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THÈSE

Présentée
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du Diplôme de Doctorat
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Évaluation de méthodes statistiques pour l’interprétation des mélanges

d’ADN en science forensique

Résumé de la thèse:

L’analyse et l’interprétation d’échantillons constitués de mélanges d’ADN de plusieurs indi-

vidus est un défi majeur en science forensique. Lorsqu’un expert de la police scientifique a affaire

à un mélange d’ADN il doit répondre à deux questions: d’abord, “combien de contributeurs y

a-t-il dans ce mélange ?”et puis, “quels sont les génotypes des individus impliqués ?”

Le typage seul de cet ADN ne permet pas toujours de répondre à ces questions. En effet le

problème est posé dès lors que plus de deux allèles sont observés à un locus donné, plusieurs

combinaisons génotypiques sont alors à envisager et il est impossible de déterminer avec certitude

le nombre d’individus qui ont contribué au mélange. De plus, la présence d’anomalies liées à

l’analyse de marqueurs génétiques, comme la contamination ou la perte d’allèles (“drop-out”),

peut davantage compliquer l’analyse.

Les nombreux développements statistiques dédiés à ces problématiques n’ont pas eu le succès

escompté dans la communauté forensique, essentiellement, parce que ces méthodes n’ont pas été

validées. Or sans cette validation, les experts de la police scientifique ne peuvent exploiter ces

méthodes sur des mélanges issus d’affaires en cours d’investigation.

Avant d’être validées, ces méthodes doivent passer par une rigoureuse étape d’évaluation.

Cette dernière soulève deux questions: d’abord, la question de la méthodologie à adopter, puis,

celle des outils à déployer. Dans cette thèse, nous tentons de répondre aux deux questions.

D’abord, nous menons des études d’évaluation sur des méthodes dédiées à deux questions clés: i)

l’estimation du nombre de contributeurs à un mélange d’ADN et ii) l’estimation des probabilités

de “drop-out”. En second lieu, nous proposons un logiciel “open-source” qui offre un certain

nombre de fonctionnalités permettant de faciliter l’évaluation de méthodes statistiques dédiées

aux mélanges d’ADN.

Cette thèse a pour but d’apporter une réponse concrète aux experts de la police scientifique

en leur fournissant à la fois une démarche méthodologique pour l’évaluation de méthodes, et la

possibilité d’analyser la sensibilité de leurs résultats au travers d’un outil informatique en libre

accès.



Evaluation of statistical methods for the analysis of forensic DNA mixtures

Abstract:

Analysis of forensic DNA mixtures recovered from crime scenes is one of the most challenging

tasks in forensic science. DNA mixture raise two main questions: “how many contributors are

there” and “what are the genotypes of the contributing individuals?” The genetic characteriza-

tion alone of such samples does not always answer these questions. In fact, whenever more than

two alleles are observed at a given locus, several distinct genotypic combinations are plausible

for the unknown contributors to the sample, and it is not possible to determine the number of

these contributors with absolute certainty. Besides, the presence of anomalies related to DNA

typing techniques, such as contamination or allele loss (drop-out), can further complicate the

analysis.

Numerous statistical developments facilitating DNA mixtures interpretation were proposed,

but they did not receive the expected success in the forensic community. The main explanation

for this is that these methods are not validated for forensic casework.

In order to achieve this validation criterion, the methods must undergo a rigorous evaluation

step. The latter raises two questions: i) how methods should be evaluated? and ii) what

tools can be used to conduct evaluation studies? In this thesis we attempt to answer both

questions. First, we evaluate methods dedicated to two key issues, the estimation of the number

of contributors to DNA mixtures and the estimation of drop-out probabilities. Second, we

propose an “open-source” software that offers a number of functionalities dedicated to facilitating

method evaluation through the simulation of data commonly encountered in forensic settings.

This thesis aims to provide a concrete answer to the issues raised by forensic DNA mixtures,

by providing a methodology for method evaluation and by offering necessary tools to enable

method evaluation.
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1.1 Background

The scene takes place in a house where a victim of a suspicious drug overdose is found dead

in her living room. A homicide police detective (Jim Brass) and a forensic scientist (Warrick

Brown) are in the victim’s bedroom seeking clues that may help them understand the suspicious

circumstances of the death. Detective Brass turns his attention to balloons that have probably

been used to handle drugs.

Brass: “Can you get a print off these balloons?”

Warrick (obviously annoyed by the question): “I can get a print off the air.”

This exchange, extracted from CBS’s hit television series CSI: Crime Scene Investigation1,

is typical of the numerous television shows featuring forensic scientists solving murders, rapes,

and other violent crimes using a number of advanced technologies, including DNA typing. The

techniques presented in these series are, of course, extremely fast and always capable of producing

sound scientific evidence, but what is most striking is the rapidity with which new technologies

or methods are introduced into laboratory practice. During a single episode, a forensic scientist

may develop a method to address a particular issue (for example, air fingerprinting) and apply

it to a piece of evidence.

By exaggerating the abilities of the techniques employed in forensic science, these popular

shows have contributed to raising the expectations of viewers, among whom are eligible jurors,

regarding forensic science and, in particular, DNA evidence.

Obviously, the reality of forensic science is quite different from what is described in these

TV shows. For instance, before new techniques can even be applied to real cases, they have to

i) be adapted to the reality of casework, in which forensic scientists are often confronted with

samples that are limited in quantity and quality, and ii) overcome a series of validation studies

to ensure that the yielded results are reliable and admissible as scientific evidence. Once these

criteria are fulfilled, forensic laboratories establish standardized protocols that ensure that the

technology will be used under appropriate conditions that will enable the generation of reliable

results (Rudin and Inman, 2002; Jobling and Gill, 2004).

Rigorous validation of novel methods and technologies are currently watchwords in forensic

science, but this has not always been the case.

Forensic science crosses the boundaries of a broad spectrum of sciences: biology, chemistry,

mathematics and physics provide a wide variety of tools to analyze evidence as varied as shoe

prints, bite marks, fingerprints, blood stains, glass shards, bullets, ear-prints, recorded voice, etc

(Siegel et al., 2000). Despite this wide variety of investigative tools, it is the DNA evidence that

revolutionized forensic investigations. Immediately after its introduction into forensic practice

in the early 1980’s, DNA was perceived by the general public, justice officials and a number

1CSI: Crime Scene Investigation, “Burked” (CBS television broadcast September 27, 2001). Transcript avail-
able at http://www.twiztv.com/scripts/csi/season2/csi-201.txt.
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of scientists, as the most powerful means of identification available (Aronson, 2007). As a

consequence, DNA evidence was rapidly introduced into courtrooms, although standards of use

and interpretation had not yet been discussed or published.

The “DNA revolution” began in 1984 when Alec Jeffreys discovered a particular sequence

of nucleotides in varying repetitive patterns in mammalian genomes. Jeffreys discovered that

the number of repetitions of these sequences, as well as the length of the repeat units, varied

from one individual to another, constituting length polymorphisms (Jeffreys et al., 1985b). The

potential of these regions, which became known as variable number of tandem repeats (VNTR),

was quickly realized as being tremendous for forensic identification purposes:

“The implications for individual identification and kinship analysis were obvi-

ous... It was clear that these hypervariable DNA patterns offered the promise of a

truly individual-specific identification system. We therefore coined the term “DNA

fingerprinting” as a deliberate move to emphasize the new forensic paradigm that

we could foresee if these probes could be used in criminal and civil investigations.”

(Jeffreys, 1993).

The first time DNA evidence was introduced in a criminal case was at the end of the 1980s.

The case involved a double homicide in Leicestershire, England. The DNA evidence, consisting

of the semen recovered from both victims, was characterized using restriction length polymor-

phisms, which had only just been discovered by Alec Jeffreys. Interestingly, before the DNA

evidence could help identify the perpetrator of the crimes, it first helped demonstrate the inno-

cence of a man who had confessed to the killing of one of the victims.

Immediately after this “baptism by fire” for forensic DNA typing, DNA evidence started

pouring into forensic laboratories, which found themselves, at least in the U.S., forced to out-

source a part of their casework to private companies. The rush of DNA evidence to courts had

undesirable effects. Though the technologies and procedures used in forensic DNA typing were

rooted in molecular biology, there was a considerable lack of (peer-reviewed) scientific papers

describing and justifying the specific DNA typing procedures being used. The desire to introduce

forensic DNA typing as rapidly as possible led to a lack of rigor in the practice of analyzing and

interpreting DNA evidence (Lander, 1989).

Some of these poor laboratory practices had been revealed during several U.S. trials by the

end of the 1980s, leading to the dismissal of DNA as a form of evidence because of poor-

quality laboratory work. Eric Lander was one of the first scientists to attack the “poorly defined

procedures and interpretation” of many of the companies selling forensic DNA typing services

to the police (Lander, 1991).

These first failures marked an important step in the perception of DNA evidence, at least

in the scientific community: DNA evidence was no longer considered flawless, and as a result,

forensic DNA typing was more than ever subject to debate and criticism (Lander and Budowle,

1994). While there was no disagreement in the community regarding the need for standards
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and interpretation guidelines, it was another aspect of forensic DNA typing that allowed the

controversy to be settled at greater length: the model of population genetics underlying the

calculation of the weight of DNA evidence.

When DNA evidence reveals a match between a crime scene profile and the profile of a tested

suspect, the next step is to determine the probability that the match at the tested loci is coinci-

dental. This probability is usually calculated as a product of allele frequencies across all available

loci, thereby assuming independence both between and within loci. The first points in this con-

troversy were raised by critics claiming that these assumptions of independence are violated in

human populations (Lander, 1989; Cohen, 1990). It was claimed that human populations might

be structured into subpopulations, causing variations of allele proportions among these subpop-

ulations. The existence of population structure would invalidate independence assumptions and

thus the model used to calculate the profile frequencies.

Many studies using the data that were available at the time followed to refute these assertions

(Devlin et al., 1990; Chakraborty and Jin, 1992; Weir, 1992a,b). The dispute escalated further

with the publication of a paper by two pioneers of population genetics: Richard Lewontin and

Daniel Hartl (Lewontin and Hartl, 1991). The numerous papers and letters to the editor in

response to this paper and other, related articles demonstrated the heated exchanges around

this subject (Chakraborty and Kidd, 1991; Risch and Devlin, 1992; Morton, 1992; Devlin and

Risch, 1992, to cite a few).

Two factors helped end this dispute, which was referred to as the “DNA wars” by the press2.

First, a series of population studies carried out by the U.S. Federal Bureau of Investigation

showed that subpopulation effects were not as substantial as originally claimed (U.S. Department

of Justice, Federal Bureau of Investigation, 1993). Second, a series of publications, including a

report from the U.S. National Research Council3, proposed statistical methods to account for

population substructure through the correction of allele frequencies (Balding and Nichols, 1994;

Evett and Weir, 1998).

The controversy related to both the statistical and biological aspects of forensic DNA typing

has contributed to shaping the science of forensic genetics as it is known today. This has greatly

contributed to establishing good practices and has made quality assurance and quality control

watchwords in forensic laboratories. The methods involved in forensic DNA typing have co-

evolved with dynamic validation processes, permitting the progressive introduction of tools at

the cutting edge of developments in molecular biology, as shown by today’s powerful genotyping

system based on short tandem repeat loci multiplexes. This system has undergone extremely

rigorous validation studies across the globe (Jobling and Gill, 2004). Similarly, methods for

interpreting a match in single-source profiles, i.e., profiles where the DNA of only one individual

2Humes, E. “DNA War” L.A. Times Magazine, Novembre, 29, 1992.
3NRC II - National Research Council Committee on DNA Forensic Science, National Academy Press: Wash-

ington, D. The Evaluation of Forensic DNA Evidence, 1996.
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is involved, are rooted in a rigorous population genetics framework, which was notably initiated

by the DNA wars.

While there is agreement on the interpretation of single-source stains, the interpretation of

DNA profiles consisting of mixtures of DNA from several individuals has not received the same

attention from the scientific community, at least not at a level comparable to the DNA wars,

and to date, there is no consensus on how DNA mixtures should be interpreted (Perlin, 2006).

The statistical analysis of DNAmixtures is challenging: While in single-source stains, only one

genotype is possible for each locus, several genotypes are possible in DNA mixtures. Therefore,

whenever a stain is suspected to be a mixture, reporting officers are challenged with at least two

questions: i) how many contributors are there, and ii) what are the genotypes of the contributors

to the mixture?

It is often not easy to answer these questions. In fact, the individuals who contributed to

the mixture may carry the same alleles at one or more loci, which is a phenomenon known

as allele sharing, reducing the available information and making it hard or even impossible to

either determine the number of individuals involved in the stain or to resolve the mixture into

individual components. In addition, DNA profiles can be affected by a number of anomalies

that render their interpretation even more challenging. Indeed, forensic DNA samples are often

recovered in less than ideal situations: biological material at the crime scene can be subject to

extreme environmental conditions, leading to the degradation of the DNA. This degradation,

in addition to the limited quantities of DNA available from the evidence, tends to increase the

probability of allele loss and the introduction of spurious alleles due to contamination.

It is within this context that our collaboration with the forensic laboratory in Lyon4 was

initiated: as reporting officers are confronted daily with DNA mixtures, they require statistical

tools that may help them throughout the interpretation process. A review of the relevant

literature revealed that the field of statistical interpretation of DNA mixtures has, in fact, been

one of the most active fields in forensic science in the past decade in terms of methodological

developments. However, these developments have not produced the expected level of success in

the forensic community, and there are two main reasons for this: first, courtroom resistance to

probabilistic reasoning, and second, the issue of the validation of methods for forensic science.

Courtroom resistance to probabilistic reasoning

In criminal cases, forensic scientists are too often asked by the court to report DNA evidence in

a binary fashion: “Is the suspect guilty, yes or no?” Indeed, it is generally thought that a DNA

match proves that the suspect is guilty, which is not true. A number of situations can lead to

a match between two samples, including coincidence; for example, the suspect could have left

the DNA trace during an occasion unrelated to the crime, or a coincidental match may occur

between the perpetrator and the suspect profiles. In any case, background evidence must be

4Laboratoire de Police Scientifique de Lyon, Institut National de Police Scientifique (INPS).
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used by the judge and the jury to reach a conclusion about the guilt or innocence of the suspect.

Relying on probabilistic reasoning, a scientist can only give a measure of the weight of DNA

evidence, which indicates the strength of the association between the compared samples.

However, courtrooms have a history of reluctance towards “complex” probabilistic reasoning.

This is understandable because judges, juries and lawyers have little experience in this field

(Taroni et al., 2002). Therefore, simple approaches are preferred to more complicated ones. As

a consequence, introducing methods based on probabilistic reasoning is difficult. In particular,

a number of methods have been proposed to facilitate mixture interpretation through the de-

composition of DNA profiles into individual components. However, to our knowledge, none of

them is currently in use in any forensic laboratory.

Method validation issues

The methods used for genotypic or statistical analysis in a forensic setting must undergo rigorous

evaluation through studies that eventually lead to the validation of the method for use in forensic

casework. Validation studies usually consist of comparing a new method to a reference method

or checking the consistency of the tested method with respect to criteria predefined by laboratory

practice.

Statistical methods dedicated to DNA evidence interpretation and, in particular, to analysis

of mixtures are usually complex and require computer software. However, there is a clear lack of

tools enabling the implementation and testing of these methods. This lack of tools has seriously

limited the introduction of statistical improvements into forensic practice. Indeed, it is easier

for a forensic laboratory to test tools and procedures that are related to DNA analysis than to

evaluate statistical methods, simply because tools for these tests are not available (whether in

free or in commercial software).

Given these observations, we conclude that there are at least two strategies to improve foren-

sic interpretation of DNA mixtures. The first consists of providing education and training in

statistics for forensic scientists, judges and lawyers to enhance the admissibility of statistical

methods in the courtroom. The second, which is the one that concerns us here, is the devel-

opment of accessible evaluation tools that would facilitate the validation of statistical methods

and, hence, their introduction into forensic casework. Ideally, both strategies should be pursued

simultaneously. Our thesis aims to answer this need for evaluation tools both methodologically

and technically. Throughout this manuscript, we will try to demonstrate how our contribution,

on both methodological and technological levels, can help introduce statistical reasoning into

courtrooms.

To help frame the motivation behind the work presented in this thesis, we describe a number

of aspects of DNA evidence interpretation and address common problems encountered in forensic

casework. For our purposes, the analytical process associated with the analysis of evidentiary



Chapter 1. Introduction 7

DNA stains can be described in two stages: first, the genetic analysis, and second, the statistical

analysis. The first stage involves all of the procedures that lead to the generation of a DNA

profile. The second stage most often consists of assigning a weight to the association observed

between a crime scene profile and a suspect profile. In what follows, we provide key information

on methods and procedures related to these two stages but without actually describing them in

detail.

1.2 Overview of forensic DNA typing

DNA testing is a relatively recent advent in forensic science, with its first applications in the

early 1980s. The desire to achieve a gold standard, i.e., an “ideal” in terms of reliability and

speed, has prompted forensic scientists and private companies to introduce genotyping tools for

use as soon as they are developed. The current methodology employed for DNA evidence stains

is based on the simultaneous analysis of 10 to 15 short tandem repeat (STR) loci. Before the

advent of this powerful system, investigation of VNTR loci was the preferred method of forensic

DNA typing used in most U.S. and European forensic labs.

As a matter of fact, the first case of human identification in a forensic setting, which came

during the investigation of the aforementioned Leicestershire double murder, involved the anal-

ysis of recently discovered VNTR loci. The technique used to examine VNTR loci at that time

was based on restriction fragment length polymorphism (RFLP) analysis (Jeffreys et al., 1985a;

Gill et al., 1985).

This method involves the use of restriction enzymes to cut the DNA surrounding VNTR

regions. Once the DNA is digested at specific restriction sites, the resulting DNA fragments are

separated according to their size via electrophoresis. The results of the RFLP typing process

consist of a multi-banded two-dimensional picture in which each band corresponds to a probe

matching a DNA fragment with a desired sequence (Figures 1.1 & 1.2).

Figure 1.1: Illustration of the analysis of VNTR markers through RFLP analysis. The alleles
of a heterozygote individual, differing in the number of repeats, are represented.
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Figure 1.2: Representation of an autoradiogram showing the alleles bands for a single-locus
VNTR analysis (adapted from Butler, 2001).

The original technique involved in the analysis of VNTR loci was particularly time-consuming,

as the entire process involved up to several months to characterize a single DNA stain. Another

concern regarding RFLP-based methods is the high sensitivity to degraded stains with limited

amounts of DNA. Degradation might be caused by extreme environmental conditions (e.g., water,

fire, body decomposition) and is commonly encountered in forensic contexts. As a consequence of

these limitations, alternative procedures based on the polymerase chain reaction (PCR) emerged.

This technique permits the amplification of numerous DNA copies through the use of the enzyme

DNA polymerase.

The first attempts to use PCR to amplify VNTR loci were confronted with the limitation

imposed on fragment lengths. The method was not adapted to large DNA fragments (more than

2,000 bp), and therefore, it was not adapted to VNTR loci. The search for shorter VNTR loci

has led to the discovery of STR loci, which have shorter sequences (less than 500 bp) (Weber

and May, 1989). PCR can target specific areas of the genome (STR) and generate billions of

identical copies of these regions. Once the DNA amplification step is completed, PCR-based

analysis of STR follows the same principle as described above for VNTR and the results are

visualized through an autoradiogram.

The introduction of STR loci analyzed by PCR increased the sensitivity of this analysis

by allowing small amounts of DNA to be analyzed. Additionally, the introduction of DNA

sequencing technologies led to reductions in the time and the cost needed to carry out the

analyses. Another major advance that led to the techniques currently used in forensic typing

was the advent of fluorescent detection of STR loci (Edwards et al., 1991). Fluorescent labeling

permits the simultaneous detection of multiple STR loci, referred to as STR multiplexing.

The principle of DNA detection remains the same; PCR is performed to amplify specific

regions of the genome followed by capillary electrophoresis to separate the DNA fragments

according to size. The originality of this method resides in the fluorescent labeling of the PCR
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probes. The DNA fragments separated by size during the capillary electrophoresis are drawn

past a laser that excites the florescent dye labels that are linked to the DNA during PCR.

The amounts of fluorescence are then reported in relative fluorescent units (RFUs). The end

result of the process is an electropherogram plotting the amount of fluorescence over time, with

fluorescent peaks indicating DNA material of different sizes (Figure 1.3)

Figure 1.3: Extract of an electropherogram of the analysis of a single-source stain using STR
markers. Three markers are shown: “D3S1358”, “vWA” and “FGA”. Allele peaks are labelled
with boxes containing two information: the first one indicates the allele call, determined from
the number of tandem repeats, the second one is the peak height in RFUs. For example, at
locus “FGA”, the typed individual carries alleles “18” and “20” (figure adapted from Doom and
Raymer, 2004).

“DNA profile by itself is fairly useless” (Butler, 2001). Although this statement can be nu-

anced, DNA evidence is usually considered in the context of a comparison between two samples:

a “questioned sample”, usually recovered from a crime scene or from a victim, and a “known

sample”, or reference sample, usually consisting of the DNA of an individual suspected of com-

mitting the investigated crime. If no match is observed between the two samples, then the

analysis does not go further. On the contrary, if there is a match between the sample profiles,

then a weight is assigned to the observed match.

Figure 1.4 illustrates such a situation, where a comparison between a blood stain and a

suspect profile is carried out. In this example, the blood stain is characterized with only three

loci, but forensic DNA typing is usually carried out using at least 10 or more STR loci.

Observing a match does not, in and of itself, prove that the suspect is the culprit. It is the

province of the judge and the juries to determine this in the light of other (non-genetic) evidence.

A match only indicates that the culprit and the suspect have the same profile. To quantify the

strength of the observed match, a statistical evaluation must be carried out. Indeed, the size

of the human genome makes it unrealistic to entirely sequence the DNA samples involved in a

crime scene investigation. Instead, only a limited number of markers are typed to genetically

characterize the suspect or the crime scene profile genotype. As we previously mentioned,

STR markers have several desirable properties for use in forensic DNA typing, but their most

important feature resides in their high power of discrimination between individuals.
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Figure 1.4: Illustration of a comparison between a blood stain recovered from a crime scene,
and a matching DNA profile of a suspect (adapted from Gilder, 2007).

For each of the STR loci used in forensic DNA typing, at least 10 alleles have been reported in

human populations. As a consequence of this considerable diversity, the probability of any two

unrelated individuals having exactly the same allele at each STR locus is extremely low. If we

consider a single STR locus with 15 alleles, then there are 120 possible genotypes at this locus,

and if several loci are considered simultaneously, for example, the 13 loci from the Combined

DNA Index System in use in the U.S., then at least 1027 profiles are possible.

Because of the different process shaping the genetic pool of populations (selection, migra-

tion, genetic drift), some alleles are more frequent than others, making it unlikely that allele

frequencies are uniformly distributed in the population. Therefore, only a small fraction of the

possible profiles is actually observed in the population. Still, because a complete description of

the suspect’s genome is not obtained, a central remaining question is whether it is plausible that

another (unknown) person with the same profile as the suspect could be the actual contributor

to the DNA evidence. Weighting DNA matching evidence generally consists of assigning a prob-

ability to this hypothesis. This probability varies depending on the frequency of the profile in

the target population: the rarer the profile in the population, the higher the value of the DNA

evidence.

1.3 Statistical evaluation of DNA evidence

Attaching a statistical weight to an observed match avoids the binary process of the match/no-

match analysis, which overstates the informativeness of the DNA evidence. In this regard, it is
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interesting to note that the term “genetic fingerprint” was quickly forsaken in favor of “genetic

profile”. The old terminology wrongly implied that DNA evidence is comparable to fingerprints,

which were long portrayed as perfectly individual (Coquoz and Taroni, 2006). The term “pro-

file” introduces a necessary nuance with respect to the informativeness of DNA evidence. The

genotype of an individual described with 10 STR markers is not an exhaustive or full description

of his person but rather a description of some of his features, in this case, a description of a part

of his genome.

Several statistical approaches can be employed to attach a statistical weight to DNA evidence.

The methods differ in their underlying philosophical approaches and in the type of data used to

report the strength of the DNA evidence. Buckleton et al. (2005) proposed a classification of

these methods, distinguishing the frequentist approach from the Bayesian approach.

To illustrate these approaches, we will use a fictitious scenario. Suppose that a crime has

been committed and that a blood stain has been recovered from a crime scene. The crime scene

investigators believe that this stain was left by the offender. Let us now suppose that as a

result of the police investigation, a suspect is detained and he provides a sample of his blood. A

forensic laboratory provides the profiles for both the blood stain and the suspect, and the two

samples match at all of the STR loci used for the DNA analysis (Table 1.1).

Crime scene profile Suspect profile

Locus Alleles Frequencies

D8S1179 14 0.16556 14

CSF1PO 11 0.30132 11
14 0.00828 14

VWA 18 0.20033 18

FGA 20 0.12748 20
25 0.07119 25

Table 1.1: A fictitious case of match between a blood stain recovered from a crime scene and a
suspect profile. The blood stain was characterized with four loci, the observed alleles and their
corresponding frequencies in the U.S. Caucasian popoulation (Butler et al., 2003) are given in
the table.

1.3.1 The frequentist approach to DNA evidence interpretation

In the frequentist approach, the strength of the DNA evidence is reported in terms of probabil-

ities. Two common methods are used in this approach: the random man not excluded (RMNE)

probabilities and the coincidence probabilities.

Random man not excluded (RMNE)

In the RMNE approach, the strength of the evidence is reported in terms of the probability

that a random individual will not be excluded as a contributor to the DNA evidence. In the

example shown in Table 1.1, a match is observed between the suspect’s profile and the crime



Chapter 1. Introduction 12

scene profile. The table displays the alleles observed at four loci, along with the corresponding

allele frequencies in the U.S. Caucasian population (Butler et al., 2003). If the DNA stain has

alleles A1, ..., An at a given locus l, with frequencies p1, ..., pn, the RMNE for locus l is given by:

RMNEl = 1−
(

n∑
i=1

pi

)2

, and the RMNE across multiple loci is given by: 1−
∏
l

(1−RMNEl).

Based on the data from Table 1.1, the RMNE statistic is approximately equal to 0.99, and

using this approach, the DNA evidence will be presented this way: “Approximately 99% of

unrelated individuals would be excluded as the source of this DNA.”

Using the probability of exclusion is primarily justified by its simplicity and the fact that

no assumption is issued with respect to the number of potential contributors to the mixture.

However, it should be noted that this method does not use the information available on the

genetic profiles of known contributors to the mixture (e.g., victim or suspect).

Coincidence probabilities

Coincidence probabilities (or random match probabilities) give the probabilities of a coincidental

match to the trace evidence sample. Based on the suspect’s genotypic frequencies in the target

population, the random match probabilities assess whether the match between the suspect and

the crime scene profiles could occur by coincidence. The probabilities of the multi-locus geno-

types are usually calculated by multiplying together the frequencies of the per-locus genotype,

which are in turn, calculated by multiplying the frequencies of the alleles observed in the profile

(and including a factor of two for each heterozygous genotype). This implies that the pop-

ulation being considered (in our example the Caucasian population) is under Hardy-Weinberg

equilibrium at the considered STR loci and that linkage equilibrium is verified across loci. These

simplifying assumptions fall within a simple model of population genetics, termed the “product

rule”, that has been in use since the advent of the first DNA typing cases (Evett and Weir,

1998).

Returning to the former example, the match probability is obtained by multiplying the allele

frequencies appearing in Table 1.1, and including a factor of 2 whenever a heterozygous locus is

observed. Thus, the probability that the four-locus match occurred by chance is approximately

equal to 9× 10−8. A reporting officer will generally report this probability in a manner such as,

“the probability of observing the DNA profile if the blood stain came from someone else than

the suspect is approximately 9× 10−8”.

Frequentist methods are used in many forensic laboratories, and in many countries, RMNE

probabilities constitute the only admissible statistical method for reporting the weight of DNA

evidence (Buckleton and Curran, 2008). This is understandable, as frequentist methods seem

more natural for the court (judges, juries, lawyers) and are easily understandable by non-

statisticians. However, this approach has serious limitations, mainly because the probability

of the evidence is considered under a unique hypothesis, which is usually that “someone other

than the suspect left the DNA stain recovered from the crime scene”. Critics of this approach
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argue that DNA evidence cannot be properly assessed without considering at least a second

alternative explaining the origin of DNA evidence. This issue is even more noticeable when the

DNA evidence is complex. Consider the previous example in which the suspect’s profile matched

the crime scene profile. We now consider a case in which the crime scene profile is a mixed stain

of two individual profiles (Table 1.2).

Crime scene profile Suspect profile
Locus Alleles

D8S1179 14 14
16

CSF1PO 11 11
13
14 14

VWA 14
18 18

FGA 20 20
25 25

Table 1.2: Profile of a DNA mixture recovered from a crime scene. The suspect’s profile
matches only a part of the alleles from the crime scene profile.

In such a scenario, frequentist methods can still be used, provided that the suspect is included

in the DNA evidence. Extra information is not used in the evaluation of the DNA evidence, and

in this case, the conclusions regarding the RMNE or the match probabilities would be the same

as in the example in Table 1.1.

It is obvious from this example that DNA evidence cannot be correctly assessed under only

one particular hypothesis. Ideally, the evidence should be evaluated under a flexible framework

that allows taking into account all of the information provided by genetic data available and that

includes the extra alleles observed in the sample that are not explained by the suspect’s profile.

Therefore, the frequentist approach is limited whenever any complication arises; for instance,

a mixed stain cannot be evaluated properly because the methods do not make use of all the

available information that might be relevant to the case.

These limitations, described as “frustrations” by Buckleton et al. (2005), led to the develop-

ment of alternative methods for assessing the strength of DNA evidence. The Bayesian approach

has naturally emerged as a possible alternative, especially because it has been implemented in

paternity testing since the 1930s (Essen-Möller., 1938)

1.3.2 The Bayesian approach to DNA evidence interpretation

The Bayesian approach is based on three principles of interpretation that were first formulated

by Evett and Weir (1998):

1. “To evaluate the uncertainty of any given proposition, it is necessary to consider at least

one alternative proposition.”
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2. “Scientific interpretation is based on questions of the kind “What is the probability of the

evidence given the proposition?””

3. “Scientific interpretation is conditioned not only by the competing propositions, but also

by the framework of circumstances within which they are to be evaluated.”

The Bayesian approach is thereby based on the calculation of conditional probabilities, which

usually consist of the probabilities of observing the genetic evidence given alternative hypotheses.

A typical Bayesian analysis of a crime scene sample would consist in weighting two alternative

hypotheses formulated by two adverse camps: the prosecution who wants to convict the suspect,

and the defence, who wants to exonerate the suspect. We introduce the following notations:

E: the genetic evidence, generally consists of the crime scene profile and the suspect profile
Hp: the prosecution hypothesis, in general the prosecution will seek to associate

the suspect profile with the profile of the crime scene
Hd: the defence hypothesis, in general the defence camp will seek to exonerate the suspect
I: non-genetic evidence; all the background information relevant to the case

that have led the investigators to designate the suspect as the possible offender

Note that more than two alternative hypotheses can be considered under the Bayesian ap-

proach, here we only detail the case for two competing hypotheses.

The principles of interpretation are summarized in the odds from Bayes’ Theroem:

Pr(Hp|E, I)

Pr(Hd|E, I)
=

Pr(E|Hp, I)

Pr(E|Hd, I)
× Pr(Hp|I)

Pr(Hd|I) (1.1)

This formula is also often written as: Posterior odds = Likelihood ratio × Prior odds.

The formulation in equation (1.1) is particularly attractive because it provides a mathematical

representation, of the legal process (Curran, 2009): Prior odds are the odds of the two competing

hypothesis (Hp andHd), given background evidence (I) and before any DNA evidence is received.

It can be seen as the prior belief about a suspect’s guilt (or innocence). Posterior odds are the

odds of the two hypotheses once the DNA evidence is considered, the likelihood ratios relates

the two quantities.

It is unlikely that the prior odds are determined numerically by the judges and the jury and

it is generally assumed to be 1, thus, the quantity cancels out from equation (1.1). Usually,

forensic scientists report only the likelihood ratio. As a consequence, the ratio above is more

akin to a “logical approach” than to a Bayesian approach because the prior odds is generally

assumed to be 1 (Buckleton et al., 2005).

Using likelihood ratios, the strength of DNA evidence is generally expressed into the fol-

lowing terms: “The evidence is x times more likely if the prosecution hypothesis is true than

if the defence hypothesis is true” (Gill, 2009). Unlike in the frequentist approach where the

suspect is said to be “excluded” or “included”, the LR framework is very flexible: its allows the
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simultaneous testing of the prosecution and the defence hypotheses, thereby, any scenario can

be considered under each tested hypothesis.

This flexibility led to a number of statistical developments proposing general formulations

of the LR accounting for a wide variety of situations, for example population substructure, the

existence of multiple contributors to the evidence (Curran et al., 1999), relatedness between

contributors to the evidence (Hu and Fung, 2005), etc.

The LR framework also allows accounting for uncertainty when reporting the weight of DNA

evidence. Indeed, the analysis of DNA evidence can sometimes be complicated due to stochastic

effects (some of which will be detailed later) that are exacerbated when the DNA is in low

quantity or quality. For example, allele drop-out, i.e., the non-detection of an allele that is

present in the sample, can occur, especially in degraded DNA samples. If an allele is suspected

to have dropped-out, relying on samples comparisons, then a probability can be assigned to this

hypothesis, instead of removing the problematic locus, or not exploiting the DNA evidence at

all. Anchored in a LR framework, Gill et al. (2000) proposed a generalised statistical model

that takes into account the stochastic effects that may complicate the interpretation of DNA

evidence. To our knowledge, the use of this model is not widespread in forensic laboratories.

Although the LR framework has received general acceptance in the forensic community (Gill

et al., 2006), courtrooms reluctance to statistical reasoning has significantly slowed down the

introduction of advanced statistical solutions, such as Gill et al.’s model (2000). One of the most

emblematic manifestation of this reluctance is reflected in the ruling of the Court of Appeal in

the Adams case5 (1996, UK):

“Jurors evaluate evidence and reach a conclusion not by means of a formula, math-

ematical or otherwise, but by the joint application of their individual common sense

and knowledge of the world to the evidence before them.”

As a consequence of courtroom reluctance to probabilistic reasoning, methods used to report

weight of DNA evidence are mostly based on the frequentist approach, thereby limiting the

possibilities. However, some countries have played the role of pioneers in adopting improved

methodologies. This is the case of the Forensic Science Service in the UK, who employs a LR

approach in reporting DNA evidence.

The increased sensitivity of DNA typing methods makes the use of a LR framework more

relevant then ever. Indeed, the theoretical sensitivity of current DNA typing technologies based

on STR loci is a single (diploid) cell. Still, the stochastic effects mentioned above are particularly

exacerbated in samples with low quantities of DNA. As a consequence, forensic scientists are more

and more faced to increasingly complex cases, requiring advanced statistical solutions. These

observations constitute the starting point of our thesis. Hence, throughout this manuscript, we

directly or indirectly advocate the use of statistical models anchored in a Bayesian logic, whether

5In this rape case, DNA was the only incriminating evidence heard by the jury, as all the other evidence
pointed towards innocence. After three trials, Adams was found guilty.
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for reporting the weight of DNA evidence or in a more general objective of assisting reporting

officers throughout the interpretation process.

In what follows, we give a description of some of the most confounding issues encountered in

forensic DNA typing. These will further highlight the need for statistical tools for DNA evidence

interpretation.

1.4 Issues with (forensic) DNA typing of STR loci

The analysis of STR loci is subject to anomalies that can affect the interpretation of DNA

evidence. These anomalies can arise either from the stochastic fluctuations that are inherent to

the analytical process, the type of the genetic markers employed, or the nature of the sample

itself. Hereafter we briefly review two main issues: stochastic effects and DNA mixtures.

1.4.1 Stochastic effects related to the PCR process

The use of the polymerase chain reaction in DNA typing permits the analysis of minute amounts

of DNA. However, when only a small starting number of molecules is available, stochastic fluc-

tuations related to sampling effects are exacerbated. These effects lead either to the detection

of spurious alleles unrelated to the analyzed profile or to the non-detection of alleles that are

actually present in the sample.

Stutter products Stutters are artifactual PCR products specific to STR markers. They are

small peaks that have the wrong number of repeats, usually one fewer repeat. They are caused

by the slippage of the DNA polymerase during the PCR. Distinguishing a stutter peak from a

real allele is not trivial, especially when the evidence is a mixture. However, the characteristics of

stutters have been studied relative to the main peak height. Stutters are reported as percentages

of the main (or parent) peak height, and for STR markers commonly used in DNA typing, this

percentage is generally less than 15% (Whitaker et al., 2001; Frégeau et al., 2003, Figure 1.5).

Allele drop-in Allele drop-in refers to the contamination of evidentiary samples by a source

unrelated to the investigated crime. The contaminant alleles, usually consisting of one or two

additional alleles in the DNA profile, are DNA fragments that are pervasive in the atmosphere,

for example, in plasticware. Allele drop-in must be distinguished from “gross contamination”

from an individual profile unassociated with the crime scene profile, which is characterized by

the presence of more than two spurious alleles (Gill et al., 2006).

Peak height imbalance and allele drop-out Allele peak heights are good indicators of the

post-PCR DNA quantity. Thus, alleles from a given heterozygote are expected to have similar

peak heights because the heterozygote contributes the same amount of DNA to each allele.

