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Introduction

The physical description of a system is often done with 2-body treatments. There are
two good reasons for that. First, the 2-body Physics determines the behavior of a large
range of systems. Secondly, the 2-body systems are the only ones that can be treated
exactly. As soon as there is 3 body involved in a problem, it can not be solved without
approximations (analytically). This is known in Physics as the N-body problem.
However, the nature does not care about analytical solution and some systems required
to go beyond the 2-body treatment. This is the case of nucleus, atoms, molecules, solids,
stars,... In those systems, very interesting phenomena arise from the interactions be-
tween more than two body. Describing them is a big challenge for fundamental Physics.
Controlling them is a big source of technological progress.

We have two main approaches to deal with N-body problems. When we aim to de-
scribe a system in details, we are often limited to small systems (sub-systems) and we
talk about few-body Physics. On the other hand, when we look out the details and we
aim to extract general behaviors, this is often adapted to large systems and we talk about
many-body Physics.

The systems investigated in the frame of this thesis are cold atomic gases.

The cold atoms techniques have been developed for around 50 years and represent a
fantastic tool for atomic Physics. It has been recognized by a Nobel prize in 1997
awarded jointly to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips "for
development of methods to cool and trap atoms with laser light".
To form a cold atomic gas, the motion of the atoms is progressively reduced. As an
ultimate stage, it is possible to reach the Bose-Einstein Condensation (BEC). In a BEC,
all the trapped atoms have the minimum degree of motion allowed by their quantum
nature, they behave identically forming a so-called giant matter wave. Observed for the
first time in 1995, the obtention of a BEC has been also recognized by a Nobel Prize in
2001 awarded jointly to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman.
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In a BEC, the temperature is of the order of few nK meaning that the thermal speed of
the atoms is less than 1 mm.s−1.

In the experiments carried out in the frame of this thesis, starting from a cold atomic
sample, we generate interatomic interactions by creating Rydberg atoms.

A Rydberg atom is an atom with one electron in a very excited state. In comparison
to an atom in the ground state, a Rydberg atom has exaggerated properties. The most
evident one is its size. Given the principal quantum number n of the so-called Rydberg
electron, the size of the Rydberg atom scales as n2. The size of a Rydberg atom with
n = 100 is of the order of 1 µm. This is illustrated on the figure 1 where we have
schematically represented a Rydberg atom.

Figure 1: Schematic representation of a Rydberg atom.

The huge distance between the Rydberg electron and the ionic core confers to Ryd-
berg atoms a fantastic property: Rydberg atoms are extremely sensitive to any electro-
magnetic perturbation.
A weak external electric field modifies considerably the quantum states of the Rydberg
electron. This provides an efficient way to control experimentally the internal state of
Rydberg atoms.
Applying an electric field is also a way to ionize Rydberg atoms. This is a very largely
used method to detect them in cold atoms experiments. A Rydberg atom with n = 100

is ionized at an electric field of around 10V.cm−1.
This sensitivity to electric fields makes of Rydberg atoms very promising systems to
build high precision field sensors.
As a paradigm of their sensitivity, Rydberg atoms have been used to implement non de-
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structive measurements of single photons. This experimental feat takes part of the Nobel
Prize awarded jointly in 2012 to Serge Haroche and David J. Wineland "for ground-
breaking experimental methods that enable measuring and manipulation of individual
quantum systems".

In the frame of the realization of interacting systems, we use the fact that Rydberg
atoms interact together through long-range electrostatic interactions.
A particularity of the interactions between Rydberg atoms is their modularity. They can
be isotropic or not, the radial dependence can follow different scaling law and overall
the interactions strength depends a lot of the Rydberg state which is involved and takes
a huge value for highly excited states.
Experimentally, the choice of the Rydberg state and the application of an electric field
allow to change those interaction parameters in a controllable way.

Cold Rydberg gases provide us very nice conditions to study an ensemble of interacting
particles.

As a first nice feature, we can manage to perform very short experiments where the
atoms almost do not move. Then the experiments consist in an almost static "picture"
of the investigated systems. This provides great simplifications in theoretical treatments
which is known as the frozen gas approximation.
Secondly, cold atoms techniques allow a great control on the atomic ensemble prop-
erties, starting with its shape. In this frame, the use of optical lattice offers fantastic
possibilities. As illustrative examples, we show on the figure 2 three images of atomic
samples prepared in different conditions.
Finally, cold atomic gases are very dilute systems and if we do not want to, the atoms
do not interact. The interactions which give rise to the N-body Physics that we want
to access are created in a controllable way. Also, since no similar effects are naturally
present in the system, we can manage to observe the investigated process through very
clean and isolated signals.

In the frame of this thesis, I have taken part to two different experimental researchs.
One in Orsay, in the group of Dr. Pierre Pillet under the supervision of Dr. Daniel Com-
parat. The other at Pisa in the group of Prof. Ennio Arimondo. Orsay’s experiments are
of the few-body type, Pisa’s one of the many-body type.

The interactions between Rydberg atoms appear first in presence of an external elec-
tric field. A small electric field "distorts" Rydberg atoms which acquire a permanent
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Figure 2: Cold atoms in various conditions. Top-Left, fluorescence imaging of sin-
gle rubidium atoms in a 2-dimensional optical lattice in the Mott insulator regime.
This image has been obtained in the group of Prof. Immanuel Bloch in Mu-
nich, taken from http://www.quantum-munich.de. Top-Right, Picture of a Magneto-
Optical Trap of lithium atoms containing around 10 billions of atoms. This picture
has been obtained in the group of Prof. Tilman Esslinger in Zurich, taken from
http://www.quantumoptics.ethz.ch. Bottom, In-situ absorption imaging of a BEC of
rubidium atoms split into packets using a 1-dimensional optical lattice, the packets con-
tain in average 10 thousand of atoms. This image has been obtained in the group of
Prof. Ennio Arimondo in Pisa, during this thesis.

electric dipole moment. In presence of electric field, Rydberg atoms interact thus like
classical electric dipoles.
In absence of external electric field, Rydberg atoms still interact. We talk in this case
about induced dipole interactions more known under the name of Van-der-Waals inter-
actions.
To this regards exist very interesting situations where the induced dipole interactions be-
tween Rydberg atoms takes huge values. Those situations are called Förster resonances,
they appear "accidentally" when the energy of two 2-body Rydberg states is equal. In
this case, the atoms interact through a resonant exchange of excitation as represented on
the figure 3.
Experimentally, we can voluntary create those situations by applying a very weak elec-
tric field which brings at resonance the energies of two particular 2-body quantum states.

One part of this thesis has consisted in the realization of such Förster resonances in
a Magneto-Optical Trap of Cesium.
In addition to the realization and the optimization of 2-body Förster resonances, it has
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Figure 3: Schematic representation of a pair of Rydberg atoms interacting through a
Förster resonance. Both atoms interact through the exchange of a "virtual" photon, the
interaction is considerably enhanced by the resonant character of the process : E|ra〉 +
E|rb〉 = E|r′a〉 + E|r′b〉.

been possible to use the proximity (in electric field) of two 2-body Förster resonances
to generate a 4-body process.
We have indeed observed the mutual interaction between 4 Rydberg atoms through the
modification of their individual internal states.
This observation, reported in [Gurian et al., 2012], is an important contribution to the
few-body Physics. Namely because, in addition to its observation, this coherent process
between 4 Rydberg atoms can be well characterized theoretically, at a quantum level. It
has been for example possible to enhance the 4-body process efficiency by changing in
a controllable and deterministic way the electric field during the process.

The interactions between Rydberg atoms have also strong manifestations when con-
sidering the coupling of an ensemble of Rydberg atoms with the electromagnetic field.
When a so-called strongly interacting Rydberg gas is driven by a resonant laser field,
the excitation of the atoms toward Rydberg states is reduced due to Rydberg atoms in-
teractions. This is the so-called Dipole Blockade phenomenon.
In the limit case, only one Rydberg excitation can be present in the system. Such sys-
tems have been proposed to implement quantum gates, fundamental elements for quan-
tum computation.
Strongly interacting Rydberg ensembles have also very interesting photon emission
properties. They could be used to create single photon sources or non-classical light
sources.
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When involved in Electromagnetic-Induced Transparency (EIT) schemes, blockaded
Rydberg ensembles have been used to demonstrate a giant Kerr effect.
Strongly interacting Rydberg gases could finally be used to mimic various quantum be-
haviors. In this case, we talk about quantum simulation. The modularity of Rydberg
atoms interactions together with the one of cold atomic gases offer the possibility to
reproduce the dynamics of other interacting systems, for example solid-state Physics
systems.

In a fundamental point of view, the description of strongly interacting Rydberg gases
has stimulated a big theoretical interest. Since it is a many-body problem, the asso-
ciated Hamiltonian can not be solved for more than a mesoscopic number of atoms.
However, due to the very attractive properties that we expect from such systems, it is
very interesting to be able to describe them.
An important feature which is well demonstrated theoretically is that a strongly interact-
ing Rydberg gas driven by a laser field gives rise to collective excitations. A large part
of the blockaded Rydberg ensembles properties come from those collective excitations
which have for example a characteristic enhanced dynamics.

In the frame of this thesis, the dipole blockade has been investigated theoretically us-
ing the so-called Dicke collective states. Those collective quantum states are defined in
function of their symmetry relative to the laser excitation. It has been possible to use
those symmetry properties to describe efficiently the collective dynamics of the system.

The dipole blockade has been also investigated experimentally during this thesis, by
using an ultra-cold rubidium gas.
A first result, reported in [Viteau et al., 2011], has consisted in the first experimental
demonstration of a coherent Rydberg excitation of a BEC confined in a 1-dimensional
optical lattice. The collective nature of the Rydberg excitations have been observed
through its characteristic enhanced dynamics. This is an important result since such a
geometry should be one of the most useful to observe and use the collective properties
of blockaded Rydberg ensemble.
Another important result, reported in [Viteau et al., 2012], has been the observation of
a highly sub-poissonian (correlated) statistics of the Rydberg excitation. This feature is
also a strong signature of the collective excitations and confirms for example the poten-
tial of strongly interacting Rydberg ensembles for non-classical light sources generation.

In chapter 1, we present the basis of the Rydberg atoms Physics. The theoretical de-
scription of the Rydberg states is presented in simple terms. We present the fundamental
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interaction processes between two Rydberg atoms. We also give a non exhaustive but
quite complete overview of the theoretical and experimental studies done on strongly
interacting Rydberg gases. The purpose is to extract the principal features of such sys-
tems which have been the subject of a very big number of publications for the last ten
years.

In chapter 2, we present the calculations done at Orsay concerning the quantum states of
two interacting Rydberg atoms in presence of static, uniform, external electric and mag-
netic fields. A computer program has been realized to do this. My personal contribution
to this work has been to write down all the formulas corresponding to the investigated
effects. Those formulas were all previously existing and my task has been to unify them
in a consistent system which is presented in this chapter. The code implementation has
been mainly done by Dr. Patrick Cheinet. I have been involved in the manipulation of
the 2-body calculations to extract the outputs that are presented at the end of this chap-
ter. Also, a personal initiative has been to start to establish the validity conditions of
such calculations and to look at other existing calculating methods as presented in the
beginning of this chapter.

In chapter 3, we present the experiments done at Orsay concerning the realization of
few-body interaction processes. We namely present the experimental observation of the
4-body process reported in [Gurian et al., 2012]. The experimental setup used for those
experiments has been built from scratch in the frame of this thesis. During 3 months,
I have worked on it with a bachelor student Matthieu Barachan and 6 months alone.
During this period it has been possible to obtain the Magneto Optical Trap of cesium
and to start to set up the Rydberg experiment. I then have been joined by Joshua Gurian
as a post-doctoral researcher. We have together observed the first Rydberg signal and
started to calibrate the detection setup before I left for Pisa. The few-body experiments
have been performed by Joshua Gurian and Dr. Patrick Cheinet who joined the team
soon after I left. I have personally developed the single ions imaging acquisition which
should be used in future experiments.

In chapter 4, we present the experiments done at Pisa concerning the Rydberg excitation
in 1-dimensional optical lattice reported in [Viteau et al., 2011] and the observation of
the sub-poissonian counting statistics of the Rydberg excitation reported in [Viteau et al.,
2012]. The Pisa experimental setup was already well handled by three post-doctoral re-
searchers, Marc Bason, Nicola Malossi and Matthieu Viteau as well as Dr. Donatella
Ciampini and Dr. Oliver Morsh when I arrived. I have progressively taken part to the
experiments. A personal work has been to study the physical information associated to
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the so-called Mandel Q factor as presented in this chapter. I have also study numerically
the effect of the laser jitter on the Q factor as presented in the appendix B.

In chapter 5, we present the theoretical studies of the interacting Rydberg gases that
has been done in collaboration between Orsay and Pisa using the so-called Dicke col-
lective states. We namely present the cooperative model that we have developped in
order to model strongly interacting Rydberg gases. This model is briefly touched in
the reference [Viteau et al., 2012] and will be the subject of another publication. The
original idea of the cooperative model comes from Dr. Pierre Pillet. My personal contri-
bution to this subject has been to develop the visibility of the cooperative model. I have
been strongly involved in the physical interpretation of the model. I have also made
the calculations using the Dicke collective states in some simple situations which are
presented at the end of this chapter. Those calculations show the interest of the Dicke
basis for many-body modeling and allow to make some links between the model and
other theoretical developments. I have also done the Mean-Field calculations presented
in the appendix D.
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Chapter 1

Rydberg atoms, Rydberg-Rydberg
interactions and strongly interacting
Rydberg gases

1.1 Historical contribution of Rydberg atoms to atomic
Physics

1.1.1 Natural existence of Rydberg atoms

While the presence of Rydberg atoms is very unlikely on earth due to the fact that
their ionization energies are well below thermal energy, we can find Rydberg atoms in
interstellar medium as well as in plasma medium [Gallagher, 1994].
In plasma, it is the radiative recombination of low energy electrons and ions which leads
to the formation of Rydberg atoms.
In interstellar medium, the very low density allows for the existence of Rydberg atoms as
proved by the 2.4 GHz signal, well known by the radio-astronomers, which correspond
to the transition between n = 109 and n = 108 states of hydrogen. We can find in
interstellar medium Rydberg states up to n = 800.

1.1.2 Early atomic spectroscopy and series laws

During the second half of the 19th century, physicists accumulated numbers of spec-
troscopic data of different elements using astronomic or laboratory signal. As it is very
nicely depicted in the book of H.E. White, Introduction to atomic spectra [White, 1934],
several physicists were then trying to find arithmetic laws able to describe the observed
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spectrums. This was a totally empirical task as it was well before the first relevant
atomic model established by N. Bohr in 1913.
In 1885, as shown on fig 1.1, stellar observations allow to extend the observed spec-
trum of the hydrogen atom to 14 lines, involving thus Rydberg states. The same year, J.
Balmer succeeds to write a simple formula describing perfectly the wavelengths of the
observed lines. Others, still unobserved, lines predicted by the Balmer’s formula were
then observed proving the success of this early spectroscopic work.

Figure 1.1: Spectroscopic data, from [White, 1934]

In 1888, J. Rydberg presented a new formula, generalization of the Balmer one,
describing the wavenumber of spectral lines of Hydrogen and other alkali atoms.

Figure 1.2: Original Rydberg formula 1, here n is the wavenumber of the lines, N0 is a
constant, m1 and m2 are two integers with m2 > m1, c1 and c2 are numbers dependent
of the atomic specie and the series

This empirical formula gave in fact very interesting input for atomic Physics the-
ory, namely the fact to express relation in term of wavenumber (proportional to the
frequency, i.e., the photons energy), the use of universal constant identical for all the
atomic species and the appearance of an important notion known now as the quantum
defect.
This initial spectroscopic work have represented a solid experimental base and was de-
terminant for the establishment of the quantum theory that followed. We could mention,

1The Rydberg formula as presented to Matematiskt-Fysiska frening, original document written
November 5th, 1888 by Gustaf Daniel Heüman (1868-1934).
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as an example, the notation, still used today, for the first values of the electron orbital
momentum : s, p and d... coming from the names given by J. Rydberg to different kind
of observed series being sharp, principal and diffuse.

1.2 General properties of Rydberg atoms

Quantum mechanics has been developed intensively during the first half of the 20th

century. One of the big advance was the establishment of the Schrödinger equation
(1926) and concerning atomic Physics, its analytical solving for the Hydrogen atoms.
We can find such development in many references, for example [Cohen-Tannoudji et al.,
1986; Messiah, 1962], we assume here the reader to be familiar to the basis of atomic
Physics and we focus on the main results concerning Rydberg atoms.

1.2.1 General remarks

Technicality of this section

The quantum treatment of Rydberg atoms, despite its relative simplicity compared to
other systems, remains quite technical. As detailed calculations are presented in the
Chapter 2 of this manuscript we stay in the present section on a non so technical level of
description, allowing nevertheless to catch all the interesting features of Rydberg atoms
Physics.

Basis of the Alkali Rydberg states

The description of the electronics quantum states of multi-electron atoms is a N-body
problem impossible to solve exactly. the TDDFT (Time Dependent Density Functional
Theory) [Runge and Gross, 1984; Marques et al., 2006] or Hartree-Fock methods with
treatment of the electronic correlations (Post Hartree-Fock methods) aim to find approx-
imated solutions [Friedrich, 1998].
A Rydberg atom is an atom with one electron in a highly excited state. We are inter-
ested, in a precise way, only to this so-called Rydberg electron because it is its behavior
which determines all the electromagnetic properties of the atoms.
Since the Rydberg electron stays essentially far from all the other particles, we can rea-
sonably separate this electron from the rest of the atom. Doing this, we have to deal with
an effective 2-body problem, the dynamics of the Rydberg electron being described in
considering an effective potential combining the effect of the nucleus and the other elec-
trons.
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This approximation could be done in principle, for all atomic species, even for molecules,
as long as there is only one electron, in a highly excited state. Nevertheless, we consider
in this thesis that we are dealing with alkali atoms, for which this approximation leads to
quit accurate results. This is due to the fact that those atoms contain only one electron in
the last shell. It is this electron which is excited in a Rydberg state and the other electron
are forming full shells below it.
The main effect of the others electrons is to screen the nuclear charge, the effective
potential seen by the Rydberg electron is then in first approximation the same than for
the Hydrogen atom. In addition, despites the complexity of the Rydberg core structure,
the Quantum Defect Theory (QDT) (see the review [Seaton, 1983]) allows to take in
account its effects in a very convenient way. In the frame of the QDT, the description of
the electronics quantum states of the Rydberg electron is formally similar to the case of
Hydrogen. This theoretical simplicity is a big advantage of Rydberg atoms.
Even in the case of Hydrogen, the simple Coulomb potential, representing the electro-
statics interaction between the nucleus and the electron, has to be completed by several
other effects, like the spin-orbit coupling, the relativist effects and the effect of the nu-
cleus spin. Taking into account those effects, leads in the quantum treatment to work
with the most adapted basis. In the case of Rydberg states, we can very reasonably
consider only the spin-orbit coupling, other effects and their corresponding energies be-
ing small enough to be neglected 1. Consequently Rydberg states can be reasonably
described using the fine-structure basis. We can write them using the Dirac’s ket for-
malism as |n, l, j,mj〉. Another widely used notation is the spectroscopic notation, nlj
(for example 63p3/2), where mj is not specified.

Atomic units

In this manuscript, we will often express physical quantities in atomic units. Atomic
units are defined by ~ = e = me = 4πε0 = 1. The following table gives the cor-
respondence between atomic units and SI units of few quantities, starting from the 4
fundamental ones.

Other derived atomic units can be defined from this one, it is the case for speed,
time, force, power, intensity, electric potential, electric field, electric dipole moment,
magnetic field...

Obviously, dimensionless physical constant have the same value in any units system.
It is the case for the fine-structure constant α

1Experimental measurements of hyperfine structure can be found in [Farley et al., 1977] (rubidium
and cesium) and [Weber and Sansonetti, 1987; Goy et al., 1982] (cesium)

2The NIST Reference on Constants, Units and Uncertainty, for actualyzed values go to
http://physics.nist.gov/cuu/Constants/ (http://www.nist.gov/)
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Quantity Name and symbol value in SI units
Charge Elementary charge, e 1.602176565(35)10−19C
Mass Rest electron mass, me 0.910938291(40)10−30kg

Action Reduced Planck’s constant, ~ 1.054571726(47)10−34J.s
Electric constant 1/4πε0 8.9875517873681 109kg.m3.s−2.C−2

Length Bohr’s radius, a0 0.52917720859(36)10−10m
Energy Hartree’s energy, EH 4.35974417(75)10−18J

Table 1.1: Some atomic units, CODATA values 2(01/04/2012).

α =
e2

4πε0~c
≈ 1

137
(1.1)

Where c is the speed of light. We see here that the value of c in atomic units is
c = 1/α ≈ 137

1.2.2 Rydberg energies

general formula

For a given atomic specie and a given Rydberg state |n, l, j,mj〉, in absence of external
field, its energy, independent of mj , is given by

Enlj = − Ry

(n− δnlj)2
(1.2)

Where Ry is the Rydberg’s constant and δnlj is the quantum defect. Here the zero of
energy is set to the ionization limit.
The Rydberg constant depend very slightly of the atomic specie through a multiplicative
factor 1

1+me/M
where M is the mass of the atomic nucleus. Looking out this factor, the

Rydberg’s constant can be express in function of other fundamental physical quantities

Ry =
mee

4

2(4πε0~)2
(1.3)

or again

Ry =
1

2
α2mec

2 (1.4)

The value of Ry is 1
2

in atomic units, it corresponds to 13.60569253(30) eV. We also
define R∞ by Ry = hcR∞. R∞ is the most accurately measured fundamental physical
constant [Pohl et al., 2010].
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Its value in SI units is 1.0973731568539(55).107 m−1.

It is interesting to notice that, as in the case of Hydrogen, the energy difference between
two close Rydberg states scales as n−3. This concerns the energy difference between
two n-manifold as well as the fine-structure splitting.

quantum defect

The Rydberg energies formula is very close from the analytically determined Hydrogen
energies formula. The only difference consists in the presence of the quantum defects
δnlj (for Hydrogen all quantum defects are null). The physical meaning of the quantum
defect is to reflect the fact that Rydberg core is not only a simple proton as it is the case
for Hydrogen.
A very important point is that quantum defects and then Rydberg energies have to be
determined experimentally. The values of quantum defects are indeed used as an input
for many theoretical treatments of Rydberg atoms.
Nevertheless, it is possible to express the quantum defects using a simple relation in-
volving only few parameters.

δnlj = δ0(lj) +
δ2(lj)

(n− δ0(lj))2
+

δ4(lj)

(n− δ0(lj))4
+ ... (1.5)

This relation is called the Ritz’s formula. The coefficients δ0(lj) and δ2i(lj) have to
be determined experimentally for each atomic species.
Interestingly, the values of the quantum defects depend only very slightly of the prin-
cipal quantum number, n. Besides, effects of the Rydberg core being non negligible
only in the case of penetrating orbitals, the values of the quantum defects decrease very
rapidly with the orbital momentum l and can be considered null for l bigger than few
units.
Taking the case of cesium, we find in the reference [Goy et al., 1982] the following
values of δ0(lj) and δ2(lj).

Such a table allows to determine the energies of all the Rydberg states of cesium.
Although it depends of the Rydberg state in question, the order of magnitude of the
precision obtained in such a determination is 10 MHz.
In other, more recent works, the quantum defect values of most of the alkali species have
been determined up to δ8(lj). The values of the quantum defects of lithium, sodium,
potassium, rubidium and cesium atoms are reported in [Beterov et al., 2012], taken from
the references therein.
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Series δ0 δ2

ns 4.049325 0.2462
np1/2 3.591556 0.3714
np3/2 3.559058 0.3740
nd3/2 2.475365 0.5554
nd5/2 2.466210 0.0670
nf5/2 0.033392 −0.191
nf7/2 0.033537 −0.191

Table 1.2: Cesium quantum defects, from [Goy et al., 1982]

Rydberg states in laboratory

Rydberg energies of the most commonly used alkali atoms are now very well known
with a good precision via a precise determination of the quantum defects. On a technical
point of view, the Rydberg states spectroscopy took a huge benefit from laser develop-
ment (1960). Whereas first methods to create Rydberg atoms (electron impact or energy
exchange) did not offer a very precise control on the populated Rydberg states, laser
excitation of atomic sample toward Rydberg states allows to excite selectively a unique
Rydberg state (for early experiment, see [Fabre et al., 1975; Harvey and Stoicheff, 1977;
Lee et al., 1978] and the review [Fabre and Haroche, 1983]).
In today experiments, with the knowledge of Rydberg energies and the use of laser
fields, we can excite selectively a given Rydberg states, easily up to n = 100, from
ground states atoms. The fantastic point is that the Rydberg states binding energy is
so small that we can excite a big range of Rydberg states using the same laser, if the
wavelength of this latter can be tuned of only few nm.
Besides, the use of microwave fields allows to make transition between two Rydberg
states close enough in energy.

1.2.3 Rydberg wave-functions

Rydberg wave-functions are known analytically in the case of Hydrogen [Bethe and
Salpeter, 1957] but have to be approximatively evaluated for other atoms. The wave-
functions can be decomposed, as in the case of Hydrogen, in an angular part and a radial
part. Only the radial part differs from the case of Hydrogen, consequently, the selection
rules coming from the angular part remains valid.
The difficulty comes from the determination of the radial wave functions. Several meth-
ods can be used to do this, all involving the knowledge of quantum defects. In the
frame of the QDT, evaluation of the radial wave-functions can be done numerically us-
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ing the Numerov integration method [Numerov, 1924]. An alternative way is the use
of a semi-classical approach WKB [Friedrich, 1998]. Model potential can also be de-
rived to reproduce the experimentally observed energies allowing to determine the radial
wave-functions, this approach can be found in the reference [Klapisch, 1971].
In the frame of this thesis, we used the QDT approach with the Numerov integration
method with the so-called Coulomb approximation. Excluding the small region con-
taining the Rydberg core which is in a sens treated as a black-box, the QDT allows
to determine quasi-exactly the electronic radial wave-functions of the Rydberg states.
Although the precise form of the wave-functions inside the Rydberg core region might
be required in some case, the knowledge of the wave-function outside this region, is
sufficient for the determination of a large number of physical quantities. Namely, it is
shown [Bates and Damgaard, 1949], that in the case of alkali atoms, we can determine
accurately the transition dipole matrix using the QDT. The transition dipole matrix is a
very important object allowing to calculate the coupling of an atom with a laser field,
the stark effect or again the dipole-dipole interaction between two Rydberg atoms.
The numerical evaluation of Rydberg radial wave-functions via the Numerov method as
well as the determination of the transition dipole matrix is presented in the Chapter 2
of this thesis. We see in the fig 1.3 a typical radial wave function calculated with this
method.

Figure 1.3: Radial wave function of the Rydberg state 40s of cesium calculated by the
Numerov method under the Coulomb approximation. The distance from the core is
given in atomic unit, the vertical axis has arbitrary unit.

1.2.4 Rydberg properties

From the knowledge of the Rydberg states wave-functions, physical properties of the
Rydberg states can be determined. Interestingly, as the principal quantum number n

16



increases, the values of several physical quantities become exaggeratively huge in com-
parison to the ones of the fundamental states. This confers to the Rydberg atoms very
unusual properties which are at the origin of the interest of the Rydberg atoms Physics.
Rydberg properties have been already reported in many references, see for example
[Gallagher, 1994].

Size of Rydberg atoms

First of all, the size of the Rydberg atoms, determined by the spatial expansion of the
electronic wave-functions, become very rapidly huge as n increases. A good estimation
of the average distance between the nucleus and the Rydberg electron, R̄, is given in
atomic units by

R̄ = 2n2 (1.6)

For large n, the size of Rydberg atoms is just enormous in comparison to normal
atoms. Whereas heavy alkali atoms in their fundamental state have a size of the order
of 1nm, the size of a Rydberg atom in the n = 100 state is of the order of 1µm.

Radiative lifetimes

An non very intuitive property of Rydberg atoms is that they have a very long radiative
lifetime. A very simplified formula to estimate the lifetime of Rydberg states due to the
vacuum radiation τvac is given by

τvac ≈ n3(l +
1

2
)210−10s (1.7)

The accuracy of this formula is of the order of 10% and a much more accurate
evaluation can be found in the reference [Horbatsch et al., 2005].
In addition, it is important for Rydberg states to take into account the effects of the
blackbody radiation. A very precise study of this question is reported in [Farley and
Wing, 1981] and more recently in [Beterov et al., 2009]. For a temperature T , a rough
estimation of the additionnal decay rate ΓBBR due to blackbody radiation is given by

ΓBBR ≈ 2.107T (K)

300K
n−2s−1 (1.8)

Even in presence of blackbody radiation, Rydberg lifetimes are very long. For
n = 100 it is of the order of 100µs which is huge in comparison for example with
the lifetime of the cesium first excited state which is around 30ns [Steck, 2003].
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On the experimental point of view, this very long lifetime is one of the very nice advan-
tage of Rydberg atoms. Indeed, in addition to the possibility to act on Rydberg atoms
during this time, Rydberg states can very often be considered as infinitively long lived
states in the modeling of the experiments.

Electric dipole moment

Another quantity which takes exaggerated values in the case of Rydberg states is the
instantaneous electric dipole moment. Like the size of the Rydberg atoms its value in
atomic units is n2. The atomic unit for electric dipole moment being

ea0 = 8.48.10−30 C.m = 2.54 Debye (1.9)

The instantaneous electric dipole moments of Rydberg atoms can take values ex-
ceeding 10 000 Debye, to be compared with the electric dipole moment of the water
molecule which is 1.83 Debye.
This notion of instantaneous electric dipole moment corresponds to a classical vision of
the atom. In the quantum treatment, we have to use the transition dipole matrix whom
relevant coefficient values follow the same scaling that the instantaneous electric dipole
moment. It is the big value of the transition dipole matrix which is at the origin of the
strong interactions between Rydberg atoms.

Sensitivity to electric field

The last property of Rydberg atoms that we will present here is their extreme sensitivity
to an external electric field.
The case of the Hydrogen atom in presence of a dc electric field is well known to have
analytical solution [Silverstone, 1978], the effect of the electric field is to lift linearly
the l-degeneracy of the n manifold. The case of alkali atoms present a similar behavior,
with particularities for the low l states for which the degeneracy is already lifted in zero-
field due to the quantum defects.
The standard way to calculate the external electric field effect (Stark effect), was first
presented in this reference [Zimmerman et al., 1979], it is also treated in the Chapter
2 of this thesis. We show in the fig 1.4 a typical Stark diagram, where Rydberg states
energies are plotted versus the electric field.

Moreover, the presence of an electric field stronger than a certain value leads to the
ionization of the Rydberg atoms. A good approximation of the field at which a non-
hydrogenic Rydberg atom is ionized Ei is given by the so-called classical ionization
limit [Gallagher, 1994]
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Figure 1.4: Stark diagram of cesium around n = 15, from [Zimmerman et al., 1979].
A tiny mistake has been done in this diagram and the level above the manifold are 18dj
and 19pj

Ei =
1

16n4
(1.10)

Bellow the ionization field, the effect of the electric field is to modify the Rydberg
energies as we see on the fig 1.4. The associated eigenstates are also modified, there is a
mixing of the zero-field basis states in presence of electric field. One of the consequence
of this mixing is to lift the selection rules relative to laser excitation. Another very inter-
esting consequence in the frame of Rydberg-Rydberg interaction is that, in presence of
electric field, Rydberg atoms acquire a permanent electric dipole moment. This can be
quantified by the polarizability. In the regime of weak electric field, the polarizability
of a Rydberg state scales as n7 [Gallagher, 1994].
On the experimental point of view, the behavior of Rydberg atoms in electric field offers
very nice advantages, it allows first to control the Rydberg energies by tuning the elec-
tric field applied to the atoms, secondly as we will see in the following section it allows
to control the interactions between Rydberg atoms, finally it allows to ionize them. The
remarkable point being the very week values (and then easily experimentally control-
lable) of the electric field involved in this processes, for example the required field to
reach the ionization is of the order of 10V.cm−1 for n = 100.
The ability to ionize Rydberg atoms with relatively small electric field provides a very
widely used way to detect them in cold atoms experiments, using the so-called field-
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ionization detection. The principle of this method is to ionize the Rydberg atoms and
use a charged particles detector to detect the created ions or electrons. The detection
of charged particles being much more convenient than neutral one, this method allows
interesting features as single particles detection or states selectivity.
The extreme sensitivity of Rydberg atoms to electric field could finally be exploited for
the realization of high precision electric field sensors [Osterwalder and Merkt, 1999].

Rydberg properties and scaling law

As we can see in the precedent examples, physical quantities often follow scaling law
parametrized by the principal quantum number n. We summarized them in the following
table.

Quantities scaling
Binding energy n−2

Energy difference between two n-manifold n−3

Fine-structure splitting n−3

Size n2

Geometrical cross section n4

Lifetime (for low l states) n3

Electric dipole moment n2

Polarizability n7

Classical ionization limit n−4

Table 1.3: Rydberg scaling law

1.3 Interaction between Rydberg atoms

One of the main interest of the Rydberg atoms Physics comes from the fact that Rydberg
atoms can interact with each other. In a sense, Rydberg atoms are so sensitive to exter-
nal perturbations that they can feel the presence of other Rydberg atoms even at large
distances. Interactions between Rydberg atoms have the particularity to be very flex-
ible, in term of strength, sign (we can have attractive or repulsive interactions), radial
and angular dependencies. In addition, we can experimentally control those parame-
ters essentially with the choice of the Rydberg state and the use of electric fields. This
makes interacting Rydberg gases a very intense research field, experimentally as well as
theoretically.
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1.3.1 Electrostatic multipolar interactions

The nature of the interactions between Rydberg atoms is electrostatic. We can charac-
terize the interaction between two Rydberg atoms in considering the Rydberg atoms as
two electrostatic distributions.
A very useful description of an electrostatic distribution is the multipolar expansion.
It consists in writing the distribution as a series of terms, the multipolar moments, for
which we can calculate the radiated field. The firsts terms of the series are charge,
dipole, quadrupole,... The interaction between two charge distributions can then be
written as a series of multipolar interactions which are the interactions between two
multipolar moments (one of each distributions). The first terms of the multipolar inter-
actions series being, charge-charge, charge-dipole, dipole-dipole, charge-quadrupole,
dipole-quadrupole,...
We see here that the hardly computable interaction between two random distributions
is split into two main task, the computation of the multipolar moments of each distri-
butions and the calculation of the interaction between multipolar moments, the interest
being that the last can be done once and for all. In addition, all the power of the multi-
polar description comes from the fact that the different terms of the series are classified
in term of strength of interaction and in practice only the few first terms are relevant in
the total interaction.
A very important point is that the multipolar expansion is only valid in the case of two
well spatially separated distributions.
This development was first done in the frame of classical electrostatic. However, it can
be easily translated in quantum mechanics by the definition of the electrical multipolar
operators (see Chapter 2).
In the case of Rydberg atoms, which are neutral particles, the most important term is the
dipole-dipole term. Interaction between Rydberg atoms can be comfortably considered
as dipole-dipole type, quadrupolar terms being much smaller [Singer et al., 2005].

1.3.2 Dipole-Dipole interaction between two Rydberg atoms

Classical dipole-dipole interaction

To start with dipole-dipole interaction, we present in this section results obtained by
classical calculations. Those results can be transfered in quantum mechanics. In addi-
tion, it allow to introduce quite simply the so-called retardated dipole-dipole interaction.
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Instantaneous dipole-dipole interaction

An electrostatic dipole, defined by its dipole moment ~µ, situated at the origin generates
an electric field at the position ~R = R~n given in SI units by

~E(~R) =
1

4πε0

3(~n.~µ)~n− ~µ
R3

(1.11)

The dipole-dipole interaction, Vdd, between two classical dipoles a and b separated
by a distance R along the direction of ~n is then

Vdd = − ~Ea. ~µb = − ~Eb. ~µa =
1

4πε0

~µa. ~µb − 3( ~µa.~n)(~µb.~n)

R3
(1.12)

We see that the dipole-dipole interaction presents a strong angular dependency, in
function of the relative angle between each dipole moments and the axis between the
dipoles, the interaction can either be attractive or repulsive (or null). In presence of an
external electric field ~F , stronger than the sum of the fields generate by the dipoles, those
latter are aligned along the direction of ~F . In this case, defining the angle θ between ~n
and the field direction (cos θ = ~n. ~F/‖~F‖) we have

Vdd =
µaµb

4πε0R3
(1− 3 cos2 θ) (1.13)

In this formula, the radial dependence appears a bit more clearly. We have a max-
imally attractive interaction for the so-called head-to-tail configuration (←←) and a
maximally repulsive one for the so-called side-to-side configuration (↑↑). The interac-

tion is null for the so-called magic angle (θ = arccos(
√

1
3
) = 54.74˚).

Retardated dipole-dipole interaction

Considering now an oscillating dipole with a dipole moment ~µ exp(−iωt) in complex
representation. This dipole radiates an electromagnetic field at the position ~R = R~n

whom electric part is ~E(t) = ~E(~R) exp(−iωt) with

~E(~R) =
exp(ikR)

4πε0

(
(k2(~n× ~µ)× ~n)

1

R
+ (3(~n.~µ)~n− ~µ)

(
1

R3
− ik

R2

))
(1.14)

Where k = ω/c is the wavenumber of the emitted light.

Taking two of those oscillating dipoles a and b, having opposite oscillation frequency,
separated by a distance R along the direction of ~n. They interact via the so-called retar-
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dated potential with an interaction energy VRdd = Re[− ~Ea(~R). ~µb] = Re[− ~Eb(~R). ~µa]

given by

VRdd =
1

4πε0

(
( ~µa. ~µb − 3( ~µa.~n)(~µb.~n))

(
cos(kR)

R3
+
ksin(kR)

R2

)

+ ( ~µa. ~µb − ( ~µa.~n)(~µb.~n))
k2cos(kR)

R

)
(1.15)

At short distances, R < λ/2π, λ being the wavelength of the emitted light by the
dipoles, this energy is essentially the dipole-dipole interaction energy of the equation
1.12. At large distance, R > λ, only the term in 1/R is important.

Atomic dipole moment and transition dipole matrix

The equations 1.12 and 1.15 correspond to the case of classical dipoles, to obtain their
quantum mechanical equivalents, we replace the vectorial dipole moments by operators.
We define in this section the atomic dipole operator in the case of Rydberg atoms.
As already mentioned, we can consider that a Rydberg atom is formed by a core whose
total electric charge is +e and a Rydberg electron with an electric charge −e, the dipole
operator, µ̂, of a Rydberg atom is then totally determined by the position of the Rydberg
electron around the core, ie, the Rydberg wave function.
We define dipole operator of the Rydberg atom as

µ̂ = er̂ (1.16)

Where r̂ is the position operator of the Rydberg electron. The dipole operator is an
odd operator.

It is very useful to express the dipole operator in the zero-field Rydberg states basis,
this gives the so-called transition dipole matrix. The transition dipole matrix elements
are

~µrr′ = 〈 r |µ̂| r′〉 (1.17)

Where |r〉 = |n, l, j,mj〉 and |r′〉 =
∣∣n′, l′, j′,m′j〉 are two zero-field Rydberg states.

~µrr′ is often called the dipole moment of the transition |r〉 ↔ |r′〉.
A formal expression of the dipole operator using the transition matrix is
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µ̂ =
∑
r,r′

~µrr′ |r〉 〈r′| (1.18)

The classical value of the dipole moment, ~µΨ, of a Rydberg atom in a state |Ψ〉
which is not necessarily a zero-field state, is given by the expectation value of µ̂ in the
state |Ψ〉.

~µΨ = 〈µ̂〉Ψ = 〈Ψ |µ̂|Ψ〉 (1.19)

Due to the selection rules on the angular part of the zero-field Rydberg wave func-
tions, many terms of the transition matrix are null. In particular, they are null on the
diagonal, ~µrr = ~0, meaning that all the zero-field Rydberg states have no permanent
electric dipole. In fact, only the transition dipole matrix elements between two Rydberg
states for which we have l′ = ±l and m′j = mj or m′j = mj ± 1 are non null.

The calculation of the transition dipole matrix is presented in the Chapter 2 of this
manuscript.

Hamiltonian of the dipole-dipole interaction

The Hamiltonian representing the dipole-dipole interaction between two atoms a and b
separated by a distance R along the direction of ~n is given by the classical expression
of the dipole-dipole interaction given by the equation 1.12 replacing the classical dipole
moments by the dipole operator of each atoms.

Ĥdd =
1

4πε0

µ̂a.µ̂b − 3(µ̂a.~n)(µ̂b.~n)

R3
(1.20)

An important point is that we consider here that the two Rydberg atoms are well
spatially separated, i.e., there is no spatial overlap between the wave functions. Indeed,
we do not consider electronic exchange interaction. We can here do the link with the
validity condition of the multipolar expansion where the two distributions have to be
well spatially separated. Typically, The two Rydberg atoms have to be separated by
more than ≈ 4n2a0 which is known as the LeRoy radius.

Interestingly, this Hamiltonian, obtained here by analogy with the classical case can
be found starting directly from the electrostatic interaction Hamiltonian between two
atoms, with the already mentioned approximation for Rydberg atoms, i.e., the Rydberg
core is consider as a punctual charge +e. Considering two atoms a (core A, electron 1)
and b (core B, electron 2) separated by ~RAB = R~n, the interaction Hamiltonian is in SI
units
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Ĥab =
1

4πε0

(
e2

R
− e2

r̂A2

− e2

r̂B1

+
e2

r̂12

)
(1.21)

Here we write this Hamiltonian in the Born approximation leading to consider that
the distance R between the two atoms is a parameter of the problem.
In writing r̂A2 = ~RAB + r̂B2 and similar forms for r̂B1 and r̂12, with the use of the
vectorial expansion (‖~R + ~r‖2)−1/2 = 1

R

(
1− ~r.~n

R
+ 3(~r.~n)2−r2

2R2

)
, the leading term for

large R of the Hamiltonian is given by

Ĥab =
e2

4πε0

r̂A1.r̂B2 − 3(r̂A1.~n)(r̂B2.~n)

R3
=

1

4πε0

µ̂a.µ̂b − 3(µ̂a.~n)(µ̂b.~n)

R3
= Ĥdd

(1.22)
An expression of Ĥdd is often given in the particular case where ~n is along the

quantification axis, called (Oz)

Ĥdd =
1

4πε0R3
(µ̂a.µ̂b − 3µ̂za.µ̂zb) (1.23)

Where µ̂z is the dipole operator along (Oz).

The Hamiltonian Ĥdd acts in the two-atoms space. In the most general case, considering
a pair of two-atoms states |ra, r′b〉 and |r′′a, r′′′b 〉, a and b being the two atoms separated
by R~n and |r〉, |r′〉, |r′′〉 and |r′′〉 4 Rydberg states. The dipole-dipole coupling between
those two states is

〈ra, r′b| Ĥdd |r′′a, r′′′b 〉 =
1

4πε0

~µrr′′ .~µr′r′′′ − 3(~µrr′′ .~n)(~µr′r′′′ .~n)

R3
(1.24)

Where ~µrr′′ = 〈 r |µ̂| r′′〉 and ~µr′r′′′ = 〈 r′ |µ̂| r′′′〉

Stark Hamiltonian

As mentioned in the section 1.2.4, Rydberg atoms are very sensitive to the presence of
an external electric field. Especially, the presence of an electric field gives them a per-
manent electric dipole moment.
The effect of an external electric field or Stark effect is given by the following Hamilto-
nian, we consider here a classical field, ~F

ĤF = −µ̂. ~F (1.25)

Here again we see the analogy between the classical energy of an electric dipole ~µ

25



in an electric field ~F given by −~µ. ~F .
The dipole coupling due to the Stark effect between two Rydberg states |r〉 and |r′〉

is given by

〈 r|ĤF |r′〉 = −~µrr′ . ~F (1.26)

The Stark effect being also determined by the transition dipole matrix, we have here
again the selection rules imposed by the angular part of the Rydberg wave functions.
Consequently, a Rydberg state is not shift by himself by the Stark effect but through the
coupling with the other Rydberg states.
The diagonalization of the Stark Hamiltonian for a given electric field gives new eigen-
states with new energies. To get an idea of the Stark effect on Rydberg atoms, it is
interesting to represent the Rydberg energies in function of the strength of the electric
field, this is what we call a Stark diagram as the one shown in the fig 1.4.

Full calculation vs model cases of Rydberg-Rydberg interaction

In principle, the calculation of interactions between two Rydberg atoms (as well as the
Stark effect) with their associated potential curves where energies are plotted in function
of the distance between the two Rydberg atoms, necessitates to take into account the full
basis of the two-atoms Rydberg states (one atom basis for the Stark effect). This is what
is done in calculations presented in the Chapter 2 of this manuscript.
However, it is often possible to consider two-level models as simplified treatments.
Those model cases, presented in the next sections, allow to get the main physical ideas
of Rydberg-Rydberg interactions and fully take part to the Rydberg atoms literature.
The effects of the long-range dipole-dipole interactions between Rydberg atoms have
been reviewed in [Gallagher and Pillet, 2008].

Dipole-Dipole interaction in electric field

The most simple case of interaction is when Rydberg atoms have a permanent dipole
moment, so, in presence of electric field. Indeed, in electric field, the mixing of the
zero-field Rydberg states by the Stark effect leads to new eigenstates which possess a
permanent dipole moment.

In the case of Rydberg states with non-null quantum defect (l = s, p, d), which are
the states concretely excited in experiments, and for a relatively small electric field, ~F ,
we can often consider that a given state |r〉 is coupled under the effect of the electric
field with only one other state |r′〉 being the closest state in energy with allowed dipole
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transition. As illustrative example, in the cesium, the states |r〉 = |n, p〉 are mainly
coupled with the states |r′〉 = |n− 1, d〉.

In this case, the total Hamiltonian, including the Stark one is represented in the two
states basis |r〉 , |r′〉 by the following matrix(

Er −µrr′F
−µrr′F Er′

)
(1.27)

Where Er and Er′ = Er + δrr′ are the energies of |r〉 and |r′〉 in absence of electric
field and µrr′ the transition dipole matrix element 〈 r |µ̂| r′〉.
When diagonalizing this Hamiltonian, we obtain new eigenstates |r(~F )〉 and |r′(~F )〉.
Looking at the state |r(~F )〉, we have

|r(~F )〉 = cos(
Θ

2
) |r〉 − sin(

Θ

2
) |r′〉 (1.28)

Where Θ is a scale parameter defined by tanΘ =
µrr′F
δrr′/2

.

In addition to have a slightly different energy in comparison to |r〉, Er(~F ) = Er +
δrr′

2
(1−

√
1 + tan(Θ)2), |r(~F )〉 possesses a classical permanent dipole moment, ~µr(~F )

aligned along the direction of ~F with the value

µr(F ) = µrr′sinΘ (1.29)

Consequently, two Rydberg atoms separated by R~n excited in electric field in the
state |r(~F )〉 interact as classical dipoles with a dipole-dipole interaction energy given
by the equation 1.13 where µa = µb = µr(F ) = µrr′sinΘ

Vdd =
µ2
rr′sin

2Θ

4πε0R3
(1− 3cos2θ) (1.30)

Experimentally, the application of a small electric field is a very simple way to con-
trol the interaction strength between Rydberg atoms. The other one being to change the
principal quantum number n, with a scaling as n4, coming from the n2 scaling of the
transition dipole matrix.

Migration reaction and Förster resonance

In absence of electric field, Rydberg atoms have no permanent dipole moments. Con-
sidering two atoms a and b separated by R~n in the two-atoms state |ra, r′b〉, this state
does not possess by itself an interaction energy due to the dipole-dipole Hamiltonian
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Figure 1.5: dipole-dipole interaction in presence of an external electric field

Ĥdd given in the equation 1.20. We have to consider the dipole-dipole coupling with
other two-atoms states to calculate the Rydberg-Rydberg interaction between the two
atoms.
For another given two-atoms state |r′′a, r′′′b 〉, this coupling is 〈ra, r′b| Ĥdd |r′′a, r′′′b 〉 whose
expression is given by equation 1.24.

A very interesting situation is when there is a state |r′′a, r′′′b 〉 coupled via Ĥdd to |ra, r′b〉
and having the same energy, i.e., Er + Er′ = Er′′ + Er′′′ = ER(∞).
In this case, we have a mutual exchange of excitation between the two atoms due to
dipole-dipole coupling which can be viewed as a resonant reaction r + r′ ↔ r′′ + r′′′.
The total Hamiltonian, including Ĥdd, is written in the two states basis (|ra, r′b〉 , |r′′a, r′′′b 〉)
as (

ER(∞) V

V † ER(∞)

)
(1.31)

Where V = 〈ra, r′b| Ĥdd |r′′a, r′′′b 〉.

Before calculating the new eigenstates and their shift in energy in comparison to the
non interacting case, we will use this case of two interacting resonant dipoles to intro-
duce "semi-classically" the retardated potential.
Due to the dipole-dipole coupling V , the two-atoms system is doing Rabi oscillations
between the states |ra, r′b〉 and |r′′a, r′′′b 〉 with a frequency 2π V~ . Looking at each atoms
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separately, at every time, they are both doing a transition between two quantum states,
|r〉 → |r′′〉 for the atom a and |r′〉 → |r′′′〉 for the atom b. Consequently, they can be
considered as classical oscillating electric dipoles ~µexp(−iωt) where ~µ is the transition
dipole matrix element of the transition and ~ω the energy of the transition. For instance
~µa = ~µrr′′ = 〈 r |µ̂| r′′〉 and ~ωa = Er−Er′′ for the atom a and ~µb = ~µr′r′′′ = 〈 r′ |µ̂| r′′′〉
and ~ωb = −~ωa = Er′−Er′′′ . This situation is exactly the one leading to the retardated
potential presented in the section 1.3.2.
In such a situation, the two Rydberg atoms a and b have an interaction energy VRdd,
given by the equation 1.15 where we have to replace the classical dipole moments by
the appropriated transition dipole matrix elements and k by ωa

c
.

We see with this ideal case of two atoms with a perfectly resonant coupling that the
dipole-dipole Hamiltonian Ĥdd should be replaced by the retardated dipole-dipole Hamil-
tonian (equivalent to the equation 1.15 replacing vectors by operators) when dipole-
dipole interaction comes from the coupling between different two-atoms states. This
corresponds to the fact that the dipole moment of a transition is not a permanent dipole
given by ~µrr′ = 〈 r |µ̂| r′〉 but an oscillating dipole given by ~µrr′exp(−iωrr′t).
However, the interaction energy VRdd given in the equation 1.15 is valid only in the case
of two resonant dipoles with exactly opposite oscillation frequencies. A derivation of the
retardated Hamiltonian in the general case would necessitate tedious quantum electro-
dynamic calculations (a derivation of the retardated dipole-dipole quantum Hamiltonian
for the resonant case is for example given in the appendix of the reference [Comparat
and Pillet, 2010]).
Interestingly, for interatomic distances R shorter than ω

c
where ω is the frequency of

the atomic transition, the equation 1.15 is equivalent to the classical dipole-dipole in-
teration 1.12. For transition between close Rydberg states, ω

c
is a very large distance,

consequently, we use in all the following Ĥdd as the Hamiltonian of the dipole-dipole
interaction and neglect the retardation effects.

