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Abstract

Over the last 15 years, spectacular advances in the analysis and design of graph-based
codes and iterative decoding techniques paved the way for the development of error cor-
rection systems operating very close to the theoretical Shannon limit. A prominent role
has been played by the class of Low Density Parity Check (LDPC) codes, introduced in
the early 60's by Gallager's and described latter in terms of sparse bipartite graphs. In the
early 2000's, LDPC codes were shown to be capacity approaching codes for a wide range
of channel models, which motivated the increased interest of the scienti�c community and
supported the rapid transfer of this technology to the industrial sector. Over the past few
years there has been an increased interest in non-binary LDPC codes due to their enhanced
correction capacity. Although Gallager already proposed in his seminal work the use of
non-binary alphabets (by using modular arithmetic), non-binary LDPC codes de�ned over
�nite �elds have only been investigated starting with the late 90's. They have been proven
to provide better performance than their binary counterparts when the block-length is
small to moderate, or when the symbols sent through channel are not binary, which is the
case for high-order modulations or for multiple-antennas channels. However, the perfor-
mance gain comes at a non-negligible cost in the decoding complexity, which may prohibit
the use of non-binary LDPC codes in practical systems, especially when the price to pay
in decoding complexity is too high for the performance gain that one can get.

This thesis addresses the analysis and design of non-binary LDPC codes for fading
channels. The main goal is to demonstrate that besides the gain in the decoding perfor-
mance, the use of non-binary LDPC codes can bring additional bene�ts that may o�set
the extra cost in decoding complexity. �Flexibility� and �diversity� are the two bene�ts
that we demonstrate in this thesis. The ��exibility� is the capacity of a coding system to
accommodate multiple coding rates through the use of a unique encoder/decoder pair. The
�diversity� of a coding system relates to its capacity to fully exploit the communication
channel's heterogeneity.

The �rst contribution of the thesis is the development of a Density Evolution ap-
proximation method, based on the Monte-Carlo simulation of an in�nite code. We show
that the proposed method provides accurate and precise estimates of non-binary ensemble
thresholds, and makes possible the optimization of non-binary codes for a wide range of
applications and channel models.

The second contribution of the thesis consists of the analysis and design of �exible
coding schemes through the use of puncturing. We show that the non-binary LDPC
codes are more robust to puncturing than their binary counterparts, thanks to the fact
that non-binary symbol-nodes can be only partially punctured. For regular codes, we show
that the design of puncturing patterns must respect di�erent rules depending on whether
the symbol-nodes are of degree 2 or higher. For irregular codes we propose an optimization
procedure and we present optimized puncturing distributions for non-binary LDPC codes,
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which exhibit a gap to capacity between 0.2 and 0.5dB , for punctured rates varying from
0.5 to 0.9.

The third contribution investigates the non-binary LDPC codes transmitted over a
Rayleigh (fast) fading channel, in which di�erent modulated symbols are a�ected by dif-
ferent fading factors. In case of one-to-one correspondence between modulated and coded
symbols, deep fading can make some coded symbols totally unrecoverable, leading to a
poor system performance. In order to avoid this phenomenon, binary diversity can be
exploited by using a bit-interleaver module placed between the encoder and the modula-
tor. We propose an optimized interleaving algorithm, inspired from the Progressive Edge-
Growth (PEG) method, which ensures maximum girth of the global graph that extends
the bipartite graph of the code with a new ensemble of nodes representing the modulated
symbols. The optimized interleaver shows a gain with respect to the random interleaver,
as far as performance and error detection rates are concerned.

Finally, the fourth contribution consists of a �exible coding scheme that achieves
full-diversity over the block fading channel. The particularity of our approach is to rely
on Root non-binary LDPC codes coupled with multiplicative non-binary codes, so that to
easily adapt the coding rate to the number of fading blocks. A simple combining strategy
is used at the receiver end before the iterative decoding. As a consequence, the decoding
complexity is the same, irrespective of the number of fading blocks, while the proposed
technique brings an e�ective coding gain.

Keywords Shannon capacity, Non-Binary LDPC codes, rate-adaptability, binary diver-
sity, full-diversity coding.
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Chapter 1

Introduction

Today we live in a technological world dominated by the use of cell phones, full-
connected computers with high-capacity storage supports. Furthermore, the 4G system
(the fourth generation of high-speed wireless communication for mobile handset and data
terminals) sets the fundations for new horizons of Internet and the possibility to be con-
nected from everywhere. Thus nowadays the challenge is to provide fast, reliable and power
e�cient communication. The study of e�cient methods for having high-speed communi-
cation and for protecting the data against errors, due to either the transmission media or
the storage devices, is called coding theory.

This theory was introduced by Shannon in the middle of the nineteenth century and it
is focused on two aspects:

� The source coding, which studies how to compress the data e�ciently;
� The channel coding, which studies how to protect the messages sent over the channel
in the presence of disruptive noise (errors).

Our e�orts are principally concentrated on the telecommunication problems in which
a source needs to transmit information to a receiver via wireless. The wireless channel is
characterized to be disruptive, meaning that part of the information can be lost. Thus, we
will focus on the channel coding that aims to �nd e�cient methods for protecting the data
transmission. In particular, this dissertation is concerned with the family of Low-Density
Parity-Check (LDPC) codes, an important class of Error-Correcting codes (ECC).

This introduction is organized as follows. A general digital system model is presented
in Section 1.1 in order to explain the work context. In Section 1.2 we describe brie�y
the channel coding. The motivations of this work are reported in Section 1.3. Section 1.4
illustrates our contributions together with the outline of the rest of the thesis.

1
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1.1 Digital Communication Systems

Figure 1.1: A simply communication model

Any communication system aims to transmit information messages from a source to a
destination in a reliable manner. The nature of the information is not relevant from the
coding point of view: it could be the exchanged data between two computers, a telephonic
conversation between two people or even the reading and writing processes in storage
supports like CDs, �ash disk and so on.

A general model of a digital communication system is drawn in Figure 1.1. The infor-
mation messages crosses several steps (represented by the di�erent blocks) between their
generation and the destination utilization. In the following we will describe brie�y these
steps. The communication model consists on three principal parts:

1. a transmitter,

2. a channel,

3. a receiver.

Transmitter. The transmitter is composed by a source 1 that gives a succession of binary
or non-binary digits 2. The following block (with dashed lines) works these messages out
in order to be sent. The main requests for a transmitter are to protect and to modulate
the data. Hence, this block is composed by two sub-blocks:

1. a channel encoder,

2. a modulator.

The channel encoder introduces, in a controlled manner, some redundancy in the mes-
sages that can be used at the receiver to overcome the noise e�ects encountered in the
transmission of the signal through the channel. It receives in input the information mes-
sage u and outputs an encoded message s, whose length is greater than that of u. The

1. In this dissertation we will treat only discrete sources: a time-continuous source can be quantized in
order to make it discrete.

2. This sequence is generally the output of the source encoding that converts the source output in binary
sequence and compress this sequence in order to eliminate the redundancy of the source.
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goal of the channel coding is to minimize the redundancy part, yet allowing reliable trans-
mission: it tries to maximize the coding rate, de�ned as the ratio between the number of
information symbols and the number of encoded symbols. The rate is regulated by the
noisy channel coding theorem introduced by Claude Shannon [66]: he stated that reliable
transmission is possible if and only if the rate is upper bounded by the channel capacity.
Obviously, the way in which the redundancy is generated is important and this is one of
the core issues in coding theory.

The modulator transforms the coded messages in waveform capable to be physically
transmitted in the channel.

Channel. The channel could be, for instance, the air for wireless transmissions, an optical
cable for a wired communications, or a storage medium in case of memory supports.

The transmitted signal, which passes through the channel, can be corrupted by back-
ground noise, due to the thermal atmospheric noise, which is summed to the transmitted
signal x. This is modeled by the Additive White Gaussian Noise (AWGN) channel.

Other disturbing phenomenons occur in the transmission so that the signal experiences
attenuation, delay and phase shift. For example the signal can be undergone ionospheric
re�ection and refraction, or re�ections caused by objects or the earth ground: this induces
a multiple signal reception that disturbs the communication. The fading channel is the
model used in wireless communications for a mathematical description of the channel.
There exists several fading models but in this work we will principally treat the Rayleigh
model [51]. More details about the channel models are reported in the next chapter.

Receiver. The receiver carries out the inverse operations seen in the transmitter. In this
section the signal is demodulated and decoded in order to estimate the original messages.
There are several kinds of decoding algorithms in the literature. In general the decoder
receives information about the sent messages (beliefs, probabilities, ...) and it aims to �nd
the sent messages of the transmitter. The hope at the destination is that the estimated
message, despite the encountered noise and disturbs, is the same as the sent one.

1.2 Channel Codes

1.2.1 Coding in a Noisy Channel

A linear block code represents an important class of error-correcting codes. In such
a code, the redundant symbols are generated as linear combinations of the information
symbols.

Consider a binary code de�ned over F2, where F2 is the �nite �eld with 2 elements. A
linear binary code C(N,K) 3 is a K-dimensional linear subspace of the vector space F

N
2 .

This subspace is generated by a basis {g1, . . . , gK} ⊆ F
N
2 , whose elements are placed as

rows of the matrix:

G =











g1
g2
...
gK











3. N ≥ K
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If u = [u1, u2, . . . , uK ] is an information message, the corresponding encoded message
s = [s1, s2, . . . , sN ], which is also referred to as codeword, is de�ned by:

s = uG

For this reason G is called generator matrix of the code C(N,K).
The codebook is composed of all the 2K codewords, and it is in bijective correspondence

with the set of information messages. This helps the decoder to decide the transmitted
data according to the received signal.

A linear block code can equivalently be speci�ed by using a parity check matrix H,
whose rows generate the orthogonal complement of C(N ;K). This means that for any
codeword s ∈ C(N ;K):

HsT = 0 → H(uG)T = H GTuT = 0,

where 0 is the all-zero vector. This happens i� H GT = 0 and the matrix H is chosen of
maximal rank.

Example 1.1. Consider the following C(7; 4) linear binary code (or the Hamming(7,4)-
code [27]). This code is composed by an information part of K = 4 bits and a redundant
part of M = 3 bits. Therefore, the coding rate is r = 4/7. Let u = (u0, u1, u2, u3) be an
information message and s = (s0, s1, s2, s3, s4, s5, s6, s7) be the corresponding codedword of
length N = 7 bits. It is de�ned by the following linear combinations:

s = (u0 + u1 + u3, u0 + u2 + u3, u1 + u2 + u3, u0, u1, u2, u3)

The redundant part is also called parity part and a parity bit is given by the sum modulo 2
(XOR) of the information bits according to the corresponding equation. This can be also
reported as a matrix computation s = uG, where:

G =









1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1









This example represents a systematic code, meaning that the information bits are embedded
into the transmitted coded word. For this reason G is referred to as systematic generator
matrix. The generator matrix can take the form of G = [P T |I4×4].
A parity check matrix of this code takes the form of H = [I3×3|P ]:

H =





1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1





and it is possible to verify that H GT = 0.

Hamming weight and the minimum distance. The Hamming weight [27] w(c) of a
vector c is the number of non-zero entries (coordinates) of c.

The Hamming distance dH(c, c′) between two vectors c and c′ is the number of coordi-
nates at which the two vectors are di�erent. For binary vector, dH(c, c′) is also equal to
the Hamming weight of their sum modulo 2 (i.e., the xor operation):

dH(c, c′) = w(c⊕ c′)
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The minimum (Hamming) distance dmin(C), or simply dmin, of a code C is de�ned by:

dmin = min
c, c′ ∈ C
c 6= c′

dH(c, c′)

For linear codes, we also have:
dmin = min

c∈C
w(c)

An equivalent de�nition of the minimum distance dmin comes from the parity-check
matrix H: dmin is the smallest number of the linear dependent columns of H. We observe
that the code in the Example 1.1 has Hamming distance dmin = 3.

In the classical coding theory, the minimum distance is an important parameter for
determining the error-detection and error-correction capabilities of a linear code, as far as
the Maximum-Likelihood decoding is considered (see next section).

1.2.2 Channel Decoding

In this section we present the principles of the main decoding systems. Given a channel
output y, the objective of the decoder is to estimate the information vector û that have
been sent over the channel (after the encoding process). For simplicity, we will consider
only the case of binary codes.

Maximum Likelihood (ML). This decoder minimizes the word error probability, and
outputs the most likely information word û according to the received sequence y:

û = argmax
u∈FK

2

Pr (u | y ) = argmax
u∈FK

2

Pr ( s(u) | y ),

where s(u) denotes the codeword obtained by encoding the information vector u. Equiva-
lently, it is possible to choose �rst the codeword ŝ that maximizes the a posteriori proba-
bility Pr(s|y):

ŝ = argmax
s∈C

Pr ( s | y ),

and then take û to be the corresponding information word.

Maximum A Posteriori (MAP). This decoder minimizes the bit error probability and
makes a separate decision for each position within the information word. Precisely, for each
position i = 1, . . . ,K the decoder outputs an estimation ûi ∈ F2 of the i-th information
bit that maximizes the a posteriori probability Pr(ui|y):

ûi = argmax
ui∈F2

Pr (ui | y ) = argmax
ui∈F2

∑

u′ ∈ FK
2

u′
i = ui

Pr (u′ | y ) = argmax
ui∈F2

∑

u′ ∈ FK
2

u′
i = ui

Pr ( s(u′) | y ),

where s(u′) denotes the codeword obtained by encoding the information vector u′.
Note that it is also possible to make a decision for each position within the transmitted

codeword:
ŝi = argmax

si∈F2

Pr ( si | y ) = argmax
si∈F2

∑

s′ ∈ C
s′i = si

Pr ( s′ | y )
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However, in this case the sequence ŝ = (ŝ1, . . . , ŝN ) needs not be a codeword, hence, it
needs no have a corresponding information vector û! Yet, if the code is systematic, û can
be determined by taking the values at the appropriate positions in ŝ. We also note that if
ŝ is a codeword, it is necessarily the same as the one provided by the ML decoder.

In order to minimize the bit error probability, the decoder must choose a codeword s ∈ C
that contains the bit si (at the ith position) such that s must be the closest codeword to the
channel output y. Put di�erently, the choice of the ith bit must maximize the a posteriori
probability Pr(si|y):

ŝi = argmax
si∈C

Pr ( si | y ) = argmax
s′ ∈ C
s′i = si

Pr ( s′ | y )

where ŝi, with i = 1, . . . , N , is the estimated bit. We have to observe that the estimated
word ŝ = (ŝ1, . . . , ŝN ) is not necessarily a codeword.

The ML and MAP decoders are rather theoretic decoders, which are in general not im-
plementable in practice, because the decoding complexity increases exponentially with K.
There exist however some notable exceptions:

� Over erasure channels (e.g. the Binary Erasure Channel) the ML and MAP decoder
are equivalent, and they consist of solving a linear system whose unknown variables
correspond to the erased bits. This can be implemented by using Gaussian Elimina-
tion, whose complexity scales as K3. However, this complexity is still prohibitive for
large values of K.

� The Viterbi algorithm [20, 73] provides a practical implementation of the ML decod-
ing for error correcting codes de�ned on trellises (principally convolutional codes)
with relatively small constraint length value.

� The BCJR algorithm [2] provides a practical implementation of the MAP decoding
for error correcting codes de�ned on trellises (principally convolutional codes) with
relatively small constraint length value.

Although ML and MAP decoders are optimal with respect to word and bit error rates,
respectively, their complexity prohibit the use of long codes. Yet, from the Shannon theory,
we know that the channel capacity can be achieved only in the asymptotic limit of the code
length. To deal with long codes, the idea is to perform MAP estimations locally, and to
propagate these local estimations by means of some iterative �message-passing� procedure.
This leads to the Belief-Propagation algorithm, which has demonstrated empirical success
in numerous applications including coding theory (decoding of LDPC and turbo codes),
free energy approximation in thermodynamics, and satis�ability in mathematical logic.

Belief Propagation (BP). The BP algorithm operates on a factor graph representing
the parity check matrix of the code. This is a bipartite graph containing variable-nodes
corresponding to coded bits (columns of the parity-check matrix) and factors (or check-
nodes) corresponding to parity-check equations (rows of the parity-check matrix). Edges
connect variables and the factors in which they appear, and correspond to the non-zero
entries of the parity check matrix.

The BP algorithm works by passing real valued functions, called messages, along the
edges of the graph, in both directions. Each message passed on an edge expresses the
probability that the incident variable-node is equal to 0 or 1. These probabilities are
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iteratively updated by using Bayesian inference. In this way, an a posteriori (marginal)
probability is computed for each variable node of the graph or, equivalently, for each bit of
the transmitted codeword. If the factor graph is cycle free, it can be shown that after some
number of iterations, these probabilities are exactly the same as those computed within
the MAP decoding. Interestingly, the same algorithm can be used for graphs with cycles.
In this case, the BP decoding can be seen as an �approximate solution� for the MAP
decoding. Yet, if the factor graph does not contain small cycles, it turns out that this
approximation is good enough to be useful! In order to avoid small cycles, the parity-check
matrix must be sparse, that is, it must contain only few non-zero entries. This is the main
characteristic of the Low-Density Parity-Check (LDPC) codes, introduced by Gallager in
the early '60s. LDPC codes can be decoded with BP and for well designed codes, the
resulting performance is near the Shannon limit. More details about LDPC codes and BP
decoding, as well as other low-complexity message-passing decoding algorithms, are given
in Chapter 3.

1.3 Motivations

Shannon's theory. The coding theory starts with the seminal work of Claude E. Shannon
on the mathematical theory of communication in 1948 [66]. He proved that over a noisy
channel, the error rate can be reduced to any desired level as long as the information trans-
fer rate is less than the capacity of the channel. For this reason, this theoretical maximum
information rate is called Shannon limit. Shannon formulated his theorems but he did not
indicated the way to construct optimum codes. Prior to 1990, the best constructions were
serial concatenated codes based on an outer Reed-Solomon [57] (or BCH [6, 29]) error cor-
rection code combined with an inner Viterbi-decoded short constraint length convolutional
code, also known as RSV codes. In 1993, the Turbo codes [4] were the �rst practical codes
to closely approach the channel capacity, using an iterative Belief-Propagation decoder.
The success of Turbo codes also brought to light a family of iteratively decodable codes
invented 30 years earlier, namely the family of LDPC codes.

A brief history of the LDPC codes. Low Density Parity Check (LDPC) codes are a
class of linear error correcting codes de�ned by sparse parity-check matrices. One of their
most attractive features is that they can be decoded in linear time (with respect to their
block-length), by using iterative message-passing algorithms. Nevertheless, such decoding
algorithms were considered �impractical to implement� when LDPC codes were invented
by Gallager in early 60's [22, 23]. This explains why they have been somehow �neglected�
for more that three decades, and �rediscovered� in the late 90's by MacKay [46], after the
power of iterative decoding techniques had been also con�rmed by the discovery of Turbo-
codes [4]. Yet, during that time, several important research papers dealt with LDPC
codes, improving our knowledge on graph-based codes and iterative decoding techniques.
It worth mentioning here the work of Tanner [70], who described LDPC codes in terms
of sparse bipartite graphs and proposed a more general construction of graph-based linear
codes (nowadays, these codes are often referred to as Generalized LDPC codes � GLDPC
for short).

A large body of knowledge has been also acquired starting with the late 90's � early
2000's, especially techniques for the analysis of iterative decoding algorithms [12, 18, 43, 59],
as well as techniques developed for code construction and optimization [21, 32, 39]. Gal-
lager's e�orts were �nally recompensed ten years ago when Richardson et. all demon-
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strated that LDPC codes are capacity approaching codes [11, 60]: for a wide range of
channel models, practical constructions exist, which yield families of LDPC codes having a
noise threshold 4 very close (or even arbitrarily close, for the BEC) to the channel capacity.
This motivated the increased interest of the scienti�c community and supported the rapid
transfer of this technology to the industrial sector. Nowadays, LDPC codes are included
in many communication standards, as for instance:

� G.hn/G.9960 (ITU-T Standard for networking over power lines, phone lines and
coaxial cable),

� 802.3an (10 Giga-bit/s Ethernet over Twisted pair),
� CMMB (China Multimedia Mobile Broadcasting),
� DVB-S2 / DVB-T2 / DVB-C2 (Digital video broadcasting, 2nd Generation),
� DMB-T/H (Digital video broadcasting),
� WiMAX (IEEE 802.16e standard for microwave communications),
� IEEE 802.11n-2009 (Wi-Fi standard).

Non-binary LDPC codes. Although Gallager already proposed in his seminal work
the use of non-binary alphabets (by using modular arithmetic), non-binary LDPC codes
de�ned over �nite �elds have only been investigated by Davey in his Ph.D dissertation
starting with the late 90's [15].

The primary motivation for considering LDPC codes de�ned over non-binary alphabets
it that they have better performance with respect to their binary counterparts: it can be
demonstrated that LDPC codes can approach the channel capacity for shorter blocklengths
when the codes are de�ned over high order alphabets. Another important fact is that
when the LDPC codes are de�ned over an alphabet with order greater than or equal to
the modulation order, the decoder is initialized with uncorrelated messages, which helps
the decoder to be closer to the MAP decoding than in the binary case. Several works
proved that NB-LDPC codes have excellent performance in several contexts. As a matter
of fact, non-binary LDPC codes are now recognized as a potential competitor to binary
coded solutions, especially when the codeword length is small to medium [32, 54], or when
the order of the symbols sent through channel are not binary [3], which is the case for
high-order modulations or for multiple-antennas channels [52].

However, the performance gain comes at a non-negligible cost in the decoding complex-
ity, which may prohibit the use of non-binary LDPC codes in practical systems, especially
when the price to pay in decoding complexity is too high for the performance gain that one
can get. At the cost of a small performance degradation, several low-complexity decoding
algorithms have been proposed in the literature, such as the Extended-Min-Sum decoding
[16] or the Min-Max decoding [65].

The main goal of this thesis is to demonstrate that besides the gain in the decoding
performance, the use of non-binary LDPC codes can bring additional bene�ts that may
o�set the extra cost in decoding complexity. �Flexibility� and �diversity� are the two bene�ts
that we demonstrate in our work. The ��exibility� is the capacity of a coding system to
accommodate multiple coding rates through the use of a unique encoder/decoder pair. The
�diversity� of a coding system relates to its capacity to fully exploit the communication
channel's heterogeneity.

4. The noise threshold is de�ned as the maximum channel noise up to which the probability of lost
information can be made as small as desired, by using an arbitrarily-length code of the given family.
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1.4 Thesis Outline & Contributions

This section presents the thesis outline. Chapters 2 and 3 brie�y review the neces-
sary background on information and coding theory, while Chapters 4�7 contain the main
contributions of this thesis.

Chapter 2 - Channel Models and Information-Theoretic Aspects

In this chapter we trace the evolution of Shannon's theory of information and give the
most important de�nitions, as the concepts of mutual information and channel capacity.
Afterward, we compute the capacity for two of the most frequently encountered channels:
the Additive White Gaussian Noise (AWGN) and the Rayleigh channels. We also propose
approximate formulas that allow an accurate and fast approximation of the capacity of
AWGN and Rayleigh channels with higher order complex modulations. Finally, we describe
the block Rayleigh fading channel, which is a non-ergodic channel model with zero capacity.
For this class of channels, we de�ne and compute the outage probability: a lower bound that
allows one to estimate the transmission quality when a long enough code is transmitted.

Chapter 3 - Low-Density Parity-Check Codes

This chapter gives a brief introduction to LDPC codes, with a particular emphasis on
non-binary LDPC codes de�ned over Galois (�nite) �elds. Besides the Belief-Propagation
decoding, we also present some lower complexity iterative message-passing algorithms, e.g.
the Extended Min-Sum and the Min-Max decoding algorithms.

The asymptotic analysis of LDPC code ensembles, in terms of density evolution (DE),
is also brie�y reviewed in this chapter. We discuss the DE for both binary and non-binary
LDPC codes: it worth mentioning here that for binary LDPC codes the exact DE can be
derived for a large class of channel models, while for non-binary LDPC codes the exact DE
is only known for the Binary Erasure Channel.

Part of this chapter is also dedicated to the design and optimization of �nite-length
LDPC codes. In particular we describe the Progressive Edge-Growth (PEG) algorithm
and the optimization of the code components thanks to the properties of the binary image
of the parity-check matrix. We note that a slightly di�erent version of the PEG algorithm
is proposed, which allows the construction of doubly-irregular LDPC codes, that is codes
having irregular distributions on both variable and check-nodes. Finally, the last part of
the chapter is concerned with encoding issues for LDPC codes: we discuss the encoding
complexity and present some constructions that allow linear-time encoding.

Chapter 4 - Monte-Carlo Estimation of the Asymptotic Performance

This chapter is concerned with the asymptotic analysis of non-binary LDPC codes. This
analysis is based on the Density Evolution (DE) method, aimed at recursively determining
the probability density of messages passed throughout the iterative Belief Propagation
decoding process. It allows deriving a threshold value, separating the region where reliable
transmission is possible from that where it is not.

However, for non-binary LDPC codes, exact DE equations are only known when the
transmission takes place over the Binary Erasure Channel (BEC). In this chapter, we
propose a density evolution approximation method, by using Monte-Carlo simulation of
an in�nite code. The main idea is to observe a �nite number of messages, while resampling
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the graph interleaver (that is, the way that variable and check-nodes are connected) at
each decoding iteration, according to the irregularity pro�le of the LDPC code 5. We show
that Density Evolution computed with Monte-Carlo simulations provides accurate (very
close) and precise (small variance) estimates of non-binary LDPC thresholds. To this end,
we compare the estimated thresholds with their exact values in case of binary LDPC codes
over the AWGN channel and in case of non-binary LDPC codes over the BEC.

Finally, we also brie�y present the di�erential evolution algorithm: a genetic opti-
mization algorithm that optimizes a problem by iteratively trying to improve a candidate
solution with regard to a given measure of quality [69]. Taking as �candidate solutions�
di�erent irregularity pro�les of NB-LDPC codes, and as �measure of quality� the corre-
sponding threshold value (estimated by the proposed Monte-Carlo-DE method), one can
optimize NB-LDPC codes for a wide range of applications and channel models.

Chapter 5 - Punctured NB-LDPC codes over AWGN Channel

This chapter is concerned with rate-adaptability solutions for non-binary LDPC codes.
Rate adaptation requires codes of di�erent rates, which can be e�ciently obtained by using
one low rate mother code and puncture it to get higher rates. The advantage of puncturing
is that the same decoder can be used regardless the puncturing pattern: according to the
channel conditions, the transmission system adapts by just changing the puncturing pattern
at the transmitter, and the depuncturing pattern at the receiver.

We show that the non-binary LDPC codes are more robust to puncturing than their
binary counterparts, thanks to the fact that non-binary symbol-nodes can be only partially
punctured. In particular, we design non-uniform bit-wise puncturing distributions for non-
binary LDPC codes. Puncturing distribution are de�ned in terms of fractions {fd,k}d,k of
degree-d symbol-nodes with exactly k punctured bits per (non-binary) symbol.

For regular codes, we show that the design of puncturing patterns must respect di�erent
rules depending on whether the symbol-nodes are of degree 2 or higher. For irregular
codes, we optimize puncturing distributions by minimizing the decoding threshold of the
punctured LDPC code, the threshold being computed with a Monte-Carlo implementation
of Density Evolution (Chapter 4). We present optimized puncturing distributions for non-
binary LDPC codes with small maximum degree, which exhibit a gap between 0.2 and
0.5 dB to the channel capacity, for punctured rates varying from 0.5 to 0.9.

Chapter 6 - Binary Diversity over Rayleigh Channel

Mobile communications can present a multipath phenomenon so that the magnitudes
of the received signals from the di�erent paths have a Rayleigh distribution. This chapter
investigates the non-binary LDPC codes transmitted over a Rayleigh fast fading channel,
in which di�erent modulated symbols are a�ected by di�erent fading factors.

We propose the use of a binary interleaver module, placed between the encoder and the
modulator, in order to mitigate the fading e�ects. The non-binary nature of the LDPC
codes yields an e�ective coding gain: the bit-interleaver spreads the deep fading e�ects
within di�erent transmitted symbols and lowers the error probability toward the AWGN
limit. Therefore, we analyse the performance of several bit-interleaving strategies applied
to NB-LDPC codes over the Rayleigh fading channel.

5. Note that the edge labels (corresponding to the non-zero entries of the non-binary parity-check
matrix) are also resampled at each iteration.
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Moreover, we propose an optimized interleaving algorithm, inspired from the Progres-
sive Edge-Growth (PEG) method, which ensures maximum girth of the global graph that
extends the bipartite graph of the code with a new ensemble of nodes representing the
modulated symbols. The optimized interleaver shows a gain with respect to the random
interleaver, as far as performance and error detection rates are concerned.

Chapter 7 - Full-Diversity NB-LDPC Codes over Block-Fading Channel

The block-fading channel was introduced in order to model channels involving slow
time-frequency hopping (used in wireless cellular networks), or multicarrier modulation
using orthogonal frequency division multiplexing (OFDM). More generally, this simpli�ed
model proves to be very useful in code designs for slow-varying fading environments.

In the last chapter of this thesis we propose a �exible coding scheme that achieves
full-diversity over the block-fading channel. The particularity of our approach is to rely
on non-binary LDPC codes coupled with multiplicative non-binary codes, so that to easily
adapt the coding rate to the number of fading blocks. A simple combining strategy is
used at the receiver end before the iterative decoding. As a consequence, the decoding
complexity is the same, irrespective of the number of fading blocks, while the proposed
technique brings an e�ective coding gain. The performance of the proposed coding scheme
over the Rayleigh block fading channel is evaluated by Monte-Carlo simulation, and we
show that it performs close to the outage probability, for a large range of coding rates.
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Chapter 2

Channel Models and

Information-Theoretic Aspects

This chapter is dedicated to the Shannon's theory, which is the basis of the modern
communication systems.

Shannon developed a mathematical model based on probability theory and statistics
for quantifying the information that passes through a communication channel. The infor-
mation is measured either in terms of entropy, the information in a random variable, or
of mutual information, the amount of information shared by two random variables. This
mathematical model is known as the information theory.

Though the information theory concerns many other sub-�elds as for example the
source coding 1 or the information-theoretic security 2 aspects, we focus our attention on
the coding theory, that studies how to have reliable transmissions over noisy channels. In
order to set up an error-free transmission, the transmitter needs to add redundancy to the
information messages, so that the receiver can be helped to decode the original messages.
The aim of this theory is to determine the minimum quantity of redundancy to use in order
to guarantee the reliability of the transmission in noisy channels.

Shannon proved that for any communication channel, it is possible to communicate
in a reliable manner, accepting an arbitrary small error probability, if and only if the
information rate is below a maximum rate, called channel capacity. Put di�erently, the
capacity of a channel is the maximum information rate expressed in units of information
per channel use, which can be achieved with arbitrary small error probability.

The chapter is organized as follows. In Section 2.1 we de�ne the notion of information.
In Section 2.2 we introduce some ordinary channel models and the concept of channel
capacity. In the following Sections 2.3 and 2.4 we compute the capacity for two channel
models: the Additive White Gaussian Noise channel and the Rayleigh channel. Finally, in
the Section 2.5 we compute the outage probability for block-fading channels.

1. How to compress data without losing information.
2. The cryptosystems.

13
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2.1 Notations and Basic De�nitions

The following notation is used throughout this dissertation:

1) X is a random variable. X = {x1, . . . xn} is the set of values that X can take.

2) Y is a random variable. Y = {y1, . . . ym} is the set of values that Y can take.

3) n = |X| and m = |Y| represent the cardinality of X and Y, respectively.

We de�ne the following probability functions:

4) pX is the probability distribution of X given by pX(x) = Pr (X = x), ∀x ∈ X.

5) pY is the probability distribution of Y given by pY (y) = Pr (Y = y), ∀y ∈ Y.

6) pX,Y is the joint probability distribution of X × Y given by pX,Y (x, y) = Pr (X =
x, Y = y), ∀(x, y) ∈ X× Y.

7) pX|Y is the conditioned probability distribution of X knowing Y given by:

pX |Y (x | y) = Pr (X = x |Y = y) =
Pr (X = x , Y = y)

Pr (Y = y)

When no confusion is possible, the above probability distributions will be simply denoted
by p(x), p(y), p(x, y), and p(x | y).
Information. The information associated with an event x ∈ X of probability p (x) is the
non-negative quantity:

I(x) = log2
1

p (x)
> 0 (2.1)

This function, intuitively, means that the information given by an event increases as the
probability of the event is small.

Entropy. The information of the random variable X, called commonly entropy, is the
average information over all the events x ∈ X:

H(X) = E [I(x)] =
∑

x∈X
p (x) log2

1

p (x)
(2.2)

The entropy H(x) ∈ [0, log2(n)] measures the uncertainty of the random variable X.

Conditional Entropy. The entropy of X conditional on a particular event Y = y is
de�ned by:

H(X | y) =
∑

x∈X
p (x | y) log2

1

p (x | y) (2.3)

The de�nition of the entropy of X conditional on Y is obtained by averaging over all the
events y ∈ Y. By using the Bayes' rule we obtain:

H(X | Y ) =
∑

y∈Y
p (y)

∑

x∈X
p (x | y) log2

1

p (x | y)

=
∑

x∈X

∑

y∈Y
p (x, y) log2

p (y)

p (x, y)

(2.4)

Mutual Information. The mutual information of X and Y is de�ned by:

I(X;Y ) = H(X)−H(X | Y )

=
∑

x∈X

∑

y∈Y
p (x, y) log2

p (x, y)

p (x)p (y)
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Useful Properties.

(P1) 0 ≤ H(X) ≤ log2(n)

(P1.a) H(X) = 0 ⇔ ∃xi ∈ X such that p(xi) = 1 and p(xj) = 0 ∀xj 6= xi

(P1.b) H(X) = log2(n) ⇔ p(x1) = · · · = p(xn) = 1/n all the symbols are equally
likely.

