
against these changes for particular transformation languages. The approach pro-
posed in [Levendovszky 10] is also dedicated for graph rewriting-based transformation
paradigm, implemented in GReAT 3. However, the principle used for transformation
reuse is not based on the isomorphism of type graphs as ours, but on an analysis of
minor evolutions in metamodel. Therefore, when a relation and a type representing
the same modeling concept as the pair parent/generalization.Generalization.general
in our example, the corresponding original model pattern cannot be evolved auto-
matically by their evolver tool, by opposition with our treatment which performs
adaptation since the adapted model pattern still preserves, at some level, the same
graph topology than the original one.

Authors in [Ruscio 11] propose EMFMigrate 4 as a unified approach to the meta-
model co-evolution problem with dependent artifacts such as models, transformations
and tools. For ATL transformations, they introduced a coupled DSLs which encom-
passes the specification of metamodel differencing (EDelta) and (customizable) mi-

3. http://www.isis.vanderbilt.edu/tools/GReAT
4. http://www.emfmigrate.org/

http://www.isis.vanderbilt.edu/tools/GReAT
http://www.emfmigrate.org/
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gration rules (ATLMigrate). EDelta models are actually the recovered trace input by
users to specify step-by-step metamodel evolution. Migration rules might be applied
if conditional patterns are matched on the difference model. Then, the information
extracted from the matched data will be used in rewriting rules to migrate transfor-
mations. In comparison with their work, our approach is not based on metamodel
evolution traces, but on the observation of metamodel representation differences.

The second strategy considers a transformation as a black-box. Kerboeuf et
al. [Kerboeuf 11] present an adaptation DSL which handles copy or deletion of
elements from a model conforming to a new metamodel to make it become an instance
model of the input metamodel of an endogenous transformation tool. The adaptation
transformation also provides a trace to recover the output result of the transformation
to an instance of the new metamodel.

Beside to above strategies, Sen et al. proposed in [Sen 10] another approach
to make a transformation reusable by extending a metamodel based on the aspect
weaving feature provided in Kermeta 5. As opposed to our approach allowing users
to define metamodel correspondences at a high-level and performing automatically
adaptations, the adaptations in this approach are added by users at the transforma-
tion language level. This approach uses a metamodel pruning mechanism [Sen 09] to
reduce adaptation requirements via aspect weaving for satisfying the model typing
principle in [Steel 07]. The whole approach is similar to our solution, however, in
the type point of view, we raise the substitution relation between metamodels up
to TGM graphs with a bit different treatment in multiplicity depending on the way
model patterns are used in MOMENT2-GT.

To facilitate comparing our contributions with these approaches, we take the
summary table of related work from Section 2.4 at the end of Chapter 2 and extend
a row with our published approach. The comparison is given in Table 4.2.

5. www.kermeta.org

www.kermeta.org
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Reusing Model
Transf. across

Heterogen.
MMs

[Wimmer 11]
[Cuadrado 11]

Semi-
automation

Evol. of DSML
Model Transf.

[Levendovszky 10]
[Narayanan 09]

Managing
Coevolution in

MDE
[Ruscio 11]

A DSML for
Reversible

Transformations
[Kerboeuf 11]
[Babau 11]

Model
Adaptation by
Precise Detect.
of MM Changes

[Garcés 09]

Reusable Model
Transformations

[Sen 10]
[Steel 07]

Adapt. of
Transf. based

on Type Graph
with Multi.
[Pham 12]

Adaptation Strategy

transf. X X X NO NO NO X

models NO NO NO X X NO NO

metamodels NO NO NO NO NO X NO

Mapping

Cardinality 1:1 1:n 1:1 1:n 1:1 n:1 1:1 1:1 1:1 1:1

Total vs.

Partial

Total Total Total Total Total Partial Partial

Element vs.

Structure

Element and
several structural

supports

Element supports Element supports Element and
several structural

supports

Element and
structural supports

Element and
several structural

supports

Element and
several structural

supports

Constraint Multiplicities
contraction,

properties filtering

Without
multiplicities
contraction

support

Without
multiplicities
contraction

support

Multiplicities
contraction (lost

information)

Without
multiplicities
contraction

support

Without
multiplicities
contraction

support

Multiplicities
contraction

(depend on usage
context)

Transformation Language

Paradigm Hybrid (decl.&
imp.)

Graph
rewriting-based

Hybrid (decl.&
imp.)

Any Any Imperative with
AOP supports

Graph
rewriting-based

Language ATL GReAT ATL – – Kermeta MOMENT2-GT

Application Scenarios

M2M

Transf.

X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source MM
change)

X (Source, Target
MM change)

X (Source MM
change)

In-place Up. NO NO NO X NO X NO

Declaration Automation

explicit X (without
checking)

X (without
checking due to

semi-automation)

X (without
checking due to

semi-automation)

X (without
checking)

X (user
intervention but

without checking)

X (a priori
checking)

X (a priori
checking)

implicit NO NO NO NO X (heuristic infer.) NO NO

Table 4.2: Comparison to other transformation reuse approaches
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4.6 Prototype Summary and Discussion

In this chapter, we have described a prototype of a transformation migration
toolkit, named MetaModMap, which provides supports for transformation reuse
through adaptation with user-defined directives. The toolkit has been developed to
work with model-to-model transformations written in the MOMENT2-GT language.

