J. Aggarwal, M. Et, and . Ryoo, Human activity analysis, ACM Computing Surveys, vol.43, issue.3, p.143, 2011.
DOI : 10.1145/1922649.1922653

M. Ahmad, S. Et, and . Lee, Variable silhouette energy image representations for recognizing human actions, Image and Vision Computing, vol.28, issue.5, pp.814-824, 2010.
DOI : 10.1016/j.imavis.2009.09.018

S. Ali, A. Basharat, and M. Shah, Chaotic Invariants for Human Action Recognition, 2007 IEEE 11th International Conference on Computer Vision, pp.18-39, 2007.
DOI : 10.1109/ICCV.2007.4409046

J. Allard, J. Franco, C. Ménier, E. Boyer, and B. Ran, The GrImage Platform: A Mixed Reality Environment for Interactions, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06), pp.4646-4674, 2006.
DOI : 10.1109/ICVS.2006.59

URL : https://hal.archives-ouvertes.fr/inria-00349084

M. Andriluka, S. Roth, and B. Schiele, Pictorial structures revisited: People detection and articulated pose estimation, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.10141021-10141043, 2009.
DOI : 10.1109/CVPR.2009.5206754

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.395.158

A. Argyros and M. Lourakis, Vision-based interpretation of hand gestures for remote control of a computer mouse, dans Computer Vision in Human-Computer Interaction, pp.4051-4090, 2006.

A. Baak, B. Rosenhahn, M. Müller, and H. Seidel, Stabilizing motion tracking using retrieved motion priors, 2009 IEEE 12th International Conference on Computer Vision, pp.14281435-14281474, 2009.
DOI : 10.1109/ICCV.2009.5459291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.230.3846

J. Bandouch, M. Et, and . Beetz, Tracking humans interacting with the environment using ecient hierarchical sampling and layered observation models , dans IEEE International Workshop on Human-Computer Interaction, pp.20402047-147, 2009.

. Pollard, Segmenting motion capture data into distinct behaviors, dans Graphics Interface, pp.185194-185233, 2004.

M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou, Human actions recognition from streamed motion capture, dans International Conference on Pattern Recognition, pp.32-115, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01353013

M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou, Ongoing human action recognition with motion capture, Pattern Recognition. x, xii, p.115, 2013.
DOI : 10.1016/j.patcog.2013.06.020

M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou, A real-time system for motion retrieval and interpretation, Pattern Recognition Letters. x, xi, p.84, 2013.

M. Barnachon, S. Bouakaz, E. Guillou, and B. Boufama, Interprétation de Mouvements Temps Réel, p.84, 2012.

D. Batra, T. Chen, and R. Sukthankar, Space-Time Shapelets for Action Recognition, 2008 IEEE Workshop on Motion and video Computing, pp.16-35, 2008.
DOI : 10.1109/WMVC.2008.4544051

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, The Annals of Mathematical Statistics, vol.41, issue.1, pp.164171-164207, 1970.
DOI : 10.1214/aoms/1177697196

P. Beaudoin, S. Coros, M. Van-de-panne, and P. Poulin, Motion-motif graphs, dans ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.117126-67, 2008.

A. Bhattacharyya, On a measure of divergence between two statistical populations dened by their probability distributions, Bulletin of the Calcutta Mathematical Society, vol.97, pp.99109-96, 1943.

J. Blackburn, E. Et, and . Ribeiro, Human motion recognition using isomap and dynamic time warping, dans Proceedings of the 2nd conference on Human motion : understanding, modeling, capture and animation, pp.285298-285329, 2007.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, Actions as space-time shapes, dans Internationale Conference on Computer Vision, pp.13951402-13951415, 2005.

A. F. Bobick, J. W. Et, and . Davis, The recognition of human movement using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.3, pp.257267-257305, 2001.
DOI : 10.1109/34.910878

F. Caillette, A. Galata, and T. Howard, Real-time 3-D human body tracking using learnt models of behaviour, Computer Vision and Image Understanding, vol.109, issue.2, pp.112125-112162, 2008.
DOI : 10.1016/j.cviu.2007.05.005

B. Chakraborty, O. Rudovic, and J. Gonzalez, View-invariant humanbody detection with extension to human action recognition using componentwise hmm of body parts, dans International Conference on Automatic Face Gesture Recognition, pp.16-37, 2008.

