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General Introduction

Functional Electrical Stimulation (FES) is one of the solutions to improve lost motor func-

tions in persons with Spinal Cord Injury (SCI) or cerebral injury. The electrical currents arti-

ficially generate action potentials on the axons of the alpha motor neurons to induce muscle

contraction in place of the Central Nervous System (CNS). To date, FES has been used in a wide

range of rehabilitation applications, including the FES-aided support of standing, walking, gras-

ping/releasing, drop foot correction, tremor compensation, and bladder/bowel management.

Apart from the ability to improve functional movements, this technique has numerous other

benefits for patients, including preventing muscle atrophy, reducing muscle spasms, increasing

blood circulation and facilitating muscle reeducation. Yet, despite its many potential advantages,

FES has not achieved widespread clinical use thus far because of its limitations, such as rapid

muscle fatigue and imprecise force/torque control. In this context, an FES control system should

deliver an appropriate stimulation pattern to paralyzed muscle and control the muscle force or

joint torque compensating for the variations in muscle responses to the stimulations.

In the current FES systems, some researchers have presented their efforts to develop a

closed-loop control of FES. Most of them have focused on joint angle control without consi-

deration of muscle state changes. However, the joint angle may be affected not only by muscle

contraction, but also by unexpected external disturbances. Moreover, it is appropriate to confirm

the muscle state induced by FES to control the actual muscle contraction state as well as the

joint torque. Therefore, this thesis aims to develop an advanced FES closed-loop control method

which is based on evoked Electromyography (eEMG) feedback to achieve more accurate, safe,

and robust stimulation control.

In the domain of lower limb FES systems, muscle state changes (muscle fatigue) are a major

cause of degraded performance. However, the inadequacy of torque/force sensors is another pro-

blem with this rehabilitation technique. In order to track muscle state changes and perform ac-

curate torque control, the joint torque must therefore be estimated. This motivated us to develop

a torque estimation method from biosignals that can be measured or well estimated. Although

some works have attempted to use eEMG to predict torque production [Erfanian et al., 1998],

day-to-day differences are still considerable and have to be manually adjusted. In addition,

these works did not consider the effects of different muscle fatigue levels and subject-specific

differences on torque prediction accuracy. In this thesis, one focus is on the techniques for iden-

tifying muscle models in order to estimate the time-variant joint torque on the basis of muscle

activity information. The other focus is the development of a closed-loop control framework for

FES-elicited joint torque to allow for compensation of the physiological muscle changes. From a

practical point of view, a measurement of muscle activity is preferred as the feedback signal, as

it directly provides the information on muscle response to the stimulation.

In this thesis, two primary contributions are made to achieve the purposes described above :

1. An online torque estimation method is proposed for FES-elicited torque prediction and

muscle fatigue tracking under isometric condition. The muscle contraction dynamics are

modeled by a Polynomial Hammerstein Model (PHM) to represent joint torque from

muscle activity [Zhang et al., 2010] [Hayashibe et al., 2011b]. Kalman Filter (KF) with

forgetting factor is proposed to estimate the time-variant muscle contraction dynamics.

The estimation technique allows for the compensation of the subject-specific, protocol-

specific changes and fatigue level-related variations. In order to evaluate its performance,

1



2 Chapter 0 : LIST OF TABLES

experimental and simulation studies are conducted. The results demonstrate good tracking

performance of muscle variations and robustness to external disturbances and sensing fai-

lure [Zhang et al., 2011b] [Zhang et al., 2011a].

2. On the basis of the good predictive performance of the proposed estimation method, a

new control strategy, EMG-Feedback Predictive Control (EFPC), is proposed to explicitly

control the joint torque [Hayashibe et al., 2011a]. Both the muscle excitation and contrac-

tion dynamics are modeled by PHM. The main idea is to use the eEMG signal in a dual-

purpose : correlating stimulation to muscle electrical behavior in the muscle excitation

process and correlating muscle electrical behavior to muscle mechanical behavior in the

muscle contraction process. The performance of this controller is assessed by simulation

and experiments for FES-induced drop foot correction. The proposed control framework

provides promising results in terms of controllability and robustness. The great computa-

tional power also makes it feasible for real-time implementation.

This thesis is organized as follows :

In the first chapter, the basic and necessary neurological principles are presented, as well

as a brief review of the musculoskeletal system and motor-function impairment of the lower

limbs. Muscle fatigue induced by voluntary contraction and FES are compared, highlighting the

influence of muscle fatigue in an FES system. In order to analyze muscle fatigue, an eEMG

technique is introduced and the relevant works related to fatigue reduction and prediction are

described in detail. In addition, the FES control strategies, especially those involving fatigue

compensation features, are presented and discussed.

