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Abstract

At the heart of modern coding theory lies the fact that low-density parity-check (LDPC)
codes can be efficiently decoded by message-passing algorithms which are traditionally
based on the belief propagation (BP) algorithm. The BP algorithm operates on a graphical
model of a code known as the Tanner graph, and computes marginals of functions on
the graph. While inference using BP is exact only on loop-free graphs (trees), the BP
still provides surprisingly close approximations to exact marginals on loopy graphs, and
LDPC codes can asymptotically approach Shannon’s capacity under BP decoding.

However, on finite-length codes whose corresponding graphs are loopy, BP is sub-
optimal and therefore gives rise to the error floor phenomenon. The error floor is an abrupt
degradation in the slope of the error-rate performance of the code in the high signal-to-
noise regime, where certain harmful structures generically termed as trapping sets present
in the Tanner graph of the code cause the decoder to fail. Moreover, the effects of finite
precision that are introduced during hardware realizations of BP can further contribute to
the error floor problem.

In this dissertation, we introduce a new paradigm for finite precision iterative decod-
ing of LDPC codes over the Binary Symmetric channel (BSC). These novel decoders,
referred to as finite alphabet iterative decoders (FAIDs) to signify that the message values
belong to a finite alphabet, are capable of surpassing the BP in the error floor region. The
messages propagated by FAIDs are not quantized probabilities or log-likelihoods, and the
variable node update functions do not mimic the BP decoder, which is in contrast to tradi-
tional quantized BP decoders. Rather, the update functions are simple maps designed to
ensure a higher guaranteed error correction capability by using the knowledge of poten-
tially harmful topologies that could be present in a given code. We show that on several
column-weight-three codes of practical interest, there exist 3-bit precision FAIDs that can
surpass the BP (floating-point) in the error floor without any compromise in decoding la-
tency. Hence, they are able to achieve a superior performance compared to BP with only
a fraction of its complexity. We also provide a semi-heuristic-based non-code-specific
method for selection of a set of candidate FAIDs, one or several of which are potentially
good for any given column-weight-three code.



Additionally in this dissertation, we propose decimation-enhanced FAIDs for LDPC
codes, where the technique of decimation is incorporated into the variable node update
function of FAIDs. Decimation, which involves fixing certain bits of the code to a partic-
ular value during the decoding process, can significantly reduce the number of iterations
required to correct a fixed number of errors while maintaining the good performance of
a FAID, thereby making such decoders more amenable to analysis. We illustrate this
for 3-bit precision FAIDs on column-weight-three codes. We also show how decima-
tion can be used adaptively to further enhance the guaranteed error correction capability
of FAIDs that are already good on a given code. The new adaptive decimation scheme
proposed has marginally added complexity but can significantly improve the slope of the
error floor performance of a particular FAID. On certain high-rate column-weight-three
codes of practical interest, we show that adaptive decimation-enhanced FAIDs can achieve
a guaranteed error-correction capability that is close to the theoretical limit achieved by
maximum-likelihood decoding (| (dnin — 1)/2]).



Résumé

Les codes Low-Density Parity-Check (LDPC) sont au coeur de la recherche des codes
correcteurs d’erreurs en raison de leur excellente performance de décodage en utilisant
un algorithme de décodage itératif de type propagation de croyances (Belief Propagation
- BP). Cet algorithme utilise la représentation graphique d’un code, dit graphe de Tanner,
et calcule les fonctions marginales sur le graphe. Méme si I’inférence calculée n’est
exacte que sur un graphe acyclique (arbre), I’algorithme BP estime de maniere tres proche
les marginales sur les graphes cycliques, et les codes LDPC peuvent asymptotiquement
approcher la capacité de Shannon avec cet algorithme.

Cependant, sur des codes de longueurs finies dont la représentation graphique contient
des cycles, 1’algorithme BP est sous-optimal et donne lieu a I’apparition du phénomene
dit de plancher d’erreur. Le plancher d’erreur se manifeste par la dégradation soudaine
de la pente du taux d’erreur dans la zone de fort rapport signal a bruit ou les structures
néfastes au décodage sont connues en termes de Trapping Sets présents dans le graphe
de Tanner du code, entrainant un échec du décodage. De plus, les effets de la quantifica-
tion introduite par I’implémentation en hardware de 1’algorithme BP peuvent amplifier ce
probleme de plancher d’erreur.

Dans cette these nous introduisons un nouveau paradigme pour le décodage itératif a
précision finie des codes LDPC sur le canal binaire symétrique. Ces nouveaux décodeurs,
appelés décodeurs itératifs a alphabet fini (Finite Alphabet Iterative Decoders - FAID)
pour préciser que les messages appartiennent a un alphabet fini, sont capables de surpasser
I’algorithme BP dans la région du plancher d’erreur. Les messages échangés par les FAID
ne sont pas des probabilités ou vraisemblances quantifiées, et les fonctions de mise a jour
des noeuds de variable ne copient en rien le décodage par BP ce qui contraste avec les
décodeurs BP quantifiés traditionnels. En effet, les fonctions de mise a jour sont de sim-
ples tables de vérité congues pour assurer une plus grande capacité de correction d’erreur
en utilisant la connaissance de topologies potentiellement néfastes au décodage présentes
dans un code donné. Nous montrons que sur de multiples codes ayant un poids colonne
de trois, il existe des FAID utilisant 3 bits de précision pouvant surpasser I’algorithme BP
(implémenté en précision flottante) dans la zone de plancher d’erreur sans aucun compro-



mis dans la latence de décodage. C’est pourquoi les FAID obtiennent des performances
supérieures comparées au BP avec seulement une fraction de sa complexité.

Par ailleurs, nous proposons dans cette these une décimation améliorée des FAID
pour les codes LDPC dans le traitement de la mise a jour des noeuds de variable. La
décimation implique de fixer certains bits du code a une valeur particuliere pendant le
décodage et peut réduire de maniere significative le nombre d’itérations requises pour
corriger un certain nombre d’erreurs fixé tout en maintenant de bonnes performances d’un
FAID, le rendant plus a méme d’€tre analysé. Nous illustrons cette technique pour des
FAID utilisant 3 bits de précision codes de poids colonne trois. Nous montrons également
comment cette décimation peut €tre utilisée de maniere adaptative pour améliorer les
capacités de correction d’erreur des FAID. Le nouveau modele proposé de décimation
adaptative a, certes, une complexité un peu plus élevée, mais améliore significativement
la pente du plancher d’erreur pour un FAID donné. Sur certains codes a haut rendement,
nous montrons que la décimation adaptative des FAID permet d’atteindre des capacités
de correction d’erreur proches de la limite théorique du décodage au sens du maximum
de vraisemblance.
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Chapter

Introduction

E Ver since its inception in the 1950’s, error-correcting codes have played an indispens-

able role in ensuring high reliability and low power consumption in wireless/wired
data transmissions as well as in data storage, and have now become ubiquitous in all
modern communication and data storage systems. An error-correction code essentially
consists of an encoder and a decoder; information that is to be transmitted is encoded by
adding redundancy in a specific manner at the transmitter and decoding is performed at
the receiver to correct some or all of the errors contained in the received noisy data. In
particular, a specific class of error-correcting codes called low-density parity-check codes
(LDPC) [1] has not only revolutionized the communications and storage industry, but also
sparked a widespread research interest over the past two decades, leading to the so-called
field of modern coding theory.

Since this dissertation is centrally themed around LDPC codes, we shall begin this
chapter by providing a brief overview of the historical background of error-correcting
codes especially related to LDPC codes, and provide the necessary preliminaries required
for understanding this dissertation. We will then describe the main motivation for this
work and the context of the problems we are addressing. Finally, we will highlight the
main contributions and provide the outline for the remainder of this dissertation.

1.1 Historical Background

The origin of error-correcting codes dates back to the work of Hamming during his time
at Bell Labs in the late 1940’s. At that time, Hamming got motivated to develop error-
correcting codes when he became increasingly frustrated with relay computers he was
working with, which would halt any submitted jobs containing errors. He eventually
designed the first type of error-correcting linear block codes, now known as Hamming
codes, which could correct a single error, and later published his work in 1950 [2]. This
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Chapter 1 - Introduction

led to the development of other important early codes such as the triple error-correcting
Golay code [3] and the Reed-Muller (RM) codes [4, 5].

Meanwhile, Shannon, who happened to be a colleague of Hamming at Bell Labs,
published his landmark paper [6] in 1948 that led to the birth of the field of information
theory. The paper essentially laid down the fundamental limits of error-free transmission
by introducing the notion of channel capacity. Shannon pointed out that every channel
has an associated capacity, and he proved using random coding arguments that for trans-
mission rates less than the channel capacity, there exists a code that can achieve arbitrarily
low error-rates asymptotically with the length of the code. However, Shannon did not pro-
vide any insights into the explicit design of capacity-achieving codes, and thus, the quest
for the search of such codes began.

In the ensuing years, much of the research was dedicated towards the design of linear
block codes that had good error-correcting capabilities and good minimum distance. Ini-
tial code designs were for hard-decision channels and relied heavily on algebraic structure
based on finite-field algebra. Codes such as the Bose-Chaudhuri-Hocquenghem (BCH)
codes [7,8] and the Reed-Solomon (RS) codes [9] became widely used especially in mag-
netic recoding applications such as magnetic tape systems. The codes were decoded by an
efficient algorithm developed by Berlekamp and Massey [10]. However, algebraic-based
codes were still far from achieving the limits of Shannon’s capacity in their asymptotic
performance, and they lacked the random-like properties originally envisioned by Shan-
non.

Concurrently, another class of codes called convolutional codes were developed by
Elias [11], which had a more probabilistic approach to channel coding. Interpreted as
discrete-time finite-state systems, these codes had an underlying special structure known
as the trellis which enabled linear-time encoding and inherently allowed for the capability
to use practical soft-decision decoding algorithms. One of the most important decod-
ing algorithms for these codes was developed by Viterbi, famously known as the Viterbi
algorithm [12], which optimally estimated the most likely sequence of transmitted bits.
This proved to be a major attraction for these codes, and they were capable of provid-
ing substantial coding gains even though their asymptotic performance was still far from
Shannon’s capacity. Another algorithm that was developed in the same probabilistic spirit
was the BCJR algorithm by Bahl, Cocke, Jelinek, and Raviv [13] which estimated the a
posteriori probability of each transmitted bit. At the time, the BCJR algorithm was con-
sidered to be purely of theoretical interest as it was regarded too complex for practical
implementations. However, the BCJR algorithm along with the class of convolutional
codes turned out to be the most crucial steps for paving the way towards the development
of capacity-achieving codes.

The breakthrough in the search for capacity-achieving codes was finally reached in
1993 by Berrou, Glavieux, and Thitimajshima with their discovery of turbo codes [14].
A key feature of these codes was the use of iferative decoding, which involved using
the BCJR algorithm to iteratively exchange soft information between two convolutional

2



1.1 Historical Background

codes concatenated in parallel. This proved to be pivotal for achieving near-Shannon-limit
performance with reasonable decoding complexity. Subsequently, the class of low-density
parity-check (LDPC) codes, originally invented by Gallager in early 1960’s but remained
forgotten for nearly thirty years, was rediscovered by MacKay [15] who showed that these
codes were also capable of capacity-achieving performance. This led to a renaissance in
the field of modern coding theory with LDPC codes becoming one of the most active
topics of research.

LDPC codes are essentially linear-block codes whose parity-check matrices have a
sparse number of non-zero entries. These codes are conveniently represented as bipar-
tite graphs known as the Tanner graphs [16], and the decoding algorithm operates on the
Tanner graph of the code. The decoding algorithms used for LDPC codes are based on a
central iterative algorithm known as the belief propagation. The BP is a message-passing
algorithm that involves propagating probabilistic messages along the edges of the graph
in order to estimate the a posteriori probabilities of the codeword bits thereby lending
itself to low complexity implementations. The notion of using graph-based decoding was
eventually extended to other codes such as Turbo codes through the significant contribu-
tions of Tanner [16] and much later Wiberg [17]. A unifying framework for graph-based
decoding is provided in [18] which links algorithms used in many other areas such as ar-
tificial intelligence, signal processing, and computer science to the BP algorithm. Under
BP decoding, LDPC codes are able to achieve an unprecedentedly good error-rate per-
formance which has made them the overwhelming choice among existing codes for both
present and emerging technologies in digital communications and data storage.

Within the past decade, with LDPC codes steadily gaining popularity, there has been
an outburst of research related to the design of capacity-achieving LDPC codes as well as
in the development and analysis of decoding algorithms. Richardson and Urbanke pro-
posed the key technique of density evolution [19] for determining the decoding threshold
of a given LDPC code under BP decoding, which is a threshold of noise below which
the bit error probability tends to zero asymptotically with the length of the code. Using
density evolution, Richardson, Shokrollahi and Urbanke optimized capacity-achieving ir-
regular code ensembles for the best (highest) decoding thresholds that were very close to
the Shannon limit. The technique was also subsequently used in the design of reduced-
complexity BP decoders by Chen et al. [20] and Fossorieri [21]et al., and quantized BP
decoders by Lee and Thorpe [22]. Another important asymptotic technique that was pro-
posed for analyzing decoding algorithms simpler than BP (such as bit flipping) was the use
of expander arguments and expander codes proposed by Sipser and Speilman [23]. This
was later expanded and generalized by Barg and Zémor [24]. Burshtein and Miller [25]
applied expander arguments to message-passsing to show that they could correct a lin-
ear fraction of errors. For finite-length analysis of codes, a novel approach to decoding
called linear programming (LP) decoding was proposed by Feldman et al. [26], where the
decoding problem is transformed to an LP formulation.

The problem of constructing codes with desirable structural properties and good min-
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Chapter 1 - Introduction

imum distance while maintaining their capacity-achieving ability also gained significant
attention, with many applications facing stringent constraints in terms of storage require-
ments and implementation complexity. A particularly broad class of codes called quasi-
cyclic codes generated great appeal to the industry, where the parity-check matrices of
these codes consist of blocks of circulants enabling much more efficient encoding and de-
coding implementations. One of the first works on this was by Tanner et al. [27] who pro-
posed a group-theoretic construction method to design structured codes with good min-
imum distance. Later, other notable works emerged which include the codes proposed
by Fossorieri [28], finite geometry codes proposed by Kou et al., [32] the Protograph
codes developed by Thorpe [29] and Divsalar et al. [30], the algebraic-based quasi-cyclic
codes proposed by Lan et al. [31], and combinatorially constructed codes by Vasic et
al. [33]. Another class of codes that recently gained limelight are LDPC convolutional
codes [34,35], which are the convolutional counterparts to the conventional linear block
code version of LDPC codes, and were recently shown by Lentmaier ef al. to be capable
of having BP thresholds matching the MAP thresholds [36].

LDPC codes have already found their way into various standards such as the DVB-S2
(Digital Video Broadcasting), IEEE 802.3an (Ethernet), and are also being considered for
the IEEE 802.16e (Wimax) and IEEE 802.11n (Wifi) standards. However, in spite of their
excellent error-rate performance under BP decoding and their obvious advantages, they
still have a major weakness that manifests itself in the form of an error floor. The error
floor is an abrupt degradation in the performance of the code in the high signal-to-noise
(SNR) region. This problem mainly arises due to the sub-optimality of BP decoding on
finite-length codes with loopy graphs, especially when codes are designed to be asymp-
totically close to Shannon’s limit. It could prove to be a major disadvantage particularly
for applications requiring very low target error-rates such as storage devices. Therefore,
the error floor problem has been widely regarded as one of the most important problems
in coding theory and has attracted significant research interest over the past few years.
Addressing the error floor problem is one of the main goals of this dissertation along with
taking into account the effects of finite-precision for decoder realizations.

1.2 LDPC codes: Fundamentals and Notations

In this section, we will provide the necessary preliminaries related to LDPC codes starting
from the basics of linear block codes to the general concept of message-passing and graph-
based decoding. Along the way, we will introduce the required notations that will be used
throughout this dissertation.



1.2 LDPC codes: Fundamentals and Notations

1.2.1 Linear block codes

An (N, K) binary linear block code C [37] is a K-dimensional subspace of GF(2)",
which is the vector space over the field GF(2) consisting of all possible binary N-tuples.
Thus, the code C contains 2¥ N-tuples or codewords. Given a message vector of k in-
formation bits, this vector is mapped to one of the codewords of length N in the code C.
Since C is a subspace, any linear combination of two codewords in C results in another
codeword in C, an important property of linear block codes. The code C is said to have a
code rate of R = K /N, which represents the amount of redundancy added by the code.

The support of a codeword x = (x1, z, . ..,y ), denoted by supp(x), is the set of all
positions ¢ such that x; # 0. The hamming weight (or simply weight) of x denoted w(x),
is the cardinality of supp(x). The hamming distance (or simply distance) between any
two codewords is the number of positions for which they differ in value. The minimum
distance of a code C, denoted by d,,;, is the smallest possible distance between any pair
of codewords in C. A codeword vector that has zero in all its positions is referred to as the
all-zero codeword. Since a linear block must include the all-zero codeword, the minimum
distance is simply the weight of the nonzero codeword that has the smallest weight.

The process of mapping a message vector of k information bits to a codeword of length
N in the code C is known as encoding. Encoding is carried out through a K x N generator
matrix G of the code C, whose rows correspond to the basis vectors of C, i.e., the linearly
independent codewords. Given a message vector of k bits, say, u = (uy, ug, ..., ux), a
codeword x € C can obtained by performing x = uG.

A linear block code is also characterized by its parity-check matrix H, which is an
M x N matrix whose rows span the null space of G, i.e., GH? = 0. Consequently,
every codeword x is orthogonal to the rows of H so that xH? = 0. Given a vector
x' € GF(Q)N, the parity-check matrix can be used to verify whether x’ is a codeword
belonging to C or not. Therefore, each row of H is referred to as a parity-check constraint
and there are M such parity-check constraints. The value of M is related to the code
parameters by M > (N — K), where the equality holds if H is a full-rank matrix.

Once a given message u is encoded to a codeword x, it is then transmitted over a noisy
channel and is received as r = (71,79, ...,7xn). Decoding is then performed to estimate
the transmitted codeword x based on the received vector r. The optimal decision rule
used for determining the estimate X is the maximum a posteriori (MAP) decoding rule,
which essentially chooses a codeword = € C that maximizes the a posteriori probability
Pr(x|r) (the probability that the transmitted codeword is x given that r was received).
More precisely,

% = arg max Pr(x|r)
xeC

We shall assume that all codewords are equally likely to be transmitted. Under this
assumption, the MAP decoding problem reduces to the maximum likelihood (ML) decod-
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ing problem which determines the codeword that maximizes the Pr(r|x). If r € GF(2)",
then the ML decoding problem is equivalent to finding the nearest neighbor of r in the vec-
tor space GF(Z)N that is a codeword in C. Therefore the code’s error-correcting capability
is linked to its minimum distance d,,,;,, as the code is guaranteed to correct | (dim, —1)/2]
errors. In general, ML decoding on a linear-block code is NP-hard as it requires a brute-
force search of all codewords in the vector space GF(2)N. Hence, sub-optimal decoding
algorithms that enable efficient implementations are used in practice.

1.2.2 Channel assumptions

Let us assume that a codeword x = (z1,2,...,2y) € C is transmitted over a noisy
channel and is received as a vector r. If the channel is memoryless, then the probability
Pr(r|x) can be expressed as

N

Pr(r|x) = [] Pr(r:|z;)

i=1

This implies that the effect of the channel on every bit in the transmitted codeword is
independent from one another. Hence, during decoding, it suffices to decide the value for
each z; independently based on maximizing Pr(r;|z;). This probability is also referred to
as a likelihood.

For soft-decoding algorithms, the received vector r is mapped to a vector of probabili-
ties or log-likelihood ratios before serving as input to the decoder. Lety = (y1,¥2, ..., yn)
denote the vector that is input to a given decoder. We shall refer to the values y; in vector
y as channel values, to signify the fact they are determined based on the values received
from the channel. If y is a vector of log-likelihoods, then the log-likehood ratio (LLR)
corresponding to a bit position ¢ is given by

o Pr(r;|z; = 0)
yi= o8 Pr(r;|z; = 1)

Examples of memoryless channels include the Binary Symmetric channel (BSC), the Bi-
nary erasure channel (BEC), and the Additive White Gaussian channel (AWGNC). Where
as examples of channels with memory include partial-response channels and other chan-
nels in magnetic recording that cause inter-symbol intereference (ISI).

For this dissertation, we shall only focus on the BSC. The BSC is a binary-input
binary-output memoryless channel and therefore the received vector r is also binary N-
tuple. The channel flips a bit in the transmitted codeword with a cross-over probability
of a.. Fig. 1.1 shows an illustration of the BSC. A transmitted bit 0 is received as 0 with
probability 1 — o and as a 1 with probability a.
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11—«

11—«

Figure 1.1: Illustration of the Binary Symmetric channel

For the BSC, given a cross-over probability o,the LLR is determined from r as follows
log (%) ifr; =0
Yi =
log (12) ifr;=1

Note that by the definition above, y; being positive implies that the corresponding code-
word bit is more likely to be a zero, and y; being negative implies the negative corre-
sponding codeword bit is more likely to be a one.