(P2) H(X,Y ) ≤ H(X) +H(Y )

(P2.a) if X and Y are independent, H(X,Y ) = H(X) +H(Y )

(P3) H(X | Y ) ≤ H(X)

(P4) 0 ≤ I(X;Y ) ≤ H(X)

(P5) I(X;Y ) = I(Y ;X)
= H(X)−H(X | Y )
= H(Y )−H(Y | X)
= H(X) +H(Y )−H(X,Y )
= H(X,Y )−H(X | Y )−H(Y | X)

This digression can be analysed graphically thanks to the Venn diagram of Figure 2.1.
The mutual information is given by the intersection of the two ensembles.

Figure 2.1: H(X), H(Y ), joint H(X,Y ), conditional H(X | Y ) and H(X | Y ), and mutual
information I(X;Y )

The Meaning.

(M1) Logarithmic functions. By de�nition, the information is non-negative (2.1) and
the information carried by independent random variables is the sum of the respec-
tive information amounts (P2.a); this justi�es the use of logarithmic functions as
information-theoretic measures.

(M2) Logarithmic base. The logarithmic base corresponds to the choice of a unit for
measuring the information. Generally, the base 2 will be used, in which case the
resulting units are expressed in terms of bits. However, the use of a di�erent base
might be more convenient in some cases; if so, the use of a logarithmic base di�erent
from 2 will be clearly indicated in the text. In case that the natural basis is used,
the information will be measured in nats. The above measures can be de�ned using
any logarithmic base b 6= 2. In this case, they will be denoted by Hb(X), Hb(X | Y ),
Ib(X;Y ). The above properties remain valid for any logarithmic base b 6= 2.

(M3) Entropy. H(X) is usually interpreted as a measure of the uncertainty associated
with the random variable X. If H(X) = 0 there is no uncertainty (P1.a), while the
case of maximum entropy H(X) = log2(n) corresponds to the maximum uncertainty
(all the events are equiprobable � see (P1.b)).
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(M4) Conditioned entropy. H(X | Y ) does not increase the entropy of X because Y
introduces a condition that increases the certainty of X (P3).

(M5) Typical sequences. The entropy can also be used to determine the probability of a
typical long sequence. Precisely, consider a long sequence of T symbols obtained by
T successive, independent realizations of the random variable X. By the law of large
numbers, for T ≫ 0, this sequence will contain with high probability about p(x1)T
occurrences of x1, p(x2)T occurrences of x2, etc. Such a sequence is called typical.
The typical sequences form a subset of XT , the set of all the possible sequences of
length T , whose total probability goes to one as T goes to in�nity (this is still a
consequence of the law of large numbers). Typical sequences are equally likely and
their probabilities, denoted by p, is given by:

p = p(x1)
p(x1)T p(x2)

p(x2)T · · · p(xn)p(xn)T

Hence:

log2 p = T
∑

x∈X
p(x) log2 p(x) = −H(X)T ⇒ p = 2−H(X)T = n

−H(X)
log2 n

T

Put di�erently, among the nT possible sequences in X
T , there are n

H(X)
log2 n

T
typical

sequences, each one of which has probability p = n
−H(X)

log2 n
T
. Moreover, when T

goes to in�nity, the output of T successive, independent realizations of X is, with
probability going to 1, a typical sequence of length T .

Remark 2.1. Recall that n = |x|. Then Hn(X) =
H(X)

log2 n
= −

∑

x∈X
p(x) logn p(x) is

the entropy on X in base n and veri�es 0 ≤ Hn(X) ≤ 1.

(M6) Mutual Information. Intuitively, mutual information measures the information
that X and Y share: it measures how much knowing one of these variables reduces
the uncertainty about the other. For example, if X and Y are independent, then
knowing X does not give any information about Y and vice versa, so I(X;Y ) = 0.
At the other extreme, if X = Y then knowing X determines the value of Y and vice
versa. As a result, we have I(X;Y ) = H(X), which is the uncertainty contained in
X alone.
Mutual information quanti�es the dependence between the joint distribution of X
and Y and what the joint distribution would be ifX and Y were independent. Mutual
information is a measure of dependence in the following sense: I(X;Y ) = 0 if and
only if X and Y are independent random variables.

(M7) Continuous Random Variables. Same de�nitions remain valid for continuous

random variables, by replacing summation
∑

x∈X
[· · · ] with integration

∫

X

[· · · ] dx.

2.2 Capacity of Noisy Channels

Using the notation and the de�nitions from the previous section, we can now charac-
terize the capacity of noisy channels. Throughout this dissertation we limit ourselves to
the case of memoryless channels, for which the channel output depends only on the current
channel input. A noisy channel consists of:
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� an input alphabet X,
� an output alphabet Y,
� a set of transaction probabilities p(y | x)

The value p(y | x) represents the probability of the channel output being y ∈ Y, given that
the input symbol is x ∈ X. Hence, the following must hold:

∑

y∈Y
p(y | x) = 1, ∀x ∈ X

Now, letX be a random variable (a source) with values in X and probability distribution
pX . By �tting X to the channel input, the channel output de�nes a random variable Y on
Y, whose probability distribution pY is given by:

p(y) =
∑

x∈X
p(x)p(y | x)

2.2.1 Channel Models

1) Binary Input Additive Gaussian Noise Channel.

The BI-AWGN channel consists of:
� a binary input alphabet X = {−1,+1},
� an output alphabet Y = R.
The output Y is the sum of the binary input X and of the noise Z:

Y = X + Z,

where the noise Z ∼ NR(0, σ
2) is distributed as a real-valued Gaussian random

variable with zero mean and variance σ2:

pZ(z) =
1√
2πσ2

e−
z2

2σ2

2) Additive Gaussian Noise Channel with complex signaling set X.

This channel model consists of:
� an input alphabet, which is a �nite subset X ⊆ C, such that

∑

x∈X
|x|2 = 1,

� an output alphabet Y = C.
This model of channel is similar to the previous one except that the input alphabet
consists of the set of complex constellation points of some �xed modulation. Note
that, we always assume that X is normalized, meaning that

∑

x∈X
|x|2 = 1. The output

Y is related to the input X by the formula:

Y = X + Z,

where the noise Z ∼ NC(0, σ
2) is a complex-valued Gaussian distributed random

variable with mean 0 and variance σ2. We denote by

pZ(z) =
1

πσ2
e−

|z|2

σ2

the probability density function of Z, where |z|2 = ℜ(z)2 + ℑ(z)2.
ℜ(Z) and ℑ(Z) are real-valued, Gaussian distributed, independent random variables

with mean 0 and variance σ2

2 =
(

σ√
2

)2
.
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3) Binary Symmetric Channel (BSC).

The BSC model consists of:
� a binary input alphabet X = {−1,+1},
� a binary output alphabet Y = {−1,+1}.
The transaction probabilities Pr(Y = −1 | X = +1) = Pr(Y = +1 | X = −1) = ǫ
(see Figure 2.2).

Figure 2.2: Binary Symmetric Channel with transaction probability ǫ

Remark 2.2. The BSC can be seen as an BI-AWGN channel with binary input and
hard decision mechanism that �lters the channel output according to its sign. In
this case, the hard decision mechanism transforms the BI-AWGN channel with noise
variance σ2 in a BSC channel with error probability Q(1/σ2), where Q denotes the

Q-function de�ned by Q(x) = 1√
2π

∫ +∞
x e−

u2

2 du.

4) Binary Erasure Channel (BEC).

The BEC model consists of:
� a binary input alphabet X = {−1,+1},
� an output alphabet Y = {−1,+1, E},
where E represents an erasure.

Figure 2.3: Binary Erasure Channel with transaction probability ǫ

This model is presented in Figure 2.3 and it is characterized by the transaction
probabilities Pr(y = E | x = −1) = Pr(y = E | x = +1) = ǫ and Pr(y = −1 | x =
−1) = Pr(y = +1 | x = +1) = 1− ǫ.

This model ensures that the channel output is certainly correct in case that y ∈
{−1,+1}, while it does not provide any information about the input if y = E, in
which case the input has the same possibility of being −1 or +1.

5) Rayleigh Fading Channel with complex signaling set X.

This channel model consists of:
� an input alphabet, which is a �nite subset X ⊆ C, such that

∑

x∈X
|x|2 = 1,

� An output alphabet Y = C.
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The input alphabet X ⊆ C consists of the set of complex constellation points of some
�xed modulation. We also assume that X is normalized. Input X and output Y are
related by the formula:

Y = GX + Z

where G ∼ NC(0, 1) is a circular complex normal distributed random variable with
mean 0 and variance 1, and Z ∼ NC(0, σ

2) is a circular complex normal distributed
random variable with mean 0 and variance σ2. We denote by

pZ(z) =
1

πσ2
e−

|z|2

σ2 (2.5)

the probability density functions of Z and

pG(g) =
1

π
e−|g|2 (2.6)

the probability density functions of G.

ℜ(G) and ℑ(G) are real, Gaussian distributed, independent random variables with
mean 0 and variance 1

2 . In particular, the envelop of the channel response

|G| =
√

ℜ2(G) + ℑ2(G)

is distributed according to the Rayleigh distribution with parameter 1√
2
.

6) Block Rayleigh Fading Channel.

The alphabets' de�nition of this channel model is the same as of the previous one:
� an input alphabet, which is a �nite subset X ⊆ C, such that

∑

x∈X
|x|2 = 1,

� An output alphabet Y = C.
Again, the input alphabet X ⊆ C consists of the set of complex constellation points of
some �xed modulation. In the Rayleigh channel model the multiplicative coe�cients
change for each symbol: in the block Rayleigh channel model, the fading is constant
for a given symbol period.

Precisely, the block-fading channel is composed by nf blocks, each block consists of
L complex symbols x ∈ X. Each block is distinguished by a fading gain coe�cient
gj ∈ {g1, . . . , gnf

}. We assume that the fading gain coe�cients are identically and
independently Rayleigh distributed from one block to another according to (2.6).

2.2.2 Channel Capacity

The channel capacity, denoted by C, is de�ned as:

C = max
pX

I(X;Y )

where maximization is taken over all possible probability distributions X on X.
Remind that I(X;Y ) = H(X) − H(X|Y ). H(X | Y ) may be interpreted as the

lost part of the information H(X) due to the channel noise. Indeed, in case of noiseless
channels, H(X | Y ) = 0 meaning that the received symbol unambiguously determines the
transmitted one. On the contrary, for channels with a very high level of noise the received
symbols tend to be independent from the transmitted symbols, then H(X | Y ) ≃ H(X)
(the two ensembles, H(X) and H(Y), are almost disjoint).
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Generally, the input symbols of the channel are considered to be equally likely. There-
fore, we de�ne:

Cu = I(Xu, Y ),

whereXu is a random variable uniformly distributed over X; that is, pXu(x) = 1/n, ∀x ∈ X,
where n = |X| is the number of symbols of the channel input alphabet X. It will be referred
as the uniform-input capacity. Cu can be expressed as bits per channel use or symbols per
channel use, according to the logarithmic base used for the computation of the mutual
information:

� If the base-2 logarithm is used for the mutual information, then the capacity is
expressed in terms of bits per channel use. Since I(X;Y ) = H(X) − H(X | Y ) ≤
H(X) ≤ log2 n, where n is the number of symbols of the input alphabet X, it follows
that C ≤ log2 n.

� If the base-n logarithm is used, then the capacity is expressed in terms of symbols
per channel use. In this case C = maxpX In(X;Y ) ≤ 1.

Note also that for most channels C = Cu; meaning that the maximum, in the above
de�nition of the capacity, is obtained for the uniform distribution on the channel input
alphabet X.

When expressed as symbols per channel use, the uniform-input capacity can be written
as:

Cu = In(Xu, Y ) = Hn(Xu)−Hn(Xu | Y ) = 1−Hn(Xu | Y )

Channel codes. In order to reliable communicate over a noisy channel, the idea is to
add some redundancy to the information data. This redundant data is used at the receiver
in order to decode the information data. The quantity of redundancy is measured by the
coding rate r ∈ [0, 1], de�ned as the ratio between the number of information symbols and
the number of coded symbols.

Noisy-channel coding theorem [weak version]. Consider a channel whose uniform-
input capacity, expressed as symbols per channel use, is equal to Cu ∈ [0, 1]. Moreover,
assume that a code with coding rate r ∈ [0, 1] is used to transmit over the channel.

(1) If r ≤ Cu there exists a coding system such that the transmission has an arbitrary
small frequency of errors, assuming that the code length can be made arbitrarily
large.

(2) If r > Cu, there is no method of encoding which gives an arbitrarily small frequency
of errors.

Proof [sketch of]. Let T denote the number of coded symbols and assume that T ≫ 0. A
coded message of length T will have r T information symbols. Hence, the total number of
coded messages of length T is given by nrT .

On the other hand, an output sequence of length T could be produced, with high
probability, by about nHn(Xu|Y )T input sequences.

Now, we can transmit with arbitrary small error probability i� for any output sequence,
only one coded message is among the nHn(Xu|Y )T input sequences that could produced the
observed output. Therefore the number of input sequences of length T must be at least
nrTnHn(X|Y )T . We obtain:

nT ≥ nrTnHn(Xu|Y )T ⇔ 1 ≥ r +Hn(Xu | Y ) ⇔ Cu ≥ r

�
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Remark 2.3. In case that the channel capacity is expressed in terms of bits per channel use,
we have Cu ∈ [0, log2 n]. In this case the channel capacity is the maximum information
rate that allows reliable communication, where the information rate R = r log2 n is the
number of information bits per channel use.

2.3 Capacity of Gaussian Channels

In this section we compute the capacity of the BI-AWGN and AWGN channels intro-
duced in the previous section. We also derive approximated formulas for these capacities.

Throughout this dissertation when we need to specify the complex signal set for an
exact formulation we use the QAM constellation and x will denote a modulated symbol.
Each complex symbol consist of log2n bits. This notation includes also the case of BPSK
modulation that could be eventually referred to as 2-QAM.

2.3.1 Capacity of the BI-AWGN Channel

It can be proved that the capacity C is equal to the uniform-input capacity Cu [66].
If we consider an uniform channel input X, that is pX(−1) = pX(+1) = 1/2, then the
probability density function of Y is given by:

pY (y) =
1

2
√
2πσ2

(

e−
(y−1)2

2σ2 + e−
(y+1)2

2σ2

)

=
1

2
√
2πσ2

e−
(y−1)2

2σ2

(

1 + e−
2y

σ2

)

=
1

2
√
2πσ2

e−
(y+1)2

2σ2

(

1 + e
2y

σ2

)

We have:
C = Cu = H(Xu)−H(Xu | Y )

= 1−H(Xu | Y )

Conditional entropy H(Xu | Y ).

H(Xu | Y ) =

∫

R

p(y)H(Xu | y) dy

=

∫

R

p(y)

(

∑

x=±1

p(x | y) log2
1

p(x | y)

)

dy

=

∫

R

p(y)





log2

(

1 + e−
2y

σ2

)

1 + e−
2y

σ2

+
log2

(

1 + e
2y

σ2

)

1 + e
2y

σ2



 dy

=
1

2
√
2πσ2

[∫

R

e−
(y−1)2

2σ2 log2

(

1 + e−
2y

σ2

)

dy +
∫

R

e−
(y+1)2

2σ2 log2

(

1 + e
2y

σ2

)

dy

]

=
1√
2πσ2

∫

R

e−
(y−1)2

2σ2 log2

(

1 + e−
2y

σ2

)

dy

We get:

CBI-AWGN = 1− 1√
2πσ2

∫

R

e−
(y−1)2

2σ2 log2

(

1 + e−
2y

σ2

)

dy (bits per channel use)
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2.3.2 Capacity of the AWGN Channel with Complex Signaling Set X

In this section we compute the uniform-input capacity Cu, expressed as symbols per
channel use of the AWGN channel with a complex signaling set X.

If we consider an uniform channel input X, that is pX(x) = 1/n, ∀x ∈ X (where
n = |X|), then the probability density function of Y is given by:

pY (y) =
1

nπσ2

∑

x∈X
e−

|y−x|2

σ2

We have:
Cu = Hn(Xu)−Hn(Xu | Y )

= 1−Hn(Xu | Y )

Conditional entropy Hn(Xu | Y ).

Hn(Xu | Y ) =

∫

C

p(y)Hn(Xu | y) dy

=

∫

C

p(y)

(

∑

x∈X
p(x | y) logn

1

p(x | y)

)

dy

=
1

nπσ2

∫

C

∑

x∈X
e−

|y−x|2

σ2 logn
s(y)

e−
|y−x|2

σ2

dy, where s(y) =
∑

x′∈X
e−

|y−x′|2

σ2

=
1

nπσ2

∑

x∈X

∫

C

e−
|y−x|2

σ2 logn

(

∑

x′∈X
e

|y−x|2−|y−x′|2

σ2

)

dy

=
1

nπσ2

∑

x∈X

∫

C

e−
|y|2

σ2 logn

(

∑

x′∈X
e

|y|2−|y+x−x′|2

σ2

)

dy

=
1

nπ

∑

x∈X

∫

C

e−|y|2 logn

(

∑

x′∈X
e
|y|2−

∣

∣

∣
y+x−x′

σ

∣

∣

∣

2
)

dy

=
1

nπ

∑

x∈X

[

∫

C

e−|y|2 |y|2 logn(e) dy +
∫

C

e−|y|2 logn

(

∑

x′∈X
e
−
∣

∣

∣
y+x−x′

σ

∣

∣

∣

2
)

dy

]

=
1

nπ

∑

x∈X

[

logn(e)π +

∫

C

e−|y|2 logn

(

∑

x′∈X
e
−
∣

∣

∣
y+x−x′

σ

∣

∣

∣

2
)

dy

]

= logn(e) +
1

nπ

∑

x∈X

∫

C

e−|y|2 logn

(

∑

x′∈X
e
−
∣

∣

∣
y+x−x′

σ

∣

∣

∣

2
)

dy

We get:

CAWGN,X = 1− logn(e)−
1

nπ

∫

C

e−|y|2
(

∑

x∈X
logn

[

∑

x′∈X
e
−
∣

∣

∣
y+x−x′

σ

∣

∣

∣

2
])

dy

(symbols per channel use)
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Remark 2.4. To express the capacity CAWGN,X in terms of bits per channel use, the above
value must be multiplied by log2 n.

The (uniform-input) capacities of the AWGN channel for various QAM modulations are
shown in Figure 2.4. In this �gure, the complex signaling set X is the set of constellation
points of BPSK, QPSK, 8-PSK and 16-QAM modulations. The abscissa represents the
Signal to Noise Ratio (SNR) in dB. When the size of the QAM constellation goes to in�nity,
the capacity curves approach a limiting curve (brown, dotted curve), which corresponds to
the capacity of the AWGN channel without any modulation constraint, that is X = C. It
can be shown that this (unconstraint) capacity can be computed by the following formula:

CAWGN = log2

(

1 +
1

σ2

)

(bits per channel use)

From another point of view, this limit can be seen as a signal transmitted with a constel-
lation of in�nite points.
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Figure 2.4: Capacity (bits per channel use) of the AWGN channel for various QAM mod-
ulations

2.3.3 Capacity of AWGN Channel with Limited Bandwidth.

More generally, consider a communication (rather than information theoretic) channel
with bandwidth B, which corrupts the transmitted signal with additive white Gaussian
noise (AWGN). Indeed, in real case, the received signal is limited within a band B such
that the unlimited noise spectrum can be �lter and restricted in a limited bandwidth. The
Shannon-Hartley theorem states that the channel capacity is given by [28]:

C = B log2

(

1 +
S

N

)

= B log2

(

1 +
S

N0B

)
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where
� C is the channel capacity, in bits per second
� B is the bandwidth of the channel in Hertz
� S is the average signal power
� N is the total noise power

�
N0

2
is the noise power spectral density, hence N = N0B

Remark: the ratio S
N is the linear SNR value (not in decibels)

We know that the capacity in bits per channel use is given by

log2

(

1 +
1

σ2

)

= log2

(

1 +
S

N

)

The capacity in bits per second is obtained by multiplying the above value by the band-
width; that is C = B log2

(

1 + S
N

)

.

Ultimate Shannon limit. Now, suppose we are sending binary digits at a transmission
rate equal to the channel capacity, that is C bits per second. Since the average signal
power is S and the bit duration is 1/C seconds, it follows that the average energy per bit
is Eb = S/C. Replacing in the above formula, we get:

C = B log2

(

1 +
EbC

N0B

)

⇔ Eb

N0
=

2
C
B − 1
C
B

Since the function f(x) =
2x − 1

x
is increasing and lim

x→0
f(x) = ln 2 it follows that:

Eb

N0
≥ ln 2 = 0.6931, linear value, or equivalently

Eb

N0
≥ −1.5917 dB, in decibels.

Hence, below this value there is no error-free communication at any information rate. This
is called the ultimate Shannon limit.
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2.3.4 Approximate Formulas for the Capacity of the AWGN Channel
with 2

m-QAM Modulation

For 2m-QAM constellation, the CAWGN,2m-QAM formulas from the above section involve
a quite complicated integral over the complex plane, which can be very expensive in terms
of computation time. The goal of this section is to give quick-to-compute approximate for-
mulas for the capacity of the AWGN channel with 2m-QAM modulation, for m = 1, 2, 3, 4, 6.

We use the following formula to approximate the capacity:

C̃AWGN,2m-QAM = mν
log (1 + s)

log (2mν + γ1sν1 + γ2sν2)
,

where s =
1

σ2
and ν = max(ν1, ν2)

parameters γ1, γ2, ν1, ν2 are shown in Table 2.1.

(bits per channel use)

Parameters γ1, γ2, ν1, ν2 were determined, for each m value, by curve �tting. For a
given m value, we searched for parameters γ1, γ2, ν1, ν2 that minimize the Root Mean
Square (RMS) error between the exact capacity CAWGN,2m-QAM and its approximate value
C̃AWGN,2m-QAM. The minimization has been performed by using the Di�erential Evolution
algorithm [69].

The parameters γ1, γ2, ν1, ν2 are given in Table 2.1; it is also shown the value of the
corresponding RMS. Exact vs. approximate capacity curves are shown in Figure 2.5.
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Figure 2.5: Approximate and exact capacity values, in bits per channel use, for the AWGN
channel with various QAM modulations

Table 2.1: Parameters γ1, γ2, ν1, ν2, according to the value of m

m = 1
γ1 = 1.6734
ν1 = 0.7697

γ2 = 1.0372
ν2 = 1.9756

RMS = 0.0023

m = 2
γ1 = 1.0770
ν1 = 1.1873

γ2 = 1.0169
ν2 = 2.1925

RMS = 0.0023

m = 3
γ1 = 32.9172× 102

ν1 = 1.7436
γ2 = 1.0410
ν2 = 4.6064

RMS = 0.0013

m = 4
γ1 = 74.5002× 102

ν1 = 0.9178
γ2 = 1.0221
ν2 = 3.8186

RMS = 0.0030

m = 6
γ1 = 1.0147
ν1 = 3.9641

γ2 = 702.0165× 104

ν2 = 0.4636
RMS = 0.0099
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2.4 Capacity of Rayleigh Channels

Our purpose is to compute the uniform-input capacity of the Rayleigh channel. Hence,
we consider an uniform channel input X, that is pX(x) = 1/n, ∀x ∈ X, (where n = |X|)
and the probability density function of Y is given by:

pY (y) =
1

nπ2σ2

∫

C

e−|g|2 ∑

x∈X
e−

|y−gx|2

σ2 dg

There are two possible conditions for computing this capacity: 1) the availability of
perfect Channel State Information (CSI) to the receiver or, on the contrary, 2) the receiver
is not aware of channel realizations.

2.4.1 Perfect Knowledge of the Channel at the Receiver

In this section we assume that the receiver has perfect knowledge of the channel. As
the channel changes at each transmitted symbol, this is a not realistic assumption but just
an information-theoretic one and the general case will be study in the next section.

The perfect knowledge of the channel means that the receiver knows both the values
of Y and G; hence, the channel capacity is given by:

Cu = H(Y,G)−H(Y,G | Xu)

We have:

Cu = H(Y,G)−H(Y,G | Xu)

=
(

H(G) +H(Y | G)
)

−
(

H(G | Xu) +H(Y | G,Xu)
)

= H(Y | G)−H(Y | G,Xu) [knowing that H(G) = H(G | Xu), as G and Xu are independent]

=

∫

C

pG(g)
(

H(Y | G = g)−H(Y | Xu, G = g)
)

dg

Now, for a given g, let Y ′ = Y
g and Z ′ = Z

g . We obtain Y ′ = X + Z ′, where Z ∼

NC

(

0,
σ2

|g|2
)

. Hence, H(Y | G = g)−H(Y | Xu, G = g) is just the capacity of the AWGN

channel, with noise variance σ2

|g|2 . Therefore, for a �xed 2m-QAM modulation, the capacity
is given by:

CRAYLEIGH,KNOWN-G,X(σ
2) =

1

π

∫

C

e−|g|2CAWGN,2m-QAM

(

σ2

|g|2
)

dg

= 2

∫ +∞

0
re−r2CAWGN,2m-QAM

(

σ2

r2

)

dr

On the other hand, if we do not consider any constraint with respect to the modulation
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Figure 2.6: Capacity of the Rayleigh channel, in bits per channel use, for various QAM
modulations. Perfect knowledge of the channel is assumed at the receiver.

(that is, we let the constellation size go to in�nity), we obtain the following capacity:

CRAYLEIGH,KNOWN-G(σ
2) =

1

π

∫

C

e−|g|2CAWGN

(

σ2

|g|2
)

dg

=
1

π

∫

C

e−|g|2 log2

(

1 +
|g|2
σ2

)

dg

= 2

∫ +∞

0
re−r2 log2

(

1 +
r2

σ2

)

dr

The capacity of the Rayleigh channel, assuming perfect knowledge of the channel at
the receiver, is plotted at Figure 2.6, where the complex signaling set X is the set of
constellation points of BPSK, QPSK, 8PSK, 16-QAM and 64-QAM.

2.4.2 No Knowledge of the Channel at the Receiver

In case that the receiver has no knowledge of the channel, the capacity is given by:

Cu = H(Y )−H(Y | Xu)

=
(

H(Y,G)−H(G | Y )
)

−
(

H(Y,G | Xu)−H(G | Y,Xu)
)

=
(

H(Y,G)−H(Y,G | Xu)
)

−
(

H(G | Y )−H(G | Y,Xu)
)

The �rst term of the above subtraction is just the capacity when the receiver has perfect
knowledge of the channel. The second is the capacity of �nding G given Y . We can write:

CRAYLEIGH,UNKNOWN-G(σ
2) = CRAYLEIGH,KNOWN-G(σ

2)−
(

H(G | Y )−H(G | Y,Xu)
)
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Remark 2.5. The Rayleigh channel is an example of fast-fading channel, where the code-
word length spans over a great number of coherence periods of the channel. Hence, one can
average over independent channel fades by coding over a large number of coherence time
intervals. As a consequence, we have seen that it is possible to achieve a reliable rate of
communication of

E

[

log2

(

1 +
|g|2
σ2

)]

=
1

π

∫

C

e−|g|2 log2

(

1 +
|g|2
σ2

)

dg

which gives the capacity of the fast-fading Rayleigh channel.

2.5 Outage Probability for Block-Fading Channels

In this section we deal with slow-fading channels, where the coherence time is greater
than the latency requirement. We will consider a model with nf > 1 fading blocks,
where each block is composed by L complex symbols. In particular, the fading is �at and
constant on each block and independent and identically Rayleigh distributed on di�erent
blocks [5, 51] (see also Section 2.2.1).

We will also assume that the receiver has perfect knowledge of the channel. The channel
parameters can be estimated by transmitting training-sequences at the beginning of each
transmission. This assumption is strong since the fading gains cannot be estimated due
to the unexpected variations of channel; nevertheless it can be justi�ed when the fading
varies slowly with time as in this channel case.

Let us �rst look to the case when the transmitted symbols span one single coherence
period of the channel (that is nf = 1), then the maximum rate of reliable communication

supported by the channel is log2

(

1 +
|g|2
σ2

)

, and it depends on the random channel gain

|g|2. If the transmitter encodes data at rate R bits per channel use, there is a probability
that the decoding error probability cannot be made arbitrarily small, given by:

Pout = Pr

[

log2

(

1 +
|g|2
σ2

)

< R

]

,

in which case the system is said to be in outage. With a non-zero probability that the
channel is in deep fade, the capacity of the slow-fading channel in strict sense is zero.
However, it is possible to determine the largest value of R such that the outage probability
Pout is less than ε. This value is known as the ε-outage capacity.

More in general, for nf > 1 and a given channel gain vector g =
[

g1, . . . , gnf

]

, the
maximum rate of reliable communication supported by the channel is:

I(g, σ2) =
1

nf

nf
∑

i=1

log2

(

1 +
|gi|2
σ2

)

If g1, . . . , gnf
are the channel gains experienced by the transmitted codeword, the above

value is also referred to as instantaneous mutual information between the input and the
output of the BF channel (or instantaneous capacity). If the transmission rate is greater
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Figure 2.7: Outage probability for nf = 4 and QPSK modulation

than the instantaneous capacity, the system is said to be in outage. The outage probability
is de�ned as:

Pout(R, σ2) = Pr

[

1

nf

nf
∑

i=1

log2

(

1 +
|gi|2
σ2

)

< R

]

For a �xed complex signaling set X, the outage probability can be computed by:

Pout,X(R, σ2) = Pr

[

1

nf

nf
∑

i=1

CAWGN,X

(

σ2

|g|2
)

< R

]

The ε-outage capacity is de�ned as:

Cε-out(σ
2) = sup{R | Pout(R, σ2) < ε}

In Figure 2.7 we have drawn the outage probability as a function of the noise variance
(expressed in Eb

N0
) for di�erent coding rates r, for a block-fading channel with nf = 4 and

QPSK modulation 3. We add progressively redundancy, passing from a rate r = 1/2 symbol
per channel use to a rate r = 1/6 symbols per channel use. We can observe an increasing
diversity gain of these curves, corresponding to a slope more and more steeper when r

3. In order to obtain the corresponding rate R in term of bits per channel use we need to multiple r
times 2.
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decreases from 1/2 to 1/6. Also, we observe that when r = 1/6 the outage probability
curve remains parallel to the curve r = 1/4. More in general, all the curves corresponding
to coding rates r > 1/nf will stay parallel to the curve corresponding to r = 1/nf . This
concept is relative to the full-diversity coding for block-fading channel and we will give
more details in Chapter 7.
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Chapter 3

Low-Density Parity-Check Codes

Low-Density Parity-Check codes are a class of linear correcting-codes with near-capacity
performance on a large class of transmission and storage channels. They have been intro-
duced in 1960 by Gallagher in his PhD dissertation [23] but ignored because of technological
limit at that time for implementing iterative decoders. With the works of Tanner [70], who
introduced a graphical representation of the codes, and of MacKay [46] in 1996, these codes
started to attract much more attention.

In the modern approach of error correcting codes, LDPC codes are playing a very
important role due to their low decoding complexity. The decoding is based on an iterative
exchange of messages until a codeword is found or a maximum number of iterations is
reached. LDPC codes shows asymptotic performance approaching the theoretical Shannon
limit [60]. The asymptotic analysis relies on tracking the evolution of the probability
density of exchanged messages and allows one to determine the worse channel condition
for which reliable transmission is possible (assuming that the code-length goes to in�nity).

With the evolution of the technology, new families of LDPC codes de�ned over non-
binary alphabets have been introduced. These codes exhibit better performance for short to
medium code lengths [13], without sacri�cing the nearly optimal asymptotic performance.
The performance gain at short length comes at an additional cost in the decoding com-
plexity. However, this additional cost can be reduced by using low-complexity algorithms,
as proposed e.g. in [16, 65].

In this chapter we introduce the keynotes relative to the design of good LDPC codes,
the encoding/decoding algorithms and the analysis of code performance. The e�ciency of
LDPC codes is evaluated in terms of error rates and the complexity of the encoding and
decoding systems.

The chapter is organized as follows. LDPC codes are de�ned in Section 3.1, then
several iterative message-passing algorithms are presented in Section 3.2. The asymptotic
analysis and code optimization are discussed in Section 3.3. In Section 3.4 we describe the
construction and the �nite-length optimization of NB-LDPC codes. Finally, the Section 3.5
discusses the principal encoding systems.

33
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3.1 LDPC Codes

In this dissertation we focus on non-binary LDPC codes. Gallager [23] already in-
troduced LDPC codes de�ned over non-binary alphabets and he proposed a probabilistic
iterative decoding. The �rst generalization of the decoding algorithm for LDPC codes
de�ned over Galois �elds has been presented in [13].

Many alphabet de�nitions have been explored since the �rst introduction of the NB-
LDPC codes by Gallager. In [68] codes over rings and groups have been designed for
coded modulation. In [24] Goupil et al. have introduced a wide class of LDPC codes,
including de�nition over �nite �elds, rings, groups and non-linear codes; moreover a low-
complexity encoding/decoding system has been developed. LDPC codes built over �nite
�elds show some limitations in the choice of the non-binary coe�cients of the parity-check
matrix: codes de�ned over the General Linear groups demonstrate a slightly improved
performance with respect to codes built over �nite �elds [10].

In the sequel we �rst de�ne NB-LDPC codes over more general alphabets, then, we
focus on LDPC codes de�ned over �nite �elds Fq, where q is a power of 2.

3.1.1 De�nition

First de�nition. We consider a non-binary alphabet A with q = 2p elements. For
practical reasons, we consider A endowed with a vector space structure over F2 = {0, 1},
and we �x once for all an isomorphism:

A ∼−→ F
p
2 (3.1)

Elements of A are referred to as symbols. For any symbol s ∈ A, its image (s1, . . . , sp) ∈
F
p
2 under the above isomorphism is called the binary image of s.
A NB-LDPC code is de�ned as the kernel of a sparse matrix H ∈ MM×N (End(A)),

where End(A) denotes the algebra of endomorphisms of A. The matrix H is referred to
as the parity-check matrix, and the sparsity condition means that only few entries of H
are non-zero. Thus, a codeword S = {s1, . . . , sN} is the solution of the linear system
H · ST = 0:

N
∑

n=1

hm,n(sn) = 0, ∀m = 1, . . . ,M

Using the above isomorphism A→̃F
p
2, we can also identify End(A) ⋍ Mp×p(F2), the

algebra of p× p matrices with coe�cients in F2 = {0, 1}.

