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Abstract

The time taken by standard Monte Carlo (MC) simulation tackte the Frame Error
Rate (FER) increases exponentially with the increase in&itp-Noise Ratio (SNR).
Importance Sampling (IS) is one of the most successful igdes used to reduce the
simulation time. In this thesis, we investigate an advanezdion of IS, called Adap-
tive Importance Sampling (AlS) algorithm to efficiently évate the performance of

Forward Error Correcting (FEC) codes at very low error rates

First we present the inspirations and motivations behimsl work by analyz-
ing different approaches currently in use, putting an erahan methods inspired by
Statistical Physics. Then, based on this qualitative amglyve present an optimized
method namely Fast Flat Histogram (FFH) method, for thegoerance evaluation of
FEC codes which is generic in nature. FFH method employs Wangau algorithm
and is based on Markov Chain Monte Carlo (MCMC). It operatemi AIS framework
and gives a good simulation gain. Sufficient statisticalie&cy is ensured through dif-

ferent parameters. Extention to other types of error ctimgcodes is straight forward.

We present the results for LDPC codes and turbo codes witaréift code-
lengths and rates showing that the FFH method is genericsappiicable for different
families of FEC codes having any length, rate and structMi@eover, we show that
the FFH method is a powerful tool to tease out the pseudocmdisnat high SNR
region using Belief Propagation as the decoding algorithintife LDPC codes.
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Résumé

Dans cette thése, nous abordons le sujet d’optimisationreikodes utlisées pour
I'évaluation de performance des codes correcteurs d'esrdia durée d’une simula-
tion Monte Carlo pour estimer le taux d’erreurs dans un systde communication
augmente exponentiellement avec I'accroissement du Refgmal sur Bruit (RSB).

Importance Sampling (IS) est une des techniques qui pegniettréduire le temps de
ces simulations. Dans ce travail, on a étudié et mis en oeung®ersion avancée d’IS,
appelé Adaptive Importance Sampling (AlS), pour I'évaliaefficace des codes cor-

recteurs d’erreurs aux taux d’erreur trés bas.

D’abord, nous présentons les inspirations et motivatiorenalysant différentes
approches actuellement mises en pratique. On s’intérégseparticulierement aux
meéthodes inspirées de la physique statistique. Ensué, & notre analyse qualita-
tive, nous présentons une méthode optimisée, appelé |adeétle Fast Flat Histogram
(FFH) qui est intrinséquement trés générique. La méthodaaenl’algorithme de
Wang-Landau, I'algorithme de Metropolis-Hastings et lbaines de Markov. Elle
fonctionne dans le cadre de 'AIS et nous donne un gain delation satisfaisant.
Différents parameétres sont utilisés pour assurer une gioécstatistique suffisante.

L'extension vers d’autres types de codes correcteursaliesrest directe.

Nous présentons les résultats pour les codes LDPC et tutbscayant dif-

férentes tailles et différents rendements. Par conségoeas montrons que la méth-

Vi



Résumé

ode FFH est générique et valable pour une large gamme desmends, tailles et
structures. De plus, nous montrons que la méthode FFH esttilnpaissant pour
trouver des pseudocodewords dans la région de RSB élévépbguamt I'algorithme

de décodage Belief Propagation aux codes LDPC.

Vil
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Introduction - Context and Background

1.1 Context and background

N his seminal paper [1], Claude E. Shannon laid the mathealdtiandations of
I the modern information theory. He introduced the conceptdtindant channel
coding as a method to achieve reliable communication onsyrebiannel with known
capacity. Shannon’s mathematical proofs were relatedridaa coding which are
impractical owing to their complexity. Tremendous amouhwork since then, has

been devoted to designing good practical codes aiming &\anp the Shannon limit.

In 1993, Turbo codes [2] were discovered which proved to beappnbreak-
through for a reliable communication through channel cgdirhis discovery showed
the potential of iterative decoding as a means of approgchechannel capacity. An-
other powerful class of capacity approaching codes, calted Density Parity Check
(LDPC) codes were originally presented by Gallager in hiB Ftesis in 1963 [3],
but received little attention at that time. In addition, thege computational demand
required in decoding long LDPC codes prevented their widssspuse until major ad-
vances were made in computing, which eventually alloweds&-effective decoding
implementation. With the advent of turbo codes, LDPC coaeseagiscovered [4] and

regained due attention.

For most practical block lengths it is generally agreed liwdih turbo and LDPC

1



Introduction

codes can offer similar performance which, for many appbee, is far greater than
all previously-known codes. For very large block lengtinsgontrast to turbo codes,
certain types of LDPC codes can reach the capacity limit etothtAWGN channel [5].
One disadvantage of LDPC codes compared to turbo codedigtiegratic-time en-
coding complexity in the general case, although there ataindypes of LDPC codes

which can partially avoid this drawback [6],[7].

There are two primary methods to gauge the performance of earrecting
codes on a particular channel. The first method comprisesw#ldping both lower
and upper bounds on the probability of codeword error ve@gseal-to-Noise Ratio
(SNR). These bounds can be very informative in certain regad SNR but may lead
to a very loose estimate in other regions. The second comnuseld method to find a
code’s performance is Monte Carlo (MC) simulation. Thisénegrally a simpler and
more accurate way to predict the performance of a code, edlyan the lower SNR
region. The problem with utilizing MC is the large computaial time necessary to

obtain an error estimate in the higher SNR region.

With the advancement in the code design and better decadeais,become very
important to gauge the performance of the communicatiotersyst very low error
rates (higher SNR region). On the one hand, there are nopétapons operating at
very low error probability and standard Monte Carlo (MC) slation takes extremely
long to gauge their performance. On the other hand, new attgecoders compete
for a better performance in the error floor region where théopmance evaluation
is curbed and it is quite difficult to study the system projgsrt The problem stems
from the fact that there is no analytical characterizatibthe error rate performance
of codes on graphs (LDPC codes and turbo codes) employiragiite decoding, with

the exception of a few channels and decoding algorithms fochvsuch a characteri-

2



1.1 Context and background

zation reduces to a more or less tractable combinatoridl@no[8, 9, 10].

In this work, we mainly focus on adressing this problem of@@nance evalua-
tion in the high SNR region. After extensive study of the 8rigmethods and keeping
in view the strengths and weaknesses therein, a powerfllodeixisting in statistical
physics was studied. This method, referred to as Fast Fiibgtiam (FFH) method
[11] in statistical physics, was brought into the the don@ichannel coding. In sta-
tistical physics, this method proves to be very efficienttfue evaluation of density
of states for spin models having any number of interactiansp&n. The most con-
spicuous feature of the method is its genericity. The ppiecis the same as that of
the standard Monte Carlo method. However, the MC steps arteatied and depend
on the history of the previous steps, a feature which makaediarkov Chain Monte
Carlo (MCMC) method.

1.1.1 Thesis organization

The rest of the dissertation is organized as follows: Chaptgives an introduction
to linear block codes with main focus on LDPC codes and theskigs Passing Al-
gorithm (MPA). The notions of Near Codewords, Trapping S8tepping Sets and
Absorbing Sets are presented which is followed by a disonssn pseudo-codewords.
The chapter aims at introducing the basics briefly but colmgmsively. Chpater 3
details the existing methods giving a brief introductionech one followed by an
overview. The minute details of the methods are not giverapBdr 4 covers the con-
text, background, thoeretical details and implementatisnes of Fast Flat Histogram
(FFH) method when applied for the first time in the domain afing theory. Chapter
5 details an application of FFH method to find the pseudo+wod# spectra employ-
ing Belief Propagation (BP) as the decoding algorithm. @ concludes this work

giving the perspective for future work.



LDPC Codes, Error Floor Region,

Trapping Sets and Pseudo-codewords

SINCE the main emphasis of this work will remain on LDPC codes (tigto
results for Turbo codes have also been presented), it isriarpdo give a brief

overview of this class of binary linear block codes.

2.1 Binary Linear Block Codes

Consider a system with a source vectoof & bits which are equally likely to be a
‘0’ or ‘1" and to be transmitted over a noisy channel. Charoaaling is a technique
used to add redundancy to data so that imperfections in a comeation channel will

be less likely to destroy the transmitted information. Enhare two primary types of
coding [12] - convolutional coding and block coding. Conuadnal codes have been
widely used in practice because they can be representedimpdestrellis structure

which leads to an efficient decoding strategy known as therbiif5] algorithm. Al-

though convolutional codes have been tremendously usafpiast applications, they
fall short of the Shannon bound [1], a feat that coding reseas have always strived
to achieve. Block codes also have many practical applicgtiespecially when certain

restrictions are placed on their construction, i.e. cyehor detection codes such as

4



2.1 Binary Linear Block Codes

the famous Cyclic Redundancy Check (CRC) codes. This waalsdeth linear block

codes, a subset of the class of all block codes.

A binary vectorx is said to be in the code described by its associatgdnerator
matrix G, if x = uG for somek length bit vectoru. The generator matrix is x n
matrix of ‘1's and ‘0’s that will describe a code wiftf codewords if all rows oG are
linearly independent. The cod&can be seen asfadimensional vector subspace of
the set of alh-tuplesthat is spanned by thelinearly independent rows @. A linear

code has the property thai; + u;)G = w;G + u;G.

1111000000 |
1000111000
H=| o100100110
0010100101
0001001011

Figure 2.1: The parity check matrix

A parity check matrixH is an(n — k) x n matrix of ‘1’s and ‘0’s which also
completely describes the codebook of a linear block cede: C' if xHT = 0, i.e. x
is within the null space oH. The termxH?™ = 0 is referred to as the ‘syndrome’ of
the code. Syndrome checking consists of verifying whethesyyndrome for a vector
is null (a condition which ensures that the vector is inctlidethe codebook). The
code rate (a dimensionless quantity) is definedkas k/n. Since bothG andH can
completely describe a code, there must be a way to conventdree form to the other.
Consider the case, which is common in the design of LDPC coslksre we start
with a parity check matrix and need to find its associated igegoematrix in order to

encode the data. In the following derivation®f if C, is a square, invertible binary

5



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

matrix, it is assumed that the — £ columns ofC, are linearly independent. If they
are not, we can permute columnsHnuntil this condition is met. Beginning with the

parity-check matrixH we write

H=[C; : C;]

We form thesystematiwersion ofH in the next step, which allows for the systematic

G to be constructed from the submatrices-of
H=[C;'C; : I

= G=[:(C;'Cy7T] (2.1)

Variable Nodes

An edge corresponds
“— | toa'l'inthe PCM

Figure 2.2: The Tanner graph representation of variablecardk nodes

Check Nodes

Linear codes have a 1-1 mapping frairto a graph form, called a Tanner graph
[13]. Each ‘1’ inH corresponds to an edge in the graph. Each column dfithetrix
is represented by \aariable node(v;) in the graph. The'" row has a check nodg;)
counterpart, which is connected to the variable nodes sporaling to the columns of

H with a ‘1’ in the i** row. Tanner graphs are characterized by a ‘bipartite’ stinec

6



2.1 Binary Linear Block Codes

The two parties are check nodes and variable nodes, and fiodesne party are never
directly connected to other nodes of the same party. A spbgréa Tanner graph can
be constructed from any subset of therariable nodes and — k check nodes. The
nodes in this subset will be callexttive nodesand the edges connecting the active
nodes are known aactive edgesA tree can be constructed from any subgraph within
the Tanner graph. The root of a tree is defined as the variable at the top of the tree

from which all edges descend.

2.1.1 LDPC Codes

Low-density parity-check (LDPC) codes, a subset of lindaclk codes, carry this
name because their parity check matri¢ésare characterized by a very small number
of ‘1's compared to ‘0’s. We will see that it is this low-detysproperty of the code
that allows a practical decoding algorithm and hence jestitne utility of this special

class of codes.

R.G. Gallager first proposed LDPC codes and a few decodirggittigns in his
doctoral dissertation in the early 1960'’s [3]. The large patational demand required
in decoding long LDPC codes prevented their widespread nskmajor advances
were made in computing, which eventually allowed a costatife decoding imple-
mentation. After turbo codes [2] were discovered in theyeairieties, D.J.C. MacKay
re-discovered and popularized LDPC codes in the late me¢d]. Turbo codes and
LDPC codes are special, not only because they can approachlese to the virtually
error-free transmission limit, but mainly because a corapaomally efficient, so-called
iterative, decoding scheme is readily available. When atpey at moderate noise
values, these decoding algorithms show an unprecedeniiggl &bcorrect errors, a
remarkable feature that has attracted a lot of theoretitahtéon [14],[15], [16], [17],
[18], [19]. (Notice also statistical physics-inspired amgch [20] that offered an im-

7



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

portant insight into the extraordinary performance of tkeative decoding).

For most practical block lengths, it is generally agreed toéh turbo and LDPC
codes can offer similar performance, which for many appbee, is far greater than
all previously-known codes. For very large block lengtimsgontrast to turbo codes,
certain types of LDPC codes can reach the capacity limit enbibPAWGN channel
[5]. One disadvantage of LDPC codes compared to turbo cedbéegir quadratic-time
encoding complexity in the general case, although therecantain types of LDPC
codes which can partially avoid this drawback [6],[7]. Téhare some new standards
which are incorporating LDPC codes such as the new digitldwibroadcast (DVB-
S2) standard [21], which concatenates an LDPC code with a &icld. The 10-gigabit

Ethernet standard will also make use of LDPC codes.

An ensemble of codes is defined as a family of codes that gatstain spec-
ifications. Typically, for LDPC codes, the ensembles arengefiwith respect to a
certain degree profile. The degree profile of an LDPC codeifgpethe fraction of
edges that are connected to variable and check nodes ofamcaegree. The degree
distribution polynomial\(z) = S_% , A(d)z?' says that fraction\(d) of the edges
are connected to degrdevariable nodes and, is the maximum degree variable node.
A similar polynomial is constructed for the check nodegz) = Zd L pld)z?

These two polynomials are related because a code will haveaime number of total
edges,F|, coming from both the check and variable nodgs} fol Mz)dz = n and
|E| fol p(x)dr =n — k.

Often LDPC codes haveragular degree distribution, for example rate-1/2 reg-
ular 3,6 codes have all variable nodes with= 3 and all check nodes witll. = 6.

{3,6} codes are very common in the literature and when decodirtytivé message

8



2.2 Decoding

passing algorithm are shown to have the best waterfall tlotdsi.e. the SNR region
where the bit error rate begins to decrease very rapidly, alVeate-1/2, regular de-
gree code ensembles [4]. Many examples in this work look dés®f this type with

varying block length.

2.2 Decoding

The decoding algorithm are defined in two ways:

2.2.1 Hard decision decoding

Hard decision decoding is based on making a hard decisiacallfsymbols exactly at
the output of the channel. The decisions are given as inputsetdecoder and mes-
sages are passed between the nodes in the graph based odettisgms. The parity
nodes checks whether the decisions verify its parity eqoatAs output towards the
variable node, the parity nodes send the updated decisiam@sds the variable nodes
which verify the parity equation. The variable nodes thdwes$aa decision based on the
input received at various links. A simple decision critex@n be to decide on the value
for which the most number of messages in its favour and in chadie, we consider
its initial value. This process is repeated iterativelyitentode-word has been decoded

or the allowed maximum number of iterations is reached.