1.2.3 Tanner graph representation

LDPC codes are linear block codes that have sparse parity-check matrices. Any (N, K)
linear block code C can be represented by a bipartite graph G, also known as the Tanner
graph, which consists of two sets of nodes: the set of variable nodes V' = {vy,--- ,ux}
and the set of check nodes C' = {c;,--- ,cp}. Given the parity-check matrix H of
a code C, the Tanner graph is obtained by assigning a variable node corresponding to
each codeword bit and a check node corresponding to each parity-check constraint, and
then connecting variable nodes to certain check nodes based on the parity-check matrix.
A edge connection between a particular variable node and a particular check node is
made if the codeword bit associated with the variable node participates in the parity-check
constraint associated with the check node. This is illustrated with the help of an example.

Example 1.1. Consider the parity-check matrix of an (8, 4) extended Hamming code with
Aymin = 4, which is given by

1 01 01010
01 100T1T10
H='0 0011110
1 1 1 11111
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In order generate the Tanner graph, first observe that the graph must contain 8 vari-
able nodes corresponding to the 8 columns, and 4 check nodes corresponding to the 4
parity-check constraints. Therefore V- = {vy, va, v3, vy, Vs, Vg, V7, Vg } and C' = {c1, ¢, c3, ¢4 }.
By convention, O is used to depict a variable node, and O is used to depict a check node
in the Tanner graph. Now looking at the first column in H, there is a 1 in the first row
and in the fourth row. Therefore, vy is connected to check nodes c; and c4. Similarly, all
other variable nodes are connected to the appropriate check nodes. Fig. 1.2 shows the
resulting Tanner graph of the code.

Figure 1.2: Tanner graph of the (8, 4) extended Hamming code

The check nodes (variable nodes respectively) connected to a variable node (check
node respectively) are referred to as its neighbors. The set of neighbors of a node v; is
denoted as N (v;), and the set of neighbors of node ¢; is denoted by N (¢;). The degree
of a node is the number of its neighbors. Let x = (21, x9,...,2y) be a vector such that
xz,; denotes the value of the codeword bit associated with the variable node v;. We shall
refer to this value as the bit value of node v;. x is a codeword if and only if for each check
node, the modulo two sum of the bit values of its neighbors is zero.

An LDPC code is to be regular, if in its corresponding Tanner graph G, all variable
nodes have the same degree d,,, and all check nodes have the same degree d.. A code is
said to be a column-weight-d, (or d,-left-regular) code if all variable nodes have the same
degree d,, which is also referred to as left degree. A code is said to be irregular if there
are variable nodes as well as check nodes that have different degrees. The (8,4) extended
Hamming code provided above is an example of an irregular code.

The girth of the Tanner graph ¢ is length of the shortest cycle present in the Tanner
graph of the code. A cycle of length g is referred to as a g-cycle. For this dissertation,
we will be mostly concerned with column-weight-three LDPC codes. Henceforth, for
convenience, Tanner graphs shall be simply referred to as graphs.

1.2.4 Message-passing decoders

Message-passing (MP) decoders are a class of iterative decoders that operate on the graph
of the code. The a posteriori probability of a codeword bit associated to each variable

8
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node in the graph is calculated by exchanging messages iteratively between the set of
variable nodes and the set of check nodes along the edges of the graph. A major attraction
with MP decoders is that all the computations are carried out locally at each node, and
therefore an efficient decoder implementation can be realized.

Recall that y = (y1,%s,...,yn) is the input to the MP decoder. Let ) denote the
alphabet of all possible channel values. Let M denote the alphabet of all possible values
that the messages can assume. Let m*)(v;, ¢;) denote the message passed by a variable
node v; € V to its neighboring check node ¢; € C' in the k™ iteration and m®(c;, v;)
denote the vice versa. Let m™®) (N (v;),v;) denote the set of all incoming messages to
variable node v; and m™®) (N (v;)\¢;, v;) denote the set of all incoming messages to vari-
able node v; except from check node ¢;. Let m™ (N (c;)\vi, ¢;) and m® (N (c;)\v;, ¢;)
be defined similarly.

Any MP decoder requires two update functions: @, used for update at the variable
nodes, and @, used for check nodes. Both update functions are symmetric functions on
the incoming messages, i.e., they remain unchanged by any permutation of its messages.
Thus without abuse of notation, if the arguments of a function are written as a set, we
imply that the order of these arguments is insignificant.

We now describe the MP decoding process. Initially, all the messages are set to zero,
ie., mMON(v;),v;) =0 Yo, € Vand mO(N(¢j),¢;) = 0 Ve; € C. Then for every
iteration k£ > 0, messages are propagated in the following manner:

m® (i, e;) = @y (i, mE DN (e))\vi, ¢)))
P (m™ (N (ej)\vi, )

An important feature of MP decoding that can be noted from the above is that during
the update of messages at a particular node, the outgoing message from the node on
an edge is determined as a function of all local messages incoming from its neighbors
excluding the message incoming on that particular edge. We refer to such messages as
extrinsic incoming messages. By doing so, the node is to an extent treating all its incoming
messages as independent messages. This is the subtle difference between MP decoding
and iterative bit-flipping decoding algorithms. Figs. ?? and 1.4 illustrate the message
updating at a variable node and check node respectively, with my, ms, and m3 denoting
the incoming messages to a particular node.

At the end of each iteration, a symmetric decision function WV, is used to decide the bit

value of each node v; € V based on its incoming messages. Let &(¥) = (i(lk), ﬁgk), cee ﬁgl\;))
(k)
- of

denote the vector of bit values decided at the end of the k" iteration. The bit value 2,



Chapter 1 - Introduction

)

Figure 1.3: Update of the messages at a variable node with d,, = 3.

Figure 1.4: Update of messages at a check node with d. = 3

10



1.2 LDPC codes: Fundamentals and Notations

each node v; is determined by
W =y (yi, m* (N (vy), ’UZ)>

The estimate %) is then verified to check whether it is a codeword or not. This is easily
done by passing the decided bit values along the edges and verifying whether every check
node is satisfied or not. A check node is satisfied if the modulo 2 sum of all the bit values
of its neighbors is zero. If all check nodes are satisfied, then %) is a codeword and the
decoding is terminated.

In conventional MP decoders, the decision function is either a simple majority rule
(if messages are binary), or simply the sign of the sum of its arguments (if messages are
log-likelihoods). More precisely, for a node v; with degree d,

q’(yumk(/\/’(vi), Vi) =40 if (y; + Zm(k)(/\/(vi), v;)) <
sign(y;) otherwise

(1.1)

where the sign function outputs a O if the sign of the argument is positive, and a 1 if it is
negative.

The algorithm runs until either £*) is a codeword, or until the maximum number of
iterations is reached, whichever occurs first. We say that the decoder has converged if %)
is a codeword for some k, else we say that the decoder has failed. A success is declared
if the decoder converges to the right codeword, and a mis-correction is declared if the
decoder converges to a wrong codeword.

Note that during our general description of MP decoding, we inherently assumed that
the scheduling used is a flooding scheduling, which involves updating all variable nodes
simultaneously update followed by a simultaneous update of all check nodes. In contrast,
a serial or layered scheduling could also be carried out for [38]. Discussions regarding
scheduling are beyond the scope of this dissertation, and throughout we shall implicitly
assume that the flooding scheduling is used for any MP decoder being described.

MP decoders can be broadly classified into two classes: hard decoding algorithms
(where the messages assume binary values) such as the Gallager A and the Gallager B
algorithms [1], and soft decoding algorithms (where the messages assume real values)
which are conventionally based on the BP algorithm such as the sum-product algorithm
and the min-sum algorithm [20]. We now discuss the BP algorithm in greater detail.

11
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1.2.5 Belief propagation: Sum-Product and other
low-complexity variants

All conventional MP algorithms used for decoding LDPC codes are based on the BP
algorithm [39]. The BP has its roots in the broad class of Bayesian inference problems
[40], and it is used to compute marginals of functions on a graphical model. Although
exact inference in Bayesian belief networks is hard in general and inference using BP is
exact only on loop-free graphs (trees), it provides surprisingly close approximations to
exact marginals on loopy graphs.

The problem of decoding on the graph of the code is also a Bayesian inference prob-
lem, and therefore the BP algorithm is well-suited for this purpose. As a decoding algo-
rithm for LDPC codes, the BP propagates probabilistic messages along the edges of the
Tanner graph in an iterative fashion. BP can be implemented n two domains, namely the
probabilistic domain where the messages are probabilities, and the LLR domain where
messages are LLRs. We shall describe the BP algorithm in the LLR, domain which is
more commonly used due to it being less sensitive to numerical precision issues. The BP
algorithm is also known as the Sum-Product algorithm.

In the LLR domain, the messages and channel values are real-valued LLRs, i.e., M =
R and ) = R. The function ®, : R x R®~! — R is the update function used at a variable
node of degree d,,, and®, : R%~! — R is the update rule used at a check node with degree
de.

Let mq, mo, ..., m;_; denote the [ — 1 extrinsic incoming messages of a node with
degree [, which are used in the calculation of the outgoing message. The update rules for
the BP algorithm are given as follows:

dy—1
Dy (yi,ma, ... Ma,—1) = Yi + Z m; (1.2)
j=1

de—1 s
®.(mu,...,mg,—1) =2tanh" [ J] tanh <23> (1.3)
j=1

When the magnitudes of the messages reach a large value, the check node update
function of the BP algorithm can be approximated to:

de—1
T (H sgn(m») min_(|m;]) (1.4)

et je{l,....de—1}

where sgn denotes the standard signum function. The check node update function de-
fined in Eq. (1.4) along with variable node update function defined in Eq. (1.2) together
constitute the min-sum decoder. Thus, the min-sum is an approximation of BP decoding.

Clearly the min-sum decoder is much lower in complexity than the BP algorithm due
to its simplified check node operation. However, the performance loss arising from using
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min-sum instead of BP is quite large, especially in the low to mid SNR region. Hence,
many low-complexity variants have been proposed which attempt to reduce this gap in
performance. All of the variants proposed typically deal with simplifying the check node
update function while keeping the variable node update function intact, as defined in Eq.
(1.2).

One important low-complexity variant of BP that requires mentioning is the offset
min-sum decoder proposed by Chen et al. [20]. For this algorithm, an offset factor
is introduced into the check node update function. This offset factor serves to reduce
the overstimate of the outgoing message produced by a check node using the rule in Eq.
(1.4), especially when the magnitudes of the incoming messages are small. Therefore,
the offset factor is also often referred to as a correction factor. The modified check node
update function is as follows:

de—1
@(ml,...,mdc_l):(Hsgn<mj>)max( min <|mj|>—%o> (1.5)

i je{l,mde—1}

The offset factor v could be fixed or could be varied as a function of the SNR. Also
the value for v can be chosen using the density evolution technique for maximizing the
decoding threshold as done in [20], or by a brute-force simulation on a given code that
checks different values of - and selects the one giving the best performance. Note from
Eq. (1.5) that the outgoing messages is zero if the magnitude of an incoming message is
less than the offset factor .

1.3 Error Floor Problem

For any typical finite-length LDPC code, the error-rate performance curve plotted as a
function of SNR under iterative decoding, consists of two distinct regions: the waterfall
region, and the error floor region. In the waterfall region (which is the low SNR region),
the error-rate drops significantly with increase in SNR making the curve look like a wa-
terfall. On the other hand, in the error floor region (which is the high SNR region), the
decrease in the error-rate dramatically slows down and the curve tends to flatten out turn-
ing into an error floor. Fig. 1.5 illustrates the two regions on a typical FER performance
curve of an LDPC code plotted as a function of the cross-over probability « of the BSC.
The error floor problem arises due to the suboptimality of BP decoding on loopy
graphs. It can be troublesome for applications requiring very low target error-rates, and
especially when high-rate codes are employed, which have relatively dense graphs. Al-
though asymptotic techniques such as density evolution provide an accurate prediction of
the FER performance in the early waterfall region, the point at which the error floor starts
as well as its slope are greatly dependent on the particular structure of a code, and hence
cannot be predicted by density evolution. Therefore, finite-length analysis techniques are
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Figure 1.5: Typical performance of BP decoding on an LDPC code over the BSC

required for the study of error floors. Besides, for codes with moderate to large lengths,
the ability to predict error floors becomes even more critical as the error floor may be
unreachable by Monte-Carlo simulations.

1.3.1 Prior work on error floor estimation

The first crucial observation on error floors was made by MacKay and Postol [41], who
found that the minimum distance of an LDPC code did not necessarily play a dominant
role in the error floor of a code. In their investigations with a Margulis construction of an
LDPC code for the AWGNC, they observed that it showed a high error floor in spite of
its good minimum distance, and they attributed it to the presence of near-codewords in
the graph. Another notion proposed in the spirit of finite-length analysis was the notion
of pseudocodewords originally introduced by Wiberg [17], and later further developed by
Frey et al. [42] and Forney et al. [43]. Pseudocodewords are essentially outputs of the
decoder that are not necessarily codewords and stem from the different possible binary
configurations of the computation tree. These works further motivated investigations into
finite-length analysis of codes under iterative decoding with attempts to characterize the
error floors for different channels.

For the BEC, the error floor could be well-characterized through the work of Di et al.
[44], who introduced the notion of stopping sets which are purely combinatorial objects.
Later Orlitsky et al. [45] provided asymptotic results on the stopping set distribution for
different code ensembles. Unfortunately, such a level of understanding could never be
achieved for more general channels such as AWGNC.

However, a huge stride towards the understanding of the error floor problem in a
general setting, was made through the pioneering work of Richardson [46], who showed
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that the problem is at least partially combinatorial in nature. Richardson introduced the
notion of trapping sets, which are certain problematic loopy structures present in the graph
of the code that cause the decoder to fail for certain low-noise configurations, and are a
function of both the code and the decoding algorithm in operation. Using this notion, he
proposed a semi-analytical method for estimating the error-rates of BP decoding on the
AWGNC in the error floor by identifying the dominant trapping sets. Another approach
based on statistical physics was also proposed for the AWGNC by Stepanov et al. [47]
through the notion of instantons, which are certain low-noise configurations that swayed
the decoding trajectory away from the correct codeword. Later, Chilappagari et al. [48]
in line with Richardson’s work, presented results on the error floor estimation for the
BSC under Gallager B decoding. Another notion called absorbing sets, was proposed by
Dolecek et al. [49], which are a special type of trapping sets that are purely combinatorial
and stable under the bit-flipping algorithm, and this notion enabled them to perform a
detailed analysis on array-based LDPC codes.

Many other works also subsequently emerged that further developed on the notion
of pseudocodewords. Vontobel and Koetter introduced the concept of graph covers to
explain failures of iterative decoding [51], and showed that pseudocodewords arising from
graph covers are identical to pseudocodewords of the linear programming (LP) decoding
[26] which constituted the vertices of the fundamental polytope. Later, Kelly and Sridhara
[52] used graph covers to derive bounds on the minimum pseudocodeword weight in terms
of girth and the minimum left-degree of the graph. The pseudocodeword analysis was also
extended to the class LDPC-convolutional codes by Smarandache et al. [53]. However,
pseudocodewords are purely topological in nature and do not take a particular decoding
algorithm into account. Therefore, the notion of trapping sets is required for studying
failures of a particular iterative decoder.

It is evident from previous discussions that the main utility behind the notion of trap-
ping sets is in enabling the error floor estimation of a given code under a particular decod-
ing algorithm. If the relevant topological structures corresponding to different trapping
sets could be identified a priori and enumerated on the graph of a given code without the
need for simulation, a reasonable estimate of the error floor could be obtained provided
that each trapping set’s contribution towards the error floor is known or determined.

Although it was shown by McGregor and Milenkovic [55] that performing an ex-
haustive search of all trapping sets in the graph of a given code is NP-hard, several good
practical approaches have been proposed. Milenkovic et al. [56] examined the asymp-
totic trapping set distributions for both regular and irregular LDPC code ensembles. Cole
et al. [57] proposed a method to estimate the error floor based on importance sampling,
which is similar to Richardson’s approach in [46]. Wang et al. proposed an efficient
algorithm to exhaustively enumerate both trapping sets and stopping sets for codes with
relatively short to moderate block lengths (V' ~ 500). Abu-Surra et al. [58] proposed
an efficient improved impulse method that could enumerate trapping sets by augment-
ing the Tanner graph with auxiliary variable nodes, and treating the problem as if it
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were searching for low-weight codewords. Although the method does not guarantee enu-
meration of all trapping sets, it is reasonably reliable and is applicable to any arbitrary
graph. A method that uses the branch-and-bound approach to enumerate stopping sets in
a given code was proposed by Rosnes and Ytrehus [59]. Karimi and Bannihasemi [60]
recently proposed an algorithm which could efficiently enumerate the dominant trapping
sets present in any arbitrary graph by recursively expanding the cycles present in the
graph. More recently, Zhang and Siegel [61] proposed an efficient technique that ex-
panded on the branch-and-bound approach by transforming the bounding step to an LP
formulation, and which allowed a complete enumeration of trapping sets up to a certain
size with reasonable computation time.

In spite of the fact that all the above works are useful for enumerating trapping sets
in a given graph which aid in estimating the error floor, none of them directly address
the issue of how to utilize the knowledge of trapping sets for constructing better codes
or improving the decoding algorithms. For instance, it is highly non-trivial to determine
which particular subgraphs (that correspond to certain trapping sets) should be avoided
during the construction of codes in order to improve the error floor performance. Vasié¢
et al. [62] proposed the trapping set onotology, which is a hierarchy of trapping sets that
exploits the topological relations, and can be utilized for code construction or decoder
design. We shall use this in our dissertation in the decoder design.

For the remainder of this section, we shall elaborate on some of the relevant notions
used to characterize decoder failures, describe the trapping set ontology, and finally high-
light the importance of guaranteed error correction which is one of the main themes of
this work.

1.3.2 Characterization of failures of iterative decoders

We begin by defining the notion of trapping sets and their related terminologies as orig-
inally provided by Richardson in [46]. Note that for purpose of exposition, we shall
assume that the all-zero codeword was transmitted. This is a valid assumption as the MP
decoders considered and the channel (BSC) are symmetric [19]. Recall that y is the de-
coder input, and %*) is the estimate on the codeword bits after  iterations. Let I denote
the maximum number of iterations allowed for decoding.

Definition 1.1. A variable node v; is said to be eventually correct if there exists a positive
integer | such that for all | < k < I, 2% =0

(2

Definition 1.2. For a decoder input y, a trapping set T(y) is a non-empty set of variable
nodes that are not eventually corrected by the decoder.

The above definition is quite general as it includes all possible decoder failures such as
stable fixed points as well as failures resulting from the oscillatory behavior of the decoder
output among different states constituting a basin of attraction. Note that if T(y) = 0,
then the decoding is successful on input y.
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A trapping set (TS) T(y) is said to be an (a, b) TS, if it has a variable nodes, and b odd-
degree check nodes in the subgraph induced by T(y). For convenience, we shall use the
notation 7 (a, b) to denote the topological structure associated with an (a, b) TS, which
is simply a graph consisting of a variable nodes and b odd-degree check nodes. Note
that two trapping sets can share the same parameters (a, b) but have different underlying
topologies.

If the degree of a check node is at most two in the graph, then the TS is said to be
an elementary TS. It has been observed by many researchers that the dominant trapping
sets in the error floor are typically elementary trapping sets [46, 54]. Therefore, we shall
place more focus on elementary trapping sets during our discussions. Fig. 1.6 shows an
example of a subgraph corresponding to an elementary (5, 3) TS. Note that m is used to
denote an odd-degree check node, and will be used throughout this dissertation for any
future graphical illustrations.

Figure 1.6: Subgraph corresponding to a (5, 3) TS

Note that non-zero codewords (under the all-zero codeword assumption) are (a,0)
trapping sets whose corresponding graphs have only even-degree check nodes. These
are precisely the only trapping sets under ML decoding. However, for any sub-optimal
iterative decoder, there will be other (a, b) trapping sets.

Stopping sets [44] are a sub-class of trapping sets that were introduced to characterize
failures on the BEC. Note that for the BEC, a transmitted bit is either received correctly
or is erased. Let S denote a subset of variable nodes and let N'(S) denote the set of
neighbors {N (v;) : Yu; € S}. The definition is given below.

Definition 1.3. A stopping set is a subset of variable nodes S in the graph G, such that
every neighbor in N'(S) is connected to subset S at least twice.

The above definition implies that stopping sets are (a,b) trapping sets whose cor-
responding graphs do not contain any degree-one check node. For the BEC, iterative
decoding fails if all a variable nodes of an (a, b) stopping set is erased, regardless of its
neighborhood in the original graph G and the number of iterations allowed. Therefore,
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stopping sets can be treated as purely combinatorial objects, and the error floor can be
completely characterized for the BEC under iterative decoding. Fig. 1.7 shows an ex-
ample of an (8, 2) stopping set whose corresponding graph contains two degree-3 check
nodes.

Figure 1.7: Subgraph corresponding to a (8, 2) stopping set

An absorbing set [49] is a special type of (a, b) trapping set that is stable under the bit-
flipping decoding. For a given subset S of variable nodes, let £(S) (resp. O(.S)) denote
the set of neighboring checks of S that are even-degree (resp. odd-degree).

Definition 1.4. An absorbing set is a subset of variable nodes S in the graph G, such that
each variable node in S has strictly greater neighbors in £(S) than in O(S). In addition,
if all remaining variable nodes in V' \ S also have strictly greater neighbors in £(S) than
in O(S), then it is said to be a fully absorbing set.

Another closely related type of trapping set is a fixed set that was introduced by Chi-
lappagari and Vasi¢ [50] to characterize failures of Gallager A/B decoding on the BSC. It
is defined as follows.

Definition 1.5. For a received vector r from the BSC and decoder input y, a trapping set
T(y) is said to be a fixed set, if T(y) = supp(y).