Still, even in pristine DNA samples, it is rare to observe identical peak heights. The variability



Chapter 1. Introduction 17

Figure 1.5: llustration of two phenomena that can complicate the interpretation of DNA
profiles: allelic drop-out and stutters.

around this expectation is explained by the fact that primers do not necessarily bind with the

same efficiency to each copy of the target alleles during the first PCR cycle. Hence, there is

always a certain amount of imbalance (Gill et al., 2007). Of course, when starting from a small

number of DNA molecules, the imbalance is exacerbated.

Allele drop-out can be seen as an extreme form of peak height imbalance (Buckleton et al.,

2005); it results from the non-amplification of an allele during PCR (Gagneux et al., 1997).

Drop-outs are generally deemed possible when two (or more) samples are compared; typically,

an allele is observed at a given locus in the reference sample, but not in the crime scene profile.

1.4.2 DNA mixtures

DNA mixtures involving two or more contributors are often encountered in forensic casework.

The high sensitivity of DNA typing systems based on STR multiplexes makes it possible to

recover minute amounts of DNA from all types of contacted objects and surfaces. These samples

often consist of a mixture of DNAs from several individuals.

Provided that the observed peaks are not artifactual, the presence of a mixture is plausible

whenever a locus exhibits more than two alleles. However, allele counting alone is not a reliable

indicator of the number of contributors because of allele sharing, i.e., contributors to the mixture

may carry the same alleles at one or several loci (Figure 1.6).

Given the heterozygosity of the STR markers used in forensic DNA typing, the typed loci are

expected to exhibit enough distinct alleles to permit the detection of a mixture. However, as the

number of contributors increases, the number of distinct alleles decreases, and therefore, allele

counting has limited efficiency with complex DNA mixtures. This may be problematic for as few

as three contributors (Buckleton et al., 2007). The amount of allele sharing is accentuated when

contributors are related or when they belong to the same subpopulation, in which the amount

of co-ancestry is significant.
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Figure 1.6: Electropherogram of a DNA mixture. Profiles of the contributing individuals
(contributors 1 and 2) are also provided. The profiles are characterized with three STR loci
“D3S1358”, “vWA” and “FGA”. Contributors 1 and 2 share one allele (“17”) at locus “vWA”,
thereby only two alleles are present at this locus in the electropherogram of the mixture (adapted
from Doom and Raymer, 2004).

In addition to allele sharing, the presence of anomalies in a DNA profile can further com-

plicate its interpretation. For example, the presence of a contaminant allele can lead to an

over-estimation of the number of contributors to the sample, or it may yield false genotypes for

the potential contributors.

We previously explained that the issues raised by the interpretation of forensic DNA mixtures

can be summarized in two questions: i) how many contributors are there, and ii) what are the

genotypes of the contributors to the mixture?

Several methods have been proposed for the interpretation of forensic DNA mixtures. Some

of them focus on putting a weight on the evidence when a suspect is available (Balding and

Nichols, 1994; Weir et al., 1997; Curran et al., 1999; Fukshansky and Bär, 1999; Fung and Hu,

2000; Hu and Fung, 2005). More advanced statistical methods deal with mixture deconvolution,

i.e., the enumeration of the possible genotypic combinations forming the mixture (Evett et al.,
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1998; Clayton et al., 1998; Gill et al., 1998a,b; Perlin and Szabady, 2001; Mortera et al., 2003;

Wang et al., 2006; Cowell et al., 2007a,b,a; Curran, 2008; Perlin and Sinelnikov, 2009).

These methods meet the needs that may emerge in different stages of DNA mixture inter-

pretation. Methods dedicated to weighting evidence are typically used once the alleles present

in a DNA profile have been called by a reporting officer, and the yielded results are recorded in

a report, which is usually transmitted to the police or justice officials. Mixture deconvolution

methods can be thought of as particularly helpful when no reference sample, such as a profile

from a victim or a suspect, is available. The plausible genotypes can thus be used, for example,

in a database search.

However, not all of these methods have been introduced into forensic casework. In particular,

methods dedicated to mixture deconvolution are not currently being used. As we previously

explained, there is a reluctance to statistical reasoning that may slow down the introduction of

new methods, but another important factor is the lack of evaluation of the proposed methods

because there are no tools or methods for evaluating these methods, it is not easy, or even

possible for many forensic laboratories, to introduce these methods in their casework.

1.5 Thesis outline

The methodological aspects of the issue of method validation have been discussed within a

context of a collaboration with the national forensic laboratory in Lyon (Institut National de

Police Scientifique, INPS). As in many other forensic laboratories, reporting officers at the INPS

are challenged daily by the complexity of DNA mixtures. Our interlocutors were, of course,

aware of the multitude of methods that were proposed in the literature, but they were frustrated

by not being able to implement them in their routine work because these methods have not been

validated for casework.

Our contribution to this problem therefore revolves around the issue of method evaluation.

Given the number and the diversity of existing methods for DNA mixture interpretation, it was

not realistic to undertake a systematic review of existing tools for the interpretation of mixtures

for the purpose of their validation, nor would the results be accurate. Instead, we focused

on identifying key issues that affect various aspects of mixture interpretation and, in parallel,

provide the necessary tools to enable method evaluation.

The second chapter of this thesis presents the early results of this work. Within the framework

of a close collaboration with the national forensic laboratory in Lyon, we developed a method

to estimate the number of contributors to a DNA mixture. With the aim of assessing and

thus improving existing methods, we evaluated this method and compared its efficiency to the

method currently used in most forensic laboratories, which is based on allele counting, and we

demonstrate that our method constitutes an accurate alternative to the current practice.

In the third chapter, we focus on the interpretation of anomalous DNA profiles, focusing in

particular on recent statistical developments in forensic literature related to the estimation of
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allelic drop-out (Gill et al., 2009; Tvedebrink et al., 2009). While these methods appeared to be

promising for the forensic community, we were concerned about whether they could be used in

practical cases. This led us to propose a framework for evaluating these models.

Our evaluation approach naturally led us to develop software to automate the process. In the

fourth chapter of this thesis, we introduce the forensim package for the R statistical program

(R Development Core Team., 2006), which provides a set of tools dedicated to the evaluation of

statistical methods involved in mixture interpretation. In conclusion, we present a review of our

contribution to the interpretation of forensic DNA mixtures, and we detail critical points and

perspectives that we intend to explore in the future.
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2.1 General background

The increase in sensitivity offered by the PCR has led forensic laboratories to generate increasing

numbers of profiles from “touch DNA” which is also referred to as DNA traces, collected from

all kinds of touched or handled objects. The interpretation of these DNA samples, which are

often generated from as little as a single diploid cell (Findlay et al., 1997), is rather problematic

because the artifacts related to PCR are exacerbated in DNA samples with a low template

amount. Another major issue with these samples is that they generally consist of mixtures.

This is not surprising because these traces are collected from objects (e.g., a doorknob) that

may have been touched or handled by several individuals.

Despite these difficulties, the great sensitivity of typing methods has greatly facilitated the

exploitation of DNA evidence in criminal investigations. As a consequence, many investiga-

tors consider DNA the “gold standard” in terms of investigative tools, particularly when no

background information, such as from an eyewitness or a victim’s testimony, are available. For

example, among the 14,000 DNA traces analyzed per year by the national forensic laboratory

in Lyon, 90% of the samples consist of traces with no known contributors or identified sus-

pects. Moreover, more than half of these samples are classified as mixtures of more than two

contributors1.

In this context, reporting officers of the forensic laboratory in Lyon are regularly asked by

police investigators to provide indications of the possible number of contributors. Because this

number can never be known with certainty, it has become a common laboratory practice to set

the lower limit of this number to the minimum required to explain the observed profiles (Paoletti

et al., 2005; Clayton and Buckleton, 2005). In practice, if a locus shows n distinct alleles, the

(minimum) number of contributors is set to �n2 � because each contributor carries at most two

different alleles at each locus.

DNA evidence is usually analyzed using 10 or more STR loci, and thus, the locus showing

the maximum number of contributors sets the limit. This method is often referred to as the

maximum allele count method (Paoletti et al., 2005). However, setting a lower limit is different

from attempting to estimate the most supported number of contributors from the data alone.

Moreover, potential allele sharing between the mixture contributors limits the ability of allele

counting to infer the number of contributors. The limitations of this method have left many

practitioners frustrated. It is in this context that the methodological aspect of the question of

the estimation of the number of contributors was initially discussed with our collaborators from

the forensic laboratory.

Several methods relying on different statistical concepts were developed to facilitate mixture

resolution (or deconvolution) into individual components (Evett et al., 1998; Clayton et al.,

1998; Gill et al., 1998a,b; Perlin and Szabady, 2001; Mortera et al., 2003; Wang et al., 2006;

Cowell et al., 2007a,b; Curran, 2008; Perlin and Sinelnikov, 2009). Additionally, many statistical

1Laurent Pène, personal communication.
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developments anchored to a Bayesian framework were proposed for assigning the weight of DNA

evidence consisting of mixed DNAs (Balding and Nichols, 1994; Weir et al., 1997; Curran et al.,

1999; Fukshansky and Bär, 1999; Fung and Hu, 2000; Egeland et al., 2003; Hu and Fung, 2005) 2.

It is notable that, except for Egeland et al. (2003), none of these developments have considered

inferring the number of contributors from the available data. This is not surprising because two-

person mixtures are believed to account for the majority of DNA mixtures in casework (Torres

et al., 2003), and in most cases, one of the contributors, for instance the victim, is known (Aitken

and Taroni, 2004).

Given these observations, we were naturally concerned with current practices for determining

the number of contributors, and we therefore evaluated the recent developments relevant to

this topic. We briefly introduce two commonly used approaches for the interpretation of DNA

mixtures. This will help seize the contribution of our first article and will lead us to discuss the

issue of making use of quantitative data in the statistical methods dedicated to DNA mixtures.

2.2 DNA mixtures interpretation methods

The simplest method for mixtures resolution consists in excluding or including the suspect profile

as a potential contributor to the mixture (Butler, 2001). However, most forensic laboratories

rely on both qualitative and quantitative data for the interpretation of mixed stains. Hereafter

we briefly introduce two approaches dedicated to mixture interpretation, which differ according

to the type of data employed: qualitative data or quantitative data.

2.2.1 Qualitative assessment of DNA mixtures

The question of the number of contributors to DNA mixtures has primarily been addressed by

taking into account the uncertainty about this number into the likelihood ratio calculations.

This implies that the competing propositions under evaluation, namely the prosecution and

the defence propositions, state who the known contributors to the stain were and how many

unknown contributors were involved. Plus, the number of unknown contributors might differ

under each hypothesis.

Weir et al. (1997) were the first to propose a general formula for the likelihood ratios (LR)

allowing for an unknown number of contributors. Stating the number of unknown contributors

to the stain, x, the set of alleles in the crime stain, E, and the alleles carried by the unknown

contributors, U , the LR calculations are based on the ratio of two probabilities,

L =
P (E|Hp)

P (E|Hd)
=

Px(U |E,Hp)

Px(U |E,Hd)
(2.1)

2These are not exhaustive lists of existing methods, but rather enumerations of the most significant develop-
ments.
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where Px(U |E,Hp) is the probability that x unknown contributors carry the alleles in U ,

not carried by known contributors under the Hp hypothesis. Subscript x indicates the number

of unknown contributors to the stain under the considered hypothesis. Note that x can differ

between hypothesis Hd and Hp.

Weir et al. (1997) gave a generic formula for computing this probability:

Px(U |E,Hd) = T 2x
0 −

∑
j

T 2x
1;j +

∑
j,k

T 2x
2;j,k −

∑
j,k,l

T 2x
3;j,k,l + ... (2.2)

with:

T0: the sum of frequencies of all alleles in E

T1:j : sum of frequencies of all alleles in E except the jth allele in U

T2;j,k: sum of frequencies of all alleles in E, except the jth and kth alleles in U , and so on

Curran et al. (1999) elegantly generalized this formula by allowing populations subdivision to

be accounted for. This formula is now refereed to as the “general formula for likelihood ratios”

(Buckleton et al., 2005).

This approach is usually refereed to as the “non restricted combinatorial approach” because

all genotypic combinations of the unknown contributors are considered, without any restrictions

(Gill et al., 2006). Significant improvements were proposed for this method, they allow several

factors, such as relatedness between contributors or population substructure, to be accounted

for (see for example Fung and Hu, 2000).

Even if the above liklelihood ratio formulation explicitly introduces the uncertainty about the

number of contributors to the stain, it does not help decomposing the mixture into individual

components. Hence, in situations where no known or suspected contributors are available,

another strategy is needed. Currently, most forensic laboratories rely on the Binary model

(Clayton and Buckleton, 2005) that make use of quantitative data, i.e., the alleles peak heights,

to infer genotypes from two-person mixture. Note that deconvolution methods can also be used

when reference samples are available.

2.2.2 Quantitative assessment of DNA mixtures

While the qualitative assessment of mixtures considers all possible genotypic combinations, the

use of quantitative data allows removing the combinations that are not consistent with the data.

Although interpretation guidelines vary between laboratories (Perlin, 2006), the rationale be-

hind these practices relies on the Binary model, derived from the work of Evett et al. (1998).

This model is a manual method dedicated to the deconvolution of two-person mixtures. The

rationale behind it is that quantitative data, i.e., peak heights or areas, are directly related to the

post-PCR amount of DNA contributed to the mixture by each individual. Since different con-

tributors contribute different, or at least slightly different amounts of DNA, alleles from different

contributors have different intensities, and hence, alleles from the same contributors will have



Chapter 2. Determining the number of contributors to DNA mixtures 25

similar intensities. Thereby, starting from an estimate of the post-PCR mixture proportion, i.e.,

the relative amount of DNA contributed by each individual participating to the mixture (after

the PCR is carried out), genotypic combinations are considered plausible if the corresponding

mixture proportion is consistent with the initial estimate. Clayton et al. (1998) formalized the

Binary model for the resolution of two-person mixtures, by recommending a series of five steps:

1. Identify the presence of a mixture: once artefactual peaks, resulting for example from

stutters, are eliminated, a mixture can be identified by the presence of three or more peaks

at one or several loci.

2. Assume the number of contributors: the identification of the number of contributors is

based on the maximum number of distinct alleles observed across loci (maximum allele

count method). This is straightforward for two-person mixtures. The circumstances of the

crime scene can also give indications about the potential number of contributors.

3. Determine the mixture ratio: the mixture ratio, denotedMx, gives the relative contribution

of each individual to the analysed stain. Mixtures can range from equal proportions of each

contributing genotype, to one component being greatly in excess (Butler, 2001). Using loci

where there are no shared alleles between contributors, for instance, loci with four distinct

peaks, it is possible to determine Mx as the ratio between peak heights belonging to each

contributor.

4. Enumerate all possible mixture contributor combinations: once the mixture proportion

is determined from a given locus, several combinations of genotypes are possible for the

remaining loci. A given genotype combination is eliminated if it violates the expected peak

profiles for an estimated mixture ratio of M̂x (hat is for estimation).

5. Compare to reference sample: in order to avoid a suspect-driven approach, where only

genotypic combinations matching the suspect’s profile are selected, the above steps are

taken without considering the available reference samples. The Binary model does not

yield a best single genotype, but a list of genotypes that are well supported by the data. If

the suspect genotype matches one of the plausible combinations, then it is plausible that

he has contributed to the DNA mixture.

Given that currently used methods in mixture interpretation all involve some knowledge

about the potential number of contributors, and given the limitations of the maximum allele

count method, currently used in most of forensic laboratories, we strove to evaluate existing

methods dedicated to estimating the number of contributors. To our knowledge, only one study

addressed this question under the same perspective discussed here: Egeland et al. (2003) sug-

gested a likelihood-based estimator of the number of contributors when genetic data alone is

used, and irrespective of background information that may be available. As we shall explain in

the following article, we modified this estimator to allow taking into account two cases relevant
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to forensic casework: multiallelic loci and population substructure. This development was also

an opportunity to evaluate the efficiency of this method against the method currently used in

many forensic laboratories: the maximum allele count.

2.3 Article 1: “Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform bet-

ter than maximum allele count?”

Accepted for publication in the Journal of Forensic Sciences, to appear in 2011.
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Abstract

Determining the number of contributors to a forensic DNA mixture using

maximum allele count is a common practice in many forensic laboratories.

In this paper, we compare this method to a maximum likelihood estimator,

previously proposed by Egeland et al. Int J Legal Med 2003;117 (5):271-5,

that we extend to the cases of multiallelic loci and population subdivision.

We compared both methods’ efficiency for identifying mixtures of two to five

individuals in the case of uncertainty about the population allele frequen-

cies and partial profiles. The proportion of correctly resolved mixtures was

greater than 90% for both estimators for two and three-person mixtures,

while likelihood maximization yielded success rates two to fifteen-fold higher

for four- and five-person mixtures. Comparable results were obtained in the

cases of uncertain allele frequencies and partial profiles. Our results sup-

port the use of the maximum likelihood estimator to report the number of

∗Corresponding author
Email address: hinda.haned@univ-lyon1.fr (H. Haned)

Accepted for publication in Journal of Forensic Sciences To appear (2011)
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contributors when dealing with complex DNA mixtures.

Keywords: Forensic Science, DNA typing, likelihood estimator, STR loci,

DNA mixtures, population subdivision, allele count, partial profiles

1. Introduction1

Interpretation of forensic DNA mixtures is a challenging task in forensic2

casework. Mixtures arise when more than one individual contribute to the3

DNA stain. This is common in cases of sexual assault where the source of4

DNA evidence can include the victim, the perpetrator(s) and the consensual5

partner(s) of the victim.6

The interpretation of DNA evidence is even more challenging when com-7

peting hypotheses are weighted using likelihood ratios because it is implicitly8

assumed that the number of contributors is known. As misclassified DNA9

mixtures can lead to dramatic effects on the result of a police investigation,10

several attempts have been made to assess this problem. Weir (1), Brenner11

et al. (2), Buckleton et al. (3), and Lauritzen and Mortera (4) have all12

suggested bounds on likelihood ratios. None of these authors considered the13

matter of inferring the number of contributors from the data although this14

is a prevalent line of questioning in court.15

It is common laboratory practice to set the lower bound on the number of16

contributors to the minimum required to explain the observed set of alleles.17

This bound is based on the maximum allele count throughout the analyzed18

loci, i.e., the locus showing the maximum number of alleles determines the19

bound. This method is believed to be an unreliable predictor because of20

the effect of allele sharing between contributors to the mixture known as21

2
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the masking effect (5, 6). Setting a lower bound is obviously different from22

attempting to estimate the most supported number of contributors from the23

data alone. Egeland et al (7) proposed to overcome this issue by making24

explicit use of the available allele frequencies of the target population. They25

suggested a likelihood-based estimator of the number of contributors using26

diallelic markers when conditions for Hardy-Weinberg equilibrium are met in27

the population. This method was shown to perform rather well for at least28

200 diallelic markers and for mixtures of two and three contributors.29

DNA stains from crime scenes are usually characterized through multial-30

lelic Short Tandem Repeat (STR) loci, so there is a need to investigate which31

approach is the most efficient in determining the number of individuals in-32

volved in a mixture. Moreover, several studies have shown that longer DNA33

fragment lengths carry a greater probability of lost information from allelic34

drop out (8) leading the forensic expert to conclude that the DNA evidence35

has partial profiles.36

In this paper, we aim to: i) extend the work of Egeland et al. (2003) to37

an arbitrary number of alleles per locus and to dependencies between alleles38

due to population subdivision and ii) investigate through simulations the39

performance of two methods for estimating the number of contributors to40

a DNA mixture from the genetic data alone and irrespective of background41

information that may affect this estimation: The maximum allele count and42

the maximum likelihood estimator.43

We investigate the methods properties in three distinct situations: In the44

first situation, all contributors to the mixture belong to the same population45

with known allele frequencies; in the second situation, we take into account46

3
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the effect of not knowing with certainty the allele frequencies of the contrib-47

utors’ population, a situation that may arise from population subdivision, in48

the third situation, we seek to identify the effects of partial profiles on the49

estimation accuracy for both the maximum allele count and the likelihood-50

based estimators.51

In order to facilitate reproducibility of our results and extension to other52

situations, our method is freely available in the package forensim for the R53

statistical software (9).54

2. Methods55

2.1. Extending the likelihood estimator to the cases of multiallelic loci and56

population subdivision57

Let A be a specific locus with alleles A1, ..., Ak with frequencies p1, ..., pk58

in a given population. Let m be the set of observed alleles in a DNA stain59

from a crime scene. We are interested in estimating the probability of ob-60

serving m knowing that there are x individuals contributing to the mixture.61

This is the likelihood of the data m conditional on x, denoted: LA(x).62

63

Example.64

Suppose that a crime scene stain shows alleles A1 and A2 at locus A and65

the forensic expert wants to determine the likelihood that two contributors66

supply these alleles. Combining the observed alleles into two individual geno-67

types yields 7 distinct pairs of possible genotypes for the two contributors:68

(A1A1, A2A2), (A2A2, A1A1), (A1A1, A1A2), (A2A2, A1A2), (A1A2, A1A1),69

(A1A2, A1A2), and (A1A2, A2A2).70

4
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Under the hypothesis that the contributors to the DNA stain are not71

related, the estimation of each genotype proportion can be obtained as a72

product of the allele frequencies using the Hardy-Weinberg formula. This73

assumes the independence of alleles between and within individuals. This74

simplifying hypothesis as a means to determine the genotype proportions75

from allele frequencies is termed the “product rule” (10).76

The probability of observing the pair of genotypes (A1A1, A1A2), denoted77

Pr(A1A1, A1A2), corresponds to the probability of observing one homozygote78

for A1 and one heterozygote A1A2, which is p212p1p2. By adding the proba-79

bilities for each possible genotype pair, we finally obtain:80

LA(x = 2) = 4p31p2 + 6p21p
2
2 + 4p1p

3
281

These results could be derived analytically in a simple case (one locus82

and two hypothetic contributors), but the complexity of the likelihood com-83

putation increases dramatically with the numbers of loci and contributors;84

hence, there is a need for a general formulation of the likelihood function. In85

order to achieve this generalization, we follow the work of Curran et al. (11)86

who gave a general framework for interpreting DNA mixtures that can take87

population subdivision into account. In their paper, a general formula for88

mixture interpretation evaluation was given in the form: Pr(E|H), where E89

is the DNA evidence and H is the hypothesis under which the data is being90

considered, for example, the prosecution hypothesis.91

When only genetic data is considered, the evidence E is composed of92

the set of alleles observed in the mixture, denoted C. This set of alleles is93

composed of: 1) the set of alleles found in the typed individuals who are94

known to have contributed to the mixture, denoted T ; 2) the set of alleles95

5
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found in the typed individuals known to be non-contributors to the mixture,96

denoted V ; and 3) the set of alleles carried by the unknown contributors,97

denoted U . For instance, in the case of a DNA stain from a rape case, T98

is the set of alleles carried by the victim, her consensual partner(s), and99

potentially the suspect(s); V is the set of alleles carried by cleared suspects;100

and U is the set of alleles carried by the unknown contributors to the mixture.101

The general formula of the likelihood can thus be derived from the par-102

ticular case where all contributors to the mixture are unknown and there are103

no typed individuals. This corresponds to:104

T = V = ∅ and C = U . Note that the equality C = U does not correspond105

to the degenerate case evoked in (11) where unknown contributors can have106

any genotypes in C. In our case, the x unknown contributors genotypes must107

explain all alleles in C; thus, all possible genotypes attributable to the un-108

known individuals must explain the alleles present in the mixture, and they109

must all be taken into account in the likelihood calculation.110

General formulation of the likelihood function.111

Before giving the general formulation of the likelihood function we first spec-112

ify the notations used in this paper, following Curran et al. (11):113

x: The unknown number of contributors to the DNA mixture114

c: The distinct number of alleles observed in the DNA stain115

r: The number of unconstrained alleles, r = 2x− c116

ri: The unknown number of copies of allele Ai among the r unconstrained117

alleles of the stain118

ui: The unknown number of copies of allele Ai in the stain , with
c∑

i=1

ui = 2x119

and ui = ri + 1120

6
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θ: Wright’s FST coefficient, which gives the probability of identity by de-121

scent of two alleles taken at random from a subpopulation, in two distinct122

individuals.123

In our case, all contributors are unknown. Consequently, the DNA evi-124

dence, E, is only composed of the alleles present in the stain, C, and all other125

quantities defined in (11) and related to the typed individuals, whether or126

not they are known to have contributed to the mixture, are set to zero. The127

likelihood of having x individuals giving the alleles observed at a locus A in128

the case of all individuals belonging to the same subpopulation, is given by129

the general formula:130

131

LA(x) =
r∑

r1=0

r−r1∑
r2=0

...

r−r1−r2−...−rc−2∑
rc−1=0

(2x)!
c∏

i=1

ui!

c∏
i=1

ui−1∏
j=0

[(1− θ)pi + jθ]

2x−1∏
j=0

[(1− θ) + jθ]

(1)132

Equation (1) takes into account the variation in the subpopulation allele133

frequencies. When there is no need to consider population subdivision, the134

likelihood of the data is simply obtained by setting θ to zero.135

136

The likelihood estimator.137

The maximum likelihood estimation of x, when a single marker A is consid-138

ered, satisfies:139

max
j=1,2,3,...

LA(x = j) (2)140

7
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When multiple loci are considered simultaneously, the likelihood is calculated141

as the product of the likelihoods of each locus:142

143

max
j=1,2,3,...

∏
A

LA(x = j) (3)144

The result in equation (3) is straightforward for the case of a homoge-145

neous population, that is when θ = 0 in equation (1). When there are allele146

dependencies in the general population due to subdivision, the overall loci147

likelihood (in the subpopulation) is still, to a close approximation, the prod-148

uct of the single locus probabilities, because the dependencies between alleles149

at different loci are corrected through θ (12).150

In fact, the likelihood estimator defined by equations (2) and (3) extends151

the likelihood-based estimator derived by Egeland et al. (7) to the case of152

multiallelic loci and allows population subdivision to be taken into account153

through θ. Thus, the value for θ must be chosen according to the level of154

subdivision of the population. Typically, θ is chosen in the interval [0,0.03]155

when dealing with human populations (13).156

Most forensic DNA mixtures consist of two-person mixtures (14); thus,157

for the estimator to be biologically meaningful, estimates were searched in158

the discrete interval [1,6]. This is a sensible upper limit for the number of159

contributors that can be analyzed in practice.160

161

2.2. Evaluation of the methods’ performance162

Known allele frequencies case.163

We used a published data set of allele frequencies in three US populations164

8
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(15): African Americans, Caucasians, and Hispanics. These populations were165

characterized by 15 STR loci, of which 13 correspond to the core CODIS loci.166

Genotypes were simulated by drawing alleles independently at their rel-167

ative frequencies from each population data base. Mixtures were then sim-168

ulated by randomly drawing genotypes at each locus. The performances of169

the likelihood-based estimator and maximum allele count were compared on170

1000 simulated mixtures comprising two to five contributors.171

Uncertain allele frequencies case.172

Generally, in the case of population subdivision, allele frequencies of the173

subpopulations are not known with certainty. This is due to the difficulty of174

defining the subpopulation of an individual (16). In this paper, we analyze175

the effect of uncertainty on allele frequencies by modeling the differences in176

allele frequencies between the global population and a subpopulation through177

a Dirichlet model. The term “subpopulation” means that the allele frequen-178

cies in the target population are not known with certainty and does not imply179

allele dependencies between and within and loci.180

The allele frequencies for a given locus in a given subpopulation are gen-181

erated as random deviates from a Dirichlet distribution (17-18). Each allele182

frequency is a random variable with a parameter αi = pi(1− θ)/θ where θ is183

the FST coefficient. Denoting p
′
i the frequency of allele Ai in the subpopula-184

tion, the allele frequencies are modeled as:185

186

(p
′
1, ..., p

′
k, ) → Dirichlet(α1, ..., αk)187

The global allele frequencies were taken from the African American pop-188

9
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ulation (15). We chose to set θ = 0.03 in the variance parameter αi. This189

value corresponds to the correction factor suggested by the National Research190

Council (19) for dealing with highly-subdivided human populations. Since191

we were only interested in studying the effect of uncertainty on the subpop-192

ulation allele frequencies, all loci were simulated independently within the193

subpopulation.194

We compared the results of the maximum allele count to the likelihood-195

based estimator on 1000 simulated mixtures of two to five contributors. We196

investigated the differences between results when the uncorrected form of the197

likelihood-based estimator is used (θ = 0) and compared them to the results198

obtained using the corrected form by setting θ = 0.03.199

Evaluation of the methods’ robustness to partial profiles.200

We analyzed the effect of successively removing loci while estimating the201

number of contributors on 1000 simulated mixtures of two to five individuals.202

The markers were successively removed according to their alleles expected203

median length (20). This corresponds to what happens in the case of a204

degraded DNA sample: Longer DNA fragments drop out first (8).205

All programs used for the simulations were implemented in the foren-206

sim package for the R statistical software, available at http://forensim.207

r-forge.r-project.org/.208

3. Results209

3.1. Known allele frequencies case210

The accuracy of estimations decreased with the number of contributors211

for both the maximum allele count and the maximum likelihood estimators212

10
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(Table 1). The probability of a correct estimation was always greater than213

90% for mixtures of two or three individuals. Maximum allele count produced214

better estimates for three-person mixtures but the efficiency of this method215

decreased dramatically for complex mixtures of four or five individuals, while216

maximum likelihood gave a correct classification rate ranging from 64% to217

79% in the three populations.218

3.2. Uncertain allele frequencies case219

The effect of uncertainty on allele frequencies was investigated for the220

case where the real allele frequencies deviate greatly from those used in the221

estimator (FST = 0.03, Table 2). Accurate estimates were obtained with the222

maximum allele count for mixtures with two or three contributors (success223

rate greater than 90%). The percentage of correctly identified stains was224

lower when dealing with four or five contributors. For instance, only 21% of225

five-person mixtures were correctly identified.226

The corrected (θ = 0.03) and uncorrected forms (θ = 0) of the likelihood-227

based estimator produced similar results for mixtures of two or three indi-228

viduals. The corrected form was more efficient in cases of a greater number229

of contributors: 60% of five-person mixtures were correctly identified, which230

was more than twofold the maximum allele count success rate.231

3.3. Method robustness to partial profiles232

The effects of partial profiles on the estimators’ accuracy are shown in233

Figure 1. Only mixtures simulated from African American allele frequencies234

are shown here in the known allele frequencies case. Similar results were235

obtained for the other two populations (Caucasians and Hispanics) as well236

11
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as in the uncertain allele frequencies case for all three populations (results237

not shown). Consistent with previous results (Tables 1 & 2), the accuracy238

of both methods decreased with the number of contributors. The relative239

performance of both methods changed with the number of contributors in240

the mixture. The maximum allele count was revealed to be more efficient241

for mixtures of two or three persons, while the likelihood-based estimator242

performed better for mixtures of more than three individuals (see Figure 1).243

A 90% success rate was reached using the maximum allele count for a two-244

person mixture when exploring only two loci while five were needed for the245

maximum likelihood estimator. For three-person mixtures, the loci number246

increased to 10 and 14 respectively. For complex mixtures of four or five247

contributors, the success rates fell to 63% for the likelihood-based estimator248

and to 0.042% for the maximum allele count using all 15 loci.249

Finally, to further our understanding of the above results, we looked at250

the characteristics of the profiles responsible for the biased estimations with251

the maximum likelihood estimator (Tables 1 & 2, Figure 1). We analyzed252

the sensitivity of the estimator to allele frequencies. An illustration of our253

results is shown in Figure 2 for a three-person mixture characterized by one254

locus. The maximum allele count can only give a lower bound to the real255

number of people involved in the mixture; thus, it cannot give overestimates.256

In contrast, maximizing the likelihood can lead to either underestimation or257

overestimation. Underestimation occurred when there are rare alleles in the258

mixture, while mixtures with frequent alleles also tended to be misclassified.259

12
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4. Discussion260

We compared the efficiency of the commonly-used maximum allele count261

and an estimator based on likelihood maximization in inferring the number262

of contributors to forensic DNA mixtures.263

Globally, maximizing the likelihood did not perform better than the max-264

imum allele count for mixtures of two or three individuals. When all loci were265

documented and all mixture contributors belonged to the same population266

with known allele frequencies, the maximum allele count gave lower misclas-267

sification rates (varying from 1 to 3%) than the likelihood-based estimator268

(varying from 6 to 8%). These results corroborate previous findings for the269

former estimator (5).270

Maximum allele count gives correct estimates for mixtures comprising x271

individuals when there are at least 2x − 1 alleles at one of the considered272

loci in the stain. While this condition is often met in two- or three-person273

mixtures it is unlikely to find as much distinct alleles in mixtures of high274

order because of allele sharing (6). For instance, five-person mixtures are275

unlikely to show 9 distinct alleles at any of the considered loci, even if very276

polymorphic markers are used. Consequently, the maximum allele count277

method which tends to underestimate the real number of contributors in278

mixtures of high order (x > 3), still gives satisfactory results for two- and279

three-person mixtures. Maximum likelihood estimator can either over or280

underestimate the real number of contributors for all mixture types.281

As expected, the uncertainty of estimations increased with the number282

of contributors for both methods while four- and five-person mixtures were283

more accurately identified by maximizing the likelihood. This is due to allele284
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sharing between contributors. As maximum allele count relies only on the285

number of distinct alleles, mixtures with greater numbers of contributors286

have greater amounts of allele sharing, which leads to the underestimation287

of the number of contributors.288

Previous studies showed that using maximum allele count in the case of289

substantial allele sharing leads to biased estimates (5). The bias is likely to290

increase in cases of population subdivision. Here, we were more interested291

in one of the consequences of subdivision on the likelihood-based estimator,292

namely, the uncertainty on allele frequencies of the subpopulation, because293

the estimator explicitly makes use of the allele frequencies. In the case of un-294

certain allele frequencies we observed that the corrected form of our estimator295

performed better than the uncorrected one only for mixtures consisting of296

four or five contributors. Mixtures involving two or three individuals were297

more accurately classified with the uncorrected form of the estimator. The298

correction for subdivision was thus efficient in the uncertain allele frequencies299

case only for complex mixtures but this might not be the case in highly sub-300

divided populations, where the independence of individual genotypes might301

not be realized.302

In the case of partial profiles, both of the estimators showed a similar303

decrease in precision for two- and three-person mixtures, while the likelihood-304

based estimator was clearly more robust to partial profiles when dealing with305

four- and five-person mixtures. The lack of robustness of maximum allele306

count is explained by the fact that decreasing the number of loci decreases307

the chance of encountering in the mixture a locus that shows enough distinct308

alleles to allow a correct estimation using only the maximum allele count.309
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This effect is likely to be increased when dealing with complex mixtures of310

more than three contributors.311

Overall, it is difficult to specify the minimum number of loci needed to312

accurately resolve a mixture because this number depends on the tolerated313

error rate which relies on the forensic experts experience; however, even with314

all 15 STR loci, five-person mixtures could not be resolved satisfactorily:315

The maximum allele count yielded an error rate of more than 95% while316

maximizing the likelihood misclassified more than 30% of the mixtures.317

The bias in estimations is due in part to profiles with multiple masked al-318

leles. This problem could be circumvented by using quantitative data given319

by the mixture profiles peak heights or areas (21). In fact, our estimator320

only takes into account qualitative information consisting of the allele types321

present in the stain. We assumed that the forensic expert had already de-322

termined the alleles present in the mixture and that there was no ambiguity323

during this stage of the evidence analysis. Further work could thus include324

the use of quantitative information to help in revealing masked alleles.325

Most forensic laboratories use the maximum allele count method to spec-326

ify the number of contributors to mixed stains. Complex mixtures comprising327

multiple masked alleles are likely to be misclassified by this method. This328

issue could have dramatic consequences especially when the number of con-329

tributors is determined solely on genetic data. This might be the case when330

dealing with DNA casework. Very often no suspect is available in such stains.331

Consequently, having an estimate of the number of contributors could help332

investigators when new elements emerge in the case. Therefore, it appeared333

to us that in case the number of contributors is determined on genetic data,334
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maximizing the likelihood should be preferred to maximum allele count es-335

pecially when dealing with stains suspected to be mixtures of three or more336

individuals.337

To conclude, we would like to point out that we do not recommend one338

method over the other. Our work is intended to provide insight to forensic339

practitioners on the differences in efficiency between the two estimators with340

respect to situations frequently encountered in forensic casework, namely341

uncertainty about the population allele frequencies and partial profiles. Our342

methodology is freely available in the package forensim for the R statistical343

software to allow investigations in contexts not explored here.344

345
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Tables & Figures

x Maximum allele count (%) Likelihood estimator (%)

African Americans

2 100 100

3 99 94

4 45 79

5 5 67

Caucasians

2 100 99

3 97 92

4 34 77

5 2 64

Hispanics

2 100 100

3 98 93

4 45 79

5 2 67

Table 1: Percentages of correctly identified mixtures for all three studied populations. The

first column gives the true number of contributors, x. The second and third columns give

the percentages of mixtures correctly identified by the two methods: The maximum allele

count and the maximum likelihood estimator.
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Likelihood estimator (%)

x Maximum allele count (%) Uncorrected form Corrected form

2 100 99 99

3 94 95 91

4 21 56 76

5 0.7 27 60

Table 2: Percentages of correctly identified mixtures in the uncertain allele frequencies

case. The first column gives the true number of contributors, x. The next two columns

give the percentages of accurate estimation for the maximum allele count and the maximum

likelihood methods. For the latter, two estimates are displayed corresponding to the form

used in the estimator: The uncorrected form (θ = 0) and the corrected form (θ = 0.03).
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Figure 1: Percentages of correctly identified mixtures for x contributors, where x ranges

from 2 to 5 in the case of partial profiles, for the maximum allele count and the maximum

likelihood methods.
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Figure 2: Sensitivity of the maximum likelihood estimations of the number of contributors

to variations in allele frequencies for a simulated three-person mixture. A single locus,

“vWA”, was considered. At this locus, the mixture included alleles “16,” “17, ” “18,”,

and “19,” with initial allele frequencies taken as 0.25, 0.24, 0.15, and 0.06 from the African

American population. We varied the frequency of the less frequent allele “19” from 0 to

1 (x-axis), values of the three other alleles being also varied by keeping their relative

frequencies constant. Each point on the plot represents the estimation yielded by the

maximum likelihood estimator (y-axis). Correct estimates are obtained with the original

allele frequencies (origin of the x-axis), and when the frequency of allele “19” varies between

0.24 and 0.52. Underestimation of the number of contributors occurs when frequency of

allele “19” is under 0.24, while overestimations occur when its frequency is greater than

0.52.
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2.4 Evaluating the maximum likelihood estimator efficiency

Once we developed a methodological framework to answer the question before us, still being

rooted into an evaluation approach, we naturally raised the question of the use of our estimator

in practical cases. We completed the work presented in the first article by providing a method to

quantify the effectiveness of the estimator. Article 2 below describes this method and illustrates

its use in practical cases.