The toolkit was implemented as Eclipsed-based plug-ins that includes 1) a tex-
tual editor used to define semantic correspondences between metamodels written in
a DSL language, i.e. MetaModMap, 2) a Higher-Order-Transformation interpreter
used for automatically migrating an existing transformation definition according to
a valid mapping definition defined in the provided editor. For the MetaModMap
editor, we have presented how to develop a modern editor that allows users to work
with a language at the abstract syntax representation level by using the Xtext lan-
guage development framework. Such an editor can provide on-the-fly features such as
scoping and validation which are related to the integration of our graph-based typing
approach presented in Chapter 3 into practice. For the interpreter of the language,
we have shown how an on-the-fly transformation adaptation engine can be integrated
into the editor by means of the code generator API provided by Xtext. By such
integrations, end-users are provided with an easy to use transformation migration
toolkit within Eclipse. Thereby, they can use our toolkit for improving transforma-
tion re-usability in incorporating others EMF facilities for creating, managing models,
metamodels, and specially with MOMENT2-GT framework for defining and running
transformations as a complete MDE ecology.

At the end of this chapter, the use of the provided toolkit is illustrated with a case
study. As an experiment validation, we have shown a scenario in which our toolkit is
applicable. In the scenario, a transformation written to transformation class models
into relational database models should be adapted when changing design tools based
on metamodel variants for input-models. This task can be done by our toolkit that
is able to be aware of how to perform adaptations on the legacy transformation, from
very simple directives input by the user.
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In this thesis we investigated an automatic transformation adaptation approach to
improve the reuse of knowledge encoded in existing metamodels-based transformation
definitions, in response to differences occurred when changing input metamodels. Our
approach is developed upon a theory of graph-based model typing to address the
transformation reuse problem without adaptation and extends with a DSL that acts
as a higher-order transformation for overcoming strict model subtypes defined in the
proposed theory. The following sections in this chapter will summarize contributions
in our work, discuss the current limitations and propose some further investigations.

5.1 Contribution Summary

In most current MDE ecologies, everything is a model and model transformation
is a crucial activity for automatically evolving or translating models among modelling
languages. In such MDE environments, the abstract syntax of modelling languages is
often chosen as basis to specify transformations, also called metamodel-based trans-
formation approach [Levendovszky 02]. Using such approach permits specification
of transformation rules focused on the structural (syntactical) translation. Thus a
transformation can be applied to models that structurally conform to the base meta-
models. However, since transformation definitions are tightly coupled with meta-
models which are currently often used to denote some kind of “model type”, they
become brittle when a base metamodel evolves or is replaced by another one because
of the strength of this definition of “type”. In short, using metamodels directly as
model types and the conformance relation between models and metamodels hinder
the transformation reuse.

157
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In order to address this issue, many approaches have recently been proposed
to introduce a typing principle to models and also dependent artifacts. For the
particular interest to this dissertation, i.e. transformation reuse, we propose a graph-
based typing approach of models that derives benefits of the natural graph form of
models and solves the multiplicity issue of associations. From this definition, we
define the type of model transformations. That means a transformation should be
model type-inferred based on rules which make up the transformation. As an example
of the use of this type system, we propose a metamodel mapping language to improve
the scope of transformation reuse in case of metamodel heterogeneities. Concretely,
our work has following contributions in both theoretical and practical aspects.

Theoretical Contribution

From a theoretical point of view, our work constitutes a type system, in which a
new notion of model type based on the graph topology of metamodels is at the core
of the solution for the transformation reuse problem. More precisely, for a MOF-like
metamodelling approach, i.e. EMF Ecore, we have proposed a graph structure rep-
resentation, so-called Type Graph with Multiplicity — TGM, as another abstraction
of Ecore-defined metamodels.

The main use of TGMs is to exhibit the graph topology of metamodels by flatten-
ing the inheritance relation between type concepts. This notion of model type, as its
name, takes into account the upperBound meta-attribute that is defined on relations
between type concepts. However, this consideration is derived upto a higher level
of abstraction for multiplicity property, i.e. a higher graph topology point of view
with three values: Multiplicity ≡ {single valued, multi valued, undefined valued}. As
explained in Section 3.3.1, the selection of the upperBound meta-attribute is only an
example of interesting semantics variation points that we want to add into the model
type definition, depending on what level of abstraction that we want to develop for
a transformation language. Every metamodel in the Ecore space is leveraged into
the more abstract space TGM by means of a model typing function, i.e. a particular
exogenous transformation, provided in our type system.

From the graph-based model type, existing transformations themselves can be
typed by means of our transformation typing function. Such typing function infers
user-defined graph patterns written in MOMENT2-GT language to select real used
parts of declared model types, and changes TGM-Multiplicity values if a semantics
variation point is found. Therefore, the knowledge encoded in the transformation
can be captured from the outputs of the type inference process, i.e. effective TGM
model types.

Substitutability between metamodels is defined based on TGM model types,
thanks to a name-based graph inclusion. In taking the usage context of metamodels
into account, i.e. the transformations defined upon metamodels, the effective TGM
model types are used to compare with TGM model types of new metamodels. As
a result, all metamodels whose TGM view is a super-graph of the effective TGM
of a declared metamodel could be replaced in the transformation without a need of
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adaptation. These cases are in the isomorphic transformation reuse sub-problem.