2.2.2 Soft decision decoding

Soft decision decoding is same as the hard decision decaslogpt for the messages
travelling between the nodes are probability densitiesogrratios of the probabilty

densities in place of the actual values of the symbols. Atoilput of the channel,

9



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

based on the received data, a priori probability densitiesalculated for all symbols

which is given as input to the decoder.

The Message Passing Algorithm (MPA), also known as the Swduet Al-
gorithm (SPA) or belief propagation (BP) [22], [4], is theriative decoding method
generally used in LDPC codes on the AWGN channel. Traditignéne goal of a
decoder is to find the most likely codeword that was sent atrresmitter. Unfortu-
nately, for long codes, no algorithm is known to exist thadtieges this goal, except
for the brute-force approach which mak#scorrelations and comparisons for each
decoding. The objective of the MPA decoder, on the other hangd maximize the a
posterior probability (MAP) that a specific hit was most likely a ‘0’ or a ‘1’, given

the channel output vectoy,

The exact a posteriori probability that code bjt= 0 is

P(z; =0ly)= Y P(xly)

xeC:z;=0

3 Plylx)P(x)

xeC:x;=0 P(Y)
= Y. KP(ylx) (2.2)
xeC:x;=0

The constank in Eqg. (2.2) contains th€(x) and P(y) terms which are both indepen-
dent of the index variablg since we are assuming equally likely prior probabilities o
the codewords. The problem with Eq. (2.2) is that the number of elementsrgihg

tothesetk € C : z; = 0is 2k 1.

10



2.2 Decoding

2.2.2.1 Message Passing Algorithm

For decoding purposes, there is no better way than to recamh#te codeword that was
most likely transmitted and then to compare the likelihooidsll possible codewords.
However, this Maximum Likelihood (ML) algorithm becomedractable already for
codewords that are tens of bits long. The message passimgtiig, as its name sug-
gests, operates by passing messages along edges in the Jeapte These messages
represent some measure of probability that each bit is ar'@’oThe outgoing mes-
sage at each node is a function of all incoming messages aiotle, except for the
message along the edge of the outgoing message. This prdgentesearchers to
label the messages as containing extrinsic (‘from outyidé&rmation [23]. The low-
density property of LDPC codes ensures a small number ofagesghence compu-

tations) are required at each node.

See Fig. 2.3 [24] for an illustration of both the variable @héck node message

flow for a{3,6} regular code.

There are three types of messages:

e Variable-to-Check Node Messagésg;(0))

The notation here fog;;(0) says that this message goes from dfievariable node to
the j*" check node and it passes the probability that this variabte s equal to ‘0.
This notation follows that used by [25]. When passing liketd ratios, the ‘0/1’ in
parenthesis can be omitted because the ratio contains teatspof information.

The messages are

qz-j(O) = P(x; = Oly;, Si, Ms(~ j))

11



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

5 6
L c5 Lce

Figure 2.3: Message flow in MPA for{s, 6} code

_ P(Si|zi = 0,y;, Mi(~ 7)) P(x; = 0ly;)

P(5))
= K;;P(z; = Oly;) [] r5(0)
j/ECi\j
j/ECi\j

HereS; is the event that all checks involving are satisfiedM;(~ j)) means all mes-
sages from check nodes connected to variable noskcept for the message from the
j™ check node. Thé;; are normalizing constants’; are the check nodes connected

to theit" variable node.

12



2.2 Decoding

e Check-to-Variable Node Messagési{;(0))
Fact A Property of Independent Binary Random Variable R.V.k [3
Consider a sequence 6f independent binary r.v.g; such thatP(a; = 1) = p;. The

probability that the sequence haseuennumber of ones is given by:

M

11
ST = 2,
2+2H( i)

Satisfying a parity check in a block code is equivalent tontmg binary r.v.s and
finding an even number of ones. Thus, the MPA makes use ofdbidy producing

the following check-to-variable message:

=5+ 5 T (- 20)(1) (2.9

"€V

\)

whereV; ; is the set of all variable nodes connected to chgakcept for the™ one.

e Observation (channel evidence) Messages
For a memoryless channel, each received g conditionally independent of all oth-

ers. The transmitted bits, , are also assumed to be equally likely. Thus,

P(yi|zi) P(;)
P(y;)
The Log Likelihood Ratio (LLR) of the channel data for the AN@ase is

P(xily:) = (2.5)

P(x; = 0ly; E
(x; = Oly;) — gy, (2.6)

Le; =1
‘ o8 P(l’z’ = 1|3/z) No

These three types of messages are shown in Fig. 2.3 [24].

Working in the probability domain (Egs. (2.3), (2.4) and5(2.is more com-

putationally burdensome than working in the log domain.b@hilities must be nor-

13



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

malized, an extra step, and independent events are meitip8 opposed to added in
the log domain, a less expensive computation. There is atse numerical accuracy
in the log domain, as very small probabilities that are nplied become larger, more
manageable exponents of probabilities that are addedteggte.,(10~1°)(1071%) —
(—10) + (—10)). Thus, the MPA is usually implemented in the log domain.

g — Laij = 3¢, Lrji + Lei
Tji — | Lrj; =2 tanh ! [ij\i tanh(0.5Lg;;)
Plz;=0) | — LQi =3 ¢, Lrji + Lei

Table 2.1: MPA equations - Probability domatn Log domain

The MPA message equations in the log likelihood ratio doraaéngiven in Ta-
ble 2.1 [24].

A commonly used approximation to the full belief propagatinessage passing
algorithm, called the Min-Sum Algorithm (MSA) [16] is caed out in the same way,
except the message originating at the check nofles,in Table 2.1 is instead given

by the much less complex:

Lrj;, = H sign(qu-j)mian\i\Lqij\ (2.7)
Vi\i

The message passing algorithm is an iterative proceduie apérations de-
scribed by the following pseudocode, using Table 2.1.
1. Initialize ‘up’ message$q;; = Lc¢; Vi, j s.t. H;; = 1

2. Update ‘down’ messag€s-j;

14



2.3 Error Analysis

3. Update ‘up’ messagdsy;;

4. Marginalize: updaté.Q);. Set

R 0: LQ; >0
r =

5. If XHT # 0 perform another operation of message passing (go backg@xte

If the maximum number of iterations has already been perdirthen stop and
% is a non-codeword decoder failure. On the other hartHif , then a valid codeword

has been detected.

There are variants on this algorithm which trade complegityaccuracy in com-
puting the probability for each bit. One algorithm adds sgostprocessing to the
MPA to close the gap between BP and ML [26]. Other versionhiefMPA, such as
the min-sum algorithm simplify the computations at the ¢heades, which is by far
the most expensive operation in the algorithm. Some of tekekemes trade roughly
0.5 dB of error performance in the threshold region for dyeaduced decoding com-

plexity [27].

2.3 Error Analysis

To analytically determine how well &m, k) linear block code performs on the AWGN
channel, it is necessary to integrate a Gaussian densityativaf the regione, in an
n-dimensional signal space that would not decode to thede® codeword. At high

SNR, code performance when using an ML decoder is accurdésigribed by a union

15



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

bound using the complete weight spectrum of codewords

d d
max 2dES max a —dES
Pr< 0 aQl )< X2 ~ exp( N (2.8)
d:dmin d:dmin

whered,,;, is the Hamming distance of the nearest codewordsdandis the Ham-
ming distance of the farthest codewords in signal spages the corresponding multi-
plicity for codewords at Hamming distandeln the large deviations theory literature,
the nearest error regions contain points which are nearestlimensional space to the

correct signal point, and are callednimum rate point§28], [29].

The minimum rate points are those points in the error rediahhtave the small-

est Euclidean distanek . from the correct codeword. This Euclidean distance is just

Vdmin for ML decoding. It is documented in the literature [24] thidten using the
MPA decoder on LDPC codes, the nearest error regions ardlyiswd valid code-
words but are instead Trapping Sets (TS) [15]. The reasontbalclosest error events
are dominant in the high-SNR region is because the arguni¢né @xponential con-
tains a multiplier ofE; /Ny. Thus, the contribution of the second-closest error events

is decaying at a rate exponentially faster than the closestits.

dmaX E
Py < Z adexp(—dﬁj))
d=dmin
-F
No

Eq :
exp(—d >[1 . Ydumint1 exp(

minﬁo ay )++

:ad

min

min

Qq ES
— - dmax - dmin N7 ] 29
+ o expl—( 7] (2.9
All of the exponential terms in the brackets on the RHS of &qua2.9) will go to
zero for sufficiently largeF’s/Ny. So, at high SNR, only the error events associated

with codewords at Hamming distandg;, are necessary in the union bound sum of
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2.3 Error Analysis

(2.9). This high-SNR behavior of the decoder leads to theviehg formal definition

of adominanterror event.

Definition [24] Let the reference position in n-dimensional space be theaths (in
GF(2)) codeword mapped to the all-ones vectoRih Every decoding rule will induce
an error region surrounding the all-ones point. Considerrasphere centered at the

all-ones point and inflating it from this point. At some raslid. the n-sphere will

first touch one or more points in the error region. There is adny n-length vector
which the decoder would output for channel outpgitghat land in these nearest error
regions. These binary n-length vectors, which may or mapeetlid codewords, will

be considered dominant error events.

Even though the task of describing code performance in thatal high SNR regions
is the same, it is easier to think about the problem difféyeot each case. In the low
SNR region, it is best to think of the mean of a random varigblg,(y)]) as describ-
ing Py, wherel.(y) is the indicator function that evaluates to ong ifs in the error
region and zero otherwise. That is what a Monte Carlo sinarias calculating - the

expected value of a random variable.

In the high-SNR region, on the other hand, it is easier to kegtoblem in a
geometrical sense, as the above definition of a dominant event demonstrates. In
particular, locating the closest points of the error boupdand their shapes will give
the information needed to calculat®. This is precisely what a union bound on ML
decoding is doing - adding up the probability contributioonfi each error half-space.
When employing ML decoding at high enough SNR, only the bpHces between
the codewords at the minimum Hamming distance contributgrafeant percentage

of the error probability. Thus, at high SNR, determining egerformance is nearly

17



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

equivalent to the problem of finding all of the nearest eramions in n-dimensional
space. Since an ML decoder is not used with large LDPC cotlesnearest error
regions are typically not caused by valid codewords, butrestead a consequence of

the suboptimal MPA decoder.

2.4 Trapping Sets and Stopping Sets

While measuring the performane of a forward error corrgctiode, one can typically
divide the performance curve into three regions: low SNRoregvaterfall region and
error floor region [15], [14]. Error floor region corresportdshe performance mea-
surement taken at a relatively high SNR ratio. It is a phenmwneharacterized by an
abrupt degradation of the coding scheme performance, asurezhby the Bit Error
Rate (BER) or Frame Error Rate (FER), from the waterfallmegyof moderate signal-
to-noise ratio (SNR) to the absolutely different error-flagsymptotic achieved at high
SNR.

The transient behavior and the error floor asymptotic oatgrfrom the sub-
optimality of decoder, i.e., the ideal maximume-likeliho@dL) curve would not show
such a dramatic change in the BER/FER with the SNR increadaleWhe slope of
the BER/FER curve in the waterfall region is the same for alnadl the codes in the
ensemble, there can be a huge variation in the slopes farelift codes in the error
floor region [30]. The deterioration power of noise is quielin this region and it
becomes extremely cumbersome to get enough error everdsigie ghe performance

with high confidence level.

The importance of error-floor analysis was recognized iretimyy stages of the
turbo codes revolution [31], and it soon became apparehtBC codes are also not

immune from the error-floor deficiency [15], [32]. Consedtlgrdespite the appeal
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2.4 Trapping Sets and Stopping Sets

of these codes for many high data rate communications ardstiaage applications,
their wide-scale deployment has been hindered by incomplederstanding of finite-

length effects and error floors.

Better understanding of the performance of finite-lengtiPcodes in the low
BER/FER regime has both theoretical as well as practicaligagpons. From a theo-
retical standpoint, it provides a deeper understandinp@itbnvergence of the mes-
sage passing algorithms. For practical storage and wer@lpplications, such predic-
tions provide a useful engineering tool in estimating peni@nce and designing LDPC

codes.

Waterfall region

Frame Error Rate

Error floor region

Signal to Noise Ratio

Typical code performance

Figure 2.4: The performance curve of an error correctingeasddivided into three
regions: low SNR region, waterfall region and error floorioeg

The main approaches to the error-floor analysis problemgsegh to date in-
clude: (i) a heuristic approach of the importance samplypeg {15], utilizing theoreti-
cal considerations developed for a typical randomly careséd LDPC code perform-

ing over the very special binary-erasure channel [33], @phdériving lower bounds
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

for BER [34].

To estimate the error-floor asymptotic in the modern highhty systems is a
notoriously difficult task. Typical required BER values afe!? for an optical com-
munication system]0~'° for hard drive systems in personal computers. However,
direct numerical methods, e.g., Monte Carlo simulatioasnot be used to determine
the BER belowi 0~ though emulation of LDPC codes can be accelerated using-Fiel

Programmable Gate Array (FPGA) platform [35], [36].

Both Turbo codes and LDPC codes employ an iterative decodiggrithm
which is suboptimal in nature thus not computing the exactiam Likelihood (ML)
decoding rule. For iterative decoding on the AWGN channelcklay and Postol [14]
were the first to discover that certdiear Codewordsre to be blamed for the high er-
ror floor in the Margulis code. Richardson reproduced thesults [15] and developed
a computation technique to predict the performance of angi@PC code in the error

floor domain.

Richardson also characterized the troublesome noise coafigns leading to
the error floor using combinatorial objects termed Trap®@ets (TS) and described a
technique (of a Monte-Carlo importance sampling type) wl@ste the error rate as-
sociated with a particular class of trapping sets. PreWptisese TS were termed as
Near Codewords [14]. A related concept of ‘elementary trapping sets’ gagn in
[37]. Milenkovic et al. [38] studied the asymptotic disuiipn of trapping sets in reg-
ular and irregular ensembles. Wang et al. [39] proposedguorighm to exhaustively

enumerate certain trapping sets.

It is extremely difficult to enumerate all of these error eégen brute force search
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2.4 Trapping Sets and Stopping Sets

over an impractically large space is the only way to enuneeaditof them. A good
computational technique is presented by T. Richardsontwikias follows [15]: Some
large fixed number of decoding iterations (say 200) is perém unless the decoder
converges to a codeword earlier. If it has not converged #feefixed number of iter-
ations then we do some further iterations (say 20) and ifyetfie trapping set as the
union of all bits which do not decode correctly during tho8dteration. Richardson
pointed out that that the trapping set definition dependfierécoder input space and
the decoding algorithm. In addition, if the channel is theB&hd the decoder is belief
propagation then the trapping sets are precisely the stggats [33].

Motivated by empirical observations of the non-codewortpats of LDPC de-
coders, the notion of stopping sets was first introduced bgdyo et al. [18] in 2001. A
formal definition of stopping sets was given by Di Changyam) €33]. They demon-
strated that the bit and block error probabilities of itmelly decoded LDPC codes on
the binary erasure channel (BEC) can be determined exaotly the stopping sets of
the parity-check matrix. (Here, a stopping Set a subset of the set of variable nodes

such that all neighboring check nodes%ére connected t§ at least twice).

The intuition behind stopping sets begins with an undedstenof message-
passing algorithms. Information given to a specific vaeatbde from a neighboring
check node is derived from all other variable nodes condeictehat check node. If
two variable nodes with erasures are connected to a comnexk ¢fode, then the
check node is not able to determine the value of either of thiean this reason, the
check nodes connected to a stopping set are incapable dfirgserasures if every

variable node in the stopping set begins with an erasure.

