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Abstract

The time taken by standard Monte Carlo (MC) simulation to calculate the Frame Error

Rate (FER) increases exponentially with the increase in Signal-to-Noise Ratio (SNR).

Importance Sampling (IS) is one of the most successful techniques used to reduce the

simulation time. In this thesis, we investigate an advancedversion of IS, called Adap-

tive Importance Sampling (AIS) algorithm to efficiently evaluate the performance of

Forward Error Correcting (FEC) codes at very low error rates.

First we present the inspirations and motivations behind this work by analyz-

ing different approaches currently in use, putting an emphasis on methods inspired by

Statistical Physics. Then, based on this qualitative analysis, we present an optimized

method namely Fast Flat Histogram (FFH) method, for the performance evaluation of

FEC codes which is generic in nature. FFH method employs WangLandau algorithm

and is based on Markov Chain Monte Carlo (MCMC). It operates in an AIS framework

and gives a good simulation gain. Sufficient statistical accuracy is ensured through dif-

ferent parameters. Extention to other types of error correcting codes is straight forward.

We present the results for LDPC codes and turbo codes with different code-

lengths and rates showing that the FFH method is generic and is applicable for different

families of FEC codes having any length, rate and structure.Moreover, we show that

the FFH method is a powerful tool to tease out the pseudocodewords at high SNR

region using Belief Propagation as the decoding algorithm for the LDPC codes.
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Résumé

Dans cette thèse, nous abordons le sujet d’optimisation desméthodes utlisées pour

l’évaluation de performance des codes correcteurs d’erreurs. La durée d’une simula-

tion Monte Carlo pour estimer le taux d’erreurs dans un système de communication

augmente exponentiellement avec l’accroissement du Rapport Signal sur Bruit (RSB).

Importance Sampling (IS) est une des techniques qui permettent à réduire le temps de

ces simulations. Dans ce travail, on a étudié et mis en oeuvreune version avancée d’IS,

appelé Adaptive Importance Sampling (AIS), pour l’évaluation efficace des codes cor-

recteurs d’erreurs aux taux d’erreur très bas.

D’abord, nous présentons les inspirations et motivations en analysant différentes

approches actuellement mises en pratique. On s’intéresse plus particulièrement aux

méthodes inspirées de la physique statistique. Ensuite, basé sur notre analyse qualita-

tive, nous présentons une méthode optimisée, appelé la méthode de Fast Flat Histogram

(FFH) qui est intrinsèquement très générique. La méthode emploie l’algorithme de

Wang-Landau, l’algorithme de Metropolis-Hastings et les chaines de Markov. Elle

fonctionne dans le cadre de l’AIS et nous donne un gain de simulation satisfaisant.

Différents paramètres sont utilisés pour assurer une précision statistique suffisante.

L’extension vers d’autres types de codes correcteurs d’erreurs est directe.

Nous présentons les résultats pour les codes LDPC et turbocodes ayant dif-

férentes tailles et différents rendements. Par conséquent, nous montrons que la méth-
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Résumé

ode FFH est générique et valable pour une large gamme des rendements, tailles et

structures. De plus, nous montrons que la méthode FFH est un outil puissant pour

trouver des pseudocodewords dans la région de RSB élévé en appliquant l’algorithme

de décodage Belief Propagation aux codes LDPC.
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1

Introduction - Context and Background

1.1 Context and background

IN his seminal paper [1], Claude E. Shannon laid the mathematical foundations of

the modern information theory. He introduced the concept ofredundant channel

coding as a method to achieve reliable communication on a noisy channel with known

capacity. Shannon’s mathematical proofs were related to random coding which are

impractical owing to their complexity. Tremendous amount of work since then, has

been devoted to designing good practical codes aiming at achieving the Shannon limit.

In 1993, Turbo codes [2] were discovered which proved to be a major break-

through for a reliable communication through channel coding. This discovery showed

the potential of iterative decoding as a means of approaching the channel capacity. An-

other powerful class of capacity approaching codes, calledLow Density Parity Check

(LDPC) codes were originally presented by Gallager in his PhD thesis in 1963 [3],

but received little attention at that time. In addition, thelarge computational demand

required in decoding long LDPC codes prevented their widespread use until major ad-

vances were made in computing, which eventually allowed a cost-effective decoding

implementation. With the advent of turbo codes, LDPC codes got rediscovered [4] and

regained due attention.

For most practical block lengths it is generally agreed thatboth turbo and LDPC
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Introduction

codes can offer similar performance which, for many applications, is far greater than

all previously-known codes. For very large block lengths, in contrast to turbo codes,

certain types of LDPC codes can reach the capacity limit on the bi-AWGN channel [5].

One disadvantage of LDPC codes compared to turbo codes is their quadratic-time en-

coding complexity in the general case, although there are certain types of LDPC codes

which can partially avoid this drawback [6],[7].

There are two primary methods to gauge the performance of error correcting

codes on a particular channel. The first method comprises of developing both lower

and upper bounds on the probability of codeword error versusSignal-to-Noise Ratio

(SNR). These bounds can be very informative in certain regions of SNR but may lead

to a very loose estimate in other regions. The second commonly used method to find a

code’s performance is Monte Carlo (MC) simulation. This is generally a simpler and

more accurate way to predict the performance of a code, especially in the lower SNR

region. The problem with utilizing MC is the large computational time necessary to

obtain an error estimate in the higher SNR region.

With the advancement in the code design and better decoders,it has become very

important to gauge the performance of the communication system at very low error

rates (higher SNR region). On the one hand, there are novel applications operating at

very low error probability and standard Monte Carlo (MC) simulation takes extremely

long to gauge their performance. On the other hand, new codesand decoders compete

for a better performance in the error floor region where the performance evaluation

is curbed and it is quite difficult to study the system properties. The problem stems

from the fact that there is no analytical characterization of the error rate performance

of codes on graphs (LDPC codes and turbo codes) employing iterative decoding, with

the exception of a few channels and decoding algorithms for which such a characteri-

2



1.1 Context and background

zation reduces to a more or less tractable combinatorial problem [8, 9, 10].

In this work, we mainly focus on adressing this problem of performance evalua-

tion in the high SNR region. After extensive study of the existing methods and keeping

in view the strengths and weaknesses therein, a powerful method existing in statistical

physics was studied. This method, referred to as Fast Flat Histogram (FFH) method

[11] in statistical physics, was brought into the the domainof channel coding. In sta-

tistical physics, this method proves to be very efficient forthe evaluation of density

of states for spin models having any number of interaction per spin. The most con-

spicuous feature of the method is its genericity. The principle is the same as that of

the standard Monte Carlo method. However, the MC steps are controlled and depend

on the history of the previous steps, a feature which makes ita Markov Chain Monte

Carlo (MCMC) method.

1.1.1 Thesis organization

The rest of the dissertation is organized as follows: Chapter 2 gives an introduction

to linear block codes with main focus on LDPC codes and the Message Passing Al-

gorithm (MPA). The notions of Near Codewords, Trapping Sets, Stopping Sets and

Absorbing Sets are presented which is followed by a discussion on pseudo-codewords.

The chapter aims at introducing the basics briefly but comprehensively. Chpater 3

details the existing methods giving a brief introduction toeach one followed by an

overview. The minute details of the methods are not given. Chapter 4 covers the con-

text, background, thoeretical details and implementationissues of Fast Flat Histogram

(FFH) method when applied for the first time in the domain of coding theory. Chapter

5 details an application of FFH method to find the pseudo-codeword spectra employ-

ing Belief Propagation (BP) as the decoding algorithm. Chapter 6 concludes this work

giving the perspective for future work.
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2

LDPC Codes, Error Floor Region,

Trapping Sets and Pseudo-codewords

SINCE the main emphasis of this work will remain on LDPC codes (through

results for Turbo codes have also been presented), it is important to give a brief

overview of this class of binary linear block codes.

2.1 Binary Linear Block Codes

Consider a system with a source vectoru of k bits which are equally likely to be a

‘0’ or ‘1’ and to be transmitted over a noisy channel. Channelcoding is a technique

used to add redundancy to data so that imperfections in a communication channel will

be less likely to destroy the transmitted information. There are two primary types of

coding [12] - convolutional coding and block coding. Convolutional codes have been

widely used in practice because they can be represented in a simple trellis structure

which leads to an efficient decoding strategy known as the Viterbi [5] algorithm. Al-

though convolutional codes have been tremendously useful for past applications, they

fall short of the Shannon bound [1], a feat that coding researchers have always strived

to achieve. Block codes also have many practical applications, especially when certain

restrictions are placed on their construction, i.e. cyclicerror detection codes such as

4



2.1 Binary Linear Block Codes

the famous Cyclic Redundancy Check (CRC) codes. This work deals with linear block

codes, a subset of the class of all block codes.

A binary vectorx is said to be in the codeC described by its associatedgenerator

matrix G, if x = uG for somek length bit vector,u. The generator matrix is ak × n

matrix of ‘1’s and ‘0’s that will describe a code with2k codewords if all rows ofG are

linearly independent. The codeC can be seen as ak dimensional vector subspace of

the set of alln-tuplesthat is spanned by thek linearly independent rows ofG. A linear

code has the property that(ui + uj)G = uiG + ujG.

Figure 2.1: The parity check matrixH

A parity check matrixH is an(n − k) × n matrix of ‘1’s and ‘0’s which also

completely describes the codebook of a linear block code:x ∈ C if xHT = 0, i.e. x

is within the null space ofH. The termxHT = 0 is referred to as the ‘syndrome’ of

the code. Syndrome checking consists of verifying whether the syndrome for a vector

is null (a condition which ensures that the vector is included in the codebook). The

code rate (a dimensionless quantity) is defined asR = k/n. Since bothG andH can

completely describe a code, there must be a way to convert from one form to the other.

Consider the case, which is common in the design of LDPC codes, where we start

with a parity check matrix and need to find its associated generator matrix in order to

encode the data. In the following derivation ofG, if C2 is a square, invertible binary

5



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

matrix, it is assumed that then − k columns ofC2 are linearly independent. If they

are not, we can permute columns inH until this condition is met. Beginning with the

parity-check matrixH we write

H = [C1 : C2]

We form thesystematicversion ofH in the next step, which allows for the systematic

G to be constructed from the submatrices ofH.

H = [C−1
2 C1 : I]

⇒ G = [I : (C−1
2 C1)

T] (2.1)

Figure 2.2: The Tanner graph representation of variable andcheck nodes

Linear codes have a 1-1 mapping fromH to a graph form, called a Tanner graph

[13]. Each ‘1’ inH corresponds to an edge in the graph. Each column of theH matrix

is represented by avariable node(vi) in the graph. Theith row has a check node(ci)

counterpart, which is connected to the variable nodes corresponding to the columns of

H with a ‘1’ in the ith row. Tanner graphs are characterized by a ‘bipartite’ structure.
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2.1 Binary Linear Block Codes

The two parties are check nodes and variable nodes, and nodesfrom one party are never

directly connected to other nodes of the same party. A subgraph of a Tanner graph can

be constructed from any subset of then variable nodes andn − k check nodes. The

nodes in this subset will be calledactive nodesand the edges connecting the active

nodes are known asactive edges. A tree can be constructed from any subgraph within

the Tanner graph. The root of a tree is defined as the variable node at the top of the tree

from which all edges descend.

2.1.1 LDPC Codes

Low-density parity-check (LDPC) codes, a subset of linear block codes, carry this

name because their parity check matrices,H, are characterized by a very small number

of ‘1’s compared to ‘0’s. We will see that it is this low-density property of the code

that allows a practical decoding algorithm and hence justifies the utility of this special

class of codes.

R.G. Gallager first proposed LDPC codes and a few decoding algorithms in his

doctoral dissertation in the early 1960’s [3]. The large computational demand required

in decoding long LDPC codes prevented their widespread use until major advances

were made in computing, which eventually allowed a cost-effective decoding imple-

mentation. After turbo codes [2] were discovered in the early nineties, D.J.C. MacKay

re-discovered and popularized LDPC codes in the late nineties [4]. Turbo codes and

LDPC codes are special, not only because they can approach very close to the virtually

error-free transmission limit, but mainly because a computationally efficient, so-called

iterative, decoding scheme is readily available. When operating at moderate noise

values, these decoding algorithms show an unprecedented ability to correct errors, a

remarkable feature that has attracted a lot of theoretical attention [14],[15], [16], [17],

[18], [19]. (Notice also statistical physics-inspired approach [20] that offered an im-

7



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

portant insight into the extraordinary performance of the iterative decoding).

For most practical block lengths, it is generally agreed that both turbo and LDPC

codes can offer similar performance, which for many applications, is far greater than

all previously-known codes. For very large block lengths, in contrast to turbo codes,

certain types of LDPC codes can reach the capacity limit on the bi-AWGN channel

[5]. One disadvantage of LDPC codes compared to turbo codes is their quadratic-time

encoding complexity in the general case, although there arecertain types of LDPC

codes which can partially avoid this drawback [6],[7]. There are some new standards

which are incorporating LDPC codes such as the new digital video broadcast (DVB-

S2) standard [21], which concatenates an LDPC code with a BCHcode. The 10-gigabit

Ethernet standard will also make use of LDPC codes.

An ensemble of codes is defined as a family of codes that satisfy certain spec-

ifications. Typically, for LDPC codes, the ensembles are defined with respect to a

certain degree profile. The degree profile of an LDPC code specifies the fraction of

edges that are connected to variable and check nodes of a certain degree. The degree

distribution polynomialλ(x) =
∑dv

d=1 λ(d)xd−1 says that fractionλ(d) of the edges

are connected to degreed variable nodes anddv is the maximum degree variable node.

A similar polynomial is constructed for the check nodes:ρ(x) =
∑dc

d=1 ρ(d)xd−1.

These two polynomials are related because a code will have the same number of total

edges,|E|, coming from both the check and variable nodes:|E|
∫ 1

0
λ(x)dx = n and

|E|
∫ 1

0
ρ(x)dx = n − k.

Often LDPC codes have aregular degree distribution, for example rate-1/2 reg-

ular 3,6 codes have all variable nodes withdv = 3 and all check nodes withdc = 6.

{3, 6} codes are very common in the literature and when decoding with the message

8



2.2 Decoding

passing algorithm are shown to have the best waterfall threshold, i.e. the SNR region

where the bit error rate begins to decrease very rapidly, over all rate-1/2, regular de-

gree code ensembles [4]. Many examples in this work look at codes of this type with

varying block length.

2.2 Decoding

The decoding algorithm are defined in two ways:

2.2.1 Hard decision decoding

Hard decision decoding is based on making a hard decision forall symbols exactly at

the output of the channel. The decisions are given as inputs to the decoder and mes-

sages are passed between the nodes in the graph based on thesedecisions. The parity

nodes checks whether the decisions verify its parity equation. As output towards the

variable node, the parity nodes send the updated decisions towards the variable nodes

which verify the parity equation. The variable nodes then takes a decision based on the

input received at various links. A simple decision criteriacan be to decide on the value

for which the most number of messages in its favour and in caseof a tie, we consider

its initial value. This process is repeated iteratively until a code-word has been decoded

or the allowed maximum number of iterations is reached.

2.2.2 Soft decision decoding

Soft decision decoding is same as the hard decision decoding, except for the messages

travelling between the nodes are probability densities or log ratios of the probabilty

densities in place of the actual values of the symbols. At theoutput of the channel,

9



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

based on the received data, a priori probability densities are calculated for all symbols

which is given as input to the decoder.