H. Cheng, Z. Liu, Y. Zhao, and G. Ye, Real world activity summary for senior home monitoring, dans International Conference Multimedia and Expo, pp.14-26, 2011.
DOI : 10.1007/s11042-012-1162-5

T. Chin, L. Wang, K. Schindler, and D. Suter, Extrapolating Learned Manifolds for Human Activity Recognition, 2007 IEEE International Conference on Image Processing, pp.381384-381415, 2007.
DOI : 10.1109/ICIP.2007.4378971

O. Chomat, J. L. Et, and . Crowley, Probabilistic recognition of activity using local appearance, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pp.104109-104121, 1999.
DOI : 10.1109/CVPR.1999.784616

G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, Workshop on Statistical Learning in Computer Vision, ECCV, pp.122-137, 2004.

N. Cuntoor, B. Yegnanarayana, and R. Chellappa, Activity Modeling Using Event Probability Sequences, IEEE Transactions on Image Processing, vol.17, issue.4, pp.594607-594646, 2008.
DOI : 10.1109/TIP.2008.916991

P. A. Devijver and J. Kittler, Pattern Recognition : a statistical approach, pp.440-77, 1982.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition via Sparse Spatio-Temporal Features, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp.6572-6603, 2005.
DOI : 10.1109/VSPETS.2005.1570899

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.5712

A. A. Efros, A. C. Berg, G. Mori, and J. Malik, Recognizing action at a distance, Proceedings Ninth IEEE International Conference on Computer Vision, pp.726733-726771, 2003.
DOI : 10.1109/ICCV.2003.1238420

A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis, Learning dynamics for exemplar-based gesture recognition, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.571578-571616, 2003.
DOI : 10.1109/CVPR.2003.1211405

URL : http://athos.rutgers.edu/~elgammal/pub/CVPR03_learningdynamics.pdf

R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov models : estimation and control, p.153, 1995.

A. Fathi and G. Mori, Action recognition by learning mid-level motion features, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.18, 2008.
DOI : 10.1109/CVPR.2008.4587735

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.8599

X. Feng, P. Et, and . Perona, Human action recognition by sequence of movelet codewords, dans 3D Data Processing Visualization and Transmission, First International Symposium on, pp.717721-717757, 2002.

B. J. Frey, N. Et, and . Jojic, Learning graphical models of images, videos and their spatial transformations, dans Proceedings of the Sixteenth conference on Uncertainty in articial intelligence, pp.184191-68, 2000.

H. Fujiyoshi, A. J. Et, and . Lipton, Real-time human motion analysis by image skeletonization, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201), pp.1521-1542, 1998.
DOI : 10.1109/ACV.1998.732852

D. M. Gavrila, L. S. Et, and . Davis, Towards 3-d model-based tracking and recognition of human movement : a multi-view approach, dans International Workshop on Automatic Face and Gesture-Recognition, pp.272277-272316, 1995.

A. Gilbert, J. Illingworth, and R. Bowden, Action Recognition Using Mined Hierarchical Compound Features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.5, p.883897, 2011.
DOI : 10.1109/TPAMI.2010.144

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.1835

W. Gong, A. D. Bagdanov, F. Roca, and J. Gonzàlez, Automatic key pose selection for 3d human action recognition, dans Articulated Motion and Deformable Objects, pp.290299-290331, 2010.

G. Guerra-filho, Y. Et, and . Aloimonos, The syntax of human actions and interactions, Journal of Neurolinguistics, vol.25, issue.5, pp.500514-500541, 2010.
DOI : 10.1016/j.jneuroling.2009.12.006

L. Han, X. Wu, W. Liang, G. Hou, and Y. Jia, Discriminative human action recognition in the learned hierarchical manifold space, Image and Vision Computing, vol.28, issue.5, pp.836849-143, 2010.
DOI : 10.1016/j.imavis.2009.08.003

C. Harris, M. Et, and . Stephens, A Combined Corner and Edge Detection, dans Proceedings of The Fourth Alvey Vision Conference, pp.147151-147165, 1988.