In order to extend the re-usability in cases of non-isomorphic transformation
reuse, i.e. metamodels are more heterogeneous such as elements named differently or
partial difference in topology, we provided a simple mapping DSL language, namely
MetaModMap. The language is dedicated to identify semantic correspondences be-
tween metamodel elements. Moreover, the language also supports several simple
combinations of elements in case of partial differences in topology. The operational
semantics of the language acts as a Higher-Order Transformation to adapt the original
transformations, certainly in the scope of our supports. The proposed type system is
integrated as a part of the language when it is used as primary premises to validate
a mapping definition before the execution of a transformation adaptation. In using a
mapping definition, it yields more efficient reuse of transformations as well as knowl-
edge that is encoded in those transformations. Nevertheless, mapping definitions
have to be provided by the experts who develop metamodels and domain-specific
languages.

In summary, in our theoretical contribution, we have given a general solution for
the problem of transformation reuse, with and without adaptation. The type system
and the mapping DSL language have been realized and integrated in a concrete MDE
environment, i.e. MOMENT2-GT framework, which is based on EMF Eclipse.

Practical Contribution

From a practical point of view, we have extended the MOMENT2-GT framework
by providing a prototype of a transformation migration toolkit, i.e. an implemen-
tation of our model typing approach and the MetaModMap language. The toolkit
has been developed to provide support for reusing transformations written in the
MOMENT2-GT language.

The toolkit constitutes of Eclipse-based plug-ins that implement:

• A textual editor, used to define semantic correspondences between alternative
metamodels.

• A Higher-Order Transformation interpreter, injected into the editor which is
used for automatically migrating a transformation according to a mapping.

For the MetaModMap editor, we have developed it as a modern editor that allows
users to work at the abstract syntax representation of the language. To this end, we
have used technologies provided in the Xtext workflow to develop the language and
shown how to use them in this dissertation. Our editor is fully integrated with the
proposed type system with on-the-fly features, i.e. scoping and validation, to detect
early inconsistent mappings. This integration shows the usability of our typing ap-
proach to give informative feedback to users when they provide additional directives
in the editor of the mapping language.

For the interpreter, we have developed and integrated it into the editor as an
on-the-fly transformation adaptation engine. This has been done by using the code
generator API provided by Xtext. Such integration allows users to easily use our
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toolkit within Eclipse without a need of performing a complex running step, just
typing a mapping and obtaining an adapted transformation when the mapping is
committed.

Summing up, by extending the MOMENT2-GT framework, which is developed
upon EMF, we provide an additional functionality for an MDE ecology in which
models, metamodels are created, managed by EMF facilities, transformations are
defined and executed by MOMENT2-GT and in addition these transformations could
be adapted by our toolkit for improving their re-usability.

5.2 Limitations

Our solution for the transformation reuse problem has several limitations. First,
our proposed type system is currently limited to cases in which source metamodels
of an exogenous transformation are replaced. Second, the proposed mapping DSL is
not expressive enough for complex heterogeneities between metamodels’ elements and
currently supports only one-to-one mappings and has several simple correspondences
between combinations of elements. Third, the whole approach is dependent on a spe-
cific transformation paradigm, i.e. graph rewriting-based transformation languages
without any supports of navigation helpers.

Reusing transformation when changing source metamodels

The approach presented in this work especially focuses on the reuse of transfor-
mations when their source metamodels are changed. In respect to this objective,
the centric notion of model type, i.e. TGM, as well as typing functions in the type
system are constituted by eliminating non-affected meta-attributes when changing
source metamodels. This strategy could be realized with an assumption that there
are no object creations in models of the domain defined by a source metamodel, as
shown in this dissertation. Other cases in which the target metamodel or both meta-
models change need further investigation. Nevertheless, we believe that the same
reuse principle, i.e. abstracting metamodels; inferring effective model types; using a
mapping DSL; adapting transformations, could be used.

Expressivity of the mapping DSL

Based on the graph similarity, the mapping DSL language in this work provides
some simple correspondence patterns. These are one-to-one mappings for naming dif-
ferences of classes, attributes and references. Some patterns for a bit complex cases
are also supported, e.g. attribute and reference reification by adding intermediate
classes. However, the real world is not simple like that. In industrial case studies,
metamodels are more heterogeneous in the graph topology point of view. There-
fore, these patterns as well as their adaptation semantics proposed in the current
mapping language are not expressive enough to employ in the real world. Thus, the
applicability of the language is limited.
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Dependency on the graph rewriting-based transformation paradigm

The graph rewriting-based transformation paradigm, concretely, MOMENT2-
GT the language used in this dissertation, allows to make transformation descrip-
tions more declarative and representative. More precisely, transformation writers are
equipped with adequate constructs to describe a transformation by thinking about
the graph topology of metamodels, which is expressed in an concrete object-oriented
syntax, e.g. the UML class diagram notation. This characteristic leads us to pro-
pose a notion of metamodel similarity based graph similarity, then a substitution
possibility between similar metamodels. Instead, all elements in our approach must
conform to the graph notion, from the abstract model types, model subtype relation
to typing functions as well as the mapping language and its adaptation semantics.
This yields that our approach is dependent on graph-related constructs provided by a
transformation language, which is based on the graph rewriting-based transformation
paradigm.

