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Ṗ"fÓqtftg : 4301                     ANNÉE 2010 

THÈSE / UNIVERSITÉ DE RENNES 1 
uqwu"ng"uegcw"fg"nÓWpkxgtukvfi"Gwtqrfigppg"fg"Dtgvcipg 

pour le grade de 

FQEVGWT"FG"NÓWPKXGTUKV¡"FG"TGPPGU"3 
Mention : TRAITEMENT DU SIGNAL et TELECOMMUNICATIONS 

Ecole doctorale MATISSE 

Présentée par 

Abdelkhalek BOUCHIKHI 
Prérctfig"§"nÓIRENav, EA 3634, Ecole Navale 

 (SPM) 
             

 

Analyse des Signaux 
AM-FM par 
Transformation de 
Huang-Teager :
Application à 
nÓacoustique sous-
marine 

Vjflug"uqwvgpwg"§"nÓGeqng"Pcxcng 
le 7 décembre 2010 

devant le jury composé de : 

Nadine MARTIN  
DR CNRS,  Univ. Grenoble / Rapporteur 
 

Messaoud BENIDIR 
Professeur, Paris-Sud / Rapporteur 
 

Jean Marc BOUCHER 
Professeur, Télécom Bretagne / Examinateur  
 

Xavier NEYT 
Professor, Ecole Royale Militaire / Examinateur  
 

Ali KHENCHAF 
Professeur, ENSIETA / Directeur de thèse 

 
Abdel-Ouahab BOUDRAA 
MCF, HdR,  Ecole Navale  / Encadrant 
 

Jean Christophe CEXUS 
Enseignant-Chercheur, ENSIETA / Invité 



Remerciements

Je tiens à remercier en premier lieu Abdel-Ouahab Boudraa, mon encadrant de thèse.

Sans son enthousiasme et son amical soutien, je ne sais si cette thèse sur la théma-

tique de l’analyse des signaux AM-FM par l’EMD aurait été menée à son terme,

"Rabi yarham waldik, abdel-ouahab". Je remercie aussi mon directeur de thèse Ali

Khenchaf, Professeur des Universités à ENSTA Bretagne, pour sa disponibilité mal-

gré son emploi de temps assez chargé. Ses conseils m’étaient toujours indispensables.

Je remercie également ici avec la plus grande sincérité les personnes qui ont participé

de près ou de loin à ce travail de thèse.

Je tiens tout d’abord à remercier les membres du jury qui m’ont fait l’honneur

d’évaluer ce travail. Je remercie Jean-Marc Boucher, Professeur à Télécom Bretagne,

d’avoir apporté son regard personnel et de m’avoir fait le plaisir de présider le jury. Je

remercie Madame Nadine Martin, Directrice de Recherche au CNRS (GIBSA-lab),

et Messaoud Benidir, Professeur des Universités à Paris 11, d’avoir pris le temps de

soigneusement étudier ce manuscrit et de le rapporter en me faisant part de leurs

nombreuses questions et recommandations. Je remercie également Xavier Neyt,

Professeur à l’Ecole Royale Militaire (Bruxelles), d’avoir apporter un regard critique

sur le contenu scientifique de cette thèse. Je remercie beaucoup Jean Christophe

Cexus, Enseignant-Chercheur à ENSTA Bretagne, d’avoir accepté de participer à

ce jury et surtout d’avoir apporté son soutien à mes travaux de recherche, ça m’a

fait beaucoup de plaisir de travailler avec toi " J. Christophe Sénior ! ". Je remercie

également Laurent Guillon, Maître de Conférences à l’Ecole Navale, Docteur El-

hadji Diop, Gérard Maze, Professeur des Universités à l’Université du Havre, et le

Docteur John Fawcett, Chercheur au DRDC Atlantic (Canada), pour les discussions

enrichissantes et les nombreuses remarques qui ont participé à l’avancement de ce

travail de recherche. Mes remerciements vont aussi au personnel de l’Institut de

Recherche de l’Ecole Navale (IRENav) en particulier, Jacques André Astolfi, Maître

de Conférences à l’Ecole Navale, Christophe Claramunt, directeur de l’IRENav, ainsi

que Radjesvarane Alexandre, Professeur des Universités à l’Ecole Navale, pour leurs

soutiens. Je remercie également l’équipe du laboratoire d’Extraction et Exploitation

de l’Information en Environnements Incertains (E3I2) de l’ENSIETA et en partic-

ulier Mme Annick Billon-Coat pour son aide.

Je tiens à remercier ici mes collèges à l’équipe RESO de l’ENIB, en particulier

Maîtres de Conférences Abdesslam Benzinou, Yan Boucher et Docteur Kamal



Nasseredine pour leurs soutiens.

Mon amitié et mes remerciements à mes voisins de bureau : Patrice, Jean-luc, Jean-

Michel et Pierre-Loic pour leur encouragement et à l’équipe ASM, Valérie, Delphine,

Rozenn, Kais, Samuel et Louay. Je tiens également à remercier ici mon ami Sobhi,

"Rabi ybarek Fik" et tout les Doctorants et Docteurs de l’IRENav sans que j’oublie

personne, pour les inoubliables repas des doctorants et les sorties de cohésions,

c’étaient des moments vraiment agréables. Je tiens aussi à remercier mes collègues

de travail de l’Ecole Navale: département des langues, formation militaire, et en

particulier tout le personnel du département des CENOE.

Finalement, il me reste à remercier mes parents, ma femme, Assia, mes trois soeurs,

mes frères et mes amis en Algérie, ici en France et partout dans le monde à qui je

dois la curiosité qui m’a amené jusqu’ici, et dont le soutien m’a été toujours précieux,

"Rabi yhfadkom".



Contents

Contents 1

List of Figures 5

List of Tables 10

Abbreviations 12

List of publications 13

Résumé étendu 16

Introduction 22

I Time-frequency representations 28

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I.3 Short-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 30

I.4 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I.5 Wigner-Ville Distribution . . . . . . . . . . . . . . . . . . . . . . . . 32

I.5.1 The cross-term issue . . . . . . . . . . . . . . . . . . . . . . . 32

I.6 Reassigned TF Distributions . . . . . . . . . . . . . . . . . . . . . . . 32

I.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II Empirical Mode Decomposition 36

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II.1.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . 39



CONTENTS 2

II.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . 39

II.2.1 Sifting process . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II.2.2 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 41

II.3 Some aspects of the EMD . . . . . . . . . . . . . . . . . . . . . . . . 45

II.3.1 IMF criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II.3.2 Number of sifts . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II.3.3 Number of IMFs . . . . . . . . . . . . . . . . . . . . . . . . . 46

II.3.4 Sampling and mode mixing issues . . . . . . . . . . . . . . . . 46

II.3.5 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II.3.6 Bivariate EMD . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II.3.7 Ensemble EMD . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II.3.8 A PDE for sifting process . . . . . . . . . . . . . . . . . . . . 48

II.4 Smooth B-spline interpolation of IMF . . . . . . . . . . . . . . . . . . 48

II.4.1 Polynomial spline signal . . . . . . . . . . . . . . . . . . . . . 49

II.4.2 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II.4.3 Forced oscillatory motion . . . . . . . . . . . . . . . . . . . . . 56

II.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III Instantaneous frequencies and amplitudes tracking 62

III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III.2 Multicomponent AM-FM Signal Model . . . . . . . . . . . . . . . . . 63

III.3 ESA or HT ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

III.4 HT demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III.5 TKEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

III.5.1 Discrete energy demodulation . . . . . . . . . . . . . . . . . . 68

III.5.1.1 DESA-1a . . . . . . . . . . . . . . . . . . . . . . . . 69

III.5.1.2 DESA-1 . . . . . . . . . . . . . . . . . . . . . . . . . 69

III.5.1.3 DESA-2 . . . . . . . . . . . . . . . . . . . . . . . . . 70

III.5.2 Continue energy demodulation . . . . . . . . . . . . . . . . . . 70

III.5.2.1 Demodulation by exact splines . . . . . . . . . . . . 71

III.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS 3

III.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

IV Teager Huang Transform 86

IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

IV.2 Teager-Huang Transform . . . . . . . . . . . . . . . . . . . . . . . . . 87

IV.3 Teager-Kaiser spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 88

IV.3.1 TKS generation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

IV.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV.4.1 Example 1: Hyperbolic frequencies law . . . . . . . . . . . . . 92

IV.4.2 Example 2: Monocomponent FM signal . . . . . . . . . . . . . 96

IV.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

V Teager Huang Hough Transform 102

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

V.2 Hough-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

V.3 THT and Hough-Transform: THHT . . . . . . . . . . . . . . . . . . . 104

V.4 Detection in noise free environment . . . . . . . . . . . . . . . . . . . 106

V.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

V.5 Detection in noisy environment . . . . . . . . . . . . . . . . . . . . . 109

V.5.1 EMD denoising . . . . . . . . . . . . . . . . . . . . . . . . . . 109

V.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

V.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

VI Application to underwater acoustics 124

VI.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VI.2 IMFs versus physical modes . . . . . . . . . . . . . . . . . . . . . . . 125

VI.2.1 Physical Modes for a spherical shell . . . . . . . . . . . . . . . 126

VI.2.2 IMFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

VI.3 Comparison and discussion . . . . . . . . . . . . . . . . . . . . . . . . 131

VI.4 Backscattering signal analysis . . . . . . . . . . . . . . . . . . . . . . 133

Conclusion and perspectives 144



CONTENTS 4

A Analysis of white gaussian Noise by EMD 148

B The first derivatives of IMF in B-Spline space 154

C Determinant for an empty shell 158

Bibliography 160



List of Figures

I.1 Jean Baptiste Joseph Fourier. 21 March 1768 Auxerre, Yonne, France

[36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II.1 Initialization of the sifting process for s(t), envelope mean detection

(red line) and the first sift of IMF1. Over- and undershoots are indi-

cated by arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

II.2 Extraction of the 5 Hz component from s(t) at first iteration. The

local mean envelope is null (red line) and the component contain an

acceptable number of extremas. . . . . . . . . . . . . . . . . . . . . . 43

II.3 Extraction of the second candidate IMF from s(t). Envelope mean

detection (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II.4 Extraction of the third candidate IMF from s(t). Envelope mean

detection (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II.5 Extraction of the third candidate IMF from s(t). Envelope mean

detection (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II.6 IMFs extracted from signal given in (cf, Eq. II.2.2). The two com-

ponents of frequencies 5 Hz and 1 Hz correspond to IMF1 et IMF2,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II.7 EMD-RBS diagram. The modified EMD is distinguished from the

coventional EMD on integrating the smooth B-splines, or Regularized

B-splines (RBS) interpolation instead of the cubic splines interpola-

tion. Also as in [15] we use the acronym EMD-RBS to refer to the

modified EMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II.8 Cubic B-splines functions in the segment [tk, tk+1]. . . . . . . . . . . 51



LIST OF FIGURES 6

II.9 Extracted IMFs by EMD from noisy signal s(t) (SNR=0dB). The

conventional EMD failed to extract directly the 5Hz sinusoid. For

getting a smooth version of the sinusoidal signal one must add the

IMF 5, the IMF 6 and part of the IMFs 4 and 7. . . . . . . . . . . . . 53

II.10 Extracted IMFs by EEMD from noisy signal s(t) (SNR=0dB). The

sum of IMF 4, 5 and 6 give a noisy version of the sinusoidal signal

but not the original one. . . . . . . . . . . . . . . . . . . . . . . . . . 54

II.11 Extracted IMFs by EMD-RBS of the noisy signal s(t) (SNR=0 dB).

The 5Hz tone is extracted successfully, it corresponds to IMF number

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II.12 variation of the parameter λ . . . . . . . . . . . . . . . . . . . . . . . 56

II.13 Signal generated by an hydrodynamical system. . . . . . . . . . . . . 57

II.14 Extracted IMFs by conventional EMD from hydrodynamical mea-

sured signal. In top square IMF1 to IMF5. The square of middle,

IMF6 to IMF10 and last one contain remainder IMFs and the residue. 58

II.15 Extracted IMFs by EMD-RBS from hydrodynamical measured signal.

In top square, IMF1 to IMF4. The square of middle, IMF5 to IMF8

and last one contain remainder IMFs and the residue. The number of

IMFs in the present figure is less than the previous figure. . . . . . . . 59

III.1 Two AM-FM components (M = 2) . . . . . . . . . . . . . . . . . . . 64

III.2 AS of the two AM-FM components, this representation shows in 3D

the complex form of the signal, with their imaginary part and real

part. The horizontal axis contain the samples points position. We

note that a projection of this signal in the plane (Real part-sample)

give the real signal, figure (III.1) . . . . . . . . . . . . . . . . . . . . . 67

III.3 Decomposition of the noisy AM-FM signal, s(t), (SNR=20 dB) with

EMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III.4 Decomposition of the noisy AM-FM signal, s(t), (SNR=20 dB) with

modified EMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III.5 IAs estimation of noise free signal, s(t), by EMD-ESA-BS . . . . . . . 75

III.6 IFs estimation of noise free signal, s(t), by EMD-ESA-BS . . . . . . . 76

III.7 IA estimation of signal s(t) (SNR= 20dB) by EMD-ESA-BS . . . . . 77

III.8 IA estimation of signal s(t) (SNR= 20dB) by EMD-ESA-RBS . . . . 77

III.9 IF estimation of signal s(t) (SNR= 20dB) by EMD-ESA-BS . . . . . 78



LIST OF FIGURES 7

III.10IF estimation of signal s(t) (SNR= 20dB) by EMD-ESA-RBS . . . . 78

III.11IA estimation of signal s(t) (SNR= 20dB) by EMD-HT . . . . . . . . 78

III.12IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA1 . . . . . . 79

III.13IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA1a . . . . . 79

III.14IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA2 . . . . . . 80

III.15IF estimation of signal s(t) (SNR= 20dB) by EMD-HT . . . . . . . . 80

III.16IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA1 . . . . . 80

III.17IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA1a . . . . . 81

III.18IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA2 . . . . . . 81

III.19MSE as function of input SNR for different IF estimations of signal

s2(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

III.20MSE as function of input SNR for different IA estimations of signal

s2(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

IV.1 IFs and IAs estimating by EMD-ESA . . . . . . . . . . . . . . . . . . 88

IV.2 (a) On top a sinusoidal signal, on bottom the corresponding Fourier spec-

trum and mean marginal TKS in black and red colors, respectively. (b)

THT (EMD-ESA) of the signal . . . . . . . . . . . . . . . . . . . . . . . 90

IV.3 TFRs of the signal s1(t). (a) Spectrogram with Length of window (Lw =

64), number of overlaps samples in each segment of signal (Nov = 32) and

number of frequency points (Nfft = 1024) (c) Spectrogram (Lw = 256,

Nov = 64, Nfft = 1024) (d) Scalogram performed by Daubechies wavelet

(db2) and in scales S = [1 : 64] (d) Scalogram (Morlet, S = [1 : 64]). The

red dashed line corresponds to the real frequency law. . . . . . . . . . . . 93

IV.4 TFRs of the signal s1(t). (a) WVD. (b) SPWVD. (c) RSPWVD. The red

dashed line corresponds to the real frequency law . . . . . . . . . . . . . 94

IV.5 Decomposition of the signal s1(t) by EMD, the signal is plotted in

the first row, the IMF1 to IMF8 correspond to the rows 1 to 8, re-

spectively. The last one is the residue. . . . . . . . . . . . . . . . . . 95

IV.6 TFRs of the signal s1(t)., (a) EMD-HT. (b) EMD-ESA. The red

dashed line correspond to the real frequency law . . . . . . . . . . . . 96

IV.7 Spectrum analysis of s2(t), (a) Spectrogram. (c) Scalogram. (d)

SPWVD (e). RSPWVD (a) EMD-HT. (c) EMD-ESA. The red dashed

line corresponds to the real frequency law . . . . . . . . . . . . . . . . 97



LIST OF FIGURES 8

V.1 Illustration of Hough transform . . . . . . . . . . . . . . . . . . . . . 104

V.2 Block diagram of the THHT. . . . . . . . . . . . . . . . . . . . . . . 106

V.3 Ideal TFR of the free noise signal x1(t). . . . . . . . . . . . . . . . . . 107

V.4 Components tracking in THT plane of x1(t) . . . . . . . . . . . . . . 108

V.5 THHT applied to x1(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 109

V.6 Components tracking in WVD plane of x1(t) . . . . . . . . . . . . . . 110

V.7 WVD-HgT applied to x1(t). . . . . . . . . . . . . . . . . . . . . . . . 111

V.8 Components tracking in SPWVD plane of x1(t) . . . . . . . . . . . . 112

V.9 Ideal TFR of the free noise signal x2(t). . . . . . . . . . . . . . . . . . 113

V.10 Components tracking in THT plane of x2(t) . . . . . . . . . . . . . . 114

V.11 Components tracking in SPWVD plane of x2(t) . . . . . . . . . . . . 115

V.12 Block diagram of the EMDSG . . . . . . . . . . . . . . . . . . . . . . 116

V.13 Ideal TFR of noisy signal x2(t) (30dB). . . . . . . . . . . . . . . . . . 116

V.14 WVD and THT of x2(t). . . . . . . . . . . . . . . . . . . . . . . . . . 117

V.15 WVD-HgT applied to x2(t). . . . . . . . . . . . . . . . . . . . . . . . 117

V.16 WVD-HgT applied to x2(t). . . . . . . . . . . . . . . . . . . . . . . . 118

V.17 IF estimation (red) with WVD-HgT (on the left) and THHT (on the

right) of x2(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

V.18 Estimation of β0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

V.19 Estimation of ν0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

V.20 Components tracking in THT plane of x3(t) (SNR=7dB) . . . . . . . 120

V.21 Components tracking in SPWVD plane of x3(t) (SNR=7dB) . . . . . 121

VI.1 Scattering geometry. This cartoon depicts a plane wave, traveling

in the z direction, incident upon a fluid sphere (radius a, density

ρ1 and sound velocities cl ct), entrained in a second fluid (density

ρ, sound speed c). For simplicity, the scattered waves are shown as

spherical, which they are in time, although not generally in phase and

amplitude. In the forward region, the scattered field and incident field

interfere, and may produce a shadow [47]. . . . . . . . . . . . . . . . 125

VI.2 225 kHz echo signal from a spherical shell of radii ratio equal to 0.96. 126

VI.3 Geometry of the scattering calculation. The sphere is centered on the

z axis of the plan wave. . . . . . . . . . . . . . . . . . . . . . . . . . . 127



LIST OF FIGURES 9

VI.4 On top, filtered time signal (the specular echo is replaced by zeros).

The signal is reconstructed from the associated time series of the IMRs

of the spherical shell(b/a = 0.94). On bottom, resonance spectrum . . 128

VI.5 Associated time series of the IMRs of a spherical shell, modes 1-10 . . 129

VI.6 IMFs 1-10 extracted from the backscattering signal from a spherical

shell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

VI.7 PSDs of IMRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VI.8 PSDs of the IMFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VI.9 superposition of PSDs of the IMRs, IMF1 and IMF2 dark and green

dashed lines respectively . . . . . . . . . . . . . . . . . . . . . . . . . 132

VI.10(a) Signal and FFT of signal 1. (b) Spectrogram. (c) Scalogram. (d)

SPWVD. (e) HHT. (f) THT. . . . . . . . . . . . . . . . . . . . . . . . 135

VI.11(a) Signal and FFT of signal 2. (b) Spectrogram. (c) Scalogram. (d)

SPWVD. (e) HHT. (d) THT. . . . . . . . . . . . . . . . . . . . . . . 136

VI.12(a) Signal and FFT of signal 3. (b) Spectrogram. (c) Scalogram. (d)

SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on

THT ([1.5, 1.55] ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

VI.13(a) Signal and FFT of signal 4. (b) Spectrogram. (c) Scalogram. (d)

SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on

THT ([1.5, 1.55] ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

VI.14(a) Signal and FFT of signal 5. (b) Spectrogram. (c) Scalogram. (d)

SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on

THT ([1.5, 1.55] ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1 IMF power spectra in the case of White Gaussian Noise. The spec-

trum densities (PSD) is plotted as a function of the logarithm of the

period for IMFs 1 to 7. The spectral estimates have been computed

on the basis of 5000 independent sample paths of 4096 data points . . 149

A.2 IMF power spectra in the case of White Gaussian Noise. The spec-

trum densities (PSD) is plotted as a function of the logarithm of the

periode for IMFs 1 to 7. The spectral estimtes have been computed

on the basis of 5000 independent sample paths of 4096 data points . . 152

A.3 Histograms of IMFs from 2 to 7 for a WGN sample with 4096 data

points.The superimposed black lines are the Gaussian fits for each

IMF, except IMF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Tables

II.1 Sifting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III.1 Mean Square Error between estimated IFs and real ones for the noise

free signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

IV.1 Proprieties comparison of Fourier analysis, TFRs of Cohen class and

THT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VI.1 Statistical parameters of the IMRs. . . . . . . . . . . . . . . . . . . . 131

VI.2 Statistical parameters of the IMFs. Because the amplitudes of IMF8-

10 are very small the values of the statistical parameters are consid-

ered null with the fixed precision . . . . . . . . . . . . . . . . . . . . 132





Abbreviations

AF Ambiguity Function
AM Amplitude Modulation
AS Analytical Signal
DESA Discrete Energy Separation Algorithm
EEMD Ensemble Empirical Mode Decomposition
EMD Empirical Mode Decomposition
ESA Energy Separation Algorithm
FM Frequency Modulation
FT Fourier Transform
FFT Fast Fourier Transform
HHT Hilbert Huang Transform
HT Hilbert Transform
IMF Intrinsic Mode Function
IMR Isolated Modal Resonance
IA Instantaneous Amplitude
IF Instantaneous Frequency
LFM Linear Frequency Modulated
LS Least Squares
ML Maximum Likelihood
MSE Mean Square Error
PDE Partial Differential Equation
PSD Power Spectral Densities
QTFR Quadratic Time Frequency Representation
RADAR RAdio Detection And Ranging
RBS Regularized B-Spline
RSPWVD Reassigned Smooth Pseudo Wigner-Ville Distribution
SD Standard Deviation
SNR Signal to Noise Ratio
SONAR SOund Navigation And Ranging
SPWVD Smooth Pseudo Wigner-Ville Distribution
STFT Short Time Fourier Transform
SG Savitzky-Golay
TF Time Frequency
TFR Time Frequency Representation
THT Teager-Huang Transform
THHT Teager-Huang-Hough Transform
TKEO Teager-Kaiser Energy Operator
TKS Teager-Kaiser Spectrum
WT Wavelet Transform
WVD Wigner-Ville Distribution



List of publications

International Journal Papers :

[1] A. Bouchikhi and A.O. Boudraa, "Multicomponent AM-FM signals analysis

based on EMD-B-Splines ESA", Signal Processing (submitted).

[2] A. Bouchikhi, J.C. Cexus and A.O. Boudraa, "A combined Teager-Huang and

Hough transforms for LFM signals detection", Signal Processing. (submitted).

[3] A.O. Boudraa. J.C. Cexus and A. Bouchikhi, "Time-frequency representation

of multicomponent AM-FM signals by Teager-Huang transform", IEEE Trans.

Instrum. Meas. (submitted).

[4] J.C. Cexus, A.O. Boudraa , A. Bouchikhi, et A. Khenchaf, "Analyse des échos

de cibles Sonar par transformation de Huang-Teager (THT)", Traitement du Signal,

vol. 24, no. 1-2, pp. 119-129, 2008.

[5] K. Khaldi, A.O. Boudraa, A. Bouchikhi and M. Turki-Hadj Alouane, "Speech

enhancement via EMD", EURASIP Journal on Advances in Signal Processing, vol.

2008, Article ID 873204, 8 pages, 2008.

International Conference Papers :

[1] A. Bouchikhi, A.O. Boudraa, G.Maze, "Analysis of acoustics signals echos from

cylindrical elastic shells by HHT and THT", Proc. International Conference in Un-

derwater Measurements, pp 1455-1460, Nafplion, Greece, 2009.