In the second chapter, a predictive torque model is presented and driven by eEMG signals

recorded from stimulated muscle. Two fatigue experiments in different stimulation conditions

are conducted to investigate muscle fatigue features and then to identify and validate the muscle

contraction model.

In the third chapter, adaptive torque prediction is explored under time-variant muscle dy-

namics. The proposed muscle model identification and torque prediction method are described

in detail, and incorporated into a muscle fatigue tracking task. Its performance is assessed with

simulation and experimental studies on SCI patients.

In the fourth chapter, a closed-loop control framework is developed to control joint torque

based on eEMG. In the underlying predictive strategy, a dual PHM structure is proposed to

catch muscle excitation and contraction dynamics. The prediction method proposed in the third

chapter is integrated to the torque tracking scheme along with an FES controller. We evaluate

the FES control performance with both simulation and experimental studies for FES application

to drop foot correction.

A conclusion is given to summarize the contributions of this thesis and to project the future

perspectives for more accurate, safe, and robust FES systems.

Following the conclusion, readers can find some additional aspects related to this work in

the Appendix. For example, the experiment of implanted FES and the algorithms of KF and

EFPC used throughout this work are all provided. We also present some additional results from

chapter 3 and chapter 4 here.



CHAPTER 1

FES-Induced Muscle Fatigue and Its Compensa-

tion

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motor Control of the Lower Limbs . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Skeletal Muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Lower Limb and Ankle Motion . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Impairment of Motor Function . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 FES and Induced Muscle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 FES Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 FES-Induced Muscle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 EMG and Its Application for Muscle Fatigue Analysis . . . . . . . . . . . 16

1.4 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Reducing or Delaying Muscle Fatigue with FES . . . . . . . . . . . . . . 17

1.4.2 Identifying and Predicting Muscle Fatigue with FES . . . . . . . . . . . . 19

1.4.3 Current FES Control Strategies . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



4 Chapter 1 : FES-Induced Muscle Fatigue and Its Compensation

1.1 Introduction

The main objective of this thesis is to investigate the feasibility of eEMG in a model-based

FES control system for compensation of muscle state variations (such as muscle fatigue). This

is a challenging and meaningful goal that should improve the performance of the present FES

system.

It has been estimated that at least 90 million people currently suffer from SCI worldwide

[Ragnarsdottir, 2001], and 15 million people suffer stroke each year [WHO, 2007]. FES is an

active solution to improve the motor deficits of hemiplegics who suffer from cerebral inju-

ries (such as stroke) and the para/quadriplegics who suffer from SCI. Whatever the specific

causes of these injuries, the pathway from the brain that drives and regulates muscle contrac-

tions is interrupted. The patients lose all or part of their functional movements as a result.

Therefore, restoration or improvement of the motor function is significant for such patients

to improve the quality of their lives. To date, FES has been widely used in clinical applica-

tions and research, such as assisted standing [Solomonow et al., 2000] [Kobetic et al., 2009],

walking [Hardin et al., 2007], grasping/releasing [Mangold et al., 2005], drop foot correction

[Breen et al., 2006], tremor suppression [Bó and Poignet, 2010] and bladder/bowel manage-

ment [Johnston et al., 2005] [Laforêt et al., 2011]. For the application of FES, the accuracy of

the induced movement and the safety to the patient are both critical.

In this chapter, a brief introduction of the fundamental knowledge on the neural and muscu-

loskeletal systems, which some engineers are not familiar with, is given. Next, the FES technique,

FES-induced muscle fatigue, and its analysis are introduced. Last, an overview of the strategies

to reduce, identify or predict FES-induced muscle fatigue and to control electrical stimulation

are presented and discussed.

1.2 Motor Control of the Lower Limbs

Humans are able to perform accurate, goal-oriented movements—from simple to complex—

and easily compensate unexpected perturbations, during which various and elaborate informa-

tion processing systems are involved in the nervous system. In this section, the neurological basis

for motor control and the primary organization and control of skeletal muscles are described.

Because the focus is lower limb movement, the relevant musculoskeletal structure, properties

and impairments are also introduced in this section. The main sources referred to in this chapter

are included in [Kandel et al., 2000], [Brodal, 2010] and [Winters and Crago, 2000].

1.2.1 Nervous System

The nervous system is a specialized system of cells, tissues, and organs. It controls the body’s

responses to internal and external stimuli and coordinates the actions of different body parts.

Anatomically, the nervous system is divided into the CNS, consisting of brain and spinal cord,

and the Peripheral Nervous System (PNS), which connects the CNS with various receptors and

effectors.

