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1Introduction

Three dimensional (3D) object representations have become an in-

tegral part of modern computer graphics applications, such as

computer-aided design, game development and film production. At the

same time, 3D data have become very common in domains such as com-

puter vision, computational geometry, molecular biology and medicine.

The rapid evolution in graphics hardware and software development,

in particular the availability of low cost 3D scanners, has greatly fa-

cilitated 3D model acquisition, creation and manipulation, giving the

opportunity to experience applications using 3D models to a large user

community. Figure 1.1 shows the Google 3D-warehouse. It is a collec-

tion of 3D-data such as buildings, bridges, cars and so on. It is getting

bigger every day and it is completely accessible for every one to use.

Content-based search is a necessary solution for structuring, manag-

ing these multimedia data, and browsing within these data collections.

In this context, we are looking for a system that can automatically re-

trieve the 3D-models visually similar to a requested 3D-object.

Most proposed approaches for content-based indexing used statis-

tical histograms that measure some geometric characteristics of 3D ob-

jects. The various measures of such characteristics are calculated from

a 3D-triangulated mesh surfaces (see Figure 1.2). The mesh representa-

1



2 Chapter 1. Introduction

Figure 1.1 – The Google 3D-warehouse (http://sketchup.google.com/3dwarehouse/)

Figure 1.2 – An example of 3D-object. From left to right: points, flat lines and flat

Rendering.
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tion is the simplest and the most frequently encountered representation

everywhere [DBD08].

In the literature, different kind of shape indexing approaches ex-

ist. The oldest methods are inspired from 2D-methods like Fourier de-

scriptors [MAS01], invariant moments calculations [Can99], median line

extraction, angular radial transform [RCB05] etc. Shape description lit-

erature is very rich. Global 3D-shape description approaches generally

characterize the shape of objects in a grossly way. They are often effec-

tive to discriminate simple shapes but insufficiently discriminative for

more complex shapes. Conversely, 3D-local approaches characterize the

local properties of the object’s surface.

Existing solutions for 3D-shape retrieval are quite robust with re-

spect to rigid transformation like translation, rotation or even scale

change. However, they suffer from high variability towards shape-

preserving transformations like affine or isometric transformations

(non-rigid transformations). Figure 1.3 shows different shapes under

non rigid transformation and with some topological changes.

The aim of this thesis is to propose a 3D-matching method that can

be robust under non-rigid transformations as well as rigid transforma-

tions.

1.1 Contributions

In this thesis, we develop novel approaches for 3D object matching. The

approaches are robust to isometric transformation as well as non rigid

ones. First, we propose two 3D-shape descriptors, namely Curve descrip-

tor and Geodesic cord descriptors. These descriptors which reflect the local

geometric characteristics of given 3D-objects, are computed on patches

of the objects. To separate the different patches of a given object, we

propose the use of feature points extraction algorithm.
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Figure 1.3 – Example of 3D-objects under some deformations with topological

changes. Objects from TOSCA dataset

The descriptors that we propose are based on the intrinsic propriety

of the shapes of 3D-patches. It is in turn invariant to the rigid as well as

non-rigid transformations of the surface.

The curve descriptor consists to represent a 3D-patch by an indexed

collection of closed level curves in R3 extracted around each feature

point. Then, tools from shape analysis of curves are applied to ana-

lyze and to compare curves. We use an extension of the Riemannian

framework proposed by Joshi et al. [JKSJ07] to: (i) compute distances
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between curves to quantify differences in their shapes, (ii) find optimal

deformations between curves, and (iii) define and compute average of a

given set of curves.

The Geodesic cord descriptor represents the shape signature for a

3D-patch as a probability distribution sampled from a shape function

measuring intrinsic properties of the 3D-patch. The distribution is sam-

pled from an intrinsic distance function on the 3D-surface. The distance

function used here is based on the geodesic distances between the fea-

ture point and all the points on the 3D-patch surface.

Second, we use the belief functions, as fusion technique, to define

a global distance between 3D-objects. We experiment this technique in

the retrieval and classification tasks. Our approach is based on the use

of information extracted from the different patches (descriptors) of the

3D-object. Each patch, provides an information source regarding the

shape of that object. A combination of these information is necessary in

order to increase the recognition rate of the object.

At last, we propose the use of Bag of Feature (BoF) techniques in 3D-

object retrieval and classification. The method of BoF is largely inspired

by the Bag of Words concept which has been used in text retrieval and

classification for quite some time. Even though there are countless vari-

ations of algorithms emerging under the label Bag of Features and it is

hard to capture the actual BoF algorithm, there is a common concept

which is shared by all of theses methods. The vocabulary construction

and the bag of word histogram computing.

1.2 Outline

The rest of this manuscript is laid out as follows.

In chapter 2, we review the existing solutions for 3D shape descrip-

tion and present the technique used for shape matching.
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In chapter 3, we propose two feature descriptors used in our frame-

work.

In chapter 4, we propose a belief function based technique for 3D-

shape matching . We present then its application in the case of the

retrieval task.

In chapter 5, we present an automatic classification framework for

categorizing 3D-objects.

Chapter 6 details another method proposed under this thesis. The

method is based on the Bag of Feature (BoF) techniques. This method

is also applied in the retrieval and the classification tasks.

Finally, we conclude this manuscript by summarizing the contribu-

tions of this thesis, enumerate remaining open problems and propose

directions for future research.

1.3 French Introduction

La représentation trois dimensionnelle d’objets (3D) est devenue une

partie intégrante de différentes applications modernes, telles que la

conception assistée par ordinateur, le développement de jeux vidéo et

la production cinématographique. Dans le même temps, les données

3D sont devenues très communs dans des domaines tels que la vision

par ordinateur, la géométrie algorithmique, la biologie moléculaire et la

médecine. L’évolution rapide du matériel et des logiciels graphiques, en

particulier la disponibilité du faible coût de scanners 3D, a grandement

facilité l’acquisition, la création et la manipulation des modèles 3D. La

figure 1.1 montre l’entrepôt de données 3D de Google. Il s’agit d’une

collection de d’objets 3D telles que les bâtiments, les ponts, les voitures

etc. Cette collection s’agrandit chaque jour et elle est entièrement ac-

cessible pour tout le monde à utiliser. La recherche d’objets 3D par le

contenu est une solution nécessaire à la structuration, la gestion de ces
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données multimédia. Dans ce contexte, nous sommes à la recherche

d’un système qui peut automatiquement retrouver des modèles 3D vi-

suellement similaires à un modèle 3D requête. En général, les approches

proposées pour l’indexation par le contenu utilisent des histogrammes

statistiques mesurant certaines caractéristiques géométriques des objets

3D. Les différentes mesures de ces caractéristiques sont calculées à partir

d’un maillage 3D des surfaces triangulées (voir figure 1.2). La représen-

tation en maillage 3D la représentation la plus fréquemment rencontrée

partout [DBD08].

Dans la littérature, différents types d’approches indexation 3D ex-

istent. Les plus anciennes méthodes sont inspirées des méthodes 2D

comme les descripteurs de Fourier [MAS01], les calculs des moments

[Can99], l’extraction de la ligne médiane, angulaire radiale transforma-

tion angulaire radiale [RCB05] etc. La littérature concernant les de-

scripteurs d’objets 3D est très riche. On peut classifier ces descrip-

teurs en deux catégories. Les méthodes basées sur une description

globale d’objets qui caractérise la forme des objets 3D d’une manière

grossière. Ces méthodes sont souvent efficaces pour discriminer des

formes simples mais insuffisamment discriminants pour des formes

plus complexes. Inversement, la 3D-local des approches caractériser

les propriétés locales de la surface de l’objet.

Les solutions existantes pour l’indexation d’objets 3D sont assez ro-

bustes à l’égard des transformations rigides comme la translation, la

rotation ou le changement même de facteur d’échelle. Cependant, ils

sont moins robustes aux transformations affines ou isométriques (trans-

formation non rigide) qu’un objet peut subir. La figure 1.3 montre dif-

férentes formes de transformation non rigide d’un objet 3D.

Dans cette thèse, nous développons de nouvelles approches pour

la mise en correspondance d’objet 3D. Les approches sont robustes aux
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transformations isométriques ainsi que aux transformations non rigides.

Premièrement, nous proposons deux descripteurs de forme 3D, à savoir

descripteur basé courbes et descripteur de cordes géodésiques. Ces

descripteurs qui reflètent les caractéristiques géométriques locales de

l’objet 3D, sont calculés sur des patches extraits des objets. Pour sé-

parer les différents patches d’un objet donné, nous développons un

algorithme d’extraction des points algorithme. Les descripteurs que

nous proposons sont basés sur la propriété intrinsèque de la forme des

objets 3D. Ils sont donc invariants aux transformations rigides ainsi

qu’aux transformations non-rigides. Le descripteur basé courbes con-

siste à représenter un patch 3D par une collection indexée des courbes

de niveau fermé dans R3 extraite autour de chaque point caractéristique.

Des outils de l’analyse de la forme des courbes sont appliqués afin de

comparer les descripteurs. Nous utilisons une extension du cadre rie-

mannien proposé par Joshi et al. [JKSJ07] qui consiste à :(i) calculer

les distances entre les courbes pour quantifier la différence entre leurs

formes, (ii) trouver les déformations optimales entre les courbes, et (iii)

définir et calculer la moyenne d’un ensemble donné de courbes.

Le descripteur de cordes géodésiques représente la forme d’un patch

3D comme une distribution de probabilité d’une fonction mesurant

des propriétés intrinsèques du patch 3D. La fonction utilisée ici est

basée sur les distances géodésiques entre un point caractéristique et

tous les points de la surface 3D du patch. Deuxièmement, nous util-

isons les fonctions de croyance, comme technique de fusion, de définir

une distance globale entre les objets 3D. Nous expérimentons cette

technique dans les tâches de recherche et de classification. Notre ap-

proche est basée sur l’utilisation des informations extraites des dif-

férents patches (descripteurs) de l’objet 3D. Chaque patch, fournit une

source d’information concernant la forme de cet objet. Une combinaison
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de ces informations est nécessaire afin d’augmenter le taux de recon-

naissance de l’objet. Enfin, nous proposons l’utilisation des techniques

inspirés par le concept sac de mots qui a été utilisé dans la recherche

textuelle. Nous avons adapté ces techniques pour la recherche et la

classification d’objets 3D.

Le reste de ce manuscrit est exposé comme suit.

Au chapitre 2, nous passons en revue les solutions existantes pour la

description d’objets 3D en présentant les différentes techniques utilisées

pour la mise en correspondance.

Dans le troisième chapitre, nous proposons deux descripteurs

développés dans le cadre de cette thèse.

Dans le quatrième chapitre, nous proposons une technique basée sur

les fonctions de croyance pour la mise en correspondance d’objets 3D.

Nous présentons ensuite son application dans le cas de la recherche et

la classification des objets 3D.

Dans le chapitre 5, nous présentons un système automatique de clas-

sification d’objets 3D.

Chapitre 6 détaille une deuxième méthode proposée dans cette thèse

pour la recherche et la classification d’objets 3D. La méthode est basée

sur les techniques de sac de mots (BoF).

Enfin, nous concluons ce manuscrit en résumant les contributions de

cette thèse, énumérant les problèmes qui subsistent ouvert et proposer

des orientations pour de futures recherches.
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2.1 Introduction

3D-object classification and retrieval based on content, require having

an automatic method for measuring the similarity between two objects.

The general principle of such method is based on the assumption that

the measure of similarity between two 3D-objects can be reduced to a

distance computing between their two descriptors. A comparison be-

tween two 3D-objects usually involves two steps which are: signature

extraction (or object description), and similarity computing.

The extraction of the signature This step consists to describe the 3D

object (as a vector, a graph, sequence ...) obtained by means of one or

more shape descriptors. In a 3D-object classification and retrieval based

on content system, the signature of the query object is the search key

with which 3D-objects in the database will be compared.

Similarity computing The similarity measure between two 3D objects

results from the comparison between their two extracted signatures.

Several approaches for similarity computing have been proposed in the

literature. Most of them are based on the distances between signatures

of the objects, and use machine learning techniques in order to match

between them.

This chapter gives an overview of the 3D shape matching literature.

First, we present the main existing methods for 3D-object description.

Then, we present some existing techniques that are used for similarity

computing between objects.

French Introduction

Une recherche par le contenu d’objets 3D nécessite de disposer d’une

méthode automatique pour mesurer la similarité entre deux objets. le
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principe général d’une telle méthode repose sur l’hypothèse que la

mesure de similarité entre deux objets 3D peut se ramener au calcul

de la distance entre deux descripteurs de ces objets. Un processus com-

parant deux objets comporte généralement deux étapes principales qui

sont la description d’objets 3D, et la mesure de leur similarité.

Description d’objets 3D: consiste à décrire l’objets 3D au moyen

d’un ou plusieurs descripteur de forme. Dans un processus général

de recherche d’objets 3D. La signature de l’objet requête est la clé de

recherche avec laquelle les éléments de la base vont pouvoir être com-

parés.

Mesure de similarité entre deux objet 3D : cette étape consiste à

comparer les deux signatures extraite en utilisant un certain critère dit

de similarité. Pour effectuer une requête de similarité par l’exemple, ce

critère sert à évaluer la similarité entre l’objet exemple et les objets de

la base. Ainsi, les objets vont pouvoir être classés selon leur ordre de

ressemblance.

Ce chapitre donne un aperçu sur l’état de l’art de la mise en corre-

spondance entre les objets 3D. Tout d’abord, nous présentons les princi-

pales méthodes existantes pour la description d’objet 3D. Ensuite, nous

présenterons quelques techniques existantes qui sont utilisées pour la

mesure de similarité entre deux objets 3D.

2.2 3D-object description methods

In the literature, we can distinguish four main families of approaches

that are used to describe 3D-objects.
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2.2.1 Global methods

A global descriptor takes into account the geometrical characteristics of

the whole object. This section presents the main existing global methods

and their respective advantages and weaknesses.

The cord histogram

Among the first who have developed a method for 3D indexing, we

find Paquet and Rioux [PR99] who released in 1997 their first descrip-

tor named the cord descriptor. The database, used by Paquet and Rioux,

consists of a large number of objects digitized with 3D laser scanners

which they have developed. Using their scanners, the authors, can si-

multaneously acquire the shape and the color of any 3D-object.

The proposed indexing approach is based on some statistics on the

cords of the object to be indexed. The cords are defined here as the

segments connecting the center of gravity of the object and centers of

each triangle of the mesh.

The author proposed three cord histograms that can be constructed:

• a histogram of the cord lengths

• a histogram of the angles between the cords and the first principal

axis

• a histogram of the angles between the cords and the second prin-

cipal axis

In Paquet and Rioux’s paper [PR99], descriptors characterizing the

RGB color are also proposed in order to allow research using textures

associated with objects. Under the Nefertiti project, a search engine for

3D object shape similarity was developed. It uses objects from their

database. The queries are based on the different 3D criteria including

the shape and the color of objects.
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The feature vectors associated with 3D-models are cord and color

histograms, the cord characteristics are computed on the whole mesh.

According to the authors, the optimal size of histogram would be 64

bins. The technique is not very discriminative for objects of complex

shape, and is not robust to perturbations on the connectivity of the

mesh.

Figure 2.1 – D2 shape distribution of different vehicles. [OFCD02]

Shape distribution descriptor D2

The most famous descriptor of the “Shape Retrieval and Analysis” re-

search group , of Princeton University USA, is the shape distribution

descriptor D2 [OFCD02]. The shape distribution represents a probabil-

ity distribution of a shape function measuring global geometric prop-

erties of the object. The shape descriptor of a 3D object is given by

a probability distribution that counts the occurrence of Euclidean dis-

tance between pairs of points chosen randomly on the surface of the

object (see Figure 2.1).

The authors use histograms containing 64 bins to represent their de-

scriptor, and the Minkowski norm to calculate the distances between

histograms. The proposed approach is invariant to rigid transforma-

tions and is robust to deformations of the mesh connectivity. In addi-



2.2. 3D-object description methods 17

tion, the authors propose a research tool 2D-3D where the query is a 2D

sketch drawn by the user and is supposed to correspond to 3D-object in

the database.

D2 shape distribution proposed by Princeton University is a proba-

bilistic method, whose main advantages are the ease of implementation,

computing time, the invariance to geometric transformations and ro-

bustness with respect to the mesh noise (connectivity, decimation). The

descriptors characterize the global shape of objects but not the details.

The method seems to be more adapted to the research of similar objects

in databases containing very different shapes.

Figure 2.2 – Switching to spherical coordinates for the Hough transform. The plan is

described by 3 parameters

3D Hough Descriptor

The 3D Hough Descriptor (3DHD) was proposed by Zaharia and Prê-

teux [ZP02] after the proposition of the 3D shape descriptor which they

developed for MPEG-7 (see the local descriptors in Section 2.2.4 ). The

Hough descriptor consists to accumulate the parameters of the represen-

tative planes defined by the triangles in a given 3D-mesh. In spherical

coordinates, a plan Π is described by the triple (r, θ, φ), where r ≥ 0

represents the distance from Π to the origin, θ ∈ [0, 2π[ is the azimuth
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angle and φ ∈ [−π
2 , π

2 [ the elevation angle, (θ, φ) express the direction of

the normal of the plan Π (see Figure 2.2).