An analysis of LDPC code performance on the BEC is purely doatbrial and
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

analytical results can be determined. The name follows fterinability of the mes-
sage passing decoder (in the BEC case this is a bit-flippiogdis) to correct a block
of data when erasures are found in each bit of a stopping seteter, an ML decoder
could correct the message block if erasures were found imacadeword stopping
set. The MPA decoding rule for the erasure channel is for gacity check node to
replace an erasure bit with either a ‘1’ or ‘0’ to satisfy theripy if only one erasure
occurs in the variable nodes connected to that parity chedk.nThus, if two or more
of the bits contain an erasure, then this parity check cahelgt correct any erasures
until another check node resolves some of these erasurdéler# is a stopping set
of bits such that every check node connected to those bitsisected at least twice,
then the decoder stops making any progress once all erdautes block have been

corrected except for those in the stopping set bits.

Stopping sets on the erasure channel led other researchbedi¢ve that an
equivalent notion could extend to other channels inclutlegAWGN channel model.
The literature is undecided on the name of these bit vecttishacause the mes-
sage passing decoder to fail. They have been referred toeas aodewords’ [14],
‘pseudo-codewords’ [40] and ‘trapping sets’ [15]. The ne@aeword and trapping set
viewpoints both classify a bit vector with a pair, b), wherea is the Hamming weight
of the bit vector and is the number of unsatisfied checks, i.e. the Hamming weight
of the syndromecH™. Alternatively, from a Tanner graph perspective, a TS cdnald
defined as the nonzero variable nodes &fand all of the check nodes connected by
one edge to those variable nodes. A valid codeword is a TS with= 0. The term

trapping set has caught on most widely in the literature.

Definition [24]: During the decoding process, a history of the hard decisipaf the

message estimate must be saved at each iteratowl if the maximum number of it-
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2.4 Trapping Sets and Stopping Sets

erations/,,., occurs and no valid codeword has been found, the TS will baatkfis

the %, which satisfiesninwy (%,H” ) wherel = 1. .. ...

The MPA is an extremely useful suboptimal decoding algarithut it will only
correctly compute the exact marginal probability for eastiechit if no cycles exist in
its Tanner graph [22],[41]. The reason why the MPA canndiguer the exact bit MAP
operation for a general graph is because dependent inflomeises in the messages.
This dependence occurs when the messages travel throughk aythe graph. A cycle

of lengthc occurs when a closed path witledges exists between a node and itself.

The girth of a graph is defined as the length of the shortededgahe graph.
This implies if the girth of the graph is six, the first threessage passing iterations
would not contain any dependent information in the messafjethe fourth iteration,
all nodes that are involved in length-six cycles would idtroe some degree of depen-
dence in the next group of messages emanating from thoses.nd8earise when this
dependence occurs in a very severe form, where certainrgienalved in multiple
shorter cycles. Since all long LDPC codes contain cycles, iitevitable that TS of
some type exist. The TS behave differently in the error flegian, where most of the
errors will saturate to their final TS state early in iterattmumber and stay in this state
regardless of the number of subsequent iterations. Thesdaypehavior better reflects

the notion of getting ‘trapped’ in an error state.

For hard-decision decoding algorithms [3], [42], [43], [445], the following
types of decoder failures corresponding to different typesapping sets were re-

ported in [46].

1) Fixed-pattern: After a finite number of iterations, theoempositions at the
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

output of the decoder remain unchanged.

2) Oscillatory-pattern: After a finite number of iteratioiise error positions at

the output of the decoder oscillate periodically within aadireet of variable nodes.

3) Random-like: Error positions change with iterations ise@mingly random
fashion. The errors seem to propagate in the Tanner grapteanldin a larger number
of errors at the output of the decoder even if the initial epattern has only a small

weight.

The problem of locating trapping sets is a relatively reggoblem and there are
three searching methods worth mentioning. The first [15])3$ o generate noise with
the nominal density in the high SNR region and keep track mirezvents, most of
which will be the lower weight trapping sets or codewordsisThethod is inefficient

because it requires decoding huge numbers of message®that gesult in errors.

The second method of searching for dominant error evenisodly works for
codes having a small number of very dominant trapping séte.s€arch method relies
on the code having a small number of minimum length cycles.cBdes with a more
uniform cycle length distribution at each variable nodeiclihs characteristic of most

long codes, this method tends to miss many dominant traygeitsy

The third work comes from [24] where two search techniquesdascribed -
one combinatorial, employing graph theory arguments aadther using the power
of the MPA itself to locate dominant error events. The coratonal search has a lim-
ited scope; it is only practical for finding TS with< 10 or so. The decoder search,

however, leads to a much more general search techniquegwapplicability for most
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LDPC codes.

2.5 Absorbing Sets

To characterize the error events, Zhan@l. introduced the notion of an absorbing set
[48] which is used to describe an error event that can occarnvthe message pass-
ing decoding fails to converge to a codeword after a largeberrof iterations. An
absorbing set is defined as [48]: LEf; be the bipartite Tanner graph corresponding
to the parity check matri¥{ of the given code. We say that the subset of a bit nodes
and their neighboring check nodes iff; constitute ana, b) set if in the subgraph
induced by these bit nodes, exactly > 0 check nodes have odd degrees, each of
thesea bit nodes is connected to more even-degree checks thanemtdedchecks,
and all remaining check nodes outside of the induced subdrape even degree with
respect td;. We say that ana, b) set is an(a, b) absorbing set if for alt’, o’ < a, it

does not contain afw’, b) set as its subgraph.

Zhanget al. choose to use the absorbing set as defined above in orderlio-exp
itly distinguish the convergence of the decoder to a noreaaadd from its oscillatory
behavior. The name 'absorbing sets’ was given due to theaciive nature. They also
demonstrated that the occurrence of the absorbing setasesewith the decrease in

the codelength.

A theoretical analysis of the absorbing sets is given in (@Bgre it is argued
that the absorbing sets are related to (but not entirelyvatgnt to) previously intro-
duced combinatorial structures, including stopping sedpping sets, near codewords
and pseudo-codewords. The notion of absorbing sets waxluded to qualitatively

describe the convergent non-codeword state of the messagag algorithms, when
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the transmission channel is Additive White Gaussian No&W&GN).

In the asymptotic limit given by the bit flipping algorithnine configuration de-
scribed as a fully absorbing set is stable, since each bi meceives strictly more
messages from the neighboring checks that reinforce itewabn messages that sug-
gest the opposite bit value. In particular, a fully absogtset can be viewed as a near
codeword as defined in [14], though the reverse is not trneesa near codeword does
not necessarily describe a stable configuration. The tngpget definition introduced
in [15] also does not explicitly capture the convergent bedrasince it refers to the
union of all bits that are not eventually correct, and thusmis a situation in which
the decoder oscillates among a finite number of states. Adthastopping sets [33]
also describe stable configurations, they are defined indhiext of a binary erasure

channel, and cannot be directly applied to an AWGN channel.

2.6 Pseudo-codewords

Decoding errors for iterative message-passing algorithrasalso often attributed to
pseudocodewords [50]. Work on relating pseudocodewordsdjoping sets for the
BEC [18], the binary symmetric channel (BSC) and the AWGNtte [51] has re-
vealed a relationship between pseudocodeword weight apgisg set size. However,
the current notions of stopping sets and pseudocodewordstdocompletely charac-
terize the performance and non-codeword outputs of iteratcoders on the BSC and

AWGN channels.

In his dissertation, Niclas Wiberg provides the foundatmmanalyzing these er-
rors by turning to an analysis of computation trees [16].rEwéh these insights, the-
oretical analyses of the convergence of iterative mespagsing decoding have thus

far been scarce. (A notable exception is the work done onityenslution [5], [42],
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which considers ensembles of LDPC codes rather than ingaVicbdes.) Meanwhile,
linear programming (LP) decoding [52] has strong heuris#s to iterative message-
passing decoding by way of graph cover decoding, and ity/sisahas proven much
more tractable [53]. The common finding across all analy$éisese decoders is that
pseudocodewords play a significant role in determining eayence of the decoder

and in understanding the non-codeword outputs that arise.

Three types of pseudocodewords for LDPC codes are foundeiritdrature:
graph cover pseudocodewords, linear programming pseddoacds and computa-
tion tree pseudocodewords [54]. Kelley and Sridhara stugseudo-codewords [55]
arising from graph covers and derived bounds on the minimssugo-codeword
weight in terms of the girth and the minimum left-degree & tinderlying Tanner
graph. The bounds were further investigated by Xia and Fli [Séharandache and
Vontobel [57] found pseudo-codeword distributions for ¢pecial cases of codes from
Euclidean and projective planes. Pseudo-codeword asdigsialso been extended to

the convolutional LDPC codes by Smarandache et al. [58].

Linear Programming decoding, introduced in [52], [59] id@se relative of BP
which can be viewed as a relaxed version of Maximum Likelth@dL) decoding. For
any realistic code (with loops), the BP algorithm is appnaie attempting to solve
iteratively nonlinear equations, called BP equations Wwigiescribe extrema (e.g. min-
ima are of main interest) of the Bethe free energy [60]. Ratabdf the LP decoding
to the Bethe free energy approach [60] and thus to BP equatiod decoding, was
noticed in [59], and the point was elucidated further in [461], [53], [62], [63], [64].

In short, LP may be considered as large SNR asymptotic lifl8R) where the later
is interpreted as an extremum of the Bethe free energy fumati The failures of the

LP decoder can be understood in terms of the vertices of thmalsad fundamental
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polytope which are also known as pseudo-codewords [59].

Vontobel and Koetter introduced a theoretical tool knowrgesph cover ap-
proach [53] and used it to establish connections betweebhRlend the message pass-
ing decoders using the notion of the fundamental polytopkeyTshowed that the
pseudo-codewords arising from the Tanner graph coverdardical to the pseudo-
codewords of the LP decoder. Vontobel and Koetter also stlidlie relation between

the LP and the min-sum decoders [61].

Both BP and LP are computationally efficient but suboptimal, incapable of
matching performance of the Maximume-Likelihood (ML). Evéough BP and LP de-
codings are suboptimal with respect to ML at all SNRs, théetgihce in FER is only
order one in the water-fall regime of small SNRs. The sitrabecomes significantly
worse in the error-floor domain of moderate to large SNRs @/Ifé&R for BP/LP is
parametrically, i.e. orders of magnitude, larger than F&RML. Length of the error-
correction code brings another dimension into the probl&he longer the code the
lower is the value of FER where the waterfall-to-error-fldk@nsition happens. On
the other hand, standard Monte-Carlo (MC) numerics is iablgpto determine BER
below10~°. Therefore, understanding and describing the error-flya@rbalternative,

and hopefully more insightful method is in great demand [15]

One such useful insight came through recent efforts [69], [B7], [62], [64]
to understanding error-floor in terms of the most probablefdangerous configura-
tions of the noise, so-called instantons, contributingtn@$&ER. BP/LP decodes the
instantons into the so-called non-codeword pseudo-coaksad7], [16], [18], [15],
[40]. It was recognized that for moderate and large SNR4tsjiof the two (FER

vs SNR) curves, representing ML decoding and approximateBBecoding, is due
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to the pseudo-codewords, which are confused by the subalpilgorithm for actual
codewords of the code. Describing BP/LP error-flooor trates into finding pseudo-

codewords with low effective distance.

It is well established that the distance between codewagiéficantly impacts
the probability of decoding errors, and thus it is importanfurther explore the effect
of the distance between pseudocodewords and codewordsinfaoy linear codes, the
classical problem of finding distances between codewoslgisficantly simplified by
looking instead at the weights of codewords, which is madssite by the algebraic
structure of the code. To parallel the classical case, wsidenthe (effective Ham-
ming) weight [18] of a pseudocodeword. It should be noted ttia notion of weight
was originally motivated by the definition of the generatizeeight of a computation

tree configuration, as given by Wiberg in [16].

Definition 2.2 (See Forney, et al. [18], Corollary 3.1). On the additivetel@aussian
noise channel, the (effective Hamming) weight of a nonze@ax = (x1,...,z,)

of nonnegative rational numbers is given by

(i i)
(Z?zl)x?

w(z) =

Using the weight measure of Definition 2.2, Forney, et al] Etfbw that the minimum

weight of a vertex of the fundamental polytope [40] detemsibounds on linear pro-
gramming decoding performance. It is important to note thase results deal only
with the overall probability of word error when decodingeyhsay nothing about the

probability of word error caused by a given pseudocodeword.
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

2.7 Difference between Trapping Sets and Pseu-

docodewords

Although there is a tendency to use the terms trapping setpseudocodewords in-
terchangably, yet there is a subtle difference betweenwbe Both try to say what
went wrong in the iterative decoding but the specifics arkeidht. Trapping sets are
decoder dependent so different decoders have differgpitrg sets and researchers
have put efforts (as referenced earlier) to classify thewmight trapping sets for a
variety of decoders. For a given iterative decoding aldanitit is clear what the rel-
evance of trapping sets are with respect to decoding failuHowever, it is not yet
clear, how to know which trapping sets are important and Wwioices are not. One
can always try to list al(a, b) trapping sets and try out empirically which ones cause

problems.

On the other hand, pseudocodewords are defined independétitle iterative
decoding algorithm that is used. They are mainly charadrby the fundamental
polytope. However, their immediate implication for the démg behavior needs to
be looked at from case-to-case. For the BEC channel chamsrdeby stopping sets,
to every pseudocodeword there corresponds one stoppin@igeh by the support
of the pseudocodeword). Consequently, for every stoppetgtsere is at least one

pseudocodeword whose support equals that stopping set.
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Exiting Methods for the Performance

Evaluation at Low Error Rates

T is not feasible to get an exact analytical expression foptieability of error in
I a long code, because the error regions have an extremelyl@omaimensional
shape. Instead, we generally resort to simulation methaftien analyzing the proba-
bility of bit or block error versus SNR for a long code, there gypically two regions
of interest. The first region is the low SNR regime. When itngymecessary to cal-
culate a block error performance down to roughly ®, a Monte Carlo simulation will

provide an efficient and accurate result.

The second region of interest lies in the higher SNR regioermr floor, where
only a few rare, but dominant error events contain nearlpfathe error probability
mass. This is the region of the performance curve that ic&fyiout of reach unless

the code has special properties that allow a simple erroulzlon.

A number of methods exist for the efficient performance eatadun of FEC codes
at low error rates. These methods can be broadly classifiedvio categories: meth-
ods that take into account the code structure and other aeaistics and methods

which are generic in nature being independant of the codetsiie.
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

3.1 Monte Carlo Methods

The Monte Carlo method [68] of simulation was first used as g toaolve multidi-
mensional integrals. In its most general form, it is a toolimol the expectation of a

function of a random variable:

Elg(z)] ~ % > g(x) (3.1)

where thez; are independent random samples drawn from the distribatiahde-
scribes the random variable The total number of random samples is given/hy
Eqg. 3.1 is justified by the law of large numbers, as sampleagyes of i.i.d. random
variables converge in the mean-square sense to their mehe asmber of samples
(L) in the average increases. In the performance analysisdafiscthe usual metric of

interest is the probability of frame errét;. This probability can be given as

P = [ 1)y = [ L))y = EILE) 32)

wherel, is the indicator function for the error regiarin n-dimensional signal space,
and f(y) has a Gaussian distribution for the AWGN channel. The MoraddCesti-

mate becomes
L

Ppye = %Zfe(yz) (3.3)

=1
An estimate is considered unbiased if the expected valueeafstimate is equal to the

true value being estimated.