[2] A. Bouchikhi, A.O. Boudraa, S. Benramdane and E.H.S. Diop, "Empirical

mode decomposition and some operators to estimate instantaneous frequency: A

comparative study", Proc. IEEE ISCCSP, pp. 608-613, Malta,2008.

[3] K. Khaldi, A.O. Boudraa, A. Bouchkhi, M. Turki-Hadj Alouane and E.H.S.

Diop, "Speech signal noise reduction by EMD", Proc. IEEE ISCCSP, pp. 1155-

1158, Malta, 2008.

[4] A.O. Boudraa, E.H.S. Diop and A. Bouchikhi, "Teager-Kaiser energy bilevel



LIST OF PUBLICATIONS 14

thresholding", Proc. IEEE ISC-CSP, pp. 1086-1090, Malta, 2008.

[5] A.O. Boudraa, T. Chonavel, J.C. Cexus, S. Benramdane and A. Bouchikhi, "On

the detection of transient signals using cross-Psi-B-energy operator", Proc. IEEE IS-

CCSP, pp. 1445-1449, Malta, 2008.

[6] E.H.S. Diop, A.O. Boudraa and A. Bouchikhi, "An improved image demodula-

tion algorithm based on Teager-Kaiser operator", Proc. IEEE ISCCSP, pp. 876-881,

Malta, 2008.

[7] J.C. Cexus, A.O. Boudraa and A. Bouchikhi, "A combined Teager-Kaiser and

Hough transforms for LFM signals detection", Proc. IEEE ISCCSP, 5 pages, Li-

massol, Cyprus, 2010.

[8] J.C. Cexus, A.O. Boudraa et A. Bouchikhi, "THT et transformation de Hough

pour la détection de modulations linéaires de fréquence", GRETSI, 4 pages, 2009,

Dĳon, France.

[9] A. Bouchikhi et A.O. Boudraa, "Estimation des FIs d’un signal multi-

composantes par décomposition modale empirique et une version B-splines de

l’opérateur d’énergie de Teager-Kaiser", GRETSI, pp. 817-820, Troyes, France, 2007.

[10] A.O. Boudraa, E.H.S. Diop, F. Salzenstein, A. Bouchikhi, "Seuillage d’images

basé sur l’opérateur de Teager-Kaiser", GRETSI, pp. 885-888, Troyes, France, 2007.



Résumé étendu

Les signaux issus des phénomènes physiques sont en général de nature non-

stationnaire et dans certains cas ils sont également formés de plusieurs composants

fréquentielles (multi-composante). On peut citer comme exemples de signaux non-

stationnaires, les signaux, Radar, Sonar, de Parole, sismique ou biomédicaux [12].

Les Représentations Temps-Fréquence (RTF) sont des transformations conjointes

forment le cadre idéal pour l’analyse et le traitement de tels signaux. Les RTF de

la classe de Cohen constituent un outil puissant pour l’analyse des signaux non-

stationnaires. La nature bilinéaire des RTF introduit des interférences (termes

croisés) qui nuit à la lisibilité de ces dernières. Le lissage temps-fréquence per-

met de réduire ces interférences des RTF, mais certaines de leurs propriétés telles

que les marginales ne seront plus vérifiées. Par ailleurs la plupart des RTF sont

liées au noyau de Fourier et par conséquent auront intrinsèquement plus ou moins

les mêmes limites que la transformée de Fourier. De plus aussi bien les RTF de

la classe de Cohen que la transformée en ondelettes nécessitent la connaissance

d’un noyau ou d’une fonction de base. Or, il n’existe pas de noyau universel pour

représenter tous les signaux. L’idéal est de trouver une décomposition qui s’adapte

à chaque signal, sans informations a priori et qui permette une description temps-

fréquence. Une solution à ce problème a été proposée par Huang et al. [64] en

introduisant la décomposition modale empirique (EMD pour Empirical Mode De-

composition). Cette décomposition est entièrement pilotée par les données et la

RTF associée obtenue par Transformation d’Hilbert (TH) [12] ou l’algorithme de

séparation d’énergie (ESA pour Energy Separation Algorithm) [83] ne présente pas

d’interférences. L’EMD est dédiée à l’analyse de signaux non-stationnaires issus ou

non de systèmes linéaires. La décomposition d’un signal par EMD produit des com-

posantes qui sont des formes d’ondes oscillantes potentiellement non harmoniques

dont les caractéristiques (fréquence, amplitude) varient au cours du temps. Ces

composantes oscillantes modulées en amplitude (AM) et en fréquence (FM) sont
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appelées modes empiriques ou IMFs (pour Intrinsic Mode Functions) :

s(t) =
N∑

j=1

IMFj(t) + rN(t), (1)

où N est le nombre d’IMFs et rN(t) est le résidu de la décomposition.

L’EMD est définie par la sortie d’un algorithme appelé processus de tamisage.

Dans cette thèse on explore les potentialités de cette méthode en analyse temps-

fréquence pour l’estimation d’attributs important tels que l’Amplitude Instantanée

(AI) et la Fréquence Instantanée (FI) ou la détection de Modulations Linéaires de

Fréquence (MLF) dans le plan temps-fréquence. L’apport de l’EMD est illustré par

une application à l’Acoustique Sous-Marine (ASM) ou les signaux sont de nature

non-stationnaire.

Nous rappelons dans un premier temps l’intérêt de la représentation fréquen-

tielle d’un signal et de la nécessité de l’analyse temps-fréquence dans le cas non-

stationnaire. Nous mettons l’accent sur les limites des Représentations Temps-

Fréquence (RTF) et le besoin d’un nouveau cadre de description des signaux

s’affranchissant de la contrainte du noyau de décomposition et supprimant les termes

d’interférences.

Dans un deuxième temps, nous nous penchons sur l’outil EMD et ses variantes.

Nous mettons en avant les problématiques inhérentes au tamisage telles que les

conditions d’une IMF, l’échantillonnage, l’interpolation des enveloppes du signal à

décomposer, la condition d’orthogonalité des modes ou le critère d’arrêt. La version

conventionnelle de l’EMD utilise la famille des B-splines [109] pour l’interpolation

des enveloppes de maxima et de minima du signal [64]. Les modes ainsi extraits

sont des sommes d’interpolations [14],[109]:

IMFnj (t) =
∑

l∈Z

cj [l] βnj (t− l) (2)

où βnk (t) est la B-spline centrale de degré n [99] et cj [k] les coefficients du modèle.

Une propriété intéressante des fonctions B-splines est liée à leur support compact,

ce qui limite la propagation des erreurs d’approximation d’un intervalle ("box") à

l’autre. Cela étant, les enveloppes basées sur les fonctions B-splines ne sont pas assez

robustes en présence de bruit car la contrainte d’interpolation est trop forte [15]. Une

des conséquence de l’interpolation rigide est la génération d’IMFs artificielles. Dans

ce cas, la solution est donc de s’orienter vers une courbe d’approximation des données



RÉSUMÉ ÉTENDU 17

et non plus d’interpolation:

E =
∞∑

l=−∞

(IMFnj (l)− hnj (l))2 + λ
∫
(

∂rhnj (t)
∂tr

)2

dt (3)

où λ est une constante de régularisation, hnj (l) est le modèle et IMFnj (l) sont les

données mesurées. La valeur de λ est ajustée de manière heuristique ou sur la base

de simulations intensives. Sur la base de cette interpolation régularisée un nouveau

processus de tamisage est développé. Les résultats obtenus sur des signaux bruités

en terme de décomposition et de nombre de modes extraits montrent l’intérêt de la

régularisation des enveloppes du signal.

Nous nous sommes ensuite intéressés à l’apport du nouveau tamisage pour

l’analyse temps-fréquence des signaux multi-composante associé à l’ESA. Le signal

multi-composant analysé est de la forme suivante:

s(t) ,

N∑

j=1

aj(t) cos(
∫ τ

0
2πfj(t)dt)

︸ ︷︷ ︸

sj(t)

(4)

où aj(t) et fj(t) sont la FI et la AI de la ieme IMF sj(t) respectivement, et N est le

nombre de composante ou IMF. La démodulation ESA est définie par les relations

suivantes:

fj(t) ≈
1

2π

√
√
√
√

Ψ[ṡj(t)]
Ψ[sj(t)]

, | aj(t) |≈
Ψ[sj(t)]
√

Ψ[ṡj(t)]
, (5)

où Ψ est l’opérateur de Teager-kaiser définit par,

Ψ[sj(t)]
∆= (ṡ(t))2 − s(t)s̈(t) (6)

Ψ[sj(t)] ≃ 4π2a2
j(t)f

2
j (t) (7)

En approximant une IMF par un modèle B-spline d’ordre trois

g3
j (t) = cj[1]t3 + cj [2]t2 + cj [3]t+ cj[4]

nous montrons que l’ESA peut s’écrire

aj(t) =
A(t) +B(t)
√

C(t)
(8)

fj(t) =
1

2π

√
√
√
√

C(t)
A(t) +B(t)

(9)
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A(t) = 3c2
j [1]t4 + 4cj[1]cj[2]t3 + 2c2

j [2]t2,

B(t) = (2cj [2]cj[3]− 6cj[1]cj[4])t+ c2
j [3]− 2cj[2]cj[4],

C(t) = 18c2
j [1]t2 + 12cj[1]cj[2]t+ 4c2

j [2]t− 6cj[1]cj[3]. (10)

Les FI fj(t) et les AI aj(t) du signal s(t) sont estimées en utilisant l’EMD et l’ESA.

L’avantage d’une telle stratégie est la combinaison de deux approches locales et non-

linéaires pour estimer des attributs instantanés. De plus, l’approche proposée n’est

pas contrainte par l’estimation du nombre de composantes et ne fait pas d’hypothèse

sur le modèle de la phase du signal à analyser. La méthode ESA régularisée obtenue

est illustrée sur des signaux multi-composante bruités et les résultats comparés à

ceux de la méthode basée sur la TH. Les résultats obtenus en terme de démodulation

montrent l’apport des approches ESA-régularisée et EMD.

La combinaison de l’EMD et l’estimation des FI et AI est connue sous le nom

de Transformée de Huang-Teager (THT). Cette RTF a été introduite par Cexus

[22]. La THT n’est pas limitée par le principe d’incertitude et n’est pas contrainte

par le théorème de Bedrosian. De plus elle évite le problème d’interférences des

RTF de la classe de Cohen. Cela étant, jusqu’à présent la THT a été uniquement

utilisée comme une simple représentation du signal. Nous proposons dans cette thèse

une formulation mathématique de cette représentation qui va permettre de définir

certaines notions telles que les marginales ou d’estimer des attributs tels que l’index

de stationnarité. En utilisant l’équation (5), nous formulons la THT comme suit :

K(t, f) =
N∑

j=1

aj(t, fj(t)) =
N∑

j=1

aj(t, f)δ(f − fj(t)) (11)

où K(t, f) est le spectre de Teager-Kaiser. Le but de cette nouvelle formulation

(Eq. (11)) est d’étendre les applications de la THT autant qu’un outil d’analyse

temps-fréquence.

Comme application de la nouvelle formulation de la THT (Eq. (11)), nous mon-

trons comment la THT associée à la transformée de Hough (outil de traitement

d’images) peut être utilisée pour la détection des signaux MLF dans le plan temps-

fréquence. La méthode de détection des MLF est appelée Teager-Huang-Hough

Transform (THHT). La THHT d’un signal s(t) est définie comme la ligne intégrale

du spectre de Teager-Kaiser K(t, f) le long du modèle de FI f(t; Θj) où Θj := (νj, βj)

est le vecteur de paramètres.

h(Θj) =
∫
−∞

−∞

K(t, f(t; Θj))dt j ∈ {0, 1, . . .N − 1} (12)

Ainsi la détection dans le plan temps-fréquence d’un chirp (νj , βj) consiste à chercher
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un pic dans le plan de Hough définit par les paramètres (ρj , θj):

(ρj, θj) = Arg max
Θj

[h(Θj)] (13)

où νj =
ρj

sin θj
et βj = −cotang θj . La THHT est illustrée par des signaux MLF

bruités et les résulats comparés à ceux de la distribution de Wigner-Ville (WVD) et

de la Pseudo-WVD. Les résultats montrent que la suppression des termes d’interfé

rences améliorent la détection des chirps dans le plan temps-fréquence.

Enfin, nous illustrons la THT par une application à l’ASM. Plus exactement,

nous nous intéressons à l’analyse des échos de cibles Sonar qui sont des signaux non-

stationnaires. Nous commençons d’abord par étudier les relations entre les IMFs et

les modes de résonances des cibles (IMR pour Isolated Modal Resonance). Si ces

les relations entre IMFs et IMRs sont établies alors le processus de classification de

cibles ne peut être que facilitée. Les résultats préliminaires montrent qu’il n’y a pas

de correspondance directe entre un mode empirique et un mode physique du même

niveau; par contre l’analyse des densités spectrales de puissance des IMF et des IMR

montre qu’une IMF peut être approximée par une somme réduite d’IMR. L’analyse

des paramètres statistiques (moyenne, énergie, Skewness, Kurtosis) des IMF et des

IMR va dans le même sens que celle des densités spectrales de puissance. Pour

terminer, la THT a été appliquée à une série de signaux d’échos de cibles réels (coques

cylindriques) avec différentes caractéristiques physiques (matériau, épaisseur,. . . ).

Les résultats de la THT ont été comparés à ceux du spectrogramme, le scalogramme

et la Pseudo-WVD. L’analyse des cartes temps-fréquences des échos de cibles montre

que seule la THT est sensible aux changements des paramètres physiques des cibles,

ce qui montre que la décomposition par EMD s’adapte bien aux caractéristiques du

signal à analyser.





Introduction

1. The need for time-frequency

Time-Frequency (TF) analysis is an area of active interest in the signal processing

domain. The fundamental goal is to understand and describe situations where the

frequency content of a signal varies in time (nonstationary signal). Important fea-

tures of nonstationary signal are provided by its Instantaneous Frequency (IF) and

Instantaneous Amplitude (IA) [12]. Estimating these time features is a first step for

signals analysis. In different areas such as in seismic, Radar or Sonar, signals under

consideration are known to be nonstationary and could be generated by a nonlinear

process. It has been proven that estimations of IFs and IAs of measured data,

remain the best way for detecting and analyzing hidden physical phenomena (e.g.,

signal scattering from obstacle, temperature changing in some areas and a period

of time, acoustics signal generated by crustacean,. . . ). Furthermore, IF determines

what frequencies are present, how strong they are, and how they change over time.

However, only meaningful IFs or IAs may really help us to explain the production,

variation and evolution of physical phenomena. The problem of the interpretation

of the IFs of signal has been largely addressed in the literature [11, 32, 64, 12, 64].

It has been argued that the interpretation of IF functions may be physically

appropriate only for monocomponent signals where there is only "one spectral

component" or "narrow band component" [32]-[12],[65]. Additionally, to reveal

the true physical meaning of IF or IA, their estimation must be robust against noise.

Though the Hilbert Transform (HT) [12] and the Energy Separation Algorithm

(ESA) [83] are accepted demodulation methods, when applied to multicomponent

signal or AM/FM oscillatory functions, the tracked IF and IA features can lose

their physical signification [65]. To overcome this problem, the Empirical Mode

Decomposition (EMD) a time signal decomposition was developed so that a

multicomponent signal can be analyzed in physically meaningful time-frequency-

amplitude space by reducing it to a collection of monocomponent functions. This
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signal processing technique breaks down any signal derived from linear or nonlinear

system into a sum of oscillatory modes called Intrinsics Modes Functions (IMFs) so

that meaningful IFs and IAs are derived [64]. Many works have been shown that

decomposing a signal by EMD can really break out physical features [64]-[65],[49].

Once IMFs are extracted, it is possible to perform a spectral analysis, or three

dimension plot (time-frequency-amplitude) that represents the variation of fre-

quency and amplitude (or energy) of IMFs over time. Based on the EMD two

Time-Frequency Representations (TFRs) are recently introduced [64],[22]. Applying

the HT or the ESA to each IMF the derived TFR is designated as Hilbert-Huang

Transform (HHT) [64] or Teager-Huang Transform (THT) [24]. While the HT

uses the whole signal, the ESA is based on signal differentiation and thus it is an

instantaneous approach and has a good time localization. Note that different from

classical TFRs such as Wigner-Ville Distribution (WVD), neither do the HHT

and the THT define an explicit equation that maps one dimension signal into a

three dimension representation that provides information about time, frequency

and amplitude (energy). It has been shown that the THT gives interesting results

compared to the HHT and particularly for signals with sharp transitions [22].

The THT works well in free and in moderately noisy environments, but like the

HHT it performs poorly for very noisy signals. This THT limitation is due to

the sensitivity to noise of the ESA, which is based on the differentiation of the

signal. Thus, to reduce noise sensitivity a more systematic approach is to use

continuous-time expansions of discrete-time signals to numerically implement the

required differentiations without approximation. In EMD, the core idea is the

fitting splines to extrema in the process of extracting the IMFs and a residual in the

decomposition of the input signal. Since extracted IMFs are represented in B-spline

expansions [14], a close formulae of the ESA which ensure robustness again noise

is derived. Also, by means of a smooth version of B-splines for interpolating, the

tracked IFs and IAs are more robust against noise.

Based on the EMD, the THT is well dedicated to analyze any signal without

any requirement of stationarity or linearity. As the HHT, the THT is not based on

the convolution pairs from priori basis function sets, the result is not limited by

the Heisenberg-Gabor uncertainty principle. Both THT and HHT are cross-terms

free compared to TFRs of Cohen’s class. Nevertheless, there is a limit on the

precision, because of the infinite many adaptive IMF basis sets the EMD can

generate. Furthermore, unlike the HHT which is based of the HT, the THT is not

limited by the Bedrosian theorem. However, until now the THT is still used just
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as a representation of the signal. No TF attributes or other relevant informations

(marginals,. . . ) are derived from such representation. We propose in this thesis a

mathematical formulation of the TF map of the THT such as some useful defini-

tions or information such as the marginals or stationarity index can be estimated.

Furthermore, this new formulation allows the extension of the application field of

the THT. Thus, based on this formulation a new tracking scheme (detection and es-

timation) of multicomponent Linear Frequency Modulation (LFM) signals using the

Hough transform is introduced and compared to WVD-Hough transform. The intro-

duced detection method is called Teager Huang Hough Transform (THHT) for short.

2. Application

One of the most challenging applications of TFRs deal with the analysis of the

underwater acoustic signals. In this work, the THT is illustrated on real world

underwater acoustics signals derived from spherical targets which can be viewed

as nonlinear systems. The problem of discrimination of immersed targets was

initiated with the works of Hoffman [56] who investigated time-domain approaches

and Chesnut and Floyd who tested multiple frequency based techniques [26].

Time-domain techniques based on neural network inversions have been developed

to discriminate Sonar objects [59],[3]. TF approaches have also been used for

target classification [81]-[42] and have given high potentiality for discrimination

between solid and hollow targets as well as for determining the target material

[28]. For example in [28] WVD is used as TF description. Indeed, WVD has

been shown to be a relevant for understanding of echo formation mechanisms

and for surface waves that circumnavigate the targets [81]-[42]. In [27] a Sonar

target classification approach based on the TF projection filtering, proposed by

Hlawatsch and Kozek [55], is presented. The WVD associated to the Impulse

response (IR) (acoustic response) of a Sonar target generates a TF plane (image)

showing different patterns. These patterns can be classified into two categories

1) Interferences due to the bilinear nature of the WVD [11]. 2) High energy

pattern: the first one, non dispersive, is associated with the specular echo on

the target and the two following patterns correspond to the arrival of surfaces

waves (antisymmetric Lamb waves) that circumnavigate the target [27]. The

two pertinent patterns for classification are the specular reflection and the Lamb

waves. The function of a TF filter is to extract from the signal to be analyzed

the pertinent patterns. The filter is designed from the WVD of a reference signal

and more particularly from its TF support R containing the relevant information.

This region R is derived manually (isolation of the echoes by an expert operator).
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The limit of the WVD is the severe cross terms due to the existence of negative

power for some frequency ranges. Although most of these difficulties are overcome

by using proper kernel functions, the method is still Fourier based; therefore all

the possible complications associated with Fourier Transform (FT) still exist.

To circumvent this drawback we use the THT which is cross-terms free and we

investigate this tool for signal analysis task. Here we deal with the analysis of the

acoustic signature without classification. Before analyzing the resulted TF maps of

backscattering signals by simple shells, we first investigate possibles relationships

between Isolated Modal Resonances (IMRs) of a spherical shell and IMFs extracted

from the backscattering signal by this shell. Such links between empirical and

physical modes, may be useful for Sonar target detection and classification purposes.

3. Main contributions of the thesis

• Introduction of a new sifting process where smoothing interpolation is used

instead of exact interpolation, to construct the upper and lower envelopes of

the signal to be decomposed. Main advantages of this new sifting are to give

the EMD more robustness against noise and to reduce the number of unwanted

or insignificant IMFs of the conventional EMD (over-decomposition).

• Application of the new sifting processus to signals denoising.

• Coupling two local and nonlinear approaches namely EMD and ESA as the basis

of a multicomponent signal analysis framework. Moreover, different discrete

versions of the EMD-ESA depending on the used derivation schemes are studied.

• Based on B-splines model, continuous version of the EMD-ESA is proposed.

This new approach is used for tracking IFs and IAs of multicomponent AM-FM

signal embedded in additive white Gaussian Noise.

• TF analysis by means of THT is introduced. Mathematical formulation of the

THT is presented and some useful attributes calculated.

• Introduction of new detection approach of multicomponent LFM signals com-

bining the THT and the Hough Transform (THHT).

• Investigation of possibles links between physical modes of spherical shell and

the IMFs extracted from the backscattering signal by this shell.

• TF analysis by THT and HHT of real world under water reflected acoustics

signal.
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4. Contents and organization of the manuscript

In the first chapter, the definition of FT is recalled and a brief insight on some

popular and largely used TFRs of the Cohen’s class is given. A classification of

these representations is given at the end of the chapter. In order to understand

how they work, in next chapters these representations are applied to synthetic and

real world signals. Furthermore, in the fourth chapter we compare the resulting

representations to each other and to the THT.

In the second chapter basics of the EMD are presented. Contrary to the

former decomposition methods, the EMD is intuitive and direct, with the basis

functions derived from the data. Conventional EMD is detailed and some of its

issues discussed. To improve the results of the conventional EMD in term of

decomposition a new sifting process is introduced. This new sifting is firstly tested

for separating sinusoidal signal from other components embedded in white Gaussian

Noise. Finally application of the new EMD to real data is presented (isolation of

an oscillatory component in forced motion [94]).

In the third chapter, a demodulation approach of multicomponent AM-FM is

proposed. This method combines the EMD and the ESA, designated as EMD-ESA

for short. A multicomponent AM-FM is first decomposed by EMD into a set of

IMFs, then the IF and IA of each IMF tracked using the ESA. We introduce different

variants of the discrete version of the EMD-DESA. To improve the tracking results,

a continuous version of the approach is proposed. The investigation is completed by

a comparative study between the proposed methods and the EMD-HT approach.

In the fourth chapter the THT is introduced. Unlike classical approaches this

TFR dose not need any predefined decomposition basis. The THT is compared to

classical TFRs on synthetic signals. We analyze the results of each approach and

discuss its limits.

In the fifth chapter a formulation of the detection problem of LFM signals

(mono- or multicomponent) in the TF plane of the THT is presented. This new

detection scheme combines the THT and the Hough transform. LFM components

are detected and their parameters are estimated in terms of peaks and their

locations in the parameter space. In order to evaluate the performance of the

proposed approach we have tested it in noisy environment and the results are
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compared to classical approaches such as the WVD-Hough transform.