The diagonalization of the matrix 1.31 leads to two new eigenstates 1√
2
(|ra, r′b〉+|r′′a, r′′′b 〉)

and 1√
2
(|ra, r′b〉 − |r′′a, r′′′b 〉). Their energies are given by

E± = ER(∞) ± Edd (1.32)

Where Edd = V = 〈ra, r′b| Ĥdd |r′′a, r′′′b 〉. We see here that, in the case of resonant
exchange of excitation, the two-atoms states are shifted in comparison with the non
interacting case by the quantity Edd with a characteristic radial dependency in 1

R3 . We
say that the energy shift due to the dipole-dipole interaction in the case of resonant
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reaction is of the form C3

R3 where the C3 coefficient is given by

C3 = ~µrr′′ .~µr′r′′′ (1.33)

The scaling in n2 of the transition dipole matrix gives a scaling of C3 in n4.
The resonant exchange of excitation is finally a very nice way to create entanglement
between two Rydberg atoms.

Migration reaction

One excitation exchange reaction between Rydberg atoms is always exactly resonant. It
is the reaction |ra, r′b〉 ↔ |r′a, rb〉 where the two atoms simply exchange their Rydberg
states, this reaction will appears if |r〉 → |r′〉 has a non null transition dipole matrix
element ~µrr′ . It is the case, for example of the reaction |ns, np〉 ↔ |np, ns〉.
Although this reaction is always resonant, it necessitates nevertheless to prepare exper-
imentally the atoms in two different Rydberg states.
An interesting situation would be to have one atom in a state |r〉 surrounded by atoms in
another state |r′〉, this would lead to a diffusion of the |r〉 excitation [Mourachko et al.,
2004] with possible analogy with diffusion of excitons [Tokihiro et al., 1995; Mülken
et al., 2007] or spin glasses systems [Castellani and Cavagna, 2005]. It could be also a
way to implement experimentally a quantum random walk [Côté et al., 2006].
In this case, the dynamics of the diffusion plays a very important role and the use of the
retardated Hamiltonian is desirable.

Förster resonance

We are especially interested in the reaction of the form |ra, rb〉 ↔ |r′a, r′′b 〉. The initial
state being formed by two atoms in the same Rydberg state, this situation has a stronger
link than the Migration reaction to most of the Rydberg experiments.
A priori, the energy conservation condition, 2Er = Er′ +Er′′ is hardly filled. However,
it is possible to bring this reaction exactly at resonance if an experimental parameter
allows to tune the Rydberg state energies. It is the case with the application of a very
small electric field. We are not interested here in the creation of permanent dipole mo-
ment due to the Stark effect but only at the shift in energy of the Rydberg states. As an
example, in cesium, by stark effect, the |n, p〉 energy level can be put midway between
the energy of the |n, s〉 and |n+ 1, s〉 states.
Interest of Förster resonance is first that it generates strong interactions between Ryd-
berg atoms of the form C3

R3 . Secondly, starting from a gas where we excite one Rydberg
state, new Rydberg states will be created by exchange of excitation due to the Förster
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resonance. This last point is a very useful way to find and optimize Förster resonances
experimentally, we have to use in this case a state-selective detection. The two atoms of
the pair are finally entangled when they interact trough a Förster resonance, the eigen-
states being 1√

2
(|ra, rb〉+ |r′a, r′′b 〉) and 1√

2
(|ra, rb〉 − |r′a, r′′b 〉).

The name of Förster resonance has been given by Thad Walker and Mark Saffman in
[Walker and Saffman, 2005] by analogy with the FRET (Förster Resonant Energy Trans-
fer). The FRET is a process present in biology [Förtser, 1948] and occurs when the
dipolar interaction between two molecules allows an energy transfer from one molecule
to the other, becoming then fluorescent.

Figure 1.6: Rydberg-Rydberg interaction in the case of Förster resonance

Van-der-Waals interaction

The Van-der-Waals interaction corresponds to the case where there is no external electric
field and no resonant reaction. As in the case of Förster resonance, we are interested to
calculate the interaction energy of a pair of atoms a and b separated by R~n in the same
Rydberg state, i.e., |ra, rb〉. The interaction energy of the pair of atoms is determined by
the coupling with all the other two-atoms states, however, in order to treat the problem
with a two level description, we will consider the coupling with only one other state
|r′′a, r′′′b 〉) being the closest state in energy with allowed dipole transition.
In this case, the total Hamiltonian is written in the two states basis (|ra, rb〉 , |r′a, r′′b 〉) as(

ER(∞) V

V † ER(∞) + δE

)
(1.34)

31



Where V = 〈ra, rb| Ĥdd |r′a, r′′b 〉,ER(∞) = 2Er and δE is the so-called Förster energy
mismatch between the two states, δE = Er′ + Er′′ − 2Er.
The diagonalization of this Hamiltonian leads to two new eigenstates |̃ra, rb〉 and ˜|r′a, r′′b 〉.
Looking at |̃ra, rb〉, its energy is given by ER(∞) + EV dW with

EV dW =
δE
2

+

√(
δE
2

)2

+ V V † (1.35)

and its component on the states |ra, rb〉 and |r′a, r′′b 〉 are in the ratio V
EV dW−δE

.

In the limit of large distance, i.e., when V is much smaller than δE , we obtain

EV dW =
V V †

δE
(1.36)

This result at large distance is exactly the one obtained by the second order pertur-
bation theory.

As V has a characteristic radial dependency scaling as 1
R3 , the energy shift EV dW

scales as 1
R6 . We say that the energy shift due to the dipole-dipole interaction in absence

of resonant reaction and for large distance is of the form C6

R6 where the C6 coefficient or
Van-der-Waals coefficient is given by

C6 =
(~µrr′ .~µrr′′)

2

δE
=
C2

3

δE
(1.37)

The scaling in n2 of the transition dipole matrix together with the scaling in n−3 of
energy difference between close Rydberg states give a scaling of the C6 coefficient in
n11

Limitation of those two-levels models

This treatment of the dipole-dipole interaction using two-levels models is very interest-
ing to extract the main physical ideas of the dipole-dipole interaction with namely the
radial dependencies and the scaling laws in function of n. However, several reasons
impose to go beyond those two-levels models.

In the case of Van-der-Waals interaction, we can first consider that there is not only
one other state coupled with the initial one. A possible treatment is to use the second
order perturbation theory, the total Van-der-Waals shift of one state is then given by the
sum of the two-levels Van-der-Waals shifts relative to all the other states. This is what
is done in reference [Singer et al., 2005].
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Figure 1.7: Rydberg-Rydberg interaction in the Van-der-Waals case

Another limitation of this two-levels models is due to the zero-field Rydberg states
degeneracy relative to the quantum number mj , called Zeeman degeneracy. The calcu-
lation of dipole-dipole interaction should be done, at least, inside each subspace of states
of the form |ra, rb〉 = |(n, l, j)a, (n, l, j)b〉 coupled with |r′a, r′′b 〉 = |(n′, l′, j′)a, (n′′, l′′, j′′)b〉.
This was done in the reference [Walker and Saffman, 2008]. It appears that dipole-
dipole interaction can take a very wide spectrum of values in function of the different
possible combinations of the mj of the two atoms. The new eigenstates are, after diago-
nalization, superpositions of natural

∣∣(n, l, j,mj)a, (n, l, j,m
′
j)b
〉

states (see chapter 2),
this explains why results obtained in [Singer et al., 2005] are not completely sufficient
to describe the Rydberg-Rydberg interaction.

Another interesting feature of Rydberg-Rydberg interaction which is non visible with
the two-levels models is the existence of molecular potential well. It appears that a par-
ticular two-atoms Rydberg state can be attractive at long distance and becomes repulsive
at shorter one due to the successive interactions with two other states. This can lead to
the formation of Rydberg-ground state molecules as predicted in [Greene et al., 2000]
and observed in [Bendkowsky et al., 2009] as well as Rydberg-Rydberg molecules as
predicted in [Boisseau et al., 2002; Farooqi et al., 2003] and observed in [Overstreet
et al., 2009].

Finally, a strong effect of the dense Rydberg spectrum appears for very small inter-
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atomic distance (few µm). At such distances the interactions are so strong that a huge
number of pair states are coupled together. The eigenstates of a pair of interacting
Rydberg atoms are superpositions of many non-interacting ones and their energies are
almost chaotic. The associated potential, the so-called Spaghetti curves, can be deter-
mined only numerically.

All those interesting features of the Rydberg-Rydberg interaction are presented in the
chapter 2 of this manuscript.

1.3.3 Few-body effects

We have, up to know, considered the Rydberg-Rydberg interaction between only two
atoms. The treatment of N atoms possessing each one NR Rydberg states has a com-
plexity growing in (NR)N . If very interesting phenomenon can arise from the interac-
tions between few Rydberg atoms, general calculations of already the 3-body interac-
tions, has not been performed yet. In addition to the huge number of states involved in
the problem, one obvious complication which nevertheless is quite problematic comes
from the fact that we need 3 coordinates to define the relative position between 3 Ryd-
berg atoms (for example 2 distances and 1 angle) whereas only 1 distance is required in
the case of two atoms. Potential curves of the 2-body problem are replaced by potential
hyper-surfaces at 3 dimensions.
Nevertheless, theoretical analysis of 3-body Rydberg interactions has been performed in
some specific situations as reported for example in [Pohl and Berman, 2009; Cano and
Fortágh, 2012]. In [Han, 2010] 3-body interactions calculations and successfull com-
parison with experimental observations are reported. In [Younge et al., 2009] an exper-
imental observation is reported together with theoretical analysis showing that taking
into account several-body interactions is needed (the precise number is not reported).
In the frame of this thesis, a demonstration of a coherent 4-body process has been real-
ized [Gurian et al., 2012], this is the subject of the chapter 3 of this manuscript.

1.3.4 Many-body effects

The case of an ensemble of many interacting Rydberg atoms is even more complex.
Nevertheless, the presence of many-body atomic correlation, the possible analogies with
solid state Physics and the possible application in quantum information makes this topic
very attractive.
Theoretically, a possibility is to treat the problem with statistical Physics approaches.
However, since quantum correlations play a central role in such many-body interacting
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system, the development of sophisticated theoretical models including the full dynamics
and the description of quantum correlations is currently an intense field of research.
On the experimental side, many-body effects in Rydberg gases has been observed now
for more than ten years [Anderson et al., 1998; Mourachko et al., 1998]. Because the
main (if not the only) tool of modern atomic Physic experiment is the use of electromag-
netic field, many-body Rydberg interactions effects are largely studied via the coupling
of an atomic ensemble with the electromagnetic field. In this frame, one central phenom-
ena focused the attention of experimental and theoretical studies, the dipole blockade.
The Dipole blockade is the subject of the next section.

1.4 Dipole blockade

The dipole blockade phenomenon [Jaksch et al., 2000; Lukin et al., 2001] and its numer-
ous exciting applications is the subject of several articles, see for example the reviews
[Comparat and Pillet, 2010; Saffman et al., 2010], most of the applications are in the
context of quantum computation and quantum simulation. We will present the main dis-
coveries of this last ten years on dipole blockade Physics all along this section as well
as in the section 1.5 which is focused on the possible applications.

1.4.1 Principle of the dipole blockade

The Dipole blockade phenomenon is directly linked to the presence of interactions be-
tween Rydberg atoms. For simplicity reasons, we first present the dipole blockade phe-
nomenon without paying too much attention to the detail of the Rydberg-Rydberg in-
teraction, we just assume that two Rydberg atoms in a state |r〉 separated by a distance
R has an interaction energy Vr(R). Doing this we assume that the Rydberg-Rydberg
interaction is isotropic, the strong angular dependency of the dipole-dipole interaction
is then forgotten, although it has obviously an effect when we consider 3 dimensional
ensemble.
The dipole blockade phenomena appears in the situation where, in an atomic sample,
atoms in the ground state |g〉 are coupled with a laser field resonant with the transition
|g〉 → |r〉 to a Rydberg state. The laser field has thus a frequency ωL equal to the
frequency ωgr of the transition between the ground state and the Rydberg state for an
isolated atom in zero-field. The effect of the laser field on a isolated atoms is described
via the Rabi frequency, Ω = 〈g| − ~µ. ~E|r〉.
The principle of the dipole blockade is that, due to the shift in energy Vr(R) induced by
the interaction between Rydberg atoms, the firstly created Rydberg excitations bring the
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laser out of resonance for further ones which are then blockaded. The dipole blockade
mainly appears as a self-limitation of the Rydberg excitations.
We will first present the situation where Rydberg-Rydberg interactions allow the pres-
ence of only one Rydberg excitation. We call this situation a fully blockaded ensemble.
In this frame, we are going to treat two different cases, the conditional excitation and
the collective excitation. Whereas all the atoms of the atomic ensemble are excited to-
gether by the same laser field in the case of collective excitations, the atoms are excited
individually (selectively) in the case of conditional excitations.

Conditional excitation

For a conditional excitation, we consider that an atom i is initially excited in the Rydberg
state, the state of the full ensemble of N atoms being then

|ri〉 = |g1, ..., gi−1, ri, gi+1, ..., gN〉 (1.38)

Considering the effect of the Rydberg-Rydberg interaction, every atom j of the sam-
ple have their Rydberg state shifted due to the presence of the Rydberg excitation of the
atom i. The shift on the atom j being Vij = V (Rij) where Rij is the distance between
atom i and atom j. A relevant quantity of the problem is the so-called blockade radius,
Rb defined as

~∆ωeff = V (Rb) (1.39)

Where ∆ωeff is the effective linewidth of the laser given by the combined effect of
the natural linewidth and all the possible sources of broadening (intensity broadening,
Fourier broadening, ...)

The blockade radius corresponds physically to the minimum distance from the atom
i at which an atom j can be excited in the Rydberg state. Indeed, below Rb, the Ryd-
berg shift V (R) being bigger than the effective linewidth of the laser it prevents other
Rydberg excitations (see fig 1.8).
We can imagine, as a useful vision, that the Rydberg excited atom i is surrounded by a
so-called blockade-sphere whose radius isRb inside which no other Rydberg excitations
are possible.
For a sample whose size is smaller than Rb , i.e. a fully blockaded ensemble, the pres-
ence of a the Rydberg atom i prevents totally the possibility to excite other Rydberg
atoms. In this case, the Rydberg excitation of all the other atoms is conditioned by the
excitation of the atom i.
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Figure 1.8: Schematic vision of the conditional dipole blockade. On the left, a fully
blockaded ensemble is represented, the atom i is in the Rydberg state and prevents other
Rydberg excitation within a blockade sphere. On the right, the energy level of any
doubly excited state is schematically represented, in comparison to the non interacting
(dashed level) the level are shifted by Vij , the laser whom the spectrum is represented
by the red curve is out of resonance.

Collective excitation

In the case of collective excitation, we shine all the atoms together with the same laser
field. The atoms being indistinguishable relatively to the laser excitation, Rydberg ex-
citations are shared collectively by all the atoms.
The state, |Ψ1〉, describing the presence of 1 Rydberg excitation is in this case the sym-
metrical superposition of the states |ri〉 of the equation 1.38 where we take into account
the relative phase of the laser field (wave vector ~k) in the position ~Ri of each atoms.

|Ψ1〉 =
1√
N

N∑
i=1

e−i
~Ri.~k |ri〉 (1.40)

This phase factor is relevant when considering cooperative emission of the Rydberg
excitation but not for the blockade phenomenon itself. In the following we will thus
systematically forget the phase factor e−i ~Ri.~k. In the fig 1.9 we represent schematically
the construction of the state |Ψ1〉

In the case of a fully blockaded ensemble, the state |Ψ1〉 is the only state containing
Rydberg excitation which can be populated, all the states with two Rydberg excitations
being shifted out of resonance of the laser field due to the Rydberg-Rydberg interac-
tion. So, |Ψ1〉 together with the collective ground state |G〉 = |g1, ..., gN〉 where all the
atoms are in the ground state, form the full basis of the system. Interestingly, the Rabi
frequency, ΩN , associated to the excitation of the state |Ψ1〉 from the ground state | G〉,
differs from the case of a single isolated atom by a factor

√
N where N is the number

of atoms in the sample.
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Figure 1.9: Schematic vision of the symmetrical state |Ψ1〉

ΩN =
√
NΩ (1.41)

A fully blockaded ensemble, can be considered as a two-level system, characterized
by an enhanced coupling with the laser field. It became common to call it a Super-atom
in the Rydberg literature.

1.4.2 Non fully blockaded ensemble

Whereas the laser excitation of a fully blockaded ensemble takes formally a very simple
form, the case of an ensemble where several Rydberg excitations can be present at the
same time is much more problematic. If the corresponding equations are not very hard
to formulate, the problem is linked to the big number of quantum states that we have
to consider (2N in considering N two-level atoms) which rapidly makes the system un-
computable.
We present here the theoretical frame relative to the laser excitation of a non fully block-
aded ensemble, namely, the several approximations commonly done to express the cor-
responding Hamiltonian.

Atomic gas in the frozen approximation

We consider an atomic gas composed byN atoms. Atoms are considered to be two-level
atoms, levels being the ground state |g〉 and a Rydberg state |r〉. We note ~ωgr = Er−Eg
the transition energy between the ground state and the Rydberg state.
As already mentioned, the Rydberg-Rydberg interaction is first considered to be isotropic
and we define V (R) as the interaction energy of two atoms in the Rydberg state |r〉 sep-
arated by the distance R.
We consider that the Rydberg state |r〉 has an infinite lifetime since the typical dura-
tion of a dipole blockade experiment (≈ 1µs) is much shorter than Rydberg lifetime
(≈ 100µs).
Finally, we use the so-called frozen gas approximation, which consists in neglecting all
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the atomic motion. This is justifies in most of the cold Rydberg experiments due to
the ultra low temperature and the short duration of the experiments. In fact, in addition
to the thermal motion, the possible motion due to the force generated by the Rydberg-
Rydberg interaction should also be considered carefully to justify the frozen approxi-
mation. Also, the "thermal speed" of the atoms can play a role through the Doppler
effect.

Laser field

We consider the effect of the laser field with a semi-classical treatment. As suggested
by the introduction of the Rabi frequency Ω = 〈g| − ~µ. ~E|r〉, we treat the atom-laser
interaction with the electric dipole approximation and we use the rotative waves ap-
proximation.
The laser is supposed to be perfectly monochromatic.
We finally define the detuning of the laser relatively to the atomic resonance δ =

ωL − ωgr, with this convention, a red detuned laser has a negative detuning.

Hamiltonian of the system

The Hamiltonian of the system that we just describe, with the mentioned approximations
can be written as follows

H = −~δ
N∑
i=1

σ̂irr +
~Ω

2

N∑
i=1

[
σ̂igr + σ̂irg

]
+

N∑
i=1,j<i

Vijσ̂
i
rrσ̂

j
rr

Where we define transition and projection operators σ̂iαβ = |αi〉 〈βi| (α, β = g, r).
Here Vij = V (Rij) where Rij is the distance between atoms i and j.

In the frame of the dipole blockade, this Hamiltonian is the most simple that we
can write. Nevertheless, a lot of physical effects could be add, we mention here some
of them. To deal more properly with the large variety of Rydberg-Rydberg interaction,
we should add an angular dependency to the interaction potential Rij becoming ~Rij .
This Hamiltonian could be completed by non-Hamiltonian operators allowing to deal
with decoherence effects like finite life time of the Rydberg state and laser linewidth.
Finally, it would be very interesting to consider three-levels atoms in order to deal with
two-photon excitation or EIT effect.
All those effects appears still in the frozen gas approximation, the inclusion of the spatial
motion of the atoms could allow to consider for example dynamical collisions.
Some of the theoretical references mentioned in the following deals with this additional
effects.
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1.4.3 Theoretical treatments of the dipole blockade

The difficulty to solve the Schrödinger equation (Von Neumann if needed) associated
to the Hamiltonian 1.42 (or improved one) is the number of states involved in the sys-
tem. Brute calculations are in fact uncomputable for more than few tens of atoms and
approximations have to be done. Several theoretical approaches have been developed
and implemented in the last few years. In function of the type and the level of the ap-
proximations, the different approaches offer different clues for the understanding of the
dipole blockade Physics. We give here only the essence of those methods, details can
be found in the references mentioned in the text.

Mean-Field approaches

Mean-Field theory is a very convenient way to deal with many-body systems. Mean-
Field treatments are largely used in solid-state Physics, we find also a famous example
in atomic Physics, the Gross-Pitaevskii equation which describes Bose-Einstein Con-
densates.
The spirit of a Mean-Field theory consists in one hypothesis : all the particles behave
identically. Consequently, the goal is to describe the behavior of one particle, the effects
of the interaction between particles being taken into account via an effective potential,
a bath, in which each single particle evolves.
Formally, for an assembly ofN identical particles evolving under the effect of an Hamil-
tonian H , the equation of evolution of the density operator σ̂i of a particular particle i is
given by

i~
d

dt

[
σ̂i(t)

]
= Tr

j 6=i
[H, σ̂(t)] (1.42)

Where σ̂ is the density operator of the full system.
The Mean-Field hypothesis consists in writting

σ̂j = σ̂i, ∀j 6= i (1.43)

By this way, we obtain a self consistent equation of evolution of σ̂i. We see here
that the enormous advantage of a mean-field treatment is that the equation of evolution
of the full system is reduced to a single particle equation, independently of the size
of the system. However, in a pure Mean-Field theory (zero-order Mean-Field theory)
quantum correlation between particles are totally neglected. Consequently, Mean-Field
theory fails to describe accurately strongly interacting systems where quantum correla-
tions play a central role.
Nevertheless, it is possible to partially consider quantum correlations in the frame of
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Mean-Field theory. Those improvements use the same spirit than the Bogoliubov hier-
archy in kinetic theory, the purpose is to evaluate or calculate quantum correlations at the
level of few particles. For example as a first improvement, we can evaluate the two-body
correlation function and include it in the Mean-Field equation (first-order Mean-Field
theory). To go beyond, we can evaluate the three-body correlation function allowing to
calculate the two-body one (second-order Mean-Field theory), etc...

Figure 1.10: Phase diagram in the blockade regime, from [Weimer et al., 2008], ∆ is
the detuning of the laser, Ω the Rabi frequency. On the Ω = 0 line, a second order phase
transition appears between a paramagnetic phase (PM) and a crystalline phase (C).

In the frame of blockaded Rydberg ensembles, the implementation of first-order
Mean-Field theory has been reported several times, for example in [Tong et al., 2004;
Weimer et al., 2008]. In those references, the two-body correlation function is evaluated
from the fact that we can not excite two Rydberg atoms closer than the blockade radius
Rb (see Eq (1.39)). Thus, its value is 1 for R > Rb and 0 for R < Rb.
From this Mean-Field model, the ground state of the system has been investigated at the
thermodynamical equilibrium, in function of the "laser parameters" δ and Ω which are
experimentally easily tunable. A phase diagram of the ground state at zero temperature
is reported in the reference [Weimer et al., 2008] in the case of repulsive interactions, it
exhibits a very interesting crystalline phase as we can see in the fig 1.10.
The phase transition toward the crystalline phase is found to be a second order quantum
phase transition. Phase transition Physics has been intensively studied [Huang, 1963]
and provides very interesting results. Namely, it appears that the behavior of a macro-
scopic system close to the critical point of a second order phase transition does not
depend of the microscopic details of the interaction between particles (in our case the

41



critical point is for Ω = 0 and δ = 0). This means that the physical observables of the
system follow universal scaling laws.
In the case of blockaded Rydberg ensemble, universal scaling have been reported in the
reference [Weimer et al., 2008]. It is shown that for an atomic cloud with a dimensional-
ity d and a density n, considering a resonant excitation (δ = 0) and a Rydberg-Rydberg
interaction of the form V (R) = Cp/R

p, the system is fully characterize by a dimension-
less parameter α = ~Ω

Cpnp/d
. In the limit of α � 1, the fraction of atom excited in the

Rydberg state fR follow an universal scaling law given by

fR ∝ α
2d

2p+d (1.44)

Despites this very interesting results, the first-order Mean-Field theory for Rydberg
blockaded ensemble is still an approximated treatment and several experimental obser-
vations are not reproduced. Particularly, one problem appears when we look at the scan
of a Rydberg line, i.e., when the number of Rydberg excitation is studied in function of
the detuning of the laser δ. Whereas experimentally, the maximum number of Rydberg
excitation is found for δ = 0, the first order Mean-Field theory predict a shift of the line
proportional to the strength of the interactions between Rydberg atoms.
A second-order Mean-Field theory has been developed in the reference [Schempp et al.,
2010]. Interestingly, authors show that theoretical results give this time the right fea-
tures concerning the scan of the Rydberg line, the line being not shifted in comparison
to the non interacting case.

Rate equations

Rate equations methods consist in, starting from the full Hamiltonian, adiabatically
eliminate the coherence between quantum states. The obtained equations allow to cal-
culate the populations of the different quantum states in a very efficient way, using for
example Monte-Carlo methods. The main advantage of the rate equations is that there
are quite easy, i.e., fast, to solve numerically, providing the possibility to simulate large
systems. In addition, rate equations are very convenient for dealing with multi-level
particle and to include non-Hamiltonian effects.
In the frame of Rydberg blockaded ensemble, implementation of rate equations have
been for example reported in the following references [Ates et al., 2006, 2007b,a; Chotia
et al., 2008]. In [Ates et al., 2007a], the case of a three-level atom is treated with a
2-photon resonant excitation. Very interestingly, authors emphasis on the possible ex-
istence of an antiblockade effect due to the Autler-Townes splitting of the intermediate
state of the 2-photon excitation. This phenomenon appears when the Autler-Townes
splitting is of the same range of value than the Rydberg-Rydberg interaction. This is

42



also the subject of [Ates et al., 2007b]. In [Chotia et al., 2008], in addition to the Ry-
dberg excitation, authors have also implement the spatial dynamics of the atoms under
the effect of the forces resulting from the Rydberg-Rydberg interaction. This forces lead
to possible collisions between Rydberg atoms when interactions are attractive and can
induce ionization.

The main drawback of the rate equations is that there are a priori blind to all the ef-
fects of quantum interferences which comes from the relative phase between the quan-
tum states. This can be problematic in the frame of Rydberg blockaded ensembles as
interatomic quantum correlations are expected to play a role.

Full resolution of the Hamiltonian

A general, tedious but exact method consists in the resolution of the Schrödinger (Von
Neumann) equation associated to the full system.
Once again, this method becomes quickly uncomputable when the number of atom in-
creases. However, there is several way to be "smart" in the implementation of the equa-
tions.
In the frame of Rydberg blockaded ensemble, one consideration is very convenient, the
fact that the number of Rydberg excitation is limited means that there is plenty of states
which will be not populated and that we can remove from the Hilbert space. Indeed,
all the states which contain more than a certain number of Rydberg excitation can be
forgotten, it is also the same for all the state containing two Rydberg atoms separated
by less than the blockade radius Rb. By this way, the number of states involved in the
resolution is hardly reduce.
An other way to simplify the resolution is to consider that the atoms are spatially reg-
ularly positioned. This makes that a lot of interaction terms are equal and provides
great simplifications for the numerical resolution. Very interestingly, this situation cor-
responds experimentally to the use of optical lattices, which is more and more current
in today experiments.
The following reference report for example the results of the implementation of such a
full resolution, [Schauß et al., 2012].

Perfect blockade methods

The most sophisticated methods to model the blockaded Rydberg ensembles are devel-
oped in the frame of lattice configurations (1- or 2-dimensional).
As in the case of a complete resolution, working with spatially ordered samples allow
first to use the corresponding symmetries to simplify the problem. In regards to this
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question, ring lattices give rise to a very high degree of symmetry and are the most in-
vestigated systems. In addition to those symmetries, we can use the so-called perfect
blockade approximation. This approximation, studied in detail in [Sun and Robicheaux,
2008b], consists in model the Rydberg-Rydberg interaction potential with a step func-
tion. At large distance, the interaction is considered to be null. At short distance, the
interaction is considered to be infinite. If this approximation seems to be very rude, it
is in fact very reasonably accurate when applying to atomic ensemble trapped in opti-
cal lattices. This lies in the fact that the Rydberg-Rydberg interaction decreases very
quickly with the interatomic distance, especially in the case of Van-der-Waals interac-
tion (1/R6).
Under the perfect blockade approximations, all the configurations which can be excited
have the same interaction energy (0). The energy of those configurations is then entirely
determined by the number of Rydberg excitations that they contain, once dressed by a
laser field, it is possible to consider all the different configurations as the microcanoni-
cal states of a statistical ensemble. In this frame, it is possible to describe the long term
evolution of the system as a thermalization [Olmos et al., 2010; Olmos and Lesanovsky,
2011; Ates et al., 2012] (revivals are considered as the "very-long term" which will any-
way not occure due to decoherence effects). As highlighted in those references, this is
linked to the very interesting question : How the fully quantum and coherent evolution
of a close system leads to thermalization.
With the techniques developed in those references and before in [Olmos et al., 2009a,b;
Olmos et al., 2010] It has been possible to reach very rich descriptions of the excitation
dynamics of Rydberg atoms confined in optical lattice as well as to study the attractive
emission properties of the created many-body quantum states [Olmos and Lesanovsky,
2010; Laycock et al., 2011].

For a given geometry, it is also possible to describe the Rydberg excitations as quan-
tum "hard-object", hard-rod in 1D [Ates and Lesanovsky, 2012], hard-square in 2D [Ji
and Lesanovsky, 2011] whom the size is related to the number of lattice sites which are
blockaded due to the presence of a single Rydberg excitation. Those treatments allow
to describe the interacting Rydberg gas confined in lattice configurations as a so-called
Tonk’s gas. Another slightly different approach is reported in [Lesanovsky, 2011].

Very interestingly, in the reference [Ates et al., 2012] the possibility to describe such
systems using Fokker-Planck equations is investigated. It is shown that this method,
which has the advantage to be much less computation demanding, leads to accurate re-
sults in a large range of situations. Unfortunately, Starting with all the atoms in the
ground states takes part of the less well described situations.
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The methods using the perfect blockade approximation have the advantage to be ap-
plicable to every kind of interacting spin (2-levels) systems.

Super-Atom model

If the four first methods are quite general for the treatment of many-body systems, the
Super-Atom model has been developed specifically for Rydberg blockaded ensemble.
The Super-Atom model was first reported in the reference [Robicheaux and Hernández,
2005] and is the subject of several other ones as [Hernández and Robicheaux, 2006,
2008a; Sun and Robicheaux, 2008a; Stanojevic and Côté, 2009].
The main idea of the Super-Atom model is to insert in the description of a non-fully
blockaded ensemble the results obtained for a fully blockaded ensemble.
As described in the section 1.4.1, in the case where only one Rydberg excitation can be
present in an ensemble, the full ensemble behaves formally as a two-level atom coupled
to the laser field with a collective Rabi frequency

√
NΩ, where N is the number of

atoms of the ensemble called in this case a Super-Atom.

In the Super-Atom model, starting from a random ensemble of atoms, the Super-Atoms
are build "manually" by grouping together closest atoms. The ensemble is then decom-
posed in a certain number of Super-atoms, each one containing a certain number of
atoms defining its Rabi frequency.
Once this building step done, it is possible to write and solve the Hamiltonian corre-
sponding to this assembly of Super-Atoms, similar to 1.42 except that the Rabi fre-
quency is different for each Super-Atom and depend of the number of atoms that they
contain. If compare to the initial situation, the number of particles is now reduced, the
numerical complexity also.
A Typical result of the Super-Atom model calculation is shown on the Fig.1.11.

An important point in this development is the number of Super-Atoms which are
buildup. In practice, the number of Super-Atoms is set to the maximum number al-
lowing to compute the equations, for instance few tens. Since the atomic correlations
are slightly modified, the number of atoms that the Super-Atoms contain has also to
be limited to stay reasonably close to the initial Hamiltonian. In a sense, atomic cor-
relations are loosed at the scale of real atoms and transfered to the scale of Super-Atoms.

In addition to simplified the numerical resolution, the Super-Atom model gives a very
interesting picture of the Rydberg excitation of a blockaded Rydberg gas where spatial
correlations and fast collective Rabi frequencies are naturally present. However, the
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Figure 1.11: Results of the Super Atom Model from [Stanojevic and Côté, 2009]. We
see here a time evolution of the Rydberg excitation of 5S rubidium atom to the state
70P 3

2
with N = 70 and d = 1011 at.cm−3, those results correspond to the average over

several spatial distributions, "single shot" results exhibit more visible oscillations.

Super-Atoms picture need to be manipulate carefully when applicate to large atomic
ensemble. To be safe, Super-Atom model has to be restricted, as it is done in the asso-
ciated theoretical references, to mesoscopic atomic ensembles.

Nevertheless, the Super-Atoms picture has been largely used in the Rydberg literature to
describes excitation of large sample. In the case of large ensemble, to give an intuitive
vision to the system, we can imagine that the number of Super-Atoms is the number of
Rydberg excitations which can be present in the system (see fig 1.12).
In this case the system is composed by several Super-atoms interacting slightly together
and each super atom is doing quasi complete Rabi oscillations under the effect of the
laser. The frequency of the oscillations differs for each Super-Atom, depending the lo-
cal intensity of the laser as well as the number of atom which contains, i.e., the local
density at the position of the Super-Atom.
For a large atomic sample and inhomogeneous atomic density or laser intensity, we get
a smooth curve resulting of the averaging of the Super-Atoms Rabi oscillations. This is
represented on the fig 1.12.

In the case of very homogeneous sample, the oscillations of the Super-Atoms should
be roughly in phase and visible in the total number of Rydberg excitations. The fact is
that such simultaneous oscillations of several Super-Atoms had never been observed
experimentally.
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Figure 1.12: Schematic vision of the Super-Atom picture in the case of large atomic
ensemble. On the left, we see a schematic vision of an atomic ensemble divided in 4
Super-Atoms. On the right, the total number of Rydberg excitations is represented in
function of the time (thick curve), we also show the excitation carried by each Super-
Atom (thin curves), the sum of the Rydberg excitations carried by the 4 Super-Atoms
gives the total number of Rydberg excitations. All those curves are only illustrative and
do not correspond to real calculations.

Collective Dicke basis and cooperative model

When looking at the properties of symmetry of the laser excitation of an assembly of
indistinguishable two-level atoms, it exists a basis which contains naturally those prop-
erties. This is the so-called Dicke basis, developed by R. Dicke and reported in the
reference [Dicke, 1954]. The Dicke basis appears to be very useful to deal with the
coupling between an electromagnetic field and a many-atoms system, it has been first
developed to describe the phenomenon of collective spontaneous emission, the so-called
Superradiance (see for example the review [Lin and Yelin, 2012]).

In the frame of this thesis, we have studied the Rydberg excitation of an atomic en-
semble using the Dicke basis, this is the subject the chapter 5 of this manuscript. In
this section, we present briefly the Dicke basis in the case of interacting particles and
we show how the collective states symmetry properties, caught by the Dicke basis, can
influence the dynamics of the system.

The natural basis to describe a two-level atoms sample (levels being the ground state
|g〉 and a Rydberg state |r〉), contains states of the form

|Ψ〉 = |g1, r2, ..., ri−1, gi, gi+1, ri+2, ..., gN〉 (1.45)

Where the state of the N individual atoms is specified. We call this state an atomic
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state, atomic states forming the atomic basis.
The Dicke basis is completely equivalent to the atomic basis. However, the Dicke states
are defined to be the eigenstates of collective operators (see chapter 5) and they are
superposition of several atomic states.

Figure 1.13: Dicke states in the case of interacting particles. An electromagnetic field
acts independently in each subset of states with the same symmetry (vertically) with
∆j = ±1, the Rydberg-Rydberg interaction couples the states with the same number of
excitation (horizontally). States with same j and c are not degenerated in energy due to
the Rydberg-Rydberg interaction, their number is given in the text

A Dicke state is characterized by three numbers, the number of excitation that the
state contains, j ∈ [[0;N ]] and a cooperative number c ∈ [[|N

2
− j|; N

2
]] representing the

symmetry of the state, a third "white" number allows to define a complete basis where
several states have the same j and c.
A Dicke state |j, c〉 is a superposition of atomic states containing j excitations and c
reflects how this superposition is symmetric or not relatively to the exchanges of atoms.
The number of states with the same j and c is given by

(
N

N/2−c

)
−
(

N
N/2−(c+1)

)
. It is

important to note that, for a given j, the states with the minimum cooperative number
are much more numerous than the other states. On the other hand, there is only one state
with the maximum degree of symmetry, the so-called fully-symmetrical Dicke state.

The great feature of the Dicke states is that only the states with the same cooperative
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number c are coupled together under the effect of an electromagnetic field (to be rigor-
ous we have in this case to introduce the relative phase of the laser at the position of the
atoms in the collective operators). On the other hand, considering interacting particles,
the states having the same number of excitations j are coupled together due to the inter-
actions.

The resolution of the full Hamiltonian using the Dicke basis is a-priori as heavy as
in the case of the atomic basis. However, we can qualitatively investigate the behavior
of a large atomic ensemble in the frame of the Dicke basis.

Figure 1.14: Schematic vision of the collective vision in the case of large atomic ensem-
ble. The degeneracy in energy of the different states with same j and s is not represented.
The colored areas give an idea of the population of the Dicke states at different time

The following behavior, represented schematically in the fig 5.10 can be proposed.
For a small number of Rydberg excitation, the interactions between Rydberg atoms are
quite small and the excitations should be mainly present trough the fully-symmetrical
Dicke states. However, when the number of Rydberg excitation becomes important, the
different configurations for the Rydberg excitations leads to important interaction ener-
gies, for example a lot of them would be not populated (blockaded). The interactions
induce in this case a strong coupling toward non symmetrical states. The Dicke states
with the minimum of symmetry being the most numerous, a big part of the Rydberg
excitations should be concentrated on those states. The fact that those states are non
coupled to states containing less excitations should then have an effect on the excitation
dynamics, the Rydberg excitation being partially maintained to high values.
Within this description, the system is quickly "lost" in the multitude of non-symmetrical
states, as in the case of the perfect blockade methods, revivals should occurs well after
decoherence and we refine here the notion of thermalisation.
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The description of the Rydberg excitation presented here leads to a behavior quite dif-
ferent of the one obtained in pushing the Super-Atom picture to the case of large atomic
ensemble. Within this collective description, the Rydberg excitations are delocalyzed
over the wall sample and the system does not contain Rabi oscillations of several sub-
systems.
As we will see in the section 1.4.4 and latter in the chapter 5, the non-shifted position
of the Rydberg line becomes in this frame quite intuitive.

1.4.4 Experimental studies of the dipole blockade

Since the numerical complexity of the Rydberg excitation of atomic gas in the blockade
regime makes the theoretical treatments impossible to implement for large ensemble,
experimental studies on this subject constitutes an indispensable source of information.
Since ten years, a big number of dipole blockade experiments have been performed by
several groups, providing very interesting results. In this section, we report some of the
main obtained results.

Multi-photon excitation and coherence of the excitation

Before to present experiments dealing directly with the dipole blockade phenomenon,
we present briefly in this section the experimental procedure to excite Rydberg state
from the the ground states with a particular focus on the coherence of the excitation. In
almost all the experimental setups, the Rydberg state is reached via a 2-photon excita-
tion, i.e., the excitation scheme is |g〉 → |e〉 → |r〉 where |e〉 is an intermediate state. In
most of the case the transition |g〉 → |e〉 is the transition used to cool the atomic sample.
If 2-photon excitation is the most current, direct excitation has been reported in [Thoumany
et al., 2009b], 3-photon excitations in [Vogt et al., 2006; Thoumany et al., 2009a; Ryabt-
sev et al., 2011].
The main reason to work with 2-photon excitation is technological. Considering that
the transition |g〉 → |e〉 is the cooling transition for which the corresponding laser sys-
tem is already present in the lab, the laser sources corresponding to the second step of
the 2-photon excitation are much more developed than those allowing to excite directly
the Rydberg state from the ground state. This is due to the corresponding wavelengths
which are in the UV range for the direct excitation and in the visible range for the second
step of the 2-photon excitation (at least for rubidium and cesium atoms). So, 2-photon
excitation allows to get much higher power (or much lower price). Nevertheless, an-
other advantage of the 2-photon excitation is the possibility to excite, in zero-field, s
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and d states whereas direct excitation allows only the excitation of p states.
Using a 2-photon excitation, it is nevertheless desirable to have a coherent excitation of
the Rydberg state from the ground state to study properly the quantum dynamics of the
system. This means that the population of the intermediate state |e〉 has to be avoided
as this state has generally a very short life time and suffers from spontaneous emission.
This can be done in detuning the first step of the excitation from the transition |g〉 → |e〉
(the second step has then to be detuned by the opposite quantity to have a resonant ex-
citation of the Rydberg state). As reported in the reference [Brion et al., 2007] (here the
case of a lambda system is treated), for a sufficiently large detuning, we can "forgot" the
intermediate state and consider that we have a coherent excitation |g〉 → |r〉, the associ-
ated Rabi frequency is then given by ΩgeΩer

2∆
where Ωge and Ωer are the Rabi frequencies

of the two transitions and ∆ the detuning from the intermediate state.
Using this technique, the coherent excitation of a Rydberg state has been demonstrated
in the case of a single atom, first in [Johnson et al., 2008] and later in other experiments
with different Rydberg level [Urban et al., 2009; Gaëtan et al., 2009; Isenhower et al.,
2010; Zuo et al., 2009]. Despites the numerous possible source of dephasing, slightly
visible Rabi oscillation between the ground state and a non-interacting Rydberg state
has been reported in [Reetz-Lamour et al., 2008] in an assembly of around 100 atoms.
Although the spontaneous emission from the intermediate level induces decoherence in
the system, some experiments use a 2-photon excitation resonant with the intermediate
level. As mentioned in the section 1.4.3, in this case, an antiblockade effect can arise
due to the Autler-Townes splitting of the intermediate state, this has been observed in
[Amthor et al., 2010].
Interestingly, coherent population of a Rydberg level have also been performed using
stimulating induced Raman adiabatic passage (STIRAP) as reported in the references
[Kritsun et al., 2004; Cubel et al., 2005].

Experiments with 2 atoms

Although experiments with two atoms was not the first ones which have been reported
on the dipole blockade, they provides a so clear evidence of the dipole blockade phe-
nomenon and its collective dynamics that it is quite natural to start with this results.
The first result of a collective excitation of two atoms in the blockade regime has been
reported in the reference [Gaëtan et al., 2009] and almost simultaneously in [Urban
et al., 2009].
In the experiment performed in [Gaëtan et al., 2009], two ground states rubidium atoms
are confined in two independent optical dipole traps. The two atoms, separated by a
distance of 3.6 µm set to be smaller than the blockade radius, are simultaneously il-
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luminated by the Rydberg excitation laser beams (it is a two-photon excitation). This
situation is then exactly the one presented in the section 1.4.1 with N = 2.

Figure 1.15: Collective excitation of two atoms in the blockade regime, from [Gaëtan
et al., 2009]. Blue squares fitted by the blue curve represent the probability to have one
Rydberg excitation present in the two-atoms system, for comparison, red circles fitted
by the red curve correspond to the single atom case.

On the fig 1.15, we clearly see the two-atoms system doing Rabi oscillations be-
tween the state |g, g〉 and the state 1√

2
(|r, g〉+ |g, r〉). The collective Rabi frequency had

been measured to be 1.38± 0.03 faster than the single atom case which is very close to
the theoretical factor

√
2.

In addition to wonderfully illustrate the dipole blockade phenomenon in the case of
two atoms, this experiment show also the possibility to entangled two atoms using the
dipole blockade. We will come back on this last point in the section 1.5.

Quenching of the Rydberg excitation

The most obvious effect of the dipole blockade is to limit the number of Rydberg exci-
tation present in an atomic gas. This effect have been the first one to be studied.
The first demonstration of such a quenching of the Rydberg excitation was reported
in [Tong et al., 2004]. In this experiment, Rydberg state are excited with a narrow-
band pulsed dye laser. We see in the fig 1.16) that the number of Rydberg excitation is
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strongly limited when dealing with strongly interacting Rydberg states (high n). Here,
interaction between Rydberg atoms is of the type Van-der-Waals.

Figure 1.16: Quenching of the Rydberg excitation, from [Tong et al., 2004]. We see here
the dependence of the Rydberg excitation fraction in function of the laser power exciting
Rydberg states. Data are shown for three different n, in the case n = 30 interactions are
almost negligible

If this pioneer experiment used pulsed dye laser, most of the blockade experiments
are using continuous wave (cw) laser. Using cw laser, the observation of the quenching
of the Rydberg excitation due to the dipole blockade has been reported, in the case of
Förster resonance [Vogt et al., 2006] and in the case of interaction between permanent
dipoles in presence of electric field [Vogt et al., 2007].

Using quantitative measurements of the limitation of the Rydberg excitation, it have
been possible to check the radial and angular dependences of the dipole-dipole interac-
tion. The dependence in 1/R3 in the case of Förster resonance has been demonstrated in
[van Ditzhuijzen et al., 2008] using two spatially separated atomic sample. The angular
dependence of the dipole-dipole interaction in the case of permanent dipoles created by
the presence of an external electric field has been demonstrated in [Carroll et al., 2004]
using a quasi one dimensional cylindrical atomic sample which could be rotated with
respect to the external electric field.

In the experiments of dipole blockade, a particular attention has to be payed to the
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presence of ions. Indeed, the electric field generated by an ion (much stronger that the
one generated by a Rydberg atom) has also the effect to block the Rydberg excitation.
As an example, it is shown in [Ates et al., 2007a] (rate equations calculations) that the
presence of ions could explain the experimental results reported in [Singer et al., 2004]
and that the blockade effect due to Van-der-Waals interactions might be enhanced by
ions creation.
The creation of ions during the experiments can be avoided in working as much as pos-
sible with low intensities and short laser pulses.

Shape and position of the Rydberg line

In this section we are interested in the shape and the position of the Rydberg line in
the regime of blockade. Experimentally, it can be studied in performing a scan of the
Rydberg line where the number of Rydberg excitation is measured in function of the
detuning of the laser.
As already discuss in the section 1.4.3, basic Mean-Field models predict a shift and an
asymmetric broadening of the Rydberg line due to the Rydberg-Rydberg interactions.
Those results are in fact quite intuitive since we could think that the Rydberg excitation
is more efficient when the detuning of the laser compensates the energy shift created by
the Rydberg interactions.
However, it appears experimentally that the Rydberg line is not shifted even in the case
of strong interactions, at least at the level of the laser linewidth. There is nevertheless
an effective broadening of the line which is simply due to the quenching of the Rydberg
excitation. In the fig 1.17, we see a scan of a Rydberg line in two situations, one with
small Van-der-Waals interactions, the other with stronger interactions induced by the
application of an external electric field.

The fact that the Rydberg line in the blockade regime is not shifted match theoret-
ical predictions of second-order Mean-Field treatment [Schempp et al., 2010]. In this
treatment we can find additional shifted resonances due to multi-photon absorption pro-
cesses but they have in the general case a quite small probability to be excited.

To give a physical interpretation of the absence of shift in the case of large ensem-
bles, we can look at the beginning of the Rydberg excitation in considering collective
excitations. For small numbers of Rydberg excitations, only few configurations leads
to significant interaction energies (the first excitation contains rigorously no interaction
energy), a large majority of the configurations are almost non shifted. Consequently,
since it allows the excitation of the largest number of configurations, the Rydberg ex-
citation is more favorable with a laser field resonant with the non-interacting Rydberg
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Figure 1.17: Scan of the 75p3/2 Rydberg line, from [Vogt et al., 2007]. Black curve is
obtained in absence of electric field, red one in presence of a small electric field. Here,
the lines has been voluntary set to the same position but the measured difference in
position has been found to correspond to the Stark effect on the Rydberg level 75p3/2

transition. If a detuning from resonance should be favorable for a system closer to the
saturation, interacting Rydberg gases remind us that slow and steady wins the race.

Nevertheless, this feature concerns the use of a single laser excitation with fixed fre-
quency. Very interesting behavior can be explored when dealing with a chirped laser
pulse [Pohl et al., 2009] or sequential excitations with variable frequency. For example,
the observation of the Rydberg-Rydberg interaction spectrum (both for Van-der-Waals
and pure dipole-dipole interaction) has been reported in [Reinhard et al., 2008]. To
do this, the authors use several independently tunable laser pulses to spectroscopically
probe the spectrum in a double-resonance excitation scheme. Finally, it is also possible
to apply micro-wave field once the Rydberg excitation done in order to induce transition
between close Rydberg states. Those transitions being strongly affected by Rydberg-
Rydberg interaction, this constitutes a nice way to study them [Afrousheh et al., 2004].
This latter point is also a way to enhance the interactions, indeed, in dressing a Rydberg
level by micro-wave field, the corresponding ac Stark shift can generate another kind of
Förster resonances [Bohlouli-Zanjani et al., 2007; Tauschinsky et al., 2008].

Dynamics of the Rydberg excitation

The study of the dynamics of the Rydberg excitation in a blockaded ensemble is of
primarily interest due to the characteristic dynamics associated to the collective nature
of the excitations.
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To study such a dynamics, a simple way is to measure the number of Rydberg excitation
created by a laser pulse whom we vary the duration or the intensity. First report of such
an experiment is found in the reference [Heidemann et al., 2007] where the interactions
between the Rydberg atoms are of the type Van-der-Waals.

Figure 1.18: Dynamics of the Rydberg excitation, from [Heidemann et al., 2007]. a, the
number of Rydberg excitation versus the excitation time for different densities. b, the
number of Rydberg excitation versus the excitation time for different laser intensities.
Solid lines are fits of the experimental data with exponential saturation function

The dynamics of the Rydberg excitation in a blockaded ensemble is found to have
a characteristic behavior composed by a fast increase of the Rydberg excitation follows
by a saturation regime, as we can see on the fig 1.18.
As reported in [Heidemann et al., 2008], this behavior have been also observed for the
Rydberg excitation of a Bose-Einstein condensate.
In [Löw et al., 2009], it is shown that the saturation value of the Rydberg excitation
follows the scaling law obtained by the Mean-Field theory (see section 1.4.3, eq.1.44).
Concerning the initial raise of the Rydberg excitation, it is found to be linked to the
ratio between the number of Rydberg excitation and the total number of atom present
in the system, i.e., the number of atoms per blockade sphere. This reflects the collective
dynamics of the Rydberg excitation.