Each axis of the spherical coordinate system is usually uniformly

sampled. It then creates a 3D histogram for holding the different dis-

cretized triplets (r, θ, φ) where each triangle will make a contribution

proportional to its area. The accumulation of contributions in the 3D

histogram will characterize the surface of the 3D object. In order to

overcome the problem of invariance to translations and rotations, a CPA

must be implemented first. Furthermore, the authors propose to project

the normals of the mesh faces on a regular octahedron subdivided and

reprojected on the unit sphere, in order to overcome the problem of

over-representation of triplets located near the poles produced by the

uniform sampling of the spherical coordinates. The 3DHD proved its

effectiveness on the MPEG-7 data, and its robustness with respect to

possible changes in connectivity of the mesh The authors used two lev-

els of decomposition for the octahedron (128 facets) and Ns = 20 ( Ns

is the number of bins to quantify s). The descriptor is then composed

of 2560 elements. To reduce the size of the descriptor, the same authors

[ZP04] propose a new version of the 3DHD with vector quantization,

the QV-O3DHD, which returns essentially the same results as their pre-

vious descriptor but with feature vectors of 128 elements.

2.2.2 View based methods

The idea of using 2D-views to index 3D-models are based on the as-

sumption that two 3D models are similar, if they look similar from the

same viewpoints (angles of view), therefore a number of views (2D pro-

jections) of objects could be used to represent the shapes of the objects.

This section will briefly cover some of these techniques.
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Figure 2.3 – A typical example of the 10 silhouettes for a 3D model. [CTSO03]

Silhouettes

The silhouettes are composed of the shape boundaries from one view

point. In order to represent a 3D shape, a set of silhouettes is extracted,

from which, a set of descriptors are computed and stored. The sil-

houettes can be seen as a more economical representation compared to

model based representations.

This representation is commonly used in object classification task

where matching is done between one silhouette of a 3D shape and a

database of objects represented as set of silhouettes of models (see Fig-

ure2.3).

However, the problem with this kind of descriptors is that, in theory,

different 3D shapes might have the same set of silhouette images.

Aspect Graphs

The Aspect Graph descriptors is based on the fact that “3D shapes look

different when viewed from different viewpoints”. Based on this idea,

the space of views can be partitioned into view classes or characteristic

views. Within each class, the views share a certain property. A cluster-

ing algorithm might be used to generate the view classes. A view class

representation, called an aspect graph, was proposed by Koenderink
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and van Doorn in 1979 [KvD79]. The nodes of the graph represent the

aspects, namely a class of views, and the edges connect different nodes

which have a certain change in aspect.

Figure 2.4 – The AVC view selection process. [FADV07].

Adaptive Views Clustering AVC

In Filali et al.’s paper, [FADV07], authors propose a method for 3D-

model indexing based on 2D-views (see Figure 2.4), which they called

adaptive views clustering. The goal of that method is to provide an

“optimal” selection of 2D-views from a 3D-model, and a probabilistic

Bayesian method for 3D-model retrieval from these views. The charac-

teristic view selection algorithm is based on an adaptive clustering algo-

rithm and uses statistical model distribution scores to select the optimal

number of views. Starting from the fact that all views do not have equal

importance, authors also introduce a novel Bayesian approach to im-

prove the retrieval. They presented results and compared the method on

the Princeton 3-D Shape Benchmark database and a 3-D-CAD-models

database supplied by the car manufacturer Renault. Figure 2.5 shows a

snapshot of the 3D-search engine provided by the authors.
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Figure 2.5 – 3D search engine of the MIIRE research team.

2.2.3 Graph based methods

The graph based methods attempt to extract a geometric meaning from

a 3D shape using a graph showing how shape components are linked

together. Graph based methods can be divided into three broad cate-

gories according to the type of graph used [TV04]: (1) model graphs, (2)

Reeb graphs, and (3) skeletons. Efficient computation of existing graph

metrics for general graphs is not possible: computing the edit distance

is NP-hard [ZWS95] and computing the maximal common subgraph

[GJ90] is even NP-hard. Sebastian et al. [SKK01] describe an approach

to compute a pseudo-metric between shock graphs. It is obtained by

exhaustively searching for the optimal deformation path between two

2D-shapes, and using the cost of this path as a distance between two

shapes. But the computation time of this method is too high for practi-

cal application, and it is not straightforwardly generalized to 3D.

Reeb graph Reeb graphs can obtain a representation of type skeleton

preserving the topological structure of objects [Ree46]. Indeed, their
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Figure 2.6 – we find so many cycles in graphs as holes in objects. [Tun05]

constructions are based on Morse theory [SKK91] that characterizes the

topology of closed surfaces, we find as many cycles in graphs as holes

in objects (see Figure 2.6). In Biasotti et al’s paper [BMM∗03], a graph

matching method based on the propagation of matched subgraphs was

proposed. The method is of quadratic complexity and uses extended

Reeb graphs (ERG) Reeb graphs are oriented and possess information

to edges. For an extensive discussion of Reeb graphs and skeletons we

refer the reader to the paper of Berretti et al. [BDBP09] and the paper of

Tierny et al. [TVD09].

Multiresolution Reeb graph Hilaga et al. [MYTT01] introduced the

multiresolution Reeb graph which allowed two kind of comparison of

3D-object: with low levels of resolutions to get quick results, or using a

maximum resolution to obtain finer results. The multiresolution graph

was expanded by Tung [Tun05].

2.2.4 Local methods

The local shape description is founded on the premise that 3D-objects

can be characterized by attributes computed on patches of the object.

To separate the different patches of a given object some authors use
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an object segmentation method. Other authors use a sampling method

and select patches according to some geometric criterion. More recently,

some authors propose the use of feature points extraction algorithm for

detecting points of interest around which they extract patches. Then for

each patch they calculate a specific feature. A local descriptor reflects

the local geometric characteristics of a 3D-object, as opposed to global

methods which tend to describe in a grossly way the shape of objects.

Here, we first review some feature detection algorithm and then we

describe some local based methods.

Feature detectors

Harris 3D The Harris operator, has been initially introduced in images

[HS88] was extended to 3D shapes by Glomb [Glo09] and Sipiran and

Bustos [IB10]. It is an effective feature detection method. It is based on

the shape variability measure in a local neighborhood of the point, by

fitting a function to the neighborhood, and identifying feature points as

points where the derivatives of this function are high [BB10].

Mesh DOG A number of methods used to feature detection are in-

spired by the difference of Gaussians (DOG). The DOG is a conventional

feature detection approach used in computer vision. The mesh DOG

approach has been introduced in the first by [AEKH09]. The authors

apply Gaussian filtering to functions (e.g. mean or Gauss curvature)

defined on the shape. This creates a representation of the function in

scale space, and feature points are prominent maxima of the scale space

across scales. In [CCFM08], the authors apply Gaussian filtering directly

on the mesh geometry, and use a robust method to detect feature points

as points with greatest displacement in the normal direction.
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Heat kernel feature detectors Recently, several authors like Sun et al.

[SOG09], Gebal et al. [GBAL09] and Bronstein et al. [BBGO11] proposed

feature detection methods based on the heat kernel. A quantity of heat

remaining at a point after large time given a point source at time = 0, is

measured. Feature points are defined as the set of local maxima of that

measurement.

Figure 2.7 – The shape index can characterize the local surface curvature.

Local descriptors

Shape index histogram The 3D-shape index descriptor (3DSID) which

was adopted as shape descriptor for MPEG-7 format, was proposed

by Zaharia and Prêteux [ZP02]. The descriptor characterizes the local

curvatures of the surface of 3D objects using their shape index [KvD79].

Formally, let p be a point on a regular 3D surface, and k1
p and k2

p are the

principal curvatures of the surface associated to p. The shape index Ip
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is written as:

Ip =
1
2
− 1

π
arctan

k1
p + k2

p

k1
p − k2

p
, with k1

p ≥ k2
p

Ip takes value in [0,1] and it is not defined for planar surfaces for

which we have: k1 = k2 = 0 (see Figure 2.7).

The principal curvatures are estimated directly from the triangulated

mesh which should be already smoothed with a low-pass filter (example

Laplacian filter) in order to eliminate the noise related to the position

of the vertices. The principal curvatures are estimated by computing

a second degree polynomial surface that approximates locally the 3D-

mesh. In each vertex v of the mesh, the normal of the polynomial surface

is equal to the sum of the normal of adjacent triangles containing v , the

triangles are weighted by their surface. The method is invariant to rigid

transformations, but depends on the connectivity of the mesh, and very

sensitive to its quality (simplification, remeshing, etc.).

Among other approaches which aim to characterize 3D objects by

estimating their local curvatures, we can find [AAV04] who determine

the curvatures using “cones” formed around vertices and their associ-

ated N-rings 2. We can also find [ADBP03], who use a projection of

curvature on a 2D map. These methods require regular meshes with

very well oriented normals. Moreover, a pre-processing step is neces-

sary to get a manifold mesh and to apply a low-pass filter in order to

smooth the surface. The descriptor of 3D shape index is sensitive to

details of objects and hence the relevance of signatures greatly depends

on the nature of models.

Extended Gaussian Images The Extended Gaussian Images (EGI) de-

scriptor consists to map a function that synthesizes some informations

concerning the 3D-mesh on a Gauss sphere partitioned into several

facets. Each triangle contributes to its corresponding facet (the facet
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given by the direction of its normal) by a weight equal to the area of the

triangle [BH84].

There exists a variant of EGI, the Complex Extended Gaussian Im-

ages (CEGI) give as contributions to the facets, for each triangle, a com-

plex number whose magnitude is equal to the area of the triangle and

whose phase is equal to the distance from the center of the triangle to

the center of the sphere [KI93]. This representation allows to discrimi-

nate primitive shapes. In addition, it also allows to obtain many useful

informations as the symmetry properties or the length of the cords.

The disadvantages of the EGI are its dependency on the connectivity

of the mesh, the over-representation of information at the poles due

to the discretization in spherical coordinates, non-invariance to some

geometric transformations, and also the fact that the method is poorly

suited to objects that are not homeomorphic to a sphere.

Figure 2.8 – Computing the Harmonic Shape Representation. [KF02]
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Spherical Harmonics Saupe and Vranic [DD01] have proposed to ap-

ply a Fourier transform on the sphere S2 by applying the spherical har-

monics formulas proposed by [HRKM03]. Then, to overcome the prob-

lem of invariance to rotations, Kazhdan and Funkhouser [KF02] pro-

posed to implement the decomposition in spherical harmonic functions

defined by the intersection of the surface of the 3D object with a set of

concentric spheres , (see Figure 2.8).

The authors prove that the spherical harmonics method gives better

results than their previous descriptor (D2 shape distribution). However,

it is based on a voxelization of 3D models and therefore depends on the

level of resolution of the voxelization, resulting in a loss of detail in the

description the object.

Vranic [Vra03] proposed to apply the method directly on 3D-meshes

with new 3D spherical functions. The results they obtained on their

database with their method are superior to those based on voxel model,

and less time consuming. However, these results also show that the

encoded information does not really allow accurate querying on the

shapes, the main limitation being the number of concentric spheres and

the number of harmonic coefficients which remain may be too low. The

authors choose in practice 32 and 16 concentric spheres by harmonic

spheres, or a descriptor of 32 * 16 = 512 coefficients.

Spin images The spin image is a surface representation technique

which was initially introduced by Andrew E. Johnson in [JH99] and

is used for surface matching and object recognition in 3D-scenes. Spin

images encode the overall properties of any surface in an object-oriented

coordinate system rather than in a viewer-oriented coordinate system.

Object-oriented coordinate systems are coordinate systems fixed on a

surface or an object while viewer-oriented coordinate systems are based

on the viewpoint of the observer of the surface. By using object-oriented
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coordinate systems, the description of a surface or an object is view-

independent and it does not change as the viewpoint changes [JH99].

Figure 2.9 shows the Spin image creation process for three different ori-

ented points in the surface of an object.

Figure 2.9 – Spin image creation for three different oriented points in the surface of

an object. [JH99]

Heat kernel signature Just a while ago, the diffusion geometry has

emerged as an important tool for shape recognition [Rus07, OBBG09,

BBGO11]. This kind of geometry derived from the heat equation,

(
∆x +

δ

δt

)
u = 0,

governing the conduction of the heat u on the surface X (in the equa-

tion, ∆X indicates the negative semi-definite Laplace-Beltrami operator,
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which is a generalization of the Laplacian to non-Euclidean domains).

The fundamental solution Kt(x, z) of the heat equation, also called the

heat kernel

In [SOG09], Sun et al. used the diagonal of the heat kernel as a

local descriptor, referred to as the heat kernel signatures (HKS). For

each point x on the shape, its heat kernel signature is an n-dimensional

descriptor vector of the form

p(x) = c(x)(Kt1(x, x), ..., Ktn(x, x)),

where c(x) is chosen in such a way that ‖p(x)‖2 = 1. The HKS is intrin-

sic and thus isometry-invariant (two isometric shapes have equal HKS)

(Figure 2.10), multi-scale and thus capture both local features and global

shape structure, and also informative: under mild conditions, if two

shapes have equal heat kernel signatures, they are isometric [SOG09].

Figure 2.10 – top left: dragon model; top right: scaled HKS at points 1, 2, 3 and 4.

all four signatures are close at small t’s while big t’s separate the points on the front

claws from those on back; bottom left: the points (blue), whose signature is close to the

signature of point 1 based on the smaller half of the t’s; bottom right: based on the

entire range of t’s. [SOG09]

Among the different descriptors presented here, we find that lo-
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cal descriptor based methods significantly improves the performance of

classification or retrieval as it can represent more relevant informations.

2.3 Shape similarity computing

The different shape descriptors presented earlier are used to extract fea-

ture vectors which are introduced into the database as keys to represent

3D models and thus accelerate research. In order to measure the simi-

larity between 3D models, it is necessary to define cost functions that,

when applied to these models will return a score quantifying the simi-

larity. This similarity can be used, in a next step, to classify or to index

3D-models.

2.3.1 Distance based method

There are different distance based methods that allow the computing of

this similarity. The simplest way is to compute the distance as:

Dist(Q, O) = ∑
j

mink(d(qj, ok)),

where d(qj, ok) represents the distance between qj ∈ Q and ok ∈ O

We can also find the Hausdorff distance which represents the “max-

imum distance between a set of points and the closest point in another

set of points”

h(Q, O) = maxq∈Q {mino∈O {d(q, o)}} ,

where d(q, o) represents the distance between q and o

2.3.2 Bayesian framework for 3D-matching

Several authors have developed probabilistic approaches for 3D-models

retrieval and classification. For exemple, Yi and Chelberg [YC98] em-

ployed a Bayesian framework to achieve indexing of 3D-models. A
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decision-theoretic measure of the discriminatory power of a feature for

a model object is defined in terms of posterior probability. Domain-

specific knowledge compiled off-line from CAD model data is used in

order to estimate posterior probabilities that define the discriminatory

power of features for model objects. In order to speed up the indexing or

selection of correct objects, they generate and verify the object hypothe-

ses for features detected in a scene in the order of the discriminatory

power of these features for model objects. Based on these principles,

they implemented a working prototype vision system using a feature

structure called an LSG (local surface group) for generating object hy-

potheses. This object recognition system employ a wide class of features

for generation of object hypotheses. In order to verify an object hypothe-

sis, they estimate the view of the hypothesized model object and render

the model object for the computed view. The object hypothesis is then

verified by finding additional features in the scene that match those

present in the rendered image. Experiments have been made on a small

database of 20 3D-models.

Shimshoni and Ponce [SP00] present a probabilistic 3D object recog-

nition algorithm where, in order to guide the recognition process, the

probability that match hypotheses between image features and model

features are correct is computed. They developed a model which uses

the probabilistic peaking effect of measured angles and ratios of lengths

by tracing iso-angle and iso-ratio curves on the viewing sphere. There

model also accounts for various types of uncertainty in the input such

as incomplete and inexact edge detection. For each match hypothesis,

the pose of the object and the pose uncertainty, which is due to the un-

certainty in vertex position, are recovered. This is used to end sets of

hypotheses which reinforce each other by matching features of the same

object with compatible uncertainty regions. A probabilistic expression
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is used to rank these hypothesis sets. The hypothesis sets with the high-

est rank are output. The algorithm has been tested on real images but

on a very small database.

In [FADV07], authors proposed the use of a probabilistic Bayesian

method for 3-D-model retrieval from different views extracted from a

given query. They consider that views do not have equal importance.

That means, there are views which represent the 3-D model better than

others. Each model of the collection is represented by a set of character-

istic views. Considering a 3-D-request-model, the authors compute the

probability of it corresponding to the query.

Figure 2.11 – Illustration of the notion of Pareto optimality and set-valued distance.

[BBBK08b]
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2.3.3 Pareto framework for Shape matching

The main goal of the work proposed by Bronstein et al [BBBK08b], is

to give a quantitative interpretations of what we mean by “large” and

“similar”, and draw a coherent relationship between these terms.

This enables to develop a computationally tractable difficulty of find-

ing the biggest most similar parts. In their approach, authors use the

formalism of Pareto optimality and multicriterion optimization Figure

2.11.

The authors show particular examples of partial similarity of rigid

and non-rigid two and three-dimensional objects and text sequences,

and elaborate the numerical aspects of their computation. In addition,

they show the extension of their methods to images and shapes with

texture.

Let X and Y be two shapes to be compared. The shape X and Y

are partially matching if there exist parts X′ ⊆ X and Y′ ⊆ Y which

are similar and significant. The degree of dissimilarity of parts X and Y

can be expressed by a non-negative function d : ∑X ×∑Y → R+ (here

∑X and ∑Y denote the collection of all the parts of the shapes X and

Y , respectively). The approach models a shape X as a metric space

(X, dX), where dX(x, x′) is the geodesic metric, measuring the length of

the shortest path between two points x, x′ on X.