In the last chapter, preliminary results of the possibles relationships between the

IMRs of a thin empty spherical shell and the associated extracted IMFs from the

acoustic signal backscattered by this spherical shell, are presented. The study is car-

ried out quantitatively and qualitatively. Finally, different TFRs of backscattering

signal from simple shells (cylinder) for several physical parameters are analyzed.
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I
n this chapter, the definition of FT is recalled and a brief insight on some

popular and largely used TFRs of the Cohen’s class is given. A classification of

these representations is given at the end of the chapter. In order to understand

how they work, in next chapters these representations are applied to synthetic and

real world signals. Furthermore, in the fourth chapter we compare the resulting

representations to each other and to the THT.
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I.1 Introduction

A large number of applications need adequate signal processing and analysis tools

to extract relevant information. Time-Frequency (TF) analysis is becoming a topic

of much interest in the signal processing domain. The main goal of this analysis

is to understand and describe situations where the frequency content of a signal

varies in time (nonstationary signal). Actually, for resolving the problems in hand

[13, 81, 86, 87, 108], one can easily find sophisticated mathematical models and

approaches [12, 31, 48, 92]. We remark that all these approaches have a common

beginning point, the Fourier Transform (FT).

Figure I.1: Jean Baptiste Joseph Fourier. 21 March 1768 Auxerre, Yonne, France
[36]

I.2 Fourier transform

Joseph Fourier, (Fig. (I.1)) developed trigonometric series in order to resolve a

physical problem [111]. He was originally interested in heat propagation in metals.

Fourier main motivation was to find an equation governing the behavior of heat.

His formulation of the heat equation and the proposed solution are considered

one of the most fascinating mathematical models for physical phenomena [93].

The Fourier series would then be very useful for solving problems in many

fields of applications, such as electrotechnics, electric circuits, mechanics, radio

propagation and telecommunications systems. Since the second half of the last

century, the emergence of powerful calculators, which still continue offering a

computational processing time, the Fourier series, that are limited to periodic

signal of finite energy [113] have been generalized to the FT, then to a sophisticate

and rapid algorithm, the Fast Fourier Transform (FFT) [113][20][45]. Today,
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engineers and scientists use systematically the FT for processing a signal. In this

Chapter we would like to highlight some sophisticated approaches, derived from

the FT. In order to understand the philosophy of the TFRs, we firstly define the FT.

FT decomposes a signal into a set of weighted harmonics components with fixed

frequencies. To be Fourier-transformed, a signal s(t) must be stationary and have a

finite energy (Eq. I.1).

Finite energy signals satisfy the condition of summability:

∫ +∞

−∞

|s(t)|2dt <∞ (I.1)

By definition, the FT S1(f) of a signal s(t) is given by [92]:

S1(f) =
∫ +∞

−∞

s(t)e−j2πftdt = |S1(f)| ejφ(ω) (I.2)

s(t) =
∫ +∞

−∞

S1(f)ej2πftdf (I.3)

where |S1(f)| and φ(ω) are the module and the phase of the spectrum S1(f), re-

spectively. ejφ(ω) is the Fourier kernel.

It has been proven that analysis of nonstationary signals by FT does not bring

interesting information about spectral contnent [20][45]. As we have illustrated

with this simple example, the FT dose not allow good analysis of signals if their

spectral content is varying in time. In order to overcome the limitation of the FT

and to provide new tools for analyzing nonstationary signals, TF analysis tools are

introduced.

I.3 Short-Time Fourier Transform

In order to add time-dependency in the FT, a simple and intuitive solution consists

in dividing a time-domain signal into a series of small overlapping pieces; each of

these pieces is windowed and then the FT is applied to each one. The obtained

transformation is called Short-Time Fourier Transform (STFT). For a signal s(t),

the STFT is given by [32]:

S2(f, t) =
∫
∞

−∞

s(τ)h(τ − t)e−i2πfτdτ (I.4)
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where h(t) is a window function. The energy density spectrum of the STFT is

defined as

E2(f, t) = |S2(f, t)|2 (I.5)

Equation (I.5) is named spectrogram; it is real-valued and has non-negative distri-

bution. The width of the window function h remains a problematic issue. It is

not possible to achieve good localization simultaneously in the time and the fre-

quency domains. For instance, contracting a function in the time domain in order

to improve its time localization cannot be done without dilating it in the frequency

domain, i.e., weakening its frequency localization. This limitation is named the

Heisenberg uncertainty principle [21],[53].

I.4 Wavelet Transform

Instead of a fixed window function, the Wavelet Transform (WT) uses TF atoms or

wavelets. The WT of signal s(t) is defined as [33],[92]:

S3(a, b) =
∫
∞

−∞

s(t)ψ∗a,b(t)dt (I.6)

where ∗ denotes the complex conjugate, and the wavelet basis ψa,b(t) is generated

from a basis (mother) wavelet (Eq. I.7) ψ(t) by dilatations and translations. An

example of wavelet is the Morlet wavelet (Eq. I.8) which has a wider effective support

to provide more accurate results.

ψa,b(t) =
1
a
ψ(
t− b
a

) (I.7)

ψ(t) = exp(−t2/2). cos(5t) (I.8)

where a is the scale factor, b is the translation factor, and 1/
√
a is a factor for the

normalization in terms of energy. It becomes 1/a for the normalization in terms of

amplitude. The energy density function of a WT is defined as E3 = |S3(a, b)|2 and

is called scalogram.
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I.5 Wigner-Ville Distribution

A TF energy distribution which is particularly used in SONAR and RADAR [115]

is the Wigner-Ville distribution (WVD) defined as [92]:

S4(f, t) =
∫
∞

−∞

e−i2πfτs(t+
τ

2
)s∗(t− τ

2
)dτ (I.9)

An advantage of the WVD is that it can exactly localize sines or Dirac impulses

which is not the case for the spectrogram and the scalogram. However, it suffers

from signal interferences or cross terms.

I.5.1 The cross-term issue

Bilinear distributions produce so-called "cross-terms", which arise because the distri-

bution is a nonlinear, specifically bilinear, function of the signal. A major advance

in mitigating the cross terms was made by Williams, who developed the concepts

needed to generate bilinear distributions that reduce the cross items while simultane-

ously preserving desirable properties of the distributions, particularly the marginal

function [29],[70]. To avoid this interference, a smoothed version of WVD is intro-

duced [11]

S5(f, t) =
∫ ∫

∞

−∞

G(f − f ′, t− t′)S4(f ′, t′)dτ ′df ′ (I.10)

which filters the original WVD of Eq. (I.9) with a two dimensional filter, G [32]. In

practice the filter G is composed of two one-dimension window filters (h, g). The

WVD in this case is named Smooth Pseudo WVD (SPWVD)

I.6 Reassigned TF Distributions

Pioneering work on the method of reassignment was first published by Kodera [76]

under the name of Modified Moving Window Method. The technique enhances

the resolution in time and frequency of the classical Moving Window Method,

the TFR constructed from the squared magnitude of the moving window trans-

form defined in equation (I.9) or (I.10), by assigning to each data point a new

TF coordinate that better-reflects the distribution of energy in the analyzed sig-

nal. Auger and Flandrin have generalized the technique to large TF distributions [4].

A much more relevant choice is to assign the total mass to the center of gravity

of the distribution within the domain, and this is precisely what reassignment does:
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at each TF point (t, f) where a spectrogram value is computed, one also computes

the two quantities:

t̂s(f, t) =
1

S5(f, t)

∫ ∫
∞

−∞

τ ′G(f − f ′, t− t′)S4(f ′, t′)dτ ′df ′ (I.11)

f̂s(f, t) =
1

S5(f, t)

∫ ∫
∞

−∞

f ′G(t− t′, f − f ′)S4(f ′, t′)dτ ′df ′ (I.12)

The spectrum value is then moved from the point (f, t) where it has been com-

puted to the new centroid (t̂s(f, t), f̂s(f, t)). The new Reassigned SPWVD (RSP-

WVD) is now defined by [88]:

S6(f, t) =
∫ ∫

∞

−∞

S5(f ′, τ ′)δ(f − f̂s(f ′, τ ′), t− t̂s(f ′, τ ′))dτ ′df ′ (I.13)

I.7 Summary

In this chapter we loosely give brief insight of TFR approaches. Our work focuses

on the most popular one. We can summarize it, as it has been done in [12] and [88]

to:

• A linear TFR S(f, t) satisfies the linearity superposition principle that states

that if s(t) = as1(t) + bs2(t) is a linear combination of s1(t) and s2(t), then

the TFR of the sum must satisfy S(f, t) = aS1(f, t) + bS2(f, t) where a and

b are complex coefficients. Two linear TFRs that have been used in many

applications are the STFT and the WT. The STFT is the only linear TFR that

preserves both time and frequency shifts on the analysis signal, an important

property for speech, image processing and filterbank decoding applications. The

WT preserves scale changes (compressions or expansions) on the signal, an

important property for multiresolution analysis applications such as detection

of singularities or edges in images. Note that as these TFRs are based on

windowing techniques, their TF resolution depends on the choice of window

characteristics.

• Quadratic TFRs. Any quadratic TFR (QTFR) can be expressed as

S(f, t) =
∫
∞

−∞

∫
∞

−∞

s(t1)s∗(t2)K(t1, t2; f, t)dt1dt2 (I.14)

where K is a signal-independent function that characterizes the QTFR.

These representations satisfy the quadratic superposition principle as a QTFR
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of s(t) = αs1(t) + βs2(t) satisfies S(f, t) = |α|2S1(f, t) + |β|2S2(f, t) +

2ℜ[αβ∗.S1,2(f, t)]. The term S1,2(f, t) is the cross term of the QTFR and ℜ[]

denotes real part. For QTFRs, windowing techniques are not required because

the objective is to form energy distributions so that the signal energy, also

a quadratic representation, can be distributed in the TF plane. However,

windowing techniques are often used to suppress the cross term that may

impede processing because they are oscillatory. Two important QTFRs include

the WVD, its smoothed version, and the spectrogram.

• Some TFRs were proposed to adapt to the signal TF changes. Like reassigned

TFRs adapt to the signal by employing other QTFRs of the signal such as the

spectrogram and the WVD or others TFRs.

We conclude from this chapter that the classical TFRs such the STFT, the WVD

or the WT, suffer from several limitations. There is need for a new TF framework

to overcome those limitations and for analyzing properly signals. In particular,

we look for a TFR that is well dedicated for nonlinear and nonstationary data.

For this reason, this TFR must be adaptive (data driven approach), cross-terms

free, not limited by the uncertainty principle and produces physically meaningful

representation of the data from complex processes. We see in next chapters that

this TFR can be obtained by combining the EMD of Huang and a demodulation

technique such as the Hilbert Transform (HT) or the Energy Separation Algorithm

(ESA). The proposed approche as we should illustrated is an alternative for the

classical TFRs, but of corse like others it has limites and advantages. In next

chapters this points will be discussed.
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W
e present in this chapter basics of the EMD. Contrary to the former

decomposition methods, the EMD is intuitive and direct, with the

basis functions derived from the data. Conventional EMD is detailed
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and some of its issues discussed. To improve the results of the conventional EMD

in term of decomposition a new sifting process is introduced. This new sifting is

firstly tested for separating sinusoidal signal from other components embedded in

white Gaussian Noise. Finally application of the new EMD to real data is presented

(isolation of an oscillatory component in forced motion [94])
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II.1 Introduction

The strength of using TFRs compared to time or frequency representations, is their

capacity to quantitatively resolve changes in the frequency content of nonstationary

signals. Their major weaknesses in some cases: are to generates representations

that are meaningless or difficult to interpret. In some cases, one can analyze the

resulted TF maps and explain some misunderstood patterns: For example, the

WVD by definition generates added cross terms, and could be identified some

time in the TFR [77, 81, 102, 22, 24, 16]. For kernel-based approaches, the major

weakness is the priori imposed by the basis choice. Finding a decomposition basis

that can optimally represent the original signal is a serious issue; when one is faced

to inexplicable results given by the STFT for analyzing signal [32, 118, 16] Usually,

the length and the type of the temporal truncation window is suspected (i.e, the

Heisenberg identity 1[32]). Even the WT, for some applications perform better than

others kernel-based TFRs [33], the choice of the wavelet function that optimally

represents the analyzed signal, remains a great challenge.

The type of signals of natural phenomena or man made signals vary greatly. A

signal is said to be stationary if, in the deterministic case, it can be written as a sum

of discrete sinusoids which have constant IF and IA. In the random case, statistical

properties of the signal are invariant by shift of the beginning of time; Otherwise

when it changes in some sense then one says it is nonstationary [32]. Recall that

nonstationarity is a "non-property".

Instantaneous Frequency (IF) is an important notion and very useful phys-

ical quantity for characterizing nonstationary signals. It can be defined for

monocomponent as the frequency present at short time laps [11][32]. The opin-

ions are devised on this subject, because usually people are influenced by the

Fourier spectral analysis. For a full wave (harmonic in the Fourier sense), the

frequency and amplitude do not change. However, for nonstationary case where

the frequency content changes in time, this simplistic definition does not make sense.

There is not one way to define mathematically the IF. The most popular def-

inition involve the analytic signal, where the frequency is derived from the phase

information (see chapter.III). For a lack of precise definition of the monocomponent

and the IF, the notion of "narrow band" was introduced as a limitation on the data

to make sense for the IF [100]. The bandwidth BW is defined in terms of the spectral

1the Heisenberg principal led to trade off to resolve between having good resolution in time and
frequency. ∆t.∆f ≤ 1

2
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moment of the signal as follows

N0 =
1
π

(

m2

m0

)1/2

N1 =
1
π

(

m4

m2

)1/2

BW = N2
1 −N2

0 =
1
π2

m4m0 −m2
2

m2m0

(II.1)

BW =
1
π2
ν2 (II.2)

where N0, N1 are the expected numbers of zero crossing and of extrema per unit of

time, respectively. mi is the ith moment of the spectrum. The parameter ν, offers

a standard bandwidth measure.

For a narrow band signal we have

BW = 0 ⇒ N0 = N1

as consequence of ν = 0, the number of the expected numbers of extrema and

zero crossings must to be the same.

• The main motivation of Huang et al [64],[61] was to develop an approach allow-

ing the analysis of nonstationary and nonlinear process. The EMD is introduced

for that purpose, moreover, the EMD has given a meaningful sense to the IF (in

the Hilbert Transform sens) for real world signal. In the following paragraphs

we introduce the EMD, we explain how it works and we discuss some aspects

of the EMD.

II.1.1 Linear systems

For the nonlinear systems the superposition principle could not apply. For linear

physical system having many sources, one can analyze separately the effect of each

source. Then, for studying the effect of the whole system, it is possible to add the

results from each source.

II.2 Empirical Mode Decomposition

It has been noted in large number of areas, especially where analysis and interpre-

tation are needed like sub-marine observation, analysis of natural phenomena such
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as climate change and heat variation, that traditional TF techniques such as the

STFT are unable to calculate the spectral content of highly transient signals with

sufficient accuracy. New signal processing methods such as wavelets, WVD, others

TFRs and multiscale methods for some areas of application have been developed.

These solutions can provide useful TF decompositions by adaptively decomposing

data. However, most of TFRs, including those presented in chapter one are kernel

dependent approaches. In fact, adding priori on the resulted TFRs could change

the nature of the analyzed data and, of course, the interpretation of the results.

EMD has been recently introduced by Huang et al. for adaptively decomposing sig-

nals into sum of "well-behaved" AM-FM components, that hold of natural "intrinsic"

building blocks that describe the physical phenomena [64]. The main motivation of

Huang et al. was to develop an approach allowing the estimation of meaningful IF

for real world signal. The EMD decomposes any signal s(t) into a series of Intrinsic

Mode Functions (IMFs) through an iterative process called sifting.

II.2.1 Sifting process

The decomposition is based on the local time scale of signal s(t), and yields adaptive

basis functions. The EMD can be seen as a type of wavelet decomposition, whose

sub bands are built up as needed, to separate the different components of s(t). Each

IMF replaces the signal detail at certain frequency band [49]. Each IMF has distinct

time scales [64]. By definition[64], an IMF satisfies two conditions:

1. the number of extrema, and the number of zeros crossings must differ by no

more than one;

2. the mean value of the envelope defined by the local maxima, and the envelope

defined by the local minima, is zero

To be successfully decomposed into IMFs, the signal s(t) (Step 3) must have at

least two extrema: one minimum and one maximum. The decomposition is defined

by an intuitive algorithm called the sifting process. It involves the following steps :

The sifting is repeated several times (i) until the component h() satisfies the

conditions (1) and (2). At the end of the sifting s(t) is reconstructed as follows :

s(t) =
N∑

j=1

IMFj(t) + rN(t). (II.3)

where N is the number of IMFs and rN(t) is the residual. To guarantee IMF com-

ponents retain enough physical sense of both amplitude and frequency modulation,
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Step 1: Fix the threshold ǫ and set j ← 1 (jth IMF)
Step 2: rj−1(t) ← x(t) (residual)
Step 3: Extract the jth IMF :

(a) : hj,i−1(t) ← rj−1(t), i ← 1 (i number of sifts)
(b) : Extract local maxima/minima of hj,i−1(t)
(c) : Compute upper and lower envelopes
Uj,i−1(t) and Lj,i−1(t) by interpolating, using cubic spline,
respectively local maxima and minima of hj,i−1(t)

(d) : Compute the mean of the envelopes:
µj,i−1(t) =(Uj,i−1(t) + Lj,i−1(t))/2
(e) : Update : hj,i(t) := hj,i−1(t)− µj,i−1(t), i := i+ 1
(f) : Calculate the stopping criterion :

SD =
T∑

t=1

|hj,i−1(t)− hj,i(t)|2
(hj,i−1(t))2

(g) : Repeat steps (b)-(f) until SD< ǫ and then put
IMFj(t) ← hj,i(t) (jth IMF)

Step 4: Update residual : rj(t) := rj−1(t)− IMFj(t).
Step 5: Repeat Step 3 with j := j + 1 until the number of extrema in
rj(t) is ≤ 2.

Table II.1: Sifting process

we have to determine Standard Deviation (SD) value for the sifting. This is accom-

plished by limiting the size of the SD, computed from the two consecutive sifting

results. Usually, ǫ is set between 0.2 to 0.3 [64]. The sifting has two effects: (a) it

eliminates riding waves and (b) smooths uneven amplitudes [64]. Locally, each IMF

contains lower frequency oscillations than the just extracted one. The EMD does

not use pre-determined filter, or wavelet function, and is a fully data driven method.

II.2.2 Illustrative example

We illustrate in first example how EMD separates two pure tones and we discuss

some issues of the sifting process. The signal in question is two free superimposed

tones defined as follows:

s(t) = cos(2π.1t) + cos(2π.5t) (II.4)

In figure (II.1) components of 1Hz and 5Hz are extracted at the first iteration

of the sifting process. For this example, the two components satisfy perfectly the

IMF condition (section. II.2.1). At iteration 0(i=1), the 5Hz and 1Hz components

could be identified directly in the first IMF and the residue, respectively (Fig.
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Figure II.1: Initialization of the sifting process for s(t), envelope mean detection
(red line) and the first sift of IMF1. Over- and undershoots are indicated by arrows.

(II.1)). But, in practice the algorithm continues the process and generate additive

components (see the final results in figure (II.6)). The over decomposition in the

sifting is due principally to the approximation errors caused by the interpolation

accomplished in step 3 in the sifting process. Cubic splines are known to exhibit

over- and undershoot problems [109] (see figure II.1). A solution to overcome this is-

sue and others difficulties are given by the authors [15] and discussed in section (II.4).

After several iterations, the algorithm is not able to extract a third IMF. The

sifting can not converge to the final solution directly, because after extraction of the

second IMF, the residue remains an oscillatory signal. So, the algorithm continues

the decomposition of the signal s(t), probably after subtraction of the residue from

s(t) the result is in turn an IMF.

While the stopping criteria is not fulfilled, the process may not converge as

quickly as it should. In practice, after a number of iterations, the process is forced

to stop. This over- decomposition is due to ghosts extremum generated by the

interpolation, in [34],[109] a complete study of this problem can be found.
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Figure II.2: Extraction of the 5 Hz component from s(t) at first iteration. The local
mean envelope is null (red line) and the component contain an acceptable number
of extremas.
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Figure II.3: Extraction of the second candidate IMF from s(t). Envelope mean
detection (red line).
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Figure II.4: Extraction of the third candidate IMF from s(t). Envelope mean de-
tection (red line).

0 1 2 3 4 5 6 7 8 9

−0.05

0

0.05

IMF 3;   iteration 45 before sifting

0 1 2 3 4 5 6 7 8 9

−0.05

0

0.05

IMF 3;   iteration 45 after sifting

0 1 2 3 4 5 6 7 8 9
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

residue

Time

Figure II.5: Extraction of the third candidate IMF from s(t). Envelope mean de-
tection (red line).
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Figure II.6: IMFs extracted from signal given in (cf, Eq. II.2.2). The two components
of frequencies 5 Hz and 1 Hz correspond to IMF1 et IMF2, respectively.

II.3 Some aspects of the EMD

II.3.1 IMF criteria

The first point is the IMF criteria. To guarantee the IMF; specifically, their IF must

have a meaningful interpretation, the SD value has been limited or fixed by Huang

et al. [64] (Step (f)). The SD has been changed by Rilling et al [96] to 3-threshold

criterion θ1, θ2 and α by: a(t) = (U(t)− L(t)/2) and σ(t) = |a(t)/µ(t)|. The sifting

process is iterated until σ(t) < θ1 for a period of (1 − α) of the total time, and

σ(t) < θ2 for the remaining fraction of time. The typical values of the thresholds are

θ1 = 0.05, θ2 = 0.5, and α = 0.05. The problem of these thresholds is that they can

not be automatically adapted to each analyzed signal. Except the criteria used in

the conventional EMD, to best of our knowledge until now there is no criteria in the

literature to efficiently retrieve meaningful IMFs. So, what stopping criteria should

one choose? For us the best one should allow to extract a meaningful IMF.

II.3.2 Number of sifts

The second point is the number of sifts. This number is directly conditioned by the

above criteria, where physical meaningful amplitude variation may be sifted away.
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Indirectly, until the IMF conditions (1) and (2) are not satisfied, this number is seen

in grow. There is a tradeoff between the number of sifts and the over-sifting, which

tends to produce smooth amplitude IMFs (see third IMF in Fig. II.6). In fact,

the stopping criteria defined before (SD < 0.3): minimizing the difference between

residuals in successive sifts to below a predetermined level, does not explicitly take

into account the two IMF conditions. The chosen level (0.3) could be reached without

the IMF conditions being satisfied [62]. Since that, Huang and Shen have proposed in

[62] a new stopping rule, where the sifting is stopped when the number of extrema

and the number of zero crossing differ by one. They found that IMFs produced

under this rule (satisfying the first IMF condition) were not oversifted and also

consistently orthogonal. Then, can we say : the least the number of sifts the best is

the decomposition?

II.3.3 Number of IMFs

The third point is the number of IMFs. The aim of EMD, as explained by Huang, is

to decompose any nonstationary/stationary and nonlinear/linear dataset to a finite

and often small number of IMFs that admit well-behaved HT [64],[62],[63]. It means,

that large number of IMFs in the decomposition could not bring useful information

and could add a confusion in the analysis of the data. This problem is not specific

to the EMD; it is frequent in modeling time series even when they are stationary; if

the data are nonstationary and in case of nonlinearity, this problem is inflamed.

II.3.4 Sampling and mode mixing issues

Another serious problem is when mode mixing occurs. By definition this problem

can be viewed as scales confusion, where an IMF move from its natural scales,

where it can represent a physical source, to another insignificant scale. Even though

the final TF projection could compensate the mixed mode to some degree, the

alias at each transition from one scale to another would irrecoverably damage the

clean separation of scales. Such a drawback was first illustrated in [62] in which the

modeled data was a mixture of intermittent high frequency oscillations riding on

a continuous low frequency sinusoidal signal. This point was also investigated by

Rilling [95]; the aim of this study was to understand the behavior of the EMD; very

interesting points were discussed. Especially, Rilling investigated two situations,

the sums of two sine waves and white Gaussian noise. Since, the first situation

has helped address the issue of the sampling influence on EMD. And in the sec-

ond points (Appendix. A), authors verified that EMD act as a dyadic filter [116],[49].
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To avoid the mode mixing, Stevenson et al. [105] discussed and proposed a sam-

pling limit for the EMD. For an acceptable decomposition the frequency sampling

(Fs) must be at least eight times the maximum frequency(Fmax) or four times the

Nyquist-Shannon frequency ; i.e, Fs > 8Fmax.