K. S. Huang, M. M. Et, and . Trivedi, 3d shape context based gesture analysis integrated with tracking using omni video array, dans Conference on Computer Vision and Pattern Recognition, pp.8087-90, 2005.

N. kizler, D. A. Et, and . Forsyth, Searching for complex human activities with no visual examples, International Journal of Computer Vision, vol.80, issue.3, pp.337357-337393, 2008.

F. Itakura, Readings in speech recognition, chap. Minimum prediction residual principle applied to speech recognition, pp.154158-99, 1990.

Y. A. Ivanov, A. F. Et, and . Bobick, Recognition of visual activities and interactions by stochastic parsing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, pp.852872-852911, 2000.
DOI : 10.1109/34.868686

H. Jhuang, T. Serre, L. Wolf, and T. Poggio, A Biologically Inspired System for Action Recognition, 2007 IEEE 11th International Conference on Computer Vision, pp.18-38, 2007.
DOI : 10.1109/ICCV.2007.4408988

G. Johansson, Visual perception of biological motion and a model for its analysis, Perception & Psychophysics, vol.4, issue.2, pp.201211-201232, 1973.
DOI : 10.3758/BF03212378

T. Kadir, M. Et, and . Brady, Saliency, scale and image description, International Journal of Computer Vision, vol.45, pp.83105-83120, 2001.

L. Kaufman, P. Et, and . Rousseeuw, Clustering by Means of Medoids, 1987.

Y. Ke, R. Sukthankar, and M. Hebert, Volumetric Features for Video Event Detection, International Journal of Computer Vision, vol.73, issue.3, pp.339-362, 2010.
DOI : 10.1007/s11263-009-0308-z

A. Klaeser, M. Marszalek, and C. Schmid, A Spatio-Temporal Descriptor Based on 3D-Gradients, Procedings of the British Machine Vision Conference 2008, pp.9951004-9951042, 2008.
DOI : 10.5244/C.22.99

Y. Kong, X. Zhang, W. Hu, and Y. Jia, Adaptive learning codebook for action recognition, Pattern Recognition Letters, vol.32, issue.8, pp.11781186-11781218, 2011.
DOI : 10.1016/j.patrec.2011.03.006

L. Kovar, M. Gleicher, and F. Pighin, Motion graphs, ACM Transaction on Graphics, vol.21, issue.3, pp.473482-67, 2002.
DOI : 10.1145/1401132.1401202

A. Kovashka and K. Grauman, Learning a hierarchy of discriminative space-time neighborhood features for human action recognition, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.20462053-20462084, 2010.
DOI : 10.1109/CVPR.2010.5539881

B. Krausz, C. Et, and . Bauckhage, Action Recognition in Videos Using Nonnegative Tensor Factorization, 2010 20th International Conference on Pattern Recognition, pp.17631766-83, 2010.
DOI : 10.1109/ICPR.2010.435

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, HMDB: A large video database for human motion recognition, 2011 International Conference on Computer Vision, pp.25562563-25562575, 2011.
DOI : 10.1109/ICCV.2011.6126543

J. D. Laerty, A. Mccallum, and F. C. Pereira, Conditional random elds : Probabilistic models for segmenting and labeling sequence data, dans International Conference on Machine Learning, pp.282289-282326, 2001.

I. Laptev, B. Caputo, C. Schüldt, and T. Lindeberg, Local velocityadapted motion events for spatio-temporal recognition, Computer Vision and Image Understanding, vol.108, issue.3, pp.207229-207262, 2007.

I. Laptev, T. Et, and . Lindeberg, Space-time interest points, dans Internationale Conference on Computer Vision, pp.432439-432477, 2003.
DOI : 10.1109/iccv.2003.1238378

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.4359

I. Laptev, M. Marszaªek, C. Schmid, and B. Rozenfeld, Learning realistic human actions from movies, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-33, 2008.
DOI : 10.1109/CVPR.2008.4587756

URL : https://hal.archives-ouvertes.fr/inria-00548659

B. Leibe, A. Leonardis, and B. Schiele, An Implicit Shape Model for Combined Object Categorization and Segmentation, ECCV workshop on statistical learning in computer vision, pp.1732-65, 2004.
DOI : 10.1007/11957959_26