The necessary and sufficient conditions for a set of variable nodes to form a fixed set
for the Gallager A/B algorithm is provided through the following theorem [50].

Theorem 1.1. Let C be an LDPC code with d.,-left-regular graph G. Let T be a subset of
a variable nodes with induced subgraph T. Let the checks in T be partitioned into two
disjoint subsets; O consisting of checks with odd degree and £ consisting of checks with
even degree. Then T is a fixed set for the Gallager A/B algorithm iff : (a) Every variable
node in I has at least [ %] neighbors in € and (b) No | | of O share a neighbor outside
7.

Note that the definition of absorbing set satisfies the above theorem and therefore is
always a fixed set; however the opposite is not necessarily true. For column-weight-three
codes though, they are the same. For this dissertation, we shall mainly utilize the notion of
trapping sets to characterize decoder failures, although stopping sets will come into play
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towards the latter part of the dissertation. The notion of fixed set will used only mainly
for discussing the trapping set ontology which will be introduced shortly.

Given an (a, b) TS, it is also important to determine a measure of relative harmfulness
of the TS which is based on its underlying topological structure. Again for the BSC
under the Gallager B decoding, Chilappagari and Vasic [48] introduced the notion of
critical number as a measure of harmfulness. Given the subgraph corresponding to a TS
is T (a,b), let y7 denote the vector of channel values received by the variable nodes in
T (a,b). Let T(y7) denote the set of nodes that failed to converge to the right values.

Definition 1.6. The critical number n. of a trapping set whose subgraph is T (a,b), is the
minimum number of errors introduced in the subgraph T (a, b) that causes the Gallager-B
decoder. More precisely,

ne = min_|supp(yr)|
Note that the dominant trapping sets are the subgraphs with the least critical number.
Although this notion is limited to Gallager-B decoding, later on, we will generalize this
notion to include other decoding algorithms as well.
Henceforth, for convenience, whenever we refer to a TS, we shall implicitly refer to
its underlying topological structure, which is a subgraph induced by the variable nodes
belonging to the TS.

1.3.3 Trapping set ontology

The trapping set ontology (TSO) [62] is a database of trapping sets that is organized as
a hierarchy based on their topological relations. This topological relationship between
trapping sets is specified in the form of a parent-child relationship. A trapping set 7; is
said to be a parent of a trapping set 75 if 75 contains 77, and 7 is then considered to
be a child of T;. The main objective for using the TSO is to make the identification of
relevant trapping sets independent of a given code, as well as to serve as a guide for code
construction or decoder design in addition to enabling efficient enumeration techniques.

The development of TSO was primarily motivated by the work of Chilappagari et
al. in [63], who observed that the trapping sets found for various iterative decoders over
different channels are closely related. For instance on a given code, many trapping sets
found for the BP decoding over the AWGN were either the same as the trapping sets
of Gallager B over BSC, or bigger subgraphs containing them. This implies that there
exists a topological interrelation among trapping sets and in a broader sense, a topological
interrelation among error patterns that cause decoding failures for various algorithms on
different channels. Relying on this fact, the TSO is generated based on the notion of fixed
sets for Gallager B, with the purpose of capturing these topological relations in order to
provide a hierarchy.
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The topological relations can be more conveniently established using an alternate
graphical representation of trapping sets, which is based on the incidence structure of
lines and points. In this representation, variable nodes correspond to lines and check
nodes correspond to points. A point is shaded black if it has odd number of lines pass-
ing through it otherwise it is shaded white. An (a,b) trapping set is thus an incidence
structure with a lines and b black points. Fig. 1.8 shows an example of a (5,3) TS in
the two graphical representations. In order to avoid confusion, note that the Tanner graph
representation always uses O or B to depict check nodes.

% v, G G
N
Vs V)
V4
V3
A4
c c; c,
(b)

Figure 1.8: Graphical representation of (5, 3) trapping set: (a) Tanner graph representa-
tion; (b) Line and point representation.

Since the necessary and sufficient conditions for a fixed set of Gallager B are clearly
defined through Theorem 1.1, this notion is used to generate the TSO. Also it is well-
known that, in general, trapping sets are subgraphs formed by cycles or union of cy-
cles [46]. Therefore, assuming that any code considered has at least girth g and left
degree d,,, the TSO is generated as follows. Starting with a g-cycle, variable nodes of
d, degree are added to the g-cycle in all possible ways thereby expanding the g-cycle to
a chosen maximum size, while enforcing the constraint that the resulting subgraph after
each addition of a variable node, is elementary and satisfies Theorem 1.1. Once all dif-
ferent expanded subgraphs are generated, a hierarchy is then established based on their
parent-child relationship. The procedure is then repeated starting with a (g + 2)-cycle,
and so on.

In the line and point representation, the method for expanding the subgraphs reduces
to adding additional lines to a parent subgraph along with changing the color of the points
accordingly such that the resulting subgraph satisfies the constraints. Fig 1.9 illustrates
the TSO generated for column-weight-three codes starting from cycles of lengths 6, 8,
10, and 12. Note that although the methodology is restricted by using Theorem 1.1 for
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Figure 1.9: Trapping set ontology for column-weight-three codes and Gallager A algo-
rithm.

fixed sets, it can be easily generalized for generating other types of subgraphs, provided
that the constraints or desired properties of the subgraph are clearly specified. Moreover,
as previously pointed out, since failures of other iterative decoders over channels other
than BSC are also topologically linked to failures of Gallager B decoding on the BSC,
we regard the subgraphs in the TSO as a good starting point for consideration in decoder
design or code construction.

1.3.4 Guaranteed error correction

The guaranteed error correction capability of a code has always been an important pa-
rameter especially for applications such as magnetic recording, and optical and solid-state
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storage. Recall that under ML decoding, a linear block code with minimum distance d,,;,,
can achieve a guaranteed error correction of | (d,,;, — 1)/2|. However, for an LDPC code
under iterative decoding over the BSC, its guaranteed error correction is highly non-trivial
to determine since iterative decoding is suboptimal and the guaranteed error correction
cannot be simply derived from the d,,;, of the code. An LDPC code C is said to have
to have a guaranteed error correction of ¢ under a particular decoding algorithm if it can
correct all error patterns of weight ¢ or less.

In the context of the error floor problem, the guaranteed error correction capability
has a direct impact on the error floor performance of a code. This relationship was first
established by Ivkovic et al. [64] who showed that on the BSC, the slope of the error floor
is governed by the guaranteed error correction capability of the code under a particular
decoding algorithm. We now describe this relationship as provided in [64].

Let o denote the cross-over probability of the BSC. Let ¢ be the guaranteed error
correction capability of an (N, K') LDPC code C, and let n; be the number of received
vectors of weight 7, that lead to a frame (codeword) error. Then the frame error rate
FER(«) can be determined as

N
FER(a) = Y ni(@)'(1 — )9
i=t+1
where ¢ 4 1 is the minimal number of errors required to cause a decoder failure.

On a semilog scale, the FER is given by

log(FER(ar)) = log ( 3 ni(a)' (1 — a)(N—i))

i=t+1
= log(ni1) + (t + 1)log(a) + log ((1 _ a)(N—(t+1)))

+ log (1 + %0[<1 — O{)_l + ...+ niNOé(N—(t-‘rl))(l _ a)_(t+1)>
Nt Nit1

For a small «, the expression is dominated by the first two terms thereby reducing to
log(FER («)) ~ log(nss1) + (t + 1)log(c)

From the above expression, we can see that on a log(FER) vs log(«) scale, the slope of
the error floor (which occurs at small «) is governed by the guaranteed error correction
capability £.

It is clear from our discussions that the guaranteed error correction capability is im-
portant to consider for code/decoder designs on the BSC to improve the error floor per-
formance. For the Gallager B decoding, Chilappagari et al. derived conditions linking the
guaranteed error correction capability with the girth of the code [65], and also derived ex-

22



1.4 Motivation For This Dissertation

plicit conditions on the graph that guaranteed a correction of three errors [66]. However,
for other soft decoding algorithms on the LDPC codes, no such results are known as it is
much more difficult to obtain.

Achieving an increased guaranteed error correction capability is one of the aims of
the work in this dissertation which is taken into consideration in the decoder design. We
will expound more on this in the next chapter.

1.4 Motivation For This Dissertation

The error floor problem of LDPC codes under BP decoding has become a critical is-
sue over the past several years especially in the industrial community with applications
now becoming much more power-constrained while also requiring much lower achiev-
able error-rates. It was pointed out in the last section that the error floor phenomenon
arises from the sub-optimality of BP on finite-length codes whose graphs have loops, and
the achievable performance of BP is far from the optimal performance achieved by ML
decoding.

Since BP is an inference algorithm that is exact only for cycle-free graphs, there has
been some research efforts to devise algorithms providing better approximates of the
marginals than BP, by taking into account the presence of certain loopy structures into
the inference problem. Some of the notable works in this direction include the general-
ized BP algorithms by Yedidia et al. [67], loop calculus methods by Chertkov et al. [97],
and tree-pruning decoding by Lu et al. [70]. While all these approaches, which are based
in statistical physics, are strongly supported by theoretical justifications, they are too com-
plex to find their way into practical decoder realizations.

There have also been some significant works that address the error floor problem from
a code construction perspective. These methods involve avoiding certain harmful loopy
structures during code construction rather than optimizing for the d,,;, of the code. One
of the first works in this direction was by Tian et al. [69], who introduced the notion of
extrinsic message degree to selectively avoid cycles during the construction of irregular
codes. Ivkovic et al. [64] proposed the technique of edge swapping between two graph
covers of an LDPC code, and this was later generalized to cyclic liftings of higher order
by Asavadi et al. [71] for constructing quasi-cyclic codes. More recently, Nguyen et al.
[72] proposed a construction method based on Latin squares that avoids specific harmful
trapping sets identified by the TSO. While all these methods have successfully constructed
codes with lowered error floors, their central idea of avoiding loopy structures during
construction becomes very difficult to maintain when the code rate is relatively high as
graphs become denser. Moreover, the effects of finite precision that get introduced when
decoders are realized in hardware, are crucial aspects ignored during code construction
which can still deteriorate the error-rate performance.

Therefore, the design of reduced-complexity finite precision iterative decoders is of
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prime importance for practical coding systems. A glimpse at the iterative decoders devel-
oped so far reveals a wide range of decoders of varying complexity. The simple binary
message passing algorithms such as the Gallager A/B algorithms occupy one end of the
spectrum, while the BP lies at the other end of the spectrum. The gamut of decoders
filling the intermediate space can simply be understood as the implementation of the BP
(and variants) at different levels of precision.

Early works on the design of quantized BP decoders include the Gallager-E and other
quantized decoders proposed by Richardson and Urbanke [19], and reduced-complexity
BP decoders such as the normalized min-sum and offset min-sum decoders proposed by
Chen et al. [20] and by Fossorier ef al. [21]. More recent works include the quantized
BP decoders proposed by Lee and Thorpe [22], and also by Kurkosi and Yagi [73]. In all
of the aforementioned works, the quantization schemes are designed based on optimizing
for the best decoding threshold on a given code using the asymptotic technique of density
evolution (DE). Another important point to note in the context of this dissertation, is that
these decoders were all designed with the primary goal of approaching the performance of
the floating-point BP algorithm, as a performance loss is typically associated with quan-
tization of messages. Since asymptotic methods are inapplicable to finite length codes,
these decoders designed for the best DE thresholds do not guarantee a good performance
on a finite length code especially in the high SNR region.

There have also been several works that have addressed the error problem from a
decoding perspective by proposing modifications to the BP decoding algorithm. Some
of the notable works include augmented BP by Varnica et al. [74], multilple-bases BP
by Hehn er al. [75], informed dynamic scheduling by Casado et al. [76], multi-stage
decoding by Wang et al. [77], averaged decoding by Laendner and Milenkovic [78], and
use of post-processing to lower the error floors by Han and Ryan [79] and also by Zhang
et al. [80]. While all these schemes certainly provided performance enhancements in
the error floor, all of them require either a considerable increase in decoding complexity
due to the modifications and post-processing or are restricted to a particular code whose
structure is well-known. In addition, they do not take finite precision into account and
this can drastically affect the performance gains when implemented in hardware due to
possible numerical precision issues.

The fact that message quantization can further contribute to the error floor phenomenon
was first observed by Richardson [46], and later Zhang et al. [81] also studied the ef-
fects of quantization on the error floor behavior of hardware-implemented BP over the
AWGNC. More recently, Butler and Siegel [82] showed that the error floor on the AWGNC
was greatly affected by the numerical saturations arising from the quantization of the mes-
sages, and the error floor performance improved when there was limited or no saturation
in the messages.

Therefore, addressing the error floor problem while also taking finite-precision into
account in the decoder design is critically important especially with emerging applica-
tions in communication and data storage systems now requiring very low error-rates,
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faster processing speeds, lower memory usage, and reduced chip area. In this regard,
there are some relevant works worth mentioning. Zhao et al. in [83] proposed sev-
eral modifications to the offset min-sum decoder while taking quantization into account.
Their proposed quantization schemes enabled their offset-min sum decoder to approach
performance of floating-point BP algorithm on the Additive White Gaussian Noise chan-
nel (AWGNC) with six bits of quantization with possible improvement in the error floor.
Zhang et al. in [81] also studied the effects of quantization on the error floors of BP over
the AWGNC, and designed schemes that led to substantial error floor reductions when
six bits of quantization were used. More recently, Zhang and Siegel [84, 85] proposed a
quasi-uniform quantization scheme for various BP-based decoders over the BSC as well
as the AWGNC. On the BSC, they were able match the performance of different types of
floating-point min-sum decoders with 4 bits of quantization, while they required at least
6 bits of quantization to match the performance of floating-point BP.

As the title suggests, this dissertation is mainly concerned with the development of
novel finite precision iterative decoding algorithms, with “beyond belief propagation”
implying that the approach we propose is radically different from conventional BP-based
approaches. Having established the context of the problem, the main goals of this disser-
tation can be summarized as: 1) to surpass the error floor performance of conventional
floating-point BP decoder at much lower complexity while taking finite precision into
account, and 2) to enhance the guaranteed correction ability of a code and reduce the
performance gap between iterative decoding and ML decoding in the error floor.

With regards to the first goal, we introduce a novel approach to the design of finite
precision iterative decoders on the BSC, which we refer to as finite alphabet iterative de-
coders (FAIDs) to signify the fact that the messages belong to a finite alphabet. Some
of the key features that clearly distinguish our approach from all other previously men-
tioned works on finite precision iterative decoders are: 1) the messages are not quantized
values of log-likelihoods or probabilities, and 2) the variable node update functions are
simple well-defined maps rather than approximations of the update functions used in BP.
The maps for variable node update in FAIDs are designed with the goal of increasing the
guaranteed error-correction capability by using the knowledge of potentially harmful sub-
graphs that could be present in any given code, thereby improving the slope of the error
floor on the BSC. Since the variable nodes in the proposed decoders are now equipped
to deal with potentially harmful neighborhoods, which is in contrast to BP which treats
the loopy Tanner graph as a tree, the proposed decoders are capable of surpassing the
floating-point BP in the error floor. In fact, we will show that there are 3-bit precision
FAIDs capable of surpassing BP in the error floor.

For this work, we restrict our focus on the design of FAIDs for column-weight-three
codes. The main reason for this is that such codes, while enabling extremely simple hard-
ware implementations, are notoriously prone to higher error floors especially at moderate
to high code rates compared to codes of higher column-weights. Being able to design
good yet simple decoders for these codes not only validates our novel approach but also

25



Chapter 1 - Introduction

further ascertains the importance of addressing the error problem from the viewpoint of
improving the iterative decoding rather than from the viewpoint of code construction,
as it becomes very difficult to construct such codes to be devoid of certain harmful loopy
graphs or with large girth, without compromise on the code rate and length. Moreover, the
trapping sets of various iterative decoders are more well-known for column-weight-three
codes [62], and can be exploited in the design of FAIDs.

With regards to the second goal, we propose decimation-enhanced finite alphabet
iterative decoders for LDPC codes on the BSC. The technique of decimation which is
incorporated into the message update rule of FAIDs, involves fixing certain codeword
bits to a particular value during message-passing. We first propose a simple decimation
scheme for a 3-bit precision FAID that allows the decoder to be much more amenable to
analysis, significantly reduces the number of iterations required by it to correct a fixed
number of errors. We will then show how decimation can be used adaptively to further
enhance the guaranteed error correction capability of FAIDs that are already good on a
given code, with only marginal increase in complexity. The adaptive decimation scheme
is particularly for a 3-bit precision FAIDs which propagate only 3-bit messages. and
we show that the guaranteed error correction capability can be significantly enhanced,
with possibility of approaching the theoretical limits achieved by ML decoding on certain
codes.

1.5 Contributions and Outline

The main contributions of this dissertation along with the outline are provided below.

e In Chapter 2, we introduce a new paradigm for finite precision iterative decoding on
the BSC. The proposed novel decoders known as finite alphabet iterative decoders
FAIDs are capable of surpassing the floating-point BP in the error floor. An alter-
nate representation in the form of symmetric plane partitions is provided that allows
for easy enumeration of the total number of possible FAIDs. We show that there
exist 3-bit precision FAIDs for column-weight-three codes that can outperform the
floating-point BP algorithm in the error floor without any compromise in decoding
latency. Hence, the proposed decoders provide a superior performance with only
a fraction of the implementation complexity of BP. Numerical results are provided
on several codes with different rates and lengths to validate this fact. We also show
that FAIDs designed solely based on optimizing for the best possible asymptotic
decoding threshold on a given code are not the best decoders and in some cases
can give rise to high error floors. We also provide a semi-heuristic-based selection
method that is not code specific but which gives a set of candidate FAIDs that con-
tains potentially good decoders in the error floor for any given column-weight-three
code.
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e In Chapter 3, we propose decimation-enhanced FAIDs (DFAIDs) on the BSC. The
technique of decimation is introduced and incorporated into FAIDs during message-
passing in order to make them more amenable to analysis. We illustrate this with
a simple decimation scheme for a 3-bit precision FAID and show how it can be
analyzed in terms of guaranteed error-correction capability. We also show how
decimation can be used adaptively to further enhance the guaranteed error correc-
tion capability of a FAID that is already known to surpass BP. We provide insights
into the design of the decimation scheme and show how failures of DFAIDs are
linked to stopping sets. Using this approach, we provide the adaptive decimation
schemes with 3-bit precision FAIDs for two column-weight-three codes, and show
that not only can the guaranteed error correction be significantly increased but also
possibly approach the limits achieved by ML decoding.
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Chapter 2

Decoding Beyond Belief Propagation

P REVIOUSLY, we pointed out that BP decoding is optimal only on codes whose graphs

are cycle-free. The BP algorithm and all its variants operate on the loopy graphs of
finite-length LDPC codes, with the underlying principle that the graph is assumed to be a
tree, and the topological neighborhood of a node is completely ignored when performing
local computations for message update at the node at every iteration. Although this prin-
ciple enables efficient implementations and BP still performs exceptionally well on loopy
graphs in the low SNR region, the performance in the high SNR region is affected, where
the error floor occurs. Depending on the particular neighborhood of a node, this could
greatly influence the decoding trajectory, and cause BP to fail for certain low-weight error
patterns leading to a poor guaranteed error correction capability and an error floor with a
low slope. This is especially true for high-rate codes whose graphs are relatively dense.

In this chapter, we provide a new approach to finite precision iterative decoding of
LDPC codes for the BSC, where the propagated messages belong to a finite alphabet. In
contrast to the underlying principle of BP-based decoders (quantized), the proposed finite
alphabet iterative decoders (FAIDs) do not propagate probabilistic (quantized) messages,
and the variable node update functions do not mimic BP. Instead, the variable node update
functions used are simple maps that are inherently designed to deal with potentially harm-
ful neighborhoods while still maintaining the local nature of message updating. Hence,
these decoders are simpler and different from conventional quantized decoders. More-
over, these finite precision decoders remarkably have the capability to surpass even the
floating-point precision BP in the error floor. Using our approach, we will show that there
exist 3-bit precision FAIDs that outperform the floating-point precision BP in the error
floor without any compromise on latency.

We start by providing a simple motivating example to give some insights into the
rationale behind our approach. We will then formally introduce the general framework of
FAIDs highlighting their key differences compared to existing finite precision decoders.
Subsequently, we will describe a methodology for selection of particularly good FAIDs
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for column-weight-three codes, and provide 3-bit precision FAIDs that outperform the
floating-point BP in the error floor on a variety of codes with different rates and lengths.

2.1 A Motivating Example: 2-bit Decoder

In this section, we discuss the motivation for our approach using a simple 2-bit message-
passing decoder. The example we use involves analyzing the message-passing on a 3-error
pattern associated with a six-cycle for which the Gallger B decoder fails to correct. By
adding an extra bit in the message, and appropriately choosing the update function, the
error pattern can be corrected.

The purpose of this example is to illustrate how the update function can be chosen to
correct certain error patterns associated with a harmful subgraph, which will later form the
basic essence for the design of FAIDs capable of surpassing BP in the error floor. Note
that for this example of six-cycle, the 2-bit decoder employed is a FAID with message
alphabet M = {00, 01, 10, 11}.