The Message Passing Algorithm (MPA), also known as the Sum Product Al-

gorithm (SPA) or belief propagation (BP) [22], [4], is the iterative decoding method

generally used in LDPC codes on the AWGN channel. Traditionally, the goal of a

decoder is to find the most likely codeword that was sent at thetransmitter. Unfortu-

nately, for long codes, no algorithm is known to exist that achieves this goal, except

for the brute-force approach which makes2k correlations and comparisons for each

decoding. The objective of the MPA decoder, on the other hand, is to maximize the a

posterior probability (MAP) that a specific bitxi was most likely a ‘0’ or a ‘1’, given

the channel output vector,y.

The exact a posteriori probability that code bitxi = 0 is

P (xi = 0|y) =
∑

x∈C:xi=0

P (x|y)

=
∑

x∈C:xi=0

P (y|x)P (x)

P (y)

=
∑

x∈C:xi=0

KP (y|x) (2.2)

The constantK in Eq. (2.2) contains theP (x) andP (y) terms which are both indepen-

dent of the index variablei, since we are assuming equally likely prior probabilities on

the codewordsx. The problem with Eq. (2.2) is that the number of elements belonging

to the setx ∈ C : xi = 0 is 2k−1.

10
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2.2.2.1 Message Passing Algorithm

For decoding purposes, there is no better way than to reconstruct the codeword that was

most likely transmitted and then to compare the likelihoodsof all possible codewords.

However, this Maximum Likelihood (ML) algorithm becomes intractable already for

codewords that are tens of bits long. The message passing algorithm, as its name sug-

gests, operates by passing messages along edges in the Tanner graph. These messages

represent some measure of probability that each bit is a ‘0’ or ‘1’. The outgoing mes-

sage at each node is a function of all incoming messages at thenode, except for the

message along the edge of the outgoing message. This property led researchers to

label the messages as containing extrinsic (‘from outside’) information [23]. The low-

density property of LDPC codes ensures a small number of messages (hence compu-

tations) are required at each node.

See Fig. 2.3 [24] for an illustration of both the variable andcheck node message

flow for a{3, 6} regular code.

There are three types of messages:

• Variable-to-Check Node Messages (↑ qij(0))

The notation here forqij(0) says that this message goes from theith variable node to

thejth check node and it passes the probability that this variable node is equal to ‘0’.

This notation follows that used by [25]. When passing likelihood ratios, the ‘0/1’ in

parenthesis can be omitted because the ratio contains both pieces of information.

The messages are

qij(0) = P (xi = 0|yi, Si, Mi(∼ j))

11
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Figure 2.3: Message flow in MPA for a{3, 6} code

=
P (Si|xi = 0, yi, Mi(∼ j))P (xi = 0|yi)

P (Si)

= KijP (xi = 0|yi)
∏

j′∈Ci\j

rj′i(0)

qij(1) = KijP (xi = 1|yi)
∏

j′∈Ci\j

rj′i(1) (2.3)

HereSi is the event that all checks involvingxi are satisfied.Mi(∼ j)) means all mes-

sages from check nodes connected to variable nodei, except for the message from the

jth check node. TheKij are normalizing constants.Ci are the check nodes connected

to theith variable node.

12



2.2 Decoding

• Check-to-Variable Node Messages (↓ rji(0))

Fact: A Property of Independent Binary Random Variable R.V.’s [3]:

Consider a sequence ofM independent binary r.v.’sai such thatP (ai = 1) = pi. The

probability that the sequence has anevennumber of ones is given by:

1

2
+

1

2

M
∏

i=1

(1 − 2pi)

Satisfying a parity check in a block code is equivalent to counting binary r.v.’s and

finding an even number of ones. Thus, the MPA makes use of this fact by producing

the following check-to-variable message:

rji(0) =
1

2
+

1

2

∏

i′∈Vj/i

(1 − 2qi′j)(1) (2.4)

whereVj/i is the set of all variable nodes connected to checkj, except for theith one.

• Observation (channel evidence) Messages

For a memoryless channel, each received bityi is conditionally independent of all oth-

ers. The transmitted bits,xi , are also assumed to be equally likely. Thus,

P (xi|yi) =
P (yi|xi)P (xi)

P (yi)
(2.5)

The Log Likelihood Ratio (LLR) of the channel data for the AWGN case is

Lci = log
P (xi = 0|yi)

P (xi = 1|yi)
= 4

Es

N0

yi (2.6)

These three types of messages are shown in Fig. 2.3 [24].

Working in the probability domain (Eqs. (2.3), (2.4) and (2.5)) is more com-

putationally burdensome than working in the log domain. Probabilities must be nor-

13



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

malized, an extra step, and independent events are multiplied as opposed to added in

the log domain, a less expensive computation. There is also more numerical accuracy

in the log domain, as very small probabilities that are multiplied become larger, more

manageable exponents of probabilities that are added together (i.e.,(10−10)(10−10) →
(−10) + (−10)). Thus, the MPA is usually implemented in the log domain.

qij −→ Lqij =
∑

Ci\j
Lrji + Lci

rji −→ Lrji = 2 tanh−1
[

∏

Vj\i
tanh(0.5Lqij)

]

P (xi = 0) −→ LQi =
∑

Ci
Lrji + Lci

Table 2.1: MPA equations - Probability domain→ Log domain

The MPA message equations in the log likelihood ratio domainare given in Ta-

ble 2.1 [24].

A commonly used approximation to the full belief propagation message passing

algorithm, called the Min-Sum Algorithm (MSA) [16] is carried out in the same way,

except the message originating at the check nodes,Lrji in Table 2.1 is instead given

by the much less complex:

Lrji =
∏

Vj\i

sign(Lqij)minVj\i|Lqij | (2.7)

The message passing algorithm is an iterative procedure with operations de-

scribed by the following pseudocode, using Table 2.1.

1. Initialize ‘up’ messagesLqij = Lci ∀i, j s.t. Hij = 1

2. Update ‘down’ messagesLrji

14



2.3 Error Analysis

3. Update ‘up’ messagesLqij

4. Marginalize: updateLQi. Set

x̂ =







0 : LQi > 0

1 : LQi < 0

5. If x̂HT 6= 0 perform another operation of message passing (go back to step 2).

If the maximum number of iterations has already been performed, then stop and

x̂ is a non-codeword decoder failure. On the other hand, ifx̂HT, then a valid codeword

has been detected.

There are variants on this algorithm which trade complexityfor accuracy in com-

puting the probability for each bit. One algorithm adds somepostprocessing to the

MPA to close the gap between BP and ML [26]. Other versions of the MPA, such as

the min-sum algorithm simplify the computations at the check nodes, which is by far

the most expensive operation in the algorithm. Some of theseschemes trade roughly

0.5 dB of error performance in the threshold region for greatly reduced decoding com-

plexity [27].

2.3 Error Analysis

To analytically determine how well an(n, k) linear block code performs on the AWGN

channel, it is necessary to integrate a Gaussian density over all of the regionε, in an

n-dimensional signal space that would not decode to the intended codeword. At high

SNR, code performance when using an ML decoder is accuratelydescribed by a union
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

bound using the complete weight spectrum of codewords

Pf <
dmax
∑

d=dmin

adQ(

√

2dEs

N0

) <
dmax
∑

d=dmin

ad

2
exp(

−dEs

N0

) (2.8)

wheredmin is the Hamming distance of the nearest codewords anddmax is the Ham-

ming distance of the farthest codewords in signal space.ad is the corresponding multi-

plicity for codewords at Hamming distanced. In the large deviations theory literature,

the nearest error regions contain points which are nearest in n-dimensional space to the

correct signal point, and are calledminimum rate points[28], [29].

The minimum rate points are those points in the error region that have the small-

est Euclidean distancedεmin
from the correct codeword. This Euclidean distance is just

√
dmin for ML decoding. It is documented in the literature [24] thatwhen using the

MPA decoder on LDPC codes, the nearest error regions are usually not valid code-

words but are instead Trapping Sets (TS) [15]. The reason only the closest error events

are dominant in the high-SNR region is because the argument of the exponential con-

tains a multiplier ofEs/N0. Thus, the contribution of the second-closest error events

is decaying at a rate exponentially faster than the closest events.

Pf <
dmax
∑

d=dmin

ad exp(−d
Es

N0

)

= admin
exp(−dmin

Es

N0

)
[

1 +
admin+1

admin

exp(
−Es

N0

) + . . .+

+
admax

admin

exp[−(dmax − dmin)
Es

N0
]
]

(2.9)

All of the exponential terms in the brackets on the RHS of equation (2.9) will go to

zero for sufficiently largeEs/N0. So, at high SNR, only the error events associated

with codewords at Hamming distancedmin are necessary in the union bound sum of
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2.3 Error Analysis

(2.9). This high-SNR behavior of the decoder leads to the following formal definition

of adominanterror event.

Definition [24] Let the reference position in n-dimensional space be the all-zeros (in

GF(2)) codeword mapped to the all-ones vector inℜn. Every decoding rule will induce

an error region surrounding the all-ones point. Consider ann-sphere centered at the

all-ones point and inflating it from this point. At some radius,dεmin
, the n-sphere will

first touch one or more points in the error region. There is a binary n-length vector

which the decoder would output for channel outputs,y, that land in these nearest error

regions. These binary n-length vectors, which may or may notbe valid codewords, will

be considered dominant error events.

Even though the task of describing code performance in the low and high SNR regions

is the same, it is easier to think about the problem differently for each case. In the low

SNR region, it is best to think of the mean of a random variable(E[Ie(y)]) as describ-

ing Pf , whereIe(y) is the indicator function that evaluates to one ify is in the error

region and zero otherwise. That is what a Monte Carlo simulation is calculating - the

expected value of a random variable.

In the high-SNR region, on the other hand, it is easier to see the problem in a

geometrical sense, as the above definition of a dominant error event demonstrates. In

particular, locating the closest points of the error boundary and their shapes will give

the information needed to calculatePf . This is precisely what a union bound on ML

decoding is doing - adding up the probability contribution from each error half-space.

When employing ML decoding at high enough SNR, only the half-spaces between

the codewords at the minimum Hamming distance contribute a significant percentage

of the error probability. Thus, at high SNR, determining code performance is nearly
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

equivalent to the problem of finding all of the nearest error regions in n-dimensional

space. Since an ML decoder is not used with large LDPC codes, the nearest error

regions are typically not caused by valid codewords, but areinstead a consequence of

the suboptimal MPA decoder.

2.4 Trapping Sets and Stopping Sets

While measuring the performane of a forward error correcting code, one can typically

divide the performance curve into three regions: low SNR region, waterfall region and

error floor region [15], [14]. Error floor region correspondsto the performance mea-

surement taken at a relatively high SNR ratio. It is a phenomenon characterized by an

abrupt degradation of the coding scheme performance, as measured by the Bit Error

Rate (BER) or Frame Error Rate (FER), from the waterfall regime of moderate signal-

to-noise ratio (SNR) to the absolutely different error-floor asymptotic achieved at high

SNR.

The transient behavior and the error floor asymptotic originate from the sub-

optimality of decoder, i.e., the ideal maximum-likelihood(ML) curve would not show

such a dramatic change in the BER/FER with the SNR increase. While the slope of

the BER/FER curve in the waterfall region is the same for almost all the codes in the

ensemble, there can be a huge variation in the slopes for different codes in the error

floor region [30]. The deterioration power of noise is quite low in this region and it

becomes extremely cumbersome to get enough error events to gauge the performance

with high confidence level.

The importance of error-floor analysis was recognized in theearly stages of the

turbo codes revolution [31], and it soon became apparent that LDPC codes are also not

immune from the error-floor deficiency [15], [32]. Consequently, despite the appeal
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2.4 Trapping Sets and Stopping Sets

of these codes for many high data rate communications and data storage applications,

their wide-scale deployment has been hindered by incomplete understanding of finite-

length effects and error floors.

Better understanding of the performance of finite-length LDPC codes in the low

BER/FER regime has both theoretical as well as practical implications. From a theo-

retical standpoint, it provides a deeper understanding of the convergence of the mes-

sage passing algorithms. For practical storage and wireline applications, such predic-

tions provide a useful engineering tool in estimating performance and designing LDPC

codes.

Waterfall region

Error floor region

Typical code performance

Signal to Noise Ratio
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Figure 2.4: The performance curve of an error correcting code is divided into three
regions: low SNR region, waterfall region and error floor region

The main approaches to the error-floor analysis problem proposed to date in-

clude: (i) a heuristic approach of the importance sampling type [15], utilizing theoreti-

cal considerations developed for a typical randomly constructed LDPC code perform-

ing over the very special binary-erasure channel [33], and (ii) deriving lower bounds
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2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

for BER [34].

To estimate the error-floor asymptotic in the modern high-quality systems is a

notoriously difficult task. Typical required BER values are10−12 for an optical com-

munication system,10−15 for hard drive systems in personal computers. However,

direct numerical methods, e.g., Monte Carlo simulations, cannot be used to determine

the BER below10−9 though emulation of LDPC codes can be accelerated using Field-

Programmable Gate Array (FPGA) platform [35], [36].

Both Turbo codes and LDPC codes employ an iterative decodingalgorithm

which is suboptimal in nature thus not computing the exact Maximum Likelihood (ML)

decoding rule. For iterative decoding on the AWGN channel, MacKay and Postol [14]

were the first to discover that certainNear Codewordsare to be blamed for the high er-

ror floor in the Margulis code. Richardson reproduced their results [15] and developed

a computation technique to predict the performance of a given LDPC code in the error

floor domain.

Richardson also characterized the troublesome noise configurations leading to

the error floor using combinatorial objects termed TrappingSets (TS) and described a

technique (of a Monte-Carlo importance sampling type) to evaluate the error rate as-

sociated with a particular class of trapping sets. Previously, these TS were termed as

Near Codewordsin [14]. A related concept of ‘elementary trapping sets’ wasgiven in

[37]. Milenkovic et al. [38] studied the asymptotic distribution of trapping sets in reg-

ular and irregular ensembles. Wang et al. [39] proposed an algorithm to exhaustively

enumerate certain trapping sets.

It is extremely difficult to enumerate all of these error events; a brute force search
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over an impractically large space is the only way to enumerate all of them. A good

computational technique is presented by T. Richardson which is as follows [15]: Some

large fixed number of decoding iterations (say 200) is performed unless the decoder

converges to a codeword earlier. If it has not converged after the fixed number of iter-

ations then we do some further iterations (say 20) and identify the trapping set as the

union of all bits which do not decode correctly during those 20 iteration. Richardson

pointed out that that the trapping set definition depends on the decoder input space and

the decoding algorithm. In addition, if the channel is the BEC and the decoder is belief

propagation then the trapping sets are precisely the stopping sets [33].

Motivated by empirical observations of the non-codeword outputs of LDPC de-

coders, the notion of stopping sets was first introduced by Forney, et al. [18] in 2001. A

formal definition of stopping sets was given by Di Changyan, et al. [33]. They demon-

strated that the bit and block error probabilities of iteratively decoded LDPC codes on

the binary erasure channel (BEC) can be determined exactly from the stopping sets of

the parity-check matrix. (Here, a stopping setS is a subset of the set of variable nodes

such that all neighboring check nodes ofS are connected toS at least twice).

The intuition behind stopping sets begins with an understanding of message-

passing algorithms. Information given to a specific variable node from a neighboring

check node is derived from all other variable nodes connected to that check node. If

two variable nodes with erasures are connected to a common check node, then the

check node is not able to determine the value of either of them. For this reason, the

check nodes connected to a stopping set are incapable of resolving erasures if every

variable node in the stopping set begins with an erasure.