The nervous system is built up of numerous nerve cells (or neurons), the main functional

units, and glial cells, which are non-neuronal and primarily support and protect the neurons. A
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FIGURE 1.1 – Left : Central nervous system and the functions of spinal nerves. Right : Three main

types of neurons in the spinal cord. Motor neurons transmit signals from the CNS efferent to

effectors, while sensory neurons bring signals from receptors afferent to the CNS [Brodal, 2010].
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typical neuron consists of the cell body (or soma), dendrites, and the axon. In the spinal cord,

there are three main types of neurons classified according to where their axons terminate. They

have the same structures yet different functions as depicted in Fig. 1.1. Motor neurons, with

their cell body mainly located in the ventral horn, send their axons efferent from the CNS to

the effectors that carry out the response. The interneurons connect neurons in the cord. Sensory

neurons, with their cell body mainly located in the dorsal horn, transmit impulses afferent from

various receptors to the CNS. The gaps between these three types of neurons, namely synapses,

serve as junctions passing signals between individual target neurons.

FIGURE 1.2 – (a) Skeletal muscle is composed of numerous muscle fibers ; (b) Sarcomere, a basic

unit of muscle contraction, is primarily composed of actin and myosin ; (c) Cross-bridge between

actin and myosin in a sarcomere results in muscle contraction.

Although all the motor neurons activate skeletal muscles, not all of them contribute to

voluntary skeletal muscle contraction. Alpha motor neurons activate extrafusal muscle fibers

throughout the extrafusal muscle fibers and control voluntary muscle activity. Gamma motor

neurons do not contribute to the muscle force supplement provided by the extrafusal fibers ;
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instead, they activate the intrafusal muscle fibers within the muscle spindles and feedback the

muscle states (e.g., muscle length, position).

1.2.2 Skeletal Muscle

The skeletal muscles maintain posture, stabilize joints and provide skeletal movements.

Voluntary contractions of skeletal muscles occur as a result of conscious control of the CNS,

differing from smooth and cardiac muscles which are under unconscious control. Thus, the

nervous system and muscular system are closely interconnected and well coordinated. Here we

focus on the skeletal muscle—its structure, property and how it works.

Muscle Structure and Properties

Skeletal muscles are primarily attached to the bones by tendons and made up of numerous

muscle fibers, which are bundled into fascicles along the axis of the muscle. The muscle fibers

are long and cylindrical, composed of myofibrils which are arranged in parallel. These myofibrils

consist of sarcomeres—basic contraction units— in series. Within each sarcomere, there are two

types of myofilaments organized in a regular pattern, the thin actin filaments and the thick

myosin filaments. Fig. 1.2 illustrates the structure of skeletal muscles.

In a single muscle, the numerous muscle fibers are distinct in terms of functional proper-

ties, peak force, contraction velocity, resistance to fatigue, oxidative and glycolytic capacities,

and actino-myosin ATPase activities. Nonetheless, based on observations of their contractile pro-

perties (muscle strength, contraction velocity and fatigability), muscle fibers can be divided into

three types. Type I fibers, oxidative fibers, contract slowly and have high fatigue resistance. The

force produced by Type I fibers rises and falls slowly, but can be kept consistent for long periods.

They are mainly used for maintaining posture and sports like long-distance running. Type IIb

fibers, contrary to Type I, are glycolytic fibers and respond to the action potential quite fast.

They can produce high force, but they tend to fatigue easily and need a long time to recover.

This type of muscle fiber is needed to generate instantaneous or vigorous motion, such as jum-

ping or sprinting. Type IIa fibers use both oxidative and glycolytic processes for metabolism.

Compared with the other two fiber types, Type IIa fibers are intermediate in terms of contrac-

tion speed, force productivity and fatigability. Single muscles may be composed of three fiber

types in different proportions, which results in compound muscle contractile properties in the

different muscles. For instance, if we compare Soleus with Gastrocnemius (GM) in the Triceps

surae muscle group, Soleus is a relatively slow muscle, while GM is a fast and fatigable muscle,

as they contain different amounts of muscle fibers I and IIb.

Whatever the muscle fiber type, each muscle fiber is exclusively innervated by a single

motor neuron ; in contrast, a motor neuron can activate a number of muscle fibers with the

same muscle fiber type. The group composed of a motor neuron and all the muscle fibers it

innervates is known as a motor unit, as shown in Fig. 1.3. According to the muscle fiber type,

the motor unit can be correspondingly classified into three types : slow-twitch fatigue-resistant

(Type I fiber), fast-twitch fatigue-resistant (Type IIa fiber), and fast-twitch fatigable (Type IIb

fiber).