S. Li, J. Lv, Y. Xu, and Y. Jia, EyeScreen: A Gesture Interface for Manipulating On-Screen Objects, dans International Conference on Human- Computer Interaction : Intelligent Multimodal Interaction Environments, pp.710717-710756, 2007.
DOI : 10.1007/978-3-540-73110-8_77

X. Li, K. Et, and . Fukui, View Invariant Human Action Recognition Based on Factorization and HMMs, IEICE Transactions on Information and Systems, vol.91, issue.7, pp.18481854-18481893, 2008.
DOI : 10.1093/ietisy/e91-d.7.1848

Z. Lin, Z. Jiang, and L. S. Davis, Recognizing Actions by Shape-Motion Prototype Trees, dans Internationale Conference on Computer Vision, p.35, 2009.

H. Ling, K. Et, and . Okada, An ecient earth mover's distance algorithm for robust histogram comparison, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.840853-97, 2007.

J. Liu, J. Luo, and M. Shah, Recognizing realistic actions from videos in the wild, dans Conference on Computer Vision and Pattern Recognition, p.31, 2009.

J. Liu, M. Et, and . Shah, Learning human actions via information maximization, dans Conference on Computer Vision and Pattern Recognition, pp.18-38, 2008.

D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.11501157-11501172, 1999.
DOI : 10.1109/ICCV.1999.790410

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.4065

F. Lv, R. Et, and . Nevatia, Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost, European Conference on Computer Vision, pp.359372-359409, 2006.
DOI : 10.1007/11744085_28

F. Lv, R. Et, and . Nevatia, Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-24, 2007.
DOI : 10.1109/CVPR.2007.383131

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.309.9878

E. Marey, Le mécanisme du vol des oiseaux éclairé par la chronophotographie , La nature : revue des sciences et de leurs applications aux arts et à l'industrie, pp.814-857, 1887.

O. Masoud, N. Et, and . Papanikolopoulos, A method for human action recognition, Image and Vision Computing, vol.21, issue.8, pp.729743-729774
DOI : 10.1016/S0262-8856(03)00068-4

J. Mccann, N. S. Pollard, and S. Srinivasa, Physics-based motion retiming, dans ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.205214-71, 2006.

M. Mendoza, N. Et, and . Pérez-de-la-blanca, Applying space state models in human action recognition : A comparative study, dans Articulated Motion and Deformable Objects, pp.5362-5399, 2008.

B. Michoud, E. Guillou, H. B. Pulido, and S. Bouakaz, Real-Time Marker-free Motion Capture from multiple cameras, 2007 IEEE 11th International Conference on Computer Vision, pp.17-46, 2007.
DOI : 10.1109/ICCV.2007.4408991

URL : https://hal.archives-ouvertes.fr/hal-01502165

C. Mocap, The data used in this project was obtained from mocap .cs.cmu.edu. the database was created with funding from nsf eia-0196217, pp.76-105, 2003.

T. B. Moeslund, A. Hilton, V. Krüger, and L. Sigal, Visual Analysis of Humans, 2011.
DOI : 10.1007/978-0-85729-997-0

M. Müller, Information Retrieval for Music and Motion, 2007.
DOI : 10.1007/978-3-540-74048-3

M. Müller, A. Baak, and H. Seidel, Ecient and robust annotation of motion capture data, dans ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.1726-1754, 2009.

E. Muybridge, Animal Locomotion, p.43, 1887.

P. Natarajan, R. Et, and . Nevatia, Online, Real-time Tracking and Recognition of Human Actions, 2008 IEEE Workshop on Motion and video Computing, pp.18-37, 2008.
DOI : 10.1109/WMVC.2008.4544064

J. C. Niebles, C. Chen, and L. Fei-fei, Modeling temporal structure of decomposable motion segments for activity classication, European Conference on Computer Vision, pp.392405-392443, 2010.

J. C. Niebles, H. Wang, and L. Fei-fei, Unsupervised learning of human action categories using spatial-temporal words, British Machine Vision Conference, pp.299318-299333, 2006.

A. S. Ogale, A. Karapurkar, and Y. Aloimonos, View-invariant modeling and recognition of human actions using grammars Spatiotemporal salient points for visual recognition of human actions, dans Proceedings of the International Conference on Dynamical Vision, pp.710719-710757, 2007.