An analysis of LDPC code performance on the BEC is purely combinatorial and

21



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

analytical results can be determined. The name follows fromthe inability of the mes-

sage passing decoder (in the BEC case this is a bit-flipping decoder) to correct a block

of data when erasures are found in each bit of a stopping set. However, an ML decoder

could correct the message block if erasures were found in a non-codeword stopping

set. The MPA decoding rule for the erasure channel is for eachparity check node to

replace an erasure bit with either a ‘1’ or ‘0’ to satisfy the parity if only one erasure

occurs in the variable nodes connected to that parity check node. Thus, if two or more

of the bits contain an erasure, then this parity check cannothelp correct any erasures

until another check node resolves some of these erasures. Ifthere is a stopping set

of bits such that every check node connected to those bits is connected at least twice,

then the decoder stops making any progress once all erasuresin the block have been

corrected except for those in the stopping set bits.

Stopping sets on the erasure channel led other researchers to believe that an

equivalent notion could extend to other channels includingthe AWGN channel model.

The literature is undecided on the name of these bit vectors which cause the mes-

sage passing decoder to fail. They have been referred to as ‘near codewords’ [14],

‘pseudo-codewords’ [40] and ‘trapping sets’ [15]. The nearcodeword and trapping set

viewpoints both classify a bit vector with a pair(a, b), wherea is the Hamming weight

of the bit vector andb is the number of unsatisfied checks, i.e. the Hamming weight

of the syndromexHT. Alternatively, from a Tanner graph perspective, a TS couldbe

defined as thea nonzero variable nodes ofx and all of the check nodes connected by

one edge to thosea variable nodes. A valid codeword is a TS withb = 0. The term

trapping set has caught on most widely in the literature.

Definition [24]: During the decoding process, a history of the hard decisionx̂l of the

message estimate must be saved at each iterationl and if the maximum number of it-
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erationsImax occurs and no valid codeword has been found, the TS will be defined as

thex̂l which satisfiesminlwH(x̂lH
T ) wherel = 1 . . . Imax.

The MPA is an extremely useful suboptimal decoding algorithm, but it will only

correctly compute the exact marginal probability for each code bit if no cycles exist in

its Tanner graph [22],[41]. The reason why the MPA cannot perform the exact bit MAP

operation for a general graph is because dependent information arises in the messages.

This dependence occurs when the messages travel through cycles in the graph. A cycle

of lengthc occurs when a closed path withc edges exists between a node and itself.

The girth of a graph is defined as the length of the shortest cycle in the graph.

This implies if the girth of the graph is six, the first three message passing iterations

would not contain any dependent information in the messages. At the fourth iteration,

all nodes that are involved in length-six cycles would introduce some degree of depen-

dence in the next group of messages emanating from those nodes. TS arise when this

dependence occurs in a very severe form, where certain bits are involved in multiple

shorter cycles. Since all long LDPC codes contain cycles, itis inevitable that TS of

some type exist. The TS behave differently in the error floor region, where most of the

errors will saturate to their final TS state early in iteration number and stay in this state

regardless of the number of subsequent iterations. This type of behavior better reflects

the notion of getting ‘trapped’ in an error state.

For hard-decision decoding algorithms [3], [42], [43], [44],[45], the following

types of decoder failures corresponding to different typesof trapping sets were re-

ported in [46].

1) Fixed-pattern: After a finite number of iterations, the error positions at the

23



2 LDPC Codes, Error Floor Region, Trapping Sets and Pseudo-codewords

output of the decoder remain unchanged.

2) Oscillatory-pattern: After a finite number of iterations, the error positions at

the output of the decoder oscillate periodically within a small set of variable nodes.

3) Random-like: Error positions change with iterations in aseemingly random

fashion. The errors seem to propagate in the Tanner graph andresult in a larger number

of errors at the output of the decoder even if the initial error pattern has only a small

weight.

The problem of locating trapping sets is a relatively recentproblem and there are

three searching methods worth mentioning. The first [15] is just to generate noise with

the nominal density in the high SNR region and keep track of error events, most of

which will be the lower weight trapping sets or codewords. This method is inefficient

because it requires decoding huge numbers of messages that do not result in errors.

The second method of searching for dominant error events [47] only works for

codes having a small number of very dominant trapping sets. The search method relies

on the code having a small number of minimum length cycles. For codes with a more

uniform cycle length distribution at each variable node, which is characteristic of most

long codes, this method tends to miss many dominant trappingsets.

The third work comes from [24] where two search techniques are described -

one combinatorial, employing graph theory arguments and the other using the power

of the MPA itself to locate dominant error events. The combinatorial search has a lim-

ited scope; it is only practical for finding TS witha < 10 or so. The decoder search,

however, leads to a much more general search technique, having applicability for most
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LDPC codes.

2.5 Absorbing Sets

To characterize the error events, Zhanget al. introduced the notion of an absorbing set

[48] which is used to describe an error event that can occur when the message pass-

ing decoding fails to converge to a codeword after a large number of iterations. An

absorbing set is defined as [48]: LetTH be the bipartite Tanner graph corresponding

to the parity check matrixH of the given code. We say that the subset of a bit nodes

and their neighboringb check nodes inTH constitute an(a, b) set if in the subgraph

induced by thesea bit nodes, exactlyb > 0 check nodes have odd degrees, each of

thesea bit nodes is connected to more even-degree checks than odd-degree checks,

and all remaining check nodes outside of the induced subgraph have even degree with

respect toTH . We say that an(a, b) set is an(a, b) absorbing set if for alla′, a′ < a, it

does not contain an(a′, b) set as its subgraph.

Zhanget al. choose to use the absorbing set as defined above in order to explic-

itly distinguish the convergence of the decoder to a non-codeword from its oscillatory

behavior. The name ’absorbing sets’ was given due to their attractive nature. They also

demonstrated that the occurrence of the absorbing set increases with the decrease in

the codelength.

A theoretical analysis of the absorbing sets is given in [49]where it is argued

that the absorbing sets are related to (but not entirely equivalent to) previously intro-

duced combinatorial structures, including stopping sets,trapping sets, near codewords

and pseudo-codewords. The notion of absorbing sets was introduced to qualitatively

describe the convergent non-codeword state of the message passing algorithms, when
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the transmission channel is Additive White Gaussian Noise (AWGN).

In the asymptotic limit given by the bit flipping algorithm, the configuration de-

scribed as a fully absorbing set is stable, since each bit node receives strictly more

messages from the neighboring checks that reinforce its value than messages that sug-

gest the opposite bit value. In particular, a fully absorbing set can be viewed as a near

codeword as defined in [14], though the reverse is not true, since a near codeword does

not necessarily describe a stable configuration. The trapping set definition introduced

in [15] also does not explicitly capture the convergent behavior since it refers to the

union of all bits that are not eventually correct, and thus permits a situation in which

the decoder oscillates among a finite number of states. Although stopping sets [33]

also describe stable configurations, they are defined in the context of a binary erasure

channel, and cannot be directly applied to an AWGN channel.

2.6 Pseudo-codewords

Decoding errors for iterative message-passing algorithmsare also often attributed to

pseudocodewords [50]. Work on relating pseudocodewords tostopping sets for the

BEC [18], the binary symmetric channel (BSC) and the AWGN channel [51] has re-

vealed a relationship between pseudocodeword weight and stopping set size. However,

the current notions of stopping sets and pseudocodewords donot completely charac-

terize the performance and non-codeword outputs of iterative decoders on the BSC and

AWGN channels.

In his dissertation, Niclas Wiberg provides the foundationfor analyzing these er-

rors by turning to an analysis of computation trees [16]. Even with these insights, the-

oretical analyses of the convergence of iterative message-passing decoding have thus

far been scarce. (A notable exception is the work done on density evolution [5], [42],
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which considers ensembles of LDPC codes rather than individual codes.) Meanwhile,

linear programming (LP) decoding [52] has strong heuristicties to iterative message-

passing decoding by way of graph cover decoding, and its analysis has proven much

more tractable [53]. The common finding across all analyses of these decoders is that

pseudocodewords play a significant role in determining convergence of the decoder

and in understanding the non-codeword outputs that arise.

Three types of pseudocodewords for LDPC codes are found in the literature:

graph cover pseudocodewords, linear programming pseudocodewords and computa-

tion tree pseudocodewords [54]. Kelley and Sridhara studied pseudo-codewords [55]

arising from graph covers and derived bounds on the minimum pseudo-codeword

weight in terms of the girth and the minimum left-degree of the underlying Tanner

graph. The bounds were further investigated by Xia and Fu [56]. Smarandache and

Vontobel [57] found pseudo-codeword distributions for thespecial cases of codes from

Euclidean and projective planes. Pseudo-codeword analysis has also been extended to

the convolutional LDPC codes by Smarandache et al. [58].

Linear Programming decoding, introduced in [52], [59] is a close relative of BP

which can be viewed as a relaxed version of Maximum Likelihood (ML) decoding. For

any realistic code (with loops), the BP algorithm is approximate attempting to solve

iteratively nonlinear equations, called BP equations which describe extrema (e.g. min-

ima are of main interest) of the Bethe free energy [60]. Relation of the LP decoding

to the Bethe free energy approach [60] and thus to BP equations and decoding, was

noticed in [59], and the point was elucidated further in [40], [61], [53], [62], [63], [64].

In short, LP may be considered as large SNR asymptotic limit of BP, where the later

is interpreted as an extremum of the Bethe free energy functional. The failures of the

LP decoder can be understood in terms of the vertices of the so-called fundamental
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polytope which are also known as pseudo-codewords [59].

Vontobel and Koetter introduced a theoretical tool known asgraph cover ap-

proach [53] and used it to establish connections between theLP and the message pass-

ing decoders using the notion of the fundamental polytope. They showed that the

pseudo-codewords arising from the Tanner graph covers are identical to the pseudo-

codewords of the LP decoder. Vontobel and Koetter also studied the relation between

the LP and the min-sum decoders [61].

Both BP and LP are computationally efficient but suboptimal,i.e. incapable of

matching performance of the Maximum-Likelihood (ML). Eventhough BP and LP de-

codings are suboptimal with respect to ML at all SNRs, the difference in FER is only

order one in the water-fall regime of small SNRs. The situation becomes significantly

worse in the error-floor domain of moderate to large SNRs where FER for BP/LP is

parametrically, i.e. orders of magnitude, larger than FER for ML. Length of the error-

correction code brings another dimension into the problem.The longer the code the

lower is the value of FER where the waterfall-to-error-floortransition happens. On

the other hand, standard Monte-Carlo (MC) numerics is incapable to determine BER

below10−9. Therefore, understanding and describing the error-floor by an alternative,

and hopefully more insightful method is in great demand [15].

One such useful insight came through recent efforts [65], [66], [67], [62], [64]

to understanding error-floor in terms of the most probable ofthe dangerous configura-

tions of the noise, so-called instantons, contributing most to FER. BP/LP decodes the

instantons into the so-called non-codeword pseudo-codewords [17], [16], [18], [15],

[40]. It was recognized that for moderate and large SNRs splitting of the two (FER

vs SNR) curves, representing ML decoding and approximate BP/LP decoding, is due
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to the pseudo-codewords, which are confused by the suboptimal algorithm for actual

codewords of the code. Describing BP/LP error-flooor translates into finding pseudo-

codewords with low effective distance.

It is well established that the distance between codewords significantly impacts

the probability of decoding errors, and thus it is importantto further explore the effect

of the distance between pseudocodewords and codewords. Forbinary linear codes, the

classical problem of finding distances between codewords issignificantly simplified by

looking instead at the weights of codewords, which is made possible by the algebraic

structure of the code. To parallel the classical case, we consider the (effective Ham-

ming) weight [18] of a pseudocodeword. It should be noted that this notion of weight

was originally motivated by the definition of the generalized weight of a computation

tree configuration, as given by Wiberg in [16].

Definition 2.2 (See Forney, et al. [18], Corollary 3.1). On the additive white Gaussian

noise channel, the (effective Hamming) weight of a nonzero vectorx = (x1, . . . , xn)

of nonnegative rational numbers is given by

w(x) =
(
∑n

i=1 xi)
2

(
∑n

i=1)x
2
i

Using the weight measure of Definition 2.2, Forney, et al. [18] show that the minimum

weight of a vertex of the fundamental polytope [40] determines bounds on linear pro-

gramming decoding performance. It is important to note thatthese results deal only

with the overall probability of word error when decoding; they say nothing about the

probability of word error caused by a given pseudocodeword.
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2.7 Difference between Trapping Sets and Pseu-

docodewords

Although there is a tendency to use the terms trapping sets and pseudocodewords in-

terchangably, yet there is a subtle difference between the two. Both try to say what

went wrong in the iterative decoding but the specifics are different. Trapping sets are

decoder dependent so different decoders have different trapping sets and researchers

have put efforts (as referenced earlier) to classify the low-weight trapping sets for a

variety of decoders. For a given iterative decoding algorithm, it is clear what the rel-

evance of trapping sets are with respect to decoding failures. However, it is not yet

clear, how to know which trapping sets are important and which ones are not. One

can always try to list all(a, b) trapping sets and try out empirically which ones cause

problems.

On the other hand, pseudocodewords are defined independently of the iterative

decoding algorithm that is used. They are mainly characterized by the fundamental

polytope. However, their immediate implication for the decoding behavior needs to

be looked at from case-to-case. For the BEC channel characterized by stopping sets,

to every pseudocodeword there corresponds one stopping set(given by the support

of the pseudocodeword). Consequently, for every stopping set, there is at least one

pseudocodeword whose support equals that stopping set.
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3

Exiting Methods for the Performance

Evaluation at Low Error Rates

IT is not feasible to get an exact analytical expression for theprobability of error in

a long code, because the error regions have an extremely complex n-dimensional

shape. Instead, we generally resort to simulation methods.When analyzing the proba-

bility of bit or block error versus SNR for a long code, there are typically two regions

of interest. The first region is the low SNR regime. When it is only necessary to cal-

culate a block error performance down to roughly10−5, a Monte Carlo simulation will

provide an efficient and accurate result.

The second region of interest lies in the higher SNR region, or error floor, where

only a few rare, but dominant error events contain nearly allof the error probability

mass. This is the region of the performance curve that is typically out of reach unless

the code has special properties that allow a simple error calculation.

A number of methods exist for the efficient performance evaluation of FEC codes

at low error rates. These methods can be broadly classified into two categories: meth-

ods that take into account the code structure and other characteristics and methods

which are generic in nature being independant of the code structure.
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3.1 Monte Carlo Methods

The Monte Carlo method [68] of simulation was first used as a way to solve multidi-

mensional integrals. In its most general form, it is a tool tofind the expectation of a

function of a random variable:

E[g(x)] ≃ 1

L

L
∑

l=1

g(xl) (3.1)

where thexl are independent random samples drawn from the distributionthat de-

scribes the random variablex. The total number of random samples is given byL.

Eq. 3.1 is justified by the law of large numbers, as sample averages of i.i.d. random

variables converge in the mean-square sense to their mean asthe number of samples

(L) in the average increases. In the performance analysis of codes, the usual metric of

interest is the probability of frame errorPf . This probability can be given as

Pf =

∫

ε

f(y)dy =

∫

ℜn

Ie(y)f(y)dy = E[Ie(y)] (3.2)

whereIe is the indicator function for the error regionε in n-dimensional signal space,

andf(y) has a Gaussian distribution for the AWGN channel. The Monte Carlo esti-

mate becomes

P̂fMC
=

1

L

L
∑

l=1

Ie(yl) (3.3)

An estimate is considered unbiased if the expected value of the estimate is equal to the

true value being estimated.