In this dissertation we mainly focus on a particular case, namely the case of NB-
LDPC codes de�ned over Galois �elds. Let Fq denotes the (�nite) Galois �eld with q =
2p elements. Then Fq is endowed with a vector space structure over F2, and we �x an
isomorphism:

Fq
∼−→ F

p
2 (3.2)

Moreover, by using the internal �eld multiplication, each symbol h ∈ Fq de�nes an endo-
morphism of Fq, which maps s 7→ h · s, s ∈ Fq. Hence, we obtain:

Fq →֒ End(Fq) ≃ End(Fp
2) = Mp×p(F2) (3.3)
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Therefore, a non-binary LDPC code is said to be de�ned over the Galois Field Fq if each
entry of H corresponds to an element of Fq. A binary LDPC code is a particular case, for
which the alphabet is simply the binary �eld F2 = {0, 1}.

The Galois �eld Fq can be de�ned as the quotient �eld of the ring of polynomials F2[α]
by a primitive polynomial P (α) of degree p . Therefore, the �eld elements can be denoted
by {0, α0, α1, . . . , α(q−2)}, since in this case α is a primitive element of the Galois �eld.

Alternative de�nition. A NB-LDPC code is de�ned as the kernel of a sparse parity-
check matrix H = (hm,n)m,n ∈ MM,N (Fq), Thus, a codeword S = (s1, . . . , sn, . . . , sN ) is
the solution of the linear system H · ST = 0 :

N
∑

n=1

hm,n sn = 0 , ∀m = 1, . . . ,M (3.4)

where hm,n is the entry corresponding to the mth row and nth column of H. The matrix
H is referred to as the parity-check matrix. In order to respect the low density condition
for these codes, the associated parity check matrices must contain few entries.

Binary representation. Using the isomorphism Fq→̃F
p
2 (3.2), each symbol sn ∈ Fq

corresponds to a binary vector (sn,1, . . . , sn,p) ∈ F
p
2 referred to as its binary image. As a

consequence each NB-codeword S = {sn}n=1,...,N with sn ∈ Fq can be transformed into a
binary codeword Sb = {sn,i}n=1,...,N ;i=1,...,p, with sn,i ∈ F2.

Moreover, by using Eq. (3.3) each entry h of H correspond to a p × p binary matrix,
such that the multiplication of a symbol s by h corresponds to the multiplication of a
binary image of s by the matrix associated with h. The binary parity-check matrix Hb is
obtained by replacing each entry hm,n of H by the associated binary p× p matrix. Hence,
we have:

H · ST = 0 ⇐⇒ Hb · ST
b = 0

Coding rate. Let C be the non-binary code de�ned by the parity-check matrix H. The
non-binary dimension of C is given by K = N − rank(H), and the coding rate is de�ned
as:

r =
K

N
= 1− rank(H)

N

The designed coding rate of C is by de�nition

r′ = 1− M

N

Note that when H is full rank, which is generally the observed case, then r = r′.

3.1.2 Tanner Graph

In his work [70], Tanner studied LDPC codes and their representation using the asso-
ciated bipartite graph (from now on it will be simply referred as Tanner graph).

The Tanner graph is associated with the parity-check matrix H. It will be denoted by
H and it is composed by:

� N symbol-nodes, corresponding to the N columns of H,
� M constraint-nodes, corresponding to the M rows of H.
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Figure 3.1: Tanner Graph of a NB-LDPC codes

A symbol-node n and a constraint-node m are connected by an edge i� the corresponding
entry hm,n of H is di�erent from 0. In this case, we further assume that the edge is labeled
by the hm,n value.

Equivalently, the N symbol-nodes corresponds to the N coded symbols {sn}n=1,...,N ,
while the M constraint-nodes, together with the incident labeled edges, correspond to the
linear equation between these nodes. A representation of the Tanner graph is drawn in
Figure 3.1. This Tanner graph represents a LDPC codes de�ned over F8 (with p = 3
bits). In the binary case, the symbol-nodes are also referred to as bit-nodes, while the
constraint-nodes are also referred to as check -nodes (in the following check and constraint
are indistinctly used).

Two nodes are said to be neighbours if they are connected by an edge. The degree of
a node is de�ned as the number of incoming edges.

Example 3.1. Figure 3.2 is an example of Tanner graph for a non-binary LDPC code
with 3 constraint-nodes and 6 symbol-nodes. The non-zero coe�cients of the parity-check
matrix

H=





6 2 0 5 0 0
0 1 4 0 7 0
3 0 5 0 0 5





are elements of Galois Field F8 = {0, 1, 2, 3, 4, 5, 6, 7} represented in the labeled edges of
the graph This code has coding rate r = 1/2.

The following notation will be used throughout this dissertation:

1) C(N,K): a code with parameters K and N .

2) Symbol-nodes.

a) n ∈ {1, . . . , N}: symbol-node

b) H(n): the set of neighbour check-nodes of symbol-node n.

c) ds(n) = |H(n)|: degree of symbol-node n.

d) ds,max = max
n=1,...,N

|H(n)|: maximum symbol-node degree.
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Figure 3.2: Tanner Graph of a NB-LDPC codes of Example 3.1.

e) ds,avg =
∑

n=1,...,N

|H(n)|
N

: average symbol-node degree.

3) Constraint-nodes.

a) m ∈ {1, . . . ,M}: constraint-node
b) H(m): the set of neighbour symbol-nodes of constraint-node m.

c) dc(m) = |H(m)|: degree of constraint-node m.

d) dc,max = max
m=1,...,M

|H(m)|: maximum constraint-node degree.

e) dc,avg =
∑

m=1,...,M

|H(m)|
M

: average constraint-node degree.

4) confm =
{

[an]n∈H(m) ∈ F
dc(m)
q |∑n∈H(m) hm,nan = 0

}

, the set of local con�gura-

tions. It is the set of symbols an ∈ Fq verifying the mth constraint-node.

5) confm(n, a) = {[an′ ]n′∈H(m) ∈ confm|an = a} is the set of local con�gurations for
the check-node m, verifying an = a ∈ Fq.

Any codeword S ∈ C(N,K) satis�es all the constraint-nodes, therefore the equation (3.4)
can be rewritten by considering only the non-zero elements hm,n:

∑

n∈H(m)

hm,nsn = 0, ∀m = {1, . . . ,M} (3.5)

A code with a constant number of incoming edges for both type of nodes is referred
to as regular LDPC code, on the contrary case the code is referred to as irregular LDPC
code.

In case of regular codes, we denote by ds = ds(n), ∀n = 1, . . . , N and dc = dc(m),
∀m = 1, . . . ,M , and we say that the code is (ds, dc)-regular. Since the number of incoming
edges for the symbol-nodes must be equal to the number of incoming edges of constraint-
nodes, we have:

Mdc = Nds (3.6)
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As a consequence, the designed coding rate is given by:

r = 1− M

N
= 1− ds

dc
(3.7)

Note also that in case of irregular codes a similar assertion holds by replacing ds by ds,avg
and dc by dc,avg. More details will be given in paragraph 3.3.1.

3.2 Iterative Decoding

Non-binary LDPC codes can be decoded by iterative algorithms that pass messages
along the edges of the bipartite graph (in both directions). Each message is a probability
distribution over Fq, giving the probabilities of the incident symbol-node being equal to
each of its q possible values. These probability distributions are iteratively updated by
Bayesian rules, until a codeword has been found or a maximum number of iterations has
been reached.

The decoding bottleneck is represented by the check-node computation, observing a
number of operations per check-node dominated by O(q2) [13]. This complexity limited
the implementation of decoder for larger order, i.e. q > 16, so that alternative decoding
schemes have been studied. Indeed, equivalent more robust log-domain decoding algo-
rithms have been introduced in order to reduce the decoding complexity [77]. Successively,
the complexity order was reduced by the introduction of Fourier transform [15, 59] in BP
decoding, yielding to a computational complexity more suitable for alphabets with q ≥ 64.

In [67] the authors investigated of Q-ary LDPC codes over Magnetic Recording Chan-
nels and they present an implementation of a remarkable reduced complexity Log-FFT
Belief Propagation algorithm in which they combined operations in real and log domains.

Several decoding algorithms have been also proposed, allow one to trade o� between
performance and complexity. In [74] the authors studied the performance of an ultimate
Extended Min-Sum decoder with complexity O(q′ log2 q

′) by truncating the number of
messages from q to q′. In [65] the Min-Max decoder decreases the complexity by reducing
the number of useful symbols involved in the check-node processing step.

In the following we will �rst describe the BP algorithm, then we will give some insights
of several low-complexity decoding algorithms.

3.2.1 Belief-Propagation Algorithm

We consider that a codeword S is sent through a noisy channel and let Y denote the
channel output.

The Belief Propagation (BP) decoding [76] is a message-passing algorithm that ex-
changes messages in both directions, along the graph's edges. Messages are updated it-
eratively until a codeword has been found or a maximum number of iterations has been
reached. Each message is a probability vector of size q, giving the probabilities of the
incident symbol-node of being equal to each of its possible values.

Notation.

(N1) Pn = [Pn(a)]a∈Fq where Pn(a) = Pr(sn = a | Y ), is the probability vector at symbol-
node n conditioned on the channel output. These probability vectors constitute the
decoder input.
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(N2) Pm→n = [Pm→n(a)]a∈Fq is the message passing from constrain-node m to symbol-
node n. Pm→n(a) is the message concerning symbol a ∈ Fq.

(N3) Pn→m = [Pn→m(a)]a∈Fq is the message passing from symbol-node n to constraint-
node m. Pn→m(a) is the message concerning symbol a ∈ Fq.

(N4) P̃n =
[

P̃n(a)
]

a∈Fq

is the a posteriori probability vector at symbol-node n.

Each symbol-node estimation is computed from the associated a posteriori probability,
more precisely ŝn = argmax

a∈Fq

P̃n(a). The goal of the decoding is to detect a codeword

Ŝ = (ŝ1, . . . , ŝN ) ∈ C(N ;K) after a �nite number of iterations. If the estimated codeword
Ŝ = S then the decoding is successful.

Initialization. The decoder input consists of N probability vectors Pn:

Pn = [Pr (sn = a | Y )]a∈Fq
, n = 1, . . . , N

Their computation depends on the channel output Y , and will be determined for di�er-
ent channel models in Subsection 3.2.4. At this step, symbol-to-constraint messages are
initialized by Pn→m = Pn, ∀n = 1, . . . , N .

Three Steps Iteration.

(S1) check-node processing. In this step each constraint-node computes messages to be
sent to its neighbour symbol-nodes. Consider a constraint node m and let us denote
its degree by dm. Let us number the symbol-nodes of the neighbourhood of m as
{n1, n2, . . . , nd, n} = H(m), where d = dm − 1 and n corresponds to the destination
symbol-node. m computes a message for the symbol-node n from all the received
messages from symbol-nodes n1, n2, . . . , nd. The same operation has to be iterated
for all the other symbol-nodes n1, n2, . . . , nd that become in turn the symbol-node
n.

Figure 3.3: Check-node Processing

Figure 3.3 presents this con�guration, in which the arrows from n1, . . . , nd represent
the incoming messages in the processing node m.
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As said above, the output message consists of a probability vector [Pm→n(a)]a∈Fq .
Let us focus on a single element Pm→n(a) of this vector, which gives the probability
of sn being equal to a, conditioned on the incoming messages at constraint-nodes m.
Consider for the instant there exists only one con�guration such that h1a1 + · · · +
hdad + ha = 0, where a1, . . . , ad are the values of symbol-nodes n1, . . . , nd ; then:

P (sn = a) =
d
∏

i=1

P (sni
= ai) =

d
∏

i=1

Pni→m(ai)

Since there exist more than one con�guration that satis�es the constraint-node m,
the probability P (sn = a) is given by averaging on all the local con�guration in
confm(n, a). This can be formulated as follows:

Pm→n(a) =
∑

a1, . . . , ad ∈ Fd
q

h1a1 + · · ·+ hdad + ha = 0

d
∏

i=1

Pni→m(ai)

=
∑

[an′ ]n′∈H(m)∈confm(n,a)

∏

n′∈H(m)\n
Pn′→m(an′)

(3.8)

This operation is e�ectively a convolution of pdfs in Fq, denoted by the symbol ⊛,
then it can be written more shortly as:

Pm→n = ⊛
n′∈H(m)\n

Pn′→m (3.9)

(S2) symbol-node processing.
In this step each symbol-node computes messages to be sent to the neighbour constraint-
nodes. Consider a constraint-node m that represents the destination node and let
H(n)\m represent the neighbourhood of a symbol-node n without the destination
node. The output message is a probability vector [Pn→m(a)]a∈Fq . Let us focus on a
single element of this vector: the probability P (sn = a) is the product of the incoming
messages that a�rm that sn = a with probability Pm′→n(a), ∀m′ ∈ H(n)\m.
In Figure 3.4 we have drawn the incoming messages in the symbol-node n that
processes the probabilities and it has as output the message for m. We can write:

Pn→m(a) = γPn(a)
∏

m′∈H(n)\m
Pm′→n(a), (3.10)

where γ is a normalization constant such that
∑

a∈Fq
Pm→n(a) = 1.

The same operation is iterated for all the other constraint-nodes m′ that become in
turn the destination node m.

(S3) a posteriori processing.
Consider a symbol-node n, we are interested in estimating its value ŝn. For this
reason we compute the a posteriori probability that the symbol-node value is a from
all the incoming contributions of symbol-node n.

P̃n(a) = γPn(a)
∏

m∈H(n)

Pm→n(a), (3.11)

where γ is a normalization constant such that
∑

a∈Fq
Pm→n(a) = 1.
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Figure 3.4: Symbol-node Processing

Note that the exchanged messages represent extrinsic information, as they are computed
from all the available information, except the message received from the destination node.

The complexity of the BP algorithm scales as the square of the cardinality of the
alphabet, due to the number of operations required by the step (S1). The BP decoding is
also referred as Sum-Product algorithm (SPA) because the above steps involve principally
sums and products of probabilities.

The increasing complexity restricts the use of a maximum �eld order q = 16. In his Phd
dissertation, Davey [15] introduced a decoding scheme based on the Fast Fourier Transform
(FFT) for computing (S1). It will be discussed in the next section.

3.2.2 Binary Fourier Transform Based BP Decoding

We �rst introduce the Binary Fourier Transform (BFT) operating in Fq. Let F(P) be
the BFT of the vector P = [Pn(a)]a∈Fq

. The Fourier Transform F(P) is simply the product
of P with the operator matrix Fq, called Hadamard matrix:

F(P) = P · Fq

where Fq is the q × q Hadamard matrix obtained recursively as:

Fq =
1√
2

[

Fq−1 Fq−1

Fq−1 −Fq−1

]

The matrix initialization is given by the Hadamard matrix of order 2.

F2 =
1√
2

[

1 1
1 −1

]

For this reason, the Binary Fourier Transform is also referred as Hadamard Transform.
Then, one can simplify the operations in (S1) by expressing the probability functions
into the Fourier domain. Indeed, by applying this method, the convolution of Eq. (3.9)
becomes a simple product and it allows to reduce drastically the operational complexity.
Then, nothing that F−1 = F, we can rewrite the step (S1):
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(S1)F frequency-domain check-node processing.

Pm→n = F





∏

n′∈H(m)\n
F (Pn′→m(an′))



 (3.12)

Since the Binary Fourier Transform F can be implemented by using the Fast Fourier Trans-
form (FFT) algorithm, the complexity of step (S1)F scales now as pq. This complexity
reduction of the Sum-Product decoding allows decoding LDPC codes de�ned over higher
order alphabets (i.e. q > 16).

3.2.3 Other Message-Passing Algorithms

Decoding Algorithms are often implemented in log-domain in order to reduce the com-
plexity and the computation instability. The logarithms allow to transform the products
into sums, so that the algorithm implementations result to be low-complex and they need
less memory. Moreover, the log-domain algorithms have better numerical stability since
the obtained messages are already normalized.

Approximate algorithms of the SPA have been proposed in the literature with good
compromise between performance and complexity. The Sum-Product in step (S1) is re-
placed by low-complex operations and the vector products are replaced by term-by-term
summations. In the following we describe a general form of low-complexity decoding.
According to its rules we obtain several decoding implementations.

Min-Norm Decoding. In the decoding algorithm with lower complexity, the check-node
processing results simpler due to the fact that the Sum-Product is replaced by a Min-Norm
operations. In fact, the check-node processing is less complex because the operations are
sums and comparisons, instead of sums and products.

For a symbol-node n connected to a constraint-node m, the belief that sn = a ∈ Fq is
evaluated from the beliefs of all other symbol-nodes connected to m that present the best,
i.e., as the most likely, con�guration.

The possible con�gurations for the symbol-node n are evaluated in term of marginal
distance of the symbol-nodes {s1, . . . , sd} ∈ H(m)\n from the symbols {a1, . . . , ad} ∈
confm(n, a), with a, a1, . . . , ad ∈ Fq. The con�guration confm(n, a) that presents the
minimum distance gives the belief of sn of being each of the q elements:

Pm→n(a) = min
a1, . . . , ad ∈ Fd

q

h1a1 + · · ·+ hdad + ha = 0

dist({s1, . . . , sd}, {a1, . . . , ad})

Pm→n(a) = min
a1, . . . , ad ∈ Fd

q

h1a1 + · · ·+ hdad + ha = 0

‖dist(s1, a1), . . . , dist(sd, ad)‖p

= min
[an′ ]n′∈H(m)∈confm(n,a)





p

√

∑

n′∈H(m)\n
(Pn′→m(an′))p





(3.13)

The p-norm is used here to evaluate the marginal distance. Let us describe now the min-
norm decoding [65].
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Initialization.

Pn =

[

ln

(

Pr (sn = an | Y )

Pr (sn = a | Y )

)]

a∈Fq

where an = argmax
a∈Fq

Pr (sn = a | Y ) is the most likely symbol for the symbol-node n.

Three Steps-Iteration.

(S1) check-node processing

According to the used p value in this step, di�erent types of algorithm can be derived.
� 1-norm : (modi�ed) Extended Min-Sum decoding.

Pm→n(a) = min
[an′ ]n′∈H(m)∈confm(n,a)





∑

n′∈H(m)\n
Pn′→m(an′)



 (3.14)

� 2-norm : Euclidian decoding.

Pm→n(an) = min
[an′ ]n′∈H(m)∈confm(n,a)





√

∑

n′∈H(m)\n
(Pn′→m(an′))2



 (3.15)

� ∞-norm : Min-Max decoding.

Pm→n(an) = min
[an′ ]n′∈H(m)∈confm(n,a)

(

max
n′∈H(m)\n

Pn′→m(an′)

)

(3.16)

(S2) symbol-node processing

P ′
n→m(a) = Pn(a)

∑

m′∈H(n)\m
Pm′→n(a)

P ′ = min
a∈Fq

[

P ′
n→m(a)

]

Pn→m(a) = P ′
n→m(a)− P ′

(S3) a posteriori processing

P̃n(a) = Pn(a) +
∑

m∈H(n)

Pm→n(a) (3.17)

The novelty of the min-norm decoding scheme is that the exchanged messages could be
seen as metrics for measuring the most likely symbols. The messages are Log-Likelihood
Ratio with respect to the most likely symbols sn = an ∈ Fq, which presents the minimum
ratio P ′.

The 1-norm is an equivalent version of the Extended Min-Sum [16] in which the Log-
Likelihood Ratio are originally computed with respect to a �xed symbol.

The maximum norm may seem excessive but it could be observed that the computed
distances is prevalently dominated by the maximum values; moreover, in practice cases,
by using the maximum norm the check-node processing is even more accurate. This can
be explained by the fact that the messages in min-max decoding have the minimum in-
certitude. The complexity of these decoders could be further reduced by decreasing the
number of involved symbols in the computation; for more details [65].
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3.2.4 Initialization of the Decoder According the M-ary Constellation

Code alphabet. We remind that in this dissertation we de�ne the LDPC codes over a
�nite �eld Fq with q elements. Each element (or symbol) is composed by p bits. The total
number of coded symbols has been denoted as N , whereas the total number of coded bits
will be denoted by nb.

Modulation. Let X be the set of complex symbols i.e., in the M-QAM constellation,
whereM = 2m. The kth transmitted modulated symbol xk ∈ X is composed bym = log2M
coded bits; let N be the number of modulated symbols (note that one may have N 6= N).

Channel output. Assume that the received signal is:

yk = xk + zk (3.18)

where k ∈ {1, . . . ,N} and zk is a Additive White Gaussian Noise distributed with mean 0
and variance σ2. We denote by:

pZ(z) =
1√
2πσ2

e−
z2

2σ2

the probability density function of the random variable Z.

Decoder input. At the receiver side, the soft demapper computes the probability vectors
Pn = [Pn(a)]a∈Fq

, for n = {1, . . . , N}, where Pn(a) = Pr(sn = a | Y ) is the probability of
the transmitted symbol sn being equal to a conditioned on the channel output Y .

Demapping. Two di�erent instances can occur, for which a symbol or a bit demapping
can be adopted. The former can be used only when each coded symbol is mapped directly
in one QAM symbol. The latter is speci�cally applied when one uses a bit-mapping, such
that the bits of the same coded symbol can be mapped in di�erent QAM symbols. The
last case is typically used in presence of an interleaver (we will deal with this subject in
Chapter 6). In the following we analyze these types of demapping.

1) Symbol-demapping. This demapping is used if there exists a one-to-one correspon-
dence between the complex signaling set and the alphabet de�nition. It occurs when
the order of the constellation X is equal to the order of the alphabet Fq, meaning
that the number of bits of the modulated symbols is equal to the number of bits of
the coded symbols (m = p). In this case the probability vectors are directly derived
from the demapped symbols. For this, another requirement is that no interleaver
must be placed between the encoder and the modulator. Therefore, the modulated
symbols xk can be referred equivalently to as xn, yn will refer to the nth received
complex symbol of the channel.
Let µ be a bijective function mapping the code �eld Fq into the complex signaling
set X:

µ : Fq
∼−→ X (3.19)

Then a codeword (s1, . . . , sN ) is mapped into a vector of complex symbols (x1, . . . , xN ),
where xn = µ(sn).
The probability of the transmitted symbol sn being equal to a conditioned on the
received complex symbol yn is given by:

Pn(a) = Pr(sn = a | yn)
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We can also rewrite it :

Pn(a) = γ exp(−|yn − µ(a)|2), (3.20)

where γ is a normalization constant such that
∑

a∈Fq
Pn(a) = 1.

Remark 3.1. In this case the number of complex symbols N is equal to the number
of the coded symbols N .

2) Bit-demapping. This demapping is used when there does not exist any corre-
spondence between the complex signaling set and the alphabet de�nition. It occurs
when the order of the constellation and the coding alphabet size are di�erent, or
when a de-interleaver is placed before the decoder (in presence of an interleaving
system). Since the bit-demapping degrades the performance, one should be avoid it
if a symbol-demapping could be used.

In the following we consider the probability computation of one symbol sn, with
n = 1, . . . , N . In order to compute the probability of sn, the demapper needs to
compute the probabilities of its binary components of being 0 or 1 according to the
channel output.

Transmitter side.

1) Binary image. The binary image (sn,1, . . . , sn,p) of sn is obtained according
to the isomporphism (3.2):

Fq
∼→ F

p
2

2) Bit-mapping. Let µ be a bijective function mapping F
m

2 into the complex
signaling set X:

µ : Fm

2
∼−→ X

such that it maps a vector of m bits, taken from the binary image of the codeword,
into a QAM-symbol xk:

b = (b1, . . . , bm) 7→ µ(b1, . . . , bm) ∈ X

Let sn,i be a transmitted bit and t be its position within the vector of consecutive
bits (b1, . . . , bm) that is mapped into a complex symbol xk = µ(b1, . . . , bm), this
means that bt = sn,i.

Receiver side.
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2') Bit-level demapping. This is the reverse operation of the bit-mapping and
it outputs the probability of each bit of being 0 or 1. Hence, the goal of the
binary demapping is to compute:

Pr(sn,i = 0 | yk) and Pr(sn,i = 1 | yk)

where yk is the received complex symbol according to (3.18). We have:

Pr(sn,i = 0) =
∑

(b1, . . . , bt, . . . bm)
bt = 0

Pr(b|yk) (3.21)

= γ
∑

(b1, . . . , bt, . . . bm)
bt = 0

exp(−|yk − µ(b)|2)

It follows for the other case:

Pr(sn,i = 1) = γ
∑

(b1, . . . , bt, . . . bm)
bt = 1

exp(−|yk − µ(b)|2) (3.22)

where γ is a normalization factor such that Pr(sn,i = 0)+Pr(sn,i = 1) = 1. This
operation is referred to as bit-marginalization.

1') Probability of the symbol sn. Let (a1, . . . , ap) be the binary image of the
element a ∈ Fq. From the bit to symbol-demapping we have:

Pn(a) = Pr(sn = a) = γ

p
∏

i=1

Pr(sn,i = ai) (3.23)

where γ is a normalization factor such that
∑

a∈Fq
Pr(sn = a) = 1

Then, the probability Pn(a) is one of the elements of Pn, ∀n = 1, . . . , N . These
probabilities (that could also be expressed in log or LLR domain, according to the decoding
algorithm) represent the input of the decoder.

Remark 3.2. If there is no matching between coded and modulated symbols, the marginal-
ization performed by the bit-demapper induces a marginalization loss. In the Section 6.5
(page 109) we will show that the performance loss can be greater than 0.5dB . For a more
general discussion we refer to [17].

3.3 Asymptotic Optimization

Although the study of non-binary LDPC codes is mainly motivated by their perfor-
mance at short to medium lengths, their asymptotic analysis proves also to be very useful.
In particular, it allows the understanding of topology independent phenomena or, stated
di�erently, it allows distinguishing between events due to code family parameters, and
those due to a particular code realization.
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3.3.1 Irregularity Pro�le

The irregularity pro�le identi�es a speci�ed ensemble of LDPC codes, independently
from the used alphabet and the codelength. We have already denoted the degree of a node
as the number of its incident edges, and that we referred to symbol-node degree as ds(n)
and to constraint-node degree as dc(m) (see the notation at page 36).

Irregular LDPC codes represent a general class of LDPC codes because they have
non-constant symbol and check degrees. The irregularity pro�le can be polynomially rep-
resented by check-node and symbol-node degree distributions [62].

In Eq. (3.24) we express the symbol-node distribution λ(x) and the check-node distri-
bution ρ(x) from the edge perspective:

λ(x) =

ds,max
∑

d=1

λdx
d−1 ρ(x) =

dc,max
∑

d=1

ρdx
d−1 (3.24)

where λd is the fraction of edges connected to symbol-nodes of degree d and, similarly, ρd
is the fraction of edges connected to check-nodes of degree d.

Another way to express the irregularity of the code is by using the symbol-node distri-
bution L(x) and the check-node distribution R(x) from the node perspective:

L(x) =

ds,max
∑

d=1

ldx
d R(x) =

dc,max
∑

d=1

rdx
d (3.25)

where ld is the fraction of symbol-nodes of degree d, and, similarly, rd is the fraction of
check-nodes of degree d. These two perspectives are related each other by the following
equations:

λ(x) =
L′(x)
L′(1)

ρ(x) =
R′(x)
R′(1)

(3.26)

L(x) =

∫ x
0 λ(z)dz
∫ 1
0 λ(z)dz

R(x) =

∫ x
0 ρ(z)dz
∫ 1
0 ρ(z)dz

(3.27)

We note that L′(1) = R′(1) is the number of graph edges, while
∫ 1
0 ρ(z)dz = M and

∫ 1
0 λ(z)dz = N .

For the regular LDPC codes we have already computed the rate by using the node
degrees in Section 3.1.2. More generally, the rate is associated with the average degrees
ds,avg and dc,avg:

r = 1− ds,avg
dc,avg

= 1− L′(x)
R′(x)

= 1−
∫ 1
0 ρ(x)
∫ 1
0 λ(x)

(3.28)

Example 3.2. Consider as example: the Hamming code already introduced in 1.1 (page 4)
represented by the matrix H:

H =





1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
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Figure 3.5: Tanner graph associated to the (7,4) Hamming code of Example 3.2

We can associate to the parity-check matrix H a graph H of Figure 3.5. The degree
distributions of that code are the following:

λ(x) =
3

12
x0 +

6

12
x1 +

3

12
x2 ρ(x) =

12

12
x3

L(x) =
3

7
x1 +

3

7
x2 +

1

7
x3 R(x) =

3

3
x4

It easy to verify the above equations and that the rate is r = 4/7.

3.3.2 Density Evolution

Let E(λ, ρ) be the ensemble of all the LDPC codes with edge-perspective degree distri-
bution polynomials λ(x) and ρ(x). The asymptotic performance of the ensemble E(λ, ρ)
is referred to as threshold, and corresponds to the worst channel condition that allows
transmission with an arbitrary small error probability when the code length tends to in-
�nity. Put di�erently, given a LDPC code from an ensemble E(λ, ρ) with a su�ciently
large blocklength N , the coded transmission is considered to be reliable i� the channel
parameter is smaller than the computed threshold value. Hence, the decoding is successful
after su�ciently many iterations with an arbitrary small probability.

The computation of the threshold is based on tracking the probability density of the
messages passed throughout the message-passing iterative decoder. This is known as den-
sity evolution method and it has been introduced in [59]; this method is extensible to a very
broad class of transmission channels and iterative decoding algorithms. In the following
we describe the principles of the density evolution computation.

De�nition 3.1. Cycles. Given a graph H, a cycle of length g is a path of g edges which
closes back on itself. The girth, denoted by gmin, is the length of the shortest cycle of the
graph.
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Figure 3.6: Representation of N (l)
n

For a bipartite graph, the girth is necessarily an even number and depends on the degree
distribution as well the codeword length N .

The set of all the nodes connected to n by a path of length less than or equal to 2l+1,
referred to as the local neighbourhood of depth l of n, will be denoted by N (l)

n .

De�nition 3.2. Tree-like assumption (or independence assumption). This as-

sumption states that for any symbol-node n, its local neighbourhood of depth l, N (l)
n , is a

tree (a tree is a graphs without cycles, see Figure 3.6).

Clearly, for a graph with girth gmin, the tree-like assumption is valid for any l ≤ gmin/2.
The tree-like assumption is important because it ensures that the messages passed along
the graph edges, at any decoding iteration ≤ l, are statistically independent. The following
theorem [59] states that the tree-like assumption is almost surely veri�ed in the asymptotic
limit of the code-length.

Theorem 3.1. Convergence to cycle-free case. For any l ≥ 0, N (l)
n is cycle-free with

probability approaching one in the limit of in�nite code blocklength N .

Density Evolution for binary LDPC codes. Consider whichever channel model de-
pending on a parameter, such that the channel conditions worsen when it increases, i.e.,
this parameter may be the noise variance σ2 for the AWGN channel or the erasure proba-
bility ǫ for the BEC channel. The threshold of the ensemble E(λ, ρ) is de�ned as the worst
channel condition (supremum value) that allows transmission with an arbitrary small error
probability, assuming that the transmitted data is encoded with an arbitrary length code
of E(λ, ρ).

In the following we consider the case of AWGN channel. The decoder stops after a
�xed maximum number of iterations, thus usually we are interested in the capacity of
such decoder after l rounds. For a given decoder and an ensemble of codes E(λ, ρ), this
capacity is expressed as the error probability of exchanged messages at iteration l, denoted
by P

(l)
e (λ, ρ, σ). We also note that for symmetric channels [59], this error probability is

independent on the transmitted codeword and, for a sake of simplicity, one may assume
that the all-zero codeword is transmitted.
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The density evolution analysis, when applied to a cycle-free graph at iteration l, allows
computing P

(l)
e (λ, ρ, σ). This computation (not detailed here) is possible thanks to statis-

tically independence of the messages passed along the graph edges. Moreover, according to
Theorem 3.1, P (l)

e (λ, ρ, σ) gives the error probability of exchanged messages, in the asymp-
totic limit of the code-length and averaging over all codes in E(λ, ρ). Interestingly, this
error probability depends only on the channel parameter σ, and the degree distribution
polynomials λ and ρ.

Finally, for the given ensemble E(λ, ρ), the message-passing decoder is successful i�:

lim
l→+∞

P (l)
e (λ, ρ, σ) = 0

and the asymptotic threshold of the ensemble E(λ, ρ) is de�ned as the supremum value of
the channel parameter σ (worst channel condition) that allows successful decoding:

σth (E(λ, ρ)) = sup

{

σ | lim
l→+∞

P (l)
e (λ, ρ, σ) = 0

}

The analysis of binary LDPC code is quite long and complicated to describe in this chapter.
The reader can �nd more details by reading the paper of Richardson and Urbanke [59]. The
exact density evolution method has as main disadvantage the prohibitive computational
resources needed for the numerical evaluation of message densities.

Exact Density Evolution for non-binary LDPC codes. Unfortunately, for the non-
binary case, exact density evolution is only manageable for the Binary Erasure Channel
[56, 64]. In [64] the asymptotic performance of NB-LDPC ensembles has been derived,
by considering both the irregularity pro�le of the graph and the probability distribution
of the edges label hm,n. Finally, we note that over the AWGN channel, an analysis of
the density evolution under Gaussian approximation for non-binary LDPC codes has been
done in [43].

3.3.3 Density Evolution via Gaussian Approximation for the Binary
Case

In the case of more general memoryless channels, like the binary-input AWGN channel,
density evolution can be approximated by modeling the density of the messages, e.g. as-
suming that they are Gaussian distributed [12, 41, 42]. This method allows an easier and
faster analysis at the cost of a less precision with respect to the exact density evolution.