Article 2: “The predictive value of the maximum likelihood estimator of the

number of contributors to a DNA mixture”

Article in press in Forensic Science International: Genetics, 2010.
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Original research paper

The predictive value of the maximum likelihood estimator of the number of
contributors to a DNA mixture

H. Haned a,*, L. Pène b, F. Sauvage a, D. Pontier a

aUniversité de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France
b Institut National de Police Scientifique, Laboratoire de Police Scientifique de Lyon, France

1. Introduction

As the sensitivity of typing methods is constantly increasing,
forensic experts deal with more and more complex cases of
evidence containing the DNA of several individuals. Though
numerous statistical methods exist to calculate the strength of
DNA evidence, the most challenging step in the interpretation of
such mixed stains is still the determination of the number of
contributors involved [1]. Usually, the circumstances of the
investigated crime combined with genetic and non genetic
evidence can produce good grounds to the determination of this
number. But the task is seriously complicated when scarce data is
available about the origin of the stain. This is common in DNA
casework where often no suspect or known contributors are
available. A common laboratory practice consists on bounding the
number of contributors to the minimum required to explain the
observed DNA profiles without making any use of the available
data except for the number of alleles per locus [2]. Recently, an
alternative approach based on the maximum likelihood principle
was proposed to overcome this issue [3]. Using qualitative
information on which alleles are present in the mixture, this

maximum likelihood estimator searches the number of contribu-
tors maximizing the likelihood of the observed DNA profiles. Using
computer-simulated DNA mixtures, the authors of this study
showed thatmaximizing the likelihood of the data to find themost
likely number of contributors gives more accurate estimates than
using a lower bound when dealing with mixtures of more than
three contributors. However; before considering the use of this
estimator in practical cases, it is important to have at disposal a
method to quantify the level of confidence that can be given to the
yielded results.

In this paper, we propose to globally quantify the accuracy of
the maximum likelihood estimator. Relying on Bayes’ theorem, we
derive a formula for the calculation of the predictive value (PV) of
the estimator. The PV aims to give a global appreciation of the
confidence that can be given to the estimates meanwhile taking
into account prior information about the occurrences of mixed
DNA stains in forensic casework. We explain the method and
illustrate its potential use in forensic studies.

2. Methods

2.1. Theoretical background

The maximum likelihood estimator takes into account genetic
data, namely, the frequencies of the alleles present at each locus
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characterizing the analyzed DNA stain, and searches the number of
contributors thatmaximizes the likelihood of the observed profiles
[3]. We define the predictive value of this estimator as the
probability of having i contributor(s) to the tested DNA stain,
knowing that the likelihood estimator gave an estimate of i

contributor(s) for this stain. The PV is data-independent, which
means that the observed data, namely the DNA profiles in the stain,
are not involved in the calculations. The PV can thus be assimilated
to a precision rate of the estimator, specific to each mixture type.

2.2. Formulation of the predictive value of the likelihood estimator

Denoting x the true number of contributors to themixture and x̂

its estimation, the predictive value of the estimator can be written
as the conditional probability: Prðx ¼ ijx̂ ¼ iÞ. A simple way to
estimate this unknown probability is to rewrite it using its inverse,
which is: Prðx̂ ¼ ijx ¼ iÞ. The transformation is simply done using
Bayes’ formula:

Prðx ¼ ijx̂ ¼ iÞ ¼ Prðx̂ ¼ ijx ¼ iÞPrðx ¼ iÞ
Prðx̂ ¼ iÞ (1)

The term Prðx̂ ¼ ijx ¼ iÞ is the probability that the estimator
classifies the considered stain as amixture of i contributor(s), given
that there are actually i contributor(s). Haned et al. [3] used a
simulation procedure to estimate these conditional probabilities: a
thousand mixture comprising two to five contributors were
simulated by combining alleles at random, with respect to their
allele frequencies. The efficiency of the estimator was estimated as
the proportion of correctly identified mixtures. Here, we follow a
similar procedure: We simulated 1000 DNA stains containing one
to five individuals, using the US African American allele frequen-
cies published in [4]. The conditional probabilities of success of the
estimator were then estimated for each simulated number of
contributors.

Hereafter, we will refer to the probability Prðx ¼ iÞ as the prior
probability of encountering a mixture of i contributors. Prðx̂ ¼ iÞ is
the probability of the estimator giving i as an estimate for the
number of contributors to the stain, regardless of the concerned
mixture type. Using the law of total probabilities we rewrite
probability Prðx̂ ¼ iÞ to a product of conditional and prior
probabilities as follows:

Prðx ¼ ijx̂ ¼ iÞ ¼ Prðx̂ ¼ ijx ¼ iÞPrðx ¼ iÞ
XK

k¼1

Prðx̂ ¼ ijx ¼ kÞPrðx ¼ kÞ
(2)

Prðx̂ ¼ ijx ¼ kÞ is the probability that the estimator classifies the
considered stain as amixture of i contributor(s) knowing that there
are actually k contributor(s), where k can be equal or differ from i.
Values of k range from 1 to K, where K is a biological meaningful
threshold for the number of contributors. For illustrative purpose,
we set K to 5 and search the maximum likelihood estimates in the
discrete interval [1,6]. As we later discuss, this threshold can be
extended to K >5.

2.3. Constructing the prior distribution of mixed DNA stains

Thanks to Eq. (2), the only termwehave to determine now is the
prior probability Prðx ¼ iÞ. In order to construct this prior
distribution we used a survey of the crime scene profiles analyzed
at the Institut National de Police Scientifique (INPS), the national
forensic laboratory in Lyon, France (data communicated by Laurent
Pène). For the year 2008, 8479 crime scene profiles were analyzed
at the INPS using the Applied Biosystems AmpFlSTR1 IdentifilerTM

kit [5]. These samples were either classified as traces when they
came from contact traces, for instance epithelial cells on a given

object or tool, or as body fluids when samples came from biological
fluids, namely, blood, saliva and semen. The number of individuals
involved in the stain was also indicated. Samples comprising one
contributor were classified as ‘‘single-source’’ stains, samples
comprising two contributors were classified as ‘‘resolvable
mixtures’’ and stains comprising more than two contributors
were classified as ‘‘unresolvable mixtures’’. This restricted
classification is explained by the difficulty of determining the
real number of individuals involved [6].

Two-personmixtures are believed to account for themajority of
mixtures encountered in casework [7]. Three-, four- and five-
person mixtures are believed to be rarer. But, as a consequence of
the restricted classification, very scarce data is available in the
literature about the occurrence of these complex mixtures in
forensic casework. The construction of a prior distribution of
mixtures occurrences in forensic casework was thus necessary for
mixtures comprising more than two contributors.

The prior probabilities for stains comprising one or two
contributors were set using the available data (survey of the INPS
casework for year 2008). We chose to set the remaining
probabilities for mixtures comprising more than two contributors
using experts’ prior beliefs. We asked three experienced forensic
experts at the INPS to set the proportions of mixed stains
comprising three, four or five contributors. We focused on two
key issues in setting up this prior distribution:

(i) the probability of encountering a mixture with i contributors
must decrease as i increases,

(ii) the probability of encountering a complex mixture with more
than two contributors must be greater in case of traces than in
case of body fluids. We justify this by the difficulty in
distinguishing single-sources contributors in case of traces [8].

These requirements are meant to help the forensic experts to
set the prior distribution but they are not compulsory to the
method, and they can of course be modified or dropped.

3. Results and discussion

3.1. Crime scene profiles survey

Among the 8479 casework profiles stains, 5169 were body
fluids and 3310were traces. Themajority of stains, 71%, comprised
one contributor and was classified as ‘‘one contributor stains’’.
Among the remaining 29% stains, 6% were resolvable mixtures
classified as two-person mixtures and 23% were classified as
unresolvable mixtures. There were more mixed DNA stains among
traces than among body fluids (Table 1). This finding agrees with
our predictions and can be explained by the fact that in case of
body fluids, the major contributor drowns the signal of other
contributors to the mixture, whereas in case of traces, the low
quantities of DNA contributed by each individual prevent from
detecting single-source DNA contributors.

3.2. Predictive value of the likelihood estimator

The conditional probabilities of success were estimated from
simulated data (Table 2). We obtained similar results to those of

Table 1
Percentages of crime scene profiles comprising one, two or more than two

individuals.

x ¼ 1 x ¼ 2 x>2

Traces 45% 4% 51% N ¼ 3310

Body fluids 87% 7% 6% N ¼ 5169
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Haned et al. [3]. Different prior values were chosen for traces and
body fluids (Table 3).

The predictive values varied according to the prior probabilities
used. Where non null priors are used, the predictive values were
relatively high, for both traces and body fluids, as values ranged
from 0.69 to 1 for stains containing one, two, three or four
contributors. The lowest values were scored for five-person
mixtures (0.26 for traces). When similar priors are used, the PV
slightly differed; in this case, it appeared that the distinction
between the types of DNA stains under analysis is not necessary.

The priors used in this study are not arbitrary as they are
defined by experts’ prior belief. The use of such priors in likelihood
ratios is controversial as discussed in Buckleton et al. [9], but in this
study, the focus is on methods evaluation and these priors are not
related to the prior knowledge about the number of contributors
before the DNA evidence is analyzed.

We set the threshold for the number of contributors to five
(Tables 3 and 4) which led to searching the maximum likelihood
estimates in the discrete interval [1,6]. We believe that this is a
biologically meaningful threshold for searching the most plausible
number of contributors. However, this threshold can be extended,

depending on the crime scene context and the type of evidence
being analyzed. For instance, traces are likely to contain more
contributors than stains from body fluids. Once the prior
distributions of the mixed stains set, the results are straightfor-
ward.

4. Conclusion

In this paper, we propose the predictive value to be considered
as a global measure of the likelihood-based estimator efficiency. It
is notable that the PV is not meant to be a measure of the
uncertainty related to the estimates.

The values presented in this study depend on the simulated
data and the priors we defined. These can be adapted with respect
to the contextwhere the DNA evidence is analyzed. PV calculations
using priors different from those we propose here can be carried
out using the R package forensim, available from http://forensim.r-
forge.r-project.org/.

The maximum likelihood estimator of the number of con-
tributors to forensic DNA mixtures can be powerful in critical
cases, for instance when dealing with DNA casework. Very often in
such cases, scarce data is available about the origin of the stain and
only genetic data are available. These data consist of qualitative
information about which alleles are present in the stain and
quantitative information about the alleles’ peak heights and areas.
The maximum likelihood estimator only considers qualitative
data. Quantitative information might not always help to separate
the DNA profiles into individual components. Moreover, there is no
consensus in the literature about how peak heights or areas should
be taken into account, and the developments in the literature
dealing with quantitative data [10–15] have not encountered the
expected success in the forensic community.

The fact that genetic data support a certain number of
contributors to the evidentiary stain can be of significant help
for the investigators, before any suspect or comparison between
profiles can be processed. When no other information is available,
this estimate can guide investigators in their search for potential
suspects. To conclude, even if the maximum likelihood approach
might seem too complex for presentation in court, it must not be
neglected as a valuable tool to determine the number of
contributors to DNA stains and forensic experts should be aware
that an alternative method to maximum allele count exists.
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2.5 Discussion

The work presented here addresses the problem of the estimation of the number of contributors

to DNA mixtures, but there is at least one unresolved issue: the use of quantitative data.

Indeed, the estimator we presented in Article 1 only considered qualitative data, which leads

to considering all possible genotypic combinations inferred from a DNA evidence profile. It has

been suggested that the use of allele peak heights could help reduce the number of plausible

genotypes by removing those that are not supported by this information (see for example, Evett

et al., 1998). Ideally, we would be able to assign a weight to each possible genotype based on both

the allele frequencies and the allele peak heights. Unfortunately, in practice, the incorporation

of quantitative information is not trivial because there has been little research on peak height

distributions.

The rationale behind the use of quantitative data in mixture interpretation resides in the fact

that the amount of fluorescence for a given allele is related to the (post-PCR) number of copies

of that allele present in the DNA sample analyzed. Allele peak heights are thus expected to

reflect the amount of DNA contributed by each individual participating in the mixture.

Following this rationale, the majority of methods proposed for mixture deconvolution, in-

cluding the Binary model presented earlier, proceed through two major steps: first, the peak

heights are used to yield an estimate of the mixture proportions, and second, the genotypes that

are inconsistent under the estimate of the mixture proportions are eliminated. Depending on

the statistical approach employed, these methods select either the most likely set of genotypes

(Clayton et al., 1998; Gill et al., 1998b, 2006) or a single best genotype (Perlin and Szabady,

2001; Wang et al., 2006).

These developments can be seen as a further formalization of the Binary model presented

above. As a consequence, their generalization to higher-order mixtures (more than two contrib-

utors) is not straightforward. For complex mixtures, another category of methods employing a

probabilistic approach seems promising (Mortera et al., 2003; Cowell et al., 2007a,b). In this

approach, each of the possible genotypic combinations is assigned a weight that is calculated

from a continuous probabilistic distribution, for which the parameters depend on the available

qualitative (allele frequencies in the target population) and quantitative data. In this contin-

uous approach, the genotypic combinations are weighted according to how well the observed

peak heights agree with the expected intensities under the proposed genotype. This naturally

implies that some information, namely the probability distribution functions of the peak heights

conditional on the mixture proportions, is available.

Notable attempts to model peak height distributions include the use of a Gaussian model

(Evett et al., 1998) and a Gamma model (Cowell et al., 2007a,b). However, none of these

methods is currently in use in any forensic laboratory. The foremost reason for this is the

complexity of the statistical approaches employed and the lack of their accessibility in the form

of (free or proprietary) software. This has limited their use in forensic casework.
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The second reason explaining the difficulty of employing quantitative data and, for instance,

continuous models, is the lack of (published) data supporting the distributional assumptions for

the allele peak heights on an experimental basis. More than a decade ago, Evett et al. (1998)

proposed to investigate the distributions of peak heights conditional on the mixture propor-

tion. However, little work has been published on the validation of the continuous probabilistic

models, and to our knowledge, only a single recent publication reports an attempt to validate

the Gamma model for STR peak heights (Cowell, 2009). Therefore, despite of the developed

methods, the incorporation of allele peak heights in DNA mixture interpretation remains to be

explored in further detail. The methodological framework proposed here, coupled with an eval-

uation approach, is an encouraging basis for future methodological developments incorporating

quantitative data to determine the number of contributors to DNA mixtures.
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3.1 Introduction

A number of issues can be raised with respect to the analysis of STR loci that might seriously

complicate the interpretation of DNA profiles. We discussed some of these in the introductory

chapter, and they mainly consist of i) the presence of spurious alleles unassociated with the

crime scene profile and ii) the non-detection of alleles originally present in the analyzed stain

(allele drop-out). These phenomena occur in all DNA samples, regardless of the quantity or the

quality of the DNA sample. However, as in any other random process, these stochastic effects

are exaggerated in samples with low levels of template DNA molecules.

The increased sensitivity of PCR-based analysis of STR loci paved the way for studies on

DNA typing from minute amounts of DNA, for example, DNA recovered from touched objects,

called touch DNA (van Oorschot and Jones, 1997). The analysis of samples originating from as

little as a single cell has thus become possible (Findlay et al., 1997).

This increase in sensitivity is generally achieved through modifications of the polymerase

chain reaction (PCR), for example, by increasing the number of cycles, or through post-PCR

manipulations (Strom et al., 1991; Taberlet et al., 1996; Strom and Rechitsky, 1998; Gill et al.,

2000). The technique associated with raising the number of PCR cycles (generally from 28 to

34 cycles) has become known as low copy number (LCN) analysis. It was the Forensic Science

Service of the UK (FSS) who pioneered the application of LCN typing to casework in 1999 for

samples with low DNA levels, thus widening the scope of application of forensic DNA typing to

touch DNA (Gill et al., 2000).

However, increasing the sensitivity of PCR inevitably leads to increased detection of anomalies

associated with the analysis of STR loci. As a consequence, standard methods for interpretation

cannot be applied to samples with low DNA levels. Still, strict guidelines regarding the collection

and processing of samples and the interpretation of results were published closely following the

first applications of LCN DNA typing by the FSS (Gill et al., 2000).

Anomalies associated with the typing of minute amounts of DNA samples are not specific to

forensic identification, as they are also encountered, for example, in ecology (Pompanon et al.,

2005). However, it is in forensic applications that they have raised the most concerns, mainly

from a legal perspective, though not from the scientific community. Indeed, apart from the

recent exchanges in the forensic literature that we will build on later, there has been no debate

concerning LCN typing methods, at least nothing comparable to the heated exchanges between

scientists at the time of the “DNA wars”. However, as some authors refer to these discussions

as a debate (Budowle et al., 2010), we will use the same terminology to describe the elements

of this discussion.

3.1.1 The low copy number debate

Although LCN techniques have allowed the analysis of DNA stains that weren’t exploitable

before –nearly 21000 criminal cases were analysed by the FSS alone since 1999 (Gilbert, 2010)–
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the challenges accompanying the technique raised concerns about the validity and reliability of

the method among the forensic and the legal communities (Budowle et al., 2001, 2009a,d).

The first significant challenge of LCN typing in a courtroom emerged during the Omagh

bombings trial (Ireland, UK, 2007), where the prosecution relied on LCN DNA profiles (and

also conventional profiles) to link a suspect with a series of bombings in Northern Ireland.

During this trial, DNA evidence was dismissed by the judge, who expressed concerns about the

reliability of the methods used to generate the DNA profiles. This ruling marked a symbolic

turn in forensics, in particular because the UK police suspended the use of LCN DNA, though it

was later reinstated following a UK review on the technique, which concluded that LCN typing

is a “robust” and “fit for purpose method” (Caddy et al., 2008).

In more recent trials (2009), judges have either rejected the use of DNA evidence analyses

based on LCN (Gilbert, 2010) or supported the use of LCN evidence when they considered the

method reliable1. While a court may not be the most appropriate place to discuss the validity

and reliability of these methods, these legal decisions provided an outline of the repercussions

of the use of LCN analyses in practical cases.

As we previously mentioned, forensic literature is “discrete” when it comes to discussing

LCN typing. The only (non-peer-reviewed) paper discussing the flaws in the technique followed

the first applications of LCN techniques (Budowle et al., 2001). The same authors recently

advocated limiting the use of LCN typing to investigative purposes or to victim identification

and avoiding its use for exculpatory purposes, mainly because of the lack of reproducibility of

DNA profiling using LCN (Budowle et al., 2009c).

The main argument of the detractors of LCN is thus the lack of reproducibility of the results.

This is particularly interesting, since lack of reproducibility may as well be considered as a

process inherent in the collection/generation of biological data itself, rather than as “vagaries”

(Budowle et al., 2009b) linked to LCN typing. In a discussion on the subject, Gill and Buckleton

(2010) argue:

“Variability, and indeed uncertainty, is a part of most, if not all, scientific endeav-

ours. It is not the existence of variability but rather the magnitude and potential

consequences of any variability that needs to be assessed and reported to the court.”

Regardless of which side one supports, this debate reveals a need for a methodology that takes

into account the uncertainty related to low-template DNA samples. Actually, such a model

was proposed a decade ago by Gill et al. (2000). Their methodology, built upon a Bayesian

framework, is based on the calculation of the likelihood ratio that accounts for stutter peaks,

drop-out and drop-in alleles. Moreover, the model can be applied to cases where replicates of

the same sample are available.

This approach offers an important advantage. Because anomalies related to STR typing

in critical conditions are accounted for, there is no need to restrict the applications of LCN

1People vs. Megnath, Supreme Court, New York, 2010.
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samples. Indeed, restrictions inevitably lead to defining what a low-copy number sample is.

There have been various definitions in relation to the quantity of DNA, with the most widespread

definition corresponding to a limit of less than 100 pg of DNA. Interestingly, manufacturers of

STR multiplex analysis systems usually recommend the use of at least 250 pg of DNA (Gill,

2001). A definition based on quantitative thresholds is problematic because it is not compatible

with the rather continuous nature of the data. Indeed, one cannot define a threshold for which

no artifacts are observed because their random nature makes them more frequent in samples

with limited quantities of DNA, though this is not impossible for pristine samples.

The term LCN, which has traditionally been used to designate both a method (for instance,

increasing the number of PCR cycles) and samples with a low level of DNA has added confusion

to the debate. In the face of this confusion, the developers of the technique felt obliged to

redefine samples DNA of low quantity/quality as “low-template DNA” samples instead of low-

copy number samples (Gill and Buckleton, 2010). Throughout this manuscript, we use the same

terminology.

In the following, we briefly describe Gill et al.’s model and we illustrate its use on a simple

case involving a single locus.

3.1.2 The statistical model for DNA evidence interpretation: a solution for

low copy number samples

Anchored in a Bayesian logic, and more precisely in a likelihood ratio framework, Gill et al.

(2000) proposed a model that accounts for the anomalies related to STR loci typing. This

model calculates likelihood ratios for a set of replicates of a given DNA profile sample, and

simultaneously accounts for drop-outs, drop-ins and stutters phenomena.

This model is termed the statistical model, as opposed to the biological model. In the latter, a

consensus profile is deduced by comparing replicated profiles: only alleles consistent throughout

all replicates are reported, and thus a number of subjective decisions are made to reach a

consensus. The statistical model is thus much more flexible, and several hypotheses about the

origin of the stain can be evaluated simultaneously throughout likelihood ratios.

In the following, we illustrate the use of the statistical model for the case where a unique

replicate profile is available.

Illustration

Figure 3.1 gives an example of a situation where a crime scene profile matches only one of

the alleles of the suspect profile, the other one being under the limit of detection threshold

(set for the purpose of this example to 50 RFUs). A common practice in this case consists in

either excluding the suspect as a potential contributor, or, if the profiles match at other loci,

to removing this problematic locus from the analysis2. Clearly, excluding problematic loci from

2Laurent Pène, Personal communication.
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the analysis is a sensitive issue. The statistical model offers a framework that deals with these

problematic situations: instead of deciding whether a profile is excluded or included into the

analysis; probabilities of drop-out are incorporated into the calculations.

Figure 3.1: Illustration of a partial match: a suspect profile at a single locus matches only one
of the alleles of the crime scene profile, the second allele is below the limit of detection threshold.

To illustrate Gill et al.’s (2000) approach, we calculate the likelihood ratios for the single-locus

profile shown Figure 3.1. If the prosecution evaluates the hypothesis that the profile comes from

the suspect, then its is necessary to consider drop-out to explain the evidence. In this example,

the competing hypotheses are:

Hp: the crime scene profile comes from the suspect

Hd: the crime scene profile comes from an unknown contributor

Under Hd, the crime scene profile (CSP) comes from an unknown contributor who is either

homozygote for allele “9” or heterozygote “9/Q”, where allele Q denotes any allele other than

“9”. UnderHp, the crime scene profile comes from the suspect and a drop-out event is considered

for allele “10”. These hypotheses are weighted against each other through a likelihood ratio:

LR =
Pr(CSP ≡ 9|Suspect ≡ 9/10, Hp)

Pr(CSP ≡ 9|Suspect ≡ 9/10, Hd)
(3.1)

Under the Hp hypothesis, we observe one allele and and one drop-out (allele “10”). Assuming

that drop-out is independent within a genotype and across loci, the corresponding (conditional)

probability is Pr(D)Pr(D̄) , where Pr(D) is the probability of the event of drop-out for the

considered allele and Pr(D̄) is the probability of the complementary event (no drop-out). Note

that we do not consider the possibility for the present alleles to be drop-ins or stutters.

Under Hd, an unknown contributor, unrelated to the suspect is the source of the evidence.

Two situations have to be considered for the unknown contributor:

• the unknown contributor is a homozygote “9/9”, and thus there is no drop-out. Denoting

p9 the frequency for allele “9”, the corresponding probability is p29Pr(D̄)2,
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• the unknown contributor is a heterozygote “9/Q”, and allele Q has dropped-out, the

corresponding probability is 2p9pQPr(D)Pr(D̄), where pQ = 1− p9.

The likelihood ratio is finally given by:

LR =
Pr(D)Pr(D̄)

p29Pr(D̄)2 + 2p9pQPr(D)Pr(D̄)
(3.2)

From this example, it is obvious that an approach of exclusion/inclusion of the suspect profile

would lead to a likelihood ratio of zero, but this not the case when the statistical model is applied.

The reason that a generalized statistical method for DNA evidence interpretation is not

currently in use in forensic laboratories is not specific to low-template DNA samples. As we

previously explained, courtrooms are resistant to what they see as complicated statistical rea-

soning. Still, it is notable that the statistical model has been implemented in two commercial

“expert systems” (Curran et al., 2005; Gill et al., 2007), and more recently, an open-source

implementation of the statistical model was proposed by Balding and Buckleton (2009).

These programs should facilitate the introduction of the model, but an unsolved issue is that

of the determination of the probabilities of drop-out, drop-in and stutters, which constitute the

model parameters, and have ultimately to be specified by the user.

Usually, these parameters are determined through experimental studies in which conditions

favoring the occurrence of drop-outs, drop-ins and other anomalies are created (Gill et al., 2000).

However, relying on experimentation alone is contestable because the estimates yielded depend

closely on the experimental design, and different experimental runs are likely to yield different

results. Parameter estimations should account for data that are available from the sample itself,

namely, the allele peak heights that give information about the quality and the quantity of

DNA. Ideally, reporting officers should be able to answer the question: “Given the observed

peak heights/areas, what is the probability that a given allele has dropped out?”

There has been little work on how these probabilities should be estimated from available

data. Therefore, there is clearly a need for establishing a methodology to help determine the

model parameters. The drop-out phenomenon has particularly attracted our attention. Indeed,

reporting officers are well trained in most forensic laboratories to detect gross contamination,

stutters, drop-ins and other STR-related artifacts, but drop-outs seem to be particularly chal-

lenging because they raise questions about whether a profile should be included or excluded from

the analysis, thereby reducing the strength of the evidence. Hence, our focus in this chapter is

on the estimation of drop-out probabilities.

3.2 Estimating drop-out probabilities in forensic DNA samples

3.2.1 Motivation

The importance of taking into account artifacts associated with STR loci is well agreed upon

in the forensic community (Gill et al., 2006). Still, a review of the relevant forensic literature
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shows that until recently, no significant developments had been proposed to estimate drop-out

probabilities in a forensic setting. The drop-out phenomenon is a common problem in degraded

DNA samples, which are often encountered in conservation studies of wild populations in ecology

or ancient fossils in museums. Typically, small quantities of DNA are recovered from hair or feces,

leading to profiles in which drop-outs are very likely to occur (Taberlet et al., 1996; Gagneux

et al., 1997; Pompanon et al., 2005).

Unfortunately, statistical developments devoted to estimating drop-out probabilities concern

non-forensic applications and mainly suggest the use of replicates of genotypes, along with com-

parison to known allelic frequencies in the target population to infer the most likely DNA profiles

(Miller et al., 2002; Johnson and Haydon, 2007). However, in a forensic setting, systematic repli-

cates are not always possible, and furthermore, the choice of a relevant population database to

obtain allele frequencies represents an additional difficulty.

Two recent studies proposed the use of logistic models to estimate the probability of drop-out

based on data provided by analyzed DNA profiles in forensic casework (Tvedebrink et al., 2009;

Gill et al., 2009). With respect to our evaluation approach, we propose the implementation of a

simulation model to evaluate different models based on logistic regression. The article presented

below introduces our methodology and illustrates it with an evaluation of some features of the

logistic model proposed by Gill et al. (2009).

3.2.2 Article 3: “Estimating drop-out probabilities in forensic DNA samples:

a simulation approach to evaluate different models”.

Article submitted to Forensic Science International : Genetics (2010).
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Abstract

Allele drop-out is a well established phenomenon that is primarily caused

by the stochastic effects associated with low quantity or low quality DNA

samples. Recently, new interpretation models that employ the use of logistic

regression have been utilised in order to estimate the probability of drop-

out. The model parameters are estimated using profiles from samples of

extracted DNA diluted to low template levels in order to induce drop-out.

However, we propose that this approach is over-simplistic, because several

sources of variability are not taken into account in this generalised model.

For example, in real-life, small (discrete) crime-stains are analysed where cells

are (or were) intact. The integrity of the paired chromosomes of the diploid

cell is preserved. In extracted DNA that is diluted to low template levels, we

argue that the paired-chromosome integrity is lost. This directly affects the

∗Corresponding author
Email address: hinda.haned@univ-lyon1.fr (H. Haned)

Preprint submitted to Forensic Science International: Genetics July 2010
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outcome of the logistic model. To date, current experimentation procedures

are more akin to haploid cells and thus, different logistic models are needed

for haploid and diploid cells. In order to simplify the methodology to estimate

multiple logistic regressions that may be required, we propose the use of a

simulation model of the entire process associated with the analysis of STR

loci, as a supplement to the purely experimental approach to support the

validation of new methods. We illustrate with an evaluation of some features

of the logistic model proposed by Gill et al. [P. Gill, P. Puch-Solis, J. Curran,

The low-template-DNA (stochastic) threshold–Its determination relative to

risk analysis for national DNA databases, Forensic Sci. Int. Genet. 3 (2009)

104–111] and discuss alternative models.

Keywords: drop-out, logistic regression, simulations, PCR, STR

1. Introduction1

A number of phenomena often associated with low-template DNA pro-2

files, especially drop-out, and drop-in, complicate their interpretation [1].3

Although it is fairly standard practice to interpret allele drop-out using the4

“2p” rule, Buckleton and Triggs [2] and Balding and Buckleton [3] show that5

this can be anti-conservative, especially when the probability of drop-out6

is close to zero. Although allelic drop-out events are encountered more fre-7

quently with low quantities of DNA, they cannot be eliminated with certainty8

even in “gold standard” DNA samples [1, 4].9

A consistent approach consists of quantifying and integrating error into10

the statistical analysis [5, 6]. The likelihood ratio framework is the preferred11

approach to report the weight of DNA evidence. Likelihood ratios avoid12

2
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the binary decision making process of inclusion vs. exclusion, by taking13

into account all of the potential ambiguities that are incurred by drop-out14

and drop-in within the context of a continuous model [7]. Although robust15

interpretation frameworks have been proposed by Gill et al. (2000) [7] and16

improved by [3, 8, 9, 10, 11, 12], there are few alternative methods to inform17

the probabilities of drop-out.18

In non-forensic applications, maximum likelihood approaches based on19

replicate genotypes have been proposed in order to estimate the drop-out20

rates [13, 14]. In forensic applications, different principles have to be followed,21

because of the limited sample sizes: multiple systematic replicates are usually22

not available (although it is often the practice to obtain two or three replicates23

with low level samples). To circumvent this difficulty, simple models based24

on the logistic regression were originally proposed to estimate the drop-out25

probability [12, 15]. Gill et al. (2009) [15] suggested that the probability of26

drop-out could be derived from a measure of the quality of the DNA profiles27

based on their observed peak heights. Tvedebrink et al. (2009) [15] proposed28

to condition this probability on an estimate of a proxy for the total DNA29

Tvedebrink et al. [15] illustrated how the model parameters can be es-30

timated from experimental data. In their experimental design, the drop-out31

events were induced using serial dilutions of mixtures. The estimated pa-32

rameters were then used to predict the probability that a given allele has33

dropped-out, conditioned on a given DNA profile. The authors noted that34

the model parameters depend on the process used to generate DNA profiles.35

For example, parameters estimated from a process with 28 PCR amplification36

cycles are not valid for a more sensitive process utilising 34 cycles. Additional37

3
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variability occurs within the process. For example, the kind of DNA sam-38

ples used; whether the cells are haploid or diploid; the allelic composition;39

the STR multiplex used to characterize the sample; the material/machinery40

used during the process. Moreover, the efficiency of DNA extraction varies41

between sample-types and probably between laboratories [16].42

Given, the potential sources of variation, this raises questions of whether43

a single logistic regression can be used to model a process, given that there44

is always variation within any process itself. Experimental data sets are45

the easiest adapted to study drop-out. Current methodology to determine46

the drop-out parameter is generally based on serial dilution experiments of47

disrupted cells. But strictly speaking, these experiments are only valid for48

haploid cells (i.e. sperm), hence conclusions about the robustness of models49

cannot necessarily be extrapolated to all kinds of biological material (espe-50

cially diploid cells).51

Ideally, methods evaluation should be carried out using controlled exper-52

iments. However, experimental design is often challenging in practice be-53

cause there are many sources of variability that are difficult to control. Here,54

we propose a complementary method to the purely experimental approach.55

Based on the stochastic model of [16], we propose a simulation approach56

to evaluate the efficiency of the logistic model in describing allele drop-out.57

The suggested methods have been implemented in the open source software58

forensim [17].59

4
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2. Methods60

2.1. Simulation model61

The simulation model proposed by [16] described the entire process as-62

sociated with the generation of a DNA profile using short tandem repeat63

loci. The model presented here was simplified to incorporate allele drop-out64

events only. Stutters are not modelled.65

Starting from the initial number of cells, ncells, the simulation model66

applies successive binomial samplings in order to determine the numbers of67

template molecules that are successfully passed to consecutive steps of the68

DNA analytical process. This starts with extraction, selection of an aliquot69

for PCR, the PCR cycling process, and finally visualisation of the alleles. A70

separate parameter is defined for each of these steps: πextraction, πaliquot and71

πPCReff respectively.72

Two different models are required in order to fully characterise the DNA73

process. There is a diploid model, where there are n = 2 × ncells target74

molecules, and a haploid model with n = ncells target molecules (Appendix75

A).76

The simulation model allows generating data that will be used to estimate77

the logistic model parameters. Using the simulation model described in the78

Appendix section, we have generated haploid and diploid data sets in order79

to test the robustness of the modelling assumptions.80

2.2. Definition of the logistic model (heterozygotes)81

The event of drop-out at a given locus is defined using a binary variableD.82

If the allele peak height, denoted h; is below the limit of detection threshold83

5
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(LOD) Tdrop, expressed in RFUs, a drop-out indicator is recorded:84

- D = 1 if h ≤ Tdrop: drop-out has occurred85

- D = 0 if h > Tdrop: no drop-out observed86

In this study, we set the LOD threshold to Tdrop = 50 RFUs. This87

threshold can be modified to include lower peak heights if necessary.88

We further define heterozygote drop-out as the indicator that one of the89

allele peak heights of the heterozygote is below Tdrop and the homozygote90

drop-out as the indicator that the peak height of the homozygote allele is91

below Tdrop.92

The main difference between Gill et al.’s [12] and Tvedebrink et al.’s [15]93

model is the ability to directly infer the results obtained from heterozygous94

profiles to homozygous profiles. Tvedebrink et al. estimate the drop-out95

probability relative to a proxy for the amount of DNA contributed to the96

stain, which allows the drop-out probability of homozygotes to be deter-97

mined, while Gill et al.s model describes heterozygous drop-outs only.98

2.3. Heterozygous drop-out99

It was originally suggested that the homozygote drop-out probability100

could be computed from the square of the heterozygote probability [12, 15].101

This implied that drop-out events were independent between alleles at a given102

locus.103

Recently, Balding and Buckleton (2009) [3] showed that this method tends104

to overestimate the homozygous drop-out probability, and suggested a correc-105

tion factor (α) applied to the square of the heterozygote probability provided106

6
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a better estimate. This suggestion has intuitive appeal, but further investiga-107

tions are required to properly characterise the α parameter relative to DNA108

quantity and quality. Homozygous drop-out will be evaluated in a separate109

paper.110

In this paper we evaluate Gill et al.’s model [12] only in relation to het-111

erozygous loci. Following Gill et al. we model the probability of drop-out112

as the conditional probability P (D = 1|XHET ), where XHET is one of the113

peak heights (in RFUs) of a heterozygote (whether it’s present or not, the114

peak height can equal zero). Given the peak height of one allele, we predict115

the probability of drop-out of the other allele, that we will refer to as the116

companion allele. Considering a heterozygote with alleles A and B, the peak117

height of allele B is used as an explanatory variable for the drop-out of allele118

A (the companion allele). Note that the order in which the alleles are chosen119

is arbitrary. The rationale behind this model is that the peak height of a120

given allele can be used to provide information on the presence or absence of121

its companion allele.122

The same logic applies to the simulation model: given the random seed123

that determines the randomisation procedure, the parameter ncells and the124

“process” parameters: πextraction, πaliquot and πPCReff , uniquely determine125

the output, i.e., the allelic peak heights. When the “process” parameters are126

constant, the only non-random factor that determines allelic peak heights is127

the number of cells (equivalent to a known quantity of DNA). The number128

of cells is generally unknown, but allele peak heights can be used as a proxy129

estimator [15], as there is an approximately linear relationship between peak130

heights and DNA quantity.131

7



Chapter 3. Analysis of low-template DNA samples 70

The logistic model is thus defined as:132

Pr(D = 1 |XHET ) =
eβ0+β1XHET

1 + eβ0+β1XHET
(1)

An example illustrating the construction of the drop-out variable D and133

the explanatory variable XHET on simulated heterozygous profiles is given134

in Appendix B.135

The logistic regression (eq. 1) is implemented using the R statistical soft-136

ware [18].137

2.4. The traditional experimental design to estimate the drop-out probability138

By default of the experimental design used to produce logistic regressions,139

previous authors [12, 15] have unintentionally described a haploid model. In140

this model, for a given cell, at a given heterozygous locus, only one allele141

per locus is observed per cell, whereas in the diploid model, alleles from both142

chromosomes are present, hence both alleles are present and associated. The143

difference between the two models is easily illustrated Figure 1.144

Consider the case of a sexual assault, where the evidential DNA sample145

consists of a sample of sperm cells left by the offender on the crime scene. In146

the following, a single heterozygous locus is considered, with alleles A and147

B. We further formalize our fictitious example by considering the offender as148

an “urn” of n haploid cells (in this case, sperm cells), where n is very large149

and can be considered as infinite.150

In this “urn”, the numbers of A vs. B alleles are perfectly balanced151

(after meiosis): there are n
2
alleles of type A and n

2
alleles of type B. When152

DNA is transferred from the offender to the crime scene, this is equivalent153

to a sample of a certain size being randomly selected from the “urn”. Given154

8



Chapter 3. Analysis of low-template DNA samples 71

that there are equal numbers of alleles of type A and B, the probability of155

selecting allele A is the same as that of selecting allele B, and is equal to 0.5.156

However, the actual number of alleles of each type depends on the size of the157

sample taken from the “urn”. For instance, if 10 haploid cells were deposited158

at the crime scene, then it is unlikely that there are exactly 5 cells carrying159

allele A and 5 cells carrying allele B. The extent of this imbalance depends160

of the size of the sample taken: each time a sample of size ncells is taken from161

the urn, a different estimate of the proportion p, denoted p̂ is yielded.162

The imbalance between proportions of A vs. B alleles can be further163

described through the sampling distribution of the proportion estimate p̂,164

which has expectation p and standard error (s.e.)
√

p(1−p)
ncells

.165

In our case, the samples are taken from an infinite population size, and p166

is known to be 0.5. The sampling distribution of the proportion can be ap-167

proximated by a Gaussian distribution with mean 0.5 and standard deviation168

of 0.5√
ncells

(Figure 2).169

Increasing the size of the sample, increases the probability of having bal-170

anced proportions of alleles A and B. It is possible to calculate the sample171

size needed to achieve a balanced proportion of A vs. B alleles, with a172

given tolerance defined as a standard error. Recall that the standard er-173

ror is most easily interpreted in terms of confidence intervals since a 95%174

confidence interval is obtained as [p̂ − 2 × s.e., p̂ + 2 × s.e]. If we need the175

estimated proportion of A alleles in the sample, denoted p̂, to equal 0.5176

with a s.e of 1%, then, the number of cells needed for the experiment is177

ncells =
(

p̂(1−p̂)
0.0,1

)2

=
(

0,5
0.01

)2
= 2500178

The same calculation is carried out for different values for the standard179

9



Chapter 3. Analysis of low-template DNA samples 72

error (Table 1).

ncells Standard error

2500 0.01

625 0.02

278 0.03

156 0.04

100 0.05

69 0.06

51 0.07

39 0.08

30 0.09

25 0.10

Table 1: Number of cells needed to recover a proportion of alleles of type A equal to 0.5,

with different values for the standard error.