E[P̂fMC
] =

1

L

L
∑

l=1

E[Ie(yl)] =
1

L

L
∑

l=1

Pf = Pf(unbiased) (3.4)
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3.2 Importance Sampling

In Importance Sampling (IS), we statistically bias the sample generation (noise real-

izations) in a manner that produces the disired result more frequently (error events).

Instead of accumulating1 for each error event, a ‘weight’ is accumulated for each er-

ror to restore an unbiased estimate ofPf . This strategy, if done correctly, will lead

to a greatly reduced simulation time of the estimate compared to standard MC. For a

comprehensive treatment of IS, see [69],[70].

Some examples of IS methods are given in the following.

3.2.1 Importance Sampling by biasing density function

This IS method is briefly presented as follows [24]:

A biasing density functionf ∗(y) is introduced into the MC estimator. The desired

error probability can be rewritten as

Pf , E[Ie(y)] =

∫

ℜn

Ie(y)f(y)dy =

∫

ℜn

Ie(y)
f(y)

f ∗(y)
f ∗(y)dy = E∗[Ie(y)w(y)]

(3.5)

which gives an alternate estimator

P̂fIS
=

1

L

L
∑

l=1

Ie(yl)w(yl) (3.6)

The yl are now generated according tof ∗(y), the biased density. Ifyl lands in the

error region as determined by the decoder, then the weight functionw(yl) = f(y)
f∗(y)

is

accumulated to find the estimate ofPf . MC can be seen as a special case of this more

general procedure, withf ∗(y) = f(y). It can be shown that the IS estimator is also
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unbiased

E[P̂fIS
] =

1

L

L
∑

l=1

E∗[Ie(yl)w(yl)] = E∗[Ie(y)w(y)] =

∫ ∞

−∞

Ie(y)
f(y)

f ∗(y)
f ∗(y)dy

= Pf (unbiased) (3.7)

3.2.1.1 Mean Shifting/Translation IS technique

Mean-shifting (MS) or Mean-Translation (MT) is a popular IStechnique [71],[28]

where the IS densityf ∗ has the same properties as the nominal densityf , except for

its mean which is shifted to lie on the boundary of the error region. It is the most effi-

cient IS scheme. In general, MT performs efficiently when theerror region geometry

is simple. For this reason, MT is often implemented in a divide-and-conquer manner

for multi-dimensional systems, that is, the error region ispartitioned into simple sub-

regions and the error probability is estimated for each subregion with MT.

A natural partitioning scheme for coded systems is partitioning-by-codeword.

This technique has been used on a Hamming (7, 4) code and trellis codes with maxi-

mum likelihood decoding criterion [72]. An immediate drawback of this partitioning-

by-codeword scheme is its requirement of codebook information. The codebook size

becomes prohibitively large as the code length increases. On the other hand, if the

codebook size is manageable, the ML performance can be analytically approximated

via the union bound technique. Thus, it is somewhat unrealistic to attempt to obtain

ML performance via IS simulations.

In [73], short block codes with message-passing decoding were considered with

a partitioning scheme that is slightly different than that in [72]. The authors have

shown how IS can be applied to evaluate the performance of optimal MAP bit-per-bit
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decoders, and of non-optimal (turbo-like) iterative decoders. Though efficient for short

codes, this IS scheme still requires the codebook information, which disqualifies it for

long codes.

An IS scheme for linear block codes with message-passing decoding that as-

sumes no code-book knowledge was proposed in [74] where a block length of 96 was

used making use of the code structure to produce noise eventsmore frequently (ap-

plication to loop-free decoding trees was given in [75]). Another direct application of

an IS technique for LDPC codes is given in [47]. For turbo codes, IS technique was

studied in [76].

The choice of the IS density is, quite naturally, critical tothe success of the

simulation. For the IS to be most effective, the optimal density should neither be un-

derbiased nor overbiased. The optimal density is well known, but it is a function of

the probability of error and therefore cannot be used [77]. Conventional IS (CIS) uses

a density that is obtained by simply increasing the varianceof the underlying density

[78]. The improvement in performance obtained with this technique is limited by the

memory length of the system, which makes it impractical for most systems of interest.

Improved Importance Sampling (IIS) uses a mean translationof the underlying

density which overcomes the effects of memory [71]. In addition, the use of the tail of

several different pdf’s has been explored in [79], [80],[81]. Two types of importance

sampling methods for rare event sampling are presented in [82]. The first approach

selects importance sampling distributions by minimizing the variance of importance

sampling estimator. The secod approach selects importancesampling distributions by

minimizing the cross entropy to the optimal importance sampling distribution.
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Although many IS densities have been proposed, their performance varies from

system to system. This problem is further complicated by thefact that determining the

suitability of an IS density to a particular communicationssystem is similar in com-

plexity to finding the probability of error itself. These problems have prevented IS

from gaining wide-scale acceptance despite its promise of decreasing simulation times

by several orders of magnitude.

A graph searching technique that can efficiently find the dominant trapping sets

and low-weight codewords is presented in [83], [24]. Multiple error impulses are ap-

plied on specific nodes in the graph to tease out the dominant TS. Biasing function is

calculated based on these TS and IS is then employed by producing noise events in the

dominant TS regions to get errors more frequently and FERs are calculated.

In [84], the authors present an importance sampling method for the evaluation of

low FER performance of LDPC codes under iterative decoding.It relies on a combina-

torial characterization of the absorbing sets [48]. The biased density in the importance

sampling scheme is a mean-shifted version of the original Gaussian density which is

suitably centered between a codeword and a dominant absorbing set. This choice of bi-

ased density yields an unbiased estimator for the FER with a variance lower by several

orders of magnitude than the standard Monte Carlo estimator.

3.3 Error rate estimation using cycle enumeration

For Binary Sysmmetric Channels (BSC), an efficient error rate estimation was pre-

sented in [46] which was further modified in [85], [86]. A combinatorial approach

is adopted and the method is mainly based on efficient enumeration of input vectors

with small distances to a reference vector whose elements are selected to be the most

reliable values from the input alphabet. Several techniques, including modified cycle
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3.3 Error rate estimation using cycle enumeration

enumeration, are employed to reduce the complexity of the enumeration. The error

rate estimate is derived by testing the input vectors of small distances and estimating

the contribution of larger distance vectors.

The method proposed in [46] is valid for hard-decision iterative algorithms.

Their particularity is that only binary messages are used rendering them quite sim-

ple. Some examples are the so-called Gallager algorithms A (GA) and B (GB) [3],

[42], [43], their variants [44] and Majority-Based (MB) algorithms [45]. The method

is based on enumerating the initial error patterns of smallest weight that cannot be all

corrected by the decoder. By using this information, the contribution of all the other

initial error patterns with larger weights to the total FER and BER is estimated.

Consider a given LDPC code with block lengthn decoded by a given hard-

decision iterative algorithm over a BSC with crossover probability ε. Denote the set

of all the error patterns of weighti by Si, and those that cannot be corrected by the

decoder byEi. Clearly,|Si| =
(

n
i

)

. Suppose that the decoder can correct all the error

patterns of weightJ − 1 and smaller, i.e.,|Ei| = 0, ∀i < J . Also suppose that there are

|EJ | = 0 error patterns that the decoder fails to correct. The FER is then equal to

FER =
n
∑

i=J

|Ei|
|Si|

pi =
n
∑

i=j

|Ei|εi(1 − ε)(n−i) (3.8)

wherei is the weight of the initial error pattern at the input of the decoder, andpi is the

probability of havingi errors at the output of the channel (or the input of the decoder).
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3.4 Instanton Analysis

In 1989, Nicolas Sourlas established a relationship between statistical mechanics es-

pecially spin model theory and error correction theory [20]. He presented codes which

could, under certain circumstances, be the only known codesat that time to achieve

Shannon’s well-known code performance bounds. Sourlas also showed that the error-

correcting codes are mathematically equivalent to some theoretical spin-glass models

and it is possible to use their equivalence to analyse them using the methods of statis-

tical mechanics [87],[88].

Some other statistical physics methods recently used in thecoding theory context

are [89], [90], [91], [92], [60], [93]. Instanton analysis constitutes a method, aiming

to estimate a low probability event, and is known under the names of instanton calcu-

lus, saddle-point or optimal fluctuation and is common in theoretical physics. It was

suggested first in the context of disordered systems [94] andreinvented in the quantum

field theory context [95].

It was pointed out by Sourlas [20] that the error-correctionproblem can be conve-

niently reformulated in terms of equilibrium statistical physics. (See e.g. more recent

discussions in the error-correction literature [60],[96],[97]). Specifically it was shown

that formalism and approaches developed in the context of disordered systems, e.g.

spin-glass, can be, though with essential modifications, applied to the coding theory

[87],[88],[92].

Instanton analysis or instanton amoeba method, introducedin [65], [66] is named

after a theoretical particle in quantum physics that lasts for only an instant, occupying

a localized portion of space-time [98]. Statistical physics uses the word instanton to

describe a microscopic configuration which, in spite of its rare occurrence, contributes
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most to the macroscopic behavior of the system [94]. In a nutshell, an instanton is a

configuration of the noise which is positioned in between a codeword (say zero code-

word) and another pseudo-codeword (which is not necessarily a codeword). Incremen-

tal shift (allowed by the channel) from this configuration toward the zero codeword

leads to correct decoding (into the zero-codeword) while incremental shift in an oppo-

site direction leads to a failure. In principle, one can find this dangerous configuration

of the noise by exploring the domain of correct decoding surrounding the zero code-

word, and finding borders of this domain – the so-called error-surface. If the channel

is continuous, the error-surface consists of continuous patches while configuration of

the noise maximizing the error probability over a patch is called an instanton.

Instanton amoeba scheme is an efficient numerical scheme, which is ab initio

by construction, i.e., the scheme requires no additional assumptions (e.g., no sam-

pling). The numerical scheme is also accurate at producing configurations whose

validity, as of actual optimal noise configurations, can be verified theoretically and

that provide a tight lower bound for BER. The instanton scheme is also generic, in

that there are no restrictions related to the channel or decoding. The method finds

instanton/pseudo-codeword by means of a simplex (amoeba) optimization. The algo-

rithm is initialized with a random simplex and many sequential attempts are required

to built the instanton/pseudo-codeword frequency spectraof the code. The instanton-

amoeba method is general but also computational resources consuming.

When SNR is large, FER as an integral over output configurations is approxi-

mated by

FER ∼
∑

inst

Vinst × P (xinst | 1) (3.9)

wherexinst are the special instanton configurations of the output maximizing P (x|1)

under theχerror = 1 condition, andVinst combines combinatorial and phase-volume
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factors [99]. Generically, there are many instanton configurations that are all local

maxima ofP (x|1) in the noise space. Individual contributions into FER decrease sig-

nificantly with SNR increase. At large SNR, only instanton with the highestP (x|1) is

relevant.

The numerical method to find the instanton is given in [99]. The AWGN channel

is defined by,

P (x|σ′) =
∏

i

p(xi|σ′
i), p(x|σ) ∝ exp

(

− (x − σ)2s2

2

)

(3.10)

If the detected signal at a bit isx, the respective log-likelihood at the bit ish =

ln(p(x|1)/p(x| − 1))/2s2 = x i.e., it is measured in the units of SNR,s2. For the

AWGN channel, finding the instanton means minimizingl2 =
∑

i(1 − xi)
2 with re-

spect to the noise vector1 − x in theN-dimensional space, under the condition that

the decoding terminates with an error. Instanton estimation of FER at the higher SNR,

s ≫ 1 is ∼ exp(−l2inst.s
2/2) while at moderate values of SNR, many terms from the

right-hand-side of Eq. 3.9 can contribute to FER comparably.

The downhill simplex method (amoeba) [100] can be used to findthe minimum

of a function of more than one independent variable [101]. A simplex is the geomet-

rical figure consisting, inN dimensions, ofN + 1 points (or vertices) and all their

interconnecting line segments, polygonal faces, etc. For example, in two dimensions,

a simplex is a triangle. For multidimensional minimization, the algorithm is given a

starting guess, that is, anN-vector of independent variables as the first point to try.

The algorithm is then supposed to make its own way downhill through the unimagin-

able complexity of anN-dimensional topography, until it encounters a (local, at least)

minimum. The downhill simplex method must be started not just with a single point,

but withN + 1 points, defining an initial simplex.
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The instanton-amoeba evaluation is repeated many times, always starting from a

new set for initial simplex chosen randomly. The lengthl, as a function of noise con-

figuration inside the area of unsuccessful decoding, has multiple minima each corre-

sponding to an instanton. Multiple attempts of the instanton-amoeba evaluations gives

the instanton with the minimallinst plus the whole spectra of higher valuedlinst. Based

on instanton, error floors are lowered in [102] where instantons are found and then a

new Tanner code is constructed which is not prone to these instantons by construction.

3.5 Adaptive Importance Sampling

Another approach to simulate the error probability, which is not dependent on graph

topologies, is the advanced version of IS known as Adaptive Importance Sampling

(AIS) [103], [104], [105], [106]. AIS is quite attractive due to its potential for remov-

ing the burden of selecting a good IS density which is often system-specific. The key

to this technique is the recognition that the subset of the simulation samples that yield

an error event are distributed according to the (unknown) unconstrained optimal IS

density.

The samples obtained may be used to estimate properties of the unconstrained

optimal IS density and iteratively render the IS density closer to optimal in the sense

that the measured properties (from the current simulation)are made to match those of

the unconstrained optimal density. This opens a wide range of possibilities for adap-

tation rules, since the possible properties of interest range from the simple (e.g., the

mean of the IS density) to the complex (e.g., the complete IS density). This approach

has the advantage that the mechanics of the simulation remain the same for any system.

This is extremely important for investigations into the sensitivity of the probability of

error, to various system parameters that is usually determined by performing a series
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of simulations with perturbed parameters. Some advances inthe automatic selection

of the IS density appear in [107].

In AIS, the probability density function is biased in a controlled way during

multiple iterations thus making it possible to visit the tails of the noise distribution

(Gaussian distribution e.g.). The system response (the output of the BP decoder, for

example) is evaluated and stored in the process. AIS is especially interesting for its

genericity in the sense that it can be adapted to any stationary memoryless channel

(AWGN, BSC, etc.), to any type of decoder (Gallager B, BP, BCJR, etc.) and to any

class of codes (regular and irregular LDPC codes, Turbocodes, etc.). An example of

AIS technique, which does not take into account the graph structure of LDPC codes,

has been successfully employed in [108] where the authors use a Dual Adaptive Im-

portance Sampling (DAIS) technique using Multicanonical approach [109] based on

Berg’s recursion equations [110]. DAIS has been tested on a regular very short LDPC

code of 96 bits.

3.5.1 Dual Adaptive Important Sampling

Dual Adaptive Importance Sampling (DAIS) evalutates the performance of an LDPC

code using an AWGN channel using a novel technique based on Multicanonical Monte

Carlo (MMC) simulations without a priori knowledge of how tobias. The main idea

behind the technique is that a biased distribution must be chosen using some knowl-

edge of which noise realizations most likely generate errors. This task is difficult when

iterative decoding algorithms are used, since codeword errors are correlated to the

noise distribution among the bits in a highly complex way.