"Echo" experiments

The dynamics of the Rydberg excitation has been also studied in so-called echo ex-
periments. The technique of rotary echo was first developed in the frame of Magnetic
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Nuclear Resonance (RMN). It consists to let evolve a system under the effect of a per-
turbation for a time T and suddenly change the sign of the perturbation. If the evolution
of the system is fully coherent and determined by the sole perturbation, we expect that
the system come back in its initial state after a total time 2T .
In the case of the laser excitation of an atomic gas, it is possible to excite the system
for a time T and suddenly change the phase of the laser by the quantity π. This cor-
responds to change the Rabi frequency of the laser from Ω to −Ω. In the case where
the system does not suffer from any decoherence process and for a completely coherent
laser excitation, the system will come back exactly to its initial state after the total time
2T . However, in the case of a Rydberg excitation, the evolution of the system is not
only determined by the laser excitation but also by the Rydberg-Rydberg interactions.
The fact to change the sign of the laser excitation does not affect the Rydberg-Rydberg
interactions and consequently, the system will not come back to its initial state after the
time 2T . In this case, the difference between the initial and the final states reflects the
effect of the Rydberg-Rydberg interactions.
Such experiment of echo has been reported in the reference [Raitzsch et al., 2008;
Younge and Raithel, 2009]. We find also a theoretical study of this subject in [Hernández
and Robicheaux, 2008b; Raitzsch et al., 2009; Wüster et al., 2010]. In the experiments,
the atoms are initially in the ground state, the echo sequence is performed and the frac-
tion of atoms in the Rydberg state after the sequence is measured. Neglecting all sources
of decoherence, this fraction is only linked to the Rydberg-Rydberg interactions. By
changing the total time of the echo sequence, it is possible to extract a dephasing rate,
i.e., the dephasing of the Rydberg excitations due to the Rydberg-Rydberg interactions.
The experiment of [Raitzsch et al., 2008] is performed within a timescale which corre-
spond to the "beginning" of the Rydberg excitation, i.e., the Rabi frequency of the laser
excitation is reversed well before the saturation of the Rydberg excitations. If, for this
excitation time, there is already a quenching of the Rydberg excitation in comparison to
the non-interacting case, the dephasing time is found to be relatively long (for instance
few 100 ns, meaning dephasing rate of the order of few MHz), proving that Rydberg
excitations are organized in such a manner that interaction energies stay quite small.
Such a measure of the dephasing rate due to the Rydberg-Rydberg excitation can also
be done in performing EIT experiments. In the reference [Raitzsch et al., 2009], authors
present the investigation of dephasing rates using both methods (echo and EIT) as well
as numerical calculations. The dephasing rate is found from the calculations to follow a
scaling law with the number of excited Rydberg atom in the "middle" of the sequence,
the reported exponent is 2.16±12, and agree well with the experimental measurements.
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Statistics of the Rydberg excitation

A way to study the Rydberg excitation in the blockade regime is the statistics of the
Rydberg excitation. We are here interested not only to the specific number of Rydberg
excitation that are present in a given situation but also at the statistical distribution of
the number of Rydberg excitation when the same situation is repeated several times.
In addition to the average number of Rydberg excitation n, we can experimentally mea-
sure the variance σn. A convenient dimensionless quantity linked to the variance is the
Mandel Q factor [Mandel, 1979] (a very close quantity is the Fano factor which differs
from the Q factor by 1 unity)

Q =
σn
n
− 1 (1.46)

If the value of the Q factor is 0 for a poissonian statistics, i.e., for an uncorrelated
process, the Q factor takes negative value for sub-poissonian statistics, i.e., correlated
process. In a quantum system, the value of the Q factor depend a lot of the basis in
which we project the system in the measurement process. The Q factor is in this case
link to the quantum projection noise. The value of the Q factor gives in fact crucial
informations on the quantum states which are populated and detected, this question is
studied in the chapters 4 of this manuscript.
In the frame of the dipole blockade, we expect to get negative value of the Q factor due
to the collective nature of the Rydberg excitation.

Figure 1.19: Counting statistics of the Rydberg excitation, from [Viteau et al., 2012].
Red circles represent the number of detected ions, blue squares represent the detected Q
factor
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Observation of sub-poissonian statistics in blockaded Rydberg ensemble has been
reported in the following references [Liebisch et al., 2005, 2007; Reinhard et al., 2008;
Ryabtsev et al., 2010; Viteau et al., 2012; Hofmann et al., 2012]. The effect of a finite
detection efficiency has been study in [Ryabtsev et al., 2007a,b]. Theoretical study about
sub-poissonian statistics is for example reported in [Ates et al., 2006] using rate equa-
tions and in [Robicheaux and Hernández, 2005] using Super-Atom model. We show in
the fig 1.19 experimental data obtained in the frame of this thesis, reported in [Viteau
et al., 2012] where both average number of Rydberg excitation, n, and Mandel Q factor,
are measured in function of the excitation laser pulse duration. In this experiment, Ry-
dberg excitations are detected using field-ionization method, measured quantity is then
the number of ions arriving on the detector. Taking in account the detection efficiency,
evaluated to be η = 35± 10%, the value of the Q factor of the Rydberg excitation itself
has to be divided by η. It is thus found to be very close to -1, the lowest possible value
that the Q factor can take. As we will see in the chapter 4, this observation indicates first
that the system is projected onto collective states but also that the collective states which
are simultaneously populated contain a quite similar number of Rydberg excitations .

Spatial correlations

Another very interesting feature of the Rydberg excitation in the blockade regime is the
spatial distribution of the Rydberg excitations. As described by the blockade sphere
picture, the fact that the presence of two Rydberg excitation closer than the blockade
radius is forbidden leads to a crystal-type spatial distribution of the Rydberg excitation.
The observation of the spatial distribution involves a detection scheme allowing to im-
age the atomic cloud. In the case of a field-ionization detection, this can be done using
a spatially resolved charge detector, for example, micro-channel plate detector (MCP)
followed by a phosphor screen, we get in this case a 2D imaging. Observation of spatial
correlation of the Rydberg excitation using this method has been reported in the refer-
ence [Schwarzkopf et al., 2011].
Another way to image the spatial distribution of the Rydberg excitations is to use optical
detection. A theoretical proposal using EIT scheme involving a "probe" Rydberg state
which interact slightly with the excited one can be found in the reference [Günter et al.,
2012]. However this method have not been implemented yet.
An experimental observation of the spatial distribution of Rydberg excitations using op-
tical detection have been reported in the reference [Schauß et al., 2012]. In this experi-
ment, the atomic sample consists in a mesoscopic 2D atomic array obtained in loading
an ultra-cold atomic cloud in square optical lattices in the Mott-insulator regime. After
the Rydberg excitation laser pulse, the created Rydberg excitations are detected by the
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following way : The atoms in the ground state are putted out of the sample by a reso-
nant laser beam, the Rydberg atoms are then deexcited to the ground state via stimulated
emission and finally detected using fluorescence imaging.

Figure 1.20: Spatial distribution of few Rydberg excitations in the regime of blockade,
from [Schauß et al., 2012]. a), single shot images. b), average over several images, each
image is centered and rotated to get the best superposition. c), numerical simulation

In the fig 1.20 we clearly see the presence of spatial correlations between few Ryd-
berg excitations within a mesoscopic atomic sample. Together with numerical simula-
tion obtained by the full resolution of the Hamiltonian solvable in this case due to the
mesoscopic number of atoms spatially ordered and the small number of Rydberg excita-
tions (see section 1.4.3), this result clearly indicates the crystal-type spatial distribution
of the Rydberg excitations in the blockade regime.

EIT experiments

A very interesting type of experiment is when Rydberg states are involved in Elec-
tromagnetically Induced Transparency (EIT [Boller et al., 1991]) schemes [Mohapatra
et al., 2007; Weatherill et al., 2008; Bason et al., 2008; Zhao et al., 2009; Pritchard et al.,
2010]. We found theoretical support on this subject in [Ates et al., 2011; Petrosyan et al.,
2011]. For an overview of this subject, we can refer to the recent review [Pritchard et al.,
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2012].
As demonstrated in [Pritchard et al., 2010], in the case of strongly interacting Rydberg
states, the strong Rydberg-Rydberg interactions are mapped onto the probing optical
field and they mainly appear as optical nonlinearities when looking at the transmission
of the resonant probe beam in function of its intensity.

Figure 1.21: EIT experiment with Rydberg states, from [Pritchard et al., 2010]. a),
EIT scheme in presence of Rydberg-Rydberg interactions. b), transmission signal of
the probe beam for three different intensities. This experiment was made with rubidium
atoms, level being |g〉 = 5s, |e〉 = 5p3/2 and |r〉 = 60s

On the fig 1.21, we see that as a consequence of the dipole blockade, the transmission
of the probe beam is reduced when its intensity is increased. Indeed, Rydberg-Rydberg
interactions modify the energy of the collective excited Rydberg states and "break" the
EIT mechanism.
To look at the width of the transparency window is a way to measure the dephasing
rate of the Rydberg excitation due to the Rydberg-Rydberg interaction like in an echo
sequence. In [Pritchard et al., 2010] since no additional broadening have been seen, the
dephasing rate has been found to be at least lower than 110kHz.

The non linearity of the probe beam transmission in the transparency window due to
the dipole-dipole interactions has been used to demonstrate a giant dc Kerr effect [Mo-
hapatra et al., 2008]. EIT technique with Rydberg atoms has also been used to measure
electric field close to surfaces [Tauschinsky et al., 2010; Abel et al., 2011].

Finally, as a nice tool for Rydberg atoms experiments, the EIT scheme provides a very
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efficient way to lock the frequency of a laser on a Rydberg transition [Abel et al., 2009].

From the photons side

Recently, dipole blockade has been investigated in a new type of experiments where Ry-
dberg excitations are not detected directly but trough the photons emitted by the atomic
ensemble.
Such an experiment has been reported in the reference [Dudin et al., 2012]. In this
experiment, dipole blockade is investigated in the regime where ideally, only one exci-
tation can be present (fully-blockaded ensemble). Once the Rydberg excitation done,
a read-out pulse induced the deexcitation of the Rydberg excitation in an intermediate
state and the photon emitted by the atomic ensemble by spontaneous emission from this
intermediate state is detected.
A very important point of such an experiment concerns the state of the electromagnetic
field in which the photons are emitted. Indeed, due to the collective nature of the Ryd-
berg excitation, the relative phase of the Rydberg excitation between all the individual
atoms determines strongly the direction of the emitted photon trough a phase matching
condition. This effect has been study experimentally in [Boisseau et al., 2002] and the-
oretically for example in [Miroshnychenko et al., 2012]. In the experiment, the conser-
vation of the light wave vectors allows to determine the direction of the photon emitted
from the intermediate state when the initial Rydberg excitation is present trough a fully
symmetrical state. Indeed, for such a state, the relative phase of the Rydberg excitation
between the atoms is simply given by the excitation pulse. For a Rydberg excitation
present trough a non-fully symmetrical state, the relative phase of the Rydberg exci-
tation between the atoms has been modified by the Rydberg-Rydberg interactions and
does not correspond to the one of the excitation pulse, in this case the emitted photon
has a different direction. Consequently, the photons detected in the experiment are only
those coming from the fully symmetrical state with one Rydberg excitation (due to the
quasi fully blockade regime, excitation of the fully symmetrical state with two Rydberg
excitations is very unlikely).

On the fig 1.22 we see that in function of the intensity of the Rydberg excitation
pulse, the detected field exhibits Rabi oscillations. This indicates that the atomic system
is doing Rabi oscillations between the ground state and the state with one fully symmet-
rical Rydberg excitation.
This result is the first experimental evidence of many-body Rabi oscillations involving
a mesoscopic number of atoms, here few hundreds. The fact is that it seems very hard
to prepare an atomic sample in the fully-blockaded regime. For some reasons (few body
effect, decoherence processes) it appears that there is always more than one Rydberg
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Figure 1.22: Measurement of the light emitted by the atomic sample after the Rydberg
excitation, from [Dudin et al., 2012]. The probability of photoelectric detection is rep-
resented in function of the excitation pulse area (normalized by the single atom Rabi
frequency), the different curves correspond to different density of the atomic sample.
The solid lines are fit of the data. In this experiment, the Rydberg level is |r〉 = 102s1/2

excitation present in a mesoscopic atomic ensemble. However, looking at the photons,
we extract the dynamics of the fully symmetrical states and the presence of multi exci-
tations acts only as a leak of the system that we observe. This explain why collective
Rabi oscillations can be observed trough photon measurements even if the number of
Rydberg excitation is not strictly restricted to 1.

1.5 Rydberg atoms and quantum engineering

The study of cold Rydberg gases offers very nice perspectives for fundamental research
about interacting system as we have seen trough the dipole blockade phenomenon. In
addition to this fundamental interest, research on Rydberg atoms involves a so fine con-
trol, at a quantum level, of the atomic systems that it becomes possible to conceive
quantum devices based on the Rydberg atoms Physics. Most of the application are
in the field of quantum computation, atom-light conversion devices and high precision
measurement.
Interestingly, the level of control of the cold atoms experiments allows to created very
clean systems where a specific quantum behavior can be highlighted, preserved and
used. Together with the versatility of the Rydberg properties themselves, the cold atom
technology offer a fantastic modularity to the cold Rydberg systems. This opens many
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perspectives concerning the use of Rydberg systems to mimic various physical situa-
tions exhibiting particular quantum behavior. This is called the quantum simulation.

1.5.1 Quantum entanglement

Interaction between Rydberg atoms makes them very attractive for the generation of
entangled atomic states. Indeed, there is various simple situations where two or more
Rydberg atoms are naturally excited in strongly entangled states due to their mutual in-
teraction, this is the subject of the review [Walker and Saffman, 2012].
For example, we have seen in the section 1.4.4 that two Rydberg atoms in the blockade
regime collectively excited by a laser pulse are entangled in the state 1√

2
(|r, g〉+ |g, r〉).

Another situation of entanglement is the resonant exchange of excitation in the case of
Förster resonance or migration reaction where eigenstates of the two-atoms system are
on the form 1√

2
(|ra, r′b〉 ± |r′′a, r′′′b 〉).

In those processes, we have to consider the precise dynamics of the quantum states.
The system can be either brought in an entangled states trough adiabatic process, nor
coherently evolved toward entangled states under the effect of a perturbation for exam-
ple when the system is suddenly shine by a laser pulse. The initial preparation of the
quantum state before the entanglement process is crucial.
In addition to the intrinsic efficient mechanisms of entanglement between Rydberg
atoms, the manipulation of few atoms in optical lattices or individual dipole trap al-
lows a precise control of the system at the level of individual atoms. This is then ideal
for the study and the engineering of efficient and scalable entanglement processes.
In the reference [Gaëtan et al., 2009], dipole blockade between two atoms has been used
to create an entangled state between two hyperfine ground states by laser inducing the
decay of the Rydberg state. By applying global Raman rotations on both atoms, the
fidelity reaches has been measured to be 0.75. This value is very relevant since it is the
minimum one from which we can certified that there is quantum entanglement and from
which quantum protocols including states correction can be applied.
The experimental observation of a 4-body Förster resonance, presented in the chapter
3 of this manuscript and reported in [Gurian et al., 2012] is an original example of the
generation of a (non demonstrated) 4-body entangled state.

1.5.2 Quantum gates

The very exciting field of quantum computation has been introduced by R. Feynmann
in 1982. The principle of a quantum computer is to perform operations on data which
are encoding on quantum states of a physical system, bits of a classical computer be-
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coming then qubits (quantum bits). The interest of quantum computation is to use the
fascinating properties of quantum states such as superposition and entanglement to fast
up the calculations.
In the middle of the 90’s, two quantum algorithms has been reported, the Shor’s al-
gorithm (1994) which concerns the factorization of integer numbers and the Grover’s
search algorithm (1996). This algorithms clearly show that quantum computers are able
to solve a problem much more faster than classical ones. For example, whereas the fac-
torization of an integer of D digits has a complexity scaling exponentially with D in the
best classical algorithms, the complexity scales as D3 in the shor’s algorithm.
Several physical systems with very different nature are currently studying in the frame
of quantum computation. If quantum computation is still at its infancy, rudimentary
quantum computers have been already build in laboratory, qubits taking the form of
josephson junctions, quantum dots, trapped ions or again photons. For example, using
photons, the successful factorization of 21 using Shor’s algorithm has been reported
[Martín-López et al., 2012]. To give a bit of visibility to this very effervescent field,
the so-called DiVincenzo criteria [Divincenzo, 1998] established 5 mains criteria which
have to be fulfill by a physical system to be potentially applicable to a scalable quantum
computer.
It seems that Rydberg atoms, although there are not the best (for a question of fidelity
of the operations), are good candidates for the realization of quantum computer. Quan-
tum computation with Rydberg atoms is the subject of the revue [Saffman et al., 2010].
We will just mention here the experimental realization of quantum logical gates using
neutral atoms.
One of the criteria for the realization of a quantum computer is the ability to perform
logical operations on qubits. Interestingly, it has been shown that any logical operation
can be done using a small set of elementary operations. One of this set is for example
composed by the Hadamar gate which consists in the rotation of a single qubits and the
CNOT gate acting in the two-qubits space. The matricial representation of the CNOT
gate is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.47)

The implementation of such quantum gates is then a first, indispensable, step toward
quantum computation. In the reference [Isenhower et al., 2010], authors report the
first realization of the CNOT gate using neutral atoms. Here, a qubit is formed by
two hyperfine levels of the ground state of a rubidium atom and the CNOT gate is
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implemented on two atoms using a sequence of laser pulses resonant with a Rydberg
transition. The dipole blockade is the key mechanism to implement the CNOT gate.

Figure 1.23: Report of the experimental realization of a CNOT gates, from [Isenhower
et al., 2010]. a), measurement of the states preparation. b), measurement of the states
after the laser pulses sequence.

On the fig 1.23, we see the measurement of the quantum state of the two qubits
associated to the CNOT gate. In this experiment, the fidelity has been measured to be
0.73.

1.5.3 Quantum simulation

It exists two big way to compute a problem, we can use digital computer or analog com-
puter. Today’s computer are digital ones where logical and arithmetic operations are
performed on several Central Processing Units (CPU). A digital computer can be used
in principle to solve every kind of problem once corresponding equations are written.
The implementation of quantum gates acting on qubits aims to built the quantum equiv-
alent of a digital computer.
Analog computers work completely differently, the general principle of an analog com-
puter is to match a problem into a physical system which exhibits the same behavior
than the problem being solve. The result of a computation is then read in measuring the
value of the physical quantities present in the analog computer. In contrast with digital
computers, an analog computer is specifically build to solve one kind of problem.
Historically, analog computers has been largely used before digital computers becomes
sufficiently powerful to solve accurately all kind of problem. As some illustrative ex-
amples, mechanical analog computers have been used during the World War II for gun
fire control. Analog computers based on oil bath heated by electrical current have also
been developed, in this case, informations are obtained via the measured temperature of
the bath, such calculators have been used to define the flight controls of Concorde.
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In the frame of quantum computation, cold atoms systems offers the possibility to
build quantum analog computer. It exists namely several possible analogies between
solid state systems and cold atoms systems, the latest having the advantage to be fully
controllable and exempt of several complications like the presence of phonons. One
major example is the study of the Bose-Hubbard model using cold atoms in optical
lattices where it has been possible to observe and characterize the Superfluid-Mott insu-
lator transition [Greiner et al., 2002]. The possibilies to form many-body systems (and
then many-body quantum simulator) with cold atoms have been review in [Bloch et al.,
2008].
Using Rydberg atoms, the presence of strong and variable interactions open many per-
spectives in the modeling of interacting many-body systems [Weimer et al., 2010, 2011].
In this frame, the study of cold Rydberg gases goes together with the study of cold polar
molecules [Pupillo et al., 2008; Carr et al., 2009; Dulieu and Gabbanini, 2009] and mag-
netic dipolar gases [Stuhler et al., 2005; Koch et al., 2008], all those systems are review
in [Lahaye et al., 2009]. Interacting Rydberg systems allow to study the asymptotic case
where interaction energy is much stronger than kinetic energy.

As a first example, the Hamiltonian of the dipole blockade (see equation 1.42) is for-
mally equivalent to the one of a spin glass [Castellani and Cavagna, 2005] in a perma-
nent magnetic field. Here the laser detuning and the Rabi frequency play respectively
the role of the longitudinal and the transverse magnetic field, the Rydberg-Rydberg in-
teraction corresponds to the spin-spin interaction (only spin-up particles interact).

As mention in the section 1.3.2 the diffusion of a Rydberg excitation in a bath of Ry-
dberg atoms trough exchange of excitation has a formal analogy with diffusion of ex-
citons [Tokihiro et al., 1995]. It is also possible to implement a quantum random walk
with such a system [Côté et al., 2006], in this case, Rydberg atoms have to be trap in
optical lattices to make the walk totally random. The implementation of a quantum
random walk [Kempe, 2003] could have very big impact on quantum computation as it
allows to built a quantum generator of random numbers, which is, at least in classical
computation, a central peace of several algorithms.

A very interesting way to use the properties of interaction of Rydberg atoms in cold
atom systems is to weakly dressed ground state atoms with a Rydberg level. By this
way, we namely preserve the very long life time of the ground state atoms allowing to
let the system evolves for a very long time toward its thermodynamical equilibrium. It
has been shown theoretically that such systems allow to create new kind of interaction
potential between the atoms and to reach exotic quantum phases [Henkel et al., 2010].
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Such systems, called dressed Rydberg gases, has been studied (up to now theoretically)
for example in [Mayle et al., 2009; Pupillo et al., 2010; Honer et al., 2010; Wüster et al.,
2011].

1.5.4 Quantum light sources

A very promizing application of the Rydberg gases is the generation of non-classical
states of light. It could possible, using the dipole blockade phenomenon to engineer
light sources generating a deterministic number of photons.
Classical light sources and standard laser sources generate an electromagnetic field with
a poissonian number of photons. In the frame of high precision measurements using a
light field, the statistical distribution in the number of photon can be a limiting factor
known as the shot noise limit. One field of research in quantum optic is the generation
of so-called squeezed light, where the uncertainty on the number of photons emitted by
a source is reduced (in this case, there is more uncertainty on the photons phase).
Blockaded Rydberg ensembles could be very efficient sources of squeezed light. First
due to the sub-poissonian statistics of Rydberg excitations (see section 1.4.4). Secondly
due the directionality of the emitted photon linked to the collective nature of the Ryd-
berg excitations. This last point offers fantastic perspective in the way to use the emitted
field. Perfect Fock’s states could be obtained at different angle of emission, the excita-
tion statistics becoming in this case the efficiency of the process.

A simple case, which is already very interesting, is the implementation of single pho-
ton sources using fully blockaded Rydberg ensembles. This idea was proposed in the
first article dealing with many-body dipole blockade [Lukin et al., 2001] and developed
later in many works (for example [Saffman and Walker, 2002]). Here the fact that only
one single Rydberg excitation can be present in an atomic sample leads to the emission
of a single photon when the Rydberg excitation is deexcited. In the reference [Dudin
et al., 2012] where the Rydberg excitation of an atomic sample is done in the quasi
fully-blockaded regime (see section 1.4.4), the measurement of the second order inten-
sity correlation function at zero delay of the light emitted by the atomic sample after
the Rydberg excitation is reported. The value of the second order intensity correlation
function, which is a measure of the fact that single photons are emitted, is found to be
0.006(6), authors claims that, to their knowledge, it is the lowest value obtained for any
previously reported light source.

The generation non-classical states of light using Rydberg ensembles or more gener-
ally correlated atomic ensemble is very largely studied theoretically, we mention here
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only few references, [Porras and Cirac, 2008; Olmos and Lesanovsky, 2010] more re-
cent works are [Stanojevic et al., 2012] for Rydberg ensembles or [Miroshnychenko
et al., 2012] for the photons directionnality. Other references can be found therein.

In [Honer et al., 2011], The possibility to use Rydberg ensembles to implement high
fidelity photons counting device or to create non classical states of light by removing a
deterministic number of photons is studied.

1.6 Rydberg atoms : frontier between neutral matter
and charged matter

The last aspect of Rydberg atoms Physics that we present in this chapter concerns the
fact that Rydberg atoms are very easily ionized under the effect of an electric field due
to their very low binding energy.
Whereas coulomb interaction makes very difficult the spatial control of a charged par-
ticles ensemble, we can use Rydberg atoms to get a very precise control on the initial
state of a charged particles distribution.

1.6.1 Charged particles beams

The use of Rydberg atoms is currently study to build new kind of charged particles beam
sources. Starting from an atomic beam, we can excite the atoms in a Rydberg state and
ionized them with an electric field. The spatial properties of the atomic beam is then
transfered to the charged particles beam. An interesting situation is when the properties
of the atomic beam is controlled by cold atoms techniques, in this case, it is possible to
create charged particles beams with very low velocity dispersion.
A possible application is the realization of Focused Ions Beam (FIB), here we are inter-
ested to get a small radial velocity dispersion and then a precise focusing of the beam.
FIB are used in lithography to realize nanometric structure.
An other application concerns the production of electron beams (EB) for electronic mi-
croscopy, in this case we are interesting in the small longitudinal velocity dispersion of
the electrons to get a beam as monocinetic as possible and then a better imaging resolu-
tion.
For those applications, the direct ionization of cold atoms leads already to nice perspec-
tive. Nevertheless, excite Rydberg atoms can be an efficient intermediate step to reach
an even better control. This have been for example studied in [Oomori et al., 1987].
The following references are related to the general topic of charged particle beams from
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cold atomic sources [Freinkman et al., 2003; Hanssen et al., 2008; Debernardi et al.,
2012].

1.6.2 Ultra-cold plasmas

An interesting field of research is the possible evolution of a Rydberg sample in plasma.
The ionization of Rydberg atoms can appears trough several process : electric field,
collision with hot background atoms, blackbody ionization (see [Beterov et al., 2007] for
this last point). However, a Rydberg gas can even spontaneously evolves into a plasma
trough the Penning ionization process [Walz-Flannigan et al., 2004; Robicheaux, 2005;
Viteau et al., 2008]. The principle of the Penning ionization is that two atoms excited
in a Rydberg state with attractive interaction collide, one atom is then ionized and the
other driven in a lower electronic state. In [Amthor et al., 2007b,a; Tanner et al., 2008;
Amthor et al., 2009] the possibilty of auto-ionization without collision but trough long-
range dipole coupling is also studied.
Evolution of an atomic gas toward plasma has been studied in several references, for
example [Killian et al., 2003; Li et al., 2004; Li et al., 2005, 2006; Killian et al., 2007].
The interest of such experiments is for example to study the dynamics of ultra-cold
plasma. It has been also shown that Rydberg atoms in the plasma has a profound analogy
with binary stars in star cluster [Comparat et al., 2005]. Finally, in the case where the
initial atomic gas is excited in the blockade regime, we could have the formation of
correlated plasma [Pohl et al., 2004b,a].

1.7 Conclusion

We have seen all along this introductory chapter to Rydberg atoms Physics the wonder-
ful properties of Rydberg atoms and interacting Rydberg gases.
The key of those properties is the exaggerated sensitivity of Rydberg atoms to their elec-
tromagnetic environment.
Rydberg atoms benefits in addition of a particular convenience in regard to their theo-
retical description. Using the QDT, the Rydberg states of all alkaline species look like
hydrogen ones with the very nice advantage to single the states with low angular mo-
mentum.

Rydberg atoms can be used as electric field sensors, this at the photon scale!

The Electro"static" interactions between Rydberg atoms have huge values. We have
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seen that they can have various form; angular-dependent dipole-dipole, isotropic Van-
der-Waals or resonant Förster ones. Overall, we can experimentally tune those interac-
tions.

When excited in a cold atomic gas, Rydberg atoms give rise to many-body Physics.
Namely, the many-body behavior of cold Rydberg ensembles have been studied through
the dipole blockade phenomenon.
The collective character of the Rydberg excitations in the regime of blockade allows the
study of very interesting coupling properties between such ensembles and the electro-
magnetic field.

Cold Rydberg gases could be used as universal quantum simulators, namely with the
development of Rydberg dressing techniques. Rydberg atoms could be also used to
build photonic devices.
Concerning technological issue, a point which has not been mentioned in this chapter
is that the interesting properties of Rydberg atoms can also be exploited in some case
without be "cold" allowing to be free of heavy experimental apparatus [Kübler et al.,
2010; Sedlacek et al., 2012].
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Chapter 2

Calculation of the quantum states of
two interacting Rydberg atoms in
presence of electric and magnetic field

In this chapter, we present a way to calculate the electronic quantum states of a system of
2 interacting alcalin Rydberg atoms in presence of static, uniform, external electric and
magnetic fields. In the frame of this thesis, we have implemented an program in C++, to
do it. In this chapter, we present the physical formalism linked to those calculations and
we give explicitly all the formula necessary to implement the code. Finally we present
some results of the calculations.

2.1 General working of the programm

We will not, in this manuscript, deal with the programming part of the calculations, but
just give the main ideas of the program working. For information, the code, in its actual
version, is composed by around 50 header files with more than 6500 lines in total. This
code might be diffuse but need to be made more user friendly before that.

As mentioned in the section 1.2.2, an indispensable input for the quantum calculations
on Rydberg atoms is the knowledge of the quantum defects. So, in our program, in ad-
dition to the physical constants usally required for atomic physic calculation, we need
to set the experimentally obtained values of the quantum defects, we did it for cesium,
rubidium and lithium atoms (and hydrogen!).

From the knowledge of the quantum defect, we calculate the Rydberg electronic wave
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functions and energies of one Rydberg atom in absence of external fields. We do it in
the frame of the QDT with Numerov integration method in the so-called Coulomb ap-
proximation for the radial part of the wave function. This allows to fully characterize
a quantum basis {|r〉} = {|n, l, j,mj〉}nljmj , the zero-field basis, from which all the
calculations are effectuated. Any state |r〉 = |n, l, j,mj〉 of this basis is an eigenstate of
the zero-field Hamiltonian H0 with the eigenenergy Enlj .
In this basis, for a Rydberg atom a, we can write the Hamiltonians relative to the pres-
ence of a static electric field ~F and a static magnetic field ~B, we note them respectively
HS and HZ for Stark and Zeeman Hamiltonian. In diagonalyzing the total Hamiltonian
Ha = H0 +HS +HZ , we obtain the energies of the Rydberg states of an atom in pres-
ence of the external fields and we can express them in the zero-field basis.
Working in the zero-field two-atoms basis (tensorial product of two zero-field basis) we
can write the Hamiltonian of the electrostatic interaction Hab(~Rab) between two Ryd-
berg atoms a and b, separated by ~Rab = ~Ra+ ~Rb. In diagonalyzing the total Hamiltonian
Htot = Ha ⊗ 11 + 11 ⊗ Hb + Hab we obtain the energy of the two interacting Rydberg
atoms in presence of a static, uniform, electric and magnetic fields and we can express
the new eigenstate in the zero-field two-atoms basis.

To extract the results of those calculations, it is often useful to plot the eigenenergies
in function of one parameter (‖~F‖, ‖~Rab‖) in keeping constant the other ones. In our
program we use GNUplot which allows to ask for the desired graphics directly from the
C++ code. We use also in the program different existing libraries from GSL (GNU Sci-
entific Library), namely gsl_eigen.h for diagonalization routines and gsl_sf_coupling.h
for angular momentum coupling.

2.2 Alternative, approximation und uncertainty

In this section we discuss the different choices that we made to implement the calcu-
lations when alternative methods exist. We discuss also the approximations which are
done and give order of magnitude for the associated uncertainties. We try also to high-
light in this section the conditions for which the calculations that we have implemented
are the most accurate.

2.2.1 Quantum defects and Rydberg states basis

The experimental determination of the quantum defects is an indispensable input for Ry-
dberg calculations, this for all the theoretical treatments. For one given atomic specie,
the values of the quantum defects are determined in measuring the energy of transition
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between the different Rydberg states and the ground state using high-precision spec-
troscopy, the obtained precision is of the order of few MHz. Interestingly, for Rydberg
states with not so high principal quantum numbers n, it is even possible to resolve exper-
imentally the hyperfine structure of the energy spectrum. In the case of cesium, from the
data reported in [Goy et al., 1982] we can interpolate that the hyperfine splitting is below
1MHz only for n > 28 for np1/2(F=3-F=4), n > 23 for np3/2(F=2-F=5) and n > 40 for
ns1/2(F=3-F=4). We see here that the description of the Rydberg states using the fine
structure basis is well adapted only for Rydberg states with a relatively high principal
quantum number. For now, in our calculations, we do not deal at all with the hyperfine
structure and we can then consider that the accuracy of the calculations are fully valid at
the scale of few MHz for n > 40. Nevertheless, the accuracy of the treatment with the
fine structure basis of the lower Rydberg states remains quite good as the energy scale
of the hyperfine splittings is very small in comparison with the energy scale between
the different Rydberg states of the fine structure basis, for example, still in cesium, if
the hyperfine splitting between the states 24s1/2F=3 and 24s1/2F=4 is around 7 MHz,
the fine structure basis Rydberg state the closest in energy from 24s1/2 is 20f7/2 and the
difference in energy between those two states is around 14GHz.

2.2.2 Radial matrix elements

To calculate the coupling terms between the zero-field Rydberg states due to the elec-
tric and/or magnetic "perturbation", we need to determine the so-called radial matrix
elements (see section 2.4). Those elements depend of the radial wave functions of the
Rydberg states.
To calculate the radial wave functions of a Rydberg state, we use the knowledge of its
energy. Consequently, the uncertainty on the Rydberg states energy, i.e., on the quantum
defects, induces an uncertainty on the radial matrix elements.

In addition to the uncertainty on the energy of the Rydberg states, the non exact knowl-
edge of the radial potential view by the Rydberg electron induces also an uncertainty on
the determination of the radial wave functions.
In our program, we use the so-called Coulomb approximation to calculate the radial
wave functions of the zero-field Rydberg states. The Coulomb approximation consists
in approximating the potential created by the nucleus and the core-electrons by the sim-
ple Coulomb potential of a punctual charge. This approximation is very accurate at
large distances, i.e., when the Rydberg electron is far from the core. However, this ap-
proximation leads to less accurate evaluation of the Rydberg wave functions in the core
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region.
An important point concerning the calculations that we present in this chapter is that we
are interested in the matrix elements between two Rydberg states. Because the Rydberg
wave functions have a huge spatial expansion, the radial matrix elements between two
Rydberg states is very weakly dependent of the value of the wave functions close from
the core. Consequently, the use of the coulomb approximation leads to a very accurate
determination of the radial matrix elements between two Rydberg states.

The calculation of the radial matrix element between the ground state and a Rydberg
state are involved in the determination of the Rabi frequency of such a transition. It is
then very important to calculate it precisely. In addition to the "near core" region which
has to be carefully checked, the angular selection rules depends the hyperfine structure
of the ground state. Consequently, in the present state of the program, those radial ma-
trix elements are not accessible, concerning the selection rules, we can find in [Löw
et al., 2012] the corresponding formula.

Interestingly, it exists alternative methods to the Coulomb approximation (NCA) to cal-
culate the radial wave functions of Rydberg states. As proposed in [Klapisch, 1971], we
can determine models potentials (MMP) describing the potential seen by the Rydberg
electron such that the eigenvalues of the model potentials corresponds to the real one.
In this method, the model potentials are adjusted in order to reproduce the experimental
energies of the Rydberg states and depend then of the quantum defect values.
Also, methods have been proposed aiming to evaluate directly the radial matrix ele-
ments, in this case, the Rydberg wave function itself is not investigated. In [Klarsfeld,
1989], analytical formula are derived as interpolation of case of hydrogen for non inte-
ger principal quantum number (MCA). Another method of this type has been proposed
in [D’yachkov and Pankratov, 1994] (DP) where analytical formula are derive follow-
ing quasi-classical calculations. Very interestingly, formula are proposed for the matrix
elements between two bound states but also between a bound and a continuum states as
well as between two continuum states. A big advantage of the methods which use ana-
lytical formulas is to avoid completely the eventual derives of the numerical methods.

The methods DP has been used for example in [Beterov et al., 2012] to determine
Cooper minima in the transition probability from ground to Rydberg states. In this
reference, the results are compared with the ones given by the Coulomb approximation
showing in a general way a good agreement. However, additional Cooper minima are
fond using the DP method.
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In the reference [Piotrowicz et al., 2011], authors report experimental measurements
of the reduced dipole matrix elements (strongly linked to the radial matrix elements)
between ground and Rydberg states of Rubidium 87. Very interestingly they have done
a comparison of their experimental results with the different theoretical calculations that
we have mentioned. In the fig2.1 we show a graphic extracted from this article.

Figure 2.1: Reduced dipole matrix elements in function of the principal quantum num-
ber, from [Piotrowicz et al., 2011]. In this graph, experimental results (markers with
error bars) are compared with different theoretical calculations (lines)

On the fig2.1, we see that in a general way, the different calculations leads to similar
results.

2.2.3 Basis set for the calculations

In principle, we should work every time with the full basis and even include the con-
tinuum states. In practice, the presence of external fields as well as Rydberg-Rydberg
interactions do not coupled all the states together. Because we are often interested in a
particular energy region and not to the full Rydberg spectrum, we can limit the calcu-
lation to a subset of states close in energy. Nevertheless, the zero-field Rydberg states
are still strongly mixed by external fields or by the Rydberg-Rydberg interaction and the
number of states to take in account to get accurate results can be quite important. For
example, to get accurate calculation of the Stark effect on one Rydberg state induced by
a field whom the strength is the half of the ionization field, we need to take in account
at least 5 multiplicities around the Rydberg state in question.
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In our program, we do not deal at all with continuum states. Consequently, the cal-
culation of the Stark effect near the ionization limit is not accurately treated.

2.2.4 Axis of quantification

Each of the Hamiltonian that we want to treat (Stark, Zeeman and interaction ones)
taken separately, could be calculated in choosing the most convenient axis of quantifica-
tion of the atoms (often noted Oz). For fields Hamiltonian it correspond to take the axis
of quantification along the field direction, i.e., the quantum number mj is in the case the
projection of the total angular momentum j along the field direction. For the interaction
Hamiltonian, it correspond to the internuclear axis.
Such a good choice of the axis of quantification, for each Hamiltonian taken separately,
leads to quite simple expressions of the corresponding matrix elements and the formula
usually found in the literature are always given with this convention.
However, in our case, as we want to treat all the effects in the same time, we have to de-
fine a unique quantification axis (a unique basis). We can note that those considerations
concern only the angular part of the physical problem.
One possibility could be to use the Wigner rotation matrix. Those matrix allows to cal-
culate the matrix elements of an Hamiltonian in a given coordinate system (for a given
axis of quantification) in function of the matrix elements in an other coordinate system
which differs from the first one by a given 3-dimensional rotation. It could be then pos-
sible to calculate for each Hamiltonian the matrix elements with the most simple (given
the simplest formula) axis of quantification and, from this, calculate the matrix elements
in the common basis using the appropriated Wigner rotation matrix.
In our treatment, we choose to calculate directly the matrix elements of the different
Hamiltonians in a previously defined basis. This means, for example, that the Stark
Hamiltonian has to be express for an electric field which is not along the quantification
axis but along a "random" direction in comparison to the axis of quantification. This
gives more complicated expression of the matrix elements since HS = −µ̂. ~F is not
simply −µ̂zFz but −(µ̂xFx + µ̂yFy + µ̂zFz). In this manuscript, we present the formula
associated to this treatment.

The use of Wigner rotation matrix leads formally to a slightly simpler treatment since it
corresponds to a deeper use of angular momentum theory results. From a programing
point of view, the implementation of both methods are roughly similar. However, the
fact to determine directly the matrix elements in a random basis leads to more explicit
formula where the selection rules are slightly more visible.

78



2.3 Zero-field Rydberg states

2.3.1 Zero-field Rydberg energies

In absence of external field, the energy Enlj of a Rydberg state |n, l, j,mj〉 is given by
the equation 1.2 of the section 1.2.2 that we record here

Enlj = − Ry

(n− δnlj)2
(2.1)

The values of the quantum defect δnlj can be, for each alcalin specie, evaluated from
the knowledge of few parameters via the Ritz’s formula (equation 1.5 section 1.2.2)

δnlj = δ0(lj) +
δ2(lj)

(n− δ0(lj))2
+ ... (2.2)

We already give in the section 1.2.2 (Tab.1.2) the values of the quantum defects for
cesium atom. We give here the value for rubidium atoms.

Series δ0 δ2

ns 3.1311804 0.1784
np1/2 2.6548849 0.2900
np3/2 2.6416737 0.2950
nd3/2 1.34809171 −0.60286
nd5/2 1.34646572 −0.59600

Table 2.1: Rubidium quantum defects, from [Li et al., 2003] and [Han et al., 2006]

2.3.2 Zero-field Rydberg wave functions

In absence of external fields, one Rydberg atom possesses a very useful symmetry : it is
invariant by any three-dimensional rotations of the coordinates system. A very conve-
nient consequence is that the angular part of the problem can be completely analytically
determined.
In defining the position vector of the Rydberg electron as ~r = {r, θ, φ}, i.e., using
spherical coordinates (see section 2.5.2), the wave function Ψnlmjm(~r) of a Rydberg
state |n, l, j,mj〉 can be formally decomposed in a radial part and an angular part

Ψnljmj(~r) = Rnlj(r)Θljmj(θ, φ) (2.3)

The radial part not depend of mj and the angular part not depend of n.
The angular part of the wave function is the same than in the case of hydrogen and can
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be determined in function of the spherical harmonics (see section 2.5). Also we will
focus in this section on the radial part. The radial part of the wave function Rnlj(r)

satisfies the following equation[
−~2∇2

~r

2µe
− Veff (r)

]
Rnlj = EnljRnlj (2.4)

Where µe = memcore
me+mcore

is the reduced mass of the problem (me and mcore are respec-
tively the electron mass and the mass of the ionic core). Veff is the potential view by
the Rydberg electron due to the presence of the ionic core.
The point is that Veff is not exactly known and will be approximately determined. By
contrast Enlj is known, or more precisely, measured experimentally.

As a simple but in fact quite accurate approximation, we can consider that Veff is the
simple Coulomb potential. We give in the apendix appendix A more accurate form of
Veff .

Veff (r) = −e
2

r
(2.5)

By introducing the function u(r) = rR(r) we can write the equation 2.4 as[
d2

dr2
− l(l + 1)

r2
+

2µe
~2

(Enlj − Veff (r))
]
u(r) = 0 (2.6)

This differential equation can be solved by the Numerov’s method. The Numerov’s
method is a general method to solve numerically second order differential equation of
the form [

d2

dr2
+ f(r)

]
u(r) = 0 (2.7)

Where f(r) is a known function of r.
By identifying f(r) = l(l+1)

r2
− 2µe

~2 (Enlj − Veff (r)) we see that the Numerov’s method
is well adapted to solve the equation 2.6.
The Numerov’s method is presented in the appendix A, we give here only the princi-
ple. The continuous variable r is discretized, giving a list of adjacent coordinates {ri}
at witch we will find the value of u(r). The core of the Numerov’s method consists
in an iterative technique, it allows to calculate the value of u(ri) knowing u(ri−1) and
u(ri−2). We need thus to initiating the calculation in setting the value of u at two adja-
cent positions, for example u(ri0) and u(ri0−1), the function is then calculated from one
coordinate to the next and the obtained radial wave function is normalized.
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In our case the initialization is straightforward as we know that the value of the radial
wave function of any Rydberg states goes to zero at large distance. So we will use the
Numerov’s method to calculate the Rydberg wave function starting at large r and pro-
gressively going toward the ionic core.
We see here that the numerov’s method is particularly adapted to the calculation of the
radial Rydberg wave function. Indeed, if the effective potential Veff is not known ex-
actly, the real potential differs from the approximated potential only at short distance.
Since the Rydberg electron has a very big spatial expansion, the calculation of the wave
function is very accurate for a large range of distance.

We have represented in the fig 1.3 of chapter 1 a typical radial wave function calcu-
lated by the Numerov’s method and the Coulomb approximation.

2.4 Radial matrix elements

The knowledge of the radial wave functions is needed to calculate the coupling terms
between the Rydberg states in regard to the electromagnetic interaction of the atom and
its environment. For the electrostatic couplings, if the angular part mostly determines
the selection rules, the radial part gives the overall strength of the couplings. The spread
of the spatial overlap between 2 Rydberg states, proportional to n2 is then a relevant
quantity.

The radial matrix elements Rn′l′j′

nlj are the radial part of the elements of the position
operator r̂ between two zero-field Rydberg states.

Rn′l′j′

nlj =

∫
Rn′l′j′(r)Rnlj(r)rr

2dr (2.8)

Using the radial matrix elements, we can formally write the elements of the position
operator r̂ between two zero-field Rydberg states

〈
n, l, j,mj |r̂|n′, l′, j′,m′j

〉
as

〈
n, l, j,mj |r̂|n′, l′, j′,m′j

〉
= Rn′l′j′

nlj

〈
l, j,mj |n̂| l′, j′,m′j

〉
(2.9)

Where n̂ is the "unity position operator", in a sens it could be write as ˆ(θ, φ)r=1
1.

1To push a bit the notation we could right r̂ = r̂∫ dθdφ ⊗ ˆ(θ, φ)r=1, this gives with the rank of the

operators r̂(1) = r̂
(0)∫
dθdφ

⊗ ˆ(θ, φ)
(1)

r=1. r̂(0)∫
dθdφ

noted r in the text is a scalar operator. ˆ(θ, φ)
(1)

r=1 noted n̂
in the text is an irreducible tensorial operator of rank 1 (see section2.5.2). It could seem strange that a
vectorial operator acting on the 3-dimensional space depends only of two coordinates. What is underlying
here is the homomorphism of the group of the 3-dimensional pure rotations SO(3) onto the so-called 2-
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The values of
〈
l, j,mj |n̂| l′, j′,m′j

〉
depend only of the angular part of the wave

functions.

The same treatment can be done in considering all the operators r̂σ, where σ is a positive
integer. In this case we have to consider for the radial part the quantities Rn′l′j′(σ)

nlj

R
n′l′j′(σ)
nlj =

∫
Rn′l′j′(r)Rnlj(r)r

σr2dr (2.10)

In the case σ = 0, the orthogonalization of the zero-field Rydberg wave function
impose to have

R
n′lj(0)
nlj = δnn′ (2.11)

2.5 Resolution of the angular problem

We see in the last section that, in the treatment of a Rydberg atoms in zero-field, we can
separate the problem in a radial part and an angular part. Very interestingly, due to the
symmetry of the system under rotation of the spatial coordinates, the treatment of the
angular part can be almost completely determined by group theory considerations. In
this section, we present briefly the results of such considerations which are involved in
the treatment of a Rydberg atom. For a more complete description, we can refer to the
references [Wigner and Griffin, 1959; Tinkham, 1964; Varshalovich et al., 1987], the
convention used in this manuscript are the ones of [Varshalovich et al., 1987].

2.5.1 Angular part of the zero-field Rydberg wave functions

In the equation 2.3, we wrote a formal expression of the zero-field wave functions of a
Rydberg atom in separating the radial part and the angular part. However, this expres-
sion does not deal properly with the spin of the electron which appears only inside the
quantum number j.
In addition to the spatial coordinates, the total wave functions of a Rydberg atoms de-
pend also of spin coordinates. We note in the following the spin coordinates by ε. The
quite tricky dependence of the wave function according to the spin coordinates can be
entirely treated with the angular part of the wave function since the spin corresponds to
an intrinsic angular momentum. For the radial part, the presence of the spin trough the
quantum number j is sufficient, this is true since the spin itself (not its orientation) has

dimensional unitary group SU(2)
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a invariant value, 1
2
.

Taking in account the spin coordinates, the "angular momenta" wave function can be
write as

Θlsjmj(θ, φ, ε) (2.12)

Here, we have added explicitly the spin quantum number s to make the following
development clearer. Also in all the following, we systematically forget the principal
quantum number n. Formally, we consider only the angular problem and work with
angular basis.

The coupling between two angular momentum is a well known problem in quantum
mechanics. We assume here the reader familiar with this problem and we focus on the
points interesting for our main purpose.
Due to the spin-orbit coupling, the coupled basis |l, s, j,mj〉 is the good basis for the
treatment of a Rydberg atom. Indeed, the zero-field Hamiltonian is diagonal in this ba-
sis. However, it will be required to work also with the uncoupled basis |l,ml, s,ms〉 as,
only in this basis, the orbital and the spin angular momentum are well decoupled.
For example, in the uncoupled basis, the "spin-angular" wave functions are well sepa-
rated in orbital and spin parts

Θlmlsms(θ, φ, ε) = Ylml(θ, φ)Ξsms(ε) (2.13)

Here, the functions Ylml(θ, φ) are the so-called spherical harmonics.

The matrix allowing to do the link between the coupled basis |l, s, j,mj〉 and the un-
coupled basis |l,ml, s,ms〉 can be totally determined. Its elements are the so-called
Clebsh-Gordan coefficients noted Cjmj

lmlsms
and we have

|l, s, j,mj〉 =
∑
mlms

C
jmj
lmlsms

|l,ml, s,ms〉 (2.14)

We can find direct analytical expression for all the Clebsh-Gordan coefficients in
[Tinkham, 1964]. They can also be determined using recursive formulas.

In combining equations 2.13 and 2.14, we obtain a formal expression of the spin-angular
part of the zero-field wave functions of the coupled basis states |l, s, j,mj〉

Θlsjmj(θ, φ, ε) =
∑
mlms

C
jmj
lmlsms

Ylml(θ, φ)Ξsms(ε) (2.15)
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It is usefull to introduce quantities equivalent to the Clebsh-Gordan coefficients, the
so-called 3j-symbols defined by(

l s j

ml ms mj

)
= (−1)j+mj+2l 1√

2j + 1
C
jmj
l−mls−ms (2.16)

2.5.2 Spherical coordinates, spherical harmonics and irreducible
tensors

Spherical coordinates

Due to the spherical symmetry of a Rydberg atom, it is very convenient to use spherical
coordinates. There is several way to define spherical coordinates in function of Cartesian
ones (x, y, z), in quantum mechanics, we usually give a particular role to the z-axis and
we define the spherical coordinates (r, θ, φ) as

r =
√
x2 + y2 + z2

θ = arccos z
r

φ = arcsin y√
x2+y2

(2.17)

Spherical harmonics

A spherical harmonic Ylm(θ, φ) is a complex function defined for θ ∈ [0, π] and φ ∈
[0, 2π].

The way to define them mathematically is the following.
Considering the equation∇2f = 0 in spherical coordinates, in injecting functions of the
form f(r, θ, φ) = rly(θ, φ) in the equation, we get a set of differential equations where
r drop out and l is a parameter. For each l, the corresponding equation possesses 2l + 1

linearly independent solutions, we define the spherical harmonics Ylm(θ, φ) being those
solutions.
The spherical harmonics Ylm(θ, φ) have the form

Ylm(θ, φ) = Φm(φ)Θlm(θ) (2.18)

Where we have
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Φm(φ) = 1√
2π

eimφ

Θlm(θ) = (−1)m
[

2l+1
2

(l−m)!
(l+m)!

] 1
2

sinm θ dm

d(cos θ)m
Pl(cos θ) for m ≥ 0

Θl−m(θ) =
[

2l+1
2

(l−m)!
(l+m)!

] 1
2

sinm θ dm

d(cos θ)m
Pl(cos θ)

(2.19)

Where Pl(cos θ) are the Legendre polynomials given by

Pl(cos θ) =
1

2ll!

dl

d(cos θ)l
(cos2 θ − 1)l (2.20)

In quantum mechanics, the spherical harmonics play a very important role as they
are the eigenfunctions of the angular momentum operators L̂2 and L̂z.

L̂2Ylm = l(l + 1)Ylm (2.21)

L̂zYlm = mYlm (2.22)

The angular momentum operator L̂ being the generator of the rotations.
Physically, the spherical harmonics describes the way that a particle move in a central
potential.