Under the Gaussian approximation, exchanged messages are assumed to be symmetric
Gaussian distributed. Consequently, the density evolution only have to track the mean
of the exchanged message. This simpli�cation yields to a closed form formula for the
computation of the threshold that, with acceptable accuracy, approaches the real threshold.
More precisely, for the Gaussian Approximation analysis, the following assumption is made:

Gaussian Distribution Assumption (GD) Messages received at every node at every
iteration are independent and identically distributed (i.i.d), with symmetric Gaussian dis-
tribution of the form:

f(x) =
1√
4πµ

e
− (x−µ)2

4µ

where the parameter µ is the mean.
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Theorem 3.2. [41]

Consider an ensemble E(λ, ρ). Let P
(0)
e (σ) = Q

(

1
σ

)

, be the error probability at iteration

0 (decoder input). Then under the GD assumption, the error probability P
(l+1)
e of the BP

decoder at iteration l, can be recursively obtained as follows:

P (l)
e (σ) =

ds
∑

i=2

λiQ









√

√

√

√

√

1

σ2
+ (i− 1)



Q−1





1− ρ
(

1− 2P
(l−1)
e (σ)

)

2









2








where Q(x) = 1√
2π

∫∞
x e

(

− t2

2

)

dt.

This formula allows to recursively compute P l
e(σ) starting from P 0

e (σ).

3.3.4 Optimization of Degree Distributions

The asymptotic analysis is also aimed at �nding LDPC codes with the best thresholds.
The threshold value depends on the irregularity pro�le (i.e. degree distribution polynomi-
als) that determines the ensemble of codes.

There are di�erent methods for optimizing irregularity pro�le of the LDPC codes [11,
60]. In general, the performance of LDPC codes in noisy channels is more sensitive to the
bit-node degree distribution. Consequently, it is preferable to have irregular codes with
optimized λ distribution and an uniform ρ distribution. Precisely, assuming that λ(x) is
given, ρ(x) is chosen to be a polynomial concentrated on two successive degrees:

ρ(x) = ρxw + (1− ρ)xw+1

with w ≥ 2 and 0 < ρ ≤ 1 are determined according to given λ and target coding rate.
Therefore, the problem of optimizing the irregularity pro�le (λ, ρ) reduces to optimizing
the degree distribution polynomial λ only. According to the channel model and density
evolution equations, this optimization problem can be solved by linear optimization or
genetic optimization algorithms.

In this thesis, we used the Di�erential Evolution algorithm (a genetic optimization
algorithm) to optimize the symbol-node degree distribution polynomial λ for non-binary
LDPC codes. This algorithm is described in the next chapter, when we discuss numerical
methods for approximating the density evolution of non-binary LDPC codes.

3.4 LDPC Construction

The construction of good LDPC codes passes through the design of the parity-check
matrix with prescribed properties. The design approaches follow various criteria as for
example the near-capacity performance and e�cient encoding and decoding.

Consider the parity-check matrix H. It is preferable to have a higher column weight of
H thus the symbol-nodes can better evaluate the outgoing messages, on the other hand,
lower row weights of H yields to a more precise computation in check-node processing.
Intuitively this trade o� could be managed thanks to the �exibility given by the irregular
LDPC codes. Indeed, irregular LDPC have demonstrated improved performance with
respect to the regular codes [44].
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Fundamental issue for the LDPC codes performance is the presence of cycles in the
Tanner graphs. Roughly speaking, with a message passing type algorithm, cycles lead to
auto-con�rmation of exchanged messages, and then degrade the decoder performance. In
practice, it is impossible to avoid cycles, but one may try to construct graphs with girths
as large as possible, so that to maximize the uncorrelation of messages.

The construction of good LDPC codes have been a subject of intensive research in the
years. The design of LDPC codes is done starting by the sparse parity-check matrix H.
Tanner proposed a general recursively construction of long error-correcting codes and he
determined a lower bound on the minimum distance that grows exponentially with the
girth of the code [70]. In [9] the bit-�lling algorithm has been introduced: the authors
present an algorithm that adds columns to a previously constructed parity-check matrix
obtaining high girths.

There exist several propositions of LDPC construction in the literature. LDPC codes
can be randomly built once the weights for each row and column of H have been �xed.
However, this strategy does not avoid short cycles. MacKay's construction attempt to
keep the minimum number of short cycles [46]. In particular, his method avoid the overlap
between more than two entries in two column, so that to ensure at least the absence of
cycle of length 4.

The Progressive Edge-Growth (PEG) proposed in [30, 32] is a general method that
progressively connects nodes in order to construct graphs with large girths. Regular and
irregular LDPC codes have been successfully realized and the simulation results demon-
strate that using PEG for short blocklength codes improves the code performance.

The edge label choice represents an another degree of freedom in the design of non-
binary LDPC code. One can obtain NB-LDPC by designing a binary parity-check matrix
and replacing the 1's by symbols of the �nite �eld. The non-zero elements can be selected
randomly [32] or not completely random: in [46] these entries are chosen according to
the marginal entropy principle. In [54] LDPC codes de�ned over Fq have been designed
by using the algebraic properties of the binary image representation of the parity-check
matrix. The optimization proceeds by maximizing the minimum distance per row, in such
a way to make more reliable the exchanged messages along the graph edges.

3.4.1 Progressive Edge-Growth Construction

The Progressive Edge-Growth is an algorithm for constructing bipartite graphs with
large girths. It is a suboptimal algorithm because the underlying graph grows edge by
edge in a best-e�ort manner. The idea is to maximize the local girth each time a new
edge is added by connecting each symbol-node to the most distant check-node. Once given
the number of symbol-nodes N and the number of check-nodes M , and �xed the degree
distribution pair (λ, ρ), the algorithm starts by placing connections between symbol and
check nodes.

Each time a new connection is de�ned, the current check-node degree is updated.
Consider a constraint-nodem, let dc(m) be its expected degree 1, whereas dm is its (current)
degree and dm = dc(m)−dm is its (current) complementary degree. The expected degree 2

of a symbol-node n is denoted by ds(n).

1. According to the constraint-node degrees distribution.
2. According to the symbol-node degrees distribution.
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The algorithm maintains a set A of the available check-nodes, that is constraint-nodes
that did not reach their expected degree: A = {m | dm > 0}. Each time a a check-node
reaches its expected degree, it is removed from A. For each symbol-node n the algorithm
starts by connecting it to a �rst check-node with the maximum complementary degree.
Then, for each of all the other connections of n, it expands the whole graph starting with
n, by considering all the connections (edges) previously established in the graph. This
expansion allows determining the distance 3 from all the other nodes to n. Nodes that are
not connected to n by any path are considered as being at in�nite distance from n. Finally,
when the expansion is completed, the algorithm chooses an available check-node from A,
which is as maximum distance from n. If there are several check-node in A at maximum
distance from n, a check-node with the maximum complementary degree is chosen, meaning
that the selection gives preference to check-nodes with more �free� (unestablished) edges.
Note also that the graph expansion may be stopped if all the available check-nodes from
the set A have appeared in the expanded graph. Moreover, one can decide to expand the
graph till the bottom or to stop the expansion to a depth of expansion referred to as lmax.

Let us explain the algorithm with a pseudo-code.

Progressive Edge-Growth Algorithm

De�ne A = {1, . . . ,M} (the set of all the check nodes)
for n = 1 to N (loop over all the symbol-nodes)

for d = 1 to ds(n) (loop over the degree of the considered symbol)

if d = 1 (�rst connection)
Choose m ∈ A with maximum complementary degree.

else
Expand the graph rooted by n, until depth lmax, and let
N (max)

n denote the expanded graph. Two cases occur:

(1) A 6⊆ N (max)
n . In this case, choose m ∈ A \ N (max)

n

with maximum complementary degree.

(2) A ⊆ N (max)
n . In this case, choose m ∈ A at maximum

distance from n and with maximum complementary
degree.

end

� Make the connection (n, m).
� Increase dm: dm = dm + 1
� Update A: if dm = dc(m) ⇒ A = A \ {m}

end

end

Remarks.

(R1) Original version of PEG algorithm. In its original version [32], the PEG al-
gorithm does not receive in input the check-node degrees distribution, but only the
symbol-node degrees distribution. It selects the check-nodes at maximum distance

3. The distance between two nodes is the length of the shortest path connecting the two nodes.
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from n and having the minimum current degree. Consequently, it constructs a graph
in which the check-node degrees are concentrated around an average values.

Instead, in the implemented PEG, as we have just seen, we can eventually choose a
desired check-node distribution by �xing the fractions of check-nodes with a certain
degree, according to the chosen polynomial. Moreover, the algorithm selects the
check-nodes with maximum complementary degree in order to give priority to the
check-nodes with the greatest degree.

(R2) Edge fraction distributions. Since the size of the designed LDPC code is �nite,
the PEG algorithm can only assure an approximation of the edge fractions obtained
as rounding o� the desired degree distributions. Moreover, if we associate the PEG
algorithm to the asymptotic analysis results, one have to know that the larger the de-
grees used, the larger the blocklength is necessary in order to approach the predicted
threshold.

(R3) Bounds on the girth and minimum distance. Lower and upper bounds on
the girth and on the minimum distance have been formulated, in general for regular
LDPC codes [30]. These bounds depends exclusively on the number of check-nodes,
and the node degrees ds and dc.

Moreover, the minimum distance of regular LDPC codes, with ds ≥ 3, increases
linearly with the codelength N . Some bounds of the minimum distance for a general
Tanner graph have been computed in [71]; in [30, 31] some bounds of the minimum
distance have been computed for PEG-designed LDPC codes.

(R4) Maximum Depth In the above description of the PEG algorithm, we stop the
graph expansion at a maximum depth lmax. This reduces the diameter of the graph
when the number of decoding iterations is �xed to be smaller than lmax and allows
to a complexity reduction of the PEG algorithm. This approach can be adopted for
long-length and low-rate codes when the minimum distance is not a critical issue.
Otherwise, one may decide to exclude this condition from the algorithm.

3.4.2 Optimization of the Edge Labels

Before discussing the optimization procedure, let us �rst discuss some of the parameters
the overall performance of the LDPC code depends on.

Minimum distance. The minimum (Hamming) distance dmin of a block code is the
minimum number of digits in which any two distinct binary codewords di�er. Thanks to
the linearity property of the code, dmin is also equal to the minimum codeword weight. It
follows that dmin is also equal to the minimum number of linearly dependent columns of
the parity-check matrix H (since each linearly dependent subset of d columns corresponds
to a codeword of weight d).

Stopping sets. For a binary LDPC code, a stopping set S is a sub-set of bit-nodes such
that all the neighbours of S are connected to S at least twice [18].

The stopping set concept is fundamental in �nite-length analysis of LDPC codes over
the BEC. Let us brie�y explain the reason. Over the BEC (page 17), the belief-propagation
(BP) decoding translates into a simple technique of recovering the erased bits, by iteratively
searching for check-nodes with only one erased neighbor bit-node. Indeed, if a check-node is
connected to only one erased bit-node, the value of the latter can be recovered as the XOR
of all the other neighbor bit-nodes. This value is then injected into the decoder, and the
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decoding continues by searching for some other check-node having a single erased neighbor
bit-node. In this case, we do not have to specify any maxim number of decoding iterations.
The decoding will stop by itself if all the bits have been recovered, or when it �gets stuck�
because any check-node is connected to at least two erased bit-nodes. The latter situation
corresponds to the above de�nition of a stopping set. Hence, the BP decoding is successful
i� the set of erased bits does not contain any stopping set. Otherwise, the decoding fails,
and the set of bits that cannot be recovered is the maximum stopping set contained in the
set of erased bits.

The size of the minimum stopping set is called minimum stopping distance. Clearly
stopping sets necessarily contain cycles. Therefore, the minimum stopping distance is lower
bounded by the girth of the code. Put di�erently, codes with small minimum stopping
distance also have small girths. The converse needs node be true: for codes with any
symbol node degree ds(n) ≥ 3, the minimum stopping distance grows exponentially with
the girth [49, 50]. However, best codes (i.e. with asymptotic threshold close to the channel
capacity) generally have a large fraction of degree-2 bit-nodes, and thus may contain small
stopping sets. Small stopping sets clearly determine the performance of the code in the
error-�oor region over the BEC, but they also impact, at a di�erent degree, the error-�oor
performance over more general channel models, as explained below.

Trapping sets. The code performance in the error-�oor region can be analyzed in terms of
trapping sets [58]. An (a, b)-trapping set is a set T of a bit-nodes, having exactly b neighbor
check-nodes that are connected to T an odd number of times. Informally, a trapping set
is a set of variable nodes that is not well connected to the rest of the graph, in a way that
causes the decoder trouble. The most problematic cases are those corresponding to small
b values. Clearly, a stopping set S if a particular example of (|S|, 0) trapping set.

Local optimization of the component codes. In [54] an exhaustive method has been
proposed in order to optimize regular (2,dc)-LDPC codes. The optimization is divided in
two parts, one for the waterfall region and one for the error �oor, both optimization ideas
are based on the minimum distance of the binary image of the parity-check matrix H. The
optimization takes principally into account of maximizing the minimum distance, reducing
the short cycles and mitigating the e�ects of stopping sets. Let us summarize the key
concepts.

A binary component codes is a subcode Cm obtained from the mth parity-check equa-
tion. Let Hm,n be the transpose binary image of the entry hm,n, then:

∑

n∈H(m)

Hm,ns
T
n = 0

where sTn is the transpose binary image of the symbol sn and 0 is the zero vector.

Ideas of optimization

1) Improving the waterfall region. The careful selection of good coe�cients can
reduce the error probability in the waterfall region. The idea is to maximize dmin by
locally maximize the minimum distance for each component code Cm. Another issue
is also to minimize the multiplicity of codewords with Hamming weight wH = dmin.
A good minimum distance dmin renders the exchanged messages more distinguishable
and reliable.
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2) Improving the error �oor.

1) There is a relation between dmin and cycles. Let H l
b be the binary image of the

coe�cients involved in a cycle l. If H l
b is full rank the cycle does not provide any

codeword, meaning that the considered cycle is not involved in the equivalent
minimum distance. Therefore, one needs to choose the coe�cients in order to
have full-rank binary parity-check matrices H l

b, at least for the shortest cycles.
This yields lower error �oors.

2) Stopping set are related to the cycles, then if short cycles are avoided, small
stopping sets are reduced. For improving the error �oor performance, one has
also to maximize the minimum stopping distance of the code.

Optimization of the component codes. In [17], the authors generalize the approach
of [54]. The idea is to concentrate the mutual information of the extrinsic messages (prop-
agated in a message-passing decoding) around their average value. The idea is that the
exchanged messages are more reliable if they statistically behave equally. In order to do
that the following algorithm has been proposed:

∀m = 1, . . . ,M
� Consider the mth constraint-node and let dc = dc(m) be its degree. Consider the set
of non-zero values h = {h1, . . . , hdc} ∈ Fq

� Consider the dc binary subcodes Cm(t) formed from the combination of the dc − 1
values of h except ht.

� Choose h such that:

h = argmax
{h1,...,hdc}

(

dc
∑

t=1

dmin (Cm(t))

)

constrained to | dmin( Cm(t))− (Cm(t′) ) |≤ 1

From this optimization, the following sets of coe�cients are obtained for dc = 4:

For codes de�ned over F64 = F2[α]/(α
6 + α+ 1):

(α0, α9, α26, α46) (α0, α17, α26, α43)

(α0, α17, α37, α54) (α0, α20, α27, α46)

For codes de�ned over F256 = F2[α]/(α
8 + α4 + α3 + α2 + 1):

(α0, α8, α173, α183) (α0, α10, α82, α90)

(α0, α72, α80, α245) (α0, α165, α175, α247)

3.5 Encoding

As any linear block code, LDPC codes can be encoded by using the generator matrix
that can be obtained from the parity-check matrix of the code by Gausian elimination.
Yet, this standard method results to have complexity O(N2), which becomes prohibitive
for large block size N .

In [61] an e�cient encoding system has been presented. It allows to encode LDPC
codes by exploiting the sparseness of the parity-check matrix. The encoding complexity
scales as g2N , where g is generally a small value, called the gap of the code.
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Other linear-time encoding systems have been presented in the literature. The Irregular
Repeat Accumulate (IRA) codes [19, 34] combines characteristics of both LDPC codes and
turbo codes. The IRA's encoding presents simple structure and linear complexity. Theses
codes also demonstrate near-capacity performance.

In the following we explain how to encode a non-binary LDPC code, by using either
the generator or the parity-check matrix. We explain the encoding for systematic codes,
for which it is also possible to permute the positions of the information and parity symbols
on condition that at the receiver side they take again the original positions.

3.5.1 Encoding using the Generator Matrix

The binary image of any NB-LDPC code is a linear binary code C(nb, kb) where kb = Kp
and nb = Np. The subscript �b� indicates the binary vectors or values. This code is
obtained as a kb-dimensional linear subspace of vector space F

nb

2 . The generator ba-
sis {g1, . . . , gkb} can be placed as rows of the matrix G, so that each binary codeword
sb = ubG, where ub = [u1, . . . , ukb ] is the information vector and sb = [s1 . . . , snb ] =
[s1,1 . . . , s1,p, . . . sN,1, sN,p] is encoded vector. For this, G is called generator matrix of the
code C(N,K). Thus the transmitted codeword is grouped in symbols of p bits according
to the alphabet de�nition. By deepening the de�nition given in 3.1.1 at page 34:

Hbs
T
b = 0 = HGTuTb = 0 ⇐⇒ HbG

T = 0

G can be obtained by putting the sparse matrix Hb in the form [P T Imb×mb
] via Gaussian

elimination (mb = nb−kb). Then G = [Ikb×kb
P ], where P is a matrix of dimension kb×mb; I

indicates the identity matrices, in which the subscripted indexes give the matrix dimension.
The sequence of symbols S is obtained according to the isomporphism (3.2) by grouping
the vector sb per p bits.

The generator matrix taken in this form, has the property that the information symbols
are embedded in the resulting codeword. These kind of codes are named systematic codes
and they are composed by two vectors:

S = (u1, . . . , uK , p1, . . . , pM )

the �rst part of encoded vector corresponds to the source vector u = {u1, . . . , uK}, while
the second part corresponds to the parity vector p = {p1, . . . , pM}.

Regrettably, even if the parity-check matrix is sparse, the matrix P needs not be
equally sparse. As a consequence, the encoding complexity grows as O(N2) and it could
be prohibitive if the blocklength gets very high.

3.5.2 Encoding using the Parity Check Matrix

In [61] Richardson and Urbanke proposed systematic LDPC codes with a low-complexity
encoding algorithm. The e�ciency of this encoder derives from the sparseness of the parity-
check matrix H.

Triangular Encoder. The main idea is to work the source vector out in order to itera-
tively obtain the parity symbols. Assume that the matrix H is in the form [B, T ] where T
is a triangular matrix with a full-�lled diagonal as shown in the Figure 3.7. The �rst part
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Figure 3.7: Equivalent parity-check matrix in lower triangular form

of the codeword is �lled with the systematic part u. The parity part is determined using
the forward-substitution, more precisely:

pm =























h−1
m,m+K

(

K
∑

i=1

hm,isi

)

if m = 1

h−1
m,m+K

(

K
∑

i=1

hm,isi +

m−1
∑

i=1

hm, i+K pi

)

if 1 < m ≤ M

(3.29)

Example 3.3. This example can be useful for understanding this encoder type.
Consider a NB-LDPC code de�ned by the parity-check matrix

H =













h1,1 0 0 h1,4 0 h1,6 0 0 0 0
0 0 h2,3 0 h2,5 0 h2,7 0 0 0
0 h3,2 0 0 h3,5 0 0 h3,8 0 0

h4,1 0 h4,3 0 0 h4,6 0 h4,8 h4,9 0
0 h5,2 0 h5,4 0 0 h5,7 0 0 h5,10













(3.30)

and by the graph in the Figure 3.8. The matrix H can be split in two sub-matrices: the
matrix B5×5, on the left side, and the triangular matrix T5×5, on the right side. The
encoding procedure starts by computing the �rst parity symbol s6 = h−1

1,6(h1,1s1 ⊕ h1,4s4).
Then, moving down on the diagonal, the remaining parity symbols are computed as linear
combinations of the information symbols and the already computed parity symbols.

The graphical representation of the encoding procedure is illustrated in Figure 3.8.
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Figure 3.8: Tanner graph associated to the (10,5) code of the Example 3.3
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Chapter 4

Monte-Carlo Estimation of the

Asymptotic Performance

The asymptotic analysis is fundamental for the design of LDPC codes. In the previous
chapter, we have described the Density Evolution technique. This technique allows to
exactly compute the worst channel condition for which reliable transmission can be achieved
by using a su�ciently long code for an ensemble of LDPC codes. However the exact
computation is known only in some cases and for some channel models and sometimes at
the cost of hard computational complexity and time. Some approximated methods have
been proposed, e.g. the density evolution under Gaussian approximation, which can be
applied for the AWGN channel model, for binary as well as for non-binary LDPC codes.
This approximated method presents lower complexity but the approximated values may
not be so close to real thresholds.

In this chapter we introduce an alternative method for the asymptotic analysis, based
on the Monte-Carlo simulation of the decoding of in�nite codes. Given a degree distri-
bution pair associated to an ensemble of codes, this technique permits to estimate its
threshold according to the used channel and the chosen decoding algorithm. The exact
density evolution method provides thresholds only in two cases: for binary LDPC codes
and for the non-binary LDPC codes transmitted over the BEC. Hence, we can compare
these exact thresholds with the corresponding thresholds obtained from the Monte-Carlo
Density-Evolution (MC-DE) method and we observe that this method is precise and accu-
rate. The density evolution via Monte-Carlo simulation proves also to be a low-complexity
and fast-enough method so that it can be used for LDPC code optimization.

Furthermore, in this chapter we present the Di�erential Evolution [69], a heuristic
method used in order to optimize non-linear multi-dimension functions in many domains.
This optimization method aims to solve a problem by iteratively improving the candidate
solution even if the found solution can not be guaranteed to be the optimal one. In our
case, the Di�erential Evolution can be coupled with the Monte-Carlo method, in order to
optimize the degree distributions of symbol-nodes as well as the fractions of non-binary
coe�cients according to the alphabet de�nition of the code.

61



62 Chapter 4. Monte-Carlo Estimation of the Asymptotic Performance

The chapter is organized as follows. In Section 4.1 we give the context of the work and
we motivate the use of MC method. In Section 4.2 we describe the asymptotic analysis by
using Monte-Carlo simulations. In Section 4.3.1 we compare the simulation results with
the exact thresholds obtained via the density evolution for binary codes in AWGN channel.
MC-approximated thresholds for non-binary codes in binary erasure channel are given in
the Section 4.3.2; these results have been compared with the exact thresholds obtained by
the density method of [56]. Section 4.3.3 presents the Monte-Carlo simulation results for
non-binary codes for the AWGN channel, these results have been compared with the approx-
imated results obtained by the density evolution under Gaussian approximation of [43]. In
Section 4.4 we present an optimization method via the di�erential evolution. Finally, in
Section 4.5, we conclude the chapter.
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4.1 Motivations

Density Evolution method. As reported in the Section 3.3.2 (page 48), the Density
Evolution method allows to asymptotically analyse the performance of an ensemble of
LDPC codes transmitted over physically degraded channels and for a given decoding al-
gorithm. In particular, this technique allows to determine the threshold probability of a
given ensemble of LDPC codes corresponding the worst channel condition of a channel
that allows a reliable transmission, assuming that the codelength goes to in�nity. This
method tracks the probability distribution function of the exchanged messages and recur-
sively evaluates the error probability at a given decoding iteration for a certain channel
condition.

Richardson and Urbanke provided two important theorems [59] for ensuring the cor-
rectness of this method:

1) The concentration theorem states that the performance of a randomly chosen LDPC
code from the ensemble converges exponentially fast with the codelength to the
ensemble average performance.

2) The convergence to the cycle-free case theorem states that the exchanged messages
are considered to be independent because we assume that, at a �xed round, the
decoding works in a tree-like.

We have already said that the computation of the exact threshold is quite hard and long
to be reported in this thesis and the reader may refer to [59]. However, this analysis is
valid for a large family of channels and decoding systems.

Unfortunately the Density Evolution method depends on the used alphabet in code
de�nition. The exact computation is limited to the binary LDPC case study transmitted
over memoryless symmetric channels. For the non-binary LDPC decoding, the exchanged
messages are probability vectors with the same dimension of the alphabet size. Therefore,
the non-binary decoding system as well as the density evolution result more complex.

As a consequence there are not any exact formulation of the density evolution except
for a simple case represented by the binary erasure channel (BEC). In non-binary case, the
BEC is the only exception for which we can exactly compute the threshold [56]. Rathi and
Urbanke derived density evolution equations for the codes de�ned over the the General
Linear Group GLp(F2)

1. A simpli�cation comes from the fact that the message vectors of
the same dimension have the same probabilities. As remarkable result, it has been proven
that the threshold does not have a monotonous increasing with the alphabet order. We
also note that the codes de�ned over the Galois Fields Fq, with q = 2p, may be seen as
a particular case of codes de�ned over GLp(F2) because the binary images of the �eld
elements are also invertible. As a matter of fact, the derived equations for GLp(F2) are
also valid for codes de�ned over Fq, if p ≤ 3. Conversely, the thresholds will depend on
the chosen primitive elements when the �eld order p > 3.

A similar method is proposed in [64]. The density evolution analysis is conducted
taking into account also the labels of graph edges, which respect a certain distribution
on the Galois Field Fq; it results that the method is even more complicated due to the
addition of another constraint parameter and because the messages of same dimension do

1. A non-binary LDPC codes is said to be de�ned over GLp(F2) if each entry of the parity-check matrix
is either 0 or an invertible p× p matrix (hence, belongs to GLp(F2)).
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not necessarily have the same probabilities. However, it has been pointed out that slight
performance improvements are observed by using non-uniform edge label distributions.

As the Density Evolution converges slowly to the code thresholds and it is applicable
only to some cases, faster methods have been introduced in order to �nd nearby thresholds
for larger class of channels.

Density Evolution under Gaussian Approximation for NB-LDPC codes. In [43]
Li et al. introduced Density Evolution under the Gaussian approximation assumption for
the non-binary LDPC codes. This technique reduces the complexity at the cost of loss in
the accuracy of the thresholds estimation. In fact, under this assumption, which states
that the exchanged messages are normally distributed, it is possible to track only the
expectations of the messages instead of the complete densities. In such a manner the size
of the messages and then the whole complexity is greatly reduced. However, it has been
proven that the messages after the constraint-node processing fail to satisfy the Gaussian
assumption. This causes an inevitable loss of the accuracy in the evolution of the message
expectations. As a consequence, the estimated threshold value may be away from the exact
threshold. This work is an extension of [12, 42] done for the binary LDPC codes.

Monte-Carlo Density Evolution simulations. The density evolution via Monte-Carlo
simulations (MC-DE) provides an alternative method for the density evolution estimation.
In [14] it was pointed out that asymptotic thresholds could be estimated by simulating the
messages exchanged within the iterative decoding of an in�nite code of a given ensemble.
The idea of simulating an in�nite code is to render the exchanged messages statistically
independent in order to respect the independence assumption.

The threshold estimation could be su�cient for the optimization purpose or in order
to evaluate an ensemble of LDPC codes. It depends on the con�dence one puts in this
method. The goal of our work is to prove that the MC technique is a trusted method
for estimating the code thresholds. In order to evaluate the accuracy of the MC method,
we have compared the simulation results with di�erent exact code thresholds, which are
obtained by using the techniques proposed in the literature. We summarize it in the
following.

1) Binary case. In Section 4.3.1 we present threshold estimations by Monte-Carlo
simulations for the binary LDPC codes and we compare these thresholds with the
exact thresholds computed by the using the exact Density Evolution equations [59].

2) Non-binary case and BEC. In order to evaluate the accuracy of the MC method
in non-binary case, we have reported in Section 4.3.2 the analysis proposed in [53],
in which the author compared the estimated thresholds by Monte-Carlo simulations
and the exact thresholds [56] over the BEC.

3) Non-binary case and AWGN channel. In case of NB-LDPC codes transmitted
over the AWGN channel we have already said that we can not compare the estimated
thresholds with the exact ones. For this reason in Section 4.3.3 we present the
simulation results of the MC-DE and we compare these thresholds with the thresholds
obtained via Gaussian approximation [43].

At the end of these analysis we conclude that this method:
� highlights the convergence rapidity towards the threshold as the number of outgoing
messages increases.

� is precise and accurate, especially when the size of the alphabet increases.
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� is low-complex and fast-enough to allow code optimization
We deduce that the MC-DE method can be successfully applied for the non-binary case
transmitted over a broad class of channels.

4.2 Description

In this section we describe the Monte-Carlo approximation of the Density Evolution of
NB-LDPC codes. Consider an ensemble E(λ, ρ) of non-binary LDPC codes de�ned over
an alphabet Fq with edge-perspective degree distribution λ and ρ.

We explain �rst the general idea. We remind that, for the AWGN channel, the thresh-
old is represented by the noise standard deviation of the additive Gaussian noise. The
considered channel degrades as the noise standard deviation increases. We simulate the
transmission by generating directly the noisy input of the decoder. The decoder is the
Belief-Propagation (Sum-Product) decoder, introduced in Section 3.2.1 (page 38), over
random designed graphs according to the degree distribution pair (λ, ρ). Let us see the
details of MC-DE method.

For symmetric channels we can assume that the all-zero codeword is transmitted [59]:
this will simplify the algorithm. First we have to ensure that exchanged messages remain
uncorrelated for a large number of iterations so that the independence assumption is re-
spected. Since the density evolution is observed on a large but �nite number of exchanged
messages, we proceed as described below in order to decorrelate them.

Each iteration consists of two half iterations, one for the symbol-node processing and
another one for the constraint-node processing. At each half iteration E messages pass
over E outgoing edges from either symbol or constraint nodes.

We have illustrated an overview of the MC-DE method in Figure 4.2, and will consider
this schema as a reference for the operations that we will describe in the following. In this
�gure we have represented the exchange of E messages over E edges as input of a box,
which can not be considered as an interleaver because is not a bijective mapping. The

degree distributions (edge perspective) are λ(x) =
1

3
x+

2

3
x3 and ρ(x) = x5. The designed

code rate r = 1/2 according to (3.28). The outgoing symbol and constraint-node messages
are respectively denoted as Pn→∗ and Pm→∗ and they are treated independently of the
nodes toward they are sent. For the same reason, the edge labels are denoted by hi,d,
where d is an index depending on the node degree. In the following we describe the two
half iterations.

� Consider for the instant that we have to compute an outgoing message from a symbol-
node. For each symbol-node n we sample the node degree dn according to the λ(x).
Then, dn−1messages are randomly chosen from the E check-node outgoing messages
Pm→∗ produced at the previous half iteration. These messages are considered as
being received by the node n on the dn − 1 incoming edges. The dn − 1 edge labels
are also uniformly sampled from F

∗
q .

Besides, in order to compute outgoing messages from symbol-nodes, we also need
the knowledge of the a priori information corresponding to the channel output. In
this case, for each new outgoing symbol-node message, the channel output is also
resampled according to the channel model. The a priori information corresponding
to the channel output is denoted by Pn. The outgoing message is then computed
according to the Eq. (3.10).

� In the same manner we operate for the outgoing messages from the constraint-node.
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For each constraint-node m we sample the node degree dm according to the ρ(x).
Then, dm − 1 messages are randomly chosen from the E symbol-node outgoing mes-
sages Pn→∗ produced at the previous half iteration. These messages are considered
as being received by the node m on the dm − 1 incoming edges. The dm − 1 edge
labels are also uniformly sampled from F

∗
q . The outgoing message is then computed

according to the Eq. (3.8).
The decoding is successful i� the obtained codeword is formed by all zero symbols, or

equivalently if the P̃n = [1, 0, . . . , 0] ∀n = 1, . . . , E. We iterate this procedure by changing
σ according to a dichotomic search algorithm. The estimation is done by tightening the
bounds in which the estimated threshold is included. Let [σinf, σsup] be the interval in which
the estimated value should be. Then, at each decoding iteration two cases can occur:

1) the decoding is successful then the algorithm increases the lower bound: σinf = σ,

2) conversely, the decoding in unsuccessful then the algorithm decreases the upper
bound : σsup = σ.

Then the new value of σ is set to σ =
σinf+σsup

2 . This goes ahead till σsup − σinf < ǫ, where
ǫ > 0 is an arbitrarily small value. In this way, at each round, the threshold is chosen from
a smaller interval in order to increase the precision. The �rst time one can use for example
σinf ≪ σ and σsup ≫ σ. In Figure 4.1 we show an example of the dichotomic search.

Figure 4.1: Example of the evolution of the dichotomic algorithm

Remark 4.1. The number of the total incoming edges is greater than the number E of
messages produced at each half iteration, then the incoming messages into the nodes are
necessarily repeated. Indeed, the number of incoming edges for symbol-nodes is equal to
(ds,avg − 1)E ≥ E; the number of incoming edges for constraint-nodes is equal to (dc,avg −
1)E > E.

Remark 4.2. The exchanged messages are decorrelated thanks to three factors that change
at each iteration:

1) the resampled connections between symbol and check-nodes,

2) the resampled channel output and

3) the resampled edge labels, so that, especially for higher order �nite �elds, the ex-
changed messages result further uncorrelated.

In the following, we report the pseudo-coded steps of the Monte-Carlo algorithm.

Notation.

(N1) E = number of exchanged messages

(N2) RMAX = maximum number of estimations. It needs for having a good statistic about
the threshold estimation (e.g. RMAX = 100).
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Figure 4.2: Density evolution approximation by Monte-Carlo simulation

(N3) IMAX = maximum number of decoding iterations.
There exists a tradeo� between the speed of convergence (given by a smaller IMAX)
and the accuracy of the estimation (given by a greater IMAX). From the analysis in
the next section we choose IMAX = 200 or 500.