The authors apply the Multicanonical Monte Carlo (MMC) simulation technique

of [109] as the basis for their technique to compute very low error rates. They demon-
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strate the DAIS technique using a (96, 50) LDPC code and Sum-Product Decoding

(SPD) [111] with up to 50 decoder iterations achieving BER of10−19. Like standard

IS [74], MMC increases the number of events in the tail of the Probability Density

Function (PDF) being computed by sampling from a biased PDF [112]. The advan-

tage of MMC is that it adaptively iterates to this biased PDF with little a priori knowl-

edge needed of how to bias. The iterative procedure uses a control quantity to update

the next iteration’s biased PDF so that, as the iteration number increases, there tends to

be an approximately equal number of hits in each control-quantity histogram bin [109].

A non-mathematical brief overview of the method is as follows (many steps in-

volved are completely described in the next chapter): The noise vector is represented

by a scalar control quantity which is calculated such that only destructive noise com-

ponents contribute to the control quantity. The noise probability space is divided into a

number of partitions called bins such that any noise realization generated corresponds

to a bin through the scalar quantity. Instead of using physical intuition to guess the

biasing PDF, this Multicanonical Monte Carlo algorithm iterates over a sequence of

biasing PDFs which approach the optimal one.

The bias is determined by the vectorP which keeps on evolving during the al-

gorithm. Random walk is employed using Metropolis algorithm and noise realizations

are produced in a controlled way such that the tails of the AWGN distribution are suf-

ficiently explored. Two distinct histograms are produced during the algorithm which

keep track of the noise samples produced and the errors produced which were not cor-

rected by the decoder. The data of these two histograms and the vlaues of the vectorP

are manipulated to get the required results.

The result however, is not accurate due to the undersamplingduring the previ-
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ously described ‘unconstrained’ simulation. In fact, Berg’s recursion equations [110]

are used to updateP values. With the increase in the number of samples, the update

procedure becomes inefficient (will be discussed in detail in Chapter 4). As a result,

in DAIS algorithm, one has to launch a second ‘constrained’ simulation. The ran-

dom walker is constrained in the distribution where the result is a lot of errors after

decoding. Mathematical manipulations are employed to get the result for constrained

simulation which are then scaled through the process of curve-fitting to get the required

final results.

3.5.2 Fast Flat Histogram Method

Fast Flat Histogram (FFH) method is inspired from statistical physics [11] while its

mathematical framework remains that of an adaptive importance sampling. Like DAIS,

FFH also iterates over biasing probability density functions gradually approaching

the optimum one. The main emphasis of this work remained the implementation,

validation and improvement of FFH method so the following chapters are dedicated

to its elaboration and its successful application in the domain of information theory

[113],[114],[115].

44



4

Fast Simulation for the Performance

Evaluation of FEC Codes using Fast Flat

Histogram Method 1

IN digital communication systems, the quality of transmission system is usually

measured by Frame Error Rate (FER) i.e., the ratio between the decoded frames

that contain errors to the total number of frames sent through the system. With the

advancement in the code design and better decoders, it has become very important to

gauge the performance of the system at very low error rates. On the one hand, there

are novel applications operating at very low error probability and standard Monte Carlo

(MC) simulation takes extremely long to gauge their performance. On the other hand,

new codes and decoders compete for a better performance in the error floor region

where the performance evaluation is curbed and it is quite difficult to study the system

properties.

The LDPC codes make a class of error correcting codes which are graphically

represented by Tanner graph [13]. In the high Signal-to-Noise Ratio (SNR) region,

the probability of error is dominated by decoder failures which do not correspond to

erroneous codewords [108]. This is due to the convergence ofdecoder towards pseudo-

1This chapter was presented in parts in [113], [114]
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codewords [50] or Trapping Sets (TS) [15]. Since the errors in the high SNR region

are dominated by TS, a lot of work is oriented to study the LDPCcodes performance

in terms of TS. The main problem with the methods that aim at reducing simulation

time based on the graph structure is that the identification of TS becomes extremely

cumbersome if the graph connectivity is irregular or the code is long. In addition, the

TS are not easily generalizable when the errors in the channel are produced owing to

the presence of Additive White Gaussian Noise (AWGN) and an iterative soft decision

decoding is employed.

In this work, we will initially focus on LDPC codes used on AWGN channel

decoded with standard Belief Propagation (BP). We propose to bypass the limitations

of DAIS [108] by using another AIS approach inspired by statistical physics called

Fast Flat Histogram (FFH) method. We will show in particularthat our method is still

robust for relatively large codeword lengths up to 2640 coded bits. For turbo codes,

we shall present the results for MPEG size 188 bytes. Since the code is duo-binary, the

code-length is that of3008 bits.

The rest of the chapter is organized as follows: Section 4.1 describes the FFH

method detailing how it is applied to regular and irregular LDPC codes. Section 4.2

gives a comparison between DAIS and FFH showing that unlike DAIS, FFH is not

dependent on histogram entries and is thus easily extendible to any codelength owing

to a different update procedure. Section 4.3 gives the results for some typical test

codes and quasi-cyclic codes from IEEE 802.11 standard using AWGN channel and

an iterative soft decision decoder with BP in the probability domain. Section 4.4 details

the application of FFH method to turbo codes. Section 4.5 gives some results on the

statistical precision of our algorithm.
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4.1 Fast Flat Histogram Method

4.1.1 Rationale

In statistical physics, one of the most important quantities is the density of statesg(E),

i.e., the number of all possible states or configurations foran energy levelE of the sys-

tem. An estimation of this quantity through computer simulations is of great interest

since it plays a major role for the study of phase transitionsand critical phenomena.

Berg et al. [109], [110], [116], [117] presented the multicanonical ensemble

method in which we have to estimate the density of statesg(E) first, then perform a

random walk with a flat histogram in the desired region in the phase space. In a mul-

ticanonical simulation, the density of states need not necessarily be very accurate, as

long as the simulation generates a relatively flat histogramand overcomes the barri-

ers in energy space. This is because the algorithm employs a subsequent re-weighting

which does not depend on the accuracy of the density of the states as long as the his-

togram can cover all important energy levels with sufficientstatistics. If the density of

states could be calculated very accurately, then the problem would have been solved in

the first place and we need not perform any futher simulation such as with the multi-

canonical method.

Almost all recursive methods update the density of states byusing the histogram

data directly only after enough histogram entries are accumulated [109], [116], [118],

[119], [120], [121], [122]. Due to the exponential growth ofthe density of states in en-

ergy space, this process is not efficient because the histogram is accumulated linearly.

In [123], [124], the authors modify the density of states at each step of the random

walk allowing them to approach the true density of states much faster than conven-

tional methods especially for large systems. They also accumulate histogram entries
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during the random walk but they only use it to check whether the histogram is flat

enough to go to the next level random walk with a finer modification factor. The total

number of configurations increases exponentially with the size of the system; however,

the total number of possible energy levels increases linearly with the size of system. It

is thus easy to calculate the density of states with a random walk in energy space for a

large system.

The Fast Flat Histogram method [11] employing Wang Landau algorithm [123,

124] was introduced to estimate the density of statesg(E), i.e., the number of all pos-

sible states for an energy levelE of the system. The algorithm is based on the obser-

vation that if a random walk in energy space is performed by flipping spins randomly

for a spin system and the probability to visit a given energy levelE is proportional to

the reciprocal of the density of states1/g(E), then a flat histogram is generated for the

energy distribution. This is accomplished by modifying theestimated density of states

in a systematic way to produce a flat histogram over the allowed range of energy and

simultaneously making the density of states converge to thetrue value.

Wang-Landau algorithm has been used very efficiently in manystatistical prob-

lems. Similar to the Metropolis algorithm, it is a generic algorithm, independent on the

details of the physical system. Subsequently, there has been numerous studies on the

algorithm itself and many proposals for improvements were put forward [125], [126],

[127], [128], [129], [130], [131], [132], [133], [134], [135] and studies of the efficiency

and convergence of this method [128], [133]. Particularly,C. Zhou and R. N. Batt have

given a mathematical analysis of the WL algorithm, proving its convergence and iden-

tifying sources of errors and strategies for optimization.Some theoretical aspects of

the saturation of error are discussed in [136].
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4.1.2 Description

The basic skeleton of our technique is the same as that in DAIS[108], that is we aim at

increasing the number of events in the tails of the Probability Density Function (PDF)

by sampling from a biased PDF [112]. However, our technique is somewhat different

and solves some issues confronted by DAIS as will be explained in section 4.2.

We recall the notations from [108]. LetΓ be then-dimensional probability space

of the noise in then bits of a codeword. The noise vectorz = (z1, z2, ..., zn) is a

multivariate Gaussian with joint PDFρ(z) =
∏n

l=1 ρl(zl). The transmitted bit vec-

tor is represented byb = (b1, b2, ..., bn) andy = (y1, y2, ..., yn) represents the re-

ceived codeword. The algorithm is controlled by a scalar control quantityV given as

V (z) =
[

1
n

∑n
l=1[H(qlzl)zl]

2
]1/2

whereql = (−1)bl while bl is the transmitted bit in

the lth position andH(x) = 1 if x < 0 andH(x) = 0 otherwise.V (z) is contructed

such that a noise componentzl contributes toV only if it may produce a bit error at the

input to the decoder.

Given a range[Vmin, Vmax] for V , Γ is partitioned intoL subsetsΓk = {z ∈ Γ |
Vk−1 ≤ V (z) < Vk} , whereVk = Vmin + k∆V , 1 ≤ k ≤ L and∆V = Vk − Vk−1 =

(Vmax − Vmin)/L is the width of each bin in the partition of[Vmin, Vmax]. The number

of bins depends on the code length and on the signal-to-noiseratio. We observe that an

optimized number of bins is obtained byL = 10
1

σ × n
10

whereσ represents the standard

deviation corresponding to theEb/N0 value.

Let Pk be the probability of selecting a realizationz from ρ such thatz ∈ Γk

[112, 110]. Then,

Pk =

∫

Γ

χk(z)
ρ(z)

ρ∗(z)
ρ∗(z)dz ≈ 1

N

N
∑

i=1

χk(z
∗,i)

ρ(z∗,i)

ρ∗(z∗,i)
(4.1)
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whereρ∗(z) is a positive biasing PDF,χk = 1 if z ∈ Γk andχk(z) = 0 otherwise.z∗,i

areN random sample points inΓ selected according to the PDFρ∗(z). The variance

of the estimate of Eq. (4.1) is zero if the optimal biasing PDFρ∗
opt(z) = χk(z)ρ(z)/Pk

is used. However,ρ∗
opt(z) depends onPk which is initially unknown. In standard IS,

one uses physical intuition to guess a biasing PDF that is close toρ∗
opt. Like DAIS, the

FFH method instead iterates over a sequence of biasing PDFsρ∗,j that approachρ∗
opt.

We defineρ∗,j for jth iteration byρ∗,j(z) = ρ(z)/(cjP j
k ) wherek is such thatz ∈ Γk

is satisfied. The quantitiesP j
k satisfyP j

k > 0 and
∑M

k=1 P j
k = 1 andcj is an unknown

constant that ensures
∫

Γ
ρ∗,j(z)dz = 1. The vectorPk completely determines the bias

and is initialized with1/L, ∀k = 1, ..., L.

By employing Metropolis algorithm [137], we produce a random walk of sam-

plesz∗,i whose PDF equalsρ∗,j(z). We consider a Markov chain of transitions con-

sisting of small steps in the noise space. Each transition goes fromz∗,i = z∗a ∈ Γka

to z∗b = (za + ǫ∆z) ∈ Γkb
where∆z is random and symmetric, i.e., it does not favor

any direction inΓ and the transition is accepted with probabilityπab. ǫ here is the

perturbation constant. If a transition fromz∗,i to z∗b is accepted, we setz∗,i+1 = z∗b ,

else we setz∗,i+1 = z∗,i = z∗a. The ratioπab/πba equalsρ∗,j(z∗b)/ρ
∗,j(z∗a) which is the

detailed balance equationthat ensures that the limiting (stationary) PDF for infinitely

many steps of this random walk isρ∗,j [137].

We consider the perturbation of the noise component in each bit z∗a,l of z∗a sepa-

rately and accept it or reject it independently with the probability

min[ρ(z∗b,l)/ρ(z∗a,l), 1]

We pick each perturbation∆zl from a zero mean symmetric PDF. We obtain a trial

statez∗b in which only some of the components are different from theirprevious values
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in z∗a. Then we computekb, the bin corresponding toz∗b and finally accept the step from

z∗a to z∗b with the probabilitymin[P j
ka

)/P j
kb

), 1]. The compound transition probability

thus becomes

πab =

{

n
∏

l=1

min

[

ρ(z∗b,l)

ρ(z∗a,l)
, 1

]}

min

[

P j
ka

P j
kb

, 1

]

(4.2)

The Asymptotically Optimal Acceptance Rate AOARα , (number of accepted steps)÷
(total number of steps) for a Metropolis algorithm for target distributions with IID

components is0.234 [138]. The perturbation constantǫ is adjusted so as to keepα

close to this value. The noise realizations are recorded in the histogramH∗,j where

H∗,j
k =

∑N
i=1 χk(z

∗,i) is the number ofz∗,i in iterationj that fall intoΓk. To keep a

record of errors in bink, we produce an error histogramG∗,j
k . Pk is updatedon the fly

such that whenk bin is visited,Pk is modified by the refinement parameterf > 1, i.e.

Pk → Pk ·f [123, 124]. In practice, we have to use the log domainlnPk → lnPk +lnf

in order to fit all possiblePk into double precision numbers. If the random walk rejects

a possible move and stays in the same bink, we modify the samePk with the modifi-

cation factor to keep the detailed balance equation in equilibrium.

The above procedure is complemented by the implementation details of Metropo-

lis algorithm [137] as follows:

The AWGN Probability Density Function PDFρ is defined as

ρ(x) =
1

σ
√

2π
exp

(

− (x2 − µ)

2σ2

)

The following steps are to be repeated for each noise component in a noise vector

1. Pick a noise componentxa in the noise vector (this operation is to be repeated
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for all noise components and is referred to asa priori choice [139], or “proposed

update”).

2. Add to it a random quantity obtained within a scale of standard deviation to get

xb (i.e.,attempta moveupdate);

3. Calculateρ(xb)/ρ(xa).

4. Draw a numberr at random between0 and1 and

• accept the attempted move ifr < ρ(xb)/ρ(xa), i.e., the next configuration in

the Markov chain hasxb as the noise component.

• otherwise reject the move, i.e., the next configuration in the Markov chain is

the same as the current configuration having the noise componentxa.

The previous set of operations is termed aMonte Carlo step. A Monte Carlo sweep

(MCS) corresponds toN attempts on a noise vector containingN noise components.

While using the log domain, we have to respect the upper and lower limits which

can be represented by an exponential function as a double precision number. For our

machines, this limit is slightly more thane700 and is slightly less thane−740. However,

we fix e700 ande−740 as our upper and lower limits respectively. During the execution

of the WL iterations,Pk is modified in the log domain such that the modification factor

is added to thePk value. When the WL iteration is over, the values ofPk are such

that they largely exceeds the upper and lower limits. To counteract this problem, we

need to bring thePk values within the boundaries so that they may be representedas

double precision numbers once the anti-log is used. Since the Pk values correspond

to different bin numbers represented byk, it is extremely important to keep the ra-

tio between thePk values. We copy thePk values to a temporary storage so that we
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may perform operations on these values without changing theorder and sequence of

the originalPk vlaues. Now we perform the sorting operation using the bubble sort

algorithm. Once we get the sorted sequence, we look for the median of the sortedPk

values. We subtract this median value from everyPk vlaue in the original storage. The

subtraction operation is chosen since we are in the log domain. The desired effect is

that of division by the same number once an antilog operationis performed on all the

Pk values. After the subtraction operation in the log domain, most of thePk values

are within the calculable limits. A check is run on all the values. If anyPk value is

found to be superior than 700, it is changed to 700. On the lower side, if any values is

found to be inferior than -740, it is changed to -740. Now, theantilog operation can be

carried out to get thePk values which can be used in the normalization procedure. We

point out that the evolution ofPk is a Markov process, although the WL algorithm is

not, because it makes references to its entire history.