R. Okada, B. Et, and . Stenger, A single camera motion capture system for human-computer interaction, Transactions Information and Systems, pp.18551862-18551890, 2008.

V. Parameswaran, R. Et, and . Chellappa, View invariants for human action recognition, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.613619-143, 2003.
DOI : 10.1109/CVPR.2003.1211523

K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philosophical Magazine, p.97, 1900.

K. Pearson, On lines and planes of closest t to systems of points in space, Philosophical Magazine, pp.559572-92, 1901.

O. Pele, M. Et, and . Werman, Fast and robust earth mover's distances, dans Internationale Conference on Computer Vision, pp.460467-97, 2009.

P. Peursum, S. Venkatesh, and G. West, Tracking-as-Recognition for Articulated Full-Body Human Motion Analysis, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-37, 2007.
DOI : 10.1109/CVPR.2007.383130

F. Picard, Contextualisation & Capture de Gestuelles Utilisateur Contributions à l'Adaptativité des Applications Interactives Scénarisées, p.49, 2011.

R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol.28, issue.6, pp.976990-977027, 2010.
DOI : 10.1016/j.imavis.2009.11.014

D. Ramanan, D. A. Et, and . Forsyth, Automatic annotation of everyday movements, dans Nural Information Processing Systems, pp.15471554-15471593, 2003.

C. Rao, M. Et, and . Shah, View-invariance in action recognition, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.316322-316361, 2001.
DOI : 10.1109/CVPR.2001.990977

M. Raptis, D. Kirovski, and H. Hoppe, Real-time classication of dance gestures from skeleton animation, dans ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.147156-147181, 2011.

M. Rodriguez, J. Ahmed, and M. Shah, Action MACH a spatio-temporal Maximum Average Correlation Height filter for action recognition, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-30, 2008.
DOI : 10.1109/CVPR.2008.4587727

R. Rosales, Recognition of human action using moment-based features, cahier de recherche, BU-1998-020, p.31, 1998.

Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, pp.99121-97, 2000.

M. Ryoo, Human activity prediction: Early recognition of ongoing activities from streaming videos, 2011 International Conference on Computer Vision, pp.10361043-10361058, 2011.
DOI : 10.1109/ICCV.2011.6126349

M. S. Ryoo, J. K. Et, and . Aggarwal, Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities, 2009 IEEE 12th International Conference on Computer Vision, pp.15931600-15931638, 2009.
DOI : 10.1109/ICCV.2009.5459361

H. Sakoe, S. Et, and . Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.63, pp.4349-101, 1978.

H. Sakoe, S. Et, and . Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, pp.4349-99, 1978.

S. Salvador, P. Et, and . Chan, Fastdtw : Toward accurate dynamic time warping in linear time and space, dans KDD Workshop on Mining Temporal and Sequential Data, pp.561580-99, 2004.

C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: a local SVM approach, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.3236-3248, 2004.
DOI : 10.1109/ICPR.2004.1334462

C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: a local SVM approach, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.3236-3274, 2004.
DOI : 10.1109/ICPR.2004.1334462

P. Scovanner, S. Ali, and M. Shah, A 3-dimensional sift descriptor and its application to action recognition, Proceedings of the 15th international conference on Multimedia , MULTIMEDIA '07, pp.357360-357398, 2007.
DOI : 10.1145/1291233.1291311

L. Shao, X. Et, and . Chen, Histogram of Body Poses and Spectral Regression Discriminant Analysis for Human Action Categorization, Procedings of the British Machine Vision Conference 2010, pp.88-111, 2010.
DOI : 10.5244/C.24.88

E. Shechtman, M. Et, and . Irani, Space-Time Behavior Based Correlation, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.405412-405450, 2005.
DOI : 10.1109/CVPR.2005.328

Y. Sheikh, M. Sheikh, and M. Shah, Exploring the space of a human action, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.144149-144188, 2005.
DOI : 10.1109/ICCV.2005.90

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Real-time human pose recognition in parts from a single depth image, dans Conference on Computer Vision and Pattern Recognition, pp.12971304-12971329, 2011.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, Conditional models for contextual human motion recognition, dans Internationale Conference on Computer Vision, pp.18081815-18081852, 2005.