Irreducible tensors

Taking a tensor of rank l, T (l), this tensor is said irreducible if its 2l + 1 components,
T

(l)
m are transformed like the spherical harmonics Ylm under rotation of the spatial co-

ordinates. This quite abstract definition is in fact linked to mathematical considerations
which concern the commutation rules that the components has to follow (the same than
angular momentum). We will focus here on the practical consequences

Every scalar is an irreducible tensor of rank 0.

Every vector or vectorial operator ~r is an irreducible tensor of rank 1 if we define its
components as
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r+1 = − 1√
2

(x+ iy) = − 1√
2
r sin θeiφ (2.23)

r0 = z = r cos θ (2.24)

r−1 =
1√
2

(x− iy) =
1√
2
r sin θe−iφ (2.25)

Where the components are given respectively in Cartesian and spherical coordinates.

The use of irreducible tensors simplify a lot the expression in quantum mechanics cal-
culation. It allows namely to use the Wigner-Eckart theorem.
A large variety of mathematical operations involving irreducible tensors can be per-
formed. We give here only the one concerning the scalar product of two irreducible
tensors of rank 1 (2 vectors), A(1) and B(1). Such a scalar product is given by

A(1).B(1) = A0B0 − A−1B+1 − A+1B−1 (2.26)

2.5.3 The Wigner-Eckart theorem

The Wigner Eckart theorem is a powerful theorem allowing to deal in a very simple
way with the dependence on the orientation of the system coordinates of the values of a
tensorial operator matrix elements.

The Wigner Eckart theorem states that for an irreducible tensorial operator of rank k,
T̂ (k). The matrix elements of the components T̂ (k)

q of this irreducible tensor in the basis
|l, s, j,mj 〉 can be express as

〈l, s, j,mj |T̂ (k)
q |l′, s′, j′,m′j〉 = (−1)j−mj

(
j 1 j′

−mj q m′j

)
〈l, s, j||T̂ (k)||l′, s′, j′〉 (2.27)

Where 〈l, s, j||T̂ (k)||l′, s′, j′〉 is a so-called reduced matrix element which does not
depend of mj , m′j and q. It can be view as the non-oriented value of the matrix element
of the irreducible tensor.
The evaluation of the reduced matrix elements of some specific operators is given in the
section 2.5.4. Nevertheless, we see here that, for a given irreducible tensor and two set
of quantum states having the same "non-oriented" quantum numbers, the Wigner-Eckart
theorem allows to find the ratio between all the possible matrix elements, whatever the
components of the tensor and the orientation of the quantum states are.
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Using Clebsh-Gordan coefficients instead of 3j-symbols, the Wigner-Eckart theorem
is

〈l, s, j,mj |T̂ (k)
q |l′, s′, j′,m′j〉 =

(−1)2k√
2j + 1

C
jmj

j′m′
jkq
〈l, s, j||T̂ (k)||l′, s′, j′〉 (2.28)

2.5.4 Reduced matrix elements

First of all, it exist a usefull relation between the reduced matrix elements of an irre-
ducible tensorial operator of rank k, T̂ (k), express in the coupled basis, i.e., 〈l, s, j||T̂ (k)||l′, s′, j′〉
and its equivalent in the uncoupled basis, 〈l, s||T̂ (k)||l′, s′〉. This relation depends if the
irreducible tensorial operator T̂ (k) acts on the spatial coordinates (it is the case of r̂ or
L̂) or on the spin coordinates (it is the case of Ŝ).
For an operator acting on the spatial coordinates we have

〈l, s, j||T̂ (k)||l′, s′, j′〉 = δss′(−1)j
′+l+s+k

√
(2j + 1)(2j′ + 1)

{
l′ s j′

j k l

}
〈l||T̂ (k)||l′〉 (2.29)

and for an operator acting on the spin coordinates

〈l, s, j||T̂ (k)||l′, s′, j′〉 = δll′(−1)j+l+s+k
√

(2j + 1)(2j′ + 1)

{
s′ l j′

j k s

}
〈s||T̂ (k)||s′〉 (2.30)

In those relations, we have used the so-called 6j-symbols defined for example in
[Varshalovich et al., 1987]. The 6j-symbols are combinaison of 3j-symbols and their
are largely use in angular momentum theory as they simplified a lot the calculations. If
the 3j-symbols appear when we deal with the coupling of two angular momentum, 6j-
symbols appear directly when we deal with the coupling of three angular momentum.
6j-symbols are proportional to the so-called Racah coefficients.

With the convention used here, the reduced matrix elements are not fully normalized.
This appears clearly with the value of the reduced element of the identity operator

〈l||Î||l′〉 = δll′
√

2l + 1 (2.31)

We give now the values of the reduced matrix elements of n̂ (unity position opera-
tor), L̂ and Ŝ in the uncoupled basis. All are vectorial operator so irreducible operator
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of rank 1 in choosing the good expression of their components.

〈l, s ||n̂|| l′, s′〉 = δss′
√

2l′ + 1C l0
l′010 (2.32)

〈l, s||L̂||l′, s′〉 = δss′δll′
√

2l + 1
√
l(l + 1) (2.33)

〈l, s||Ŝ||l′, s′〉 = δss′δll′
√

2s+ 1
√
s(s+ 1) (2.34)

Finally we give the value of the reduced matrix elements in the uncoupled basis of
the spherical harmonic operator Ŷk which is a tensorial operator of rank k acting only
on the spatial coordinates.

〈l, s||Ŷk||l′, s′〉 = δss′
√

2l′ + 1

√
2k + 1

4π
C l0
l′0k0 (2.35)

2.6 Matrix elements in the zero-field Rydberg basis

In this section, we give the general method to calculate the matrix elements of a compo-
nent of an irreducible tensorial operator, T̂, in the zero-field Rydberg basis |n, l, j,mj〉.
This method uses the different relations given in the preceding section.
The first step is to separate the problem in a radial part and an angular part. For all the
angular operators, the radial does not play a role. For operators like the position opera-
tor, r̂, this can be done in writing r̂ = rn̂. In this expression r becomes a scalar quantity
and is taking in account in the radial part trough the radial matrix elements (equation
2.9). n̂ is then taking in account in the angular part of the problem. The same idea can
be applied for all the operators whom the radial dependence can be separated from the
angular one.
In the treatment of the angular part, the first operation consists in applied the Wigner-
Eckart theorem (equation 2.27) allowing to be free of the orientation of the system. The
relevant quantities which have to be calculated are then the reduced matrix elements.
Up to now, the problem is still treated in the coupled basis. To evaluate the reduced
matrix elements, it is possibly required to move in the uncoupled basis, in this case we
can use the equations 2.29 or 2.30. Finally the reduced matrix elements are evaluated
and the full matrix element can be reconstructed.

It is interesting to notice that an other possible treatment of the angular problem could be
to move directly in the uncoupled basis using the equation 2.14 and then use the Wigner-
Eckart theorem in this basis. Those two treatments should be completely equivalent,
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however, the first one imply lighter formula. This is due to the use of the 6j-coefficients
which combine several 3j-coefficients.
We could also think that it could be possible to work directly with the uncoupled ba-
sis, i.e., to express the different matrix elements of the system in the uncoupled basis.
However, because the states of the uncoupled basis are not eigenstates of the zero-field
Hamiltonian due to the spin-orbit coupling, the energies of those states are not accessi-
ble experimentally. We see here that the determination of the radial wave functions of
the uncoupled basis states with the Numerov method is more problematic. It is some-
times proposed in order to work directly in the uncoupled basis to take the energies of
the uncoupled states as the average energies of the coupled states.

2.7 Rydberg states in presence of static, uniform, exter-
nal fields

In this section we present the way to determine the quantum eigenstates of a Rydberg
atom in presence of static, uniform, electric and magnetic fields. In both case we give
the explicit way to calculate all the matrix elements between two states of the zero-field
Rydberg basis.

2.7.1 electric field

The effect of an electric field ~F is take in account by the Stark Hamiltonian HS given in
the equation 1.25 of the chapter 1.

HS = −µ̂. ~F = −er̂. ~F (2.36)

In writing the vectors and vectorial operators as irreducible tensor of rank 1, the
matrix elements of the Stark Hamiltonian in the zero field basis are given by

〈
n, l, j,mj |HS |n′, l′, j′,m′j

〉
= −eRn

′l′j′

nlj

1∑
q=−1

F−q(−1)q
〈
l, j,mj |nq| l′, j′,m′j

〉
(2.37)

Where Rn′l′j′

nlj is the radial matrix element given in the equation 2.8 and nq the com-
ponent q of the unity position operator n̂.
According to the Wigner-Eckart theorem we have
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〈
l, j,mj |nq| l′, j′,m′j

〉
= (−1)j−mj

(
j 1 j′

−mj q m′j

)〈
l, j ||n̂|| l′, j′

〉
(2.38)

As n̂ depends of the spatial coordinates of the electron and not of the spin ones, we
have, using the equation 2.29

〈
l, j ||n̂|| l′, j′

〉
= (−1)j

′+l+s+1
√

(2j + 1)(2j′ + 1)

{
l′ s j′

j 1 l

}〈
l ||n̂|| l′

〉
(2.39)

and we have

〈l ||n̂|| l′〉 = (−1)l
√

(2l + 1)(2l′ + 1)

(
l 1 l′

0 0 0

)
(2.40)

Combining equation 2.37, 2.38, 2.39, 2.40 we get an explicit expression of the ma-
trix elements of the Stark Hamiltonian in the zero-field basis.
Due to the selection rules hidden in the 3j and 6j symbols, only few elements are non
null, namely

〈
n, l, j,mj |HS|n′, l′, j′,m′j

〉
6= 0 if

∣∣mj −m′j
∣∣ ≤ 1, |j − j′| ≤ 1 and

|l − l′| = 1. From this last equality, we see that the Hamiltonian Stark is null on the
diagonal in the zero-field basis.

2.7.2 magnetic field

The effect of an magnetic field ~B is take in account by the Zeeman Hamiltonian HZ

given by

HZ =
µB
~

(glL̂+ gsŜ). ~B +
e2

8me

( ~B ∧ r̂)2 (2.41)

Where µB is the Bohr’s magneton, gs and gl the electron spin and the electron orbital
"g−factors" or Lande’s factor (their respective value are≈ 1 and≈ 2). The second term
is sometimes called the quadratic or diamagnetic Zeeman effect, it can be rewrite as

e2

8me

( ~B ∧ r̂)2 =
e2

8me

(B2r̂2 − ( ~B.r̂)2) (2.42)

We see that the Zeeman Hamiltonian can be separated in 4 terms that we will treat
separately. To simplify the notations we do not write in the following the scalar factors
of each terms which appears in the equation 2.41.
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term in ~L.~B

This term does not present any radial dependence so we remove the n quantum number,
however, we do not add now the selection rule n = n′ imposed by the radial part as it
would be wrong (as long as other quantum number can be different in the two states) but
wait for the proper moment. By the same time we express the vector ~B and the vectorial
operator L̂ as irreducible tensors of rank 1.

〈n, l, j,mj |L̂. ~B|n′, l′, j′,m′j〉 =

1∑
q=−1

B−q(−1)q〈l, j,mj |Lq|l′, j′,m′j〉 (2.43)

According to the Wigner-Eckart theorem

〈
l, j,mj |Lq| l′, j′,m′j

〉
= (−1)j−mj

(
j 1 j′

−mj q m′j

)
〈l, j||L̂||l′, j′〉 (2.44)

According to the equation 2.29

〈l, j||L̂||l′, j′〉 = (−1)j
′+l+s+1

√
(2j + 1)(2j′ + 1)

{
l′ s j′

j 1 l

}
〈l||L̂||l′〉 (2.45)

We can then use the equation 2.33 and we add the "radial" dependence.

〈l||L̂||l′〉 = δnn′δll′
√

2l + 1
√
l(l + 1) (2.46)

In the last equation, the factor
√

2l + 1 is a normalization factor and
√
l(l + 1) is

the expectation value of the operator L̂.
Combining all those equation leads to the matrix elements corresponding to the term in
~L. ~B.

term in ~S.~B

In this section we add the quantum number s = 1/2 in the notation. The treatment of
the radial dependence is the same than for the term in ~L. ~B.

〈n, l, s, j,mj |Ŝ. ~B|n′, l′, s, j′,m′j〉 =

1∑
q=−1

B−q(−1)q
〈
l, s, j,mj |Sq| l′, s, j′,m′j

〉
(2.47)

According to the Wigner-Eckart theorem

〈
l, s, j,mj |Sq| l′, s, j′,m′j

〉
= (−1)j−mj

(
j 1 j′

−mj q m′j

)
〈l, s, j||Ŝ||l′, s, j′〉 (2.48)
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According to the equation 2.30

〈l, s, j||Ŝ||l′, s, j′〉 = δll′(−1)j+l+s+1
√

(2j + 1)(2j′ + 1)

{
s l j′

j 1 s

}
〈l, s||Ŝ1||l′, s〉 (2.49)

Using the equation 2.34

〈l, s||Ŝ||l′, s〉 = δnn′δll′
√

2s+ 1
√
s(s+ 1) = δnn′δll′

√
2s+ 1

√
3

2
(2.50)

In the last equation, the factor
√

2s+ 1 is a normalization factor and
√
s(s+ 1) is

the expectation value of the operator Ŝ.
Combining all those equation leads to the matrix elements corresponding to the term in
~S. ~B.

Together with the term in ~L. ~B, it gives the most important effect of a relatively small
magnetic field since the quadratic Zeeman effect is important only for strong field (of
the order of 1 Tesla).
The matrix elements of both term ~L. ~B and ~S. ~B are non null on the diagonal, this means
that each zero-field Rydberg states is shifted by himself under the effect of a magnetic
field. Also the magnetic field induces a coupling between some of the zero-field Ry-
dberg states. The selection rules are given by

∣∣mj −m′j
∣∣ ≤ 1 and |j − j′| ≤ 1 and

l = l′

term in B2r2

Both terms of the quadratic Zeeman effect can not be, a priori, expressed in term of
irreducible tensorial operators. Consequently, in the treatment of the angular part we
can not use the Wigner-Eckart theorem.
The radial part can still be treated independently and we have

〈n, l, j,mj|B2r̂2|n′, l′, j′,m′j〉 = B2R
n′l′j′(2)
nlj

〈
l, j,mj

∣∣n̂2
∣∣ l′, j′,m′j〉 (2.51)

Where Rn′l′j′(2)
nlj is given by the equation 2.10.

For the treatment of the angular part, we need to switch directly in the uncoupled basis
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|l,ml, s,ms〉 through the equation 2.14.
In the uncoupled basis, the operator n̂2 is diagonal and we have simply

〈
l,ml, s,ms

∣∣n̂2
∣∣ l′,m′l, s′,m′s〉 = δll′δmlm′lδss′δmsm′s (2.52)

term in (~B.~r)2

We first treat the radial part

〈n, l, j,mj|( ~B.r̂)2|n′, l′, j′,m′j〉 = R
n′l′j′(2)
nlj 〈l, j,mj|( ~B.n̂)2|l′, j′,m′j〉 (2.53)

Where Rn′l′j′(2)
nlj is given by the equation 2.10.

For the treatment of the angular part, we switch in the uncoupled basis |l,ml, s,ms〉
through the equation 2.14. We then have to calculate terms of the form

〈l,ml, s,ms|( ~B.n̂)2|l′,m′l, s′,m′s〉 (2.54)

In writing ~B and n̂ in terms of irreducible tensor of rank 1, we have

( ~B.n̂)2 = n2
0B

2
0 + n2

−1B
2
1 + n2

1B
2
−1 (2.55)

−2n0n−1B0B1

−2n0n1B0B−1

+2n1n−1B−1B1

We see here that we have 9 terms to calculate all of the form

BuBv 〈l,ml, s,ms |nµnν | l′,m′l, s′,m′s〉 = BuBvδss′δmsm′s 〈l,ml |nµnν | l′,m′l〉 (2.56)

We can then use the following equation to calculate those terms

〈l,ml |nµnν | l′,m′l〉 =
(−1)µ

3
δll′δmlm′lδµ(−ν) +

√
2

3

2l′ + 1

2l + 1
C l0
l′020

2∑
k=−2

C2k
1µ1νC

lml
l′m′l2k

(2.57)
We see that the quadratic Zeeman effect coupled states with |l − l′| = 0 or |l − l′| =
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2. It is proportional to B2 and to Rn′l′j′(2)
nlj .

In the frame of this thesis, we have only consider the effect of relatively small magnetic
field for which the effect of this diamagnetic term is almost negligible. However, a very
interesting Physic arise from the effect of a strong magnetic field on Rydberg atoms with
namely the appearance of chao. The fact is that, under the effect of a strong magnetic
field, the classical motion of the Rydberg electron does not follow cycling orbital but can
potentially explore the full space around the core. This chaotic behavior leads namely to
a characteristic distribution of the eigenenergy of the Rydberg states. This has been quite
intensively studied during the nineties and we can refer for example to the following
reference [Bouloufa et al., 1992] for an experimental demonstration.

2.8 Multipolar electrostatic interaction between two Ry-
dberg atoms

In this section, we present the way to calculate the electrostatic multipolar interactions
between two Rydberg atoms. As there is two atoms, we have to work in the two atoms
basis. We will express all the matrix elements of the multipolar interaction in the two
atoms zero-field basis, i.e., for states of the form Ψab = |n, l, j,mj〉a ⊗ |n, l, j,mj〉b.

2.8.1 Multipolar electrostatic interactions

In the very general case, for two charge distributions a and b whom the center of mass
is separated by a distance Rab. Considering that the two distributions are spatially well
separated. The electrostatic interaction Hamiltonian Hint between a and b is given by

Hint =
∞∑

i,j=0

Vij(a, b)

Ri+j+1
ab

(2.58)

Here we have decomposed the total electrostatic interaction in a sum of multipolar
electrostatic interactions Vij(a, b). They are given by

Vij(a, b) =
1

4πε0

+inf(i,j)∑
m=−inf(i,j)

(1)j(i+ j)!√
(i+m)!(i−m)!(j +m)!(j −m)!

Qm
i (a)Q−mj (b)

(2.59)
Where Qm

i (a) is a component of a multipolar moment of the distribution a. It is
given by
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Qm
i (a) =

√
4π

2j + 1

∑
k∈a

qkr
j
k,aYjm(θk,aφk,a) (2.60)

Here, k denotes the kth particle of the distribution a. qk is the electric charge of k
and rk,a, θk,a and φk,a are the spherical coordinates of k taking the center of mass of a
as the origin. The Yjm are the spherical harmonics.

2.8.2 Case of a Rydberg atom

In the case of a Rydberg atom, we consider that the system is composed by two particles,
the Rydberg electron and an other effective particle representing the nucleus and the
other electrons. This effective particle is considered to be situated at the center of mass
of the atom and to have an electric charge +e.
Consequently, the components of the multipolar moments of a Rydberg atom are given
by

Q0
0 = 0 (2.61)

Meaning that the Rydberg atom has no total electric charge.

Qm
j 6=0 =

√
4π

2j + 1
(−e)rjYjm(θφ) (2.62)

Where r, θ and φ are the spherical coordinates of the Rydberg electron of the atom
taking the nucleus as the origin.
We see that under this form, a component of a multipolar moments Qm

j is a component
of an irreductible tensorials operators of rank j, it is then possible to use the Wigner-
Eckart theorem.
In order to extract easily the radial dependence, we define the angular multipolar mo-
ments Q̃m

j as

Qm
j = −erjQ̃m

j (2.63)

2.8.3 Matrix elements of the multipolar electrostatic interactions

Considering two Rydberg atoms a and b, we note Ψab = Ψa ⊗ Ψb = |n, l, j,mj〉a ⊗
|n, l, j,mj〉b a state of the zero-field two-atom basis.

The quantities that we have to calculate are of the form
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〈
Ψab

∣∣Qm
i (a)Q−mj (b)

∣∣Ψ′ab〉 (2.64)

The total electrostatic interaction will be given by a sum of several of those terms
according to the equations 2.58 and 2.59.

The multipolar operators of the atom a act only on the atom a and identically the mul-
tipolar operators of the atom b act only on the atom b. Consequently, we can write the
multipolar interactions as

〈
Ψab = Ψa ⊗Ψb

∣∣Qmi (a)Q−mj (b)
∣∣Ψ′ab = Ψ′a ⊗Ψ′b

〉
= 〈Ψa |Qmi (a)|Ψ′a〉

〈
Ψb

∣∣Q−mj (b)
∣∣Ψ′b〉 (2.65)

We have then to calculate terms of the form

〈Ψa |Qq
k(a)|Ψ′a〉 =

〈
n, l, j,mj |Qq

k|n
′, l′, j′,m′j

〉
(2.66)

We see here that the problem is now treated in the one-atom zero-field Rydberg
basis.
We can first treat the radial part

〈
n, l, j,mj |Qq

k|n
′, l′, j′,m′j

〉
= −eRn′l′j′(k)

nlj 〈l, j,mj|Q̃q
k|l
′, j′,m′j〉 (2.67)

Where Rn′l′j′(k)
nlj is given by the equation 2.10 and Q̃q

k defined by the equation 2.63.
According to the Wigner-Eckart theorem, we have

〈l, j,mj |Q̃qk|l
′, j′,m′j〉 = (−1)j−mj

(
j k j′

−mj q m′j

)
〈l, j||Q̃k||l′, j′〉 (2.68)

As Q̃k depends of the spatial coordinates, we have, using the equation 2.29

〈l, j||Q̃k||l′, l′〉 = (−1)j
′+l+s+1

√
(2j + 1)(2j′ + 1)

{
l′ s j′

j k l

}
〈l||Q̃k||l′〉 (2.69)

Finally using the equation 2.35

〈l||Q̃k||l′〉 =

√
4π

2k + 1
〈l||Ŷk||l′〉 =

√
2l′ + 1C l0

l′0k0 (2.70)
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Conbining the equations 2.70, 2.69, 2.68, 2.67, 2.65, 2.59 and 2.58 we obtain the
matrix elements of the total electrostatic interaction Hint in the zero-field two-atoms
Rydberg basis.
The equation 2.58 contains in fact an infinite sum, however, we can limit the sum to te
first terms as their values decrease strongly when i and j increase. Taking only the first
term, i.e., i = j = 1, we obtain the dipole-dipole interaction between the two Rydberg
atoms, all the results presented in the following are limited to this case.

2.9 Results of the calculations

The calculations presented in the sections 2.7 and 2.8 have been implemented, in the
frame of this thesis, in an informatic program. Several types of outputs can be asked to
the program, allowing to get the results of the calculations. We present in this section
the different outputs that we have look at.

2.9.1 Stark diagram

One of the most simple task that we can ask to the program is to calculate the energies
of the Rydberg states in presence of a static, uniform, electric field. When we plot those
energies in function of the magnitude of the electric field, we obtain a so-called Stark
diagram.
Such calculations have been done for a long time and we have already shown a typical
result in the fig 1.4 of the chapter 1, which is extracted from the reference [Zimmerman
et al., 1979]. In order to check the validity of our calculations (overall the fidelity of
their implementation) we have reproduced the same Stark diagram, shown on the fig
2.2.

The agreement with the results of [Zimmerman et al., 1979] is very good.

2.9.2 Förster resonances

From the knowledge of the Rydberg energies in presence of an electric field, it is pos-
sible to calculate the field at which Förster resonances appears (see section 1.3.2 in the
chapter 1). In a first time, we can calculate the sum of the energies of two Rydberg
states in function of the electric field.
A F"orster resonance is potentially present at the electric field where the energy of two
2-body states are equal. We say potentially as the two pairs of Rydberg states has to
effectively interact via Rydberg-Rydberg interaction to have a Förster resonance. This
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Figure 2.2: Calculation of the diagram Stark of the cesium for n around 15 and |mj|=1.
In the calculations, all the Rydberg states with |mj|=1 and n between 13 and 20 have
been taken into account

can be checked and quantified by the program.
If we can characterize the Stark tuned dipole-dipole Förster resonances using the pro-
gram, it could be also possible to look for other types of Förster resonance, for example
magnetic Förster resonances or Förster resonances where quadrupolar interactions are
involved.

2.9.3 Spaghetti curves

An other interesting task that we can ask to the program is to plot the eigenenergies of
a pair of Rydberg atoms in function of their distance. Due to the very large number of
two-atoms quantum states we obtained an ensemble of so-called spaghetti curves as we
can see on the fig 2.3. To build the 2-body basis in which the calculations are done,
we first define the 1-body basis. The 1-body basis includes several multiplicities with
eventually a restriction on the orbital and magnetic quantum numbers. Then the 2-body
quantum states are chosen within all the possible pairs. We have implemented several
way to choose the 2-body states. We can for example ask explicitly for predefined
states. As we are often interested in the potential curve of one particular 2-body state.
We can take all the states in a given range of energy around this state, eventually with
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condition on the coupling strengths. For example, we can take a given number of state
being the most coupled to the state of interest, then a given number of states being the
most coupled to the most coupled, etc... The purpose of this selection is to get the most
accurate result in limiting the basis of the calculations (the calculation time).

Figure 2.3: Calculation of the 2-body eigenenergies in function of the interatomic
distance. Energies are given in cm−1, the distances in µm. The zero of energy
corresponds to the non-interacting energy of two Rydberg atoms in the state 70p3/2.
We took for the calculations the 10 2-body states the most coupled to 70p3/2(mj =
−1/2) + 70p3/2(mj = −1/2) the 4 states the most coupled to each of those states and
the 2 states the most coupled to each of all the states already chosen. All of the 2-body
states are chosen to be composed by Rydberg state with n between 62 and 75 and l < 6
(up to g states) with all the possible j and mj

In an energy diagram like the one of the fig 2.3, we can obtain the dependence of
the Rydberg-Rydberg interaction of a particular 2-atoms state in function of the distance
between the two Rydberg atoms. By doing a fit of such a curve, we could obtain the C3

or C6 coefficients of a Rydberg state.
However, we see in the fig2.3 that the interaction between two Rydberg atoms presents
in fact a much more complicated behavior than the one obtained in the two-levels ap-
proximation presented in the chapter 1. Namely, at short distance, the interaction be-
tween the Rydberg atoms becomes very important and the number of quantum states
which are mixed together is huge.
It is important to recall here the limit of validity of the dipole-dipole Hamiltonian. The
two Rydberg atoms of the pair have to be well spatially separated. On the fig2.3, the
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size of each atom is around 0.5µm and the calculations are then valid only for a radius
larger than 1 µm.
It is quite interesting to determine, in addition to the eigenenergies, the eigenstates of
the pair of interacting atoms. In expressing those new eigenstates in the basis of the
non-interacting ones, we get an idea of how the states are mixed together under the ef-
fect of the Rydberg-Rydberg interaction. In the fig2.4 we have (tried to) represented
the fraction of one non-interacting two-atoms Rydberg state present in each of the new
eigenstates.

Figure 2.4: Fraction of the non-interacting state 70p3/2(mj=-1/2) + 70p3/2(mj=-1/2)
present in the interacting states. The calculation are the same than the one of the fig 2.3

We see that, for two close atoms, an initial non-interacting 2-body Rydberg state is
highly diluted in many interacting states. At small interatomic distances, there is almost
no meaning to speak of two atoms excited in a well defined Rydberg state. For example,
say that we have two atoms separated by 1.5µm in the 70p3/2 Rydberg state is quite
ambiguous.

2.9.4 Zeeman degeneracy

The fact that a Rydberg state with a total angular quantum number j possesses 2j + 1

different magnetic quantum number mj (that we call here the Zeeman degeneracy) has
very strong consequences on the Rydberg-Rydberg interaction. This has been studied
in details in the reference [Walker and Saffman, 2008], we can also look at this feature
using our program.
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On the figZeemanDeg, we have plotted the 2-body eigenenergies in function of the
distance between the two atoms in taking into account the 43d5/2 +43d5/2 states and the
45p3/2 + 41f states which is the 2-body "state" the most coupled with the first one. For
f states both j = 5/2 and j = 7/2 are taken into account and for all the states all the
possible mj are considered.

Figure 2.5: Potential curves resulting from the different "Zeeman configurations" of the
channel d5/2 + d5/2 → p3/2 + f . The diagram obtain here has been previously reported
in the reference [Saffman et al., 2010]. This has been used to check the validity of our
program for 2-body calculations.

We see on the fig 2.5 that the Rydberg-Rydberg interaction has very different strength
for the different combinaison of the magnetic quantum numbers of the two atoms. In
terms of C6 coefficients, in the fig 2.5, the ratio between the biggest and the smallest
one exceds 300.

It is important to figure out that the eigenstates which correspond to those interaction
energies are not of the form (we consider now only f = 7/2 for simplicity)

α
(
|43, d, 5/2,mj〉 ⊗ |43, d, 5/2,m′j〉

)
+ β

(
|45, p, 3/2,m′′j 〉 ⊗ |41, f, 7/2,m′′′j 〉

)
(2.71)

but of the form
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∑
mj ,m′

j

αmjm′
j

(
|43, d, 5/2,mj〉 ⊗ |43, d, 5/2,m′j〉

)
+
∑
mj ,m′

j

βmjm′
j

(
|45, p, 3/2,m′′j 〉 ⊗ |41, f, 7/2,m′′′j 〉

)
(2.72)

This can be explained as following. In writing only the mj , the dipole-dipole in-
teraction coupled a state

(
|mj〉 ⊗

∣∣m′j〉) with a state
(∣∣m′′j〉⊗ ∣∣m′′′j 〉) if we have mj +

m′j = m′′j + m′′′j , however, looking at one of the atom, we can have mj = m′′j ±
1. So, starting with a state

(
43d5/2 ⊗ 43d5/2

) (
|mj〉 ⊗

∣∣m′j〉), this state is coupled
for example with

(
45p3/2 ⊗ 41f7/2

) (
|mj − 1〉 ⊗

∣∣m′j + 1
〉)

which is also coupled with(
43d5/2 ⊗ 43d5/2

) (
|mj − 2〉 ⊗

∣∣m′j + 2
〉)

.
We understand here why the eigenstates are superpositions of several states with differ-
ent combination of mj .

This indicates that to get the true eigenstates of the dipole-dipole interaction, we need to
diagonalize the Hamiltonian by using, at least, the full Zeeman multiplets of the inter-
acting two-atoms states, here

(
43d5/2 + 43d5/2

)
and

(
45p3/2 + 41f7/2

)
. In the reference

[Singer et al., 2005], the determination of the C6 coefficients of the Rydberg states is
done using second order perturbation theory and thus it does not take fully in account
the effect of the Zeeman degeneracy.
The decomposition of the eigenstates on the natural two-atom basis (as well as the ra-
tio between the different eigenenergies) depends only on the angular quantum num-
bers and can be fully determined for each "channel of interaction" (in our example,
d5/2 + d5/2 → p3/2 + f7/2) taking the interatomic axis as quantification axis. This is
what is done in the reference [Walker and Saffman, 2008] and the authors give a link to
a web page where the eigenvectors are explicitly given.

The effect of the Zeeman degeneracy plays a big role in the dipole blockade experi-
ments due to the existence of combination of mj which lead to very small interactions
and thus limit the blockade efficiency. Also, since the coupling associated to the dif-
ferent configurations depend of the laser(s) polarization and its relative orientation with
the interatomic axis, the Rydberg-Rydberg interaction in zero-field is no more isotropic
due to the Zemman degeneracy.

2.9.5 Effective two-levels atoms

The results presented in the sections 2.9.3 and 2.5 underline an important difficulty for
the theoretical treatment of the interacting Rydberg gases. This concerns the use of two-
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levels atoms.
In the Hamiltonian of the dipole blockade (see section 1.4.1 of the chapter 1), the atoms
are considered to be two-levels systems, the levels are the ground state and one Rydberg
state. Those two levels are coupled by a laser field with a given Rabi frequency and two
atoms in the Rydberg state interact via a given potential corresponding to the Rydberg-
Rydberg interactions.
However, if we first look out the Zeeman degeneracy, we should consider that a partic-
ular doubly excited Rydberg state does not have the same decomposition on the non-
interacting Rydberg states for all the interatomic distances. Consequently, due to the
laser excitation selection rules, the Rabi frequency associated to the excitation of a dou-
bly excited Rydberg state should be considered to be dependent of the interatomic dis-
tance.
At large interatomic distances, we can consider that each doubly excited Rydberg state
is composed by two non-interacting states. The ratio between the componentt of the
doubly excited Rydberg state on the non-interacting states is given in the section 1.3.2
of the chapter 1. This ratio tends toward 1 when the dipole-dipole coupling becomes
much larger than the initial Förster defect. The Rabi frequency associated to the laser
coupling of the doubly excited state is in this case reduced by a factor

√
2.

At small interatomic distance, each doubly excited state is a composed by many non-
interacting states. The fraction of a doubly excited state compatible with the laser ex-
citation selection rules is hardly reduced. A precise study of the composition of the
doubly excited states would allow to quantify this effect.

To resume, the excitation of a doubly excited state should be associated a Rabi fre-
quency having a quite complex dependence with the distance between the two Rydberg
atoms. In a general way the Rabi frequency decrease with the interatomic distance.

We propose here a very rudimentary way to take in account the variation in function
of the interatomic distance of the Rabi frequency associated to the excitation of a dou-
bly excited Rydberg state. It consists in introducing a cutting distance Rc. For R > Rc,
the Rabi frequency can be considered to be constant and equal to the one of the non-
interacting case (of a single atom). ForR < Rc, we can consider that the Rabi frequency
is zero. The cutting distance Rc can be evaluated by defining a cutting ratio (few per-
cent) corresponding to the coupled part of the doubly excited state for a given laser
excitation, it would correspond to Rc ≈ 1.5µm on the fig 2.4 (and thus 2.3).
The introduction of the cutting distance is a very rough modeling of the underlying ef-
fect. However, due to its "step shape" it can be very easily include in different kind of
equations.
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The effect of the Zeeman degeneracy is even more problematic for the modeling of
an interacting Rydberg gas with two-levels atoms. Indeed, the different doubly excited
Rydberg states corresponding to different combination of magnetic quantum numbers
are only slightly degenerated for a large range of interatomic distances. Consequently
they can be all populated in the same time by the laser excitation, each one having its
own Rabi frequency and its own interaction energy shift.
The Rabi frequency associated to each of those states depends of the polarization of
the excitation laser(s) via the selection rules on the magnetic quantum number. We
have also to take in account the relative orientation between the interatomic axis and
the polarization axis. The decomposition of each "Zeeman" eigenstate on the natural
two-atoms basis allows to calculate the associated Rabi frequency.
For a correct treatment of the laser excitation of a pair of interacting Rydberg atoms, we
should consider this multi-levels structure of the doubly excited state.
As it has been highlighted by the authors of [Walker and Saffman, 2008], the simplest
way to maintain the contact between experiments and theoretical model which use two-
levels atoms (up to know, all the theoretical models) is to excite s-states. Indeed, if the
s-states have 2 Zeeman sub-levels, it is shown in [Walker and Saffman, 2008] that all
the Zeeman configurations corresponding to the channel ns+ns→n′p+n′′p are associated
to the same interaction curve. This channel is the only one directly coupled by dipole-
dipole interaction. In other words, in the case of s-state, the dipole-dipole interaction
does not leave the degeneracy associated to the magnetic quantum numbers.
For the other interaction channels, we have to define an effective doubly excited Ryd-
berg level.
One possibility could be to consider only the less interacting Zeeman configuration
since this configuration will be the most populated by an excitation resonant with the
non-interacting case. However, this has to be considered with care as the laser selection
rules can lead to a very inefficient coupling of this configuration.
Interestingly, in [Walker and Saffman, 2008], an effective interaction shift is proposed
in order to take in account the effect of all the configurations and their relative Rabi
frequencies. From this we can obtain the effective angular dependence of the Rydberg-
Rydberg interaction for a given polarization of the excitation laser.

2.9.6 Molecular potential wells

In the ensemble of spaghetti curves as the ones shown in the fig2.3, we can find very
interesting curves which correspond to molecular potential wells. As mentioned in the
section 1.3.2 of the chapter 1, the existence of those potential wells indicates the possi-
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bility to form giant molecules composed by two Rydberg atoms. Such molecules have
been indeed observed experimentally as it is reported in [Overstreet et al., 2009]. In such
molecules, sometimes called "Macro-dimers", the two Rydberg atoms are not sharing a
valence electron as it is the case in a classical covalent link but the electrostatic interac-
tions are such that it is energetically more favorable for the two Rydberg atoms to stay
at a particular distance.
In the fig 2.6 we present such a potential well.

Figure 2.6: Molecular potential well resulting from the interaction of two Rydberg
atoms in the channel 60s + 59p. We see here the channel 60s + 59p3/2, the channel
60s + 59p1/2 situated below leads to the underlining molecular potential well. All the
mj are taken into account in the calculations.

The states involved in the potential well of the fig 2.6 are the same than the ones
used in the photoassociation process, however, instead of being the first excited levels,
the levels are Rydberg ones.
We can see on the fig 2.6 the huge distance at which the two Rydberg atoms are bounded,
in the order of few µm. We also see that the depth of the potential well is of the order
of 150 MHz. Those characteristics would make possible to observe experimentally this
type of macro-dimers. However, 2-colors excitation have to be performed since two
different Rydberg states are involved.
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2.10 Conclusion and outlooks

The calculations presented in this chapter and overall their implementation represent a
very nice theoretical support for the Rydberg atoms Physics.
If the theoretical knowledges involved in those calculations are known for a long time,
the possibility to numerically determine the interacting 2-body Rydberg states in pres-
ence of external fields is more recent. This task would not have been envisagable even
twenty years ago and those calculations are a nice illustration of the possibilities offer
by the today computer for Physics calculations.

In the frame of the Rydberg-Rydberg interactions, those calculations allow to go well
beyond the two-levels approximations presented in the chapter 1. Concerning the long-
range behavior of the interactions it allows to obtaine a better precision. However, the
short-range behavior of the interacting 2-body Rydberg states exhibits very complex
features. A precise study of the spaghetti curves in the µm range should be done with
care since the excitation of very close pairs might have an effect for very dense ultra-
cold atomic samples.

An interesting feature of those calculations is also the possibility to study the "mag-
netic quantum number effects". We have seen that the Zeeman degeneracy play a big
role in the interaction between l 6=0 Rydberg atoms. Similar effects could also be stud-
ied concerning the Förster resonances. To this regards, the possibility to include the
Zeeman effect in the calculations pave the way toward a very precise experimental con-
trol of those features.

As mentionned in the begining of this chapter, the calculations presented here are well
adapted and accurate for highly excited Rydberg states and not close to the ionization
limit (in electric field). Further developments will consist in the inclusion of both first
excited states (hyper-fine structure) and continuum states. This would allow to access
accurately to relevent physical quantities like the oscillator strengths between ground
and Rydberg states or photoionization rates. More generally, it should be very inter-
esting to check the general accuracy, efficency and possibilities of different calculation
methods. A comparison of the codes developed by different groups could be also very
benefic. We have mentionned in the chapter 1 the potential of Rydberg atoms for several
technologic perspectives (high precision field sensor, quantum simulation, atom-light
quantum devices), the effective realization of such technologies will be for sure linked
to the existence of reliable data base on Rydberg atoms properties.
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Chapter 3

Few-body experiments

In this chapter, we present the experiments done in the "Laboratoire Aime Cotton" at
Orsay in the frame of this thesis.
The main purpose of those experiments has been to study phenomena, present in a cold
Rydberg gase, resulting from the interactions between few-body. We paid a special
attention to the phenomenon of Stark tuned Förster resonance. In this process, a reso-
nant coupling between two 2-body quantum states is revealed through an exchange of
excitations between the atoms, leading by the way to particularly non trivial cases of
entanglement.
The 2-body Förster resonances can be quite well characterized theoretically as we have
seen in the chapter 1 and 2. The interest to observe or implement such 2-body phe-
nomena is to confirm their conditions of appearance, or to progress in their effective
realization. We have for example obtained experimentally a complete saturation of a
2-body Förster resonance. In [Nipper et al., 2012a], Förster resonance are studied using
Ramsay interferometry allowing to characteryze the interactions with a very high preci-
sion.
The experimental study of few-body processes has a quite different interest. First, the
theoretical modeling of such processes is much more tedious and there predictions more
singular. Studying them experimentally allow to determine a way to go. Also, few-body
effects can lead to very interesting features. The most relevant example is the Efimov
Physics [Efimov, 1970] which have been obsered in cold atomic gases [Kraemer et al.,
2006]. For Rydberg atoms, few-body effects are less spectacular but they give rise to
interesting cases of interactions. For example, an anti-blockade effect resulting from the
interaction of three Rydberg atoms is reported in [Pohl and Berman, 2009]. In a general
way, the interaction potentials between several Rydberg atoms should be always differ-
ent than the sum of 2-body ones. Particular cases of "non-additive" potentials between
3 Rydberg atoms have been reported in [Cano and Fortágh, 2012].
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In the frame of this thesis, the main obtained result, reported in [Gurian et al., 2012],
is the observation of a 4-body process resulting from a coherent combination of two
2-body Förster resonances. Up to our knowledge, it has been the first observation of a
4-body process associated to an almost complete description of the underlying quantum
states.
The beginning of this chapter is devolved to the description of the experimental setup
used for those experiments. This setup has been build from scratch in the frame of this
thesis. Since the cold atoms techniques are now well known, we mainly focus in this
manuscript, on the aspects of the experimental setup relative to the study of Rydberg
atoms gases.

3.1 A cold atomic sample

In this section, we present very briefly the experimental setup required for the realization
of a Magneto-Optical Trap (MOT) of cesium atoms
The general principle of a MOT, and more generally of the cooling and trapping of
neutral atoms can be found for example in the following reviews [Phillips et al., 1985;
Cohen-Tannoudji, 1992; Metcalf and van der Straten, 1994; Adams, 1997] as well as in
the book [Metcalf and van der Straten, 1999].

3.1.1 Vacuum chamber

The heart of every cold atoms experiment takes place in a vacuum chamber.
The main room of our chamber has 18 windows in order to have a good optical access.
Inside the chamber there is a peace of cesium (few grams) from which cesium atoms
can be evaporated, there is also 3 cesium dispensers, this two complementary systems
allows to control the vapor pressure of cesium inside the chamber. We have disposed in
the vacuum chamber a pressure gauge and an ionic pump (Varian 40l/s). 10 electrodes
are placed inside the chamber to control the electric field environment. Two charged
particles detectors used to the detection of the Rydberg atoms are finally present inside
the chamber.

Reaching a high level of vacuum is not done without the appropriated equipment but
vacuum technology is very well developed and this equipment exists even for almost
perfect vacuum. As a paradigm, in the so-called regime of very-high vacuum (below
10−11 mbar) the limiting factor for the pressure can be nothing less than hydrogen or
helium atoms passing trough the vacuum chamber (helium pass through the glass and
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hydrogen pass even through the stainless steel). We can find in the reference [Chambers
et al., 1998] a quite complete introduction to vacuum technology. We mention here few
practical considerations.
First, an extreme care has to be payed to the property of the vacuum elements. We use
for example several ultrasonic bath with water, ethanol, acetone,... to wash the elements.
A simple fingerprint can "kill" a vacuum for billions years!.
To start to lower the pressure from atmosphere one, we have to use a primary pump and
a turbo molecular pump. Ionic pump can be typically turn on at a pressure lower than
10−6 mbar.
To reach this level of vacuum, we have to steam the wole chamber in order that a max-
imum of chemical elements present in the materials be outgassed and pump. The best
is to heat as most as possible for the longest time, in reality the temperature is limited
as some elements (pump, windows) do not support very high temperature. The docu-
mentations has to be check with care to avoid complications. Also the raise and fall of
the temperature have to be done slowly to avoid mechanicals deformations during the
variation of temperature. The steaming duration can be typically one or two weeks.
The outgassing of different materials is extensively studied in the frame of spacecraft
and a very large choice of " vacuum friendly" glues or ceramics is now available1.

To realize a MOT, the pressure inside the chamber have to be lower than 10−7 mbar.
At this pressure, we are in the so-called high vacuum regime.
In our experiments we typically work with a pressure around 10−8 mbar.

3.1.2 Magnetic field

In our setup, the magnetic field required for the MOT of cesium is created by two coils
in anti-Helmotz configuration. The magnetic field gradient at the position of the MOT
in the direction of the coils axis is around 15 G.cm−1. The gradient is two times smaller
in the other directions (thanks to div ~B = 0).
In order to compensate the earth magnetic field (around 0.5G) as well as the magnetic
field created by the ionic pump (which is first surrounded by µ-metal) there is 3 pairs of
coils in Helmholtz configuration, one along each spatial direction.

1see for example outgassing.nasa.gouv
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3.1.3 Laser fields

On the fig 3.1, we have represented the energy diagram of the cesium first atomic levels
including the so-called D2 line which contains the atomic transitions involved in a MOT.
we have highlighted on this scheme the transitions driven by the so-called cooling and
repumping lasers.
The cooling transition is 6s1/2(F = 4) → 6p3/2(F = 5), the repumping one is
6s1/2(F = 3)→ 6p3/2(F = 4).

Figure 3.1: Energy diagram of the cesium first levels

In the reference [Steck, 2003] we find the characteristic of the D2 line whom we
record here the ones useful for a MOT. Namely, the wavelength in the air λair, the
intensity saturation of the cooling transition Isat and the natural linewidth of the excited
state Γ.

λair = 852.120532(26)nm (3.1)

Isat = 1.1049(20)mW.cm−2 (3.2)

Γ = 2π × 5.234(13)MHz (3.3)
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In our experimental setup, both laser are stabilized using the well known saturated
absorption technique. This very nice technique consists in using directly cesium atoms
as a reference to stabilize the lasers on the cesium transitions. The linewidth of those
stabilized lasers are around 200 kHz. As it is typically required for a MOT, the cooling
laser is detuned from the exact resonance of a quantity of 15MHz ≈ 3Γ toward the red.
The cooling laser is a DBR diode with an output power of around 60mW (as well as the
repumping laser). The cooling laser is separated in 5 beams (we use a retro-reflecting
beam along the vertical axis) and send toward the MOT position. There, each beam
has a spatial size of around 2 cm2 and a power around 3mW which corresponds to an
intensity slightly larger than Isat.

3.1.4 Characteristics of the MOT

As it was not required for the need of our experiments, we have not implemented a sys-
tematic measurement of the characteristics of the MOT. Indeed, the experiments that we
carried out and that we will present in the following are dealing directly with Rydberg
atoms, so the total number or the density of the ground state atoms are not relevant quan-
tities. For example, the Rydberg excitation volume in our experiment is much smaller
than the MOT itself.
Also the characteristics of a MOT in a standard configuration, since the Physics which is
behind corresponds to well known processes, can be derived according to quite simple
formula.

For example, we know that the temperature is in the order of the so-called Doppler
temperature. The temperature is in fact generally lower due to a sub-Doppler cooling
mechanism, the so-called Sisiphus effect [Dalibard and Cohen-Tannoudji, 1989]. The
Doppler temperature TD is given by (from [Steck, 2003] for the numerical value given
here in the case of cesium)

TD =
~Γ

2kB
= 125.26µK (3.4)

As another illustrative example, we find in the reference [Grego et al., 1996] the
following formula for the temperature T of a MOT of cesium.

T (µK) ≈ 30 + 0.56
N

1
3 I

1
2

|δL|
(3.5)

Where N is the number of atoms in the MOT, I the laser beams intensity and δL the
detuning of the cooling laser.
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Typically, for a MOT of cesium the atomic density is of the order of few 1010at.cm−3

and the temperature of the order of 100µK.

On the fig3.2 we show a picture of our MOT.

Figure 3.2: Picture of our MOT of cesium, taken through an infrared viewer

Once the MOT is formed, the principle of our experiments is to laser excite the
trapped atoms toward Rydberg states. This is done in presence of electric field. Then
we detect the Rydberg atoms using field ionization. On the fig 3.3, the main elements
of the setup are represented. They will be described in the following sections. We
recognize on the fig 3.3 the 6 beams of the MOT.

3.2 Laser excitation of Rydberg states

In this section, we present the experimental setup that we have implemented in order to
excite the atoms of the MOT toward Rydberg states. In a very general way, this is done
by sending laser beams with the appropriated frequencies through the MOT.
In our setup, we are able to excite Rydberg atoms using two different paths of excitation.
One path consists in a 2-photons excitation, the other in a 3-photons excitation.
This two different paths allow first to excite simultaneously two different Rydberg states.
As mention in the section 1.3.2 of the chapter 1, this can lead to very interesting phe-
nomena of diffusion of excitation which should be investigated in the future of this
experimental setup. Also, exciting two different Rydberg states can be very useful for
the study of few-body phenomena.
Secondly, using one or the other of those two excitation paths, we can excite, even in
zero field, s, p and d states.
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Figure 3.3: Schematic drawing of our setup. The description of the elements is given in
the text. A second charged particles detector is in fact present in our setup in the opposite
direction than the one represented here. The purpose is to detect simultaneously ions
and electrons, however we didn’t use this feature from now on. The grid the most on
the right is present also for this purpose. Both will be not mentioned in the text.

For both paths, we present in the following the lasers that we use, their characteristics
and the way to stabilize them. In addition to the atoms themselves, the principal tool
use to characterize the different lasers is a wavemeter WS8 from Angström.

3.2.1 General remarks

In this section, we will, in a very brief and rough way, give an idea of the laser charac-
teristics required to excite Rydberg atoms.
The optical power that we need to excite Rydberg atoms are not huge. Although it de-
pends a lot of the size of the excitation volume (A typical length is of the order of few
100 µm), power of the order of 100 mW are largely enough to excite efficiently atoms
toward Rydberg states. It is even needed in some case to reduce the available laser
power. Particularly because we want to avoid as most as possible the creation of ions
during the Rydberg excitation. Indeed, ions can lead to undesirable effects (local elec-
tric field, "ions blockade effect", parasite detection signal). Working with reasonable
optical power and short excitation pulses is the best way to limit the number of ions.
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Concerning the linewidth of the excitation, the fact is that the natural linewidths of the
first excited states (which are the intermediate levels of the multi-photon excitation) are
of the order of several MHz. Also, when pulsed excitation is used, the typical dura-
tion of the pulse is of the order of 1µs giving a Fourier broadening of the order of 1
MHz. Consequently, the typical linewidth that we have to aim to excite properly Ryd-
berg states is of the order of 1 MHz.

3.2.2 2-photons excitation

We present in this section the laser excitation of a Rydberg state from the ground state
using a 2-photons excitation.
Starting with cesium atoms in the ground state 6s we first excite them in the state 6p3/2

and then in a Rydberg state nlj , here l can be either s or d and n range from 20 to 100.
In the fig3.4, we have represented the energy diagram corresponding to this 2-photons
excitation.

Figure 3.4: Energy diagram of the 2-photons Rydberg excitation

First photon

The first step of the excitation 6s → 6p3/2 correspond to the cooling transition of the
cesium MOT. To drive this transition, we use then the cooling laser of the MOT. We see
here that in fact, we have nothing to do, indeed, inside the MOT there is permanently
many atoms (a bit less than the half of the total number of atoms) excited in the state
6p3/2.
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The quite low intensity of the cooling beam at the position of the atoms (see section())
does not lead to any Autler-Townes splitting or even significant intensity broadening of
the level 6p3/2.
As mention in the section 1.4.4, the fact that this first step is almost resonant with the
transition 6s → 6p3/2 (the detuning is 3Γ) makes impossible that the full 2-photons
excitation being coherent.
However, in the frame of the experiments that we perform, a coherent excitation is not
required and the excitation by the MOT beams of the state 6p3/2 can perfectly plays the
role of the first step of the 2-photons excitation.