The complex and efficient movement of humans depends on the suitable recruitment of

muscles. The overall force produced in a single muscle is limited and depends on the number and

size of the activated motor units and their individual firing rates. As a result, the synthetical force
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FIGURE 1.3 – The motor unit

is composed of a motor

neuron and the muscle fi-

bers it innervates. Corres-

ponding to three muscle fi-

ber types, the motor units

also have three types with

different fatigability [2007

Pearson Eduction, Inc.].

is a spatial and temporal combination of the forces induced by all the recruited muscle fibers. In

addition, skeletal muscle has mixed biochemical responses under all contractile conditions due

to its heterogeneous nature [Binder-Macleod and Snyder-Mackler, 1993]. Therefore, the CNS

must optimally activate suitable muscle and further muscle fibers to induce the desired motion

and preserve energy supply.

Muscle Contraction

Skeletal muscles contract only when they are activated by neural signals. The muscles trans-

form the neural signals into mechanical outputs, such as muscle force or length. The muscle

contractile mechanism is complex and basically summarized by the "sliding filament" theory

[Huxley, 1957]. At the molecular level, muscle contraction is generated through the "cross-

bridge" cycling between actin and myosin in a sarcomere. Here, we briefly explain the deve-

lopment of the neuromuscular system. The brain sends a neural signal, in the form of a neural

action potential, which then propagates along the motor neuron axons. When the neural action

potential reaches the neuromuscular junction, the depolarization produced in the nerve end

plate and then in the postsynaptic receptors on the muscle gives rise to a muscle action poten-

tial. When the muscle action potential propagates along the membrane and along the T-tubules,

calcium is released across the entire sarcomere. Calcium release makes the active site of the thin

actin bind with the myosin head (or cross-bridge), and then pulls the actin sliding along the

myosin toward the center of the sarcomere. At the same time, the cross-bridge rotates, allowing

for the attachment to a new active site at a shorter length. When a new neural action poten-

tial arrives, this process is repeated, resulting in progressive myofibril contraction. The entire

muscle fiber and then the entire muscle consequently contract. If no action potential arrives, the

cross-bridge cycle is terminated due to the decrease in calcium release. The muscle relaxes and

returns to the rest state as a result.

1.2.3 Lower Limb and Ankle Motion

The human lower limbs play an important role in locomotion, such as standing, walking,

jumping, running and similar activities. Compared with the upper limbs, which mainly serve as

organs of manipulation, the lower limbs serve for locomotion, emphasizing stability rather than
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mobility. Various joints within the entire lower limb allow for stable locomotion at variant speed

and over uneven ground. The lower limb is divided by the hip joint, knee joint and ankle joint

into four parts : buttock, thigh, leg and foot. As this work concentrates on motion control of the

ankle, a special emphasis is put on the foot and leg, as well as the muscles and nerves involved,

as shown in Fig. 1.4.

FIGURE 1.4 – Anterior (a) and posterior (b) muscles of the lower limb

[http ://knol.google.com/k/shin-pain] ; (c) Nerves activating the muscles of lower (pos-

terior) [http ://home.comcast.net/ wnor/postthigh.htm].

The ankle joint is a hinge-type joint and relatively simple in terms of the number of muscles

involved in the actuation. It permits several movements such as dorsiflexion, plantarflexion,

eversion and inversion [Mackenzie, 2004]. Dorsiflexion and plantarflexion provide the primary

range of motion at the ankle.

Ankle dorsiflexion — moving the toes toward the shin — helps with our ability to place the

ankle in a stable position and also gives more power upon contact with the ground. This move-

ment is brought by all the muscles whose tendons pass into the foot anterior to the ankle joint,

including the Tibialis Anterior (TA), Extensor hallucis longus and Extensor digitorum longus. All

these muscles are innervated by the common peroneal nerve, which comprises the nerve fibers

deriving from the L4-L5-S1-S2 levels of spinal segments.

Ankle plantarflexion — pointing the toes away from the shin and toward the ground —

helps to release tension, which in turn helps to move more easily and absorb the shock of

contact with the ground. Plantarflexion is brought by all the muscles whose tendons attach to

the calcaneus (e.g., Soleus, GM) and whose tendons pass into the foot posterior to the ankle

joint (e.g., TA, Flexor digitorum longus, Peroneus longus and brevis). The GM and Soleus are

generally grouped as Triceps surae muscle with the two heads of the GM attaching to the femur
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above the knee, and another head (Soleus) attaching to the tibia. The Triceps surae muscle is

innervated by the tibial nerve arising from L4-L5-S1-S2 nerves.