180

2.5. Model evaluation181

We have evaluated both haploid and diploid models in order to test the182

robustness of the modelling assumptions.183

Diploid case184

In order for the simulations to reflect the reality of (low DNA template)185

forensic casework, we simulated heterozygous profiles from varying numbers186

of cells ncells sampled from a Gaussian distribution with mean 10 and a187

standard deviation of 5. A total of 1000 heterozygous profiles were generated.188

The parameters suggested by Gill et al.’s [16] were used: πextraction = 0.6,189
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πaliquot = 20/66, T = 28 and πPCReff = 0.8. Obviously, parameter values190

may be changed according to any specific application or process191

Haploid case192

The diploid cell simulation model can easily be adapted to simulate hap-193

loid data, by introducing an additional, preliminary sampling step, where194

alleles A and B are randomly selected using a binomial distribution (con-195

ditioned on ncells ). A supplementary parameter, πA , is used to define the196

probability of selecting allele A or B at a heterozygous locus. The same sim-197

ulation procedure is then applied to the resulting numbers of alleles A and198

B. The usual serial dilution experiments can also be mimicked by varying199

the probability of selecting alleles A and B, πA.200

Using the same simulation conditions as for the diploid case, we simulated201

four datasets with varying starting proportions of alleles A vs. B. This was202

achieved by applying a binomial sampling on the starting number of cells,203

where the probability of selecting allele A (πA) is successively taken as 0, 0.3,204

0.5 and 0.8, for examples across the range. The probability of observing a205

sample with a proportion of alleles A of 0.3 for example, is dependent upon206

the starting number of cells and this is illustrated in Figure 2. The choice207

πA = 0 corresponds to the mono-allelic case, i.e., the probability of selecting208

allele of type A is null. The simulation model is implemented in the forensim209

package for the R statistical software [17].210

11



Chapter 3. Analysis of low-template DNA samples 74

3. Results/ Discussion211

3.1. Assessing the fitted model212

Performing the Hosmer-Lemeshow goodness of fit test [19] on the differ-213

ent models fitted with either a haploid or a diploid dataset indicated that214

there was no reason to reject the logistic model, except when πA = 0. In215

other words, our simulation data supports the logistic model except for the216

case where the data is mono-allelic.217

Parameter estimates, along with the confidence intervals, for the diploid218

model are given in Table 2.219

Estimates– 95% confidence interval P-value

odds ratios for odds ratios

Parameter Lower Upper

eβ0 3.39 2.65 4.35 0

eβ1 0.96 0.96 0.97 0

Table 2: Estimates of the model parameters for the diploid dataset. The table gives the

confidence intervals and P-values of the Wald test for the logistic model parameters.

The confidence intervals indicate that there is little uncertainty about the220

estimation of the model parameters. The number of points in the simulated221

data sets is 1000, consequently, the P-values are, not surprisingly, very sig-222

nificant. Here, our focus is on parameter interpretation: β0 , expresses the223

log of the odds ratio (OR) of the probability of drop-out when the surviving224

peak height is zero. The parameter β1 expresses the change in the log of the225

OR relative to the probability of allele drop-out . We used these parameters226

to calculate the predicted probabilities of allelic drop-out.227
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3.2. Expected drop-out probability vs. peak heights228

Using the estimated parameters from the simulated data, we investigate229

the model predictions when the peak height of the companion allele is varied230

from 0 to 500 RFUs. Figure 3 shows the expected drop-out probabilities of231

allele A with respect to the peak height of the companion allele, which height232

is given by XHET . We reiterate the process for different datasets simulated233

as outlined in section 2.5.234

Note that the curves do not start at 1 (Figure 3): the probability of allele235

drop-out in case no surviving allele is observed, P (D = 1|XHET = 0), is236

estimated as 0.83 for the diploid case; this corresponds to the profiles where237

only one of the heterozygote’s alleles survived. These drop-out events are238

termed as “extreme drop-out events” in [12] because the size of the companion239

allele exceeds the stochastic threshold.240

Except for the case where the data set is mono-allelic (πA = 0), the logistic241

model predicted that the probability of drop-out of allele A decreased as the242

peak height of allele B increased. Predictions corresponding to different243

datasets differed in the decrease rate of the drop-out probability, the curve244

representing the diploid case decreasing more rapidly than the others. This245

is explained by the imbalance between the initial proportions of alleles A and246

B in the haploid datasets. If alleles B are under-represented (πA = 0.8) then247

there is not enough quantitative data (peak heights of alleleB) to describe the248

companion peak height. Similarly, when alleles B are over-represented (πA ∈249

{0, 0.3}) the drop-out events are scarcer than in the previous case because250

fewer alleles of type A are present in average. The imbalance between alleles251

A and B persists even in the case where they have the same probability to252
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be selected (πA = 0.5); this is due to the variability inherent in the sampling253

process.254

These simulations show that the initial imbalance of the number of al-255

leles A and B is reflected at the prediction level. Hence, the logistic model256

presented here is not adapted to experimental datasets prepared through di-257

lution experiments. Other models based on the contributed amount of DNA258

[15] may be better adapted for haploid data.259

3.3. Homozygous vs. heterozygous drop-out260

Treating homozygote drop-out is not trivial, because both alleles drop-261

out, hence a model based on the companion peaks of a heterozygote cannot262

work directly. To circumvent this problem, Balding and Buckleton [3] sug-263

gested that the drop-out probability for homozygous profiles, denoted D2,264

could be inferred from the heterozygote probability using a scaling factor265

(the α model). We propose that simulated data can be used to investigate266

the validity of this model.267

3.4. Drop-out threshold268

The use of a limit of detection threshold of 50 RFUs is common in foren-269

sic practice, however, the underlying data (the peak height intensities) are270

continuous, hence the application of thresholds can lead to inconsistencies.271

Following from the drop-out definition in this paper, an allele with a peak272

height of 49 RFUs is recorded as a drop-out, whereas an allele with a peak273

of 51 RFUs will not be recorded as a drop-out. The discussion of continuous274

models is beyond the scope of this paper, however, the use of Bayesian net-275

works to assess the risk associated to thresholds seems to be the way forward276
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[12].277

3.5. Alternative models278

There are obvious alternatives and modifications of the logistic model279

that we have presented and some of these are discussed below:280

Consistency requirement281

Assume first that we impose the following consistency requirement: If the282

companion peak height equals the threshold for declaring drop-out, Tdrop, the283

model should predict a drop-out with probability 0.5. This is not necessarily284

the case for models that have been suggested so far - including the approach285

described in this paper. To derive a model that fulfils the mentioned require-286

ment consider the reparametrisation287

P (D = 1|XHET ) =
eβ0+β1(XHET−Tdrop)

1 + eβ0+β1(XHET−Tdrop)
(2)

If X = Tdrop in eq. 2, then we have:288

P (D = 1|XHET = Tdrop) =
eβ0

1 + eβ0
(3)

If β0 = 0, then P (D = 1|XHET = Tdrop) = 0.5289

290

While this model, i.e., P (D = 1|XHET ) = e
β1(XHET−Tdrop)

1+e
β1(XHET−Tdrop)

meets the291

consistency requirement, only one parameter is estimated and it is therefore292

less flexible.293

Generalisations294

The models so far require independent observations (as do other logistic295

regression models suggested for similar purposes including [15]). The models296
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(eqs. 1 and 2) therefore do not apply to data with several markers from the297

same case. In particular, the simulated data of Table 3 cannot be used. From298

a practical point of view, dependence implies that if we are given information299

on the peak heights of some markers, then this guides our expectations for300

the peak heights of remaining markers. Dependence is therefore useful and301

could be utilised to improve estimates on drop-out probabilities whenever302

data is available for several markers cases. For the simulated data of Table303

3, dependence arises since the number of cells varies between cases but not304

within cases. We will not pursue the discussion of models accounting for305

dependence here since this would deviate from the objective of this paper.306

However, the problem of dependence could be reduced or perhaps removed307

by conditioning on an accurate estimate of the quantity.308

Based on the above observation and analyses that we have carried out309

(data omitted) we conclude that if the number of ncells is known then it can310

be used to predict drop-out probabilities. Significantly better predictions311

will result. In the absence of exact information on ncells we could replace it312

by an estimate. For instance, ncells could be estimated from quantification.313

The result is likely to be inaccurate, however. Therefore, it is not obvious314

that such an approach would improve the model. Alternatively, all peak315

heights of a case could be used to estimate the DNA quantity or the ncells316

equivalent. Indeed the model of Tvedebrink et al. [15] can be viewed in317

this light. Further data, preferably based on experimental data, is needed to318

resolve the above issues.319
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Case Marker ncells πextraction πaliquot πPCReff H1 H2

1 1 10 0.60 0.30 0.80 65 38

1 2 10 0.60 0.30 0.80 0 33

2 1 14 0.60 0.30 0.80 91 49

2 2 14 0.60 0.30 0.80 57 90

3 1 12 0.60 0.30 0.80 66 38

3 2 12 0.60 0.30 0.80 54 67

Table 3: In this table three cases are simulated, each with two heterozygous markers.

The number of cells (ncells) are sampled form a Gaussian distribution with the same

parameters used for data simulation, whereas the remaining parameters determining the

PCR simulation (πextraction, πaliquot, πPCReff ) have been kept fixed. H1 and H2 are the

peaks heights of the alleles of the simulated heterozygotes.

4. Conclusion320

Accounting for stochastic anomalies linked to STR typing techniques321

should become a standard in forensic genetics practice [5]. Therefore, there322

is a need to develop methods to quantify the probabilities associated with the323

occurrences of events such as drop-out and drop-in. Recent efforts based on324

logistic regression are promising, but it is necessary to accompany these de-325

velopments by evaluation and validation procedures based on experimental326

datasets, in order to enhance their use in forensic casework. Such experi-327

mental evaluation is challenging in practice because it is not clear how the328

experiments should be designed. Here, we do not intend to give a firm direc-329

tion for experimental protocols, but rather propose the simulation approach330

as an alternative to investigate the most appropriate variables to take into331

account in the experimental design. The simulation model presented here332
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offers a flexible framework to evaluate models based on logistic regression. It333

should be considered as an aid for methods evaluation that can temporarily334

replace laboratory experiments. The accessibility of the methodology in free335

software should also enhance the evaluation procedures on different kinds of336

data collected in different situations.337
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Figures338

Figure 1: Traditional experiments take a blood sample (or other body fluid of diploid

origin) and the DNA is extracted. Then serial dilutions are made, hence the number of of

copies of allele A (nA) does not equal the number of copies of allele B (nB), and is akin

to the haploid model. After extraction in real casework, nA is approximately the same as

nB .
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Figure 2: Sampling distribution of the proportion of alleles A conditioned on the sample

size ncells (number of cells). ncells was modelled as a continuous variable which values

varied from 10 to 500 cells.
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Figure 3: Model predictions, when haploid or diploid data are used. The parameter πA is

the probability parameter used to sample alleles A and B prior to the extraction step. The

curves give the probability that allele A has dropped-out giving the peak height intensity

of allele B. Peak heights of allele B range from 0 to 500 RFUs.
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Appendix A: simulation model339

We adapted the simulation model proposed in [16] to only account for340

allele drop-out, stutter peaks are not modelled in the version presented here.341

Starting from the initial number of cells, ncells, the simulation model applies342

successive binomial samplings in order to determine the numbers of template343

molecules that are successfully passed to consecutive steps of the DNA ana-344

lytical process. This starts with extraction, selection of an aliquot for PCR,345

the PCR cycling process, and the final visualisation of the alleles. Two dif-346

ferent models are required in order to fully characterise the DNA process.347

There is a diploid model, where there are n = 2 × ncells target molecules,348

and a haploid model with n = ncells target molecules. These models dif-349

fer from each other in the diploid model, chromosomes are paired and are350

therefore completely dependent, whereas in the haploid model, chromosomes351

are unpaired and completely independent. The steps for the diploid cells are352

subdivided as follows:353

i. DNA extraction: When DNA is extracted from a crime sample, the354

process is never 100% efficient. Dependant on the process used, this355

means that a given template molecule has a probability πextraction of356

being selected. The random variable, nsurvived
A , describes the number of357

DNA molecules, for a given allele A, surviving this step:358

nsurvived
A → Bin(ncells, πextraction)359

ii. Aliquot selection: Once the DNA has been extracted, an aliquot (e.g.360

10 out of 50ul total) is removed in order to be forwarded to the PCR361

reaction. The decision on the size of aliquot is often informed by a quan-362

titative step that is used to optimise the quantity of DNA. The number363
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of molecules extracted in the previous step are included in the aliquot364

(that is forwarded to the PCR reaction) with a probability πaliquot. The365

number of molecules succeeding this selection step is modelled as:366

nA → Bin(nsurvived
A , πaliquot)367

iii. PCR amplification: the nA molecules in the aliquot suspension are for-368

warded into a PCR reaction comprising T PCR amplification cycles. At369

a given locus, a DNA molecule is successfully amplified with a proba-370

bility πPCReff . In reality, the reaction efficiency decreases with cycle371

number because the Taq polymerase enzyme degrades. In our model,372

this probability is a single fixed parameter for each cycle t (note that373

[16] shows that a precise estimate of the PCR efficiency is not critical to374

the estimation of relative heterozygous balance). The number of ampli-375

fied molecules for a given allele A, at a given PCR cycle t is given by the376

recurrence equation:377

nA(t) = nA(t− 1) + Bin(nA(t− 1), πPCReff )378

This model is adapted to the haploid case by introducing a supplementary379

parameter, πA, which gives the probability of selecting allele A or B at a380

heterozygous locus, previous to the extraction step. The number of molecules381

of type A is determined using a binomial sampling of ncells with parameter382

πA. Rewriting step i. for the haploid case:383

nsurvived
A → Bin(Bin(ncells, πA), πextraction)384

The number of surviving molecules of type B is calculated as:385

nsurvived
B → Bin(ncells − Bin(ncells, πA), πextraction)386

The use of binomial sampling applied to the simulation procedure implies387

that the template molecules are independent during the different simulation388
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steps, with the exception of the first (extraction) step where there is depen-389

dency of A with B. In subsequent steps we assume independence between390

alleles A and B.391

Peak height determination392

In the simulation, the number of molecules of type A and B must achieve393

a threshold of detection of approximately 2×107 molecules in order to trigger394

the photomultiplier in the automated sequencing machine to generate a signal395

[16]; thereafter, we use a log-linear relationship in order to determine the396

amplitude of the allele peak heights. Recall that nA(t) denotes the number397

of amplified molecules after t PCR cycles, the peak height is defined by:398

log

(
nA(t) + T ∗

drop

T ∗
drop

)
K (4)

where T ∗
drop is the threshold of detection expressed in terms of number399

of amplified molecules that must be achieved in order to generate a signal,400

and K is a positive constant, (determined by best fit to the observed peak401

heights) that can be considered as a scaling factor for peak height. In this402

study we used K = 55 and T ∗
drop = 2× 107.403

Appendix B: example dataset404

In this Appendix we show how the simulated profiles are manipulated to405

construct the data sets on which the logistic regression is performed. The406

simulation model described in this paper was implemented into the forensim407

package for the R statistical software. Forensim and its documentation can408

be downloaded from: http://forensim.r-forge.r-project.org/. The following409
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R code simulates 6 DNA profiles, with the starting numbers of cells varying410

from 10 (= ncells) to 15 cells. Note that the command lines are given as they411

should be typed in an R console:412

>library(forensim)413

>set.seed(12452)414

>sapply(10:15,function(i)simPCR2(ncells=i,probEx=0.6,probAlq=0.30,probPCR=0.8,cyc=28))415

The simulated data is shown in Table 4.

Height allele A Drop-out variable allele A Height allele B Drop-out variable allele B

19 1 44 1

38 1 84 0

48 1 74 0

73 0 90 0

85 0 70 0

58 0 81 0

Table 4: Simulation results: the table displays the simulated peak heights and their cor-

responding drop-out variables.

416

The peak height of the first allele is used to describe the drop-out state417

of the other allele. To avoid dependencies in the data, only one allele peak418

height is used. Consequently the simulated data provides two datasets on419

which the logistic regression can be performed.420

Starting with the first column “Height allele A”, the drop-out variable D421

is set to 1 if the peak height is below 50 RFUs, and 0 otherwise. Variable X422

records the corresponding peak height of allele B. This process is repeated423
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for allele B. The following tables are obtained:424

425

Dataset 1

D 1 0 0 0 0 0

X 19 38 48 73 85 58

Dataset 2

D 1 1 1 0 0 0

X 44 84 74 90 70 81

Table 5: Datasets obtained from Table 4.

The independence of observations is a necessary condition to perform the426

logistic regression, thus the estimations can be made on each of the yielded427

datasets above.428

26



Chapter 3. Analysis of low-template DNA samples 89

References429

[1] J. Butler, Forensic DNA typing, Academic Press London, 2001.430

[2] J. Buckleton, C. Triggs, Is the 2p rule always conservative?, Forensic431

Sci. Int. 159 (2-3) (2006) 206–209.432

[3] D. J. Balding, J. Buckleton, Interpreting low template DNA profiles.433

Forensic Sci. Int. Genet. 4 (2009) 1–10.434

[4] P. Gill, J. Buckleton, A universal strategy to interpret DNA profiles435

that does not require a definition of low-copy-number, Forensic Sci. Int.436

Genet. 4 (2010) 221–227.437

[5] P. Gill, C. H. Brenner, J. S. Buckleton, A. Carracedo, M. Krawczak,438

W. R. Mayer, N. Morling, M. Prinz, P. M. Schneider, B. S. Weir, DNA439

commission of the International Society of Forensic Genetics: Recom-440

mendations on the interpretation of mixtures, Forensic Sci. Int. 160 (2-3)441

(2006) 90–101.442

[6] F. Van Nieuwerburgh, E. Goetghebeur, M. Vandewoestyne, D. Deforce,443

Impact of allelic dropout on evidential value of forensic DNA profiles444

using RMNE, Bioinformatics 25 (2) (2009) 225–229.445

[7] P. Gill, J. Whitaker, C. Flaxman, N. Brown, J. Buckleton, An investiga-446

tion of the rigor of interpretation rules for STRs derived from less than447

100 pg of DNA, Forensic Sci. Int. 112 (1) (2000) 17–40.448

[8] J. Mortera, A. P. Dawid, S. L. Lauritzen, Probabilistic expert systems449

for DNA mixture profiling, Theor. Popul. Biol. 63 (2003) 191–205.450

27



Chapter 3. Analysis of low-template DNA samples 90

[9] J. M. Curran, P. Gill, M. R. Bill, Interpretation of repeat measurement451

DNA evidence allowing for multiple contributors and population sub-452

structure, Forensic Sci. Int. 148 (2005) 47–53.453

[10] M. Bill, P. Gill, J. Curran, T. Clayton, R. Pinchin, M. Healy, J. Buck-454

leton, PENDULUM a guideline-based approach to the interpretation of455

STR mixtures, Forensic Sci. Int. 148 (2005) 181–189.456

[11] P. Gill, A. Kirkham, J. Curran, LoComatioN: A software tool for the457

analysis of low copy number DNA profiles, Forensic Sci. Int. 166(2-3)458

(2007) 128–138.459

[12] P. Gill, R. Puch-Solis, J. Curran, The low-template-DNA (stochastic)460

threshold–Its determination relative to risk analysis for national DNA461

databases, Forensic Sci. Int. Genet. 3(2) (2009) 104–111.462

[13] C. R. Miller, P. Joyce, L. P. Waits, Assessing allelic dropout and geno-463

type reliability using maximum likelihood, Genetics 160 (2002) 357–366.464

[14] P. C. Johnson, D. T. Haydon, Maximum-likelihood estimation of allelic465

dropout and false allele error rates from microsatellite genotypes in the466

absence of reference data, Genetics 175 (2007) 827–842.467

[15] T. Tvedebrink, P. S. Eriksen, H. S. Mogensen, N. Morling, Estimat-468

ing the probability of allelic drop-out of str alleles in forensic genetics,469

Forensic Sci. Int. Genet. 3(4) (2009) 222–226.470

[16] P. Gill, J. Curran, K. Elliot, A graphical simulation model of the entire471

DNA process associated with the analysis of short tandem repeat loci,472

Nucleic Acids Res. 33(2) (2005) 632-643.473

28



Chapter 3. Analysis of low-template DNA samples 91

[17] H. Haned, Forensim: an open source initiative for the evaluation of474

statistical methos in forensic genetics, Forensic Sci. Int. Genet. in press475

(2010).476

[18] R. D. C. Team., R : A Language and Environment for Statistical Com-477

puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN478

3-900051-07-0, URL http : //www.Rproject.org/.479

[19] D. Hosmer, S. Lemeshow, Applied logistic regression, Wiley Interscience,480

2000.481

29



Chapter 3. Analysis of low-template DNA samples 92

3.3 Discussion

The statistical model proposed by Gill et al. (2000) is regarded as the best way to move

forward in the field of DNA interpretation (Gill and Buckleton, 2009), but much remains to be

accomplished before such a model can be introduced in laboratory practice. In this regard, we

identify two main stages: first, model validation, and second, implementation through accessible

software.

Although Gill et al.’s model is anchored in a Bayesian logic that is well-established in science,

validation is necessary to enhance its use in forensic practice. The validation of the statistical

model would consist of demonstrating its superior flexibility with respect to currently used

methods, derived from biological models. In fact, Gill et al. (2000) already showed how this

model can be used to evaluate the consistency achieved by biological models. For this reason,

we focused on the most significant issue raised by the model: the estimation of its parameters.

In the article presented here, only heterozygote drop-out is modeled, though the simulation

model can also be used to simulate homozygote drop-out. However, the considered logistic

models would no longer be valid for such data. Indeed, if no allele is observed at a given locus,

then homozygote drop-out must have occurred. However, there are no remaining data at the

considered locus that can be used to predict the drop-out probability. Future work should thus

include the modification of current models to permit the modeling of homozygote drop-out. In

particular, the alpha model proposed by Balding and Buckleton (2009) should be evaluated to

determine the most accurate value or set of values for the alpha factor. These modifications will

certainly imply the use of data provided by several loci, and the use of models that can account

for dependencies in the data.

The second step to be taken to help introduce the use of the statistical model for DNA

interpretation is its implementation in a free software platform, as we believe this will facilitate

its introduction, at least for validation purposes. Recent work by Balding and Buckleton (2009)

constitutes a good starting point for this effort, but a more complete, user-friendly solution is

still required to initiate the use of the model in forensic casework. Despite this need, we focused

on the “method evaluation” aspect of the problem. However, programming the model of Gill

et al. (2000) into the open-source software developed during the course of this thesis work is

planned for the near future.
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4.1 Method evaluation in forensic genetics

Validation of analytical methods is an essential matter in forensic science because it is a prerequi-

site for the admissibility of evidence in court (Rudin and Inman, 2002). To achieve admissibility,

forensic laboratories conduct validation studies on all analytical methods involved with the anal-

ysis of evidence.

Most forensic laboratories rely on standards defined by international bodies or organizations,

such as the International Organization for Standardization (ISO) 1 or the U.S. Food and Drug

Administration (FDA) 2. For example, the FDA defines validation as “confirmation by examina-

tion and provision of objective evidence that the particular requirements for a specific intended

use are fulfilled”.

Validation studies are generally conducted when a new technology is implemented in the

laboratory (Kimpton et al., 1994; Sprecher et al., 1996; Moretti et al., 2001; Junge et al., 2003;

Greenspoon et al., 2004). For example, when a new method for detecting blood stains is proposed

by a vendor, a series of experiments are conducted to test the effectiveness and the reliability

of the new method under conditions appropriate to the operational procedures in use in the

laboratory. One of the first tests typically consists of testing the specificity of the method,

i.e., its ability “to measure unequivocally and to differentiate the analyte(s) in the presence of

components, which may be expected to be present” (Shah et al., 2000). In our example, this

would consist of testing the ability of the new method to detect blood from a stain discovered

at a crime scene, despite the presence of other components. Relying on the results of the testing

procedures, laboratories specify standards that become the established practice for all future

casework.

Historically, forensic DNA typing has largely been influenced by the Anglo-American judiciary

system and its interactions with scientists over the past several decades. It is precisely in these

judiciary systems where definitions of what qualifies as admissible DNA evidence have clearly

been stated. In the U.S., it is the Daubert3 standard that prevails. This standard states four

criteria that can be used to assess the reliability of a given method involved in the production

of scientific evidence:

1. Is the method testable and has it been tested?

2. Is it possible to quantify the error rate related to the method, and has it been determined?

3. Has the method been submitted to peer review in the relevant scientific community?

4. Has the method reached general acceptance in the relevant scientific community?

1www.iso.org
2www.fda.gov
3Daubert standards were articulated during a U.S. Supreme Court case in 1993: Daubert et al. vs. Merrell

Dow Pharmaceuticals Inc., 509 US 579 1993.
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Methods involved in forensic DNA typing have co-evolved with the dynamics of the validation

process, permitting the progressive introduction of tools at the cutting edge of developments in

molecular biology, as can be seen in the powerful genotyping system based on STR multiplexes

in existence today. However, while validation studies have largely emphasized the reliability of

analytical methods, little attention has been paid to validating the methods involved in statistical

aspects of forensic DNA profiling (Perlin, 2006). As a consequence, developments dedicated to

DNA evidence interpretation and, in particular, to DNA mixtures, have not encountered the

expected success in the forensic community. There are two explanations for this: first, courtroom

resistance to statistical methods has slowed down validation studies, and second, methods are

not always accessible, i.e., they are either not implemented or not released.

Indeed, despite the plethora of tools dedicated to statistical analysis released as either free

software, such as R (R Development Core Team., 2006), or commercial software, such as SAS R©4,

there are very few software programs dedicated to forensic genetics (we provide a description of

available software in the article below) in comparison to what is available in other disciplines,

for example, forensic genetics.

In fact, major contributions in DNA mixture interpretation and, for instance, the statistical

model we invoked in Chapter 3 have been implemented through the use of expert commercial

software (Bill et al., 2005; Gill et al., 2007). For many forensic laboratories, it is not possible

to invest in commercial software for evaluation purposes, so there is a significant cost issue. As

a consequence, the evaluation of these methods based on real or simulated cases is often not

possible unless software development is carried out, which is not necessarily within the scope of

most forensic laboratories. Hence, following the Daubert criteria described above, these methods

are not testable.

In addition to the inaccessibility of methods, another important issue is the cost associated

with the evaluation procedure itself. For example, testing and evaluating new methods for

mixture resolution implies that experimental mixtures have to be prepared under particular

conditions, for example, with differing ratios of contributions or different marker types. These

experiments can be expensive and time-consuming.

An appealing solution to these problems is computer simulations: the generation of thousands

of realistic DNA profiles under a varying number of conditions presents no significant time or

resource costs. However, as far as we know, there is no (monetarily) free software currently

available that provides simulation tools specific to forensic genetics. Therefore, we have identified

two needs: first, making available the methods of interest, and second, providing the necessary

software tools to conduct evaluation studies. As follows below, we describe the forensim package,

which we developed for implementation in the R statistical program to meet these needs.

4www.sas.com
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4.2 Forensim: An open-source tool for method evaluation

The originality of the forensim package is that it provides both statistical methods devoted to

the weight of DNA evidence and simulation tools to generate realistic datasets. Relying on

object-oriented programming, new classes of objects are defined to represent and to simulate

the main data types encountered in forensic genetics: allele frequencies, individual genotypes

and DNA mixtures. The package also offers the most commonly used methods in the statistical

interpretation of DNA evidence.

The following article describes the structure of the package and its main functionalities.

Further information on forensim can also be found in the package documentation, which is

provided in the Appendix accompanying this manuscript.

4.2.1 Article 4: “Forensim: an open-source initiative for the evaluation of

statistical methods in forensic genetics”

Article in press in Forensic Science International: Genetics, 2010.
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Forensim: An open-source initiative for the evaluation of statistical methods
in forensic genetics

Hinda Haned

Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France

1. Introduction

Analysis of DNA samples for the investigation of criminal cases
has beenwidespread since the ‘‘DNA revolution’’ of the early 1980s
[1]. As a consequence, a theoretical framework for the statistical
interpretation of DNA evidence has been well established.
However, one of the most challenging tasks in forensic DNA
analysis is the interpretation of DNAmixtures of several genotypes.
This type of evidence is difficult to evaluate because individual
components may not be separated, giving rise to questions about
the origin of the stain [2].

Numerous statistical methods have been proposed to overcome
this issue. Bayesian methods, in particular, seem to be very flexible
and able to account for a wide variety of situations: population
subdivision [3], relatedness between contributors to the eviden-
tiary DNA stain [4], typing errors [5] and laboratory contamination
[6]. However, these statistical developments have not been as
successful as expected,mainly because of the difficulty in assessing
their efficiency and degree of confidence that can be given to the
results.

The efficiency of different methods should be tested with
experimental DNA stains for which the circumstances of the
hypothetical crime are known by the experimenter. The methods

can then be evaluated according to their ability to accurately report
the weight of the DNA evidence. However, such experimental
validation is tedious and expensive in practice because new
experiments must be conducted for each tested scenario.
Computer simulations appear to be a satisfactory alternative
because the generation of thousands of DNA profiles presents no
significant time or resource costs. However, as far as we know,
there is no free software currently available that provides
simulation tools specific to forensic genetics.

The purpose of the forensim package for the free R statistical
software [7] is to provide these tools. Forensim implements new
classes of objects and functions devoted to the simulation of
genetic data encountered in the evaluation of DNA evidence. The
package also provides statistical methods dedicated to DNA
evidence interpretation. This paper presents an overview of these
functionalities.

2. Software overview

2.1. Simulation tools

Significant attentionwas devoted to facilitating the simulation
of data in forensim. For instance, the package relies on object-
oriented programming that allows for the definition of three
object classes corresponding to the three main types of data
commonly encountered in forensic casework: population allele
frequencies, individual genotypes and mixed-DNA stains. Data
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simulation is achieved using specific functions, called construc-
tors, which are named after the object class to which they are
linked. A brief description of the object classes and their
constructors follows.

2.1.1. Allele frequencies

Importation of existing allele frequencies is achieved using the
tabfreq constructor. Input data must be in a particular format
that is in widespread use among the forensic community: a matrix
in which the first column gives the allele names, and the
frequencies for a given allele are read in rows for different loci.
The imported allele frequencies are stored in objects of class
tabfreq. Useful information about the data is stored in different
components, or slots, of this object. Each slot can be accessed via
the @ operator. For example, locus names are stored in the
which.loc slot.

All forensim objects are described in the help pages. For
instance, typing the command line class?tabfreq into an R
console gives an exhaustive description of the tabfreq class along
with examples of its usage.

When no pre-existing data are available, allele frequencies
can be simulated for any number and type of loci, either in a
homogeneous population, using the simufreqD function, or in a
subdivided population, using the simupopD function. These
functions are based on a Dirichlet model, whose parameters are
determined by the user, to allow for control of the allele
frequencies’ means and variances. In subpopulations, the allele
frequencies are modeled to deviate from the average values in
the global population. The extent of this deviation is specified by
the user. The use of the Dirichlet distribution to simulate
population subdivision agrees with recent work on the subject
[8,9].

2.1.2. Individual genotypes

Individual genotypes are simulated from allele frequencies
using the simugeno constructor. At a given locus, an individual’s
genotype is simulated by randomly drawing two alleles (with
replacement) at their respective allele frequencies in the target
population. The simulated genotypes are independent between
and within individuals. Useful information about the individuals,
such as their names (stored in the @indID slot) and their
population of origin (slot @popind), is also stored in the simugeno
objects.

2.1.3. DNA mixtures

Mixtures are simulated from simugeno objects using the
constructor simumix. The resulting mixtures are stored in
simumix objects that contain two data types: (i) data that are
usually available when dealing with real cases of forensic DNA
mixtures—the mixture profiles, which are lists of the alleles
observed for a given set of loci (slot @mix.all), and (ii) data that
are usually not available–the number of contributors (slot
@ncontri) and their genotypes (slot @mix.prof), which are
known only if the mixture is simulated.

2.2. Statistical tools for DNA evidence interpretation

Forensim supplies the statistical methods used in the most
critical steps in the process of evidentiary DNA interpretation: the
determination of the number of contributors involved in the stain
and the weight of the strength of the DNA evidence [2]. The
number of individuals involved in a DNA stain can be determined
based on allele counting using the mincontri function; this is
often referred to as the maximum allele count method [10]. The
package also includes an original method based on likelihood
maximization (function likestim [11]).

Basic statistical methods used to report the weight of DNA
evidence, such as the exclusion probability, are available in
forensim. The package also includesmore original methods, such as
the general formula of likelihood ratios, which accounts for
population subdivision [3]. A brief summary is given Table 1.

3. Other available software

Several commercial and open-source software programs have
been proposed to deal with the problems raised by DNA evidence
interpretation; a non-exhaustive review is given Table 2. It is
notable that these programs implement specificmethodologies for
DNA evidence interpretation and were not originally intended for
method evaluation. Forensim’s contribution is that it offers a global
methodological framework for method evaluation. The imple-
mented statistical methods are an important basis for such
evaluation. Interested users can implement their own methods in
the R language and then use forensim object classes and functions
to facilitate the evaluation.