To achieve a coherent excitation of the Rydberg state from the ground state, we could
turn off the cooling beams and use another laser to do the first step of the Rydberg ex-
citation with this time a sufficiently large detuning to avoid the population of the state
6p3/2. An other possibility could be still to use a part of the cooling beam and change
its frequency with an Acousto-Optic Modulator (AOM), the frequency could be detuned
up to 500 MHz with a double pass configuration which is largely enough to avoid pop-
ulation in the state 6p3/2.

Second photon

The second step of the Rydberg excitation correspond to the transition 6p3/2 → nlj , for
n ∈ [[20; 100]] the corresponding wavelengths range from 513 to 505 nm.
The laser that we used is a commercial one from Sacher. This laser is composed by a
diode laser in external cavity lasing in the range [[1010; 1050]] nm. The light emitted by
the diode is amplified by a MOPA and doubled in a resonant doubling cavity.
The output power that we obtain is around 150 mW. The natural linewidth of the laser is
around 300 kHz. I would like to mention that the quality of this laser (stability, facility
to use) is disputable.

In our setup, the frequency of the laser is stabilized and controlled using a home made
"sigmameter" built in the Laboratoire Aime Cotton. The principle of this sigmameter
is similar to the one of the module "i-scan" currently selling by Toptica. We describe
here briefly those quite smart and useful systems which can be used in many kind of
situation. On the fig 3.5 we found a scheme of the system.

The laser beam of which we want to control the frequency have first to be prepare with
a well defined linear polarization α. The laser beam is then send through a Michelson’s
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interferometer. A polarization beam splitter whom the axis form an angle ±45 with α
is placed at the output of the interferometer. Finally, two photodiodes are placed right
in the paths of the two separated beams in such a way that they both measure only the
intensities contained in the center of each interference patterns.
If we note ∆L the difference of optical path length between the two arms of the inter-
ferometer and I the intensity measured by the photodiodes, we can show that

I ∝ 1 + cos

(
2π∆L

c
ν

)
(3.6)

where c is the speed of light and ν the frequency of the laser beam.
The trick is that we place an optical element, in one arm of the interferometer, which
induces an additional dephasing of π/2 only on one of the two polarizations.
The photodiode which measure this polarization see then an intensity I ′ with

I ′ ∝ 1 + sin

(
2π∆L

c
ν

)
(3.7)

Figure 3.5: Schematic representation of the sigmameter. See text for explanations. The
dephasing element is represented by the thick part on the left of the prism.

By looking with an oscilloscope in XY mode at the signal coming from the two pho-
todiodes, we obtain a point. When the frequency ν of the laser beam varied, this point
describes a circle.
This type of "angular" signal, which is directly linked to the frequency of the laser, is
very interesting to control it. Indeed, with the appropriated electronics devices, (which
first imply a proper modification of the offset and the amplitude of each photodiode sig-
nal to get a nice "electronically coded" circle), we can generate an error signal propor-
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tional to the angular position of the point on the circle relative to an angle of reference.
We can then either use the system to stabilize the laser frequency on a fixed reference
but also to make a controlled scan of the laser frequency in changing continuously the
reference.
One full circle represents a frequency range of c

∆L
in our case, it corresponds to 300

MHz. We see here that we can reasonably obtain a precision of 1 MHz (which repre-
sents more than 1 on the circle) and, in the same time, easily scan the laser over its full
mode-jump free ranges (in doing as many circles as we want with the angle of refer-
ence). Obviously, the stabilization efficiency depend of the precision of the electronic
as well as the laser itself.
A big advantage of such a system, is that we can in principle send several laser beams in
the same sigmameter and control them independently with several electronic boxes. An-
other nice feature is that this system does not depend of any modulation (of the laser(s)
being locked or of the system itself).
An important point to obtain a good stabilization of the laser(s) is that the difference
of optical path length between the two arms of the interferometer has to be as stable as
possible. In our setup, we send in the sigmameter a part of the repumping MOT beam,
which is locked on an atomic reference. We then lock the full system on it, a piezo elec-
tric allowing to act on the length of one interferometer arm. This allow for example to
be free of all temperature variation effect on the length of the interferometer and reduce
also the mechanical noises.

Using this system we achieve to stabilize our second step Rydberg excitation laser
within 2MHz (for the green light) on an infinite time scale (since the over all system
is locked with an atomic reference), with the possibility to scan the frequency on de-
mand. The only physical parameter that we use to act on the laser is the voltage send
to the controller of the piezo which controls itself the position of the grating of the
extended cavity of the laser diode, this voltage being directly proportional to the error
signal provided by the electronic box associated to the sigmameter.

The laser system that we use for the second step of the 2-photon excitation is enough
stabilized (2 MHz) and powerful (150 mW) to efficiently excite toward Rydberg states
the atoms in the state 6p3/2 present in the MOT. This laser is send through the MOT with
an almost collimated shape with a typical size of 500 µm. The excitation region is then
a cylindric tube with a volume of the order of 0.5mm3. An AOM placed at the output of
the laser allows to switch the laser on and off with a controlled way.
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3.2.3 3-photons excitation

We present in this section the laser excitation of a Rydberg state from the ground state
using a 3-photons excitation.
Starting with cesium atoms in the ground state 6s we first excite them in the state 6p3/2,
then in the state 7s then in a Rydberg state npj , here n range from 20 to 100. In the
fig3.6, we have represented the energy diagram corresponding to this 3-photons excita-
tion.

Figure 3.6: Energy diagram of the 3-photons Rydberg excitation

First photon

Exactly like in the case of the 2-photon excitation, the first step of the 3-photon excita-
tion, driving the transition 6s→ 6p3/2 is done with the cooling beams of the MOT (see
section 3.2.2).

Second photon

The second step of the 3-photons excitation corresponds to the transition 6p3/2 → 7s,
the associated wavelength is around 1470nm.
The laser that we use to drive this transition is a diode laser in external cavity DL100
From Toptica having an output power around 15 mW and a natural linewidth around
100 kHz.
In our setup, this laser is stabilized using a two-colors, Doppler free, absorption mea-
surement.
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The principle of this method is to send in a cesium cell a laser already stabilized on
the cooling transition by the saturated absorption technique (using a first cesium cell).
This first laser has then the effect to "pump" the atoms in the state 6p3/2. The 1470
nm laser beam is then send in the same cell with a non null spatial overlap with the
first laser. This laser acts thus like a probe for the transition 6p3/2 → 7s and it can be
stabilized using the corresponding absorption signal. This technique is a Doppler free
absorption measurement as the first laser excites, in the cell, only the zero axial velocity
atoms.
The linewidth obtained after stabilization is smaller than 1 MHz.

The 1470nm laser beam passes through an AOM before to reach the MOT where the
beam is focused. At the position of the MOT, the waist of the laser is around 400 µm
for a power around 3 mW, this does not generate significant intensity broadening. As
the first step of the Rydberg excitation, the second step is resonant and the level 7s is ef-
fectively populated. This resonant excitation in the continuous case is largely sufficient
to push almost all the 6p3/2 atoms out of the MOT and destroy it. This visible effect
is quite useful to both align this beam on the MOT as well as find the resonance every
mornings looking directly at the MOT.
The 1470nm laser beam represented on the fig 3.3 by the black beam.

Third photon

The third step of the 3-photons Rydberg correspond to the transition 7s → npj with n
ranging from 20 to 100. The corresponding wavelength is around 795nm.
With use in our setup a Ti:sapphire ring laser from Sirah, working in cw mode (Ti:sapphire
lasers are also largely used to generate ultra-short impulsions). The output power of the
laser is around 2W.
We use an external fiber coupled Fabry-Perot cavity (sell with the laser) to stabilize the
laser frequency. This cavity is regulated in temperature but not locked on an atomic
reference, also the frequency of the laser is stabilized below 1 MHz but only on the
"10 minutes" time scale and has to be check and if needed slightly adjusted quite often.
The laser and namely its stabilization is entirely controlled with a quite well conceived
software.
The Ti:sapphire laser beam passes through an AOM before to be focused on the MOT.
The waist at the position of the atoms is around 300 µm. The direction of the beam is
perpendicular with the one of the 1470 nm beam (second step of the Rydberg excita-
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tion) as we can see on the fig 3.3 where the Ti:sapphire laser beam is represented by
the dark red laser beam. The Rydberg excitation region corresponding to the 3-photons
excitation is an almost spherical volume of the order 0.02 mm3.

3.3 Control of the electric field

As it has been already mentioned several times in this manuscript, the Rydberg atoms as
well as the Rydberg-Rydberg interactions are very sensitive to the presence of an elec-
tric field. Since, in our setup, we want to excite Rydberg atoms in presence of electric
field, it is very important to achieve a precise control of the electric field that we applied
in the Rydberg excitation region.
In this section, we present the system that we have implemented to do it and how we
have characterized the created electric field.

3.3.1 General remarks

The behavior of the Rydberg atoms is, under several aspects, strongly dependent of the
precise value of the electric field.
Although the electric field acts differently for each Rydberg state (here both n and l play
a role), as an introduction to this section, we will give some general orders of magnitude
concerning those effects.
First, the electric field modify the Rydberg states energy. The electric field has thus an
effect on the condition of resonance of a Rydberg state with a given electromagnetic
field. A modification of the electric field of 0.01 V.cm−1 can easily modify the energy
of a Rydberg state of 1MHz.
Secondly the presence of electric field leads to a strong modification of the Rydberg-
Rydberg interactions. This appears first because the interaction between Rydberg atoms
moves from Van-der-Waals to permanent dipoles types without and with electric field.
However, if this first effect has a quite smooth dependence with the electric field, there
is a very sharp and strong modification of the Rydberg-Rydberg interactions with the
electric field when Förster resonances appear. A typical order of magnitude of the elec-
tric field width of a Förster resonance is 0.01 V.cm−1.
Finally the presence of an electric field can lead to the ionization of the Rydberg atoms,
here, a typical order of magnitude is 1000 V.cm−1 (for n = 20 it is 5 kV.cm−1).

The two values mentioned here, 0.01 V.cm−1 and 1000 V.cm−1, are in a sense an or-
der of magnitude for the precision and the strength of the electric field that we should
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manage to apply to have a full control on the Rydberg atoms from zero-field conditions
until their ionization.

3.3.2 Electrodes around the Rydberg excitation region

To control the electric field in the Rydberg excitation region we mainly use two elec-
trodes. Those electrodes are two parallel, large, rectangular, wire mesh grids, placed
symmetrically from one side and the other of the MOT (see fig 3.3). The purpose of
those electrodes is to create an electric field as uniform as possible in the Rydberg exci-
tation region.
The size of each grid is 60×130 mm2, they are made with wires of 80 µm thickness and
the grid spacing is 1mm, the corresponding transparency is around 85%. The distance
between the two grids is around 18.5 mm.
For the purpose of the Rydberg atoms detection (see section 3.4) one of those grids has a
hole to make free the path of the particles toward the detector. This hole clearly induces
electric field inhomogeneity, nevertheless, by applying the proper potential on a third
grid present also for the need of the Rydberg detection and having also a hole (see fig
3.3), we can reduce this inhomogeneity. In our conditions, we need a ratio of around 1.6
between the potentials applied to the two holed grids to have the best "compensation"
of the hole effect.
In our setup, we have placed also six other electrodes which are not represented on the
fig 3.3. They are small rectangular sticks of around 5 × 50 × 1 mm3. There are placed
right on the sides of the space defined by the two main grids. 2 on each lateral side, 1
on each vertical side.
Those electrodes was not present when we start the Rydberg experiments and in fact,
once they had been added, the simple fact to ground them lead already to an improve-
ment of the field homogeneity. So, in the general case, we just ground them. However,
those additional electrodes could be used, if needed, to cancel the stray fields in the
Rydberg excitation region as well as to generate gradients or quadrupole fields.

3.3.3 Characterization of the electric field in the Rydberg excitation
region

Due to the mechanical uncertainty on position and the geometry of the electrodes, the
calculation of the electric field created for given values of the applied potentials would
be not very precise. However, using directly the Rydberg atoms we can obtain quite pre-
cise information on the electric field effectively present in the Rydberg excitation region.
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In our setup, the electric field F , in the Rydberg excitation region, is mainly deter-
mined by the difference of potentials applied on the two main grids. In grounded one of
the grid, the electric field is thus determined by the potential V of the other grid and we
have F = V/D where D is the distance between the two grids.
To determined the mean value of the electric field present in the Rydberg excitation re-
gion, in an absolute way, we used Stark shifted excitation measurements. The principle
of this method is to reproduce experimentally a Stark diagram and to compare it with
theoretical calculations.
For a given V , we record the wavelength at which a given Rydberg state is excited.
Doing this for different V and different Rydberg states we end up with an experimental
Stark diagram composed by several points where the energies of the Rydberg states is
given in function of V .
By comparing this diagram with theoretical calculations, where the energies of the Ry-
dberg states is given in function of F , we can determine the distance between the two
grids D leading to the best correspondence between the experimental and theoretical
Stark diagrams.

In our setup, we have done such measurements for the 23p3/2 and 22d5/2 states for
voltages up to 200V (electric field up to 100 V.cm−1) and we have evaluated that the
mean value of the electric field created in the Rydberg excitation region is known in an
absolute way with a relative uncertainty of the order of 5 10−3.

The uncertainties on the experimental diagram are linked to the measurement of the
excitation wavelenghts, which is, in our case, of the order of 5 MHz and is mainly lim-
ited by the natural width of the intermediate state of the laser excitation. The uncertainty
on the applied potential V is considered to be negligible (the precision of the laboratory
voltage supply is of the order of 1 mV). The uncertainty on the theoretical diagram
should be evaluated from the discussion of the section2.2.1 of the chapter 2, we made
only a rough evaluation of it.

In addition to the mean value of the applied electric field, it is important to charac-
terize the inhomogeneity of the field within the Rydberg excitation region.
In our setup, it appears that this inhomogeneity is not negligible in regards to the "pre-
cision" of the Rydberg atoms. This can be observed by two different ways.
At a given mean value of the electric field, in setting our laser at a wavelength resonant
with a stark shifted Rydberg transition, it can appear that we excite only a fraction of the
atoms of the Rydberg excitation region since all those atoms do not see the same elec-

122



tric field. In other words, the inhomogeneity of the electric field can leads to a partial
excitation of the atoms in the Rydberg excitation region.
Also, if now we scan a bit the wavelength of the excitation laser, we possibly excite Ry-
dberg atoms for different wavelengths since the atoms of the Rydberg excitation region
have not all the same Stark shift. In other words, the inhomogeneity of the electric field
can lead to a visible broadening of the Rydberg excitation lines.

The "amplitudes" of those two effects depend obviously of the absolute inhomogeneity
of the electric field within the Rydberg excitation region. However, it depends also of
the slope of the Stark shift of the Rydberg states at the considered electric field as well
as the effective linewidth of the laser excitation.
In our setup, in looking at the broadening of the 23p3/2 excitation line for different
electric fields, we have evaluated that the relative inhomogeneity of the field within the
Rydberg excitation region of the 3-photon excitation (around 0.02 mm3) is of the order
of 2 10−3.

3.3.4 Possible improvements

For a given value of the applied potentials on the different electrodes, the full map of
the electric field inside the chamber could be calculated using, for example, the software
Simion. So, it could be very interesting to make a big effort in the mechanical concep-
tion of the electrodes and overall its realization to be able to simulate very precisely the
created electric field.
In addition to a potentially better precision, this would also allow to really check the
accuracy of the theoretical calculations about Rydberg atoms, what is not possible when
we use them to characterize the electric field.
Interestingly, this software allows in addition to simulate the trajectories of charged par-
ticles within the calculated electric field. This could be very useful in the frame of field
ionization detection. However, Simion do not take in account the mutual interactions
between the particles, to calculate those effects we can use the software General Parti-
cles Tracor (GPT).

One undesirable effect in regards to the electric field could come from the presence
of glass elements in the chamber (like all the view port). Indeed, glass is not conducting
and can suffer from, non controllable, charging effects. This could explain why the sim-
ple fact to ground the "compensation" electrodes leads, in our setup, to an improvement
of the field homogeneity.
In this frame, the use of Transparent Conducting Oxide (CTO) layers or even more
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recently engineered organic conducting transparent materials offers very nice perspec-
tives. It could allow for example to properly ground the full chamber. This would allow
also to overcome the compromise optical access/ electric field control which often has
to be made in the Rydberg experiments. However, up to now, any of those materials
is not ideal and we might wait a bit for a practical and general use in atomic Physics
experiment. For example, the most used CTO, the indium tin oxide (ITO), is transparent
in the visible range but not at all in the infrared (in addition to use elements hard to find
on earth, to be expensive an not environment friendly in its fabrication). Nevertheless,
those materials exists, some are compatible with anti-reflecting coating and might be
useful for the electric field control in Rydberg experiments.

3.4 Detection of the Rydberg atoms

In our setup, the detection of the Rydberg atoms is done using the field ionization
method.
Once the Rydberg atoms are excited, this method consists in applying a pulsed electric
field to ionize the Rydberg atoms. The created ions or electrons can be then accelerated
toward a charged particles detector.
The detection of the Rydberg atoms is, by this way, transfered to the detection of charged
particles. Due to the existing technology for charged particles detection, several inter-
esting regime of detection can be achieved.
In our setup, we use a MicroChannel Plates (MCP) detector surrounded with a Phosphor
screen. This system is schematized on the fig 3.3 by the gray cylinder.
With such a detector, it is possible to detect single particles. The detection can be also
made state selective in applying a temporally shaped ionization pulse. Finally, the spa-
tially resolved 2-dimensional detection provided by the phosphor screen allows to get
a 2-dimensional spatial information on the initial Rydberg distribution. Interestingly,
since the third spatial direction is mapped into the temporal one, we can get in a sense a
3-dimensional spatial information.

3.4.1 The charged particles detector

The MCP that we use in our setup is a commercial one, the F2222-21PGF from Hama-
matsu, the effective surface of the MCP is 20 mm, its detection efficiency is around 30%

(for the phosphor screen feature, see section 3.4.4).

The general working of a MCP is to convert an incoming flux of charged particles into
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an amplified electron flux. This electron flux is then collected on an anode. The current
going out from the anode, proportional to the incoming flux of particles, is finally con-
vert in a tension signal which can be acquired an oscilloscope. The oscilloscope that we
use in our setup is a Waverunner 1 GHz from LeCroy

Our MCP is composed by 2 plates, corresponding to different steps of amplification.
The amplification of each step is controlled by the electric potential applied to each
plates, typically of the order of 1 kV. For given applied potentials, we can define the
relative gain of the MCP.

A MCP can either works in the regime of single particles detection or in the regime
where a lot of particles arrive "in the same time" on the MCP, we need for that to adjust
the relative gain of the MCP. The border between those two regimes is linked to the time
resolution of a MCP, which is of the order of 1 ns.
For single particles detection, we have to work with high gain. In this case, the amplifi-
cation is big and a single particle generates an output signal which can be detected.
If a lot of particles arrive in the same time, the gain has to be lower to not saturate the
signal (or even break the MCP!). The output signal is in this case a burst (for a pulsed
incoming signal), whom the area is proportional to the number of particles arriving on
the MCP.

To be able to do quantitative measurements of the number of particles arriving on the
MCP, we need to calibrate them.

In our setup, we used for that the signal coming from the ionization of the Rydberg
atoms.
In a first step, the method that we used to calibrate the MCP consists in moving contin-
uously from single particle regime to higher flux in changing physically the number of
incoming particles. In our case, we have changed the power of the laser excitation to
create different flux of particles. Starting in the single particle regime where the number
of detected particles is easily known, in changing smoothly enough the flux of incoming
particle, we can evaluate with a quite good precision the area corresponding to a sin-
gle particle when the detected signal is a smooth packet. This first step is done with a
relatively high gain as we have to be initially able to detect single particles. Also, the
incoming flux of particles has to be relatively small to not saturate the MCP.
In a second step, we can, in keeping constant the flux of incoming particles, move from
the initial gain to a lower one and determine the area corresponding to one particle for
this lower gain.
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This second step is then repeated several time to progressively calibrate the MCP for
higher flux and lower gain.

The relative gain of the MCP depends of the applied potentials on the different step
of amplification and it is not equivalent to change one potential or another. To do the
calibration we change only one of the potential and the other has to be fixed for ever. In
principle, the total gain depends also of the kinetic energy of the incoming particles but
this effect is negligible in our case since the incoming particles have a quite low energy.
To calibrate the MCP, we have changed only the potential applied to the external plate
of the MCP. The gain of the MCP is then adjusted with this voltage. Doing this, we can
have a bit of control on the TOF of the particles in keeping a fully valid calibration.

The calibration of the MCP presented in this section allows to evaluate with a quite
good accuracy (the uncertainty is below 5%) the number of particles detected by the
MCP.
However, the absolute value of the number of Rydberg atoms created in the experiments
depends first of the fraction of the corresponding ions or electrons reaching the MCP.
We will see in the section 3.4.4 that, in our case, it is almost 100%.
Finally, the global detection efficiency of the MCP is obviously a determinant factor.
This last point is in our case the most limiting factor as the detection efficiency of the
MCP is not very well known. Our group use similar MCP for a long time and by ex-
perience, we know that their efficiency is 30 ± 10%. The method to calibrate the MCP
in an absolute way necessitates a precise imaging of the cloud that we do not have im-
plemented in our setup. The principle is to photoionize a fraction of the MOT and to
compare the number of atoms lost with the number of detected ions.
Nevertheless, if this uncertainty limits quite strongly the absolute determination of the
ions number arriving on the MCP, it does not reduce the accuracy of the relative mea-
surements that we can do.

3.4.2 TOF of the charged particles

In this section we describe the path, from the Rydberg excitation region to the MCP, of
the ions or electrons resulting from the ionization of the Rydberg atoms. We call this
step the "time of flight" (TOF).

The TOF of the charged particles can be "visualized" on the fig 3.3. We see that, in
addition to the two main grids used to apply an electric field during the laser excitation
and field ionize the Rydberg atoms, we have added in our chamber a third grids, identi-
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cal and parallel to the first ones. This grid is placed at 1.5 cm from the closest grids.
The purpose of this grid is to offer an additional way to control the TOF.
The TOF of the charged particles is determined in our setup by 4 potentials correspond-
ing to 3 regions where the electric field is uniform (at least in first approximation).
This configuration is the famous one highlighted by Wiley and McLaren [Wiley and
McLaren, 1955], except that, in their case, the last region is a free field region.
It has been shown that in function of the values of the electric fields present in the three
regions, very interesting features can be obtained in regards to the arrival characteristics
of the particles on the detector. Namely, there is a condition of time focusing, position
mapping or velocity mapping.
In the frame of this thesis, we do not have really study those features since they could
be mainly useful for the imaging of the Rydberg atoms. In the current state of our ex-
perimental setup, we have just started to do such an imaging (see section 3.4.4) and the
use of the features offered by the Wiley-McLaren configuration should be the subject of
further experiments.

3.4.3 State selective detection

In this section, we present the way to perform the detection of the Rydberg atoms al-
lowing to determine in which Rydberg states they was excited.
To achieve such a so-called state selective detection, we use a temporally shaped elec-
tric field pulse to ionize the Rydberg atoms. Since the different Rydberg states are not
ionized at the same electric field, they are not ionized at the same time and then not
detected at the same time by the MCP. In looking carefully at the MCP signal, we can
distinguish between the ions or electrons generated by the ionization of atoms excited
in different Rydberg states.

To create the desired temporal shape of the electric field pulse, we use a home made
electronic box. As inputs to this box, we send a constant potential and a TTL which
determines the beginning of the electric field pulse. The output of the box is a raising
potential going from zero to the input potential with a given time constant. This time
constant can be choose through the value of the capacitor present in the box. In the fig
3.7 we show a typical temporally shaped potential coming from the box.

One advantage of this shape is that, for a given range of Rydberg states that we want
to detect, we can adjust the input potential of the box to be just slightly bigger than the
potential at which the Rydberg state with the lowest energy is ionized. Doing this, the
slope of the electric field is small in the region where the different Rydberg states are
ionize. This allows to have a good temporal separation between the ionization of the
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Figure 3.7: Typical electric field ramp for the state selective detection

different Rydberg states. While the final slope is small, the initial slope is high, allow-
ing to have a total duration of the electric field pulse reasonably short in comparison to
the Rydberg atoms lifetime.

To illustrate, a bit more in details, the signal obtained in the frame of the state selec-
tive detection. We present the data corresponding to the situation of the experiments
presented in the section 3.6.
The different Rydberg states excited by the laser pulse have here a principal quantum
number around 23. The electric field is raised in a total time of 4µs with a maximum
value of 4.3 kV.cm−1. The duration of the TOF is around 10 µs.
In the fig3.8 we show the signal recorded by the oscilloscope after a laser excitation of
different Rydberg states. The laser excitation is done in presence of an electric field of
79 V.cm−1 where no Förster resonance appears. Also, at this quite low electric field,
the Stark mixing of each states remains week and the excited states can be still labeled
using the zero-field states basis without ambiguity.

We see in the fig3.8 that the different Rydberg states lead effectively to different
detection signal allowing to differentiate them.
However, we see that the "selectivity" of the detection is not perfect as their is still
some overlapping in the detection signal of the different Rydberg states. This is mainly
due to the fact that, under the effect of the raising electric field, a zero-field Rydberg
state "meets" an important number of crossing with other states (we can refer here to a
Stark diagram for more of clarity). In the case of non-hydrogenic atoms those crossings
are often avoided ones. Consequently, in function of the raising speed of the electric
field, an initial zero-field Rydberg state is more or less mixed with other states when
the ionization is reached. We say that there is several "paths of ionization" which lead
to the observed spread of the detection signal of each Rydberg state. Another effect
comes from the blackbody induced transitions between the Rydberg states. This effect
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Figure 3.8: Averaging over 30 shot of the signal recorded by the oscilloscope after the
excitation of different Rydberg states. The detection parameters are the same for all the
states, the four traces have been vertically offset and normalyzed for clarity

is dependent of the time between the excitation and ionization pulses during which the
Rydberg atoms are free to evolve. The best way to limit this effect is to reduce this time.

Despites this overlapping, in order to know precisely the number of Rydberg atoms
excited in each of the different states when several Rydberg states are simultaneously
excited in the experiment, we use the following procedure.
On the fig3.8, we have represented three gray areas corresponding to temporal gates in
the detection signal. We first attribute, at each one of those gates, the detection of Ryd-
berg atoms in different states. For instance, 23d5/2, 24s and 23p3/2+23p1/2 from the first
to the last temporal gate. We have then defined here the d, s and p-gate, other quantum
numbers being forgotten for simplicity.
In looking at the signal of the fig3.8, it is possible to evaluate the crosstalk between the
different gates.
In addition, the ionization efficiency is not 100% since the ionization field is just slightly
higher than the ionization threshold. Moreover, it is different for the different Rydberg
states. To take this in account, for each of the investigated Rydberg states, we have
measure the ionization efficiency with the shaped electric field pulse used for the exper-
iments in comparing it with the case of a complete ionization.
From this, we can define a crosstalk matrix which also takes in account ionization effi-
ciency. This matrix allows to determine, from the MCP signal, the absolute number of
atoms excited in the different Rydberg states.
For example, for the situation of the experiment presented in the section, we have
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d
s
p


experiment

= Ndet

 2.016 -0.0644 -0.082
-0.100 4.645 -0.275
0.083 -3.147 4.149


d

s
p


gate

(3.8)

Here, Ndet is a coefficient exprimed in (mV.ns)−1 which characterizes the average
relation between the integrated gates signal and the number of Rydberg atoms present
in the experiment. Its value depends of the potential applied on the external plate of the
MCP. Due to the temporal dependence of the redistribution between the Rydberg state
due to the blackbody induced transitions, this matrix is valid for a fixed delay between
the excitation and ionization pulses. In our experiments, we take care to not change this
delay unless we decide to define a new matrix.

For Rydberg states with n around 23, the relative uncertainty on the fraction of Ryd-
berg atoms excited on the different state is of the order of 5%.
This uncertainty increases a lot when the principal quantum number n of the Rydberg
states increases. Indeed, for larger n, the difference of electric field at which the neigh-
boring Rydberg states are ionized is smaller. There is also more complex and mixed
paths of ionization. Those effect leads to a less good separation of the different Rydberg
states in the MCP signal. In this case, it is possible to improve the separation between
the excited Rydberg states in applying a microwave field on the atoms just before the
ionization pulse. The purpose is to transfer one of the excited Rydberg states toward
another Rydberg states which is more separated from the other ones. We had tried this
in our setup for Rydberg state with n = 53 and we succeeded to transfer around 50% of
the excited 53p1/2 Rydberg atoms in the 53d3/2 state. This involved an absorption of a
single photon of the micro-wave field with an energy difference of around 59 GHz.

In a general way, in the frame of the state selective detection, it is quite important to
have a good control of the TOF of the particles.
The most important condition that we have to realize is a short TOF. Indeed, if the Ry-
dberg states having the lowest energies are ionized the latest, the corresponding ions or
electrons are also the most accelerated. They could arrive before the other ones if the
TOF is not short enough.
To compensate this effect and to improve the separation between the Rydberg states,
it could be very interesting to have temporally shaped electric fields in other spatial
regions than the ionization one.
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3.4.4 Imaging of the Rydberg atoms

In this section, we present the type of signal that we have obtained in using the phos-
phor screen present at the back of the MCP. In the frame of this thesis, we have used
this 2-dimensional spatial detection in a very rudimentary way and the results presented
here are far to be really useful for the imaging of the Rydberg distribution. Nevertheless,
some general informations can be obtained from this spatial detection.

The anode of the MCP that we use in our setup is a luminescent phosphor screen (P43
from Hamamatzu). When a burst of electrons, generated inside the MCP from an in-
coming particle, arrives on the phosphor screen, this latter emits light. We have placed
in our setup a camera, focused on this phosphor screen to acquired the corresponding
2-dimensional signal.
The spatial resolution that we get with this system is given by the size of the MCP chan-
nels. In our case, it is 12µm. The temporal resolution of the phosphor screen is very
low, each spot having a "lifetime" of around 1 ms. Consequently, the images that we get
from the phosphor screen are register after that all the ions created by the pulsed electric
field have reached the MCP.

It is quite interesting to look at the images resulting from the excitation and the de-
tection of few Rydberg atoms. In the fig3.9 we show one of the obtained image.

Figure 3.9: Image of the phosphor screen after the excitation of few Rydberg atoms.
Left, image taken by the camera. Right, result of the image treatment.

We see on the fig3.9 that the ions resulting from the ionization of the Rydberg atoms
are clearly identifiable on such an image. In our setup, we analyze the image coming
from the camera with Labview. On the fig3.9, in regards to the image itself, we show
the "image" obtained after a treatment realized with Labview. We see that we are able to
numerically identify each ion spot, allowing to determine the number of detected ions
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as well as their positions. Very useful informations about Rydberg atoms physic might
be obtained from this type of image. However, up to know, we have looked to those
images only for curiosity.

Another type of images that we have obtained correspond to the excitation of many
Rydberg atoms, we show in the fig3.10 one of those images.

Figure 3.10: Image obtained by looking at the phosphor screen of the MCP after the
excitation and the detection of many Rydberg atoms. The intensity of the light emitted
by the phosphor screen is here translated in different colors with an arbitrary code.

The first information that we can get from this image is that almost all the ions cre-
ated by the ionization electric field pulse reach the MCP. Indeed, on this image, we see
that the size of the full ions distribution on the MCP is of the order of few hundreds of
µm, which is smaller than the total size of the MCP (around 2cm).

Our knowledge of the TOF of the particles in our setup, does not allow us to have a
precise information of the initial size of the Rydberg distribution. This is mainly due
to the Coulomb repulsion during the TOF but also to the focusing effects on the MCP
detector. Indeed, the finite size of the MCP induces curvatures of the electric field lines
for off-axis position in the TOF region. The latter effect should be weaker than the
Coulomb repulsion leading to an image larger than the initial Rydberg distribution.
Nevertheless, the size of the image, give an order of magnitude of the initial size of the
Rydberg distribution. The image of the fig3.10 allows thus to determine the order of
magnitude of the Rydberg density since the calibration of the MCP allows to know the
number of excited Rydberg atoms. For the situation of the image of the fig3.10, corre-
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sponding to the 3-photon excitation of the 23p3/2 Rydberg state, we had measured that
the number of Rydberg atoms was around 105 and from the image, we can evaluate that
the order of magnitude of the Rydberg atoms density is around 1010 at.cm−3.

Interestingly, we use also such an imaging of the Rydberg distribution as a tool for
our experimental setup. Indeed, we use it to superpose the excitation region of the two
paths of laser excitation (2- or 3-photons excitation). To do this, we excite the atoms in
a given Rydberg state, in presence of electric field, successively with one or the other
of the excitation path. We are then able to check if, in both case, the ions arrive in
the same position or not, this provides a 2-dimensional spatial information. Also in
looking at the arrival time of the ions, we are able to check if, in both case, the ions ar-
rive at the same time or not, this provides the information on the third spatial dimension.

We see with those few examples that the possibility to image the Rydberg atoms leads
quickly to very interesting information. However, the results presented here correspond
only to the first step toward a spatial imaging of the Rydberg distribution. In this frame,
a precise study of different TOF configurations and of the Coulomb repulsion between
the charged particles could offer nice perspectives.
One interesting possibility could be to study the spatial correlations in blockaded Ryd-
berg ensemble.
In addition, as mention in the section 1.3.2, the possibility to image the Rydberg dis-
tribution, together with a state selective detection in an experiment where two different
Rydberg states are excited, could offer the possibility to study the diffusion of a Rydberg
excitation. Such a diffusion having possible analogy with exciton propagation or could
be use to implement quantum walk (eventually random in presence of optical lattices).
I would like to mention here that, in comparison with in-situ optical imaging of the
Rydberg atoms which are currently theoretically study or even realized in the case of
small ensemble [Schauß et al., 2012], the Coulomb repulsion between the charged par-
ticles gives a big drawback to the field ionization method. Indeed, the strong interaction
between charged particle can very quickly perturbs totally the initial distribution of Ry-
dberg atoms.
Nevertheless, the Coulomb repulsion can be studied. For example, considering two
identical particles of charge q and mass m distant of d0 with a null relative velocity at
t = 0, the distance d at a time t between the two particles is given by the following
formula (with C = 2q2

mπε0
).
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This (non-invertible) formula is quite interesting to study the effects of the Coulomb
interaction during a TOF. For example, it shows (and quantify) that after a certain time,
two particles initially close from each other will be more separated than two particles
initially more separated.
In the frame of blockaded Rydberg ensemble, we see that the blockade radius might
be translated in term of a maximum distance at which two particles can be detected.
This non-studied assumption is more an example to show that, despites the Coulomb
repulsion, spatial imaging of Rydberg ensemble using a detection by field ionization
could lead to interesting informations.
An already obtained result is the one reported in the reference [Schwarzkopf et al., 2011]
(see the section 1.4.4 of the chapter 1).

3.5 temporal sequence of the experiments

In this section, we present the typical temporal sequence that we use for our experi-
ments. On the fig 3.11, we show a schematic representation of this temporal sequence.

Figure 3.11: Typical experimental sequence performed in our setup.

The temporal control of all the elements involved in the experiment (lasers, elec-
tric fields, oscilloscope, camera) is done using a digital delay generator (DG 645 from
Standford Research Systems). The sequence is repeated in our setup with a frequency
of 10 Hz. The timescale of the experiment is 1 µs.
At this time scale, we have a full control over all the elements and they can be adjusted
in function of what we want to study. We give here the values for the experiments which
are presented in the section 3.6.
The Rydberg excitation pulse is 0.5µs long. After a delay of 1.5µs, we apply the elec-
tric field ramp to ionize the Rydberg atoms, the total duration of this pulse is 4 µs and
the Rydberg atoms are ionize in the last part of the ramp. the created charged particles
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are then accelerated toward the MCP, with a typical TOF of 7 µs, which is spread out
of around 1 µs. The detection signal is recorded with the oscilloscope. Once all the
particles detected, we take an image of the phosphor screen (we have 1ms to do it).

To achieve the presentation of the experimental setup, I would just mention a small
trick that we use concerning the temporal control of the experiment. In our setup, some
of the lasers used for the Rydberg excitation are stabilized using the simple absorption
method which involves to modulate the laser frequency. If it is possible to not modulate
the laser itself but only the part of the beam involved in the locking scheme using for
example an AOM, in our setup, the frequency of the lasers is modulated through their
current supply and the frequency modulation is present in the beam send to the atoms. In
order to reach a better stability of the Rydberg excitation in regards to this modulation,
we manage to modulate the frequency of the different laser at the same frequency (using
"external modulation" option of the current supply) and to trig the full sequence (i.e. the
standford box) according to this modulation. The implementation of this technique led
to a clear improvement of the Rydberg excitation stability.

3.6 Observation of a 4-body process

In this section, we present the main result obtained with our experimental setup, it con-
sists in the experimental observation of a coherent process involving the interaction
between 4 Rydberg atoms.
This 4-body process can be described, in a general way, as the fact that two 4-body
quantum states |Ψ1〉 and |Ψ2〉 describing 4 non-interacting Rydberg atoms are coupled
together under the effect of the interactions between the Rydberg atoms.
In the situation that we have observed, the state |Ψ1〉 corresponds to 4 Rydberg atoms in
the state 23p3/2 and the state |Ψ2〉 corresponds to 4 Rydberg atoms in the states 24s, 24s,
23p1/2 and 23d5/2. In setting the laser excitation to excite the atoms in the state 23p3/2,
we did observe atoms in the state 23d5/2. This observation reveals, without ambiguity,
the coupling between the two 4-body quantum states.

An interesting feature of this experimental observation is that those two 4-body quan-
tum states are not coupled directly by the Rydberg interactions. Indeed the four atomic
Rydberg states with which the two 4-body quantum states are composed are all different
and the by essence the electrostatic interaction coupled only the Rydberg atoms 2 by 2.
The origin of the coupling between those 4-body quantum states comes from the ex-
istence of two Förster resonances appearing at very close electric fields. Those two
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Förster resonances can be described by the following equations

2× 23p3/2 → 23s+ 24s (3.10)

2× 24s→ 23p1/2 + 23d5/2 (3.11)

We have observed those two Förster resonances respectively at ≈ 79.9 V.cm−1 and
≈ 80.4 V.cm−1.
It is the extreme vicinity in electric field of those two Förster resonances which allows
us to observe the mentioned 4-body process which can be view as the reaction

4× 23p3/2 → 2× 23s+ 23p1/2 + 23d5/2 (3.12)

We have observed this process for an electric field of ≈ 80.0 V.cm−1.

Despites the presence of an electric field, we label in all this section the single-atom
states as the zero-field Rydberg states. The fact is that, for the electric field involved
in those processes, the mixing between the zero-field Rydberg states due to the electric
field is quite small and the Rydberg states excited in the experiments are mainly com-
posed by the zero-field states with which there are labeled. Nevertheless, this mixing
is non-negligible as proved by the observation of the Förster resonance of the equa-
tion 3.11 which would be not existing otherwise (quadrupolar interactions are here very
small).
In addition, all the Rydberg states involved in those processes have |mj| = 1

2
. Due to the

Stark effect, states with other |mj| are degenerated in energy, for example the Förster
resonance of the equation 3.10 with 23p3/2 (|mj| = 3/2) instead of 1/2 appears at an
electric field of around 88 V.cm−1 which quite far away from the investigated Förster
resonances.

3.6.1 Observation of the two Förster resonances

On the fig 3.12 we show the experimental measurements relative to the observation of
the two 2-body Förster resonances of the equations 3.10 and 3.11.

On the fig 3.12, we clearly see the appearance of the two Förster resonances.
It is interesting to notice the fraction of excited 24s atoms (≈ 33%) obtained in the case
of the Förster resonance of the equation 3.10. This indicates that the 2-body Förster
resonance is completely saturated. We get 33% because the Rydberg atoms in the 23s
states are not detected, otherwise we would get 25% which is, at resonance, the real
proportion of 24s atoms within all the Rydberg atoms.
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Figure 3.12: Experimental measurements of the Förster resonances. a) Measured frac-
tion of 24s atoms within the total number of atoms in a detectable state in function of the
applied electric field. Here, the laser excitation is set to excite the Stark shifted 23p3/2

state. b) Measured fraction of 23d5/2 atoms within the total number of Rydberg atoms
in function of the applied electric field. Here, the laser excitation is set to excite Stark
shifted 24s state. In both case, error bars take in account the uncertainty on the measured
number of atoms as well as the electric field inhomogeneity affecting more the 23p3/2

than the 24s state

The quite low fraction of excited 23d5/2 obtained in the case of the Förster resonance
of the equation 3.10 can be explained by the electric field inhomogeneity in our exper-
imental setup the density of excited 24s Rydberg atoms in our experiment (see section
3.7.1).

3.6.2 Observation of the 4-body process

On the fig 3.13 we show the experimental measurement relative to the observation of
the 4-body process describes by the equation 3.12.

Although, the obtained fraction of 23d5/2 atoms is quite small, we clearly see on the
fig 3.13 the sharp resonance corresponding to the 4-body process.
We see on the fig 3.13 that the resonance line exhibits a small elbow structure on the left
side. This feature has been carefully checked (as indicated by the small error bars of the
corresponding points) and seems to be intrinsic to the observed process.
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Figure 3.13: Experimental measurements relative to the 4-body process. Measured
fraction of 23d5/2 atoms within the total number of atoms in function of the applied
electric field. Here, the laser excitation is set to excite Stark shifted 23p3/2 state. Error
bars take in account the uncertainty on the measured number of atoms as well as the
electric field inhomogeneity. The position in electric field of the two Förster resonances
is represented by the vertical black dashed lines

3.6.3 Density dependence

Since we are in presence of few-body processes, it is quite interesting to measure their
density dependences. The relevant density is here the Rydberg atoms density and is di-
rectly linked to the efficiency of the Rydberg excitation. To vary the density of Rydberg
atoms we have alterated the power of the excitation lasers using a set of neutral density.
On the fig 3.14 we present the obtained results.

On the fig 3.14, we clearly see that the density dependence of the different few-body
processes are the one that we can expect, i.e., a square dependence for the two Förster
resonances and a fourth power dependence for the 4-body process.

3.6.4 4-body processes in a variable electric field

In this section, we present the results of the experiments that we have done in order
to observe a better transfer from 23p3/2 to 23d5/2. The idea of those experiments is to
change the applied electric field after the Rydberg excitation in a such a way that the
electric field would be, in a first time, the resonant field for the first Förster resonance
and, in a second time, the resonant field for the second Förster resonance. Doing this,
both Förster resonances are successively resonant and the total transfer is enhanced
in comparison to the case where the electric field is constant. In the fig 3.15, we have
represented the number of atoms found in the state 23d5/2 in function of the total number
of excited Rydberg atoms and the "Jump" of electric field. The initial electric field is
79.94 V.cm−1 and the laser excitation is set to excite the 23p3/2 Rydberg state.

On the fig 3.15, we see that for an electric field Jump corresponding to the difference
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Figure 3.14: Experimental measurements of the density dependences of the different
few-body processes. All the graph are plot in Log-Log scale. a) Measured number of
excited 23d5/2 atoms in function of the measured number of excited 24s atoms. Here, the
laser excitation is set to excite the Stark shifted 24s state. b) Measured number of excited
24s atoms in function of the measured number of all the detectable Rydberg atoms. c)
Measured number of excited 23d5/2 atoms in function of the measured number of all the
Rydberg atoms. In b) and c) the laser excitation is set to excite the Stark shifted 23p3/2

state. The best fit of those different data are shown by the blue dashed lines and their
coefficients with relative error are written on the graphs. The region taken in account to
calculate the fits are the ones demarcated by the vertical dotted-dashed black lines
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Figure 3.15: 4 body process in a variable electric field. The number of 23d5/2 atoms is
represented with a color code in function of the total number of Rydberg atoms and the
amplitude of the electric field Jump. Initially, 23p3/2 Rydberg atoms are excited and the
electric field is 79.94 V.cm−1.

between the resonant field of the 2 Förster resonances, we observe up to 5% of transfer
from 23p3/2 to 23d5/2.

3.7 Modeling of the few-body processes

In this section, we give some theoretical insights to the few-body processes that we have
observed in our experiments.

3.7.1 Förster resonance

The theoretical description of a Förster resonance has been already approach in the sec-
tion 1.3.2 of the chapter 1 and are underlying to the calculation of the chapter 2. We have
seen that the physical situation corresponds to an avoided crossing of two 2-body Ryd-
berg states. This avoiding crossing appears if both states have the same (non-interacting)
energy at a given electric field and if they are coupled together under the effect of the
Rydberg-Rydberg interaction.
In this section, we will see that the knowledge of only few parameters allow to precisely
characterize a Förster resonance. We give the value of the relevant parameters in the
case of the two Förster resonances that we have observed experimentally.
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As we can see, for example on the fig 3.12, a Förster resonance is a quite sharp res-
onance in electric field. Consequently, it is sufficient to consider only a small range of
electric field around the resonant field to fully describe a Förster resonance. This has
two very useful consequences for the theoretical modeling of a Förster resonance. First
we can consider that the energy of the two 2-body non-interacting Rydberg states varies
linearly with the electric field. Secondly, we can consider that the coupling between
those two states is constant within the relevant range of electric field, in a sense, we
consider here that the decomposition of the Stark shifted Rydberg states on the zero-
field basis states do not change within the relevant range of electric field.
Under those approximations, a Förster resonance, in addition to its resonant field, can
be fully characterized by three quantities, the slope in electric field of each 2-body
non-interacting Rydberg states and the coupling between those states. Each of those
quantities are taken at the resonant field of the Förster resonance. They can be easily
obtained theoretically using, for example, the calculations presented in the chapter 2 of
this manuscript.
The coupling due to the dipole-dipole interaction between the two 2-body Rydberg
states depends of the distance between the two atoms. However, this distance can be
view as a parameter since the total coupling is the product of two atomic dipole moment
divided by the cube of the interatomic distance.

With the knowledge of those parameters, a Förster resonance can be fully character-
ized. For a given interatomic distance, we can plot a diagram such as the one presented
on the fig3.16.

In the case of the Förster resonance of the equation 3.10, we have

dE2×23p3/2

dF
≈ −400MHz.(V.cm−1)−1 (3.13)

dE23s+24s

dF
≈ −30MHz.(V.cm−1)−1 (3.14)

V1 ≈
67.5

R3
/µm

MHz (3.15)

In the case of the Förster resonance of the equation 3.11, we have
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dE2×24s

dF
≈ −40MHz.(V.cm−1)−1 (3.16)

dE23p1/2+23d5/2

dF
≈ 65MHz.(V.cm−1)−1 (3.17)

V2 ≈
18.5

R3
/µm

MHz (3.18)

Figure 3.16: Schematic representation of a Förster resonance. The green and red spots
represent laser excitations which are mentioned in the text

The energy and the decomposition on the non-interacting basis {|Ψ1〉 , |Ψ2〉} of the
two eigenstates of the interacting system |Ψ+〉 and |Ψ−〉 can be obtained, at a given
electric field F , by the diagonalization of the following matrix(

E1(F ) V

V E2(F )

)
(3.19)

In the case where the electric field is exactly resonant, the two eigenstates are the
symmetric and antisymmetric superposition of the non-interacting states, i.e., |Ψ±〉 =

1/
√

2(|Ψ1〉 ± |Ψ2〉). Their difference in energy is exactly the coupling V between the
two non-interacting states.

It is very interesting to study the state which is populated by a laser excitation of such
a system. Indeed, in function of the ratio between the laser coupling, given by its Rabi
frequency Ω, and the difference of energy between the two eigenstates ∆̃E, the popu-
lated state, and its temporal evolution once the laser excitation is turned off, are very
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different. We present here two limit cases.

In the regime where Ω � ∆̃E, the populated state is purely one eigenstate of the
system. In this case, their is no temporal evolution when the laser excitation is turned
off. This case is represented by the red point on the fig3.16.

In the regime where Ω ≥ ∆̃E, the populated state is a coherent superposition of the
two eigenstates. The temporal evolution of the system, when the laser is turned off,
exhibits a coherent dynamics. A very interesting case is found when the electric field
is exactly at resonance and when the superposition is equally weighted at the end of
the laser excitation. This case is represented by the green point on the fig3.16. In this
case, the coherent evolution of the system corresponds to a Rabi oscillation between the
two non-interacting states and the frequency of the oscillation is given by the coupling
between the states. This can be easily seen in writing formally the populated quantum
state.
If at t = 0, when the laser is turned off, we have

|Ψ(t = 0)〉 =
1√
2

(|Ψ+〉+ |Ψ−〉) =
1√
2

(
1√
2

(|Ψ1〉+ |Ψ2〉) +
1√
2

(|Ψ1〉− |Ψ2〉)) = |Ψ1〉
(3.20)

At a time t, with the appropriated choice of phase, we have

|Ψ(t)〉 =
1√
2

(|Ψ+〉+ e−iV t |Ψ−〉) (3.21)

We see here that the evolution of the quantum state corresponds effectively to a Rabi
oscillation between the non-interacting quantum states, for example, at a time t = π/V ,
the system is in the state |Ψ2〉.

Those two limit cases show that the ratio Ω/∆̃E plays a determinant role in the dy-
namics of the system. However, for a real laser excitation, several effects comes on
top of this very simple description. The quantum dynamics has to be consider from the
beginning of the laser excitation. The incoherent broadening induces statistical distri-
bution of the laser excitation field. We have also to consider the state which is coupled
by the laser field to this system and the possible blockade effects, unless we consider a
direct two photons absorption from both atoms in the ground state.

We see here that the determination of the Förster resonance diagram as the one shown
of the fig 3.16 together with a study of the quantum dynamics during and after the laser

143



excitation could allow to model quite precisely a system of two atoms excited by a given
laser field toward a Rydberg state in which the atoms interact through a Förster reso-
nance.
However, in our experiment, we are dealing with the excitation of an atomic cloud where
many pairs of atoms interact in the same time. This make the modeling much more diffi-
cult since several relevant parameters are varying within the Rydberg excitation region.
Namely, in function of the position of the atoms, the Rabi frequency of the laser exci-
tation is different, the electric field is different due to the electric field inhomogeneity
and the density of Rydberg atoms is different. Even in the case of an uniform density,
the distance between the closest atoms is randomly distributed. Since the dipole-dipole
coupling between two atoms depends of the cube of their relative distance, the distribu-
tion of the interatomic distances has a very strong impact on the coupling strengths. In
addition, we have also to consider the incoherent broadening of the laser excitation.
Due to all those effects, we have not try in the frame of this thesis to model precisely the
experimental results for the two observed Förster resonances. Nevertheless, we can give
qualitative explanation for the observed fraction of the "product" state for both Förster
resonances.