J. Sullivan, S. Et, and . Carlsson, Recognizing and Tracking Human Action, European Conference on Computer Vision, pp.629644-629679, 2002.
DOI : 10.1007/3-540-47969-4_42

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.4755

M. Tenorth, J. Bandouch, and M. Beetz, The TUM Kitchen Data Set of Everyday Manipulation Activities for Motion Tracking and Action Recognition , dans IEEE International Workshop on Tracking Humans for the Evaluation of their Motion in Image Sequences (THEMIS), in conjunction with ICCV, pp.10891096-83, 2009.

Q. Thevenet, M. Lefevre, A. Cordier, and M. Barnachon, Intelligent Interactions : Articial Intelligence and Motion Capture for Negotiation of Gestural Interactions, p.82, 2012.

D. Tran, A. Et, and . Sorokin, Human Activity Recognition with Metric Learning, European Conference on Computer Vision, p.548561, 2008.
DOI : 10.1007/978-3-540-88682-2_42

K. N. Tran, I. A. Kakadiaris, and S. K. Shah, Part-based motion descriptor image for human action recognition, Pattern Recognition, vol.45, issue.7, pp.25622572-90
DOI : 10.1016/j.patcog.2011.12.028

C. Tseng, J. Chen, C. Fang, and J. J. Lien, Human action recognition based on graph-embedded spatio-temporal subspace, Pattern Recognition, vol.45, issue.10, pp.3611-3624, 2012.
DOI : 10.1016/j.patcog.2012.04.002

P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, Machine Recognition of Human Activities : A Survey, Circuits and Systems for Video Technology, IEEE Transactions on, vol.18, issue.11 7, p.14731488, 2008.

P. Turaga, A. Veeraraghavan, and R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-35, 2008.
DOI : 10.1109/CVPR.2008.4587733

P. Turaga, A. Veeraraghavan, and R. Chellappa, Unsupervised view and rate invariant clustering of video sequences, Computer Vision and Image Understanding, vol.113, issue.3, pp.353371-353408, 2009.
DOI : 10.1016/j.cviu.2008.08.009

M. Van-den-bergh, W. Servaes, G. Caenen, S. De-roeck, and L. Van-gool, Perceptive user interface, a generic approach, dans Computer Vision in Human-Computer Interaction, pp.6069-6108, 2005.

V. N. Vapnik, The nature of statistical learning theory, p.33, 1995.

A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, Information Theory, IEEE Transactions on, vol.13, issue.36, pp.260269-155, 1967.

J. Wang, Z. Liu, Y. Wu, and J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.12901297-12901336, 2012.
DOI : 10.1109/CVPR.2012.6247813

L. Wang, D. Et, and . Suter, Learning and Matching of Dynamic Shape Manifolds for Human Action Recognition, IEEE Transactions on Image Processing, vol.16, issue.6, pp.16461661-16461696, 2007.
DOI : 10.1109/TIP.2007.896661

L. Wang, D. Et, and . Suter, Recognizing Human Activities from Silhouettes: Motion Subspace and Factorial Discriminative Graphical Model, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.18-37, 2007.
DOI : 10.1109/CVPR.2007.383298

L. Wang, D. Et, and . Suter, Visual learning and recognition of sequential data manifolds with applications to human movement analysis, Computer Vision and Image Understanding, vol.110, issue.2, pp.153172-153203, 2008.
DOI : 10.1016/j.cviu.2007.06.001

Y. Wang, G. Et, and . Mori, Max-margin hidden conditional random elds for human action recognition, dans Conference on Computer Vision and Pattern Recognition, p.872879, 2009.

D. Weinland, E. Et, and . Boyer, Action recognition using exemplar-based embedding, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.17-35, 2008.
DOI : 10.1109/CVPR.2008.4587731

URL : https://hal.archives-ouvertes.fr/inria-00590256

D. Weinland, E. Boyer, and R. Ronfard, Action recognition from arbitrary views using 3d exemplars, dans Internationale Conference on Computer Vision, pp.17-83, 2007.