5.3 Perspectives

In this dissertation, we have presented an approach for reusing a transformation
that has been written upon a certain source metamodel, for a similar source meta-
model. The approach can automatically migrate the transformation accordingly cor-
respondences between the two source metamodels that user needs to specify. The
approach is based on a theory of graph-based model typing. On critically reflecting
our approach, two main points remain for future work.

Making the proposed model typing approach more complete

Chapter 3 presents a graph-based model typing approach to support the definition
of metamodel similarity as graph-based model type similarity. We then show that for
the MOMENT2-GT model transformation language, the effective model type for a
source metamodel can be derived, which can be used instead of the source metamodel
to determine if the transformation can be applied to a given model. This directly
increases the re-usability of the model transformation, but only for strict subtypes
between source metamodels.

As aforementioned in the section on limitations of our approach, the proposed
type system needs to be enriched to support the change of target metamodels and
those, which play a role as both source and target, e.g. an endogenous/in-place
transformation. To this end, the information, which is included in the TGM model
types must be enriched regarding the containment relation between type concepts de-
fined in metamodels, i.e. taking the boolean value of the containment meta-attribute
which is defined by a designer on an Ecore reference definition into account. This
consideration is due to the fact that MOMENT2-GT does not allow an object cre-
ation outside the containment relation between two type concepts. As a consequence,
the effective model type inference for target metamodels needs to be aligned the new
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modified notion of model types accordingly. However, such a modification on the
notion of model types makes the type notion less abstract, hence the algorithm for
inferring effective model type become more complex.

Improving the expressiveness of the mapping DSL

The proposed type system becomes more powerful on the transformation reuse
problem when only it is coupled with a mapping DSL that performs automatic adap-
tation on transformations. Actually, a mapping DSL for transformation migration
acts as an interpreter’s parts that perform dynamic bindings from a generic type to
a concrete type in advanced programming language. That is why such a mapping
DSL is also called as a Higher-Order Transformation (HOT) language. However,
the dynamic binding semantics of HOT support more complex bindings in terms of
user-defined directives than in programming languages. Hence, more patterns for
user-defined directives makes the mapping language more expressive from the end-
user point of view.

From above argument, the expressiveness of the mapping DSL, i.e. MetaModMap,
is necessary to be improved by extending our set of correspondence patterns to sup-
port other kinds of metamodel heterogeneity, e.g. splitting type concepts, based on
our graph-based typing approach. That is, correspondences defined by users in our
DSL are considered as zooms (in/out) on single nodes, single edges or minor con-
nected sub-graphs of the effective TGM as long as the isomorphism between TGM
views of metamodels is warranted.
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Driven Architecture, numéro 1, page 50. Citeseer, Citeseer, 2003.
28, 32

163



BIBLIOGRAPHY 164
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[Kerboeuf 11] Mickaël Kerboeuf & J.P. Babau. A DSML for reversible transforma-
tions. In 11th OOPSLA Workshop on Domain-Specific Modeling,
pages 1–6, 2011. 1, 14, 4, 57, 61, 62, 153



BIBLIOGRAPHY 167

[Kleppe 03] Anneke Kleppe, Jos Warmer & Wim Bast. MDA explained: the
model driven architecture: practice and promise. Addison-Wesley,
2003. 17, 23

[Kuhne 06] Thomas Kuhne. Matters of (Meta-) Modeling. Software and Systems
Modeling, vol. 5, no. 4, pages 369–385, July 2006. 2, 10, 11, 12, 16

[Lara 02] Juan De Lara & Hans Vangheluwe. AToM3: A Tool for Multi-
formalism and Meta-modelling. In Ralf-Detlef Kutsche & Herbert
Weber, editors, Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering, volume 2306 of
Lecture Notes in Computer Science, pages 174–188. Springer Berlin
/ Heidelberg, 2002. 31

[Lawley 06] Michael Lawley & Jim Steel. Practical Declarative Model Trans-
formation with Tefkat. In Proceedings of Model Transformations
in Practice Workshop, MoDELS Confer- ence, pages 139–150.
Springer, Springer-Verlag Berlin Heidelberg, 2006. 31

[Levendovszky 02] Tihamer Levendovszky, Gabor Karsai & Miklos Maroti. Model
reuse with metamodel-based transformations. Software Reuse, 2002.
2, 157

[Levendovszky 10] Tihamer Levendovszky, Daniel Balasubramanian, Anantha
Narayanan & Gabor Karsai. A novel approach to semi-automated
evolution of DSML model transformation. Software Language Engi-
neering, pages 23–41, 2010. 1, 14, 4, 57, 59, 60, 152

[Marschall 03] Frank Marschall & Peter Braun. Model Transformations for the
MDA with BOTL. In Proceedings of the Workshop on Model
Driven Architecture: Foundations and Applications, volume En-
schede,, 2003. 31

[Mart́ı-Oliet 07] Narciso Mart́ı-Oliet, José Meseguer, David Hutchison & John C
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Appendix A

Transformation Definitions

1.1 Transformation for CDV1 and RDB metamodels

1 import ”platform:/resource/CD2RDB/metamodels/CDV1.ecore”;
2 import ”platform:/resource/CD2RDB/metamodels/RDB.ecore”;
3
4 transformation CD2RDB (cd : CDV1; rdb : RDB) {
5
6 rl InitAncestor {
7
8 nac cd noAncestor {
9 c1 : Class {