1 L

ElPpye) = 7 Bly)] = 7 3 Py = Py(unbiased) (3.4)
=1

=1
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3.2 Importance Sampling

3.2 Importance Sampling

In Importance Sampling (1S), we statistically bias the seEngeneration (noise real-
izations) in a manner that produces the disired result nrecuently (error events).
Instead of accumulating for each error event, a ‘weight’ is accumulated for each er-
ror to restore an unbiased estimatefgf This strategy, if done correctly, will lead
to a greatly reduced simulation time of the estimate contpaestandard MC. For a

comprehensive treatment of IS, see [69],[70].

Some examples of IS methods are given in the following.

3.2.1 Importance Sampling by biasing density function

This IS method is briefly presented as follows [24]:

A biasing density functiorf*(y) is introduced into the MC estimator. The desired

error probability can be rewritten as

P2 Bl = [ LWy = [ 103 @y = Bl
(3.5)
which gives an alternate estimator
Ppys = %Z]e(}’l)w(}’l) (3.6)
=1

They, are now generated according f6(y), the biased density. i, lands in the

error region as determined by the decoder, then the weiglctibnw(y,) = ff*((yy)) is
accumulated to find the estimate®Bf. MC can be seen as a special case of this more

general procedure, witfi*(y) = f(y). It can be shown that the IS estimator is also
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

unbiased

BB = 1 3 Byt = B0 = [ 1oL r iy

= Py(unbiased) (3.7)

3.2.1.1 Mean Shifting/Translation IS technique

Mean-shifting (MS) or Mean-Translation (MT) is a popular t&hnique [71],[28]
where the IS density* has the same properties as the nominal derfsigxcept for
its mean which is shifted to lie on the boundary of the errgrae. It is the most effi-
cient IS scheme. In general, MT performs efficiently whenefrer region geometry
is simple. For this reason, MT is often implemented in a divichd-conquer manner
for multi-dimensional systems, that is, the error regiopastitioned into simple sub-

regions and the error probability is estimated for eachegyibn with MT.

A natural partitioning scheme for coded systems is panitig-by-codeword.
This technique has been used on a Hamming (7, 4) code and t@fles with maxi-
mum likelihood decoding criterion [72]. An immediate draadh of this partitioning-
by-codeword scheme is its requirement of codebook infaomaflhe codebook size
becomes prohibitively large as the code length increasesth® other hand, if the
codebook size is manageable, the ML performance can betadlly approximated
via the union bound technique. Thus, it is somewhat untteats attempt to obtain

ML performance via IS simulations.

In [73], short block codes with message-passing decoding as@nsidered with
a partitioning scheme that is slightly different than thatf{72]. The authors have

shown how IS can be applied to evaluate the performance ohapMAP bit-per-bit
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3.2 Importance Sampling

decoders, and of non-optimal (turbo-like) iterative desrsd Though efficient for short
codes, this IS scheme still requires the codebook infomnatwhich disqualifies it for

long codes.

An IS scheme for linear block codes with message-passingdileg that as-
sumes no code-book knowledge was proposed in [74] wherec& l[dogth of 96 was
used making use of the code structure to produce noise enents frequently (ap-
plication to loop-free decoding trees was given in [75]).oftrer direct application of
an IS technique for LDPC codes is given in [47]. For turbo &d8 technique was
studied in [76].

The choice of the IS density is, quite naturally, criticaltt@ success of the
simulation. For the IS to be most effective, the optimal agrshould neither be un-
derbiased nor overbiased. The optimal density is well kndwat it is a function of
the probability of error and therefore cannot be used [76hventional IS (CIS) uses
a density that is obtained by simply increasing the variaidde underlying density
[78]. The improvement in performance obtained with thishteque is limited by the

memory length of the system, which makes it impractical fostrsystems of interest.

Improved Importance Sampling (1IS) uses a mean translatidhe underlying
density which overcomes the effects of memory [71]. In addjtthe use of the tail of
several different pdf's has been explored in [79], [80]][81Iwo types of importance
sampling methods for rare event sampling are presented?in [Bhe first approach
selects importance sampling distributions by minimizihg variance of importance
sampling estimator. The secod approach selects imporsampling distributions by

minimizing the cross entropy to the optimal importance samgadistribution.
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

Although many IS densities have been proposed, their pagnce varies from
system to system. This problem is further complicated bydbethat determining the
suitability of an IS density to a particular communicati@ystem is similar in com-
plexity to finding the probability of error itself. These jplems have prevented IS
from gaining wide-scale acceptance despite its promiseafadsing simulation times

by several orders of magnitude.

A graph searching technique that can efficiently find the dami trapping sets
and low-weight codewords is presented in [83], [24]. Mué#iprror impulses are ap-
plied on specific nodes in the graph to tease out the dominanBigasing function is
calculated based on these TS and IS is then employed by pngduaise events in the

dominant TS regions to get errors more frequently and FERsalculated.

In [84], the authors present an importance sampling metbiotthé evaluation of
low FER performance of LDPC codes under iterative decodinglies on a combina-
torial characterization of the absorbing sets [48]. Thaedibdensity in the importance
sampling scheme is a mean-shifted version of the originais&an density which is
suitably centered between a codeword and a dominant abgaei. This choice of bi-
ased density yields an unbiased estimator for the FER widriance lower by several

orders of magnitude than the standard Monte Carlo estimator

3.3 Error rate estimation using cycle enumeration

For Binary Sysmmetric Channels (BSC), an efficient erroe edtimation was pre-
sented in [46] which was further modified in [85], [86]. A comatorial approach
is adopted and the method is mainly based on efficient endimeraf input vectors
with small distances to a reference vector whose elemeatsedected to be the most

reliable values from the input alphabet. Several techrsgureluding modified cycle
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3.3 Error rate estimation using cycle enumeration

enumeration, are employed to reduce the complexity of thenenation. The error
rate estimate is derived by testing the input vectors of kdistances and estimating

the contribution of larger distance vectors.

The method proposed in [46] is valid for hard-decision itigeaalgorithms.
Their particularity is that only binary messages are usedegng them quite sim-
ple. Some examples are the so-called Gallager algorithmSAy @nd B (GB) [3],
[42], [43], their variants [44] and Majority-Based (MB) algthms [45]. The method
is based on enumerating the initial error patterns of srsialleight that cannot be all
corrected by the decoder. By using this information, thetrdoution of all the other

initial error patterns with larger weights to the total FERIBER is estimated.

Consider a given LDPC code with block lengthdecoded by a given hard-
decision iterative algorithm over a BSC with crossover pimlity <. Denote the set
of all the error patterns of weiglitby S;, and those that cannot be corrected by the
decoder byE;. Clearly,|S;| = (’;) Suppose that the decoder can correct all the error
patterns of weight — 1 and smaller, i.e|F;| = 0, Vi < J. Also suppose that there are

|E;| = 0 error patterns that the decoder fails to correct. The FERes equal to

FER =) |SA|pi:Z\Ei\€ (1—¢) (3.8)
i=J i=j

wherei is the weight of the initial error pattern at the input of trecdder, ang; is the

probability of having errors at the output of the channel (or the input of the degode
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

3.4 Instanton Analysis

In 1989, Nicolas Sourlas established a relationship betvetatistical mechanics es-
pecially spin model theory and error correction theory [20¢ presented codes which
could, under certain circumstances, be the only known catiéisat time to achieve
Shannon’s well-known code performance bounds. Sourlasshiswed that the error-
correcting codes are mathematically equivalent to somerétieal spin-glass models
and it is possible to use their equivalence to analyse theng tise methods of statis-

tical mechanics [87],[88].

Some other statistical physics methods recently used icdtieg theory context
are [89], [90], [91], [92], [60], [93]. Instanton analysismstitutes a method, aiming
to estimate a low probability event, and is known under theemof instanton calcu-
lus, saddle-point or optimal fluctuation and is common irotleécal physics. It was
suggested first in the context of disordered systems [94t@indented in the quantum

field theory context [95].

It was pointed out by Sourlas [20] that the error-correcporblem can be conve-
niently reformulated in terms of equilibrium statisticdiysics. (See e.g. more recent
discussions in the error-correction literature [60],[881]). Specifically it was shown
that formalism and approaches developed in the contextsoirdéered systems, e.g.
spin-glass, can be, though with essential modificationgliegh to the coding theory

[871,[88],[92].

Instanton analysis or instanton amoeba method, introdndé8], [66] is named
after a theoretical particle in quantum physics that last®hly an instant, occupying
a localized portion of space-time [98]. Statistical phgsises the word instanton to

describe a microscopic configuration which, in spite ofa®roccurrence, contributes
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3.4 Instanton Analysis

most to the macroscopic behavior of the system [94]. In ahalitsan instanton is a
configuration of the noise which is positioned in betweena@eewrd (say zero code-
word) and another pseudo-codeword (which is not necegsacibdeword). Incremen-
tal shift (allowed by the channel) from this configurationvéwd the zero codeword
leads to correct decoding (into the zero-codeword) whiteemental shift in an oppo-
site direction leads to a failure. In principle, one can finid dangerous configuration
of the noise by exploring the domain of correct decodingaurding the zero code-
word, and finding borders of this domain — the so-called estoface. If the channel
is continuous, the error-surface consists of continuotishes while configuration of

the noise maximizing the error probability over a patch itedsan instanton.

Instanton amoeba scheme is an efficient numerical schemiehwgab initio
by construction, i.e., the scheme requires no additionsliraptions (e.g., no sam-
pling). The numerical scheme is also accurate at producomjigurations whose
validity, as of actual optimal noise configurations, can kefied theoretically and
that provide a tight lower bound for BER. The instanton schesnalso generic, in
that there are no restrictions related to the channel ordiego The method finds
instanton/pseudo-codeword by means of a simplex (amogdtimpiaation. The algo-
rithm is initialized with a random simplex and many sequarditempts are required
to built the instanton/pseudo-codeword frequency speaxttae code. The instanton-

amoeba method is general but also computational resouscssiming.

When SNR is large, FER as an integral over output configuratie approxi-
mated by
FER ~ ) Viust X P(@inst | 1) (3.9)

inst
wherez;,s are the special instanton configurations of the output mikig P (x|1)

under thex...., = 1 condition, andV;,s; combines combinatorial and phase-volume
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

factors [99]. Generically, there are many instanton coméigons that are all local
maxima of P(z|1) in the noise space. Individual contributions into FER daseesig-
nificantly with SNR increase. At large SNR, only instantothwhe highesP(x|1) is

relevant.

The numerical method to find the instanton is given in [99]e F’WVGN channel

is defined by,

P(z|o’) Hp zi|o}), p(x|o) exp( %) (3.10)

If the detected signal at a bit is, the respective log-likelihood at the bit is =
In(p(x|1)/p(x] — 1))/2s* = z i.e., it is measured in the units of SNK. For the
AWGN channel, finding the instanton means minimizifg= >,(1 — z;)* with re-
spect to the noise vectdr— «x in the N-dimensional space, under the condition that
the decoding terminates with an error. Instanton estimaifd-ER at the higher SNR,
s> 1is ~ exp(—I2.s*/2) while at moderate values of SNR, many terms from the

right-hand-side of Eq. 3.9 can contribute to FER comparably

The downbhill simplex method (amoeba) [100] can be used tothedninimum
of a function of more than one independent variable [101].imMpdex is the geomet-
rical figure consisting, inV dimensions, ofV + 1 points (or vertices) and all their
interconnecting line segments, polygonal faces, etc. Kamgle, in two dimensions,
a simplex is a triangle. For multidimensional minimizatidime algorithm is given a
starting guess, that is, ak-vector of independent variables as the first point to try.
The algorithm is then supposed to make its own way downhidiugh the unimagin-
able complexity of anV-dimensional topography, until it encounters a (localeast)
minimum. The downhill simplex method must be started not g a single point,

but with V 4 1 points, defining an initial simplex.
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3.5 Adaptive Importance Sampling

The instanton-amoeba evaluation is repeated many timeayslstarting from a
new set for initial simplex chosen randomly. The lenfths a function of noise con-
figuration inside the area of unsuccessful decoding, hasptaiminima each corre-
sponding to an instanton. Multiple attempts of the instardmoeba evaluations gives
the instanton with the minimal,.; plus the whole spectra of higher valugd;. Based
on instanton, error floors are lowered in [102] where instastare found and then a

new Tanner code is constructed which is not prone to thesanitms by construction.

3.5 Adaptive Importance Sampling

Another approach to simulate the error probability, whiemot dependent on graph
topologies, is the advanced version of IS known as Adaptiwportance Sampling
(AIS) [103], [104], [105], [106]. AIS is quite attractive @uo its potential for remov-
ing the burden of selecting a good IS density which is oftesteayn-specific. The key
to this technique is the recognition that the subset of tneiksition samples that yield
an error event are distributed according to the (unknowmrpostrained optimal 1S

density.

The samples obtained may be used to estimate propertieg ointonstrained
optimal IS density and iteratively render the IS densityseloto optimal in the sense
that the measured properties (from the current simuladom)made to match those of
the unconstrained optimal density. This opens a wide rahgessibilities for adap-
tation rules, since the possible properties of interesgjeanom the simple (e.g., the
mean of the IS density) to the complex (e.g., the completeet&itly). This approach
has the advantage that the mechanics of the simulationngh@same for any system.
This is extremely important for investigations into the séwity of the probability of

error, to various system parameters that is usually detertnby performing a series
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

of simulations with perturbed parameters. Some advancggiautomatic selection

of the IS density appear in [107].

In AlS, the probability density function is biased in a catied way during
multiple iterations thus making it possible to visit thelgadf the noise distribution
(Gaussian distribution e.g.). The system response (thaubof the BP decoder, for
example) is evaluated and stored in the process. AIS is edlyaateresting for its
genericity in the sense that it can be adapted to any stayionamoryless channel
(AWGN, BSC, etc.), to any type of decoder (Gallager B, BP, BCatc.) and to any
class of codes (regular and irregular LDPC codes, Turbagaete.). An example of
AIS technique, which does not take into account the graplcttre of LDPC codes,
has been successfully employed in [108] where the auth@s WBual Adaptive Im-
portance Sampling (DAIS) technique using Multicanoniggbr@ach [109] based on
Berg’s recursion equations [110]. DAIS has been tested egalar very short LDPC
code of 96 hits.

3.5.1 Dual Adaptive Important Sampling

Dual Adaptive Importance Sampling (DAIS) evalutates thégrenance of an LDPC
code using an AWGN channel using a novel technique based ¢tickhonical Monte

Carlo (MMC) simulations without a priori knowledge of howlitas. The main idea
behind the technique is that a biased distribution must lesexn using some knowl-
edge of which noise realizations most likely generate srrohis task is difficult when
iterative decoding algorithms are used, since codewomts@re correlated to the

noise distribution among the bits in a highly complex way.