The similarity criterion used in [BBBK08b] is similar to the stress

function proposed in multidimensional scaling (MDS) problems

[BBBK08b] and also be related to the Gromov-Hausdorff distance

[BBBK08a] between metric spaces (X, dX) and (Y, dY). As the measure

of insignificance, Bronstein et al. used the partiality function

p(X′) = area(X)− area(X′) =
∫

XX′
dµX

where µX indicates the area measure on X. In this formulation, authors
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stated partial matching as a problem of simultaneous minimization of d

and p over pairs of all the possible parts,

minX′,Y′
(
d(X′, Y′), p(X′) + p(Y′)

)
. (2.1)

According to Bronstein et al [BBBK08b], the solution of the multi-

criterion optimization problem in eq 2.1 is the set of parts (X∗, Y∗)

achieving an optimal tradeoff between dissimilarity and partiality, in

the sense that there exists no other pair of parts (X′, Y′) with both

d(X′, Y′) < d(X∗, Y∗) and p(X′) + p(Y′) < p(X∗) + p(Y∗). This solution

is called Pareto optimal (See Figure 2.11).

2.3.4 Bag of Features based methods

Recently, a resurgence of methods based on Bag of Feature techniques

have been proposed in the literature. Liu et al. [LZQ06] presented a

3D-shape descriptor named “Shape Topics” and applied it to 3D par-

tial shape retrieval. In their method, a 3D-object is considered as a

word histogram obtained by vector quantizing Spin images of the object.

Ohbuchi et al. [OOFB08] introduced a view-based method using salient

local features. They represented 3D-objects as word histograms derived

from the vector quantization of salient local descriptors extracted on the

depth-buffer views captured uniformly around the objects. Ovsjanikov

et al. [OBBG09] presented an approach to non-rigid shape retrieval sim-

ilar in its spirit to text retrieval methods used in search engines. They

used the heat kernel signatures to construct shape descriptors that are

invariant to non-rigid transformations. [TCF09] has used the BoF for

3D-object categorization. Toldo’s categorization framework is based on

semantic segmentation. In general, the problem of segmenting a 3D ob-

ject into meaningful parts is not a trivial issue. Their framework is quite

sensitive to the identification of the boundaries of the meaningful part.
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Conclusion

In this chapter, we have presented an overview of some existing tech-

niques for 3D-shape description and similarity computing. The descrip-

tion techniques can be grouped into four categories. The global meth-

ods which take only the global characteristics of the shape, the view-

based techniques, which consider that two 3D-shapes are similar when

they are similar from different angles of view, the graph-based methods

which consist to extract a graph (or skeleton) from the 3D-shape and

reduce the problem of 3D-comparison to graph matching, and finally

the local based descriptors which take into account the local character-

istics of the shapes. The local-based method contains two steps namely

feature extraction and feature description. The extraction of feature can

be performed in a random way(extract randomly a set of points from

the 3D-shapes), it can be done in an uniform way (uniform sampling

of points in the shape) or it can be performed using sophisticated tech-

niques that extract only interest points. The step of description consists

to describe the set of points, already extracted, by using local descrip-

tors. In section 2 of this chapter, we presented some existing techniques

for similarity computing. This techniques which aim to match between

two 3D-shape, are usually applied to 3D-retrieval and 3D-classification.

In the next chapter, we present our proposed descriptors. Since, they

are local-based descriptors, they need tow steps. The first step is for

3D-feature extraction and the second step for the description. For the

description, we present two descriptor namely, the curve descriptor and

the geodesic cord descriptor.
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French conclusion

Dans ce chapitre, nous avons donné un aperçu sur quelques techniques

existantes pour la description de la forme d’objets 3D ainsi que les dif-

férentes techniques utilisées pour la mesure de similarité.

Les techniques de description peuvent être regroupés en quatre caté-

gories. Les méthodes globales, qui ne prennent que les caractéristiques

globales de la forme de l’objets 3D, les méthodes basées sur les vues 2D,

qui considèrent que deux formes d’objets 3D sont similaires s’ils le sont

à partir des différents angles de vue, les méthodes basée sur les graphes

et qui consistent à extraire un graphe (ou squelette) de la forme d’objet

3D et de réduire le problème de la comparaison d’objets 3D à un sim-

ple appariement de graphes, et enfin les méthodes basées descripteurs

locaux qui prennent en compte les caractéristiques locales des objets

3D. Les méthodes locales contiennent en général deux étapes à savoir

extraction des patches locaux et de la description de ces patches. Le

processus d’extraction peut être effectué de façon aléatoire, uniforme

(échantillonnage uniforme des points dans la forme) ou cela peut se

réaliser en utilisant des techniques plus sophistiquées pour extraire des

points d’intérêt qui donnent plus d’information sur l’objet que le reste

des points. L’étape de la description consiste à décrire l’ensemble des

points, déjà extrait, en utilisant un ensemble de descripteurs locaux.

Dans la section 2 de ce chapitre, nous avons présenté quelques tech-

niques existantes pour le calcul de similarité. Cette étape, qui visent à

correspondre deux formes d’objets 3D, est généralement appliquée pour

la recherche et 3D la classification d’objets 3D.

Dans le prochain chapitre, nous présentons les différents descrip-

teurs qu’ on propose pour analyser la forme des objets 3D.
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In this chapter, we present two new shape descriptors. These descrip-

tors belong to local-based description category. So that, a feature

extraction step has to be performed before. This step is based on the

concept of the feature points introduced by Tierny et al [TVD09]. The

37
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method consists to extract features located in the prominent compo-

nents of a given 3D-object. The descriptors, we propose are based on

an intrinsic function computed around feature points. The first descrip-

tor is based on curve analysis. It consists to represent a 3D-surface as

a collection of 3D curves extracted uniformly. The second descriptor

is a probability distribution that represents the shape of the 3D-object,

as other similar descriptor for 3D-object recognition [OFCD02]. In the

first section of this chapter, we present the feature point extraction al-

gorithm. In Section 2, we details the curve descriptor. The third section

presents the geodesic cord descriptor.
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French introduction

Dans ce chapitre, nous présentons deux nouvaux descripteurs de forme

d’objets 3D. Ces descripteurs appartiennent à la catégorie des descrip-

teurs locaux. Une étape d’extraction de caractéristiques est necessaire

avant la description.

Cette étape est basée sur le concept des points d’interêts proposés

par Tierny et al [TVD09].

Les descripteurs que nous proposons sont basés sur des propriétés

intrinsèque calculée autour des points caractéristiques. Le premier de-

scripteur est basé sur l’analyse des formes des courbes. Il consiste à

représenter une surface 3D par une collection de courbes 3D extraites

de manière uniforme. Le second descripteur appelé descripteur des cordes

géodésiques est une distribution de probabilité qui représente la forme de

l’objet 3D.

Dans la première section de ce chapitre, nous présentons

l’algorithme d’extraction des points caractéristiques. Dans la sec-

tion 2, nous présentons le descripteur de la courbe. La troisième section

présente le descripteur des cordes géodésiques.

3.1 Feature point extraction

The feature points is a concept, introduced by several authors [MP02,

KLT05], for which it is hard however to find a formal definition. It

refers to the points of a surface located at the extremity of its prominent

components. Feature points can also be described as the set of points

that are the furthest away (in the geodesic sense) from all the other

points of the surface.

In this section, we present the algorithm used in the feature point

extraction process. This algorithm is based on tools proposed by Tierny
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et al. [TVD09]. Using a diversity of surfaces, the proposed algorithm

produces robust and well-localized feature points.

Let v1 and v2 be the farthest vertices (in the geodesic sense) on a con-

nected triangulated surface S. Let f1 and f2 be two scalar functions de-

fined on each vertex v of the surface S , as follows: f1(v) = δ(v, v1) and

f2(v) = δ(v, v2) where δ(x, y) is the geodesic distance between points x

and y on the surface.

As mentioned by [CMEH∗03], in a critical point classification, a local

minimum of fi(v) is defined as a vertex vmin such that all its level-one

neighbors have a higher function value. Reciprocally, a local maximum

is a vertex vmax such that all its level-one neighbors have a lower function

value. Let F1 be the set of local extrema (minima and maxima) of f1 and

F2 be the set of local extrema of f2. We define the set of feature points F

of the triangulated surface S as the closest intersecting points in the sets

F1 and F2.

Figure 3.1 – F1, F2 and F sets on a triangulated surface. [TVD09]

In practice, f1 and f2 local extrema do not appear exactly on the

same vertices but in the same geodesic neighborhood. Consequently,

we define the intersection operator ∩ with the following set of con-
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straints, where δn stands for the normalized geodesic distance function

(to impose scale invariance) (See Figure 3.1):

V ∈ F = F1 ∩ F2 ⇔



∃vF1 ∈ F1 / δn (V, vF1) < ε

∃vF2 ∈ F2 / δn (V, vF2) < ε

δn (V, vi) > ε ∀vi ∈ F

ε, δn ∈ [0, 1]

This algorithm detects all the feature points required in the subse-

quent analysis. They are accurately localized and their localization is

robust with respect to rigid and non-rigid transformations, because of

the use of geodesic distance in f1 and f2 functions.

In the sequel, we will denote a 3D-surface extracted around one

feature point by 3D-patch.

Figure 3.2 – Feature points extracted from different poses of a 3D-model.

3.2 Curve based descriptor

In this section, we analyze shapes of 3D-surfaces using shapes of curves

extracted around a set of feature points. In other words, we divide a 3D-

surface into a set of patches. Each patch consists of one feature point

and an indexed collection of simple, closed curves in R3. The geome-

try of 3D-patches is then studied using the geometries of the associated

curves. Curves are defined as level curves of an intrinsic distance func-
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tion on the 3D-patch surface. Their geometries in turn are invariant to

the rigid transformations of the 3D-patch surface. These curves jointly

contain all the information about the surface and it is possible to go

back-and-forth between the surface and the curves without any ambi-

guity. In this section, we firstly describe how to extract a significant

set of curves around feature points. We explain then the framework of

curves analysis and its extension to comparison of 3D-patch surfaces.

Let Vi be a feature point on a 3D-triangulated surface. A geodesic

distance function is defined on that 3D-surface such that Vi be its origin.

The geodesic function is split into a set of levels. Vertices which are in

the same level are extracted with respect to an arbitrary order. For each

level, we use the fast-marching method to extract the equidistant points.

This is done by computing the geodetic distance from the feature point

to all other vertices of the mesh. The equidistant curve is then formed

by connecting linear segments between points on the edges at the given

level (distance).

Let λ be a level set corresponding to the geodesic distance function

f . The set of ordered vertices v such that f (v) = λ builds one curve.

Figure 3.3 shows one level curve. Figure 3.3a shows the equidis-

tant points to a given feature point. The set of obtained points is then

arranged and oriented in order to build a 3D-closed curve( see Figure

3.3b). Figure 3.4 shows the sets of curves extracted from a cow 3D-

patch. Figure 3.4a shows the original 3D patch extracted around one

feature points (shown in red). Figure 3.4b shows the set of level curves

extracted from the head cow patch around the feature point.

3.2.1 Curves analysis

The analysis of 3D-shapes via their associated curve space has a techni-

cal sound foundation in the Morse theory [LHGQ06]. In our approach,
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(a) (b)

Figure 3.3 – 3D-curve extraction and smoothing.

(a) (b)

Figure 3.4 – Representation of patches by an indexed collection of curves.
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we treat curves as closed, parameterized in R3 with fixed origins for

parameterizations and we rescale them to have the same length, say 2π.

This allows us to use one of many methods already available for elastic

analysis of closed curves. The key idea in elastic analysis is that the

points which are matched together are at unequal distances from their

origins. Such matching can be considered as an elastic matching, as one

curve has to (locally) stretch, compress and bend to match the other.

Several authors, starting with Younes [Lau98], followed by Michor

and Mumford [MM06] and others, have studied curves for planar

shapes. More recently Joshi et al. [JKSJ07] have extended it to curves

in Rn using an efficient representation of curves. Other authors, includ-

ing Yezzi and Mennucci [YM05], have also used Riemannian metrics

on curve spaces. Their main purpose was to study curves evolution

rather than shape analysis. Here, we adopt the Joshi et al’s approach

[JKSJ07] because it simplifies the elastic shape analysis. The main steps

are: (i) define a space of closed curves of interest, (ii) impose a Rieman-

nian structure on this space using the elastic metric, and (iii) compute

geodesic paths under this metric. These geodesic paths can then be

interpreted as optimal elastic deformations of curves.

We start by considering a closed curve β in R3. Since it is a closed

curve, it is parameterizable using β : S1 → R3. We will assume that

the parameterization is non-singular, i.e. ‖β̇(t)‖ 6= 0 for all t. The norm

used here is the Euclidean norm in R3. Note that the parameterization

is not assumed to be arc-length; we allow a larger class of parameter-

izations for improved analysis. To analyze the shape of β, we shall

represent it mathematically using a square-root velocity function (SRVF),

denoted by q(t), according to:

q(t) .
=

β̇(t)√
‖β̇(t)‖

.
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q(t) is a special function that captures the shape of β and is partic-

ularly convenient for shape analysis, as we describe next. Firstly, the

squared L2-norm of q, given by:

‖q‖2 =
∫

S1
〈q(t), q(t)〉 dt =

∫
S1
‖β̇(t)‖dt ,

which is the length of β. Therefore, the L2-norm is convenient to

analyze curves of specific lengths. Secondly, as shown in [JKSJ07], the

classical elastic metric for comparing shapes of curves becomes the L2-

metric under the SRVF representation. This point is very important as

it simplifies the calculus of elastic metric to the well-known calculus of

functional analysis under the L2-metric. In order to restrict our shape

analysis to closed curves, we define the set:

C = {q : S1 → R3|
∫

S1
q(t)‖q(t)‖dt = 0} ⊂ L2(S1, R3) .

Here L2(S1, R3) denotes the set of all functions from S1 to R3 that

are square integrable. The quantity
∫

S1 q(t)‖q(t)‖dt denotes the total

displacement in R3 as one traverses along the curve from start to end.

Setting it equal to zero is equivalent to having a closed curve. There-

fore, C is the set of all closed curves in R3, each represented by its SRVF.

Notice that the elements of C are allowed to have different lengths. Due

to a nonlinear (closure) constraint on its elements, C is a nonlinear man-

ifold. We can make it a Riemannian manifold by using the metric: for

any u, v ∈ Tq(C), we define:

〈u, v〉 =
∫

S1
〈u(t), v(t)〉 dt . (3.1)

We have used the same notation for the Riemannian metric on C and

the Euclidean metric in R3 hoping that the difference is made clear by

the context. For instance, the metric on the left side is in C while the
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metric inside the integral on the right side is in R3. For any q ∈ C, the

tangent space:

Tq(C) = {v : S1 → R3| 〈v, w〉 = 0, w ∈ Nq(C)} ,

where Nq(C), the space of normals at q is given by:

Nq(C) = span{ q1(t)
‖q(t)‖q(t) + ‖q(t)‖e1,

q2(t)
‖q(t)‖q(t) + ‖q(t)‖e2,

q3(t)
‖q(t)‖q(t) + ‖q(t)‖e3} ,

where {e1, e2, e3} form an orthonormal basis of R3.

It is easy to see that several elements of C can represent curves with

the same shape. For example, if we rotate a curve in R3, we get a

different SRVF but its shape remains unchanged. Another similar sit-

uation arises when a curve is re-parameterized; a re-parameterization

changes the SRVF of curve but not its shape. In order to handle this

variability, we define orbits of the rotation group SO(3) and the re-

parameterization group Γ as the equivalence classes in C. Here, Γ is the

set of all orientation-preserving diffeomorphisms of S1 (to itself) and the

elements of Γ are viewed as re-parameterization functions. For exam-

ple, for a curve β : S1 → R3 and a function γ : S1 → S1, γ ∈ Γ, the curve

β(γ) is a re-parameterization of β. The corresponding SRVF changes

according to q(t) 7→
√

γ̇(t)q(γ(t)). We set the elements of the set:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

to be equivalent from the perspective of shape analysis. The set

of such equivalence classes, denoted by S .
= C/(SO(3) × Γ) is called

the shape space of closed curves in R3. S inherits a Riemannian metric

from the larger space C and is thus a Riemannian manifold itself. The

main ingredient in comparing and analyzing shapes of curves is the
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construction of a geodesic between any two elements of S , under the

Riemannian metric given in Eqn. 3.1. Given any two curves β1 and β2,

represented by their SVRFs q1 and q2, we want to compute a geodesic

path between the orbits [q1] and [q2] in the shape space S . This task is

accomplished using a path straightening approach which was introduced

in [KS06]. The basic idea here is to connect the two points [q1] and [q2]

by an arbitrary initial path α and to iteratively update this path using

the negative gradient of an energy function

E[α] =
1
2

∫
s
〈α̇(s), α̇(s)〉 ds

.

The interesting part is that the gradient of E has been derived analyt-

ically and can be used directly for updating α. As shown in [KS06], the

critical points of E are actually geodesic paths in S . Thus, this gradient-

based update leads to a feature point of E which, in turn, is a geodesic

path between the given points. We will use the notation d(β1, β2) to

denote the geodesic distance, or the length of the geodesic in S , be-

tween the two curves β1 and β2. Shown in the bottom row of Figure 3.5

is an example of geodesic path between two 3D-curves extracted from

two different 3D-patch surfaces; the cow-head patch (left side) and the

horse-head patch (right side).
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3.2.2 3D-patch matching

Now we extend ideas developed in the previous section for analyzing

shapes of curves to the shapes of full 3D-patch surfaces. As mentioned

earlier, a 3D-patch surface P is represented with an indexed collection

of the level curves of the f function. That is, P is equivalent to the

set {cλ ∈ [0, L]}, where cλ is the level set associated with the distance

function value equal to λ. Through this relation, each 3D-patch has been

represented as an element of the set C [0,L]. In our framework, the shapes

of any two patches are compared by comparing their corresponding

curves. Lets D denotes the global distance between two patches.

Given any two surfaces patches P1 and P2, and their collection of

curves {c1
λ, λ ∈ [0, L]} and {c2

λ, λ ∈ [0, L]}, respectively, our idea is to

compare the curves c1
λ and c2

λ, and to accumulate these distances over

all λ. Formally, we define a distance: D : C [0,L] × C [0,L] → R≥0, given by

D(P1, P2) =
∫ L

0
d(c1

λ, c2
λ)dλ.