Consider decoding on a column-weight-three code with a graph GG containing a six-
cycle over the BSC. For the message passing in this example, y = r which implies that
Y = {0, 1}. Recall that V' denotes the set of variable nodes and C' denote the set of check
nodes in GG. Under all-zero codeword transmission, assume that the BSC introduced three
errors such that the subgraph induced by the three variable nodes in error is a six cycle
as shown in Fig. 2.1. Let V; = {v1,vs,v3} denote the set of variable nodes in the
six cycle and let Cy = {¢1,¢9,¢3} and Cy = {¢4, c5, 6} denote the set of degree-two
check nodes and degree-one check nodes in the subgraph respectively. Assume that no
two check nodes in C are connected to a common variable node in V'\V;. Note that
for figures throughout, we shall use @/O to represent a variable node that is initially
incorrect/correct, and a B/0 to represent an odd/even degree check node.

Cs Ce

Figure 2.1: A six-cycle present in the Tanner graph, where the three variable nodes are
initially in error.
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2.1 A Motivating Example: 2-bit Decoder

(a) The messages as defined by Gallager B al- (b) Two-bit messages indicating the involve-
gorithm. The decoder is blind to the presence ment of a variable node in a six-cycle.

of a six-cycle, and cannot correct the above er-

ror configuration.

Figure 2.2: Comparison of message-passing between Gallger B decoder and 2-bit decoder
on a six-cycle.

2.1.1 Gallager B decoder fails

The outgoing message at the variable node in the Gallager B algorithm is calculated as
the majority of the incoming two messages and the received value. The outgoing message
at the check node is simply the XOR of all the incoming extrinsic messages. Fig. 2.2(a)
illustrates how messages are passed under Gallager B decoding. Note that for Fig. 2.2,
the check node degree is arbitrary but only significant connections are shown. At the end
of every iteration, all variable node neighbors of C receive two message that coincide
with their received value and one message that disagrees with the received value. Since,
the neighborhood of (5 consists of both correct and corrupt variable nodes, the algorithm
cannot distinguish between the two based solely on the incoming messages. The variable
nodes initially in error remain in error and all the other variable nodes remain uncorrupted.
One realizes that this situation primarily arises due to the circulation of incorrect messages
in the six cycle, but unfortunately the decoder cannot detect this scenario.
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2.1.2 2-bit decoder succeeds

Now consider adding one more bit to represent the messages in the decoder. Let the
second bit (right-most bit) be used to denote the estimated bit value of the variable node,
and the first bit (left-most bit) to denoting a strength (or confidence) of the estimated bit
value with 0 indicating a weak and 1 indicating a strong bit value. In the first iteration,
assume that nodes v, vy, and v3 send "01° (weak one), and all nodes in V'\V; send ’00’
(weak zero) as their outgoing messages. At the check node, the first bit of the outgoing
message is the AND of all the first bits of the incoming messages. The second bit is
simply the XOR of all the second bits in the incoming messages. In the second iteration
at the variable node, the first bit of the outgoing message is set to 1 if the second bit of
the two incoming messages agree with the received value; else, it is set to 0. The second
bit is computed by taking the majority of the second bits of the incoming messages along
with the received value (as in Gallager B). It can be seen that at the end of the second
iteration, the nodes in V; receive two messages as '01’ (weak 1) and one message as 10’
(strong zero) (Fig. 2.2(b)). By receiving such messages after two iterations, the node in
error now can clearly infer that it is possibly in a troublesome neighborhood.

Let N(U) denote the set of the neighbors of all nodes in a set U. Additionally, let
Vo = N(Cy)\ Vi and C3 = N (V3)\C> and assume no two checks in C3 and C; share a
common variable node in V'\ (V; UV43). Under such a scenario, if the variable node update
function is chosen so that ¢,(1,10,01) = 00, and ®,(1,00,10) = 10, then decoder is
guaranteed to correct the 3-error pattern (with a suitable decision rule). The complete
specification for @, of the 2-bit decoder is given below in the form of a Boolean map,
where m, denotes the outgoing message.

my | Mo | T; | My my | Mo | T; | My
00 | 00 | O | 10 10 | 01 | 0 | 00
00 | 00 | 1 | 00 10 | 01 | 1 | 00
00 | 10 | O | 10 10 | 11 | 0 | 00
00 [ 10 | 1 | 10 10 | 11 | 1| 01
00 | 01 | O 00 01|01 ]0]O01
00 {01 [ 101 01 {01 |1]11
00 | 11 | 0| 01 01 |11 |0 | 11
00 | 11 | 1 | 01 01 |11 |1 |11
10 | 10 | 0 | 10 11 [ 11 |0 | 11
10 | 10 | 1| 10 11 (11 |1 | 11

Table 2.1: Boolean map used at the variable node for the 2-bit decoder

We just illustrated how one can utilize the knowledge of potentially harmful subgraphs
to design an update function for the 2-bit decoder. More examples related to this discus-
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sion can be found in our paper [86]. Although this was a simple example, the underlying
philosophy used, which was to choose an update function that increases the correction
ability of error patterns on harmful subgraphs, will later form the basis of our approach
for the design of FAIDs with larger alphabets that are capable of surpassing BP in the
error floor.

At this point in the context of 2-bit decoders, it is worth mentioning the work of
Sassatelli et al. [87], which can be regarded as a precursor to the present work. They
proposed two-bit message-passing decoders for column-weight-four codes on the BSC
that provided performance improvements compared to Gallager B decoding, and they
also derived conditions to guarantee correction of 3 errors for such codes. In contrast,
our approach involves designing FAIDs with alphabet sizes larger than four, that have the
ability to surpass the BP in the error floor. Note that although messages were represented
as binary vectors in the above example, for the next section we shall simply represent the
messages as levels belonging to a finite alphabet.

2.2 Finite Alphabet Iterative Decoders

We now introduce the general framework for a new class of finite precision iterative de-
coders referred to as multilevel FAIDs [88-90] for LDPC codes. For this class, an /N,-
level FAID denoted by .# is defined as a 4-tuple given by .% = (M, ), ®,, d.). The
finite alphabet M defined as M = {—Ls,...,—L1,0,Lq,..., Ls}, where L, € R and
L; > Lj for any 7 > j, consists of Ny = 2s + 1 levels for which the message values are
confined to. The sign of a message = € M can be interpreted as the estimate of the bit
associated with the variable node for which x is being passed to or from (positive for zero
and negative for one), and the magnitude |x| as a measure of how reliable this value is.

The set ) which denotes the set of possible channel values is defined for the case of
BSC as Y = {+C}, and the channel value y; € ) corresponding to node v; is determined
by y; = (—1)"C, i.e., we use the mapping 0 — C and 1 — —C. The value of C can be
considered as a parameter used to control how much of an effect the channel value should
have on the output of .

Let mq,--- ,m;_; denote the extrinsic incoming messages to a node with degree /.

2.2.1 Definitions of the update functions ¢, and .

The update function ®, : M%~! — M used at a check node with degree d. is defined
exactly as in Eq. (1.4) for min-sum decoder, which is provided below for convenience

Bo(mu, ... ma,1) = (H sgn(mj))j min (jm|).
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Note that since this is the same function used in the min-sum decoder, the novelty
in the proposed FAIDs lies in the definition of the variable node update function ®,.
Consequently, a particular ®,, also defines a particular FAID, as ®,. is the same in all
FAIDs considered.

The update function ®, : ) x M%~! — M used at a variable node with degree d,,,
can be described either as a closed-form function or simply as a map that is a look-up
table (LUT). The closed form definition is useful for understanding FAIDs in the context
of the existing framework of quantized BP decoders. In closed-form, @, is defined as

do—1
D, (my,ma, -+ ma,1,Y) = Q (Z m; + w; - yi) (2.1)

J=1

where the function )(.) is defined as follows based on a threshold set .7 = {7, : 1 <1 <
s+ 1} suchthat 7; € R* and T; > Tj if i > j, and Ty = oo.

) osgn(x)L,;, if T; <|z| <Tin
Q) = { 0, otherwise

The channel weight w; assigned to the channel value while determining the output in
Eq. (2.1), is computed using a symmetric function 2 : M%~! — {0, 1}, which is a
function of the extrinsic incoming messages to a particular node.

Based on this definition, the function @, can be classified as two types: a linear-
threshold (LT) function and a non-linear-threshold (NLT) function. If {2 = 1 (or constant),
i.e., if the value of w; is always 1 (or constant) for all possible inputs of {2, then &, is an
LT function and a FAID with such a ®,, is classified as an LT FAID. Else, ®, is an NLT
function and a FAID with such a ®,, is classified as an NLT FAID.

Note that if @, is an LT function, this means that it simply takes a linear combination
of its arguments and then applies the thresholding function () to determine its final output.
An important characteristic to note for an LT function is that ¢, will always output the
same value for any two distinct ssets of incoming messages as long as their respective
sums along with the channel value are the same. For instance, for a node with d, = 3,
¢, (—C,mq1,my) = ®,(—C, ms3, my) when my + my = mg + my. This is also a typical
property present in all existing quantized message-passing decoders such as quantized BP
and min-sum.

On the other hand, for an NLT FAID, due to the definition of €2, ®, can output different
outgoing messages even for distinct sets of incoming messages that lead to the same
sum (upon which the function () is applied to). In other words, ®, takes a non-linear
combination of its arguments before applying the function () on the result.

Fig. 2.3 illustrates an example on a variable node with d, = 3 that highlights this
difference for three different instances of message passing. The sets of incoming mes-
sages considered for the three instances are {— Ly, L1}, {— Lo, Lo}, and {— L3, L3} with
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the channel value being —C. Note that for all three instances, the sum of the incom-
ing messages along with the channel value are the same and equal to —C. Therefore,
the output of the ¢, for an LT function must be the same in all three instances. In Fig.
2.3(a), the output of @, is shown to be —L; for all three instances as Q(—C) = —1
assuming 77 = —C. However, for an NLT function, the outputs of &, can be dif-
ferent. In Fig. 2.3(b), ®,(—C,Ly,—Ly) = —L; and ®,(—C, Ly, —Ls) = —L, but
®,(—C, L3, —L3) = 0.

(a) @, as an LT function: Assuming T3 = —C, Q(—-C) =
— L+, and therefore the outputs for the three instances must
be the same and equal to —L;.

(b) @, as an NLT function: The output of ®,, is Ly for two
instances, and 0 for the third instance

Figure 2.3: Comparison of possible outputs of @, between LT and NLT functions for
three different instances of message-passing.

From the above example, it is evident that NLT FAIDs are different from all existing
quantized message-passing decoders based on BP, while LT FAIDs can be regarded as a
subclass of quantized min-sum decoders. However, even in the case of LT FAIDs, note
their subtle difference in the fact that the messages are not quantized probabilities (or
log-likelihoods) unlike quantized min-sum decoders.

One of the important properties that the function ®, satisfies is the property of it
symmetry given below.

Definition 2.1 (Symmetry property). If the update function ®, of a FAID satisfies the
following condition

D, (yiymayeooyma,—1) = =Py (=yi, —ma, .., — Mg, 1) (2.2)

then the FAID is a symmetric decoder.
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Based on the closed-form definition, ¢, can be completely described either by assign-
ing real values to the elements of M, .7 and ), and defining €2, or by providing a set
of constraints which the assigned values can take so that it describes a particular unique
map. As examples, we provide the closed-form description of ®,, for a particularly good
S-level NLT FAID and a 7-level LT FAID defined for column-weight-three codes.

Example 2.1 (5-level NLT FAID). The constraints on the values assigned to elements of
M and 7 that describe this map are: C = Ly, Ly = 3Ly, Ty = L1, T5 = Lo, and the
channel weight function ) used to compute w; is given by

wi = Q(my,my)

= 1 (sign(ma) @ sign(ma)) - 8(|ma| + [ma| — 2L)

where sign(z) = 1 if # < 0, and sign(x) = 0 otherwise.

Example 2.2 (7-level LT FAID). The constraints on the values assigned to elements of
M and 7 that describe this map are: L1 < C < 2Ly, Ly = 2Ly, Ly = 2Ly + C, and
Ty = Ly, Ty = Lo, and T3 = L3 — C, where ) = 1 since it is an LT function.

Note that the decision rule used in FAIDs is the same as in BP and min-sum which
was given in Eq. (1.1).

2.2.2 Describing the maps of ®, as arrays

Let us alternatively define M to be M = { My, My, --- , My, } where My = —Lgy, My =
—Ls_l,"', MS = —Ll, Ms+1 = O, M5+2 = LQ,"', MNS = LS. Then, (I)v can be
defined using d,_;-dimensional arrays or look-up tables (LUTs) rather than as closed-
form functions, which enables simple implementations and also may be more convenient
for decoder selection. We now restrict our discussion to column-weight-three codes for
the remainder of this chapter.

For column-weight-three codes, the map specifying ®,, is a simple two-dimensional
array defined by [/; ;]1<i<n, 1<j<n,, Where [; ; € M, such that ®,(—C, M;, M;) = I, ; for
any M;, M; € M. The values for ®,(C, M;, M;) can be deduced from the symmetry of
D,.

Table 2.2 shows an example of a @, defined as an array for a 7-level FAID when
yi = —C.

It is easy to see that if the diagonal entries in the array [/; ;]1<i<n, 1<j<n, are different,
then ®, must be an NLT function (based on the discussion in the previous subsection).
However, @, can still be a NLT function even if all the diagonal entries in the array are
the same due to the remaining entries in the array as highlighted in the following lemma.

Lemma 2.1. If‘q)U(—C, —Ll,Lg) = —Ll, CDU(—C,O,Ll) = O, (I)U(—C,O, —Lz) = —Lg,
and ®,(—C,—L1,—Ly) = —Ly, then ®, can not be expressed as a linear-threshold
function, and hence it is a non-linear-threshold function.
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Table 2.2: LUT for ®, of a 7-level FAID with y; = —C
‘ my/me H —Ls ‘ —L, ‘ —L, 0 ‘ +L, ‘ +L, ‘ +Ls ‘

—Ls —L3 | —Ls | —Ls | —Ls | —Ls | —Ls | =Ly
—L, —Ly | =Lz | =Lz | —Ls| =Ly | =Ly | +1
—L, —L3 | =Lz | =Ly | =Ly | =Ly | =Ly | +14

0 Ly | —Ls | Ly | —L,| 0 0 | +L,
+L, —L3 | =Ly | =L, 0 0 +Ly | +Ls
+L, =Lz | =L | =14 0 +Ly | +Ly | +Ls
+L3 —Ly | +Ly | +Lq | +Lq | +Lo | +Ls | +L3

Proof: Assume that there exists a LT representation for such a ¢, which is defined by
assigning real values to the elements of the message alphabet M, the threshold set .7,
and the set ). Since ®,(—C, —L;, Ly) = — L4, the following inequality must be satisfied

Ly — L, +C2>T1. (2.3)
Also since ¢,(—C, 0, L;) = 0, we have
IC—Li| <T) (2.4)
From Eq. (2.3) and Eq. (2.4), we get
Li—Ly+C>|C— L (2.5)
If C> L, then 2L, > Ly. If L > C, then
Li—Ly+C>L1 —C=20C>Ly=2L; > Ly (2.6)
But since ¢,(—C,0, —Ly) = — L3 and ®,(—C, — Ly, —L1) = — Lo, we have
Lo+ C>20L1+C= Ly >2[4 (2.7)

Clearly Eq. (2.7) contradicts Eq. (2.6), and therefore such a @, is not an LT function.
Hence, it is an NLT function [ ]

Consequently, the map defined by Table 2.2 is an NLT function. Fig. 2.4 shows
the error-rate performances of the 5-level NLT and 7-level LT FAIDs defined in the two
examples, and the 7-level NLT FAID defined by the Table 2.2, along with the floating-
point BP and min-sum decoders on the well-known R = 0.4129 (155, 64) Tanner code
[27] which has girth-8 and d,,;, = 20. The maximum number of iterations allowed
was 100 for all decoders. It is evident from the plot that all three FAIDs (which require
only three bits of precision) significantly outperform the floating-point BP and min-sum
decoders, with 7-level NLT FAID performing the best.
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—0—Min-sum(floating-point) |

Frame error rate (FER)
[y
O\

—0—BP(floating-point)
—&—5-level NLT FAID

—®—7-level LT FAID
—4—"7-level NLT FAID

10°
Cross-over probability («)

Figure 2.4: Performance comparisons between the floating-point decoders: BP and min-
sum , and the 3-bit precision decoders: 5-level NLT, 7-level LT, and 7-level NLT FAIDs
on the (155, 64) Tanner code.

Note that a particular choice of [I; j]1<i<n, 1<j<n, gives rise to a particular ®,. There-

fore, it can be deduced from this representation that the total number of symmetric maps
Ns

possible for @, is NS( 2 )+NS, which is a prohibitively large number for decoder selec-
tion. In order to restrict the number of FAIDs considered, we disregard the maps that
do not exhibit a “typical” behavior observed in soft message passing decoders which is:
for a given y; at a node v;, the value of the outgoing message is always non-decreasing
with the increase in the values of the incoming messages. For instance, all FAIDs with
maps ®, such that &,(—C, Ly, Ly) = Ly ®,(—C, Lo, Ly) = Ly are forbidden, since
®,(—C, Ly, Ly) should not be less than &,(—C, Ly, Ly). We incorporate this property
into ®,, by enforcing a constraint called lexicographic ordering.

Definition 2.2 (Lexicographic ordering). A FAID is said to be lexicographically ordered
if ®, satisfies the following property.

D, (=C,mq,...,mg,—1) > Pu(—=C,mi,...,my _4) (2.8)
Vm; > m) wherei € {1,...,d, — 1}

The ordering significantly reduces the number of FAIDs considered but still allows
many good FAIDs to be included for possible selection.

Definition 2.3 (Class-A N,-level FAID). A class-A N-level FAID is a symmetric lexico-
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graphically ordered FAID for column-weight-three codes.

Note that the three FAIDs described previously satisfy the lexicographic ordering
property. Additional numerical results are also provided to demonstrate how a particu-
lar FAID (in this case the 7-level LT FAID) that is good on one code is capable of sur-
passing BP on several other codes as well. Fig. 2.5 and Fig. 2.6 show the performance
comparisons between BP, min-sum, and the 7-level LT FAID on a R = 0.75 (768, 576)
quasi-cyclic code which has girth-8 and d,,;,, = 12, and a R = 0.82 (4095, 3358) random
MacKay code which has girth-6, respectively.

1 —O—Min-Sum (floating-point)
10 ——BP (floating-point) ‘ ‘
_of| —®—T-level LT FAID :
10° — :

Frame error rate (FER)

10° 10°
Cross-over probability ()
Figure 2.5: Performance comparisons between the floating-point decoders: BP and min-
sum , and the 3-bit precision 7-level LT FAID on a R = 0.75 (768,576) quasi-cyclic
code.

Clearly, the 7-level LT FAID surpasses BP and min-sum on both codes in the error
floor. Although all the numerical results above show that the 7-level LT FAID (which was
mainly provided to serve as an example) is particularly good, we have generally found
that the best FAIDs for a given code are NLT FAIDs especially on codes that have larger
code length and higher code rates. We also found that NLT FAIDs have a greater ability
to surpass BP on a wider range of codes compared to LT FAIDs. We will subsequently
explain the methodology used to identify good FAIDs which involves choosing the ap-
propriate 2D array (or LUT) that defines ®,. But before we delve into this, a natural
question that arises at this point is the number of class-A FAIDs that exist. This can be
easily enumerated by establishing a connection between class-A FAIDs and symmetric
plane partitions.
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—O—Min-Sum (floating-point)
—+—BP (floating-point)
—&—7-level LT FAID

Frame error rate (FER)

Cross-over probability («)

Figure 2.6: Performance comparisons between the floating-point decoders: BP and min-
sum , and the 3-bit precision 7-level LT FAID on a R = 0.82 (4095, 3358) MacKay code.

2.2.3 Symmetric plane partition representation of ¢,

A symmetric plane partition 7 is an array of nonnegative integers (7; ;);>1 j>1 such that
Tij = Titlj» TWij = Tij41 Vi,j > Landm; =7 Ifm; =0Ve >randV j > s, and
if m; ; <t Vi, j, then the plane partition is said to be contained in a box with side lengths
(1, s,t). The value 7, ; is represented as a box of height ; ; positioned at (i, j) coordinate
on a horizontal plane.

Due to the imposition of the lexicographic ordering and symmetry of ®,, there exists
a bijection between the array [/; ;]1<i<n. 1<j<n, and a symmetric plane partition contained
ina (N, x Ny x Ny — 1) box, where each m; ; is determined based on [, ;. Fig. 2.7 shows
the visualization of a plane partition corresponding to ®,, of the 7-level FAID defined in
Table 2.2.

Kuperberg in [91] gave an elegant formula for the enumeration of symmetric plane
partitions contained in a box of dimensions (r,r,t). We can directly utilize this formula
in order to enumerate the number of class-A N,-level FAIDs.

Theorem 2.1 (Number of Class-A Ny-level FAID). The total number K A(Ny) of sym-
metric lexicographically ordered Ng-level FAIDs is given by

Hy(3N,)Hi(N,) Ha(N, — 1)
Ka(Ns) = Hy(2N, + 1)H (2N, — 1)

where Hi(n) = (n— k) (n —2k)! (n — 3k)!... is the staggered hyperfactorial function.
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’1>v(—c7m17m2)

Figure 2.7: A visualization of the plane partition as stacked boxes for the 7-level FAID
whose ®,, is described in Table 2.2.

Proof. The proof of the theorem follows from the bijection between the map @, of a
class-A FAID and a symmetric boxed plane partition.

The total number of class-A FAIDs for N, = 5 and Ny, = 7 levels are 28,314 and
530,803,988 respectively. Henceforth, we shall only consider class-A FAIDs (and simply
refer to them as FAIDs).