D. Weinland, R. Ronfard, and E. Boyer, Automatic Discovery of Action Taxonomies from Multiple Views, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.16391645-16391680, 2006.
DOI : 10.1109/CVPR.2006.65

URL : https://hal.archives-ouvertes.fr/inria-00590216

D. Weinland, R. Ronfard, and E. Boyer, Free viewpoint action recognition using motion history volumes, Computer Vision and Image Understanding, p.12, 2006.
DOI : 10.1016/j.cviu.2006.07.013

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.6279

D. Weinland, R. Ronfard, and E. Boyer, A survey of vision-based methods for action representation, segmentation and recognition, Computer Vision and Image Understanding, vol.115, issue.2, pp.224241-224248, 2011.
DOI : 10.1016/j.cviu.2010.10.002

URL : https://hal.archives-ouvertes.fr/inria-00459653

L. R. Welch, Hidden Markov Models and the Baum-Welch Algorithm, IEEE Information Theory Society Newsletter, vol.53, issue.4, p.36, 2003.

G. Willems, J. H. Becker, T. Tuytelaars, and L. V. , Exemplarbased action recognition in video, British Machine Vision Conference, p.38, 2009.

R. Williams, The Animator's Survival Kit, p.32, 2002.

S. Wong, T. Kim, and R. Cipolla, Learning Motion Categories using both Semantic and Structural Information, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.16-38, 2007.
DOI : 10.1109/CVPR.2007.383332

J. Xiong, Z. Et, and . Liu, Human motion recognition based on hidden markov models, dans Advances in Computation and Intelligence, pp.464471-464509, 2007.

Y. Yacoob, M. Et, and . Black, Parameterized modeling and recognition of activities, Computer Vision and Image Understanding, vol.73, issue.21, pp.232247-232286, 1999.

J. Yamato, J. Ohya, and K. Ishii, Recognizing human action in timesequential images using hidden markov model, dans Conference on Computer Vision and Pattern Recognition, pp.379385-379421, 1992.

A. Yao, J. Gall, G. Fanelli, and L. V. , Does human action recognition benet from pose estimation ?, dans British Machine Vision Conference, pp.83-92, 2011.

A. Yao, J. Gall, L. V. Gool, and R. Urtasun, Learning probabilistic nonlinear latent variable models for tracking complex activities, dans Neural Information Processing Systems, pp.13591367-13591392, 2011.

L. Yeet, L. Et, and . Wolf, Local trinary patterns for human action recognition, dans Internationale Conference on Computer Vision, pp.492497-492505, 2009.

A. Yilmaz and M. Shah, A dierential geometric approach to representing the human actions, Computer Vision and Image Understanding, vol.109, issue.21, pp.335351-335389, 2008.

L. Zelnik-manor, M. Et, and . Irani, Event-based analysis of video, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.123130-123168, 2001.
DOI : 10.1109/CVPR.2001.990935

Z. Zhang, Y. Wu, Y. Shan, and S. Shafer, Visual panel, Proceedings of the 2001 workshop on Percetive user interfaces , PUI '01, pp.18-39, 2001.
DOI : 10.1145/971478.971522

M. Ziaeefard and H. Ebrahimnezhad, Hierarchical Human Action Recognition by Normalized-Polar Histogram, 2010 20th International Conference on Pattern Recognition, pp.37203723-37203745, 2010.
DOI : 10.1109/ICPR.2010.906

. Han, Human Interaction, Interaction with Environment, Locomotion, Physical Activities & Sports, Situations & Scenarios et Test Motions, pour un total de 144 acteurs Nous avons utilisé des sélections de jeu de données, voir tableau A.1. Cette sélection a été construite an d'avoir des classes similaires aux jeux de données couramment utilisé en reconnaissance d'actions 2D. Cette sélection est composé de 9 classes Ce jeux est composé de 1 action par classe pour l'apprentissage et entre 3 et 6 actions pour la reconnaissance. La gure A.2 représente quelques actions de notre sélection. De nombreuses publications ont travaillé avec des restrictions comparables à la notre, Müller Parameswaran et Chellappa [96], Wang et al. [138], Yao et al. [156]. Les auteurs ne fournissant pas les informations nécessaires, nous n'avons pas été en mesure de tester nos algorithmes sur leurs restrictions respectives, p.143