The authors apply the Multicanonical Monte Carlo (MMC) slation technique

of [109] as the basis for their technique to compute very lowrerates. They demon-
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3.5 Adaptive Importance Sampling

strate the DAIS technique using a (96, 50) LDPC code and Sudtlet Decoding
(SPD) [111] with up to 50 decoder iterations achieving BER@f'°. Like standard
IS [74], MMC increases the number of events in the tail of theb@bility Density
Function (PDF) being computed by sampling from a biased PIIR2][ The advan-
tage of MMC is that it adaptively iterates to this biased PO#hwttle a priori knowl-
edge needed of how to bias. The iterative procedure usestakquantity to update
the nextiteration’s biased PDF so that, as the iterationbeimmcreases, there tends to

be an approximately equal number of hits in each controhtjtyehistogram bin [109].

A non-mathematical brief overview of the method is as foBdimany steps in-
volved are completely described in the next chapter): Theenector is represented
by a scalar control quantity which is calculated such thdy destructive noise com-
ponents contribute to the control quantity. The noise poditaspace is divided into a
number of partitions called bins such that any noise reiidirayenerated corresponds
to a bin through the scalar quantity. Instead of using plasituition to guess the
biasing PDF, this Multicanonical Monte Carlo algorithmrétes over a sequence of

biasing PDFs which approach the optimal one.

The bias is determined by the veci®rwhich keeps on evolving during the al-
gorithm. Random walk is employed using Metropolis algarmtand noise realizations
are produced in a controlled way such that the tails of the A\iBtribution are suf-
ficiently explored. Two distinct histograms are producedrdythe algorithm which
keep track of the noise samples produced and the errorsgedduhich were not cor-
rected by the decoder. The data of these two histograms andihes of the vectdP

are manipulated to get the required results.

The result however, is not accurate due to the undersamglingg the previ-
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3 Exiting Methods for the Performance Evaluation at Low Error Rates

ously described ‘unconstrained’ simulation. In fact, Bergcursion equations [110]
are used to updaf values. With the increase in the number of samples, the apdat
procedure becomes inefficient (will be discussed in deta@hapter 4). As a result,
in DAIS algorithm, one has to launch a second ‘constrain@dutation. The ran-
dom walker is constrained in the distribution where the Itdswa lot of errors after
decoding. Mathematical manipulations are employed tolgetésult for constrained
simulation which are then scaled through the process okefitting to get the required

final results.

3.5.2 Fast Flat Histogram Method

Fast Flat Histogram (FFH) method is inspired from statstmhysics [11] while its
mathematical framework remains that of an adaptive impegaampling. Like DAIS,
FFH also iterates over biasing probability density funesigyradually approaching
the optimum one. The main emphasis of this work remained rtifdementation,
validation and improvement of FFH method so the followinguters are dedicated
to its elaboration and its successful application in the @ionof information theory
[113],[114],[115].
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Fast Simulation for the Performance
Evaluation of FEC Codes using Fast Flat
Histogram Method *

N digital communication systems, the quality of transmisssystem is usually
I measured by Frame Error Rate (FER) i.e., the ratio betweeddhoded frames
that contain errors to the total number of frames sent thidhg system. With the
advancement in the code design and better decoders, it hasberery important to
gauge the performance of the system at very low error ratesth® one hand, there
are novel applications operating at very low error probgtaind standard Monte Carlo
(MC) simulation takes extremely long to gauge their perfance. On the other hand,
new codes and decoders compete for a better performance iertbr floor region
where the performance evaluation is curbed and it is quitiedt to study the system

properties.

The LDPC codes make a class of error correcting codes wheelgraphically
represented by Tanner graph [13]. In the high Signal-tosBldtatio (SNR) region,
the probability of error is dominated by decoder failuresalirdo not correspond to

erroneous codewords [108]. This is due to the convergendeaafder towards pseudo-

1This chapter was presented in parts in [113], [114]
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codewords [50] or Trapping Sets (TS) [15]. Since the ermorhée high SNR region
are dominated by TS, a lot of work is oriented to study the L¥®@es performance
in terms of TS. The main problem with the methods that aim dticeng simulation

time based on the graph structure is that the identificatioRSobecomes extremely
cumbersome if the graph connectivity is irregular or theecmdong. In addition, the
TS are not easily generalizable when the errors in the chamegroduced owing to
the presence of Additive White Gaussian Noise (AWGN) andenative soft decision

decoding is employed.

In this work, we will initially focus on LDPC codes used on AWGhannel
decoded with standard Belief Propagation (BP). We proposgpass the limitations
of DAIS [108] by using another AIS approach inspired by statal physics called
Fast Flat Histogram (FFH) method. We will show in particutzat our method is still
robust for relatively large codeword lengths up to 2640 cobiés. For turbo codes,
we shall present the results for MPEG size 188 bytes. Sirecedtie is duo-binary, the
code-length is that af008 bits.

The rest of the chapter is organized as follows: Section dstribes the FFH
method detailing how it is applied to regular and irregul®RAC codes. Section 4.2
gives a comparison between DAIS and FFH showing that unlikéSDFFH is not
dependent on histogram entries and is thus easily extentdildny codelength owing
to a different update procedure. Section 4.3 gives the te$oi some typical test
codes and quasi-cyclic codes from IEEE 802.11 standard)®MGN channel and
an iterative soft decision decoder with BP in the probapdidmain. Section 4.4 details
the application of FFH method to turbo codes. Section 4.8Bggsome results on the

statistical precision of our algorithm.
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4.1 Fast Flat Histogram Method

4.1.1 Rationale

In statistical physics, one of the most important quartiisehe density of states £),
i.e., the number of all possible states or configurationsifoenergy levek of the sys-
tem. An estimation of this quantity through computer sirtiolss is of great interest

since it plays a major role for the study of phase transitanmg critical phenomena.

Berg et al. [109], [110], [116], [117] presented the multicanonicakemble
method in which we have to estimate the density of staté3 first, then perform a
random walk with a flat histogram in the desired region in thage space. In a mul-
ticanonical simulation, the density of states need not seardy be very accurate, as
long as the simulation generates a relatively flat histogaach overcomes the barri-
ers in energy space. This is because the algorithm emplaylsseguent re-weighting
which does not depend on the accuracy of the density of thessés long as the his-
togram can cover all important energy levels with sufficiatistics. If the density of
states could be calculated very accurately, then the probeuld have been solved in
the first place and we need not perform any futher simulatimh s with the multi-

canonical method.

Almost all recursive methods update the density of statassbyg the histogram
data directly only after enough histogram entries are actated [109], [116], [118],
[119], [120], [121], [122]. Due to the exponential growthtbé density of states in en-
ergy space, this process is not efficient because the hestoigraccumulated linearly.
In [123], [124], the authors modify the density of states athestep of the random
walk allowing them to approach the true density of statesimfaster than conven-

tional methods especially for large systems. They alsoraatate histogram entries
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during the random walk but they only use it to check whetherhistogram is flat
enough to go to the next level random walk with a finer modiftcatactor. The total
number of configurations increases exponentially with the sf the system; however,
the total number of possible energy levels increases Iyeath the size of system. It
is thus easy to calculate the density of states with a randalkiw energy space for a

large system.

The Fast Flat Histogram method [11] employing Wang Landgoréhm [123,
124] was introduced to estimate the density of statés), i.e., the number of all pos-
sible states for an energy level of the system. The algorithm is based on the obser-
vation that if a random walk in energy space is performed Ippiiig spins randomly
for a spin system and the probability to visit a given enesyel E is proportional to
the reciprocal of the density of stateg(F), then a flat histogram is generated for the
energy distribution. This is accomplished by modifying éstimated density of states
in a systematic way to produce a flat histogram over the atbosmage of energy and

simultaneously making the density of states converge ttrti@evalue.

Wang-Landau algorithm has been used very efficiently in nsaatystical prob-
lems. Similar to the Metropolis algorithm, it is a generigaithm, independent on the
details of the physical system. Subsequently, there has tiemerous studies on the
algorithm itself and many proposals for improvements weref@rward [125], [126],
[127], [128], [129], [130], [131], [132], [133], [134], [15 and studies of the efficiency
and convergence of this method [128], [133]. Particul&lyZhou and R. N. Batt have
given a mathematical analysis of the WL algorithm, proviisgconvergence and iden-
tifying sources of errors and strategies for optimizati®@ome theoretical aspects of

the saturation of error are discussed in [136].
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4.1.2 Description

The basic skeleton of our technique is the same as that in &IE, that is we aim at
increasing the number of events in the tails of the Proligitillensity Function (PDF)
by sampling from a biased PDF [112]. However, our technigummewhat different

and solves some issues confronted by DAIS as will be explaimeection 4.2.

We recall the notations from [108]. L&tbe then-dimensional probability space
of the noise in the: bits of a codeword. The noise vector= (zy, 29, ..., 2,) IS @
multivariate Gaussian with joint PDF(z) = [],_, p:(z). The transmitted bit vec-
tor is represented by = (by,bs,...,0,) andy = (y1,v2, ..., yn) represents the re-
ceived codeword. The algorithm is controlled by a scalatrabiguantityV” given as
V(z) = %Zle[H(qlzl)zl]z] v whereg, = (—1)% while b, is the transmitted bit in
the ' position andH (z) = 1if + < 0 and H(z) = 0 otherwise.V (z) is contructed
such that a noise componentontributes td” only if it may produce a bit error at the

input to the decoder.

Given a ranggViin, Vinax| for V, T is partitioned intol subsetd’, = {z € I |
Vier < V(z) <V}, whereVy, = Vi, + EAV, 1 < k< LandAV =V, -V, =
(Vinax — Viin)/ L is the width of each bin in the partition 0¥, Vinax]. The number
of bins depends on the code length and on the signal-to-rettise We observe that an
optimized number of bins is obtained lhy= 107 x 15 Whereo represents the standard

deviation corresponding to thé, /N, value.

Let P, be the probability of selecting a realizatiarfrom p such thatz € T’
[112, 110]. Then,

i ((Z*’i) (4.1)

p*(z*")

P= [ S e = 3t
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wherep*(z) is a positive biasing PDF;, = 1if z € T';, andy(z) = 0 otherwise.z**
are N random sample points ifi selected according to the PQ(z). The variance
of the estimate of Eq. (4.1) is zero if the optimal biasing PRF(z) = xx(z)p(z)/ Pk
is used. However; .(z) depends orF;, which is initially unknown. In standard IS,

one uses physical intuition to guess a biasing PDF that sediay’ .. Like DAIS, the

opt*
FFH method instead iterates over a sequence of biasing pPDR&at approach;,.
We definep™7 for j* iteration byp*/(z) = p(z)/(¢’ P}) wherek is such that: € T,

is satisfied. The quantitie’’ satisfy P/ > 0 and>_,", P/ = 1 and¢’ is an unknown
constant that ensurgs p*/(z)dz = 1. The vectorP, completely determines the bias

and is initialized withl /L, Vk = 1, ..., L.

By employing Metropolis algorithm [137], we produce a randwalk of sam-
plesz** whose PDF equalg*’(z). We consider a Markov chain of transitions con-
sisting of small steps in the noise space. Each transiti@s fomz*' = z: € T,
toz; = (z, + €Az) € I'y, whereAz is random and symmetric, i.e., it does not favor
any direction in[’ and the transition is accepted with probability,. ¢ here is the
perturbation constant. If a transition frozm’ to z; is accepted, we set~"*! = zj,
else we sex™*! = z*' = z*. The ration,;/m,, equalsp™/(z;)/p*’(z:) which is the
detailed balance equatiainat ensures that the limiting (stationary) PDF for infilyite

many steps of this random walk g7 [137].

We consider the perturbation of the noise component in etci] pof z; sepa-

rately and accept it or reject it independently with the adaibty

minfp(z;,)/p(24,), 1]

We pick each perturbationz; from a zero mean symmetric PDF. We obtain a trial

statez; in which only some of the components are different from tpeavious values
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4.1 Fast Flat Histogram Method

in z:. Then we comput&, the bin corresponding tg and finally accept the step from
z: to z; with the probabilitymin[P] )/ P} ), 1]. The compound transition probability

thus becomes

Tap = { ﬁ min [P(Zf,:l) , 1] }min [Pg.“ , 1] (4.2)
P p(zy) Pl
The Asymptotically Optimal Acceptance Rate AOARE (number of accepted stejps
(total number of stepsfor a Metropolis algorithm for target distributions withDll
components i9.234 [138]. The perturbation constaatis adjusted so as to keep
close to this value. The noise realizations are recordetdrhtstogram*/ where
H = SN xi(z*") is the number of*' in iterationj that fall intoT';,. To keep a
record of errors in birk, we produce an error histograﬁj;’j. Py is updatedn the fly
such that wheik bin is visited, P, is modified by the refinement parameyer- 1, i.e.

P, — Py f[123, 124]. In practice, we have to use the log domai}, — InP; + In f

in order to fit all possiblé’, into double precision numbers. If the random walk rejects
a possible move and stays in the sameiyiwe modify the samé’, with the modifi-

cation factor to keep the detailed balance equation in kquiim.

The above procedure is complemented by the implementatiaiislof Metropo-

lis algorithm [137] as follows:

The AWGN Probability Density Function PD#is defined as

_ 1 (* — p)
px) = - 27Texp< - Tﬂ)

The following steps are to be repeated for each noise conmpama noise vector

1. Pick a noise component, in the noise vector (this operation is to be repeated
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for all noise components and is referred taawiori choice [139], or “proposed

update”).

2. Add to it a random quantity obtained within a scale of staddieviation to get

xyp (i.e.,attempta moveupdaté;
3. Calculaten(xy)/p(z4)-

4. Draw a number at random betweemand1 and

e accept the attempted moverif< p(x,)/p(x,), i.€., the next configuration in

the Markov chain has, as the noise component.

e otherwise reject the move, i.e., the next configuration enNfarkov chain is

the same as the current configuration having the noise coempon

The previous set of operations is termeante Carlo step A Monte Carlo sweep

(MCS) corresponds t&/ attempts on a noise vector containilNgnoise components.

While using the log domain, we have to respect the upper amerlbmits which
can be represented by an exponential function as a doubdesiore number. For our
machines, this limit is slightly more thaii® and is slightly less thaa~"°. However,
we fix e™° ande~" as our upper and lower limits respectively. During the etiecu
of the WL iterations P, is modified in the log domain such that the modification factor
is added to the>, value. When the WL iteration is over, the valuesiafare such
that they largely exceeds the upper and lower limits. To teract this problem, we
need to bring the, values within the boundaries so that they may be represeasted
double precision numbers once the anti-log is used. Sireétlvalues correspond
to different bin numbers represented byit is extremely important to keep the ra-

tio between theP, values. We copy thé’, values to a temporary storage so that we
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4.1 Fast Flat Histogram Method

may perform operations on these values without changingitier and sequence of
the original P, vlaues. Now we perform the sorting operation using the beilsbkt
algorithm. Once we get the sorted sequence, we look for tltBanef the sorted’,
values. We subtract this median value from evBrylaue in the original storage. The
subtraction operation is chosen since we are in the log donfdie desired effect is
that of division by the same number once an antilog operasiperformed on all the
P, values. After the subtraction operation in the log domaionstof the P, values
are within the calculable limits. A check is run on all theued. If anyP, value is
found to be superior than 700, it is changed to 700. On therigwle, if any values is
found to be inferior than -740, it is changed to -740. Now,dh&log operation can be
carried out to get thé’, values which can be used in the normalization procedure. We
point out that the evolution of, is a Markov process, although the WL algorithm is

not, because it makes references to its entire history.