2.2.4 Isolation assumption and critical number

Earlier in Section 2.1, we illustrated through the example as to how the knowledge of
a potentially harmful subgraph could be used to design variable node update functions.
However, note that the neighborhood of the subgraph was ignored when we analyzed the
message passing. In other words, we carried out the message passing on the subgraph in
an isolated manner. We refer to this assumption on the subgraph that was inherently used
in the example as the isolation assumption.

The isolation assumption is a pivotal notion that enables us to analyze the message
passing on potentially harmful subgraphs (or trapping sets) for different FAIDs. It is a
specific condition on the neighborhood of the subgraph such that the messages flowing
into the subgraph from its neighborhood are not in any way influenced by the messages
flowing out of the subgraph for certain number of iterations. It enables us to to extend the
important concept of critical number, which was a measure of harmfulness originally in-
troduced for Gallager B (refer to Section 1.3.2 in Chapter 1, to message-passing decoders
other than Gallager B (such as the FAIDs).

Before we formally define the concept of isolation assumption, we first require the no-
tion of computation tree [42] and introduce some notations. Note that during the analysis
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of any decoders, the all-zero codeword assumption is used.

Definition 2.4. A computation tree corresponding to a message-passing decoder of the
Tanner graph G is a tree that is constructed by choosing an arbitrary variable node in G
as its root and then recursively adding edges and leaf nodes to the tree that correspond to
the messages passed in the decoder up to a certain number of iterations. For each vertex
that is added to the tree, the corresponding node update function in G is also copied.

Let G be the graph of a code C with variable node set V' and check node set C'. Let
H be the induced subgraph of a trapping set (a, b) contained in G’ with variable node set
P C V and check node set W C C. Let N (u) denote the set of neighbors of a node u. Let
7%(@G) be the computation tree of graph G corresponding to a decoder .% enumerated for
k iterations with variable node v; € V as its root. Let W’ C W denote the set of degree-
one check nodes in the subgraph H. Let P* C P denote the set of variable nodes in H
where each variable node has at least one neighbor in WW’. During decoding on G, for a
node v; € P’, let 11; denote the message that v; receives from its neighboring degree-one
check node in H in the [*" iteration.

Definition 2.5. A vertex w € F*(G) is said to be a descendant of a vertex u € T*(Q)
if there exists a path starting from vertex w to the root v; that traverses through vertex
u. The set of all descendants of the vertex u in T*(QG) is denoted as D(u). For a given
vertex set U, D(U) (with some abuse of notation) denotes the set of descendants of all
uwel.

Definition 2.6. 7.*(H) is called the computation tree of the subgraph H enumerated for
k iterations for the decoder .7, ifV c; € W', p is given for all | < k, and if the root
node v; € P requires only the messages computed by the nodes in H and i, to compute
its binary hard-decision value.

We now provide the definition for isolation assumption as follows.

Definition 2.7 (Isolation assumption). Let H be a subgraph of G induced by P C 'V with
check node set W C C. The computation tree T,*(G) with the root v; € P is said to be
isolated if and only if for any node u ¢ PUW in T*(QG), u does not have any descendant
belonging to PUW. If 7%(G) is isolated Yv; € P, then the subgraph H is said to satisfy
the isolation assumption in G for k iterations.

Essentially the isolation assumption of a subgraph validates the number of iterations
for which message passing can be carried out on a subgraph in an isolated manner ignoring
its neighborhood, which is done by treating it as if it were an arbitrary Tanner graph (of
some code), provided that the messages passed from the degree-one check nodes of H in
each iteration are known or determined a priori.

Note that the isolation assumption is a purely topological condition on the neighbor-
hood of H, as it is dependent only on the particular graph GG containing H and not on
the decoder being used. Also note that the isolation assumption can still be satisfied even
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Figure 2.8: Subgraph H corresponding to a 7 (6,2) trapping set contained in G: (a)
Tanner graph of H; (b) computational tree 7;2(G)

when there are nodes in H that appear multiple times in .7*(G). Whereas Gallager’s
independence assumption [1] will be violated if any node in H is repeated in Z;*(G).
Hence, isolation assumption is a weaker condition than independence. For clarity, we
illustrate with an example shown in Fig. 2.8.

Example 2.3. Let us assume that the graph G of code C contains a subgraph H corre-
sponding to a T (6, 2) trapping set. Fig. 2.8 shows the subgraph H, and the computation
tree T3(G) of graph G with vs as its root enumerated for two iterations. The B denotes
a odd-degree check node present in H. The solid lines represent connections within sub-
graph H and the dotted lines represent connections from the rest of the graph G outside
the subgraph H. The isolation assumption is satisfied for two iterations if none of the
descendants of a node u which is outside H and represented by a dotted circle in T2 (G)
are nodes in H. But the independence assumption does not hold for two iterations.

In order to enable the message passing of a particular decoder on a subgraph H un-
der isolation assumption, we need to know the messages passed from the degree-one
check nodes of H in each iteration. Assuming that the decoder .# is a FAID, this can be
computed without knowledge of its neighborhood through the following theorem (under
all-zero codeword assumption).

Theorem 2.2 (Isolation theorem). Let H be a subgraph of a 3-left-regular graph G in-
duced by P C 'V with check node set W C C'. Let W' C W denote the set of degree-one
check nodes in H and let P' C P denote the set of variable nodes in H for which each
has at least one neighbor in W'. Consider decoding on G with FAID 7. If r is received
from the BSC such that supp(r) C P, and if H satisfies the isolation assumption in G for
k iterations, then for each c; € W', the message from c; to its neighbor in H in the "
iteration denoted by L, is the output of ®,(C, py_1, p—1) ¥l < k, with g = 0.
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Proof: Firstly, since supp(r) C P and all messages are initialized to zero, all nodes
v; € V\ P are initially correct, and every variable node initially sends ®,(y;, 0, 0).

Now consider a computation tree .7 (G) where | < k with v, € P’ as its root. Due
to the isolation assumption of / in G satisfied for £ iterations, for any c; € N(vg) "W,
D(cj) N (P UW) = (). Therefore all nodes v; € D(c;) are initially correct. Let ¢ denote
the level of depth involving variable nodes in .7'(G) such that level ¢ = 0 denotes the
base and level ¢ = [ denotes the root of the tree. Let D@ (c;) denote the variable node
descendants of ¢; € N (v,)NW’ atlevel q of the tree 7 (G). Atq = 1, due to the nature of
®. for FAID .# along with the fact that every correct node initially sends ®,(C, 0, 0), any
v; € D(l)(cj) receives the message 111 = ®,(C,0,0), from its leaf check nodes. Again,
since D(c;) N (PUW) = 0, at ¢ = 2, any v; € DP(¢;) receives pg = ,(C, puy, p11).
By induction, this can be generalized to any level g, where any node v; € D(Q)(cj),
receives /i, = @, (C, p14—1, ptg—1) from its leaf check nodes. Therefore the root v, receives
= Pu(C, py—1, pu-1)- u

Although the theorem is stated specifically for column-weight-three codes, it can be
generalized to left-regular codes of higher column-weight as well. Also the isolation
theorem can be restated for the min-sum decoder through the following corollary.

Corollary 2.1. Consider the min-sum decoder for column-weight-three codes with )Y =
{£1}. If subgraph H contained in G satisfies the isolation assumption for k iterations,
and if all variable nodes outside H are initially correct, then | of the degree-one check
node for the min-sum decoder is 2,1 + 1.

Corollary 2.2. If H is a subgraph contained in GG such that it satisfies the isolation as-
sumption for k iterations, and if all variable nodes outside H are initially correct, then
the computation tree T.*(G) with v; € P is equivalent to T*(H), provided 1, for each
degree-one check node in H is computed using the isolation theorem.

The above corollary implies that we can analyze error patterns on isolated potentially
harmful subgraphs and this can be useful for deriving good FAIDs. With the help of
isolation assumption and theoem, we can now extend the concept to critical number to
FAIDs through the definition below.

Definition 2.8. The critical number of a FAID denoted by .% on a subgraph H is the
smallest number of errors introduced in H for which % fails on H under the isolation
assumption.

Given the subgraph of a potential trapping set, the critical number can be determined
for a given FAID by introducing errors into nodes of the subgraph, and decoding under
isolation assumption. The critical number of .# on H is said to be oo if .# corrects all
possible error patterns on . A FAID could then be chosen based on maximizing the
critical number on the trapping set. Another important parameter to be considered is the
number of iterations required for the decoder to successfully converge. Since the isolation
assumption will not hold for more than few iterations in a actual graph GG containing the
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subgraph, it is important that the FAID is not only able to have the highest critical number
but also achieves this with the fewest iterations.

For example, consider the subgraph corresponding to a 7(9,5) TS which contains a
7(6,2) TS shown in Fig. 2.9. This subgraph is present in the graph of the R = 0.75
(768,576) quasi-cyclic code. The subgraph contains three degree-one check nodes and
two degree-3 check nodes for a total of five odd-degree check nodes. The three nodes
initially in error are vy, v, and vs.

Figure 2.9: Subgraph corresponding to a 7 (9, 5)

Under isolation assumption, the 7-level LT FAID (defined in Ex. 2.2) takes three
iterations to successfully converge on the subgraph whereas the floating-point min-sum
decoder takes four iterations to converge. Now when decoding was carried out with the
same error pattern on the graph G instead of on the subgraph, the 7-level LT FAID still
successfully corrected the 3-error pattern in three iterations, but the min-sum decoder
failed on the 3-error pattern. This is because the isolation assumption of the subgraph was
violated by the fourth iteration in (7, and the influence of the neighborhood began to affect
the message passing causing the min-sum decoder to fail. Therefore, number of iterations
required for convergence is also important to consider.

In principle, one could consider a database of subgraphs which are potential trapping
sets that are generated either through analytical or empirical evaluations of traditional
decoders such as BP and min-sum on several different codes, and then select a FAID
based on its critical numbers and number of iterations required for convergence on all
these trapping sets. For instance, in [92], we utilized the subgraphs corresponding to
the minimum-weight (weight-20) codewords of the (155, 64) Tanner code as the trapping
sets, and then selected the best FAIDs based on their respective critical numbers on these
trapping sets.

A major drawback with designing the FAIDs solely based on critical number is that
if trapping sets of smaller size are considered, the critical number may not reflect the
true error-correction capability of the FAID on a code containing the trapping set as the
isolation assumption typically does not hold in an actual code for more than few iterations.
Therefore, unless a very large database of trapping sets is considered or unless trapping
sets with large sizes are considered such that isolation assumption holds for many more
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iterations (as done in [92] which considered the weight-20 codewords), the strategy will
remain ineffective. In the next section which addresses the methodology for selection, we
will introduce a more refined notion of the critical number of the trapping set that to an
extent takes into account the influence of its neighborhood.

2.3 Selection of Finite Alphabet Iterative Decoders

In the previous section, we enumerated the number of all possible class-A N;-level FAIDs
using symmetric plane partitions, and it is evident from the large numbers that identifying
particularly good FAIDs is highly non-trivial. In this section, we shall describe a general
approach that can be used to identify a subset of candidate N,-level FAIDs, one or several
of which are potentially good for any given column-weight-three code. Our main aim
behind this approach is to restrict the choice of FAIDs to a possibly small subset contain-
ing good candidates. Given a particular code, it would then be feasible to identify the
best performing FAID from this small subset by using brute-force simulation or emula-
tion or some other technique on the given code. Moreover, since the actual performance
of a FAID on a given code depends on its structure, the goal of identifying several candi-
date FAIDs is more realistic than identifying a single particularly good FAID and allows
for devising a selection method that is not code-specific. Another important objective of
our approach is to ensure that any candidate FAID belonging to this subset is capable of
surpassing BP in the error floor not just on a single code but on several codes.

The approach we use relies on the knowledge of potentially harmful subgraphs that
could be trapping sets for traditional iterative decoders when present in a given code.
The candidate FAIDs are chosen by analyzing their behavior on each of these subgraphs
with errors introduced in them. We will first introduce some important notions that form
the basis of our approach, and then subsequently present a methodology based on these
notions to identify particularly good FAIDs for column-weight-three codes. Note that for
the methodology, we only consider (a, b) elementary trapping sets of relatively small size
for which b > 0.

2.3.1 Noisy trapping sets and noisy critical numbers

Let us consider a subgraph with topology 7 that has been identified as a harmful subgraph
that could be a potential (a, b) trapping set on a given code. We introduce the notion of
initialization vector which will allow us to partially capture the influence of its arbitrary
(unknown) neighborhood during the analysis of a FAID on the 7.

Definition 2.9. An initialization vector on a trapping set T (a,b) is defined as a vector
© = (04,...,0,) where 0; € M, such that during the message passing of a FAID on T,
the message passed by the i'" degree-one check node in any iteration is 0;. The TS T (a, b)
is said to be initialized by such a vector and is referred to as a noisy trapping set.
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In other words, a FAID is still analyzed under isolation assumption of the TS 7T (a, b)
but with subtle difference that the initialization vector specifies the messages passed by the
degree-one check nodes instead of the isolation theorem. A FAID can now be analyzed
by introducing errors into the variable nodes of the TS 7 (a,b) and passing messages
iteratively on the edges of 7 under a given initialization vector. Note that we consider
only static initialization vectors, i.e., the initialization vector © is not iteration-dependent.

As an example, Fig. 2.10 depicts how a FAID is analyzed for a three-error pattern
on a 7 (6,2) initialized by a vector ® = (6;,605). A @ denotes a variable node initially
wrong (vy, vy, and vy) and a O denotes a node initially correct (v3, vs, and vg). A O
denotes a degree-two check node and a m denotes a degree-one check node. Initially all
the messages passed by all nodes except the degree-one check nodes are set to zero. Then
the messages are iteratively updated using the maps ®, and @, in the usual manner by
treating the topology 7 as if it were an arbitrary graph (under isolation assumption) but
with the exception that a degree-one check node sends 6, (or ) to its neighbors in all
iterations of the message passing. The message update on a single edge from a variable
node is shown in the figure for each of the nodes vy, v, v3 , and v5 (v4 and vg are similar
to vy and w3 respectively). Note that the messages mq, mo, ..., mg denote the extrinsic
incoming messages to these nodes.

q)v (C' my, mS)

®,(=C,my,mz) @,(—=C, 6y, my)

Figure 2.10: An example of a noisy 7 (6, 2) initialized by a vector ©.

Let N; denote the maximum number of iterations allowed for message passing on TS
T (a,b) during the analysis of a FAID. We examine whether an error pattern is corrected
by the FAID within N iterations under a given initialization vector on the TS 7 (a, b).

Our main intuition for defining such a notion is as follows. Let us consider a code
whose graph G contains a subgraph H that is isomorphic to the topology 7 (a,b). Assume
that a particular FAID is being used for decoding an error pattern where some (or all) of
the variable nodes in H are initially in error and the nodes outside H are initially correct.
During each iteration of decoding, different possible messages belonging to M will be
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passed into the nodes of H from outside of H depending on its neighborhood.

The initialization vector can be considered as a possible snapshot of the messages
entering H through its check nodes in some arbitrary iteration, and different initializa-
tions represent the different possible influences that the neighborhood of H can have.
Therefore, analyzing the FAID under different initializations on a given 7 can provide
a reasonably good indication of its error correction capability on a code whose graph G
contains H.

Although the initialization vector should ideally be iteration-dependent and include all
messages passed to all check nodes of 7 (a, b) from outside of 7 (a,b), this would make
analyzing a FAID on 7 (a,b) computationally intractable. Therefore we only include
constant values that are passed to degree-one check nodes into the initialization vector.

We now define the notion of noisy critical number which is an extension of the notion
of critical number defined in the previous section, and which will be used as the main
parameter for the selection of FAIDs.

Definition 2.10. The noisy critical number of a FAID under a given initialization vector
© on a trapping set T (a,b) is the smallest number of errors introduced in T (a,b) for
which the FAID fails on T (a, b).

By determining the noisy critical number under every possible initialization vector
© € M’ onthe TS T (a,b), a vector of noisy critical numbers, which we refer to as noisy
critical number vector (NCNV), can be obtained for a particular FAID. Let Ng denote the
number of all possible initialization vectors, i.e., Ng = |Mb] The noisy critical number
vector of a FAID denoted by .# on a given TS 7 (a, b) is given by

/VQ(T(G’ b)7NI) = (ClaCQa - 7CN(—))

where (; is the noisy critical number determined under a initialization vector @; € M?
on TS 7T (a,b) with N; being the maximum number of allowed decoding iterations. The
NCNYV can now be used to identify which candidate FAIDs are potentially good.

2.3.2 Choice of trapping sets for decoder selection

Since our approach for identifying good FAIDs relies on determining the NCNVs of
FAIDs on different trapping sets, the first step in the decoder selection is to carefully
select the harmful topologies that should be considered for the analysis. The selected
trapping sets should be topologies that are known to exist in practical high-rate codes
with dense graphs and are regarded as relatively harmful for existing iterative decoders.
Also the trapping sets used in the analysis should have notable differences in their topo-
logical structures, so that the candidate FAIDs identified from the analysis are more likely
to be good on several codes rather than just on a single code.
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We use the TSO [62] to determine which harmful topologies to consider. The TSO was
introduced earlier in Chapter 1 as a hierarchy of trapping sets based on their topological
relations in the form of a parent-child relation. For the decoder selection, the trapping
sets are chosen such that they do not have many common parents, and that most of the
parents (graphs of smaller size) in the TSO are considered. For simplicity, we ensure that
all the trapping sets selected have the same value of b, so that the NCNVs determined
from different trapping sets all have the same dimension.

2.3.3 Decoder domination

Having selected the harmful topologies, the next step in the decoder selection is to deter-
mine and be able to compare the NCNVs of different FAIDs on all the selected trapping
sets. We introduce the notion of decoder domination in order to make the comparison
between different FAIDs based on their NCNVs.

Let the set of chosen trapping sets for the analysis of FAIDs be denoted by A =
{1, T3, ..., Ty, } with cardinality Ny. Let ¥ = {Dy,..., Dy, } denote the set of class-
A Nj;-level FAIDs considered for possible decoder selection with cardinality Nz. Let
%k(ﬁ, Ny) denote the NCNV ofaFAID D, € F determmed onaTS 7; € A, and let

Dk (7;, Ny) denote the i component of the NCNV, i.e., JV (7;, Np) = ¢, where (; is
the noisy critical number of FAID D;, under the initialization Vector ©;.

A FAID Dy, is said to dominate a FAID D; for a given initialization vector ©;, if
MNT;, Ni) > AS(T;, Ni) Vi€ {1,2,..., Na}

In other words, D, dominates D; under a given initialization vector ®); if the noisy critical
numbers of Dy are greater than or equal to the noisy critical number of D; on all the
trapping sets belonging to A.

The number of initialization vectors under which D, dominates D; is denoted by
n(Dyg, D;) and is given by

No Nj

(D, D) = 3 [T (A (T3 Ni) 2 A5 (T, Ni))

i=1j5=1
where 1 denotes the indicator function that outputs a one when the condition in its argu-
ment is true and zero otherwise.

If n(Dg, D;) > n(Dy, Dg), then Dy, is said to dominate D; with domination strength
n(Dg, D;) — n(Dy, Di). For simplicity we shall use the symbol > to denote domination,
i.e., (Dy > D;) = 1 implies that D;, dominates D;.
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2.3.4 Methodology for selection: a general approach

For a given value of /Ny, a methodology for identifying good N,-level FAIDs can now
be devised based on the notions of decoder domination and the NCNVs. We remind
the reader that the main goal of our approach is to be able to identify a small subset
of candidate N,-level FAIDs, where each candidate FAID is potentially good on several
codes. Let this small subset of selected candidate FAIDs be denoted by .. Ideally, if a
candidate FAID could be selected solely based on how it dominates all the other FAIDs
in F, then one could possibly obtain an ordering of the FAIDs in F in terms of their
dominance and conclude as to which ones are more likely to be good on a particular code
containing one or more of the trapping sets in A. Unfortunately, we have found that such
an ordering does not exist since there can be many FAIDs that dominate a particularly
good FAID (known a priori to be good) and yet perform poorly on certain codes.

Therefore, without going into the details, we shall describe a general approach for
selection that utilizes pre-determined small sets of good FAIDs and bad FAIDs denoted
by F, and F, respectively. The set F; consists of /V,-level FAIDs that are known a priori
to have good error floor performance on several codes of different rates and possibly
containing different trapping sets. The set F;, consists of N;-level FAIDs that were found
to perform well on one particular code but perform poorly on other codes. We regard
FAIDs in F to be bad since our goal is to identify FAIDs that are capable of surpassing
BP on several codes.

We then evaluate whether a particular FAID D, € F dominates or is dominated by
the FAIDs in the sets F, and F;. By using the sets F, and J;, to compare with, we
are inherently trying to select FAIDs whose NCNVs have characteristics similar to the
NCNVs of FAIDs in F, but dissimilar to the NCNVs of the FAIDs in F;,. Therefore, we
define a cost function denoted by %, that is based on domination strengths and whose
value determines whether the FAID Dj, should be accepted for inclusion into F.. We have
observed that it is crucial for a candidate FAID to dominate most (or all) FAIDs in F,
and also not be dominated by most (or all) FAIDs in F, in order for it to be considered
potentially good. This aspect is reflected in the cost function 67 which is defined below.