10 ancestors = c2 : Class {
11 }
12 }
13 };
14
15 lhs {
16 cd {
17 c1 : Class {
18 parent = c2 : Class {
19 }
20 }
21 }
22 };
23
24 rhs {
25 cd {
26 c1 : Class {
27 parent = c2 : Class {
28 },
29 ancestors = c2 : Class {
30 }
31 }
32 }
33 };
34 }
35
36 rl ComputeTransitiveAncestor {
37
38 nac cd noAncestorRelation {
39 c1 : Class {
40 ancestors = c3 : Class {
41 }
42 }
43 };
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44
45 lhs {
46 cd {
47 c1 : Class {
48 ancestors = c2 : Class {
49 ancestors = c3 : Class {
50 }
51 }
52 }
53 }
54 };
55
56 rhs {
57 cd {
58 c1 : Class {
59 ancestors = c2 : Class {
60 ancestors = c3 : Class {
61 }
62 },
63 ancestors = c3 : Class {
64 }
65 }
66 }
67 };
68 }
69
70 rl Package2Schema {
71
72 nac rdb noSchema {
73 s1 : Schema {
74 }
75 };
76
77 lhs {
78 cd {
79 p : Package {
80 name = pname
81 }
82 }
83 rdb {
84 }
85 };
86
87 rhs {
88 cd {
89 p : Package {
90 name = pname
91 }
92 }
93 rdb {
94 s : Schema {
95 name = ” ” + pname
96 }
97 }
98 };
99 }
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100
101 rl Class2Table {
102
103 nac rdb noTable {
104 t1 : Table {
105 name = cname
106 }
107 };
108
109 nac cd noParent {
110 c : Class {
111 parent = pClass : Class {
112 }
113 }
114 };
115
116 lhs {
117 cd {
118 p : Package {
119 ownedTypes = c : Class {
120 isPersistent = true,
121 name = cname
122 }
123 }
124 }
125 rdb {
126 s : Schema {
127 }
128 }
129 };
130
131 rhs {
132 cd {
133 p : Package {
134 ownedTypes = c : Class {
135 isPersistent = true,
136 name = cname
137 }
138 }
139 }
140 rdb {
141 s : Schema {
142 ownedTables = t : Table {
143 name = cname
144 }
145 }
146 }
147 };
148 }
149
150 rl DataTypeAttributeOfTopClass2Column {
151
152 nac rdb noColumn {
153 t : Table {
154 cols = cl0 : Column {
155 name = aname
156 }
157 }
158 };