4. Conclusion

Forensim aims to provide practical and open-source simulation
tools, enabling the evaluation of statistical methods for DNA
evidence interpretation. The software sources are available on R-
Forge, which offers a central platform for the development of R
packages. R-Forge also provides a variety of web-based collabora-
tive tools, allowing several developers around the globe to work on
the same project. Contributions from forensic scientists or
scientists from other disciplines could be of great help in
enhancing this open-source initiative.

The next step in forensim development is to increase user-
friendliness. Multiple features of the software will be made
accessible through a graphical interface that will make forensim

more accessible to users not familiarwith the R software, hopefully
encouraging these users to contribute to the package.

Validation of forensim is also an important issue. There is no
consensus on how software that combines simulation and
statistical tools should be validated. The most basic level of
validation is verification of the reproducibility of the results
obtained by other software. This type of validation was done
regularly throughout the programming process. Various examples
of DNA evidence interpretation from Fung andHu [18]were tested,
and identical results were obtained. Some of these examples
appear in the help pages, and they are also available in the
software manual: http://forensim.r-forge.r-project.org/misc/for-
ensim-manual.pdf. The accuracy of the results obtained by the
statistical methods implemented in forensim was checked against
two programs:

- the DNAMIX software, available at http://statgen.ncsu.edu/
storey/;

- the forensic package for the R software, available at http://cran.r-
project.org/web/packages/forensic/index.html.

This package implements the main statistical methods used to
report the weight of DNA evidence. Similar functions are
implemented in forensim, but the computational burden was

Table 1
Summary of main statistical methods implemented in forensim.

Method Function Reference

Random man exclusion probability PE Clayton and Buckleton [2]

Random match probability RMP Balding and Nichols [12]

Likelihood ratios LR Curran et al. [3]

Conditional profile probability Pevid2 Curran et al. [3]
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significantly decreased thanks to the implementation of certain
routines in the C programming language.

Further validation of the software could be achieved by
encouraging forensic scientists to test different features of the
software and to discuss their conclusions. The forensim website
offers multiple tools to facilitate such interaction; for instance, a
mailing list and a forum are accessible online. Increasing user-
friendliness will certainly facilitate this step.

Forensimmaybecome an important tool formethod evaluation
in forensic genetics. It has alreadybeenused in the investigationof
the efficiency and robustness of the maximum-likelihood
approach for DNA mixture resolution [11]. Because forensim is
open source, more features can be added to meet the needs of
forensic practitioners in situations that are not yet covered by the
package.
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Appendix A. Example

To illustrate some functionalities of forensim for forensic DNA

evidence interpretation, we simulated a four-person DNA mixture

and then interpreted it as an evidentiary DNA sample.

The package must be installed in the R environment; the

procedure is described in the software tutorial available from:

http://forensim.r-forge.r-project.org. Once the package has been

installed, it must be loaded using the library command. Then, the

strusa dataset, containing the allele frequencies for 15 Short Tandem

Repeat Loci (STR) in three US populations [19], can be loaded (along

with the command data). Hereafter, the command lines are displayed

as they should be entered in the R console:
> library(forensim)

> data(strusa)

To allow other users to reproduce the simulations in this example,

the random seed is set:
> set.seed(123560)

Individual genotypes can easily be simulated using the simugeno

constructor, which can be entered into the command line as
> geno <- simugeno(strusa,n=c(0,1000,0))

This command simulates a thousand genotypes from the

Caucasian population (the second population in strusa). Then,

mixtures of any number of contributors can be simulated; here we

simulate a four-person mixture:
> mix4 <- simumix(geno,ncontri=c(0,4,0))

Now,we assume that this simulatedmixturewas in fact recovered

from a crime scene and that the real number of contributors is

unknown. The only information available in this case is the alleles

present at each locus. Note that only qualitative data is handled for

the moment. For instance, the locus ‘‘D21S11’’ shows the alleles:
> mix4@mix.all[‘‘D21S11’’]

$D21S11

[1] ‘‘28’’ ‘‘29’’ ‘‘30’’ ‘‘31.2’’ ‘‘32.2’’

The forensic expert analyzing this DNA evidence wants to answer

the question: ‘‘Howmany people were involved in this stain?’’ To this

end, he chooses to compare two methods: first, the maximum allele

count, considering all available STR loci simultaneously:
> mincontri(mix4)

[1] 3

and second, a maximum-likelihood estimation of the number of
contributors [11]. For this estimate, the expert assumes that all
people involved in the stain are unrelated and come from the
American Caucasian population:
> likestim(mix4,freq=strusa,refpop=‘‘Cauc’’)

max maxval

[1,] 4 8.7e-29

Note that the allele frequencies to be used in the calculation must

be specified (using the argument refpop). Maximizing the likelihood

gives the correct estimate of the number of contributors (max, with a

likelihood value of maxval), while the maximum allele count

underestimates the number of contributors but still gives an

informative lower bound.

Morecomplexscenarioscanalsobeconsidered.Forexample,onecan

simulate DNA stains comprising the DNAs of several individuals from

Table 2
Non-exhaustive review of open source and commercial software for forensic genetics. Note that these programsmight evolve; thus, information about software features and

availability is subject to change.

Software Features License

Allele

calling

Crime case–DNA

mixture

Kinship

testing

Disaster victim

identification

Simulation

tools

DNAMIX � Open source http://statgen.ncsu.edu/storey/.

DNAVIEW � � � Commercial http://dna-view.com/dnaview.htm

familias � Freeware Egeland et al. [14]

FEST � Open source Skare et al. [13]

forensica � Open source http://cran.r-project.org/web/packages/forensic

forensim � � Open source http://forensim.r-forge.r-project.org/

Fss-i3 � � Commercial Bill et al. [15]

GeneMapper ID-X � � Commercial http://idx.appliedbiosystems.com/

GenoStat � Shareware http://www.bioforensics.com/

Genoproof � Commercial http://qualitype.de/genoproof

Genoproof Mixture � � Commercial http://qualitype.de/genoproofmixture

Grape � � Commercial http://dna-soft.com/

M-FISys � � � Commercial http://www.genecodesforensics.com/software/

PCRSIM � Not released Gill et al. [16]

TrueAllele � � � Commercial Perlin [17]

a Similar functions are implemented in forensim, but the computational burden was significantly decreased.
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different subpopulationswith varyingdegrees of subdivision (using the

function simupopD and the argument alpha1) and evaluate the

importance of taking population subdivision into account in the

calculations.
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4.2.2 Why the R software?

This past decade, the free R software for statistical computing and graphics (R Development

Core Team., 2006) has become an indispensable tool for statistical analysis in areas as diverse

as ecology, genetics, pharmacology, genomics and econometrics (to name a few). The software

presents several advantages among which several built-in mechanisms for representing informa-

tion. Thus, creating/importing data, running calculations and representing important informa-

tion using graphics is straightforward. Another advantage of R is that it is a free software. Free

software guarantee to users four essential freedoms5:

1. the freedom to run the software for any purpose (for instance, for commercial purposes ),

2. the freedom to study how the program works, this implies that the software sources are

accessible to everyone (they must be open-source),

3. the freedom to redistribute copies of the programme, for any purpose (even commercial),

4. the freedom to distribute copies of modified versions of the software to other users.

R is thus not only accessible free of charge6, but it is also “open-source”, i.e., its sources are

accessible and can be modified by anyone. In addition, R has a community of users that support

each other and collaborate on the development of the software. Thanks to this community, the

software is continually supplemented with packages containing codes for varying topics.

The R-Forge platform was built to support this community and help developers and users

collaborate around the software. The most attractive feature of R-Forge is the ability to work

with several programmers on the same project. Forensim source being hosted by R-Forge,

contributions from forensic scientists or scientists from other disciplines could be of great help

in improving the package.

4.3 Perspectives and future developments

As any other R package, forensim is constantly evolving. Currently available tools aim at

facilitating methods evaluation, but hopefully, new features and improvements will be made.

For example, an important issue is the handling of quantitative data. As stated in the article

above, only qualitative data is handled for the moment. Future developments will include the

modifications of the main classes to include the importation and the generation of quantitative

data from genotyping software such as GeneMapper IdX (Applied Biosystems).

Another important improvement that can be made to the package consists in making the

software more user-friendly. We have already started this effort by making available a number

of features in the form of user-friendly graphical interfaces: these include simulation modules

5These criteria were defined by the Free software Foundation, who pioneered the free software movement in
1985 , see www.fsf.org.

6This is not always the case for free software.
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(see functions simPCRTK, and Hbsimu) and a module implementing a mixture deconvolution

method (function mastermix, Gill et al., 1998b).

Since its release on R-Forge in April 2009, there have been several efforts to introduce the

forensim package in the forensic community. A few months month after its release, forensim was

presented at the 37th European DNA Profiling Group of the International Society for Forensic

Genetics (ISFG). The ISFG members demonstrated an important interest to this initiative, and

they now encourage similar projects. As an evidence of this enthusiasm, the ISFG website now

includes a section entitled “Free software resources”7.

In conclusion, forensim is certainly not a perfect solution to the multiple problems raised by

methods validation, however, the unique background offered by the R software lets us foresee the

possibility of making of forensim a platform centralizing all validation efforts in varying topics

related to forensic genetics. Such project already exists in R for other disciplines, for example

the “Bioconductor” project (Gentleman et al., 2004) centralizes a very large number of tools

dedicated to analysing genomic data. The future platform would include packages dealing with

different topics such as relationship testing, disaster victim identification and DNA database

search. Hopefully, this will cause a dynamic validation of several methods, and possibly allow

their introduction into forensic casework.

7http://www.isfg.org/Software



Chapter 5

Conclusions

As we have now presented the questions addressed during the course of this thesis work and the

solutions that we proposed for them, we will review our results to identify some of the remaining

issues and discuss our research perspectives.

Summary of thesis results

The first issue addressed in this thesis concerned a recurring problem in forensic casework:

determining the number of contributors to DNA mixtures. Surprisingly, methods dedicated to

DNA evidence interpretation have not often considered this problem, probably because two-

person mixtures constitute the main mixture type encountered in casework. Another reason

for this is that forensic DNA typing generally involves comparisons between samples, thereby

reducing the difficulty of interpretation. However, there is an increasing number of cases in

which DNA samples are recovered from crime scenes but no reference sample is available.

Determining the number of contributors to a DNA mixture can be relevant at any stage of

the interpretation process. However, there is currently no established method for carrying out

the estimation of this number, apart from the rudimentary allele counting method. This led

us to propose a method to estimate the number of contributors based on qualitative data. We

showed that this method can be efficient, in particular for complex mixtures of more than two

contributors, and we also proposed a simple method to quantify the efficiency of the estimator.

The second point addressed in this thesis focused on situations in which the interpretation of

DNA evidence is challenging. We were particularly interested in methods dedicated to estimating

allelic drop-out. Accounting for allelic drop-out or other anomalies that may affect DNA profiles

is essential to avoid biased results or misinterpretations. Gill et al. (2000) have proposed an

elegant solution for this problem, but one aspect that has received little attention in the forensic

literature is the estimation of the model parameters. Because our focus was on evaluation, we

adopted a simulation approach to investigate a number of features of a model proposed by Gill

et al. (2009), which relies on the peak heights observed in a DNA profile to estimate drop-out

probabilities.
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Testing and evaluating models is based on the use of data. Therefore, we were committed

to investigating the accuracy of the current experimental approach used to generate “drop-out

data”. Our investigations showed that these techniques are only valid for haploid data. It was

particularly important for us to convey this message, as is demonstrated in Chapter 3 in which

we showed through simulations that the tested model tends to give biased results if used with

haploid data. However most importantly, we illustrated how model evaluation can be conducted

using simulations.

In parallel to our work on methodological aspects, we addressed the question of the imple-

mentation of method evaluation. It is difficult to conceive an evaluation effort without software

that makes the methods in question accessible. However, methods of interest must not only

be made available but also testable. The forensim package was developed to answer both of

these conditions by offering key methods involved in the weighting of DNA evidence, along

with new object classes adapted to generate and handle data that is commonly encountered in

forensic casework. The package has been constantly evolving ever since its first release: existing

programs are regularly improved and new features are made accessible through user-friendly

graphical interfaces.

Our approach related to method evaluation led us to address key issues related to the inter-

pretation of DNA evidence both in terms of methodology (how to evaluate existing methods?)

and in terms of practice (what tools should be used for this evaluation?).

A review of existing practices in terms of the interpretation of DNA profiles in general allowed

us to identify several open questions. Still, certain issues appeared to us as more urgent than

others, especially in light of our dialogue with forensic scientists from the national forensic

laboratory of Lyon.

These issues concerned two stages: the first one is the investigation stage, where investigators

search for information and clues to find the perpetrator of a crime; the second one is the trial

stage where one or more individuals are suspected of having committed a crime and are judged

by a court, at the light of information that were collected during the investigation stage.

Our first concern was that certain practices needed improvement, especially with respect to

DNA samples for which no suspects or any reference samples are available. These cases take on

increasingly important roles in the volume of casework processed by forensic laboratories around

the world, and it is more than legitimate to present the question of their exploitation by forensic

scientists and investigators. We believe we have contributed to this question by proposing an

estimator of the number of contributors to DNA mixtures. Although this estimate might not

necessarily find its place in the courtroom, it might still assist forensic scientists and investigators

in their work.

Concerning the methods used for weighting DNA evidence, we were concerned with their

introduction into forensic laboratories and, in particular, the introduction of a statistical model

for DNA evidence interpretation (Gill et al., 2000). We observed that some issues remain un-

solved, such as that the estimation of the model parameters has not been dealt with as well
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as it should in the literature. We have thus proposed the use of simulation models to evaluate

existing methods to estimate these parameters and to stimulate a discussion about the possible

alternatives in this matter. This work, presented in Chapter 3, can be considered as an illustra-

tion of an evaluation procedure based on computer simulations, which can be adopted by any

forensic laboratory since the underlying methods are implemented in an open-source software.

While the investigation phase is common to all judiciary systems, the trial phase does not

necessarily take place. Indeed, a case is not necessarily brought before court. For example in

the U.S., a suspect can plead guilty, and his sentence is not debated before a jury1. In this case,

the weight of scientific evidence is not debated between prosecution and defence parties. In any

case, statistical methods are still needed during the investigation phase. Hence, our contribution

addresses questions that can be encountered in different judiciary systems.

The last element that we wish to raise in this general assessment is the positive feedback

we had from many forensic scientists. Indeed, it is notable that during this thesis work, one of

the first educational workshops dedicated to open-source software solutions for DNA mixtures

interpretation was held under the auspices of the International Society for Forensic Genetics

(ISFG). Feedback received from forensic scientists from different European laboratories show

that our methodology and its implementation respond to a real need in forensic genetics.

Research perspectives

The work presented here addresses several open questions, but a number of additional issues re-

main unsolved. The main unsolved issue that must be addressed in the future is the exploitation

of quantitative data. These data can provide important additional information with respect to

qualitative data, i.e., the list of alleles in a DNA profile. Indeed, as we explained in the first

chapter, there is a relationship between alleles’ peak heights and post-PCR DNA quantities, and

also between peaks heights and (post-PCR) mixture ratios of contribution. Logically, includ-

ing such data into statistical methods should improve their efficiency. For instance, in mixture

resolution, quantitative data could lead to calculating the probability of observed peak heights

conditional on a given genotypic combination. Contributions on the subject either suggested the

use of a Gaussian (Evett et al., 1998) or a Gamma model (Cowell et al., 2007b), but somehow

failed to justify the use of such distributions on an experimental basis.

We thereby intend to explore the most adequate probabilistic distribution for alleles peak

heights. To achieve this work, we will rely on quantitative data, either generated from laboratory

experiments or from the numerous data sets that many forensic laboratories collect from control

DNA samples used in their routine work.

Of course, a key issue here is the experimental design. We did not consider this question in

this thesis beyond proposing a simulation model for helping experimenters during this sensitive

1Federal rules of criminal procedure, http://www.law.cornell.edu/rules/frcrmp/Rule11.htm.
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step, but it is obvious to us that this issue needs to be considered. We believe that simulation

models will have an important role to play in this process.

Future results from this research will hopefully lead us to solve several issues in forensic DNA

interpretation, among which, DNA mixtures resolution. Of course, the estimator of the number

of contributors proposed in Chapter 2 will benefit from such developments, as less plausible

genotypes can be eliminated from the likelihood function. Another important step in this work

will be the quantification of the impact of incorporating quantitative data in weighting DNA

evidence, i.e., what is the amount of additional information provided by such data? We believe

this is an important question, especially because it is likely to be discussed in court.

Another issue to address is the definition of a more accurate limit of the detection threshold

for declaring allelic drop-out. A commonly employed threshold is 50 RFUs, which indicates

whether a signal can be referred to as an allele or as background noise (thus implying that a

drop-out can be declared), with a variation of a single RFU. This is clearly problematic. Because

the underlying data are continuous, there is no reason why a drop-out should be declared at 49

RFUs and not at 50 RFUs.

Thresholds definitions are essential to analysing DNA evidence, without them, true signals

cannot be differentiated from background noise. Still, their definition needs to be improved. We

believe that the way forward is to develop a measure of the risk associated with these thresholds.

Regardless of the threshold chosen to define drop-out, a measure of the risk associated with such

decision is calculated. Obviously, this measure must rely on quantitative data, which contain

information about a profile quality. Gill et al. (2009) proposed the use of a graphical model to

answer this question, based on the logistic model we studied in Chapter 3.

Combining the results from these investigations with information gained from model evalua-

tion from Chapter 3 will hopefully result in a rigorous statistical model for estimating drop-out

probabilities.

Open questions

Throughout the manuscript, we evoked the limits of our work in the discussion sections in the

chapters, and in our future research perspectives above. But there are two remaining questions

that we wish to extend on in this general conclusion: first, the limits of free software, and the

discussion of the concept of validation.

Software limitations

While open-source software offers to the users the freedom “to run, copy, distribute, study, change

and improve the software”2, non open-source software significantly limits the users freedom, by

imposing data types, inputs formats, methods, procedures, that do not always correspond nor

2www.fsf.org
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satisfy the users needs. Obviously, it is not realistic to develop a software that entirely satisfies

all potential users. Still, non open-source software limits the possibilities offered to the users,

who cannot access the software sources to adapt them to their needs. Thus, software that is

used to facilitate analysis or research can quickly turn to a straitjacket that inhibits ideas or

developments that do not correspond to the possibilities offered by the software.

This seems inevitable in non open-source software, but free software are not completely

immune from these constraints. Indeed, some users are not necessarily able to explore all pos-

sibilities offered by a free software. For example, if a user wants to change how mixtures are

simulated in forensim, he must have good knowledge of R and some programming skills. Hence,

even free software have their limitations. It is thus legitimate to wonder whether novice pro-

grammers can explore all of forensim possibilities, the answer is a clear “no”. Still, we believe

that the package provides essential functions and simulation tools, which can easily be used and

manipulated, notably thanks to the documentation provided with the package (see Appendix

section).

The concept of validation

The discussion about software limitations leads us to question ourselves about the limits of our

work. Validation of bioanalytical methods has been widely discussed, and there are several

standards established by international bodies such as the FDA or the ISO that give helpful

guidelines for testing laboratories. But discussing methods or model validation is a quite dif-

ferent task that raises philosophical questions. The subject is rich and is still debated between

those who think validation as essential, and those for whom only invalidation is reasonable (see

Rykiel, 1996 for a review of the contradictory opinions on the matter). It would be somewhat

inappropriate to discuss here in detail the concept of validation: this is beyond the scope of this

thesis. Still, whatever definition is given to validation, it cannot take place unless the method

is accessible: only available methods are questionable and testable. Because the implemented

procedures only represent a transcription of statistical methods, laboratories that use software

like forensim will be testers of the implemented methods. Making our developments available

in open-source software is faithful to this principle, and we therefore believe we have provided

useful tools enabling method evaluation and thus paving the way to method validation.

From open software to open community

Future improvements in DNA typing will yield new challenges and issues in forensic DNA typing,

and the need for freely accessible statistical tools can no longer be neglected. We demonstrated

two main factors explaining the difficulty of introducing statistical reasoning in forensic genetics,

the first of which is courtroom resistance to probabilistic reasoning and the second the lack of

tools allowing for the evaluation of existing methods. Another explanation is the perception

of DNA evidence, which has long been considered a flawless form of scientific evidence by the
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general public, but also, by a number of scientists (Aronson, 2007). As a consequence, there

is a lack of funding to support the improvement of current practices or to introduce advanced

statistical tools. For this reason, we believe that open-source software is an appealing solution.

In addition to being fully transparent about the content of such software, users can access these

programs, modify them and even redistribute them.

The democratization of software tools will allow for constructive discussions on issues raised

by DNA mixtures or low template DNA. Indeed, laboratories around the world could pool their

data and their results, as in inter-laboratory exercises. Such exercises are already conducted

under the auspices of the ISFG (see for example, an inter-laboratory exercise on mitochondrial

DNA markers, Prieto et al., 2008). We do not see why the same type of exercises could not be

applied to statistical methods, especially as the matter of their accessibility is now answered by

an open-source solution.

Another advantage of this democratization, initiated by open-source software, is the opportu-

nity for scientists from diverse communities to discuss questions encountered in their disciplines.

For example, the problem of determining the number of contributors to DNA mixtures does not

arise only in forensic science. Besides, the forensim package is already visible to other commu-

nities. For example, the five first occurrences yielded by a search for R packages related to the

key word “DNA” on R website3 are:

1. package RFLP, dedicated to the analysis of data generated from RFLP analysis

2. package forensic, earliest package in R dedicated to weighting DNA evidence

3. package ape, dedicated to phylogenetic trees

4. package cgh, for micro-arrays analysis

5. package forensim

Although we have not focused on the matter of extrapolating our work outside of a forensic

setting, we believe that the issues addressed in this thesis may also be relevant to non-forensic

applications. For instance, the matter of estimating drop-out probabilities is encountered in

ecological studies in conservation genetics and in behavioral ecology studies in which non-invasive

genotyping is performed (Taberlet et al., 1996; Gagneux et al., 1997; Pompanon et al., 2005;

Broquet et al., 2007). Another discipline where such difficulties can also be encountered is the

analysis of ancient DNA from specimens stored in museums or from bones (Gill et al., 1994;

Schmerer et al., 1999; Wandeler et al., 2007).

DNA samples obtained from diverse biological materials such as shed hairs, are often recovered

in limited quantity and are thus prone to anomalies such as drop-out, drop-ins and stutters. The

simulation framework for testing different models for the estimation of drop-out probabilities,

3The Comprehensive R Archive Network (CRAN), http://cran.r-project.org/, September 1st, 2010
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presented in Chapter 3 can be extended to such situations and may prove helpful in choosing

the most accurate variables in the prediction models. Similarly, the need for an estimate of

the number of contributors to DNA mixtures can emerge in non-forensic settings. For example,

samples of shed hairs, faeces and urine, may contain biological material from different animals,

and hence constitute a mixture. Obtaining an estimate of the number of contributors may

be helpful for biological studies based on these samples. Moreover, the great flexibility of the

simulation tools provided in forensim ensures that simulation models can be applied to genetic

markers of different types. For example, single-nucleotide polymorphism markers are commonly

used in studies related to ancient DNA. Thus, the simulation framework can easily be extended

to model situations that are different from those presented here.

In fact, as we were going alone with the package development, we realized that the scope of

the software exceeded our original intentions, since it dealt with a problematic that is commonly

encountered in applied sciences. Thus, both the topics addressed and the open-source solution

we developed may be relevant to different disciplines and to scientists from different backgrounds.

Hopefully, open software will lead to an open community that will be the scene of interesting

interactions.

Towards “Bayesian justice”

Although we have addressed somewhat different topics in this work, we have been consistently

motivated by the urgent need to introduce advanced statistical tools for the interpretation of

DNA evidence. In this regard, we believe that the Bayesian approach based on likelihood ratios

is the best way to improve mixture interpretation.

Probabilistic reasoning is already in use in many courtrooms, but not always under their

optimal form, i.e., through the calculation of likelihood ratios. We previously explained that

this is due to courtrooms reluctance to such logical reasoning.

Still, probabilistic reasoning is essential in forensics because this science deals with complex

objects that are subject to a number of uncertainties about their origin. For example, the origin

of a DNA evidence cannot be known with certainty even in the case of a match between a suspect

profile and a crime scene profile. Typically a suspect could have left some biological material

during an occasion unrelated to the crime itself, or another person with the same profile could

have left the stain. Hence, the language of probability is meant to translate the uncertainties

about the origin of a DNA stain into numerical statements. These statements must be of course

comprehensible by judges and juries. Still, statistical methods should not be dismissed because

of their complexity, and a compromise should be found between the comprehension level of non-

specialists and the need for sound statistical reasoning in court. We are aware that this question

is not easy, and would probably require years of collaborative work between forensic scientists,

mathematicians, cognitive psychologists, judges, juries, etc.
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Any improvement in this field can hardly be achieved if methods of interest are not available.

We believe that our work can pave the way to the introduction of Bayesian methods in court-

rooms, by allowing many forensic scientists to appropriate these methods, by testing, manipu-

lating, evaluating, and may be even validating them for casework. Hopefully, this will facilitate

conveying the message that probabilistic reasoning is essential to assess scientific evidence, and

ultimately, that the Bayesian approach is the most adapted for evidence interpretation.

Another key step to achieve resides in changing the perception of DNA evidence itself. DNA

is thought of as a gold standard, or as flawless scientific evidence. We believe that this per-

ception cannot be changed as long as DNA is considered as an identification tool, instead of

an intelligence tool that can lead to find the perpetrator of a crime, in combination with other

scientific evidence. Of course, if forensic scientists have the tools to prove that DNA evidence

is neither flawless nor unreliable, they can further contribute to find a compromise between

methods complexity and juries understanding.

The problem of method evaluation is not completely resolved, since open questions remain.

Nevertheless, given the needs expressed by the forensic community and the positive feedback

regarding the availability of an open-source software solution, it is very likely that the tools

necessary for “Bayesian justice” will be gradually introduced into forensic practice.
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du Diplôme de Doctorat
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forensim-package 3

forensim-package The forensim package

Description

forensim is dedicated to the interpretation of forensic DNA mixtures through statistical methods. It

relies on three S4 classes that facilitate the manipulation and the storage of genetic data produced

in forensic casework: tabfreq, simugeno and simumix.

tabfreq objects are used to store allele frequencies, simugeno objects are used to store genotypes

and simumix objects are used to store DNA mixtures.

For more information about these classes type ’class ?tabfreq’, ’class ?simugeno’ and ’class ?simu-

mix’.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

A2.simu A Tcl/Tk graphical user interface for simple DNA mixtures resolution
using allele peak heights or areas information when two alleles are
observed at a given locus

Description

The A2.simu function launches a Tcl/Tk graphical interface with functionalities devoted to two-

person DNA mixtures resolution, when two alleles are observed at a given locus.

Usage

A2.simu()

Details

When two alleles are observed at a given locus in the DNA stain, seven genotype combinations

are possible for the two contributors: (AA,AB), (AB,AB), (AA,BB), (AB,AA), (BB,AA), (AB,BB)

and (BB,AB), where A and B are the two observed alleles (in ascending order of molecular weight).

Having previously obtained an estimation for the mixture proportion, it is possible to reduce the

number of possible genotype combinations by keeping those only supported by the observed data.

This is achieved by computing the sum of square differences between the expected allelic ratio and

the observed allelic ratio, for all possible mixture combinations. The likelihood of peak heights (or

areas), given the combination of genotypes, is high if the residuals are low. Genotype combinations

are thus selected according to the peak heights with the highest likelihoods.

The A2.simu() function launches a dialog window with three buttons:

-Plot simulations: plot of the residuals of each possible genotype combination for varying

values of the mixture proportion across the interval [0.1, 0.9]. The observed mixture proportion is

also reported on the plot.

-Simulation details: a matrix containing the simulation results. Simulation details and
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4 A3.simu

genotype combinations with the lowest residuals can be saved as a text file by clicking the “Save"

button. It is also possible to choose specific paths and names for the save files.

-Genotypes filter: a matrix giving the mixture proportion conditional on the genotype com-

bination. This conditional mixture proportion helps filter the most plausible genotypes among the

seven possible combinations. The matrix can be saved as a text file by clicking the “Save" button.

It is also possible to choose a specific path and a name for the save file.

Note

-Linux users may have to download the libtktable package to their system before using the

A2.simu function. This is due to the Tktablewidget, used in forensim, which is not (always)

downloaded with the Tcl/Tk package.

-For the computational details, please see forensim tutorial at http://forensim.r-forge.
r-project.org/misc/forensim-tutorial.pdf.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Sparkes P, Pinchin R, Clayton, Whitaker J, Buckleton J. Interpreting simple STR mixtures

using allele peak areas. Forensic Sci Int 1998;91:41-53.

See Also

A3.simu: the three-allele model, and A4.simu: the four-allele model

Examples

A2.simu()

A3.simu A Tcl/Tk graphical user interface for simple DNA mixtures resolution
using allele peak heights or areas when three alleles are observed at
a given locus

Description

The A3.simu function launches a Tcl/Tk graphical interface with functionalities devoted to two-

person DNA mixtures resolution, when three alleles are observed at a given locus.

Usage

A3.simu()
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Details

When three alleles are observed at a given locus in the DNA stain, twelve genotype combinations

are possible for the two contributors: (AA,BC), (BB,AC), (CC,AB), (AB,AC), (BC,AC), (AB,BC),

(BC,AA), (AC,BB), (AB,CC), (AC,AB), (AC,BC) and (BC,AB) where A, B and C are the three ob-

served alleles (in ascending order of molecular weights). Having previously obtained an estimation

for the mixture proportion, it is possible to reduce the number of possible genotype combinations

by keeping those only supported by the observed data. This is achieved by computing the sum of

square differences between the expected allelic ratio and the observed allelic ratio, for all possible

mixture combinations. The likelihood of peak heights (or areas), given the combination of geno-

types, is high if the residuals are low. Genotype combinations are thus selected according to the

peak heights with the highest likelihoods.

The A3.simu() function launches a dialog window with three buttons:

-Plot simulations: plot of the residuals of each possible genotype combination for varying

values of the mixture proportion across the interval [0.1, 0.9]. The observed mixture proportion is

also reported on the plot.

-Simulation details: a matrix containing the simulation results. Simulation details and

genotype combinations with the lowest residuals can be saved as a text file by clicking the “Save"

button. It is also possible to choose specific paths and names for the save files.

-Genotypes filter: a matrix giving the mixture proportion conditional on the genotype com-

bination. This conditional mixture proportion helps filter the most plausible genotypes among the

twelve possible combinations. The matrix can be saved as a text file by clicking the “Save" button.

It is also possible to choose a specific path and a name for the save file.

Note

-Linux users may have to download the libtktable package to their system before using the

A3.simu function. This is due to the Tktablewidget, used in forensim, which is not (always)

downloaded with the Tcl/Tk package.

-For the computational details, please see forensim tutorial at http://forensim.r-forge.
r-project.org/misc/forensim-tutorial.pdf.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Sparkes P, Pinchin R, Clayton, Whitaker J, Buckleton J. Interpreting simple STR mixtures

using allele peak areas. Forensic Sci Int 1998;91:41-53.

See Also

A2.simu: the two-allele model, and A4.simu: the four-allele model

Examples

A3.simu()
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6 A4.simu

A4.simu A Tcl/Tk graphical user interface for simple DNA mixtures resolution
using allele peak heights or areas when four alleles are observed at a
given locus

Description

The A4.simu function launches a Tcl/Tk graphical interface with functionalities devoted to two-

person DNA mixtures resolution, when four alleles are observed at a given locus.

Usage

A4.simu()

Details

When four alleles are observed at a given locus in the DNA stain, six genotype combinations are

possible for the two contributors: (AB,CD),(AC,BD),(AD,BC),(BC,AD),(BD,AC) and (CD,AB)

where A, B, C and D are the four observed alleles (in ascending order of molecular weights). Hav-

ing previously obtained an estimation for the mixture proportion, it is possible to reduce the number

of possible genotype combinations by keeping those only supported by the observed data. This is

achieved by computing the sum of square differences between the expected allelic ratio and the

observed allelic ratio, for all possible mixture combinations. The likelihood of peak heights (or

areas), given the combination of genotypes, is high if the residuals are low. Genotype combinations

are thus selected according to the peak heights with the highest likelihoods.

The A4.simu() function launches a dialog window with three buttons:

-Plot simulations: plot of the residuals of each possible genotype combination for varying

values of the mixture proportion across the interval [0.1, 0.9]. The observed mixture proportion is

also reported on the plot.

-Simulation details: a matrix containing the simulation results. Simulation details and

genotype combinations with the lowest residuals can be saved as a text file by clicking the “Save"

button. It is also possible to choose specific paths and names for the save files.

-Genotypes filter: a matrix giving the mixture proportion conditional on the genotype com-

bination. This conditional mixture proportion helps filter the most plausible genotypes among the

six possible combinations. The matrix can be saved as a text file by clicking the “Save" button. It is

also possible to choose a specific path and a name for the save file.

Note

-Linux users may have to download the libtktable package to their system before using the

A4.simu function. This is due to the Tktablewidget, used in forensim, which is not (always)

downloaded with the Tcl/Tk package.

-For the computational details, please see forensim tutorial at http://forensim.r-forge.
r-project.org/misc/forensim-tutorial.pdf.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>
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References

Gill P, Sparkes P, Pinchin R, Clayton, Whitaker J, Buckleton J. Interpreting simple STR mixtures

using allele peak areas. Forensic Sci Int 1998;91:41-53.

See Also

A2.simu: the two-allele model, and A3.simu: the three-allele model

Examples

A4.simu()

Accessors Accessors for forensim objects

Description

Accessors for forensim objects: simugeno, simumix and tabfreq. "\$" and "\$<-" are used to access

the slots of an object, they are equivalent to "@" and "@<-".

Value

A simugeno, a simumix or a tabfreq object.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

Examples

data(strusa)
class(strusa)

strusa@pop.names
#equivalent
strusa$pop.names

Bates.Database Allele counts for first example (Table 1) of Balding and Buckleton,
2010

Description

The marker allele and counts are given in a data frame.

Usage

data(Bates.Database)



Chapter 1 Appendix A: Forensim Manual 11

8 Bates.DNA

Format

A data frame with 104 observations on the following 3 variables.

marker Marker name

allele a numeric vector

count a numeric vector

References

Balding DJ, Buckleton J, Interpreting low template DNA profiles, Forensic Science International:

Genetics, 4: 1-10, 2009, doi: 10.1016/j.fsigen.2009.03.003. http://www.zebfontaine.eclipse.co.uk/djb.htm

Examples

data(Bates.Database)

Bates.DNA Alleles of mixture, known contributor, defendant as
well as missing (drop-out) allelels. (Case Bates, see
http://www.zebfontaine.eclipse.co.uk/djb.htm)

Description

There are four lines for each marker correspinding to alleles for the (i) the mixture (ii) known

contributor (if ther is one) (iii) the defendant and (iv) drop-out alleles. The names and order of the

markers should be as for dataBase

Usage

data(Bates.DNA)

Format

A data frame with 40 observations on the following 6 variables.

Marker arker names

Source Alleles of Mixture, Known contributor and defendant and missing (drop-out) alle-

les

A1 a numeric vector

A2 a numeric vector

A3 a numeric vector

A4 a logical vector

Source

Balding DJ, Buckleton J, Interpreting low template DNA profiles, Forensic Science International:

Genetics, 4: 1-10, 2009, doi: 10.1016/j.fsigen.2009.03.003. http://www.zebfontaine.eclipse.co.uk/djb.htm

Examples

data(Bates.DNA)
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CaseY.Database Allele counts for second example of (Table) 3 of Balding and Buckle-
ton, 2010

Description

The marker allele and counts are given in a data frame.

Usage

data(Bates.Database)

Format

A data frame with 104 observations on the following 3 variables.

marker Marker name

allele a numeric vector

count a numeric vector

References

Balding DJ, Buckleton J, Interpreting low template DNA profiles, Forensic Science International:

Genetics, 4: 1-10, 2009, doi: 10.1016/j.fsigen.2009.03.003. http://www.zebfontaine.eclipse.co.uk/djb.htm

Examples

data(Bates.Database)

CaseY.DNA Alleles of mixture, known contributor, defendant as well
as missing (drop-out) allelels for US case (CaseY, see
http://www.zebfontaine.eclipse.co.uk/djb.htm)

Description

There are four lines for each marker correspinding to alleles for the (i) the mixture (ii) known

contributor (if ther is one) (iii) the defendant and (iv) drop-out alleles. The names and order of the

markers should be as for dataBase.

Usage

data(Bates.DNA)
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Format

A data frame with 40 observations on the following 6 variables.

Marker arker names

Source Alleles of Mixture, Known contributor and defendant and missing (drop-out) alle-

les

A1 a numeric vector

A2 a numeric vector

A3 a numeric vector

A4 a logical vector

Source

Balding DJ, Buckleton J, Interpreting low template DNA profiles, Forensic Science International:

Genetics, 4: 1-10, 2009, doi: 10.1016/j.fsigen.2009.03.003. http://www.zebfontaine.eclipse.co.uk/djb.htm

Examples

data(Bates.DNA)

changepop Function to change population-related information in forensim objects

Description

The changepop function changes population-related information in tabfreq, simugeno and simu-

mix objects

Usage

changepop(obj, oldpop, newpop)

Arguments

obj a forensim object, either a tabfreq, a simugeno or a simumix object

oldpop a character vector giving the population names to be changed

newpop a character vector giving the new population names

Value

a forensim object where the slots containing population-related information have been modified

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

Examples

data(strveneto)
tab1 <- simugeno(strveneto,n=100)
tab2 <- changepop(tab1,"Veneto","VENE")
tab1$pop.names
tab2$pop.names
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Cmn The number of all possible combinations of m elements among n with
repetitions

Description

The number of all possible combinations of m elements among n with repetitions.