The histogramH∗,j
k is checked after about eachL × 10 Monte Carlo (MC)

sweeps. When the histogram is flat (flatness criterion is the same as in [123, 124]),

the modification factor is reduced to a finer one using the function fj+1 =
√

fj

(finit = e = 2.7182818), the histogram is reset and the next iteration of random walk

is started wherePk are now modified with the finer modification factor.

We continue doing so until the histogram is flat again and thenwe begin the

next Wang-Landau (WL) iteration with a finerf and so on. We stop the random walk

when the change from one WL iteration to the other is “quite small”. The above de-

tailed random walk can also be carried out in a parallel fashion by dividing the range

[Vmin, Vmax] into W partitions and then exploring each partition separately, combining

the results in the end.
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It is important to note that before starting the random walk for any WL iteration,

the noise vectors are initialized to the values obtained from an AWGN direct sample

generator (employing Box-Muller method for example). Throughout this work, the

intial value of modification factorfinit = e = 2.7182818 has been used. Iffinit is too

small, the random walk will spend an extremely long time to reach all possible levels.

However, too large a choice offinit will lead to large statistical errors [123], [124]. In

addition, it is very clear that the modification factor acts as one of the most important

control parameters for the accuracy of the algorithm and also determines how many

MC sweeps are necessary for the whole simulation. The accuracy of the results also

depends on the complexity and size of the system, criterion of the flat histogram and

other details of the implementation of the algorithm.

Here, the flatness criterion deserves some discussion. It isimpossible to obtain a

perfectly flat histogram and the phrase “flat histogram” heremeans that the histogram

H∗,j for the whole range is not less thanx% of the average histogram〈H∗,j〉 wherex%

is chosen according to the size and complexity of the system and the desired accuracy

of the results (x = 90 in this work). There are other ways to measure the flatness of the

histogram. For example, one may simply want to compute the percentage of histogram

bins that departs from the baseline by more than a given amount, or one may estimate

it from the standard deviation of the logarithm of the histogram. Incidentally, estima-

tion of histogram flatness is a feature shared by all estimators working in an iterative

manner.

The convergence of the algorithm towards the flat noise samples distribution is

somewhat tedious to prove on rigorous grounds [128], [140],yet the intuitive picture

is that, as soon as the noise sample distribution has become flat, the noise samples

having the sameV level occur with the same frequency and thus - for a Markov chain
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of infinite length - the effect is just to translate the whole curve Pk vertically by a

global amount. If the sample distribution is flat in the last step, we also have thatPk

is an estimator for the probability desnsity, with a relative uncertainty which ideally

amounts to
√

ln f [128]. The situation is actually somewhat more intricate, because

other parameters impinge on the global uncertainty, including the number of entries in

the histogram at the end of each iteration, and correlationsbetween successive mea-

surements. In addition, the maximum accuracy affordable with the method was also

reported to be limited by construction, irrespective of thenumber of MCS performed

as a whole [141],[142], yet in the meantime it was also suggested that subtle choices

of parameters may greatly help in taming several sources of error [128].

The square root function has been chosen to reduce the modification factor and

f approaches1 as the number of iterations approaches∞. In fact, any function may be

used as long as it decreasesf monotonically to1 [123],[124]. A simple and efficient

formula isfi+1 = f
1/n
i wheren > 1. The value ofn can be chosen according to the

available CPU time and the expected accuracy of the simulation. The choice ofn = 2

yields good accuracy in a relatively short time, even for large systems.

It is extremely important to determine the optimum[Vmin, Vmax] interval since

the accuracy and speed of the simulation depends heavily on it. Our aim is to explore

the whole of probabilty spaceΓ using random walk [143].[Vmin, Vmax] is initialized

to [0, 1] and this interval is divided intoL bins. Now the random walk is performed

to determine the optimum[Vmin, Vmax] interval. The value ofPk is updated for every

Markov Chain transition during the walk. After a number of steps (we useL×Eb/N0

steps), the walk is ceased and the farthest bins on either side are detected which were

approached by the random walk. These two bins on either side determine the optimum

[Vmin, Vmax] interval.
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Let Perr be the probability that a received word with noise realizationz selected

from ρ leads to an error andPerr,k the probability thatz leads to an errorand falls into

bin k. Then

Perr,k = Perr|kPk (4.3)

Perr =

M
∑

k=1

Perr,k (4.4)

wherePerr|k is the conditional probability of an errorgiventhatz falls into bink. We

can approximatePerr|k ≈ P jmax

err|k =
∑jmax

j=1 G∗,j
k /

∑jmax

j=1 H∗,j
k afterjmax iterations where

jmax is the iteration whenf gets very close to 1 and we stop further refinement of the

modification factor. Using (4.3) and (4.4), we getPerr.

4.2 Comparison between DAIS and FFH Method

In this section, we explain in detail the main difference between FFH method and

DAIS of [108]. We also point out why the FFH method partially solves the limitations

confronted by DAIS.

DAIS is using Berg’s recursion equations which are explained as follows:

To updateP j
k at the end of iterationj, P j+1

1 is initially set to an arbitrary positive value.

Then, the recursion equations are [112, 110]

P j+1
k+1 =

P j+1
k P j

k+1

P j
k

(

H∗,j
k+1

Hj
k

)ĝj
k

(4.5)

where

ĝj
k =

gj
k

∑j
l=1 gl

k

, gl
k =

H∗,l
k H∗,l

k+1

H∗,l
k + H∗,l

k+1

(4.6)
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where in addition,̂gj
k = 0 if gj

k = 0 andgl
k = 0 if H∗,l

k + H∗,l
k+1 = 0. The exponent

0 ≤ ĝj
k ≤ 1 hence depends on all previous iterations. Finally,P j+1

k is normalized so

that
∑L

k=1 P j+1
k = 1.

The histograms are accumulated linearly so obviously the value ĝj
k will de-

crease with larger histograms rendering the update processof Pk very slow. Intrinsi-

cally, Berg’s equations converge to the optimum value ofPk without sampling enough

smaller noise realizations leading to errors. To overcome this problem of undersam-

pling, one has to launch another simulation constrained in adifferentV range.

The above mentioned problem is solved by FFH method employing Wang-Landau

Algorithm since the dynamic update ofPk is independant of the histogram values.

Modifying Pk at each step of the random walk allows one to approach the optimum

value ofPk in a very quick and efficient manner. The noise samples leading to errors

are accumulated with enough statistics hence there is no need to carry out another sim-

ulation. FFH method thus works for powerful codes having lowerror floors at low

SNR and for codes having large block-lengths.

4.3 Simulation Results for LDPC codes

For all our test-benches, Sum-Product (Belief Propagationin probability domain) de-

coding algorithm has been used. BPSK modulation is employedusing symmetric sig-

nal levels of+1 and−1 for logical 0s and 1s respectively. An all zeros codeword is

transmitted since the code is linear and the noise is symmetric.
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Figure 4.1: Results for MacKay codes (a)n = 120, R = 0.47 regular (b)n = 504,
R = 0.5 irregular (c)n = 2640, R = 0.5 regular
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Monte Carlo Simulation Results for 802.11 standard codes
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Figure 4.2: Results for IEEE 802.11 standard Quasi-cyclic irregular codes (a)n = 648,
R = 0.5 (b) n = 1296, R = 0.5, (c) n = 1944, R = 0.5

Our test bench comprises of three codes obtained from [4] andthree quasi-cyclic

LDPC codes used in IEEE 802.11 standard [144]. The simulation results are shown in

58



4.3 Simulation Results for LDPC codes

Code MC FFH Simul.
(Eb/N0) Codewords Codewords Gain

(100 Err. Fr.)
(120,0.5,reg) 3594801754 63636462 56.49

(7)
(504,0.5,irr) 1274520408 12081492 105.49

(4)
(2640,0.5,reg) 1445433333 8312500 173.88

(2.5)
(648,0.5,irr) 161136000 6465688 24.92

(3.5)
(1296,0.5,irr) 324935483 6645033 48.9

(3)
(1944,0.5,irr) 78796296 6002175 13.13

(2.5)

Table 4.1: Simulation Gain for LDPC codes

Figs. 4.1 & 4.2. The first remark is that our simulation results stick to the MC curves

for all codes and for all FERs. This was though expected sincethe FFH method imple-

ments an unbiased estimation of FER. The efficiency of the FFHmethod as compared

to standard MC can be measured by the simulation gain [69] i.e., the ratio of code-

words simulated in MC simulation to those simulated in FFH method. The simulation

gain for all the codes in test-benches is given in Table 4.1. The gain is quite impressive

and the result is a considerable reduction in simulation time. They are determined for

the highestEb/N0 for the particular code as indicated by the values within parenthesis

in column 1. The codewords simulated in case of standard MC simulation are for 100

erroneous frames. Our current experience suggests that thesimulation gain increases

with decreasing FER but the dependence of FFH on the number ofcodewords or code

length is unknown at this time and is a subject of continuing research.
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4.4 Application of FFH to Turbo codes

Before presenting the results of application of FFH to turbocodes, some state of the

art in the context of turbo codes is given.

Turbo codes [2] make a class of FEC codes which are graphically represented

through a trellis diagram. In the high SNR region, the probability of error is dominated

mainly by the distance properties of turbo codes which depend on the interleaver de-

sign between the two constituent encoders. For turbo codes,an IS method based on

the distance properties and error patterns was presented in[145].

FFH is especially interesting for its genericity in the sense that it can be adapted

to any stationary memoryless channel (AWGN, BSC, etc.), to any type of decoder

(turbo decoder, Gallager B, BP, etc.) and to any class of codes (binary and duo-binary

turbo codes, regular and irregular LDPC codes, etc.). Here,we focus on duo-binary

turbo codes [146] used on AWGN channel decoded with standardduo-binary turbo

decoder. We have employed an improved FFH method with a new self-adaptive pro-

cedure to determine the optimum sampling domain corresponding to the code, a more

stringent stopping criterion and some additional steps to tailor the traditional Wang

Landau algorithm according to our objectives. We show the application of the im-

proved FFH method for duo-binary turbo codes used in DVB-RCSstandard [147] with

varying code rates thus validating the genericity of the method for FEC codes.

4.4.1 Improvements in the algorithm

4.4.1.1 Increase in robustness

In case of rejection of a possible move while going through Metropolis MC step, a

very significant additional step is to permute the components of the noise vector and to
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add this permuted sequence to the transmitted codeword on which decoding is carried

out for error correction. It is important to note that the random walk is performed with

the new permuted sequence so as not to disturb the detailed balance equilibrium. We

keep on permuting the noise components until a possible moveis accepted.

The preceding step stems from the fact that different sequences of the same com-

ponents of a noise vector lead to different decoding outputssince we are employing a

message passing decoding algorithm. The orientation of thepermuted noise compo-

nents remain the same leading to the sameV value and consequently staying in the

same bin. Without effecting the basic modification ofPk values, we are thus able to

check the system response of all entries in histogramH∗,j thus adding to the robust-

ness of the method. It is to be noted that if the proposed noisevectors which move

the system outside the permitted[Vmin, Vmax] interval are systematically rejected, the

Pk value would increase at edges by an unwanted excessive amount. This problem is

counteracted by adopting the n-fold way [148], i.e., leaving Pk value unchanged when-

ever a move update attempts to take the system outside the allowed interval.

4.4.1.2 Self-adaptive optimum V interval

It is extremely important to determine the optimum[Vmin, Vmax] interval with the opti-

mum number of bins since the accuracy and speed of the simulation depend heavily on

it. Following is a self adaptive procedure to determine thisinterval which intrinsically

takes into account the code length and the code error correcting capacity. Lines of sim-

ilarity can be drawn between our procedure of determining the optimum[Vmin, Vmax]

interval and Domain Sampling Run of [129].

[Vmin, Vmax] is initialized to[0, 1] and this interval is divided into1000 bins. Let
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the Global Acceptance Ratio (GAR) correspond to the ratio ofthe number of accepted

noise vectors to the number of noise vectors produced in total. We initialize GAR with

a value (0.99 in our case). The bins are initialized withPk = 1/1000, ∀k = 1, ..., 1000.

Now the random walk is performed to produce noise vectors forwhich the correspond-

ing bins are visited with the consequent update of thePk value. With the bin filling,

we start getting rejections for the proposed move. At each step, we calculate the GAR

and as soon as we obtain its pre-defined value, the walk is ceased and the farthest bins

on either side are detected which were approached by the random walk. These two

bins on either side determine the[Vmin, Vmax] interval. While determining the inter-

val, the noise vectors produced are not added to the codewords and no decoder runs

are performed. Their sole purpose is to locate the bins naturally accessible for the code.

The [Vmin, Vmax] interval is to be divided into a suitable number of bins. Our

choice of number of bins depends on the bin width, an important parameter for the

accuracy control [149]. We defineB, a control parameter to determine the optimum

number of bins using the relationL = (Vmax − Vmin)B (rounded off to the nearest in-

teger). The bins are now initialized withPk = 1/L, ∀k = 1, ..., L. The random walk is

performed to produce noise vectors for which the corresponding bins are visited with

the consequent update of thePk value. The noise vectors are added to the codeword

(in a permuted sequence in case of rejection) in the channel and decoding is performed

for the noisy received vector. If we do not get errors and we reach a flat histogram,

we reiterate over the above two steps by again choosing a natural [Vmin, Vmax] interval

for GAR = GAR − ∆GAR where∆GAR = 0.01. With each step, we increase the

number of bins byBi+1 = 1.5Bi. If we get errors before reaching a flat histogram,

we take the current[Vmin, Vmax] interval with the optimum number of bins. We then

continue on to perform the WL iterations within this optimuminterval.
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4.4 Application of FFH to Turbo codes

4.4.1.3 Improved stopping criterion

For each and every WL iteration, we calulate thePerr value. We stop the random walk

whenmaxk | (P j
err − P j+1

err )/P j
err |< 0.1. This criterion should be satisfied for2 con-

secutive WL iterations so as to avoid all surges and to ensurethe convergence of the

simulation. In addition, such a stringent criterion ensures enough samples for both

histograms thus ensuring a good level of accuracy. ThePerr value has been chosen

as the convergence parameter since it takes into account both noise sample and error

histograms over all previous WL iterations.

4.4.2 Simulation Results for Turbo codes

The standard Digital Video Broadcast with Return Channel via Satellite (DVB-RCS)

[147] 8-state, 188 bytes (MPEG-size) duo-binary turbo codewas used as a test bench.

Maximum possible iterations are 8 with 4 quantization bits.BPSK modulation is em-

ployed using symmetric signal levels of+1 and−1 for logical 0s and 1s respectively.

An all zeros codeword is transmitted since the code is linearand the noise is symmetric.

DVB-RCS was chosen as a test bench since it’s performance is well known. It

employs a powerful and complex coding system so the error correcting capacity is very

high. The error floors are steep and the Minimum Hamming Distance (MHD) is high.

The simulation results for 5 different code rates for MPEG-size DVB-RCS are shown

in Fig. 4.3. The first remark is that our simulation results stick to the MC curves for all

code rates and for all FERs.