II.3.5 Orthogonality

The last point concerns the orthogonality of IMFs. The orthogonality has been

largely discussed by the EMD community [64, 62], [96, 89]. Undoubtedly Huang

et al., discussed this point, because he wanted to use this criterion (The index of

orthogonality) to reject the IMFs sets that are grossly non-orthogonal. Then, one can

check at any moment the ability of the IMFs set to form an orthogonal basis. Thus,

we think that Huang et al. introduced the orthogonality index just for comparing

the EMD to existing approaches. But, from a physical point of view, must the

components of natural processes be orthogonal? And if is not the case, how can they

be separated and analyzed via a set of orthogonal basis like exponential or wavelets

functions? Thus, the EMD came to overcome a this shortcoming usually escaped

in the classical approaches (Fourier series, wavelets,...). The index of orthogonality

used in EMD algorithm, for any two components, Ci(t) and Cj(t), can be defined

as,

IOij(t) =
∑

t

Ci(t)Cj(t)
Ci(t)2 + Cj(t)2

(II.5)

II.3.6 Bivariate EMD

The EMD being initially limited to real-valued time series is extended to bivariate (or

complex-valued) time series by Rilling et al [97]. The IMF in EMD is known to be a

zero-mean oscillating components; in the bivariate extension, the proposed algorithm

is designed to extract zero-mean rotating components [97]. The authors illustrate

the approach on a real-world signal for validation, and they discuss properties of the

output components.

II.3.7 Ensemble EMD

To alleviate the mode mixing problem occurring in EMD, ensemble EMD (EEMD)

was introduced by Hu and Huang [117]. EEMD decomposes by the same process

(sifting) an ensemble of signal with additive white Gaussian noise. Then, the noise is

averaged out with sufficient number of trials; thus, the only persistent part survives
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the averaging process is the signal. As showed in [117], on synthetic example and

real world data, EEMD can separate signals of different scales and reduce the mode

mixing.

II.3.8 A PDE for sifting process

For a lack of a solid theoretical framework of the EMD, people are suspicious. In

order to overcome this issue, a preliminary work had initiated by Sharpley [101]

to characterize weak-IMF (IMFs that satisfy only the first condition) as solutions

of self-adjoint second-order differential equation. Then, Delechelle [35] proposed to

replace the mean envelope detection by a resolution of parabolic partial differential

equation (PDE).

Recently, an attempt by Diop et al. [39] to provide some theoretical contribu-

tions on the comprehension of the sifting process. The authors proposed to perform

the sifting process by the resolution of PDEs, and analytical characterizations of

modes were then proposed. A suitable way for getting rid of interpolation’s issues

is also provided. However, as they are cited in the letter the big drawback of the

PDEs based approach is δ (cf. Eq. II.6), the parameter of the proposed PDE,

which is actually chosen empirically. Furthermore, the PDE approach is very sen-

sitive to noise. More explanations and mathematical developments ca be found in

[101],[35],[39]. The study is in the preliminary stage. The studied cases are all noise

free signals. The sifting process is fully determined by the sequence defined by [39],







∂h

∂t
+

1
δ2
h+

1
2
∂2h

∂x2
= 0

h(x, 0) = h0(x)
(II.6)

where h0(x) is the signal to decompose, x is the abscissa. Once the first IMF is

extracted by resolving equation (II.6), h0(x) is set to the residual between the signal

and the first IMF and we resolve again equation (II.6) to compute the second IMF;

and so on for other IMFs.

II.4 Smooth B-spline interpolation of IMF

In this section, we present some developments and our contribution to improve

the decomposition results of the conventional EMD. A smooth version of the

EMD is introduced and the new sifting process illustrated on a tone embedded in
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additive white Gaussian noise. The obtained results are compared to those of the

conventional EMD and the EEMD.

Splines interpolation play an important role in the sifting process, as all extracted

IMFs of decomposed signal are linear combinations of splines. As one can see in the

EMD diagram (Fig. II.7), the interpolation is integrated at the beginning of the

sifting process. As the sifting is iterative, any approximation error will propagate

to the present loop (see Tab.II.1,i), and also, to the whole process. This is why

we are suggesting to handle interpolation step carefully and we propose a new ap-

proach based on B-splines interpolation. We propose also, using smoothing spline

interpolation instead of exact approximation.

II.4.1 Polynomial spline signal

In digital signal processing applications, the signals to be manipulated are repre-

sented by a set of uniformly spaced sampled values s(k), where k is a vector of

integer indexes. Although most processing algorithms are purely discrete, there is a

variety of problems that are best formulated by considering a function s(t) of contin-

uous variable t; the most known processing being signal differentiation. So, it is very

interesting to use a simple procedure for mapping discrete signal into continuous ones

and vice versa; classical polynomial spline interpolation offering this possibility [34].

However, the use of B-splines function [109],[110], which are piece-wise polynomials

as well, have a number of advantages. Firstly, higher order polynomials tend to

oscillate while spline functions are usually smooth and well behaved. Secondly, the

juxtaposition of local polynomial approximations may produce strong discontinuities

in the connecting points. B-spline curves, by contrast, are continuous everywhere.

The polynomial segments are patched together (Fig. II.8) so that the interpolating

function and all derivatives up to order n− 1 are continuous [109].

The signal s(t) in our case is the extracted IMF. In terms of a B-spline expansion

the IMF can be rewritten as follows [14],[109]:

IMFnj (t) =
∑

k∈Z

cj [k] βnk (t− k) (II.7)

where βnk (t) and cj [k] are the Schoenberg’s central B-spline of order n [99] and the

B-spline coefficients of the jth mode, respectively. The interpolation coefficients

cj [k] can be obtained by inverse filtering [109] or by the classical approaches using

matrix algorithms[34].

The basis functions βnk (t) can be generated iteratively by repeating convolution
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Figure II.7: EMD-RBS diagram. The modified EMD is distinguished from the coven-
tional EMD on integrating the smooth B-splines, or Regularized B-splines (RBS)
interpolation instead of the cubic splines interpolation. Also as in [15] we use the
acronym EMD-RBS to refer to the modified EMD.
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Figure II.8: Cubic B-splines functions in the segment [tk, tk+1].

of a B-spline of order 0:

βnk (t) = β0
k(t) ∗ βn−1

k (t) (II.8)

where β0
k(t), ∀k ∈ N, is the indicator function in the interval [−1

2
, 1

2
)

β0
k(t) =







1 t ∈ [−1
2
, 1

2
)

0 otherwise

An interesting property of B-splines functions is their compact support (Eq. II.8);

this is very important, because it limits the propagation of approximation errors

from a box to another. But, in each box, the splines fit all the points without

distinguishing between the data and the noise [15]. To improve the performance

of the EMD in very noisy environment, smoothed splines are used. This is done

by relaxing the interpolation constraint and finding a function (solution) of order

n = 2r − 1 that minimize E (Eq. (II.9)).

E =
∞∑

l=−∞

(IMFnj (n)− hnj (l))2 + λ
∫
(

∂rhnj (t)
∂tr

)2

dt (II.9)

Equation (II.9) is a well-posed regularized least-squares problem where the first term

measures the error between the model hnj (l) and the measured data IMFnj (n). The

second term imposes a smoothness constraint on the solution hnj (l). The regulariza-

tion factor λ measures how smooth the interpolating function will be and how close
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to the data samples the interpolant will pass [90]. For λ = 0 there is no smoothing,

and the interpolation curve fits exactly the signal samples. if λ 6= 0, the deviation

from the data samples increases with the value of λ.

II.4.2 Noise reduction

In the next chapter, the performance of the proposed sifting method is investigated

for demodulating a noisy multicomponent AM-FM signal of varying Signal to Noise

Ratio (SNR). Here, we illustrate the effect of regularized B-splines interpolation on

the extracted IMFs in noisy environment. Especially, the signal s(t) is corrupted

with additive white Gaussian noise n(t) with SNR=0dB:

s(t) = sin(10πt) + n(t) (II.10)

The signal s(t) is shown in the first row on the top of figures (II.9),(II.10) and (II.11).

The conventional EMD extracts ten IMFs (Fig. II.9) while the EEMD generates

eleven IMFs (Fig. II.10). The EMD-RBS extracts only six IMFs (Fig.II.11). The

last row of each figure corresponds to the final residue.

In the decomposition performed by the conventional EMD and the EEMD, both

noise components and sinusoidal component are split into different IMFs. Thus, even

the original signal (sinusoid) is a true IMF, from the classical EMD and EEMD, we

are not able to recover or to identify this sinusoid. For both decomposition this IMF

may be obtained using partial reconstruction by summing some selected IMFs (Figs.

II.9 and II.10). To recover the sinusoidal component, which can not be extracted

directly from the resulting IMFs of the decomposition, one could add IMF3 to IMF6.

In practice, the number of the selected IMFs is noise-dependent.

For the resulted IMFs of EMD-RBS (Fig. II.11), the original signal can be

identified to second IMF. The first components and the remainder IMFs are a part

of noise. The energy of s(t) is mainly concentrated in the first IMF, the amplitudes

of the other IMFs are small. These results show the interest of the regularized

interpolation of the envelopes, compared to exact interpolation to recover the original

components from s(t) and to reduce the number of unwanted IMFs.

The optimal parameter λ remains in general an unsolved problem because the

noise type and magnitude are unknowns. The smoothing parameter determines the

relative weight we would like to place on the contradictory demands of having h(t)

smooth or having h(t) close to the data, (Eq. II.9). For λ = 0, is the variational, or

natural cubic spline. When λ moves from 0 to 1, the smoothing spline changes. The
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Figure II.9: Extracted IMFs by EMD from noisy signal s(t) (SNR=0dB). The con-
ventional EMD failed to extract directly the 5Hz sinusoid. For getting a smooth
version of the sinusoidal signal one must add the IMF 5, the IMF 6 and part of the
IMFs 4 and 7.
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Figure II.10: Extracted IMFs by EEMD from noisy signal s(t) (SNR=0dB). The
sum of IMF 4, 5 and 6 give a noisy version of the sinusoidal signal but not the
original one.
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Figure II.11: Extracted IMFs by EMD-RBS of the noisy signal s(t) (SNR=0 dB).
The 5Hz tone is extracted successfully, it corresponds to IMF number 2.

choice of λ is not completely arbitrary. We have attempted to find experimentally a

good value for λ for different input SNRs. Figure (II.12) plots the Mean Square Error

(MSE) against λ and the input SNRs. The MSE is calculated between the extracted

IMF (IMF2) and the true signal (sinusoid). In these experiments the corresponding

MSE curves had minima for particular values of λ. More particularly, the minima

occurred around λ equal to 0.01 independently of the input SNR’s values (ranging

from -10dB to 30dB). The principal result : the smoothing spline interpolation

improves the decomposition, and extracts directly and efficiently pure frequency

components, the 5Hz component here. Thus, one avoid partial reconstruction from

the resulting IMFs.
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Figure II.12: variation of the parameter λ

II.4.3 Forced oscillatory motion

The new sifting is tested on real world signal from an hydrodynamic system. In

forced oscillatory motion, one looks at the first step to separate the component of

mechanical forcing (periodical oscillatory component with a known frequency) from

the signal. The residual signal would have rich physical content. Figure (II.13) shows

a measured signal of forced oscillatory motion [94]. With conventional bandpass

filtering methods, one can separate the periodical oscillatory component. However,

the bandpass filtering supposes that filters parameters (central frequency of each

filter, bandwidth,. . . ) are known. Since the conventional EMD failed to extract

(directly identify) the oscillatory component, another solution based on EMD has

been introduced by Benramdane [94]. He proposed to extract this component by

partial reconstruction of a number of IMFs empirically identified. Using the EMD-

RBS the decomposition is obtained with a reduced number of IMFs (II.15). The

number of IMFs generated by the conventional EMD (Fig. II.14) is larger than that

of the EMD-RBS (II.15). Furthermore, the oscillatory component is identified in

the last IMF, (Fig. II.15). To extract the same component from the extracted IMFs

by the conventional EMD, we sum IMF12 and IMF13.

II.5 Summary

In this chapter an insight on the EMD and some important works around it

are given. Most developed works are an alternative for more comprehension

of the EMD, then a real solution to some serious problems of interpretation of

some resulting IMFs of real world data. Then we propose a new sifting process,
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Figure II.13: Signal generated by an hydrodynamical system.

called the EMD-RBS, to improve the results of classical EMD. In case of a single

component embedded in noise, EMD-BSR with λ = 0.01, separates properly the

component. In addition, the EMD-RBS performs better than the conventional

EMD and the EEMD for separating the forced oscillatory component. In the

EMD diagram (Fig. II.7) the interpolation is integrated at the beginning of

the sifting process. Since the sifting is an iterative process, any approximation

error is propagated in the present loop (i) and also to the whole process. To

resolve this problem, instead of exact splines a smoothing spline interpolation

is used. A direct consequence on the EMD, is the reduction of the number of

insignificant IMFs. The smoothing spline has softly filtered the original signal. In

each sifting loop, the spline function pass through the filtering points. However,

decomposition of the same signal by conventional EMD, where interpolations

are performed by the cubic spline without regularization generates too much

insignificant IMFs (Fig. II.10). In the next chapter, the EMD-RBS is tested on a

multicomponent AM-FM signal and its performances compared to classical methods.

The contribution on this chapter is the following:

• Introduction of a new sifting process where smoothing interpolation instead of

exact interpolation, to construct the upper and lower envelopes of the signal

to be decomposed. The main advantages of this new sifting are to give the

EMD more robustness against noise and to reduce the number of unwanted or

insignificant IMFs of the conventional EMD (over-decomposition).

Based on a very important study done by Unser [109],[110] and Huang et al. [64],

we chose the cubic B-spline model. This type of interpolation or representation is
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Figure II.14: Extracted IMFs by conventional EMD from hydrodynamical measured
signal. In top square IMF1 to IMF5. The square of middle, IMF6 to IMF10 and
last one contain remainder IMFs and the residue.
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Figure II.15: Extracted IMFs by EMD-RBS from hydrodynamical measured signal.
In top square, IMF1 to IMF4. The square of middle, IMF5 to IMF8 and last one
contain remainder IMFs and the residue. The number of IMFs in the present figure
is less than the previous figure.
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useful in a variety of problems that are best formulated in continuous rather than

a discrete framework. Particularly, the search for extrema, differentiation, or the

integration are simple to perform in the transformed B-spline domain.
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D
emodulation approach of multicomponent AM-FM is proposed in this

chapter. This method combines the EMD and the ESA, designated as

EMD-ESA for short. A multicomponent AM-FM is first decomposed by

EMD into a set of IMFs, then the IF and IA of each IMF is tracked using the ESA.

We introduce different variants of the discrete version of the EMD-DESA. To im-

prove the tracking results, a continuous version of the approach is proposed. The

investigation is completed by a comparative study between the proposed methods

and the EMD-HT approach.
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III.1 Introduction

Estimating time-varying amplitude and frequency functions of a multicomponent

AM-FM signal is an area of active interest in signal processing domain. The aim

is to understand and describe situations where the frequency content of a signal

varies in time (non-stationary signal). Important features of non-stationary signal

are provided by IF and IA [12]. In areas such as in seismic, Radar or Sonar, signals

under consideration are known to be non-stationary. Thus, estimations of IF and IA

remains the best way for understanding hidden physical phenomena which generat-

ing measured data. More particularly, IF determines what frequencies are present

and how they change over time and the IA inform us how strong is the IF. But,

only meaningful IFs could really help one to explain the production, variation and

evolution of physical phenomena [12]-[65]. The interpretation of IF function may

be physically appropriate only for monocomponent signals where there is only one

spectral component and in narrow band of frequencies [12]-[32],[65]. Additionally,

to reveal true physical meaning of the IF, its estimation must be robust against noise.

Both the HT and the ESA, based on Teager-Kaiser Energy Operator (TKEO)

[83], are accepted demodulation methods provided that the analyzed signals are

monocomponents or narrow-bands. For multicomponents signals these demodula-

tions can not be applied. To extend these demodulation methods to wide-band

signals, a sub-band filtering is required. A solution to this problem is the EMD

which is a data driven sub-band filtering method [64]. We show in this chapter how

the EMD combined with the ESA can track both IA and IF features of signal in

both noise free and noisy environments.

III.2 Multicomponent AM-FM Signal Model

Monocomponent AM-FM signals are defined by

s(t) , a(t)cos(
∫ t

0
2πf(τ)dτ) (III.1)

s(t) , a(t)cos(φ(t))

this definition contain both AM function, a(t) and FM function, f(t). These signals

are largely used because that can efficiently modeled system as: (1) transmission

of information over communication channels; (2) target information in SONAR and

RADAR systems; (3) speech resonances. They are also often present in signals
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created and processed by some biological sources. The signal processing task that is

of interest is the extraction of the information bearing IF signal f(t) and IA signal

a(t) from the modulated signal s(t). Discrete time monocomponent AM-FM signals

are defined have the following form

s[n] = a[n]cos(φ[n]) = a[n]cos(
∫ n

0
2πf [k]dk), f [n] =

dφ

dn
[n] (III.2)

where, φ[n] is the instantaneous phase signal.

The superpositions of these discrete time monocomponent AM-FM signals give time

multicomponent AM-FM signals [46].
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Figure III.1: Two AM-FM components (M = 2)

s[n] ,

M∑

i=1

ai[n]cos(
∫ n

0
2πfi[k]dk)

︸ ︷︷ ︸

si[n]

,M ≥ 2 (III.3)

where ai[n],fi[n] are the IF1 and IA information signals corresponding to the ith

component si[n].

Parametric modeling estimation is proposed by Jabloun et al. [69],[68]. The IA

and IF are both approximated by low-order polynomials. The model parameters are

estimated via stochastic optimization techniques based on the simulated annealing

method. The approach is firstly applied on signals having short-time duration and

1It is assumed that signal φ[n] is a known mathematical function, that can be differentiated or
integrated yielding known computable functions. But, as shown in [84] any finite length discrete
time signal φ[n] can be expressed as a linear combination of cosines via the DFT. So, the above
restrictive assumption can be removed



CHAPTER III. INSTANTANEOUS FREQUENCIES AND AMPLITUDES
TRACKING 64

nonlinear AM/FM. Then, in [68] an extension of the method for the estimation

of highly nonlinear AM/FM signals of long-time duration is proposed. Benidir

in [8], the signal is modeled as a higher-order polynomial phase signal. First, an

exact decomposition of the derivatives of any polynomial φ(t) based on shifted

versions of this polynomial,i.e., φ(t − t0),...,φ(t − tn) is proposed in [50, 9, 10].

This decomposition is then applied to construct time-frequency distributions that

generalize the classical WVD and Ambiguity Function (AF) [8].

Other techniques do not assume polynomial modeling, where the IF and IA

tracking is performed via a combination of the EMD and the HT [64] or the TKEO

[19]. Even, the last approach share the assumption of the AM-FM signal model with

the parametric modeling approaches, we do not make an other assumption on the

models of IAs and IFs.

III.3 ESA or HT ?

Spectral estimation is the second step of the EMD. This consists in computing the IF

and IA functions for each IMF by using a demodulation method. An accepted way

is to use the Analytic Signal (AS) through the HT. This has made the AS method

the most popular method to define both IA and IF functions. A crucial necessary

condition for the AS method to give a physical meaningful IF is that the signal will

have to be symmetric with respect to the zero mean [64]-[65]. The HT uses the whole

signal (theoretically from −∞ to +∞). As we have a finite segment of signal the

window effect will distort its spectrum. Furthermore, it is not easy to accept the use

of a global operator as basis of a local estimation. An alternative way to estimate

IA and IF functions is the ESA [84]. Based on the TKEO, the ESA computes these

functions without involving integral transforms as in HT or FT; it is totally based

on differentiation. A distinct advantage of the TKEO is its good localization. This

property is the consequence of the differentiation based method. Thus, it is natural

to use local operator as basis for a local estimation such as IA and IF functions. The

advantages of the ESA are efficiency, low computational complexity and excellent

time resolution (5-sample window). It has been shown in speech processing that

the HT demodulation and the ESA produce similar results for speech resonance

demodulation, but HT approach has higher computational complexity [91]. A dis-

advantage of ESA compared to HT is its sensitivity in very noisy environment. To

reduce noise sensitivity, a more systematic approach is to use continuous-time expan-

sions of discrete-time signals to numerically implement the required differentiation
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with closed formulas [109]-[38]. A common limit of both HT and ESA is that they

can not handle multicomponent signals. Thus, two non-linear and local approaches,

ESA and EMD are combined here to track instantaneous features such as IA and

IF of a multicomponent AM-FM signal. Associated with the EMD which acts as

bandpass filter [116],[49] the ESA can handle multicomponent signals [22],[15]-[19].

Compared to Gabor filtering, EMD is a data driven approach that does not require

neither the number of filters and the associated impulse responses, nor the band-

width parameters [37]-[38]. Since IMFs are represented by spline functions, their

smoothed derivatives can be obtained to compute TKEO and then in turn used in

ESA to estimate IA and IF functions. Finally, this process adds robustness to ESA.

Our contributions for IFs and IAs tracking are :

• Coupling two local and nonlinear approaches namely EMD and ESA (EMD-

ESA) as the basis of a multicomponent signal analysis framework. Moreover,

we have studied different discrete versions of the EMD-ESA approch, depend-

ing on the derivation choice. And then, a continuous version of the approach

is finally proposed. This new approach is used for tracking IFs and IAs of

multicomponents AM-FM signal with additive white Gaussian Noise.

• Compared to Gabor-ESA approach where bandpass filtering (filterbank of Ga-

bor filters) is determined by a set of parameters, the proposed EMD-ESA re-

quires only one input parameter (SD value). Indeed, each Gabor filter requires

two parameters: the central filter frequency and the rms bandwidth. Thus, to

analyze a signal of K components the Gabor-ESA necessitates 2K parameters.

While Gabor-ESA supposes that K is known, the EMD-ESA determines this

value automatically. Compared to Gabor filtering, the EMD is a data driven

approach.

III.4 HT demodulation

The IF is obtained from the phase of a complex signal z(t). Gabor introduced the

HT to generate an unique complex signal z(t), AS, from real signal s(t) and thus

removing ambiguity of the infinitely possible pair combinations of amplitude a(t)

and phase φ(t) functions to represent s(t) [52]. The Analytic Signal (AS) is defined

as

z(t) = s(t) + iH[s(t)] = a(t)eiφ(t) (III.4)

Where i =
√
−1 and H[s(t)] is the HT of any signal s(t) ∈ L2 class given by
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Figure III.2: AS of the two AM-FM components, this representation shows in 3D the
complex form of the signal, with their imaginary part and real part. The horizontal
axis contain the samples points position. We note that a projection of this signal in
the plane (Real part-sample) give the real signal, figure (III.1)

H[s(t)] =
1
π

P
∫
∞

−∞

s(τ)
t− τ dτ (III.5)

with P indicating the Cauchy principal value of the integral. The canonical pair of

IF and IA, [a(t), f(t)], associated with s(t) are derived from the AS as follows:

a(t) =
√

[s(t)]2 +H[s(t)]2 and φ(t) = arctan




H[s(t)]
s(t)



 (III.6)

The IF is simply

f(t) =
1

2π
dφ(t)
dt

(III.7)

III.5 TKEO

There are apparently more than one way to derive the basic definition of the TKEO

(Eq. (III.8)):

Ψ(x) = (ẋ)2 − xẍ (III.8)

In fact, in the first articles by H. M. Teager [106],[107], no definition was given; only

plots forms of the TKEO were shown. The first article by Kaiser [71] also shows

traces of this and, only the discrete definition is investigated and explained. This

article looks at the process that generated the signal, and shows how we can express

the energy from the signal as a simple and elegant (discrete) function. The Teager

Operator has since been defined for continuous signals, both real and complex ones.
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Kaiser used the following differential equation as a starting point for the operator:

d2x

d2t
+
K

M
x = 0 (III.9)

This second order differential equation describes an object with mass M sus-

pended by a string with constant K. We can regard this as a simple (but incomplete)

model of a mechanical-acoustical system, where the object may oscillate, thus

creating pressure waves in the surrounding medium 2.