Here, the distance inside the integral is the geodesic distance function

between the shapes of any curves, described in the last section. In Fig-

ure 3.5, The top row shows the two 3D-patches surfaces (cow-head and

horse-head) and the resulting geodesic path between them. Middle sur-

faces denote five equally spaced points (in the space of all parameterized

paths) along the geodesic path. With respect to the chosen Riemannian

metric, this path denotes the optimal deformation from the cow-head

patch to the horse-head patch.

3.2.3 Karcher Means of surfaces

The Riemannian structure defined on the manifold of 3D-surfaces en-

ables us to perform some statistical analysis for computing 3D-surfaces

mean and variance. The Karcher mean is based on the intrinsic geome-
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try of the manifold to define and compute a mean on that manifold. It

is defined as follows. Let D(Pi, Pj) denotes the length of the geodesic

from a 3D-patch Pi to another 3D-patch Pj. To calculate the Karcher

mean of a set of 3D-patches {P1, ..., Pn}, we define the variance func-

tion ϑ : C [0,L] −→ R, ϑ(P) = ∑n
i=1 D(P, Pi)

2. The Karcher mean is then

defined by :

T = argminP∈C [0,L]ϑ(P) (3.2)

The intrinsic mean may not be unique, i.e. there may be a set of points

in C [0,L] for which the minimizer of ϑ is obtained. To interpret geomet-

rically, T is an element of C [0,L], that has the smallest total deformation

from all given 3D-surfaces.

Figure 3.6 shows the shape of the Karcher mean of four 3D-objects.

The mean shape is located at the center of the figure.

Figure 3.6 – The shape of the Karcher mean of four 3D-objects and its associated sets

of curves
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3.3 Geodesic cord descriptor

In this section, we present another descriptor. It represents the shape

signature for a 3D-patch as a probability distribution sampled from a

shape function measuring intrinsic properties of the 3D-patch. We call

this generalization of intrinsic histogram a geodesic cord descriptor. The

geodesic cord descriptor is a probability distribution that represents the

shape of the 3D-patch as other similar approaches for 3D-object recog-

nition [PR99, OFCD02].

The distribution is sampled from an intrinsic distance function on

the 3D-surface. The distance function used in here is based on the

geodesic distances between the feature point and all the points on the

3D-patch surface. It is in turn invariant to the rigid and non-rigid trans-

formations of the surface.

This descriptor can be computed quickly and easily. Once we have

computed the shape distributions for two objects, the dissimilarity be-

tween the 3D-patches can be evaluated using any metric that measures

distance between distributions (e.g., Ln norm), possibly with a normal-

ization step for matching scales.

The key idea is to transform an arbitrary 3D-patch into a parameter-

ized function that can easily be compared with others. In our case, the

domain of the shape function provides the parameterization. The pri-

mary advantage of this approach is its simplicity. The 3D-patch shape

matching problem is reduced to a comparison of probability distribu-

tions, which are relatively simple tasks when compared to prior meth-

ods that required reconstructing a solid object or manifold surface.

In spite of its simplicity, we expect that this descriptor is useful for

discriminating 3D-patches with different shapes. This hypothesis satis-

fies several properties desirable for a shape matching method:
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Invariance: Geodesic cord descriptor has all the transformation in-

variance properties of the sampled shape function. For instance, the

intrinsic function yields invariance under rigid and non-rigid transfor-

mations. In this case, invariance under scaling can be added by normal-

ization of Geodesic cord distributions before comparing them and/or

by factoring out scale during the comparison.

Metric The dissimilarity measure produced by this descriptor adopts

the properties of the norm we use to compare Geodesic cord distri-

butions. In particular, if the norm is a metric, so is our dissimilarity

measure. This property holds for most common norms, including Ln

norms, Earth Mover’s Distance, and so forth.

In the following sections, we provide a detailed description of the

methods we use to build geodesic cord descriptors from 3D-patches

and compute a measure of their dissimilarities.

3.3.1 Selecting a Shape Function

The first and most interesting issue is to select a function whose dis-

tribution provides an accurate signature for the shape of a 3D-patch.

Ideally, the distribution should be invariant under rigid and non rigid

transformations, and it should be insensitive to noise. Here we choose

to use the geodesic distance between the feature point, associated to the

3D-patch, and the rest of points in the patch.

3.3.2 Constructing of Geodesic cords

Having chosen the geodesic distance as the intrinsic function, the next

issue is to compute and store a representation of its distribution. Specif-

ically, we evaluate this function in the 3D-patch and construct a his-

togram by counting how many points fall into each of R fixed sized



3.3. Geodesic cord descriptor 53

bins. The histogram forms our representation for the Geodesic cord

distribution. We compute the Geodesic cord descriptor once for each

model and store it as a sequence of R integers. More formally, given

a 3D-patch P associated to the feature point Fi, we define a descriptor

P(Fi) and consider the geodesic distances {d(Fi, v); ∀v ∈ V} with V is

the set of all the vertices on the 3D-patch surface. Considering f the

distribution of vertices according to these distances, we define the de-

scriptor P(Fi) as an R-dimensional vector:

P(Fi) = (p1, ..., pR)

where

pr =
∫ r/R

(r−1)/R
f (d)δd

P(Fi) is an R-bin histogram of vertex distribution of geodesic distances

measured from Fi.

3.3.3 Comparing Geodesic cord descriptors

Having constructed the shape distributions for two 3D models, we are

left with the task of comparing them to produce a dissimilarity measure.

There are many standard ways of comparing two descriptors P1 and P2

representing probability distributions.

The Minkowski norms The Minkowski norms, also called Ln norms,

are vector norms. The most widely used are the 1-norm, 2-norm, and

∞-norm:

‖P1 − P2‖1 = (|P1(1)− P2(1)|+ ... + |P1(n)− P2(n)|)

‖P1 − P2‖2 =

√(
|P1(1)− P2(1)|2 + ... + |P1(n)− P2(n)|2

)
‖P1 − P2‖∞ = max1≤i≤n |P1(i)− P2(i)|
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Kullback-Leibler divergence For probability distributions, P1 and P2,

the KL is defined to be

KL(P1, P2) = ∑
i

P1(i) · log(P1(i)/P2(i))

Bhattacharyya distance Bhattacharyya distance can be also used to

compare two geodesic cord descriptors, P1 and P2:

D = 1−∑
i

√
P1(i)

√
P2(i)

Many other distance can be used also to compare to descriptors such

as Kolmogorov-Smirnov distance and Earth Mover’s distance. In our

implementation, we have experimented many distance measure and we

find that the L2 distance is the most efficient in both speed and perfor-

mance.

Figure 3.7 shows the descriptor corresponding to four feature points

extracted from two different cats. We can notice that the tail-patch de-

scriptor Figure 3.7a of the first cat is similar to the tail-patch descriptor

Figure 3.7b of the second cat. The leg-patches of the two cats (Figure

3.7c and Figure 3.7d) also have similar distance distributions.

3.4 Experiments and Results

To assess the efficiency of the proposed algorithms, in this section we

evaluate their performance. In the first, we study the robustness of the

proposed algorithm for the feature point detection. Then, we compare

the performance of the two proposed descriptors. The comparison is

conducted on a dataset composed of 50 mesh patches.

3.4.1 Feature point evaluation

To test the affine transformation invariance and the robustness to noise,

we made several experiments. The criterion to evaluate the experiments
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(a) (b)

(c) (d)

Figure 3.7 – Distance-distributions on four different feature points.
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was the repeatability of the feature points. Given an object O and a

transformation function T, which can be a translation, scaling, rotation,

isometric, or noise addition, T(O) is a transformed object. In addition,

F represents the set of feature points extracted from O. Thus, the re-

peatability is defined as:

RO,T(O) =

∣∣∣PO ∩ PT(O)

∣∣∣
|PO|

(3.3)

With respect to the used data, we pick models from the TOSCA

dataset1. We calculate the repeatability between the null object and each

transformed object, obtaining an average for each object in our collec-

tion. Finally, we calculate the mean of average repeatabilities of each

object. For the whole collection, we obtained a repeatability of 0.98.

3.4.2 Descriptor performance evaluation

In this section, we provide a set of experimental results to assess the ef-

fectiveness of the proposed shape descriptor methods. To this purpose,

we are using a pre-classified test database of 50 mesh patches grouped

in 5 classes, each one consisting of 10 elements. See Figure 3.9.

We evaluated the two descriptors using the standard measures

briefly described below.

Precision and recall The Precision and recall are two fundamental

measures often used in evaluating search strategies. Recall is the ra-

tio of the number of relevant records retrieved to the total number of

relevant records in the database, while precision is the ratio of the num-

ber of relevant records retrieved to the size of the return vector. In our

experiment, for each query the total number of relevant records in the

database is always 10, that is the size of each class. Figure 3.10 shows

1http://tosca.cs.technion.ac.il/
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Figure 3.8 – Example of feature point position with respect to isometric

transformations. The feature points are colored in red. The shapes are taken from the

TOSCA dataset.

Figure 3.9 – Five 3D-patches taken from the evaluation dataset. The shapes are taken

from the TOSCA dataset.
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Figure 3.10 – Precision vs Recall plots comparing the Curve descriptor and Geodesic

Cord descriptor with other descriptors.

the Precision vs Recall plots. It can be seen that the curve descriptor per-

forms the best results in term of precision. The geodesic cord is quite

effecient compared to the shape index descriptor and the geodesic D2

one

Percentage of success We compute the percentage of success for the

first (PF) and the second (PS) retrieved items, i.e. the probability of the

first and second elements in the return vector to be relevant to the given

query, and average them over the whole set of queries. For an ideal

method PF = PS = 100%.

Returning to the whole collection, we observed that all descriptors

guarantee the identity property (i.e. D(Pi, Pi) = 0, Pi is the ith patch in

the database), so that the percentage of success PF of the first retrieved
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Descriptor Curve Geodesic Cord Geodesic D2 Shape index

PF 100% 100% 100% 100%

PS 100% 99.66% 98.72% 89%

Table 3.1 – The percentages of success PF et PS

item is always 100%. The percentages of success PS the second retrieved

item are listed in the table 3.1.

Conclusion

In this chapter, we have presented a new method for 3D-shape feature

extraction and description. First, we presented an automatic algorithm

for feature point extraction. The algorithm detects points located in the

prominent component of 3D-shapes. Then, we presented a patch de-

scriptor based on curve analyses. The descriptor represents a collection

of 3D-curves extracted around one feature point already extracted. The

shape of the 3D-patch is studied then by analyzing the shapes of its

curves. For that, we have presented a Riemannian framework for curve

comparison. We have also presented another shape descriptor which is

based on a probability distribution. The distribution is sampled from an

intrinsic distance function on the 3D-surface. The distance function used

is based on the geodesic distances between the feature point and all the

points on the 3D-object surface. We have evaluated the proposed de-

scriptors and we demonstrated their effectiveness compared with some

well known descriptors.

In the next chapter, we will present a new method for 3D-shape

similarity computing. We will use the belief function technique to com-

pute a global similarity between two given 3D-objects. For this end,

3D-patches are considered as information sources. The global similarity

is computed by merging all information.
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French conclusion

Dans ce chapitre, nous avons présenté une nouvelle méthode pour la de-

scription d’objets 3D. Premièrement, nous avons présenté un algorithme

automatique pour l’extraction de points caractéristiques. Ensuite, nous

avons présenté un descripteur de forme 3D basé sur des courbes 3D.

Le descripteur représente une collection de 3D-courbes extraites au-

tour d’un point caractéristique déjà extrait. La descripteur est évalué

en analysant les formes des courbes qui lui sont associées. L’analyse

des formes des courbes est effectuée dans un cadre riemannien.

Nous avons également présenté un deuxième descripteur de forme

3D. Ce dernier est basé sur la distribution des distances géodésique

entre un point caractéristique et tous les points de surface d’objets 3D.

L’évaluation des descripteurs proposés démontre leur efficacités par

rapport à certains descripteurs de l’état de l’art.

Dans le chapitre suivant, nous présentons une nouvelle méthode

pour la mesure de similarité entre les objets 3D.
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This chapter presents two belief based methods for 3D-object re-

trieval. First, we review needed belief function techniques for in-

formation fusion. Then, we present the methods and finally, we present

the experimental results.
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4.1 Introduction

This chapter presents an approach for 3D-object matching based on the

use of information extracted from the different patches of the 3D-object.

Each patch provides an information source regarding the shape of that

object. A combination of these information is necessary in order to in-

crease the recognition rate of the object. Patch information fusion can

be seen as a problem of merging classification results of each patch (or

fusion of classifiers). Conventional methods given by the theory of the

uncertainty (fusion by weighted voting, Bayesian fusion, belief function

based fusion, etc.) can be used to achieve this fusion. In these theories

of uncertainty, two distinct concepts are required to fully model the im-

perfections of the information given by each patch: the uncertainty and

imprecision. The uncertainty characterizes a degree of conformity to

reality (qualitative lack of information), while the imprecision measures

the quantitative missing of information (example measurement errors).

In addition, the merger process should allow to take into account the re-

lationship between the different sources of information (discrepancies,

conflict, complementarity, refinement, etc.). Figure 4.1 summarizes the

fusion process.
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In the context of this thesis, we chose to work with the belief function

theory. Indeed, this generic formalism includes several classical theories

such as probability and possibility theory. Belief functions offer many

mechanisms and tools to manage uncertainty, model disregard and take

into account partial information. Its flexibility and ability to integrate

concepts on the reliability of different sources of information contributes

to conclude on its usefulness in our matching task.

First, a theoretical study of belief functions is presented. Then, we

show its application in the 3D-retrieval context.

French introduction

Nous présentons dans ce chapitre une approche de fusion crédibiliste

pour la recherche d’objets 3D à partir des différents descripteurs locaux

calculés dans le chapitre précédant. Ces descripteurs sont considérés

comme des sources d’informations qui peuvent être combinées pour

fournir une decision sur la forme globale d’un objet 3D. La représenta-

tion et la combinaison de ces informations sont effectuées dans le cadre

des fonctions de croyances.

Tout d’abord, une vue d’ensemble théorique sur les fonctions de

croyance est présenté. Ensuite, nous montrons son application dans le

cadre de la recherche d’objets 3D.

4.2 Belief function theory

The work of Dempster [Dem67] on the lower and upper bounds of a

family of probability distributions has allowed Shafer [Sha76] to lay the

foundations of the theory of belief functions. This theoretical formalism

may take several interpretations and designations (theory of belief func-

tions, theory of Dempster-Shafer, Evidence theory). Shafer has shown
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the benefits of belief functions to model uncertain knowledge. The use-

fulness of these functions, as an alternative to subjective probabilities,

has been demonstrated later axiomatically by Smets [SK94] through the

Transferable Belief Model (TBM).

The TBM is a generic framework developed for the representation

and the combination of knowledges. It is based on the definition of

belief functions provided by several sources of information that can be

complementary, redundant, and possibly non-independent. It proposes

a set of operators for combining these functions. It is naturally used

in the context of information fusion to improve the analysis and the

interpretation of data taken from multiple information sources.

One of the fundamental points that characterizes the TBM is the dif-

ferentiation of levels of knowledge representation and decision taking.

This differentiation is much less prominent in other approaches, par-

ticularly for the probabilistic model for which the decision is often the

only objective. The reasoning mechanisms of the TBM are grouped into

two levels:

• The credal level, where knowledge is represented (static part),

combinations and reasoning on this knowledge is performed (dy-

namic part).

• The pignistic level which involves a final decision by taking into

account the possible risk and/or the gain associated with this de-

cision.

In the following, we discuss some mathematical elements related to

the belief functions. The concept of belief function is first presented,

allowing the reader to understand how information is represented in

a belief structure. Some tools associated with this formalism are then

detailed, including combination and decision making.
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4.2.1 Belief functions

Given a finite set Ω =
{

ω1, ω2, ..., ωq
}

, usually called a frame of dis-

cernment. A belief function bel is a function defined from 2Ω to [0, 1]

by:

bel(∅) = 0

∀l ≥ 1, ∀i = 1, ..., l Ai ⊆ Ω :

bel(
⋃

i=1,...l

Ai) ≥ ∑
I⊆{1,...l},I 6=∅

(−1)|I|+1bel(
⋂

i=1,...l

Ai) (4.1)

The particular case where l = 2 and A1 ∩ A2 = ∅ illustrates the

fact that the belief attributed to the union of two disjoint subsets of Ω

is greater than or equal to the sum of the beliefs assigned to each sub-

set taken separately. If the inequality is transformed into equality in

equation 4.1, the resulting function bel, usually called Bayesian belief

function, becomes a function of probability. Thus, the classical proba-

bility is a special case of belief functions which can be interpreted as

a generalization of probability theory to model inaccuracies and uncer-

tainties.

A belief function can also be defined by a mass function, denoted m

defined from 2Ω to [0, 1] which satisfies:

∑
A⊆Ω

m(A) = 1. (4.2)

In contrast to the probability distribution the mass function does not

preserve the monotony with respect to inclusion:

A ⊂ B ; m(A) < m(B). (4.3)

This makes the belief function superadditive. Each subset A ⊆ Ω

such as m(A) > 0 is called a focal element of m. Thus, the mass m(A)

represents the degree of belief assigned to the proposal A that could not,

given the state of knowledge, be assigned to a more specific subset than
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A. A function such that m(∅) = 0 is called normal. In the Transferable

Belief Model (TBM) [SK94], the condition ∑∅ 6=A⊆Ω m(A) = 1 is assumed

and m(∅) > 0 is accepted. This specificity allows us to introduce the

concept of open world assuming that the belief can not be placed on

a subset of Ω. In this context, the empty set ∅ can be interpreted as a

hypothesis which is not clearly defined throughout the frame of discern-

ment in contrast to the closed world where all hypotheses is exhaustive.