Ankle motion plays an important role during gait. A gait cycle starts when the heel contacts

the ground and ends when that heel contacts the ground again. The ankle alternatingly plan-

tarflexes and then dorsiflexes twice during a single gait cycle [O’Keeffe et al., 2003]. Each gait

cycle consists of a stance phase and a swing phase as shown in Fig. 1.5. The stance phase begins

from the initial heel strike and ends with the lift of the toe at the beginning of swing phase. It

accounts for approximately 70% of the duty cycle. During the swing phase, the foot is off the

ground. It accounts for approximately 30% of the duty cycle.

FIGURE 1.5 – One gait cycle

consists of a stance phase

and a swing phase, and the

ankle alternatingly plantar-

flexes and then dorsiflexes

twice.

1.2.4 Impairment of Motor Function

The impairment of motor function is often the result of SCI, cerebral injury, multiple sclero-

sis or other neurological disorders. In order to help understand the underlying principle of FES,

the nature of motor neuron lesions is briefly introduced, which will be helpful in understanding

how FES contributes to restoring lost motor functions.

Fig. 1.6 illustrates the pathways of lower motor neurons and upper motor neurons. Lower

motor neurons are the neurons that directly serve for the effectors (such as skeletal muscles).

They are either from the cranial nerve in the brain stem or from motor nerves in the spinal cord.

On the contrary, the upper motor neurons originating from the motor cortex or the brain stem

are not directly responsible for stimulating effectors, but connect the brain to the appropriate

level in the spinal cord. From this spinal segment, the nerve signals propagate to the effectors

by means of lower motor neurons. Accordingly, motor neuron lesion is usually divided into

upper motor neuron lesion and lower motor neuron lesion with respect to different injury sites

and resultant symptoms. An upper motor neuron lesion is usually accompanied by innervated

and paralyzed muscle, while a lower motor neuron lesion results in denervated and paralyzed

muscle.

SCI refers to any damage to the spinal cord from trauma, loss of normal blood supply,

compression from tumor or inflammation. SCI severity is roughly qualified as "complete" or

"incomplete" and classified according to the American Spinal Injury Association (ASIA) scale.

Higher level injuries imply greater functional deficits and impairment of personal mobility

[R.J. et al., 1996]. The meanings of the five classifications are no motor or sensory function
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FIGURE 1.6 – Middle : Lower motor neurons (purple) directly serve for the effectors (such as

skeletal muscles). They are either from the cranial nerve in the brain stem or from motor nerves

in the spinal cord. On the contrary, the upper motor neurons (blue) originating from the motor

cortex or the brain stem are not directly responsible for stimulating effectors, but connect the

brain to the appropriate level in the spinal cord. From this spinal segment, the nerve signals

propagate to the effectors by means of lower motor neurons. Modified from [Brodal, 2010].

Left : SCI refers to any injury within the spinal cord, leading to quadri/paraplegia at different

levels. Right : Hemiplegia is caused by various injuries, such as traumatic injury to the brain,

resulting in the opposite side of the body being affected.
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(ASIA A), only sensory function remaining (ASIA B), some sensory and motor preservation

(ASIA C), useful motor function (ASIA D) and normal function (ASIA E). Injuries at different

sites in the cerebral column lead to complete paralysis in all the upper and lower limbs (quadri-

plegia) or in the lower limbs only (paraplegia), as shown in Fig. 1.6. Hemiplegia can be caused

by various injuries, such as traumatic injury to the brain resulting in the opposite side of body

being affected (Fig. 1.6).

1.3 FES and Induced Muscle Fatigue

In order to improve movement in hemiplegics or para/quadriplegics, seve-

ral treatments have been proposed, such as an assistant brace, exoskeleton (ortho-

tic device) [Colombo, 2000] [Rosen and Arcan, 2001] [Tsukahara et al., 2011], FES

[O’Halloran et al., 2003] [Johnston et al., 2003] [Johnston et al., 2005] [Guiraud et al., 2006]

[Hardin et al., 2007], and a hybrid neuroprosthesis incorporating FES with an external exoske-

leton [Yukawa et al., 1996] [Kobetic et al., 2009]. Some examples of neuroprosthesis systems

are illustrated in Fig. 1.7. FES is used to remedy some of the shortcomings of mechanical

orthotic devices [Kralj, 1973]. In comparison with a passive external exoskeleton, FES is an

active technique for regaining functional motion, and it has advantages in terms of no power

consuming problem, the use of a natural exoskeletal system and levers (human body), and

avoidance of the "learned disuse" of the paralyzed muscle. Apart from the ability to improve

motor function, FES has various benefits such as preventing muscle atrophy, reducing muscle

spasm, increasing blood circulation and facilitating muscle reeducation.