The solution of equation (III.9) is a periodic oscillation given by

x(t) = acos(ωt + φ) where x(t) is the position of the object at time t, a is

the amplitude of the oscillation, ω =
√
K
M

is the frequency of the oscillation, and

φ is the initial phase. If φ 6= 0, we have that the object is not initially in equilibrium.

Substituting υ = dx
dt

, and x(t) = acos(ωt+ φ), the total energy 3 can be written

as,

E =
1
2
Mω2a2 (III.10)

From this, we immediately see that the energy of the object is proportional to

both a and ω. Note that the energy E is implicitly a function of time.

III.5.1 Discrete energy demodulation

TKEO is a tracking-energy operator introduced by Kaiser [71]. The continuous

version of the TKEO, Ψ, when operating on continuous-times signal s(t) is given by,

Ψ[s(t)] ∆= (ṡ(t))2 − s(t)s̈(t) (III.11)

Where ṡ(t) = ∂s(t)
∂t

. A discrete form of Ψ noted Ψd is given by:

Ψd[s(n)] ∆= s2(n)− s(n+ 1)s(n− 1) (III.12)

A useful and important property of Ψ operator is its behavior when applied to AM-

FM signal s(t) defined by equation (III.1). The output of Ψ of such signal is given

by [84]

2None of the medium’s characteristics are included in the model
3The total energy of the object is in Newtonian physics given as the sum of the potential energy

of the spring and the kinetic energy of the object, given by: E = 1

2
Kx2 + 1

2
Mυ2



CHAPTER III. INSTANTANEOUS FREQUENCIES AND AMPLITUDES
TRACKING 68

Ψ[s(t)] ≈ a2(t)φ̇2(t) (III.13)

The output of Ψ for the derivative of the signal s(t) has the form,

Ψ[ṡ(t)] ≈ a2(t)φ̇4(t) (III.14)

Thus, with negligible approximation error under general realistic conditions, equa-

tion (III.13) shows that the output of Ψ is the squared product of a(t) and the

time-varying phase derivative φ̇(t). The relation between IF and the phase function

is given by in equation (III.7). The ESA demodulation [83] is obtained when we

combine relations (III.13) and (III.14) as follows,

f(t) ≈ 1
2π

√
√
√
√

Ψ[ṡ(t)]
Ψ[s(t)]

, | a(t) |≈ Ψ[s(t)]
√

Ψ[ṡ(t)]
(III.15)

The ESA has found many applications [83],[19] and particularly is speech processing

[84]. As indicated, the demodulation (Eqs. (III.15)) is valid provided that narrow-

band assumption of signal s(t) holds. By passing the continuous-time derivation in

equations (III.13)-(III.14) to discrete differences, one obtains three discrete versions

of the ESA [83].

III.5.1.1 DESA-1a

The "1" implies the approximation of derivatives with a single sample difference and

"a" refers to the use of asymmetric difference. The IA and IF functions of each IMF

(mode k), are approximated as follows [83] :

f(n) ≈ arccos



1− Ψ[s(n)− s(n− 1)]
2Ψ[s(n)]



 (III.16)

|a(n)| ≈
√
√
√
√

Ψ[s(n)]

1− (1− Ψ[s(n)−s(n−1)]
2Ψ[s(n)]

)2
(III.17)

III.5.1.2 DESA-1

In this version the action of Ψ on asymmetric derivatives is partially symmetrized

by averaging the action of Ψ on two opposite asymmetric derivatives. The IA and
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IF functions are given by the approximation formulas [83], as follows:

y(n) = s(n)− s(n− 1)

f(n) ≈ arccos



1− Ψ[y(n)] + Ψ[y(n+ 1)]
4Ψ[y(n)]



 (III.18)

|a(n)| ≈
√
√
√
√

Ψ[s(n)]

1− (1− Ψ[y(n)]+Ψ[y(n+1)]
4Ψ[y(n)]

)2
(III.19)

III.5.1.3 DESA-2

The "2" implies the approximation of first-order derivatives by differences between

samples whose time indexes differ by 2. According to [83], like the two previous

versions, IA and IF functions are given by following approximations:

f(n) ≈ 1
2

arccos



1− Ψ[s(n+ 1)− s(n− 1)]
2Ψ[s(n)]



 (III.20)

|a(n)| ≈ 2Ψ[s(n)]
√

Ψ[s(n+ 1)− s(n− 1)]
(III.21)

The three algorithms DESA-1a, DESA-1 and DESA-2 should be applied only to

monocomponent signal. Thus, s(t) in the formulae of different DESA is considered

as monocomponent signal.

III.5.2 Continue energy demodulation

B-splines play an important role in the sifting process as all extracted IMFs of de-

composed signal are linear combinations of splines. As can be seen in the EMD

diagram (Fig. II.7) the interpolation is integrated at the beginning of the sifting

process. Since the sifting is an iterative process, any approximation error will be

propagated in the present loop (i) and also to the whole process. To resolve this

problem we carefully handle the interpolation step and we propose a new sifting

process. For highly oscillating signals, especially noisy data, instead of exact splines

we use a smoothing spline interpolation and thus the number of insignificant IMFs

is reduced. These representations are used in problems that are best formulated in a

continuous rather than in a discrete framework [109]. In sifting process, spline func-

tions are used to interpolate extrema of signal envelopes. As IMFs are represented
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by B-splines, it is very natural to perform computational tasks such as differentia-

tion in the B-splines domain [109]. In this respect, B-splines version of the ESA can

be derived [91],[37]-[38] and particularly for noisy signals [15]. Thus, with B-splines

one has a good equivalence between finite differences and differentiation. The aim

is to have an ESA with closed formulae. In general, one may choose between an

exact representation which is to be preferred for noise free signals or an approxi-

mate representation which is more robust to noisy signals [109]. Note that other

approaches such as trigonometric interpolation can be used. Trigonometric interpo-

lation is useful from an analytic point of view, but computationally it is much more

expensive than B-splines [110]. In this section both exact and smoothed splines are

investigated.

III.5.2.1 Demodulation by exact splines

B-splines are the basic atoms for constructing spline functions. One operation that

is essentially simple to manipulate is differentiation. It has the same effect on

splines as it has on polynomials. It reduces the degree by one [110]. Thus one can

calculate spline derivatives by applying finite differences to the B-splines coefficients

of the representation.

Extracted IMF can be written in terms of a B-spline expansions as follows [64]:

IMFnj (t) =
∑

k∈Z

cj [k]βnj (t− k) (III.22)

where βnj (t) and cj [k] are the Schoenberg’s central B-spline of order n [99] and the

B-spline coefficients of the jth mode, respectively. The coefficients cj[k] can be

calculated either by solving a linear system, matrix approach [34], or by recurrent

filters [109].

The signal IMFnj (t) (Eq. (III.22)) is a continuous-time expansion of an original

discrete signal. The head-on idea of the new EMD-ESA-based demodulation is to

compute the continuous-time energy operator Ψ and the continuous ESA to the

continuous-time signal IMFnj (t), instead of applying the discrete energy operator Ψd
and the DESA on a discrete signal.

Since IMFs are a narrow band components [64], the ESA can be applied to estimate

their IFs and IAs. For sake of clarity IMFnj (t) is replaced by gnj (t), then the output

of TKEO for gnj (t) and ∇gnj (t) are:
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Ψ[gnj (t)] = [
∂gnj (t)
∂t

]2 − gnj (t)
∂2gnj (t)
∂t2

(III.23)

Ψ[
∂gnj (t)
∂t

] = [
∂2gnj (t)
∂t2

]2 − ∂gnj (t)
∂t

∂3gnj (t)
∂t3

The IF, fj(t), and the IA, aj(t), of the jth IMF are written as follows [14]:

aj(t) =
Ψ[gnj (t)]

√

Ψ[∇gnj (t)]

fj(t) =
1

2π

√
√
√
√

Ψ[∇gnj (t)]
Ψ[gnj (t)]

(III.24)

where ∇(.) ≡ ∂(.)
∂t

.

In order to formulate the ESA B-Splines (ESA-BS), the first derivatives of IMF are

calculated.The closed form of the TKEO for the IMF and their first derivative is

given by (Appendix.B):

Ψ[gnj (t)] = [
∂gnj (t)
∂t

]2 − gnj (t)
∂2gnj (t)
∂t2

Ψ[gnj (t)] = [
∑

l∈Z

(ck[l]−cj [l−1])βn−1
j (t−l+1

2
)]2−][

∑

l∈Z

cj[l]βn(t−l)[
∑

l∈Z

(cj [l+1]−2cj[l]+cj [l−1])βn−2
j (t−l)]

(III.25)

Ψ[∇gnj (t)] = [
∂2gnj (t)
∂t2

]2 − ∂gnj (t)
∂t

∂3gnj (t)
∂t3

Ψ[∇gnj (t)] = [
∑

l∈Z

(cj[l + 1]− 2cj[l] + cj [l − 1])βn−2
j (t− l)]2−

∑

l∈Z

(cj [l]− cj [l − 1])βn−1
j (t− l +

1
2

)
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∑

l∈Z

(cj[l + 1]− 3cj[l] + 3cj[l − 1]− cj [l − 2])βn−3
j (t− l +

1
2

) (III.26)

For a cubic-B-splines we give the closed form expressions of the EMD-ESA-BS.

Lets the sequence {ti}i=0,1,...,M−1 the Knots of the B-Spline; then, in each interval

[ti, ti+1] the signal g(t) (ie., IMF) is approximated by the spline function of third

order. Thus we have:

g3
j (t) = cj[1]t3 + cj [2]t2 + cj [3]t+ cj[4]

then in, [ti, ti+1] ESA-BS is :

aj(t) =
A(t) +B(t)
√

C(t)
(III.27)

fj(t) =
1

2π

√
√
√
√

C(t)
A(t) +B(t)

(III.28)

where,

A(t) = 3c2
j [1]t4 + 4cj[1]cj[2]t3 + 2c2

j [2]t2,

B(t) = (2cj [2]cj[3]− 6cj[1]cj[4])t+ c2
j [3]− 2cj[2]cj[4],

C(t) = 18c2
j [1]t2 + 12cj[1]cj[2]t+ 4c2

j [2]t− 6cj[1]cj[3]. (III.29)

In exact splines, the interpolating polynomial pass exactly through the signal sam-

ples. Unfortunately, as will been shown for noisy signals (see Results section) the

exact fit may not be even desirable. The obtained results are disappointing. In case

of very noisy data, one has to use B-spline approximation functions passing closely

but not exactly through the signal samples using smooth splines [110]. To improve

the performance of the ESA-BS method in very noisy environment smoothed splines

are used. This is done by relaxing the interpolation constraint and to find a function

(solution) of order n = 2r − 1 that minimize E (Eq. (II.9)).

Once the smooth spline function for each IMF is calculated, the next step is to

integrate it to ESA algorithm following the same steps as for the ESA-BS method.

The obtained method is termed ESA Regularized B-Splines (ESA-RBS).
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Figure III.3: Decomposition of the noisy AM-FM signal, s(t), (SNR=20 dB) with
EMD
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Figure III.4: Decomposition of the noisy AM-FM signal, s(t), (SNR=20 dB) with
modified EMD



CHAPTER III. INSTANTANEOUS FREQUENCIES AND AMPLITUDES
TRACKING 74

III.6 Results and Discussion

For the conducted experiments we used parametric AM-FM signals with different

levels of white Gaussian noise, the first line in figure (III.3) shows noisy version

of the AM-FM signal. Their analytical expression is given by the following equations:

s(t) = s1(t) + s2(t) + n(t)

where n(t) is the added noise.

si(t) = a(t) cos[φi(t)] (III.30)

ai(t) = 1 + κi cos(ωait) (III.31)

φi(t) = ωcit+ βi sin(ωcit) (III.32)

where, i = {1, 2}, κ1 = 0.4,κ2 = 0.8 are the modulation index. The parameters of

s1(t) are: ωa1 = π0.02, ωc1 = 2π0.250, β1 = 1.8 is the depth of modulation. For

s2(t): ωc2 = 2π0.125, β2 = 0.9.

The signal s(t) is decomposed into a set of IMFs. Most of the experiments give s1(t)

and s2(t) in first and second IMFs, respectively. Sifting of s(t) at 20dB of the EMD

(Fig. III.3) and the EMD-RBS (Fig. III.4) generate both 7 IMF components.
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Figure III.5: IAs estimation of noise free signal, s(t), by EMD-ESA-BS

Comparison of the estimated IF and IA functions of the two AM-FM compo-

nents shows that the EMD-ESA-RBS improves the demodulation results. The

performance of the methods are evaluated through MSE and error in IF (IA)
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Figure III.6: IFs estimation of noise free signal, s(t), by EMD-ESA-BS

estimation. In each figure, we have depicted the input signal, s(t), the desired

IF (IA) components, the associated estimates and the estimation errors. We

have first tested the accuracy of the proposed EMD-ESA-BS on noise free signal

(SNR >> 0). Estimated IF and IA functions of s(t) (n(t) = 0) are shown in

figures (III.6) and (III.5), respectively. These figures show that the application of

the EMD-ESA-BS results in a successful estimation of the IA and IF components

with very small errors less than 5.10−3. In both cases we note few small ripples in

the estimated components due essentially to the mode mixing phenomenon of the

EMD [64].

Results in Table (III.1) present empirical evidence that EMD-EAS-BS performs

Approche s1(t) s2(t)
EMD-ESA(Discrete version) 0.002200 0.000103

EMD-ESA-BS(Continuous version) 0.000301 0.000070

Table III.1: Mean Square Error between estimated IFs and real ones for the noise
free signal.

better than its discrete version, EMD-ESA, in separating and tracking frequency

components.

In the following, we analyze the performance of the EMD-ESA-RBS on the signal

s(t) at 20 dB and compare the demodulation results to five established methods,

namely EMD-HT, EMD-ESA-BS, EMD-DESA1, EMD-DESA1a and EMD-DESA2.

These results are illustrated in figures (III.7)-(III.18). The approaches EMD-EAS-
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RBS (Fig. III.10) and EMD-EAS-BS (Fig. III.9) perform better in estimating IF

components than other four methods (Figs. III.15, III.16, III.17, III.18) with small

errors of 2.10−3 and 6.10−3 respectively.
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Figure III.7: IA estimation of signal s(t) (SNR= 20dB) by EMD-ESA-BS
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Figure III.8: IA estimation of signal s(t) (SNR= 20dB) by EMD-ESA-RBS

We note that the EMD-DESA1 (Fig. III.16) have better performance than the

EMD-HT (Fig. III.15), the EMD-DESA1a (Fig. III.17) and the EMD-DESA2 (Fig.

III.18). Except the EMD-EAS-RBS and the EMD-EAS-BS, the other methods

show abnormal peaks reaching large amplitudes. This is also confirmed by the

results depicting the estimation errors (Figs. III.15, III.16, III.17, III.18).

Furthermore, we see that the DESA1 (Fig. III.16) performs quite well compared
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Figure III.9: IF estimation of signal s(t) (SNR= 20dB) by EMD-ESA-BS
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Figure III.10: IF estimation of signal s(t) (SNR= 20dB) by EMD-ESA-RBS
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Figure III.11: IA estimation of signal s(t) (SNR= 20dB) by EMD-HT
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Figure III.12: IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA1
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Figure III.13: IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA1a

to DESA1a (Fig. III.17) and DESA2 (Fig. III.18). This is mainly due the fact that

the DESA1 uses at each instant three samples while the DESA1a and the DESA2

are limited to two samples. For IA estimation, the performances of the six methods

are similar (Figs. III.7, III.8, III.11, III.12, III.13, III.14) but the best result is given

by the EMD-ESA-BS (Fig. III.7).

Now, we compare the performance of the six demodulation methods in term of

MSE as function of input SNR fixing λ equal to a constant value (Fig. III.19).

As can be seen in the range [-10dB, 0dB] except the EMD-ESA-RBS, the MSE

of all the methods first increase and decrease. Across the same range the EMD-

ESA-RBS decreases rapidly and shows significant performance improvement over

the other methods. In noisy environment, signals have large variations and sharp

edges and the need of smoothing factor is apparent. Thus, the performance of the

EMD-ESA-RBS is expected because the smooth BS gives the method robustness in
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Figure III.14: IA estimation of signal s(t) (SNR= 20dB) by EMD-DESA2
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Figure III.15: IF estimation of signal s(t) (SNR= 20dB) by EMD-HT
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Figure III.16: IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA1



CHAPTER III. INSTANTANEOUS FREQUENCIES AND AMPLITUDES
TRACKING 80

50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
IF of s1(t) 

real IF1
calculated IF1

50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
IF of s2(t)

real IF2
calculated IF2

50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Samples

Error

IF1 error
IF2 error

Figure III.17: IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA1a
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Figure III.18: IF estimation of signal s(t) (SNR= 20dB) by EMD-DESA2

the presence of noise. In the same range, the EMD-ESA-BS performs less than the

EMD-ESA-RBS mainly due to exact BS fitting which is responsible of the increase

of the MSE, as the noisy samples insert a significant error. However in moderately

noisy environment, [0dB, 10dB], the EMD-ESA-BS performs better than the other

methods.

In the range [10dB, 17dB] the DESA1 gives the best estimation results in

term of MSE. Toward higher SNR values (≥ 20dB), the performance of the six

methods become similar and converge, but the best results are given the BS-based

methods (Fig. III.19). Figure (III.20) compare the MSE curves of the six methods

for IA estimation. As can be seen, the EMD-ESA-RBS performs better than the

other methods in the range [-10dB, 5dB]. Note that the EMD-ESA-BS performs

less better due to the exact BS fitting. The EMD-DESA2 and the EMD-ESA-BS

provide good estimates of IA in the range [5dB, 14dB], while the better estimates
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Figure III.19: MSE as function of input SNR for different IF estimations of signal
s2(t)
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Figure III.20: MSE as function of input SNR for different IA estimations of signal
s2(t)
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are obtained by the EMD-DESA1 in [14dB, 21dB]. As in figure (III.19) for

higher SNR values (≥ 21dB), the performance of all methods become similar (Fig.

III.20). Even from low to high SNRs (Figs. III.19, III.20), BS-based methods show

significant performance improvement as compared to the other methods, these

results are conditioned by the estimation of the optimal value of λ. A careful

examination of results depicted in figures (III.19) and (III.20), shows that except

for low SNR values ([-10dB, 0dB]) and higher ones (≥ 20dB) the BS-based methods

do not provide the better estimates of IF and IA in the same ranges of SNR values.

This again shows the difficulty to find an optimal λ value for both IA and IF

estimations.

III.7 Summary

In [19],[22] the demodulation using the EMD and the DESA1 has been introduced.

Furthermore, we suggest in this thesis to combine also the DESA1a or DESA2 with

the EMD as a demodulation approach for estimating IFs and IAs of multicompo-

nents AM-FM signal. Generally DESAs demodulators give comparable performance

with regards to the approximation errors for large classes of signals. Since DESA-2

offers the lowest computational complexity, it is the most widely utilized among the

three versions [79]. The goal of these combinations is to overcome the narrowband

assumption imposed by Maragos [84].

The EMD-DESA works well in free and in moderate noisy environment, but as

the EMD-HT it performs poorly for very noisy signals. The EMD-DESA limitation

is due to the sensitivity to noise of the TKEO which is based on the differentiation

of the signal. Thus, to reduce noise sensitivity a more systematic approach is to

use continuous-time expansions of discrete-time signals to numerically implement

the required differentiations without approximation. Since IMFs are represented

in B-spline expansions [64], a close formulae of the ESA is derived. Also, using a

regularized version of B-splines for interpolation in EMD process, more robustness

and better estimation of IF and IA functions compared to exact version of B-splines

are obtained. In chapter II, we have shown the interest of the new sifting process for

IMFs extraction compared to both the conventional EMD and to the EEMD. In this

chapter the performances of such sifting are also confirmed for tracking IA and IF

functions in noisy environment. Findings of chapters II et III illustrated the interest

to use smoothing instead of interpolation in the sifting processing. These results can
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be improved by establishing a rigorous strategy to find an optimal regularization

parameter for each analyzed signal (data driven parameter).
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W
e introduce here a new TFR named Teager Huang Transform (THT).

Unlike the classical approaches the THT dose not need any predefined

decomposition basis or parameters. The philosophy of this TFR is

the same as the Hilbert Huang Transform (HHT) [62], except that for THT the

analyzed signal is demodulated using the ESA instead of HT. The THT is illustrated

on synthetic signals with different IF laws. For each signal, the result of the THT is

compared to that of the spectrogram, the scalogram, the WVD, the SPWVD, the

reassigned SPWVD and the HHT. We analyze the results given by each approach

and discuss the limits of each TFR.
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IV.1 Introduction

TFRs presented in the first chapter have a common point, they are all Fourier ker-

nel dependent and they provide a TF map of the analyzed signal. The strength of

using TFR compared to time or frequency representation, is their capacity to quan-

titatively resolve changes in the frequency content of nonstationary signal. Their

major weaknesses in some cases, is to generate representations that are meaningless

or difficult to interpret. For example, the WVD by definition generates added cross

terms identifiable some times in the TFR. For others TFRs, finding a decomposition

kernel that can optimally represents the original signal is a great challenge: when

one is faced to an inexplicable plots resulted by STFT of an analyzed signal, this

fact lets us usually suspect the length of the analyzing windows due to the Heisen-

berg identity. Even the WT for some applications (data coding,. . . ) could perform

better than others kernel-based TFRs, the type of the wavelet that one must use

for a better data analysis remains a serious issue. We introduce here a TFR named

Teager Huang Transform (THT). Unlike the classical approaches, the THT does not

need any predefined decomposition basis. The principle of this TFR is the same as

that of the HHT [62] except that the analyzed signal is demodulated using the ESA,

presented in the previous chapter. Unlike the HHT, the THT is not limited by the

Bedrosian theorem. However, until now the THT is still used just as a representation

of the signal. No TF attributes or other relevant information (marginals,. . . ) are

derived from such representation. We propose in this chapter a mathematical for-

mulation of the TF map of the THT such as some useful definitions or informations

such as the marginals or stationarity index can be calculated. Furthermore, this new

formulation allows the extension of the application field of the THT (Chapter V). In

this chapter, THT is applied to synthetic signals of different frequency laws and to

real world signal. In each case, the result of THT is compared to the ones given by

the spectrogram, the scalogram, the WVD, SPWVD and the reassigned SPWVD.

IV.2 Teager-Huang Transform

The IFs of the IMFs give sharp identifications of embedded structures of the analyzed

signal. Taken collectively, the spectra given by the HT or the ESA of the IMFs yield

an energy distribution about the original signal in the TF plane. A common method

for displaying the spectra derived from the IMFs is to generate a two-dimensional plot

with time and frequency axes. The IA is then plotted as a color spectrogram in the

TF plane. In this chapter, the IF and the IA of s(t) are estimated by combining the

EMD with the TKEO, which is typically applied to a bandpass signal [19]. As it has
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Figure IV.1: IFs and IAs estimating by EMD-ESA

been shown in chapter III and [14],[15]. If s(t) is a multicomponent AM-FM signal,

then bandpass filtering is needed to separate each component before applying the

ESA. Thus, the EMD is used as a multiband filtering(see Appendix. A) to separate

the signal components in the temporal domain and hence reduce multicomponent

demodulation to monocomponent one. The conjunction of the EMD with the TKEO

methods is designated as THT [24]. The block diagram of THT shown in figure

(IV.1), is divided into two parts: separation of the signal into IMFs using the EMD,

and demodulation of the separated components (IMFs) into IF and IA signals for

each component using the ESA.

IV.3 Teager-Kaiser spectrum

For the AM-FM signal, in the previous chapter (cf, chapter.III), we study the

accuracy of different approaches; the components are identified manually. In general

with THT, the spectrum of a given signal is resulting from all their IMFs. Generally,

it is observed that insignificant IMF has weak amplitude and are dominated by the

strong ones [35, 64].