1.1. Transformation for CDV1 and RDB metamodels 186

159
160 lhs {
161 cd {
162 c : Class {
163 name = cname,
164 ownedFeatures = a : Attribute {
165 name = aname,
166 type = p : PrimitiveDataType {
167 name = pname
168 }
169 }
170 }
171 }
172 rdb {
173 t : Table {
174 name = cname
175 }
176 }
177 };
178
179 rhs {
180 cd {
181 c : Class {
182 name = cname,
183 ownedFeatures = a : Attribute {
184 name = aname,
185 type = p : PrimitiveDataType {
186 name = pname
187 }
188 }
189 }
190 }
191 rdb {
192 t : Table {
193 name = cname,
194 cols = cl : Column {
195 name = aname,
196 type = pname
197 }
198 }
199 }
200 };
201 }
202
203 rl DataTypeAttributeOfChildClass2Column {
204
205 nac rdb noColumn {
206 t : Table {
207 cols = cl0 : Column {
208 name = aname
209 }
210 }
211 };
212
213 lhs {
214 cd {
215 c : Class {
216 ancestors = anc : Class {
217 name = cname
218 },
219 ownedFeatures = a : Attribute {
220 name = aname,
221 type = p : PrimitiveDataType {
222 name = pname
223 }
224 }
225 }
226 }
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227 rdb {
228 t : Table {
229 name = cname
230 }
231 }
232 };
233
234 rhs {
235 cd {
236 c : Class {
237 ancestors = anc : Class {
238 name = cname
239 },
240 ownedFeatures = a : Attribute {
241 name = aname,
242 type = p : PrimitiveDataType {
243 name = pname
244 }
245 }
246 }
247 }
248 rdb {
249 t : Table {
250 name = cname,
251 cols = cl : Column {
252 name = aname ,
253 type = pname
254 }
255 }
256 }
257 };
258 }
259
260 rl SetPrimaryKeyOfTopClass {
261
262 nac rdb noPK {
263 t : Table {
264 pkeys = cl : Column {
265 }
266 }
267 };
268
269 lhs {
270 cd {
271 c : Class {
272 name = cname,
273 ownedFeatures = a : Attribute {
274 name = aname,
275 isPrimary = true
276 }
277 }
278 }
279 rdb {
280 t : Table {
281 name = cname,
282 cols = cl : Column {
283 name = aname
284 }
285 }
286 }
287 };
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288
289 rhs {
290 cd {
291 c : Class {
292 name = cname,
293 ownedFeatures = a : Attribute {
294 name = aname,
295 isPrimary = true
296 }
297 }
298 }
299 rdb {
300 t : Table {
301 name = cname,
302 cols = cl : Column {
303 name = aname
304 },
305 pkeys = cl : Column {
306 }
307 }
308 }
309 };
310 }
311
312 rl setPrimaryKeyOfChildClass {
313
314 nac rdb noPK {
315 t : Table {
316 pkeys = cl : Column {
317 }
318 }
319 };
320
321 lhs {
322 cd {
323 c : Class {
324 ancestors = anc : Class {
325 name = cname
326 },
327 ownedFeatures = a : Attribute {
328 name = aname,
329 isPrimary = true
330 }
331 }
332 }
333 rdb {
334 t : Table {
335 name = cname,
336 cols = cl : Column {
337 name = aname
338 }
339 }
340 }
341 };
342
343 rhs {
344 cd {
345 c : Class {
346 ancestors = anc : Class {
347 name = cname
348 },
349 ownedFeatures = a : Attribute {
350 name = aname,
351 isPrimary = true
352 }
353 }
354 }
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355 rdb {
356 t : Table {
357 name = cname,
358 cols = cl : Column {
359 name = aname
360 },
361 pkeys = cl : Column {
362 }
363 }
364 }
365 };
366 }
367
368 rl AssociationToPersClass2FKey {
369
370 nac rdb noAssColumn {
371 t1 : Table {
372 cols = cl : Column {
373 name = assname + ” ” + clname,
374 type = pname
375 }
376 }
377 };
378
379 lhs {
380 cd {
381 ass : Association {
382 name = assname,
383 source = c1 : Class {
384 name = c1name
385 },
386 target = c2 : Class {
387 name = c2name
388 }
389 }
390 }
391 rdb {
392 t1 : Table {
393 name = c1name
394 }
395 t2 : Table {
396 name = c2name,
397 pkeys = pk : Column {
398 name = clname,
399 type = pname
400 }
401 }
402 }
403 };
404
405 rhs {
406 cd {
407 ass : Association {
408 name = assname,
409 source = c1 : Class {
410 name = c1name
411 },
412 target = c2 : Class {
413 name = c2name
414 }
415 }
416 }
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417 rdb {
418 t1 : Table {
419 name = c1name,
420 cols = cl : Column {
421 name = assname + ” ” + clname,
422 type = pname
423 },
424 fkeys = fk : FKey {
425 cols = cl : Column {
426 },
427 reference = t2 : Table {
428 }
429 }
430 }
431 t2 : Table {
432 name = c2name,
433 pkeys = pk : Column {
434 name = clname,
435 type = pname
436 }
437 }
438 }
439 };
440 }
441
442 rl AssociationToNonPersClass2FKey {
443
444 nac rdb noAssColumn {
445 cl : Column {
446 name = assname + ” ” + aname,
447 type = pname
448 }
449 };
450
451 lhs {
452 cd {
453 ass : Association {
454 name = assname,
455 source = c1 : Class {
456 name = c1name
457 },
458 target = c2 : Class {
459 isPersistent = false,
460 ownedFeatures = a : Attribute {
461 name = aname,
462 type = p : PrimitiveDataType {
463 name = pname
464 }
465 }
466 }
467 }
468 }
469 rdb {
470 t1 : Table {
471 name = c1name
472 }
473 }
474 };



1.1. Transformation for CDV1 and RDB metamodels 191

475
476 rhs {
477 cd {
478 ass : Association {
479 name = assname,
480 source = c1 : Class {
481 name = c1name
482 },
483 target = c2 : Class {
484 isPersistent = false,
485 ownedFeatures = a : Attribute {
486 name = aname,
487 type = p : PrimitiveDataType {
488 name = pname
489 }
490 }
491 }
492 }
493 }
494 rdb {
495 t1 : Table {
496 name = c1name,
497 cols = cl : Column {
498 name = assname + ” ” + aname,
499 type = pname
500 },
501 pkeys = cl : Column {
502 }
503 }
504 }
505 };
506 }
507 }
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1.2 Adjusted Transformation from CD2RDB

Note : The highlight color parts show changes in comparison with the original
transformation definition after adapting.

1 import ”platform:/resource/CD2RDB/metamodels/CDV2.ecore”;
2 import ”platform:/resource/CD2RDB/metamodels/RDB.ecore”;
3
4 transformation CD2RDB (cd : CDV2; rdb : RDB) {
5
6 rl InitAncestor {
7
8 nac cd noAncestor {
9 c1 : Class {

10 ancestors = c2 : Class {
11 }
12 }
13 };
14
15 lhs {
16 cd {
17 c1 : Class {
18 generalization = newc2 : Generalization {
19 general = c2 : Class {
20 }
21 }
22 }
23 }
24 };
25
26 rhs {
27 cd {
28 c1 : Class {
29 generalization = newc2 : Generalization {
30 general = c2 : Class {
31 }
32 },
33 ancestors = c2 : Class {
34 }
35 }
36 }
37 };
38 }
39
40 rl ComputeTransitiveAncestor {
41
42 nac cd noAncestorRelation {
43 c1 : Class {
44 ancestors = c3 : Class {
45 }
46 }
47 };
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48
49 lhs {
50 cd {
51 c1 : Class {
52 ancestors = c2 : Class {
53 ancestors = c3 : Class {
54 }
55 }
56 }
57 }
58 };
59
60 rhs {
61 cd {
62 c1 : Class {
63 ancestors = c2 : Class {
64 ancestors = c3 : Class {
65 }
66 },
67 ancestors = c3 : Class {
68 }
69 }
70 }
71 };
72 }
73
74 rl Package2Schema {
75
76 nac rdb noSchema {
77 s1 : Schema {
78 }
79 };
80
81 lhs {
82 cd {
83 p : Package {
84 name = pname
85 }
86 }
87 rdb {
88 }
89 };
90
91 rhs {
92 cd {
93 p : Package {
94 name = pname
95 }
96 }
97 rdb {
98 s : Schema {
99 name = pname