In the case of the Förster resonance of the equation 3.10, the laser excitation is set
to excite the 23p3/2 Rydberg state. Due to the electric field inhomogeneity and the quite
important slope of the Stark shifted 23p3/2 state energy in function of the electric field
(≈ 200 MHz.(V.cm−1)−1), the volume in which we really excite Rydberg atoms is re-
duced in comparison to the full Rydberg excitation volume. We have evaluated that
this volume is a sphere with a radius of around 100 µm. Within this volume, the abso-
lute inhomogeneity of the electric field is around 0.05 V.cm−1 for a mean value of 80
V.cm−1. The evaluated number of excited Rydberg atoms is around 105 giving an aver-
age Rydberg density of around 2 1010 at.cm−3. The most probable interatomic distances
between two neighbor atoms is around 2 µm. The typical coupling between a pairs of
atoms is then of the order of 10 MHz.
Considering all those values, we see that, in our experiments, the excitation of the pairs
of atoms interacting through the Förster resonance of the equation 3.10 is done, for a
resonant mean electric field, in the very central region of the Förster resonance. This is
schematically represented in the fig 3.17

On the fig 3.17, we see that the eigenstates of the different pairs of atoms are always
close to be a superposition with equal weights of the two non-interacting states. The
Förter resonance is then "saturated" over the full Rydberg cloud. This leads to the ob-
served fraction of Rydberg atoms in the state 24s which have been observed.
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Figure 3.17: Schematic representation of the excitation of the Förster resonance of the
equation 3.10 in our experiments

Figure 3.18: Schematic representation of the excitation of the Förster resonance of the
equation 3.11 in our experiments

In the case of the Förster resonance of the equation 3.11, the laser excitation is set
to excite the 24s Rydberg state. Due to the electric field inhomogeneity and the quite
small slope of the Stark shifted 24s state energy in function of the electric field (≈ 20
MHz.(V.cm−1)−1) the volume in which we excite Rydberg atoms is the full Rydberg
excitation volume which is around 0.02 mm3. Within this volume, the absolute inho-
mogeneity of the electric field is around 0.1 V.cm−1 for a mean value of 80 V.cm−1.
The evaluated number of excited Rydberg atoms is around 105 which leads to an aver-
age Rydberg density of around 5 109 at.cm−3. The most probable interatomic distances
between two neighbor atoms is around 3 µm. The typical coupling between a pairs of
atoms is of the order of 1 MHz.
Considering all those values, it appears that, in our experiments, the excitation of the
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pairs of atoms interacting through the Förster resonance of the equation 3.11 is done,
for a resonant mean electric field, in a quite spread region of the Förster resonance. This
is schematically represented in the fig 3.18.

We see on the fig 3.18, that the eigenstates of a lot of pairs of atoms are just the non-
interacting eigenstates, i.e., that a lot of pairs are not interacting through the Förster
resonance. This leads to the small observed fraction (6%) of Rydberg atoms in the state
23d5/2 which have been observed.

3.7.2 Modeling of the 4-body process

In order to model the 4-body process observed in our experiment, we have developed a
quite minimal model to describe a system of four interacting Rydberg atoms.

We aim to describe a system where the four atoms are all equidistant from each other
(in a tetrahedron configuration).
In this model, we have putted together the two Förster resonances which lead to the
4-body process. We consider four 4-body (non-interacting) quantum states labeled by
|pppp〉, |ss′pp〉, |ss′ss′〉 and |p′s′ds′〉. Here, s, s′, p, p′ and d correspond respectively to
the 24s, 23s, 23p3/2, 23p1/2 and 23d5/2 Rydberg states and we consider that the 4-body
states are the superposition of all the possible combination relative to the exchange of
atoms. Since the atoms are all equidistant, those different combinations have all the
same characteristics and are all identically populated.
We can write the Hamiltonian of the system H4-body as

H4-body =


E|pppp〉(F ) V1 0 0

V1 E|ss′pp〉(F ) V1 0
0 V1 E|ss′ss′〉(F ) V2

0 0 V2 E|p′s′ds′〉(F )

 (3.22)

To express the different quantities of this Hamiltonian, we can use the fact that the
range of investigated electric field F is small, as it is done in the modeling of the Förster
resonances.
The coupling terms V1 and V2 are considered to be constant and correspond to the ones
involved in the two Förster resonances presented in the section 3.7.1.
The energy of each 4-body states are considered to vary linearly with the electric field
and we define them by the slope of the corresponding 4-body Rydberg states at the elec-
tric field of 80 V.cm−1 and by the resonant conditions corresponding to the experimental
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observation of the two Förster resonances.
The different slopes of the states in function of the electric field can be evaluated with
the calculation presented in the chapter 2 of this manuscript.
To visualize those informations, on the fig 3.19, we have represented the energy diagram
of the different 4-body (non-interacting) Rydberg states that we model.

Figure 3.19: Energy diagram of different 4-body (non-interacting) states in function
of the electric field. The slopes of the lines corresponds to the calculated ones, their
position is set in function of the experimentally observed positions of the two Förster
resonances. The two Förster resonances are highlighted by the points lebeled respec-
tively a1, a2. The point labeled b corresponds to the position where the 4-body process
should appear.

Our modeling of the 4-body process consists in solving the equation of evolution of
the density matrix of the system σ̂ for different electric fields and interatomic distances.
We set the system to be at t = 0 in the state |pppp〉. The time of evolution is set to be
1.5µs, which is the time between the end of the laser pulse and the beginning of field
ionization pulse in the experiment.
For each electric field and each interatomic distance, we can extract the fraction of atoms
excited in the 23d5/2 Rydberg state at the end of the modeled process. It corresponds to
the quarter of the population of the state |p′s′ds′〉.
In our model we then do two averages of the obtained results. A first average is done
according to the electric field to take in account the electric field inhomogeneity. A
second one is done according to the distance between the atoms. For this latter, we
assume that the possible values are given by the cubic Erlang distribution corresponding
to the evaluated density of Rydberg atoms excited in our experiment.
The Erlang distribution f(r, k) gives, in an uniform gas of density d, the probability
42f(r, k) to find one atom and its kth neighbor at a distance r. This distribution is given
here, with Rd = (4π

3
d)−

1
3
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f(r, k) =
3

4πk!

(r3)k−1

(R3
d)
k

exp
−( r

Rd
)3 (3.23)

In the fig 3.20, we have plotted the results of our model together with the experi-
mental data already presented on the fig 3.13.
We see on the fig 3.20 that the simple model that we have implemented exhibits a rela-
tively good agreement with the experimental data. In addition to the fraction of 23d5/2

atoms, the model exhibits also the elbow structure of the resonance line observed exper-
imentally.
This agreement seems to indicate that, as we expected, the 4-body process that we have
observed is effectively linked to the existence of two Förster resonances very close in
electric field.

Figure 3.20: Comparison between the model and the experimental data. Fraction of
23d5/2 atoms within the total number of Rydberg atoms in function of the applied elec-
tric field. The data (red markers) corresponds to the ones presented on the fig3.13. The
blue dashed line corresponds to the result of the model with a constant offset which cor-
responds to the background of the experimental 23d5/2 signal. The position in electric
field of the two Förster resonances is represented by the vertical black dashed lines

3.8 Conclusion and outlooks

The experimental observation of the 4-body process that we have presented in this chap-
ter represents an important step toward the study of coherent mechanisms involving
few-body quantum states.
The experiments that we have performed open the way to the characterization and the
control of the interactions between few Rydberg atoms from which we can expect very
prolific behavior. A very interesting point is the relatively low density (MOT density) at
which it has been possible to observe the 4-body process.
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Working for example with magnetically trapped sample, the observation of 6-, 8-body
processes should be reasonably approachable.

Staying in a MOT, the purpose of future experiments will be to studied more "isolated"
4-body processes. The one that we have observed being a bit slot in the middle of two
2-body Förster resonances. The use of two colours excitation should also allow to ac-
cess a much larger variety of 3 or 4 processes.

In our experiments, we have shown that the application of variable dc electric fields
can be an efficient way to controle the interacting Rydberg atoms. This comes in ad-
dition to laser excitation itself. In addition to an enhancement of the interactions for
particular values of the electric field, the possibility to manipulate few-body Rydberg
states through adiabatic/diabatic transition could offer very nice perspectives. Stark
driven Landau-Zener transitions has been already studied for interacting pairs [Saquet
et al., 2010].

As we have seen in the chapter 1 and 2, the interaction between two Rydberg atoms
already leads to very rich features. This concerns the eigen energies but also there dy-
namics. For example, a very beautiful experiments reported in [Nipper et al., 2012b],
have shown the coherence of the Förster resonance interactions by using a pair state
interferometer.
Using such methods in cold atoms gases or working with sample composed by single
few-body systems should allow to access the full "time-resolved" quantum states dy-
namics of interacting few-body systems. Such study fall in a very modern and deep
field of research related to quantum chemistry or molecular biology.
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Chapter 4

Many-body experiments

In this chapter, we present the experiments done in the "Dipartimento di Fisica" of the
University of Pisa in the frame of this thesis.
The main purpose of those experiments is to study the excitation of a cold atomic cloud
toward Rydberg states in the regime of strong interactions. In this regime, the inter-
actions between the Rydberg atoms are such that the many-body quantum correlations
determine the general behavior of the laser excitation.

The way to investigate the system in our experiment is the counting statistics of the
number of detected Rydberg atoms. The main result obtained in the frame of this thesis
is the observation of a highly subpoissonian statistics of the number of detected Rydberg
atoms in an atomic cloud excited in the blockade regime. This observation, reported in
[Viteau et al., 2012], is a strong signature of the collective behavior of the Rydberg
atoms in the regime of blockade. The quasi deterministic number of Rydberg excita-
tions that we have observed is a confirmation that the blockaded Rydberg gases offer
very nice perspectives for the generation of non classical states.
This result came just after the first realization of a coherent Rydberg excitation in
a 1-dimensional optical lattice [Viteau et al., 2011] which is also presented in this
manuscript.

The experimental setup used for those experiments is a more than ten years old setup
having already provided many beautiful results (and undergoes a fire in 2005). This
setup allows a fantastic control of an atomic cloud of rubidium 87 atoms. Ultra low
temperature are achieved allowing the formation of Bose-Einstein Condensates (BEC).
The use of optical lattices allows a further control of the trapped matter-wave. Namely,
a dynamical control of the tunneling has been realized [Lignier et al., 2007] through the
shaking of the lattice, and many interesting effects arising from BEC trapped in periodic
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potential have been observed [Sias et al., 2008; Eckardt et al., 2009; Lignier et al., 2009;
Zenesini et al., 2010]. BEC in optical lattice have been also used in this setup to study
driven two-level systems [Tayebirad et al., 2010] and a high fidelity quantum driving
through a super-adiabatic protocol has been achieved [Bason et al., 2012]. The possi-
bility to excite the atoms toward Rydberg states has finally open the way to the study
of interacting quantum systems which is the subject of this thesis. Since this experi-
mental setup has been largely depicted in the references that we just mentioned, in this
manuscript, we present it quite briefly and we mainly focus on the points interesting for
the Rydberg experiments.

4.1 Cold atomic samples in various density and geome-
try

The modularity of the atomic sample created in our experimental setup offers very nice
possibilities for the study of interacting Rydberg gases. First, the ground state atomic
density that we can obtain ranges from 1010 at.cm−3 to more than 1013 at.cm−3 with at
least 105 atoms for all those densities. Also, in regards to the typical order of magnitude
of the Rydberg blockade radius (10µm), the geometry can be either 3-dimensional, 1-
dimensional or even "zero-dimensional". Finally, using the optical lattice, the atomic
sample can be view as an ensemble of zero-dimensional packets.
In this section we present the different configurations in which we prepare the atomic
sample before the excite the atoms toward a Rydberg state.

4.1.1 MOT

The first type of cold atomic cloud that we can create consists in a Magneto-Optical
Trap (MOT). In our experimental setup, the Rubidium 87 atoms are first loaded in a
so-called 2D-MOT in the "collection" part of the vacuum chamber. The trapped atoms
are then pushed toward a classical MOT situated in the "science" part of the vacuum
chamber. There, the pressure is of the order of 10−11 mbar.
In the frame of the Rydberg experiments, because we want to, we work with quite
small MOT. The typical number of atoms is 104 for a typical mean density of few 1010

at.cm−3. The temperature is of the order of 200 µK.
The realization of such a small MOT is not obvious. To work in this regime, we have
to limit quite a lot the size of the cooling beams and a lot of attention have thus to be
payed to the alignment of those beams.
The atoms trapped in the MOT provide us a 3-dimensional cold atomic sample whom
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the typical dimension is few 100 µm.

4.1.2 BEC in a cross dipole trap

It is possible in our setup to reach the Bose-Einstein condensation of the atomic cloud.
To do this, the atoms trapped in the MOT are transfered, after an optical molasses se-
quence, in a Time-average Orbital Potential (TOP) magnetic trap. First step of evapo-
ration are done in the TOP trap, then, the atoms are loaded in a cross dipole trap where
evaporative cooling is done until the condensation.
The laser use for the dipole trap is a 1030 nm Yb:YAG laser with an output cw power
of 3 W. The laser is separated in 2 beams focused on the atoms with a waist of around
70 µm.
With this method, the created BEC are composed of typically 105 atoms with a density
of few 1013 At.cm−3. The temperature is of the order of few nK.
The BEC trap in the cross dipole trap provide us an ultra-cold atomic sample which can
be view as an almost "zero-dimensional" sample with typical dimensions of the order
of few µm. In the fig 4.1, we show an image of the BEC taken after a time of flight.

Figure 4.1: Image of the BEC.

4.1.3 1-dimensional BEC

In order to create an atomic sample having a 1-dimensional shape, we turn off one arm
of the cross dipole trap. We can then let expand the BEC in the remaining dipole trap
beam and the BEC acquires a so-called cigar-shape (see fig 4.2). By varying the time of
expansion of the BEC before the Rydberg excitation, the longitudinal size of the atomic
cloud ranges from few µm (initial size) until up to 1mm. On the other hand, the radial
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Figure 4.2: Schematic drawing of the "post-BEC" experimental setup, the different ele-
ments are mentioned in the text.

dimension stays roughly at its initial value of few µm.
On the fig 4.3, we show images of expanded BEC for two different times of expansion

Figure 4.3: Images of the BEC for two different times of expansion in the 1D dipole trap,
respectively 10 and 50ms for the upper and the lower image. The dipole trap envelope
is schematically represented by the dashed white curves. Since those pictures are taken
after a TOF, the size of the image is not relevant, however, the TOF is the same for both
picture showing the effective expansion of the BEC

4.1.4 BEC in optical lattices

The last geometrical configuration that we can obtain in our setup involves the use of op-
tical lattices. In our setup, we have implemented the possibility to create 1-dimentionnal
optical lattices using two "counterpropating" laser beams (see fig 4.2).
Both beams comes from a MOPA TA100 of Toptica with an output power of around
750 mW for a wavelength λ ≈ 849 nm.
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Once the elongated BEC is created, we can ramp up the lattice beam (adiabatically for
the Rydberg study) and then cutting in slices the 1-dimensional BEC. The rang of power
of the lattice beams allows a large control on the axial potential seen by the atoms. Very
strong confinement can be obtain, the size of on-site wave function can easily by made
10 times smaller than the lattice spacing.
In order to get different lattice spacings, we can manage to cross the two lattices beams
with different angle θ (defined to be the angle between the direction of propagation
of one beam and the direction perpendicular of the propagation direction of the other
beam).
The lattice spacing dL is then given by

dL =
λ

2sin
(
θ
2

) (4.1)

Since we have to change physically the beam directions to change the angle θ, the
lattices spacing can not be changed "instantaneously". This is more a general parameter
which is at most weekly changing.
The optical access in our setup allows to vary the lattice spacing from ≈ 0.5µm to
≈ 25µm. In comparison to the typical manageable blockade radii (10µm), we see here
that the lattice spacing can be either larger or smaller. This allows to have a single
Rydberg excitation either "localized" on one lattice site or "delocalized" over several
lattice sites.
On the fig 4.4, we show an in-situ imaging of the atomic sample in presence of optical
lattice with a lattice spacing of around 25µm. This very large lattice spacing has been
achieved only recently in our setup and Rydberg experiments have not been preformed
with this configuration yet.

Figure 4.4: In-situ imaging of the atomic cloud in presence of optical lattice. The lattice
spacing is around 25µm
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4.1.5 Characterization the atomic cloud

For all the sample created in our setup, we characterize the atomic cloud using an ab-
sorption imaging technique. It consists in sending a laser beam resonant with the cooling
transition through the atomic sample and look to the intensity profile of the beam with
a camera. In measuring the absorption of the beam, proportional to the atomic density,
we can then reconstruct a 2-dimensional density profiles of the atomic cloud integrated
on the third direction.
The CCD camera that we use is from DTA, taking in account a beam size magnification
of 2 using an objective placed in front of the CCD, the spatial resolution of the system
is around 2.2µm.
We associate, in our setup, this imaging with a precise time of flight. During this time of
flight, the atomic cloud is in free fall. The density profile can be measured for different
time of free expansion of the sample and we have then access to its initial dynamics.
Here, both the temperature and the trap frequencies play a role and can be investigated.
To image the BEC, we need to have a time of flight where the cloud expands (typically
of the order of 10 ms) in order to get a reasonable spatial precision. However, for the
MOT or for expanded BEC with or without lattices, we do also "in-situ" imaging.
The precision reaches in our setup on the density and the number of atoms resulting
from the absorption measurements has been evaluated to be better than 20%.

4.2 Rydberg excitation

In this section, we present briefly the laser system that we use to excite the atoms toward
Rydberg states. We present also the main characteristics of the laser excitation.

4.2.1 General scheme

The laser excitation system implemented in our setup is a coherent two-photons exci-
tation. From the ground state atoms, we can excite atoms in Rydberg states nl with n
ranging from 30 to 120 and l is either s or d. As discuss in the section 1.4.4 of the chap-
ter 1, the coherence of the excitation is ensure by the fact that the excitation is detuned
from the intermediate state, in our case the typical detuning is 1 GHz. In the fig4.5 we
have represented a schematic energy diagram of the Rydberg excitation corresponding
to our experiments.

The detuning of the excitation from the intermediate state allows a coherent excita-
tion of the Rydberg states from the ground state but it also prevents from an undesirable
photoionization of the atoms. Indeed, the 420 nm laser can directly ionize the atoms ex-
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Figure 4.5: Energy diagram of the coherent 2-photons Rydberg excitation

cited in the state 6p3/2 and the associated oscillator strength is quite high (much higher
than the one associated to ionization of the Rydberg states). It is then essential to avoid
completely the population of this state, i.e., work with a large detuning. Nevertheless,
in our experimental procedure, the photoionization of the 6p3/2 provide us with a very
useful way (by detecting the created ions) to set the 420 nm laser on the transition
5s→ 6p3/2 and then to detune it afterward in a controllable way.
The photoionization is also used to calibrate the Rydberg atoms detection.

4.2.2 Excitation lasers

To realize the first step of the Rydberg excitation 5s → 6p3/2, we use a 840 nm MOPA
laser TA 100 from Toptica which is sent in a doubling cavity SGH 1004 from Toptica.
The output power at 420nm is around 50mW.
The laser beam is sent toward the atomic cloud where it is focused with a typical waist
of 100 µm and a typical power of 20 mW.

For the second step of the Rydberg excitation 6p3/2 → nl, we use a DL 100 diode
laser from Toptica with a lasing range from 1000 to 1030 nm which allows the excita-
tion of Rydberg states with n ranging from 30 to 120. In fact this laser allows also to
reach the continuum but for n > 120 it is quite difficult to have a precise control on the
Rydberg state that we excite. This laser is injected in a TIGER laser from Sacher whom
the grating have been replaced by a mirror, for an output power of around 400mW.
The laser beam is focused on the atoms with a typical waist of 100 µm and a typical
power of 150 mW.
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In our setup, both Rydberg excitation laser are almost collinear and also almost collinear
to the dipole trap laser beam in which the BEC is expanded (see fig4.2). The goal is here
to have the longest Rydberg excitation region.
Both Rydberg excitation laser passes through an AOM before to reach the atoms allow-
ing to perform pulsed excitation. The raising time of the AOMs is around 80 ns.

4.2.3 Stabilization of the lasers frequency

In order to stabilize the frequency of the Rydberg excitation lasers, we use in our setup
a Fabry-Perot cavity (FP). Both Rydberg excitation lasers are send in the FP, with also
a reference laser locked in an atomic transition (for instance a part of the cooling laser
of the MOT). Using the FP, a Labview program has been developed in order to stabilize
the Rydberg excitation laser. Interestingly, we can also scan them in a controllable way
using the program.

To do this, the length of the FP cavity is continuously modulated over its full free spec-
tral range with a frequency of around 200 Hz. On the transmission signal of the FP, the
program identifies transmission pics corresponding to each of the Rydberg excitation
laser and two pics corresponding to the reference laser. The two pics of the reference
laser allow to determine a well defined relative frequency scale for the position at which
other pics appear. So, from the FP transmission signal, the program can generate error
signals allowing to stabilize each Rydberg excitation laser. For instance, to generate the
error signal, for one laser, the program measures the relative position of the transmission
pics corresponding to this laser and the reference laser and compares it to a reference
position. This error signal is finally send, in our case, to a PID 110 Toptica module
acting on the Rydberg excitation laser (for both laser).
With this technique, in addition to stabilize the lasers, we can also scan them in a con-
trollable way by changing the reference positions used to generate the error signals. In
the Labview program, we enter the wavelength values of the three lasers allowing to
have an interfaced reading and setting of the relative motion of the laser frequency di-
rectly in MHz. The possible range of scan (overlooking undesirable laser mode jump)
is of the order of 1 GHz.

Due to the quite low modulation frequency of the FP, which is limited by the Labview
program calculations speed, this technique allows mainly to compensate the tempera-
ture drift and only slightly the mechanical noise. Nevertheless, we measure that, on the
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ms time scale, the combined frequency variation of the Rydberg excitation lasers is of
the order of 1 MHz. In the following, this quantity is called the jitter of the Rydberg
excitation.

Concerning the linewidth of the Rydberg excitation (on the µs time scale), which is
then determine by the intrinsic quality of the Rydberg excitation lasers and the overall
mechanical stability of the setup, we have evaluated that the combined value for both
Rydberg excitation lasers is around 300 kHz.

4.2.4 Characteristics of the coherent excitation

Since we perform a coherent excitation of the Rydberg states from the ground state by
detuning the Rydberg excitation from the intermediate state, we can determine the total
Rabi frequency of the Rydberg excitation.
The total Rabi frequency ΩR can be expressed in function of the Rabi frequency of both
excitation steps Ω1 and Ω2 and the detuning from the intermediate state ∆

ΩR =
Ω1Ω2

2∆
(4.2)

In our setup, we typically work with ∆ = 1 GHz.

The Rabi frequency of each step is calculating using the knowledge of the dipole mo-
ment of the associated transition and the experimental measurement of the laser power
and the laser waist at the position of the atoms.
In our setup, the waist and the Rayleigh length of the two excitation laser beams is
much larger than the atomic sample, the intensity of the beams is then the same for all
the atoms.
The Rabi frequency of the Rydberg excitation of a given Rydberg state nlj(mj) can be
determined with a precision of the order of 10%. In the experiments presented here we
have excited l =d Rydberg state, due to the polarization of the lasers, we excite in the
same time several magnetic sublevels of a given Rydberg state ndj . Since the transition
dipole moment is different for each magnetic sublevels, they experiment also different
Rabi frequencies and we have to make the proper average over the different accessible
magnetic sublevels to determine the effective Rabi frequency. Given different states |ri〉
with Rabi frequencies Ωi a superposition 1

Ω

∑
i

Ωi|ri〉 of the different states is excited

with a total Rabi frequency Ω given by
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Ω =

√∑
i

Ω2
i (4.3)

Although it depends of the Rydberg states that we excite and of the daily measured
excitation lasers power, the Rabi frequency of the Rydberg excitation are typically of
the order of few tens of kHz.

Concerning the total detuning of the Rydberg excitation (which is the sum of the de-
tuning of each step), we can determine and control it with a precision of the order of 1
MHz (limited by the jitter of the laser excitation).

In our setup, a general source of imprecision for the Rydberg excitation comes from
the presence of undesirable electric field. Our science chamber is made in quartz and
can suffer from charging effects. If we mainly excite Rydberg atoms in zero field, the
use of field ionization detection (see section 4.3.1) involves the exposure of the cell to
high voltages and charging effects have been seen.
As a first precaution, we reduce as most as possible the duration of the high voltages
pulses. Secondly, by checking regularly the position of the Rydberg line and if needed
wait that the cell becomes free of charge, we manage to perform the Rydberg excita-
tion in presence of a non controlled electric field smaller than 5 mV.cm−1. In regard
to the determination of the Rydberg excitation characteristics, this value corresponds to
negligible effects.

4.3 Rydberg atoms detection and counting statistics

In our setup, the detection of the Rydberg atoms is done using the field ionization
method. The created ions are accelerated toward a detector. From the detector signal, we
measure the number of ions which have been detected. In the frame of our experiments,
we are interested to investigate the interacting Rydberg gases using the Rydberg exci-
tations counting statistics. In this section, we present in which experimental conditions
we obtain such statistical informations.

4.3.1 Rydberg detection and measurements

After the Rydberg excitation pulse, we apply at the position of the atoms an electric field
pulse to ionize the Rydberg atoms. To do this we use two pairs of electrodes as repre-
sented in the fig4.6. The maximum difference of potential applied between those two
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pairs of electrodes during the pulse is around 5 kV. Due to the quartz cell, a screening
effect reduces the field seen by the atoms. Using this system, we can not ionize Rydberg
states with a principal quantum number lower than 52 for d states and 54 for s states, to
be safe 53d and 55s are then the lowest Rydberg levels that we can investigated. The
typical duration of the ionization pulse is few µs with a measured very short rise time
(few ns). The use of short ionization pulses ensures a short exposure of the quartz cell
to high voltages and avoids charging effects.
To detect the created ions, we use in our setup a Channel Electron Multiplier (CEM)
KKBL510 CEM, called the channeltron. The channeltron has an internal gain deter-
mined by a potential, we set it to the maximum (-2.4 kV) as we want to detect single
ions. The output signal of the channeltron resulting from the detection of one ion is
amplified using a fast timing amplifier and finally acquired by an oscilloscope, a Wa-
veRunner from LeCroy.
The channeltron is situated at around 15 cm from the Rydberg excitation region. How-
ever, its position is not right on the axis determined by the atomic cloud position and the
direction of the electric field of the ionization pulse. Although the ions are attracted by
the channeltron as the closest pairs of electrodes have a potential of -1 kV, we placed an
intermediate grid along the ions path to "help" them to reach the channeltron. This grid
is situated at 10 cm from the atomic cloud and we applied on it a potential of around
-1.5 kV.

Figure 4.6: Schematic representation of the experimental detection setup.

On the fig 4.6, we see a typical detection signal acquired by the oscilloscope. We
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see that the number of detected ions can be precisely determined from this signal. In
our experiments, we do it with a Labview program and the number of detected ions is
determined with an accuracy better than 5%. This number is the physical quantity that
we record to investigate the laser excitation of an interacting Rydberg gas.

4.3.2 Detection efficiency

In our experiments, we want to know precisely the number of Rydberg atoms created
by the excitation pulse. If those Rydberg atoms are all ionized by the electric field pulse
and if we can almost absolutely determine the number of detected ions, all the created
ions are not detected. It is very important to know the efficiency of detection of our sys-
tem. Two effects play a role in the detection efficiency, the proportion of ions reaching
the detector and the detector efficiency.
It has been evaluated that the detection efficiency η of our system is η = 35%± 10%.
The method used for such determination have been reported in details in [Viteau et al.,
2010]. The determination of the detection efficiency consists in comparing, during a
photoionization process, the number of detected ions with an evaluation of the atomic
loss from the cloud. In order to get a determination of the detection efficiency as ac-
curate as possible, the photoionization of the atomic sample is performed for different
atomic density (MOT and BEC) and laser power.
For the detection efficiency determination as well as in the frame of our experiments,
we want to avoid completely saturation effects of the detector. We have evaluated that
for a number of detected ions below 50, we do not saturate the detector, consequently
we always work in this regime in our experiments.
In all the treatment of our experimental results, we consider that the processes involved
in the detection efficiency follows a poissonian statistics (is a random process). This is
very important as it plays a role in the determination of the Rydberg excitations statistics
from the detected ions statistics.

4.3.3 Experimental sequences and "Shots per run"

In this section, we present the experimental sequence of our experiments. We do not
deal with the details of the atomic sample preparation (the beginning of the experimen-
tal sequence). It is obviously very different in the case of a MOT or of a BEC.
For a given experimental situation, we want to measure the counting statistics of the
number of Rydberg atoms excited by the Rydberg excitation pulse. By essence, we
have to repeat several time the same experimental situation.
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The experimental conditions are in principle reproducible. However, in practice, the
number of parameters involves in the experiment makes that the experimental situation
is never exactly the same. This is especially true for the BECs which are always slightly
different (in the good days) from one run to another.
In order to get reliable statistics, we perform within the same experimental run, several
cycles of Rydberg excitation/detection (several shots). For our experimental conditions,
the number of Rydberg atoms excited in one shot is small in comparison to the total
number of atoms and we can reasonably assume that the experimental situation is the
same for all the shots performed in the same run excepted in regards to the laser jitter.
All the shots done in one run represent a units of statistical measurements, there number
corresponds to the accuracy of the statistical quantities determination.

In our experiment, the MOT works in a permanent regime, also the experimental se-
quence is quite simple and fast. We first turn off the MOT beams, then we apply several
shots of Rydberg excitation/detection. We then turn on the MOT beams to reload the
MOT and start a new sequence. For the data presented in this manuscript, the number
of shots done in one MOT is 100.

In the case of BEC, the experimental sequence to obtain a BEC is around 2 minutes
long. This is mostly due to the TOP trap sequence and the time need to load of a suffi-
cient number of atoms in the MOT to obtain a BEC. Once the BEC is formed, we apply
the several shots of Rydberg excitation/detection. Finally, we performed an imaging of
the BEC in order to measure the number of atoms and the atomic density associated
to the measurements that we just took. For the data presented in this manuscript, the
number of shots done in a BEC is 15.
Interestingly, using the optical lattice, it has been possible to study the effect of those
shots on the phase coherence of the condensate. On the fig 4.7, we show the measure-
ments of the interference pattern resulting from the interference of the different fraction
of the BEC coming from several lattice site during a TOF. This measurement is done
with and without the application of Rydberg excitation/detection shots.

We clearly see on the fig 4.7 that the presence of the Rydberg shots does not perturb
significantly the interference pattern of the splitted BEC. This is in fact quite impres-
sive since the Rydberg shots involve laser excitation, application of high voltages and
creation of charged particle inside the BEC. Anyway, the measurement presented in the
fig 4.7 ensure us that the effect of the Rydberg shots consists only in removing a small
number of atoms from the BEC.
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Figure 4.7: Interference pattern resulting from the BEC trapped in the optical lattice.
The blue curve is taken without having performed Rydberg excitation/detection shots.
The red curve is taken having performed 10 shots of Rydberg excitation/detection.

4.3.4 Mean number of Rydberg excitations

From the ensemble of detected ions numbers associated to the different shots, the first
quantity that we calculate is simply the mean number of Rydberg excitations.

From a mean number of detected ions Nd, the mean number of Rydberg excitations
NR is given by the detection efficiency η.

NR =
Nd

η
(4.4)

In the frame of our measurements, the uncertainty on the mean number of Rydberg
excitations comes from the uncertainty on the detection efficiency (10%).

4.3.5 Mandel Q factor

The second statistical quantity that we have look at is the Mandel Q factor [Mandel,
1979]. This is a quantity related to the variance of the statistical distribution. For a
given statistical distribution with a mean n and a variance σ2, the Mandel Q factor is
defined by

Q =
σ2

n
− 1 (4.5)

The same quantity without the "-1" is called the Fano factor [Fano, 1947].
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A poissonian statistics, which characterizes random or uncorrelated processes, has a
Q factor equal to 0. The so-called sub- and super-poissonian statistics have respectively
a negative and a positive Q factor. The absolute minimum for the Q factor of a statistical
distribution is -1, this case corresponds to a statistical distribution with a null width or
in other terms to a process which gives always the same result.

For a process resulting from the measurement of a quantum system, the Q factor is
linked to the so-called quantum projection noise. The value of the Q factor is linked to
the distribution of the quantum system wave function over the different eigenstates of
the measurement.
The "meaning" of the Q factor in the frame of the interacting Rydberg gas is presented
on the section 4.7. In this section we just present the determination and the uncertainty
on the Rydberg excitation Q factor in our experiments.

In the case of a poissonian detection, the Q factor of the Rydberg excitations QR is
linked to the Q factor of the detected ions Qd through the detection efficiency η, exactly
like for the mean.

QR =
Qd

η
(4.6)

The uncertainty on the Q factor of the Rydberg excitation is first given by the uncer-
tainty of the detection efficiency. We have also to consider that the detection process is
not necessary poissonian and that the equation 4.6 is not necessary true. Eventual devia-
tions from this law are not easy to measure. Nevertheless, in our setup, in looking at the
detected Q factor resulting from uncorrelated processes like the photoionization or the
Rydberg excitation in an almost non-interacting case, we have found that our detection
system is very close to be poissonian. At most, we could attribute an uncertainty on the
Q factor of the Rydberg excitation of 20% due to this effect.
Finally, it is also interesting to study the effect of the finite number of shots used to
calculate the detected Q factor. We present here the result of a numerical study of this
question.
We have simulated several realizations of a process, having set the statistical distribu-
tion of the process to be a Gaussian with different mean and Q factor. For one obtained
sample, it is then possible to calculate its Q factor. For a given number of realizations
(number of shots), we have study the statistical distribution of the Q factor in function of
the mean and the Q factor of the process. A quite interesting result is that the statistical
distribution of the Q factor seems to do not depend of the mean of the process. Although
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it might possible to demonstrated it mathematically, it is in fact quite intuitive as the Q
factor is a quantity normalized by the mean. On the fig 4.8, we have represented the
spraid of the calculated Q factor in function of the number of shots, for initial Q factors
of 0 and -0.4.

Figure 4.8: Dispersion of the Q factor measurements in function of the number of shots.
The red area corresponds to a "real" Q factor of 0, the green one to -0.4. In both cases,
the decreasing solid line represent the variance calculated for 500 realisations with an
offset equal to the real Q factor.

From the fig 4.8 and similar one for other values of the Q factors, we can evaluate
the uncertainty on the detected Q factor associated to the finite number of shots used
to obtain it. The error bars on the Q factor experimental measurements presented in
the following are evaluated by this method. Also it allows to determine the number of
shot needed to clearly identify a given sub-poissonian process. Obviously, without such
considerations, several measurements of the Q factor taken in similar situation allow
also to say if an observed value of the Q factor is reproducible or not.

4.4 Summary of the experimental setup

In this section, as a summary of the precedent sections, we present the type of experi-
ments that we can performed in our setup to study strongly interacting Rydberg gases.

We have seen in the section 4.1 that we can first prepare the atomic sample in var-
ious conditions of density and geometry. Thanks to the accuracy of the cold atoms
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techniques, this is done in a very controllable way.
We have seen in the section 4.2 that we can then perform a coherent excitation of the
ground state atoms toward a given Rydberg states. Several parameters of the excitation
can be changed in a controllable way, namely, the detuning and the duration of the ex-
citation can be varied. We can control of course the Rydberg state that we excite, this
allow to change the strength of the Rydberg-Rydberg interactions. All the experiments
presented in this manuscript correspond to an excitation in zero field and the Rydberg-
Rydberg interaction is then of the Van-der-Waals type.
Finally, as presented in the section 4.3, for a given experimental situation, we can mea-
sure the mean and the Q factor of the Rydberg excitations number distribution in a
reliable way.

4.5 Rydberg excitation in 1-dimensional lattice

In this section we report experiments done using 1-dimensional optical lattice. The use
of optical lattice allows to obtain atomic samples composed by several packets of atoms.
In comparison to a continuous sample, we expect to see stronger effects of the coherent
collective dynamics of the Rydberg excitation.
The Rydberg excitation in 1-dimensional lattice is largely studied theoretically (see sec-
tion 1.4.3 of the chapter 1). It is shown that, in this geometry, the collective Rydberg
excitations should lead to very interesting many-body behaviors. The experimental re-
alization of such systems should allow to access them.
The results presented here, reported in [Viteau et al., 2011], represent the first exper-
imental demonstration of the coherent excitation of Rydberg atoms in 1-dimensional
optical lattices.

4.5.1 Experimental procedure

The experimental procedure used for the experiments with optical lattice consists in
letting expand the BEC in the 1-dimensional dipole trap (see section 4.3). Then, adia-
batically ramping up the lattice beams power. Finally, ramping down and up again the
dipole trap power. The purpose of this last step is to keep only the atoms which are
inside the lattice. Here, the radial dipole force created by the two lattice beams plays
a role. We manage to ramp down the power of the dipole trap until the point where
only the cumulated light field of the dipole trap and the lattice beams is able to maintain
the atoms again the gravity. The atoms outside the lattice field fall and thus leave the
investigated atomic sample.
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This experimental procedure allows to create a well define atomic configuration be-
fore the Rydberg excitation. The atomic sample is composed by a 1-dimensional chain
of "zero-dimensional" packets. Whereas the "volume" of this sample is constant, the
total number of atoms can be changed by letting expand the BEC in the dipole trap for
different time before to ramp up the lattice power.

In the experiments reported here, the lattice spacing has been set to be dl = 2.27µm.
The two lattice beams cross thus each other with a quite large angle (see fig 4.2). The
region where the lattice is present, which define the total length of the atomic sample, is
composed by around 100 lattice sites for a total length of around 0.23 mm.
Looking at one packet, its radial size results from the confinement created by the dipole
trap, it is of the order of 2µm. On the other hand, the axial size is determined by the
lattice depth, we typically set it to be around 0.2µm.
On the fig 4.9 we have represented schematically this configuration

Figure 4.9: Schematic representation of the atomic cloud trapped in the 1-dimensionnal
optical lattice.

4.5.2 Comparison with the continuous case

As a preliminary experiment, we have performed the Rydberg excitation with and with-
out the presence of the optical lattice. In this experiment, the time of expansion of the
BEC in the 1-dimensional dipole trap is such that the total length is smaller than the re-
gion where the lattice is present. Consequently, the presence of the lattice leads only to
the formation of atomic packets and do not modify the total length of the atomic cloud.
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On the fig4.10, we show the detected number of Rydberg excitations after the excitation
of the 53d5/2 state in function of the laser pulse duration. This with and without the
presence of the lattice beams. For this experiment, the lattice beams have been alterna-
tively hidden or not to the atoms from one experimental run to another, thus, the two
curves have been acquired "in the same time".

Figure 4.10: Detected number of 53d5/2 Rydberg atoms in function of the pulse dura-
tion. The number of Rydberg atoms have been evaluated from the number of detected
ions and the detection efficiency. Red squares correspond to the continuous case (with-
out lattice). Blue circles correspond to the case with lattice.

On the fig4.10, we see that the presence of the lattice does not lead to a big modifi-
cation of the Rydberg excitation dynamics in comparison to the continuous case. Nev-
ertheless, in presence of the lattice, we observe small oscillations on top of the general
dynamics. Those oscillations are clearly due to the fact that the different strengths of the
Rydberg-Rydberg interactions are regrouped in different classes due to the discontinu-
ity of the atomic sample. However, this effect remains quite small since the separation
between two adjacent packets (2.27µm) is in fact comparable to the radial expansion of
each packet (2µm).

4.5.3 Collective dynamics

On the fig4.11 we have represented, for three different time of expansion of the BEC,
the number of Rydberg atoms obtained for different pulse durations. The three different
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times of expansion corresponds to different total numbers of atoms in the sample or
again to different numbers of atoms inside each lattice site. We give here the average
number of atoms contained in each lattice sites 〈Ni〉, the three set of data presented on
the fig 4.11 corresponds to 〈Ni〉 ≈500, 200 and 50.
The investigated state is the 53d5/2 Rydberg state, the Rabi frequency of the coherent
excitation has been evaluated to be around 2π× 30 kHz.

Figure 4.11: Detected number of 53d5/2 Rydberg atoms in function of the pulse dura-
tion. The number of Rydberg atoms have been evaluated from the number of detected
ions and the detection efficiency. The three set of data correspond to an average number
of atoms per lattice site of around 500 (red squares), 200 (blue circles) and 50 (green
triangles)

On the fig4.11, we see the general scaling of the Rydberg excitation dynamics in
function of the number of atoms. Bigger the number of atoms is, faster is the dynamics.
A relative scaling of the different curves with

√
N is compatible with the measurements

of the fig 4.11 and their experimental uncertainties. This confirms the expected collec-
tive dynamics of the Rydberg excitation in the blockade regime.

We have seen with the comparison with the continuous case that, for the lattice spacing
set for those experiments, the lattice does not lead to big modifications. This even for the
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53d5/2 state which is the less interacting Rydberg state that we can excite in our setup.
Consequently, it has been quite natural after those results to modify the optical access
in the setup in order to reach larger lattice spacing. If a lattice spacing of around 25 µm
is now reachable in our setup, the 1-dimensional lattice experiments have not restart wet.

In any case, this demonstration of a coherent Rydberg excitation in a 1-dimensional
optical lattice paves the way toward the investigation of very interesting many-body
behaviors.

4.6 Observation of a highly sub-poissonian statistics

In this section, we report experimental measurements of the Q factor associated to the
Rydberg excitation of a blockaded ensemble. We have observed, for a resonant excita-
tion, highly sub-poissonian statistics of the Rydberg excitation. The Mandel Q factor of
the Rydberg excitation has been found in several experimental situations, to be close to
-1, which correspond to an almost deterministic number of Rydberg atoms.

The experiments presented here concerns the Rydberg excitation in a tiny MOT. Sim-
ilar experiments have been also performed in BEC, i.e. at much larger densities, with
comparable results. Nevertheless, for reasons of reliability of the underlying statistical
quantities due to the limited number of shots, we present here the results corresponding
to the MOT where larger statistical samples are used.

4.6.1 Excitation dynamics

We report here the investigation of both the mean and the Q factor of the Rydberg exci-
tation in function of the duration of the laser excitation for a resonant excitation.

The atomic sample consists in a MOT of around 8000 atoms with a 3D-gaussian atomic
density with a mean density around 1.5 1010 at.cm−3.
The laser excitation is resonant with the transition between the ground state and the
71d5/2 Rydberg state, the 2-photon Rabi frequency has been evaluated to be 2π×40
kHz.
On the fig 4.12 we report the measurements concerning the ions detected after the laser
excitation.

On the fig 4.12, we see that in the same time that the number of excitations in-
creases, the Q factor takes negative values. Quite quickly, the Q factor reaches a very
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Figure 4.12: Excitation of 71d5/2 Rydberg atoms, number of detected ions and asso-
ciated Q factor in function of the pulse duration. Red circles represent the number of
detected ions, blue squares represent the detected Q factor

low value and remains constant afterward. This value, concerning the detected ions, is
Qd = −0.4± 0.1. Taking in account the detection efficiency 35± 10%, we see that the
Q factor relative to the number of Rydberg excitations QR is found to be very close to
be −1. Both the uncertainty on the detection efficiency and the fact that the detection
is not necessary poissonian have to be taken into account to evaluate the uncertainty on
the Rydberg excitations Q factor. This gives QR < −0.6.

Also it is not the main purpose of this experiment, we can quickly look at the num-
ber of Rydberg excitations obtained in the saturation regime.
Although it is not so clear on the number of ions (the Q factor exibits a much clearer sat-
uration) we can estimate that we are in the saturation regime for a pulse duration of 1µs.
The number of Rydberg excitations is in this case around 60 in taking into account the
detection efficiency. The size of the MOT is in this experiment of the order of 5 105µm3.
This correspond to an average volume per Rydberg excitation of around 8 103µm3 or in
the blockade sphere picture a blockade radius of around 12 µm. For an excitation of 1
µs the Fourier broadening determine the effective linewidth which is thus 2π×1 MHz.
The most interacting C6 coefficient within the d5/2+d5/2 channel is around 2π×2.5 103

GHz.µm6 leading to a blockade radius of around 11.5 µm.
We see here that the effective C6 coefficient resulting from the rich Zeeman structure of
the d5/2+d5/2 channel seems to be mostly determined by the most interacting configura-
tions.
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Concerning the collective dynamics, in keeping a number of Rydberg excitation of 60,
the number of atoms per excitation is around 150 leading in the Super Atom picture to a
collective Rabi frequancy of around 2π× 0.5 MHz. This is in good agreement with the
timescale of the fig 4.12.

The most important observation of the fig 4.12 concerns the Q factor of the Rydberg
excitation in the saturation regime: −1 < QR < −0.6.

4.6.2 Scan of the Rydberg line

In addition to the dynamics of the Rydberg excitation at resonance, we have also inves-
tigated the counting statistics behavior for off resonance excitation.
On the fig 4.13, we show the measurement of both the mean and the Q factor of the
numbers of detected ions for different laser excitation frequencies. Here, the number of
atoms is around 5 104 with a mean density around 4 1010 At.cm−3.
The laser excitation is resonant with the transition between the ground state and the
71d5/2 Rydberg state, the 2-photon Rabi frequency is around 2π×40 kHz. The pulse
duration is 0.3µs.

Figure 4.13: Excitation of 71d5/2 Rydberg atoms, number of detected ions and asso-
ciated Q factor in function of the detuning of the laser. The pulse dureation is 0.3 µs.
Red circles represent the number of detected ions, blue squares represent the detected
Q factor. To not charge to much the figure, error bars have been omitted but they are of
the same order than the ones of the fig 4.12.
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On the fig 4.13, looking at the mean number of detected ions, we clearly see the scan
of the Rydberg line, this latter having a width of around 2π× 5 MHz. Looking now at the
Q factor, we see that, if it takes negative value at resonance, we found positive values on
the edges of the Rydberg line. For the Rydberg excitations Q factor, the maximum value
are around 3. Those positive values could correspond to interesting physical behavior
for off resonant excitation. However, the jitter of the laser excitation (of the order of 1
MHz) induces for sure positive value of the Q factor on the edge of the line. Indeed,
here, a small variation of the laser frequency induces a big change of the number of
Rydberg excitations and thus a super-poissonian statistics. This is briefly study in the
appendix B.

4.7 Q factor and quantum projection noise

In this section, we discuss the physical meaning of the Q factor (or identically the vari-
ance) related to a given measurement. We examine especially the meaning of the highly
negative Q factor that we have observed experimentally.
The Q factor is intrinsically linked to the so-called quantum projection noise induces by
the measurement which is performed. The quantum basis associated to the measurement
(the projection basis) is here very important since the Q factor will be determined by the
"distribution" of the wave-function on the different states of this basis. Moreover, the
measurement value associated to each states of the projection basis plays a crucial role.
For example, the wave-function of the system can be a superposition of many projection
basis states, but if all of those states are associated to the same measurement value, the
Q factor will be -1.

Formally, the measurement (projection + measurement value) of a system can be written
as an operator m̂. In the projection basis {|i〉}i, m̂ is diagonal and its eigenvalues mi

are the measurement values of the states |i〉.
The mean value of the physical measurement is the operator m̂ and the Q factor can be
formally written as the operator Q̂ = m̂2−(m̂)2

m̂
− 1 where m̂2 = m̂.m̂. In the projection

basis, m̂2 is diagonal and its eigenvalues are the squares of the measurements values of
the projection basis states. In the expression of Q̂ the evaluation of the operators has to
be done before the arithmetic operations.

4.7.1 Two-levels system

In this section, we consider the case of a two-levels system.
We first consider that the two levels correspond to measurement values of 0 and 1. We
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label the levels respectively |g〉 and |r〉 since this corresponds to the case of one of our
atom. Indeed, during the detection process in our experiments, an atom is either pro-
jected in the Rydberg state, is ionized and leads to 1 count on the detector or is projected
in the ground state leading to 0 count in the detector. This do not take into account the
detection efficiency.

In the basis {|g〉, |r〉} the measurement operator is written

m̂ =

(
0 0
0 1

)
(4.7)

In this particular case, we have m̂2 = m̂ and Q̂ = −m̂.

If Pr is the probability to find the system in the state |r〉, the system is in the state
|Ψ〉 =

√
1− Pr|g〉+

√
Pr|r〉. In this case, the mean value of the measurement 〈Ψ|m̂|ψ〉

is Pr and the Q factor 〈Ψ|Q̂|ψ〉 of the measurement is −Pr.

For a single atoms doing Rabi oscillation between the ground state and the Rydberg
state, the Q factor associated to its measurement is also doing "Rabi oscillation" be-
tween 0 and -1.

We have also studied the case were the two levels do not corresponds to measurement
values of 0 and 1. For example, when those values are 1 and 2 or again 0 and 2, we can
see on the fig 4.14 that the results are very different.

We see on the fig 4.14 that the Q factor takes always highly negative value if the
amplitude between the different measurement values is small in comparison to their
mean. On the other hand, the Q factor can take positive values if the amplitude between
the different measurement values is large in comparison to their mean. Although the
system investigates here is a two-levels system, the latter rules concerns also multi-
levels systems.

4.7.2 Assembly of uncorrelated two-levels systems

In this section, we discuss the fact that the observation of highly negative Q factor is due
to the atomic correlation induces by the blockade effect. This can be shown by doing a
comparison with the case of uncorrelated atoms.

The measurement of an assembly of N uncorrelated two-levels systems follows a sim-
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Figure 4.14: Relation between the Q factor of a two-level system and its internal dy-
namics. The dynamics of the system is shown by the light green curve, the system is
doing Rabi oscillation between the ground state |g〉 and an excited state |e〉. The three
thick curves corresponds to three systems having different measurement values in their
ground and excited states. For the blue curve it is 0 and 1, for the red it is 1 and 2 and
for the yellow it is 0 and 2

ple rule, both the mean value and the variance of the total measurement are the sum
of the individual mean value and variance. In statistics, we say that the realization are
independent and our situation corresponds to a so-called Bernoulli process.
Considering an assembly of N atoms, identical and uncorrelated. Defining m̂i as the
measurement operator of each atoms, the total mean value operator is given by m̂ =∑
i

m̂i and the total Q factor 1 by Q̂ = −
∑
i

(m̂i)
2∑

i
m̂i

.

We consider a sample of 1000 atoms with slightly different Rabi frequencies Ωi =

Ω(1 +αi), the αi being regularly distributed within ]− 1
10
, 1

10
]. On the fig 4.15, we have

represented the evolution of the total mean value and Q factor in function of the time
starting with all the atoms in the ground state at t = 0. We have limited the plot at short
time, where the number of excitation stays quite small.

The fig 4.15 illustrates the fact that when the mean value of the Rydberg excitation
is small in comparison to the total number of atoms, we can not find a highly negative
value of the Q factor in such a system of uncorrelated atoms.
The measurement of both small mean value and highly negative Q factor can not be
explained without atomic correlations and can thus be used as a test of the blockade
regime.

1This is true for two-levels system when levels are 0 and 1, if not we have Q̂ =

∑
i
(m̂2

i−(m̂i)
2)∑

i
m̂i

− 1
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Figure 4.15: Evolution of the Q factor of an ensemble of identical and uncorrelated two-
levels systems doing Rabi oscillations. The total number of excitation is represented by
the blue curve, the Q factor by the red curve with a magnification of 10.