After applying the ESA to each IMF component of s(t), we can express this

original signal in the following form:

s(t) = ℜ
(
N∑

j=1

aj(t) exp(i
∫

2πfj(t)dt)

)

+ rN(t) (IV.1)
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ℜ stands for "real part". If we neglect rN(t), which is either a monotonic function

or a constant, relation (IV.1) is reduced to

s(t) = ℜ
(
N∑

j=1

aj(t) exp(i
∫

2πfj(t)dt)

)

(IV.2)

Equation (IV.2) gives both amplitude and frequency of each component as functions

of time. If we now expand s(t) in a Fourier representation, we obtain:

s(t) = ℜ
(
∞∑

j=1

aj exp(i2πfjt)

)

(IV.3)

where aj and j are constants. A comparison of the two representations in equations

(IV.2) and (IV.3) suggests that the IMF and the associated DESA outputs can be

considered as generalized Fourier expansion. The main advantage of this expression

over Fourier one is that it accommodates nonstationarity of s(t). Equation (IV.1)

enables us to represent IA and IF as functions of time in a three-dimensional plot, in

which the amplitude is contoured on TF plane. The weight assigned to each TF cell

is the local spectrum amplitude. We interpret the amplitude (or energy) depending

on time and frequency as the Teager-Kaiser Spectrum (TKS) denoted by K(t, f).

Formally, this is defined as follows.

Let the signal s(t) be represented in the form (IV.1). The TKS (amplitude) is

defined as,

K(t, f) = K(t, f(t)) :=







a1(t) on the curve {(f1(t), t); t ∈ R}
a2(t) on the curve {(f2(t), t); t ∈ R}
...

aN(t) on the curve {(fN(t), t); t ∈ R}

(IV.4)

This TFR can also be written as:

K(t, f) =
N∑

j=1

aj(t, fj(t)) =
N∑

j=1

aj(t, f)δ(f − fj(t)) (IV.5)

The marginal TKS is defined as

k(f) =
∫ T

0
K(t, f)dt, (IV.6)

where T is the time signal duration. Function k(f) measures the total amplitude

(or energy) contribution from each frequency value. It represents the cumulated

amplitude over the entire signal span in the probabilistic sense. The associated
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mean marginal spectrum is given by
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Figure IV.2: (a) On top a sinusoidal signal, on bottom the corresponding Fourier spectrum
and mean marginal TKS in black and red colors, respectively. (b) THT (EMD-ESA) of
the signal
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ms(f) =
1
T
k(f) (IV.7)

We have to note that the Fourier spectrum remains the best way for the extraction

and localization of fixed frequencies in case of stationary signal. In figure (IV.2.a),

the Fourier spectrum has localized harmonic component better than the marginal

TKS. Last, as it has been noticed by Huang et al. [64] for the marginal Hilbert

spectrum1, the marginal spectrum k(f) has a different meaning from the Fourier

spectral analysis. In the THT or HHT, the existence of spectrum at a given

frequency f means that in the time span of the signal, there is a high likelihood for

a component of sinusoidal wave to appear locally.

The degree of stationarity over the whole signal x(t) is given by

SD(f) =
1
T

∫ T

0

(

1− K(t, f)
ms(f)

)2

dt (IV.8)

This definition of degree of stationarity is similar to the intermittency used in wavelet

analysis [64],[86]. The closer to zero SD(f) is, the more stationary the signal. Sta-

tionary signals should have horizontal contours in the TKS. Using the TKS, we can

derive the energy fluctuation on the signal x(t), which is given by the Instantaneous

Energy (IE) defined by :

IE(t) =
∫ T

0
K2(t, f)df (IV.9)

The function IE(t) is an indication of energy fluctuation with time being weighted

by the TKS localized energy over the entire set of sifted IMFs.

IV.3.1 TKS generation

The generation of the TKS could be summarized in two steps. First, the EMD

breaks-down the original signal into a set of IMFs, and secondly, these components

are used for generation of 3D plot, which is the TKS. The plot represents the vari-

ation of frequency and amplitude (or energy) of IMFs over time. Frequency and

amplitude of each IMF are obtained by the ESA. Then, the function K(t, f) is

generated as follows :

1. Extract IMFs from input signal.

2. Estimate the instantaneous attributes (aj(t), fj(t)) of jth IMF.

1By definition: A time integration of the Hilbert spectrum (HHT) is a reduced frequency-energy
representation and is defined as the marginal spectrum [66].
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3. Generate a 3D plot, K(t, f), where the amplitude is contoured in the TF plane.

Like the Hilbert spectrum (or HHT), the TKS does not define an explicit equation

that maps a 1D signal into a 3D representation that provides information about

time, frequency and amplitude (or energy).

IV.4 Results and discussions

The THT is illustrated by two synthetic signals with IFs laws shown in figures

with red color. For each signal, the result of the THT is compared to that of the

spectrogram, the scalogram, the WVD, the SPWVD, the reassigned SPWVD and

the HHT.

IV.4.1 Example 1: Hyperbolic frequencies law

The signals in this section and others signals are generated by the MATLab Toolbox

[5]. To compare easily the results given by the TFR, we plot in each one the real

frequency laws in red color. The first demonstration is done on FM signal having

two hyperbolic frequencies laws, such signal are often used in RADAR and SONAR

systems for the detection and localization of targets [56]. One can also use such

signals for localizing the position of target [81].

The first TFR applied for analyzing the signal is the spectrogram defined by

equation (I.5). The spectrum illustrated in figure (VI.14.a) shows an acceptable fit

between the real law and the calculated spectrum, but this one, as it is clear in the

plot, lacks accuracy. Even if the calculated spectrogram of the signal includes the

real law, and this fact lets one thinks that the spectrogram in this case could localize

easily the frequency law. In fact, in practice this task can be more complicated.

Indeed, in this example the first attempts to calculate the spectrogram was very

disappointing. One has to correctly adjust some parameters. Figure (VI.14.b)

shows the spectrogram of the signal where the length of the window (h) is chosen

arbitrary, the number of overlaps samples in each segment of signal has not be fixed

adequately, and the number of frequency points used to calculate the discrete FT is

too large. Here, we point out these technical issues, because these last are usually a

source of confusion and lead to a bad interpretation of the resulting spectrum. We

can make the same remarks for scalogram, where the Daubechies wavelets used as

basis of decomposition are not able to represent the signal. Consequently, the signal

spectrum is not well represented (Fig. VI.14.d). To improve the result, instead of
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Figure IV.3: TFRs of the signal s1(t). (a) Spectrogram with Length of window (Lw =
64), number of overlaps samples in each segment of signal (Nov = 32) and number of
frequency points (Nfft = 1024) (c) Spectrogram (Lw = 256, Nov = 64, Nfft = 1024)
(d) Scalogram performed by Daubechies wavelet (db2) and in scales S = [1 : 64] (d)
Scalogram (Morlet, S = [1 : 64]). The red dashed line corresponds to the real frequency
law.

the Daubechies wavelet we use the Morlet wavelet. In figure (VI.14.c) the shape of

the frequency law has been smoothed, but the estimated frequency law remains far

from the analytic one.

The TFR provided by the WVD (Eq. I.9) is shown in figure (IV.4.a). Except

the cross terms, the additional patterns in form of wings observed around the real

laws (Fig. IV.4.a), the WVD improves the result given by the spectrogram and

the scalogram. Furthermore, the window issue cited above is partially resolved.

Moreover after setting some parameters the SPWVD (Eq. I.10) has recovered the

frequency law and the cross-terms has been reduced (Fig. IV.4.b). But the choice

of the parameters such as time and frequency windows (g,h) and their adequate
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(a) (b) (c)
Figure IV.4: TFRs of the signal s1(t). (a) WVD. (b) SPWVD. (c) RSPWVD. The red
dashed line corresponds to the real frequency law

lengths bring new difficulties. In this example, the Kaiser window among others has

sufficiently improved the results but other windows could be used [5]. As a post

processing, we can use the RSPWVD (Eq. I.11) to enhance the final results (Fig.

IV.4.c).

Even if the results have been improved, neither the SPWVD nor the RSPWVD have

been qualified as real TFR, both are postprocessing and are irreversible transforms

[32].

The extracted local oscillations (IMFs) of s1(t) by the EMD are shown in figure

(IV.5). IMF1 and IMF8 denote the highest (fast oscillation) and the lowest (slow

oscillation) components of s1(t), respectively. The last component in the figure cor-

responds to the global trend of s1(t).

By means of some adjustments, all the previous TFRs could identify frequency

components. However, only the HHT (Fig. IV.6.a) and the THT (Fig. IV.6.b)

correctly separate the two hyperbolic FM signals. Even the SPWVD and the RSP-

WVD perform better than the spectrogram, the scalogram and the WVD, in term

of separation, show cross-terms around the mean values of the two hyperbola. The

cross-terms localization is depending on the frequency components repartition in the

TF plane of the analyzed signal. Larger is the cross-term, worst is the resolution.

For example, for the WVD, the loss of resolution is visible in time between t = 870

and t = 900, and in frequency between f = 0.15 and f = 0.5 for first hyperbola,

and between f = 0.3 and f = 0.5 for second hyperbola. Comparing the THT and

the HHT to other TFRs, it is easy to see that for the THT and the HHT both

components are well localized with no cross-terms. For the first hyperbola there is a

loss of TF resolution between f = 0.24 and f = 0.5, while no loss of TF resolution

cab be found in the second hyperbola.
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Figure IV.5: Decomposition of the signal s1(t) by EMD, the signal is plotted in the
first row, the IMF1 to IMF8 correspond to the rows 1 to 8, respectively. The last
one is the residue.
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Figure IV.6: TFRs of the signal s1(t)., (a) EMD-HT. (b) EMD-ESA. The red dashed
line correspond to the real frequency law

IV.4.2 Example 2: Monocomponent FM signal

The second study case deals with a moncomponent FM signal. The spectrogram

of this signal is shown in figure (IV.7.a), after some parameter adjustments have

been done for this signal (Lw = 32, Nov = 16, Nfft = 256), we have finally

recovered approximately the real frequency law. We have the same situation with

the scalogram (Fig. IV.7.b). The detection of the real frequency law could not

be automatically obtained without parameter adjustments; the Morlet Wavelets

being chosen for the analysis. The estimated spectrum by the scalogram has bad

resolution compared to the spectrogram and lacks of accuracy. The SPWVD (Fig.

(IV.7.c)) easily identifies the FM law. Expect at the beginning and at the end, the

real and the calculated spectrum are globally similar. The Reassigned version (Fig.

IV.7.d ) has effectively compensated shortcomings of the SPWVD. The RSPWVD

has a smoothing effect on the TF plot and shifted the calculated spectrum to be

close to the real FM law.

The HHT tracks directly the frequency component without any parameter

adjustments. However, poor resolution is observed in the end points of the signal.

Generally, the estimated instantaneous phase by the HT suffers from this problem.

Globally the frequency law is correctly identified by the HHT. However, the best

result is provided by the THT. The estimated spectrum represents perfectly the

real frequency law. This is mainly due to the instantaneous nature of the TKEO

that is well dedicated to estimate instantaneous measures such as the IF function.
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A comparative summary of Fourier analysis, WT and THT analysis is given in

table (Tab. IV.1). This table shows that the THT is powerful tool for analyzing

nonstationary signals derived from linear or nonlinear systems. The THT is based

on adaptive basis (data driven approach) derived from the signal itself. The IF or

IA are derived by differentiation rather than convolution and therefore the method

is not limited by the uncertainty principle. The results of the THT are presented in

time-frequency-energy space for feature extraction.

IV.5 Conclusions

From the obtained resulted we confirm that the STFT, the WT and the WVD are

well dedicated for analyzing nonstationary signals. However, both spectrogram and

scalogram remain parameters dependent. The quality results of such methods de-

pends on adaptation of the parameters (windows length, nfft, mother wavelet, etc) to

each analyzed signal. Thus these methods are not data driven approaches compared

to the THT. The obtained results also show the interest of the THT as a TFR. The

THT has some shortcomings, like others approaches. First, It can not analyse ade-

quately all type of signal, main problem the number of IMFs extracted by EMD is

proportional to the number of the original signal samples, that is mean, if the original

signal has not suffisant quantity of samples, the EMD is not able to extract all the

components composing the signal. Second, Even if the smoothed B-splines functions

have improve the conventional EMD in noisy environment (Gaussian Noise), but we

can not confirme this result for other type of noise. So this point can be investigated

in future work. However, compared to the WVD and the WT, the THT possesses

more traits: fine TF resolution and free of cross disturbance item of WVD. Further-

more, we do not need the model of the narrow-band components (IMFs) and their

number. Time resolution of the representation can be as precise as the sampling

period. More particularly, results of the THT are not prejudiced by predetermined

basis and/or sub-band filtering processes. The THT identifies, in all studied signals,

the TF structures with few loss of TF resolution and the obtained spectrum show

that the THT is able to track the time-varying characteristic of the signals. Also, the

obtained results show the interest to combine two local and nonlinear approaches,

the EMD and the TKEO, to process non-stationary signals. However, a large class

of synthetic and real signals are necessary to confirm these findings. Based on the

EMD, the THT shares the same limits. These shortcomings are essentially due to

two factors: a) the EMD is just defined by an algorithm (sifting) and b) the data

driven nature of the approach. The sifting depends on the interpolation process and

on the size of the standard deviation threshold, SD, which is used to determine the
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end of the sifting cycle. As consequence: the modes are not orthogonal but nearly

orthogonal and in certain cases the sifting does not produce components that satisfy

the requirements of an IMF. B-spline fitting used can create distortion near the end

points. Thus, the end effects in splitting need improvements.
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Fourier RTFs of Cohen class THT
Basis a priori a priori a posteriori adaptive
Theoretical base complete mathematical theory complete mathematical theory empirical
Frequency resolution convolution over global domain, convolution over global domain, instantaneous

uncertainty issue uncertainty issue certainty and physical meaning
Nonlinearity no no yes
Nonstationarity no yes yes
Representation energy in frequency plane energy in TF plane Amplitude or energy in TF plane
Feature extraction no discrete, no; continuous, yes yes

Table IV.1: Proprieties comparison of Fourier analysis, TFRs of Cohen class and THT.
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I
n this chapter a formulation of the detection problem of Linear FM (LFM)

signals (mono- or multicomponent) in the TF plane of the THT is presented.

The detection scheme combining the THT and the Hough Transform (HgT) is

termed the Teager-Huang-Hough-Transform (THHT). The input signal is mapped

into TF plane using the THT followed by the application of the HgT to recognize TF

components. LFM components are detected and their parameters estimated in terms

of peaks and their locations in the parameter space. The advantages of the THHT

over the HgT of the WVD are 1) a detection and estimation free of cross-terms and

2) good time and frequency resolutions. No assumptions are made about the number

of components and their models. The THHT is illustrated on multicompoent LFM

signals in free and noisy environments and the results compared to WVD-HgT and

the PSWVD-HgT.
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V.1 Introduction

Linear Frequency Modulated (LFM) signals or commonly known chirp signals are

frequently encountered in many applications such as Radar, Sonar and telecom-

munications. Thus, the detection and the estimation of such signals are of great

importance. Different strategies have proposed for chirp detection. Although, the

generalized likelihood ratio test has been reported to be optimal for chirp detection

[74], it requires too much computational complexity to support practical applica-

tions [51]. Methods based on Maximum Likelihood (ML) estimator [1],[40] are also

used but heavy computational complexity is generally needed for high estimation

accuracy [80]. TF based methods have been reported to be effective for detecting

and estimating LFM signals [6]-[2]. These techniques have attracted considerable

attention and prove themselves to be effective among others [112]. The first TF

approach involved spectrogram [2]. However, the spectrogram suffers from the fixed

time and frequency resolution due to the fixed window length and is not a totally

interferences-free representation [54] which limited its application to LFM detection.

The WT can also be used for LFM detection because it is not limited by the fixed

window constraint. However, it suffers from some interferences and has a poor fre-

quency resolution [54]. Due to its high TF localization, the WV is optimal in the

sense of maximum energy concentration about the IF, for LFM signals [54]. For

such signals, the VWD detection approach computes the line integral of the WVD

along all the lines the TF plane. The line that produces the maximum value cor-

responds to the ML estimate of the linear IF of the chirp. Thus, the principle of

the method is to track straight lines in the TF plane into locating maxima in two-

dimensional (initial frequency versus chirp rate) plane [112]. This tracking can be

obtained by combining the WVD with HgT [6] or with Radon transform [114]-[112].

As previously mentioned, the WVD suffers from high interferences (cross terms)

which always occur midway between each pair of signal components, whether the

auto-WVDs overlap or not.

V.2 Hough-Transform

HgT is a feature extraction technique essentially used in image processing for detect-

ing geometric curves (lines, circles . . . ) in binary point images such as object detec-

tion [57], [67],[43] and texture analysis [73]. The Cartesian representation y = ax+b

of a line is generally clumsy [43] because it has the disadvantage that both the slope

and intercept tend to infinity as a line approaches the vertical. For computational

reasons, it is therefore better to parameterize the lines in the HgT with two polar
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parameters commonly referred to as ρ and θ [43]. The key idea is to project pixels

of a given image into a parametric space where the shapes can be represented in a

compact way. In this case, each point (xi, yi) in the image plane is transformed into

a polar parametrization:

HgT (xi, yi) = ρ = xi cos θ + yi sin θ (V.1)

This parametrization specifies a straight line by the angle θ of its normal and its

algebraic distance ρ from the origin. For each point (xi, yi) of an image, the HgT

associates a sinusoid in the plane (ρ, θ), whose points have an amplitude equal to the

intensity of the pixel (xi, yi). If N points are concentrated along a straight line in

the time-frequency domain, they will correspond to N sinusoidal curves intersecting

at the same point in the (ρ, θ) domain (Fig. V.1). The integration along the line

produces a maximum and its coordinates in the (ρ, θ) domain are directly related

to the parameters of the lines. Thus, the HgT converts a difficult global detection

problem in image domain into a more easily solved local peak detection problem in

the parameters space. A comprehensive review on the HgT can be found in [67],

[82], [43].

Figure V.1: Illustration of Hough transform

V.3 THT and Hough-Transform: THHT

Different methods have been proposed for LFM component tracking using TFRs

[6]-[25]. Thus, TFR is viewed as an image, where the pixel intensity corresponds to

the energy presents at a particular time and frequency positions. The combination

of the WVD and the HgT was first presented for chirp identification [6]. The WVD
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ideally concentrates the chirp signals in TF plane [32, 25]. FM parameters can be

estimated using the HgT combined with WVD [6], SPWVD [30] or RSPWVD [7].

The principle of the method has been introduced by Kay and Boudreaux-Bartles [75],

extended to multicomponent case by Barbarossa [6] and also extended to analysis of

constant amplitude signals (the interferences) added to a spread spectrum plus an

AWGN by Barbarossa and Scaglione [7]. In general, the detection problem of LFM

signal, which is not easy in the time-domain (or frequency domain), is reduced to

that of detection of a line in an image. Performing a HgT in the TF plane, of a signal

composed of LFM, gives peaks on the Hough space whose coordinates are directly

related to the parameters of the straight lines in the TF image. Although the method

is attractive, accurate estimation of FM parameters is not easy due to the cross-

terms of the quadratic TFRs (WVD,. . . ), the method has difficulties in practical

implementation, and the computational attractiveness of array accumulators of HgT

was not advantageously utilized. The THHT illustrated in figure V.2 is a free of

cross-terms TFR and used to detect energy varying linear chirp. When applying the

HgT to the THT of x(t) (Eq. V.2) the output of THHT is an energy TFR:

x(t) = e2iπ(ν0t+β0

2
t2) (V.2)

ν0 is the start frequency of the linear frequency modulated and β0 is chirp rate.

The comparison of THHT to a threshold is the proposed detection test, and the

estimates of the unknown parameters ν0 and β0 are given by the coordinates of the

peak in the space of the parameters (ρ, θ).

The THHT of a signal x(t) is defined as the line integral through the TK spectrum

K(t, f) along the IF model f(t; Θj) where Θj := (νj , βj) is a parameter vector.

h(Θj) =
∫
−∞

−∞

K(t, f(t; Θj))dt j ∈ {0, 1, . . .N − 1} (V.3)

where f(t; Θj) is the parametrized IF and N is the number of components. When

dealing with LFM signals, each component gives rise to energy concentration along

straight lines in the TF plane of f(t; Θj) = αk + βjt. The integration over all

possible lines, obtained by applying the HgT to the THT gives rise to peaks in the

final parameter space. A monocomponent LFM signal corresponds to one peak in

the parameter space and a multicomponent LFM signal generates multiple peaks

in the parameter space. The THHT h(Θj) is therefore a mapping from the time

domain to the parameter space of Θj. The detection and parameters estimation is

reduced to peaks search in the parameter space. The THHT algorithm involves the

following steps:
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Step 1) Apply THT to input signal x(t)

Step 2) Compute h(Θj) using equation (V.3)

Step 3) Search peaks of h(Θj) which are larger than a predefined threshold.

Step 4) Determine the parameters vectors h(Θj) corresponding to the maxima of h(Θj):

(ρj , θj) = Arg max
Θj

[h(Θj)]

Step 5) Compute the vector parameter Θj: αj =
ρj

sin θj
and βj = − cot θj

x(t)

Block THT

Time-frequency
description Hough

Transform

Detection and 
localisation

Linear FMs

IA1

IF1

IA2

IF2

IAN

IFN

ESA Demodulation

�

IMF1

ESA Demodulation
IMF2

ESA Demodulation
IMFN

EMD �Input

Signal

Figure V.2: Block diagram of the THHT.

V.4 Detection in noise free environment

We first test the THHT on free noise signals. THHT is illustrated on two multi-

component signals and detection results compared to WVD-HgT and SPWVD-HgT.

V.4.1 Results

The first example is a signal, x1(t), with four components with observation time

T = 256s (Fig. V.3).

The associated THT, WVD and SPWVD are shown respectively in figures

V.4(a), V.6(a) and V.8(a). The lines are clearly visible on SPWVD representation

and better on THT. For WVD, the detection of the four IFs is not possible due

to the interference terms (Fig. V.6(a)). In figure V.8(a), the time smoothing

carried out by SPWVD considerably reduces these interferences, but gives the

worst resolutions (in time and in frequency). Comparing THT against WVD and

SPWVD, the four TF components are well localized with no cross-terms and loss

of TF resolution (Fig. V.4(a)). HgT has been applied to these three TFRs. We

obtain, in the parameter space (ρ, θ) peaks representing the LFM signals. Both

THHT and WVD-HgT show four peaks (Figs. V.5 and V.7). However, the peaks

are better highlighted by THHT than by WVD-HgT. A decision test has been
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Figure V.3: Ideal TFR of the free noise signal x1(t).

used : it consists in applying a threshold on this representation; if the peak is

higher than the threshold, then the linear chirp is present, and the peak coordinates

in accumulation array (ρ̃, θ̃) provide estimates of the IF parameters (ν̃, β̃) [43].

The estimation of the IFs by THHT, WVD-HgT and SPWVD-HgT are shown

respectively in figures V.4(b), V.6(b) and V.8(b).

Due to the oscillating structures of cross-terms, the detection of peak by HgT on

WVD is difficult (Fig.V.6(b)). While SPWVD reduces the cross-terms and gives a

better TFR, estimation of different IFs remain difficult (Fig. V.8(b)). For THHT,

the TF components are well separated in the parameter space (Fig.V.5). Comparing

THHT against WVD-HgT, the four TF components are well detected and estimated

(Fig. V.4(b)).

THHT has also been tested on a multi-component signal, x2(t), of seven linear chirps

and sinusoidal chirp in the TF domain (Fig. V.9).

The SPWVD and THT are shown in figures V.10 and V.11. While the different

components are hardly readable in the time representation, they appear in SPWVD

and are better evidenced in THT. Again, as in the first case the interferences prob-

lem is more important as the number of signal components increases and this is

well evidenced on the output of SPWVD (Fig. V.11(a)). So, the sinusoidal FM

component in SPWVD is represented as a LFM signal (Fig. V.11(b)). Note that
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Figure V.4: Components tracking in THT plane of x1(t)
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Figure V.5: THHT applied to x1(t).