Given a mass function m, we can actually define bel the belief function

and pl the plausibility function respectively as following:

bel(A) = ∑
B⊆A,B 6=∅

m(B), ∀A ⊆ Ω (4.4)

and

pl(A) = ∑
A∩B 6=∅

m(B), ∀A ⊆ Ω (4.5)

The functions m, bel and pl represent three facets of the same infor-

mation.

4.2.2 Information Fusion

Let us assume that we have two mass functions m1 and m2 defined on

the same frame of discernment Ω. These two functions can be aggre-

gated by a conjunctive combination operator noted ∩©. The result of this

operation leads to a single belief function which corresponds to a mass

function, denoted by m∩©, which can be defined by:

m∩©(A) = (m1∩©m2)(A) = ∑
B∩C=A

m1(B) ·m2(C). (4.6)

This combination rule is sometimes referred as unnormalized

Dempster’s combination rule. If necessary, the normalization assump-

tion m∩©(∅) = 0 can be found by dividing each mass by an appropriate
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coefficient. The resulting operator, which is known as the Dempster’s

rule and noted m⊕, is defined by:

(m1 ⊕m2)(A) =
(m1∩©m2)(A)

1−m∩©(∅)
∀A ⊆ Ω. (4.7)

The use of the Dempster’s rule is possible if the mass functions m1

and m2 are not in total conflict. That means if there exist two focal

elements B and C respectively, of m1 and m2 such that B ∩ C 6= ∅.

This rule allows to combine uncertain information modeled by belief

functions.

4.2.3 Reliability and discount rate

When the source of information, the belief function is extracted from,

is not completely reliable, it is possible to introduce an operation of

weakening. In this case, a coefficient α which represents a kind of meta-

knowledge about the reliability source, can transfer part of the belief to

the set Ω. Thus, a mass function weakened, denoted mα, can be deduced

from m:

mα(A) = α ·m(A), ∀A ( Ω

mα(Ω) = 1− α + α ·m(Ω) (4.8)

Thus, the belief function is able to represent several kind of knowl-

edge and by this means it represent a rich and flexible framework for

representing uncertain information. The coefficient α can be calculated

using a statistical learning algorithm as in [SK94].

4.2.4 Decision making

At the pignistic level, the belief function resulting the available infor-

mation in credal level, is used for decision making. Based its reasoning
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on arguments of rationality developed in the transferable belief model,

Smets [SK94] proposed to transform a mass function m into a proba-

bility function BetPm defined on Ω (called pignistic probability ) that

formalizes for all ωk by:

BetPm(ωk) =
1

1−m(∅) ∑
A∈2Ω/ωk∈A

m(A)

|A| . (4.9)

Where |A| represents the cardinality of the subset A ⊆ Ω and k ∈

{1, 2, ..., q}. In this transformation, the mass of belief m(A) is uniformly

distributed among the different elements of A.

4.3 Belief function based system for 3D-object re-

trieval

In this section, we present the techniques used in our work to perform

the fusion process of patch information. Based on two frame of dis-

cernments, we have developed two methods for 3D-shape retrieval. The

first method is based on Ω = {relevant, not− relevant} as frame of dis-

cernment. The second method is based on Ω =
{

Oj, 1 ≤ j ≤ M
}

the

set of all object in the dataset. We detail these methods in the following

sections separately.

4.3.1 First retrieval method

The belief functions are used in this system to model ignorance and

combine different information sources (given by each patch) using

the combination rule of Dempster in a frame of discernment Ω =

{relevant, not− relevant} where relevant means that a given 3D-object

is relevant to index with respect to the query. We detail the sources of

information used in this framework.
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Information Sources

From the different patches extracted from the object query, we can com-

pute information that can be combined to make a decision regarding

the 3D-object. The idea consists to go from a simple patch matching to

multi-patches in order to get more information about the whole object.

Given an object query Q and its corresponding patches, the system com-

putes information provided by each patch using the distance between

the patch descriptor in the query and its closest one in the object to be

compared with. Then a combination of these information is achieved.

So that, the objects in the collection can be turned back to the user based

on the set of patches information.

Given the query object Q and a set of P corresponding patches

{Pi}1≤i≤N Information sources {S1, S2, ..., SN} derived from the

query patches {Pi}1≤i≤N with the reliabilities {α1, α2, ..., αN}, where

α1, α2, ..., αN quantify the degree of reliabilities of the information

sources extracted from the query patches. The reliability can be ex-

pressed as the significance of the patch in the object query. Finding a

quantitative measure of the significance is a big challenge. As men-

tioned by Bronstein et al [BBBK08b], the main problem comes from the

fact that unlike similarity between patches, which in many cases can

have a strict definition, the significance is rather a semantic notion and

thus much more difficult to quantify.

More formally, let Ω = {relevant, not− relevant} a frame of dis-

cernment. So, we have three possible focal elements, two assump-

tions (“object is relevant” and “object is not relevant”) and a com-

posite assumption Ω also called uncertainty. Each information source

Si ∈ {S1, S2, ..., SN} examines each object in the collection: is it a rel-

evant object, not-relevant object or is there no opinion for this object

Oj? For this reason, we propose a basic belief assignment m[Si, Oj],
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which distributes the belief quantity between three elements: relevant,

not-relevant and uncertainty Ω and satisfies:

m[Si, Oj](relevant) + m[Si, Oj](not− relevant)+

m[Si, Oj](Ω) = 1 (4.10)

The quantity of belief given to the assumption “relevant” by Si to Oj

must be proportional to the distance between the patch Pi ∈ Q and its

closest one ∈ Oj. This distance, noted by d(Pi, Oj), can be computed by

the measure of the distance presented in chapter 3. Formally d is given

by:

d(Pi, Oj) = min
k,Pk⊂Oj

(d(P, Pk)) (4.11)

The basic belief assignment m[Si, Oj](.) which is discounted by a

coefficient αi according to the reliability of source Si can be computed

as follows:

mαi [Si, Oj](relevant) = αi · (1− d(Pi, Oj))

mαi [Si, Oj](not− relevant) = αi · d(Pi, Oj) (4.12)

mαi [Si, Oj](Ω) = 1− αi

Here, we define the reliability of a shape’s patch as a function of

the partiality function used in [BBBK08b]. The value αi of a 3D-patch

can be computed as αi = exp(−npartiality(Pi)
2) where npartiality is

the normalized partiality function of the 3D-patch Pi. It is given by

npartiality(Pi) =
area(Q)−area(Pi)

area(Q)
.

For each object Oj in the collection, we combine all basic belief

assignments using the Dempster’s combination rule. The aggregated

mass function is:

m[Q, Oj] =
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mαi [Si, Oj]⊗mα2 [S2, Oj]⊗mα3 [S3, Oj]...⊗mαN [SN , Oj] (4.13)

After the discounting and combination phases, the system computes

the pignistic probability. Finally, the system decides what the most

similar object (relevant object) is, by selecting the object which has the

biggest value of pignistic probability for the subset “relevant”.

This method is summarized in algorithm 1

Algorithm 1: : 3D-shape search algorithm (1st method)
Given a 3D-object query Q.

1: Extract a set of N feature points Vi from Q.

2: for each object Oj in the collection do

3: for each feature point Vi where i = 1, ..., N do

4: Compute a patch descriptor (ie. Pi).

5: Compute the distance between Pi and Oj using eq 4.11.

6: Compute a mass distribution for Oj using eq 4.12.

7: end for

8: Combine all masses mPi into a new mass function mQ

9: Compute the pignistic probability induced by mQ

10: Save the pignistic probability given to the Rel hypothesis.

11: end for

12: Display 3D-objects in the order according to the pignistic probability given to

Rel.

4.3.2 Second retrieval method

The second method developed in our work, consists to consider a dif-

ferent frame of discernment. Here, we consider a collection of M

3D-objects Ω =
{

Oj, 1 ≤ j ≤ M
}

and a set of N 3D-object patches

{Pi, 1 ≤ i ≤ N} extracted from a global 3D-object query Q. Our goal

is to compute a global similarity metric between the 3D-object query Q

and 3D-objects in the collection. This metric is based on the distance

between patches presented in chapter 3 In order to achieve this compu-
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tation, each patch Pi is modeled by one mass function mPi . This function

is defined on Ω as frame of discernment and it measures the amount of

belief committed to the assumption: “Pi belongs to Oj”. Formally, mPi is

a mass function 2Ω → [0, 1] given by:

mPi(Oj) = αi ·
1− d(Pi, Oj)

∑M
l=1(1− d(Pi, Ol))

(4.14)

mPi(Ω) = 1− αi

where d(Pi, Oj) is a distance measure defined between an object patch Pi

of the query Q and a global 3D-object Oj in the collection. This measure

represents the distance between the patch Pi and its closest one in Oj.

d(Pi, Oj) is computed using equation 4.11.

It is required to normalize this distance in order to obtain a distribu-

tion on [0, 1] which allows us a correct construction of the mass function.

In equation 4.14, αi is a confidence coefficient on [0, 1]. This coefficient

is interpreted as the significance given to each patch in a global 3D ob-

ject. Here, we use the same significance defined in Section 4.3.1. Then

all patches Pi of the query Q are modeled by their corresponding mass

functions, we can apply the Dempster’s combination rule in order to

get a mass function which measures the amount of belief committed to

the assumption: “Q is similar to Oj”. Lastly, a decision is made from

the obtained mass function and resulting objects are sorted based on a

pignistic probability distribution.

This approach is summarized in algorithm 2.

4.3.3 Experiments and Results

In this section, we present the experimental results of the proposed

3D-retrieval methods. First, we present the databases on which con-

ducted the experiments. Then we present some state-of-the-art shape-

matching algorithms to compare with, the evaluation criteria and the
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Algorithm 2: : 3D-shape search algorithm (2nd method)
Given a 3D-object query Q.

1: Extract a set of N feature points Vi from Q.

2: for each feature point Vi where i = 1, ..., N do

3: Extract a set of closed curves (ie. patch Pi).

4: Compute the distance between Pi and all objects in Ω using eq 4.11.

5: Set a mass value for all the objects mPi (Oj) using eq 4.14.

6: end for

7: Combine all masses mPi into a new mass function mQ

8: Compute the pignistic probability induced by mQ

9: Display 3D-objects in the order according to the pignistic probability.

experimental results. Data with noise are considered in the sequel and

a quantitative analysis of the experimental results are reported. The al-

gorithms that have been described in the previous sections have been

implemented using Matlab software. The framework encloses an off-

line feature point extraction algorithm and a curve extraction algorithm,

and an on-line retrieval process. To evaluate our method, we used two

different databases. The TOSCA [BBK07] data set for non-rigid shapes

and the SHREC07 [MPB07] shape benchmark for partially similar mod-

els.

Please note that both presented approaches have been tested with

the two proposed descriptors (earlier presented in chapter 3). In the

following we will call:

• Belief1_Curve, the first retrieval method using curve descriptor.

• Belief1_Gcord, the first retrieval method using Geodesic cord de-

scriptor.

• Belief2_Curve, the second retrieval method using curve descriptor.
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• Belief2_Gcord, the second retrieval method using Geodesic cord

descriptor.

Data set description

• The TOSCA1 dataset: This data set has been proposed by Bron-

stein et al. [BBK07]. It is an interesting database for non-rigid

shape correspondence measures. The database consists of 148

models, enclosing 12 classes. Each class contains one 3D-shape

under a variety of poses (between 1 and 20 poses for each class).

This classification is provided with the dataset.

• SHREC07 dataset: This benchmark2 is composed of a dataset of

400 manifold models (see Figure 4.2) and of a query set of 30

manifold models composed of composite models as shown in Fig-

ure 4.3. Hence, it is an interesting database for partial shape re-

trieval. The dataset exhibits diverse variations, from pose change

to shape variability within a same class or topology variations (no-

tice 4 of the 20 classes contain non zero genus surfaces) [MPB07].

The ground-truth is provided with the dataset.

Some state-of-the-art algorithms

In order to evaluate the 3D-global matching approach, we compare our

method with some state-of-the-art shape-matching algorithms.

• Extended Reeb Graphs (ERG): it is a structural based 3D matching

method. It works with Reeb graph properties [MPB07].

• Ray-based approach with Spherical Harmonic representation

(RSH): Saupe and Vranic [DD01] use PCA to align the models into

1http://tosca.cs.technion.ac.il/
2http://partial.ge.imati.cnr.it/
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Figure 4.2 – SHREC07 data-set snapshot.

Figure 4.3 – SHREC07 query-set snapshot.
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the canonical position. Then the maximal extents are extracted,

and finally the spherical harmonic is applied.

• The hybrid feature vector (DSR): it is a combination of two view

based descriptors: the depth buffer and the silhouette and radial-

ized extent function descriptor [Vra04].

• The Geodesic D2: it is an extension of the Euclidean D2

[OFCD02]. It is computed as a global distribution of geodesic

distances in 3D-shapes.

Evaluation criterion

There are several different performance measures which can evaluate re-

trieval methods. In this section, we test the robustness of our approach

using the Precision vs Recall plots. They are well known in the litera-

ture of content-based retrieval. The precision and recall are defined as

follow:

Precision =
N
A

, Recall =
N
R

where N is the number of relevant models retrieved in the top A re-

trievals, R is the number of relevant models in the collection, which is

the number of models to which the query belongs to.

Results

During the off-line process each model in the database has been re-

meshed to get a regular model. Feature points have been extracted and

their related sets of curves (parts) have been extracted and stored into

indexed files. During the on-line process, feature points and related

curves of the query object are extracted.

Results on the TOSCA dataset In order to show the main contribution

of our approaches, some results are shown as a matrix in Figure 4.4.
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In this visualization of the matrix, the lightness of each element (i; j) is

proportional to the magnitude of the distances between 3D-objects i and

j. That is, each square, in this matrix, represents the distances between

two 3D-objects. Darker elements represent better matches, while lighter

elements indicate worse matches.

Figure 4.4 – Matrix of pairwise distances between seven 3D-objects. Using the

Belief1_Curve method.

This matrix is not symmetric because our similarity measure based

on belief function is not symmetric either. In this matrix, humans are

similar together and partially similar to centaurs. Centaurs are similar

together and partially similar to horses and humans. According to the

lightness of the matrix square, we can easily do the distinction between
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three different classes. The first class contains the first three animals, the

second class encloses centaurs and horse and the third class contains

humans and centaurs. Other visual results are shown in Figure 4.5.

The first column contains the query while the rest are the four retrieved

3D-objects. An interesting result is shown in the last row of Figure 4.5,

where the query is a centaur, the forth retrieved 3D-object is a horse

which is partially similar to the centaur.

Figure 4.5 – First retrieved results on the TOSCA dataset. Using the Belief1_Curve

method.

Quantitative analysis of our experimental results are depicted in Fig-

ure 4.6. Figure 4.6 shows the Precision vs Recall plots for our approaches

and some well-known descriptors. We find that all approaches that we

proposed provide the best retrieval precision in this experiment. For in-

stance, using the Belief1_Curve method we obtain the best results, while

although Belief2_Gcord performs worst, it outperforms others state-of-

the art methods. One can notice here that the curve based descriptor

gives more efficient results compared to the geodesic cord descriptor in
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both proposed matching methods. Analyzing Figure 4.6, we can also

notice that the first proposed matching method outperforms the second

one.

Figure 4.6 – Precision vs Recall plots comparing the proposed belief based methods to

RSH, D2 and DSR algorithms on the TOSCA dataset.

Results on the SHREC07 dataset First, from a qualitative point of

view, Figure 4.7 gives a good overview of the efficiency of the frame-

work. For example, in the first row, the query is a centaur and thus

most of the top-results are humanoid and animal models.

From a more quantitative point of view, we compare the Precision

vs Recall plot of our approaches with those of the methods competing

the contest. Such a plot is the average of the 30 Precision vs Recall plots

corresponding to the 30 models of the query-set. Figure 4.8 shows these

plots . Here, we notice the same behavior of all methods as in shown in

Figure 4.6. Using the Belief1_Curve method we obtain the best results.
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Figure 4.7 – First retrieved results on the SHREC07 dataset. Using the

Belief1_Curve method.

Robustness to query noises

We investigate the framework robustness against surface noise. For each

element of the query-set, we added a surface noise. The noise is ±0.2%

and ±0.5% the length of the model’s bounding box. It consists of three

random translations in the three directions X, Y and Z. Figure 4.9 shows

some examples of the noise effect.

Precision vs Recall plot are computed for two proposed approaches

(the belief1_curve method and the belief1_Gcord method) under the

noise and compared with the original Precision vs Recall plot. From

this results shown in Figure 4.10, the noise addition effects can be ob-

served. The performance of the belief1_curve method is robust to±0.2%

of noise. However in the case of ±0.5% of noise, a remarkable descent

of the Precision vs Recall plot relative to the original plot can be distin-

guished. Therefore, we consider the ±0.5% of noise as the limit of the
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Figure 4.8 – Precision vs Recall plot on the SHREC07 dataset.

Figure 4.9 – Surface noise on a TOSCA 3D-model: Original, ±0.2% noise and

±0.5% noise (from left to right).

belief1_curve method in terms of noise robustness. Analyzing results

shown in Figure 4.11, we find that the belief1_Gcord method is more

robust under the noise addition than the belief1_curve method. This is

due to the shape descriptor used in each method. Shapes of curve can

highly change with noise addition which affects the robustness of the

method.
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Figure 4.10 – The Precision vs Recall plot of the belief1_curve method compared with

the Precision vs Recall plot with noise addition on the TOSCA dataset.

Robustness to feature points localization

In order to assess the robustness of our method under localization of

feature points, we apply the following transformation for the query set.