It is quite interesting to look at the long term regime of such a system since the Q
factor takes a non so intuitive value. This is represented on the fig 4.16

On the fig 4.16, we see that, as expected, the mean value of the Rydberg excitation
is in the long term regime the half of the total number of atoms. However the Q factor
is in this case -0.75.
This can be understood by the fact that the dynamics in Sin2 of the Rabi oscillations
leads to the fact that the atoms are more often close to one level or the other rather than
in the middle.

4.7.3 Fully blockaded ensemble

In this section, we present the Q factor asociate to a fully blockaded ensemble. A fully
blockaded ensemble of N atoms is such that the Rydberg-Rydberg interactions prevent
from the simultaneous excitation of two Rydberg atoms in the sample. As mentioned in
the section 1.4.1 of the chapter 1, in presence of a laser field resonant with the transition
ground state→ Rydberg state, the system is doing Rabi oscillation between the collec-
tive ground state and the collective state with one Rydberg excitation.
Considering that the projection states of the measurement corresponds to those collec-
tive states. A fully blockaded ensemble behaves thus like a single atom concerning
its measurement and its Q factor is equal to −PR if PR is its probability to be in the
collective state with one excitation. It corresponds to the blue curve on the fig 4.14.
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Figure 4.16: Evolution of the Q factor of an ensemble of identical uncorrelated two-
levels systems doing Rabi oscillation. The total number of excitation is represented by
the blue curve, the Q factor by the red curve with a magnification of 200.

4.7.4 Q factor and collective basis

To describe the Rydberg excitation of an ensemble of atoms we can use a collective
basis. In such a basis, we can define for each quantum state the total number of Rydberg
excitations that it contains.
In considering that the projection states of the Rydberg excitation measurement corre-
spond to the collective states, the measurement values are integer numbers ranging from
0 to the total number of atoms of the sample.
The Q factor of such a system is given by the distribution of the wave function on the
different subsets of states containing the same number of Rydberg excitations.

Considering a collective basis, highly negative Q factors appear quite naturally. This
will occur if the wave function is distributed over quantum states whom the range of
measurements values is smaller than their mean.

The Super Atom picture can be associated to a "semi-collective" basis since an assembly
of Super-Atoms is an ensemble of (almost) independent collective particles. In the Su-
per Atom picture, the different Super-Atoms are doing Rabi oscillations with different
frequencies. In the saturation regime, the value that the Q factor of such a system would
takes is the same than the one presented in the section where we treat the case of an
assembly of independent two-levels systems. The Q factor of the Rydberg excitation in
the Super-Atom picture takes then a value of Q ≈ −0.75 in the saturation regime. This
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result is quite interesting, because it fixes the minimum value that the Q factor can take
in considering that the atomic correlation are associated to collective single excitations.

In the chapter 5 of this manuscript, we present a cooperative model where the system is
describes using the so-called Dicke collective states. Although this model contains non
trivial approximations, highly negative Q factor (Q ≈ −0.8) are found and the quanti-
tative agreement with experimental results is quite good.

In the theoretical study of 1-dimensional ring lattice with the prefect blockade approxi-
mation, the Q factor is calculated from the distribution of the system wave function over
each subset of states with the same number of Rydberg excitations. In the reference
[Olmos et al., 2010], once the steady state of the system is reached, the Q factor of the
Rydberg excitation is found to be Q = −0.676.

We see here that highly negative Q factors are strongly linked to the existence of collec-
tive excitation in the system.
The experimental observation of the Q factor presented in the section 4.6 indicates
clearly that the experiments are done in a regime of strong interactions and that the
measurements which is performed is associated to the projection of the system onto col-
lective states.
If the precise values that the Q factor takes in function of the excitation parameters
could allow to obtain very interesting informations on the studied system, the experi-
mental uncertainty in our system does not allow to check very precisely the prediction
of the theoretical models. Nevertheless, from the observed values, we can say without
ambiguity that the wave function of the system is quite strongly restricted to a range of
collective states which contain a similar number of Rydberg excitations.

4.8 Conclusion and outlooks

The experiments presented in this chapter represent important progresses for the exper-
imental investigation of interacting Rydberg gases.

The demonstration of the coherent Rydberg excitation of a BEC confined in a 1-dimensional
optical lattice pave the way toward the study of very interesting collective behaviors.

The experiments presented here have been done with a relatively small lattice spac-
ing in regards to the typical blockade radius. Recent development in our experimental
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setup allow to reach much larger lattice spacings (25 µm). As illustrated in the fig 4.17,
this offer the possibility to investigate the regimes where a single Rydberg excitation is
either localized on only one lattice site, nor delocalized over several ones.

Figure 4.17: Schematic representation of the Rydberg excitation of a 1-dimensional
lattice. We see have highlighted the possibility to vary the ratio between lattice spacing
and blockade radius.

As it is depicted by several theoretical works, the implementation of such systems
should lead to the observation of genuine collective behavior. Namely with the forma-
tion of many-body states having very interesting photon emission properties.

The other important result obtained in the frame this thesis is the observation of a highly
sub-poissonian statistics of the Rydberg number distribution in the regime of strong in-
teractions.
Within the accuracy of our measurements we can clearly affirm that those observations
arise from the creation of collective excitations in the system.
Very interestingly, the observations that we made seems to indicates that the Rydberg
excitation is restricted to a very small range of values. The measured Q factors have
been found to be very close to -1 (experimental uncertainties give Q < −0.6). Similar
values have also been reported in [Hofmann et al., 2012] in the frame of an EIT process
involving strong Rydberg interactions.
If precised, those observations point out a quite spectacular behavior of strongly inter-
acting Rydberg gases. In the saturation regime, a quasi-deterministic number of Ry-
dberg excitations is present at every time of a coherent excitation and does not suffer
from quantum projection noise.
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In further experiments, the Rydberg excitation in 1-dimensional lattice with variable
parameters together with a measurements of the statistical distribution will be for sure
investigated.
For the time being, one topic is currently attracting our attention, the realization of a
fully blockaded ensemble containing (at least) a mesoscopic number of atoms. This is
an essential step toward the control of strongly interacting Rydberg gases and its use in
the frame of quantum engineering. However, it appears that the required conditions are
not easy to reach and perform such an experiments would represent a big step for the
dipole blockade Physics.
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Chapter 5

Many-body modeling, cooperative
model

In this chapter, we report the theoretical investigations done in the frame of this thesis
concerning the coherent excitation of strongly interacting Rydberg gases.
As mentioned in the section 1.4.3 of the chapter 1, the modeling of a Rydberg gas in
the regime of strong interaction is a very challenging task. Because the full quantum
resolution of the system is limited to very small numbers of atoms, several theoretical
approaches are currently investigated to model larger systems.
In the frame of this thesis, we have study the problem using the Dicke basis, introduced
in [Dicke, 1954]. The so-called Dicke collective states possesses a very useful property :
they are defined in function of their symmetry relative to the electromagnetic field. The
symmetry mentioned here lies in the fact that the atoms are undiscernable in regards to
the electromagnetic field. The Dicke collective states can be defined such that the laser
excitation only coupled the states with the same symmetry providing great simplifica-
tion in the treatment of the problem.
The Dicke states appears to be a nice theoretical tool to study the coupling of an en-
semble of identical atoms with the electromagnetic field. It has been mainly used in
the frame of the Superradiance phenomenon, review in [Gross and Haroche, 1982] and
very recently in [Lin and Yelin, 2012] due to recent developments in this field. In those
references, the electromagnetic field is quantified, the collective spontaneous emission
is investigated as well as all kinds of tricky quantum effects. Those treatments use
quantum electrodynamics calculations which overpass largely the formalism use in this
thesis.
In this manuscript, we stay with a semi-classical description of the light-matter interac-
tion. We report the development of a theoretical model to describe the coherent laser
excitation of an atomic ensemble in presence of interactions between the excited atoms
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(Rydberg atoms). The model is based on the fact that in one hand the laser excitation
coupled states with the same symmetry and in the other hand the Rydberg-Rydberg in-
teraction coupled Dicke states of different symmetries. This coupling leads to a strong
modification of the excitation dynamics in comparison to the non interacting case.
The model presented here is far to describe completely the Rydberg excitation of an
atomic gas in the regime of strong interaction. However, several features observed ex-
perimentally are well reproduce by the model, like the highly negative values of the Q
factor or the non-shifted position of the Rydberg line.
From the model and the collective states mechanisms, it has been possible to extract
some physical concepts which seems to be well adapted to the laser excitation of a
strongly interacting Rydberg gaz. In this manuscript, we present those concepts and we
make some links with other theoretical developments.

5.1 Dicke basis

In this section, we present the formal definition of the Dicke collective states. Since we
want to look at the excitation of the atomic ensemble by a given laser field, we define
the Dicke states in function of this laser field. This is a small modification compare to
the original case of [Dicke, 1954]. By using the Dicke collective state, we treat the case
of non-interacting atoms. Although the use of a many-body basis is here not required,
this simple example shows clearly that the Dicke states are well adapted to deal with
collective excitations.

5.1.1 Collective operator and Dicke states

We consider an ensemble of N identical two-levels atoms. The levels of each atoms
are the ground state |g〉 and a Rydberg state |r〉. The position of an atom i is ~Ri. We
consider a monochromatic laser field defined by its wave vector ~k.

From the transition and projection operators σ̂iαβ = |αi〉 〈βi| (α, β = g, r) of each atom
i, we define a set of three collective operators
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R̂+
~k

=
N∑
i=1

σ̂irge
i~k. ~Ri (5.1)

R̂−~k =
N∑
i=1

σ̂igre
−i~k. ~Ri (5.2)

R̂
(3)
~k

=
1

2

N∑
i=1

σ̂irr − σ̂igg (5.3)

In the most general case, there is no phase factors in the definition of the collective
operators. However, since we want to treat the laser excitation of the atomic ensemble,
we include from the beginning the spatial characteristics of the excitation laser field
through its wave vector ~k in the definition of the Dicke states. This is in fact essential
to make the symmetry properties of the Dicke states rigorously true. Without phase fac-
tors, the symmetry properties hold only in the case where the expansion of the atomic
ensemble is much smaller than the wavelenght of the electromagnetic field. We see that
with the phase factor, the symmetry properties are rigorously defined for only one par-
ticular mode of the electromagnetic field. This is well adapted when the atomic system
is driven by a laser field. However, for the treatment of the spontaneous emission, it is
preferable to not include any phase factors and the "Dicke dynamics" is more complex
(see for example [Das et al., 2008]).

The collective operators commute as

[
R̂+
~k
, R̂−~k

]
= 2R̂

(3)
~k

(5.4)[
R̂+
~k
, R̂

(3)
~k

]
= 2R̂+

~k
(5.5)

We finally define the collective operator R̂2
~k

as

R̂2
~k

= R̂
(3)2
~k

+
1

2
(R̂+

~k
R̂−~k + R̂−~k R̂

+
~k

) (5.6)

The Dicke states are defined to be the common eigenstates of R̂2
~k

and R̂(3)
~k

. We note
here the strong analogy with angular momentum operators. A Dicke state can be labeled
by its eigenvalues related to those operators. The Dicke states |c,m〉 verify
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R̂
(3)
~k
|c,m〉 = m|c,m〉 (5.7)

R̂2
~k
|c,m〉 = c(c+ 1)|c,m〉 (5.8)

Here, the quantum number c, called the cooperative number, denotes the symmetry
of the state relatively with the laser excitation and m corresponds physically to the in-
version of population of the Dicke state (number of atoms in |r〉 - number of atoms in
|g〉). We have c ∈ [[0;N/2]] and m ∈ [[−c; c]].

In the following, we will labeled the Dicke states as |j, c〉 where j = N/2 − m cor-
responds to the number of atoms in the Rydberg state, c remain the same. We can
rewrite the range of values that j and c can take as j ∈ [[0;N ]] and c ∈ [[|N

2
− j|, N

2
]].

Due to the symmetry of the laser excitation. Only the states with the same coopera-
tive number c are coupled together by the laser field.

5.1.2 Dicke basis

The quantum wave function of a system of N two-levels atoms evolves in a Hilbert
space of dimension 2N . We can form a quantum basis of the system using 2N linearly
independent Dicke states. For this we choose Nc =

(
N

N/2−c

)
−
(

N
N/2−(c+1)

)
states having

the same j and c. Nc is called the degeneracy of the Dicke states.

A Dicke basis of an ensemble of N identical non interacting two-levels atoms can be
represented by the diagram shown in the fig5.1

Due to the symmetry of the laser excitation. Only the states with the same cooper-
ative number are coupled by the laser field. Obviously, those states will be effectively
coupled if the transition |g〉 → |r〉 has a non null dipole moment and if the laser is
resonant with this transition.

Within a Dicke basis, the states with the maximum cooperative number c = N/2 have
an important role. Those states are called the fully symmetrical Dicke states. There is
only one fully symmetrical Dicke state per level of excitation and only one way to define
them.
For a given number of excitation j, the dimension of the associated subset, noted M (j),
is the number of possibility to choose j excited atoms within the N atoms, M (j) =

(
N
j

)
.

We note |j, q〉 the state where j excitations are localized on the atoms specified by q
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Figure 5.1: Schematic representation of a Dicke basis in the non interacting case. The
degeneracy of each level is given in the text.

which is then a set of j numbers. We call atomic state or configuration this kind of state,
for example

|j = 2, q = {3, 5}〉 = |g, g, r, g, r, g, ..., g〉 (5.9)

The fully symmetrical Dicke collective state with j excitations, noted |j, s〉 is defined
as the symmetrical superposition of states |j, q〉, q ∈ [[1;M (j)]].

|j, c = N/2〉 = |j, s〉 =
1√
M (j)

M(j)∑
q=1

e−iφq |j, q〉 (5.10)

The phase factor e−iφq arises from the definition of the collective operators. For
q = {3, 5} we have φq = ~k. ~R3 +~k. ~R5. This example shows how determining the phase
factors e−iφq .

The fully symmetrical Dicke state with one Rydberg excitation corresponds to the Ry-
dberg state populated in the case of a fully blockaded ensemble or again, it corresponds
to the excited state of a Super Atom.

The other states of the basis can be found by using the so-called Young tables and
there is several way to define an orthogonal basis composed by Dicke states.
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As illustrative examples, we present in the table 5.1 and 5.2, the Dicke basis in the case
of two atoms (for two atoms there is only one possible Dicke basis) and a Dicke basis
for three atoms. In both cases we do the comparison with the natural basis of the atomic
ensemble, called in the following the atomic basis. We have skip out the phase factors.

Number of Rydberg excitations Atomic basis Dicke basis
0 |g, g〉 |g, g〉
1 |r, g〉 1√

2
(|r, g〉+ |g, r〉)

|g, r〉 1√
2
(|r, g〉 − |g, r〉)

2 |r, r〉 |r, r〉

Table 5.1: Atomic and Dicke basis for 2 atoms

Nb of Rydberg excitations Atomic basis Dicke basis
0 |g, g, g〉 |g, g, g〉
1 |r, g, g〉 1√

3
(|r, g, g〉+ |g, r, g〉+ |g, g, r〉)

|g, r, g〉 1√
6
(|r, g, g〉+ |g, r, g〉 − 2|g, g, r〉)

|g, g, r〉 1√
2
(|r, g, g〉 − |g, r, g〉)

2 |g, r, r〉 1√
3
(|g, r, r〉+ |r, g, r〉+ |r, r, g〉)

|r, g, r〉 1√
6
(|g, r, r〉+ |r, g, r〉 − 2|r, r, g〉)

|r, r, g〉 1√
2
(|g, r, r〉 − |r, g, r〉)

3 |r, r, r〉 |r, r, r〉

Table 5.2: Atomic and one Dicke basis for 3 atoms

In the dicke basis of the table 5.2, a particular role have been given to the atom
placed in third position. Obviously similar basis can be formed via the exchange the
position of the atoms. We see here that there is several possibility to define a Dicke
basis.
On the table 5.1 and 5.2 we do not have specified the symmetry of the Dicke states. The
first state of each lign are fully symmetric Dicke states c = N/2, the other ones have all
a cooperative number c = N/2− 1.

5.1.3 Laser excitation in the non interacting case

In this section, we treat the laser excitation of an ensemble of N identical two-levels
atoms in the case where there is no interaction between the atoms in the excited state
(we still label the excited state by |r〉).
This situation is very simple since the atoms behaves identically and independently. The
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problem could be treated in the one atom basis, the full system being just a superposi-
tion of identical, idependent (uncorrelated) atoms. In this situation, we know that all the
atoms of the system do in-phase Rabi oscillations at the single atom Rabi frequency Ω.
However, we treat here the problem using the collective Dicke states. We show that
the collective description, although useless in this particular case, leads to the correct
results.

In the frozen gas approximation, neglecting all incoherent process, the Hamiltonian
of the system can be written as (see section 1.4.1 of the chapter 1)

H = −~δ
N∑
i=1

σ̂irr +
~Ω

2

N∑
i=1

[
σ̂igre

i~k. ~Ri + σ̂irge
−i~k. ~Ri

]
(5.11)

This Hamiltonian differs from the one of the equation 1.42 by the fact that there is no
more interaction terms. We have also add the relative phase of the laser at the position
of the atoms which is the correct form for the laser excitation.

Using the Dicke collective states, since the collective ground state of the system is fully
symmetrical, starting from the ground state a t = 0, only the fully symmetrical Dicke
states |j, s〉 will be populated during the excitation process.

The wave function of the system can be written in the Dicke basis as

|Ψ (t)〉 =
N∑
j=0

aj (t) |j, s〉 (5.12)

The coupling between the adjacent states |j, s〉 induces by the laser exitation ĤL =

Ω
2

N∑
i=1

[
σ̂igre

i~k. ~Ri + σ̂irge
−i~k. ~Ri

]
is given by

〈j, s| ĤL |j + 1, s〉 =
Ω

2

√
(N − j)(j + 1) (5.13)

A practical way to determine the "collective" factor
√

(N − j)(j + 1) present in
the equation 5.13 is to think in terms of atomic states. The state |j, s〉 is composed by
M (j) atomic states having all the weight 1/

√
M (j). Each of those state are coupled with

N − j atomic states with j + 1 excitations. In the state |j + 1, s〉 those latter atomic
states have all a weight 1/

√
M (j+1). The collective enhancement of the Rabi frequency

can be determined by the following formula with M (j) =
(
N
j

)
.
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M (j) 1√
M (j)

(N − j) 1√
M (j+1)

=
√

(N − j)(j + 1) (5.14)

Knowing the laser coupling between the states |j, s〉, the Shrödinger equation asso-
ciated to the evolution of the system is given by the following set of N + 1 coupled
differential equations

i
daj
dt

= −δjaj +
√

(N − j) (j + 1)
Ω

2
aj+1 +

√
(N − j + 1) j

Ω

2
aj−1 (5.15)

We see that, although we treat the problem with the full quantum basis of theN two-
levels atoms, the Dicke basis allows to extract N + 1 states which will be effectively
populated. The evolution of the system is then describes by only N + 1 differential
equation and can be solved for quite large N .
The number of excitations n(t) present in the system is given by

n(t) =
N∑
j=0

j |aj(t)|2 (5.16)

On the fig5.2 we have represented the evolution of n(t) in function of the time. For
the calculations, we took N = 100 and Ω = 2π, this for two detuning δ = 0 and δ = Ω.

Figure 5.2: Evolution in function of the time of the total number of excitations in an
ensemble of 100 identical non interacting atoms. This evolution is given by calculations
in the Dicke basis. The time is given in unit of Rabi frequency.

We see on the fig5.2 that the evolution of the system calculated in the Dicke basis
correspond to the one that we expect for the laser excitation of an assembly of identical
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and uncorrelated atoms. All the atoms are doing Rabi oscillations in phase between
the ground state and the excited state. The excitation carried by the atoms are summed
leading to this "macroscopic" Rabi oscillation.
We can also from the equation calculate the corresponding Q factor (as well as the full
statistics). We found it to be the one expected for an assembly of independent two-levels
systems doing in-phase Rabi oscillations.
Those simple calculations illustrate the fact that the Dicke basis is a nice tool to deal
with many-body systems.

5.2 Cooperative model

In this section we present the model that we have developed in order to study the laser
excitation of an assembly of atoms toward an interacting Rydberg state using the Dicke
collective states.
The Rydberg-Rydberg interactions have two effects on the Dicke collective states. First,
the states with the same number of excitations are no more degenerated in energy. Sec-
ondly, their are coupled together independently of their cooperative numbers.
On the fig 5.3 we have qualitatively represented an "interacting Dicke basis" underlining
those two effects.

Due to the coupling between the Dicke states of different symmetry, the many-wave
function is no more restricted to the fully symmetrical Dicke states as it was the case in
the section 5.1.3. Consequently, the Dicke states which are populated during the excita-
tion/interaction process are a-priori very numerous. In our model, to derive computable
equations, we made approximation leading to consider only few states per level of exci-
tations.

The equations of our cooperative model are derived in three steps. We first treat the laser
excitation of the fully-symmetrical Dicke states. Then, for each level of excitations, we
calculate the coupling between the fully symmetrical Dicke state and the states with
other symmetry. Finally we treat perturbatively the excitation of the non-symmetrical
Dicke states.

Whereas the Dicke basis is well adapted to deal with the laser excitation due to its prop-
erties of symmetry it is not well adapted to deal with the Rydberg-Rydberg interactions.
On the other hand, the atomic basis is very well adapted to deal with the Rydberg-
Rydberg interaction since the interaction Hamiltonian is diagonal in the atomic basis.
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Figure 5.3: Dicke states in the case of interacting particles. An electromagnetic field
acts independently in each subset of states with the same symmetry (vertically), the
Rydberg-Rydberg interaction coupled the states with the same number of excitation
(horizontally). States with same j and c are no more degenerated in energy due to the
Rydberg-Rydberg interactions.

Consequently, in our model, to calculate the coupling between the fully symmetrical
states and the states with other symmetry, we work with a special basis which contain,
for each level of excitation, the symmetrical Dicke state and slightly modified atomic
states. The fact to switch back and for from the Dicke basis to this modified atomic
basis makes the derivation of the equations not very easy to follow. Nevertheless, the
calculations done in the modified atomic basis are very interesting in the frame of the
modeling of interacting gases and constitute a central point of our collective model.

The derived equation are not linked to a particular atomic sample (where we define the
position of each atoms) but corresponds to an average case. The calculations presented
here are done in a case of a 3-dimensional sample with a uniform density, neglecting
edges effects and with isotropic Van-der-Waals interactions. Nevertheless, it is possi-
ble to model samples with different geometries and interaction potentials with the same
treatment.
The equations of the model are reasonably computable for j < 100 and there is no
restriction on the total number of atoms except N � j.
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5.2.1 Hamiltonian and interaction parameter

The Hamiltonian of the system that we model is the one given in the equation 1.42

H = −~δ
N∑
i=1

σ̂irr +
~Ω

2

N∑
i=1

[
σ̂igr + σ̂irg

]
+

N∑
i=1,j<i

Vijσ̂
i
rrσ̂

j
rr

The conditions of validity of this Hamiltonian have been discussed in the section
1.4.1 of the chapter 1.
In this Hamiltonian, the relative phase of the laser at the position of the atoms is skip
out. For reason of simplicity, we stay with this description. Consequently, we should
also remove the phase factor from the definition of the collective Dicke states.

In the derivation of the model, the Rydberg-Rydberg interactions will appears in the
equation through only one parameter η.
Physically, η is the interaction energy between one atom in the Rydberg state and all the
other atoms taken one by one in the Rydberg state. The calculation of η is discussed in
the appendix C.1, we take

η =
N−1∑
q=1

V (Rq) (5.17)

Where Rq is the most probable distance between one atom and its qth neighbor
given by the Erlang distribution. V (R) = C6/R

6 is the Rydberg-Rydberg interaction
potential. η depends then of the C6 coefficient and the density of the gas.

5.2.2 Laser excitation of the fully symmetrical Dicke states

In this section, as a first step toward the resolution of the problem, we derive an equation
for the laser excitation of the fully symmetrical Dicke states.
This situation is similar to the one presented in the section 5.1.3 except that we take in
account the interaction energy of the symmetrical Dicke states. However, we neglect
for now the coupling due to the Rydberg-Rydberg interactions between the states with
the same number of excitations.
Since the symmetry of the states is conserved by the laser excitation, starting from
the ground state which is fully symmetric, only the fully symmetrical states |j, s〉 are
populated. The wave function of the system is then written as
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|Ψ (t)〉 =
N∑
j=0

aj (t) |j, s〉 (5.18)

Under this approximation, the only effect of Rydberg-Rydberg interaction V̂ =
N∑

i=1,j<i

Vijσ̂
i
RRσ̂

j
RR is to shift the energy levels of the fully symmetrical states. We note

W (j) = 〈j, s| V̂ |j, s〉 the interaction energy of states |j, s〉. As shown in the appendix
C.1, we can take

〈j, s| V̂ |j, s〉 = W (j) =
j (j − 1)

2(N − 1)
η (5.19)

As explain in the section 5.1.3, the laser coupling ĤL = Ω
2

N∑
i=1

[
σ̂igR + σ̂iRg

]
between

two adjacent fully symmetrical states is given by

〈j, s| ĤL |j + 1, s〉 =
Ω

2

√
(N − j)(j + 1) (5.20)

From this, the equation of evolution of |Ψ (t)〉 with respect to the Hamiltonian of the
equation 5.17 can be written as a system of coupled equations given by

i
daj
dt

= −δjaj +W (j)aj (5.21)

+
√

(N − j) (j + 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

5.2.3 Inclusion of the Van-der-Waals coupling

We will now consider the coupling due to the Rydberg-Rydberg interactions between a
fully symmetrical state and other states having the same number of excitation.
Whereas the Dicke collective states are very useful for the treatment of the laser ex-
citation due to the conservation of the symmetry, they are not very convenient to treat
the Rydberg-Rydberg interaction, by contrast, atomic states |j, q〉 are them very well
adapted because they diagonalize the Rydberg-Rydberg interaction. In our model, we
built a special basis, idea being to use atomic states while keeping the fully symmetrical
Dicke state.
The construction of this basis is given in the appendix C.2, the basis contains the state
|j, s〉 and
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M (j) − 1 states noted |j, ∼q〉 which are quasi identical to the atomic states |j, q〉.
Using this basis, the wave function of the system is written as

|Ψ (t)〉 =
N∑
j=0

aj (t) |j, s〉+
M(j)−1∑
q=1

b
j
∼
q

(t) |j, ∼q〉

 (5.22)

The Hilbert space in which evolves this wave function is the full space of the many-
body system.
By neglecting the laser excitation of the non fully symmetrical Dicke states, the equation
of evolution of |Ψ (t)〉 according to the Hamiltonian of the equation 5.17 is written as
the following system of coupled equations

i
daj
dt

= −δjaj +W (j)aj (5.23)

+
√

(N − j) (j + 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

+
M(j)−1∑
∼
q=1

W
(j)

s
∼
q
b
j
∼
q

i
db
j
∼
q

dt
=
(
−δj +W (j)

qq

)
b
j
∼
q

+W
(j)

s
∼
q
aj (5.24)

Where W (j)
qq is the interaction energy of the atomic state |j, q〉 associated to

∣∣∣j, ∼q〉
and W (j)

s
∼
q

= 〈j, s|V |j, ∼q〉 = 1√
M(j)

[
W

(j)
qq −W (j)

]
(see ()).

Since the true atomic states |j, q〉 will no more appear and that the link between |j, ∼q〉
and |j, q〉 is well specified, we replace in the following

∼
q by q to simplify the notation.

The above system of equation can be formally transformed in a system of integrodiffer-
ential equations as derived in the appendix C.3.

i
daj
dt

= −δjaj +W (j)aj (5.25)

+
√

(N − i) (i+ 1)
Ω

2
aj+1 +

√
(N − j + 1) j

Ω

2
aj−1 (5.26)

+

∫ t

0

f (j) (τ) exp (iδjτ) aj (t− τ) dτ
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Where we define the correlation function f (j) as

f (j) (τ) =
∑
q

1

M (j)

[[
W (j)
qq

2 − 2W (j)
qq W

(j) +W (j)2
]

exp
(
−iW (j)

qq τ
)]

(5.27)

This transformation is, up to now, exact. We show in the appendix C.4 that, under
approximations based on time-scales considerations, valid for j � N , the correlation
functions can be written in a very simple manner as the sum of a constant term and a
Dirac term.

f (j) (τ) ≈ W (j)2 − iW (j)δ (τ) (5.28)

Using this expression, the integrodifferential equations system becomes

i
daj
dt

= −δjaj (5.29)

+
√

(N − i) (i+ 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

−iW (j)2

∫ t

0

exp (iδjτ) aj (t− τ) dτ

Doing the inverse transformation which is presented in the appendix C.3, we can
rewrite this system by introducing for each level of excitation a state |j, ns〉. This single
state describes the ensemble of non-fully symmetrical states with j excitations.
The equation of evolution becomes

i
daj
dt

= −δjaj (5.30)

+
√

(N − j) (j + 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

+W (j)cj

i
dcj
dt

= −δjcj +W (j)aj

The wave function takes the form
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|Ψ (t)〉 =
N∑
j=0

(aj (t) |j, s〉+ cj (t) |j, ns〉) (5.31)

In considering the effect of Rydberg-Rydberg interactions, we see that for each level
of excitation, a superposition of the fully symmetrical state |j, s〉 and states with other
symmetry described by |j, ns〉 is excited. A remarkable point is that the interaction
energy W (j) of the state |j, s〉 present in the equation 5.21 is now totally compensated
and is replaced by a coupling with |j, ns〉. This leads to a symmetric line shape of
the Rydberg excitation as we can observe experimentally [Singer et al., 2004; Pritchard
et al., 2010; Viteau et al., 2012].
The physical interpretation is that the states which are populated in the system are,
for each level of excitation, the fully symmetrical state at which is subtracted strongly
interacting atomic states. Those states are indeed not or only very slightly "Rydberg
shifted".

5.2.4 Laser excitation of the non-fully symmetrical states

The equation equation 5.30 describes the situation were laser excitations of non-fully
symmetrical states is totally neglected. The last part of our theoretical development is
to include such excitations.
In the equation 5.30, non-fully symmetrical states are described by one state |j, ns〉.
In our model, we assume that this state is essentially a superposition of Dicke states
with the minimum degree of symmetry. In the Dicke formalism, it corresponds to states
with a cooperative number c equal to

(
N
2
− j
)
. This is justified by the fact that those

states are much more numerous than states with other symmetry. Indeed, among the
M (j) =

(
N
j

)
states with j excitations, the number of states with cooperative number not

equal to
(
N
2
− j
)

is
(
N
j−1

)
, it is a very small proportion as long as we have j � N+1

2

which is true in the case of hardly blockaded ensemble.
The states with a minimum degree of symmetry have a very interesting property with re-
spect to the laser excitation. They are coupled with states having j+1 excitations but are
not coupled with states having j-1 excitations since this subset does not contain states
with the right symmetry.
Therefore, the states |j, ns〉 assumed to be states with the minimum degree of symmetry
noted in the Dicke formalism

∣∣j, c = N
2
− j
〉

are, under the effect of the laser, only cou-
pled toward the states of the form

∣∣j + 1, c = N
2
− j
〉
. The Rydberg-Rydberg interac-

tions will then essentially coupled those states with the states of the form
∣∣j + 1, c = N

2
− (j + 1)

〉
which are, again, the most numerous in the j + 1 excitations subset.
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In our model, we describe this two steps process (excitation + coupling) by one pertur-
bative laser excitation, we define for that a new kind of state, noted |j,NS〉, which are
also a superposition of states with the minimum degree of symmetry. We consider that
the population of the state |j, ns〉 is perturbativelly transfered to the state |j + 1, NS〉
and we consider that once a state |j,NS〉 is populated, its population is transfered to the
state |j + 1, NS〉. For simplicity, for those two transfers, we take the same rate Γ(j)

Γ(j) =
Ω2 (N − 2j)

4
× (5.32)[

∆ω
2

∆ω2

4
+
(
δ − j η

N−1

)2 +
∆ω
2

∆ω2

4
+
(
δ + j η

N−1

)2

]

Here, the perturbative laser excitation is temporally limited by the linewidth of the
laser ∆ω. We consider that the Rabi frequency associated to this excitation is the one
of the excitation of the states with minimum cooperative number given by Ω

√
N − 2j

[Dicke, 1954] and we consider that the additional detuning between level j and (j + 1)

due to Rydberg-Rydberg interactions is j η
N−1

which is the energy difference between
|j, s〉 and |j + 1, s〉. In the equation 5.32, the rate is symmetrized. We use this rate
in order to keep the symmetry of the system in relation to the laser detuning which
is present in the equations until this last step. Nevertheless, we have also solved the
equations of our model in using a non-symmetrized rate, written in this case

Γ(j) =
Ω2 (N − 2j)

4
×

[
∆ω
2

∆ω2

4
+
(
−δ + j η

N−1

)2

]
(5.33)

According to this treatment of the laser excitation of the non-symmetrical states, the
wave function of the system takes the form

|Ψ (t)〉 =
N∑
j=0

(aj (t) |j, s〉+ cj (t) |j, ns〉+ dj (t) |j,NS〉) (5.34)

We can express the equation of evolution of the system by adding the perturbative
laser excitation to the equation 5.30. We use population equations for the states |j,NS〉,
for that we define ρj = |dj|2.
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i
daj
dt

= −δjaj (5.35)

+
√

(N − j) (j + 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

+W (j)cj

i
dcj
dt

= −δjcj +W (j)aj − i
Γj
2
cj

dρj
dt

= Γj−1 |cj−1|2 + Γj−1ρj−1 − Γjρj

We present in the fig 5.4 a schematic description of this equations.

Figure 5.4: Schematic description of the cooperative model equations

The equations 5.35 are the final equations of our cooperative model. As the system is
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describes by 3 states per level of excitation, those equations consist in a system of 3Nmax

coupled differential equations whereNmax is the maximum number of excitations which
can be present in the system. This system is then very reasonably computable.

5.2.5 Results of our cooperative model

In this section we present the results of our cooperative model. Once the equations 5.35
solved, we calculate two quantities, the mean number of Rydberg excitations present in
the system, n(t), and the Mandel Q factor, Q(t).

n(t) =
∑
j

[
j
(
|aj(t)|2 + |cj(t)|2 + ρj(t)

)]
(5.36)

Q(t) =

∑
j

[
j2
(
|aj(t)|2 + |cj(t)|2 + ρj(t)

)]
− n(t)2

n(t)
− 1 (5.37)

Time dependence

In fig 5.5, we plot the results of the cooperative model for the temporal evolution of n(t)

and Q(t). We consider a resonant excitation (δ = 0). The parameters correspond to the
experimental situation presented in the section 4.6.1 of the chapter 4, i.e, the number
of atoms is 8000, Ω = 2π × 40 kHz and η is evaluated from an atomic density d =1.5
1010cm−3 and C6 = −2π× 7 GHz.µm6 which is the minimum interaction value for the
71d5/2 Rydberg state.

We see in the fig 5.5 that the number of excitations present in the system exhibits a
fast growing before to reach a regime where the dynamics is slow down. Concerning
the Q factor, we see a quite sharp drop, Q factor going from 0 to around -0.8.
In the fig 5.6 we plot in function of the time the populations of the different states of
the system. We see that the symmetrical states |j, ns〉 are first populated, there is then a
transition where the excitations begin to be non-fully symmetric and |j, ns〉 populated.
The steady growing regime is reached when excitations are present trough the |j,NS〉
states.

Scan of the Rydberg line

In fig 5.7 we have represented a scan of the Rydberg line. The parameters are the ones
of the experimental situation presented in the section 4.6.2 of the chapter 4, i.e. the
number of atoms is now 5 104 and the atomic density d =4 1010cm−3. The laser pulse
duration is 300 ns.
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Figure 5.5: a) evolution in function of the time of n.
b) evolution in function of the time ofQ, the red lineQ(t) = −1 represents the minimum
value than the Mandel Q factor can take.

The evolution of the Q factor in function of the laser detuning shows a quite interesting
behavior. We first recognize the negative value of the Q factor for a laser at resonance,
on the edges of the line, we see that the model predicts positive values of the Q factor.
We see finally that the Q factor takes huge positive values when the number of excitation
goes to zero.

We have finally performed the calculations using the perturbative excitation rate of
the equation 5.33.
Results are shown in the fig 5.8. We see that the Rydberg line is now slightly asymmet-
ric. The effects on the Q factor is much stronger. We observe the suppression of the
positive values on the side corresponding to the Rydberg-Rydberg interaction sign.
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Figure 5.6: Evolution in function of the time of the |j, s〉 states populations (a); the
|j, ns〉 states (b) and the |j,NS〉 states (c).
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Figure 5.7: a) evolution in function of the detuning of n.
b) evolution in function of the detuning of Q. Those results are obtained using sym-
metrized rates for the perturbative excitations

5.2.6 Comparison with experimental data

In fig 5.9 we compare the results of the model with the experimental data presented in
the chapter 4. We find on the fig 5.9 a good quantitative agreement between the model
and the experiments.

A so good agreement between the model and the experiments is in fact quite sur-
prising since we know that the model does not match perfectly the physical system. As
a main limitation, the way to deal with the laser excitation of non symmetrical states is
not fully rigorous and we show in the section 5.2.7 that it enhanced the blockade effect.
On the other hand, the Zeeman structure associated to the l =d state investigated exper-
imentally is not present in the model. The C6 coefficient taken into account corresponds
to the one of the less interacting potential curve whereas it seems that it is the biggest
one which determine the experimental results. The very good agreement found in the
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Figure 5.8: a) evolution in function of the detuning of n.
b) evolution in function of the detuning of Q. Those results are obtained using non-
symmetrized rates for the perturbative excitations

fig 5.9 should be linked to a compensation of those two effects in this particular case.
Another enhancement of the agreement is related to the laser jitter which should be re-
sponsible of positive Q factor on the sides of the Rydberg line where the model already
predict positive Q factor. The effect of the laser jitter on the Q factor is presented in the
appendix B.
Nevertheless, the comparison of the model results with the experimental data is very
promyzing. Namely concerning the general dynamics, the highly negative Q factors
and the non-shifted position and the symmetry of the line.

Concerning the difference between the experimental and the modeled linewidth, it should
be explained by several obvious effects which are not taken into account in the model.
As a non exhaustive list, we can cite Doppler effect, Fourier broadening, presence of
small electric field and laser jitter.
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Figure 5.9: Comparison of experimental data and theoretical results for the time depen-
dence and the scan of the line, theoretical number of Rydberg excitations and Q factor
are multiplied by 0.5 to take in account the efficiency of detection of the experimental
setup. We have multiplied the width of the theoretical results in the scan by a factor 4
to highlight the quantitative agreement, several explanations for this difference between
theoretical and experimental widths are given in the text. On both graph, red squares
are the detected ions number, blue circles are the detected Q factor.
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5.2.7 Discussion and possible improvements

In this section, we come back on the approximations of the model and we discuss the
physical interpretation of the results. We highlight also the important novelty that the
model brings for our understanding of the interacting Rydberg gases.

The first approximation of the model comes from the treatment of the correlation func-
tions. As mentioned in the appendix C.4, the treatment presented here corresponds to
an averaged case valid for N � 1 and j � N and it could be very interesting to look
more in the details of the correlation functions.

The main approximation of the model is the treatment of the non-symmetrical states
excitation. If the characteristics of the symmetrical states (collective Rabi frequencies,
interaction energies and coupling with the other states) are well established, those con-
cerning the non-symmetrical states involved in the perturbative excitation are more ap-
proximative. The fact is that the determination of those quantities is quite tricky because
we use only one effective state to describe the very numerous non-symmetrical states.
However, the laser excitation of the non-symmetrical states should be highly determi-
nant for the dynamics of the system. This is what is shown by the two first steps of the
model where the Rydberg-Rydberg interactions induces a fast evolution of the system
toward those states.
It seems that, in the present state of the model, the choice of the pertubative laser exci-
tation rate leads to non enough efficient excitations of the non-symmetrical states.
To check this, we can look at the number of excitations in the saturation regime that we
can expect from the simple blockade sphere picture. The physical parameters set in the
model (C6 = 2π×−7 GHz.µm6, ∆ω = 2π×300kHz,N =8000 and d =1.5 1010 cm−3)
correspond to a blockade radius of around 6µm for a total volume of around 5 105µm3.
This gives room to at least 300 Rydberg excitations. The results of the model exhibits
clearly a lower number of Rydberg excitations (< 100 for reasonable time scale).
This could be explained by the fact that the pertubative rate is calculated for a strongly
shifted transition (the shift corresponds to the difference in energy between the fully
symmetrical Dicke states of the concerning levels) whereas, as in the case of the fully
symmetrical states, the existence of non strongly interacting configurations in the upper
level should allow non strongly shifted transitions (until a complete blockade).

Despites those approximations, the orders of magnitude of the number of Rydberg ex-
citations, the dynamics and the Q factor predicted by the model for resonant and off-
resonant excitation are quite relevent. The non-shifted position of the Rydberg line is
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also a very nice feature of the model.

The model brings also a quite new insight for the modeling of interacting Rydberg
gases. From the model, we can propose a physical, qualitative description of the exci-
tation dynamics of an atomic gas toward interacting Rydberg states. This description is
schematized using the Dicke basis in the fig 5.10.

Figure 5.10: Schematic vision of the collective excitation. The colored areas give an
idea of the Dicke states population at different time.

A quite intuitive physical interpretation for the laser excitation of an atomic ensem-
ble toward Rydberg states is that the populated states, for each level of excitation, are
superpositions of the atomic states which are non-blockaded. This have been already
mentioned for example in [Lesanovsky, 2011] and is in fact implicites in the methods
which involve a truncation of the Hilbert space according to the blockade radius.
In the Dicke basis of the whole system, the populated states are superpositions of the
fully symmetrical Dicke state and states with other symmetries.

When only few Rydberg excitations are present in the system, the interaction energies
corresponding to the different configurations are basically small. The coupling toward
the non-symmetrical Dicke states is then weak and the Rydberg excitation is mainly
present through the fully-symmetrical Dicke states. Also, in this regime, the laser ex-
citation is more favorable at resonance since the largest part of the configuration are
almost non-shifted (for one excitation they are all exactly non shifted). This last point
explains the non-shifted position of the Rydberg line observed experimentally.
On the other hand, when the number of Rydberg excitation becomes important, the in-
teraction energies corresponding to the different configuration are also important. con-
sequently, the coupling toward the non-symmetrical Dicke states is strong and the Ryd-
berg excitation should be mainly present trough non-symmetrical Dicke states.
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The fact that the Dicke states with the minimum of symmetry are first the most numer-
ous and secondly non coupled to states containing less excitations should then have a
strong effect on the excitation dynamics, namely with the appearance of highly negative
Q factor. Indeed, as soon as the raising of the excitation would be slow down, due to the
population of non-symmetrical Dicke states and the associated restricted deexcitation,
the wave function of the system would be (at least partially) accumulated in the corre-
sponding levels.

In our model, the reduction of the excitation raising speed and the highly negative values
of the Q factor come together with the pertubative laser excitation. Even if the associated
parameters set in the presented equations are found to anticipate the blockade effect, this
behavior should appears in any case when the blockade would be effective. Neverthe-
less, it is clear that in the present state of the model, this effect is enhanced in assuming
that the symmetrical Dicke states are coupled only to states having the minimum degree
of symmetry. Although this is strongly indicated when looking at the number of states
having the minimum cooperative number, the real wave function has for sure non null
components relative to the other states leading to a more complex dynamics.

The only way to access properly the full dynamics would be to write down more pre-
cisely the states which are populated. In the methods using the perfect blockade approx-
imation, this is done using an enumeration of the configurations which are blockaded
(or not blockaded).
This is briefly discussed in the section 5.3 in the frame of the Dicke collective states.

In comparison to those methods, a very interesting point of the cooperative model is
that "ab-initio" evaluation of quantities like the blockade radius or the number of block-
aded configuration is not involved. The collective Rabi frequencies present in the model
come from the total number of atoms and the number of Rydberg excitations, also the
blockade effect is present through a dynamical coupling between the symmetrical states
and states with other symmetries. This feature of the cooperative model comes from
the use of the master integrodifferential equation and the treatment of the correlation
functions.
In future work, we should compare the model predictions with other experimental sit-
uations in particular with l =s states to determine in which conditions this treatment is
valid and until which point can we extract reliable results from it.
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5.3 "Blockaded" Dicke basis

In this section, we study, using the Dicke collective states, some mechanisms linked to
the excitation of an interacting Rydberg ensemble. Some simple situations are investi-
gated. The purpose of this section is to point out that the Dicke collective states can be
use as a quite general formalism to deal with interacting Rydberg gases. We also make
some links with other theoretical developments.

5.3.1 Step of excitation

In this section we study the situation corresponding to one step of laser excitation of a
fully symmetrical Dicke state in a simplified case. We treat the problem in the Dicke
basis and we show that it can be well understood in another basis that we call the block-
aded Dicke basis. We make also a link with the equations of our cooperative model.

We consider that initially the system is in the fully symmetrical Dicke state with j-1
excitations |j − 1, s〉. We study the laser excitation of |j − 1, s〉 toward the fully sym-
metrical Dicke state with j excitations |j, s〉. We note 〈j − 1, s|ĤL|j, s〉 = Ωc the laser
coupling between those two states.
Looking at the states containing j excitations, we consider that there is in total M con-
figurations (atomic states). We consider thatB configurations have an interaction energy
equal toW , we call those configurations the blockaded configurations and we note them
|abi〉, i ∈ [[1;B]]. We consider that the M − B other configurations have an interaction
energy equal to 0, we call them the non-blockaded configurations and we note them |ai〉,
i ∈ [[1;M −B]].
Formally, defining an interaction Hamiltonian, Ĥint (diagonal in the atomic basis) the
latter considerations can be written as 〈abi|Ĥint|abi〉 = W and 〈ai|Ĥint|ai〉 = 0.

The fully symmetrical Dicke state with j excitation |j, s〉 is by definition

|j, s〉 =
1√
M

(
M−B∑
i=1

|ai〉+
B∑
i=1

|abi〉

)
(5.38)

We define the non-fully symmetrical collective state |j, ns〉 as

|j, ns〉 =
1√

Mβ(1− β)

(
β

M−B∑
i=1

|ai〉 − (1− β)
B∑
i=1

|abi〉

)
(5.39)

Where β = B
M

is the fraction of blockaded configurations.
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The state |j, ns〉 is normalized and orthogonal with |j, s〉. Since we are dealing with
Dicke state we have 〈j − 1, s|ĤL|j, ns〉 = 0. We can show that it exists no other states
orthogonal to |j, s〉 and |j, ns〉 coupled to them by Ĥint.
We have

〈j, s|Ĥint|j, s〉 = βW (5.40)

〈j, ns|Ĥint|j, ns〉 = (1− β)W (5.41)

〈j, s|Ĥint|j, ns〉 = −
√
β(1− β)W (5.42)

(5.43)

The interaction Hamiltonian Ĥint in the basis {|j, s〉, |j, ns〉} is then written as

Ĥint =

(
βW -

√
β(1− β)W

-
√
β(1− β)W (1-β)W

)
(5.44)

We can diagonalize this Hamiltonian. The eigenstates are two collective states
(which are not Dicke states) that we note |A〉 and |Ab〉 written as

|A〉 =
1√

M −B

M−B∑
i=1

|ai〉 (5.45)

|Ab〉 =
1√
B

B∑
i=1

|abi〉 (5.46)

Those two states are respectively the symmetrical superposition of all the non-
blockaded configurations and of all the blockaded configurations. There energies are re-
spectively 0 andW and we have |A〉 =

√
1− β|j, s〉+

√
β|j, ns〉 and |Ab〉 =

√
β|j, s〉−√

1− β|j, ns〉.
The total Hamiltonian of the system Ĥ = ĤL + Ĥint is written in the basis

{|j − 1, s〉, |j, s〉, |j, ns〉} as

Ĥ =

 0 Ωc 0
Ωc βW -

√
β(1− β)W

0 -
√
β(1− β)W (1-β)W

 (5.47)

In the basis {|j − 1, s〉, |A〉, |Ab〉}, Ĥ as
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Ĥ =

 0
√

1− βΩc

√
βΩc√

1− βΩc 0 0√
βΩc 0 W

 (5.48)

Those formal calculations show how from a fully symmetrical Dicke state |j − 1, s〉
the laser excites, if it exists, a non-interacting (non-shifted) superposition of the upper
fully symmetrical Dicke state |j, s〉 and a state with another symmetry |j, ns〉. In this
example the excited state is simply the symmetrical superposition of the non-blockaded
configurations |A〉, it can be view as the "non-shifted part" of the fully symmetrical
Dicke states. |Ab〉 is the "shifted part" of the fully symmetrical Dicke state, if the inter-
action energy of the blockaded configurations is sufficiently large (W � Ωc) it is not
populated.

Formally, we can define the state |A〉 as the fully symmetrical Dicke state of a "block-
aded" Dicke basis. In this blockaded Dicke basis, we have remove all the blockaded
configuration (it is then equivalent to the basis formed in the methods which involves a
truncation of the Hilbert space according to the blockade radius).
The laser coupling between two adjacent fully symmetrical Dicke states of the block-
aded Dicke basis is reduced in comparison to the full Dicke basis by a quantity relative
to the number of blockaded configurations.
In the blockaded Dicke basis, a fully symmetrical state is coupled in the upper level only
with the fully symmetrical state but is not necessary coupled in the lower level only with
the fully symmetrical state.

On the fig 5.11, we have schematically represented the system with the two basis used
in this section

It is quite interesting to look at the treatment done in our cooperative model corre-
sponding to the situation that we have described.
In identifying

√
(N − j)(j + 1)Ω to Ωc, we can formally translate the equation 5.30 of

the model into an Hamiltonian Ĥcm written in the basis {|j − 1, s〉, |j, s〉, |j, ns〉}

ĤCm =

 0 Ωc 0
Ωc 0 βW

0 βW 0

 (5.49)

The Hamiltonians Ĥcm and Ĥ are not equivalent. Nevertheless, starting at t = 0

in the state |j − 1, s〉, it appears that both Hamiltonian give the same results at short
time. In the fig 5.12 we have represented the population of the three states of the system
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Figure 5.11: Schematic representation of the system in the two basis mentioned in the
text.

in function of the time, for both Hamiltonians. The calculation are done with β = 3
5
,

Ωc = 2π × 106 and W = 2π × 107. Those values of Ωc and W corresponds to reason-
able experimental values of collective Rabi frequency and interaction between Rydberg
atoms.

Figure 5.12: Population of the three states of the system in function of the time starting
in |j − 1, s〉 at t = 0. The cooperative model Hamiltonian Ĥcm gives the blue curves.
The Hamiltonian Ĥ gives the yellow curves.

The calculations presented in the fig 5.12 corresponds to one step of excitation taken
as a close three-levels system. We see that the equations of the cooperative model de-
scribes correctly the system at short time (in this example for t ≤ 25 ns). Nevertheless,
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bigger is the interaction energy, shorter is the time at which the results start to be differ-
ent.
In this example, it has been possible to determine explicitely the populated Dicke states.
In the case where the interaction energies are "randomly" distributed, it would not have
been so simple. We see here the powerful treatment applied in the cooperative model
which allows to consider this "non-shifted" step of laser excitation in a general case (in
fact a continuous case, see appendix C.4).