The histogramH,’j’j is checked after about eadh x 10 Monte Carlo (MC)
sweeps. When the histogram is flat (flatness criterion is &éneesas in [123, 124]),
the modification factor is reduced to a finer one using the tfancf;,, = \/E
(finit = e = 2.7182818), the histogram is reset and the next iteration of randonk wal

is started wheré’, are now modified with the finer modification factor.

We continue doing so until the histogram is flat again and therbegin the
next Wang-Landau (WL) iteration with a fingrand so on. We stop the random walk
when the change from one WL iteration to the other is “quit@l$mThe above de-
tailed random walk can also be carried out in a parallel fasby dividing the range
[Vinin, Vimax) INt0 W partitions and then exploring each partition separateiglzining

the results in the end.
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It is important to note that before starting the random walkainy WL iteration,
the noise vectors are initialized to the values obtainethfam AWGN direct sample
generator (employing Box-Muller method for example). Tugbout this work, the
intial value of modification factof;,;; = e = 2.7182818 has been used. If,;; is too
small, the random walk will spend an extremely long time tacteall possible levels.
However, too large a choice ¢f,;; will lead to large statistical errors [123], [124]. In
addition, it is very clear that the modification factor actsome of the most important
control parameters for the accuracy of the algorithm and détermines how many
MC sweeps are necessary for the whole simulation. The acgwfathe results also
depends on the complexity and size of the system, criteridheoflat histogram and

other details of the implementation of the algorithm.

Here, the flatness criterion deserves some discussionnipisssible to obtain a
perfectly flat histogram and the phrase “flat histogram” heeans that the histogram
H*J for the whole range is not less thaf¥ of the average histograt/*7) wherex%
is chosen according to the size and complexity of the systefhilee desired accuracy
of the results{ = 90 in this work). There are other ways to measure the flatneseeof t
histogram. For example, one may simply want to compute theepéage of histogram
bins that departs from the baseline by more than a given ammouaone may estimate
it from the standard deviation of the logarithm of the histog. Incidentally, estima-
tion of histogram flatness is a feature shared by all estimmatorking in an iterative

manner.

The convergence of the algorithm towards the flat noise sesmghktribution is
somewhat tedious to prove on rigorous grounds [128], [1¥i€X] the intuitive picture
is that, as soon as the noise sample distribution has becamehié noise samples

having the samé&” level occur with the same frequency and thus - for a Markowrcha
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4.1 Fast Flat Histogram Method

of infinite length - the effect is just to translate the wholewe P, vertically by a
global amount. If the sample distribution is flat in the lasips we also have thdg,

is an estimator for the probability desnsity, with a relatincertainty which ideally
amounts toy/In f [128]. The situation is actually somewhat more intricatecduse
other parameters impinge on the global uncertainty, inowthe number of entries in
the histogram at the end of each iteration, and correlati@tween successive mea-
surements. In addition, the maximum accuracy affordabta thie method was also
reported to be limited by construction, irrespective of mluenber of MCS performed
as a whole [141],[142], yet in the meantime it was also suiggethat subtle choices

of parameters may greatly help in taming several sourcesaf [d.28].

The square root function has been chosen to reduce the natidifidactor and
f approaches as the number of iterations approachesin fact, any function may be
used as long as it decreasémonotonically tol [123],[124]. A simple and efficient
formulaisf;; = fil/” wheren > 1. The value ofn can be chosen according to the
available CPU time and the expected accuracy of the sinonlalihe choice ofi = 2

yields good accuracy in a relatively short time, even fogéesystems.

It is extremely important to determine the optimyi,i,, Vinax interval since
the accuracy and speed of the simulation depends heavily @ur aim is to explore
the whole of probabilty space using random walk [143]{V ., Vinax) 1S initialized
to [0, 1] and this interval is divided intd. bins. Now the random walk is performed
to determine the optimun¥,,i,, Vinax| interval. The value of?, is updated for every
Markov Chain transition during the walk. After a number @z (we usd. x E,/Ny
steps), the walk is ceased and the farthest bins on eitherlaseddetected which were
approached by the random walk. These two bins on either si@derdine the optimum

[Vinin, Vimax) interval.
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Let P... be the probability that a received word with noise real@a# selected
from p leads to an error ang,,, , the probability that leads to an erroandfalls into
bin k. Then

Perr,k = Perr\kPk (43)
M

Perr = Z Perr,k: (44)
k=1

wherePF.,;, is the conditional probability of an errgiventhatz falls into bink. We
can approxXimat@.,.x ~ Py = Y1 G / 370 Hy after jia, iterations where
Jmax 1S the iteration whery gets very close to 1 and we stop further refinement of the

modification factor. Using (4.3) and (4.4), we d&t,.

4.2 Comparison between DAIS and FFH Method

In this section, we explain in detail the main differencews#n FFH method and
DAIS of [108]. We also point out why the FFH method partialbhses the limitations
confronted by DAIS.

DAIS is using Berg’s recursion equations which are expldia® follows:
To updateP/ at the end of iteratiop, P/ ™" is initially set to an arbitrary positive value.

Then, the recursion equations are [112, 110]

i+1 ] . al
o PR (HPL
P = . : (4.5)
Bl Hj
where ' _
) ] H*7 H*,
N g
1=1 9k Hy" + Hyp' oy
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where in additiong] = 0if g = 0 andg, = 0if H;' + Hyl, = 0. The exponent
0< gi’ < 1 hence depends on all previous iterations. Findﬂif,l is normalized so
thaty ,_, P/t =1.

The histograms are accumulated linearly so obviously tHaev% will de-
crease with larger histograms rendering the update pradeBsvery slow. Intrinsi-
cally, Berg’s equations converge to the optimum valu&oiithout sampling enough
smaller noise realizations leading to errors. To overcdmgeproblem of undersam-

pling, one has to launch another simulation constrainediifferent’ range.

The above mentioned problem is solved by FFH method empddidang-Landau
Algorithm since the dynamic update @i, is independant of the histogram values.
Modifying P, at each step of the random walk allows one to approach thenapii
value of P, in a very quick and efficient manner. The noise samples leadirerrors
are accumulated with enough statistics hence there is ribtoearry out another sim-
ulation. FFH method thus works for powerful codes having Ewor floors at low

SNR and for codes having large block-lengths.

4.3 Simulation Results for LDPC codes

For all our test-benches, Sum-Product (Belief Propagatigorobability domain) de-
coding algorithm has been used. BPSK modulation is emplagedy symmetric sig-
nal levels of+1 and—1 for logical Os and 1s respectively. An all zeros codeword is

transmitted since the code is linear and the noise is synonetr
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Monte Carlo Simulation Results for MacKay code
10 T T

T T T
=—8— Standard Monte Carlo Results
—&— FFH Method Results

Frame Error Rate———————->

3 4 5
Eh/ NO(II"I dB)—————- >

Figure 4.1: Results for MacKay codes (@)= 120, R = 0.47 regular (b)n = 504,
R = 0.5 irregular (c)n = 2640, R = 0.5 regular

Monte Carlo Simulation Results for 802.11 standard codes
10 T T

T T
=—8— Standard Monte Carlo Results
—&— FFH Method Results

Frame Error Rate——————-->
=
o
S

1 15 2 2.5 3 35
E,/ Ny(in dB)-—-——- >

Figure 4.2: Results for IEEE 802.11 standard Quasi-cyekgular codes (a) = 648,
R=0.5(bO)n=1296, R =0.5,(C)n = 1944, R = 0.5

Our test bench comprises of three codes obtained from [4{taled quasi-cyclic

LDPC codes used in IEEE 802.11 standard [144]. The simulaésults are shown in
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Code MC FFH Simul.
(E»/No) Codewords | Codewords| Gain
(100 Err. Fr.)

(120,0.5,reg)| 3594801754 63636462 | 56.49
()

(504,0.5,irr) | 1274520408 12081492 | 105.49
(4)

(2640,0.5,reqg) 1445433333 8312500 | 173.88
(2.5)

(648,0.5,irr) | 161136000 | 6465688 | 24.92
(3.5)

(1296,0.5,irr) | 324935483 | 6645033 | 48.9
3

(1944,0.5,irr) | 78796296 6002175 | 13.13
(2.5)

Table 4.1: Simulation Gain for LDPC codes

Figs. 4.1 & 4.2. The first remark is that our simulation resstick to the MC curves
for all codes and for all FERs. This was though expected shme&FH method imple-
ments an unbiased estimation of FER. The efficiency of the Fethod as compared
to standard MC can be measured by the simulation gain [69]the ratio of code-
words simulated in MC simulation to those simulated in FFHhod. The simulation
gain for all the codes in test-benches is given in Table 4hk Jain is quite impressive
and the result is a considerable reduction in simulatioe tifthey are determined for
the highest, /N, for the particular code as indicated by the values withireptresis
in column 1. The codewords simulated in case of standard M@lation are for 100
erroneous frames. Our current experience suggests thaintidation gain increases
with decreasing FER but the dependence of FFH on the numloeidefvords or code

length is unknown at this time and is a subject of continugsgarch.
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4.4 Application of FFH to Turbo codes

Before presenting the results of application of FFH to tutbdes, some state of the

art in the context of turbo codes is given.

Turbo codes [2] make a class of FEC codes which are grappicgiresented
through a trellis diagram. In the high SNR region, the praltgitof error is dominated
mainly by the distance properties of turbo codes which démenthe interleaver de-
sign between the two constituent encoders. For turbo c@utetS method based on

the distance properties and error patterns was presenfedsh

FFH is especially interesting for its genericity in the setigat it can be adapted
to any stationary memoryless channel (AWGN, BSC, etc.),ny tgpe of decoder
(turbo decoder, Gallager B, BP, etc.) and to any class ofs@alaary and duo-binary
turbo codes, regular and irregular LDPC codes, etc.). Heeefocus on duo-binary
turbo codes [146] used on AWGN channel decoded with standaocbinary turbo
decoder. We have employed an improved FFH method with a nvadaptive pro-
cedure to determine the optimum sampling domain correspgrd the code, a more
stringent stopping criterion and some additional stepsilortthe traditional Wang
Landau algorithm according to our objectives. We show thdiegtion of the im-
proved FFH method for duo-binary turbo codes used in DVB-R@8dard [147] with
varying code rates thus validating the genericity of thehoétfor FEC codes.

4.4.1 Improvements in the algorithm
4.4.1.1 Increase in robustness

In case of rejection of a possible move while going throughrbfmlis MC step, a

very significant additional step is to permute the compamehthe noise vector and to
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add this permuted sequence to the transmitted codeword mhwacoding is carried
out for error correction. It is important to note that thedam walk is performed with
the new permuted sequence so as not to disturb the detalacbaequilibrium. We

keep on permuting the noise components until a possible m@acepted.

The preceding step stems from the fact that different sezpseof the same com-
ponents of a noise vector lead to different decoding outpintse we are employing a
message passing decoding algorithm. The orientation gb¢heuted noise compo-
nents remain the same leading to the samealue and consequently staying in the
same bin. Without effecting the basic modificationff values, we are thus able to
check the system response of all entries in histogiam thus adding to the robust-
ness of the method. It is to be noted that if the proposed nastors which move
the system outside the permittfid,;,, Vin.x] interval are systematically rejected, the
Py, value would increase at edges by an unwanted excessive anidus problem is
counteracted by adopting the n-fold way [148], i.e., leguif value unchanged when-

ever a move update attempts to take the system outside dveedlinterval.

4.4.1.2 Self-adaptive optimum V interval

It is extremely important to determine the optim{i¥y,;,, Vi..x] interval with the opti-

mum number of bins since the accuracy and speed of the siotutigpend heavily on
it. Following is a self adaptive procedure to determine ihigrval which intrinsically

takes into account the code length and the code error comgezzpacity. Lines of sim-
ilarity can be drawn between our procedure of determinirgdbtimum|Viin, Vinax]

interval and Domain Sampling Run of [129].

[Vinin, Vimax] 1S initialized to[0, 1] and this interval is divided intd000 bins. Let
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the Global Acceptance Ratio (GAR) correspond to the ratith@ihumber of accepted
noise vectors to the number of noise vectors produced ih ¥Weinitialize GAR with
avalue (.99 in our case). The bins are initialized with = 1/1000, Vk = 1, ..., 1000.
Now the random walk is performed to produce noise vectora/foch the correspond-
ing bins are visited with the consequent update of Bheralue. With the bin filling,
we start getting rejections for the proposed move. At eagp, ste calculate the GAR
and as soon as we obtain its pre-defined value, the walk iedeasl the farthest bins
on either side are detected which were approached by themamélk. These two
bins on either side determine the,;,, Vi..x] interval. While determining the inter-
val, the noise vectors produced are not added to the codevemd no decoder runs

are performed. Their sole purpose is to locate the bins alffuaccessible for the code.

The [Viuin, Vinax] interval is to be divided into a suitable number of bins. Our
choice of number of bins depends on the bin width, an impbpanameter for the
accuracy control [149]. We definB, a control parameter to determine the optimum
number of bins using the relatidn = (V},.x — Vimin) B (rounded off to the nearest in-
teger). The bins are now initialized with, = 1/L, Vk = 1, ..., L. The random walk is
performed to produce noise vectors for which the corresipgploins are visited with
the consequent update of th value. The noise vectors are added to the codeword
(in a permuted sequence in case of rejection) in the chanded@coding is performed
for the noisy received vector. If we do not get errors and veehea flat histogram,
we reiterate over the above two steps by again choosing aahtil;,, Vi,.x] interval
for GAR = GAR — AGAR where AGAR = 0.01. With each step, we increase the
number of bins byB;,; = 1.5B;. If we get errors before reaching a flat histogram,
we take the current/,,;,, Vinax] interval with the optimum number of bins. We then

continue on to perform the WL iterations within this optimumterval.
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4.4.1.3 Improved stopping criterion

For each and every WL iteration, we calulate fhg value. We stop the random walk
whenmax;, | (P4, — P2 /P2 |< 0.1. This criterion should be satisfied farcon-

secutive WL iterations so as to avoid all surges and to ertbiereonvergence of the
simulation. In addition, such a stringent criterion ensugaough samples for both
histograms thus ensuring a good level of accuracy. FPhevalue has been chosen
as the convergence parameter since it takes into accoumnbate sample and error

histograms over all previous WL iterations.

4.4.2 Simulation Results for Turbo codes

The standard Digital Video Broadcast with Return ChannalSatellite (DVB-RCS)
[147] 8-state, 188 bytes (MPEG-size) duo-binary turbo cwds used as a test bench.
Maximum possible iterations are 8 with 4 quantization lBBSK modulation is em-
ployed using symmetric signal levels ¢fl and—1 for logical Os and 1s respectively.

An all zeros codeword is transmitted since the code is linadrthe noise is symmetric.

DVB-RCS was chosen as a test bench since it's performanceligkmown. It
employs a powerful and complex coding system so the erroecting capacity is very
high. The error floors are steep and the Minimum Hamming DggMHD) is high.
The simulation results for 5 different code rates for MPEZ2 HVB-RCS are shown
in Fig. 4.3. The first remark is that our simulation resulisksto the MC curves for all

code rates and for all FERs.