We select a random vertex located in a geodesic radius (1% and 2% of

the geodesic diameter of the 3D-object) centered in the original feature

points.

In Figure 4.12 an example of the feature points localization with

noise addition is shown. The original feature point is colored in green.

The perturbation consists of a random selection of one vertex among

vertices colored in red. Figure 4.13 shows that the performance of the

belief1_curve is robust with respect to 1% of perturbation. However 2%

perturbation plot shows the limit of the method in term of feature point

perturbation.

Figure 4.13 shows that the performance of the belief1_Gcord is ro-

bust with respect to 1% and 2% of perturbation. Here also, we can

conclude that the belief1_Gcord method is more robust than the be-
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Figure 4.11 – The Precision vs Recall plot of the belief1_Gcord method compared

with the Precision vs Recall plot with noise addition on the TOSCA dataset.

lief1_curve method with feature point perturbation and this is also due

to the shape descriptor used in each method.

Conclusion

In this chapter, we have presented our framework for shape similarity

computing based on the evidence theory. In the first section, we gave a

theoretical overview of belief function theory. In the second section, we

have presented two 3D-shape matching methods for global 3D search

and retrieval applications. The belief functions has been used in this

matching framework to compute a global similarity metric based on

the 3D-patch matching. The results on the TOSCA and the SHREC07

datasets show the effectiveness of our methods. They also show the

robustness to rigid and non rigid transformations, surface noise and

partially similar models.

In the next chapter, we will present a 3D-shape classification method

based on the belief function theory.
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Figure 4.12 – An example of the feature point location with perturbation (1% bottom

and 2% top).

French conclusion

Dans ce chapitre, nous avons présenté une nouvelle méthode pour le

calcul de similarité entre les formes d’objets 3D. Etant donné un en-

semble de patches extraits d’un objet 3D, nous considérons que chaque

patch peut fournir une certaine information sur la forme globale de

l’objet. L’ensemble d’informations fournis par les différents patch de

l’objet sont représentées et combinées dans un cadre crédibiliste. Une

décision finale sur la forme de l’objet est déduite à partir des informa-

tions combinées.

Les résultats obtenus sur deux différentes bases d’objets 3D (TOSCA

et SHREC07) montrent l’efficacité de nos méthodes. Ils montrent égale-

ment la robustesse de notre méthode aux différentes transformations

qu’un objet 3D peut subir. Dans le prochain chapitre, nous présenterons
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Figure 4.13 – The Precision vs Recall plot of the belief1_curve method compared with

the Precision vs Recall plot with feature points location perturbation on the TOSCA

dataset.

une méthode de classification 3D basé sur la théorie des fonctions de

croyance.
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Figure 4.14 – The Precision vs Recall plot of the belief1_Gcord method compared

with the Precision vs Recall plot with feature points location perturbation on the

TOSCA dataset.
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This chapter presents a belief based method for 3D-object classifica-

tion. The method consists of two stages. The training stage, where
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3D-objects in the same category are processed and a set of representa-

tive parts is constructed, and the labeling stage, where unknown objects

are categorized.
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5.1 Introduction

This work addresses the categorization problem with a patch-based ap-

proach. It consists of capturing a compact model of an object category

by building a set of representative patches from the different objects in

that category. For this end, patches from the objects in the same cate-

gory are extracted. We emphasize here on the fact that our patches are

the local features of the objects that can be represented by the proposed

descriptors (Curves and Geodesic cords). Once we extracted patches

from all the objects in the same category, we construct a set containing

representative patches. This set is used to represent all object patches

in that category. A straightforward way to build this set is to use vec-

tor quantization techniques. Here, we use a variation of the evidential

k-nearest neighbors algorithm [ZD98]. The centroids of the resulting

clusters serve as representative patches for our category. This process

is iterated for all the categories in the training set. The labeling of un-

known 3D-objects is achieved by labeling their associated patches. Here,

we assume that each patch can help to predict the category of the whole

object. More specifically, each patch of the object to be labeled is consid-

ered as an item of evidence supporting certain hypotheses concerning

the category membership of that object. Based on this evidence, the

object patches are compared with category representative patches and

basic belief masses are assigned to each category. As a result of consid-

ering each object patch in turn, we obtain a set of Basic Belief Assignments

(BBAs) that can be combined using the Dempster’s rule of combination

to form a resulting BBA synthesizing a final belief regarding the cat-

egory of the whole object. Another issue is detailed in this section,

when labeling an unknown 3D-object, one can be faced with the prob-

lem of handling the unclassifiable object (reject). Here we show that we

are able to handle this issue using belief theory based data association



92 Chapter 5. Belief function based system for 3D-object classification

method. Using a specific modeling of belief functions, this is done by

detecting and managing a portion of a conflict, which originates from

the non-exhaustivity of the frame of discernment.

French introduction

Nous consacrons ce chapitre pour la catégorisation d’objets 3D. La caté-

gorisation est divisée en deux phases.

La première phase consiste à construire un modèle compact d’une

catégorie d’objet 3D par la construction d’un ensemble de patches

représentatifs. Ces patches représentatifs servent à décrire les objets

3D appartenant à la même catégorie.

La deuxième phase consiste à étiqueter des objets 3D inconnus.

L’étiquetage est réalisé en fonction de la relation entre les patches

représentatifs précédemment construits et les patches extraits aux ob-

jets inconnus. Lors de l’étiquetage d’un objet 3D, on peut être confronté

au problème de la classification des objets inclassables (le cas où l’objet

à étiqueté n’appartient à aucune catégorie de la base d’apprentissage).

Nous montrons que nous sommes en mesure de résoudre ce problème

en utilisant la théorie des fonctions croyance.

5.2 Representative patch construction

Here, we attempt to find representative patches of each category. For

this end, we developed an evidential clustering method based on the

Transferable Belief Model concept. Let us consider a category C in the

training set. All objects in C are processed (patches are extracted from

each object) and the sets of patches are extracted. Let PC = {P1, ..., PN}

be the collection of all object patches in C. We assume that these patches

can be classified into M classes W = {W1, ..., WM} (for the choice of M
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see Algorithm 3) and each patch Pi will be assumed to possess a class

label indicating with certainty its membership to one class in W. Let Ps

be an incoming patch to be classified. Classifying Ps means assigning it

to one class in W. Using the vocabulary of the evidential theory, W can

be called the frame of discernment of the problem.

Let us denote by Θs the set of the k-nearest neighbors of Ps in PC,

according to some distance measure D (here, D represents the distance

between two descriptors presented in chapter 3). Let Pk ∈ Θs a 3D-

patch classed in Wl . The pair (Pk, Wl) can be regarded as a piece of

evidence that increases our belief that Ps also belongs to Wl . However,

this piece of evidence does not provide by itself 100% certainty. In the

evidential formalism, this can be expressed by saying that only some

patches of our belief are committed to Wl . Since the fact that Pk ∈ Wl

does not point to any other particular hypothesis, the rest of our belief

can not be distributed to anything else than W, the whole frame of

discernment. This item of evidence can therefore be represented by a

Basic Belief Assignment (BBA) mk verifying:

mk(Wl) = χe(−γl D2(Ps,Pk))

mk(W) = 1−mk(Wl) (5.1)

mk(A) = 0 ∀A ∈ 2W\ {W, {Wl}}

With χ a parameter such that 0 ≤ χ ≤ 1. γl is obtained by an opti-

mization procedure proposed by Zouhal and Denoeux [ZD98]. We set

χ = 0.9. For each of the k-nearest neighbors of Ps, a BBA depending

on both its class label and its distance to Ps can therefore be defined.

In order to make a decision regarding the class assignment of Ps, these

BBAs can be combined using Dempster’s rule [Sha76] into one BBA ms.

As a result, Ps will take the label of the class maximizing the pignistic

probability induced by ms. Algorithm 3 summarizes this method.
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Algorithm 3: 3D-patch clustering algorithm
Input:

Each patch in PC is considered as one class. W is initialized to be

W = {W1..., WN} and N is the number of patches in PC, so that

M = N

Begin

REPEAT

1. Set a random order to patches in PC;

FORALL Pi in PC with respect to the order

2. Compute mk (for each of the k-nearest neighbors of Pi);

3. Compute mi by combining mk using Dempster’s rule of

combinaison;

4. Compute BetP the pignistic probability induced by mi;

5. Change the label of Pi in W according to BetP;

ENDFOR

6. Analyze W and reduce the number of classes;

UNTIL obtaining a stable partition in W;

End
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Once the clustering process is achieved, we compute the centroid of

each cluster. The centroid is a patch whose parameter values are the

mean of the parameter values of all the patches in the cluster. Centroids

here are called representative patches and denoted by R.
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5.3 Labeling a new 3D-object

In this section, we focus on the labeling of 3D objects. Figure 5.1 shows

the various steps of this process. First, giving an object O to be labeled

(Figure 5.1 step a), the algorithm begins by partitioning this object (Fig-

ure 5.1 step b). Second, an invariant descriptor is associated to each

extracted patch of that object (Figure 5.1 step b). The partitioning and

the description of these patches are done in the same way as in the

training process. The labeling of the object O is achieved based on its

patches. Here, we assume that each patch can help to predict the cate-

gory of the whole object. In the context of belief functions, we can say

that each patch represents an evidence source which provides an infor-

mation regarding the category of the object. By considering all patches,

we obtain a set of evidence sources that can be combined to produce a

final decision concerning the category of the object.

5.3.1 Evidence extracting from patches

Recalling here that, after the training process, each category contains a

set of representative patches. Given a patch extracted from the object

to be labeled (for example P1 in Figure 5.1 step b), we select in each

category the representative patch that is the closest to P1 (Figure 5.1

step c-1). Then, from the selected representative patch a mass function

that quantifies the degree of belief given to the assumption “P1 matches

with a particular category Cj” is derived (Figure 5.1 step c-2). As a result

of considering each category in turn we obtain a set of BBAs that can be

combined using the Dempster’s rule of combination to form a resulting

BBA. This BBA syntheses a final belief regarding the relation between

the patch and the categories (Figure 5.1 step c-3).

More formally, let us denote by {Pi}1≤i≤I the set of I patches com-

posing the object O. From the training set, we enumerate J categories
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Ωc =
{

Cj
}

1≤j≤J . A category Cj contains a set of representative patches.

Let Rj
Pi

be the closest representative patch to the patch Pi in the cate-

gory Cj. Each pair (Pi, Rj
Pi
) with 1 ≤ j ≤ J constitutes a distinct item of

evidence regarding the category membership of Pi. If Pi is closed to Rj
Pi

then one will be inclined to believe that both patches belong to the same

category. On the contrary if their dissimilarity is very large then we

consider that Pi may belongs to Cj the complement of Cj in Ωc. Conse-

quently this item of evidence may be postulated to induce a basic belief

assignment BBA mij over Ωc defined by:

mij(Cj) = µ · S(Pi, Cj)

mij(Cj) = µ ·
(
1− S(Pi, Cj)

)
(5.2)

mij(Ωc) = 1− µ

S(Pi, Cj) = e(−D(Pi ,R
j
Pi
)) is a function of the distance between the patch

Pi and its closest representative patch Rj
Pi

in the category Cj. µ is a dis-

counting coefficient [Sha76] associated with the category Cj. In practice,

we set µ = 0.9 for all categories.

As a result of considering each category we obtain J BBAs as shown

in Figure 5.1 step d-2. These masses are combined using the Dempster’s

rule of combination to form a resulting BBA mi synthesizing a final

belief regarding the attachment of Pi to each category. Figure 5.1 step

d-3 shows the resulting BBA mi.

5.3.2 3D-object labeling

In order to get a final decision about the category of the unknown 3D-

object, all masses mi i ∈ [1..I] are combined using the Dempster’s rule

of combination (Figure 5.1 step c-4).

A decision can be made regarding the category membership of the

3D-object by examining the pignistic probability deduced from the re-
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sulting mass m (Figure 5.1 step c-5). The labeling process is summarized

in Algorithm 4.

Algorithm 4: : Labeling a new 3D-object

Input: Given a training set of J categories Ωc =
{

Cj
}

1≤j≤J . Each

category is represented by a set of representative patches.. Given an

3D-object O to be labeled.

Begin

1. Partition O into I 3D-patches {Pi}1≤i≤I ;

FORALL Pi in {Pi}1≤i≤I

FORALL Cj in Ωc

2. Find the closest representative patch Rj
Pi

to the patch Pi;

3. Compute mij (according to eq.5.2);

ENDFOR

4. Compute mi by combining mij using Dempster’s rule;

ENDFOR

5. Compute m by combining all mi using Dempster’s rule;

6. Compute the pignistic probability induced by m for all categories;

7. Label O according to the highest pignistic probability;

End

5.4 Reject option

Introducing a reject option is very useful, yet a difficult problem in data

classification. Instead of Bayesian classifiers where the reject is modeled

empirically by comparing the posteriori probability with a threshold (T)

[VFJZ01], the reject option in the belief theory is modeled in natural way.

It can be deducted from the conflict on each mass distribution in Figure

5.1 step c-3. The idea consists to divide the conflict into two components:

a conflict due to the non-exhaustivity of the frame of discernment repre-



100 Chapter 5. Belief function based system for 3D-object classification

C1 ∅ C1 C1

C1 C2 ∅ C2

Ωc C2 C1 Ωc

C2 C2 Ωc

Table 5.1 – Representation of the Dempster’s rule of combination

sented by the reject and an unknown conflict. In order to illustrate this

idea, let us consider a two-element frame of discernment Ωc = {C1, C2}.

Ωc can also be represented by
{

C1, C1
}

or
{

C2, C2
}

. Given two BBA m1

and m2 which are defined on Ωc by: m1 = m1(C1), m1(C1), m1(Ωc) : a

3D-object belongs or does not belong to the category C1 or we are in a

situation of almost complete ignorance concerning the category of that

patch. m2 = m2(C2), m2(C2), m2(Ωc) : a 3D-object belongs or does not

belong to the category C2 or we are in a situation of almost complete

ignorance concerning the category of that patch.

Here, m1 and m2 are considered as two independent sources of in-

formation to be combined in order to decide with which category, the

object is associated. The evidence combination of these two belief using

Dempster’s rule of combination can be represented by Table 5.1. The

last row and the first column of this table are named by the subsets of

Ωc. Each of the squares in the table correspond to the intersection of

the subset of each source of information m1 and m2. The value of BBA

taken for the resulting subset is obtained by the multiplication of the

BBA values of the subsets constituted Ωc. From this table, we can see

that the conflict (the mass of the empty set) is represented by two grids.

Its value is given by:

m12(∅) = m1(C1).m2(C2) + m1(C1).m2(C2) (5.3)

The first portion of the conflict m1(C1).m2(C2) is created because

the two sources of information m1 and m2 related respectively to cate-
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gory C1 and C2 confirmed that a 3D-object corresponds to the two cat-

egories at the same time. In contrast, the second portion of the conflict

m1(C1).m2(C2) is created because the two sources of information con-

firm that the 3D-object does not correspond to any category and thus

the frame of discernment is not exhaustive. Hence, in our view, the sep-

aration between the first and the second portion of the conflict must be

done because they do not have the same origin. We define a reject when

sources of information confirm that the 3D-object does not correspond

to any category. The reject is added to the frame of discernment as a new

element and its belief degree is given by: m12(reject) = m1(C1).m2(C2).

More specifically, in our case and through multiple sources of informa-

tion in the Table in Figure 5.1 step (d-2), the mass value of the reject is

given by:

mi(Reject) =
J

∏
j=1

(mij(Cj)) (5.4)

Finally, according to the pignistic probability deduced from the mass

function computed in section 5.3.2, a decision can be taken about the

reject of the 3D-object.

5.5 Experiments and Results

In this section, we present the experimental results of the proposed 3D-

classification methods. We present results from three experiments. In

the first expirement, we evaluate the performance of the belief based

classifier and explore the impact of the choice of descriptors on classifier

accuracy. The accuracy is computed as the percentage of object models

which are correctly classified. We then compare the performance of

the belief based classifier with the Bayesian classifier [HKDH04] on the

same problem. In the second experiment we describe results with com-
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parison to some state-of-the-art retrieval methods. The last experiment

shows the contribution of reject modeling option of our framework.

The experiments were conducted on two different datasets. The

first dataset is the SHREC07 database. As mentioned in chapter 4, the

database contains 400 3D-objects classified into 20 classes. It is a chal-

lenging dataset, not only because of the large number of classes, but

also because it contains shapes with highly variable poses and non-

rigid or isometric transformations. Figure 5.2 reviews some examples

from this dataset. Each object in the figure represents one class. The

second dataset is composed of shapes from the TOSCA and the Sum-

ner datasets. The TOSCA dataset has been proposed by Bronstein et

al. [BBK07] for non-rigid shape correspondence measures. The Sum-

ner dataset has been proposed by Sumner and Popovic [SP04] for de-

formable shape correspondence. The total set size is 380 shapes. Figure

5.3 shows some examples from this dataset. Each object in the figure

represents one class.

Figure 5.2 – SHREC07 dataset snapshot. Each object corresponds to one category.
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Figure 5.3 – TOSCA-Sumner dataset snapshot. Each object corresponds to one

category.

5.5.1 Framework performance

From a qualitative point of view, Figures 5.4 and 5.5 give a good

overview of the efficiency of the framework on the SHREC07 dataset.

Figure 5.4 presents a confusion matrix. Rows in this matrix correspond

to query parts extracted from a human 3D-object, and columns corre-

spond to the different categories shown in Figure 5.2 (Ordered from left

to right and from top to bottom). The lightness of each element (i; j) is

proportional to the magnitude of the similarity between the part i and

its closest representative one in the category j. Lighter elements repre-

sent better matches, while hot elements indicate worse matches. One

can notice in this visualization that the parts of the human object tends

to match with the 12th object category which corresponds to the human

one in Figure 5.2. This result confirms our assumption that 3D-objects

in the same category have the same parts.