100 }
101 }
102 };
103 }
104
105 rl Class2Table {
106
107 nac rdb noTable {
108 t1 : Table {
109 name = cname
110 }
111 };
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112
113 nac cd noParent {
114 c : Class {
115 generalization = newpClass : Generalization {
116 general = pClass : Class {
117 }
118 }
119 }
120 };
121
122 lhs {
123 cd {
124 p : Package {
125 ownedTypes = c : Class {
126 persistent = true,
127 name = cname
128 }
129 }
130 }
131 rdb {
132 s : Schema {
133 }
134 }
135 };
136
137 rhs {
138 cd {
139 p : Package {
140 ownedTypes = c : Class {
141 persistent = true,
142 name = cname
143 }
144 }
145 }
146 rdb {
147 s : Schema {
148 ownedTables = t : Table {
149 name = cname
150 }
151 }
152 }
153 };
154 }
155
156 rl DataTypeAttributeOfTopClass2Column {
157
158 nac rdb noColumn {
159 t : Table {
160 cols = cl0 : Column {
161 name = aname
162 }
163 }
164 };
165
166 lhs {
167 cd {
168 c : Class {
169 name = cname,
170 ownedProperties = a : Property {
171 name = aname,
172 type = p : DataType {
173 name = pname
174 }
175 }
176 }
177 }
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178 rdb {
179 t : Table {
180 name = cname
181 }
182 }
183 };
184
185 rhs {
186 cd {
187 c : Class {
188 name = cname,
189 ownedProperties = a : Property {
190 name = aname,
191 type = p : DataType {
192 name = pname
193 }
194 }
195 }
196 }
197 rdb {
198 t : Table {
199 name = cname,
200 cols = cl : Column {
201 name = aname,
202 type = pname
203 }
204 }
205 }
206 };
207 }
208
209 rl DataTypeAttributeOfChildClass2Column {
210
211 nac rdb noColumn {
212 t : Table {
213 cols = cl0 : Column {
214 name = aname
215 }
216 }
217 };
218
219 lhs {
220 cd {
221 c : Class {
222 ancestors = anc : Class {
223 name = cname
224 },
225 ownedProperties = a : Property {
226 name = aname,
227 type = p : DataType {
228 name = pname
229 }
230 }
231 }
232 }
233 rdb {
234 t : Table {
235 name = cname
236 }
237 }
238 };



1.2. Adjusted Transformation from CD2RDB 196

239
240 rhs {
241 cd {
242 c : Class {
243 ancestors = anc : Class {
244 name = cname
245 },
246 ownedProperties = a : Property {
247 name = aname,
248 type = p : DataType {
249 name = pname
250 }
251 }
252 }
253 }
254 rdb {
255 t : Table {
256 name = cname,
257 cols = cl : Column {
258 name = aname,
259 type = pname
260 }
261 }
262 }
263 };
264 }
265
266 rl SetPrimaryKeyOfTopClass {
267
268 nac rdb noPK {
269 t : Table {
270 pkeys = cl : Column {
271 }
272 }
273 };
274
275 lhs {
276 cd {
277 c : Class {
278 name = cname,
279 ownedProperties = a : Property {
280 name = aname,
281 primary = true
282 }
283 }
284 }
285 rdb {
286 t : Table {
287 name = cname,
288 cols = cl : Column {
289 name = aname
290 }
291 }
292 }
293 };
294
295 rhs {
296 cd {
297 c : Class {
298 name = cname,
299 ownedProperties = a : Property {
300 name = aname,
301 primary = true
302 }
303 }
304 }
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305 rdb {
306 t : Table {
307 name = cname,
308 cols = cl : Column {
309 name = aname
310 },
311 pkeys = cl : Column {
312 }
313 }
314 }
315 };
316 }
317
318 rl setPrimaryKeyOfChildClass {
319
320 nac rdb noPK {
321 t : Table {
322 pkeys = cl : Column {
323 }
324 }
325 };
326
327 lhs {
328 cd {
329 c : Class {
330 ancestors = anc : Class {
331 name = cname
332 },
333 ownedProperties = a : Property {
334 name = aname,
335 primary = true
336 }
337 }
338 }
339 rdb {
340 t : Table {
341 name = cname,
342 cols = cl : Column {
343 name = aname
344 }
345 }
346 }
347 };
348
349 rhs {
350 cd {
351 c : Class {
352 ancestors = anc : Class {
353 name = cname
354 },
355 ownedProperties = a : Property {
356 name = aname,
357 primary = true
358 }
359 }
360 }
361 rdb {
362 t : Table {
363 name = cname,
364 cols = cl : Column {
365 name = aname
366 },
367 pkeys = cl : Column {
368 }
369 }
370 }
371 };
372 }
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373
374 rl AssociationToPersClass2FKey {
375
376 nac rdb noAssColumn {
377 t1 : Table {
378 cols = cl : Column {
379 name = assname + ” ” + clname,
380 type = pname
381 }
382 }
383 };
384
385 lhs {
386 cd {
387 ass : Association {
388 name = assname,
389 from = c1 : Class {
390 name = c1name
391 },
392 to = c2 : Class {
393 name = c2name
394 }
395 }
396 }
397 rdb {
398 t1 : Table {
399 name = c1name
400 }
401 t2 : Table {
402 name = c2name,
403 pkeys = pk : Column {
404 name = clname,
405 type = pname
406 }
407 }
408 }
409 };
410
411 rhs {
412 cd {
413 ass : Association {
414 name = assname,
415 from = c1 : Class {
416 name = c1name
417 },
418 to = c2 : Class {
419 name = c2name
420 }
421 }
422 }
423 rdb {
424 t1 : Table {
425 name = c1name,
426 cols = cl : Column {
427 name = assname + ” ” + clname,
428 type = pname
429 },
430 fkeys = fk : FKey {
431 cols = cl : Column {
432 },
433 reference = t2 : Table {
434 }
435 }
436 }