©x(Dy) = 3 (7/(Dk, Ds) — #(Ds, Dy))

i: D;€Fg,(Dp>Dy)=1

+ > (7(D, D;) — (D, Dy))

VE D]‘Efb,(DkDDj)Zl

- 3 ((Di, Di) — (D, D;))

i: D;€F4,(D;i>Dy)=1

_ 3 (#(D;, Dy) — 7i(Dy,, D))

J: DJ'GJ:b,(DjDDk):l

(2.9)

The value of the cost function % is compared to a threshold 7. If €;(Dy) > 7,
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then the FAID Dy, is selected as a candidate to be included in F, else it is rejected. The
cardinality of F. depends on 7 since a smaller 7 accepts more FAIDs and a larger 7
accepts less FAIDs. The choice of N; also plays a role and should generally be chosen to
be small (5 to 10 iterations).

Note that the approach we have just presented is slightly different from the one pro-
posed in [94]. In [94], the selection algorithm assumes it has no a priori knowledge on
the sets F, and J, and then tries to progressively build the sets before using them to
identify good candidate FAIDs. Instead, by utilizing pre-determined sets of F, and F;
in our approach, we have found that the selection procedure is greatly improved and we
were able to obtain much better sets of candidate FAIDs F.. (in terms of their error floor
performance). Note however that the approach of [94] is still applicable to the selection
method presented in this Section as it could still be used as an initial step for determining
the sets F, and F,.

Using our methodology, we were able to derive a set of good candidate 7-level FAIDs
(which are 3-bit precision decoders) for column-weight-three codes. On a variety of codes
of different rates and lengths, particularly good 7-level FAIDs chosen from . all out-
performed the BP (floating-point) in the error floor. Moreover, the loss in the waterfall
compared to BP was found to be very reasonable. The numerical results to support this
statement are provided in the next section. Another interesting remark related to our se-
lection procedure that we have found is that, although the density evolution (DE) was not
used as part of the selection method to ensure good threshold values, the candidate FAIDs
that we obtained in set F,. were all found to have fairly good DE thresholds.

2.4 Numerical results

Earlier in Section 2.2, we demonstrated the capability of 3-bit precision FAIDs to outper-
form BP in the error floor on the well-known (155, 64) Tanner code, a high-rate girth-8
quasi-cyclic code, and a girth-6 random MacKay code. In this section, we provide addi-
tional numerical results on girth-8 column-weight-three codes of higher practical interest
in order to validate our approach for decoder selection and illustrate the efficacy of FAIDs
derived from the selection. The three codes used for the simulations were chosen to cover
a broad variety of LDPC codes in terms of rate, length, and structure. They are:

1. an R = 0.751 (2388, 1793) structured code based on latin squares,
2. an R = 0.5 (504, 252) code,
3. an R = 0.833 (5184, 4322) quasi-cyclic code.

The (2388,1793) structured code was constructed using the method of Nguyen et
al. [72] which is based on Latin squares and avoids certain harmful trapping sets in the
Tanner graph of the code. The R = 0.5 (504, 252) code with girth-8 was designed using

51



Chapter 2 — Decoding Beyond BP

the progressive edge-growth (PEG) method of [93] but with the additional constraint that
it contains no (5,3) TS (see Fig. 1.6 for the topology). The (5184, 4322) quasi-cyclic
code is an example of a high-rate girth-8 quasi-cyclic code that was designed for having
a minimum distance of 12.

Figures 2.11, 2.12, and 2.13, show the frame error-rate (FER) performance compar-
isons versus the cross-over probability « of the BSC between the particularly good 7-level
(3-bit precision) FAIDs we identified and the BP (floating-point). The 7-level FAID used
on the (2388, 1793) code and the (5184, 4322) quasi-cyclic code is defined by Table 2.2
which was already previously established as an NLT FAID. The 7-level FAID that was
used on the (504, 252) PEG-based code is defined by Table 2.3, which is also an NLT
FAID due to the diagonal entries in Table 2.3. Both 7-level NLT FAIDs were candidate
FAIDs identified using the approach we described in the previous section. All decoders
were run for a maximum of 100 iterations.

Table 2.3: LUT for @, of a 7-level FAID with y; = —C
‘ ml/m2 H —L; ‘ —L, ‘ —L, 0 ‘ +L, ‘ +L, ‘ +Ls ‘

—Ls || -Ly | =Ly | =Ly | —Ls | —Ls | —Ls | 0O
—Ly || —Ly | =Ly | =Ly | =L, | —L, | —L, | L,
—Li || =Ly | =Ly | =Ly | =L, | =L, | 0 | L,
0 Ly | Lo | =Lo | =L, | 0 | L | L,
L Ly | —Ly | =L, | 0 0 | L, | L,
L, Ly | -Li| 0 | Ly | Li | Ly | Ly
Ls 0 | L | Ly | Lo | L, | Ly | Ly

In all three codes, the 3-bit precision 7-level FAIDs begin to surpass the BP in the
error floor at an FER~ 107°. Specifically, for the (2388, 1793) structured code, it is worth
mentioning that this code was optimized for the best known BP performance in terms of
error floor for the given code parameters by ensuring that the graph of the code is devoid
of certain harmful trapping sets during its construction. We see that even for such a code
designed for better error floor performance, the 7-level NLT FAID is able to surpass BP.
This validates our argument we made in Chapter 1 that efforts to address the error floor
from a code construction viewpoint has its limitations especially when involving higher
code rates. Furthermore, the result also shows that FAIDs are capable of surpassing BP
not just on codes exhibiting high error floors due to poor constructions but even on codes
optimized for improved error floor performance.

Also notice the difference in the better slopes of the error floor for the 7-level FAIDs
which can be attributed to their enhanced guaranteed error correction capability. For
instance, both the 5-level and 7-level FAIDs used on the (155, 64) Tanner code in Fig. 2.4
guarantee a correction of 5 errors, whereas BP fails to correct several 5-error patterns.

Also included in Fig. 2.11 are results provided to illustrate the ineffectiveness of
designing FAIDs solely based on their asymptotic thresholds evaluated from density evo-
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Figure 2.11: Performance comparisons between the BP (floating-point), the 5-level, and
the 7-level FAIDs on the (2388, 1793) structured code. The best 7-level NLT FAID used
is defined by Table 2.2.
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Figure 2.12: Performance comparisons between the BP (floating-point) and the 7-level
NLT FAID defined by Table 2.3 on the (502, 252) PEG-based code.
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Figure 2.13: Performance comparisons between the BP (floating-point) and the 7-level
NLT FAID defined by Table 2.2 on the (5184, 4322) quasi-cyclic code.

lution [19]. For the R = 0.75 (2388, 1793) structured code, we identified the 5-level
and 7-level FAIDs with the best thresholds o* for the degree profile of the code. The
5-level FAID has a threshold of a* = 0.025134, and the 7-level FAID has a threshold of
o = 0.025244. Additionally, the result of another 5-level FAID that surpasses BP is also
included in Fig. 2.11, which is defined by the following constraints on the values of M,
7, and the function 2: Ly = Ly + C,C = 1.5Ly, Ty = Ly, T = Lo, and €2 given by

Q(my,mg) =1— (sign(ml) ® sign(mg)) ~0(Jma| 4 |ma| — 2L,).

It is evident from the results that FAIDs with best thresholds are not necessarily the best
performing FAIDs, and in fact they can even have high error floors as exhibited by the
S-level FAID. This verifies the inapplicability of using the decoding threshold as a pos-
sible design parameter for identifying FAIDs with good error floor performance. More
evidence for this argument is provided in [94].

We finally remark that although numeral results in this section were provided for
only three codes, the good 7-level FAIDs identified using our approach outperformed
BP on several other tested codes as well. Therefore, the methodology is applicable to any
column-weight-three code and provides to an extent “universally” good FAIDs, as they
are all capable of surpassing BP on not just few but several column-weight-three codes
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2.5 Conclusions

In this Chapter 2, we introduced a new paradigm for finite precision iterative decoding of
LDPC codes on the BSC. Referred to as FAIDs, the newly proposed decoders use node
update maps that are much simpler than BP yet capable of surpassing the floating-point
BP with only three bits of precision. We described the general framework of FAIDs with
focus on column-weight-three codes and provided examples of particularly good 3-bit
precision FAIDs that can have a higher guaranteed error correction capability than the
floating-point BP and min-sum. We also provided a general methodology to identify a
set of “universally" good FAIDs, one or several of which are potentially good for any
given column-weight-three code. Our methodology is thus not code-specific but rather
utilizes the knowledge of harmful topologies that could be potentially trapping sets for a
given code under iterative decoding. Using our methodology, we were able to identify
FAIDs that outperform the floating-point BP in the error floor on several column-weight-
three codes. The supporting numerical results show that it is possible to achieve a much
superior error-rate performance in the error floor at a much lower complexity and lower
memory requirements than BP by using FAIDs.
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Chapter

Decimation-Enhanced Decoding: Analysis
and Improved Error Correction

In the previous chapter, we proposed a novel approach to finite precision iterative decod-
ing and illustrated how FAIDs can be designed to have a much superior error-rate per-
formance than BP in the error floor without compromise in decoding latency. However,
despite their superior performance and improved guaranteed error correction compared to
BP, the proposed FAIDs are still far from achieving the guaranteed error correction abil-
ity of ML decoding. Moreover, the ability to analyze FAIDs in order to derive provable
statements in terms of guaranteed error correction still remains a challenge. The main
focus of this chapter is to address the above two issues. We approach these problems by
introducing the technique of decimation, which involves fixing certain bits of the code-
word to a particular value, and incorporating this into the variable node update function
of FAIDs in different novel ways, thus constituting two new classes of decoders, namely,
decimation-enhanced FAIDs and adaptive decimation-enhanced FAIDs for LDPC codes
on the BSC.

We first propose decimation mainly as a tool that enables the analysis of FAIDs. We
provide a simple decimation scheme for a particularly good 3-bit precision FAID (sur-
passing BP) that reduces the number of iterations required to correct a fixed number of
errors while maintaining the good performance of the original FAID. With the help of this
scheme, we provide insights into how the decoders can be analyzed to derive provable
results related to their guaranteed error correction capability. We then propose a more
sophisticated scheme that involves using decimation in an adaptive manner to further en-
hance the guaranteed error correction of a particularly good FAID in an effort to reduce
the gap between FAIDs and ML decoding. Specifically focusing on 3-bit precision FAIDs
for column-weight-three codes, we will show that on certain high-rate codes, the adaptive
decimation scheme proposed enables the decoders to achieve a guaranteed error correc-
tion ability that is close to ML decoding with only a marginal increase in complexity. We
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will also provide some analysis on these decoders which suggests that their failures are
linked to stopping sets.

3.1 Background

Finite-length analysis of message-passing (MP) algorithms for LDPC codes has always
been an important problem that received significant attention from the research commu-
nity. One of the early pioneering works on analyzing MP algorithms for a fixed number of
iterations was done by Wiberg [17] who introduced the notion of computation trees (which
was used in the previous chapter). For finite-length analysis of codes on the BEC, signif-
icant work was done by Di et al. [44] who introduced the notion of stopping sets. Sub-
sequently, Vontobel and Koetter [51] introduced the concept of graph cover decoding for
finite-length analysis of MP decoders. Kelly and Sridhara [52] proposed a pseudocode-
word analysis for LDPC codes and derived bounds on the minimum pseudocodeword-
weight of a given code. Burshtein and Miller used expander arguments which allows for
infinite iterations in the analysis of MP algorithms [25]. More recently, Chilappagari et
al. [65] provided bounds on the guaranteed error correction capability of Gallager A/B
decoding in relation to the girth on column-weight-three codes.

In spite of the aforementioned techniques proposed for finite-length analysis, the prob-
lem of analyzing soft MP algorithms such as FAIDs for a fixed number of iterations and
deriving bounds on their error correction capability still proves to be a difficult problem.
This is because the dynamics of MP becomes too complex beyond a certain number of
iterations as there is exponential growth in the number of nodes with the number of itera-
tions in the computation trees of the codes. In the context of FAIDs, even though they are
designed to surpass BP in the error floor, the convergence of a FAID for an error pattern in
a trapping set is heavily influenced by the neighborhood of the trapping set in a non-trivial
manner which complicates the analysis.

Furthermore, on the BSC, the importance of guaranteed error correction capability
was already established in Chapter 1 as it governs the slope of the error floor in the per-
formance of the decoder [64]. Therefore, it would be desirable to have an MP decoder
that is able to correct a fixed number of errors within the fewest possible iterations, and
for which we will be able to provide performance guarantees in terms of guaranteed cor-
rection capability. Even from a practical standpoint, this would be an attractive feature
with many present-day applications requiring much higher decoding speeds as well as a
high guaranteed error correction capability. In order to achieve this objective with FAIDs
and make them more amenable to analysis, we propose decimation-enhanced FAIDs for
LDPC codes on the BSC.

Decimation is a method based in statistical physics that was developed for solving
constraint satisfaction problems. It essentially involves guessing the values of certain
variables and fixing them to these values while continuing to estimate the remaining vari-
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ables. One of the notable works related to decimation is the work of Montanari et al. [95]
who proposed and analyzed a BP-guided randomized decimation procedure that estimates
the variables in the k-SAT problem. In the context of decoding LDPC codes, a similar no-
tion was proposed for LP decoding by Dimakis and Wainwright [96] in the form of facet
guessing, wherein the algorithm first runs LP decoding, and if a fractional pseudocode-
word is the decoded output, the algorithm then guesses facets of the polytope in either a
randomized or exhaustive manner to eliminate the fractional pseudocodeword and reruns
LP on those facets. Chertkov proposed a bit-guessing algorithm for LP decoding that is a
simplified version of the facet-guessing algorithm in order to reduce error floors of LDPC
codes [97].

In contrast to the aforementioned works, we utilize decimation in a novel way by
incorporating it into the decoding of LDPC codes so that certain variable nodes are deci-
mated after a few iterations of message passing, and a variable node is decimated based on
its incoming messages at the end of some iteration. In this manner, decimation primarily
serves as a guide to help the decoder to converge faster on low-weight error patterns. Our
main insight in the role of decimation is not necessarily in correcting more errors, but in
ensuring that more variable nodes in the graph that are initially correct are shielded from
the erroneous messages emanating from the nodes initially in error by decimating those
correct variable nodes.

We now discuss decimation with goal of correcting a fixed number of errors in fewest
iterations, and illustrating how it can help with the analysis of decoders. Later we will
show how decimation can also be used to further improve the guaranteed error correction
achievable by FAIDs.

3.2 Decimation As a Tool For Analysis

3.2.1 A motivating example

We illustrate the benefit of decimation through the following example. Note once again
that we shall use the all-zero codeword assumption for the analysis of decoders.

Let NV (u) denote the set of neighbors of a node  in the graph G and let N (U) denote
the set of neighbors of all u € U. Let m® (v, ¢;) denote the message being passed
from a variable node v; to the check node c;, in the k' iteration, and let m™®(c;, v;) be
defined similarly. Let m®)(v;, N'(v;)) denote the set of outgoing messages from v; to all
its neighbors in the k%" iteration, and let m™(c;, N'(¢;)) be defined similarly. Recall that
:?:E’“) denotes the bit value of a variable node v; € V' decided by the decoder at the end of
the k" iteration.

Consider a particular 4-error pattern on a Tanner graph G, such that the induced sub-
graph H of the four nodes in error is an 8-cycle as shown in Fig. 3.1. In the figure, @
represents a variable node initially in error, and O represents an initially correct node that
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is in the neighborhood outside /. The m and O denote the degree one and degree two
check nodes in the induced subgraph respectively. Let V'={v;, v9, v3,v4} denote the set
of nodes initially in error in H. Let C'={cy, c3, ¢5, ¢7 } denote the set of degree one checks
and C?={cy, ¢4, cs, cg } denote the set of degree two checks in H.

Figure 3.1: Subgraph induced by the 4-error pattern which forms an 8-cycle

We shall now examine the behavior of MP on this particular error configuration from
the context of N,-level FAIDs without any assumptions on its neighborhood. Messages
with a positive sign will be referred to as good messages, and messages with a negative
sign will be referred to as bad messages. Also a message is referred to as strongly good
(bad) or weakly good (bad) based on the magnitude of the message. For instance, a weakly
good or bad message refers to =14, and a strongly good or bad message refers to +1;
where L; > L.

Assuming that ®,(C, 0,0) = Ly, in the first iteration, for all v; € V', m™ (v;, N'(v;))
will consist of weakly bad messages, and for all v; € N'(C* U C?)\V’, m® (v;, N'(v;) N
(C1UC?)) entering into the subgraph will consist of weakly good messages. In the second
iteration, for all v; € V', m® (v;, N'(v;)NC?) will consist of either weakly good or weakly
bad messages depending on the ®,, but m?) (v;, A'(v;) N C') which consists of messages
sent to check nodes in C!, will be strongly bad assuming ®,(—C, —L;, —L;) = —Lo.
As a result, variable nodes v; € N(C*)\V’ will start receiving a strongly bad message
on at least one of its edges. Now if the decoder does not converge within the next few
iterations, then these bad messages become more strongly bad with circulation of bad
messages within /1, and this can subsequently spread further to other nodes in the graph
outside H depending how dense the neighborhood is. Eventually too many nodes get
corrupted by the bad messages being propagated in the graph causing the decoder to fail.

There are some important observations to note from the above discussion. Firstly,
at the k" iteration, there may have been many variable nodes v; ¢ N(C! U C?) whose
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decided bit value i:l(»k/) converged to the right value in some k' < k iteration, but eventually
these nodes became corrupted in the k*" iteration due to the bad messages flowing out of
the subgraph. Secondly, if certain variable nodes initially correct in the neighborhood of
H, are isolated from the bad messages possibly through decimation, then the decoder is
more likely to converge. This is the case especially when there are relatively fewer errors
introduced by the channel that are localized to a particular part of the graph (such as the
4-cycle), and this typically occurs in the high SNR (error floor) region. This is precisely
where decimation becomes beneficial and important.

From the example, we can see that the role of decimation is inherently linked to the
concept of isolation assumption which was defined in the previous chapter. Recall that
the isolation assumption is a condition on the neighborhood of a subgraph contained in
the graph such that the messages passed within the subgraph as well as messages entering
into it from outside are not influenced by the messages being passed in its neighborhood
and vice versa for certain number of iterations. In this context, the role of decimation can
be understood as trying to isolate the subgraph induced by the nodes in error from the rest
of the graph, so that the rest of the graph converges quickly and in turn helps to correct
the nodes initially in error.

It is important to note once again that the emphasis with regards to using decima-
tion is on low-weight error patterns typically associated with harmful trapping sets and
being able to correct these patterns in the fewest possible iterations. An error pattern is
considered to be low-weight if its weight is less than or equal to | (dpin — 1)/2].

3.2.2 Decimation-enhanced FAIDs

We now formally define the concept of decimation, introduce the required notations, and
describe the novel way in which it is incorporated into the message passing of FAIDs.
Note that the definitions are general enough to be applicable to any column-weight-d,
code, but we will eventually restrict our discussion to only column-weight-three codes.

Definition 3.1. A variable node v; is said to be decimated at the end of I'" iteration if
2" s set to #¥ Yk > 1. Then m® (v;, N'(v;)) = {(—=1)* L.}, Vk > [ irrespective of
its incoming messages m"™) (N'(v;),v;), i.e., v; will always send the strongest possible

messages.

Note that if a node v; is decimated at the end of [** iteration, then this is equivalent to
effectively deleting all its descendants D(v;) in the computation tree .7;*(G) Vk > [ since
the node always sends (—1)% Lj to its parent.

A decimation rule 3 : Y x M% — {—1,0, 1} is a function used at the end of some [*"
iteration by the decoder to decide whether a variable node should be decimated and what
value it should be decimated to based on the incoming messages and the channel value
in the /' iteration. Let ; denote the output of a decimation rule applied to a node v;. If
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v; = 0, then the node is not decimated. If 7; = 1, then the node is decimated with Z} = 0,
and if v; = —1, then the node is decimated with 2] = 1.

There are two key aspects to note regarding the application of a decimation rule that
add to the novelty of how we incorporate decimation into FAIDs.

1) The decimation rule is applied after messages are passed iteratively for some [ iter-
ations.

2) After each instance of applying the decimation rule, all messages are cleared to zero
(which is practically restarting the decoder except that the decimated nodes remain
decimated).

The first aspect implies that the decoder itself decides which nodes to decimate after pass-
ing messages for some number of iterations, which is in contrast to existing approaches
that use decimation. The second aspect aids in preventing the growth of bad messages in
the graph as well as in simplifying the analysis. More on the rationale behind this will
be discussed later. We shall refer to each instance of applying a decimation rule on all
variable nodes as a decimation round.

For now we only consider the use of a single decimation rule 5 which may be used
in different iterations. We will later generalize to using muliple decimation rules when
we discuss adaptive decimation. We now formally introduce the class of decimation-
enhanced N,-level FAIDs for the BSC.

A decimation-enhanced N,-level FAID (DFAID) denoted by .# P is defined as a 4-
tuple given by FP = (M, Y, ®D &.), where M = {—L,,...,—L1,0,Lq,...,Ls},
Y = {£C}, and @, are the same as defined for a N,-level FAID. The map ®2 : ) x
M*B=1 % {~1,0,1} — M is similar to @, of the FAID .% with the minor difference
that it uses the output of 3 in some [*” iteration as an additional argument in the function.
Again let my, - - - ,mg,—1 denote the extrinsic incoming messages to a node v; € V' with
degree d,. Then ®2 is defined as

O, (yi, mi,ma, . ..,mg,—1), i =0
Dy, ) — v\Yi, 1101, 1102, y Hedy,—1)» )
(I)U (yzum17m27 s 7mdv717%) { ’YiLsa v = +1

In our proposed framework of DFAIDs, a decimation rule 5 must satisfy certain im-
portant properties. For ease of exposition, the properties are specified below for a degree-3
variable node.