1.3.1 FES Principle

FES delivers electrical currents to activate the paralyzed muscles in order to stabilize the

body from collapse and provide power to move. However, not every patient can benefit from

this technique because it requires intact lower motor neurons (see Fig. 1.6). In this case, the

underlying neurophysiological principle of FES is the generation of action potentials in the unin-

jured lower motor neuron activated by external electrical stimuli. For patients with lower motor

lesions, although FES is not able to improve their mobility as it does for patients with upper mo-

tor neuron lesion, it is still helpful to reduce muscle atrophy and enhance muscle contractility

[Kern et al., 2010].

FES was first put forward for surface stimulation in the lower extremities of patients

by [Liberson et al., 1961] to correct the drop foot condition. With the development of high-

level techniques, such as microprocessors, microelectronics, manufacturing and control theory,

more advanced systems have been developed, such as implantable FES systems for lo-

wer extremity applications in paraplegic patients [R.J. et al., 1996] [Johnston et al., 2003]

[Guiraud et al., 2006] and hemiplegic patients [O’Halloran et al., 2003].

A traditional FES system consists of a stimulator, electrodes and a control unit. The control

unit determines the electrical stimulation pattern to achieve the desired movement. The stimu-

lator generates and delivers the stimulus to the muscle of interest through the electrodes, as

shown in Fig. 1.8. The FES system can be surface, needle, or implanted, depending on the ap-

plication. Surface stimulation may be affected by day-to-day variations but it is convenient to
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FIGURE 1.7 – (a) The Hybrid Assistive Limb (HAL) is under research for applications in

SCI [Tsukahara et al., 2011] ; (b) The implanted FES system [Hardin et al., 2007], including

implanted 8-channel receiver stimulator, intramuscular electrodes, connector, and external

components—control unit, coupling coil and finger switch. A customized stimulation pattern

is applied to an incomplete cervical patient for gait training. The stimulation is triggered by a

finger switch ; (c) A hybrid neuroprosthesis combining an orthotic device with electrical stimu-

lation [Kobetic et al., 2009]. The knee mechanism locks during stance to prevent collapse and

unlocks during swing, while the FES system consisting of 16-channel stimulation via intramus-

cular electrodes, moves the ankle in the sagittal plane.

FIGURE 1.8 – A typical FES system consists of a stimulator, electrodes and a control unit.

The control unit determines the pattern of electrical stimulus for desired movement. The sti-

mulator generates and delivers the stimulus to the muscle of interest through the electrodes

[Milos, 2001].
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implement and remove. The implanted FES can cover the daily variation problem, but a surgical

operation is required and infection is still a potential problem [Jaeger, 1994]. Therefore, when

implanted FES is not available, surface FES is still useful, and currently the most commonly used

in the community and in labs. With surface FES, the stimulation electrodes can be placed on the

muscle, activating a single muscle, or near the motor nerve, thus allowing the activation of mul-

tiple muscles. Note that, if the electrodes are placed on the motor nerve, the parallel sensory

nerve tends to be activated simultaneously, which can be observed as H-reflex in a myoelectrical

recording.

FIGURE 1.9 – Different FES interfaces. (a) Surface FES system for drop foot correction [NESS

L300, CA, US], which mainly consists of an RF foot sensor for detecting heel off and heel contact,

an RF control unit, and an RF controlled stimulation unit ; (b) Needle FES system for restoring

upper limb functions [Knutson et al., 2002]. The percutaneous intramuscular electrodes are fine

wires with a diameter of approximately 200 µm anchored inside the target muscles. The external

stimulator is connected to the lead (a diameter of approximately 580 µm) exiting through the

skin by a connector block ; (c) Implanted electrodes and overall system [Guiraud et al., 2006]

for restoring lower limb movement. This FES system has 16 channels for inducing muscle

contraction either by epimysial electrodes or neural electrodes to support standing or walking.

1.3.2 FES-Induced Muscle Fatigue

Muscle fatigue has been defined as "a failure to maintain the required or expected force"

from a repeatedly activated muscle [Edwards, 1981]. In voluntary contraction, a variety of bio-

logical and motivational factors contribute to muscle fatigue [Gandevia et al., 1995], such as

reduced motor drive by the CNS, failure of peripheral electrical transmission, and failure of the

muscular contractile mechanism. Although the action potential activated by artificial stimulation

is not distinguishable from the action potential activated by natural stimulation [Riener, 1999],
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the rate of muscle fatigue during FES is much greater than that seen during natural contractions

[Binder-Macleod and Snyder-Mackler, 1993]. The exact reason for this fast fatigue phenome-

non is complex and is not yet fully understood. The possible reasons can be summarized as :