THT is devoid of cross-terms effect and all IFs are well localized (Fig. V.10(a).

However, SPWVD provides cross-terms and so the detection and estimation of IFs

are impossible (Fig. V.11(b)). Comparing THHT against SPWVD-HgT, all linear

IFs components are well detected, localized and estimated (Fig. V.10(b)).

V.5 Detection in noisy environment

In many applications, signals enhancement or extraction of signals of interest from

noises is necessary. Signals or their components may overlap either in time domain

or frequency domain and thus conventional filtering such as time-domain windowing

or frequency-domain windowing is not efficient. A solution to this problem is to use

a sub-band filtering. In this work we use a data driven time filtering based on EMD

where filtering is applied to each IMF extracted from the input signal.

V.5.1 EMD denoising

A denoised version of an input signal can be obtained by filtering each IMF separately

followed by signal reconstruction. Let fj(t) be a clean deterministic IMF. The jth

IMF, IMFj, corrupted with additive noise bj(t) is given by :

IMFj(t) = fj(t) + bj(t) ,where j = {1, . . . , N}. (V.4)
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Figure V.6: Components tracking in WVD plane of x1(t)
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Figure V.7: WVD-HgT applied to x1(t).

Let f̃j(t) be an estimation of fj(t) based on the noisy observation IMFj(t). This

estimation is given by :

f̃j(t) = Γ[IMFj(t), τj ] (V.5)

where Γ[IMFj(t), τj ] denotes a thresholding or filtering function, defined by param-

eters τj , applied to signal IMFj(t). The denoised signal x̃(t) is given by [17] :

x̃(t) =
N∑

j=1

f̃j(t) + rN (t) (V.6)

For noise reduction, the EMD can be combined with a filtering method such as

Savitzky-Golay (SG) smoothing (FIR filter) [98] or nonlinear transformation such

as the soft-thresholding [41]. If Γ[IMFj(t), τj ] is a filtering method, then τj can

be the window size of the filter or its kernel used for data smoothing. In this

work, we combine the EMD with SG filter which have been shown to be efficient

for noise removing [23],[18] (Fig. V.12). SG filter (also called digital smoothing

polynomial filter) is time smoothing based on Least Squares (LS) polynomial fitting

across a moving window within the data [98]. This filter performs essentially a local

polynomial regression on a distribution of a equally spaced points to determine the

smoothed value for each data point [98] :

f̃j(i) =
m=MR∑

m=−ML

αm.IMFj(i+m) (V.7)
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(b) Lines detection on SPWVD.

Figure V.8: Components tracking in SPWVD plane of x1(t)
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Figure V.9: Ideal TFR of the free noise signal x2(t).

where i = . . . ,−2,−1, 0, 1, 2, . . .. ML and MR is the number of points used to the

left and the right of the data point i, respectively. The idea of SG filtering is to find

filter coefficients αm (Eq. V.7) that preserve higher moments within the window

of analysis. For each point IMFj(i − ML), . . . , IMFj(i + MR) are determined by

a polynomial of degree p, α0 + α1i
1 + α2i

2 + . . . + αpi
p. The coefficients αm are

given by a LS fit using a shifted windows [98]. SG filter is optimal in the sense

that it minimizes the LS error in fitting a polynomial to frames of noisy data.

Furthermore, this smoothing filter performs much better than standard averaging

FIR filter because it tends to preserve features of the signal such as peak height and

high frequency components, which are usually ’flattened’ by other adjacent averaging

techniques (like moving averages, for example). SG method was originally designed

to preserve the higher moments within time-domain spectral peak data and firstly

used for smoothing data in analytical chemistry [98]. In the following, this approach

is called EMDSG (Figure. V.12).

V.5.2 Results

We first test the THHT on a simple linear chirp signal x2(t) (Figure. V.13) embedded

in a white Gaussian noise, with a SNR of 30dB with vector parameter Θ0 := (ν0 =

0.2, β0 = 0) (Eq. V.2). WVD and THT representations are shown in figure (V.14).

Comparing the THT against the WVD, we see that in the THT representation
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Figure V.10: Components tracking in THT plane of x2(t)
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Figure V.11: Components tracking in SPWVD plane of x2(t)
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Figure V.13: Ideal TFR of noisy signal x2(t) (30dB).

the component FI is more localized. The associated HgT applications are shown in

figures V.15 and V.16.

The estimation of the IF by THHT and WVD-HgT are shown in figure V.17. It

may be noted that the IF component is very well detected in both representations.

The estimation (ν̃0, β̃0) of parameter vector Θ := (ν, β) of signal x2(t) embedded

in a white Gaussian noise is studied with input SNR ranging from 1.5dB to 40dB.

We compare the THHT to the WVD-HgT. For each SNR value, 100 simulations

are performed and the average of each parameter calculated (Figures. V.18, V.19).

For linear frequency rate β̃0, both methods have the same behavior but the THHT

performs slightly better than the WVD-HgT. The error of estimation is less than

12.10−4 and the standard deviations are very low (dot lines in figure V.18). For

the start frequency of the parameter ν̃0, the THHT gives better result as the SNR

increases. Globally, the errors of the THHT and those of the WVD-HgT have the

same magnitudes. Standard deviations of ν̃0 are relatively important for THHT
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Figure V.15: WVD-HgT applied to x2(t).
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Figure V.16: WVD-HgT applied to x2(t).
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compared to WVD-HgT (dot lines in figure V.19).
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Figure V.19: Estimation of ν0

The THHT is tested on signal x1(t) (Fig. V.9) corrupted with additive white Gaus-

sian noise with a SNR of 7dB. The four IFs are evidenced in the two TFRs (Figs.

V.20(a) and V.21(a)). The result of detection with the THHT and the SPWVD-HgT

are given in figures V.20(b) and V.21(b) respectively. As in the first simulations, the

result of the THHT (Fig. V.20(a)) is sharper than that of the SPWVD-HgT (Fig.

V.21(a)) which make the detection easier. Both the THHT and the SPWVD-HgT
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detect correctly 3 out of 4 of the LFM components (Figs. V.20(b) and V.21(b)).

The fourth is no well identified. For THHT, this may be due to estimation of the

IF of the IMF by the TEO, which has a moderate sensitivity to noise. For the

SPWVD-HgT, despite the smoothing used strong cross-terms persist which degrade

the TFR and consequently both detection and estimation with HgT are biased.
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(b) Lines detection on THT

Figure V.20: Components tracking in THT plane of x3(t) (SNR=7dB)
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(b) Lines detection on SPWVD.

Figure V.21: Components tracking in SPWVD plane of x3(t) (SNR=7dB)
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V.6 Conclusions

In this chapter a novel detection approach of multicomponent LFM signals in TF

domain called THHT is proposed. Preliminary results show the interest and ef-

fectiveness of the THHT as tracking method of TF components. The THHT is

cross-terms free and does not suffer from the trade-off between time frequency res-

olution and cross-terms suppression. No assumptions are made about the number

of components of the signal nor their amplitude or phase. Numerical examples

show that compared to WVD-HgT and to SPWVD-HgT, the THHT achieves better

performance in terms of TF components tracking of signals in both noise free and

noisy environments. Furthermore, the THHT gives results much sharper than those

of WVD-HgT and SPWVD-HgT. In all presented cases, LFM components are well

identified. Since the performance of the THHT has only evaluated by some simu-

lations, a large class of signals (extensive simulations) is necessary to confirm the

obtained results. As future work we plan to extend the analysis to more compli-

cated IF laws such as nonlinear FM signals or arbitrary TF shapes. Investigation is

in progress to establish a rigorous criterion for thresholding the THHT.
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tracted IMFs from the acoustic signal backscattered by this spherical shell,

are presented. The study is carried out quantitatively and qualitatively. Finally, dif-

ferent TFRs of backscattering signal from simple shells (cylinder) for several physical

parameters are analyzed.
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VI.1 Introduction

One of the most challenging applications of TFRs deal with the analysis of the

underwater acoustic signals. In this work, the THT is illustrated on real world

underwater acoustics signals derived from spherical targets which can be viewed as

nonlinear systems. Before analyzing the resulted TF maps of backscattering signals

by simple shells, we first investigate possibles relationships between Isolated Modal

Resonances (IMRs) of a spherical shell and IMFs extracted from the backscattering

signal by this shell. Such links between empirical and physical modes, may be useful

for Sonar target detection and classification purposes.

Figure VI.1: Scattering geometry. This cartoon depicts a plane wave, traveling
in the z direction, incident upon a fluid sphere (radius a, density ρ1 and sound
velocities cl ct), entrained in a second fluid (density ρ, sound speed c). For simplicity,
the scattered waves are shown as spherical, which they are in time, although not
generally in phase and amplitude. In the forward region, the scattered field and
incident field interfere, and may produce a shadow [47].

VI.2 IMFs versus physical modes

The study is conducted using quantitative and qualitative measures. In one hand,

it is established that for a single incident pulse, that is short compared to the target

physical dimensions, the echo structure of the backscattered acoustic signal from

an elastic target consists of multiple periodic pulses [44],[81]. The first pulse is

generated by the specular reflection and the subsequent ones are due to the slip and
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shock waves corresponding to the creeping and peripheral waves revolving around

the target (Fig. VI.2). In the other hand, a new signal processing method, the EMD

[64], generates a set of Intrinsic Mode Functions (IMFs) of a signal with separate

frequencies components. Even the number of IMFs is a reduced number (Eq. VI.3)

and the number of IMRs is an infinite one (Eq. VI.2), the question that can be

asked: is there any relationship between IMFs and IMRs?
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Figure VI.2: 225 kHz echo signal from a spherical shell of radii ratio equal to 0.96.

VI.2.1 Physical Modes for a spherical shell

Resonance scattering theory [44] gives solution to the problem of a plane acoustics

wave scattering from a spherical shell. We present in this section, the results in

case of radii ratio b/a = 0.96 (a: outer radius; b: inner radius). Let us consider a

thin empty spherical shell submerged in an unbounded acoustic medium. A plane

harmonic pressure wave strikes the shell and is scattered by it. Figure (VI.1) gives

a simple idea of some physical phenomena, that are occurring in the moment of the

scattering. In reality the waves propagates in all directions with no predetermined

order and the received wave is a combination of all and any things. The motion of

the shell is described by the equation of linear elasticity theory [104],[78] and that of

the liquid is described by the Helmholtz equation [103],[58]. It is a two-dimensional

steady-state problem. By means of separation of variables, one can obtain the

exact solution in series form [44, 81]. it is valid for arbitrary values of spherical
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coordinates R, θ. We shall consider a typical case in hydroelasticity, the case of an

aluminum shell immersed in water. The physical parameters of the shell material

and the liquid are given by:

Aluminum : ρ1 = 2.79X103kg/m3, cL = 6380m/s, cT = 3100m/s,

water : ρ = 1X103kg/m3, c = 1370m/s.

Here cL and cT are the velocities of the longitudinal and transverse waves in the

shell material.

Some plots of isolated modal resonances are presented in figure (VI.5). The

observation point is situated in the far field. Only the case of backscattering (θ = π)

is considered (Fig. VI.3). The total function form is computed for the first 10

modes ( n = 10). The total magnitude of the nth IMR is defined by fn:

fm(θ) =
2
ix

(2m+ 1)
Bm
Dm

Pm(cos(θ)) (VI.1)

where Pm is the Legendre polynomial, and Bm, Dm are 5× 5 determinants, we con-

Wave front

Sphere (centred on the origin)

z

r

θ

Figure VI.3: Geometry of the scattering calculation. The sphere is centered on the
z axis of the plan wave.

sider here the case of a vacuum-filled spherical shell in an unbounded invisible fluid.

The elements of the two matrices are given in [44],[72]. Expressions for Bm, Dm are

reviewed in appendix (C) for the empty sphere case. These involve spherical Bessel,

Neumann, and Hankel functions, jm, nm, and h(1)
m , and the material properties in-

cluding the densities of the solid and of water, ρ1 and ρ, and the longitudinal and

transversal wave velocities in the solid, cl and ct. The associated time series of the

IMRs are computed by means of inverse Fourier transform.

The solution of the scattering problem of acoustic wave by an hollow elastic spherical
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shell can be presented in series form as follows:

f(θ) =
∞∑

m=0

fm(θ) (VI.2)

0 1 2 3 4

x 10
−4

−0.2

0

0.2

Signal

Time[s]

A
m

pl
itu

de

0 2 4 6 8 10 12 14
0

2

4

6

x 10
−3 FFT

Reduced frequency, x = ka 

Figure VI.4: On top, filtered time signal (the specular echo is replaced by zeros). The
signal is reconstructed from the associated time series of the IMRs of the spherical
shell(b/a = 0.94). On bottom, resonance spectrum

VI.2.2 IMFs

The EMD decomposes any signal s(t) into a series of IMFs through the sifting process

(Chapter II); each mode (IMF), with distinct time scale [64]. The decomposition

is based on the local time scale of s(t), and yields adaptive basis functions. The

EMD can be seen as a type of wavelet decomposition, whose sub-bands are built

up as needed, to separate the different components of s(t). Thus locally, each IMF

contains lower frequency oscillations, than the just extracted one [49]. The result

of the sifting is that s(t) will be decomposed into IMFj(t), j = 1, . . .N and residual

rN(t) :

s(t) =
N∑

j=1

IMFj(t) + rN(t). (VI.3)
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Figure VI.5: Associated time series of the IMRs of a spherical shell, modes 1-10 .
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Figure VI.6: IMFs 1-10 extracted from the backscattering signal from a spherical
shell.
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VI.3 Comparison and discussion
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Figure VI.7: PSDs of IMRs
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Figure VI.8: PSDs of the IMFs

µ Ex m3 m4

IMR1 0 1,00 -0,37 1,00
IMR2 0 0,53 -0,12 0,26
IMR3 0 0,77 -0,22 0,53
IMR4 0 0,17 -0,02 0,02
IMR5 0 0,18 -0,02 0,02
IMR6 0 0,12 -0,01 0,01
IMR7 0 0,12 -0,01 0,01
IMR8 0 0,50 -0,11 0,19
IMR9 0 0,13 -0,01 0,01
IMR10 0 0,43 -0,07 0,10

Table VI.1: Statistical parameters of the IMRs.



CHAPTER VI. APPLICATION TO UNDERWATER ACOUSTICS 131

0 2 4 6 8 10 12

1

2

3

4

5

6

7
x 10

−3 PSDs of  IMRs

Reduced frequency, x = ka 

IMR1
IMR2
IMR3
IMR4
IMR5
IMR6
IMR7
IMR8
IMR9
IMR10
IMF1
IMF2

PSD of IMF1

PSD of
IMF2

Figure VI.9: superposition of PSDs of the IMRs, IMF1 and IMF2 dark and green
dashed lines respectively

µ Ex m3 m4

IMF1 0 0,81 1,62 1,00
IMF2 0 0,77 0,17 0,60
IMF3 0 0,63 0,19 0,18
IMF4 0 1,00 -0,1 0,37
IMF5 0 0,17 0,00 0,01
IMF6 0 0,15 0,00 0,00
IMF7 0 0,01 0,00 0,00
IMF8 0 0,00 0,00 0,00
IMF9 0 0,00 0,00 0,00
IMF10 0 0,00 0,00 0,00

Table VI.2: Statistical parameters of the IMFs. Because the amplitudes of IMF8-10
are very small the values of the statistical parameters are considered null with the
fixed precision



CHAPTER VI. APPLICATION TO UNDERWATER ACOUSTICS 132

The backscattering echo signal from a hollow spherical shell is obtained from

the contribution of the different propagating elastics waves. Figure (VI.5) shows

such waves, noted here as the associated time series of the IMRs. Theses series are

obtained one by one by Fourier transforming the physical modes (functions fn(θ)).

In the figure (VI.6) the IMFs extracted from the backscattering signal by EMD are

plotted. Comparing one to one the IMFs and the IMRs (see Figs. VI.6 and VI.5), we

can not argue that each IMF matches the associated IMR of the same level. However

if we superpose the Power Spectral Densities (PSDs) of IMFs and IMRs, respectively

(Figs. VI.8 and VI.7) we found that the spectrum of the IMF1 is composed from

the spectrums of IMR5, IMR6, IMR7, IMR8, IMR9, and IMR10 and the spectrum

of IMF2 is composed from the spectrums of IMR3 and IMR4 (Fig. VI.9). Our

investigation is completed by analysis of statistical parameters extracted from the

modes. These parameters are calculated for each resulting components. For IMFs

and IMRs: the first one is the mean value, as can be seen it is null for both of them.

The other parameters are, normalized energy (Ex), and the third moment (m3), the

fourth moment (m4) known as Skewness and Kurtosis respectively. Results reported

in tables 1 and 2, show that these parameters do differ substantially.

VI.4 Backscattering signal analysis

In this section we analyze the TFRs of acoustics signal backscattering by cylindric

shells. Each tube is characterized by a material (steel, aluminum) and radii ratio

b/a (a: outer radius; b: inner radius). The results of some signals are presented. The

experiments were conducted by Professor Gérard MAZE from "Laboratoire Ondes

et Milieux Complexes, Université du Havre -France"[16].

Usually the specular echo is a broad band signal, that can not be easily analyzed;

If the signal is analyzed with it, the TFRs could not be clearly represented, because

the magnitude of the specular echo amplitude is greater than the others subsequent

echoes. Consequently, these two type of waves can not be represented at the same

scale. In order to analyze the echo signal, we have systematically canceled the

specular echo from the backscattering signal.

Signal 1:

The shell is a tube of aluminum immersed in water filled full of air with b/a=0.95 and

the material features are given above. The frequency center of the incident beam

is situated around 330 KHz. At first observation of the resulting TFRs, one can

conclude that the subsequent wave (qualified as Lamb waves in comparison to the

resonance modes which lie in the plane [72, 44, 16]) are globally detected, except for
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the SPWVD, where the latest waves disparate from the TF plane. The spectrogram

and the scalogram depict all the waves but their frequency domain is shifted. We can

see for spectrogram, patterns of a large frequency band for each wave packet. For

the scalogram, the frequency rang is biased compared to others TFRs. In contrast

the HHT and THT give accuracy frequencies values. Moreover, the last TFRs reveal

several laws frequency for each wave packet. These ones corresponding to different

extracted IMFs from the signal echo.

One can estimate time delay between successive waves packets in all TFRs. HHT

and THT give an accuracy information.

Signal 2:

The studied object is a finite cylindrical shell made of stainless steel (density ρ1 =

7900kg.m−3) where longitudinal and transversal sound velocities are, respectively,

CL = 5790m.s−1 and CT = 3100m.s−1. The shell is filled with air and radius ratio

b/a = 0.94 . The frequency center of the incident beam is situated around 130 kHz.

As it has been mentioned before, the specular echo is canceled from all the following

signals.

Signal 3:

The shell is a tube of steel, filled with air b/a = 97.The frequency center of the

incident beam is situated around 150 kHz
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Figure VI.10: (a) Signal and FFT of signal 1. (b) Spectrogram. (c) Scalogram. (d)
SPWVD. (e) HHT. (f) THT.
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Figure VI.11: (a) Signal and FFT of signal 2. (b) Spectrogram. (c) Scalogram. (d)
SPWVD. (e) HHT. (d) THT.
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Figure VI.12: (a) Signal and FFT of signal 3. (b) Spectrogram. (c) Scalogram. (d)
SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on THT ([1.5, 1.55]
ms).

The acoustics signatures of the wave packets are identified in the TFRs on dif-

ferent patterns .

Signal 4:

The shell is a tube of steel, filled with air b/a = 95.
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(g) (h)

Figure VI.13: (a) Signal and FFT of signal 4. (b) Spectrogram. (c) Scalogram. (d)
SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on THT ([1.5, 1.55]
ms).

Signal 5:

The shell is a tube of steel, filled with air b/a = 95.
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(g) (h)

Figure VI.14: (a) Signal and FFT of signal 5. (b) Spectrogram. (c) Scalogram. (d)
SPWVD. (e) HHT. (d) THT. (g) Zooming on HHT, (h) Zooming on THT ([1.5, 1.55]
ms).

The analysis of the signals shows that except the SPWVD, the remainder TFRs

show the same frequency patterns, the successive wave packets reflected by the

object (the Lamb waves [44]), which are pertinent for classification. Both the

scalogram and the spectrogram give the same results, but the frequency patterns

are better evidenced using the spectrogram. The obtained results show that the

SPWVD, the spectrogram and the scalogram are less sensitive to b/a radius ratio

and materials of the target, than the HHT and the THT. For all the signals

analyzed, only the methods based on the EMD show the frequency patterns of

interest. If we compare the resulted THT and HHT on bottom of figures (VI.10,

VI.11, VI.12, VI.13, VI.14), we remark that these methods allow the differentiation

of objects with similar temporal responses. One can observe for each reflected wave

from the shell several frequencies laws. These ones correspond to the IFs of the

IMFs extracted from the signal.

The results confirm the interest of the TFRs for the analysis of the echo signals

which are nonstationary. Indeed, the obtained TFRs are sensitive to the choice of

the material and the radii ration b/a of the target. These results are well evidenced

essentially on both the THT and the HHT. Compared to classical methods (SPWVD,

scalogram and spectrogram), we notice that only the THT and the HHT are very

sensitive to the physical properties of the target. A large class of signals is necessary

to confirm these findings. Even both the THT and the HHT, give interesting results,

a feature extraction process followed by a classification scheme are necessary to

obtain relevant and pertinent information about the targets.





Conclusions and

perspectives

In this thesis we have tried to explore some of the potentials of the EMD in

signal processing and particularly in TF analysis of nonstationary signals. The

first point we have to emphasis in our conclusion is the comparison of the two

demodulation methods involved in the thesis: the ESA and the HT. Spectral

estimation is the second step of the EMD. This consists in computing the IF and

IA functions for each IMF by using a demodulation method. An accepted way

is to use the AS through the HT. A necessary condition for the AS method to

give a physical meaningful IF is that the signal will have to be symmetric with

respect to the zero mean. The HT uses the whole signal. As we have a finite

segment of signal the window effect will distort its spectrum. An alternative

way to estimate IA and IF functions is the ESA. Based on the TKEO, the ESA

computes these functions without involving integral transforms as in HT or FT; it

is totally based on differentiation. A distinct advantage of the TKEO is its good

localization. This property is the consequence of the differentiation based method.

Thus, it is natural to use local operator as basis for a local estimation such as

IA and IF functions. This is confirmed by the obtained results. The advantages

of the ESA are efficiency, low cost computational complexity and excellent time

resolution. A disadvantage of ESA compared to HT is its sensitivity in very noisy

environment. To reduce noise sensitivity, a more systematic approach is to use

continuous-time expansions of discrete-time signals to numerically implement the

required differentiation with closed formulas. To do so, we have proposed the

B-spline model. A common limit of both HT and ESA is that they can not handle

wide-band signals. Thus one aim of this thesis was to combine two non-linear and

local approaches, the ESA and the EMD to track instantaneous features such as

IA and IF of a multicomponent AM-FM signal. Associated with the EMD which

acts as bandpass filter, the ESA can handle multicomponent signals. Compared to

Gabor filtering, the EMD is a data driven approach that does not require neither

the number of filters and the associated impulse responses, nor the bandwidth
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parameters. Since IMFs are represented by spline functions, we have investigated

their smoothed derivatives to compute TKEO and then in turn used in ESA in their

continuous form to estimate IA and IF functions. As it has been verified for the case

of multicomponent AM-FM signal (Chapter III), this adds robustness to EMD-ESA.

The new sifting introduced in this thesis improves the results of the conventional

EMD. As it has been shown on some synthetic signals, our approach extracts

correctly the components of the signals and avoid the over-decomposition problem.