1. 5(07 may, m27m3) = _/8(_Ca —my, —May, _m3)
le,mg,mg < M

2. B(C,my,mg,m3) # —1 and B(—C, my, mg, m3) # 1 Ymy, my, mg € M

3. Given my, mo, m3 € M, if 5(C,my, ma, m3) = 1, then 5(C,m}, mh, m};) = 1
Vm, my, my € M such that m} > mq, my > mo, and m4 > ms.
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Property 1 just enforces symmetry on the function f3.

Property 2 implies that a node v; can be decimated to zero only if y; = C and to
one only if y; = —C, meaning a node can be decimated only to its received value r;
from BSC. An important consequence of this is that, a node initially correct will never
be decimated to a wrong value and a node initially wrong will never be decimated to the
correct value. This means that, by Property 2, decimation will not by itself correct nodes
initially in error, but rather acts as a reinforcer to the nodes initially correct by preventing
them from being corrupted when they are decimated. The rationale behind this is that
since we are focusing on low-weight error pattens, the number of nodes initially in error
are significantly small compared nodes initially correct, so we rely on the nodes initially
correct to drive the decoder to converge. Moreover, this simplifies the analysis of the
decoders. It is evident then that a necessary condition for successful decoding is that no
node initially in error is decimated.

Property 3 ensures that there is monotonicity in the inputs with relation to the output
of the decimation rule, and this is required due to the nature of decimation. For instance,
if a degree-3 variable node initially correct is decimated when its incoming messages are
Ly, L1, and Lo, then it must be decimated when it receives Lo, Lo, and Ls.

For convenience, we shall refer to variable nodes initially in error in G as error nodes
and variable nodes initially correct in G as correct nodes throughout this chapter. We now
propose a simple decimation scheme on column-weight-three codes with the underlying
FAID being a 7-level FAID.

3.2.3 Proposed scheme for 7-level FAID on column-weight-three codes

Let N, denote the number of decimation rounds carried out by the decoder with a given
decimation rule $. The decimation scheme essentially specifies exactly which iteration
the decimation rule is applied, and the number of such decimation rounds. For the
scheme, we only consider 7-level FAIDs whose variable node update maps @, satisfy
¢,(C,0,0) = Ly, ,(C, Ly, Ly) = Lo, and ®,(C, Ly, Lo) = Ls. This is because, all the
particularly good 7-level FAIDs were found to have this property.

The scheme we propose involves performing the first round of decimation at the end
of the third iteration, then restarting the decoder and allowing one iteration of message
passing after which the next decimation round is performed, and this is repeated until a
total of /NV; decimation rounds have been completed. Note that once a node is decimated in
a particular decimation round, it remains decimated for the remainder of the entire decod-
ing, and the decimation rule is applied only on the non-decimated nodes. The skeleton
of the proposed scheme for a 7-level FAID on a column-weight-three code is given in
Algorithm 3.2.3.

There are two main reasons for performing the first decimation round at the end of the
third iteration (which are specific to the 7-level FAID). Firstly, since the bit value of a node
remains fixed once the node is decimated, we want to ensure that nodes being decimated
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Algorithm 1 Decimation-enhanced FAID algorithm

1) Initialize v; = 0 Vo; € V.

2) Run the decoder for three iterations using update maps ®, and ®. defined for the
7-level FAID.

3) Perform decimation using the rule g for every v; € V, which constitutes the first
decimation round.

4) Restart the decoder by resetting all the messages to zero and pass messages for one
iteration. This implies that a decimated node v; will send ~y; L3 and a non-decimated
nodes v; will send ®,(y;,0,0).

5) Repeat step 3) only for nodes v; € V whose v; = 0, followed by 4) until N,
decimation rounds have been completed.

6) Run the decoder for the remainder of iterations using maps ®2 and ®..

have reliably converged, which is partially determined by the strength of messages enter-
ing the node. Therefore, message passing must be done for enough iterations to allow the
possibility of a message with the highest possible strength being passed in the graph. For
the 7-level FAIDs considered, since ¢,(C,0,0) = Ly, and ®,(C, L1, L) = Lo, at least
three iterations are required for an L3 or — L3 to be passed by a variable node. There-
fore we need to allow at least three iterations of message passing before performing the
decimation.

Secondly, as illustrated in the example discussed previously, it would be desirable to
decimate the correct nodes as much as possible before they get influenced by the bad
messages emanating from the error nodes. Therefore, the decoder must not carry out
too many iterations of message passing before performing the first decimation. Based
on the two reasons, the choice of allowing three iterations for message passing seems to
be an appropriate choice. Moreover, decimating nodes after only three iterations makes
the algorithm much more amenable to analysis. For instance, it becomes possible now to
analyze under what conditions of the graph will an error node get decimated. We shall in
fact derive such conditions for the previous example of the 4-cycle.

With regards to restarting the decoder after each decimation round, the rationale be-
hind this is to allow the decimated correct nodes to drive the decoder convergence in the
right direction by preventing the growth of bad messages in the graph (as all messages
are reset to zero), assuming that no error node is decimated in the first decimation round.
Furthermore, by performing subsequent decimation rounds at the end of just one iteration
after restarting the decoder, it leads to the following important lemma.
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Lemma 3.1. Consider decoding on G with DFAID %P where the first decimation round
is performed at the end of third iteration, and subsequent decimation rounds are per-
formed after resetting all messages to zero and passing messages for one iteration. Let
S be such that B(C, Ly, Ly, L;) = 0. Given an error pattern on G, if no error node
gets decimated in the first decimation round, then no error node will get decimated in the
subsequent decimation rounds.

Proof: Since no error node is decimated in the first decimation round, an error node
will send ®,(—C,0,0) = —L; in the first iteration after resetting all the messages to
zero. In the worst-case scenario for the error node, each of its neighboring checks can be
connected to an additional error node, in which case it receives a —L; from all three of
its neighbors at the end of one iteration. But since 5(C, Ly, L1, L;) = 0 implying that
p(—=C,—Ly,—Ly,—Ly) = 0 by Property 1, an error node will not get decimated. This
holds for any subsequent decimation round. [

As aresult of Lemma 3.1, if § is defined so that 5(C, Ly, Ly, L1) = 0, then we need
to only ensure that an error node is not decimated at the end of third iteration, which
simplifies analysis. Moreover, any number of decimation rounds can be used without
being concerned about an error node being decimated. We now provide some insights
into the design of the decimation rule 5.

3.2.4 Design of decimation rule

It is clear from the previous discussion that the design of [ is critical for ensuring that
none of the error nodes are decimated on low-weight error patterns while more correct
nodes are decimated. Also due to Lemma 3.1, we only consider decimation rules that
satisfy 3(C, Ly, Ly, L1) = 0.

In order to define the decimation rule 3, we define a set = that consists of all unordered
triples (my, mo, m3) € M3 such that 5(C, my, ms, m3) = 1. Note that for any unordered
triple (my, ma, m3) € =, B(—C, —my, —mgy, —mg) = —1 by property 1, so = is sufficient
to completely specify .

The design of the rule 8 can now be considered as a procedure of selecting the un-
ordered triples to be included in the set =. This depends not only on the particular graph
G of a code but also on the particular underlying FAID being used. Given an underlying
7-level FAID, we would like to do the selection with particular focus on correcting small
number of errors typically associated with trapping sets in the error floor region. Refer-
ring back to the example of the 8-cycle shown in Fig. 3.1, a good decimation rule would
be one where 7; for most or all nodes v; € N'(C* U C?)\V" is 1 and ~; for nodes v; € V'
is O at the end of all decimation rounds. Let us assume we are designing a decimation
rule 3 for a particularly good 7-level FAID identified in the previous chapter, whose ®,, is
defined by Table 3.1. Although we do not describe a rigorous method to design the rule
B, we highlight three main points that are important to consider for its design.
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Table 3.1: &, of a 7-level FAID for a node v; with d, = 3 and y; = +C
‘ my/me H —Ls ‘ —L, ‘ —L, ‘ 0 ‘ +L, ‘ +L, ‘ +Lg ‘

-Lg -Ls -Ls -Ly | -Li | -Lg -y Ly
-Lo -L3 -y -y 0 Ly Ly L3
Ly | L | L, | 0 |0 | L, | Lo | Ls

0 Il 0 | 0 | L] Ly | Ls | Ls
L, -y Ly Ly Lo Lo L3 L3
L, Ly | Ly Ly | Ly | L3 Ls Ls
L; L, Ly Ly | Ly | L3 Ls Ls

Table 3.2: Set = consisting of all message triples such that 5(C, my, mo, m3) = 1
my | Mg | M3 my | Mg | M3 my | Mg | M3
Lz | Ly | L Lz | Ly | Lo Ly | Li | O

Ly | Ly | Ly Ly | Ly | Iy Ly | Ly | -1y
Lz | Ly | Ly Lz | Ly | O Ly | 0| O

Lz | Ly | O Lz | Ly | -1y Lo | Ly | Lo
Ly | Ly | -Ly Ly | Ly | Ly Ly | Ly | Ly

Firstly, when considering whether a particular unordered triple (my, my, m3) should
be included in = or not, the number of positive messages and negative messages in the
triple as well as their magnitudes play a role in the selection. For instance, (L3, L1, L;)
may be a more plausible candidate than (Ls, Ls, — Lo ), because the former has three pos-
itive messages, and also the latter has a high negative message in — L.

Secondly, the inherent nature of the particular @, used in the FAID must be taken into
consideration during selection. For this, we need to look at what outgoing messages a
variable node would send when a particular triple is the set of incoming messages, and
then decide if this is good for selection. For instance, given the 7-level FAID defined by
Table 3.1, the triple (Lo, Lo, L1) might be a more plausible candidate than (L3, Lo, —Lo)
since the outgoing messages for the former would be all L3, but the outgoing messages
for the latter would be L3, L3, and L.

Thirdly, if the harmful subgraphs present in graph G of a given code are known, the
isolation assumption can be a useful tool to identify which triples should be avoided for
inclusion in =. If our goal is to correct certain number of errors , say ¢, the MP with the 7-
level FAID would be analyzed for a given t-error pattern on the subgraph under isolation
assumption. If a particular triple matches with the messages received by an error node in
the subgraph at the end of third iteration, this triple must be not be included in =.

Using the approach outlined in the above three points, we provide a decimation rule
designed, with the underlying 7-level FAID defined by Table 3.1, for the well-known
(155,64) Tanner code. The rule was designed with the goal of reducing the number of
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iterations required to guarantee a correction of 5 errors on the code. Table 3.2 shows all
unordered triples included in the set =.

Using the 7-level DFAID comprising of the decimation rule 3 defined by = in Table
3.2 and the 7-level FAID defined by Table 3.1, we will now illustrate how decimation aids
in analysis.

3.2.5 Analysis

Given a particular error pattern in a graph G, we can analyze the conditions on the graph
under which an error node is decimated at the end of third iteration. We can then place
conditions on the graph such that the node in error is never decimated. To illustrate this,
we revert back to the example of the 4-error pattern shown in Fig. 3.1 whose induced
subgraph forms an 8-cycle, and provide such conditions in the following theorem. Note
that the proof involves using Tables 3.1 and 3.2 and also the same notations previously
defined in the example.

Theorem 3.1. Consider the 4-error pattern contained in a graph G for which the sub-
graph induced by the nodes initially in error forms an 8-cycle. Also consider the 7-level
DFAID for decoding where ®,, and the [ are defined in Tables 3.1 and 3.2 respectively. If
the graph G has girth-8, and no three check nodes of the 8-cycle share a common variable
node, then the nodes initially in error will not get decimated in any decimation round.

Proof: Firstly note that by virtue of @, of the 7-level FAID (Table 3.1), the highest
magnitude of a message that any node v; € V' can send is L in the first iteration and L5 in
the second iteration. Since a node v; € N'(C* U C?)\V’ can be connected to atmost two
checks in subgraph, the node v; in the worst case recieves two — L, messages from checks
in C'UC? and L, from outside at the end of first iteration. Node v; € V' will also receive
two —L; messages from check nodes in C? and L; from ¢;, € C' N AN (v;). At the end
of the second iteration, the node v; € V'’ will once again receive two —L; from checks in
C?, and L, from ¢;, € C*. This means that node v; will receive two — L messages once
gain from checks in C? at the end of third iteration. In order for it to be decimated, from
Table 3.2, it must receive — L3 from ¢, € C* N A (v;). This means that the node v; in the
worst case has to receive at least one — L3 at the end of the second iteration, but this is not
possible by virtue of ®,, in the second iteration. Hence, a node initially in error can not
get decimated at the end of third iteration and using Lemma 2, will never get decimated.

[

Note that the above condition is easily satisfied in most practical codes. This implies
that on most practical codes, 4 errors on an 8-cycle will not be decimated.

In a similar manner, we can derive such conditions on the graph for other types of error
configurations. In fact the first step in proving the achievable guaranteed error correction
of ¢ errors by a DFAID is to prove that for all possible ¢-error configurations, no error
node gets decimated (under certain conditions of the graph (G). The next step would be
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to analyze under what conditions a node initially correct is decimated. For example, we
may be able to derive conditions on the neighbors of the 4-error configuration such that
they get decimated. The final step is then to link the analytical results of decimation with
decoder convergence.

We will soon provide numerical results showing that the 7-level DFAID maintains
the good performance of the 7-level FAID but can significantly reduce the number of
iterations required to guarantee a correction of ¢ errors.

An interesting question that arises when comparing the performance of a 7-level FAID
and a 7-level DFAID is that, whether the DFAID is guaranteed to correct a ¢-error pattern
by the 7-level FAID, if none of the error nodes are decimated. In other words, assuming
that FAID corrects an error pattern in [ iterations, if DFAID decimates only correct nodes
for a given error pattern, can it only help the decoder to converge since it uses the same
map P, after /N; decimation rounds?

Intuitively, one may expect decimating only correct nodes for a given error pattern to
always improve the convergence of the decoder, since these nodes will then continuously
send strong correct messages for the entire decoding process. However, this is not the
case due to the nature of ®.. This can be explained with a simple example of analyzing
MP in some k" iteration.

Consider an error pattern that FAID corrects in [ iterations. Assume that during a
particular iteration, say k' under MP with a FAID, a check node with degree d.. receives
as its incoming messages, one weakly good message (say L) from a correct node, and
strongly bad messages (say -L3) from its remaining neighbors. The outgoing message
passed by the check node is then a weakly bad message by virtue of ®.. However, if that
correct node is decimated, this could lead to a strongly bad message being passed which
could potentially lead to decoder failure.

We remark though that such instances are more likely to occur when the decimation
rule is not appropriately designed or when an insufficient number of decimation rounds
have been used especially on error patterns that needed large number of iterations by FAID
for convergence. Therefore the design of the decimation rule as well as choice of the
number of decimation rounds is critical for ensuring that there is no loss in performance
compared to FAID.

3.2.6 Numerical results and discussion

Numerical results are presented on the well-known (155,64) Tanner code in order to
evaluate the performance of the DFAID. The frame-error rate curves for BP, 7-level FAID,
and 7-level DFAID are shown in Fig. 3.2. For the results, the 7-level DFAID with 3 and
®,, defined by Tables 3.1 and 3.2 used N; = 4 decimation rounds. All decoders used
a maximum of 100 iterations. Note that the DFAID was designed primarily to correct
a fixed number of errors (in this case 5 errors) in fewer iterations compared to 7-level
FAID. On the Tanner code, with N, = 1, the 7-level DFAID corrects all 5 errors within 10
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iterations whereas the 7-level FAID requires 15 iterations. At the same time, we see that
DFAID performs just as good as the 7-level FAID which surpasses BP in the error floor.

So far our main aim was to provide a simple decimation scheme with FAIDs that
allows us to analyze their behaviour while maintaining their good performance. From the
preliminary analysis, we see that the role of decimation is important not just in improving
the decoder performance or reducing the decoder speed, but more so in terms of increasing
the feasibility to obtain provable statements on the performance of MP decoders such as
FAID that are known to be empirically good.

—4—BP

10~y —0— 7-Level FAID ST
—e—7—Level DFAID |00

Frame error rate
=
T

cross—over probability (o)

Figure 3.2: Frame error rate performance comparison of Belief Propagation (BP), Fi-
nite Alphabet Iterative Decoder (FAID), and Decimation-enhanced FAID (DFAID) on the
(155, 64) Tanner code

We now turn our attention to the goal of further improving the guaranteed error correc-
tion of FAIDs with an attempt to approach the guaranteed error correction of the optimal
ML decoding. In order to achieve this, we still utilize decimation but in a more sophisti-
cated way than what was presented so far.

3.3 Enhancing the Guaranteed Error Correction of FAIDs
via Adaptive Decimation

In this section, we show how decimation can be used adaptively to further increase the
guaranteed error correction capability of FAIDs. It was previously established that FAIDs
while being able to surpass BP, are still far from achieving the guaranteed error correction
of ML decoding. For instance, the 7-level FAIDs used in the previous section is able to
guarantee a correction of 5 errors on the (155, 64) Tanner code with d,,;,, = 20, which is
still a significant gap compared to the maximum achievable guaranteed error correction
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of [(dpmin — 1)/2] = 9. In [?], we discussed how one can improve the guaranteed error
correction by using several FAIDs sequentially or in parallel. In contrast to that, we
propose to use adaptive decimation to improve the guaranteed error correction, which
may have lower complexity and lower memory requirements. The adaptive scheme we
propose using decimation has only marginally increased complexity compared to FAID
, but can significantly improve the error-rate performance compared to the FAIDs. We
once again specifically focus on decoders that propagate only 3-bit messages, i.e., 7-level
FAIDs, and column-weight three codes since these enable simple implementations and
thus have high practical value.

3.3.1 Adaptive decimation-enhanced FAIDs

We shall utilize all the definitions and notations related to decimation introduced earlier in
the previous section. We now formally define the class of adaptive decimation-enhanced
multilevel FAIDs (ADFAIDs) as follows. A decoder belonging to such a class denoted
by .74 is defined as .F4 = (M, Y, d" & &7 B, ®,), where the sets M and ), and
the map @, are same as the ones defined for a multilevel FAID. The map &2 : Y x
M&=1 % {-1,0,1} — M is the update function used at the variable node. It requires
the output of a decimation rule 5 as an one of its arguments and also uses the maps
P4 Y x MP7L - Mand @7 : Y x M®~1 — M to compute its output. Again, we
restrict ourselves to the case of column-weight-three codes.

(I)g(yiamlamZ), ifv,=0,p <Ny
®5<y’i7m17m2577;) = { ®:‘)(yi7m17m2), lffyl — O’p > Nd

where p denotes the p'" decimation round completed by the decoder. The maps ®¢ and
®” are defined as either LT or NLT functions or as LUTs similar to @, of a FAID .#.

The new class of decoders proposed in this section use two different maps, ®¢ and
@7, for updating the messages on non-decimated variable nodes, as oppposed to DFAIDs
which uses a single map ®,). ®¢ is the map used to update messages specifically during
the decimation procedure, whereas ®; is the map used to decode the remaining non-
decimated nodes after the decimation procedure is completed. Also note that for the case
of |[M| = 7, we restrict the definition of ®¢ to satisfy ®¢(C,0,0) = Ly, ®4(C, Ly, L1) =
Ly, and ®%(C, Ly, Ly) = L, just as we did for DFAIDs in the previous section. ®” is also
defined similarly.

In the definition of ADFAIDs, let /N; denote the number of decimation rounds carried
out by the decoder with a given decimation rule 5 beyond which no more variable nodes
are decimated. Note that this is in contrast to DFAIDs, where the value of N; was required
to be chosen. In the case of ADFAIDs, decimation rounds are continued until no more
nodes in the graph G can get decimated. The stopping criterion for this is provided in the
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following proposition.

Proposition 3.1. Given a decimation rule 3, if the number of decimated nodes after the
p'" decimation round is the same as the number of decimated nodes after the (p—1)"" dec-
imation round, then no additional nodes will get decimated in the subsequent decimation
rounds.

This leads to the notion of residual graph defined below.

Definition 3.2. The residual graph G' is the induced subgraph of the set of variable nodes
in G that are not decimated after Ny decimation rounds.

The set B is the set of decimation rules used for adaptive decimation, and note that
for any 8 € B,  must still satisfy the three properties provided in the previous section
which are related to symmetry, monotonicity in the inputs in relation to the output, and
the property that a node can be decimated only to its received value.

Again we use the set = to uniquely define a decimation rule 5. Note that a [ is
considered to be a conservative decimation rule if |=| is small and an aggressive rule if
|=| is large. Also note that the DFAIDs defined in the previous section can be regarded as
a special case of the newly proposed ADFAIDs, with ®¢ = & = ®,, and B = {3}. In
other words, while only a single non-adaptive decimation rule and a single map is used
for updating messages in the DFAIDs, the ADFAIDs use multiple decimation rules and
two distinct maps for updating messages. Once again note that we shall refer to variable
nodes that are initially in error in G as error nodes and variable nodes that are initially
correct as correct nodes.