(N4) σ = estimated threshold (standard deviation of AWGN Channel)

(N5) σinf = threshold inferior bound

(N6) σsup = threshold superior bound

(N7) σavg = average threshold

(N8) ǫ = threshold precision (e.g. 1E − 7)

Initialization.

� Pm→∗ =

[

1

q
, . . . ,

1

q

]

∀m = 1, . . . , E.

� σavg = 0

� σ =
σinf+σsup

2
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Execution.

for #thresholds = 1 to RMAX

do

for #iterations = 1 to IMAX

First half iteration.

1) Set the symbol-node degrees according to λ(x) distribution.

2) Random choose of the incoming messages among the E mes-
sages Pm→∗ produced by the check-node processing of the pre-
vious half iteration.

3) Sample the edge labels according to ξ(x) distribution 2 on F
∗
q .

4) Sample the channel output
{Pn}n=1,...,N = [yn,1

2
σ2 , . . . , yn,p

2
σ2 ].

5) Compute the messages Pn→∗ according to the Eq. (3.10) of
the BP algorithm.

Second half iteration.

1) Set the constraint-node degrees according to ρ(x) distribution.

2) Random choose of the incoming messages among the E mes-
sages Pn→∗ produced by the symbol-node processing of the
previous half iteration.

3) Sample the edge labels according to ξ(x) distribution on F
∗
q .

4) Compute the messages Pm→∗ according to Eq. (3.8) of the BP
algorithm.

End.
Compute the a posteriori probabilities according to Eq.(3.11) of the BP al-
gorithm.

if P̃n = [1, 0, . . . , 0] ∀n = 1, . . . , E =⇒ {ŝ1, . . . ŝN} = {0, . . . , 0} =⇒
σinf = σ

else P̃n 6= [1, 0, . . . , 0] ∀n = 1, . . . , E =⇒ {ŝ1, . . . ŝN} 6= {0, . . . , 0} =⇒
σsup = σ

Set the new threshold: σ =
σsup + σinf

2

While - Stop Criteria: (σsup − σinf) < ǫ (check if σ has the requested
precision)

σavg =
[σavg(#thresholds− 1)] + σ

#thresholds
End.

Finally, the approximated threshold value is equal to the average value σ = σavg obtained
after RMAX estimations.
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ison of the curves obtained with MC-DE, GA-DE and Exact DE

4.3 Monte-Carlo Simulation Results

The goal of this section is to demonstrate that the Monte-Carlo is an accurate and
precise method for the estimation of the DE thresholds. This section is motivated by the
fact that we would like to extend this method also to the non-binary case transmitted
in the AWGN channel, for which the asymptotic code performance are unknown. In the
following σ∗ will denote the noise standard deviation that one desires to estimate i.e., the
exact threshold, whereas σ is the estimated threshold value.

4.3.1 Threshold Comparison for the Binary LDPC Codes

We start with the analysis of binary LDPC codes with regular or semi-regular pro�le.
For these codes we have analyzed the obtained thresholds according to some variations
of parameters, as the number of outgoing edges and the maximum number of decoding
iterations. Then we have pursued with the analysis of irregular LDPC codes that, in
general, outperform the regular codes. In the following, since we will deal with only binary
LDPC codes, the symbol-nodes are simply referred to as bit-nodes.

E�ect of the number of the outgoing edges E. In Figure 4.3 we present the results
of Monte-Carlo simulations. The thresholds on the ordinate are reported as logarithmic
values in terms of Eb

N0

3. Hence, the best thresholds correspond to the lowest point of these

3. σ2 = 2r
Eb

N0
, if we assume a transmission in 2-QAM.



70 Chapter 4. Monte-Carlo Estimation of the Asymptotic Performance

curves.
We have simulated binary codes with di�erent code lengths over the AWGN channel.

The design coding rate is r = 0.5. In particular, in order to conduct comparisons with
the results of the binary codes of [43], the simulated codes are semi-regular, meaning that
the bit-node degrees take only on two consecutive values. So that, in this section we
have referred to LDPC codes that have concentrated degree distribution pair (L(x),R(x))
around their average degree pair (ds,avg, dc,avg). We can refer ds,avg as the weight column
average of the parity-check matrix; let d = ⌊ds,avg⌋ be the the nearest integer below ds,avg,
then:

{

ds,avg = λdd+ λd+1(d+ 1)
λd + λd+1 = 1

(4.1)

where λd and λd+1 are the fractions associated to the degree d and d+1. The ρ distribution
is derived by knowing the symbol-node degree distribution and the rate according to the
formula given in the previous chapter Eq. (3.28).

We have conducted comparisons with the exact thresholds and the approximated
thresholds. We have plotted the thresholds as function of ds,avg that varies from 2 to
5 for several code lengths. The GA-DE threshold results are obtained from the column
"q = 2" of the Table II of [43].

Consider �rst the MC-DE results. An unexpected phenomenon is that the curves
approach the real threshold values from down to the top as the number of the considered
outgoing edges increases. Surprisingly, with a smaller number of exchanged messages (e.g
E = 1000), the estimated threshold is better than the estimated thresholds obtained by
simulating a greater number of messages (e.g. E = 10000), which should induces more
independence of the messages. However, the values closest to the real thresholds correspond
to the simulations with an increasing number of messages.

In Table 4.1 we detail the values of the Figure 4.3. For understanding the accuracy
of the estimated values we have computed the Root Mean Square Error (RMSE). The
RMSE obtained with the Gaussian approximation evaluation is ∼0.1dB , whereas already

ds,avg Exact-DE GA-DE Monte-Carlo Density Evolution Eb

N0
Eb

N0

Eb

N0
E = 5000 E = 10000 E = 20000 E = 100000 E = 200000

2 - - 3.0545 3.1360 3.2247 3.3168 3.3418
2.1 - - 2.7441 2.8181 2.8953 2.9922 3.0359
2.2 - - 2.3002 2.3796 2.4658 2.5690 2.6049
2.3 2.0003 - 1.7708 1.8390 1.8588 1.9895 2.0300
2.4 1.5592 1.2969 1.2945 1.3102 1.3314 1.3577 1.5592
2.5 1.0788 1.1420 1.0631 1.0764 1.0901 1.0924 1.0943
2.6 1.0217 1.0847 0.9934 1.0075 1.0168 1.0261 1.0290
2.8 1.0216 1.0956 0.9883 1.0042 1.0082 1.0223 1.0235
3 1.1036 1.1947 1.0624 1.0825 1.0944 1.1015 1.1038
4 1.5411 1.6268 1.4927 1.5091 1.5249 1.5366 1.5379
5 2.0000 2.0827 1.9594 1.9778 1.9890 2.0037 2.0070

RMSE 0.0991 0.0811 0.0571 0.0500 0.0038 0.0024

Table 4.1: Thresholds for semi-regular binary LDPC codes with rate r = 1/2 � Analysis
of the number of exchanged messages in Monte-Carlo simulations
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the MC-DE method with E = 10000 halves this result. In particular, closer and closer
results have been obtained as the number E increases. We have simulated a maximum
number of E = 200000 exchanged messages � even if this choice is not practicable because
of the simulation time � it demonstrates that this method permits to reduce the error as
far we are willing to spend in resources. Regrettably, the accuracy of this method does not
become linearly better with the value E. Nevertheless, we can reach the same standard
requirement of the Gaussian Approximation method by simulating the MC with E less
than 5000 exchanged messages.

We can observe that the thresholds depend on the used distribution and the best
threshold is obtained for ds,avg = 2.8 (with a node-perspective bit-node degree distribution
L(x) = 0.8x2 + 0.2x3).
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E�ect of the maximum number of iterations. We have simulated the Density Evolu-
tion via Monte-Carlo for 18 binary codes with irregular pro�les and rate r = 1/2. At each
half iteration of the Monte-Carlo simulations, E = 5000 outgoing messages are observed.
In Figure 4.4 it has been plotted the average values of MC-DE thresholds (in an increasing
order) with di�erent number of maximum decoding iterations IMAX varying from 200 up
to 1000.

The positive e�ect of increasing the maximum number of iterations is to lower the
threshold values. However, we can observe an inverse trend for each curve from a cut-o�
point: they pass to stay up to go below the real threshold curve (in red). In general, one
can accept a common maximum number of iteration IMAX equal to 500. However, for codes
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that demonstrate thresholds 0.4dB away from the Shannon limit, a maximum number of
iteration IMAX equal to 200 can be su�cient. Also for this reason, we have used this last
value in the evaluations done in Section 4.3.3.

In Table 4.2 we have written the codes used for this analysis. We have obtained these
distributions from a software implemented on-line [1]. For our purpose we have limited
the maximum symbol-node degree ds,max to 50. The �rst code has a threshold equal to
0.2305dB (away only 0.0435dB from the Shannon capacity).

code
number

edge perspective degree distribution λ(x) - Rate r = 1/2

1
0.1904x2 + 0.1778x3 + 0.1066x6 + 0.0911x7 + 0.0701x14+
0.1007x15 + 0.2633x50

2
0.2123x2 + 0.1977x3 + 0.0660x6 + 0.1688x7 + 0.0305x15 + 0.1044x16+
0.0225x17 + 0.0014x28 + 0.0471x37 + 0.1240x38 + 0.0161x42 + 0.0092x43

3
0.2098x2 + 0.2108x3 + 0.0106x4 + 0.0198x5 + 0.0357x6+
0.1066x8 + 0.1338x9 + 0.2729x30

4 0.2005x2 + 0.1866x3 + 0.1038x6 + 0.0841x7 + 0.0569x8 + 0.3682x30

5
0.2521x2 + 0.2201x3 + 0.0000x4 + 0.0611x5 + 0.1434x6+
0.0003x7 + 0.3228x15

6 0.2725x2 + 0.2376x3 + 0.0704x4 + 0.4195x10

7 0.2956x2 + 0.2482x3 + 0.2952x6 + 0.1610x15

8 0.2959x2 + 0.3531x3 + 0.3510x8

9 0.2949x2 + 0.1970x3 + 0.5081x7

10 0.4838x3 + 0.0002x13 + 0.2186x15 + 0.0001x49 + 0.2972x50

11 0.3380x2 + 0.1288x3 + 0.5332x5

12 0.6420x3 + 0.2893x16 + 0.0687x17

13 0.2591x2 + 0.1336x3 + 0.6073x8

14 0.3500x2 + 0.1500x3 + 0.5000x4

15 0.3667x2 + 0.4070x3 + 0.0481x4 + 0.1783x5

16 0.2168x2 + 0.6556x3 + 0.1275x20

17 0.8572x3 + 0.1417x12 + 0.0011x14

18 0.7500x3 + 0.2500x7

Table 4.2: Edge-Perspective degree distributions of the codes used in Figure 4.4

Comparison of the threshold estimations. We have estimated the thresholds of
several binary LDPC codes with Monte-Carlo method and choosing the right parameters
according to the above analysis. Indeed, we have given a hint about the number of ex-
changed messages over the outgoing edges, here we give an deeper analysis of the accuracy
irrespective of those parameters.

Table 4.3 presents a comparison of thresholds obtained by Monte-Carlo Density-Evolution
(MC-DE) and those obtained by exact density evolution, for irregular binary LDPC codes
with rate r = 1/2 over the AWGN channel. Thresholds are shown both in terms of noise
variance and corresponding Eb

N0
value. In Figure 4.5 we represented the values of Ta-

ble 4.3 and we can observe that the Monte-Carlo simulation results are closer to the exact
thresholds than the approximated results obtained by using the Gaussian Approximation
computation.
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ds,max Exact-DE GA-DE MC-DE σdev
σ∗ Eb/N

∗
0 σ Eb/N0 σ Eb/N0 ×103

4 0.911 0.808 0.904 0.876 0.916 0.757 1.2
5 0.919 0.730 0.911 0.806 0.923 0.691 1.1
6 0.930 0.627 0.907 0.774 0.931 0.622 1.0
7 0.942 0.515 0.922 0.699 0.935 0.577 1.7
8 0.950 0.448 0.938 0.557 0.947 0.468 1.5
9 0.954 0.409 0.940 0.533 0.954 0.411 1.1
10 0.956 0.393 0.942 0.523 0.955 0.403 1.2
11 0.957 0.380 0.942 0.518 0.957 0.377 1.1
12 0.958 0.373 0.942 0.513 0.958 0.367 0.8
15 0.962 0.335 0.944 0.503 0.962 0.340 1.6
20 0.965 0.310 0.946 0.482 0.963 0.325 0.7
30 0.969 0.273 0.946 0.469 0.965 0.299 1.6
50 0.972 0.248 0.952 0.428 0.971 0.260 0.8

RMSE 0.0168 0.1459 0.0031 0.0272

Table 4.3: Real and approximated thresholds for binary irregular LDPC codes with maxi-
mum symbol-node degree ds,max

The maximum bit-node degree is reported in the left column; the corresponding degree
distribution polynomials λ(x) and ρ(x) can be found in [60], Tables I and II. For compar-
ison purposes, we have also included threshold values computed by using the Gaussian-
Approximation (GA-DE) proposed in [12]. At each half-iteration of the MC-DE simulation,
E = 10000 outgoing messages are computed, and a maximum number of IMAX = 500 it-
erations are executed.

For each pair of degree distributions (λ, ρ), several threshold estimations have been
performed; the mean value is reported in the MC-DE/σ column, and the standard deviation
(× 103) is reported in the last column. As it can be observed, the standard deviation σdev
is between 0.0008 and 0.0017; hence we conclude that the proposed method is precise.
Furthermore, the Root Mean Square Error (RMSE) of estimated thresholds (reported on
the last row) is equal to 0.0031, which proves that the proposed method is also accurate.
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4.3.2 Threshold Comparison for the NB-LDPC Codes over the BEC

In this section we deal with the asymptotic analysis of the LDPC codes over the binary
erasure channel. We compare the approximated thresholds of [53] and the exact thresholds
obtained with the technique of [56]. We analyze two non-binary cases, one for the regular
codes and the other one for the irregular codes. Note that the σ parameter in this case
corresponds to the channel erasure probability (we use the same symbol σ to keep uniform
notation throughout the chapter; the Eb/N0 is also shown as a basis for comparison on a
logarithmic scale).

Regular LDPC codes. We consider regular (2,4)-LDPC codes with coding rate r = 1/2
de�ned over Fq, with q = 2, 4, 8, 16, 32, and 64. The estimated thresholds are presented in
Table 4.4.

Alphabet Exact-DE MC-DE σdev
σ∗ Eb/N

∗
0 σ Eb/N0 ×104

F2 0.3333 9.5432 0.3379 9.4242 12.4
F4 0.4096 7.7528 0.4082 7.7825 8.7
F8 0.4506 6.9241 0.4507 6.9222 4.0
F16 0.4680 6.5951 0.4682 6.5913 1.9
F32 0.4742 6.4807 0.4744 6.4771 1.7
F64 0.4746 6.4734 0.4744 6.4771 1.7

RMSE 0.0020 0.0502

Table 4.4: Real and approximated thresholds for regular (2,4)-LDPC de�ned over F2 F4,
F8, F16, F32 and F64, and transmitted over the BEC

Irregular LDPC codes. In this part we give the results of 4 optimized LDPC codes
of rate 1/2. Each of the codes has been optimized for an alphabet de�nition. The edge-
perspective degree distributions are reported in the Table 4.6.

The simulation results are shown in Table 4.5.

Alphabet Exact-DE MC-DE σdev
σ∗ Eb/N

∗
0 σ Eb/N0 ×104

F2 0.4955 6.0991 0.4938 6.1289 5.2
F4 0.4926 6.1501 0.4892 6.2102 10.1
F8 0.4931 6.1412 0.4920 6.1606 2.6
F16 0.4945 6.1166 0.4939 6.1272 2.0

RMSE 0.0020 0.0353

Table 4.5: Real and approximated thresholds for irregular LDPC de�ned over F2 F4, F8

and F16, and transmitted over the BEC

We can observe that, in both cases, the estimated thresholds are very close to the
exact ones. It can be also observed that the standard deviation σdev of the estimated
thresholds becomes even smaller for increasing alphabet order (in these tables σdev×104!):
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the standard deviation is between 0.00017 and 0.0012 that demonstrates that this method
is very precise. We conclude that the MC-DE is also more precise compared to the binary
case. Finally, the last row of these tables report the RMSE = 0.0020, in both cases. This
con�rms that this method is very accurate.

This section reinforces what we said before: the estimation performance improves as
the alphabet size increases, for both the regular and the irregular cases. Therefore, we can
trust the MC-DE method can be successfully applied to the non-binary LDPC transmitted
over the AWGN channel.

Alphabet edge-perspective degree distributions - Rate r = 1/2

F2
λ(x) = 0.26328x+ 0.1802x2 + 0.27x6 + 0.28649x29

ρ(x) = 0.63407x7 + 0.36593x8

F4
λ(x) = 0.457504x+ 0.278481x3 + 0.001328x10 + 0.262453x11

ρ(x) = 0.729x5 + 0.271x6

F8
λ(x) = 0.548406x+ 0.055368x2 + 0.201158x4 + 0.193247x11

ρ(x) = 0.244x4 + 0.756x5

F16
λ(x) = 0.596x+ 0.186x4 + 0.071x7 + 0.147x17

ρ(x) = 0.284x4 + 0.716x5

Table 4.6: Edge-Perspective degree distributions of the codes used in Table 4.5

4.3.3 Threshold Estimation of NB-LDPC Codes over the BI-AWGN
Channel

In this section we show the asymptotic analysis of ensembles of codes transmitted under
binary input AWGN channel.

As said, the exact threshold computation have not been accomplished because of the
impracticability of �nding a computing method for NB-LDPC codes transmitted over the
AWGN channel. Therefore, in this case we are not able to evaluate how precise and
accurate the approximated thresholds would be without a basis for a comparison. However
we can analyse the Monte-Carlo simulation results with respect to the results of the Density
Evolution under Gaussian Approximation. We have simulated ensembles of semi-regular
codes with rate r = 1/2 in order to compare them with the approximated thresholds
reported in [43], Table II.

The Monte-Carlo simulations have as parameters E = 20000 outgoing messages that
are observed at each half iteration and a maximum number of decoding iterations IMAX

equals to 200. In Section 4.3.1 we have studied the case of the maximum number of
iterations in the binary case and we accept IMAX = 200 for thresholds 0.4dB away from
the Shannon limit. Also in the case on non-binary LDPC we have chosen IMAX = 200:
indeed the decoding of non-binary LDPC codes is less penalized from a smaller maximum
number of iterations. We have justi�ed this by simulating codes with ds,avg = 2.2 and two
di�erent IMAX = 200 and 500. The di�erence between the two thresholds is only 0.01dB
as reported in Table 4.7. Then, the choice of IMAX = 200 makes the simulation faster with
an acceptable precision.

Figure 4.6 draws the Monte-Carlo simulation results. In this �gure, we observe that
the thresholds values are plotted as function of the alphabet size q and the average symbol-
node degree ds,avg. For all the q values, the best results are provided by ds,avg . 3 and
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ds,avg MC-DE � E = 20000 � GF(64)
IMAX = 200 IMAX = 500

σ σ × 103 Eb

N0
σ σ × 103 Eb

N0

2.2 0.938 0.4 0.553 0.939 0.3 0.542

Table 4.7: Comparison of two di�erent Monte-Carlo thresholds for ds,avg = 2.2 with IMAX

= 200 and 500
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Figure 4.6: Threshold results obtained via MC-DE for NB-LDPC codes with rate R = 1/2

increasing q. For each alphabet size, the value ds,avg for which it has been observed the best
threshold decreases from ds,avg = 2.8 for the binary case till ds,avg = 2.1 for the ensemble
of codes de�ned over F64. We have also observed that for ds,avg > 3 the better results
correspond to smaller value of q.
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ds,avg
F2

Eb

N0
[dB ]

F4
Eb

N0
[dB ]

F8
Eb

N0
[dB ]

F16
Eb

N0
[dB ]

F64
Eb

N0
[dB ]

GA-DE MC-DE GA-DE MC-DE GA-DE MC-DE GA-DE MC-DE GA-DE MC-DE

2 - 3.2247 - 2.3583 - 1.5097 0.8096 0.9428 0.2422 0.5518
2.1 - 2.8953 - 2.0371 - 1.2223 0.5745 0.7854 0.2003 0.5301
2.2 - 2.4658 - 1.5705 0.7668 0.9243 0.4300 0.6678 0.2511 0.5531
2.3 - 1.8588 1.0171 1.1146 0.6224 0.7464 0.3999 0.6280 0.3582 0.6157
2.4 1.2969 1.3314 0.8689 0.8876 0.5819 0.6994 0.4437 0.6637 0.4996 0.7174
2.5 1.1420 1.0901 0.8173 0.8077 0.6070 0.7077 0.5301 0.7091 0.6650 0.8469
2.6 1.0847 1.0168 0.8211 0.8230 0.6631 0.7714 0.6210 0.7979 0.7801 0.9612
2.8 1.0956 1.0082 0.9161 0.9215 0.8335 0.9413 0.8431 1.0125 1.0479 1.2209
3 1.1947 1.0944 1.0769 1.0699 1.0464 1.1393 1.0956 1.2502 1.3455 1.5021
4 1.6268 1.5249 1.6741 1.6763 1.7768 1.8619 1.9273 2.2257 2.2477 2.3833
5 2.0827 1.9890 2.2117 2.2159 2.3700 2.4489 2.5487 2.6537 2.8799 3.0187

Table 4.8: Thresholds for semi-regular NB-LDPC codes � Density Evolution under Gaus-
sian Approximation and Density Evolution via Monte-Carlo simulations
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In Table 4.8 we report the threshold results for F2, F4, F8, F16 and F64. For each
alphabet size there are two columns, one for the DE under Gaussian Approximation (GA)
and the other one for the DE under Monte-Carlo simulations (MC). Concerning the MC-
DE we have omitted to write the standard deviations σdev for a matter of space, however,
we can a�rm that these values are all less than 0.002.

We can observe that the approximated thresholds obtained with the two methods
diverge as the alphabet size increases.

In conclusion of this analysis, it can be noticed that the performance of a code ap-
proaches the Shannon limit as the alphabet size increases. This is the same conclusion of
the authors in [43], but the main di�erence is that we think that the threshold for F64 is
no so close to the Shannon limit as predicted by the GA-DE method.

For a rate r = 1/2 and with an increasing alphabet size, we can consider that the regular
(2,4)-LDPC codes present the best performance. These empirical results have been proven
also in [13, 63], where it has been pointed out that when the size of the alphabet grows,
best decoding thresholds are obtained for average density of edges closer and closer to
ds = 2.

Practically, for NB-LDPC codes de�ned over Galois �elds Fq with q > 64, best codes,
both asymptotically and at �nite lengths, are ultra-sparse codes, as demonstrated also in
our simulation results.

Remark 4.3. The distributions of edge labels over F
∗
q can also be optimized in order to

have better code thresholds. However this improvement seems to be minimal [64]; therefore
in this work we have considered that the edge labels are uniformly distributed over F

∗
q.

4.4 Optimization with the Di�erential Evolution

In this section we introduced the Di�erential Evolution technique, originally due to
Storn and Price [69] and belonging to the class of genetic algorithms. The Di�erential
Evolution is a heuristic method for optimizing multidimensional real-valued functions,
which are not necessarily continuous or di�erentiable. Moreover, this technique does not
use the gradient of the function as required by classic optimization methods, thus it can be
used on a very large optimization problems that are di�cult or absolutely not analytically
solvable. Conversely, it can provide approximated solutions and it has not be proven the
convergence to an unique solution.

This technique is used in some search algorithms or in many �elds that need optimiza-
tion in which the underlying problems result complicated and the mathematical knowledge
are not su�cient. For instance, it is used in genetic optimization algorithm with great suc-
cess; in general the e�ciency varies according to the application �eld.

In code optimization, this technique can be for example coupled with the Monte-Carlo
method in order to optimize the node degree distribution or the entry values of the parity-
check matrix. Moreover, in the Chapter 5 we will use this technique for optimizing the
puncturing distribution; it emerges a straightforward improving in the performance of the
optimized punctured codes.

4.4.1 Description

This method creates candidate solutions, drawn from a prede�ned population, by com-
bining existing solutions in a linear map. It keeps the best solution according to the eval-
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Figure 4.7: Di�erential Evolution

uation of the cost function. In this way the objective function is treated as a black-box,
which provides only the quality measure of the candidate solution.

Initial population. Let NP be the number of population elements, referred to as mem-
bers (each member is a vector). The initial population is randomly generated and it will
be denoted as the set P = {r1, . . . , rNP }.
Population evolution. A mutant element is generated by combining three pseudo-
random elements denoted {r1, r2, r3}, with the condition that they are all di�erent. The
choice of the three elements depends on some strategies. Let v be the mutant element,
then:

v = r1 + F (r3 − r2)

where F is a constant real value within the range [0; 2]. This operation is drawn in Fig-
ure 4.7 a); the blue plan represents the population set P (with some abuse of representation,
this plan represents a multi-dimensional space, instead of a 2-D space, as normal).

Afterwards v is recombined with a crossover element, denoted as r, in order to form a
trial vector t: each component of t takes values from v or from r according to a crossover
probability pcr ∈ [0; 1).

Consider, for example, that each member is a 5-components' vector, thus

v = [v1, v2, v3, v4, v5] and r = [r1, r2, r3, r4, r5]

Let pi ∈ [0; 1] be a drawn random value associated to each ith component and consider a
�xed real value pcr ∈ [0; 1) corresponding to a crossover:

ti =

{

ri if pi < pcr
vi if pi ≥ pcr

(4.2)

As result of this operation we can have, for instance, t = [r1, v2, v3, r4, v5], if p1, p4 < pcr
and p2, p3, p5 ≥ pcr.

t is evaluated by the objective function f(·): if t has a better result, it replaces r in
the new population, otherwise r is kept. In this manner, at each iteration the population
evolves toward a better one. In Figure 4.7 b) we show this last operation, in which the
evaluation of the two elements is represented by vertical arrows
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4.4.2 Optimization of LDPC Codes

In our purpose of optimization, the Di�erential Evolution can be coupled with the
Monte-Carlo simulations that evaluates the trial elements. We proceed by iteratively �nd-
ing the symbol-node degree distribution that assures good performance in terms of esti-
mated threshold (the check-degree distribution is computed according to the Eq. (3.28)).

Given the desired rate, the members are vectors (λd)d determined by the coe�cients of
the edge-perspective degree distribution polynomial; the size of the vector depends on the
maximum degree of the λ(x) polynomial. For example we have obtained good distribution
polynomials for codes of rate r = 1/2 and de�ned over F16. We report the optimized
distributions in the following (this code will be also used in the next chapter):

λ(x) = 0.5376x+ 0.1678x2 + 0.1360x4 + 0.1586x9

ρ(x) = 0.5169x4 + 0.4831x5

The corresponding threshold Eb/N0 for this ensemble of codes is equal to 0.3638dB . Fig-
ure 4.8 shows the performance of a code from this ensemble with 4000 source bits and
designed by using the Progressive Edge-Growth (PEG) algorithm [32].

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
am

e 
E

rr
or

 R
at

e

Eb/N0 (dB)

T
hr

es
ho

ld

Optimized Irr. LDPC codes, r = 1/2

Figure 4.8: NB-LDPC code optimized via Di�erential Evolution technique

In the same manner we can optimize the edge label distribution polynomial ξ(x) and
the population is formed by vector of q − 1 components. Moreover, this method will also
be employed for optimizing the puncturing distributions in the next chapter.
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4.5 Conclusions

The asymptotic analysis allows one to compute the threshold and then to �nd ensembles
of LDPC codes with good performance. Under the independence assumption, for which
the exchanged messages are considered independent, one can estimate the worst channel
condition at which it is possible to have reliable data transmission. This can be done via the
Density Evolution method that tracks the evolution of the densities of exchanged messages
between the nodes. However, the knowledge of this threshold can be recursively obtained
only for binary LDPC codes and NB-LDPC codes transmitted over the binary erasure
channel. The Density Evolution using the Gaussian approximation have been proposed in
order to simplify the threshold computation; this allows one to reduce the complexity of
the density evolution if we accept approximated results.

The motivation for the present work comes from the observation that the Monte-Carlo
simulations for binary LDPC codes o�er better results with respect to the Gaussian ap-
proximation. In non-binary case we can compare the results of MC simulation with the
exact thresholds only if we consider the binary erasure channel for which we know the exact
threshold computation. We are not able to evaluate the method precision when the codes
are transmitted over the AWGN channel because it does not exist an exact computation
and then we can not compare the MC simulation results with the exact thresholds. Yet,
the use of non-binary alphabets should play an important role in making the exchanged
messages more uncorrelated, so that the method should be more precise for non-binary
LDPC codes.

We reported several results for an extensive study. First of all, we have compared the
GA and the MC methods with the exact Density Evolution in the binary case. We have
demonstrated that the MC-DE shows thresholds more closer to the real thresholds with
respect to the GA-DE, even for a small number of observed outgoing messages. Secondly,
we have analyzed the di�erent implementation parameters of the MC simulations (e.g. the
number of exchanged messages and the maximum number of decoding iterations) in order
to evaluate the right tradeo� between accuracy and fastness of the algorithm. We have
shown that the Monte-Carlo method outperforms the Density Evolution under Gaussian
approximation. These results allow:

1) to extend the asymptotic analysis to a large class of channel models and for non-
binary codes,

2) to estimate with great precision the exact thresholds at least with the purpose of
knowing the general behavior of code ensembles and, �nally,

3) to quickly obtain the thresholds due to the rapid convergence of this method.

We have described the Di�erential Evolution that is a genetic method used for opti-
mization problems. This method has the major advantage that it treats the cost function
as a �black-box� and it can be used for a broad class of optimization problems. As drawback
it does not assure that the found solutions are absolutely the best ones. When this tech-
nique is coupled with the MC-DE method, it can be used in order to �nd good ensembles
of codes.

The MC-DE method will also be used in the next chapter, where we deal with rate-
adaptability issues. Indeed, the MC-DE method will be used in order to evaluate the
thresholds of the punctured NB-LDPC codes, whereas the Di�erential Evolution will be
used for optimizing the puncturing distributions.



Chapter 5

Punctured NB-LDPC Codes over

AWGN Channels

Generally, when the channel allows to transmit with small error probability the trans-
mission is more reliable and a light encoding can be envisaged, otherwise, when the channel
behaviour worsen due to the increasing noise, the data transmission requires a more robust
encoding. Moreover, this phenomena could vary rapidly and without prediction. For this
reason we are interested in analyzing the capability of the LDPC codes to �exibly adapt
their rates to the channel conditions. The rate adaptability is done by puncturing a mother
code 1. The advantage of such a method is that the same encoding and decoding systems
can be used regardless of the coding rate of the transmission.

The rate adaptability for binary LDPC codes consists in choosing the bit-nodes to
be punctured. In case of NB-LDPC codes we have an extra degree of freedom as the
symbol-nodes can be punctured either completely or only partially (i.e., only certain bits
are punctured within a given symbol-node). As a consequence, NB-LDPC codes are more
robust to the puncturing operations than their binary counterparts.

In this chapter, we analyse the optimization of the distribution of the punctured bits
according to the degree distribution of symbol-nodes. The punctured codes are analyzed
with the Density Evolution via Monte-Carlo simulation method. We demonstrate that
these codes have good asymptotic performance, as well as they exhibit good performance
at short to medium lengths.

The chapter is organized as follows. After introducing and motivating the problem
in Section 5.1, we describe the puncturing distribution in Section 5.2. In Section 5.3
we analyse the puncturing distributions for regular and semi-regular LDPC codes. The
optimization of puncturing distributions for irregular codes is addressed in Section 5.4.
Finally, with Section 5.5 we conclude the chapter.

1. Therefore, the chosen mother code has a smaller coding rate than the punctured codes.

83
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5.1 Motivations

When coded bits are transmitted over time-varying channels, as for wireless commu-
nication systems, the rate of the forward error correction code has to be adapted to the
quality of the channel, so that to achieve both high throughput and reliability.

The rate adaptation requires codes of di�erent rates, which can be e�ciently obtained
by using one low rate mother code and puncture it in order to get higher rates. The
advantage of puncturing is that a single encoder/decoder pair can be used regardless of the
puncturing pattern: according to the channel conditions, the transmission system adapts
itself by just changing the puncturing pattern at the transmitter, and the depuncturing
pattern at the receiver. This technique allows for a high �exibility systems and a fast
adaptation of the transmission data.

The transmission of punctured codewords can be seen as a particular case of the binary
erasure channel in which the punctured bits represent the erasures in the channel. At the
receiver side, the decoder receives in input only the noisy information corresponding to the
unpunctured bits. It should be clear that the puncturing process is completely transparent
for the decoder. In e�ect, the decoder input corresponding to a bit is the probability of
being 0 or 1; in case of a punctured bit this probability is in both cases � 0 or 1 � equals
to 1/2, or equivalently the corresponding LLR is zero.

Recovering process. In the binary case, Ha et al. [25] gave a puncturing method based
on the irregularity pro�le of the binary LDPC code and they showed that good capacity-
approaching codes exist. They demonstrated that the puncturing patterns can be opti-
mized so that rate-compatible codes results in a small loss of the asymptotic performance.
They modi�ed the Gaussian approximation of [12] in order to include the messages of the
punctured bit-nodes into the computation. In a second time they optimized the puncturing
via linear programming taking into account the asymptotic analysis results.

They have also proposed an optimized puncturing method for �nite-length codes with
regular or irregular pro�les [26]. Their idea of optimization is that the punctured bit-
nodes are chosen from the ones that have the greatest probability to be recovered. More
precisely, these bit-nodes are selected from those that have more reliable neighbor check-
nodes. The reliability of a check-node depends on the number of unpuctured bit-nodes in
its neighborhood. The process of receiving a non-zero message from a neighbor check-node
is referred to as recovery (as in the decoding process over the BEC). A punctured bit-node
that is connected to check-nodes whose incoming messages are from unpuctured bit-nodes
is referred to as one-step-recoverable (1-SR) bit-node 2. In general, k-SR bit-nodes will
be recovered at the kth decoding iteration and they are used to recover the (k + 1)-SR
bit-nodes. The idea is then to concentrate the punctured bits in the lower recoverable
steps in order to improve the reliability of the exchanged messages.