(1) the inverse size principle, according to which the artificial stimulation recruits the motor

neurons from the largest to the smallest [Hamada et al., 2004], and the larger the motor neu-

ron, the more fatigable the muscle fiber ; (2) motor units are activated in synchronized manner

with artificial stimulation, which is different from the asynchronous activation during natural

contraction ; and (3) the constant order of recruitment, with fast fatigable motor units activated

first, then slow fatigue-resistant motor units. These opposite features of FES activation compared

with natural contraction have motivated a number of researchers to find the optimal stimulation

FIGURE 1.10 – Different EMG recording interfaces. (a) Surface EMG electrodes [Me-

diTr100, The Mind People]. (b) Fine-wire EMG recording system [TECA, CareFusion]. (c)

The wireless implantable EMG sensing microsystem consists of two epimysial EMG elec-

trodes, a custom-designed application-specific integrated circuit, and an RF telemetry coil

[Farnsworth et al., 2008]. (d) High-density EMG E-Textile System contains 100 electrodes ar-

ranged in 4 grids of 5×5 electrodes [Farina et al., 2010].

strategy, as similar to CNS as possible to improve FES performance. Another factor relating to

fast fatigue with FES is that the fatigue resistance of the paralyzed muscle decreases after injury

[Pelletier and Hicks, 2011].

For an able-bodied person, fatigue can be perceived and compensated by various strategies

so that motor function is prolonged. However, for a paraplegic individual with little or even

no sensory feedback, fatigue is not detected until the desired movement fails. Therefore, how
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to detect fatigue before the failure of movement and how force changes with fatigue are both

meaningful issues. The ability to detect the muscle state and compensate the muscle changes

are both significant for the future FES system.

1.3.3 EMG and Its Application for Muscle Fatigue Analysis

When muscles contract, they exhibit both electrical and mechanical behaviors. The mecha-

nical behavior can be estimated by muscle force/length, or joint torque/angle. The electrical

behavior can be assessed by recording the electrical signals within the muscle, which is refer-

red to as Electromyography (EMG). The EMG signal has been popularly applied in areas like

ergonomics and occupational biomechanics for kinesiological or diagnostic purposes. The main

applications include determining the activation onset and levels of a muscle, estimating the force

produced by muscle, monitoring the rate of muscle fatigue, and analysis of Motor Unit Action

Potential (MUAP)s.

The EMG system can be classified according to the interface, such as surface, intramuscular

(needle or fine-wire), and implanted [Farnsworth et al., 2008] [Madeleine et al., 2006], with

the recording channel varying from single to high-density, as shown in Fig. 1.10. A typical EMG

recording system contains recording electrodes, an amplifier, an A/D converter and wires. The

recording electrodes pick up electrical signals underneath them and send them to the amplifier.

As the electrical signal is very small, an amplifier gain is selected to amplify the signals. Usually,

the amplifier also involves signal processes such as filtering.

In all EMG interfaces, the commonly used surface EMG provides a noninvasive measure-

ment of muscle electrical activities and can be easily implemented in practice. However, when

using surface EMG, we should pay more attention to the recording artifacts, which may come

from different sources. Accordingly, various measures should be taken to eliminate or reduce

them. For instance, environmental artifacts from the surrounding electrical equipments can be

removed by a notch filter. Movement artifacts from dynamic movement can be avoided by firmly

adhering the electrodes on the muscle and fastening the wire cables. As some muscles are nar-

row and close to other muscles, the EMG signal may be affected by crosstalk, which is recorded

from other muscles we are not interested in. Through careful placement and sufficient interelec-

trode distance, it can be minimized to some extent [Solomonow et al., 1995]. In addition, some

filters (software or hardware) can be used to remove the residual artifacts.

Compared with surface EMG, needle and implanted EMG provide more stable and re-

liable measurements, but their invasive nature limits their applications. Thus, if needle and

implanted EMG are not available, surface EMG is still useful. In particular, the occurrence of

multiple-channel and even high-density surface EMG has enhanced the application of surface

EMG. High-density surface EMG produces a spatially filtered EMG channel that can have suffi-

cient resolution to identify individual MUAPs. It is especially applied to observe the conduc-

tion velocity of MUAPs to better understand and analyze the mechanism of muscle fatigue

[Farina and Merletti, 2000] [Merletti et al., 2008] [Holobar et al., 2009]. Recently, several ac-

tive research works have attempted to identify the optimal spatial filters, electrode array configu-

rations and signal decomposition methods through high-density surface EMG [He et al., 2009]

[Zhou et al., 2011].