The efficiency of the FFH method as compared to standard MC canbe measured

by the simulation gain [69] i.e., the ratio of codewords simulated in MC simulation to

those simulated in FFH method. The simulation gain for all code rates for MPEG-size
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Figure 4.3: Results for MPEG-size DVB-RCS standard (a)R = 0.5 (b) R = 0.4 (c)
R = 0.5 (d) R = 0.67 (e)R = 0.75

DVB-RCS is given in Table 4.2.

Code Rate MC FFH Simul.
(Eb/N0) Codewords Codewords Gain

0.33 (2.5 dB) 367476540 24315960 15.11
0.4 (2.5 dB) 159946900 15247500 10.49
0.5 (3 dB) 256226600 30425510 8.42

0.67 (3.75 dB) 539287910 38629450 13.96
0.75 (4.25 dB) 313316840 30530120 10.26

Table 4.2: Simulation Gain for Turbo codes

The gain is good and the result is a considerable reduction insimulation time.

They are determined for a highEb/N0 value for the particular code rate as indicated by

the values within parenthesis in column 1. For FFH method, the decoder runs include

codeword simulations for the permuted sequence of noise samples in case of random

walk step rejection. Our current experience suggests that the simulation gain increases

64
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with decreasing FER and the FFH method is intricately dependent on the code length,

rate and error correcting capacity.

The results are reported in terms of simulation gain which isa measure of the

simulation length. All simulations were performed using different linux clusters con-

taining machines of different flop rates. To report the results on simultion time reduc-

tion, both Monte Carlo and FFH simulations have to be performed on machines with

the same flop rates. To show that we have to pay the price of FFH algorithm execution

itslef, the MC and FFH simulations were performed on the samemachine. For 188

bytes, duo-binary turbo code of rate 0.5 with channel SNR 3 dB, FFH takes around 47

hours as compared to around 176 hours of MC simulation showing a simulation time

gain of around 3.74. FFH method is characterized by the acceptance of only 23.4% of

the noise samples produced. In addition, once a noise realization is obtained, it can be

accepted or rejected depending upon the Markov chain step.

4.5 Statistical Precision

To measure the statistical precision of our results and to compare them with that of

Monte Carlo, we performed a large number of simulations for different code rates.

Our test-bench was the duo-binary turbo-code of DVB-RCS standard with MPEG size

(188 bytes). We performed30 simulations per code rate for5 code rates with different

seeds for the random number generator.

Let Xi represent the FER obtained then̄X stands for the mean (average) value

X̄ =
Pn

i=1
Xi

n
. The standard deviation is then given as

σ =

√

∑n
i=1(Xi − X̄)

n
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4 Fast Simulation for the Performance Evaluation of FEC Codes

For comparison purposes, we choose the relative density which is defined as

σrel =
σ

X̄
× 100

which is represented in terms of percentage. The results we obtained are presented as

under:

From the results (Table 4.3 & 4.4), it is evident that in termsof precision, the

FFH method is still less precise when compared to the standard MC.
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Rate = 0.33 Rate = 0.4 Rate = 0.5 Rate = 0.67 Rate = 0.75
(2 dB) (2 dB) (2.5 dB) (3 dB) (3.5 dB)

3.67E-006 9.33E-006 4.73E-006 1.33E-005 2.05E-005
3.80E-006 7.71E-006 4.70E-006 1.08E-005 2.05E-005
3.31E-006 8.11E-006 4.67E-006 1.00E-005 2.51E-005
3.78E-006 9.99E-006 5.09E-006 8.18E-006 2.20E-005
3.18E-006 7.68E-006 5.23E-006 1.01E-005 1.85E-005
4.05E-006 8.58E-006 5.75E-006 8.84E-006 2.04E-005
3.55E-006 7.56E-006 4.66E-006 9.86E-006 1.96E-005
4.24E-006 8.74E-006 4.26E-006 1.10E-005 2.45E-005
4.23E-006 7.89E-006 4.75E-006 1.03E-005 2.24E-005
4.10E-006 9.03E-006 4.62E-006 9.80E-006 2.34E-005
3.49E-006 8.65E-006 3.94E-006 1.14E-005 2.50E-005
4.05E-006 9.81E-006 4.97E-006 1.02E-005 2.10E-005
4.17E-006 8.36E-006 3.83E-006 1.00E-005 2.10E-005
2.84E-006 7.73E-006 4.75E-006 1.10E-005 1.93E-005
3.43E-006 7.44E-006 5.60E-006 9.93E-006 1.89E-005
3.89E-006 7.70E-006 5.18E-006 8.39E-006 2.47E-005
3.50E-006 9.44E-006 5.07E-006 1.07E-005 1.98E-005
3.66E-006 8.35E-006 4.37E-006 1.01E-005 1.97E-005
4.27E-006 8.45E-006 4.45E-006 1.02E-005 1.94E-005
3.72E-006 7.75E-006 5.19E-006 1.14E-005 2.43E-005
3.42E-006 7.65E-006 5.26E-006 1.08E-005 1.88E-005
3.71E-006 6.82E-006 4.22E-006 1.02E-005 2.37E-005
3.59E-006 7.44E-006 5.12E-006 1.09E-005 2.34E-005
3.59E-006 9.30E-006 4.56E-006 7.91E-006 1.91E-005
3.42E-006 9.24E-006 4.15E-006 9.29E-006 2.12E-005
3.04E-006 7.95E-006 5.09E-006 9.27E-006 2.35E-005
4.02E-006 8.58E-006 5.15E-006 1.10E-005 1.98E-005
4.20E-006 7.31E-006 4.45E-006 8.33E-006 2.06E-005
3.70E-006 7.73E-006 4.82E-006 1.15E-005 2.06E-005
3.69E-006 8.44E-006 4.50E-006 1.08E-005 2.04E-005
Average Average Average Average Average

3.71E-006 8.29E-006 4.77E-006 1.02E-005 2.14E-005
Rel. St. Dev. Rel. St. Dev. Rel. St. Dev. Rel. St. Dev. Rel. St. Dev.

9.70% 9.45% 9.45% 11.05% 9.60%

Table 4.3: Monte Carlo Simulation Results for Duo-Binary Turbo codes for MPEG
size (188 bytes) and different code rates
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Rate = 0.33 Rate = 0.4 Rate = 0.5 Rate = 0.67 Rate = 0.75
(2 dB) (2 dB) (2.5 dB) (3 dB) (3.5 dB)

4.53E-006 1.13E-005 4.41E-006 1.10E-005 2.11E-005
4.94E-006 8.11E-006 4.94E-006 1.42E-005 1.85E-005
3.18E-006 1.25E-005 5.37E-006 9.21E-006 3.07E-005
4.32E-006 9.07E-006 4.88E-006 9.05E-006 2.13E-005
4.04E-006 1.01E-005 4.20E-006 9.10E-006 1.84E-005
4.55E-006 8.13E-006 4.99E-006 8.75E-006 2.38E-005
5.27E-006 9.31E-006 5.34E-006 1.13E-005 2.40E-005
4.93E-006 8.05E-006 4.89E-006 8.63E-006 1.70E-005
4.39E-006 1.01E-005 5.86E-006 1.06E-005 2.04E-005
5.39E-006 1.05E-005 4.05E-006 1.05E-005 1.74E-005
4.64E-006 9.59E-006 5.64E-006 1.07E-005 1.94E-005
5.65E-006 9.21E-006 3.27E-006 1.02E-005 1.83E-005
4.24E-006 9.46E-006 4.95E-006 1.02E-005 1.89E-005
4.91E-006 9.18E-006 5.51E-006 1.30E-005 1.94E-005
3.81E-006 8.58E-006 4.45E-006 9.55E-006 2.02E-005
4.42E-006 7.60E-006 3.02E-006 9.52E-006 2.37E-005
3.55E-006 1.04E-005 4.73E-006 1.15E-005 2.34E-005
2.40E-006 8.90E-006 4.41E-006 9.79E-006 2.07E-005
4.60E-006 9.39E-006 4.70E-006 9.41E-006 1.91E-005
3.61E-006 1.04E-005 4.33E-006 1.02E-005 1.70E-005
4.41E-006 9.06E-006 4.76E-006 9.82E-006 1.78E-005
4.62E-006 1.30E-005 4.90E-006 8.59E-006 1.93E-005
4.35E-006 8.40E-006 4.51E-006 9.49E-006 2.20E-005
4.66E-006 1.06E-005 5.54E-006 9.53E-006 2.04E-005
4.37E-006 7.01E-006 3.88E-006 9.15E-006 1.96E-005
3.52E-006 1.06E-005 5.08E-006 1.02E-005 1.31E-005
4.73E-006 1.09E-005 3.83E-006 1.14E-005 2.09E-005
4.37E-006 8.65E-006 4.30E-006 1.08E-005 2.24E-005
3.94E-006 1.19E-005 2.53E-006 1.03E-005 2.01E-005
3.73E-006 1.00E-005 5.37E-006 8.85E-006 1.88E-005
Average Average Average Average Average

4.34E-006 9.67E-006 4.62E-006 1.02E-005 2.02E-005
Rel. St. Dev. Rel. St. Dev. Rel. St. Dev. Rel. St. Dev. Rel. St. Dev.

15.27% 14.24% 16.48% 12.20% 14.89%

Table 4.4: Fast Flat Histogram Method Results for Duo-Binary Turbo codes for MPEG
size (188 bytes) and different code rates
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5

An Efficient Pseudo-Codeword Search

Algorithm for Belief Propagation

Decoding of LDPC Codes

Abstract

We introduce the use of Fast Flat Histogram (FFH) method employing Wang Landau

Algorithm in an adaptive noise sampling framework using Random Walk to find out

the pseudo-codewords and consequently the pseudo-weightsfor the Belief Propagation

(BP) decoding of LDPC codes over an Additive White Gaussian Noise (AWGN) chan-

nel. The FFH method enables us to tease out pseudo-codewordsat very high Signal-to-

Noise Ratios (SNRs) exploring the error floor region of a widerange of codes varying

in length and structure. We present the pseudo-weight (effective distance) spectra for

these codes and analyze their respective behavior1.

5.1 Introduction

Low Density Parity Check (LDPC) codes [3] make a class of forward error correcting

codes which employ a computationally efficient iterative decoding scheme based on a

1The contents of this chapter were presented in [115]
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message passing algorithm. The decoding process is, however, known to be subject

to decoding failures due to the so-called pseudo-codewords. The failures can cause

the high Signal-to-Noise Ratio (SNR) performance of message passing decoding to

be worse than that predicted by the maximum likelihood decoding union bound in the

error floor regime [15] which is characterized by very low error rates. Standard Monte

Carlo (SMC) simulation which consists of simulating a system by generating random

inputs according to a probability distribution and then evaluating the system response,

becomes extremey cumbersome at such high SNRs. With the advancement in the code

design and better decoders, it has become very important to gauge the performance of

the system in the error floor regime.

To explore the error floor phenomenon, a physics inspired approach coined as

instanton amoeba was proposed and developed in [65], [150],[99]. The scheme is

generic in that there are no restrictions related to decoding or channel. Chertkovet

al. [64] presented the pseudo-codeword landscape using an efficient pseudo-codeword

search algorithm detailed in [62]. The algorithm is mainly valid for Linear Program-

ming (LP) decoding [52] and the authors reported that a direct attempt to extend the

LP-based pseudo-codewords search algorithm to Belief Propagation (BP) decoding

[3],[4] did not yield desirable results.

In the pseudo-codeword literature, LP decoding has been predominantly used

as it proposes to relax the polytope, expressingσ in terms of a linear combination of

local codewords. If the LP decoding does not decode to a correct codeword then it

usually yields a non-codeword pseudo-codeword which is a special configuration of

beliefs containing some rational values [61]. Pseudo-codewords are not codewords in

general but codewords are pseudo-codewords [58]. The nature of pseudo-codewords

with different origins is further investgated in [54],[55].
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5.2 Notations and background

To characterize the pseudo-codewords, the notion of fundamental polytope was

introduced in [40] which is the most important concept relevant to pseudocodewords

found through LP decoding. It was also argued that the large minimum distance of

the code does not determine the performance of the code if thecode has low pseudo-

weight spectrum. For the sum-product decoding, if the messages are converged, then

the vector formed by the marginal probabilities of having a bit position in the state 1 is

a fundamental polytope vector. More about this vector and the Bethe variational free

energy can be found in [60].

In this work, we investigate the use of a physics inspired algorithm known as

Fast Flat Histogram (FFH) method [11] which has already beenimplemented for the

efficient performance evaluation of forward error correcting codes [113], [114]. The

method consists of a random walk scheme employing Wang-Landau algorithm in adap-

tive noise sampler framework. We employ our scheme to find thepseudo-codewords

in the high SNR region using the BP decoding algorithm on an AWGN channel.

The rest of the work is organized as follows: Section 5.2 setsthe background for

the use of FFH method employing BP decoding for the search of pseudo-codewords.

Section 5.3 gives our numerical scheme and its validation. Section 5.4 reports the

results for our test-bench containing regular, irregular and cyclic LDPC codes. Section

5.5 concludes our work.

5.2 Notations and background

The background and notations for this work remains the same as in [99],[64]. Send-

ing a codewordσ = {σi = ±1; i = 1, . . . , N} into a noisy channel results with the

probabilityP (x|σ) in corruption of the original signal,x 6= σ. The decoding goal is
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to infer the original message from the received outputx. Assuming that coding and

decoding are fixed, one studies Frame Error Rate (FER) to characterize performance

of the schemeFER =
∫

dxχerror(x)P (x|1), whereχerror = 1 if an error is detected

andχerror = 0 otherwise. In symmetric channel, FER is invariant with respect to the

original codeword, thus all-(+1) codeword can be assumed for the input.

AWGN channel is defined by,

P (x|σ′) =
∏

i

p(xi|σ′
i), p(x|σ) ∝ exp

(

− (x − σ)2s2

2

)

(5.1)

If the detected signal at a bit isx, the respective likelihood at the bit ish = p(x|1)/p(x|−
1). These likelihoods are translated into beliefsbi(σi) which are defined as trial prob-

abilities for bit i to be in the stateσi. Belief Propagation constitutes in iteratively

propagataing messages though different nodes of the code graph following message

update rules and computing beliefs using certain non-linear equations called BP equa-

tions. The BP equations are equations for extrema of the Bethe free energy [60].

At high SNR, the difference between the performance of Maximum Likelihood

(ML) decoding and approximate decoding (BP, LP, etc.) is dueto the pseudo-codewords.

This performance is gauged in terms of Frame Error Rate (FER)which calculates

the probability of a decoding failure. For AWGN channel, theactual asymptotics

of the performance curves (FER vs. SNR) of ML and BP decoding at very high

SNRs(s2), in the so-called error-floor region, areFERML ∼ exp(−dML · s2/2) and

FERBP ∼ exp(−dBP · s2/2) wheredML is the Hamming Distance of the code anddBP

is the effective distance of the code, specific to BP decoding.

BP decoding turns into LP decoding at SNR→ ∞. In the high SNR (error
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floor) region, the values of FER are inaccessible by Monte-Carlo simulations. It is in

this context that we use FFH method which consists of a MarkovChain Monte Carlo

(MCMC) sampler capable of sampling the noise vectors from the tails of the AWGN

probability density function. Suppose a pseudo-codewordσ̃ = {σ̃i = bi(1); i =

1, . . . , N} corresponding to the most damaging configuration of the noise (instanton) is

found. Then the effecive distance is given by the same formuladeff = (
∑

i σ̃i)
2/
∑

i σ̃i
2

as in [64],[40]. This definition of the effective distance was first described in [18]

where the formulas derived by Wiberget al. [16], [17] for AWGN channels were

extended to non-binary codes, Binary Erasure Channel (BEC)and Binary Symmetric

Channel (BSC).