For non-binary codes, Klinc et al. [37] proposed a design of puncturing patterns based
on symbol recovery levels, similar to the design proposed in [26]. Given a target punctured
rate, the algorithm proposed in [37] computes a puncturing pattern that minimizes the
number of recovery steps for the punctured bits. They noticed that by puncturing many
bits in symbols with high levels of recoverability has negative e�ect on the performance of
the codes. The algorithm proceeds in two steps:

1) it maximizes the number of symbol-nodes that can be recovered and

2. This is a little abuse of terminology because we remind that we transmit over AWGN channel. Then,
a bit-node is not recovered necessarily after k iterations. It would be valid only for the BEC case.
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2) it punctures uniformly the bits for the lower recoverability-step symbol-nodes.

Their approaches is thought for �nite length puncturing design, but does not give insights
regarding the optimization of the puncturing distribution for ensembles of NB-LDPC codes.
In our work we optimize puncturing distributions for NB-LDPC ensembles, according to
the symbol-node degree distribution of the ensemble. Moreover, we analyze the code
performance for both the �nite and the in�nite blocklengths.

Asymptotic and �nite-length analysis. We have mentioned the asymptotic perfor-
mance of an ensemble of codes in the previous chapters. The Density Evolution allows
to exactly compute the threshold of code ensembles. The exact density evolution in non-
binary case is only manageable for the binary erasure channel. In the case of more general
memoryless channels, like the binary-input AWGN channel, density evolution must be
approximated using numerical techniques, e.g. the Monte-Carlo simulations. In the pre-
vious chapter, we have shown that the Density Evolution of non-binary LDPC codes can
be tightly approximated by using fast Monte-Carlo approximation of the density of the
messages exchanged during the iterative decoding of an in�nite code. This method allows
for obtaining very close estimates of thresholds of non-binary ensembles, making possible
the optimization of non-binary codes for a wide range of applications and channel models.
In particular, it can be successfully applied for optimizing puncturing distributions for
rate-compatible non-binary LDPC codes.

The in�nite code analysis is very important for understanding the way of puncturing
the bits, regardless of the particular graph realization. In particular, we are interested
in optimizing the puncturing distribution for an ensemble E(λ, ρ) of NB-LDPC codes;
afterwards we simulate short-medium codes with degree pair (λ, ρ) and puncturing patterns
that comply with the optimized puncturing distributions.

Advantages of non-binary LDPC codes. In the binary case, the puncturing problem
is restricted to choose the punctured bit-nodes. When we puncture a non-binary LDPC
code we have another degree of freedom given by the possibilities of choosing the number
of bits to puncture for each symbol. Then, we will demonstrate that a carefully choice of
puncturing patterns leads to an e�ective performance gain.

But non-binary codes have also another interesting property: by increasing the size of
the alphabet, good codes tend to be sparser. Consequently, asymptotic optimization can
be performed so that to obtain (asymptotically) good ensembles of codes having low node
degrees. This, in turn, positively a�ects the performance of ��nite-length� codes from the
optimized ensemble, as low node degrees yield faster convergence toward the asymptotic
limit. As said in the previous chapter, for an alphabet Fq with q ≥ 64 the best codes are
ultra-sparse, meaning that the symbol-node degrees are concentrated in ds = 2. We will
see that symbol-nodes of degree 2 play an important role in the puncturing process.

Puncturing distribution. In this work we focus on exploring the rate-adaptability
behaviour of non-binary LDPC codes. We propose a method that adapts the transmission
rate according to a puncturing pattern. The puncturing pattern identi�es which bits will be
transmitted and which bits will be punctured. The choice of the punctured pattern is done
according to a puncturing distribution that gives the fractions of punctured bits according
to the degrees of symbol-nodes. In the binary case, the puncturing distribution is de�ned
by fractions {fd}d of punctured bit-nodes of degree d. For non-binary codes, the puncturing
distribution can be de�ned in terms of fractions {fd,k}d,k of degree-d symbol-nodes with
exactly k punctured bits per symbol. This will be addressed in Section 5.2.
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There are two ways for puncturing the symbol-nodes, we can have cluster-puncturing,
in which the punctured-bits are concentrated in a small number of symbol-nodes, or we can
have a spread-puncturing, in which the punctured bits are dispersed among the greatest
number of symbol-nodes.

Note that our approach to the optimization problem of the puncturing distributions is
complementary to the �nite-length approach of [37]. Indeed, for an optimized puncturing
distribution, a puncturing pattern (satisfying the speci�ed distribution) can be constructed
by using the method of [37] (or a slightly modi�ed version of it) 3.

Analysis and optimization of the puncturing distribution. The analysis of the
puncturing problem will be divided in three parts according to the kind of code.

1) Regular NB-LDPC codes. In 5.3.1 we will �rstly analyse via the MC-DE how to
puncture the bits for regular codes. The main problem for regular codes is the choice
of a clustering or a spreading puncturing. We will see that it is better to spread
the punctured bits for regular (2,4)-LDPC codes, whereas a clustering puncturing
results better for regular (ds,dc)-LDPC codes with ds ≥ 3. It seems logic because if
we puncture completely a symbol-node of degree 2 it does not receive information
from the channel and it forwards the only incoming message. Instead, it is preferred
to cluster the punctured bits in less symbol-nodes with degree greater than 2 because
they are more robust and they can be recovered more easily.

2) Semi-regular NB-LDPC codes. Afterward, we will analyse the semi-regular
codes, in which the symbol-node degrees are concentrated around a value. Our idea,
based on the results obtained in the regular code analysis, was to spread the punc-
tured bits for 2-degree symbol-nodes and to cluster the punctured bits for symbol-
nodes with degrees greater than 2. However, this approach, shown in 5.3.2, is not
the best. In this case, it is better to spread all the punctured bits on symbol-nodes
with lower degree.

3) Irregular NB-LDPC codes. Concerning the irregular LDPC codes, we will opti-
mize the puncturing distributions by using the genetic algorithm illustrated in Sec-
tion 4.4. In Section 5.4 we have coupled the Di�erential Evolution with the Monte-
Carlo simulations in order to search good puncturing distributions. For non-binary
LDPC codes over F16, with maximum symbol-node degree equal to 10, the optimized
punctured codes exhibit a gap to capacity between 0.2 and 0.5dB, for punctured rates
varying from 0.5 to 0.9.

5.2 Puncturing Distributions for Non-Binary LDPC Codes

Let a non-binary LDPC code be used over a binary-input channel: a non-binary code-
word is mapped into its binary images by using Eq.(3.2), then transmitted over the channel.
Hence, even if non-binary codes operate at the symbol level, non-binary codewords still
can be punctured at the bit-level. A coded symbol can be either completely or partially
punctured, according to whether all the bits of its binary image are punctured or not. In
order to design good puncturing patterns we have to answer the following questions:

3. As a parallel, consider the construction of bipartite Tanner graphs: for given node-degree distri-
butions, we can advantageously use the Progressive Edge-Growth (PEG) algorithm, so as to maximize
the girth of the constructed graph; however, if the PEG algorithm is not constrained with a given de-
gree distribution, the algorithm will tend to construct a regular graph, which does not provide the best
performance.
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Figure 5.1: Bit level puncturing pattern for non-binary LDPC codes

1) Assuming that the code is regular, should puncturing bits be clustered or spread
over the symbol-nodes? Clustering yields a reduced number of completely punctured
symbols, which receive no information from the channel. On the contrary, spreading
results into an increased number of partially punctured symbols, which still bene�t
from some partial information from the channel.

2) In case of irregular codes, how should punctured bits be chosen with respect to
symbol-node degrees?

Puncturing distributions. We will de�ne the puncturing distribution according to L(x),
the degree distribution polynomial for symbol-nodes from the node-perspective. We remind
that the fraction of symbol-nodes of degree d is obtained by (see page 46):

Ld =
λd

d
∫ 1
0 λ(x) dx

Let fd,k denote the fraction of degree-d symbol-nodes with k punctured bits. For any
degree d, we note fd = (fd,0, fd,1, . . . , fd,p). Note that

∑p
k=0 fd,k = 1, as any symbol-node

contains either k = 0 (unpunctured), or k = 1, . . . , or k = p punctured bits. Let fd,kLd

be the fraction of symbols-node of degree d with k punctured bits. The overall fraction of
punctured bits is:

f =
1

p

ds,max
∑

d=1

p
∑

k=0

kfd,kLd (5.1)

The corresponding punctured rate, that will be referred to as rp, is given by:

rp =
r

1− f
(5.2)

This is illustrated in the Figure 5.1 for an LDPC code over F8 and degree distribution
polynomials:

L(x) =
1

2
x2 +

1

2
x4 and R(x) = x6

The designed code rate is r = 1/2. In the example, each symbol has 3 bits represented as
blue points, while the red crosses mark the punctured bits. In this case the fractions of
punctured bits are: f2,1 = f2,2 = 1/4, and f4,3 = 1/4.
Thus f = 0.25 and the designed punctured rate is rp = 2/3.
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5.3 Analysis of Puncturing Distributions

In this section we analyse di�erent puncturing distributions for regular and semi-regular
non-binary LDPC codes over the BIAWGN channel. We have already de�ned the semi-
regular LDPC codes in the Section 4.3.1 at page 69. What we want to know is how adapt
the puncturing distributions according to the degree of symbol-nodes.

5.3.1 Regular (2,dc)-LDPC Codes

First of all, we consider three ensembles of regular LDPC codes with rate 1/2, and
(symbol, constraint)-node degrees equal to (2, 4), (3, 6), or (4, 8). A fraction f ∈ [0, 0.25] of
coded bits are punctured, which corresponds to a punctured rate varying from rp = 1/2 (no
puncturing) to rp = 2/3. For each fraction of punctured bits, two puncturing distributions
have been compared:

1) clustering distribution: punctured bits are clustered on a fraction f of completely
punctured symbols-nodes; it could happen that the number of punctured bits is not
a multiple of p, in this case one symbol will be partially punctured 4.

2) spreading distribution: if f < 1
p punctured bits are spread over a fraction pf of

symbol-nodes, each one with one single punctured bit. Otherwise, all the symbol-
nodes are punctured, each symbol-node containing either ⌊pf⌋ or ⌈pf⌉ punctured
bits.

Spreading and clustering puncturing for di�erent punctured rates. We have
simulated the Density-Evolution via Monte-Carlo with 10000 outgoing messages and 200
maximum decoding iterations. Corresponding thresholds for codes over F8 and F16 are
shown respectively in Figure 5.2 and Figure 5.3. We note the di�erent behaviour of these
distributions, depending on the symbol-node degree: the spreading distribution provides
better performance for the regular (2, 4)-code, but it is outperformed by the clustering
distribution for the other two codes with higher symbol-node degrees.

4. This has a negligible e�ect on the performance.



5.3. Analysis of Puncturing Distributions 89

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.05  0.1  0.15  0.2  0.25

E
b
/N

0
 t

h
re

sh
o
ld

 (
d

B
)

f:

rp:
0.50 0.53 0.56 0.59 0.63 0.67

(2,4) - bit spreading
(2,4) - bit clustering
(3,6) - bit spreading
(3,6) - bit clustering
(4,8) - bit spreading
(4,8) - bit clustering

Figure 5.2: Spreading vs. clustering distribution; regular LDPC codes over F8

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.05  0.1  0.15  0.2  0.25

E
b
/N

0
 t

h
re

sh
o
ld

 (
d

B
)

f:

rp:

0.50 0.53 0.56 0.59 0.63 0.67

(2,4) - bit spreading
(2,4) - bit clustering
(3,6) - bit spreading
(3,6) - bit clustering
(4,8) - bit spreading
(4,8) - bit clustering

Figure 5.3: Spreading vs. clustering distribution; regular LDPC codes over F16



90 Chapter 5. Punctured NB-LDPC Codes over AWGN Channels

We can also observe that the gap of performance between cluster-spread puncturing
increases with the coding rate. Consider �rst the threshold of the punctured (2, 4) codes
with rate rp = 2/3. The spread puncturing shows a di�erence of 1.5dB with respect to
the code in which a clustered puncturing is applied. For the two other codes an increasing
of the gap is observed with the rate between the curves of the spread and the clustered
methods: observing the last point at rate rp = 2/3, for the (3, 6) LDPC code we observe
a gap of ∼0.3dB , whereas for (4, 8) LDPC code this gap is up to 0.7dB .

The intuition behind these results goes as follows. An outgoing message from a degree-2
symbol-node depends on the information coming from the channel and the unique incoming
extrinsic message. Thus, if a degree-2 symbol-node is completely punctured, it has no
channel information, and the outgoing message is equal to the incoming one. This causes
a lack of diversity in the iterative message-passing, which results a degraded decoding
performance. Conversely for the codes with ds > 2 it is better to concentrate the punctured
bits on the minimum number of symbols because they can easily be recovered from the
ds − 1 extrinsic messages.

Mixed puncturing distributions. Intermediary puncturing distributions can be ob-
tained by mixing the above clustering and spreading distributions. As illustrated at Figure
5.4 for regular codes over F4: the fraction of punctured bits is f = 0.25, corresponding to
a punctured rate rp = 2/3, and it is decomposed as f = f1 + f2

5, where f1 is the fraction
of bits that are punctured in a spreading manner (in this case, 1 bit per symbol), and f2 is
the fraction of bits that are punctured in a clustering manner (2 bits per symbol). Again,
we can observe that the spreading distribution provides better performance for the regular
(2, 4)-code. While for the other codes the performance are quite the same, probably due
to the used alphabet.
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5. We omit the the degree index d since the codes are regular.
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Similar results are also shown at Figure 5.5 for codes over F16, that is 4 bits each
symbol. Let the clusterization degree be the number of punctured bits per symbols. For
a clusterization degree k ∈ {1, 2, 3, 4} (on the abscissa), a fraction 1

k of symbol-nodes are
punctured, by punching k bits per symbol and keeping the fraction f = 0.25. It means
that we can puncture a single bit (which corresponds to 1 over 4 bits) of all the symbol-
nodes. Equivalently, for example, we can puncture 2 bits of the 50% of symbol-nodes that
keeps f = 0.25. Once more, we can observe that spreading is suitable for symbol-nodes of
degree-2, while clustering is more appropriate for symbol-nodes of degree ≥ 3.
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5.3.2 Semi-Regular LDPC Codes

We investigate now di�erent puncturing distributions for semi-regular LDPC codes,
with node-perspective degree distribution polynomials L(x) = 1

2x
2 + 1

2x
4 and R(x) = x6,

corresponding to a designed coding rate r = 1/2. The same fraction f = 0.25 of coded bits
are punctured, so as to obtain a punctured rate rp = 2/3. The fraction is decomposed as
f = f2+f4

6, where f2 is the fraction of bits that are punctured on degree-2 symbol-nodes,
and f4 is the fraction of bits that are punctured on degree-4 symbol-nodes.

Numerical results are shown at Figure 5.6 and Figure 5.7: for solid curves, punctured
bits are either clustered (full squares) or spread over the symbol-nodes (empty squares),
for both symbol-nodes of degree 2 and 4. For the dashed curve, punctured bits are spread
over symbol-nodes of degree 2, and clustered over symbol-nodes of degree 4. In view of
previous results for regular codes, we was expecting this last distribution to provide the
best performance. Surprisingly, it performs in between the clustering and the spreading
distribution. What we observe is that in case there are punctured symbols of degree 4
(f4 > 0), the best performance is given by the clustering distribution. However, since
all plots correspond to the same punctured rate, the best puncturing distribution in each
�gure is given by the lowest plot. In both cases this is the distribution that spreads all the
punctured bits over symbol-nodes of degree 2 (f2 = 0.25, f4 = 0, empty square) 7.

6. Also in this case, for the sake of the simplicity, we omit the degree index d. It should be f = f2,2+f4,4.
7. However, the clustering distribution with f2 = 0.2 and f4 = 0.05 yields almost the same performance.
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In the Figure 5.8 we have illustrated the puncturing problem in the binary case. We
have concentrate the punctured bits from the symbol-nodes of degree 4 (left side of the
�gure) to symbol-nodes of degree 2 (right side of the �gure). We observe that the best
choice of puncturing corresponds to a balanced concentration between the degree 2 and 4.

We conclude saying that the results for NB-LDPC codes represent an important dissim-
ilarity compared to the binary case, in which choosing all the punctured bits on degree-2
bit-nodes proves to be catastrophic. In the non-binary case, spreading punctured bits over
degree-2 symbol nodes yields good performance, provided that the fraction of punctured
bits is not too high. The next section will also provide evidence on this fact.

Finally, in this section we answered to the �rst question concerning the fact if it would
be better a clustered or a scattered puncturing distribution. Indeed, we have demonstrated
that the regular (2,4)-LDPC codes transmitted over Fq (with q ≥ 16) demonstrate the best
performance when we spread the punctured bits among the greatest number of symbol-
nodes. This result is fundamental also in light of the considerations about the code de�ned
over Fq with q ≥ 64 for which the ultra-sparse codes represent the best codes.
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5.4 Optimization of Puncturing Distributions

In this section we present optimized puncturing distributions for an irregular code over
F16 with rate 1/2, and punctured code rates from 0.55 to 0.9. Optimization has been
performed by using the Di�erential Evolution algorithm [69]. First of all we searched for
good degree distribution pairs λ and ρ of rate 1/2, with maximum symbol degree equal to
10. The optimized distributions and the corresponding Eb/N0 threshold are given below:

λ(x) = 0.5376x+ 0.1678x2 + 0.1360x4 + 0.1586x9

ρ(x) = 0.5169x4 + 0.4831x5

Eb/N0 = 0.3638dB

Next, we searched for good puncturing distributions for punctured rates:

rp ∈ {0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}

Optimized distributions {fd,k} d = 2, 3, 5, 10
k = 0, 1, 2, 3, 4

for di�erent punctured rates are shown in Ta-

ble 5.1. Also indicated are k̄d, the average number of punctured bits per symbol-node of
degree d, and fk, the average fraction of symbols with k punctured bits. As an equivalent
representation, the corresponding clusterization distributions are shown at Figure 5.9: they
consist of fractions of punctured symbols of degree-d, with k punctured bits per symbol,
which are given by fd,k

1−fd,0
, for d = 2, 3, 5, 10, and k = 1, . . . , 4. These distributions seem to

be random, and properties observed for regular codes shall not apply is this case.

Thresholds of optimized punctured distributions are shown at Figure 5.10, in terms
of Eb/N0. Are also plotted the theoretical Shannon limit (capacity), and thresholds of
distributions spreading punctured bits over degree-2 symbol-nodes. The gap between op-
timized distributions and capacity vary between 0.18 db for rp = 0.5 (unpunctured code)
and 0.52 dB for rp = 0.9. We also note that the degree-2-spreading distribution yields very
good performance up to punctured rate rp = 0.7. However, such a puncturing distribution
proves to be catastrophic for punctured rates rp ≥ 0.85

Finally, Figure 5.11 presents the Frame Error Rate performance of optimized distribu-
tions for �nite code lengths. All the codes have binary dimension (number of source bits)
equal to 4000 bits (1000 F16-symbols). The mother code with rate 1/2 has been constructed
by using the Progressive Edge-Growth (PEG) algorithm [32], and punctured patterns have
been randomly chosen according to the optimized distribution. It is very likely that the
performance can be further improved by using an optimized design of the puncturing pat-
terns (in terms of symbol-recoverability steps, cf. discussion in the introduction), especially
for high punctured rates.
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Table 5.1: Optimized distribution, rp ∈ {0.55, . . . , 0.90}

rp = 0.55 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.8924 0.0043 0.0248 0.0620 0.0165 0.3059
d = 3 0.8204 0.0675 0.0789 0.0048 0.0284 0.3533
d = 5 0.6899 0.1001 0.1024 0.1031 0.0044 0.6320
d = 10 0.6205 0.1034 0.1029 0.0843 0.0888 0.9175

fk 0.8547 0.0253 0.0422 0.0573 0.0205

rp = 0.60 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.7132 0.1211 0.1149 0.0083 0.0425 0.5456
d = 3 0.5953 0.1536 0.0161 0.0743 0.1607 1.0514
d = 5 0.7414 0.0009 0.1822 0.0479 0.0275 0.6190
d = 10 0.4608 0.1218 0.1187 0.1109 0.1878 1.4429

fk 0.6865 0.1172 0.1050 0.0257 0.0656

rp = 0.65 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.6246 0.1663 0.0585 0.1143 0.0363 0.7713
d = 3 0.5456 0.0471 0.1591 0.0217 0.2265 1.3364
d = 5 0.6088 0.0232 0.1711 0.1517 0.0453 1.0015
d = 10 0.3256 0.0504 0.2285 0.1868 0.2087 1.9026

fk 0.5985 0.1326 0.0894 0.1061 0.0734

rp = 0.70 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.3687 0.2371 0.2618 0.1002 0.0322 1.1901
d = 3 0.6182 0.0034 0.3144 0.0016 0.0624 0.8867
d = 5 0.6248 0.2787 0.0401 0.0281 0.0283 0.5563
d = 10 0.2035 0.0174 0.3128 0.2573 0.2090 2.2510

fk 0.4185 0.1952 0.2556 0.0866 0.0441

rp = 0.75 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.3954 0.2453 0.2044 0.1041 0.0508 1.1696
d = 3 0.2778 0.1177 0.1648 0.1521 0.2877 2.0542
d = 5 0.5561 0.0855 0.2053 0.0868 0.0664 1.0219
d = 10 0.2054 0.1053 0.2386 0.2850 0.1658 2.1006

fk 0.3812 0.2081 0.1999 0.1179 0.0929

rp = 0.80 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.2026 0.3865 0.1047 0.2757 0.0308 1.5448
d = 3 0.3616 0.3680 0.0876 0.1129 0.0699 1.1615
d = 5 0.5783 0.0038 0.0435 0.3546 0.0197 1.2335
d = 10 0.1998 0.0060 0.3841 0.0230 0.3870 2.3913

fk 0.2545 0.3390 0.1096 0.24585 0.0510

rp = 0.85 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.1590 0.4312 0.0180 0.3855 0.0063 1.6491
d = 3 0.5644 0.0813 0.0671 0.0049 0.2823 1.3595
d = 5 0.1730 0.1040 0.3498 0.3663 0.0069 1.9300
d = 10 0.0259 0.4386 0.0176 0.4036 0.1144 2.1421

fk 0.2159 0.3541 0.0500 0.3270 0.0530

rp = 0.90 k = 0 k = 1 k = 2 k = 3 k = 4 k̄d
d = 2 0.0960 0.4187 0.1077 0.2857 0.0919 1.8589
d = 3 0.6543 0.0070 0.0779 0.1035 0.1572 1.1023
d = 5 0.1304 0.3957 0.1314 0.2905 0.0521 1.7384
d = 10 0.0413 0.0132 0.2822 0.3780 0.2854 2.8530

fk 0.1811 0.3369 0.1125 0.2623 0.1072
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5.5 Conclusions

In this chapter rate-adaptability solutions for non-binary LDPC codes have been inves-
tigated. This issue is mainly motivated when the channel meets some special requirements
for physical layer due principally to the channel behaviour and one needs to rapidly adapt
the rate. At the transmitter side, the system can adapt the rate by simply changing the
puncturing pattern. Thus, this method allows one to keep the same encoding/decoding
regardless of the coding rate of the transmission. In this work we have focused on the
punctured NB-LDPC codes.

Puncturing distributions for regular and irregular codes have been analysed by using
simulated density evolution thresholds over the AWGN channel. Puncturing pattern have
been analysed with respect to bit clustering/scattering and symbol degrees distribution
polynomial L(x). We have demonstrated that we can have an incremental puncturing,
while maintaining the gap to the capacity on a wide range of punctured rates.

For regular codes, we showed that the design of puncturing patterns must respect
di�erent rules depending on the symbol-node degree: punctured bits must be spread over
degree-2 symbol-nodes, while they must be clustered on symbol-nodes of higher degrees.

If the number of punctured bits is relatively small, spreading punctured bits over degree-
2 symbol-nodes yields also good performance for irregular codes. However, such a punctur-
ing distribution could be catastrophic for higher punctured rates, in which case optimized
puncturing distributions are indispensable. In order to �nd good puncturing pro�les we
used the MC-DE method introduced in the previous chapter, to approximate the asymp-
totic performance of the punctured codes. Finally, we presented optimized puncturing
distributions for non-binary LDPC codes with small maximum degree, which exhibit a gap
to capacity between 0.2 and 0.5 dB, for punctured rates varying from 0.5 to 0.9.
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Chapter 6

Binary Diversity For NB-LDPC

Codes over Rayleigh Channels

The AWGN channel is a classical model that is used for studying the free space model.
Other disturbing phenomenons due to external interference can a�ect the transmitted sig-
nal in a more signi�cant way. It is the case of radio channels in multipath environments
that can be modeled by a Rayleigh distributed fading [51]. The introduction of the inter-
leaving, placed between the encoding and the modulator, can mitigate the fading e�ects by
providing at the receiver side a collection of uncorrelated signal samples. In fact, without
interleaving, the bits of each coded symbol are a�ected by a unique fading coe�cient; the
interleaver spreads the bits with the same fading coe�cients within di�erent transmitted
symbols. As a consequence, it allows to lower the error probability toward the AWGN
limit.

In this chapter, we analyse the performance of several bit-interleaving strategies applied
to NB-LDPC codes over the Rayleigh fading channel. We prove that this technique provides
important gains in terms of frame error rate and error detection. In particular, we focus
on the ultra-sparse non-binary LDPC codes with constant symbol-node connection ds = 2.
These regular (2, dc)-NB-LDPC codes demonstrate the best waterfall performance, thanks
to their large girths and improved decoding thresholds. But these codes have codewords
with low Hamming weights that cause convergence to erroneous codewords at a high SNR
regime and, consequently, lead to high error �oors. We demonstrate that the interleaving
helps to avoid these drawbacks.

Also, this work demonstrates the importance of the way the bit-interleaving is de-
signed, and proposes a design of an optimized bit-interleaver inspired from the Progressive
Edge-Growth (PEG) algorithm. This optimization algorithm depends on the topological
structure of a given LDPC code and can also be applied to any degree distribution and
code realization. Simulations show excellent results of the proposed interleaver compared
to the random interleaver as well as to the system without interleaver.

The rest of the chapter is organized as follows. After motivating this work in Section 6.1,
we give some background and notation in Section 6.2. Then, we introduce the interleaving
technique in Section 6.3. The proposed PEG interleaver is described in Section 6.4. In
Section 6.5 simulation results and comparisons are shown. Finally, the conclusions are
drawn in Section 6.6.

101
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6.1 Motivations

Channel model. The assumption behind the AWGN channel is that the transmission is
in a free space propagation. Often this is not the case and, for example in indoor wireless
system or in mobile communication in urban environment, the transmission may be a�ected
by other phenomena like the ground re�ection or the presence of all around objects. Thus
the transmitted signals undergo to a multipath propagation that causes �uctuations of the
amplitude, phase and arrival angle of the received signals. When there is not a dominant
light-of-sight, this process can be modeled by the Rayleigh model [51]. As illustrated in
the Section 2.2.1 (page 17), this model assumes that the channel response envelope varies
according to the Rayleigh distribution (Eq. (2.6)).

In this work we consider NB-LDPC codes modulated by a complex QAM constellation
and then transmitted over the Rayleigh fading channel. We also assume that the non-
binary alphabet of the codes matches the complex constellation used at the transmitter
(that is, a q-QAM modulation is used for NB-LDPC codes de�ned over Fq).

Interleaved systems. The interleaving technique is critical for many channels that are
not memoryless and in which the errors might occur in bursts. Besides, for some families
of error-correcting codes, like Turbo codes, an inner interleaver is an integral component
and its proper design is crucial for good performance [55, 75]

Moreover, a classical way to �ght against the fading e�ects is to introduce diversity
by the mean of a bit-interleaver at the transmitter side [45]. Nevertheless, the use of
the interleaver for binary LDPC codes appears instead useless, since the bipartite graph
already behaves as an inner interleaver. Therefore, the idea of interleaving LDPC codes is
something new, because there is no interest of using an interleaver in the binary case. But
with the introduction of non-binary alphabets, the use of a binary interleaver turns out to
be useful when NB-LDPC are transmitted over the Rayleigh fast fading channel, in which
di�erent codeword symbols are a�ected by di�erent fading coe�cients.

Interleaving bene�ts. The interleaver operates between the encoder and the symbol
mapper (Figure 6.1), and it aims at improving error rates in situations involving a fading
channel. Without an interleaver the bits of each symbol-node are a�ected by a unique
fading coe�cient then they are more sensible to deep fading. The presence of an interleaver
allows to spread the deep fading and then helps to mitigate this e�ect within the sent
codeword.

Figure 6.1: Transmission Chain
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In Section 6.3 the interleaver is seen as a superimposed graph on a pre-designed Tanner
graph, in which the outgoing edges from symbol-nodes correspond to the mapping between
the bits of the coded NB-LDPC symbols and the bits that compose the transmitted QAM
symbols. The QAM symbol will be the modulation symbol-node, which will represent the
third kind of node of the whole graph. In our work we aim to design an interleaving pattern
that gives the position of each bit inside the modulated symbols. At the receiver end this
pattern is used after the demodulation for de-interleaving, so that each soft-bit takes the
original position in the codeword.

We demonstrate that a random interleaver already shows good simulation results with
respect to a no-interleaved system. But we will also show that the performance are even
better when the bit-interleaver is adapted to the NB-LDPC code structure. Indeed, in
Section 6.4 we propose an optimized interleaving algorithm inspired from the Progressive
Edge-Growth algorithm. It associates consecutive channel bits to the most distant symbol-
nodes in order to render the resulting graph with the largest girth, hence the coded symbols
result the more uncorrelated possible.

Ultra-sparse LDPC codes. The case of codes for which the underlying bipartite graph
is ultra-sparse, in the sense that each symbol-node is connected to exactly ds = 2 linear
constraint-nodes, is of particular interest. First, very large girths can be obtained for
Tanner graphs with ds = 2, as demonstrated in [32, 72]. It has also been pointed out
[13, 63] that when the size of the non-binary alphabet grows, best decoding thresholds
are obtained for average density of edges closer and closer to ds = 2. Practically, for NB-
LDPC codes de�ned over Galois �elds Fq with q ≥ 64, best codes, both asymptotically
and at �nite lengths, are ultra-sparse codes. For more details the reader can also refer to
the Section 4.3.3 (page 76).

Poulliat et al. in [54] proposed a design method for regular (2,dc)-LDPC codes over
Finite Field Fq based on the algebraic properties of the binary images of the parity-check
matrix H, with good performance in the waterfall and in the error �oor regions. Thanks
to these designs we can construct optimized regular (2,dc)-LDPC codes used for the com-
pleteness of this work. In fact, in this work we design ultra-sparse LDPC codes de�ned in
high order alphabet Fq, with q ≥ 64.

Despite those advantages, the ultra-sparse LDPC codes in Fq su�er from a serious
drawback, as their minimum distance dmin is limited and grows at best as O(log(N)) [54].
The minimum distance dmin of a code is an important parameter: a large dmin helps to
distinguish two di�erent codewords. As a consequence the decoder can avoid to converge
toward erroneous words at high SNR. Conversely, a code with limited dmin induces the
decoder to choose bad codewords causing poor performance in the error �oor region. This
limitation is not critical when the desired error rate is above 10−5, which is the case of the
wireless transmissions that we target in this thesis. However the bit-interleaver helps the
decoder to converge toward the correct codewords that is one of the reasons for which we
observe a code performance improving. This will be presented in simulation result section
(Section 6.5), when we will talk about the percentages of detected errors of the analysed
system.

Marginalization e�ect. Another aspect on which we will focus is that the introduction
of the bit-interleaver yields indirectly to a degradation of the �quality of the demapping�.
We recall that the decoder input is a probability vector associated to each coded symbol
of being one of the elements of the Galois �eld. The reader can refer to the Section 3.2.4
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(page 44) where we have computed the decoder input. Here we make a quality study of
the two cases.

1) Symbol-demapping. In case of uninterleaved systems (or more in general when
there is a one-to-one correspondence between the coded and modulated symbols)
these vectors are derived directly from the received complex symbols. This operation
is referred, with a little abuse of language, to as symbol-demapping.

2) Bit-demapping. On the contrary, when we use an interleaver, the computation
of the decoder input is more complicated because one needs �rst to reconstruct the
symbol-nodes by the de-interleaver. This means that we need to recompose the
symbol-node probabilities bit-by-bit: we have to compute �rst the probabilities of
each bit of being �0� or �1�, and then, with these probabilities, we can compute the
probabilities of the symbol-nodes. The probability of each symbol of being one of the
elements of the Galois �eld is obtained by the product of the probabilities of each
component bit of being �0� or �1�. This operation is referred, with a little abuse of
language, to as bit-demapping.

We note that the operation of passing from the QAM symbol-level to the bit-level and
then to the Fq-symbol level, called commonly marginalization, induces a demapping
loss. On the other hand, the interleaving system shows very good performance that
outperforms the uninterlevead systems and demonstrates that the introduced coding
gain is greater than the marginalization loss.

6.2 Background and Notation

6.2.1 Modulation and Channel Model

Channel model. We assume a Rayleigh channel model, typical of a mobile/multipath
environment. This model has been presented in Section 2.2.1 (page 17). The received
symbol yk is:

yk = gkxk + zk

where xk stands for the kth transmitted modulated symbol scaled by i.i.d. Rayleigh coef-
�cients gk, and zk is the Additive White Gaussian Noise with variance σ2. Moreover, we
assume perfect Channel State Information at the receiver.

Modulation. We denoted by X the set of the symbols in the M-QAM constellation. Each
modulated symbol xk ∈ X has m bits. We also denote by N the number of modulation
symbols, and by nb the number of coded bits.

6.2.2 Initialization of the Belief Propagation Decoding

We decode the LDPC codes with the Belief Propagation (BP) decoder [76] in which the
messages that circulate on the graph are multidimensional vectors (Section 3.2.1, page 38).