The efficiency of the FFH method as compared to standard M®eaneasured
by the simulation gain [69] i.e., the ratio of codewords diated in MC simulation to

those simulated in FFH method. The simulation gain for allecmates for MPEG-size
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Results for MPEG-size DVB-RCS standard
T T T

=—8— Standard Monte Carlo Results
—&— Improved FFH Method Results

Frame Error Rate———————->

4.5

Figure 4.3: Results for MPEG-size DVB-RCS standardKa) 0.5 (b) R = 0.4 (c)
R=0.5(d)R=0.67()R=0.75

DVB-RCS is given in Table 4.2.

Code Rate MC FFH Simul.
(Ep/No) Codewords| Codewords Gain
0.33(2.5dB) | 367476540 24315960 | 15.11
0.4 (2.5dB) | 159946900 15247500 | 10.49
0.5(3dB) | 256226600 30425510 | 8.42
0.67 (3.75 dB)| 539287910| 38629450 | 13.96
0.75 (4.25 dB)| 313316840 30530120 | 10.26

Table 4.2: Simulation Gain for Turbo codes

The gain is good and the result is a considerable reducti@mulation time.
They are determined for a high, /N, value for the particular code rate as indicated by
the values within parenthesis in column 1. For FFH methcoeldigcoder runs include
codeword simulations for the permuted sequence of noisgleann case of random

walk step rejection. Our current experience suggestshieagtitnulation gain increases
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with decreasing FER and the FFH method is intricately depehan the code length,

rate and error correcting capacity.

The results are reported in terms of simulation gain which measure of the
simulation length. All simulations were performed usinffetent linux clusters con-
taining machines of different flop rates. To report the rssoih simultion time reduc-
tion, both Monte Carlo and FFH simulations have to be peréatron machines with
the same flop rates. To show that we have to pay the price of Kgtittam execution
itslef, the MC and FFH simulations were performed on the samehine. For 188
bytes, duo-binary turbo code of rate 0.5 with channel SNR 3/ takes around 47
hours as compared to around 176 hours of MC simulation shgpavsimulation time
gain of around 3.74. FFH method is characterized by the &aaee of only 23.4% of
the noise samples produced. In addition, once a noise a#ializis obtained, it can be

accepted or rejected depending upon the Markov chain step.

4.5 Statistical Precision

To measure the statistical precision of our results and topewe them with that of
Monte Carlo, we performed a large number of simulations iéfeint code rates.
Our test-bench was the duo-binary turbo-code of DVB-RCBdsted with MPEG size
(188 bytes). We performetd simulations per code rate fércode rates with different

seeds for the random number generator.

Let X; represent the FER obtained th&nstands for the mean (average) value

X = ZZTlx The standard deviation is then given as

y o \/Zyl(Xi - X)
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For comparison purposes, we choose the relative densighvididefined as
o
O'rel — i X 100

which is represented in terms of percentage. The resultdxaned are presented as

under;

From the results (Table 4.3 & 4.4), it is evident that in tefigrecision, the

FFH method is still less precise when compared to the stdridéar.
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4.5 Statistical Precision

Rate =0.33| Rate=0.4 | Rate=0.5 | Rate=0.67| Rate =0.75
(2 dB) (2 dB) (2.5 dB) (3dB) (3.5dB)
3.67E-006 | 9.33E-006 | 4.73E-006 | 1.33E-005 | 2.05E-005
3.80E-006 | 7.71E-006 | 4.70E-006 | 1.08E-005 | 2.05E-005
3.31E-006 | 8.11E-006 | 4.67E-006 | 1.00E-005 | 2.51E-005
3.78E-006 | 9.99E-006 | 5.09E-006 | 8.18E-006 | 2.20E-005
3.18E-006 | 7.68E-006 | 5.23E-006 | 1.01E-005 | 1.85E-005
4.05E-006 | 8.58E-006 | 5.75E-006 | 8.84E-006 | 2.04E-005
3.55E-006 | 7.56E-006 | 4.66E-006 | 9.86E-006 | 1.96E-005
4.24E-006 | 8.74E-006 | 4.26E-006 | 1.10E-005 | 2.45E-005
4.23E-006 | 7.89E-006 | 4.75E-006 | 1.03E-005 | 2.24E-005
4.10E-006 | 9.03E-006 | 4.62E-006 | 9.80E-006 | 2.34E-005
3.49E-006 | 8.65E-006 | 3.94E-006 | 1.14E-005 | 2.50E-005
4.05E-006 | 9.81E-006 | 4.97E-006 | 1.02E-005 | 2.10E-005
4.17E-006 | 8.36E-006 | 3.83E-006 | 1.00E-005 | 2.10E-005
2.84E-006 | 7.73E-006 | 4.75E-006 | 1.10E-005 | 1.93E-005
3.43E-006 | 7.44E-006 | 5.60E-006 | 9.93E-006 | 1.89E-005
3.89E-006 | 7.70E-006 | 5.18E-006 | 8.39E-006 | 2.47E-005
3.50E-006 | 9.44E-006 | 5.07E-006 | 1.07E-005 | 1.98E-005
3.66E-006 | 8.35E-006 | 4.37E-006 | 1.01E-005 | 1.97E-005
4.27E-006 | 8.45E-006 | 4.45E-006 | 1.02E-005 | 1.94E-005
3.72E-006 | 7.75E-006 | 5.19E-006 | 1.14E-005 | 2.43E-005
3.42E-006 | 7.65E-006 | 5.26E-006 | 1.08E-005 | 1.88E-005
3.71E-006 | 6.82E-006 | 4.22E-006 | 1.02E-005 | 2.37E-005
3.59E-006 | 7.44E-006 | 5.12E-006 | 1.09E-005 | 2.34E-005
3.59E-006 | 9.30E-006 | 4.56E-006 | 7.91E-006 | 1.91E-005
3.42E-006 | 9.24E-006 | 4.15E-006 | 9.29E-006 | 2.12E-005
3.04E-006 | 7.95E-006 | 5.09E-006 | 9.27E-006 | 2.35E-005
4.02E-006 | 8.58E-006 | 5.15E-006 | 1.10E-005 | 1.98E-005
4.20E-006 | 7.31E-006 | 4.45E-006 | 8.33E-006 | 2.06E-005
3.70E-006 | 7.73E-006 | 4.82E-006 | 1.15E-005 | 2.06E-005
3.69E-006 | 8.44E-006 | 4.50E-006 | 1.08E-005 | 2.04E-005
Average Average Average Average | Average
3.71E-006 | 8.29E-006 | 4.77E-006 | 1.02E-005 | 2.14E-005
Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.

9.70% 9.45% 9.45% 11.05% 9.60%

Table 4.3: Monte Carlo Simulation Results for Duo-Binaryw codes for MPEG
size (188 bytes) and different code rates
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Rate =0.33| Rate=0.4 | Rate=0.5 | Rate=0.67| Rate =0.75
(2 dB) (2 dB) (2.5dB) (3dB) (3.5dB)
4.53E-006 | 1.13E-005 | 4.41E-006 | 1.10E-005 | 2.11E-005
4.94E-006 | 8.11E-006 | 4.94E-006 | 1.42E-005 | 1.85E-005
3.18E-006 | 1.25E-005 | 5.37E-006 | 9.21E-006 | 3.07E-005
4.32E-006 | 9.07E-006 | 4.88E-006 | 9.05E-006 | 2.13E-005
4.04E-006 | 1.01E-005 | 4.20E-006 | 9.10E-006 | 1.84E-005
4.55E-006 | 8.13E-006 | 4.99E-006 | 8.75E-006 | 2.38E-005
5.27E-006 | 9.31E-006 | 5.34E-006 | 1.13E-005 | 2.40E-005
4.93E-006 | 8.05E-006 | 4.89E-006 | 8.63E-006 | 1.70E-005
4.39E-006 | 1.01E-005 | 5.86E-006 | 1.06E-005 | 2.04E-005
5.39E-006 | 1.05E-005 | 4.05E-006 | 1.05E-005 | 1.74E-005
4.64E-006 | 9.59E-006 | 5.64E-006 | 1.07E-005 | 1.94E-005
5.65E-006 | 9.21E-006 | 3.27E-006 | 1.02E-005 | 1.83E-005
4.24E-006 | 9.46E-006 | 4.95E-006 | 1.02E-005 | 1.89E-005
4.91E-006 | 9.18E-006 | 5.51E-006 | 1.30E-005 | 1.94E-005
3.81E-006 | 8.58E-006 | 4.45E-006 | 9.55E-006 | 2.02E-005
4.42E-006 | 7.60E-006 | 3.02E-006 | 9.52E-006 | 2.37E-005
3.55E-006 | 1.04E-005 | 4.73E-006 | 1.15E-005 | 2.34E-005
2.40E-006 | 8.90E-006 | 4.41E-006 | 9.79E-006 | 2.07E-005
4.60E-006 | 9.39E-006 | 4.70E-006 | 9.41E-006 | 1.91E-005
3.61E-006 | 1.04E-005 | 4.33E-006 | 1.02E-005 | 1.70E-005
4.41E-006 | 9.06E-006 | 4.76E-006 | 9.82E-006 | 1.78E-005
4.62E-006 | 1.30E-005 | 4.90E-006 | 8.59E-006 | 1.93E-005
4.35E-006 | 8.40E-006 | 4.51E-006 | 9.49E-006 | 2.20E-005
4.66E-006 | 1.06E-005 | 5.54E-006 | 9.53E-006 | 2.04E-005
4.37E-006 | 7.01E-006 | 3.88E-006 | 9.15E-006 | 1.96E-005
3.52E-006 | 1.06E-005 | 5.08E-006 | 1.02E-005 | 1.31E-005
4.73E-006 | 1.09E-005 | 3.83E-006 | 1.14E-005 | 2.09E-005
4.37E-006 | 8.65E-006 | 4.30E-006 | 1.08E-005 | 2.24E-005
3.94E-006 | 1.19E-005 | 2.53E-006 | 1.03E-005 | 2.01E-005
3.73E-006 | 1.00E-005 | 5.37E-006 | 8.85E-006 | 1.88E-005
Average Average Average Average | Average
4.34E-006 | 9.67E-006 | 4.62E-006 | 1.02E-005 | 2.02E-005
Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.| Rel. St. Dev.
15.27% 14.24% 16.48% 12.20% 14.89%

Table 4.4: Fast Flat Histogram Method Results for Duo-Birfarrbo codes for MPEG
size (188 bytes) and different code rates
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An Efficient Pseudo-Codeword Search
Algorithm for Belief Propagation
Decoding of LDPC Codes

Abstract

We introduce the use of Fast Flat Histogram (FFH) method eyiph Wang Landau
Algorithm in an adaptive noise sampling framework using dtemn Walk to find out
the pseudo-codewords and consequently the pseudo-wkigttis Belief Propagation
(BP) decoding of LDPC codes over an Additive White Gauss@seNAWGN) chan-
nel. The FFH method enables us to tease out pseudo-codeatarely high Signal-to-
Noise Ratios (SNRs) exploring the error floor region of a walege of codes varying
in length and structure. We present the pseudo-weightcteféedistance) spectra for

these codes and analyze their respective behavior

5.1 Introduction

Low Density Parity Check (LDPC) codes [3] make a class of &ooherror correcting

codes which employ a computationally efficient iterativeating scheme based on a

1The contents of this chapter were presented in [115]
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message passing algorithm. The decoding process is, hgvkenavn to be subject
to decoding failures due to the so-called pseudo-codewdFte failures can cause
the high Signal-to-Noise Ratio (SNR) performance of mesgaassing decoding to
be worse than that predicted by the maximum likelihood dexpdnion bound in the
error floor regime [15] which is characterized by very lonoemates. Standard Monte
Carlo (SMC) simulation which consists of simulating a systey generating random
inputs according to a probability distribution and thenleaéing the system response,
becomes extremey cumbersome at such high SNRs. With the@ewant in the code
design and better decoders, it has become very importa@iigegthe performance of

the system in the error floor regime.

To explore the error floor phenomenon, a physics inspiredoggh coined as
instanton amoeba was proposed and developed in [65], [189], The scheme is
generic in that there are no restrictions related to degpdimchannel. Chertkoet
al. [64] presented the pseudo-codeword landscape using aieefigseudo-codeword
search algorithm detailed in [62]. The algorithm is maindli¢ for Linear Program-
ming (LP) decoding [52] and the authors reported that a taempt to extend the
LP-based pseudo-codewords search algorithm to Beliefdgatpn (BP) decoding
[3],[4] did not yield desirable results.

In the pseudo-codeword literature, LP decoding has beetoprmantly used
as it proposes to relax the polytope, expressing terms of a linear combination of
local codewords. If the LP decoding does not decode to a @ocadeword then it
usually yields a non-codeword pseudo-codeword which iseziapconfiguration of
beliefs containing some rational values [61]. Pseudo-wodds are not codewords in
general but codewords are pseudo-codewords [58]. Theenafypseudo-codewords

with different origins is further investgated in [54],[55]
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5.2 Notations and background

To characterize the pseudo-codewords, the notion of fuedéahpolytope was
introduced in [40] which is the most important concept ral@vo pseudocodewords
found through LP decoding. It was also argued that the larggnmam distance of
the code does not determine the performance of the code doitie has low pseudo-
weight spectrum. For the sum-product decoding, if the ngessare converged, then
the vector formed by the marginal probabilities of havingtgbsition in the state 1 is
a fundamental polytope vector. More about this vector aedBéthe variational free

energy can be found in [60].

In this work, we investigate the use of a physics inspiredtlgm known as
Fast Flat Histogram (FFH) method [11] which has already begtemented for the
efficient performance evaluation of forward error cormnegtcodes [113], [114]. The
method consists of a random walk scheme employing Wang-duwaaldjorithm in adap-
tive noise sampler framework. We employ our scheme to fingp#ieeido-codewords

in the high SNR region using the BP decoding algorithm on arGN\thannel.

The rest of the work is organized as follows: Section 5.2 etdackground for
the use of FFH method employing BP decoding for the searcls@dfigio-codewords.
Section 5.3 gives our numerical scheme and its validatioecti& 5.4 reports the
results for our test-bench containing regular, irregubat @yclic LDPC codes. Section

5.5 concludes our work.

5.2 Notations and background

The background and notations for this work remains the same [©9],[64]. Send-
ing a codewordr = {o; = +1;i = 1,..., N} into a noisy channel results with the

probability P(x|o) in corruption of the original signaly # o. The decoding goal is
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to infer the original message from the received outputAssuming that coding and
decoding are fixed, one studies Frame Error Rate (FER) t@acteize performance
of the schem&ER = [ dxxeror (@) P(x|1), Wherexe,.. = 1 if an error is detected
and ..o, = 0 otherwise. In symmetric channel, FER is invariant with exggo the

original codeword, thus all-(+1) codeword can be assumeth®input.

AWGN channel is defined by,

P(alo") = [T plalo). plalo) o exp ( - %) 51)

If the detected signal at a bitis the respective likelihood at the bithis= p(z|1)/p(z|—
1). These likelihoods are translated into beligfg;) which are defined as trial prob-
abilities for biti to be in the stater;. Belief Propagation constitutes in iteratively
propagataing messages though different nodes of the caghd gollowing message
update rules and computing beliefs using certain non4tiagaations called BP equa-

tions. The BP equations are equations for extrema of theeHetle energy [60].