5.3.2 "Perfect blockade" of a single lattice site, Super Atom picture

In this section, we study a quite simple situation. We consider that the atomic sample
is composed by several atomic packets in condition of single packet perfect blockade.
This corresponds concretely to a lattice with very large lattice spacing and very strong
confinement of each packets or more generally to small atomic packets well separated
from each other (compare to the blockade radius). We consider an ensemble ofNs pack-
ets composed by N0 atoms. In this situation, we know that each packets should behave
like a Super Atom and do in-phase Rabi oscillations at the collective Rabi frequency√
N0Ω.

Nevertheless, we treat the problem in the blockaded Dicke basis. Here, the "symmetry"
of the system is such that within each level of excitation, all the non-blockaded configu-
rations are completely equivalent. This leads to the fact that only the fully symmetrical
states of the blockaded Dicke basis will be populated if the system is initially in the
ground state. We note |j, sb〉 the fully symmetrical states of the blockaded Dicke basis.

By an enumeration of the non-blockaded configuration (no more than 1 excitation whithin
the same packet) we can calculate the number of configurations M (j)

b that each state
|j, sb〉 contains

M
(j)
b =

1

j(j − 1)

j∏
i=1

N0(Ns − j + 1) (5.50)

As it is done in the section 5.1.3 we can determine the "collective" Rabi frequency

associated to the laser coupling ĤL = Ω
2

N∑
i=1

[
σ̂igre

i~k. ~Ri + σ̂irge
−i~k. ~Ri

]
between two adja-

cent states |j, sb〉 as following.

The state |j, sb〉 is composed by M (j)
b atomic states having all the weight 1/

√
M

(j)
b .

Each of those state are coupled with (Ns− j)N0 atomic states with j+ 1 excitations. In
the state |j + 1, s〉 those latter atomic states have all a weight 1/

√
M (j+1). This gives
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〈j, sb| ĤL |j + 1, sb〉 =
Ω

2

√
N0

√
(Ns − j)(j + 1) (5.51)

As expected, the equation of evolution of the wave function in the blockaded Dicke
basis is formally the same than the one of a non interacting system of Ns atoms with a
single atom Rabi frequency of

√
N0Ω, i.e., an assembly of non-interacting Super Atoms.

Like in the situation of the section 5.1.3, the treatment of the system in the blockaded
Dicke basis gives the expected dynamics as shown in the fig 5.13

Figure 5.13: Evolution in function of the time of the total number of excitations in an
ensemble of 50 identical blockaded atomic packets, each one containing 200 atoms.
This evolution is given by calculations in the blockaded Dicke basis. The time is given
in unit of single atom Rabi frequency Ω. The blue curve correspond to δ = 0, the red
curve to δ = 10Ω

In the fig 5.13, for δ = 0, we see a "macroscopic" Rabi oscillation at the frequency√
N0Ω resulting from the in-phase Rabi oscillation of each atomic packet. Interestingly,

the excitation of this system of Super Atoms is much more robust again the detuning
of the laser than in the non interacting case. Since the Rabi frequency associated to the
excitation of each Super-Atoms is enhanced by a factor

√
N0, in comparison to the non

interacting case, to get an equivalent effect of the detuning, this latter has also to be en-
hanced by

√
N0. On the fig 5.13, we see that a detuning δ = 10Ω leads to an excitation

still greater than the half of its absolute maximum.
Concerning the Q factor, we found it to be the one expected for an assembly of inde-
pendent two-levels systems doing in-phase Rabi oscillations.
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5.3.3 Modeling of more complex situations

The situations of the section 5.3.1 and 5.3.2 correspond to ideal cases and we have
shown that the Dicke basis allows to treat the problem completely in a quite simple way.
However, for more complex situations (more realistic one), the description of the sys-
tem becomes quickly very tedious without further approximations. In this section, we
present in a qualitative way the modeling of interacting Rydberg gases using the block-
aded Dicke basis.

We can look first at an atomic sample confined in 1-dimensional lattice in the situa-
tion of blockade between nearest neighbor. The treatment with the Dicke collective
states is already hardly complexified. This holds in the fact that the non-blockaded
configurations containing the same number of excitations are not all equivalent. For
example, we have represented on the fig 5.14, two particular configurations containing
two excitations.

Figure 5.14: Schematic representation of an atomic ensemble in presence of lattice.
A single Rydberg excitation is represented by a pink circle, an ensemble of ground
state atoms by a purple circle. We have represented two configurations containing two
Rydberg excitations.

The two configurations of the fig5.14 are not equivalent since they are not coupled
to the same number of configurations with three excitations. In the frame of the collec-
tive states mechanisms, this leads to the fact that those two configurations will take part
of two different Dicke states corresponding to the same level of excitation but having
different coupling with the other states.
In the case of a ring lattice, all the configurations with one excitation are equivalent and
the fully symmetrical state with one excitation is the only state of this level which would
be populated. However, for a linear lattice, even the configurations with one excitation
are not all equivalent. Due to the edge effects, we have to deal with the population of
several Dicke states even for one excitation.

We see here that to treat correctly the problem we have to define several collective
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states per level of excitations.

The treatment of 1 or 2-dimensional lattices has been largely investigated by the meth-
ods of "perfect blockade" (see section 1.4.3 of the chapter 1).
It might be possible and quite interesting to translate in the frame of the blockaded Dicke
basis the techniques of configuration enumeration used in those methods. This would
allow to define the proper set of Dicke collective states allowing to describe lattice sys-
tems.
For example, in those methods the treatment of the Rydberg excitations in term of quan-
tum hard-object allows to describe the system as a so-called Tonk’s gas for which the
number of microcanonical states (non blockaded configurations) have been calculated
(see for example [Ates and Lesanovsky, 2012]).
An other technique developed in the frame of the perfect blockade is to look at the cou-
pling between the different configurations using graph representations (see for example
[Olmos et al., 2009a]). Interestingly, in such graphs, the equivalent configurations have
been already regrouped and the "translation" in terms of Dicke state should be quite
easy.
The coherent thermalization of the system described by the perfect blockade models
could be understood in the frame of the blockaded Dicke basis by the complex dynam-
ics resulting from the population of several Dicke states per level of excitations.

In the following, we briefly present how the deviation from the perfect blockade ap-
proximation could be treated in the blockaded Dicke basis.
The perfect blockade approximation consists in setting to 0 the interaction energy of
a non blockaded configuration, in other words, the tail of the long-range Rydberg-
Rydberg interaction is neglected.
On the fig 5.15, we have drawn the situation corresponding to the experimental one pre-
sented in the section 4.5 of the chapter 4. Two particular configurations are represented.

In considering an isotropic Van-der-Waals interaction, we can calculate the ratio
between the interaction energies Eint of the two configurations labeled |a1〉 and |a2〉 of
the fig 5.15.

Eint,|a1〉
Eint,|a2〉

≈ 1.7 (5.52)

By taking C6 = 1 GHz.µm6 and 50 populated lattice sites (experimentally there is
100 lattice sites in total), the interaction energies of the two configurations are respec-
tively around 6 and 10 MHz.
This means that those two configurations will experience a relative dephasing with a
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Figure 5.15: Schematic representation of the experimental atomic ensemble in presence
of lattice. The Rydberg excitations are represented by the pink circles. |a1〉 and |a2〉 are
two equivalent configurations within the perfect blockade approximation.

rate of 4 MHz. In the frame of the Dicke collective states restricted to those two con-
figurations, this rate corresponds to the coupling between the symmetrical and the non-
symmetrical states.

We see here that the collective excitations which are a-priori equivalent can experience
a quite fast dephasing due to the Rydberg-Rydberg interactions.
Interestingly, we can define the upper limit for the dephasing rate τj between the differ-
ent configurations containing j excitations. It is linked to the effective linewidth of the
laser ∆ω.

τj = j ×∆ω (5.53)

In the fig 5.16, we have drawn a blockaded Dicke basis where, in a completely
qualitative way, we have represented the two features mentioned in this section.

The fig 5.16 represents schematically the theoretical treatment which could be oper-
ated using the blockaded Dicke basis.
In this frame, the effect of the Rydberg-Rydberg interactions is split into two effects. A
pure blockade effect, taken in account through the basis itself, and a relative dephasing
of the non-blockaded configurations.
In the cooperative model, those two effects are treated together. In keeping the spirit of
the cooperative model for the "dephasing part" of the problem, the use of the blockaded
Dicke basis could allow to write down more precisely the Dicke states which are popu-
lated.

The notion of blockaded Dicke basis seems to be quite well adapted to the interact-
ing Rydberg gases.
We can note that by essence, a blockaded Dicke basis is equivalent to the basis used in
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Figure 5.16: Schematic representation of the system in the frame of the blockaded Dicke
Basis. We have underlined the complex dynamics resulting from the laser coupling
between the basis states as well as the dynamical coupling toward poorly symmetrical
states due to the Rydberg-Rydberg interactions.

the methods aiming to solve exactly the many-body Hamiltonian using a truncation of
the Hilbert space according to the blockaded configurations.
Also, since it has a quite strong link with the methods of perfect blockade, it should be
possible to use the expertize acquired in this frame.

A very interesting feature of the Dicke states is that several effects can be included
in their definition. We have seen that the spatial phase of the excitation laser can be
directly included in the Dicke states definition. In a blockaded Dicke basis, we remove
the configurations which would be for sure non excited. As another illustrative example,
the fully symmetrical Dicke states can be defined to take into account the laser intensity
inhomogeneity. We give here the case of one excitation

|1, s〉 =
1√
N∑
i=1

Ω2
i

1√
N

N∑
i=1

Ωie−i
~k.~ri |ri〉 (5.54)

Where Ωi is the Rabi frequency associated to each atom i of the sample. This state is
effectively the one which is populated by the laser excitation starting from the collective
ground state. For a fully blockaded ensemble, this state form a close two-level system
together with the collective ground state.
Defining such a state could be useful to deal with quasi-fully blockaded ensembles.
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The Dicke collective states appears also to be a quite relevant theoretical frame to deal
with dephasing mechanisms. They appears in the Dicke basis as a coupling between the
states with different symmetries.
The dephasing between different configurations is for example proposed in [Bariani
et al., 2012] as a protocol for entanglement generation.
Interestingly, if the dephasing between the configurations is first associated to Rydberg-
Rydberg interactions. It can be also related to other decoherence effects. For example,
in [Bienaimé et al., 2012], authors study the possibility to find a system composed by a
large number of 2-levels atoms in subradiant states (less symmetrical Dicke states) due
to various decoherence effect like the Doppler effect.
In [Honer et al., 2011], the dephasing between the configurations containing 1 exci-
tations (i.e. not due to the interactions) is involved for the implementation of photon
counting devices. Authors propose for example a dephasing induced by a spatial and
temporal inhomogeneity of a laser field intensity (Speckle).

In general terms, the spirit of a "Dicke treatment" for the excitation of many-body in-
teracting systems is to define, within the many-body states, which one are naturally
excited by the laser in given conditions of interactions and how much additional effects
will dephase them. By calculating the relevant quantities, this treatment could be an
alternative method to rate equations to obtain reliable quantitative predictions for the
dipole blockade Physics.

5.4 Conclusion and outlooks

The calculations presented in this chapter put a quite new view on the strongly interact-
ing Rydberg gases.

We have seen in this chapter that the Dicke basis allows to describe efficiently the dy-
namics of interacting ensembles in simple cases with the advantage to be by essence a
many-body basis. We have seen for example that a fully collective description give nat-
urally the Super Atoms picture when the sample is composed by several atomic packets.

The cooperative model that we have developed point out a new mechanism which could
be quite determinant for the dynamics of strongly interacting Rydberg gases. The idea
is the following, if the Rydberg-Rydberg interactions reduce the Rydberg excitation of
the gas due to the blockade effect, they can also reduce its deexcitation due to symmetry
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effects.
To give a "classical" equivalent to this effect we can think that once the system is close
to saturation, the Rydberg excitations are almost localized in a cristal-type arrangement
(in fact a superposition of them), then when one Rydberg atoms is deexcited, there is
more than one ground state atoms which can be excited to refine a complete filling of
the volume. The Rydberg excitations number being thus maintained to high values.
In this frame, the highly negative Q factors that have been observed experimentally can
be well understood, whatever their values could be once more finely precised.

The non-shifted position of the Rydberg line in the case of strong interactions find also
a good theoretical explanation in the frame of collective excitations. It is the numerical
domination of the non-interacting collective states for the few first excitations which
provides the best efficiency to a resonant laser excitation.

Finally we have seen that further theoretical development in the frame of the Dicke
collective states could allow to describe in a quite reliable and simple way interesting
behaviors of interacting Rydberg gases. Namely with the description of interactions or
decoherence induced dephasing in terms of coupling between states with different sym-
metries.

If the theoretical developments presented in this chapter merit to be reinforced in or-
der to reach reliable, predictive capacities, they show that the Dicke collective states
should have a nice role to play in the fantastic task which is to describe the behavior of
strongly interacting Rydberg gases.

220



General conclusion

In the frame of this thesis, a quite large range of physical situations related to Rydberg
atoms and interacting Rydberg gases have been studied, both experimentally and theo-
retically. This diversity shows that Rydberg atoms Physics encompasses a large panel
of physical effects ranging from very technical to very fundamental ones. In both cases,
the wonderful properties of Rydberg atoms make them fascinating objects to study and
allow for promising technological applications.

Since the different chapters of this manuscript are quite independent and have been
separately concluded, we focus on this general conclusion on the main results that have
been presented.

Numerical calculations allowing to access the quantum states of a pair of interacting
Rydberg atoms in presence of static, uniform, external electric and magnetic field have
been implemented.
The results of those calculations do not exhibit important unknown features but they al-
low to access the interacting pair states for very small interatomic distances what can not
be done without numerical calculations. At such interatomic distances the interactions
are so huge that the eigenenergies are completely disorganized. The precise knowledge
of the so-called spaghetti curves in this region is important since such close pairs of
atoms are present in ultra-cold atomic samples.
Various 2-body resonances can be determined as well as dipole-dipole coupling values
including magnetic degeneracy or non-degeneracy.
In a general way those numerical calculations are a useful tool to get a systematical
evaluation of experimental parameters.

A coherent 4-body interaction process between Rydberg atoms have been observed ex-
perimentally. This process can be formally described by the following reaction

4× 23p3/2 → 2× 23s+ 23p3/2 + 23d5/2 (5.55)
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The dipole-dipole coupling between the two 4-body quantum states is a second order
coupling and comes from the coherent combination of the two reactions

2× 23p3/2 → 23s+ 24s (5.56)

2× 24s→ 23p1/2 + 23d5/2 (5.57)

This interpretation is confirmed by a quite simple model dealing with 4-body states
which allows to describe successfully the process. A further confirmation comes from
the enhancement of the process for a variable electric field allowing to bring succes-
sively at resonance the two 2-body processes. This latter experimental manipulation
shows the possibility to control such few-body processes through the applied electric
field.
This observation has been done at a quite small atomic density and shows the possibility
to study phenomena involving more partners.

The first demonstration of a coherent excitation of Rydberg atoms in a 1-dimensional
optical lattice has been realized. This in the blockade regime. This first experiment has
not been done in the best condition to investigate precisely the underlying many-body
dynamics. This holds namely with the excitation of a l = d Rydberg state and a non
so large lattice spacing. Nevertheless, this experiments is a proof of principle that it
is possible with current experimental techniques to investigate the genuine many-body
behaviors expected for such a geometrical configuration.

A highly sub-poissonian statistics of the Rydberg excitation in the regime of block-
ade have been observed in a 3-dimensional MOT. The measured values of the Q factor
range in −1 < Q < −0.6 with a quite strong appetency for −1. Those observations
reveal without ambiguity the collective nature of the Rydberg excitation in the regime
of strong interactions.
By studying the link between Q factor and quantum projection noise, the interest to
measure such a quantity to characterize many-body systems have been shown. Namely,
we found that a Q factor less than−0.75 would demonstrate that atomic correlations are
present at a deeper level than single collective excitations.

Finally, the excitation dynamics of interacting Rydberg gases has been investigated the-
oretically using the Dicke collective states. In this frame, a cooperative model has been
developed. The model shows that the interactions between the atoms induce the excita-
tion of collective states having a different symmetry than the ones naturally excited by
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the laser. A mechanism of accumulation of the many-body wave function on the states
with the minimum degree of symmetry has been proposed from the simple but strong
argument that those states are much more numerous than the other ones. Together with
the blockade itself this mechanism could strongly determine the dynamics of the system
leading to natural crystal-type arrangements of the Rydberg excitations or deterministic
numbers of Rydberg excitations.
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Appendix A

Numerov method

In this section, we give the way to calculate the Rydberg states radial wave functions
with the Numerov method. We give also more accurate form than the Coulomb potential
for the radial potential.

A.1 Numerov method with variable step

The Numerov method is an iterative technique to calculate second order differential
equation of the form [

d2

dr2
+ f(r)

]
u(r) = 0 (A.1)

The radial Schrödinger equation is usually put on the form[
d2

dr2
− l(l + 1)

r2
+

2µe
~2

(Enlj − Veff (r))
]
u(r) = 0 (A.2)

Where u(r) = rR(r) andR(r) is the radial wave function associated to the eigenen-
ergy Enlj . Veff (r) is the effective potential seen by the Rydberg electron.

This equation can be solved with the classical Numerov method which gives a way to
found the function u(r) at different radius ri with a constant step between two adjacent
ri.
Interestingly the use of a variable step between the ri simplifies a lot the resolution and
allows to find directly the solution of the radial wave function R(r) it-self.
In all the following, the quantity are written in atomic units and we consider a Coulomb
potential Veff (r) = −1

r
.

The set of radius ri at which R(r) is calculating is given by
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ri = r0e−h.i (A.3)

Where r0 is the larger radius at which R(r) will be calculated and h a "linear"
increment. We take usually

h = 0.01 (A.4)

r0 = 2n(n+ 15) (A.5)

Where n is the principal quantum number of the Rydberg state in question.
Defining the quantity

g(i) =
1

r2
i

(
−1

ri
− Enlj)(l +

1

2
)2 (A.6)

Where l is the orbital quantum number of the Rydberg state in question and Enlj its
energy.

We can show that the values of R(ri) are given by the recursive equation

R(ri) = R(ri−2)(g(i− 2)− 12

h2
) +R(ri−1)

(
10g(i− 1) + 24

h2

12
h2
− g(i)

)
(A.7)

To initiate the calculation we use the fact that any Rydberg wave function has an
exponential decrease at large distance. We do not care for now to the absolute value of
the wave function since it will be normalized at the end of the calculations. We set thus

R(r0) = 1.10−10 (A.8)

R(r1) = 2.10−10 (A.9)

The radial wave function R(r) is then calculated from r = r0 to rmin. Since Enlj is
not an eigenenergy of the potential Veff , the calculated radial wave function R(r) start
to diverges at small r. We numerically check this divergence and stop the calculations
(we set rmin) slightly before it. We have always rmin of the order of 1 (the Bohr radius
a0 in atomic units) meaning that the calculations are done accurately for a very large
range of distances (since the Rydberg radial wave functions have a huge spatial expan-
sion).

The obtained radial wave function R(r) is finally normalized and can be used for the
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calculation of the radial matrix elements.

A.2 Other forms of the radial potential

The Coulomb potential is the most simple form for the potential seen by the Rydberg
electron. Since the radial expansion of the Rydberg electron is huge, it is in fact quite
accurate to use it for the calculations. Nevertheless, we can add to the Coulomb poten-
tial some terms having a well defined physical meaning.

The most important term that we can taken into account into the radial potential is the
so-called core polarization term. It induces a correction VP in the radial potential of the
form

VP =
−αd

2

1

r4
+
−αq

2

1

r6
+ ... (A.10)

Where αd and αq are the dipole and quadrupole polarizabilities of the ionic core.
There values for lithium, sodium and cesium are for example given in [Gallagher, 1994].

Another term that we can taken into account in the radial potential comes from the
Spin-Orbit coupling. If this latter is mostly determinant for the angular wave function,
it induces also a small modification to the radial potential. In atomic units, the Hamilto-
nian of the Spin-Orbit coupling HSO is written as

HSO =
α2

2

(
1

r

dVeff (r)

dr

)
~L.~S (A.11)

Where α is the fine structure constant. The additional term in the radial potential
due to the Spin-Orbit coupling is then for a Rydberg state nlj

VSO(r) =
α2

2

1

r3
(j(j + 1)− l(l + 1)− 3

4
) (A.12)

Taken into account those two terms would lead to a more accurate expression of the
effective potential. However, in [Zimmerman et al., 1979] it is shown that they leads
to very small correction in the final result of the radial matrix elements and that the
Coulomb potential can be comfortably used for the calculations.

A method have been proposed in [Klapisch, 1971] to determine radial potentials Veff
in such a way that the eigenenergies of those potential reproduce directly the experimen-
tal values of the Rydberg states energy. According to this very interesting method, the
quantum defect values are used to adjust the potentials but the Rydberg states energy
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are found in solving the eigenvalues equation of the corresponding potentials.
The radial potential determined by this method are of the form

Veff (r) = −1 + (Z − 1)e−α1r − r(α3 + α4r)e−α2r

r
− αd

2r4
(1− e−( r

rc
)
6

) (A.13)

Where Z is the atomic number of the considered atom. The different coefficients,
depending thus of the quantum defect values, can be found in [Marinescu et al., 1994].
In the expression A.13 we refine the presence of the core polarization and overall that at
large distance the potential is equivalent to the Coulomb potential.
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Appendix B

Laser jitter effect on the Q factor,
numerical study

In this section, we present a numerical study of the effect of the excitation laser jitter on
the Q factor.
The principle of this study is, for given a Rydberg line and an assumed statistical distri-
bution, to simulate a sample of shots taken at slightly different laser frequency (accord-
ing to the jitter) and calculate the Q factor of this sample.

An important point is that we have done all the study with the data concerning the
detected ions. Nevertheless, we have check that the results obtained directly with the
ions distribution are the same than the ones which would have been obtained by, first
divide the experimental data by the detection efficiency (to translate in Rydberg), do the
study and translate back in terms of ions numbers.

B.1 Simulation of the experimental Q factor

Taken a set of experimental data like the one of the fig B.1 we first do a fit of the Rydberg
line.

The fit obtained on the fig B.1 allows to define the Rydberg line "numerically".
Such a line corresponds to the mean number of the Rydberg excitation in function of the
detuning. We have then to define the full statistical distribution associated to this mean
number for each detuning.
Concerning the Q factor, we take for a resonant excitation, the experimental Q factor,
i.e. −0.4. Then we assume that the "Q factor line" is proportional to the Rydberg line
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Figure B.1: Experimental data Rydberg line and its Lorentzian fit.

as represented on the fig B.2
The values of the Q factor assumed here is obviously associated to a quite strong

physical assumption.
As mentioned in the section 4.7.4 of the chapter 4, in the case of an assemble of identical
and uncorrelated two-levels systems (with measurements values, 0 and 1), if Pr is the
probability of each system to be in the excited state, the Q factor of the whole system is
−Pr. From this consideration we have set the Q factor being proportional to the mean
number of Rydberg excitation.

Once the mean number and the Q factor determined for each detuning, we make an-
other assumption to determine the full distribution. We consider a Gaussian distribution
having those mean value and Q factor.

Looking now at the laser jitter, we consider that for a mean detuning δ and a jitter
σL the detuning of the laser δi for a given shot is chosen according to the following
gaussian distribution

e
− (δi−δ)

2

2σ2
L (B.1)

This distribution is exactly the one used in the Rydberg excitation laser stabilization
program (see section 4.2.3 of the chapter 4) from which the experimental value of the
jitter is evaluated. In the program, the laser frequency is measured in real time and the
jitter is obtained by fitting the obtained (running) distribution by this formula. Although
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Figure B.2: Rydberg line and its corresponding Q factor assuming a proportionality
between the mean number and the Q factor of the Rydberg excitation.

it varies (interestingly it is quite stable within one day), a typical evaluated value is 1.5
MHz.

Knowing the full distribution of the ions number for each detuning and the laser
characteristics, we can properly simulate a sample of ions number as we get in the ex-
periment.
For a detuning δ, we take 100 shots. For each shot i, we first "choose" the laser detuning
δi according to the distribution B.1 and then we "choose" an ions number Ni according
to the ions number distribution at the detuning δi.
We can finally calculate the Q factor Qd of the sample {Ni}.

For a jitter of 1 MHz, we plot on the fig B.3 the obtained results together with the
experimental data

On the fig B.3, we clearly see that, starting with negative values of the Q factor all
along the line, the laser jitter leads to positive values of the Q factor on the edges of
the the Rydberg lines. The correspondence with experimental data is in addition quite
demonstrative.
Nevertheless, the evaluation of the jitter is not perfect since, for example, the locking
cavity instability is included in the laser jitter. Also the physical assumptions used to
define the ions number distribution for the simulation could play a non negligible role.
To conclude, if it is not really possible to say if the positive Q factors observed on
the sides of the Rydberg lines is totally due to the laser jitter, we can affirm that it is
responsible of a big part.
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Figure B.3: Experimental Rydberg line with the measured Q factor (blue squares), the
blue solid line corresponds to the results of the numerical simulation for a laser jitter of
1.5 MHz.

B.2 Evolution of the Q factor with the jitter

On the fig B.4 we have represented the results of the simulated Q factor for different
values of the laser jitter. To get slightly less noisy curves the simulated samples are
composed for those calculations of 250 shots.

We see on the fig B.4 the quite dramatic effect of the laser jitter on the Q factor.
The locking setup of the Rydberg excitation laser is not the best that we can do. To
this regards, performed a similar experiment with nice locking scheme (500 kHz) could
allow to be totally free of the jitter effect. In our setup we are currently working on the
implementation of a new locking scheme described for example in [Rohde et al., 2010]
which should allow to reduce significantly the jitter of the Rydberg excitation.

B.3 Laser jitter effect on positive Q factor

In this section, we present very briefly the effect of the laser jitter on the results of the
Q factor obtained with the cooperative model.
This study is only qualitative for two reasons. First it has been done at a time where
the equations of the model was not the ones presented in the section 5.2 of the chapter
5. The equations used to obtain the graph of the fig B.5 are in fact the one presented in
the reference [Viteau et al., 2012]. Also since the linewidths obtained by the model are
smaller than the experimental ones, the use of real value of the jitter is not relevant.
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Figure B.4: Q factor obtained with numerical simulations for different values of the laser
jitter. The smooth solid line is the initial Q factor, the other lines correspond respectively
from the lower to the higher one to laser jitters of 0.3, 1 and 2 MHz.

The interest of the fig B.5 is only to look at the effect of the laser jitter on the Q factor
when positive values are intrinsically present.

Figure B.5: Evolution of the Q factor in function of the laser jitter.

On the fig B.5, we see that the positive Q factor present intrinsically in the Rydberg
distribution are progressively hidden by the jitter effect. For sufficiently large jitter, the
positive Q factor are only due to the effect of the laser jitter on the edges of the Rydberg
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line. Interestingly, we see that the negative Q factor on the center of the line is a bit more
robust to the laser jitter than positive Q. Finally, the very sharp spikes initially present
in the Q factor are quickly erased by the jitter effect.
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Appendix C

Complement to the cooperative model

In this section, we give the different informations relative to the equations of the coop-
erative model presented in the section 5.2 of the chapter 5 which are not given there.

C.1 Interaction parameter

To calculate the interaction energies of the fully symmetrical Dicke state, we need to
give explicit values to all the interactions terms W (j)

qq .
We first consider the case of 2 excitations (j = 2). The M (j) = N(N−1)

2
interaction

terms W (2)
qq correspond to the interaction energy of all possible pair of atoms.

{
W (2)
qq

}
= {Vij}j 6=i (C.1)

Looking at one particular atom, i = 1, it can form (N − 1) pairs leading to (N − 1)

interaction terms {Vij}j 6=i = {V (Rij)}j 6=i.
Assuming a uniform density, the Erlang distribution [Torquato et al., 1990] allows to
determine the most probable distances between one atom and its qth neighbors

Rq =
q
(

3
π

) 1
3 Γ
[

1
3

+ q
]

2
2
3d

1
3 q!

(C.2)

We use this distances to explicit the interaction terms between the atom 1 and all the
other atoms

{V1j}j 6=1 = {V (Rq)}q∈[[1;N−1]] (C.3)

Assuming that all the atoms have the same environment and neglecting edge effects.
The interaction terms for the other atoms are the same than for the particular atoms 1
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{Vij}i 6=j = {V (Rq)}q∈[[1;N−1]] ∀i ∈ [[1;N ]] (C.4)

We can then write the ensemble
{
W

(2)
qq

}
as a repetition of the ensemble {V (Rq)}{

W (2)
qq

}
q∈[[1;

N(N−1)
2

]]
=
N

2
⊗ {V (Rq)}q∈[[1;N−1]] (C.5)

We use here the simplified notation ⊗ for the repetition of an ensemble. The factor
1
2

come from the fact that the pairs appear 2 times when we look separately at all the N
atoms.

For the other levels of excitation (j > 2), we will use the same kind of treatment.
We first remark that any interaction term W

(j)
qq corresponding to j excitations is a sum

of j(j−1)
2

pair interaction as there is j(j−1)
2

different pairs in an assembly of j parti-
cles. We then consider that each term W

(j)
qq have to be choose within the ensemble{

j(j−1)
2

V (Rq)
}
q∈[[1;N−1]]

and we express the ensemble
{
W

(j)
qq

}
as the repetition of the

ensemble
{
j(j−1)

2
V (Rq)

}
q∈[[1;N−1]]

, number of repetition being simply M(j)

N−1
.

{
W (j)
qq

}
=

(
M (j) 1

N − 1

)
⊗
{
j (j − 1)

2
V (Rq)

}
(C.6)

The explicit expressions of the η parameter and interaction energies of fully symet-
rical states W (j) are

η =
N−1∑
q=1

V (Rq) (C.7)

W (j) =
1

M (j)

M(j)∑
q=1

W (j)
qq =

j (j − 1)

2

η

N − 1
(C.8)

The equation C.8 allow to link all the W (j) to η which is then the only parameter to
calculate in order to implement the equations of the model.

C.2 Construction of the modified atomic basis

In each subset of j excitation, we take the fully symmetrical Dicke state |j, s〉 and the
M (j) atomic states |j, q〉. We have to remove one state to get the right dimension, we
remove the atomic state that we call |j,M〉 such as
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〈j,M | V̂ |j,M〉 ≈ 〈j, s| V̂ |j, s〉 (C.9)

We assume in the following a perfect equality, which is an reasonable hypothesis if
the number of atoms is large.
Then we modify slightly states |j, q〉

|j, q′〉 = |j, q〉+ α |j,M〉 (C.10)

Finally we remove in all states |j, q′〉 the symmetrical part following the idea of the
Gram-Schmidt process. ∣∣∣j, ∼q〉 = |j, q′〉 − 〈j, s | j, q′〉 |j, s〉 (C.11)

Tacking α = 1√
M(j)−1

, the ensemble formed by the state |j, s〉 and theM (j)−1 states∣∣∣j, ∼q〉 is an orthonormal basis of the subset of j excitations.
The matrix elements of the Rydberg-Rydberg interaction for this basis are given by :

〈j, s| V̂ |j, s〉 = W (j) (C.12)

〈j, s| V̂ |j, ∼q〉 =
1√
M (j)

[
W (j)
qq −W (j)

] .
= W

(j)

s
∼
q

(C.13)

〈
j,
∼
q
∣∣∣ V̂ ∣∣∣j, ∼q〉 = W (j)

qq (C.14)

〈
j,
∼
q
∣∣∣ V̂ ∣∣∣j, ∼p〉 = 0 (C.15)

Where W (j)
qq is the interaction energy of the atomic state |j, q〉 associated to

∣∣∣j, ∼q〉
(W (j)

qq = 〈j, q| V̂ |j, q〉).
We see here that the advantage of this basis is that the Rydberg interaction is diagonal
in the restriction of the space to the non fully symmetrical Dicke states.

C.3 Master integrodifferential equation derivation

We start from the following system of equation
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i
daj
dt

= −δjaj +W (j)aj (C.16)

+
√

(N − j) (j + 1)
Ω

2
aj+1

+
√

(N − j + 1) j
Ω

2
aj−1

+
M(j)−1∑
q=1

W (j)
sq bjq

i
dbjq
dt

=
(
−δj +W (j)

qq

)
bjq +W (j)

sq aj (C.17)

We define γjq as following

bjq (t) = γjq (t) exp
(
−i
(
−δj +W (j)

qq

)
t
)

(C.18)

the equation C.17 can be write as

i
dγjq
dt

= W (j)
qs ai exp

(
i
(
−δj +W (j)

qq

)
t
)

(C.19)

We formally integrate this equation and write the equation C.16 as

i
daj
dt

= −δjaj +W (j)aj (C.20)

+
√

(N − j) (j + 1)
Ω

2
aj+1 +

√
(N − j + 1) j

Ω

2
aj−1 (C.21)

+i
∑
q

∫ t

0

(
W (j)
sq

)2
ai (t− τ) exp

(
−i
(
−δj +W (j)

qq

)
(τ)
)
dτ (C.22)

Using

(
W (j)
sq

)2
=

1

M (j)

[
W (j)
qq

2 − 2W (j)
qq W

(j) +W (j)2
]

(C.23)

We finally get
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i
daj
dt

= −δjaj +W (j)aj (C.24)

+
√

(N − i) (i+ 1)
Ω

2
aj+1 +

√
(N − j + 1) j

Ω

2
aj−1 (C.25)

+

∫ t

0

f (j) (τ) exp (iδjτ) aj (t− τ) dτ (C.26)

Where we define the correlation function f (j) as

f (j)(τ) =
∑
q

1

M (j)

[[
W (j)
qq

2 − 2W (j)
qq W

(j) +W (j)2
]

exp
(
−iW (j)

qq τ
)]

(C.27)

C.4 Simplification of the correlation functions

We want to calculate the correlation functions f (j).
We will first consider the correlation function f (2) (τ), indeed, using the expression C.6
we can show that all the correlation functions f (j)

∑
q

1

M (j)

[[
W (j)
qq

2 − 2W (j)
qq W

(j) +W (j)2
]

exp
(
−iW (j)

qq τ
)]

(C.28)

are related to f (2) by the simple relation

f (j) (τ) =

(
j (j − 1)

2

)2

f (2)

(
j (j − 1)

2
τ

)
(C.29)

Consequently, calculation of f (2) will allow us to calculate all the correlation func-
tions f (j)

f (2) can be decomposed in 3 parts :

f (2) = f
(2)
1 + f

(2)
2 + f

(2)
3 (C.30)

f
(2)
1 (τ) =

1

N − 1

N−1∑
q=1

[
V (Rq)

2 exp (−iV (Rq)τ)
]

(C.31)

f
(2)
2 (τ) =

1

N − 1

N−1∑
q=1

[
−2V (Rq)W

(2) exp (−iV (Rq)τ)
]

(C.32)
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f
(2)
3 (τ) =

1

N − 1

N−1∑
q=1

[
W (2)2 exp (−iV (Rq)τ)

]
(C.33)

Each part can be calculated, for that we use the continuous approximation, for ex-
ample, in the case of f (2)

1

f
(2)
1 (τ) =

1

N − 1

∫ N−1

1

(V (Rq))
2 exp (−iV (Rq) τdq (C.34)

On the fig C.1, real and imaginary part of the 3 functions are plotted. We can see
that strong simplifications can be made when we look at the time scale of the evolution
of this functions in comparison to the time scale of evolution of the a2 (t) coefficient
which is of the order of 1

W (2) .
Time scale of evolution of f (2)

3 is of the order of 1

W
(2)
min

where W (2)
min is the weakest

interaction among the ensemble
{
W

(2)
qq

}
. f (2)

3 is then a long time scale function that we
can consider as constant during the evolution time of a2 (t).

f
(2)
3 (τ) ≈ f

(2)
3 (0) = W (2)2 (C.35)

Concerning f (2)
2 and f (2)

1 , we first see that f (2)
2 can be neglect because its amplitude

is 1000 times less than the one of f (2)
1 . Time scale of f (2)

1 is of the order of 1

W
(2)
max

where

W
(2)
max is the strongest interaction among the ensemble

{
W

(2)
qq

}
. f (2)

1 is then a short time

scale function and we can consider that f (2)
1 is a Dirac’s delta function

f
(2)
1 (τ) ≈

∫ ∞
0

f
(2)
1 (t) dt× δ (τ) = −iW (2)δ (τ) (C.36)

Doing this approximations, we can then write f (2) as a sum of a constant term and a
Dirac term

f (2) (τ) ≈ W (2)2 − iW (2)δ (τ) (C.37)

Using the equation C.29, we can show that this simplification can be made for all
correlation functions and we have

f (j) (τ) ≈ W (j)2 − iW (j)δ (τ) (C.38)

This is the form used for the correlation functions in the equations of the cooperative
model.
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The equation C.29 is, in a general way, true and a similar result is found in the reference
[Stanojevic et al., 2012] (equation 8). However, with our treatment of the correlation
functions, the maximum and the minimum interaction terms of each subset of j exci-
tations play a central role as they determine the time scale of the different parts of the
correlation functions. In the expression C.6 the maximum (minimum) interaction term
for j excitations is a multiple of the maximum (minimum) pair interaction. Although
this is a reasonable approximation as long as we have j � N , it is not true and we
should find an appropriate correction to those terms. This would gives a restriction on
the number of excitation j for which the approximation (function=dirac+constant term)
is valid. In fact, as j increases, the time scale considerations that we use become less
and less true and the exact structure of the correlation functions should play a role in
the dynamics of the system. However we expect that for j � N , this has only a small
effect.
In addition, an approximation in the treatment of the correlation functions comes from
the continuous approximation. Indeed, the discretization of the interaction terms may
have an effect on the correlation functions with namely a particular role of the strongest
interactions terms. However, continuous approximation seems very reasonable for
N � 1.
In the present state of the model, the treatment of the correlation functions corresponds
in a sense to an averaged case valid for N � 1 and j � N .
It should be very interesting to study more in detail the correlation functions as they
contains a lot of physical meaning. For example, as the correlation functions give the
distribution of states coupled to the symmetrical Dicke states, the Fourier transform of
the correlation functions should be linked to the spatial distribution of the excited Ryd-
berg atom (we can indeed make the correspondence between the interaction energy and
the distance between Rydberg atoms). It could be also very interesting to define the
correlation functions involved in the couplings from a non-symetrical Dicke state.
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Figure C.1: We plot in function of the time, the values of real (blue lines) and imaginary
part (red lines) of the three components of the correlation function f (2). f (2)

3 is plotted
on a much longer time scale (10µs) than f (2)

1 and f (2)
2 (150ns)
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Appendix D

Basic Mean-Field model

In this section we present some calculations done with a Mean-Field treatment. We use
the Mean-Field theory in its simplest form, i.e. we neglect all the atomic correlations.
The results presented here are not equivalent to the one presented for example in [Tong
et al., 2004; Weimer et al., 2008]. In those references, the evaluation of the 2-body
correlation function is taken into account.
We have done such calculations since the Mean-Field equations are very simple and
leads to a kind of blockade anyway, the possibility to include effects like the laser line-
width, Doppler effect or density variation in a very simple manner is quite interesting.
If the full many-body equations would behave differently in regards to those effects, the
results presented here give an idea of what we could expect from them.

D.1 Equation of the Mean-Field model

We consider the Hamiltonian of the dipole blockade H as presented in the chapter 1

H = −~δ
N∑
i=1

σ̂irr +
~Ω

2

N∑
i=1

[
σ̂igr + σ̂irg

]
+

N∑
i=1,j<i

Vijσ̂
i
rrσ̂

j
rr

For the numerical values of the parameters, we keep the case modeled with the
cooperative model as presented in the section 5.2 of the chapter 5. Thus, |r〉 = 71d5/2,
Vij = C6

R6
ij

with C6 = −2π × 7 GHz.µm6, N = 8000, Ω = 2π × 40 kHz and the sample

is considered to uniform density d =1.5 1010at.cm3. We consider δ = 0 if no other
values are explicitly mentioned.

According to the Mean-Field hypothesis we assume,

σ̂j = σ̂i,∀j 6= i (D.1)
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Where σ̂i is the density matrix operator of the atom i. The equation of evolution of
the density matrix, σ̂1(t), of the atom 1, which will be our witness atom, is obtained
by tracing the equation of evolution of the total density matrix, σ̂(t), over all the other
atoms

i~
d

dt

[
σ̂1(t)

]
= Tr

j 6=1
[H, σ̂(t)] (D.2)

It is by making the trace that atomic correlation are "vanished" of the equations.
We transform this equation using the Bloch vector formalism to get the following system
of equation 

ṅR(t) = Ω
2
v(t)

v̇(t) = −δu(t) + Ω(1− 2nR(t)) + ηnR(t)u(t)

u̇(t) = δv(t)− ηnR(t)v(t)

(D.3)

with

η =
N−1∑
q=1

V (Rq) (D.4)

η is the same quantity than in the cooperative model and its expression has been
discussed in the section C.1.
We recognize here the system of equation of a two levels atom in interaction with a laser
field. There is an additional term, ηnR(t) which correspond to the Rydberg-Rydberg
interactions. This term acts like a detuning, indicating that the Rydberg-Rydberg inter-
actions shift the energy level of the Rydberg state.

This treatment corresponds to the most basic Mean-Field model that we can derive,
here quantum correlations are totally neglect. In the improved Mean-Field model of
[Tong et al., 2004; Weimer et al., 2008], the fact that 2 atoms separated by less than a
certain distance can not be excited simultaneously in the Rydberg state is take in ac-
count. This distance is the blockade radius, Rb, and can be evaluated in function of the
parameters of the system (here we would have Rb = (C6/~Ω)1/6). Taking in account
the 2-body correlations corresponds to define η as

η =
N−1∑

q=q0,Rq0≥Rb

V (Rq) (D.5)

Although the equation are formally identical, we stay in this manuscript with the
basic Mean-Field model.
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D.2 First results of the Mean-Field model

We show in the in the fig D.1 the result of the numerical resolution of the Mean-Field
equations.

Figure D.1: Time evolution with the Mean-Field model

We see in the figD.1 a coherent evolution of the system exhibiting a Rabi oscillation.
The maximum number of Rydberg is 100 times less than the number of atoms, so in a
sens, there is a blockade effect. Looking at the time scale, we see that the frequency of
oscillation is 12.5 times bigger than the Rabi frequency Ω.

D.3 Effect of the laser linewidth

Up to now, the laser was considered to be perfectly monochromatic. However, the laser
linewidth, ∆ω, can be easily introduced in the Mean-Field equations, as it is the case
for a two-levels atom, considering an average of the atomic quantities over the phase
fluctuations of the laser [Blushs and Auzinsh, 2004].


ṅR(t) = Ω

2
v(t)

v̇(t) = −δu(t) + Ω(1− 2nR(t)) + ηnR(t)u(t)−∆ωv(t)

u̇(t) = δv(t)− ηnR(t)v(t)−∆ωu(t)

(D.6)

We solve this new equation with same parameters as before and ∆ω = 2π× 300
kHz.

Results presented in the fig D.2 show a not surprising damping of the oscillations
due to the decoherence engendered by the laser linewidth. However, there is also now a
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Figure D.2: Time evolution with the Mean-Field model including a laser linewidth ∆ω
(solid line), dashed line is the result of calculations without laser linewidth of the figD.1.

steady growing of the number of Rydberg. This can be interpreted by the fact that, again
due to the decoherence engendered by the laser line width, the system tends to reach the
state of equal superposition between ground and Rydberg state. Finite Rydberg lifetime
would compensate this evolution but only after a certain time.

D.4 Doppler effect

Doppler effect can also be introduced in the Mean-Field model. We consider that the
atomic sample is divided in many classes of velocity indexed by k. Calling vk the
velocity along the laser direction of the atoms of the class k. For this atoms, the laser
detuning is δk = δ − 2π

λgr
vk where λgr =300 nm. Their number Nk is given by the

Maxwell-Boltzmann distribution.

Nk = N

√
m

2πkbT

∫ vk+vk+1
2

vk−1+vk
2

exp

(
−1

2

m

kbT
v2

)
dv (D.7)

Where m is the atomic mass and T the temperature.
For each class of speed k, we can write the equation of the Mean-Field model with the
associated detuning δk. All the equations are coupled together via the interaction term
which have to be summed over all the classes with the normalized weight Nk

N
.
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

ṅ
(k)
R (t) = Ω

2
v(k)(t)

v̇(k)(t) = −δku(k)(t) + Ω(1− 2n
(k)
R (t))

+ η
∑
k

Nk
N
n

(k)
R (t)u(k)(t)

u̇(k)(t) = δkv
(k)(t)− η

∑
k

Nk
N
n

(k)
R (t)v(k)(t)

(D.8)

The total Rydberg excitation value is obtained by summing the Rydberg population
times the atom number for all the classes

∑
k

Nkn
(k)
R (t).

Figure D.3: Time evolution with the Mean-Field model including the Doppler effect for
a temperature of 100µK (solid line). Dashed line is the result of calculations without
Doppler effect of the figD.1. Thin solid lines are the results including the Doppler effect
for a temperature of 10µK (yellow) and 1µK (green). Calculations with Doppler effect
are made in the three cases with 25 velocity classes.

On the fig D.3, we plot the result obtained, without laser linewidth for three different
temperature (100, 10 and 1 µK). It is interesting to notice that, even without decoherence
processes, the sole Doppler effect hides the coherent oscillations for a temperature of
100µK. On the other hand, for a temperature of 1µK we see that the Doppler effect has
almost no effect on the first oscillations. This seems to indicate that, due to the Doppler
effect, the range of temperature of a MOT is quite critical for the observation of coherent
oscillation and can even prevent it. This problem is avoided with colder atomic samples.

D.5 Effect of Gaussian density

The atomic cloud (as well as the laser intensity) was up to now considered to be uniform
over the whole volume. However, in number of experiment, the density of the cloud
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is non uniform. Because the excitation dynamics in the regime of blockade is strongly
density dependent this should have an influence on the system. In this section we present
calculations assuming a Gaussian atomic density.
We used the Mean-Field equation without laser linewidth neither Doppler effect and
solve it for different densities. We then sum the results together with a relative weight
corresponding to a Gaussian density.

Figure D.4: Time evolution with the Mean-Field model assuming a Gaussian density of
the cloud (solid line), dashed line is the result of calculations with a uniform density.
For the Gaussian case, we used 99 different densities for the calculations.

As expected, we see in the fig D.4 that the main effect of a non uniform density
is to damp the oscillations, the different classes of density having different oscillation
frequencies.

D.6 Scan of the Rydberg line

In this section, we present the results of the Mean-Field model for the scan of the Ryd-
berg line. We made calculation varying the detuning for different pulse duration, calcu-
lations include the laser linewidth ∆ω = 2π× 300 kHz.

We clearly see in the fig D.5 that the Rydberg line predicted by the Mean-Field
model is shifted from resonance and asymmetric. As it was already depicted in reference
[Schempp et al., 2010] that it is in contradiction with experimental results which show
that in the regime of blockade, the line is symmetric and not shifted [Singer et al., 2004;
Pritchard et al., 2010; Viteau et al., 2012]. This contradiction will be even clearer in the
following section.
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Figure D.5: Scan of the Rydberg line with the Mean-Field model

D.7 Effect of the Zeeman degeneracy

As mentioned in the section 2.5, in the case of Rydberg states with l 6= 0, the Zeeman
degeneracy leads to different Rydberg-Rydberg interaction curves.
In this section, we study in the frame of the Mean-Field model the effect of this de-
generacy. Since the treatment of Rydberg-Rydberg interaction is made using two-atoms
basis and that the Mean-Field model, in essence, deals with one atom basis, a rigorous
treatment is almost impossible. Also the interest of this is more qualitative and we will
use several approximations.
The computation of the Rydberg-Rydberg interaction is done in the molecular refer-
ential witch is different from the excitation referential. We then decide to neglect all
angular dependences to avoid consequent complications.
Keeping the case of 71d 5

2
there is 6 different Rydberg states |ri〉 corresponding to mag-

netic sub-levels. There is then 21 interaction potentials {V ij(R)}j≥i where V ij(R) is
the interaction energy between an atom in state |ri〉 and an atom in state |rj〉 separated
by a distance R. Although eigenvectors associated to the different interaction potential
curves do not correspond to states of the form |ri, rj〉, we assign to each V ij(R) one
of the calculated potentials. Doing this, we use the real values of the Rydberg-Rydberg
interaction.
We finally consider that all the states have the same Rabi frequency Ωi = Ω√

6
.

We have developed the Mean-Field equations with the density matrix formalism using
Lindblad operator [Lindblad, 1976] in order to include effect of the laser linewidth .

The effect of the Zeeman degeneracy appears very clearly on the fig D.6 as a wing
on the red size of the line. The result obtained here is quite interesting. Indeed, the
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Figure D.6: Scan of the Rydberg line including Zeeman degeneracy (solid line). The
dashed line correspond to the case of the section D.6. For both curves, the laser pulse
duration is 2µs

Mean-Field model predicts a shift of the Rydberg line proportional to the Rydberg-
Rydberg interactions strength. For this particular case of a d5/2 state, due to the strong
Zeeman degeneracy, such a shift leads to the shape of the solid line of the fig D.6, highly
asymmetric. So, the symmetry of the Rydberg line in the case of l =d states that we have
observed in our experiments clearly infirms Mean-Field and similar models predicting
this shift.

D.8 Role of atomic correlations

This section aims to discuss with a very simple example the role of atomic correlations
in the blockaded Rydberg ensembles. For that, we compare Mean-Field calculations
and exact calculations in the case of two interacting atoms. Exact calculation consist in
the resolution of the equation of evolution of the density matrix with the Hamiltonian
of the equation D.1 for two atoms. For the Mean-Field model, the parameter η becomes
simply the interaction energy between the two atoms in the Rydberg state.
In both case, we obtain a time evolution which exhibit Rabi oscillation. We look only
at the maximum value of the Rydberg excitation, in the fig D.7, we plot it in function of
the interatomic distance.

For large interatomic distance, the Rydberg-Rydberg interaction is negligible and
the two atoms can be excited in the same time in the Rydberg state, this leads to an
excitation value of 2 as it appears in the both approaches. However, at small distance,
we see a big difference between the two models. Whereas exact calculations predict that
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Figure D.7: Two atoms calculations. For those calculations, the C6 coefficent is 25
GHz.µm6

always one Rydberg excitation can be find in the system, the Mean-Field model gives a
very small probability to find an excitation. The Mean-Field model underestimates the
number of Rydberg excitation. This can be explained as following.
As atomic correlations are neglected in the Mean Field model, the two atoms state is
necessarily separable and can be only in the form (αg |g, g〉+ αr |r, r〉). At small inter-
atomic distances, the excitation value stays at a very low level because |r, r〉 is strongly
shifted and its excitation is very unlikely.
In the exact treatment, the system can be in the state 1√

2
(|g, r〉+ |r, g〉). This state

being not shifted it will be efficiently populated and the excitation value is at least one
for all interatomic distances.
The state 1√

2
(|g, r〉+ |r, g〉) is the fully symmetrical Dicke states with one excitation

within 2 atoms.
We understand with this simple example why we have to use collective states to describe
the strongly interacting Rydberg gases.
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