3.3.2 Motivation for adaptive decimation

Given an error pattern of relatively low weight (< L%j ), the primary role of decima-
tion is to isolate the subgraph associated with the error pattern from the rest of the graph
by decimating as many correct nodes outside this subgraph as possible. Now if a given
error pattern is such that the error nodes are relatively clustered with many interconnec-
tions between them through their neighboring check nodes, then a more conservative (3
would have to be used by the decoder to ensure that none of the error nodes are decimated.
However, if the error pattern is such that the error nodes are more spread out, then it may
be desirable to use a more aggressive [ as there will be many correct nodes in the neigh-
borhood of the error nodes that can be decimated without decimating the error nodes,
and, in turn, possibly help the decoder to converge. This is our main motivation for the
use of adaptive decimation in the newly proposed decoders, and we will eventually show
that adaptive decimation can help achieve an increase in the guaranteed error correction

capability of the code.
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3.3.3 Proposed scheme

We now describe a particular adaptive decimation scheme used by the decoder .#4 in
order to enhance the guaranteed error correction capability. In the proposed scheme, the
set B consists of two decimation rules, namely B = {3, 3}, where ZV) and Z?) are
the sets of unordered triples that completely specify the rules 3! and 5 respectively.
The rule (@) is used only once at the end of the third iteration, and then from that point,
£ is used after every two iterations (I = 2). The use of adaptive decimation is carried
out only through 3(?) as follows.

We define a sequence of decimation rules {3(2)V] }; from ) by considering ordered
subsets of =) with increasing size. Let Nj be the number of rules in the sequence
{B@1}; and let =@ denote the set that specifies the rule 3], Then =@l is defined
for each 4?1 in a way such that =2l ¢ Z@U+ v € {1,... Ny — 1} with Z@Nsl =
=), This implies that the sequence of rules are such that 32U+ is less conservative than
B2l with 3@ being the most conservative and 32Vsl = 3(2) being least conservative
(or most aggressive). Note that each subset Z?l/l must be chosen in a manner that ensures
that its corresponding rule 3®V! satisfies the properties of 3 mentioned previously.

For a given error pattern, the decoder starts the decimation procedure by passing mes-
sages using the map ®¢ and applying the decimation rule V) at the end of the third
iteration after which the messages are reset to zero. Then the most conservative rule in
the sequence {3@V1},, which is S, is used after every two iterations (followed by
resetting the messages) until no more nodes can be decimated. The map @], then is used
to decode the remaining non-decimated nodes. If the decoder still does not converge, then
the whole decoding process is repeated by using a more aggressive rule 3?2 in place of
BN, This decoding process continues until the decoder converges or until all rules in
the sequence {3@U1}; have been used. Let N, denote the number of decimated bits at the
end of a decimation round. The decoding scheme can be summarized as follows. Note
that this scheme is devised particularly for the case of |[M| = 7.

Note that the only criterion used by the decoder to decide when to use a more aggres-
sive rule 3?7l on a given error pattern is whether the decoding has failed.

The rationale for using a distinct decimation rule 3" specifically for the end of third
iteration is based on a similar reasoning for FAIDs. Since it is the very first decimation
that is being carried out, by virtue of ®,,, we need at least three iterations to allow a vari-
able node to pass £ L3 to be passed. Moreover, dynamics of MP involved with subsequent
decimations is different, since we are allowing two iterations of MP before every subse-
quent decimation round. Therefore the decimation at the third iteration requires a specific
decimation rule 5

Also note the aspect of ADFAIDs using two iterations of MP before each decimation,
in contrast to DFAIDs which uses only one iteration. The main disadvantage with allow-
ing only one iteration of MP before performing each decimation round, is that the only
possible messages that are passed (in the case of 7-level FAID) is +L3 and +L14. Due to
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Algorithm 2 Adaptive decimation-enhanced FAID algorithm

1) Set 7 = 1. Note that ®. will always be used to update messages at the check node.
2) Initialize 7, = 0 Vv; € V.

3) Start the decimation procedure by passing messages for three iterations using ®<.
If the decoder converges within those three iterations, STOP.

4) Apply decimation rule 3" for every v; € V. Then reset all messages to zero and
set g = 0.

5) Pass messages for two iterations using ®¢ for update at the non-decimated nodes.
If the decoder converges within those two iterations, STOP.

6) Apply decimation rule 3®U! only on nodes v; for which 7; = 0. Then reset all
messages to zero. If N, > ¢, ¢ = N, and go back to step 5, else go to step 7.

7) Pass messages using ®; on the nodes v; for which ~; = 0.

8) If decoder converges or has reached maximum allowed iterations, STOP. Else 7 =
J+ 1

9) If 5 > Nz STOP. Else go to step 2.
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this, there will still be a large number of correct nodes in the graph that are not decimated
which could lead to decoder failure for a slightly higher-weight error pattern. By increas-
ing it two iterations for ADFAIDs, it is still small enough to help prevent the growth of
wrong message strengths but sufficient to allow all levels in M to be passed, thereby
increasing the chance for more nodes to get decimated. We found this to be important
for enhancing the guaranteed error correction. On the other hand, the nice property of
Lemma 3.1 will not hold for ADFAIDs.

3.3.4 Choice of ®” and ®¢

For the proposed ADFAIDs, the map ®; is simply chosen to be the ®, of a particular
FAID already known to be good on a given code, and for which we want to improve the
guaranteed error correction capability. For the numerical results, @] is chosen to be the
®, of a 7-level FAID defined by Table 2.2 which was identified as particularly good FAID
in the previous chapter.

The choice of ®¢ on the other hand is non-trivial. It is designed based on analyzing
messages that are passed within dense subgraphs that could potentially be trapping sets
for a given FAID when errors are introduced in them under the isolation assumption.
The rule is chosen under the premise that the growth of message strengths within the
subgraph should be slow since many correct nodes in the subgraph would most likely
be connected to error nodes, and multiple error nodes may be interconnected to each
other in the subgraph (if the number of errors introduced is comparable to the size of the
subgraph).

Explicit design methods for ®¢ are not discussed here, but we provide a particular ®¢
that was designed based on the above philosophy and used for the numerical results. It
is an LT function (see Chapter 2, Section 2.2.1). Therefore we described by assigning
values to elements in M, .7, and ). The map is defined with the following assignments;
Li=11,Ly,=23,L3=6.6,T; = 0.8, T, = 2.8, T3 = 4, C = 1.5. This was found to
be a good rule for decimation.

3.3.5 Analysis

We now some provide some preliminary analysis with ADFAID on a graph G that gives
insight into the design of the decimation rules. For the analysis, we assume that the all-
zero codeword is transmitted which is valid since the decoders considered are symmetric.

Lemma 3.2. A node v; can receive a £Ls from its neighbor c; in the first or second
iteration after resetting the messages, only if all nodes in N (c;)\v; have been decimated.

Proof: By virtue of ®¢, any non-decimated node can only send 1, in the first iter-
ation, and +L- in the second iteration. Therefore, a node has to be decimated in order
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to send L3 within the first two iterations. For the neighbor ¢; to send a =L3, we re-
quire m (N (¢j)\vi, v;) = {£Ls}. This is only possible if all nodes in A/(c¢;)\v; have been
decimated. [ |

Lemma 3.3. If 3@VNC, Ly, —Ly, —Ly) = 1 and if Ve, € N(v;) all error nodes in
N (cx)\v; are non-decimated, then a correct node v; will be decimated if it receives an L
within the two iterations before a decimation round.

Proof: Let ¢y, ¢, and c; be the three neighboring check nodes of node v;. If node
v; receives L3 from say c; within the two iterations before a decimation round, then by
Lemma 3.2, all nodes in A/(¢;)\v; are decimated. Therefore, only ¢, and ¢, can have er-
ror nodes as its neighbors. But if none of their neighboring error nodes are decimated, then
in the worst case, v; receives — Ly from both ¢,,, and ¢,. Since 6<2)U] (C, L3, — Ly, —Ls) =
1, the correct node v; is decimated. [ ]

Due to Lemma 3.3, we ensure that 52U/l is defined such that U)(C, Ly, —Ly, —Ly) =
1 for any j. Also note how resetting messages at the end of each decimation round can
help with decimating more correct nodes due to the above Lemma. This leads to following
important theorem.

Theorem 3.2. If 3PV)(C, Ls, — Ly, —Ly) = 1 and no error node is decimated, then any
correct node in the residual graph G' is connected to check nodes that have at least
degree-two.

Proof: Assume that a correct node v; in residual graph G’ is connected to a degree-one
check node ¢;. This implies that all nodes in A (c¢;)\v; are decimated. By Lemma 3.2,
this implies that node v; would have received an L3 from c¢;. Also since no error node is
decimated and 3®U(C, Ly, —Ly, —L,) = 1, then by Lemma 3.3, this node v; would be
decimated in a decimation round, in which case v; does not belong to residual graph G’,
which is a contradiction. [

The following corollary follows from the Theorem, which turns out to be crucial for
the design of the sequence of rules 52!,

Corollary 3.1. If Theorem 3.2 holds and no error node in the residual graph G' is con-
nected to a degree-one check node, then G' is a stopping set.

We remark that if an error node in the residual graph G’ is connected to a degree-one
check node, it would receive Ls in every iteration for the remainder of the decoding (again
assuming no error nodes are decimated), and this will most likely lead to a decoder con-
vergence esepcially for low-weight error patterns which we are focussing on. Therefore,
if no error node is decimated, the decoder is more likely to fail when the residual graph
G’ is a stopping set.

The above remark is an important observation since we can now design the rules 5"
and the sequence {3(2)V] }, based on analyzing error patterns whose errors are entirely
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contained in the minimal stopping sets of a given code. For instance, if our goal is to
correct up to t-errors, then we consider all error patterns up to a weight ¢ in the stopping
sets in order to design V) and {31} .

If FAID .# with @, = ®] has a critical number of ¢+1 on a stopping set whose induced
subgraph is H, then .#4 is guaranteed to correct up to ¢ errors introduced in H on the
code if the residual graph is H. In other words, ®; is more likely to correct all error
patterns up to weight-¢ on a particular code whose support lies in the stopping set present
in the code, if it has a critical number of ¢ + 1 on the stopping set.

There are several more interesting observations related to the analysis that we didn’t
cover in this dissertation. For instance, we believe the there is a link between the size
of the residual graph in relation to the size of the minimal stopping set, and decoder
convergence. The guaranteed error correction capability may also be related to size of the
minimal stopping set. One thing that is clear from the analysis though is that the failures
of ADFAIDs are linked to stopping sets, and the decimation rules must be designed based
on analyzing error configurations associated with them.

3.3.6 Discussion on design of decimation rules 5!) and 5

The design of 5() involves selecting the triples that should be included in =Y, which
depends on the number of errors we are trying to correct and the type of harmful subgraphs
present in G. 3() should be chosen to be conservative enough so that no error nodes are
decimated. On the other hand, the design of 5®) not only involves selecting the triples
that should be included in Z?), but also determining a specific ordering on the triples that
will be included in subsets =)l which determine the sequence of rules {31}, used
starting from the least conservative rule, and this is dependent on the structure of the code.
Both rules can be designed by analyzing them on errors introduced in stopping sets of the
code. Fig. 3.3 shows an example of a (12, 2) stopping set that is present on a (732, 577)
structured code that has a d,,;, = 12. This was one of the subgraphs used to derive the
rules.

In order to specify the set Z(1), we just specify the message triples with the weakest
values. For specifying Z() in a concise way, we shall introduce some notations. Let
= be divided into two disjoint subsets, i.e., 22 = A U T, where A is a subset that
contains all triples (L3, ms, m3) € M?3 such that my, m3 > — Lo. Based on the analysis
described previously, any =l defined should always have A as its subset, regardless of
the code. The subset I', which is dependent on the code, is an ordered set whose ordering
determines the subsets used to specify the sequence of rules {31} je

3.3.7 Numerical Results and Discussion

Numerical results are provided in Fig. 3.4 and Fig. 3.5 for two codes: the well-known
(155,64) Tanner code and a structured rate 0.753 (732, 551) code constructed based on
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Figure 3.3: (12, 2) Stopping set present in graph of the (732, 551) d,,;, = 12 code

latin squares [72] with d,,,;,, = 12.

For the Tanner code, the set =) contains all triples (my, mg, m3) € M?3 such that
(mq, mg,m3) > (L3,0,0) and (mq, mg, m3) > (La, L, L1) (comparison is component-
wise). For the high-rate structured code, =@ contains all triples such that (my, ms, ms) >
(Lg, Ll, —L3), (ml, ma, m3) Z (Lg, —Ll, —L1>, and (ml, mao, m3) Z (LQ, Ll, Ll) |E(1)’
12 for the Tanner code and |Z(V)| = 24 for the (732, 551) code.

The I sets in 22 = A U T for the Tanner code and high-rate structured code are
shown in Table 3.3. The cardinalities of the subsets of Z() used by each of the two
codes are {|Z@U1|}; = {24,25 26,27, 28,29, 30,31, 32,33,34,35} and {|ZPV|}; =
{23, 25, 26,27, 29} respectively. The maximum number of iterations allowed for BP and
7-level FAID, and for @] of the 7-level ADFAID, was 100.

The significant improvement in the slope of the error floor by using the 7-level AD-
FAID is evident. For the Tanner code, it was verified that all 6-error patterns are corrected
by the 7-level ADFAID while the 7-level FAID corrects all 5-errors and BP fails on 5-
errors. For the high-rate structured code, no failed 5-error patterns were found in the
region of simulation shown in Fig. 3.5, which is significant since the code has d,,;, = 12.
This shows that for certain high-rate codes whose graphs are relatively dense and for
which it becomes difficult to ensure high d,,;, in the code, the FAIDs with adaptive deci-
mation can possibly come close to achieving the guaranteed error correction of maximum
likelihood decoding. Note that the 7-level ADFAIDs are still 3-bit message passing de-
coders which have reasonable complexity, and that is still lower than BP.

3.4 Conclusions
In this chapter, we introduced the technique of decimation and incorporated it into the

framework of FAIDs for two main purposes: 1) to use as a tool to make FAIDs more
amenable to analysis, and 2) to enhance the guaranteed error correction of codes from

77



Chapter 3 — Decimation-Enhanced Decoding

(a) Subset I' of = (b) Subset I' of =
designed for (155,64) designed for (732, 551)
Tanner code code
my | Mo | Mg my | Mg | M3
Ly | Ly | Ly Ly | Ly | Ly
Ly | Ly | Iy Ly | Ly | Iy
Ly | Lo 0 Ly | Ly | Ly
L2 L1 L1 L2 L2 0
Loy | L4 0 Ly | Ly | =14
Ly | Ly | —L4 Lo | L4 0
Ly | Ly | =Ly Li| Ly | Ly
Ly | O 0 Ly | O 0
LQ L1 —L1
Li | Ly 0
L2 L2 —L2
Ly | 0 | =14
Li| Ly | =14
Ly | 0O 0

Table 3.3: Definition of Subset I of 2 for both codes. Note that the ordering of the
triples matters since the subsets are chosen with increasing cardinality based on the or-
dering.

1= p T
—o— 7-level FAID ]
10" —e— 7-level ADFAID

Frame error rate (FER)

10~
Cross—over probabilityo(

Figure 3.4: FER performance comparison on the (155, 64) Tanner code
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—0—BP
10 " —o— 7-level FAID
_,[| —®— 7—-level ADFAID

Frame error rate (FER)

107
Cross—over probabilityol)

Figure 3.5: FER comparison on the (732, 551) structured code with d,,;, = 12

what is achievable by FAIDs. In contrast to many existing approaches related to deci-
mation, we incorporated it by allowing the decoder to decide which nodes to decimate
after passing messages for some iterations. We proposed decimation-enhanced FAIDs
for column-weight-three codes and illustrated that decimation could be used to reduce
the number of iterations required to correct a fixed number of errors while maintaining
the good performance of the original FAID. We also showed how decimation can aid in
the analysis of the decoders. By proposing a simple decimation scheme which involves
performing the decimation at the end of third iteration using some rule, and restarting the
decoder, one can easily analyze whether a node initially in error would get decimated or
not. We derived conditions on the graph such that errors introduced in a 8-cycle present
in a graph G are not decimated by the proposed DFAIDs.

Although the analysis was provided only for a particular error configuration involv-
ing the 8-cycle, this can easily be extended to other types of error configuration. One
major motivation for using decimation as a tool for analysis was that although FAIDs
were shown to be capable of surpassing BP and empirically known to have good perfor-
mance, analyzing FAIDs in terms of guaranteed error correction remains a challenge. For
instance, we know that the particularly good 7-level FAID which surpasses BP on the
(155,64) Tanner code achieves a guaranteed error correction of 5 errors. The question is
can we actually prove that 7-level FAID guarantees correction of 5 errors under certain
conditions of the graph. We believe that decimation has certainly brought us a step closer
to this goal. For instance, although not included in this dissertation, we have begun to
analyze all possible 5-error configurations and found that the conditions on the graph in
order to ensure that none of the errors get decimated, were simple conditions. Future
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work in this regard involves linking the analytical results on decimation to guaranteed
error correction capability.

We also proposed adaptive decimation-enhanced FAIDS for LDPC codes. By using
decimation in an adaptive way, and choosing the appropriate decimation rules, the guar-
anteed error correction of FAIDs can be simply enhanced. We provided some preliminary
analysis linking failures of ADFAIDs to stopping sets and therefore used stopping sets
to design the decimation rules. We designed ADFAIDs for two test codes and was able
to significantly increase the guaranteed error correction compared to FAIDs, which also
improved the slopes in their error-rate performance. Future work includes developing
a more rigorous and systematic method to design decimation rules as well as to gain a
deeper understanding in the relationship between stopping sets and decoder convergence
on residual graphs.

Finally we remark that although this entire chapter focused on column-weight-three
codes, the underlying principles and philosophy related to decimation can still be used in
decoder designs for codes with higher column-weights and also for FAIDs that use higher
levels.
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With many next generation communication and data storage systems now requiring very
low error-rates, faster processing speeds, lower memory usage, and reduced chip area, the
need for low-complexity decoding algorithms that take finite precision into account while
still achieving the required target error-rates on LDPC codes, has now become crucially
important to address. Most of the existing approaches on decoding rely on modifying
or taking quantized versions of the BP algorithm with the goal of minimizing the loss
compared to the theoretical un-quantized performance of the BP (or floating-point BP).
This dissertation is primarily concerned with the development of novel iterative decoding
algorithms that take finite precision into account and yet are able to surpass the floating-
point BP.

In Chapter 2, we introduced a novel approach to finite precision iterative decoding
for LDPC codes over the BSC. The proposed class of decoders which we referred to
as FAIDs, propagate messages that are not quantized probabilities but are simply levels
belonging to an arbitrary alphabet. In addition, the variable node update functions do
not mimic BP but are rather designed to handle potentially harmful neighborhoods in the
graph so that a better guaranteed error correction can be achieved. We illustrated how
FAIDs differed from existing quantized decoders, and provided 3-bit precision FAIDs
that are capable of surpassing the floating-point BP in the error floor. Moreover, these
3-bit precision FAIDs have the capability to surpass BP not just on a single code but
several codes. We introduced the important notion of isolation assumption which allows
analyzing MP of different decoders on isolated subgraphs that are potential trapping sets.
The numerical results presented show that FAIDs can surpass BP without any compromise
in decoding latency and hence are able to achieve a superior performance at a much lower
complexity. Regarding the design of FAIDs, we showed that using density evolution
to optimize for the best thresholds did not lead to good FAIDs. We instead provided
a semi-heuristic-based method that is not code-specific but relies on the knowledge of
potentially harmful subgraphs, in order to identify a set of candidate FAIDs, one or several
of which are potentially good for any column-weight-three code. Due to their superior
performance as well as low complexity, FAIDs could prove to be attractive in a wide
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range of communication systems.

Although the entire framework of the proposed FAIDs in this dissertation focused on
column-weight-three codes, many of the underlying ideas related to design of FAIDs are
still applicable for codes with higher column-weight. The design of FAIDs for column-
weight-four codes as well as allowing non-binary alphabets for the channel values are
important to consider especially for magnetic recording applications, and are scope for
future work.

In Chapter 3, our main goals were to further enhance the guaranteeed error correction
with an attempt to approach the limits established by ML decoding as well as to make
FAIDs more amenable to analysis. In order to achieve these goals, we proposed the tech-
nique of decimation both as a tool for analysis as well as for improving guaranteed error
correction. Decimation is a technique based in statistical physics which involves fixing
certain bits value to a specific value. In contrast to existing approaches related to decima-
tion, we incorporated it into the MP of FAIDs thereby allowing the FAIDs to decide which
nodes to decimate based on the messages they passed for a certain number of iterations.
Using the (155,64) Tanner code as an example, we first provided a simple decimation
scheme that reduced the number of iterations required to guarantee a correction of 5 er-
rors on the code. But we will also illustrated how analytical results could be obtained with
the help of the decimation scheme. As an example, we derived conditions on the graph
such that errors introduced in the 8-cycle do not get decimated. The main future work in
this context, would be to extend the analysis for all possible 5-error configurations, and
link the results on decimation to guaranteed error correction capability.

We also proposed ADFAIDs for column-weight-three codes, and illustrated how they
could increase the guaranteed error correction compared to FAIDs. The numerical results
on the two test codes validated their efficacy, and in fact on one of the test codes which had
dmin = 12, no failed 5-errors were detected in the region of simulation for which both
the original 7-level FAID and BP failed on 5-errors. Besides, on both codes, the slope
of the error floors was significantly increased. We also provided preliminary analysis
that suggested that their failures are linked to the stopping sets of small size present in
the code. This observation was crucial for the design of the decimation rules. Future
work includes developing a more rigorous and systematic method to design decimation
rules as well as to gain a deeper understanding in the relationship between stopping sets
and decoder convergence on residual graphs. Also as part of future work, it would be
interesting to investigate if decimation can be applied to column-weight-four codes and
see if it can give the same benefits in terms of analysis as well as improving the guaranteed
error correction of the code.
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