Usage

Cmn(m, n)

Arguments

m the m elements to combine among n

n the n elements from which to combine m elements with repetitions

Details

There are (n+m-1)!/(m!(n-1)!) ways to combine m elements among n with repetitions.

Note

Cmn was implemented as an auxiliary function for the dataL function which computes the likeli-

hood of the observed alleles in a mixed DNA stain conditional on the number of contributors.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

comb for all possible combinations of m elements among n with repetitions

Examples

Cmn(2,3)
comb(2,3)
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comb Generate all possible combinations of m elements among n with repe-
titions

Description

Generate all possible combinations of m elements among n with repetitions.

Usage

comb(m, n)

Arguments

m the number of elements to combine

n the number of elements from which to combine the m elements

Details

There are (n+m-1)!/(m!(n-1)!) ways to combine m elements among n with repetitions, combn
generates all these possible combinations.

Value

A matrix of (n+m-1)!/(m!(n-1)!) rows, and n columns, each row is a possible combination of m

elements among n .

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

Cmn for the calculation of the number of all possible combinations of m elements among n with

repetitions

Examples

#combine 2 objects among 3 with repetitions
Cmn(2,3)
comb(2,3)
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dataL Generic formula of the likelihood of the observed alleles in a mixture
conditional on the number of contributors for a specific locus

Description

The function dataL gives the likelihood of a set of alleles observed at a specific locus conditional

on the number of contributors that gave these alleles. Calculation is based upon the frequencies of

the observed alleles.

Usage

dataL(x = 1, p, theta = 0)

Arguments

x an integer giving the number of contributors

p a numeric vector giving the frequencies of the observed alleles in the mixture

theta a float in [0,1[. theta is equivalent to Wright’s Fst. In case of population

subdivision, it allows a correction of the allele frequencies in the subpopulation

of interest

Note

dataL function has several similarities with the Pevid.gen function of the forensic package

which computes the probability of the DNA evidence, dataL implements a particular case of this

probability. Please see http://cran.r-project.org/web/packages/forensic/

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H, Pene L, Lobry JR, Dufour AB, Pontier D. Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform better than maximum allele count? J
Forensic Sci, accepted 2010.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999;44(5): 987-995

See Also

lik.loc and lik for calculating the likelihood of a given simumix object

Examples

#likelihood of observing two alleles at frequencies 0.1 and 0.01 when the number of
#contributors is 2, in two cases: theta=0 and theta=0.03
dataL(x=2,p=c(0.1,0.01), theta=0)
dataL(x=2,p=c(0.1,0.01), theta=0.03)
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DNAproxy Approximation of the amount of DNA contributed by a person based
on the observed peak heights of the alleles present in the analyzed
sample

Description

DNAproxy gives an estimation of the amount of DNA contributed by a person to a DNA stain

based on the observed peak heights of the present alleles. The estimation is performed using data

across all available loci, data can either consist of single-contributor or mixed DNA stains. The

computation of the DNA proxies from experimental data are described by Tvedebrink et al. (cf. the

references sections).

Usage

DNAproxy(tab, x)

Arguments

tab a table produced by the recordDrop function, giving the allelic dropouts ob-

servations and the corresponding allelic peak heights

x a character giving the label of the individual for whom the DNA proxy must

be specified, this argument is to be specified only when data in tab is made of

mixtures. In case data is consist of single-contributor stains, the argument must

be left empty. x must match the name given in the tab table.

Note

DNAproxy is an auxiliary function of the tabDNAproxy function that implements the methodol-

ogy proposed by Tvedebrink et al. to estimate the probability of allelic dropout using experimental

DNA mixtures.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Tvedebrink T, Eriksen PS, Mogensen HS, Morling N. Estimating the probability of allelic drop-out

of STR alleles in forensic genetics. Forensic Science International: Genetics, 2009, 3(4), 222-226.

See Also

recordDrop, tabDNAproxy

Examples

#load the exemple data
data(dropdata)
tabcsv<-dropdata$tabcsv
genot<-dropdata$genot
#individuals' labels are 1 and 2
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#DNA proxy for individual one, when data is composed of a 2-person mixture
DNAproxy(recordDrop(1,2,geno=genot,tabcsv=tabcsv),"c1")

dropdata Dropout example data

Description

dropdata gives is an extract of a series of experiments used to determine the probability of

dropout

Usage

data(dropdata)

Format

A list of two components: ’tabcsv’ and ’genot’. tabcsv is an extract of the validation table of a

two-person mixture (Genemapper format) and genot is the matrix of genotypes of the individuals

contributing to the mixture.

Details

The mixture is characterized using the Applied Biosystems AmpFlSTR Identifiler^TM kit.

Source

Data communicated by Elodie Suzanne and Laurent P\’ene, Laboratoire de Police Scientifique,

Ecully, France.

Examples

data(dropdata)
names(dropdata)
dropdata$tabcsv
dropdata$genot

dropDB Calculates LR allowing for drop-out and drop-in

Description

This function wraps up David Balding’s code.

Usage

dropDB(dataBase, DNA, dropHetero = 0.05, alpha = 0.5,
dropIn = 0.05, rel = c(0, 0)/4, maxUnknown = 1,
adj = 0, fst = 0)
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Arguments

dataBase An R data frame with header ’marker allele count’ with columns giving the

names of the marker and the allele and the count (the number of occurences of

the allele) in the database.

DNA An R data frame with header ’MarkerSource A1 A2 A3 A4’ There are four

lines for each marker corresponding to alleles for the (i) the mixture (ii) known

contributor (if there is one) (iii) the defendant and (iv) drop-out alleles. The

names and order of the markers should be as for dataBase-

dropHetero Probability heterozygous drop-out

alpha Balding and Buckleton’s alpha-parameter defining relation between homozy-

gous and heterozygous drop out probabilities.

dropIn Drop-in probability.

rel A vector of length 2 giving the IBD=1 and IBD=2 probabilities and so c(0,0)

corrresponds to unrelated contributors.

maxUnknown The maximum number of unknown contributors under the defence hypothesis.

Possible values 1 or 2.

adj Parameter to adjust for sampling adjustment. Balding uses 2.

fst Parameter to adjust for coancestry. Balding recommends values between 0.01

and 0.05.

Value

Marker name, LR and numerator and denominator of LR.

Author(s)

Thore Egeland based on David Balding’s code.

References

Balding DJ, Buckleton J, Interpreting low template DNA profiles, Forensic Science International:

Genetics, 4: 1-10, 2009, doi: 10.1016/j.fsigen.2009.03.003. http://www.zebfontaine.eclipse.co.uk/djb.htm

Examples

#First output column of Table 1 in Balding and Buckleton:
data(Bates.Database);data(Bates.DNA)
dropDB(Bates.Database,Bates.DNA,dropHetero=0.05,alpha=0.5,dropIn=0.00,rel=c(0,0)/4,
maxUnknown=1,adj=2,fst=0.02)
#First output column of Table 3 in Balding and Buckleton:
data(CaseY.Database);data(CaseY.DNA)
dropDB(CaseY.Database,CaseY.DNA,dropHetero=0.5,alpha=0.5,dropIn=0.05,rel=c(0,0)/4,
maxUnknown=1,adj=2,fst=0.02)
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findfreq Finds the allele frequencies of a mixture from a tabfreq object

Description

The findfreq function finds the allele frequencies of a mixture stored in a simumix object, form

a given tabfreq object. If the tabfreq object contains multiple populations, a reference population

from which to extract the frequencies must be specified.

Usage

findfreq(mix, freq, refpop = NULL)

Arguments

mix a simumix object

freq a tabfreq object from which to extract the allele frequencies of the mixture

refpop a factor giving the reference population in tabfreq from which to extract the

allele frequencies

Value

A list giving the allele frequencies for each locus.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

simumix

Examples

data(strusa)
s2<-simumix(simugeno(strusa,n=c(0,2000,0)),ncontri=c(0,2,0))
findfreq(s2,strusa,refpop="Cauc")

findmax Function to find the maximum of a vector and its position

Description

The findmax function finds the maximum of a vector and its position.

Usage

findmax(vec)
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Arguments

vec a numeric vector

Details

findmax finds the maximum value of a vector and its position.

Value

A matrix of two columns:

max the position of the maximum in vec
maxval the maximum

Note

findmax is an auxiliary function for the dataL function, used to compute the likelihood of the

observed alleles in a mixed DNA stain given the number of contributors.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

Examples

findmax(1:10)

Hbsimu A Tcl/Tk simulator of the heterozygous balance

Description

Hbsimu is a user-friendly graphical interface simulating the heterozygous balance of heterozygous

profiles generated according to the simulation model described in Gill et al. (2005)

Usage

Hbsimu()

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Curran J and Elliot K. A graphical simulation model of the entire DNA process associated

with the analysis of short tandem repeat loci. Nucleic Acids Research 2005, 33(2): 632-643.

Examples

Hbsimu()
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lik Likelihood of the observed alleles at different loci in a DNA mixture
conditional on the number of contributors to the mixture

Description

The lik function computes the likelihood of the observed alleles in a forensic DNA mixture, for

a set of loci, conditional on the number of contributors to the mixture. The overall likelihood is

computed as the product of loci likelihoods.

Usage

lik(x = 1, mix, freq, refpop = NULL, theta = NULL, loc=NULL)

Arguments

x the number of contributors to the DNA mixture, default is 1

mix a simumix object which contains the mixture to be analyzed

freq a tabfreq object from which to extract the allele frequencies

refpop a factor giving the reference population in tabfreq from which to extract the

allele frequencies. This argument is used only if freq contains allele frequen-

cies for multiple populations, otherwise it is by default set to NULL

theta a float from [0,1[ giving Wright’s Fst coefficient. theta accounts for popula-

tion subdivision while computing the likelihood of the data

loc loci for which the overall likelihood shall be computed. Default (NULL) corre-

sponds to all loci

Details

lik computes the likelihood of the alleles observed at all loci conditional on the number of con-

tributors. This function implements the general formula for the interpretation of DNA mixtures in

case of population subdivision (Curran et al, 1999), in the particular case where all contributors are

unknown and belong to the same subpopulation.

The likelihood for multiple loci is computed as the product of loci likelihoods.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H, Pene L, Lobry JR, Dufour AB, Pontier D. Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform better than maximum allele count? J
Forensic Sci, accepted 2010.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999;44(5): 987-995

See Also

lik.loc for the likelihood per locus, likestim and likestim.loc for the estimation of the

number of contributors to a DNA mixture through likelihood maximization
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Examples

data(strusa)
#simulation of 1000 genotypes from the African American allele frequencies
gen<-simugeno(strusa,n=c(1000,0,0))
#3-person mixture
mix3<-simumix(gen,ncontri=c(3,0,0))
sapply(1:3, function(i) lik(x=i,mix3, strusa, refpop="Afri"))

lik.loc Likelihood per locus of the observed alleles in a DNA mixture condi-
tional on the number of contributors to the mixture

Description

The lik.loc function computes the likelihood of the observed data in a forensic DNA mixture,

for each of the loci involved, conditional on the number of contributors to the mixture.

Usage

lik.loc(x = 1, mix, freq, refpop = NULL, theta = NULL, loc=NULL)

Arguments

x the number of contributors to the DNA mixture

mix a simumix object which contains the mixture to be analyzed

freq a tabfreq object from which to extract the allele frequencies

refpop a factor giving the reference population in tabfreq from which to extract the

allele frequencies

theta a float from [0,1[ giving Wright’s Fst coefficien. theta acounts for population

subdivision while computing the likelihood of the data.

loc the loci for which the likelihood shall be computed. Default (set to NULL)

corresponds to all loci.

Details

lik.loc computes the likelihood per locus of the observed alleles. This function implements the

general formula for the interpretation of DNA mixtures in case of subdivided populations (Curran

et al, 1999), in the particular case where all contributors are unknown and belong to the same sub-

population.

The Fst coefficient given in the theta argument allows accounting for population subdivision

when all contributors belong to the same subpopulation.

Value

The function lik.loc returns a vector, of length the number of loci in loc, giving the likelihood

of the data for each locus.
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Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H, Pene L, Lobry JR, Dufour AB, Pontier D. Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform better than maximum allele count? J
Forensic Sci, accepted 2010.

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999;44(5): 987-995

See Also

lik for the overall loci likelihood, likestim and likestim.loc for the estimation of the

number of contributors to a DNA mixture through likelihood maximization

Examples

data(strusa)
#simulation of 1000 genotypes from the Caucasian allele frequencies
gen<-simugeno(strusa,n=c(0,100,0))

#4-person mixture
mix4 <- simumix(gen,ncontri=c(0,4,0))
lik.loc(x=2,mix4, strusa, refpop="Cauc")
lik.loc(x=2,mix4, strusa, refpop="Afri")
#You may also want to try:
#likestim(mix4,strusa,refpop="Cauc")

likestim Maximum likelihood estimation of the number of contributors to a
forensic DNA mixture for a set of loci

Description

The likestim function gives multiloci estimation of the number of contributors to a forensic

DNA mixture using likelihood maximization.

Usage

likestim(mix, freq, refpop = NULL, theta = NULL, loc=NULL)

Arguments

mix a simumix object

freq a tabfreq object containing the allele frequencies to use for the calculation

refpop the reference population from which to extract the allele frequencies used in

the likelihood calculation. If tabfreq contains more than one population,

refpop must be specified, otherwise, refpop is set to default (NULL).
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theta a float from [0,1[ giving Wright’s Fst coefficient. theta accounts for popula-

tion subdivision while computing the likelihood of the data.

loc loci to be considered in the estimation. Default (set to NULL) corresponds to all

loci.

Details

The number of contributors which maximizes the likelihood of the data observed in the mixture is

searched in the discrete interval [1,6]. In most cases this interval is a plausible range for the number

of contributors.

Value

A matrix of dimension 1 x 2, the first column, max, gives the maximum likelihood estimation of the

number of contributors, the second column gives the corresponding likelihood value maxvalue.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H, Pene L, Lobry JR, Dufour AB, Pontier D. Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform better than maximum allele count? J
Forensic Sci, accepted 2010.

Egeland T, Dalen I, Mostad PF. Estimating the number of contributors to a DNA profile. Int J Legal
Med 2003, 117: 271-275

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999, 44(5): 987-995

See Also

likestim.loc for maximum of likelihood estimations per locus

Examples

data(strusa)
#simulation of 1000 genotypes from the Hispanic allele frequencies
gen<-simugeno(strusa,n=c(0,0,100))
#4-person mixture
mix4 <- simumix(gen,ncontri=c(0,0,4))
likestim(mix4,strusa,refpop="Hisp")
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likestim.loc Maximum likelihood estimation per locus of the number of contribu-
tors to forensic DNA mixtures.

Description

The likestim.loc function returns the estimation of the number of contributors, at each locus,

obtained by maximizing the likelihood.

Usage

likestim.loc(mix, freq, refpop = NULL, theta = NULL, loc = NULL)

Arguments

mix a simumix object

freq a tabfreq object containing the allele frequencies to use for the calculation

refpop the reference population from which to extract the allele frequencies used in the

likelihood calculation. Default set to NULL, if tabfreq contains more than

one population, refpop must be specified

theta a float from [0,1[ giving Wright’s Fst coefficient. theta acounts for population

subdivision while computing the likelihood of the data.

loc loci to be considered in the estimation. Default (set to NULL) corresponds to all

loci.

Details

The number of contributors which maximizes the likelihood of the data observed in the mixture is

searched in the discrete interval [1,6]. In most cases this interval is a plausible range for the number

of contributors.

Value

A matrix of dimension loc x 2. The first colum, max, gives the maximum likelihood estimation

of the number of contributors for each locus in row. The second column, maxvalue, gives the

corresponding likelihood value.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H, Pene L, Lobry JR, Dufour AB, Pontier D. Estimating the number of contributors to foren-

sic DNA mixtures: Does maximum likelihood perform better than maximum allele count? J
Forensic Sci, accepted 2010.

Egeland T , Dalen I, Mostad PF. Estimating the number of contributors to a DNA profile. Int J
Legal Med 2003, 117: 271-275
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Curran, JM , Triggs CM, Buckleton J , Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999, 44(5): 987-995

See Also

likestim for multiloci estimations

Examples

data(strusa)
#simulation of 1000 genotypes from the Hispanic allele frequencies
gen<-simugeno(strusa,n=c(0,0,100))
#4-person mixture
mix4 <- simumix(gen,ncontri=c(0,0,4))
likestim.loc(mix4,strusa,refpop="Hisp")

LR Likelihood ratio for DNA evidence interpretation

Description

The LR function calculates the likelihood ratio for a DNA evidence, when two competing hypothe-

ses Hd and Hp, respectively the defence and the prosecution hypotheses, are weighted about the

origin of the DNA evidence. The evidence can either be a simple or a mixed stain.

Usage

LR(stain, freq, xp=0, xd=0, Tp=NULL, Vp=NULL, Td=NULL, Vd=NULL, theta=0)

Arguments

stain a vector giving the set of (distinct) alleles present in the DNA stain

freq vector of the corresponding allele frequencies in the global population

xp the number of unknown contributors to the stain under the prosecution hypoth-

esis Hp. Default is 0.

xd the number of unknown contributors to the stain under the defence hypothesis

Hd. Default is 0.

Tp a vector of strings where each string contains two alleles separated by ’/’, cor-

responding to one known contributor under the prosecution hypothesis Hp. The

length of the vector equals the number of known contributors. Default is NULL.

Vp a vector of strings where each string contains two alleles separated by ’/’, cor-

responding to one known non-contributor under the prosecution hypothesis Hp.

The length of the vector equals the number of known non-contributors. Default

is NULL.

Td a vector of strings where each string contains two alleles separated by ’/’, corre-

sponding to one known contributor under the defence hypothesis Hd. The length

of the vector equals the number of known contributors. Default is NULL.
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Vd a vector of strings where each string contains two alleles separated by ’/’, corre-

sponding to one known non-contributor under the defence hypothesis Hd. The

length of the vector equals the number of known non-contributors. Default is

NULL.

theta a float in [0,1[. theta is equivalent to Wright’s Fst. In case of population

subdivision, it allows a correction of the allele frequencies in the subpopulation

of interest

Details

LR is the implementation of the general formula of Curran et al (1999) for the evaluation of foren-

sic DNA mixtures through likelihood ratios. The likelihood ratio is computed as a ratio of two

probabilities of the DNA evidence, E, conditional on the evaluated hypotheses:

LR =
P (E|Hp)

P (E|Hd)
,

where Hp denotes the prosecution hypothesis and Hd the defence hypothesis.

In case of population subdivision, contributors to the DNA stain are considered to come from the

same subpopulation. Allele dependencies within subpopulations are accounted for through Wright’s

Fst coefficient, denoted here θ.

Note

Please note that the LR function is based on functions initially implemented in the forensic package

by Miriam Marusiakova http://cran.r-project.org/web/packages/forensic/

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999;44(5): 987-995

See Also

the exclusion probability PE.

Examples

# A rape case in Hong Kong (Hu and Fung, Int J Legal Med 2003)
# The stain shows alleles 14, 15, 17 and 18 at locus D3S1358.
stain =c(14,15,17,18)
# suspect's profile: "14/17"
suspect<-"14/17"
# victim's profile: "15/18"
victim<-"15/18"
# corresponding allele frequencies
freq<-c(0.033,0.331,0.239,0.056)

# Prosecution hypothesis: Contributors were the victim and the suspect
# defence hypothesis: Contributors were the victim and 1 unknown contributor
# Likelihood ratios for DNA evidence for different alternatives:
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LR(stain,freq,xp=0,Tp=c(victim,suspect),Vp=NULL,Td=victim,Vd=suspect,xd=1)

mastermix A Tcl/Tk graphical user interface for simple DNA mixtures resolution
using allele peak heights/ or areas information

Description

The mastermix function launches a Tcl/Tk graphical user interface dedicated to the resolution

of two-person DNA mixtures using allele peak heights/ or areas information. mastermix is the

implementation of a method developed by Gill et al (see the references section), and previously

programmed into an Excel macro by Dr. Peter Gill.

Usage

mastermix()

Details

mastermix is a Tcl/Tk graphical user interface implementing a method developed by Gill et al

(1998) for simple mixtures resolution, using allele peak heights or areas information.

This method searches through simulation the most likely combination(s) of the contributors’ geno-

types. Having previously obtained an estimation for the mixture proportion, it is possible to reduce

the number of possible genotype combinations by keeping only those supported by the observed

data. This is achieved by computing the sum of square differences between the expected allelic

ratio and the observed allelic ratio, for all possible mixture combinations. The likelihood of peak

heights (or areas), conditional on the combination of genotypes, is high if the residuals are low.

Genotype combinations are thus selected according to the peak heights with the highest (condi-

tioned) likelihoods.

mastermix offers a graphical representation of the simulation for three models:

-The two allele model: at a given locus, two alleles are observed in the DNA stain.

-The three allele model: at a given locus, three alleles are observed in the DNA stain.

-The four allele model: at a given locus, four alleles are observed in the DNA stain.

A left-click on each button launches a simulation dialog window for the corresponding model, while

a right-click opens the corresponding help page.

Note

-Each implemented model can either be launched using the mastermix interface, or the A2.simu,

A3.simu and A4.simu functions, depending on the considered model.

-For the computational details, please see forensim tutorial at http://forensim.r-forge.
r-project.org/misc/forensim-tutorial.pdf.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>
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References

Gill P, Sparkes P, Pinchin R, Clayton, Whitaker J, Buckleton J. Interpreting simple STR mixtures

using allele peak areas. Forensic Sci Int 1998;91:41-5.

See Also

A2.simu, A3.simu and A4.simu

Examples

mastermix()

mincontri Minimum number of contributors required to explain a forensic DNA
mixture

Description

mincontri gives the minimum number of contributors required to explain a forensic DNA mix-

ture. This method is also known as the maximum allele count as it relies on the maximum number

of alleles showed through all available loci

Usage

mincontri(mix, loc = NULL)

Arguments

mix a simumix object

loc the loci to consider for the calculation of the minimum of contributors, default

(NULL) corresponds to all loci

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

likestim for the estimation of the number of contributors through likelihood maximization

Examples

data(strusa)
#simulation of 1000 genotypes from the African American allele frequencies
gen<-simugeno(strusa,n=c(1000,0,0))
#5-person mixture
mix5<-simumix(gen,ncontri=c(5,0,0))
#compare
likestim(mix5, strusa, refpop="Afri")
mincontri(mix5)
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N2error Calculates exact error for maximum allele count for two markers

Description

The maximum allele count principle leads to wrong conclusion for two contributors if only a maxi-

mum of one or two alleles is seen. This probability of error is calculated.

Usage

N2error(dat)

Arguments

dat a data frame, first column gives the alleles size, remaining columns give their

frequencies

Value

The probability of error is returned.

Author(s)

Thore Egeland <Thore.Egeland@medisin.uio.no>

Examples

#Example based on 15 markers of Tu data
library(forensim)
data(Tu)
N2error(Tu)

N2Exact Calculates exact allele distribution for 2 contributors

Description

The distribution of N, the number of alleles showing is calculated exactly assuming 2 contributors.

Theta-correction is not implemented. The function may be used to check accuracy of simulations

and indicate required number of simulations for one example.

Usage

N2Exact(p)

Arguments

p vector of allele frequencies. Must sum to 1. Default: for uniformly distrubted

alleles.
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Value

Returns(P(N=i) for i=1,2,3,4

Author(s)

Thore Egeland <Thore.Egeland@medisin.uio.no>

Examples

#Distribution for a marker with 20 alles of equal frequency
N2Exact(p=rep(0.05,20))

naomitab Handling of missing values in a data frame

Description

naomitab handles missing values (NA) in a data frame: it returns a list of the columns where NAs

have been removed.

Usage

naomitab(tab)

Arguments

tab a data frame

Value

Returns a list of length the number of columns in tab where each component is a column of tab,

and the values are the corresponding rows where NAs have been removed.

Note

This function was designed to handle missing values in data frames in the format of the Journal

of Forensic Sciences for population genetic data: allele names are given in the first column, and

frequencies for a given allele are read in rows for different loci. When a given allele is not observed,

the value is coded NA (originally coded "-" in the journal).

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

tabfreq

Examples

data(Tu)
naomitab(Tu)
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nball Number of alleles in a mixture

Description

nball gives the number of alleles of a simumix object.

Usage

nball(mix, byloc = FALSE)

Arguments

mix a simumix object

byloc a logical indicating whether the number of alleles must be calculated by locus

or for all loci (default)

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

simumix

Examples

data(strusa)
#simulating 100 genotypes with allele frequencies from the African American population
gaa<-simugeno(strusa,n=c(100,0,0))
#simulating a 4-person mixture
maa4<-simumix(gaa,ncontri=c(4,0,0))
nball(maa4,byloc=TRUE)

PE The random man exclusion probability

Description

Computes the random man exclusion probability of a mixture stored in a simumix object

Usage

PE(mix, freq, refpop = NULL, theta = 0, byloc = FALSE)
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Arguments

mix a simumix object

freq a tabfreq object giving the allele frequencies from which to compute the

exclusion probability

refpop character giving the reference population, used only if freq contains allele

frequencies for multiple populations

theta a float from [0,1[ giving Wright’s Fst coefficient. theta accounts for popula-

tion subdivision while computing the likelihood of the data.

byloc logical, if TRUE, than the exclusion probability is computed per locus, if FALSE

(default), the calculations are done for all loci simultaneously

Details

PE gives the exclusion probability at a locus, or at several loci when conditions for Hardy Weinberg

are met. If this condition is not met in the population, than a value for theta must be supplied to

take into account dependencies between alleles. The formula of the exclusion probability that allows

taking into account departure from Hardy Weinberg proportions due to population subdivision was

provided by Bruce Weir, please see the references section.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Clayton T, Buckleton JS. Mixtures. In: Buckleton JS, Triggs CM, Walsh SJ, editors. Forensic DNA

Interpretation. CRC Press 2005;217-74

Examples

data(strusa)
geno1<-simugeno(strusa,n=c(0,0,100))
mix2 <-simumix(geno1,ncontri=c(0,0,2))
PE(mix2,strusa,"Hisp",byloc=TRUE)

Pevid2 Conditional profile probabilities

Description

Calculates the probability of observing a set of DNA profiles conditional on a given hypothesis

specifying who were the contributors to the observed profiles. All the individuals involved in the

analyzed case are assumed to come from the same subpopulation with a given coancestry coeffi-

cient.

Usage

Pevid2(stain, freq, x, T = NULL, V = NULL, theta = 0)
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Arguments

stain vector of distinct alleles (from one specific locus) found in the crime sample.

freq vector of the corresponding allele frequencies in the global population

x the number of unknown contributors to the mixture

T object of class genotype (package genetics), or a vector of strings where each

string contains two alleles separated by ’/’, corresponding to one known contrib-

utor. The length of the vector equals the number of known contributors. Default

is NULL.

V object of class genotype (package genetics), or a vector of strings where each

string contains two alleles separated by ’/’, corresponding to one known non-

contributor. The length of the vector equals the number of known non-contributors.

Default is NULL.

theta a float in [0,1[. theta is equivalent to Wright’s Fst. In case of population

subdivision, it allows a correction of the allele frequencies in the subpopulation

of interest

Note

Please note that the Pevid2 function is an improved version of the Pevid.gen function from the

forensic package by Miriam Marusiakova (which explains the 2 in the function name). Pevid2
calls external functions in C code.

Here we define the conditional profile probability as the probability of the profiles under a certain

hypothesis stating who gave the observed alleles, hence, Pr(stain="A"|U=0,V=0,T="A/A",H="suspect

A/A gave the profile) would equal one rather than 2*p(A)*p(A) in the original formula in Curran et

al.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA Mixtures in Structured Popula-

tions. J Forensic Sci 1999;44(5): 987-995

See Also

LR, RMP

Examples

# A rape case in Hong Kong (Hu and Fung, Int J Legal Med 2003)
# The stain shows alleles 14, 15, 17 and 18 at locus D3S1358.
stain=c(14,15,17,18)
# suspect's profile: "14/17"
suspect<-"14/17"
# victim's profile: "15/18"
victim<-"15/18"
# corresponding allele frequencies
freq<-c(0.033,0.331,0.239,0.056)
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# Prosecution proposition: Contributors were the victim and the suspect
# defence proposition: Contributors were the victim and 1 unknown contributor
# from the same subpopulation as the victim
# Evaluation of the defence proposition, in case of independence between alleles
Pevid2(stain, freq, x=1, T = victim)

# note that if theta=0, the suspect's profile plays no role in the calculation
#and the same result is obtained
Pevid2(stain, freq, x=1, T = victim, V = suspect)
# In case of allele dependencies, measured by theta=0.03
Pevid2(stain, freq, x=1, T = victim, V = suspect, theta = 0.03)

PV Predictive value of the maximum likelihood estimator of the number of
contributors to a DNA mixture

Description

The PV function implements the predictive value of the maximum likelihood estimator of the num-

ber of contributors to a DNA mixture

Usage

PV(mat, prior)

Arguments

mat matrix giving the estimates of the conditional probabilities that the maximum

likelihood estimator classifies a given stain as a mixture of i contributors given

that there are k contributor(s) to the stain. Estimates i must be given in columns

for each possible value of the number of contributors given in rows.

prior numeric vector giving the prior probabilities of encountering a mixture of i con-

tributors. prior must be of length the number of rows in mat.

Value

Vector of the predictive values

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Haned H., Pene L., Sauvage F., Pontier D., The predictive value of the maximum likelihood estima-

tor of the number of contributors to a DNA mixture, submitted, 2010.

See Also

maximum likelihood estimator likestim
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Examples

# the following examples reproduce some of the calculations appearing
# in the article cited above, for illustrative purpose, the maximum
#number of contributors is set here to 5
#matcondi: Table 2 in Haned et al. (2010)
matcondi<-matrix(c(1,rep(0,4),0,0.998,0.005,0,0,0,0.002,0.937,0.067,0,0,0,0.058,
0.805,0.131,rep(0,3),0.127,0.662,rep(0,3),0.001,0.207),ncol=6)
#prior defined by a forensic expert (Table 3 in Haned et al., 2010)
prior1<-c(0.45,0.04,0.30,0.15,0.06)
#uniform prior, for each mixture type, the probability of occurrence is 1/5,
#5 being the threshold for the number of contributors
prior2<-c(rep(1/5,5))
#predictive values for prior1
PV(matcondi,prior1)
#for prior2
PV(matcondi, prior2)

recordDrop Records the allelic dropout events matched with individual DNA prox-
ies

Description

The recordDrop function records the dropout events from experimental data. The function aims

to facilitate the manipulation of experimental data used for the estimation of the probability of allelic

dropout (cf. the references sections).

Usage

recordDrop(x, y, geno, tabcsv,s=40)

Arguments

x numeric label of the contributing individual, if the stain is a mixture, x should

give the label of the first individual contributing to the mixture

y numeric label of the second contributing individual, default is NULL. If the stain

is a mixture, y should give the label of the second individual contribution to the

mixture. This argument is skipped if the stain is not a mixture (default case: y
set to NULL).

geno a matrix giving the genotypes of the individuals contributing to the analyzed

data for each locus. An individual genotype is given in rows for each locus in

column. A homozygous carrying allele 9 is coded ’9/9’, a heterozygous carrying

alleles 8 and 9 is coded ’8/9’. Individual labels are coded using integers that are

simply the order of introduction in the data frame.

tabcsv a matrix giving the validation table of the analysed DNA stain. tabcsv must

have a “genemapper” validation table structure, namely, information about the

present alleles and the corresponding peak heights must be given.

s numeric giving the detection threshold for alleles in Relative fluorescence units

(RFU) , default is set to 40 RFUS. An observed allele with a peak height smaller

(<) than 40 RFUS is considered as dropped-out.
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Value

A list of length the number of analyzed loci, each component of the list is a matrix with the follow-

ing information: - The names of expected alleles

- The expected allele counts for the first contributor (when date is a mixture)

- The expected allele counts for the second contributor (when date is a mixture)

- The observed alleles

- The observed peak heights

- The dropout variable D, takes 1 if the allele has dropped out, 0 otherwise

Note

recordDrop is an auxiliary function of the tabDNAproxy function that implements the method-

ology proposed by Tvedebrink et al. to estimate the probability of allelic dropout using experimental

DNA mixtures.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Tvedebrink T, Eriksen PS, Mogensen HS, Morling N. Estimating the probability of allelic drop-out

of STR alleles in forensic genetics. Forensic Science International: Genetics, 2009, 3(4), 222-226.

See Also

DNAproxy, tabDNAproxy

Examples

#load the exemple data
data(dropdata)
tabcsv<-dropdata$tabcsv
genot<-dropdata$genot
#individuals' labels are 1 and 2
#record the dropout the surviving peak heights for heterozygotes whith non shared alleles
recordDrop(1,2,geno=genot,tabcsv=tabcsv,s=40)

recordHeights Records the peak heights of the alleles present in the analyzed stains

Description

The recordHeights function records the peak heights of the alleles present in the analyzed

stains. The function aims to facilitate the manipulation of experimental data used for the estimation

of the probability of allelic dropout (cf. the references sections).

Usage

recordHeights(x,y=NULL,geno,tabcsv,byloc=FALSE)
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Arguments

x numeric label of the contributing individual, if the stain is a mixture, x should

give the label of the first individual contributing to the mixture

y numeric label of the second contributing individual, default is NULL. If the stain

is a mixture, y should give the label of the second individual contribution to the

mixture. This argument is skipped if the stain is not a mixture (default case: y
set to NULL).

geno a matrix giving the genotypes of the individuals contributing to the analyzed

data for each locus. An individual genotype is given in rows for each locus in

column. A homozygous carrying allele 9 is coded ’9/9’, a heterozygous carrying

alleles 8 and 9 is coded ’8/9’. Individual labels are coded using integers that are

simply the order of introduction in the data frame.

tabcsv a matrix giving the validation table of the analysed DNA stain. tabcsv must

have a “genemapper” validation table structure, namely, information about the

present alleles and the corresponding peak heights must be given.

byloc logical indicating whether data should be displayed per locus (TRUE) or overall

loci (FALSE, default)

Value

A list of length the number of analyzed loci, each component of the list is a matrix with the following

information: - The names of expected alleles - The expected allele counts for the first contributor

(when date is a mixture) - The expected allele counts for the second contributor (when date is a

mixture) - The observed alleles - The observed peak heights - The dropout variable D, takes 1 if the

allele has dropped out, 0 otherwise

Note

recordHeights is an auxiliary function of the tabSPH function that implements the method-

ology proposed by Gill et al. to estimate the probability of allelic dropout using experimental DNA

mixtures.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Puch-Solis R, Curran J. The low-template-DNA (stochastic) threshold-Its determination rel-

ative to risk analysis for national DNA databases. Forensic Science International: Genetics, 2009,

3, 104-111

See Also

recordDrop for an alternative method, tabSPH

Examples

#load the exemple data
data(dropdata)
tabcsv<-dropdata$tabcsv
genot<-dropdata$genot
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#individuals' labels are 1 and 2
#peak heights of heterozygote genotypes with non shared alleles
recordHeights(1,2,geno=genot,tabcsv=tabcsv)

RMP The Random Match Probability of DNA evidence (RMP)

Description

RMP computes the random match probability of DNA evidence given in a matrix (or data frame) or

in a text file. Several situations are handled: the suspect and an unknown offender are unrelated,

or are members of the same subpopulation with a given coancestry coefficient theta, or are close

relatives. For the latter case, the relationship is described by the kinship coefficients.

Usage

RMP(suspect=NULL, filename=NULL, freq, k=c(1,0,0), theta=0,refpop=NULL)

Arguments

suspect a matrix or a data frame of dimension L x 2, L being the number of loci involved

in the DNA evidence. The first column gives the loci names, and the second

column gives the suspect’s genotype at each locus. A genotype is coded as a

character where each string contains two alleles separated by ’/’. The DNA

evidence can also be given in a text file, see argument filename.

filename the file name from which the input data should be read. Data mut be a matrix of

dimension L x 2, L being the number of loci involved in the DNA evidence.The

first column gives the loci names, and the second column gives the suspect’s

genotype at each locus. A genotype is coded as a character where each string

contains two alleles separated by ’/’.

freq a tabfreq object giving the allele frequencies

k vector of kinship coefficients (k0, k1, k2), where ki is the probability that two

people (the suspect and an unknown offender) will share i alleles identical by

descent, i = 0, 1, 2.

theta a float in [0,1[. theta is equivalent to Wright’s Fst. In case of population

subdivision, it allows a correction of the allele frequencies in the subpopulation

of interest

refpop the reference population in freq from which to extract the allele frequencies

fro the RMP calculation. This argument is obligatory only if freq contains

allele frequencies from several populations

Details

The match probability is derived from Balding and Nichols (1994) and is computed as:

k2 + k1Z1 + k0Z2

where k0, k1, k2 are the kinship coefficients,

Z1 is the match probability when the suspect an the unknown offender share one allele identical-

by-descent.
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Z2 is the match probability in the unrelated case, when the suspect an the unknown offender share

0 allele identical-by-descent.