The decomposition results where interpolations are performed by the B-spline

without regularization can generate insignificant IMFs. Furthermore, to improve

the performance of the EMD in noisy environment, smoothed splines are used. This

is done by relaxing the interpolation constraint. Thus a regularization factor Λ is

introduced to measure how smooth the interpolation function will be and how close

the data samples the interpolant will pass. Other approaches such as trigonometric

interpolation can be used. Trigonometric interpolation is useful from an analytic

point of view, but computationally it is much more expensive than B-splines. This

why both exact and smoothed splines have been investigated. Even Λ parameter

has been found based on simulations with different SNR values, a strategy to find

an optimal value adapted to each analyzed signal is necessary. Investigation is in

progress to establish a rigorous criterion to select the optimal Λ value. In this thesis

six EMD based AM-FM demodulation approaches are studied and their results

in terms of IFs and IAs tracking compared. We have limited ourselves to a two-

components AM-FM signal embedded in additive white Gaussian noise with varying

SNRs. The EMD decomposes this signal into few IMFs, the first and second IMF

are identified as the original AM-FM components, the remaining IMFs are mainly

due to end side effects and estimation errors of the EMD. The six methods give

good results for IFs and IAs estimation for hight SNR values. Whereas, for low SNR

up to 5dB, EMD-HT and EMD-ESA-BSR give better results with 50% less error.

Finally, for noise dominated signal, no method can be set as standard as all the com-

pared method fail in tracking one or another components from the set of tested ones.

The first use of the TKEO, especially the ESA in conjunction with the EMD is

cited by Huang in a patent published in USA [60]. Huang has identified the TKEO

as an extremely local and sharp test for harmonic distortions within any IMF derived

from data. Cexus et al [22] are the first who used the EMD and the DESA. Since that,

this combination, is named the THT. In this thesis the THT is reviewed, improved

and a mathematical formulation of its TF map proposed. Spectrum generated by the

THT is a joint distribution of the amplitude and frequency content of the signal as a
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function of time often presented as contour of amplitude (or energy) over TF plane.

Time resolution of the representation can be as precise as the sampling period. As

the HHT, this TFR free of interferences is well suited for processing any data (linear

or nonlinear) and stationary or non-stationary signals. No pre or post processing is

required. The THT presents little loss of TF resolution and as the HHT, it is very

easy to implement. Results of the THT are not prejudiced by predetermined basis

and/or sub-band filtering processes. This method is based on an adaptive basis, and

there is no uncertainty principle limitation on time or frequency resolution from the

convolution pairs based on a priori basis. The effectiveness of THT has been shown

on synthetic (with different IF laws) and real signals. Comparison to the HHT

and to well established methods such as the spectrogram, the WVD, the SPWVD,

the scalogram and the reassigned SPWVD shows that the THT performs better.

The obtained results show that the THT identifies in all presented cases the TF

structures. A large class of synthetic and real signals are necessary to confirm these

findings. The obtained results show the interest to combine two local approaches,

the EMD and the TKEO, to process non-stationary signals. Because the THT

is based on the EMD consequently it shares the same limits. The shortcomings

are essentially due to two factors: a) the EMD is just defined by an algorithm

(sifting) and b) the data driven nature of the approach.The B-spline fitting used

is computationally intensive and creates distortion near the end points. Thus, the

end effects in splitting need improvements. We have shown that the modified THT

(EMD-BSR-ESA) is well suited for noisy analyzed signals. The comparison study

performed in Chapter III confirms the interest of the continuous version of THT

(The interpolation is performed by smooth B-spline model) to represent a signal in

TF plane.

Based on the THT and the Hough transform new approach for detecting LFM

of multicomponent signals has been introduced in Chapter V. The THHT is

obtained based on the new mathematical formulation of the THT (Chapter IV).

Preliminary results show the interest and effectiveness of the THHT as tracking

method of TF components. The THHT does not suffers from the trade-off between

TF resolution and cross-terms suppression. No assumptions are made about the

number of components of the signal nor their amplitude or phase. Numerical

simulations show that compared to WVD-HgT and to SPWVD-HgT, the THHT

achieves better performance in terms of TF components tracking of signals in both

noise free and noisy environments. Furthermore, the THHT gives results much

sharper than those of WVD-HgT and SPWVD-HgT. In all presented cases, LFM

components are well identified. Since the performance of the THHT has only

evaluated by some simulations, a large class of signals (extensive simulations) is
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necessary to confirm the obtained results. As future work we plan to extend the

analysis to more complicated IF laws such as nonlinear FM signals or arbitrary TF

shapes. Investigation is in progress to establish a rigorous threshold criterion for

the THHT.

In order to find physical interpretations of the extracted IMFs from scattering

signal of simple shells (sphere and cylinder) some simulations are conducted

(Chapter VI). The physical modes or the IMRs of these shells are well known, we

have synthesized the scattering signals by the shells and extracted the associated

IMFs by EMD. Resulting IMFs are in turn compared to IMRs. Preliminary results

of this study are encouraging. Based on the comparison of the calculated spectrum

of both IMFs and IMRs, preliminary results show that there is a correspondence

between these kinds of modes. Even there is no close link between IMFs and IMRs,

a mode by mode comparison of the associated statistical parameters shows that

there are similarities between these modes. Furthermore, it is found that some IMFs

can be obtained by a partial reconstruction of a selected set of IMRs. The present

investigation is pursued through the analysis of different target of different physical

parameters such as material and dimension, and also velocities of longitudinal and

transverse waves.

The analysis of the TFRs of a backscattering signal from simple shells (cylin-

ders having different physical properties), confirm the interest of the TFRs for the

analysis of the echo signals which are nonstationary. These results are well evi-

denced essentially on both the THT and the HHT. Compared to classical methods

(SPWVD, scalogram and spectrogram), we have remarked that only the THT and

the HHT are very sensitive to the physical properties (the material and the radii

ration b/a ) of the target. A large class of signals is necessary to confirm these find-

ings. Even both THT and HHT give interesting results, a feature extraction process

followed by a classification scheme are necessary to obtain relevant and pertinent

information about the targets. For backscattering signal from cylindrical shell, even

for the moment we could not conclude about the physical signification of those laws,

it is very clear that only HHT and THT give distinct TFR for different backscat-

tering signal. We suggest as future works to use the IFs, IAs and the TKEO of

the IMFs as pertinent features for classification process. Furthermore, we suggest to

perform the classification of objects using the THT or the HHT as an image where

acoustics signatures are the frequencies laws.



APPENDIX

A Analysis of white

gaussian Noise by

EMD

1. Characteristics of white noise using EMD

The problem of separating noise and signal is complicated and difficult when we

do not even know the level of noise in the data. The question then becomes more

fundamental: are we looking simply at noise, or are we getting any information

in the series of numbers known as data? In this case, knowing the characteristics

of the noise is an essential first step before we can attach any significance to the

signal eventually extracted from the data. In this subsection , we present the

important results of a numerical study on uniformly distributed white noise using

EMD[116][49]. Through the work of the last cited references Flandrin and Wu have

gotten simultaneously out the same results. We cite here several important fact of

those papers :

1. The EMD is effectively a dyadic filter, capable of separating the white noise

into IMF components having mean periods twice the value of the previous

component, figure.(A.1);

2. The IMF components, except the first IMF, are all normally distributed,

figure.(A.3);

3. Based on empirical facts, they found that, the product of the energy density of

IMF and its corresponding mean period must be a constant.

4. The energy-density function must be chi-squared distributed, since the IMFs

are distributed normally.
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Figure A.1: IMF power spectra in the case of White Gaussian Noise. The spectrum
densities (PSD) is plotted as a function of the logarithm of the period for IMFs 1
to 7. The spectral estimates have been computed on the basis of 5000 independent
sample paths of 4096 data points

The pertinent results they founded from that study include an analytical

expression of the relationship between the energy density and the mean period

of the IMF components derived from the white noise through EMD, an analytic

expression of the energy-density distribution and its spreading function. All the

analytic expressions found are tested against the results produced by Monte Carlo

method on a numerically generated random noise.

1.1 The Fourier spectrum of IMFs

Let us consider the general properties of energy density as function of period

for the data. For a normalized white noise time series, sj , for j = 1, ..., N , we can

express it either in Fourier series components, or IMFs, i.e.

sj = ℜ[
N∑

k=1

Skexp(i
2πjk
N

)] =
∑

n

Cn(j) (A.1)
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where i =
√
−1 , Cn(j) is the nth IMF, and

Sk =
N∑

j=1

sjexp(−i
2πjk
N

) (A.2)

Then , the energy density of the nth IMF can be defined as

En =
1
N

N∑

j=1

[Cn(j)]2 (A.3)

Theoretically, the Fourier spectrum of a white noise series should be a perfect

constant, indicating that the contribution to the total spectrum energy comes from

each Fourier component uniformly and equally. The Fourier pectra for the IMFs,

however, are not a constant white spectrum, for the decomposition through EMD

has the effect of subjecting the data to a dyadic filter bank. Therefore, the IMFs are

band passed as discussed by Flandrin et al.[49].

Now, let us examine the Fourier spectral shape for each IMF. To this end, the Fourier

spectrum for 5000 independent segments of 4048 data points each of all the IMFs are

calculated. The individually averaged Fourier spectra for all the IMF are plotted,

figure (A.2). We can see that all the Fourier spectrum, except the first one, have

identical shapes in terms of ln T axis, where T is the period of a Fourier component.

From these figures, it is obvious that the ratios of the neighboring spectra are almost

identically equal approximately 2,which is consistent with the doubling of averaged

periods of neighboring IMFs. Except for the first IMF, based on what is obviously

observed and empirically validated, one can have an integral expression to represent,

to the first order of approximation, the functional form of Fourier spectrum for any

IMF as ∫

FlnT,ndlnT = const., (A.4)

Where FlnT,n is the Fourier spectrum of the nth IMF as a function of lnT and

the subscript n representing the nth IMF. similarly in frequency domain (in this

case we scale the spectrum to respect the Energy conservation principal ). Then,

the energy of the nth IMF is written as

NEn =
∫

Fω,ndω, (A.5)

Where Fω,n is the Fourier spectrum of the nth IMF in terms of frequency, ω. After
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some mathematics the last equation is written as

NEn =
∫

Fω,ndω =
∫

FT,n
dT

T 2
=
∫

FlnT,n
dlnT

T
=
∫

FlnT,ndlnT

T n
(A.6)

Where FT,n is the Fourier spectrum of the nth IMF in terms of period,T, and T n

is defined by

Tn =
∫

FlnT,ndlnT (
∫

FlnT,n
dlnT

T
)−1 (A.7)

Substituting Eq.(A) into Eq.(A), we find the equation that relates the energy den-

sity, En, and the averaged period T n , i.e.

EnT n = const., (A.8)

lnEn + lnT n = const. (A.9)

Assuming that the const in Eq.(A) equal to one, because of the normalization of

the white gaussian noise, the Eq.(A) became,

lnEn + lnT n = 0. (A.10)

where En is Enwhen N approaches infinity

1.2 Energy distribution

Examining the probability of an individual IMF in figure (A.3)we can argue

that is approximately normal, which is evident from the superimposed fitted normal

distribution function (the black line). In high frequency, the first IMFs, the data

and the fitted normal distribution function are on a good concordance. For the last

IMFs, when the oscillations decease the number of events deceases and the deviation

from the normal distribution function grows; Such a time-series,its energy, given in

Eq.(A) should have a χ2 distribution, with the mean of the energy token as the

degree of freedom of the χ2 distribution, rn = N

ρ(NEn) = (NEn)NĒn/2−1e−NEn/2 (A.11)

Therefore, the probability distribution of En is given by

ρ(En) = N(NEn)NĒn/2−1e−NEn/2 (A.12)
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Figure A.2: IMF power spectra in the case of White Gaussian Noise. The spectrum
densities (PSD) is plotted as a function of the logarithm of the periode for IMFs 1
to 7. The spectral estimtes have been computed on the basis of 5000 independent
sample paths of 4096 data points

The speared of the energy of white-noise samples of a certain length N .For simplic-

ity, we use the variable y = lnE and we omitt the subscript n. The distribution of

y is therefore

ρ(y) = N(Ney)NĒ/2−1e−NE/2

= Kexp(
1
2
yNĒ − 1

2
NE)

= Kexp(−NĒ
2

(
E

Ē
− y) (A.13)

Where K = NNĒ/2

E

Ē
= ey−ȳ = 1 + y − ȳ +

y − ȳ2

2!
+
y − ȳ3

3!
+ · · · . (A.14)

Substituting the Eq.(A) into Eq.(A), we find

ρ(y) = Kexp−NĒ
2

[1− ȳ +
y − ȳ2

2!
+
y − ȳ3

3!
+ · · · ]
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= K ′exp−NĒ
2

[
y − ȳ2

2!
+
y − ȳ3

3!
+ · · · ], (A.15)

Where K ′ = Kexp[−1
2
NĒ(1− ȳ]. When |y − ȳ| << 1, the distribution of Ēn(Ē) is

approximately a Gaussian with a standard deviation

σ2 =
2

NĒn
=

2T̄n
N

. (A.16)

ρ(y) = Kexp−NĒ
2

[
1− ȳ2

2!
] = K ′exp[−NĒ(y − ȳ2)

4
] (A.17)
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Figure A.3: Histograms of IMFs from 2 to 7 for a WGN sample with 4096 data
points.The superimposed black lines are the Gaussian fits for each IMF, except
IMF3



APPENDIX

B The first derivatives

of IMF in B-Spline

space

1. B-Spline functions

The basis functions βnj (t) can be generated iteratively by repeated convolution

of a B-spline of order 0:

βnj (t) = β0
j (t) ∗ βn−1

j (t) (B.1)

where β0
j (t), ∀k ∈ N, is the indicator function in the interval [−1

2
, 1

2
)

β0
j (t) =







1 t ∈ [−1
2
, 1

2
)

0 otherwise

An interesting property of B-spline functions is their compact support (Eq. (B.1)),

this is very important because it limit the propagation of approximation errors from

a Box to an other. The p derivative of spline of order n is obtained by applying the

p order central difference operator. The result of this calculation is a spline of order

(n− p) [99]. For example, the first and the second derivatives of B-splines of order

n are given by:

∂βnj (t)
∂t

= βn−1
j (t+

1
2

)− βn−1
j (t− 1

2
)

d2βnj (t)
∂t2

= βn−2
j (t+ 1)− 2βn−2

j (t) + βn−2
j (t− 1) (B.2)

An interesting feature of B-spline forms is given by equation (B.3) and equation

(B.2 ). Using these relations, closed-form expressions for the derivatives involving

only the coefficients cl[n] and the B-spline function are derived.
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2. First derivatives of IMF based on B-Spline functions

To calculate the continuous ESA (Eq. (III.24)), we have to compute the first-,

second- and third-order derivatives of the IMFs.

In order to calculate the derivatives of IMFs, we propose to use their continuous

forms instead of the discrete ones. Indeed, each extracted IMF is represented by a

B-spline signal [64]. An IMF in splines domain is rewritten as:

gnj (t) =
∑

l∈Z

cj [l]βnj (t− l) (B.3)

First derivative:
∂gnj (t)
∂t

=
∑

l∈Z

cj [l]
∂βnj (t− l)

∂t
(B.4)

Using the following propriety:

∂βnj (t)
∂t

= βn−1
j (t+

1
2

)− βn−1
j (t− 1

2
) (B.5)

the first derivative is given by,

∂gnj (t)
∂t

=
∑

l∈Z

cj[l][βn−1
j (t− l +

1
2

)− βn−1
j (t− l − 1

2
)] (B.6)

=
∑

l∈Z

cj[l]βn−1
j (t− l +

1
2

)−
∑

l∈Z

cj [l]βn−1
j (t− l − 1

2
) (B.7)

Let, −l − 1
2

= −l′ + 1
2

l = l
′ − 1

∂gnj (t)
∂t

=
∑

n

cj[n]βn−1
j (t− l +

1
2

)−
∑

l′∈Z

cj[l
′ − 1]βn−1

j (t− l′ +
1
2

) (B.8)

=
∑

l

(cj[l]− Cj[l − 1])βn−1
j (t− l +

1
2

) (B.9)

Second derivative :
∂2gnj (t)
∂t2

=
∑

l∈Z

cj[k]
∂2βjn(t−l)

∂t2
(B.10)
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Using the following propriety:

∂2βnj (t)
∂t2

= βn−2
j (t+ 1)− 2βn−2

j (t) + βn−2
j (t− 1) (B.11)

We replace in Eq. (B.2), we have:

∂2gnj (t)
∂t2

=
∑

l∈Z

cj[l][βn−2
j (t− l + 1)− 2βn−2

j (t− l) + βn−2
j (t− l − 1)] (B.12)

Let l + 1 = l1 for first B-Spline and l − 1 = l2 for the third B-spline in the

previous equation, then:

∂2gnj (t)
∂t2

=
∑

l1∈Z

cj [l1 − 1]βn−2
j (t− l1)

−2
∑

l∈Z

cj [l]βn−2
j (t− l)−

∑

l2∈Z

cj[l2 + 1]βn−2
j (t− l2)

∂2gnj (t)
∂t2

=
∑

l∈Z

[cj[l + 1]− 2cj[n] + cj[l − 1]]βn−2
j (t− l) (B.13)

For third derivative we obtain:

∂3gnj (t)
∂t3

=
∑

l∈Z

cj [l]
∂3βn(t− l)

∂t3
(B.14)

∂3gnj (t)
∂t3

=
∑

l∈Z

cj [l][βn−3
j (t− l +

3
2

)− 3βn−3
j (t− l +

1
2

)

+3βn−3
j (t− l − 1

2
)− βn−3

j (t− l − 3
2

)] (B.15)

Instead of three B-spline form in the last equation, we keep only βn−3
j (t− l + 1

2
) ,

∂3gnj (t)
∂t3

=
∑

l∈Z

(cj [l + 1]− 3cj [l] + 3cj[l − 1]− cj [l − 2])βn−3
j (t− l +

1
2

) (B.16)
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C Determinant for an

empty shell

Let a and b denote the outer and inner radius of the shell. Letting X = ka,

Y = (c/cL)X, Z = (c/cT )X, and N = n(n + 1), and using primes to denote

differentiation, U = (c/cL)kb and W = (c/cT )kb the elements are. For an evacuated

shell Dn is the determinant of the 5-by-5 matrix with elements given by [85]:

d11 = (ρ/ρ1)Z.2h(1)
n (X),

d12 = (2N − Z2)jn(Y )− 4Y jn(Y )
′

,

d13 = 2N [Zjn(Z)
′ − jn(Z)],

d21 = −Xh1
n(X)

′

,

d22 = Y jn(Y )
′

,

d23 = Njn(Z),

d31 = 0,

d32 = 2[jn(Y )− Y jn(Y )
′

],

d33 = 2Zjn(Z)
′

+ [Z2 − 2N + 2]jn(Z)

d14 = (2N − Z2)nn(Y )− 4Y nn(Y )
′

,

d15 = 2N [Znn(Z)
′ − nn(Z)],

d24 = Y nn(Y )
′

,

d25 = Nnn(Z),

d34 = 2[nn(Y )− Y nn(Y )
′

],

d35 = 2Znn(Z)′ + [Z2 − 2N + 2]nn(Z),

d41 = 0,

d42 = (2N −W 2)jn(U)− 4Ujn(U)
′

,

d43 = 2N [Wjn(W )
′ − jn(W )],

d44 = (2N −W 2)nn(U)− 4Unn(U)
′

,

d45 = 2N [Wnn(W )
′ − nn(W )],

d51 = 0,

d52 = jn(U)− Ujn(U)
′

,

d53 = 2Wjn(W )
′

+ [W 2 − 2N + 2]jn(W ),
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d54 = 2[nn(U)− Unn(U)
′

],

d55 = 2Wnn(W )
′

+ [W 2 − 2N + 2]nn(W ).

Where jn, nn and h(1)
n are spherical Bessel, Neumann, and Hankel functions,

respectively. The material properties include the densities of solid and water, 1 and

, and the longitudinal and transverse wave velocities in solid, cL, cT . Primes denotes

differentiation with respect to the indicated argument. Also Bn is found by taking

bij = dij except for the elements b11 = −ρ/ρ1x
2
sjn(x) and b21 = Zj

′

n(x)
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Résumé

La Décomposition Modale Empirique (EMD) est un outil de traitement de signal

piloté par les données et dédié aux signaux non-stationnaires issus ou non de

systèmes linéaires. L’idée de base de l’EMD est l’interpolation des extrema par

des splines pour extraire de composantes oscillantes appelées modes empiriques

intrinsèques (IMFs) et un résidu. Dans cette thèse, un nouvel algorithme de l’EMD

est introduit où au lieu d’une interpolation rigide, un lissage est utilisé pour la

construction des enveloppes supérieures et inférieures du signal à décomposer. Ce

nouvel algorithme est plus robuste au bruit que l’EMD conventionnelle et réduit

le nombre d’IMFs "artificielles" (sur-décomposition). En combinant le nouvel

algorithme et la méthode de séparation d’énergie (ESA) basée sur l’Opérateur

d’Energie de Teager-Kaiser (OETK), un nouveau schéma de démodulation des

signaux AM-FM multi-composante appelé EMD-ESA est introduit. Différentes

versions de l’EMD-ESA sont analysées en terme de performance. Pour l’analyse

Temps-Fréquence (TF), une nouvelle formulation de la carte TF de l’EMD-ESA

appelée Transformation de Teager-Huang (THT) est présentée. Cette nouvelle

Représentation TF (RTF) ne présentant pas de termes d’interférences est comparée

aux RTF classiques telles que le spectrogramme, le scalogramme, la distribution

de Wigner-Ville Distribution (WVD), la Pseudo-WVD et la réallocation de la

Pseudo-WVD. En combinant la nouvelle formulation de la THT et la transformée

de Hough, une nouvelle méthode de détection des signaux multi-composante à

modulation linéaire de fréquence dans le plan TF est présentée. Cette méthode

de détection est appelée transformation de Teager-Huang-Hough (THHT). Les

résultats de la THHT sont comparés à ceux de la transformée WVD-Hough.

Finalement, l’analyse TF par THT et par des RTF classiques (WVD,. . . ) de

signaux réels de rétrodiffusion par des coques cylindriques de dimensions et de

caractéristiques physiques différentes est présentée. Les résultats obtenus montrent

l’apport de la THT comme un outil TF.



Abstract: The Empirical Mode Decomposition (EMD) is new data driven signal

processing tool dedicated to the analysis of non-stationary signals derived or not

from linear systems. In EMD, the core idea is the fitting splines to extrema in the

process of extracting the oscillatory components, called Intrinsic Mode Functions

(IMFs), and a residual in the decomposition of the input signal. In this thesis a new

EMD is introduced where smoothing interpolation instead of exact interpolation is

used to construct the upper and lower envelopes of the signal to be decomposed.

The new EMD is more robustness against noise compared to conventional one

and reduces the number of unwanted or insignificant IMFs (over-decomposition).

Combining the new EMD and the Energy Separation Algorithm (ESA) based on

the Teager-Kaiser Energy Operator (TKEO), a new approach for demodulating

multi-component AM-FM noisy signals called EMD-ESA is presented. Different

versions of the EMD-ESA are detailed and their performances analyzed. For

Time-Frequency (TF) analysis, a mathematical formulation of the TF map of

the EMD-ESA called Teager-Huang Transform (THT) is presented. This TF

Representation (TFR) cross-terms free is compared to classical TFRs such as

spectrogram, scalogram, Wigner-Ville Distribution (WVD), Pseudo-WVD and

reassigned Pseudo-WVD. Combining the new formulation of the THT and the

Hough transform (HT), a new tracking scheme (detection and estimation) of

multi-component linear frequency modulation signals is introduced and compared

to WVD-Hough transform. The introduced detection method is called Teager

Huang Hough Transform (THHT) for short. Finally, a TF analysis by the THT

and classical TFRs (WVD, Pseudo-WVD,. . . ) of real signals backscattered by a

cylindrical shell of different dimensions and physical parameters is performed. The

obtained results show the interest of the THT as a TF tool.

Keywords : Signal processing, Time-Frequency Representation and Analysis,

Empirical Mode Decomposition, AM-FM Model, Teager-Kaiser Operator, Teager-

Huang Transform, Physical Modes of spherical shell and Acoustic Scattering Signals.