Figure 5.5 shows another confusion matrix. In this matrix rows cor-

respond to 3D-object queries and columns correspond to the categories

shown in Figure 5.2. The lightness of the diagonal squares of the matrix

proves the effectiveness of our classifier.

More quantitatively, Table 5.2 and Table 5.3 show the classification

results of our framework using different descriptors. On the SHREC07

dataset (Table 5.2), Geodesic cords descriptors yielded an accuracy of
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Figure 5.4 – The confusion matrix for a human object part categorization. Rows are

query parts. Columns are object categories. (Using the Curve feature descriptor on

the SHREC07 dataset)

around 75%, while the Curve descriptor leads to a much higher accu-

racy of around 87.35%. These results show that the Curve descriptor is

more suited for local shape description. A combination of the Curve de-

scriptor and Geodesic cord feature yields a better accuracy than Curve

descriptor feature alone 89.3%(the combination is based on the mean

distance). On the Tosca-Sumner dataset (Table 5.3), the combination of

the Curve descriptor and Geodesic cord feature also gives the highest

accuracy rate 95%.

5.5.2 Belief classifier versus Bayesian classifier

Table 5.4 and Table 5.5 show a comparison accuracy between the be-

lief classifier and the Bayesian classifier on respectively the SHREC07
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Test Data Dataset Size Curve Geodesic cord Curve-Geodesic cord

Training Set 100 90 76.8 92.4

Test Set 300 84.7 74.5 86.2

Entire Dataset 400 87.35 75.65 89.3

Table 5.2 – Classification accuracies with feature descriptor changing on the

SHREC07 dataset.

Test Data Dataset Size Curve Geodesic cords Curve-Geodesic cords

Training Set 90 94.2 84.2 95.1

Test Set 290 92.3 83.8 94.9

Entire Dataset 380 93.25 84 95

Table 5.3 – Classification accuracies with feature descriptor changing on the

Tosca-Sumner dataset.

Test Data Dataset Size Our methods Bayesian classifier

Accuracy (%) Accuracy (%)

Training Set 100 92.4 65.3

Test Set 300 86.2 62.3

Entire Dataset 400 89.3 63.8

Table 5.4 – Classification result comparison with the Bayesian classifier on the

SHREC07. (Using the Curve descriptor-Geodesic cord feature descriptor).

Test Data Dataset Size Our methods Bayesian classifier

Accuracy (%) Accuracy (%)

Training Set 90 95.1 75.6

Test Set 290 94.9 72.3

Entire Dataset 380 95 73.95

Table 5.5 – Classification result comparison with the Bayesian classifier on the

Tosca-Sumner. (Using the Curve descriptor-Geodesic cord feature descriptor)
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Figure 5.5 – The confusion matrix for some 3D-object categorization. Rows are query

object. Columns are object categories. (Using the Curve feature descriptor on the

SHREC07 dataset)

and the Tosca-Sumner datasets. On the SHREC07 dataset, our classifier

showed an accuracy of 92.4% and 86.2% on the training set and an in-

dependent test set, respectively. That is to say 89.3% accuracy over the

entire dataset. Using a Bayesian classifier we report only 63.8% accu-

racy. On the Tosca-Sumner dataset, results confirm the contribution of

the use of the belief framework instead of the Bayesian one. The belief

classifier reports 95% while the Bayesian one reports only 73.95%.

5.5.3 Comparison with related work

In this experiment, we compare our method effectiveness to methods

proposed by Biasotti et al. [BGM∗06].
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Figure 5.6 – The subset of the SHREC07 dataset used in the Biasotti et al.

framework.

In this work, the authors compared the performance of five sim-

ilarity measures on four different shape descriptors in classifying 3D

objects. The four different shape descriptors used in their paper are:

• The spherical harmonics (SH) [KF02] which is a volume-based de-

scriptor.

• The light-field descriptor (LF) [GSCO07] which is an image-based

descriptor and two topological matching methods.

• The Multi-resolution Reeb graph (MRG) [MYTT01].

• the Extended Reeb graph (ERG) [BM05].

The five similarity measures are:

• The Minimum Distance Classifier (MinDC) which coincides with

the Nearest Neighbor classifier.
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• Maximum Distance Classifier (MaxDC) which classifies a query

by taking into account the most dissimilar descriptor belonging to

the class.

• The Average Distance Classifier (AvgDC) which is defined as the

average distances between the query and the members of the class.

• The Centroid Distance Classifier (CDC) where the query is classi-

fied according to its dissimilarity with a representative member of

a class.

• the Atypicity Distance Classifier (ADC) which evokes the notion of

typicity, to represent how much a descriptor is typical of the class

it belongs to, with respect to the elements in the other classes.

In order to demonstrate the effectiveness of our method compared

with the Biasotti et al’s classifiers, we tested our method on the same

dataset used by Biasotti et al. This dataset is a subset of the SHREC07

dataset composed of 280 3D-objects classified into 14 classes (see Figure

5.6). The results of the experiment are shown in Table 6.1. Each entry

is related to the performance of a given shape descriptor (enumerated

in the second row) for a given classifier (reported in the first column

of the table). The classification accuracy of our method is given in the

last row. While Biasotti et al. concluded that the MinDC (nearest neigh-

bor) similarity measure performed the best for all four different shape

descriptors in their work, one can notice that our classifier shows the

highest classification rate 93.4%. Moreover, the nearest neighbor based

approaches require to compare each object to be classified to all objects

in the dataset, which seems to be impractical with huge databases where

our method is preferred, while it requires matching of only the repre-

sentative parts. Please note that using a PC with a 3 Ghz Core 2 Duo

processor with 3 GB memory, and a Matlab implementation of our algo-
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State of the art methods (Rate in %)

SH LF MRG ERG

MinDC 89% 88 % 88 % 83 %

MaxDC 33% 38 % 41 % 38 %

AvgDC 66% 73 % 74 % 58 %

CDC 64% 68 % 76 % 60 %

ADC 63% 68 % 73 % 58 %

Our method (Rate in %)

93.4%

Table 5.6 – Classification result comparison with related work.

Classification Training Test Reject Accuracy

Algorithm Set Size Set Size Rate (%) (%)

Our algorithm with reject option 100 400 6.6 92.3

Bayesian algorithm with reject (T=0.1) 100 400 3.1 65.4

Bayesian algorithm with reject (T=0.15) 100 400 7.3 69.2

Our algorithm without reject option 100 400 0 89.3

Bayesian algorithm without reject 100 400 0 63.8

Table 5.7 – Classification results with Reject option on the SHREC07 dataset.

rithms, the running time of the labeling process depends on the quality

of the meshes and their number of vertices. The full processing time of

a query (from the SHREC07 or the Tosca-Sumner datasets) varies from

2 to 25 seconds.

5.5.4 Reject option contribution

Table 5.7 shows the accuracies for 3D-classification with and without

reject option on the SHREC07 dataset. One can notice that the classi-

fication accuracy improved from 89.3% to 92.3%. For Bayesian classi-

fier, the 3D-object whose maximum a posteriori probability is below the

threshold (T) in Table 5.7 are rejected. When T=0.15, we notice that the
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Bayesian classifier rejects much more than our classifier. However our

accuracy is still higher.

Conclusion

In this chapter, we have presented a patch-based method for catego-

rizing 3D-objects using a new evidential classifier. The categorization

process is completely automated and consists of two different stages.

The training stage which lies on the category model building is based

on the belief function theory and it goes into two steps: 1) 3D-patch

extraction and 2) representative parts construction. The second stage

is the labeling, in which belief functions have been also used. In the

labeling process, we have introduced a reject option, which can be used

to handle the labeling of unknown 3D-objects. The classifier has been

evaluated on two databases of 400 and 380 3D-models. Our system

achieved a classification accuracy over 89.3% and 95%, respectively on

the two datasets. The reject option has also been evaluated and the ex-

perimental results obtained on the SHREC07 dataset show that this op-

tion efficiently improves the classification accuracy from 89.3% to 92.3%.

In the next chapter, we will present another method, for shape sim-

ilarity computing, which will be applied to 3D-retrieval and classifica-

tion. The method, we propose, is based on the bag of Feature techniques

(BoF). This technique, which is a popular approach in areas of computer

vision and pattern recognition, have recently gained great popularity in

shape analysis community.

French conclusion

Dans ce chapitre, nous avons présenté une méthode de catégorisation

d’objets 3D en utilisant la théorie des fonctions de croyance. Le pro-
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cessus de catégorisation est entièrement automatisé et se compose de

deux étapes. L’étape d’apprentissage qui consiste à construire un mod-

èle compact d’une catégorie d’objets.

L’étape d’étiquetage, au cours de quelle, nous avons introduit une

option de rejet. Le classifier a été évalué sur deux bases de données de

400 et 380 objets respectivement. Notre système atteint une précision

de classification de 89,3% et 95%, respectivement sur les deux ensem-

bles d’objets. L’option de rejet a été également évaluée et les résultats

obtenus sur la base SHREC07 montrent que cette option améliore la

précision de la classification de 89,3% à 92,3%.

Dans le prochain chapitre, nous allons présenter une autre méth-

ode, pour la mesure de similarité entre les formes d’objets 3D, qui sera

appliqué à la recherche et la classification. La méthode que nous pro-

posons est basé sur les techniques de sac de mots.
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This chapter presents a method for 3D-shape matching using Bag-

of-Feature techniques. The method starts by selecting and then
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describing a set of points from the 3D-object. Based on vector quan-

tization, we cluster the set of descriptors to form a shape vocabulary.

Then, each point selected in the object is associated to a cluster (word)

in that vocabulary. The method is applied to 3D-object retrieval and

classification.
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6.1 Introduction

Bag of Features (BoF), which is a popular approach in areas of computer

vision and pattern recognition, have recently gained great popularity in

shape analysis community. Liu et al. [LZQ06] presented a 3D-shape

descriptor named “Shape Topics” and applied it to 3D partial shape re-

trieval. In their method, a 3D-object is considered as a word histogram

obtained by vector quantizing Spin images of the object. Ohbuchi et

al. [OOFB08] introduced a view-based method using salient local fea-

tures. They represented 3D-objects as word histograms derived from the

vector quantization of salient local descriptors extracted on the depth-

buffer views captured uniformly around the objects. Ovsjanikov et al.

[OBBG09] presented an approach to non-rigid shape retrieval similar in

its spirit to text retrieval methods used in search engines. They used the

Heat Kernel Signatures to construct shape descriptors that are invariant

to non-rigid transformations.

Toldo et al. [TCF09] has used the bags of features for 3D-object

categorization. Toldo’s categorization framework is based on semantic

segmentation. In general, the problem of segmenting a 3D object into

meaningful parts is not a trivial issue. Their framework is quite sensitive

to the identification of the boundaries of the meaningful part.

First, a theoretical study showing the building of bag of feature is

presented. Then, we show its application in the 3D-shape retrieval and

classification tasks.

French introduction

Les techniques sacs de mots sont des outils très populaires dans les

domaines de la vision la reconnaissance des formes. Ces techniques
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ont récemment gagné une grande popularité dans la communauté de

l’analyse de forme [LZQ06, OOFB08, TCF09].

D’une manière générale, on considère que le monde des formes 3D

peut être décrit au moyen d’un dictionnaire (de «mots»). Un objet parti-

culier est alors représenté par l’histogramme des occurrences des mots

le composant. Il s’agit donc d’un vecteur de la même taille que le dictio-

nnaire, dont la composante i indique le nombre d’occurrences du i-ème

mot du dictionnaire dans le document. La constitution du dictionnaire

est généralement effectuée par un algorithme de quantification.

Dans ce chapitre nous présentons premièrement, une étude

théorique montrant la construction des sacs de mots. Ensuite, nous

montrons son application dans la recherche et la classification d’objets

3D.
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6.2 Bag of Feature techniques

The method of BoF is largely inspired by the Bag of Words concept

which has been used in text retrieval and classification for quite some

time. Even though there are countless variations of algorithms emerging

under the label Bag of Features and it is hard to capture the actual BoF

algorithm, there is a common concept which is shared by all of theses

methods. We present this concept in the following sections.

6.2.1 Bag of Feature Building

The general steps for building a BoF representation for 3D-objects are

depicted in Figure 6.1.

1. Detection and description of 3D-object patches in this approach

(Figure 6.1(a)), we use the algorithms developed in chapter 3 for

the feature extraction and description process.

2. Assigning patch descriptors to a set of predetermined clusters (a

vocabulary) with a vector quantization algorithm (Figure 6.1(b)).

3. Constructing a weighted vector of keyshapes, which counts the

number of patches assigned to each cluster (Figure 6.1(c)).

4. Matching between two objects, treating their bag of keyshapes as

the feature vector, and thus determine their dissimilarity (Figure

6.1(d))

Ideally these steps are designed to maximize matching accuracy

while minimizing computational effort. Thus, the descriptors extracted

in the first step should be invariant to variations that are irrelevant to

the retrieval task (deformable shapes) but rich enough to carry enough

information to be discriminative between dissimilar objects. The vocab-

ulary used in the second step should be large enough to distinguish
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relevant changes in 3D-object patches, but not too large as to distin-

guish irrelevant variations such as noise. We refer to the quantized fea-

ture vectors (cluster centers) as “keyshape” by analogy with “keywords”

in text retrieval. However, in our case “words” do not necessarily have

a repeatable meaning such as “legs”, or “head”, nor is there an obvious

best choice of vocabulary. Instead, our goal is to use a vocabulary that

allows good matching performance. We now discuss the choices made

for each step in more details.

6.2.2 Shape vocabulary construction

The vocabulary is obtained by quantification of the set of descriptors

extracted in the training stage. The vocabulary is used to construct dis-

criminant representatives, with which any 3D-object can be described.

One extreme of this approach would be to compare each query descrip-

tor to all descriptors in the indexing stage: with the huge number of de-

scriptors involved, this seems impractical. Another extreme would be to

try to identify a small number of large “clusters” which sufficiently dis-

criminate between different shape classes. Moreover, the representation

space is neither densely nor uniformly populated. Some descriptors

may never appear in 3D-objects while others can be very frequent. The

first consequence of this remark is that the vocabulary must be adapted

to the encountered 3D-objects. That is to say, it must reflect local de-

scriptors present in the 3D-objects. The most common method to build

the shape vocabulary is to arrange descriptors encountered in the train-

ing stage into a finite number of clusters using a clustering algorithm.

The number of clusters is the vocabulary size. For this end, we chose to

use the simplest square-error partitioning method: K-means [DHS00].

This algorithm proceeds by iterated assignments of points to their clos-

est cluster centers and re-computation of the cluster centers. Two diffi-
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culties are that the K-means algorithm converges only to local optima

of the squared distortion, and that it does not determine the parameter

K. There exist methods allowing to automatically estimate the number

of clusters. For example, Pelleg et al [PM00] use cluster splitting to do

it, where the splitting decision is done by computing the Bayesian Infor-

mation Criterion. However, in the present case we do not really know

anything about the density or the compactness of our clusters. More-

over, we are not even interested in a “correct clustering” in the sense of

feature distributions, but rather in accurate categorization. We therefore

run k-means several times with different number of desired representa-

tive vectors (K) and different sets of initial cluster centers. We select the

final clustering giving the lowest empirical risk [Vap98].

6.3 Application to 3D-object Retrieval

In this section, we present the use of BoF for the 3D-object retrieval

context.

6.3.1 3D-Object indexing using text retrieval methods

In text retrieval methods, each document is represented by a vector of

word frequencies. The word frequency in the given document is sim-

ply the number of times a given word appears in that document. It is

usual to normalize the frequency vector by the sum of occurrences of all

terms of the considered document. Moreover, in text retrieval methods,

word frequencies are usually weighted. Here we present the standard

weighting that is employed, and then the shape analogy of document

retrieval to 3D-object retrieval. The standard weighting is known as

term frequency - inverse document frequency, (tf-idf ), and is computed as

follows. Suppose there is a vocabulary of k words, then each document
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is represented by a k-vector Vd = (t1, ..., ti, ..., tk)
T

ti =
nid

nd
× log

N
ni

where nid is the number of occurrences of word i in document d, nd is

the total number of words in the document d, ni is the number of oc-

currences of term i in the whole database and N is the number of docu-

ments in the whole database. The weighting is a product of two terms:

the word frequency nid
nd

, and the inverse document frequency log N
ni

The

intuition is that word frequency weights words occurring often in a par-

ticular document, and thus describe it well, whilst the inverse document

frequency scales down the weight of words that appear often in the

database. At the retrieval stage documents are ranked by their normal-

ized scalar product (cosine of angle) between the query vector Vq and

all document vectors Vd in the database. In our case the query vector

is given by the keyshape contained in the object query, and the objects

in the database are ranked according to the similarity of their weighted

vectors to this query vector.

6.3.2 Experiments

In this section, we describe a set of experiments whose purpose is to

validate the BoF based method proposed in this chapter. Firstly, we have

studied the influence of the vocabulary size in the retrieval accuracy.

Then, we evaluate the method in the two databases presented in chapter

4. The robustness to shape deformations is discussed in the sequel. The

algorithms that we have described in the previous sections have been

implemented using Matlab software. The framework encloses an off-

line feature extraction algorithm and a vector quantization algorithm,

and an on-line retrieval process. We have tested the performance of the

method using the two descriptors we proposed in this thesis; the curve

and the Geodesic cord.
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In the following we will call:

• BoF_Curve, BoF based method using curve descriptor.

• BoF_Gcord, BoF based method using Geodesic cord descriptor.