At high SNR, the difference between the performance of Maximiikelihood
(ML) decoding and approximate decoding (BP, LP, etc.) istduke pseudo-codewords.
This performance is gauged in terms of Frame Error Rate (RER¢h calculates
the probability of a decoding failure. For AWGN channel, @eual asymptotics
of the performance curves (FER vs. SNR) of ML and BP decodingeay high
SNRs(s?), in the so-called error-floor region, afERy, ~ exp(—dur, - s°/2) and
FERpp ~ exp(—dgp - s?/2) whered,, is the Hamming Distance of the code afig

is the effective distance of the code, specific to BP decoding

BP decoding turns into LP decoding at SNR oo. In the high SNR (error
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floor) region, the values of FER are inaccessible by MontdeGamulations. It is in
this context that we use FFH method which consists of a Mafoain Monte Carlo
(MCMC) sampler capable of sampling the noise vectors froentdils of the AWGN
probability density function. Suppose a pseudo-codeword: {5; = b;(1);i =
1,..., N} corresponding to the most damaging configuration of theen@stanton) is
found. Then the effecive distance is given by the same fahygl= (3", 5,)%/ Y, 6:°
as in [64],[40]. This definition of the effective distance svarst described in [18]
where the formulas derived by Wibegg al. [16], [17] for AWGN channels were
extended to non-binary codes, Binary Erasure Channel (B&@)Binary Symmetric
Channel (BSC).

5.3 Fast Flat Histogram Method

5.3.1 Description

The basic skeleton of our technique is the same as that ir,[118]. LetI be the
n-dimensional probability space of the noise in théits of a codeword. The noise
vectorz = (z1, 22, ..., z,) IS @ multivariate Gaussian with joint pdfz) = [[,_, pi(z1)-
The transmitted bit vector is representedtby (¢4, ts, ..., t,) andx = (x1, za, ..., z,)
represents the received codeword. The algorithm is cdetrbly a scalar control quan-
tity V' given asV (z) = [% St — al? v wheret; andz; are the transmitted bit
and the noise value in tH& position respectively. This definition 6f(z) is different

from the one that we used in [113],[114].
Given a rang€ Vi, Vinax) for V, T is partitioned intoL subsetd’, = {z €

F|Vk_1 < V(Z) < Vk} , Wherer = Vmin+kAV, 1< k <L andAV = Vk _Vk—l =
(Vinax — Vimin) /L is the width of each bin in the partition 6., Vinax)-
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Let P, be the probability of selecting a realizatienfrom p such thatz € 'y,
[108]. Then,

N *,i
A= [a@ i @ g > () et 5.2)
wherep*(z) is a positive biasing pdfy, = 1if z € T';, andx;(z) = 0 otherwise.z**
are N random sample points i selected according to the pgf(z). The variance
of the estimate of (5.2) is zero if the optimal biasing pglf,(2) = xx(z)p(2)/ Py is
used. However;  (z) depends o, which is initially unknown. In standard IS, one
uses physical intuition to guess a biasing pdf that is clos€ },. The FFH method

instead iterates over a sequence of biasing ptdfshat approach; .. We defingo*

:pt'
for 5% iteration byp*7(z) = p(z)/(¢’ P!) wherek is such thatz € T is satisfied.
The quantities?/ satisfy P/ > 0 and>.r_, P/ = 1 and¢’ is an unknown constant
that ensureg, p*/(z)dz = 1. The vectorP, completely determines the bias and is

initialized with1/L,Vk =1, ..., L.

Our aim is to explore the whole of probabilty spdtesing random walk [143].
By employing Metropolis algorithm [137], we produce a randavalk of samples
z*" whose pdf equalg*7(z). We consider a Markov chain of transitions consist-
ing of small steps in the noise space. Each transition gaes #' = z* € I, to
z; = (z, + eAz) € I'y, whereAz is random and symmetric, i.e., it does not favor
any direction inl’ and the transition is accepted with probability,. Here,e is the
perturbation constant. If a transition froe¥’ to z; is accepted, we set" ™! = z;,
else we sex™"*! = 2 = 2}, The ratior,,/m. €qualsp™ (z;)/p™ (z;) which is the
detailed balance equatiothat ensures that the limiting (stationary) pdf for infihjte

many steps of this random walk i/ [137].

We consider the perturbation of the noise component in edcij pof 2, sepa-
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rately and accept it or reject it independently with the pitabty

min|p(z;,)/p(25,), 1]

We pick each perturbatiofiz; from a zero mean symmetric pdf. We obtain a trial state
z; in which only some of the components are different from tipeavious values in
z;. Then we computé;, the bin corresponding te; and finally accept the step from

z; t0 z; with the probabilitymin[P] )/P; ), 1]. The compound transition probability

25 P!
Pl il) 1| pmin |21 (5.3)
p(za,l) P]gb

thus becomes

n
Tap = H min
=1

The Asymptotically Optimal Acceptance Rate AOARS (number of accepted

steps)/(total number of steps) for a Metropolis algorittemthrget distributions with
[ID components is 0.234 [138]. The perturbation constaistadjusted so as to keep
« close to this value. The noise realizations are recordeldgimistogram 7 where
H =3 yi(z*") is the number ok*? in iteration; that fall intoT',. Each noise
vector is used in the channel to deteriorate the transnutiddword which is then fed
into the decoders to verify if the errors are corrected witthie specifies number of

decoder iterations.

Py, is updatedon the flysuch that wherk bin is visited, P, is modified by the
refinement parametei > 1, i.e. P, — P, - f [123, 124]. In practice, we have to use
the log domairin P, — In P, +1n f in order to fit all possiblé’, into double precision
numbers. If the random walk rejects a possible move and staye same birk, we
modify the same&P;, with the modification factor to keep the detailed balanceatiqn

in equilibrium.
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In case of rejection of a possible move, a very significanitamdhl step is to
permute the components of the noise vector and to add thisyted sequence to the
transmitted codeword on which decoding is carried out foorecorrection. It is im-
portant to note that the random walk is performed with the pewnuted sequence
S0 as not to disturb the detailed balance equilibrium. We keepermuting the noise
components until a possible move is accepted. The precstipgtems from the fact
that different sequences of the same components of a notserdead to different
decoding outputs since we are employing a message passiadidg algorithm. The
orientation of the permuted noise components remain thes daatding to the same
V' value and consequently staying in the same bin. Withoutesffg the basic mod-
ification of P, values, we are thus able to check the system response oftiadiseim

histogram/H*7 thus adding to the robustness of the method.

It is to be noted that if the proposed noise vectors which ntbeesystem out-
side the permittefl/,..;,, Vinax] interval are systematically rejected, tRgvalue would
increase at edges by an unwanted excessive amount. Thismprabcounteracted by
adopting the n-fold way [148], i.e., leaving. value unchanged whenever a move up-

date attempts to take the system outside the allowed interva

The histogrami ,’:’j is checked after about eathZ Monte Carlo (MC) sweeps.
When the histogram is flat (flatness criterion is the same §b28, 124]), the mod-
ification factor is reduced to a finer one using the functipn = \/f7 (finit = € =
2.7182818), the histogram is reset and the next iteration of randonk vgbtarted
where P, are now modified with the finer modification factor. We coné&ridping so
until the histogram is flat again and then we begin the nextgAlzandau (WL) iter-
ation with a finerf and so on. The above detailed random walk can also be carried

out in a parallel fashion by dividing the ran{é, .., Vinax| into W partitions and then
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exploring each partition separately, combining the resualthe end.

It is extremely important to determine the optimui,;,, V.. interval with
the optimum number of bins since the accuracy and speed ditiidation depend
heavily on it. Following is a self adaptive procedure to detee this interval which
intrinsically takes into account the code length and theecardor correcting capacity.
Lines of similarity can be drawn between our procedure oémeining the optimum

[Vinin, Vimax) interval and Domain Sampling Run of [129].

[Vinin, Vimax 1S initialized to[0, 5] and this interval is divided intd000 bins. Let
the Global Acceptance Ratio (GAR) correspond to the ratih@humber of accepted
noise vectors to the number of noise vectors produced ih ¥Weinitialize GAR with
avalue (.3 in our case). The bins are initialized with, = 1/1000, Vk = 1, ..., 1000.
Now the random walk is performed to produce noise vectora/foch the correspond-
ing bins are visited with the consequent update of Bperalue. With the bin filling,
we start getting rejections for the proposed move. At eagh, ste calculate the GAR
and as soon as we obtain its pre-defined value, the walk iedeaml the farthest bins
on either side are detected which were approached by themamélk. These two
bins on either side determine tH&,;,,, Vinax| interval. While determining the interval,
the noise vectors produced are not added to the codewordscaddcoder runs are

performed. Their sole purpose is to locate the bins najuaaitessible for the code.

5.4 Results and discussion

Our test-bench consists of six codes namely Tanner [1532®&4;0de [13], Margulis
p = 7[672, 336, 16] code [151]; [648, 324, 15], [1296, 648, 23] §h@44, 972, 27]
codes from the 802.11 draft [144] and the [504, 252, 13] ulagProgressive Edge
Growth (PEG) code [152]. The MHDs of the last four codes arasue=d through
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the improved impulse method [153]. BPSK modulation is emgtbusing symmetric
signal levels of +1 and -1 for logical Os and 1s respectivély. all zeros codeword
is transmitted since the code is linear and the noise is synuné&\Ve employ 1000
decoding iterations in our BP decoding so the pseudo-codisamrrespond to the

instantons which could survive such a high number of deapiarations.

Figs. 5.1 & 5.2 depict the frequency spectra for the codesustudy. For
[155, 64, 20] and [672, 336, 16] codes, our conclusions ageséime as in [64]. We
observe that the two codes demonstrate qualitativelyréifitefeatures for the pseudo-
codeword frequency spectra. Pseudo-codeword spectrupp56y 64, 20] code starts
with the lowest effective distance 10.004 and grows up going through the funda-
mental polytope pseudo-codewords at effective distant@.98 (convergence to valid
codewords). In case of [672, 336, 16] code, the spectrurtssaaeffective distance
~ 12.056 but grows abruptly to the fundamental polytope pseudocoddsvat effec-

tive distancex 15.66 (valid codewords).

For the 802.11 cyclic LDPC codes, we observe that there grafgiant increase
in effective distance with the increase in code-length. émpared to the preceding
two codes, these three cyclic codes exhibit a relatively mgmber of fundamental
polytope pseudo-codewords. Convergence to invalid cotdsvimcreases with the
increase in code-length. The least effective distanceteffindamental polytope
pseudo-codewords for [648, 324, 15], [1296, 648, 23] and41972, 27] codes that
we found are 14.64 (valid codeword), 26.48 (invalid codelyand 64.24 (invalid
codeword) respectively. In the case of irregular PEG cdaepseudo-codeword spec-
trum is similar to the cyclic codes. The least effectivealsie~ 9.855 and the least ef-
fective distance of fundamental polytope pseudo-codeveot@.74 (valid codeword).

The valid codeword fundamental polytope pseudo-codewatevermed asinde-
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Figure 5.1: The frequency spectrum of the effective distacmntructed using FFH
method as the pseudo-codeword search algorithm for thescddener [155, 64, 20];
Margulisp = 7 [672, 336, 16]; irregular progressive edge growth [504,,2532.
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Figure 5.2: The frequency spectrum of the effective distarmntructed using FFH
method as the pseudo-codeword search algorithm for thesc80@.11 standard [648,
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5.5 Conclusions

tected erroran [14].

We also applied our method to Margulis= 11 [2640, 1320, 40] code and
found the least effective distanee54.055. We observe that the fundamental polytope
pseudo-codewords are in dominance however the messagesgemo invalid code-
words. The observations made by Koetterl. [40] that the pseudo-weights are far
more important than the Hamming Distance are further badtevhen we analyze the
pseudo-codeword spectra in our case. For example, the Hagribastance of [1944,
972, 27] code is only slightly higher than [1296, 648, 23] eptowever there is a
big difference in their pseudo-codeword spectra. SinyJdne Hamming Distance of
[155, 64, 20] code is higher than [672, 336, 16] code, thelgierforms better in terms
of pseudo-weight. How this pseudo-weight spectrum dependse code-length or

other code properties is a subject of ongoing research.

5.5 Conclusions

In this paper, we have proposed the use of Fast Flat Histognathod to find the
pseudocodewords for different codes using BP decoding FHremethod is a power-
ful tool to explore the code performance at very high SNRsH@&error floor region)
which is otherwise computationally intractable using d&d Monte Carlo simulation.
Since the decoder failures in the error floor region are maisté to pseudo-codewords,
the FFH method is an excellent means to study the code betavigh SNRs. Our
future work consists of integrating the FFH method in midtiperror impulse frame-

work to increase its effectiveness.
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Conclusions and perspectives

6.1 Conclusions

We started the work with a detailed study of the state-ofatie The inference that
we drew from this study of scientific literature is that theealdly existing methods,
which depend on the study of the code structure, face contstrahen the code is
long and/or irregular. In terms of genericity, Adaptive lonfance Sampling (AIS)
methods seemed very promising. Dual Adaptive Importanogbag [108] laid the
basic foundations for the use of AIS methods in the domairodfng theory. It suc-
cessfully employed Metropolis Hastings algorithm to progla random walk of noise
samples. The backbone of the AIS methods is the recursivaepdocess. DAIS uses
Berg’'s equations which are not efficient for the samplingopses. To counteract the

problem of undersampling, we propose the use of Fast Flabgtism method.

In this work, we have presented the successful migratiorast Flat Histogram
Method from Statistical Physics to Information Theory fbe tefficient performance
evaluation of forward error correcting codes. The main abtaristic feature of the
method is that it is generic in nature i.e., valid for any FEEde communication chan-
nel, decoding algorithm etc. We presented the results ®LDPC codes and Turbo

codes on AWGN channel employing message passing algorithime. FFh method
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Conclusions and perspectives

allows us to pick up the noise samples from the tail of the Giansdistribution, re-
sulting in rare event sampling. Using FFH, we have showngedbrmance evaluation

of FEC codes can be carried out relatively faster.

6.2 Perspectives

The following points constitute interesting perspectiteshe work presented in this

thesis.

e A lot of work has been dedicated to the improvement of Wangelaas algo-
rithm itself. It would be quite interesting to study thesepnovements and to
employ them in the information theory framework to increttseefficiency and

to reduce the statistical errors.

e Regarding the precision of the results obtained with FFHhmet a lot still re-

mains to be desired.

6.3 Lessons Learnt

After the study of existing methods and problems thereinghase to go for a method
which could be applicable to all codes. Naturally, such ahoetould be an advanced
and modified version of Monte Carlo simulation. FFH is a Markhain Monte Carlo
method employing an efficient combination of Random Walk tfidgolis-Hastings
algorithm) and Wang-Landau algorithm. However, after teaidled study and imple-
mentation of FFH method, we observe that like Monte Carlohoet it also suffers

from constraints.
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6.3 Lessons Learnt

The deteriorating effects of noise samples decrease signify (according to
the exponential function) with the increase in SNR. Once mesxthe waterfall region
and enter the error floor region, the errors are mostly dua)tthé sub-optimal nature
of the decoder and (b) the weaknesses in the graph-struttuttee error floor region,
FFH is more eficient as compared to standard Monte Carlo. Mewith a slight
increase in SNR in the error floor region, even FFH methodstaikee (though less

than MC) to explore the tails of probability distribution.

“After all these years, | do not know what | may appear to theleydout to myself, |
seem to have been only a boy playing on the sea-shore andimtyveryself in, now
and then, finding a smoother pebble or a prettier shell thdmary whilst the great

ocean of truth lay all undiscovered before me.” — Isaac Newto
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