In the homozygous case, with the allele frequency pi:

Z1 =
2θ + (1− θ)pi

1 + θ

Z2 =
[2θ + (1− θ)pi] [3θ + (1− θ)pi]

(1 + θ)(1 + 2θ)

In the heterozygous case, with allele frequencies pi and pj :

Z1 =
2θ + (1− θ)(pi + pj)

2(1 + θ)

Z2 =
2 [θ + (1− θ)pi] [θ + (1− θ)pj ]

(1 + θ)(1 + 2θ)

θ is Wright’s Fst coefficient, usually called the coancestry coefficient in forensic studies. Main

effects of allele dependencies between loci in the suspect’s subpopulation are taken into account

though the coancestry coefficient, hence, the match probability at all loci is, to a close approxima-

tion, the product of single-locus probabilities.

Value

RMP returns a list with the following components:

RMP.loc single-locus match probabilities

RMP multiloci match probability (product of single-locus match probabilities)

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Balding DJ, Nichols RA. DNA profile match probability calculation: How to allow for population

stratification, relatedness, database selection and single bands. Forensic Sci I 1994;64:125-140.

See Also

LR for the evaluation of DNA evidence through likelihood ratio

Examples

# random match probability
# data input

data <- matrix(c("CSF1PO","FGA","TH01","TPOX","VWA","D3S1358","D5S818",
"D7S820","D8S1179","D13S317","D16S539","D18S51","D21S11","D2S1338","D19S433",
"12/11","22/19","6/7","10/8","17/18","18/17","12/12","8/8","13/13","11/11",
"12/10","14/15","33.2/32.2","23/22","14/14"),nc=2)
colnames(data)<- c('locus','genotype')
#15-locus genotype
data
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#allele frequencies are taken from the strusa data set

data(strusa)

RMP(suspect=data,freq=strusa,refpop="Cauc")

# using a preexisting file from the forensim package
RMP(filename=system.file("files/exprofile.txt", package = "forensim"),
freq=strusa,refpop="Cauc")

simMixSNP Simulates SNP mixtures

Description

Simulates SNP mixtures and outputs optionally file suitable for wrapdataL function for estimation

of number of contributors

Usage

simMixSNP(nSNP , p , ncont, writeFile, outfile , id )

Arguments

nSNP Integer number of SNPs>1

p Minor allele frequency

ncont Number of contributors >= 1

writeFile If TRUE, output written to file

outfile Name of output file

id Column one of output file identifying run

Value

Returns a data frame with columns Id, marker, allele, frequency and height (=1 for now)

Author(s)

Thore Egeland <Thore.Egeland@medisin.uio.no>

Examples

simMixSNP()
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simPCR2 Polymorphism chain reaction simulation model

Description

simPCR2 implements a simulation model for the polymorphism chain reaction (Gill et al., 2005).

Giving several input parameters, simPCR2 outputs the number of amplified DNA molecules and

their corresponding peak heights (in RFUs).

Usage

simPCR2(ncells,probEx,probAlq, probPCR, cyc = 28, Tdrop = 2 * 10^7,
probSperm = 0.5, dip = TRUE,KH=55)

Arguments

ncells initial number of cells

probEx probability that a DNA molecule is extracted (probability of surviving the ex-

traction process)

probAlq probability that a DNA molecule is selected for PCR amplification

probPCR probability that a DNA molecule is amplified during a given round of PCR

cyc number of PCR cycles, default is 28 cycles

Tdrop threshold of detection: number of molecules (in the total PCR reaction mixture)

that is needed to generate a signal, default is set to 2*10^7 molecules

probSperm probability of observing alleles of type A in the initial sample of haploid cells

(e.g. sperm cells). Probability of observing allele B is given by 1-probSperm

dip logical indicating the cell ploidy, default is diploid cells (TRUE), FALSE is for

haploid cells

KH positive constant used to scale the peak heights obtained from the number of

amplified molecules (see reference section)

Details

A threshold of Tdrop (must be a multiple of 10^7) is needed to generate a signal, then, a log-

linear relationship is used to determine the intensity of the signal with respect to the number of

successfully amplified DNA molecules. Dropout events occur whenever less than Tdorpmolecules

are generated.

Value

A matrix with the following components:

HeightA Peak height of allele A

DropA Dropout variable for allele A

HeightB Peak height of allele B

DropB Dropout variable for allele B
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Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Jeffreys AJ, Wilson V, Neumann R and Keyte J. Amplification of human minisatellites by the poly-

merase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 1988;16:

10953_10971.

Gill P, Curran J and Elliot K. A graphical simulation model of the entire DNA process associated

with the analysis of short tandem repeat loci. Nucleic Acids Research 2005, 33(2): 632-643.

See Also

simPCR2TK

Examples

#simulation of a 28 cycles PCR, with the initial stain containing 5 cells
simPCR2(ncells=5,probEx=0.6,probAlq=0.30,probPCR=0.8,cyc=28, Tdrop=2*10^7,dip=TRUE,KH=55)

simPCR2TK A Tcl/Tk graphical interface for the polymorphism chain reaction sim-
ulation model

Description

simPCR2TK is a user-friendly graphical interface for the simPCR2 function that implements a

simulation model for the polymorphism chain reaction.

Usage

simPCR2TK()

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Curran J and Elliot K. A graphical simulation model of the entire DNA process associated

with the analysis of short tandem repeat loci. Nucleic Acids Research 2005, 33(2): 632-643.

See Also

simPCR2
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Examples

#launch the graphical interface
simPCR2TK()

simufreqD Function to simulate allele frequencies for independent loci from a
Dirichlet model

Description

The simufreqD function simulate single population allele frequencies for independent loci. Al-

lele frequencies are generated as random deviates from a Dirichlet distribution, whose parameters

control the mean and the variance of the simulated allele frequencies.

Usage

simufreqD(nloc = 1, nal = 2, alpha = 1)

Arguments

nloc the number of loci to simulate

nal the numbers of alleles per locus. Either an integer, if the loci have the same

number of alleles, or an integer vector, if the number of alleles differ between

loci

alpha the parameter used to simulate allele frequencies from the Dirichlet distribution.

If the nloc loci have the same allele number, alpha can either be the same

for all alleles (default is one: uniform distribution), in this case alpha is an

integer, or alpha can be different between alleles at a given locus, in this case,

alpha is a matrix of dimension nal x nloc.

When the number of alleles differ between loci, alpha can either be the same

or differ between alleles at a given locus. In the first case alpha is a vector of

length nloc, in the second case, alpha is a matrix of dimensions nal x nloc
where NAs are introduced for alleles not seen at a given locus.

Details

Allele frequencies for independent loci are simulated using a Dirichlet distribution with parameter

alpha. At a given locus L with n alleles, the allele frequencies are modeled as a vector of random

variables p=(p1, ..., pn), following a Dirichlet distribution with parameters:

alpha = (alpha1, ..., alphan) where p1+...+pn=1 and alpha1,..., alphan > 0.

Value

A matrix containing the simulated allele frequencies. The data is presented in the format of the

Journal of Forensic Sciences for genetic data: allele names are given in the first column, and fre-

quencies for a given allele are read in rows for the different markers in columns. When an allele is

not observed for a given locus, the value is coded NA (instead of "-" in the original format).
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Note

The code used here for the generation of random Dirichlet deviates was previously implemented in

the gtools library.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions, vol 2. John Wiley &

Sons, 1995.

Wright S. The genetical structure of populations. Ann Eugen 1951;15:323-354.

See Also

simupopD

Examples

#simulate alleles frequencies for 5 markers with respectively 2, 3, 4, 5, and 6 alleles

simufreqD(nloc=5,na=c(2,3,4,5,6) , alpha=1)

simugeno forensim class for simluated genotypes

Description

The S4 simugeno class is used to store existing or simulated genotypes.

Slots

tab.freq: a list giving allele frequencies for each locus. If there are several populations, tab.freq
gives allele frequencies in each population

nind: integer vector giving the number of individuals. If there are several populations, nind
gives the numbers of individuals per population

pop.names: factor of populations names

popind: factor giving the population of each individual

which.loc: character vector giving the locus names

tab.geno: matrix giving the genotypes (in rows) for each locus (in columns). The genotype of a

homozygous individual carrying the allele "12" is coded "12/12". A heterozygous individual

carrying alleles "12" and "13" is coded "12/13" or "13/12".

indID: character vector giving the individuals ID
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Methods

names signature(x = "simugeno"): gives the names of the attributes of a simugeno ob-

ject

show signature(object = "simugeno"): shows a simugeno object

print signature(object = "simugeno"): prints a simugeno object

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

as.simugeno for the simugeno class constructor, is.simugeno, simumix and tabfreq

Examples

showClass("simugeno")

simugeno constructor
simugeno constructor

Description

Constructor for simugeno objects.

The function simugeno creates a simugeno object from a tabfreq object.

The function as.simugeno is an alias for simugeno function.

is.simugeno tests if an object is a valid simugeno object.

Note: to get the manpage about simugeno, please type ’class ? simugeno’.

Usage

simugeno(tab,which.loc=NULL,n=1)
as.simugeno(tab,which.loc=NULL,n=1)
is.simugeno(x)

Arguments

tab a tabfreq object created with constructor tabfreq

which.loc a character vector giving the chosen loci for the genotypes simulation. The

default is set to NULL, which corresponds to all the loci of the tabfreq object

given in argument

n integer vector giving the number of individuals. If there are several populations,

n gives the numbers of individuals to simulate per population. For a single

population, default is 1.

x an object
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Details

At a given locus, an individual’s genotype is simulated by randomly drawing two alleles (with

replacement) at their respective allele frequencies in the target population.

Value

For simugeno and as.simugeno, a simugeno object. For is.simugeno, a logical.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

"simugeno", and tabfreq for creating a tabfreq object from a data file.

Examples

data(Tu)
tab<-tabfreq(Tu)
#simulation of 3 individual genotypes for the STR marker FGA
geno1 <- simugeno(tab,which.loc='FGA', n =100)
geno1@tab.geno

simumix forensim class for DNA mixtures

Description

The S4 simumix class is used to store DNA mixtures of individual genotypes along with informa-

tions about the individuals poulations and the loci used to simulate the genotypes.

Slots

ncontri: integer vector giving the number of contributors to the DNA mixture. If there are

several populations, ncontri gives the number of contributors per population

mix.prof: matrix giving the contributors genotypes (in rows) for each locus (in columns). The

genotype of a homozygous individual carrying the allele "12" is coded "12/12". A heterozy-

gous individual carrying alleles "12" and "13" is coded "12/13" or "13/12".

mix.all: list giving the alleles present in the mixture for each locus

which.loc: character vector giving the locus names

popinfo: factor giving the population of each contributor

Methods

names signature(x = "simumix"): gives the names of the attributes of a simumix object

show signature(object = "simumix"): shows a simumix object

print signature(object = "simumix"): prints a simumix object
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Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

simugeno, as.simumix, is.simumix, simugeno and tabfreq

Examples

showClass("simumix")
data(strusa)

simumix constructor
simumix constructor

Description

Constructor for simumix objects.

The function simumix creates a simumix object from a tabfreq object.

The function as.simumix is an alias for simumix function.

is.simumix tests if an object is a valid simumix object.

Note: to get the manpage about simumix, please type ’class ? simumix’.

Usage

simumix(tab,which.loc=NULL,ncontri=1)
as.simumix(tab,which.loc=NULL,ncontri=1)
is.simumix(x)

Arguments

tab a simugeno object created with constructor simugeno

which.loc a character vector giving the chosen loci for the genotypes simulation. The

default is set to NULL, which corresponds to all the loci of the simugeno
object given in argument

ncontri integer vector giving the number of individuals. If there are several populations,

ncontri gives the numbers of individuals to simulate per population. Default

is one.

x an object

Details

DNA mixtures are created by randomly drawing individual genotypes with a uniform probability. If

there are N individuals in the sample (the simugeno object), then each individual has a probability

of 1/N to be selected.
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Value

For simumix and as.simumix, a simumix object. For is.simumix, a logical.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

"simumix", simugeno for creating a simugeno object.

Examples

data(Tu)
tab<-simugeno(tabfreq(Tu),n=1200)
#simulation of a 3-person mixture characterized with markers FGA, TH01 and TPOX
simumix(tab,which.loc=c('FGA','TH01', 'TPOX') , n =3)

simupopD Simulate multi-population allele frequencies for independent loci from
a reference population, following a Dirichlet model

Description

Simulate multi-population allele frequencies for independent loci, from a given reference popula-

tion, following a Dirichlet model. Allele frequencies in the populations are generated as random

deviates from a Dirichlet distribution, whose parameters control the deviation of allele frequencies

from the values in the reference population.

Usage

simupopD(npop = 1, nloc = 1, na = 2, globalfreq = NULL, which.loc = NULL,
alpha1, alpha2 = 1)

Arguments

npop the number of populations

nloc the number of loci

na an integer vector giving the numbers of alleles per locus

globalfreq matrix of allele frequencies in the reference population. Data must be given in

the format of the Journal of Forensic Sciences for genetic data. Default corre-

sponds to allele frequencies generated form a Dirichlet distribution with param-

eter alpha2 for all allele frequencies.

which.loc which loci to simulate from the globalfreq matrix, default considers all loci

alpha1 a positive float vector of length npop giving the variance parameter of the

Dirichlet distribution used to generate allele frequencies in the npop indepen-

dent populations

alpha2 a positive float giving the parameter to be used to in the Dirichlet distribution to

generate allele frequencies for the reference population
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Details

In the reference population, allele frequencies for independent loci are simulated using a Dirichlet

distribution with parameter alpha2.

At a given locus L with n alleles, the allele frequencies are modeled as a vector of random variables

p=(p1, ..., pn) following a Dirichlet distribution with a parameter vector of length n, where each

component is equal to alpha2, p1+...+pn=1 and alpha2 > 0.

Note that a more sophisticated generation of global allele frequencies is possible using the simufreqD
function. Similarly, allele frequencies in the independent populations are simulated using a Dirich-

let Distribution. For example, for the first population to simulate, at a given locus L with n alleles,

the allele frequencies are modeled as a vector of random variables p=(p1, ..., pn) following a Dirich-

let distribution with a parameter vector of length n:

(p1(1-a1)/alpha1[1], ..., pn(1-alpha1[1])/alpha1[1]), where p1+...+pn=1 and alpha1[1] > 0.

alpha1[1] is the variance parameter for population 1 and is equivalent to Wright’s Fst. The closest

this parameter is to one, the more the population allele frequencies are different from the values of

the reference population.

Value

The result is stored in a list with two elements :

globfreq a tabfreq object giving the allele frequencies of the chosen reference popula-

tion, with the chosen loci.

popfreq a tabfreq object giving the allele frequencies of the simulated populations.

Note

The code used here for the generation of random Dirichlet deviates was previously implemented in

the gtools library.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Nicholson G, Smith AV, Jonsson F, Gustafsson O, Stefansson K, Donnelly P. Assessing popula-

tion differentiation and isolation from single-nucleotide polymorphism data. J Roy Stat Soc B
2002;64:695–715

Marchini J, Cardon LR. Discussion on the meeting on "Statistical modelling and analysis of genetic

data" J Roy Stat Soc B, 2002;64:740-741

Wright S. The genetical structure of populations. Ann Eugen 1951;15:323-354

See Also

simufreqD
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Examples

# simulate allele frequencies for two populations
data(Tu)
simupopD(npop=2,globalfreq=Tu, which.loc=c("FGA","TH01","TPOX"),
alpha1=c(0.2,0.3),alpha2=1)

strusa Allele frequencies for 15 autosomal short tandem repeats core loci on
U.S. Caucasian, African American, and Hispanic populations.

Description

Allele frequencies for 15 autosomal short tandem repeats loci on three American populations :

Caucasians, African Americans and Hispanics. Among the 15 loci, 13 belong to the core Combined

DNA Index System (CODIS) loci used by the Federal Bureau of Investigation (USA), in forensic

DNA analysis, and two supplementary loci are more commonly used in Europe, see details.

Usage

data(strusa)

Format

strusa is a tabfreq object giving allele frequencies of 15 loci in three American populations.

Details

CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539,

D18S51 and D21S11, belong to the core CODIS loci used in the US, whereas D2S1338 and

D19S433 belong to the European core loci.

References

Butler JM, Reeder DJ. http://www.cstl.nist.gov/strbase/index.htm, last visited: May 11th 2009

Butler JM, Schoske R, Vallone MP, Redman JW, Kline MC. Allele frequencies for 15 autoso-

mal STR loci on U.S. Caucasian, African American, and Hispanic populations. J Forensic Sci
2003;48(8):908-911.

Examples

data(strusa)
strusa
#genotypes simulations from each population
geno<- simugeno(strusa,n=c(100,100,100))
geno
#3-person mixture simulation with the contributors from the 3 populations
mix3<- simumix(geno,ncontri=c(1,1,1))
mix3
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strveneto Population study of three miniSTR loci in Veneto (Italy)

Description

Allele frequencies for three short tandem repeats loci D10S1248, D2S441 and D22S1045 in a sam-

ple of 198 individuals born in Veneto, Italy. These loci are commonly used in forensic DNA char-

acterization.

Usage

data(strveneto)

Format

strveneto is a tabfreq object

References

Turrina S, Atzei R, De Leo D. Population study of three miniSTR loci in Veneto (Italy). Forensic

Sci Int Genetics 2008; 1(1);378-379

Examples

data(strveneto)
#allele frequencies
strveneto@tab

tabDNAproxy Builds a list of tables that record the dropout events matched with the
appropriate DNA proxies

Description

The tabDNAproxy function builds a list of tables that record the dropout events matched with the

appropriate “DNAproxies”, these are the approximations of the amount of DNA contributed by the

individuals in the analyzed DNA stains. Each table is specific to a locus. This function builds the

data frames on which the logistic model, proposed by Tvedebrink et al (cf. references section), can

be performed.

Usage

tabDNAproxy(x, y = NULL, geno, tabcsv)
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Arguments

x numeric label of the contributing individual, if the stain is a mixture, x should

give the label of the first individual contributing to the mixture

y numeric label of the second contributing individual, default is NULL. If the stain

is a mixture, y should give the label of the second individual contribution to the

mixture. This argument is skipped if the stain is not a mixture (default case: y
set to NULL).

geno a matrix giving the genotypes of the individuals contributing to the analyzed

data for each locus. An individual genotype is given in rows for each locus in

column. A homozygous carrying allele 9 is coded ’9/9’, a heterozygous carrying

alleles 8 and 9 is coded ’8/9’. Individual labels are coded using integers that are

simply the order of introduction in the data frame.

tabcsv a matrix giving the validation table of the analysed DNA stain. tabcsv must

have a “genemapper” validation table structure, namely, information about the

present alleles and the corresponding peak heights must be given.

Value

A list of length the number of analyzed loci, each component of the list is a matrix with the following

information:

Dloc the (per locus) dropout variable D, takes 1 if the allele has dropped out, 0 other-

wise

Hestim mean peak heights derived from the DNA proxies, see the references section for

further details

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Tvedebrink T, Eriksen PS, Mogensen HS, Morling N. Estimating the probability of allelic drop-out

of STR alleles in forensic genetics. Forensic Science International: Genetics, 2009, 3(4), 222-226.

See Also

recordDrop, DNAproxy

Examples

#load the exemple data
data(dropdata)

tabcsv<-dropdata$tabcsv
genot<-dropdata$genot
#individuals' labels are 1 and 2
#lets record the dropout events and the corresponding DNA proxies
tabDNAproxy(1,2,geno=genot,tabcsv=tabcsv)
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tabfreq forensim class for population allele frequencies

Description

The S4 tabfreq class is used to store allele frequencies, from either one or several populations.

Slots

tab: a list giving allele frequencies for each locus. If there are several populations, tab gives

allele frequencies in each population

which.loc: character vector giving the names of the loci

pop.names: factor of populations names (optional)

Methods

names signature(x = "tabfreq"): gives the names of the attributes of a tabfreq object

show signature(object = "tabfreq"): shows a tabfreq object

print signature(object="tabfreq"): prints a tabfreq object

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

as.tabfreq, is.tabfreq and simugeno for genotypes simulation from allele frequencies

stored in a tabfreq object

Examples

showClass("tabfreq")

tabfreq constructor
tabfreq constructor

Description

Constructor for tabfreq objects.

The function tabfreq creates a tabfreq object from a data frame or a matrix giving allele frequen-

cies for a single population in the Journal of Forensic Sciences (JFS) format for population genetic

data. Whene multiple populations are considered, data shall be given as a list, where each element

is either a matrix or a data frame in the JFS format, and the populations names must be specified.

The function as.tabfreq is an alias for the tabfreq function.

is.tabfreq tests if an object is a valid tabfreq object.

Note: to get the manpage about tabfreq, please type ’class ? tabfreq’.
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Usage

tabfreq(tab,pop.names=NULL)
as.tabfreq(tab,pop.names=NULL)
is.tabfreq(x)

Arguments

tab either a matrix or a data.frame of markers allele frequencies given in the Journal

of Forensic Sciences format for population genetic data

pop.names (optional) a factor giving the populations names. For a single population in tab,

default is set to NULL.

x an object

Value

For tabfreq and as.tabfreq, a tabfreq object. For is.tabfreq, a logical.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

See Also

"tabfreq", simugeno for creating a simugeno object from a tabfreq object.

Examples

data(Tu)
tabfreq(Tu,pop.names=factor("Tu"))

tabSPH Builds a matrix of the dropout variable and the corresponding surviv-
ing peak heights

Description

The tabSPH function builds a matrix of the dropout variable and the corresponding surviving peak

heights, for each available locus or across all loci (default). The constructed matrices have two

columns: the dropout variable and the surviving peak heights. The logistic model proposed to

model the dropout probability from experimental data (see the references section) can be performed

directly on the data yielded by tabSPH.

Usage

tabSPH(x, y = NULL, geno, tabcsv, byloc = FALSE,s=40)



Chapter 1 Appendix A: Forensim Manual 57

54 tabSPH

Arguments

x numeric label of the contributing individual, if the stain is a mixture, x should

give the label of the first individual contributing to the mixture

y numeric label of the second contributing individual, default is NULL. If the stain

is a mixture, y should give the label of the second individual contribution to the

mixture. This argument is skipped if the stain is not a mixture (default case: y
set to NULL).

geno a matrix giving the genotypes of the individuals contributing to the analyzed

data for each locus. An individual genotype is given in rows for each locus in

column. A homozygous carrying allele 9 is coded ’9/9’, a heterozygous carrying

alleles 8 and 9 is coded ’8/9’. Individual labels are coded using integers that are

simply the order of introduction in the data frame.

tabcsv a matrix giving the validation table of the analysed DNA stain. tabcsv must

have a “genemapper” validation table structure, namely, information about the

present alleles and the corresponding peak heights must be given.

byloc logical indicating whether data should be displayed per locus (TRUE) or overall

loci (FALSE, default)

s numeric giving the detection threshold for alleles in Relative fluorescence units

(RFU) , default is set to 40 RFUS. An observed allele with a peak height smaller

(<) than 40 RFUS is considered as dropped-out.

Details

Both mixed and unmixed samples can be used in tabSPH, setting the y argument to NULL (de-

fault) will produce results considering data for x only. In case of mixtures, note that only heterozy-

gote genotypes with no shared alleles are considered.

Value

If argument byloc is TRUE, tabSPH yields a list of length the number of available loci, each

elements of the list contain a matrix with two columns:

D the dropout variable

H the surviving peak height

If argument byloc is FALSE, tabSPH yields a single matrix with columns D and H described

above.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

References

Gill P, Puch-Solis R, Curran J. The low-template-DNA (stochastic) threshold-Its determination rel-

ative to risk analysis for national DNA databases. Forensic Science International: Genetics, 2009,

3, 104-111

See Also

tabDNAproxy
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Examples

#load the example data
data(dropdata)
tabcsv<-dropdata$tabcsv
genot<-dropdata$genot
#individuals' labels are 1 and 2
#recording dropout variable matched with the surviving peak heights
#for heterozygotes whith non shared alleles
tabSPH(1,2,geno=genot,tabcsv=tabcsv,s=0)

Tu Allele frequencies of 15 autosomal short tandem repeats loci on Chi-
nese Tu ethnic minority group

Description

Population genetic analysis of 15 STR loci of Chinese Tu ethnic minority group.

Usage

data(Tu)

Format

a data frame presented in the format of the Journal of Forensic Sciences for genetic data: allele

names are given in the first column, and frequencies for a given allele are read in rows for the

different markers. When a given allele is not observed, value is coded NA (rather than "-" in the

original format).

Details

CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539,

D18S51 and D21S11, belong to the core CODIS loci used in the US, whereas D2S1338 and

D19S433 belong to the European core loci.

References

Zhu B, Yan J, Shen C, Li T, Li Y, Yu X, Xiong X, Muf H, Huang Y, Deng Y. (2008). Population

genetic analysis of 15 STR loci of Chinese Tu ethnic minority group. Forensic Sci Int; 174: 255-

258.

Examples

data(Tu)
tabfreq(Tu)
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virtualClasses Virtual classes for forensim

Description

Virtual classes that are only for internal use in forensim

Objects from the Class

A virtual Class: programming tool, not intended for objects creation.

Author(s)

Hinda Haned <haned@biomserv.univ-lyon1.fr>

wrapdataL ML estimate of number of contributors for SNPs

Description

Wrap up of dataL in forensim. Given file with columns: "No, Marker, Allele, Frequency and

Height" the log likelihood for requested number of contributors is calculated. For now only "Fre-

quency" column is used.

Usage

wrapdataL(fil , plotte , nInMixture , tit )

Arguments

fil Input file

plotte If T, plot

nInMixture Alternatives for number of contributors, say 1:5

tit Title to be used in plot

Value

Plot (optional) and log likelihoods

Author(s)

Thore Egeland <Thore.Egeland@medisin.uio.no>

Examples

aa<-simMixSNP(nSNP=5,writeFile=TRUE,outfile="sim.txt",ncont=3) #Simulates data
res<-wrapdataL(fil="sim.txt") # Calculates and plots
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1 Introduction

This tutorial is a presentation of the forensim package for the R software [1, 2].
forensim is dedicated to the interpretation of forensic DNA mixtures through statis-
tical methods. It also provides simulation tools that allow the generation of genetic
data commonly encountered in forensic casework.

In this tutorial, I first introduce forensim object classes. Then, I present statisti-
cal tools for forensic DNA mixtures interpretation. Finally, various functionalities of
forensim are explored. For all addressed topics, practical and reproducible examples
are given.

2 Getting started

2.1 forensim installation

The current version of the package is 1.1-8 and is compatible with R 2.11.1 forensim
is hosted by R-Forge, the latest version of the package, resulting from the nightly
build, can be obtained by typing the following command lines:
Under Windows and Linux

> install.packages("forensim",repos="http://r-forge.r-project.org")

Under the MacOS system

> install.packages("forensim", repos="http://r-forge.r-project.org", type = �source�)

Please be aware that this is the development version. To be sure to get the
latest stable version, download the forensim package (according to your platform)
on forensim web page: http://forensim.r-forge.r-project.org/.
Then, the package must be loaded:

> library(forensim)

### forensim 1.1.8 is loaded ###

2.2 How to get help

� The mailing list: please ask questions on forensim mailing list,
forensim-help@lists.r-forge.r-project.org

� The help pages: classes and functions are documented in the help pages, type
?forensim in R to get an overview of the package.

� The forensim package manual: a compilation of all the help pages in a single
pdf file, it can be found at: http://forensim.r-forge.r-project.org/

3
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3 Generating data in forensim

forensim provides object classes that facilitate the generation and the storage of data
that is commonly encountered in forensic casework: population allele frequencies,
individual genotypes and DNA mixtures. Thus, three classes of objects are defined
in forensim:

� tabfreq objects: used to store allele frequencies

� simugeno objects: used to store genotypes

� simumix objects: used to store DNA mixtures

forensim objects have the particularity that they can either be used to store pre-
existing data, such as allele frequencies in a given population, or simulated data.
Creating forensim objects is achieved using specific functions, called constructors,
that have the same names than the object they are linked to.

3.1 tabfreq objects

In forensim, allele frequencies are stored in tabfreq objects. Importing data into
tabfreq objects is achieved using the tabfreq constructor. The input data must be
an object of type data frame1 or matrix. This object must have the format of the
Journal of Forensic Sciences for Short Tandem Repeat (STR) loci data: allele names
(the number of tandem repeats in case of STR loci) are given in the first column,
and frequencies for a given allele are read in rows for different loci given in columns.
When an allele is not observed for a given locus, value is coded “NA”2. Note that
even if the requested input format is based on STR data, different kinds of markers
can be imported in forensim.
As an example, we will be using a data set included in forensim:

> data(Tu)

What is the class of object Tu ?

> class(Tu)

[1] "data.frame"

Tu is a data frame giving the allele frequencies for 15 STR loci commonly used in
forensic studies, in the Tu Chinese population [3] (see ?Tu). Note that the data set
is imported using the command data.
Displaying the first rows (command head):

> head(Tu)

1in R a data frame is a collection of variables, possibly of different types
2non observed alleles are coded “-” in the Journal of Forensic Sciences
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Allele D8S1179 D21S11 D7S820 CSF1PO D3S1358 TH01 D13S317 D16S539 D2S1338
1 6.0 NA NA NA NA NA 0.1151 NA NA NA
2 7.0 NA NA 0.0033 0.0034 NA 0.2599 NA NA NA
3 8.0 0.0098 NA 0.1382 0.0034 NA 0.0559 0.2712 0.0097 NA
4 9.0 NA NA 0.0493 0.0582 NA 0.4605 0.1503 0.2305 NA
5 9.2 NA NA 0.0033 NA NA NA NA NA NA
6 9.3 NA NA NA NA NA 0.0691 NA NA NA
DS19S433 vWA TPOX D18S51 D5S818 FGA

1 NA NA NA NA NA NA
2 NA NA NA NA 0.0097 NA
3 NA NA 0.5359 NA NA NA
4 NA NA 0.1340 NA 0.0487 NA
5 NA NA NA NA NA NA
6 NA NA NA NA NA NA

This data frame is converted into a tabfreq object by the tabfreq constructor:

> tupop <- tabfreq(tab = Tu, pop.names = as.factor("Tu"))

The population name is specified as a factor in the pop.names argument.

> is.tabfreq(tupop)

[1] TRUE

tupop is a tabfreq object:

> tupop

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 15 locus names
@pop.names: populations names

As a formal class object, tupop is constituted of different ’slots’ that contain different
types of information. Each slot can be accessed using ’@’ or the ’$’ operator that
have been implemented for all forensim objects.
Allele frequencies are stored in the @tab slot. For example, frequencies for locus
FGA are given by:

> tupop$tab$Tu$FGA

18 19 19.2 20 21 22 22.2 23 23.2 24 25
0.0392 0.0686 0.0033 0.0458 0.0980 0.1765 0.0033 0.1961 0.0098 0.2222 0.1013
25.2 26 26.2 27

0.0065 0.0131 0.0065 0.0098

Population names are stored in the @pop.names argument:

> tupop$pop.names

[1] Tu
Levels: Tu

Finally, locus names appearing in @tab can be accessed elsewhere:

5
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> tupop$which.loc

[1] "D8S1179" "D21S11" "D7S820" "CSF1PO" "D3S1358" "TH01"
[7] "D13S317" "D16S539" "D2S1338" "DS19S433" "vWA" "TPOX"
[13] "D18S51" "D5S818" "FGA"

Note that if several populations are imported in the same tabfreq object, data frames
(or matrices) must be given as a list of data frames (or matrices) in the tab argument.
In this case, the pop.names argument, which is optional when a single population is
handled, becomes obligatory in order to distinguish the populations.

IMPORTANT NOTE: In order to allow reproducibility of the simula-
tions in this tutorial by other users, the random seed is set:

> set.seed(123560)

3.2 simugeno objects

simugeno objects are used to store simulated genotypes from a tabfreq object.
simugeno objects are created from tabfreq objects by specifying the number of in-
dividuals to simulate in the n argument. The loci to take into account for the
simulation are given in the which.loc argument. For the illustration purpose, 10
individuals are simulated and only three loci are chosen: D8S1179, TH01 and FGA.

> tugeno <- simugeno(tab = tupop, n = 10, which.loc = c("D8S1179",
+ "TH01", "FGA"))

> tugeno

# Simugeno object: simulated genotypes #

@which.loc: vector of 3 locus names
@nind: 10
@indID: vector of the individuals ID
@tab.geno: 10 x 3 data frame of genotypes
@tab.freq: allele frequencies for the 3 loci

Population-related information:
@pop.names: population names
@popind: factor giving the population of each individual

@tab.geno is a matrix of 10 genotypes simulated from the allele frequencies of
the Tu population. For instance, the genotypes of the five first simulated individuals
are:

> tugeno$tab.geno[1:5, ]

D8S1179 TH01 FGA
ind1 "15/13" "7/7" "23/19"
ind2 "14/12" "9/7" "26/18"
ind3 "15/12" "7/7" "24/19"
ind4 "11/13" "9.3/9.3" "24/22"
ind5 "16/14" "9/6" "22/23.2"
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The genotype of a homozygous individual carrying the allele 9 is coded ”9/9”. A
heterozygous individual carrying alleles 8 and 10 is coded ”8/10”.

Allele frequencies of the population are stored in the slot @tab.freq:

> tugeno$tab.freq

$Tu
$Tu$D8S1179

8 10 11 12 13 14 15 16 17
0.0098 0.0784 0.0784 0.1046 0.2876 0.1863 0.1634 0.0719 0.0196

$Tu$TH01
6 7 8 9 9.3 10

0.1151 0.2599 0.0559 0.4605 0.0691 0.0395

$Tu$FGA
18 19 19.2 20 21 22 22.2 23 23.2 24 25

0.0392 0.0686 0.0033 0.0458 0.0980 0.1765 0.0033 0.1961 0.0098 0.2222 0.1013
25.2 26 26.2 27

0.0065 0.0131 0.0065 0.0098

simugeno objects also contain information about the simulated individuals, their
(default) ID:

> tugeno@indID

[1] "ind1" "ind2" "ind3" "ind4" "ind5" "ind6" "ind7" "ind8" "ind9"
[10] "ind10"

and their population names:

> tugeno@popind

[1] Tu Tu Tu Tu Tu Tu Tu Tu Tu Tu
Levels: Tu

3.3 simumix objects

simumix objects store DNA mixtures. Mixtures can be created from simugeno ob-
jects using the constructor simumix. The number of contributors is specified in the
argument ncontri.

> mix2 <- simumix(tugeno, ncontri = 2)

Constructor simumix has also a which.loc argument, which is by default set to NULL,
corresponding to all loci taken into account.

> mix2

# Simumix object: simulated mixture #

@which.loc: vector of 3 locus names
@ncontri: 2
@mix.prof: 2 x 3 data frame of the contributors genotypes
@mix.all: list of the alleles found in the mixture
@popinfo: populations of the contributors
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simumix objects keep two types of information: information usually available when
dealing with practical cases of forensic DNA mixtures: the alleles present by locus,

> mix2$mix.all

$D8S1179
[1] "12" "13" "14" "16"

$TH01
[1] "6" "7" "9"

$FGA
[1] "22" "23" "23.2" "25"

and information that is usually not available: the number of simulated contrib-
utors

> mix2@ncontri

[1] 2

and their genetic profiles:

> mix2$mix.prof

D8S1179 TH01 FGA
ind5 "16/14" "9/6" "22/23.2"
ind7 "13/12" "9/7" "23/25"

3.4 Allele frequencies simulation

In the following, we denote L a locus with k alleles and the ith allele frequency at
this locus, in a given population, is denoted pi.

3.4.1 The homogeneous population case

In forensim, allele frequencies for a single non subdivided population are simulated
using the simufreqD function.

Principle
The vector of allele frequencies at locus L is simulated as a vector of random

deviates of the Dirichlet distribution [4] with a vector of parameters (α1, ..., αk):

(p1, ..., pk) � Dirichlet(α1, ..., αk)

8
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An example
5 loci (argument nloc=5) having 2, 3, 4, 5 and 6 alleles respectively (argument

na) are simulated:

> simufreqD(nloc = 5, na = c(2, 3, 4, 5, 6), alpha = 1)

Allele Marker1 Marker2 Marker3 Marker4 Marker5
1 1 0.21 0.44 0.280 0.650 0.110
2 2 0.79 0.36 0.052 0.096 0.076
3 3 NA 0.20 0.170 0.080 0.032
4 4 NA NA 0.500 0.100 0.500
5 5 NA NA NA 0.068 0.095
6 6 NA NA NA NA 0.190

Argument alpha is the parameter of the Dirichlet distribution. Setting a single
value for alpha means that all alleles for all loci are simulated with the same value;
this can be changed by giving the appropriate values in alpha, for further details
please type ’?simufreqD’.
Setting alpha to 1, leads to the generation of allele frequencies as random deviates
from a uniform Dirichlet distribution, this means that allele frequencies could take
any value varying from 0 to 1, with equal probabilities. Note that the simulated
data is in the format of the Journal of Forensic Sciences for STR loci data.