Influence of the vocabulary size

As mentioned earlier, in order to determine the vocabulary size used

in this method, we run K-means several times with different number

of desired representative vectors (K) and different sets of initial cluster

centers. We select the final clustering giving the lowest empirical risk

in matching. Here, we have measured the performance of the method

with respect to the vocabulary size and we have computed the overall

error rates as a function of the number of clusters K.

Figure 6.2 – The lowest overall error rate found for different choices of k.

In Figure 6.2 we present the overall error rates. We compute the

percentage of success for the first (PF) and the second (PS) retrieved
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items, i.e. the probability of the first and second elements in the return

vector to be relevant to the given query, and average them over the

whole set of queries. Each point in Figure 6.2 is the best of 10 random

trials of k-means. The error rate only improves slightly as we move

from k = 100 to k = 200. We therefore assert that k = 100 presents a

good trade-off between accuracy and speed1.

Comparison with related work

In this section, we present the experimental results of the proposed

BoF method compared with some state-of-the-art shape-matching al-

gorithms and the proposed belief function based methods. The evalu-

ation criteria used in this section are the Precision vs Recall plots. We

have used the same databases used in chapter 4: the TOSCA data set

for non-rigid shapes and the SHREC07 shape benchmark for partially

similar models.

Results on the TOSCA dataset Figure 6.3 shows the Precision-recall

curves comparing the BoF based method to method presented in chap-

ter 4. We find that the BoF method slightly outperforms the belief func-

tion based method on the TOSCA dataset.

Results on the SHREC07 dataset Quantitatively, we compare the Pre-

cision vs Recall plot of our approach with other methods competing the

SHREC07 contest. Such a plot is the average of the 30 Precision vs Recall

plots corresponding to the 30 models of the query-set. Figure 6.4 shows

the these plots. We find here that the belief based methods outperform

the BoF methods. The belief based method is more suited to partial

1The full processing time of a query takes less than 12 seconds to get predicted labels

on the whole database using the nearest neighbor object with k = 100 using a PC with

a 3 Ghz Core 2 Duo processor with 3 GB memory.
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Figure 6.3 – Precision vs Recall plots comparing the BoF based method to the RSH,

the D2, the DSR algorithm and the belief based method presented in chapter 4 on the

TOSCA dataset.

shape matching. This is due to the significance of parts that is taken

into account in the matching process when comparing two 3D-object

using the belief function based method.

6.4 Application to 3D-object Classification

This section presents a BoF method for 3D-object classification. The

classification is based on conventional machine learning approaches.

6.4.1 Categorization

Once descriptors have been allocated to clusters to form feature vectors,

we scale down the problem of generic categorization to that of multi-

class supervised learning, with as many classes as defined shape cate-

gories. The categorizer performs two separate steps in order to predict

the classes of unlabeled 3D-object: training and testing. During train-

ing, labeled data are sent to the classifier and used to adapt a statistical
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Figure 6.4 – Precision vs Recall plot on the SHREC07 dataset.

decision procedure for distinguishing categories. Among many avail-

able classifiers, we compared the Naïve Bayes classifier for its simplicity

and its speed, and the Support Vector Machine since is it often known

to produce state-of-the-art results in high-dimensional problems.

Categorization by Naïve Bayes

The Naïve Bayes Classifier [Lew98] is a probabilistic classifier based on

the Bayesian theorem. To demonstrate the concept of shape catego-

rization using Naïve Bayes classifier, let us assume we have a set of

labeled 3D-object O = {Oi} and an vocabulary V = {vt} of represen-

tative keyshapes. Each descriptor extracted from a 3D-object is labeled

with the keyshape to which it lies closest in feature space. We count the

number N(t, i) of times keyshape vt occurs in object Oi. To categorize

a new 3D-object, we apply Bayes’s rule and take the largest a posteriori

score as the prediction:

P(Cj/Oi) ∝ P(Oi/Cj)P(Cj) = P(Cj)
|V|

∏
t=1

P(vt/Cj)
N(t,i). (6.1)

It is evident in this formula that Naïve Bayes requires estimates of

the class conditional probabilities of keyshape vt given category Cj. In
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order to avoid probabilities of zero, these estimates are computed with

Laplace smoothing:

P(vt/Cj) =
1 + ∑Oi∈Cj

N(t, i)

|V|+ ∑|V|s=1 ∑Oi∈Cj
N(s, i)

. (6.2)

Categorization by SVM

The SVM classifier is a classification method that performs classifica-

tion tasks by constructing hyperplanes in a multidimensional space that

separates cases of different class labels with maximal margin [Vap98].

In order to apply the SVM to multi-class problems we take the one-

against-all approach. Given an m class problem, we train m SVM’s,

each distinguishes object from some category i from objects from all the

other m− 1 categories j not equal to i. Given an object to be classified,

we assign it to the class with the largest SVM output.

6.4.2 Experiments

In this section, we give results from three experiments. In the first ex-

periment, we test the effect of the number of clusters on the classifier ac-

curacy and analyze the effectiveness of the Naïve Bayes classifier. In the

second experiment, we analyze the performance of the SVM on the same

problem. These experiments were conducted on the SHREC07 dataset

(earlier presented in chapter 4). In the last experiment we present results

on the fourteen class dataset employed in [BGM∗06].

The descriptor used in this section is the Geodesic cord descriptor.

We used the overall error rate performance measures to evaluate our

multi-class classifiers.

The overall error rate:

R = 1−
∑NC

j=1 Mjj

∑NC
j=1 |Cj|

(6.3)
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Each performance metric was evaluated with 10-fold cross valida-

tion.

Figure 6.5 – The lowest overall error rate found for different choices of k.

Naïve Bayes Results

In Figure 6.5 we present the overall error rates using Naïve Bayes as a

function of the number of clusters k. Each point in Figure 6.5 is the best

of 10 random trials of k-means. The error rate only improves slightly

as we move from k = 100 to k = 250. We therefore assert that k = 100

presents a good trade-off between accuracy and speed1.

1It takes less than 10 seconds to get predicted labels on the whole database using the

Naïve Bayes classifier with k = 100 using a PC with a 3 Ghz Core 2 Duo processor with

3 GB memory.
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SVM Results

As expected the SVM performance surpass the performance of Naïve

Bayes classifier, reducing the overall error rate from 33 to 24%.

In training this SVM we used the same best vocabulary with k=100

as for Naïve Bayes. We compared linear, quadratic and cubic SVM’s

and found that linear method gave the best performance. The penalty

parameter Cst of the SVM classifier was determined for each SVM and

values of around Cst = 0.006 typically gave the best results.

From a qualitative point of view, Figure 6.6 shows the different be-

havior of the two classifiers on a set of twenty objects selected from the

database. Rows in Figure 6.6 correspond to 3D-objects (the objects cor-

respond to the last column in Figure 5.2), and columns correspond to

the different categories shown in the rows of Figure 5.2 (in the same

order). In this visualization, the lightness of each element (i; j) is pro-

portional to the magnitude of the probability of the belong of the object

i to the category j. Lighter elements represent better matches, while hot

elements indicate worse matches. The lightness of the diagonal squares

of the matrix proves the effectiveness of the classifier.

One can notice in this visualization that the SVM classifier (Figure

6.6b) shows more robust results compared with the Naïve Bayes classi-

fier (Figure 6.6a).

Comparison with related work

In this experiment we compare our method effectiveness to methods

proposed in Biosotti et al. framework [BGM∗06] earlier presented in

chapter 5 section 5.5.3. The results of the experiment are shown in Table

6.1. Each entry is related to the performance of a given shape descriptor

(enumerated in the first row). The performance is evaluated in terms

of classification rate (i.e. the percentage of object models which are
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Methods

SH LF MRG ERG our SVM classifier

Rate 89% 88 % 88 % 83 % 91%

Mean rank 2% 2 % 2 % 2 % 1.62%

Table 6.1 – Classification result comparison with related work.

correctly classified). Notice that these rates are computed when the

position of the correct class with respect to the rank identified by the

classifier is set to be 2 as in [BGM∗06]. Our classifier show the highest

classification rate 91%.

Conclusion

In this chapter, we have presented a method for matching 3D-objects

based on the BoF techniques. We have tested this method on two tasks.

First, we have presented results for retrieving 3D-objects from 3 datasets

the shrec07, the Tosca and the Sumner datasets. These results show the

effectiveness of our approach and clearly demonstrate that the method

is robust to non-rigid and deformable shapes. Then, we have applied

our method in the classification task. For that, two well-known classi-

fier: the Naïve Bayes and the SVM have been learned and tested on the

shrec07 dataset. The results show the effectiveness of the SVM classifier

compared with the Bayesian one.

French conclusion

Dans ce chapitre, nous avons présenté une méthode de mise en cor-

respondance d’objets 3D basée sur la représentation par sacs de mots.

Nous avons expérimenté cette méthode dans le cadre de la recherche et

la classification d’objets.
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Les résultats obtenus sur les deux différentes bases d’objets 3D

(TOSCA et SHREC07) montrent l’efficacité et la robustesse de notre

méthode vis à vis aux différentes transformations qu’un objet 3D peut

subir.



6.4. Application to 3D-object Classification 131

(a)

(b)

Figure 6.6 – Example of some 3D-objects classification. (a) Naïve Bayes classifier

results. (b) SVM classifier results





7Conclusion

In this thesis, we have developed novel approaches for 3D object

matching. The approaches are robust to isometric transformation as

well as non rigid ones. First, we have proposed two 3D-shape descrip-

tors, namely Curve descriptor and Geodesic cord descriptors. These descrip-

tors which reflect the local geometric characteristics of given 3D-objects,

are computed on patches of the objects. To separate the different patches

of a given object, we proposed the use of feature point extraction algo-

rithm.

The proposed descriptors are based on the intrinsic propriety of the

shapes of 3D-patches. It is in turn invariant to the rigid as well as non-

rigid transformations of the surface.

The curve descriptor consists to represent a 3D-patch by an indexed

collection of closed level curves in R3 extracted around each feature

point. Then, tools from shape analysis of curves are applied to ana-

lyze and to compare curves. We used an extension of the Riemannian

framework proposed by Joshi et al. [JKSJ07] to: (i) compute distances

between curves to quantify differences in their shapes, (ii) find optimal

deformations between curves, and (iii) define and compute average of a

given set of curves.

The Geodesic cord descriptor represents the shape signature for a

3D-patch as a probability distribution sampled from a shape function

133
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measuring intrinsic properties of the 3D-patch. The distribution is sam-

pled from an intrinsic distance function on the 3D-surface. The distance

function used here is based on the geodesic distances between the fea-

ture point and all the points on the 3D-patch surface.

In this thesis, we also proposed to use the belief functions, as fusion

technique, to define a global distance between 3D-objects. We have ex-

perimented this technique in the retrieval and classification tasks. Our

approach is based on the use of information extracted from the different

patches (descriptors) of the 3D-object. Each patch, provides an informa-

tion source regarding the shape of that object. A combination of these

information is necessary in order to increase the recognition rate of the

object. The information fusion can be seen as a problem of merging

classification results of each patch (or fusion of classifiers).

We have also proposed the use of Bag of Feature techniques in 3D-

object retrieval and classification. We have tested this method on two

tasks. First, we have presented results for retrieving 3D-objects from 3

datasets the SHREC07, the Tosca and the Sumner datasets. These results

show the effectiveness of our approach and clearly demonstrate that the

method is robust to non-rigid and deformable shapes. Then, we have

applied our method in the classification task. For that, two well-known

classifier: the Naïve Bayes and the SVM have been learned and tested

on the SHREC07 dataset.

7.1 Open problems and directions

In this thesis, we presented new solutions based on curve and geodesic

cord representation for 3D-shape description. We proposed two meth-

ods, the belief functions and bag of features method, for 3D-object

matching. We assessed their validity with regard to the state-of-the-art

techniques.
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Towards shape analysis of parameterized surfaces We proposed to

analyze shapes of 3D-surfaces using shapes of curves extracted around a

set of feature points. In our opinion, this kind of representation could be

improved to guarantee more robust results. In this sense, a pioneer work

has been recently proposed by Kurtek et al. [KKDS10] where a novel

Riemannian framework for shape analysis of parameterized surfaces is

introduced. We are confidant in the fact that such an approach can be

integrated and automated in our framework.

Towards combining belief function and BoF methods In the context

of shape similarity computing, we introduced two different methods:

the belief function based method and the BoF based one. We believe

that a combination of both methods could improve the matching results.

Specific strategies of combination can be applied. We can integrate the

belief function in the BoF process by modeling the keyshapes by mass

functions. We believe that the combination should be deeply studied to

significantly extend current approaches.

Towards spatial information in the BoF approach The disadvantage

of bags of features is the fact that they consider only the distribution of

the words and lose the relations between them. We believe that in the

future, the integration of the spatial relation between feature could im-

prove the BoF matching results. Computer vision techniques for graph

matching [RLAB10] can be applied to preserve the spatial relation be-

tween features in a given 3D-object.

French conclusion

Dans cette thèse de doctorat, nous avons développé une nouvelle ap-

proche pour la mise en correspondance des objets 3D en présence des
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transformations non-rigides et des modèles partiellement similaires.

L’approche que nous proposons est composée de deux phases. Une

première phase pour la description d’objets et une deuxième phase de

mesure de similarité.

Pour décrire un objet 3D, nous avons choisi une méthode basée sur

des descripteurs locaux. La méthode consiste à extraire d’un objet 3D un

ensemble de points caractéristiques pour lesquels deux descripteurs lo-

caux sont calculés. Le premier descripteur Geodesic cord descriptor étudie

la distribution des distances géodésiques entre un point caractéristique

et l’ensemble des points de la surface de l’objet 3D. Le deuxième de-

scripteur Curve based descriptor permet de représenter la surface 3D de

l’objet par un ensemble de courbes. La forme de ces courbes est analysée

à l’aide d’outils issus de la géométrie Riemannienne.

Pour mesurer la similarité entre les objets 3D, nous avons utilisé

deux techniques différentes dont l’une est basée sur les fonctions de

croyance et l’autre est basée sur les sac-de-mots. Les fonctions de croy-

ance offrent un cadre naturel pour la représentation et la combinaison

d’informations issues de différentes sources. Ce cadre nous a permis de

calculer une similarité globale entre les objets 3D en combinant les dif-

férentes informations fournies par les descripteurs. La technique basée

sac-de-mots consiste à quantifier les descripteurs locaux calculés sur les

points caractéristiques et permettent de représenter les objets 3D sous

la forme d’histogrammes des fréquences d’apparition des mots visuels.

Cette représentation permet le calcul efficace de similarités entre objets

3D.

Afin de valider notre approche nous l’avons adaptée à deux appli-

cations différentes à savoir la recherche et la classification d’objets 3D.

Les résultats obtenus sur différent benchmarks montrent une efficacité

et une pertinence comparés avec les autres méthodes de l’état-de-l’art.
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Titre Classification et recherche d’objets 3D

Résumé Une nouvelle approche pour la mise en correspondance des

objets 3D en présence des transformations non-rigides et des mod-

èles partiellement similaires est proposée dans le cadre de cette thèse.

L’approche est composée de deux phases. Une première phase pour

la description d’objets et une deuxième phase de mesure de similar-

ité. Pour décrire un objet 3D, nous avons choisi une méthode basée

sur des descripteurs locaux. La méthode consiste à extraire d’un objet

3D un ensemble de points caractéristiques pour lesquels deux descrip-

teurs locaux sont calculés. Le premier descripteur Geodesic cord descrip-

tor représente la distribution des distances géodésiques entre un point

caractéristique et l’ensemble des points de la surface de l’objet 3D. Le

deuxième descripteur Curve based descriptor permet de représenter la

surface 3D de l’objet par un ensemble de courbes. La forme de ces

courbes est analysée à l’aide d’outils issus de la géométrie Riemanni-

enne. Pour mesurer la similarité entre les objets 3D, nous avons utilisé

deux techniques différentes dont l’une est basée sur les fonctions de

croyance et l’autre est basée sur les sac-de-mots. Afin de valider notre

approche nous l’avons adaptée à deux applications différentes à savoir

la recherche et la classification d’objets 3D. Les résultats obtenus sur dif-

férent benchmarks montrent une efficacité et une pertinence comparés

avec les autres méthodes de l’état-de-l’art.

Mots-clés Objets 3D, classification, indexation, fonction de croyances,

sac à mots.



Title Contributions to 3D-shape matching, retrieval and classification

Abstract Three dimensional object representations have become an in-

tegral part of modern computer graphic applications such as computer-

aided design, game development and audio-visual production. At the

Meanwhile, the 3D data has also become extremely common in fields

such as computer vision, computation geometry, molecular biology and

medicine. This is due to the rapid evolution of graphics hardware and

software development, particularly the availability of low cost 3D scan-

ners which has greatly facilitated 3D model acquisition, creation and

manipulation. Content-based search is a necessary solution for struc-

turing, managing these multimedia data, and browsing within these

data collections. In this context, we are looking for a system that can

automatically retrieve the 3D-models visually similar to a requested

3D-object. Existing solutions for 3D-shape retrieval and classification

suffer from high variability towards shape-preserving transformations

like affine or isometric transformations (non-rigid transformations). In

this context, the aim of my research is to develop a system that can

automatically retrieve quickly and with precision 3D models visually

similar to a 3D-object query. The system has to be robust to non-rigid

transformation that a shape can undergo.During my PhD thesis:We have

developed a novel approach to match 3D objects in the presence of non-

rigid transformation and partially similar models. We have proposed

to use a new representation of 3D-surfaces using 3D curves extracted

around feature points. Tools from shape analysis of curves are applied

to analyze and to compare curves of two 3D-surfaces. We have used the

belief functions, as fusion technique, to define a global distance between

3D-objects. We have also experimented this technique in the retrieval

and classification tasks. We have proposed the use of Bag of Feature

techniques in 3D-object retrieval and classification.



Keywords 3D-shape, classification, retrieval, belief functions, bag of

features.
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