5.3 Fast Flat Histogram Method

5.3.1 Description

The basic skeleton of our technique is the same as that in [113],[114]. Let Γ be the

n-dimensional probability space of the noise in then bits of a codeword. The noise

vectorz = (z1, z2, ..., zn) is a multivariate Gaussian with joint pdfρ(z) =
∏n

l=1 ρl(zl).

The transmitted bit vector is represented byt = (t1, t2, ..., tn) andx = (x1, x2, ..., xn)

represents the received codeword. The algorithm is controlled by a scalar control quan-

tity V given asV (z) =
[

1
n

∑n
l=1[tl − zl]

2
]1/2

wheretl andzl are the transmitted bit

and the noise value in thelth position respectively. This definition ofV (z) is different

from the one that we used in [113],[114].

Given a range[Vmin, Vmax] for V , Γ is partitioned intoL subsetsΓk = {z ∈
Γ|Vk−1 ≤ V (z) < Vk} , whereVk = Vmin +k∆V , 1 ≤ k ≤ L and∆V = Vk −Vk−1 =

(Vmax − Vmin)/L is the width of each bin in the partition of[Vmin, Vmax].
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Let Pk be the probability of selecting a realizationz from ρ such thatz ∈ Γk

[108]. Then,

Pk =

∫

Γ

χk(z)
ρ(z)

ρ∗(z)
ρ∗(z)dz ≈ 1

N

N
∑

i=1

χk(z
∗,i)

ρ(z∗,i)

ρ∗(z∗,i)
(5.2)

whereρ∗(z) is a positive biasing pdf,χk = 1 if z ∈ Γk andχk(z) = 0 otherwise.z∗,i

areN random sample points inΓ selected according to the pdfρ∗(z). The variance

of the estimate of (5.2) is zero if the optimal biasing pdfρ∗
opt(z) = χk(z)ρ(z)/Pk is

used. However,ρ∗
opt(z) depends onPk which is initially unknown. In standard IS, one

uses physical intuition to guess a biasing pdf that is close to ρ∗
opt. The FFH method

instead iterates over a sequence of biasing pdfsρ∗,j that approachρ∗
opt. We defineρ∗,j

for jth iteration byρ∗,j(z) = ρ(z)/(cjP j
k ) wherek is such thatz ∈ Γk is satisfied.

The quantitiesP j
k satisfyP j

k > 0 and
∑L

k=1 P j
k = 1 andcj is an unknown constant

that ensures
∫

Γ
ρ∗,j(z)dz = 1. The vectorPk completely determines the bias and is

initialized with1/L, ∀k = 1, ..., L.

Our aim is to explore the whole of probabilty spaceΓ using random walk [143].

By employing Metropolis algorithm [137], we produce a random walk of samples

z
∗,i whose pdf equalsρ∗,j(z). We consider a Markov chain of transitions consist-

ing of small steps in the noise space. Each transition goes from z
∗,i = z

∗
a ∈ Γka to

z
∗
b = (za + ǫ∆z) ∈ Γkb

where∆z is random and symmetric, i.e., it does not favor

any direction inΓ and the transition is accepted with probabilityπab. Here,ǫ is the

perturbation constant. If a transition fromz∗,i to z
∗
b is accepted, we setz∗,i+1 = z

∗
b ,

else we setz∗,i+1 = z
∗,i = z

∗
a. The ratioπab/πba equalsρ∗,j(z∗

b )/ρ
∗,j(z∗

a) which is the

detailed balance equationthat ensures that the limiting (stationary) pdf for infinitely

many steps of this random walk isρ∗,j [137].

We consider the perturbation of the noise component in each bit z∗a,l of z
∗
a sepa-
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rately and accept it or reject it independently with the probability

min[ρ(z∗b,l)/ρ(z∗a,l), 1]

We pick each perturbation∆zl from a zero mean symmetric pdf. We obtain a trial state

z
∗
b in which only some of the components are different from theirprevious values in

z
∗
a. Then we computekb, the bin corresponding toz∗

b and finally accept the step from

z
∗
a to z

∗
b with the probabilitymin[P j

ka
)/P j

kb
), 1]. The compound transition probability

thus becomes

πab =

{

n
∏

l=1

min

[

ρ(z∗b,l)

ρ(z∗a,l)
, 1

]}

min

[

P j
ka

P j
kb

, 1

]

(5.3)

The Asymptotically Optimal Acceptance Rate AOARα , (number of accepted

steps)/(total number of steps) for a Metropolis algorithm for target distributions with

IID components is 0.234 [138]. The perturbation constantǫ is adjusted so as to keep

α close to this value. The noise realizations are recorded in the histogramH∗,j where

H∗,j
k =

∑N
i=1 χk(z

∗,i) is the number ofz∗,i in iterationj that fall intoΓk. Each noise

vector is used in the channel to deteriorate the transmittedcodeword which is then fed

into the decoders to verify if the errors are corrected within the specifies number of

decoder iterations.

Pk is updatedon the flysuch that whenk bin is visited,Pk is modified by the

refinement parameterf > 1, i.e. Pk → Pk · f [123, 124]. In practice, we have to use

the log domainln Pk → ln Pk +ln f in order to fit all possiblePk into double precision

numbers. If the random walk rejects a possible move and staysin the same bink, we

modify the samePk with the modification factor to keep the detailed balance equation

in equilibrium.
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In case of rejection of a possible move, a very significant additional step is to

permute the components of the noise vector and to add this permuted sequence to the

transmitted codeword on which decoding is carried out for error correction. It is im-

portant to note that the random walk is performed with the newpermuted sequence

so as not to disturb the detailed balance equilibrium. We keep on permuting the noise

components until a possible move is accepted. The precedingstep stems from the fact

that different sequences of the same components of a noise vector lead to different

decoding outputs since we are employing a message passing decoding algorithm. The

orientation of the permuted noise components remain the same leading to the same

V value and consequently staying in the same bin. Without effecting the basic mod-

ification of Pk values, we are thus able to check the system response of all entries in

histogramH∗,j thus adding to the robustness of the method.

It is to be noted that if the proposed noise vectors which movethe system out-

side the permitted[Vmin, Vmax] interval are systematically rejected, thePk value would

increase at edges by an unwanted excessive amount. This problem is counteracted by

adopting the n-fold way [148], i.e., leavingPk value unchanged whenever a move up-

date attempts to take the system outside the allowed interval.

The histogramH∗,j
k is checked after about each10L Monte Carlo (MC) sweeps.

When the histogram is flat (flatness criterion is the same as in[123, 124]), the mod-

ification factor is reduced to a finer one using the functionfj+1 =
√

fj (finit = e =

2.7182818), the histogram is reset and the next iteration of random walk is started

wherePk are now modified with the finer modification factor. We continue doing so

until the histogram is flat again and then we begin the next Wang-Landau (WL) iter-

ation with a finerf and so on. The above detailed random walk can also be carried

out in a parallel fashion by dividing the range[Vmin, Vmax] into W partitions and then
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exploring each partition separately, combining the results in the end.

It is extremely important to determine the optimum[Vmin, Vmax] interval with

the optimum number of bins since the accuracy and speed of thesimulation depend

heavily on it. Following is a self adaptive procedure to determine this interval which

intrinsically takes into account the code length and the code error correcting capacity.

Lines of similarity can be drawn between our procedure of determining the optimum

[Vmin, Vmax] interval and Domain Sampling Run of [129].

[Vmin, Vmax] is initialized to[0, 5] and this interval is divided into1000 bins. Let

the Global Acceptance Ratio (GAR) correspond to the ratio ofthe number of accepted

noise vectors to the number of noise vectors produced in total. We initialize GAR with

a value (0.3 in our case). The bins are initialized withPk = 1/1000, ∀k = 1, ..., 1000.

Now the random walk is performed to produce noise vectors forwhich the correspond-

ing bins are visited with the consequent update of thePk value. With the bin filling,

we start getting rejections for the proposed move. At each step, we calculate the GAR

and as soon as we obtain its pre-defined value, the walk is ceased and the farthest bins

on either side are detected which were approached by the random walk. These two

bins on either side determine the[Vmin, Vmax] interval. While determining the interval,

the noise vectors produced are not added to the codewords andno decoder runs are

performed. Their sole purpose is to locate the bins naturally accessible for the code.

5.4 Results and discussion

Our test-bench consists of six codes namely Tanner [155, 64,20] code [13], Margulis

p = 7 [672, 336, 16] code [151]; [648, 324, 15], [1296, 648, 23] and[1944, 972, 27]

codes from the 802.11 draft [144] and the [504, 252, 13] irregular Progressive Edge

Growth (PEG) code [152]. The MHDs of the last four codes are measured through
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the improved impulse method [153]. BPSK modulation is employed using symmetric

signal levels of +1 and -1 for logical 0s and 1s respectively.An all zeros codeword

is transmitted since the code is linear and the noise is symmetric. We employ 1000

decoding iterations in our BP decoding so the pseudo-codewords correspond to the

instantons which could survive such a high number of decoding iterations.

Figs. 5.1 & 5.2 depict the frequency spectra for the codes under study. For

[155, 64, 20] and [672, 336, 16] codes, our conclusions are the same as in [64]. We

observe that the two codes demonstrate qualitatively different features for the pseudo-

codeword frequency spectra. Pseudo-codeword spectrum for[155, 64, 20] code starts

with the lowest effective distance≈ 10.004 and grows up going through the funda-

mental polytope pseudo-codewords at effective distance≈ 19.98 (convergence to valid

codewords). In case of [672, 336, 16] code, the spectrum starts at effective distance

≈ 12.056 but grows abruptly to the fundamental polytope pseudocodewords at effec-

tive distance≈ 15.66 (valid codewords).

For the 802.11 cyclic LDPC codes, we observe that there is a significant increase

in effective distance with the increase in code-length. As compared to the preceding

two codes, these three cyclic codes exhibit a relatively high number of fundamental

polytope pseudo-codewords. Convergence to invalid codewords increases with the

increase in code-length. The least effective distances of the fundamental polytope

pseudo-codewords for [648, 324, 15], [1296, 648, 23] and [1944, 972, 27] codes that

we found are 14.64 (valid codeword), 26.48 (invalid codeword) and 64.24 (invalid

codeword) respectively. In the case of irregular PEG code, the pseudo-codeword spec-

trum is similar to the cyclic codes. The least effective distance≈ 9.855 and the least ef-

fective distance of fundamental polytope pseudo-codewordis 12.74 (valid codeword).

The valid codeword fundamental polytope pseudo-codeword were termed asunde-
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Figure 5.1: The frequency spectrum of the effective distance contructed using FFH
method as the pseudo-codeword search algorithm for the codes: Tanner [155, 64, 20];
Margulisp = 7 [672, 336, 16]; irregular progressive edge growth [504, 252, 13].
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Figure 5.2: The frequency spectrum of the effective distance contructed using FFH
method as the pseudo-codeword search algorithm for the codes: 802.11 standard [648,
324, 15], [1296, 648, 23] and [1944, 972, 27].
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tected errorsin [14].

We also applied our method to Margulisp = 11 [2640, 1320, 40] code and

found the least effective distance≈ 54.055. We observe that the fundamental polytope

pseudo-codewords are in dominance however the messages converge to invalid code-

words. The observations made by Koetteret al. [40] that the pseudo-weights are far

more important than the Hamming Distance are further bolstered when we analyze the

pseudo-codeword spectra in our case. For example, the Hamming Distance of [1944,

972, 27] code is only slightly higher than [1296, 648, 23] code, however there is a

big difference in their pseudo-codeword spectra. Similarly, the Hamming Distance of

[155, 64, 20] code is higher than [672, 336, 16] code, the latter performs better in terms

of pseudo-weight. How this pseudo-weight spectrum dependson the code-length or

other code properties is a subject of ongoing research.

5.5 Conclusions

In this paper, we have proposed the use of Fast Flat Histogrammethod to find the

pseudocodewords for different codes using BP decoding. TheFFH method is a power-

ful tool to explore the code performance at very high SNRs (inthe error floor region)

which is otherwise computationally intractable using standard Monte Carlo simulation.

Since the decoder failures in the error floor region are mostly due to pseudo-codewords,

the FFH method is an excellent means to study the code behavior at high SNRs. Our

future work consists of integrating the FFH method in multiple error impulse frame-

work to increase its effectiveness.
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6

Conclusions and perspectives

6.1 Conclusions

We started the work with a detailed study of the state-of-the-art. The inference that

we drew from this study of scientific literature is that the already existing methods,

which depend on the study of the code structure, face constraints when the code is

long and/or irregular. In terms of genericity, Adaptive Importance Sampling (AIS)

methods seemed very promising. Dual Adaptive Importance sampling [108] laid the

basic foundations for the use of AIS methods in the domain of coding theory. It suc-

cessfully employed Metropolis Hastings algorithm to produce a random walk of noise

samples. The backbone of the AIS methods is the recursive update process. DAIS uses

Berg’s equations which are not efficient for the sampling purposes. To counteract the

problem of undersampling, we propose the use of Fast Flat Histogram method.

In this work, we have presented the successful migration of Fast Flat Histogram

Method from Statistical Physics to Information Theory for the efficient performance

evaluation of forward error correcting codes. The main characteristic feature of the

method is that it is generic in nature i.e., valid for any FEC code, communication chan-

nel, decoding algorithm etc. We presented the results for the LDPC codes and Turbo

codes on AWGN channel employing message passing algorithm.The FFh method
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allows us to pick up the noise samples from the tail of the Gaussian distribution, re-

sulting in rare event sampling. Using FFH, we have shown thatperformance evaluation

of FEC codes can be carried out relatively faster.

6.2 Perspectives

The following points constitute interesting perspectivesto the work presented in this

thesis.

• A lot of work has been dedicated to the improvement of Wang-Landau algo-

rithm itself. It would be quite interesting to study these improvements and to

employ them in the information theory framework to increasethe efficiency and

to reduce the statistical errors.

• Regarding the precision of the results obtained with FFH method, a lot still re-

mains to be desired.

6.3 Lessons Learnt

After the study of existing methods and problems therein, wechose to go for a method

which could be applicable to all codes. Naturally, such a method could be an advanced

and modified version of Monte Carlo simulation. FFH is a Markov Chain Monte Carlo

method employing an efficient combination of Random Walk (Metropolis-Hastings

algorithm) and Wang-Landau algorithm. However, after the detailed study and imple-

mentation of FFH method, we observe that like Monte Carlo method, it also suffers

from constraints.
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The deteriorating effects of noise samples decrease significantly (according to

the exponential function) with the increase in SNR. Once we cross the waterfall region

and enter the error floor region, the errors are mostly due to (a) the sub-optimal nature

of the decoder and (b) the weaknesses in the graph-structure. In the error floor region,

FFH is more eficient as compared to standard Monte Carlo. However, with a slight

increase in SNR in the error floor region, even FFH method takes time (though less

than MC) to explore the tails of probability distribution.

“After all these years, I do not know what I may appear to the world, but to myself, I

seem to have been only a boy playing on the sea-shore and diverting myself in, now

and then, finding a smoother pebble or a prettier shell than ordinary whilst the great

ocean of truth lay all undiscovered before me.” — Isaac Newton
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