The initialization messages are Likelihood probability weights, dependent on the chan-
nel statistics. For NB-LDPC codes, the decoder input consists of N Likelihood vectors
(P (sn = a))a∈A, where sn denotes the nth transmitted symbol, n ∈ {1, . . . , N}.

In the following we discuss about the computation of the input Likelihood messages,
with or without an interleaver. This paragraph follows from the Section 3.2.4, but now we
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focus on viewpoint of the demapping quality. Let Y be the vector of received symbols and
Γ be the Likelihood messages at the input of symbol-nodes.

Symbol-demapping. In the case of m = p and no bit-interleaver, there exists a one-to-one
correspondence between the modulated and coded symbols, then the Likelihood vectors
are directly derived from the received complex symbols (Eq. (3.20)):

Y = [ y1, . . . yk, . . . yN ]
↓ ↓ ↓

Γ = [ γs1 , . . . γsn , . . . γsN ]

Bit-demapping. The other case corresponds when we use a bit-interleaver (or, more in
general, when the size of the constellation does not match the size of the coded symbols). In
such a case, an intermediate operation, denoted to as marginalization, is used to transform
the constellation symbol likelihoods into bit-wise likelihoods. In the following framebox we
represent the case of the interleaver. First, the marginalization operation transforms each
received complex symbol into a vector of m soft bits, we denoted by Ybin the vector that
contains the nb soft bits corresponding to the complex symbols (Eq. (3.21) and Eq. (3.22)).
Afterwards, the de-interleaving operation rearranges Ybin in order to obtain Γbin. Finally,
the decoder input Γ is obtained according to the Eq. (3.23).

Y = [y1, . . . yN]

⇓ marginalization

Ybin = [(y1,1, . . . y1,m), . . . , (yN,1, . . . yN,m)]

⇓ deinterleaving

Γbin = [(γs1,1 , . . . , γs1,1), . . . , (γsN,1 , . . . , γsN,p
)]

⇓ Likelihood computing
Γ = [γs1 , . . . γsN ]

Concerning the non-interleaved system with m 6= p, the only change is that the de-
interleaver merely matches the sequence of bits, such that y1,1 corresponds to γs1,1 , y1,2
corresponds to γs1,2 , and so forth.

Hence, the bit-demapper induces a performance loss because of the marginalization
e�ect. Nevertheless, in presence of an interleaver, the loss of information due to marginal-
ization is counterbalanced by the gain that the bit-interleaver brings in the case of fading
channels. We show in Section 6.5 that the diversity gain surpasses greatly the loss due
to marginalization both in the waterfall and in the error �oor regions. In the rest of the
analysis, we consider only the case where m = p, so that the marginalization transformation
is used only when a bit-interleaver is employed.

6.2.3 Typology of errors

Consider S ∈ C a transmitted codeword of an LDPC code C. At each decoding iter-
ation, the decoder determines an estimation Ŝ of S according to the a posteriori symbol
probability relative to each symbol-node.

Usually, the decoder stops in two situations:
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i) at some iteration, the syndrome is veri�edHŜT = 0, hence a codeword Ŝ is identi�ed;

ii) the maximum number of iterations is reached, then Ŝ is computed from the messages
at the last iteration (but Ŝ is not a codeword)

A detected error happens if Ŝ does not belong to the codeword set (that is in situation
ii). If Ŝ belongs to the codeword set (situation i) but it is not the transmitted codeword
(Ŝ 6= S), the decoder makes an undetected error.

Undetected errors are due to codewords with low Hamming weight, which is one the
weaknesses of the considered (2,dc)-NB-LDPC codes. We will make in Section 6.5 a detailed
study of the percentages of detected and un-detected errors in each situation.

6.3 Interleaving Algorithm

The e�ect of a bit-interleaver is to spread the coded bits in di�erent modulation sym-
bols, such that the bits composing the same coded symbol are a�ected by di�erent fading
factors. The advantage of using an interleaver is that the deep fading e�ects are mitigated
because the soft bits come from the same QAM-symbol are distributed within more coded
symbols after the de-interleaver. Put di�erently, the decoder input corresponding to each
coded symbol is composed by the components of more QAM-symbol: this allows to render
the exchanged messages more reliable and to easily recover the codewords.

The bit-interleaver can be seen as the construction of a superimposed regular (m, p)-
bipartite graph (from now on called simply interleaving graph) on the Tanner Graph. It
connects the modulation-nodes xk to the symbol-nodes sn of a pre-designed Tanner Graph.
The modulation-nodes are another type of nodes representing the modulated symbols in
the interleaving graph.

In the interleaving graph 1, edges connect N modulation symbol-nodes xk to N coded
symbol-nodes sn. Actually the degree of a modulation-node must be equal to the constella-
tion order (number of bits per modulation-symbol) and the degree of a symbol-node must
be equal to the order of the each modulation symbol (number of bits per symbol-node).

As said, since the number of coded and transmitted bits can be computed either as
the number of bits within the N coded-symbols sn, or as the number of bits within the N

modulated-symbols xk, we have that nb = N p = N m.

Figure 6.2 shows an example of a superimposed interleaving graph on the Tanner graph
of Figure 3.1. The interleaver is represented as a block denoted as Π; each modulation-
node has m = 3 outgoing edges and each symbol-node has p = 3 outgoing edges, so that
m = p. In order to distinguish the modulation-node they are drawn in blue.

Therefore, the aim of the a bit-interleaving design is to look for an interleaving pattern
that contains the scrambled bit positions in the interleaving graph.

Though random interleaving shows already good performance as demonstrated in the
Section 6.5, we have devised an algorithm to optimize the interleaver design, which even
more improves the performance, especially in the error-�oor region. The bit-interleaver
optimization algorithm is presented in the next section.

1. Even if we assume m = p (and then N = N), we will give a generalized version of the interleaving
algorithm in order to apply it also in case that m 6= p.
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Figure 6.2: Global graph

6.4 PEG Optimization Interleaving

Our bit-interleaver design is inspired from the Progressive Edge-Growth (PEG) method
[32] used for constructing Tanner graphs with large girths that progressively connects
symbols and constraint-nodes. For this reason, from now on, our optimization algorithm
will be referred to as PEG interleaving algorithm.

We have already discussed about the advantages of the PEG algorithm in Section 3.4.1
(page 52) for constructing large girth LDPC graph. The proposed PEG interleaving al-
gorithm is similar to the PEG construction. The PEG interleaving algorithm maps in
an e�cient way the modulation-nodes to the symbol-nodes. Good connections are meant
to give the largest possible girth to both the LDPC Tanner graph and the interleaving
graph. Starting with the knowledge of m, p and of the LDPC Tanner graph, the algorithm
connects each modulation-node to m symbol-nodes. The rationale behind the optimization
algorithm is to �nd, for each modulation-node, the m most distant coded symbol-nodes
(from a topological distance point of view), and therefore to build connections in the in-
terleaving graph in order to obtain the largest girth. It should also be noted that the
bit-interleaver design is code-dependent. As a matter of fact, the girth computation dur-
ing the interleaver design takes into account the topology of the already designed LDPC
graph. It results in particular that the bit-interleaver built with our algorithm is actually
matched to a particular NB-LDPC code, which explains the further performance gains that
we observe.

PEG interleaving algorithm. We now explain the principles of the PEG interleaving
algorithm. Let dn denotes the coded symbol-node degree and dk denotes the modulation-
node degree. Before the algorithm starts, all the degrees are set to 0. During the algorithm
execution, the current node degrees represent the number of established connections for the
nodes. Thus, for a coded symbol-node sn, n ∈ {1, . . . , N}, the degree range is 0 ≤ dn ≤ p;
for a modulation-node xk, k ∈ {1, . . . ,N}, the degree range is 0 ≤ dk ≤ m.

Let xk be a modulation-node to be connected. The PEG interleaving algorithm chooses
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Figure 6.3: Expansion of the Tanner and interleaving graphs

the �rst connection between xk and sw. sw is a randomly chosen symbol-node among
the available ones with the lowest current degree. Then, for the second edge selection,
we expand both the Tanner and the interleaving graphs through the three types of nodes
taking into account the new connection. Once the graph expansion is complete, the bottom
of this graph is the set of symbol-nodes {sz} that are the most distant symbol-nodes from
sw. Hence, the algorithm can connect the modulation-node xk to one of the coded symbol-
node sz ∈ {sz} with the lowest degree. A new connection is thereby chosen, and the
algorithm goes to the next edge selection, by performing the same steps - graph expansion
and node selection. The procedure is iterated until xk reaches the correct degree dk = m.
The algorithm stops when all the modulation-nodes are connected.

Note that with this PEG interleaving algorithm, only the coded symbol index is im-
portant for the global girth of the graph, and not the location of the bit inside the coded
symbol binary map. Actually, an extra local scrambler could be added � at the coded sym-
bol level � without impacting the girth of the global graph. In our simulations, however,
this extra local scrambler did not impact signi�cantly on the error rate performance.

In Figure 6.3 we have illustrated the proposed PEG interleaving algorithm. We as-
sume that the �rst connection between the modulated-node x3 and the symbol-node s1 is
randomly chosen. We also admit a partial connections of modulated and coded symbols.
Then, for the last connections of x3, the Tanner graph and the interleaving graph have
been developed all together till the expansion is complete. After that, in the bottom of
this expansion we are sure to �nd the most distant symbols from x3 and, for instance, we
proceed with the connection between x3 and s4. Finally, a random selection assign to x3
the coded bit positions (2, nb, 12), cf. Figure 6.2.

Although the above described construction could be adapted to any NB-LDPC code,
including codes with irregular node distributions and m 6= p, we restricted our study to
regular (2,dc)-LDPC codes with m = p. For these codes, the error rate simulation results
and the study of detected vs. undetected errors are conducted in the next section.
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6.5 Simulation Results

In this section, we present the simulation results for the interleaved and un-interleaved
NB-LDPC codes. Motivated by the asymptotically good thresholds that grows with the
order �eld, we have focused on LDPC code alphabets F64 and F256. It has been shown that,
for those high orders, the ultra-sparse NB-LDPC codes with node degree ds = 2 is the best
choice. We have therefore simulated short-length LDPC codes (each code design presents
only ∼100 coded symbols) for those two di�erent alphabets and two di�erent coding rates:

1) Regular (2,6)-NB-LDPC codes corresponding to a rate R = 2/3

2) Regular (2,12)-NB-LDPC codes corresponding to a rate R = 5/6

These NB-LDPC code Tanner graphs are designed with PEG method [32] (girth gmin = 6)
and decoded by using a Belief-propagation decoder [16]. As said in the previous section,
the size of the alphabet is the same as the size of modulation constellation: codes de�ned
over F64 are transmitted using the 64-QAM modulation (m = p = 6), whereas codes de�ned
over F256 are transmitted using the 256-QAM modulation (m = p = 8).

Each LDPC code is simulated on the Rayleigh fading channel with three possible trans-
mission systems: �rst, a non-interleaved system with direct mapping from the coded to
the modulation symbols, then with a random bit-interleaver and �nally with our PEG-
optimized interleaver.

Marginalization loss. In Figure 6.4 and 6.5 we have drawn two black curves both ones
with empty circles. Both curves correspond to the no-interleaved system, but in order
to evaluate the marginalization loss we have demapped the same codes with a symbol
demapper and a bit demapper. The solid line represents the performance of the system
with a symbol demapper, whereas the dashed line represents the performance of the system
with a bit demapper. In these cases, the bit demapper degrades the performance with a
marginalization loss included between 0.7 and 0.8dB .

Frame Error Rates. The curves in Figure 6.4 represent the Frame Error Rates (FER)
of the considered (2,dc)-LDPC codes de�ned over F64 for small codewords (nb = 612 bits,
N = 102 coded symbols) modulated with a 64-QAM. A signi�cant performance gain can
be observed both in the waterfall and in the error �oor regions in the presence of a bit-
interleaver. This shows that the diversity gain brought by the bit-interleaving surpasses
greatly the information loss due to symbol-to-bit marginalization.

As expected, the PEG interleaved system (represented by �) achieves roughly the same
gain as random interleaving (represented by ∗) in the waterfall region, but shows also an
improved error-�oor. This was our goal of building bit-interleavers that optimize the girth
of the global graph.

In Figure 6.5 we show the performance of the codes de�ned over F256 with codelength
nb = 816 (N = 102 coded symbols) and modulated with a 256-QAM. As can be seen,
when the size of alphabet grows, bit-interleavers still gain in the error �oor region, but the
gap between the two kinds of interleavers vanishes. Generally, the increase of the size of
the alphabet makes the gap between the PEG and a random interleavers reduced. In this
�gure we can also observe the gap between the interleaved and the un-interleaved curves
in the waterfall region: this is due to the di�erent demapping and that the marginalization
loss is initially greater than the diversity gain.
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Percentage of error detection. Now, let us discuss the e�ect of bit-interleaving and our
optimized construction for the detection of frame errors. We have drawn in Figure 6.6 and
6.7 the percentage of detected frame errors with respect to the FER, for the (2,6)-LDPC
codes de�ned in F64 and in F256, respectively.

As it was expected, this study con�rms that the better performance in the error �oor
region results also from a better detection of frame errors. More precisely, bit-interleaving
on a Rayleigh channel helps the decoder to avoid convergence to low-weight codewords,
therefore improving at the same time the performance and the probability of error detec-
tion. This last feature is very interesting since in most wireless mobile transmissions, a
link adaptation strategy implementing retransmission of detected wrong frames is generally
used (ARQ or Hybrid-ARQ).

Note that even in the case of codes in F256, our bit-interleaving optimization shows an
interesting gain in detected frame errors (100% for all FER simulated) compared to the
random-interleavers, although the error rates were the same (see Figure 6.5 and Figure 6.8).
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Figure 6.4: Frame Error Rates for (2,6) and (2,12) NB-LDPC codes, n = 612, F64, 64-QAM
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Figure 6.6: Percentage of detected frame errors for a regular (2,6)-NB-LDPC code, n = 612, F64,
64-QAM
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Figure 6.7: Percentage of detected error frames for a regular (2,12)-NB-LDPC code, n = 612,
F64, 64-QAM
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Figure 6.8: Percentage of detected error frames, regular (2,6)-NB-LDPC code, n = 816, F256 256-QAM
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Figure 6.9: Percentage of detected error frames, regular (2,12)-NB-LDPC code, n = 816, F256 256-QAM
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6.6 Conclusions

When we transmit in a multipath environment, as in case of an indoor wireless system
or a mobile radio, the channel is usually modeled as a Rayleigh model. Coded symbols
transmitted over a Rayleigh channel are a�ected by di�erent fading factors; hence especially
for codes with small minimum distance, speci�c noise realizations could make the decoder
converge to erroneous codewords.

Moreover, deep fading could make some codeword symbols totally unrecoverable in
case of one-to-one correspondence between modulated and coded symbols, leading to a
poor system performance.

In order to avoid this phenomenon, binary diversity can be exploited by using a bit-
interleaver module placed between the encoder and the modulator. The bit-interleaver
introduction mitigates the fading e�ects and reduces drastically the error convergence
toward close codewords from the transmitted ones.

A random interleaver and an optimized interleaver have been analysed by running
simulations over short size regular (2, dc)-NB-LDPC codes. The optimized interleaving
algorithm is inspired from the Progressive Edge-Growth (PEG) method and it ensures
maximum girth of the global graph.

Although the bit-demapping required by the interleaved system leads to a marginal-
ization loss, it has been demonstrated that the use of an interleaver ensures improved
frame-error probabilities compared to a system without it.

Additionally, in all considered cases, the optimized interleaver showed an even better
gain with respect to the random interleaver, as far as performance and error detection rates
are concerned.

In this chapter we have adapted the interleaving to a given LDPC graph. We have
demonstrated that a good mapping between the modulated and the coded symbols yields
to improve the performance. As a perspective of a future work, we think that even better
performance can be obtained if the PEG construction of the code's bipartite graph is
merged with the proposed interleaving algorithm. Thus, in order to have larger girth, the
design of the LDPC codes may be developed on the whole graph that includes both the
modulation and the symbol-nodes.



Chapter 7

Full-Diversity NB-LDPC Codes

over Block-Fading Channels

The block-fading channel model is widely used in the design and analysis of wireless
communication systems. In the block-fading (BF) channel model, during the transmis-
sion of a codeword the channel is constant within blocks and changes independently from
one block to another. This model �ts many delay sensitive systems employing frequency
hopping (FH), Orthogonal Frequency Division Multiplexing (OFDM), time diversity tech-
niques in time selective channels etc.

BF channels are non-ergodic and their Shannon capacity is zero. A meaningful infor-
mation-theoretic tool is the outage probability, which provides the best slope for the frame
error rate (FER) curve of any coded modulation scheme, in the asymptotic limit of the
SNR. The slope of the outage probability curve depends on the coding rate. It becomes
increasingly steeper as the coding rate decreases from 1 to 1/nf , where nf is the number
of fading blocks, and remains unchanged when the coding rate further decreases below this
value. Codes with coding rate r = 1/nf , whose FER curve has (asymptotically) the same
slope as the outage probability curve are called full diversity codes.

In this chapter, we introduce a �exible coding scheme that achieves full-diversity over
the block-fading channel. The particularity of our approach is to rely on non-binary LDPC
codes coupled with multiplicative non-binary codes, so that to easily adapt the coding rate
to the number of fading blocks. A simple combining strategy is used at the receiver end
before the iterative decoding, so that decoding can be performed on the same mother
code. As a consequence, the decoding complexity is the same irrespective of the number
of fading blocks. Moreover, we propose an optimization of the non-binary multiplicative
coe�cients according to the Euclidian distance between the constellation points. Simula-
tion results demonstrate that the proposed technique yields a close-to-outage performance,
with signi�cant gains with respect to the binary LDPC codes from the literature.

The rest of the chapter is organized as follows. We motivate this work in Section 7.1.
Some backgrounds about the channel model and the coding diversity are discussed in Sec-
tion 7.2. In Section 7.3 we show the limit of interleaving for this channel model. We discuss
several coding issues for the BF channel in Section 7.4. The proposed coding scheme for
the block-fading channel is presented in Section 7.5. Performance analysis and simulation
results are shown in Section 7.6. Finally, Section 7.7 concludes this chapter.
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7.1 Motivations

The block-fading channel [5, 51] was introduced in order to model channels involving
slow time-frequency hopping (used in wireless cellular networks), or multicarrier modu-
lation using orthogonal frequency division multiplexing. More generally, this simpli�ed
model comes out to be very useful in code designs for slow-varying fading environments.

Coding on block-fading channel. The main characteristic that distinguishes the block-
fading model from other channel models is that the former is non ergodic. Consequently,
in case that an error-correcting code is used to communicate over the channel, channel
realizations corresponding to di�erent codewords have di�erent statistical properties, even
if the codewords are allowed to be arbitrarily long. It turns out that there is a non-
zero probability, referred to as outage probability, that the instantaneous channel capacity
(corresponding to the channel realization during the transmission of one single codeword)
is smaller than the current coding rate. This also implies that the Shannon capacity of the
channel equals 0.

According to the above discussion, the slope of the outage probability curve depends
on the current coding rate. It becomes increasingly steeper as the coding rate decreases
from 1 to 1/nf , where nf is the number of fading blocks, and remains unchanged when the
coding rate further decreases below this value. We also note that in the asymptotic limit
of the SNR, the slope of the frame error rate (FER) curve of any coded modulation scheme
is lower bounded by the slope of the outage probability curve (with same coding rate).
Put di�erently, the FEC curve decreases, at best, as quickly as the outage probability
curve. Moreover, if the code is long enough, the outage probability provides actually a
lower bound of the FER performance 1. As a consequence, the performance of a code over
the block-fading channel is usually evaluated in terms of the slope of the FER curve and
of the SNR gap to the outage probability. More details will be given in Section 7.2.1.

Binary diversity. Following the study conducted in the previous chapter, concerning
binary interleavers for NB-LDPC codes over fast fading channels, we will �rst study the
design of a binary interleaver for NB-LDPC codes transmitted over the BF channel. In
order to analyze if the interleaving can bring diversity gain also in case of BF channel we
implement an interleaving adapted to this channel model. In this case the interleaving
pattern is created so that the coded bits are scattered homogeneously within the fading
blocks. However, we will see that the interleaving technique does not give the expected
code diversity, especially for a small number of fading blocks.

Hence, regrettably, the binary interleaving technique does not provide good results,
as in the case of fast-varying fading channel, where this technique allows to e�ciently
mitigate the fading e�ects. The poor performance is ascribed to the fact that the interleaver
cannot mitigate the deep fading blocks. In Section 7.3 we will give more details about the
implemented interleaver used in the BF transmissions and we show by simulation results
that this method is not suitable for such a channel model.

Full-diversity codes. Consider a code C that is used to communicate over a BF channel
with nf fading blocks. We assume that ML decoding is performed at the receiver, and
denote by Pe(C, ρ) the (word) error probability for a given SNR value ρ.

1. However, for very short codes, the FER curve might be below the outage probability curve!
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1) The SNR exponent of the error probability is de�ned by:

d∗ = lim
ρ→+∞

− logPe(C, ρ)
log ρ

2) Under the ML decoding (as assumed above!), d∗ = dH ∈ [0, nf ], where dH be the
minimum blockwise Hamming distance. Consequently d∗ is also referred to as block
diversity of the code C.

3) A code is said to be full-diversity if d∗ = nf .

For full-diversity codes r ≤ 1/nf (this follows from the Singleton bound [33, 38, 48])
and the gap between the Frame Error Rate (FER) and the outage probability curves is
maintained constant for arbitrarily large SNR values.

The block-erasure channel (BlEC) can be seen as a particular (and limiting) case of
the block-fading channel and corresponds to the case in which a block is completely erased
with probability pe or correctly received with probability 1 − pe, independently from a
block to another. Considering this last model, a full-diversity code has the particularity
that any codeword can be entirely recovered if at least one of the nf blocks is correctly
received. By intuition, a full-diversity design for the BlEC will also performs well over the
BF channel, where codewords go through deep and weak block fades. Note also that the
above de�nition depends on the considered decoder. But codes that ful�ll the full-diversity
condition (3) under the ML decoder, might not be full-diversity for other decoders (e.g.
belief-propagation decoder). More details will be given in Section 7.2.3.

Full-diversity coding schemes. Several coding schemes for the block-fading and the
block-erasure channels have been already proposed in the literature, starting from the early
90's with the analysis of convolutional codes with random and periodic interleavers over
the block-erasure channel [40]. More recently, interleaving techniques for parallel turbo
codes over the block-fading channel have been analysed in [7], and a general construction
of turbo-like codes, obtained by concatenating linear binary encoders through interleavers,
has been proposed in [33].

Low-Density Parity-Check codes with belief-propagation decoding have attracted an
increased interest over the last decade, due to the fact that they can be optimized to
perform very close to the channel capacity, for a broad class of ergodic channel models
[60]. In case of block-fading channels, a class of full-diversity binary LDPC codes, referred
to as root-LDPC codes, has been proposed in [8]. A more general de�nition of root LDPC
is introduced in Section 7.4; following this de�nition we propose a general version of root
LDPC codes by de�ning triangular parity-check matrices for a limited number of fade
blocks.

NB repetition symbols. Recently, in [36] Kasai et al. have identi�ed an advantage of
NB-LDPC codes, consisting on the design of �exible coding transmission in a very simple,
though e�cient way. The proposed approach is to concatenate non-binary multiplicative
codes to a mother NB-LDPC, which leads to extra redundancy built from �non-binary
repetition� symbols 2. When the multiplicative coe�cients of the NB-repetition symbols
are properly designed, it results that the coding gain is greatly increased compared to
binary repetition coding, especially when q ≥ 64.

2. If s is a non-binary symbol of a transmitted codeword, a non-binary repetition symbol is a symbol
s′ = hs, where h is a non-zero element of the Galois �eld on which the code is de�ned. If h = 1, then
s′ = s, which corresponds to the classical repetition coding, referred to as the binary repetition coding.
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In our work we investigate the use of non-binary LDPC codes over block-fading chan-
nels. We make use of the concatenation of NB-LDPC codes and non-binary repetition
codes to design our full-diversity coding scheme, as presented in Section 7.5. Our approach
is based on NB-LDPC codes and the recently introduced technique of multiplicative non-
binary coding [35, 36]. Using a root NB-LDPC code with rate 1/2 as a mother code and
non-binary repetition symbols, we design codes with rate 1/nf that achieve full-diversity
over channels with nf ≥ 2 fading blocks. The receiver collects the received codeword of the
root NB-LDPC code and the non-binary repetition symbols, and combines them before
the iterative decoding. Hence, the iterative decoding complexity is the same irrespective of
the fading blocks number nf , while combining the codeword and the additional non-binary
repetition symbols brings an e�ective coding gain.

Moreover, the optimization of the edge labels of the non-binary codes is investigated
in order to improve the coding gain. We proceed with two optimization algorithms, the
�rst one for the non-zero entries of the mother parity-check matrix, that are optimized
according to [17] (see also the algorithm at page 56), and the second optimization algorithm
concerning the multiplicative coe�cients of the NB-repetition symbols. In loc. cit. it has
been also analysed an optimization of the NB-repetition codes similar to the parity-check
matrix optimization. In this work we propose a di�erent optimization technique, based on
the Euclidian distance between the corresponding symbols of the complex constellation.
This optimization yields an e�ective gain (∼0.5dB ) with respect to the random coe�cients.

In Section 7.6 we show simulation results and we demonstrate that our method out-
performs root LDPC codes, while preserving the same decoder in all the transmissions.

7.2 Background and Notation

7.2.1 Block-Fading Channel Model

We consider the block-fading channel model with nf fading blocks, each one of length L
complex symbols. The fading is �at, constant on each block and i.i.d. on di�erent blocks.
The baseband equivalent channel model is given by:

yn =
√
ρgjxn + zn, (7.1)

where n ∈ {1, . . . , nfL}, j = ⌈n
L⌉ ∈ {1, . . . , nf}, xn and yn are the nth input and output

symbols, gj is the fading coe�cient on block j, and zn ∼ NC(0, 1) is the i.i.d. circular
complex Gaussian noise with unitary variance. We remind that the transmitted symbols xn
belong to a complex signal set X (e.g. quadrature amplitude modulation), with cardinality
|X| = 2m and unit energy, i.e. 2−m

∑

x∈X |x|2 = 1.
In order to have a one-to-one correspondence between coded and modulation symbols,

in our work we assume that the constellation order is equal to the Galois �eld order, hence
m = p; in this case the fading coe�cients a�ect directly the corresponding symbol-nodes 3.

Rayleigh fading corresponds to the case gj ∼ NC(0, 1), or equivalently, the envelop

|gj | =
√

ℜ(gj)2 + ℑ(gj)2

3. In the previous chapters, we used the index k for denoting the kth complex symbol xk. Since we
assume that m = p, we can directly use the index n, so that we will denote the modulated symbol by
xn. This is also valid for the received symbol yn and the noise component zn. For more detail, see the
Section 6.2.2 (page 104).



7.2. Background and Notation 119

is Rayleigh distributed and the real and imaginary parts are Gaussian random variable
with variance σ2 = 1/2. Hence, the fading coe�cients are normalized, that is, E[|gj |2] = 1.
It follows that the parameter ρ from Eq. (7.1) is equal to the average received SNR, while
ρ|gj |2 represents the instantaneous SNR on block j.

We shall further assume that the average received SNR ρ and the fading coe�cients
g = (g1, . . . , gnf

) are perfectly known at the receiver, but not known at the transmitter. For
a �xed ρ value, Iρ(g) denotes the instantaneous mutual information between channel input
and output, assuming that the channel input is uniformly distributed over the complex
signal set X. Hence, Iρ(g) is a random variable taking values in [0, m] and its cumulative
distribution function is referred to as the information outage probability. Precisely:

Pout(ρ,R) = Pr (Iρ(g) < R) (7.2)

is the probability of the instantaneous mutual information Iρ(g) being less than the in-
formation rate value R ∈]0, m] bits per channel use. Therefore, in the asymptotic limit of
L, Pout(ρ,R) gives the optimal word error rate (WER) 4 value, as a function of ρ, for any
code with alphabet X and information rate R.

7.2.2 Block-Erasure Channel Model

We consider a block-erasure channel (BlEC) with the same complex input alphabet X.
As for the block-fading channel, the transmitted data is split into nf blocks of L complex
symbols, but any block is either perfectly received (without noise) or erased. This can be
conveniently expressed by the following formula:

yn =
√
ρgjxn, (7.3)

where n ∈ {1, . . . , nfL}, j = ⌈n
L⌉ ∈ {1, . . . , nf}, xn and yn are the nth input and output

symbols, respectively, and gj ∈ {0, 1} is the channel coe�cient on block j. The channel
�erasure� state corresponds to gj = 0 (we assume perfect channel state information at the
receiver) and the block-erasure probability is de�ned by pe = Pr(gj = 0) and it is constant

for all blocks j ∈ {1, . . . , nf}. We also de�ne the average received SNR by ρ =
1

pe

7.2.3 Coding Diversity

Let C be a block code, with alphabet X used to communicate over the block-fading
channel (Eq.(7.1)). Since any codeword spans exactly nf fading blocks and that m = p, it
follows that the codelength veri�es N = nfL (complex symbols) 5. The information rate
of C, in bits per complex symbol, is denoted by R ∈]0, m], whereas the coding rate is de�ned
as r = R/m ∈]0, 1]. The block diversity of C is de�ned as the SNR exponent of the error
probability Pe(C, ρ) of C [33]:

d∗ = lim
ρ→+∞

− logPe(C, ρ)
log ρ

(7.4)

The blockwise Hamming weight of a codeword S is the number of blocks j on which S
is non zero (that is, it has at least one non-zero entry). The minimum blockwise Hamming

4. Or the Frame Error Rate (FER).
5. In the previous chapters we have denoted by N the number of complex symbols. In this chapter the

number of the complex symbols is equal to the number of the codelength because m = p. Thus, we do not
distinguish between N and N.
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distance dH ∈ [0, nf ] of a code C is the minimum number of blocks on which two given
codewords di�er. Equivalently dH is equal to the minimum blockwise Hamming weight of
a non-zero codeword.

Under the optimal Maximum-Likelihood (ML) decoding, and assuming Rayleigh fading
and a su�ciently large L value, the SNR exponent d∗ is equal to the minimum blockwise
Hamming distance dH [47]. Consequently d∗ ∈ [0, nf ] and we say that C achieves full-
diversity if d∗ = nf . By the Singleton bound [38] we have

d∗ ≤ 1 + ⌊nf (1− r)⌋,

yielding a compromise between achievable block diversity and coding rate. In particular,
the coding rate of a full-diversity code must verify r ≤ 1

nf
.

7.2.4 BP Decoder Initialization

In this section we present the computation of the probability distributions used for the
initialization of the BP decoder presented in Section 3.2.1 (page 38). In this work we focus
on the case when the code �eld Fq and the complex signal set X have the same cardinality
(hence, m = p), this allows us to use a symbol-demapping (except when a bit-interleaving
is used between encoder and modulator; we shall refer to Section 6.2.2 for more details
about the initialization of the BP decoder in this case).

Let µ be a bijective function mapping the code �eld into the complex signal set:

µ : Fq → X (7.5)

A codeword S = (s1, . . . , sN ) is mapped into a vector of complex symbols (x1, . . . , xN ),
where xn = µ(sn), which is transmitted over the block-fading channel (7.1).

According to the discussion in Section 3.2.4 (page 44) about the decoder initialization,
we compute the probability Pn(a) = Pr(sn = a | yn) of the transmitted symbol sn being
equal to a conditioned on the received complex symbol yn. Since we assumed perfect CSI
at the receiver this probability is:

Pn(a) = γ exp(−|yn −√
ρgjµ(a)|2), (7.6)

where j is the block index corresponding to codeword index n, and γ is a normalization
constant such that

∑

a Pn(a) = 1.
These probability distributions are used for the initialization of the BP decoder and are
iteratively updated according to the sum-product rules.

7.3 Interleaving in BF Channel

In the previous chapter we have applied the binary interleaving technique in case that
a NB-LDPC code is used to communicate over a fast fading channel. In this section we
investigate a binary interleaving that spreads the coded bits over the di�erent fading blocks
of a BF channel. We will show however that this technique does not e�ciently mitigate
the fading e�ects in this case.

Binary-Interleaving for BF channels. The proposed interleaving splits up each symbol
among the di�erent fading blocks. Thus, at the receiver end, after the de-interleaving, each
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symbol receives contributions from the di�erent fading blocks of the channel. An example
of the interleaving method is shown in Figure 7.1, where we have represented the coded
symbols by circles and the complex modulated (QAM) symbols by rectangles. The number
of fading blocks nf is equal to 3 and they are represented by #1,#2 and #3. The code
is de�ned over F8 and each QAM symbol has m = 3 bits. There is a rationale behind this
choice: we �xed p = nf = 3 because the decoder input for each symbol-node is computed
from exactly 3 bits, each one modulated by a complex (QAM) symbol in a di�erent fading
block. By sake of simplicity, in the following we shall assume that p = nf or that p is a
multiple of nf .

Figure 7.1: Interleaving design for the BF channel. The proposed NB-LDPC code is de�ned
over F8 and transmitted over a BF channel with 3 fading blocks

For the example illustrated in Figure 7.1, the corresponding bit-interleaving pattern is
shown below:

‖(1 4 7) (10 13 16) . . . ‖ (2 5 8) (11 14 17) . . . ‖ (3 6 9) (12 15 18) . . . ‖

where the number correspond to the bit positions within the (binary image of the) NB-
LDPC codeword. Positions between parentheses correspond to the same complex (QAM)
symbol, and fading blocks are separated by ‖.

Code design. We have designed ultra-sparse (2,dc,avg) codes, meaning that all symbol-
nodes are of degree dv = 2. Codes are constructed by the PEG algorithm with a girth
gmin = 10 and de�ned over F16. These codes are not full-diversity, since we want to observe
if the binary-interleaving can improve the diversity of the system.