3.4.2 The subdivided population case

Principle
The simupopD function simulates subpopulations allele frequencies for indepen-

dent loci, from a given reference population, following a Dirichlet model.
Allele frequencies in the subpopulations are generated as random deviates from a
Dirichlet distribution, whose parameters control the deviation of allele frequencies
from the values in the reference population.
Each allele frequency is modeled as a random variable; with a parameter

αi = pi(1 − θ)
θ

, where θ is Wright’s Fst coefficient which allows here accounting for

population subdivision [5, 6]. The vector of allele frequencies at a given locus, for a
given population, is obtained by:

(p1, ..., pk) � Dirichlet

(
α1 = p1(1 − θ)

θ
, ..., αk = pk(1 − θ)

θ

)

An example
In the following example we simulate allele frequencies in two subpopulations: the

global population is taken as the Tu Chinese population, and three STR loci are
chosen: FGA, TH01 and TPOX. The strength of the deviation from the reference
allele frequencies is specified in argument alpha1 for each simulated subpopulation,
here we choose 0.01 for the first population and 0.3 for the second one:

> simpop1 <- simupopD(npop = 2, globalfreq = Tu, which.loc = c("FGA",
+ "TH01", "TPOX"), alpha1 = c(0.01, 0.3))

9
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simpop1 is a list of two tabfreq object; the first one contains allele frequencies
used for the simulation (from the Tu population):

> simpop1$globfreq

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 3 locus names
@pop.names: - empty -

the second tabfreq object contains the subpopulations allele frequencies:

> simpop1$popfreq

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 3 locus names
@pop.names: populations names

The simulated subpopulations have the following (default) names:

> simpop1$popfreq$pop.names

[1] pop1 pop2
Levels: pop1 pop2

4 Statistical methods for forensic DNA mixtures

interpretation

Several statistical methods dedicated to the interpretation of forensic DNA mixtures
are implemented in forensim:

4.1 The maximum allele count

This method consists in setting the lower bound on the number of contributors to a
mixture to the minimum required to explain the observed profiles [7]. For instance,
if a mixture shows at three loci, 1, 3 and 4 alleles, then the number of contributors
is bounded to 2

(
4
2

)
contributors.

To exemplify this method, let us simulate a 3-person mixture from the strusa data
set, using the allele frequencies from the Caucasian population [8] (see ?strusa):

> data(strusa)
> class(strusa)

[1] "tabfreq"
attr(,"package")
[1] ".GlobalEnv"

10
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> strusa

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 15 locus names
@pop.names: populations names

strusa is a tabfreq object that contains multiple populations:

> strusa$pop.names

[1] Afri Cauc Hisp
Levels: Afri Cauc Hisp

thus, the number of genotypes to simulate must be specified in each population
(argument n):

> geno <- simugeno(tab = strusa, n = c(0, 100, 0))

100 genotypes are simulated from the Caucasian population allele frequencies, no
genotypes are simulated from the other two populations.
A 3-person mixture is simulated by randomly drawing three contributors from these
100 simulated individuals. The number of contributors in each population must be
specified:

> mix3 <- simumix(tab = geno, ncontri = c(0, 3, 0))

The minimum number of contributors required is computed by the mincontri func-
tion. This number can either be computed from all available loci simultaneously (in
this default case, the argument loc is set to NULL),

> mincontri(mix3, loc = NULL)

[1] 3

or be computed for a specific locus, for example, D8S1179:

> mincontri(mix3, loc = "D8S1179")

[1] 2

4.2 The maximum likelihood estimator

The main characteristic of this method is that it takes into account allele frequencies
in the estimations. The likelihood function is derived from the formula of Curran et
al [9] for DNA mixtures interpretation, in the particular case where all contributors
to the mixture are unknown and there are no typed individuals [10].
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4.2.1 Likelihood of the observed alleles at a given locus, conditional on
the number of contributors to the mixture

The function lik.loc computes the likelihood of the observed alleles at a given locus,
conditional on the number of contributors to the mixture [10]. This function takes
in argument the number of contributors x, the mixture as a simumix object, and the
allele frequencies given in a tabfreq object. For the previously simulated 3-person
mixture mix3,

> mix3

# Simumix object: simulated mixture #

@which.loc: vector of 15 locus names
@ncontri: 3
@mix.prof: 3 x 15 data frame of the contributors genotypes
@mix.all: list of the alleles found in the mixture
@popinfo: populations of the contributors

the likelihood per locus of observing alleles given that 1 individual contributed to
the mixture is:

> lik.loc(x = 1, mix = mix3, freq = strusa, refpop = "Cauc")

CSF1PO FGA TH01 TPOX VWA D3S1358 D5S818 D7S820
0.0000000 0.0586168 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
D8S1179 D13S317 D16S539 D18S51 D21S11 D2S1338 D19S433

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

the likelihood that 3 individuals contributed to the mixture is:

> lik.loc(x = 3, mix = mix3, freq = strusa, refpop = "Cauc")

CSF1PO FGA TH01 TPOX VWA D3S1358
0.015414029 0.001808615 0.163094342 0.095796419 0.071597218 0.099698106

D5S818 D7S820 D8S1179 D13S317 D16S539 D18S51
0.280534836 0.004101536 0.023984786 0.011244765 0.107510776 0.012642508

D21S11 D2S1338 D19S433
0.005385985 0.004742859 0.030669330

Note here that strusa contains three populations, so the reference population, here
Caucasians, must be specified in the refpop argument.
The overall likelihood, for all loci characterized in the mixture can be computed
using the function lik:

> lik(x = 3, mix = mix3, freq = strusa, refpop = "Cauc")

[1] 1.027420e-24
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4.2.2 Maximum likelihood estimators

likestim.loc looks for the number of contributors that maximizes the likelihood at
each given locus. For the estimations to be biologically plausible, the estimations
are restricted to the discrete interval [1,6] [10]. These functions give the number of
contributors that maximizes the likelihood (max) and the corresponding likelihood
value (maxval). The per locus estimations are:

> likestim.loc(mix = mix3, freq = strusa, refpop = "Cauc")

max maxval
CSF1PO 5 0.0240
FGA 1 0.0590
TH01 3 0.1600
TPOX 3 0.0960
VWA 4 0.0740
D3S1358 4 0.1200
D5S818 3 0.2800
D7S820 3 0.0041
D8S1179 2 0.0400
D13S317 6 0.0300
D16S539 2 0.1100
D18S51 4 0.0170
D21S11 4 0.0088
D2S1338 3 0.0047
D19S433 2 0.0370

and the estimation using all loci simultaneously is:

> likestim(mix = mix3, freq = strusa, refpop = "Cauc")

max maxval
[1,] 3 1e-24

4.3 The exclusion probability

The exclusion probability, also known as the Random Man Not Excluded (RMNE)
is implemented in forensim in the function PE.
The PE function takes a simumix object for which to compute the exclusion prob-
ability and the allele frequencies given in a tabfreq object. If the latter contains
several populations, than the reference population must be specified in the refpop
argument. Implementation of the PE function includes the possibility of correcting
for deviation from Hardy Weinberg proportions in the population, due to subdivi-
sion, using Wright’s Fst called here theta [11]:

> PE(mix3, strusa, refpop = "Cauc", theta = 0, byloc = TRUE)

PE_l
CSF1PO 0.2125
FGA 0.8756
TH01 0.3763
TPOX 0.3037
VWA 0.3815
D3S1358 0.3065
D5S818 0.2154
D7S820 0.6526
D8S1179 0.6584
D13S317 0.3037
D16S539 0.4225
D18S51 0.5188
D21S11 0.4474
D2S1338 0.6487
D19S433 0.5482
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The row PE l stands for the exclusion probability per locus, read in column. The
byloc argument is a logical indicating whether the exclusion probability should be
computed per locus (byloc=TRUE) or for all loci (byloc=FALSE):

> PE(mix = mix3, freq = strusa, refpop = "Cauc", theta = 0, byloc = FALSE)

PE
0.999971

4.4 The random match probability

The Random Match Probability (RMP) is computed using the RMP function which
implements the formulas gave by Balding and Nichols [12]. The suspect’s profile can
either be given directly in R as matrix, or be read from a text file.

DNA evidence as a matrix

> datas <- matrix(c("CSF1PO", "FGA", "TH01", "TPOX", "VWA", "D3S1358",
+ "D5S818", "D7S820", "D8S1179", "D13S317", "D16S539", "D18S51",
+ "D21S11", "D2S1338", "D19S433", "12/11", "22/19", "6/7",
+ "10/8", "17/18", "18/17", "12/12", "8/8", "13/13", "11/11",
+ "12/10", "14/15", "33.2/32.2", "23/22", "14/14"), nc = 2)
> colnames(datas) <- c("locus", "genotype")
> datas

locus genotype
[1,] "CSF1PO" "12/11"
[2,] "FGA" "22/19"
[3,] "TH01" "6/7"
[4,] "TPOX" "10/8"
[5,] "VWA" "17/18"
[6,] "D3S1358" "18/17"
[7,] "D5S818" "12/12"
[8,] "D7S820" "8/8"
[9,] "D8S1179" "13/13"
[10,] "D13S317" "11/11"
[11,] "D16S539" "12/10"
[12,] "D18S51" "14/15"
[13,] "D21S11" "33.2/32.2"
[14,] "D2S1338" "23/22"
[15,] "D19S433" "14/14"

The random match probability in the unrelated case (unknown offender and suspect
are not related) and in absence of population subdivision (theta=0,default case) is
given by 1:

> RMP(suspect = datas, freq = strusa, refpop = "Cauc")

$RMP.loc
CSF1PO FGA TH01 TPOX VWA D3S1358 D5S818 D7S820 D8S1179 D13S317
0.2200 0.0230 0.0880 0.0600 0.1100 0.0660 0.1500 0.0230 0.0930 0.1200
D16S539 D18S51 D21S11 D2S1338 D19S433
0.0370 0.0440 0.0045 0.0090 0.1400

$RMP
[1] 6.2e-20

1RMP calls many functions from the genetics package which is now obsolete. So don’t worry if
you get a warning message from the genetics package.

14
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In the absence of population subdivision, and in the case where the suspect and
an unknown offender are for example siblings, the k argument must be modified
from k=(1,0,0) to k=c(1/4,1/2,1/4):

> RMP(suspect = datas, freq = strusa, k = c(1/4, 1/2, 1/4), refpop = "Cauc")

$RMP.loc
CSF1PO FGA TH01 TPOX VWA D3S1358 D5S818 D7S820 D8S1179 D13S317
0.47 0.32 0.38 0.41 0.40 0.36 0.48 0.33 0.43 0.45

D16S539 D18S51 D21S11 D2S1338 D19S433
0.35 0.34 0.28 0.29 0.47

$RMP
[1] 4.6e-07

DNA evidence read from an existing text file The same data is available in a
preexisting file “exprofile.txt” from the forensim package, accessed by the system.file
command:

> RMP(filename = system.file("files/exprofile.txt", package = "forensim"),
+ freq = strusa, refpop = "Cauc")

$RMP.loc
CSF1PO FGA TH01 TPOX VWA D3S1358 D5S818 D7S820 D8S1179 D13S317
0.2200 0.0230 0.0880 0.0600 0.1100 0.0660 0.1500 0.0230 0.0930 0.1200
D16S539 D18S51 D21S11 D2S1338 D19S433
0.0370 0.0440 0.0045 0.0090 0.1400

$RMP
[1] 6.2e-20

4.5 Likelihood ratios

Likelihood ratios are computed using the LR function which implements the general
formula of Curran et al for forensic DNA mixtures interpretation [13].

An example Consider the following genetic profiles from a rape case in Hong
Kong [14]:

Locus Mixture Victim Suspect Frequency
D3S1358 14 14 0.033

15 15 0.331
17 17 0.239
18 18 0.056

Table 1: Alleles from a DNA stain from a rape case in Hong Kong

Locus D3S1358 shows 4 distinct alleles (14, 15, 17 and 18), thus, the number of
contributors to the mixed sample is taken to be 2.

15
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Scenario 1 The following hypotheses are tested:
Prosecution hypotheses Hp: Contributors were the victim and the suspect.
Defense hypotheses Hd: Contributors were 2 unknown people.
First, the genotypes are assigned to the victim and the suspect:

> victim <- "15/18"
> suspect <- "14/17"

Then, the likelihood ratio is computed using the LR function:

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),
+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = NULL, Vd = NULL,
+ xd = 2)

[1] 285

The mixture profile is nearly 285 times more likely if it came from the suspect and the
victim than if it came from two unknown unrelated individuals from the population
of Hong Kong.

Scenario 2 The following hypotheses are tested:
Prosecution hypotheses Hp: Contributors were the victim and the suspect.
Defense hypotheses Hd: Contributors were the victim and one unknown.

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),
+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = victim,
+ Vd = suspect, xd = 1)

[1] 63.4

The mixture profile is 63 times more likely if it came from the suspect than if it
came from an unrelated individual from the population of Hong Kong.

5 Two-person DNA mixtures resolution using al-

lele peak heights or areas information: The mas-

termix interface

mastermix is a Tcl/Tk graphical user interface dedicated to the resolution of two-
person DNA mixtures using allele peak heights or areas information. mastermix is
the implementation of a method developed by Gill et al [15] and previously pro-
grammed into an Excel macro by Dr. Peter Gill.

This method searches through simulation the most likely combination(s) of the
contributors’ genotypes. Having previously obtained an estimation for the mixture
proportion, it is possible to reduce the number of possible genotype combinations by
keeping only those supported by the observed data. This is achieved by computing
the sum of square differences between the expected allelic ratio and the observed
allelic ratio, for all possible mixture combinations. The likelihood of peak heights

16
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(or areas), given the combination of genotypes, is high if the residuals are low. Geno-
type combinations are thus selected according to the peak heights with the highest
likelihoods. Appendix A gives the formulas for the expected allelic ratios following
from [15].

Typing mastermix() in the R console launches a dialog window (Figure 1):

Figure 1: The mastermix interface

mastermix offers a graphical representation of the simulation for three models:

� The two allele model: at a given locus, two alleles are observed in the DNA
stain

� The three allele model: at a given locus, three alleles are observed in the DNA
stain

� The four allele model: at a given locus, four alleles are observed in the DNA
stain

A left-click on each button launches a simulation dialog window for the corresponding
model, while a right-click opens the corresponding help page. For instance, a left-
click on the “Two-allele model” button yields Figure 2:

Figure 2: Two-allele model interface.

Note that default values for peak heights and observed mixture proportion are
only given for illustration purposes.
As an example, we suppose that a locus showing four distinct alleles gives an estima-
tion for the mixture proportion of 0.70, and that another locus shows two distinct
alleles with heights of 899 and 2183 rfus. A left-click on the “Plot simulations”
button yields a graphical representation of the residuals of each possible genotype
combinations of the peak areas, for varying values of the mixture proportion across
the interval [0.1, 0.9].
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Figure 3: Graphical simulations of the residuals for each possible genotype com-
bination, in a two-allele model, for every possible mixture combination based on
variation of the mixture proportion.

The graphical simulation shows that multiple combinations correspond to the
lowest residual value. The corresponding numerical results are obtained by clicking
the “Simulations details” button:

18
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Figure 4: Numerical results of the graphical simulation.

Genotype combinations having the lowest residuals are highlighted along with
the corresponding mixture proportion. The most likely combinations are: (BB,AA),
(AA, AB), (AB, AA), (AA, BB) with the corresponding mixtures proportions :0.3,
0.4, 0.5 and 0.7. Note that clinking the “Save” button launches a window where
the desired path for the save file can be specified, default creates a text file in the
current folder.

The third button, “Genotypes filter” launches a window showing a matrix of the
mixture proportion conditional on the genotype combination.
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Figure 5: Genotypes filter: Mixture proportion conditional on the genotypes com-
bination.

The mixture proportions conditional on the genotype combination gives a sup-
plementary indication for the reduction of the number of possible combinations:
Genotypes with non plausible mixture proportions ranges are not kept. The results
confirm that genotypes which have not been already selected during the graphical
simulation step, are not supported by the data. Formulas used for the calculations
are given in Appendix A.

6 Miscellaneous

6.1 Manipulating forensim objects

forensim objects are mainly formed by lists and data frames. Modification of the
slots of an object can easily be done using operators ’$’ (lists) or ’[’ (data frame and
matrix). For example, we wish to modify the frequencies of a given locus, say FGA,
in the tabfreq object tupop:

> tupop$tab$Tu$FGA

18 19 19.2 20 21 22 22.2 23 23.2 24 25
0.0392 0.0686 0.0033 0.0458 0.0980 0.1765 0.0033 0.1961 0.0098 0.2222 0.1013
25.2 26 26.2 27

0.0065 0.0131 0.0065 0.0098

Frequencies of alleles 18 and 27 are modified from 0.0392 and 0.0098 to 0.01 and
0.03 respectively:

> tupop$tab$Tu$FGA[c("18", "27")] <- c(0.01, 0.03)
> tupop$tab$Tu$FGA

18 19 19.2 20 21 22 22.2 23 23.2 24 25
0.0100 0.0686 0.0033 0.0458 0.0980 0.1765 0.0033 0.1961 0.0098 0.2222 0.1013
25.2 26 26.2 27

0.0065 0.0131 0.0065 0.0300
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6.1.1 How to change population names

Changing population names in any forensim object is achieved using the function
changepop. For example, changing the population name in the tabfreq object tupop
from “Tu” (argument oldpop) to “Tu2” (argument newpop) is achieved by:

> tupop2 <- changepop(tupop, oldpop = "Tu", newpop = "Tu2")
> tupop2@pop.names

[1] Tu2
Levels: Tu2

6.1.2 How to find the allele frequencies of a mixture

The allele frequencies of a mixture; stored in a simumix object, can be found using
the function findfreq. The tabfreq object from which to extract the allele frequencies
must be specified. For instance, allele frequencies in object mix3 are found from the
Caucasian population:

> temp <- findfreq(mix3, freq = strusa, refpop = "Cauc")
> temp

$Cauc
$Cauc$CSF1PO

10 11 12 14
0.21689 0.30132 0.36093 0.00828

$Cauc$FGA
22 23

0.21854 0.13411

$Cauc$TH01
6 7 9.3

0.23179 0.19040 0.36755

$Cauc$TPOX
8 10 11

0.53477 0.05629 0.24338

$Cauc$VWA
16 17 18 19

0.20033 0.28146 0.20033 0.10430

$Cauc$D3S1358
14 15 16 17

0.10265 0.26159 0.25331 0.21523

$Cauc$D5S818
11 12 13

0.36093 0.38411 0.14073

$Cauc$D7S820
7 8 9 10

0.01821 0.15066 0.17715 0.24338

$Cauc$D8S1179
13 14 15

0.30464 0.16556 0.11424

$Cauc$D13S317
9 11 12 13 14

0.07450 0.33940 0.24834 0.12417 0.04801

$Cauc$D16S539
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9 11 12
0.11258 0.32119 0.32616

$Cauc$D18S51
13 14 15 16 17

0.13245 0.13742 0.15894 0.13907 0.12583

$Cauc$D21S11
28 29 30 30.2 31

0.15894 0.19536 0.27815 0.02815 0.08278

$Cauc$D2S1338
19 20 23 24 25

0.11424 0.14570 0.11755 0.12252 0.09272

$Cauc$D19S433
13 14 16

0.25331 0.36921 0.04967

temp is a list of a single element ”Cauc”, which contains also a list:

> class(temp$Cauc)

[1] "list"

Allele frequencies of locus TPOX for example, are given by:

> temp$Cauc$TPOX

8 10 11
0.53477 0.05629 0.24338

6.1.3 The number of alleles in a mixture

The number of alleles in a simumix object can be determined by the function nball.
The overall loci number of alleles in the 2-person mixture mix2 is:

> nball(mix2, byloc = FALSE)

[1] 11

and the numbers of alleles per locus can be obtained by setting the argument byloc
to TRUE:

> nball(mix2, byloc = TRUE)

D8S1179 TH01 FGA
4 3 4

22



86 Chapter 2 Appendix B: Forensim Tutorial

6.2 Forensim vignettes

In addition to the help files accessible through the ’?’ or the ’help’ commands, R
packages sometimes provide additional documentation files through vignettes. To
check whether the forensim package proposes a vignette, type:

> vignette(package="forensim")

This command launches a window with a list of available vignettes (Figure 6).

Figure 6: How to check for vignettes in R.

Forensim currently provides one vignette: ’LR vigentte’, in a PDF format, illus-
trating the use of likelihood ratios through exercises of varying difficulty. To open
the vignette from an R shell, simply type:

> vignette(��LR_vignette��, package="forensim")
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A Appendix: Formulas used in mastermix

A.1 Expected allelic ratios

Two-allele model: expected allelic ratios conditional on each possible geno-
type combination of the contributors to the mixture, when two alleles, A
and B (in ascending order of molecular weights) are observed at a given
locus, and M̂x is the proportion of sample from the first contributor [15].

Combination Alleles
A B

AA,AB
M̂x

2 +0.5
1 − M̂x

2

AB,AB 0.5 0.5

AA,BB M̂x 1 − M̂x

AB,AA 1 − M̂x

2
M̂x

2

BB,AA 1 − M̂x M̂x

AB,BB
M̂x

2 1 − M̂x

2

BB,AB
1 − M̂x

2
M̂x

2 + 0.5
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Three-allele model: expected allelic ratios conditional on each possible geno-
type combination of the contributors to the mixture when three alleles, A, B and
C (in ascending order of molecular weights) are observed at a given locus [15].

Combination Alleles
A B C

AA,BC M̂x
1 − M̂x

2
1 − M̂x

2
BB,AC

1 − M̂x

2 M̂x
1 − M̂x

2
CC,AB

1 − M̂x

2
1 − M̂x

2 M̂x

AB,AC 0.5
M̂x

2
1 − M̂x

2

BC,AC
1 − M̂x

2
M̂x

2 0.5

AB,BC
M̂x

2 0.5
1 − M̂x

2

BC,AA 1 − M̂x
M̂x

2
M̂x

2

AC,BB
M̂x

2 1 − M̂x
M̂x

2

AB,CC
M̂x

2
M̂x

2 1 − M̂x

AC,AB 0.5
1 − M̂x

2
M̂x

2

AC,BC
M̂x

2
1 − M̂x

2 0.5

BC,AB
1 − M̂x

2 0.5
M̂x

2
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Four-allele model: expected allelic ratios conditional on each possible genotype
combination of the contributors to the mixture when four alleles, A, B, C and
D (in ascending order of molecular weights) are observed at a given locus [15].

Combination Alleles
A B C D

AB,CD
M̂x

2
M̂x

2
1 − M̂x

2
1 − M̂x

2

AC,BD
M̂x

2
1 − M̂x

2
M̂x

2
1 − M̂x

2

AD,BC
M̂x

2
1 − M̂x

2
1 − M̂x

2
M̂x

2

BC,AD
1 − M̂x

2
M̂x

2
M̂x

2
1 − M̂x

2

BD,AC
1 − M̂x

2
M̂x

2
1 − M̂x

2
M̂x

2

CD,AB
1 − M̂x

2
1 − M̂x

2
M̂x

2
M̂x

2

A.2 Conditional mixtures proportions

The following tables give the formulas for the mixture proportion conditional on the
genotype combinations. The conditional mixture proportions are computed using
observed allele peak heights (or equivalently peak areas) [16].
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Mixture proportions conditioned on the genotype combination for a locus showing
two alleles, A and B (in ascending order of molecular weights), with peak heights
φA and φB.

Two-allele model

Genotype combination Conditional mixture proportion

AA,AB
φA − φB

φA + φB

AB,AB No information is present

AA,BB
φA

φA + φB

AB,AA
2φB

φA + φB

BB,AA
φB

φA + φB

AB,BB
2φA

φA + φB

BB,AB
φB − φA

φA + φB
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Mixture proportions conditioned on the genotype combination for a locus showing
three alleles

”
A , B and C (in ascending order of molecular weights), with peak

heights φA, φB and φC .

Three-allele model

Genotype combination Conditional mixture proportion

AA,BC
φA

φA + φB + φC

BB,AC
φB

φA + φB + φC

CC,AB
φC

φA + φB + φC

AB,AC
φB

φB + φC

BC,AC
φB

φA + φB

AB,BC
φA

φA + φC

BC,AA
φB + φC

φA + φB + φC

AC,BB
φA + φC

φA + φB + φC

AB,CC
φA + φB

φA + φB + φC

AC,AB
φC

φB + φC

AC,BC
φA

φA + φB

BC,AB
φC

φA + φC
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Mixture proportions conditioned on the genotype combination for a locus showing
four alleles, A , B, C and D (in ascending order of molecular weights), with peak
heights φA, φB, φC and φD.

Four-allele model

Genotype combination Conditional mixture proportion

AB,CD
φA + φB

φA + φB + φC + φD

AC,BD
φA + φC

φA + φB + φC + φD

AD,BC
φA + φD

φA + φB + φC + φD

BC,AD
φB + φC

φA + φB + φC + φD

BD,AC
φB + φD

φA + φB + φC + φD

CD,AB
φC + φD

φA + φB + φC + φD
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1 The forensim package: overview

1.1 Available documentation

forensim is an -package hosted by -forge dedicated to facilitate the interpretation of foren-
sic DNA mixtures. It also provides simulation tools made to mimick data from case work.

A detailed description of forensim is given in the package tutorial, available from: http:

//forensim.r-forge.r-project.org/. prepared specifically for potential forensim users who
are unfamilliar with . The present document serves to

� introduce the basic statistical calculations of forensim,

� provided excercises and solutions for a course setting,

� provide examples to verify correct usage and answers. This is mostly done by means of
the solution to the mentioned excercises.

1.2 Statistical methods. A worked example

Forensim provides a variety of methods dedicated to evaluating the weight of DNA evidence
[1]. Below we focus on the LR function for the calculation of likelihood ratios. The LR function
implements the general formula of Curran et al. for forensic DNA mixtures interpretation [2].

An example Consider the following genetic profiles from a rape case in Hong Kong [3]:

Locus Mixture Victim Suspect Frequency
D3S1358 14 14 0.033

15 15 0.331
17 17 0.239
18 18 0.056

Table 1: Alleles from a DNA stain from a rape case in Hong Kong

Locus D3S1358 shows 4 distinct alleles (14, 15, 17 and 18). The number of contributors to
the mixed sample is taken to be 2.

Scenario 1 The following hypotheses are tested:

� Prosecution hypothesis HP : Contributors were the victim and the suspect.

� Defence hypothesis HD: Contributors were 2 unknown people.

Before we start, remember to load the package:

> library(forensim)

First, the genotypes are assigned to the victim and the suspect:

1
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> victim <- "15/18"

> suspect <- "14/17"

The likelihood ratio is computed using the LR function: Here is a useful extract of this function’s
help page:

� stain: a vector giving the set of (distinct) alleles present in the DNA stain

� freq: vector of the corresponding allele frequencies in the global population

� xp: the number of unknown contributors to the stain under the prosecution hypothesis
Hp. Default is 0.

� xd: the number of unknown contributors to the stain under the defence hypothesis Hd.
Default is 0.

� Tp: a vector of strings where each string contains two alleles separated by ’/’, correspond-
ing to one known contributor under the prosecution hypothesis Hp. The length of the
vector equals the number of known contributors. Default is NULL.

� Vp: a vector of strings where each string contains two alleles separated by ’/’, correspond-
ing to one known non-contributor under the prosecution hypothesis Hp. The length of
the vector equals the number of known non-contributors. Default is NULL.

� Td: a vector of strings where each string contains two alleles separated by ’/’, correspond-
ing to one known contributor under the defence hypothesis Hd. The length of the vector
equals the number of known contributors. Default is NULL.

� Vd: a vector of strings where each string contains two alleles separated by ’/’, correspond-
ing to one known non-contributor under the defence hypothesis Hd. The length of the
vector equals the number of known non-contributors. Default is NULL.

� theta: a float in [0,1[. theta is equivalent to Wright’s Fst. In case of population subdivi-
sion, it allows a correction of the allele frequencies in the subpopulation of interest

The LR is obtained as follows

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),

+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = NULL, Vd = c(victim,

+ suspect), xd = 2, theta = 0)

[1] 285

The mixture profile is 285 times more likely if it came from the suspect and the victim than
if it came from two unknown unrelated individuals.
Note that as long as theta=0, there is no need to be specify the non-contributing individuals,
so the same figure is prodcued with Vd=NULL.
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Scenario 2 The following hypotheses are tested:
Prosecution hypo4thesis HP : Contributors were the victim and the suspect.
Defence hypothesis HD: Contributors were the victim and one unknown.

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),

+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = victim,

+ Vd = suspect, xd = 1, theta = 0)

[1] 63.4

The mixture profile is 63 times more likely if it came from the suspect than if it came from
an unrelated individual.

2 Exercises

Some of the problems below are theoretical in the sense that forensim is not used, rather calcu-
lation by hand are requested. These excercises may be skipped for those exclusively interested
in practising forensim.

2.1 Excercise 1. Likelihood ratios and theta values

Note that in the previous examples, the theta argument does not appear in the LR function.
This means that the argument is set to its default value, which is 0. The problems below extend
on scenario 2 of the above example by addressing θ corrections.

1. Change the value of the theta argument from 0 to 0.03 and repeat the calculation.

2. Calculate the LR for different values of theta taken in the interval [0,0.03].

� Tip 1 : use the seq function to create a sequence of values for the theta argument.

� Tip 2 : use the sapply function to compute the values of the LR for different values
of theta. To get help, type: help(’sapply’).

3. Represent the obtained results in a plot (use function plot).

2.2 Excercise 2. Theoretical continuation of Excercise 1

1. Derive the formulae corresponding to Scenarios 1 and 2 of the worked example (Hong-
Kong case). Confirm that the figures obtanined by forensim are correct.

2. Repeat the above problem with θ-correction for scenario 2 (θ = 0.03).
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2.3 Excercise 3. LR-calculations for mixtures

The purpose of this exercise is to demonstrate various approaches to LR calculations for a
mixture case. The data comes from a proficiency test arranged by GEDNAP http://gednap.

de/. For simplicity only three markers are considered. There is a mixture (stain), the data is
summarised in Table 2 and a reference sample is shown in Table 3.

Locus Allele
D3S1358 15
D3S1358 16
D3S1358 17
vWA 15
vWA 16
vWA 18
FGA 20
FGA 21
FGA 22
FGA 24
FGA 26

Table 2: The crime scene profile at three STR loci.

Locus Allele
D3S1358 15/17
vWA 16/18
FGA 20/26

Table 3: The reference sample B

The hypotheses are

� HP : B and two unknown individuals contributed to the stain

� HD: Three unknown people contributed to the stain

Calculate the likelihood ratios to weight hypotheses HP and HD when θ = 0. For simplicity
we assume all allele frequencies to be 0.1.

2.4 Excercise 4. LR: standard and for drop in and out

This example extends on Section 4.4 of [4]. The hypotheses are the usual ones:

� HP : The DNA came from the suspect.

� HD: The DNA came from a random man.

Throughout A and B denote alleles with relative frequencies pA = 0.2 and pB = 0.1, and we
assume θ = 0.

4
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1. We first consider a standard case with data AB for the suspect and the stain. Derive
the formula for the LR and use R to provide the numeric answer. Confirm the above
calculation using the LR function of forensim.

2. Repeat the above problem whith data AA for suspect and the stain.

3. Assume markers 1, 2, · · · , 5 are as 1 above. Markers 6,7,8,9 are as for 2 above. Calculate
the LR for these 9 markers by using the formulae derived above.

4. For the tenth marker the suspect is A and the stain AB. What’s the LR for this marker?
What’s the LR based on all 10 markers?

5. Consider the above problem once assuming that there is a probability D that an allele
drops out. According to [4]

LR10 ≈ D

(1 + D)p2
A + 2pA(1 − pA)D (1)

Let D = 0.1. Use R to find LR10 and the LR based on all markers (LR1,10). Comment
on the answer.

6. Plot LR10 as a function of D.

3 Solutions to the excercises

3.1 Excercise 1

1. For a single value, theta=0.03 we find:

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),

+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = victim,

+ Vd = suspect, xd = 1, theta = 0.03)

[1] 37.6

2. Define a variable theta, taking different values in the [0,1] interval:

> theta <- seq(0, 0.03, by = 0.001)

> theta

[1] 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011

[13] 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023

[25] 0.024 0.025 0.026 0.027 0.028 0.029 0.030

To replicate the calculations for different values of theta, we use the sapply function.
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> sapply(theta, function(i) LR(stain = c(14, 15, 17, 18), freq = c(0.033,

+ 0.331, 0.239, 0.056), xp = 0, Tp = c(victim, suspect), Vp = NULL,

+ Td = victim, Vd = suspect, xd = 1, theta = i))

[1] 63.40 61.83 60.34 58.94 57.61 56.35 55.15 54.01 52.92 51.89 50.90 49.95

[13] 49.05 48.18 47.35 46.56 45.79 45.06 44.35 43.67 43.02 42.39 41.78 41.19

[25] 40.63 40.08 39.55 39.04 38.54 38.06 37.60

The above command calculates the LR for each value i of theta.

3. To plot these results, we need first to save them to an object:

> LRtheta <- sapply(theta, function(i) LR(stain = c(14, 15, 17,

+ 18), freq = c(0.033, 0.331, 0.239, 0.056), xp = 0, Tp = c(victim,

+ suspect), Vp = NULL, Td = victim, Vd = suspect, xd = 1, theta = i))

The plot is produced by

> plot(theta, LRtheta)
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3.2 Excercise 2

1. For scenario 1

LR = 1
24p14p15p17p18

= 1
24 · 0.033 · 0.331 · 0.239 · 0.056 . (2)

The numerator is obvious. The denominator can be be obtained by realising that both
individuals must be heterozygote and that there are 6 possible combinations, each having
probability 4p14p15p17p18 since (i) Hardy-Weinberrg Equilibrium is assumed to hold and
(ii) the individuals are unrelated.

This can be calculated in R as

> 1/(24 * 0.033 * 0.331 * 0.239 * 0.056)

[1] 285.0105

For scenario 2

LR = 1
2p14p17

(3)

since the suspect must have genotype 14,17.

This can be calculated in R as

> 1/(2 * 0.033 * 0.239)

[1] 63.39546

2. Consider first scenario 1. Let A = 14, B = 15, C = 17, D = 18. Then the modification of
Equation 3 to account for θ-corrections becomes

LR = (1 + 3θ)(1 + 4θ)
2(θ + (1 − θ)p14)(θ + (1 − θ)p17) . (4)

> (1 + 3 * 0.03) * (1 + 4 * 0.03)/(2 * (0.03 + (1 - 0.03) * 0.033) *

+ (0.03 + (1 - 0.03) * 0.239))

[1] 37.59529

This confirms the forensim value:

> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),

+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = victim,

+ Vd = suspect, xd = 1, theta = 0.03)

[1] 37.6

7



104 Chapter 3 Appendix C: Forensim vignette

3.3 Excercise 3

First, enter the stain profile for each available locus:

> stainD3 <- c(15, 16, 17)

> stainv <- c(15, 16, 18)

> stainFGA <- c(20, 21, 22, 24, 26)

Second, enter the suspect profile for each available locus:

> suspectD3 <- "15/17"

> suspectv <- "16/18"

> suspectFGA <- "20/26"

Last, the likelihood ratio:

> LRD3 <- LR(stain = stainD3, freq = rep(0.1, 3), xp = 2, Tp = c(suspectD3),

+ Vp = NULL, Td = NULL, Vd = suspectD3, xd = 3, theta = 0)

> LRD3

[1] 12.04

> LRDv <- LR(stain = stainv, freq = rep(0.1, 3), xp = 2, Tp = c(suspectv),

+ Vp = NULL, Td = NULL, Vd = suspectv, xd = 3, theta = 0)

> LRDv

[1] 12.04

> LRDFGA <- LR(stain = stainFGA, freq = rep(0.1, 5), xp = 2, Tp = c(suspectFGA),

+ Vp = NULL, Td = NULL, Vd = suspectFGA, xd = 3, theta = 0)

> LRDFGA

[1] 4.667

The overall likelihood ratio is obtained by multiplying the above likelihood ratios:

> LRD3 * LRDv * LRDFGA

[1] 676.5358
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3.4 Excercise 4

1. Note first that P (data|HP ) = 1. Next

P (data|HD) = P (culprit is AB) = 2pApB

provided Hardy-Weinbererg Equilibrium holds. First some parameter values are assigned.

> D <- 0.01

> pA <- 0.2

> pB <- 0.1

A direct calculation in R gives

> 1/(2 * pA * pB)

[1] 25

The LR function of forensim gives

> LR(stain = c("A", "B"), freq = c(0.2, 0.1), xp = 0, Tp = "A/B",

+ Vp = NULL, Td = NULL, Vd = "A/B", xd = 1, theta = 0)

[1] 25

2. A similar argument gives LR = 1/p2
A which evaluates to 25. Furthermore, using forensim

we find

> LR(stain = c("A"), freq = c(0.2), xp = 0, Tp = "A/A", Vp = NULL,

+ Td = NULL, Vd = "A/A", xd = 1, theta = 0)

[1] 25

3. > 25^9

[1] 3.814697e+12

4. The likelihood ratio is 0 for the marker and therefore also the overall LR is 0.

5. With drop-out probability of 0.01 we find

> D/((1 + D) * pA^2 + 2 * pA * (1 - pA) * D)

[1] 0.2293578

The LR based on all markers becomes

> 25^9 * 0.2293578
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[1] 874930572510

6. There are several ways to plot. Here’s one:

> D = seq(0, 1, length = 1000)

> pA = 0.2

> LR1 = D/((1 + D) * pA^2 + D * 2 * pA * (1 - pA))

> D = seq(0, 1, length = 1000)

> pA = 0.2

> LR1 = D/((1 + D) * pA^2 + D * 2 * pA * (1 - pA))

> plot(D, LR1, type = "l", xlab = "Drop out probability", ylab = "LR1")

> title("Stain:A.Suspect:AB.pA=0.2.\n LR as a function of drop out probability")
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