1.2. Adjusted Transformation from CD2RDB 199

437 t2 : Table {
438 name = c2name,
439 pkeys = pk : Column {
440 name = clname,
441 type = pname
442 }
443 }
444 }
445 };
446 }
447
448 rl AssociationToNonPersClass2FKey {
449
450 nac rdb noAssColumn {
451 cl : Column {
452 name = assname + ” ” + aname,
453 type = pname
454 }
455 };
456
457 lhs {
458 cd {
459 ass : Association {
460 name = assname,
461 from = c1 : Class {
462 name = c1name
463 },
464 to = c2 : Class {
465 persistent = false,
466 ownedProperties = a : Property {
467 name = aname,
468 type = p : DataType {
469 name = pname
470 }
471 }
472 }
473 }
474 }
475 rdb {
476 t1 : Table {
477 name = c1name
478 }
479 }
480 };
481
482 rhs {
483 cd {
484 ass : Association {
485 name = assname,
486 from = c1 : Class {
487 name = c1name
488 },
489 to = c2 : Class {
490 persistent = false,
491 ownedProperties = a : Property {
492 name = aname,
493 type = p : DataType {
494 name = pname
495 }
496 }
497 }
498 }
499 }
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537 rdb {
538 t1 : Table {
539 name = c1name,
540 cols = cl : Column {
541 name = assname + ” ” + aname,
542 type = pname
543 },
544 pkeys = cl : Column {
545 }
546 }
547 }
548 };
549 }
550 }



Appendix B

MetaModMap Implementation

Detail

This appendix includes some implementation details.

2.1 A Java implementation for the Trace interface

1 package typesystem.trace;
2
3 import java.util.HashMap;
4 import java.util.List;
5
6 import org.eclipse.emf.common.util.BasicEList;
7 import org.eclipse.emf.ecore.EObject;
8
9 public class TraceImpl<SRC extends EObject, TGT extends EObject > implements

Trace <SRC,TGT> {
10
11 private HashMap<SRC, List <TGT> > src2tgt;
12 private HashMap<TGT,SRC> tgt2src;
13
14 /∗ The shared global trace ∗/
15 private static TraceImpl<EObject, EObject> sharedTrace;
16
17 /∗ get the global trace ∗/
18 public static TraceImpl<EObject, EObject> getDefault()
19 {
20 if (sharedTrace == null)
21 {
22 sharedTrace = new TraceImpl<EObject, EObject>();
23 }
24 return sharedTrace;
25 }

201
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26
27 /∗ constructor to init maps ∗/
28 public TraceImpl(){
29 src2tgt = new HashMap<SRC, List <TGT> >();
30 tgt2src = new HashMap<TGT,SRC>();
31 }
32
33 /∗ implementation to get a source element ∗/
34 public SRC getSourceElem(TGT tgt) {
35 return tgt2src.get(tgt);
36 }
37
38 /∗ implementation to get a list of target element ∗/
39 public List<TGT> getTargetElems(SRC src) {
40 return src2tgt.get(src);
41 }
42
43 /∗ implementation to store a trace ∗/
44 public void storeTrace(SRC src, TGT tgt)
45 {
46 List < TGT> listTGT = src2tgt.get(src);
47
48 if (listTGT !=null ) {
49 listTGT.add(tgt);
50 }
51 else {
52 listTGT = new BasicEList<TGT>();
53 listTGT.add(tgt);
54 src2tgt.put(src,listTGT);
55 }
56
57 tgt2src.put(tgt, src);
58 }
59
60 /∗ implementation to remove a trace ∗/
61 public void removeTrace(SRC src, TGT tgt)
62 {
63 List < TGT> listTGT = src2tgt.get(src);
64
65 if (listTGT != null)
66 {
67 listTGT.remove(tgt);
68 if (listTGT.size() == 0)
69 {
70 src2tgt.remove(src);
71 }
72 }
73
74 tgt2src.remove(tgt);
75 }
76 }
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