For coding rates r = 1/2 and r = 1/3, we consider regular (2,4) and regular (2,3)
LDPC codes, respectively, whereas for the rate r = 1/4 the code is semi-regular with a

node-perspective distribution polynomials L(x) = x2 and R(x) =
1

3
x2+

2

3
x3 (dc,avg = 2.5).

Simulation results. We present some comparisons between the interleaved and uninter-
leaved systems. We have simulated di�erent numbers of fading blocks: we report only the
signi�cant simulations in order to make a comparison. In this section we discuss two cases,
corresponding to nf = 2 and nf = 4. In both cases, codes are de�ned over F16. Then, for
nf = 2 each coded symbol receives 2 contributions from the �rst fading block and other
2 contributions from the second fading block; for nf = 4 the coded symbols receive the
contributions of all the fading blocks.

Let us discuss the �rst case (nf = 2). We suppose a study case in which the codes are
transmitted over the BF in which only one block undergoes a deep fading, then two cases
may happen:
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1) If we use an interleaver, half of each symbol may be not recoverable. The ques-
tion is: could the BP decoder recover all the symbol-nodes starting from only half
information?

2) If we do not use the interleaver, a whole block of coded symbols may be lost. In this
case the question is: could the BP decoder recover the lost block from the other one?

A similar discussion is valid for nf = 4. We give some answers through simulations. In
Figure 7.2 and 7.3 we have drawn the performance results for nf = 2 and 4, respectively; in
both cases the same codes are simulated. The used modulation is the 16-QAM. The curves
marked by asterisks correspond to the outage probability curves for r = 1/2, r = 1/3, and
r = 1/4.

We can observe that in general the interleaved codes (curves with �lled markers) do
not perform better than the same codes without interleaver (curves with empty markers).
This means that it is better to have concentrated deep fading blocks than to spread them
in order to mitigate the fading. The interleaver has some advantages as the number of
blocks increases (e.g. for nf = 4). Indeed, when the channel approaches the fast-fading
model, the interleaver performs better and better.
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Figure 7.2: Performance comparisons between de-interleaved and interleaved systems for some
codes with di�erent rates and de�ned over F16 and transmitted over a BF channel with nf = 2
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Figure 7.3: Performance comparisons between de-interleaved and interleaved systems for some
codes with di�erent rates and de�ned over F16 and transmitted over a BF channel with nf = 4
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7.4 Coding in BF Channel

7.4.1 Coding Diversity under BP Decoding

First, we note that codes achieving full-diversity under ML decoding need not achieve
full-diversity under BP decoding, since the corresponding Frame Error Rate (FER) curves
need not have, asymptotically, the same slope. An approach for designing codes that
achieve full-diversity under BP decoding over block-fading channels has been proposed
in [8], where the code design is inferred from a limiting case, namely the block-erasure
channel.

We focus on systematic codes, meaning that the source symbols are embedded in the
encoded codeword. Over the block-erasure channel, a systematic code of rate r = 1/nf

achieves full-diversity if and only if the source symbols can be recovered (by iterative erasure
decoding) from any block of symbols among the nf blocks determined by the channel.

7.4.2 Root LDPC Codes

A special family of full-diversity LDPC codes, referred to as Root-LDPC codes, has
been proposed in [8]. We give below an equivalent de�nition of Root-LDPC codes, which
better suits our exposition. In the sequel, we will denote by Bj the set of source symbols
that are transmitted in channel block j.

De�nition 7.1. An LDPC code is called a Root-LDPC code if for any source symbol s
and any block index j such that s 6∈ Bj, there exists a constraint-node connected only to s
and coded symbols transmitted in block j. Such a constraint-node is referred to as a root
constraint-node.

It follows that Root-LDPC codes are a particular case of full-diversity codes, for which
the source-symbols can be recovered after one single iteration. Indeed, if only one among
the nf blocks is received, say block j, then any source symbol s 6∈ Bj can be recovered at
the �rst iteration of the erasure decoding, by using a root constraint-node connected only
to s and symbols received in the block j.

A root-parity-check matrix for a nf -BF channel of rate r = 1/nf will be referred to
as Hroot

1/nf
. An example of a parity-check matrix Hroot

1/2 , according to [8], is depicted in
Figure 7.4. For hatched matrices, the parameters given in parentheses are the row and
column weights (number of non-zero entries); if for instance d = 2 we obtain a Root-(2,4)
LDPC code. Note that for NB-LDPC codes the matrix entries are taken from the �nite
�eld Fq. Sj and Pj denote the source and parity symbols that are transmitted in fading
block j = 1, 2 (hence Bj = Sj ∪ Pj). The diagonal corresponds to an identity submatrix.

However, �good� codes with lower coding rates need sparser parity-check matrices,
hence this kind of design is not suitable for a larger number of blocks. This is even more
true for non-binary codes, since when the size of the non-binary alphabet grows, best codes
are obtained for average density of edges closer and closer to dv = 2 [13].

For a number of fading blocks nf > 2, or equivalently rates r = 1/nf < 1/2, the
design proposed in [8] is more complicated and the number of entries per column is at least
nf − 1. The general structure of a root LDPC code as de�ned in [8] is formed by squared
submatrix of dimension N/n2

f . Figure 7.5 presents an example of parity-check matrix for
nf = 3. In particular the 6 × 9 squared submatrices of Hroot

1/3 have size N/32. The green
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Figure 7.4: Parity check matrix of rate 1/2, regular (d, 2d)-Root-LDPC codes

Figure 7.5: Parity check matrix of rate 1/3, regular (d, 3/2d)-Root-LDPC codes

parts are used in case of binary-Root-LDPC while they are zero matrices in case of higher
Galois �eld order, when we have to consider ultra-sparse matrices (ds = 2).

In this work we consider LDPC codes de�ned over F64 for which the best codes are ultra-
sparse codes. Thus, we have tried to minimize the number of entries of the parity-check
matrices and we have succeeded for the Hroot

1/2 and Hroot
1/3 . One can de�ne in a similar way

a parity-check matrix Hroot
1/4 that is full-diversity for a 4-BF channel but the corresponding

code is not ultra-sparse since ds ≥ 3.

7.4.3 Triangular-LDPC Codes

In this section we propose an alternative design of full-diversity codes that shows in-
teresting aspects. They follow from a generalization of the Root-LDPC codes given in the
previous section. One of the main motivations for which we have proposed this design is to
avoid that the symbol-node degree increases with the number of fading blocks nf , which
is a critical requirement for codes de�ned over higher order alphabets.

For any block index j = 1, . . . , nf , we denote by Sj (resp. S 6=j) the set of source
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Figure 7.6: T1-Design � Full-diversity parity-check matrices H(T1)
1/nf

, with nf = 2, 3 and 4

symbols that are transmitted on block j (resp. on blocks j′ 6= j). We also denote by HS 6=j

the matrix determined by the columns of H corresponding to source symbols in S 6=j .
In case of the BlEC channel model, the following Lemma follows easily from the dis-

cussion in Section 7.4.1.

Lemma 7.1. A systematic code of coding rate r = 1/nf achieves full-diversity under itera-
tive erasure decoding i� there is no stopping set contained in any of S 6=j, for j = 1, . . . , nf .
Equivalently, this means that any matrix HS 6=j

can be triangularized (by a row/column
permutation) with only non-zero entries in the main diagonal (a triangular matrix is such
that all the entries above 6 the main diagonal are zero, but it needs not be a square matrix!).

The idea behind this lemma is that we can design triangular-like parity-check matrices
that avoids the creation of stopping-sets so that the decoder can gradually determines the
source symbols.

T1-Design. The full-diversity construction illustrated in in Figure 7.6 will be referred to
as T1-design and the parity-check matrix will be denoted by H

(T1)
1/nf

. Let us discuss this

design. H
(T1)
1/2 (drawn in blue) is a a bi-triangular matrix that respects the Lemma 7.1.

Then, H(T1)
1/3 (drawn in red) is formed by the superposition of two bi-triangular matrices,

which are shifted of one position with respect to the above one. Hence, the parity-check
matrix H

(T1)
1/nf

is composed by the superposition of nf − 1 bi-triangular matrices, each one
shifted of one position with respect to the adjacent ones, in order to form a cascade of
bi-triangular matrices. In this case each triangular matrix is a [N ′ × N ′] square matrix,
where N ′ = N/nf . These codes will be referred to as T1-LDPC codes.

The T1-design has some advantages with respect to the Root design. First of all, it
results simpler with respect to Root LDPC code design that becomes complicated especially
for an increasing number of blocks. The only request is to have triangular submatrices that
demonstrate more �exibility when we use the PEG construction. Another advantage lies on
the fact that the entire codeword (source and parity parts) can be recovered from only one
single received block (in the Root design, the parity symbol protection is abandoned). In

6. Or below.
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particular, at the transmitted side, encoding can be performed on the parity-check matrix,
by performing an erasure decoding submitted only with the values of the source symbols.
Note also that source symbols could be placed on any of the nf blocks. Finally, we also
note that the T1-Design does not ful�ll the conditions of De�nition 7.1. For instance,
considering the matrix H

(T1)
1/4 from Figure 7.6, if the P3 block is received, then the source

block S1 is recovered after 2 iterations, instead of one single iteration as for Root-LDPC
codes.

Figure 7.7: T2-Design � Full-diversity Root-parity-check matrix H
(T2)
1/4

T2-Design. Another proposed parity-check matrix of a full-diversity code is presented in
Figure 7.7. H(T2)

1/4 is the parity-check matrix of a code of rate r = 1/4: this designed code
results to be full-diversity, according to Lemma7.1. The matrix is composed by 4 parts,
on the �rst part we have put the source symbols S1, whereas the other three parts are the
parity parts. Also this design results be simpler with respect to the Root-LDPC codes,
because the parity-check matrix is formed by nf − 1 overlapped 1 × 1 square matrix and
nf − 1 triangular matrices, each one shifted with respect to the other ones. This design
will be simply referred to as T2-Design, and the corresponding codes will be referred to
as T2-LDPC codes. Note that these codes ful�ll the conditions of De�nition 7.1, hence
they are actually a particular case of Root-LDPC codes. As said, when the Galois �eld
order increases the best codes are the ultra-sparse code and this design does not ful�ll this
criterion, even if we have limited the increasing symbol-node degree only to source symbol
nodes. Finally, we note that, as for T1-LDPC codes, T2-LDPC codes can also be encoded
by using the parity-check matrix.
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7.5 Non-Binary Repetition Symbols

For nf > 2, our approach to design full-diversity non-binary LDPC codes of rate r =
1/nf is based on the recently introduced technique of multiplicative non-binary coding [36].
In our settings, a mother Root-NB-LDPC code, of rate 1/2, is extended with extra non-
binary repetition symbols, so that to reach the target rate value r = 1/nf . Put di�erently,
the mother code is extended with multiplicative versions of (some or all) coded-symbols.

Precisely, a non-binary repetition symbol s′ = λs is given by the multiplication between
a codeword symbol s and a non-zero coe�cient λ ∈ Fq, which will be referred to as the
multiplicative coe�cient. The case λ = 1 corresponds to the usual repetition coding. We
also note that for q = 2 (binary codes), we necessarily have λ = 1 and therefore s′ = s.

Now, let C1/2 be a Root-NB-LDPC code of rate 1/2, and (S1, P1;S2, P2) be a codeword
of C1/2, as depicted in Figure 7.4. The semicolon in the above notation is used to separate
the fading blocks (in this case nf = 2). For nf > 2, the code C1/nf

of rate 1/nf , referred
to as the Repeated-Root-NB-LDPC code, is de�ned by extending the mother code C1/2
with

⌈

nf−2
2

⌉

multiplicative repeated versions of the source symbols (S1, S2) and
⌊

nf−2
2

⌋

multiplicative repeated versions of the parity symbols (P1, P2). This is detailed in Table 7.1
for 2 ≤ nf ≤ 6, where prime and double-prime notation is used to denote multiplicative
repeated versions of source and parity symbols. It can be easily seen that a Repeated-
Root-NB-LDPC code of rate r = 1/nf veri�es the De�nition 7.1, therefore it achieves full-
diversity under iterative erasure decoding over the block-erasure channel with nf erasure
blocks.

An example of the transmission with the proposed coding scheme is represented in
Figure 7.8. The non-binary repetition module makes copies of the K source symbols and
K parity symbols according to the Table 7.1. Since the code is systematic, the encoding
needs to compute only the parity symbols 7. The Parallel to Serial (P/S) module sends
these symbols to the modulator according the order indicated in the Table 7.1.

Table 7.1: Repeated-Root-NB-LDPC codes C1/nf
, for 2 ≤ nf ≤ 6

nf C1/nf
− codewords

2 (S1, P1;S2, P2)

3 (S1, P1;S2, P2;S
′
1, S

′
2)

4 (S1, P1;S2, P2;S
′
1, S

′
2;P

′
1, P

′
2)

5 (S1, P1;S2, P2;S
′
1, S

′
2;P

′
1, P

′
2;S

′′
1 , S

′′
2 )

6 (S1, P1;S2, P2;S
′
1, S

′
2;P

′
1, P

′
2;S

′′
1 , S

′′
2 ;P

′′
1 , P

′′
2 )

The decoding algorithm is explained in Section 3.2.1; the only change is the decoder input

7. The parity part is the output of the Root-encoder with rate r = 1/2; for this reason M = K.
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and this is described in the following.

7.5.1 Joint Decoding Strategy

We discuss now the joint decoding strategy. Assume that a codeword of a Repeated-
Root-NB-LDPC code C1/nf

is sent over the channel. Let sn be a coded symbol of the mother
Root-NB-LDPC, and sn′ = λsn be a multiplicative version of sn, within transmitted
codeword of C1/nf

. At the receiver side, the soft demapper computes the probability

vectors Ṗn =
[

Ṗn(a)
]

a∈Fq

and P ′
n = [P ′

n(a)]a∈Fq
according to the Table 7.1 and Eq. (7.6),

where Ṗn(a) = Pr(sn = a | yn) and P ′
n(a) = Pr(sn′ = a | yn′). Since sn′ = λsn, the

probability Pn(a) = Pr(sn = a | yn, yn′), of the transmitted symbol sn being equal to a
conditioned on both yn and yn′ , can be computed by:

Pn(a) = γṖn(a)P
′
n(λa)

= γ exp(−ρ|gj |2 · |yn − µ(a)|2) exp(−ρ|gj′ |2 · |yn′ − µ(λa)|2) (7.7)

where γ is a normalization constant such that
∑

a∈Fq
Pn(a) = 1. The above computation

can be generalized, in a straightforward manner, to the case when several multiplicative
versions of sn belong to the transmitted codeword of C1/nf

. The joint-probability vectors
Pn = [Pn(a)]a∈Fq

, n = 1, . . . , N , are then used for the initialization of the BP decoder of
the mother Root-NB-LDPC code C1/2, which is used to decode the source symbols (S1, S2).
Hence, the same BP decoder (of the mother Root-NB-LDPC code) is used, regardless of
the Repeated-Root-NB-LDPC code that is used to communicate over the channel.

Figure 7.8: Transmission chain scheme � Joint Decoding
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7.5.2 Optimization of the Non-Binary Multiplicative Coe�cients

In order to optimize the non-binary multiplicative coe�cients, we investigate the impact
of the non-binary repetition symbols on the joint-probability computation at the receiver.
We note that the our approach is di�erent from the one proposed in [17], in that our
optimization is done with respect to the Euclidian distance between the points of the
complex signal set X, while in loc. cit. the optimization is performed with respect to the
Hamming distance of the binary image of the component codes.

Let µ : Fq → X be the mapping function from the code �eld Fq to the complex signal
set X (7.5). For any s ∈ Fq and any δ ≥ 0, let:

D(s, δ) = {a ∈ Fq | |µ(s)− µ(a)| ≤ δ},

be the set of non-binary symbols a ∈ Fq such that the distance between the complex signal
points corresponding to a and s is less than or equal to δ.

Now, let sn be a codeword symbol of the mother Root-NB-LDPC code C1/2. If δ is

large enough, symbols a 6∈ D(sn, δ) have, in average, small Ṗn(a) values. This follows
from Eq. (7.6), by averaging over all possible noise realizations. Put di�erently, symbols
a ∈ D(sn, δ) are, after the soft demapping, the most likely values for symbol-node n.

Similarly, if sn′ = λsn is a multiplicative version of sn, the most likely values for
symbol-node n′ are symbols a′ ∈ D(sn′ , δ) = D(λsn, δ). Therefore, as determined by the
joint-probability vector Pn(a), the most likely values for symbol-node n are symbols a such
that a ∈ D(sn, δ) and λa ∈ D(λsn, δ). Now, symbols a 6= sn satisfying the above condition
provide misleading information to the BP decoder. In the ideal situation, we should have
D(sn, δ) ∩ λ−1D(λsn, δ) = {sn}, with δ as large as possible. Therefore, we de�ne:

δ(λ) = sup
{

δ | D(s, δ) ∩ λ−1D(λs, δ) = {s}, ∀s ∈ Fq

}

,

and choose λ1 ∈ Fq, such that δ(λ1) = maxλ δ(λ). Hence, if sn has a unique multiplicative
version sn′ within the transmitted codeword of C1/nf

, we always de�ne sn′ = λ1sn.
In case that there are several multiplicative versions of sn within the transmitted code-

word of C1/nf
, the non-binary multiplicative coe�cients are optimized in a similar manner.

For instance, in case of two multiplicative versions, we de�ne δ(λ′, λ′′) as the supremum
value of δ such that any two among the three sets D(s, δ), λ′−1D(λ′s, δ), and λ−1D(λ′′s, δ)
have only the symbol s in common, for any s ∈ Fq. Then we choose (λ1, λ2), such that
δ(λ1, λ2) = maxλ′,λ′′ δ(λ′, λ′′), and de�ne the multiplicative versions of sn by sn′ = λ1sn
and sn′′ = λ2sn.

In our design, we consider Repeated-Root-NB-LDPC over F64, where F64 is de�ned as
the quotient �eld of F2[α] by the primitive polynomial α6 + α + 1. The complex signal
set X is the 64-QAM complex constellation, and for any s ∈ F64, µ(s) is de�ned as the
Gray mapping of the binary image of s (vector of the coe�cients of s expressed as a binary
polynomial of degree less that 6). Within these settings, we obtained λ1 = α21 in case of one
single multiplicative symbol and (λ1, λ2) = (α21, α42) in case of two multiplicative symbols.
We note the the value of λ1 is the same in both cases. In Figure 7.9 we represented the
Tanner graph of the Repeated-Root-NB-LDPC code C1/5. Source symbols of the mother
Root-NB-LDPC code have two multiplicative repeated versions, while parity symbols have
only one. The fact that sn′ = λsn is expressed by adding a new check-node connected
to both sn and sn′ , with coe�cient λ on the edge connecting it to sn. For the �rst NB-
repeated symbols the multiplicative coe�cients are equal to λ1, while for the second ones
the multiplicative coe�cients are equal to λ2.
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Figure 7.9: Tanner graph of Repeated-Root-NB-LDPC codes

The non-binary coe�cients of the Root-NB-LDPC parity-check matrix also appear on
the edges connecting the Root-NB-LDPC check-nodes (bottom) to the Root-NB-LDPC
interleaver. We note that these coe�cients have been optimized according to the method
introduced in [17]. In particular, all the check-node share the same set of 4 coe�cients,
possibly permuted, given by (α0, α9, α26, α46) (see also Section 3.4.2).
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7.6 Simulation Results

7.6.1 Performance of the Repeated-Root-NB-LDPC Codes

In this section we present the performance of the proposed Repeated-Root-NB-LDPC
codes over the block-fading channel. We compare the performance of codes over the Galois
�eld F64 and of binary codes. In each case, we constructed a mother regular (dv, dc = 2dv)-
Root-LDPC code with rate 1/2, as depicted in Figure 7.4. Codes have been constructed by
using the PEG algorithm, with dv = 2 for codes over F64, and dv = 3 for the binary case.
Furthermore, we extended the mother codes by using � non-binary, for F64 � repetition
symbols, so that to obtain coding rates 1/3, 1/4, and 1/6, as explained in Section 7.5. All
the codes C1/nf

have the same binary dimension, equal to 300 bits. Figure 7.10 shows the
Frame Error Rates (FER) obtained by Monte-Carlo simulation over the Rayleigh block-
fading channel. The number of fading blocks nf is equal to 2, 3, 4, 6 for coding rates
1/2, 1/3, 1/4, and 1/6 respectively. For each of the above coding rates, we plotted the
corresponding outage probability (asterisk markers) and the FER for the non-binary (full
markers) and binary (empty markers) codes. As expected, all codes achieve full-diversity.
However, in contrast with the binary repetition, the use of non-binary repetition symbols,
with optimized multiplicative coe�cients, results in an impressive coding gain. As it can
be seen, the gap to the outage probability remains constant (approx. 1 dB) for all coding
rates, from 1/2 to 1/6.
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Figure 7.10: FER performance comparison of Repeated-Root-NB-LDPC codes
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Moreover, let us analyze the impact of the multiplicative coe�cient optimization ac-
cording to the Euclidian distance of the modulated complex symbols. In Figure 7.11 we
show the performance comparison of two optimized Repeated-Root-NB-LDPC codes for
nf = 3, or equivalently r = 1/3, and nf = 4, or equivalently r = 1/4 (with the •markers) 8,
and the same codes with randomly chosen repetition coe�cients (with the ◦ markers). The
mother Root-LDPC code is the same for all the repeated-Root-NB-LDPC codes and it has
optimized coe�cients (α0, α9, α26, α46) as discussed in the previous section. For the code
with rate r = 1/3 we have repeated only the source symbols (hence half of the codelength),
whereas for the code with rate r = 1/4 we have repeated all the coded symbols. It can be
observed that the proposed optimization of the multiplicative coe�cients leads to a gain
of about 0.5 dB in all the cases.
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Figure 7.11: FER performance comparison of NB-LDPC codes with optimized and random
multiplicative coe�cients for nf = 3 (r = 1/3) and nf = 4 (r = 1/4).

8. These two curves correspond to the curves �nf = 3, r = 1/3, F64� and �nf = 4, r = 1/4, F64� of
Figure 7.10.
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7.6.2 Comparison of Simulation Results

In this section we evaluate the performance of the LDPC codes mentioned in Sec-
tion 7.4.2 and 7.4.3. We present simulation results for the block-fading channel with 3
and 4 fading blocks. All the considered codes C1/nf

have been constructed by using the
PEG algorithm and they have the same binary dimension, equal to 300 bits. Moreover,
the codes are modulated with a 64-QAM. All these codes are full-diversity but they show
di�erent coding gains that depend on the alphabet size and on the parity-check matrix
design.

3 fading blocks. Figure 7.12 presents the FER obtained by Monte-Carlo simulation of
codes transmitted over the Rayleigh block-fading channel with nf = 3. All the considered
codes have the same coding rate r = 1/3.

First of all we focus on the binary case (corresponding to the black curves). Three
root-designs have been realized according to the parity-check matrix Hroot

1/3 (see Figure 7.5)
with dv = 2, 3 and 4; the corresponding Root-LDPC codes are regular for dv = 2 and
dv = 4 with dc = 3 and dc = 6, respectively. For dv = 3 the code results semi-regular with
an average check-node degree dc,avg = 4.5 9. We have plotted the outage probability Pout

(the orange curve) and the FER for these codes (empty markers): we can observe that the
Root-C(3,4.5) has the best performance for F2.

Furthermore, we have extended the Root-(3,6) LDPC code, which is the best code for
rate r = 1/2, with one binary repetition of the source symbols. The FER for this design
(black �lled circles) demonstrates that the Repeated-Root-C(3,6) LDPC code has worse
performance that the Root-C(3,4.5) and Root-C(2,3) codes with rate 1/3.

Finally, we analyse the LDPC codes de�ned over F64 (corresponding to the blue curves).
We constructed a Root-(2,3)-NB-LDPC code, as depicted in Figure 7.5 (the green parts
have been omitted) with random coe�cients in F64. We have compared this design with
the optimized Repeated-Root-NB-LDPC with rate r = 1/3. It can be observed that the
Root-NB-LDPC code (with the ∇ markers) outperforms the Repeated-Root-NB-LDPC
(with the • markers) by ∼0.5 dB .

Also, we have constructed the Triangular-LDPC codes according to the parity-check
matrices H

(T1)
1/3 of Figure 7.6 and H

(T2)
1/3 of Figure 7.7 with random coe�cients from the

alphabet F64. The former has an average symbol degree ds,avg = 2.1 while the latter is
regular with ds = 2. The red circles correspond to the performance of the T1-Design,
whereas the red asterisks correspond to performance of the T2-Design. These codes have
very simple designs, but only the latter shows very good performance with respect to the
Root-LDPC and the Repeated-Root LDPC codes. The poor performance of T1-design are
probably due to the triangular construction that does not protect equally all the symbols.
Also, the T1-design does not fully exploit the potential of the PEG algorithm. We have
observed that the T2-design, allows constructing graphs with higher girths than the T1-
design.

9. Consider Figure 7.5. For Root-(2,3)-LDPC, the green parts have been removed; for Root-(3,4.5)-
LDPC only one green matrix is kept for each column of the source part, �nally, for Root-(4,6)-LDPC all
the green parts are kept.
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Figure 7.12: FER performance comparison for full-diversity codes with r = 1/3 transmitted
over BF channel with nf = 3

4 fading blocks. Figure 7.13 presents the FER obtained by Monte-Carlo simulation of
codes transmitted over the Rayleigh block-fading channel with nf = 4. All the considered
codes have the same coding rate r = 1/4. The orange curve corresponds to the outage
probability.

We discuss �rst the binary case (corresponding to black curves). The parity-check
matrixHroot

1/4 is more complicate and it is constructed following the concepts of Section 7.4.2
(page 124). The binary repeated-Root code is constructed from a Root-(3,6)-LDPC code,
for which all the coded symbols have been repeated once: this code performs ∼3 dBabove
the Root-(3,4)-LDPC code, which is the best simulated code for F2.

Concerning NB-LDPC, we have simulated codes de�ned over F64 (corresponding to
blue curves). We constructed a (3,4) Root-LDPC code with rate r = 1/4 with random
coe�cients in F64. The corresponding FER curve is distinguished by ∇ markers. We have
also constructed two Repeated-Root-NB-LDPC codes, with rate r = 1/4, as follows:

1) The �rst one uses the Root-LDPC code with rate r = 1/2 as mother code, with one
non-binary repetition of all the coded symbols. This code has also been evaluated in
Section 7.6.1, and the corresponding FER curve is distinguished by • markers.

2) The second one uses the Root-LDPC code with rate r = 1/3 as mother code, with
one non-binary repetition of the source symbols (repetition of 1/3 of the codelength).
The corresponding FER curve is distinguished by N markers.

It can be observed that the rate-1/4 Root-LDPC code (∇ markers) performs worse than
the binary code, whereas the two Repeated-Root designs (N and • markers) have similar
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Figure 7.13: FER performance comparison for full diversity codes with r = 1/4 transmitted
over BF channel with nf = 4

performance and both curves are close to the outage probability. Hence, besides the �ex-
ibility advantage, the proposed Repeated-Root design also presents the best performance
for small coding rates.

Finally, we have also constructed the Triangular-LDPC codes according to the parity-
check matrices H(T1)

1/4 of Figure 7.6 and H
(T2)
1/4 of Figure 7.7, with random coe�cients from

the alphabet F64. The former has an average symbol degree ds,avg = 2.3 while the latter
has ds,avg = 2.25. Red �lled circles correspond to the T1-Design, whereas red asterisks
correspond to the T2-Design. Again, only the T2-LDPC code demonstrates very good
performance, similar to the Repeated-Root-LDPC design. Furthermore, if there does not
exist any �exibility constraints, this code design can be successfully used for high order
alphabets and coding rates r ≤ 1/4.
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7.7 Conclusion

This chapter was concerned with the study of NB-LDPC codes for the block-fading
channel. First of all we have investigated the use of the binary-interleaving technique and
we showed that this technique does not provide enough diversity and is not suitable for
slow-varying fading channel.

Then we investigated the design of full-diversity NB-LDPC codes, with a particular
attention to codes de�ned over high order alphabets. For these codes, it is known that the
best decoding performance is obtained for an average density of edges very close to ds = 2.
Consequently, the classical Root-design used for binary codes is not appropriate in the non-
binary case. We therefore proposed two alternative full-diversity designs. One of these new
designs results more simple and robust with respect to the Root-design, especially for a
number of blocks greater than 4.

Another research direction was dedicated to constructing a coding scheme with close-
to-outage performance and, at the same time, can be easily adapted to the number of
fading blocks. Then a �exible coding-scheme coding has been investigated, based on non-
binary Root-LDPC codes and non-binary repetition coding. The proposed coding-scheme
allows designing full-diversity codes over channels with nf fading blocks, for a wide range
of nf values, while the proposed joint-decoding allows using the same decoder irrespective
of the nf value. Moreover, we have also proposed an optimization procedure for the
multiplicative coe�cients used for non-binary repetition coding. The performance of the
proposed Repeated-Root-NB-LDPC codes over the Rayleigh block-fading channel has been
evaluated by Monte-Carlo simulation, and we showed that they perform close to the outage
probability, even for very small coding rates.
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Conclusions and Perspectives

In this thesis we investigated the analysis and the design of non-binary LDPC codes
transmitted over slow and fast fading channels.

The �rst contribution was the development of the Density Evolution approximation
via Monte-Carlo simulations. We showed that the Monte-Carlo technique provides quickly
accurate and precise estimates of non-binary ensemble thresholds, and makes possible the
optimization of non-binary codes for a wide range of applications and channel models.

The analysis and design of optimized puncturing distributions for NB-LDPC codes is
the second contribution of the thesis. First, we showed that the non-binary LDPC codes
are more robust to puncturing than their binary counterparts, thanks to the fact that non-
binary symbol-nodes can be only partially punctured. Secondly, we analyzed puncturing
distributions for several ensembles of regular and semi-regular codes. For irregular codes
with higher punctured rate an optimization procedure is needed. For these codes, the
optimized puncturing distributions exhibit a gap to capacity between 0.2 and 0.5 dB , for
punctured rates varying from 0.5 to 0.9.

With the third contribution we investigated the non-binary LDPC codes transmitted
over a Rayleigh (fast) fading channel, in which di�erent modulated symbols are a�ected
by di�erent fading factors. A bit interleaver, operating between the encoder and the
symbol mapper, introduces a binary diversity that mitigates these fading e�ects. Moreover,
an optimized interleaving algorithm, inspired from the Progressive Edge-Growth (PEG)
method, has been proposed. This algorithm ensures maximum girth of the global graph
that extends the bipartite graph of the code with a new ensemble of nodes representing the
modulated symbols. The optimized interleaver shows a gain with respect to the random
interleaver, as far as performance and error detection rates are concerned.

Finally, the last contribution consists of a �exible coding scheme that achieves full-
diversity over the block-fading channel. The proposed LDPC codes, based on Root non-
binary LDPC codes coupled with multiplicative non-binary symbols, are close to the outage
limit for various coding rates and number of fading blocks. Moreover, at the transmitter
end this scheme demonstrated to easily adapt the coding rate to the number of fading
blocks, while a simple combining strategy is used at the receiver end before the iterative
decoding. As a consequence, the decoding complexity is the same, irrespective of the
number of fading blocks and coding rate, while the proposed technique brings an e�ective
coding gain.

139
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General Conclusion. The main goal of this thesis was to demonstrate that besides the
gain in the decoding performance, the use of non-binary LDPC codes can bring additional
bene�ts in terms of ��exibility� and �diversity�, which may o�set the extra cost in decoding
complexity.

The �exibility issue has been addressed through the use of puncturing and non-binary
repetition (multiplicative) coding. These techniques are complementary: while puncturing
is used to increase the coding rate of a mother code, the non-binary repetition coding is
used to decrease this rate. At the receiver end, both techniques allows using the same de-
coder irrespective of the current coding rate. We investigated these techniques in di�erent
situations, and proposed appropriate optimization solutions, allowing one to fully exploit
the their potential.

The diversity issue has been investigated through the use of the binary-interleaving
technique. We showed that this technique is well suited for fast fading channels and
proposed optimized constructions of binary interleavers for NB-LDPC codes, which allow
improving the code performance on the error-�oor region.

Perspectives. While the classical puncturing technique can be applied to both binary and
non-binary LDPC codes in order to increase the coding rate of a mother code, the latter
family of codes can also be advantageously coupled with non-binary repetition (multiplica-
tive) coding so that to design codes with lower coding rates. Although both techniques
have been investigated, in di�erent situations, in this thesis, we still lack a systematic and
uni�ed treatment of them. Hence, a �rst perspective of this thesis would consist in the
optimization of �exible coding schemes able to accommodate almost any coding rate in
[0, 1] (e.g. any coding rate in [0.1, 0.9]). Such a �exibility would be certainly of great
interest for many communication systems, and could o�set the extra cost in the decoding
complexity of non-binary codes, especially for codes de�ned over Fq, with e.g. q ≤ 16.
This is because the same decoder (of the mother code) can be used for any coding rate,
which is in contrast with most of the current standards, which requires the implementation
of a di�erent decoder for each of the speci�ed coding rates.

Considering the diversity brought by binary-interleavers for NB-LDPC codes over fast
fading channel, a second perspective of this thesis would consist in the joint design of
the non-binary bipartite graph and of the binary interleaver. The binary interleaver can
be seen as a superimposed graph on the code's Tanner graph, in which nodes represent-
ing coded-symbol are connected to nodes representing the complex modulated symbols.
Hence, the joint design would consist in an optimized (e.g. PEG-like) construction of
a graph containing constraint-nodes, coded-symbol-nodes, and modulated-symbol-nodes.
While connections between constraint- and coded-symbol- nodes de�ne the NB-LDPC
code, the connections between coded-symbol- and modulated-symbol- nodes de�ne the
binary-interleaving. We believe that this joint optimization should further improve the
performance of NB-LDPC codes over fast fading chanels, especially in the error �oor re-
gion.
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