The EMG signal is a summation of the recruited MUAPs. Typical EMG signals from volun-
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(b)(a)

FIGURE 1.11 – (a) Voluntary EMG signals represent asynchronous muscle activity ; and (b) FES-

evoked EMG signals consist of artifacts and Mwave. The Mwave is the summation of recruited

MUAPs. It represents synchronous muscle activity compared with voluntary muscle contraction.

tary contraction and from FES-evoked muscle contraction are shown in Fig. 1.11. The active

motor units during voluntary contraction have different firing frequencies and behave asynchro-

nously, showing the so-called interference pattern. In contrast, the motor units with electrical

stimulation have synchronous activity, showing the so-called Mwave in the EMG signal. When

processing the FES-evoked EMG signals, one has to deal with stimulation artifacts, which appear

at the onset of each stimulation impulse and are quite larger than Mwave. In order to retrieve

the signal of interest, Mwave, suitable techniques should be employed to remove the stimulation

artifacts first. As seen from Fig. 1.11, the EMG signal is a complex spiky signal that is difficult

to interpret. Fortunately, a variety of signal processing techniques make it easier to understand.

The various techniques generally represent either time-domain or frequency domain properties

of EMG signals, as described in [Cifrek et al., 2009].

1.4 The State of the Art

Two major issues associated with the electrical stimulation of muscle are the force produc-

tion capacity and the force maintenance capacity against various perturbations. Thus, when FES

is applied for rehabilitation purposes, special attention should be paid to the design of appro-

priate stimulation protocols for the desired trajectory and the control of the stimulation allowing

for reactions to the variations of muscle (such as muscle fatigue and reflex).

1.4.1 Reducing or Delaying Muscle Fatigue with FES

When electrical current is delivered to the paralyzed muscle, the produced muscle force

can be modified by modulating the stimulation parameters. Thus, appropriate stimulation para-

meters are important considerations in the design of an FES protocol. The parameters that can

be changed include pulse amplitude, pulse width and stimulation frequency. Roughly, the pulse

amplitude determines the spatial extent of a stimulation field, while pulse width determines

the percentage of recruitment within that field [Tyler and Dliran, 1995]. Stimulation frequency

affects the fusion of muscle force from different muscle fibers. Increasing any stimulation para-
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meter will theoretically increase the muscle force, but may result in faster muscle fatigue. During

voluntary contractions, the CNS optimally modulates both the number of motor units (recruit-

ment) and the activation frequency (firing rate) to generate targeted muscle force and preserve

energy supply [Chou et al., 2008]. Relatively, most FES systems only modify pulse amplitude or

pulse width, with the frequency being fixed at a minimum level, inducing fused force.

Many researchers have been inspired by the natural CNS control scheme to explore more

physiological muscle activation protocols in order to maximize muscle strength while at the same

time prolonging muscle endurance in FES. The main ideas are grouped into three directions as

follows.

– Electrode selectivity has attracted some attention as it allows small muscle fibers to

be stimulated first to reduce muscle fatigue from fast muscle fiber recruitment. For

instance, by means of a current block, unidirectional action potentials are genera-

ted in smaller nerve fibers with the larger fibers blocked [Bhadra and Kilgore, 2004]

[Wang et al., 2008] [Tai et al., 2009], which is of great benefit for attenuating muscle

fatigue in neuroprostheses. In [Popović and Popović, 2009], an optimal surface electrode

configuration from multi-pad electrodes was developed for selective stimulation of fin-

ger extension and flexion. Their idea arose from the hypothesis that the superposition of

several electrodes would achieve asynchronous stimulation, similar to natural activation.

In another work [Wise et al., 2001], adjustable distributed stimulation of motor nerves

was proposed for prolonged stimulation with less fatigue. The intervals between multi-

channel stimuli are controlled by computer and allow the generation of equal tension at

all channels, which can help to establish a smooth force over a wide range.

– Assuming that an optimal stimulation protocol can allow for more natural and physio-

logical stimulation to reduce muscle fatigue with FES, different stimulation protocols

were evaluated. Based on the experiments of stimulating the sciatic nerve of cats, com-

bining the modulation of amplitude and pulse width was suggested to augment the

functional performance [Tyler and Dliran, 1995], and shorter pulse width was found to

be able to generate a larger range of stimulation amplitude dynamics [Grill, 1996]. In

[Szlavik and de Bruin, 1999], the authors also reported that longer pulse width resulted

in more recruitment of larger nerve fibers, which implies that more muscle fatigue is gene-

rated with longer pulse width. In another work [Chou et al., 2008], a combination of sti-

mulation amplitude modulation and stimulation frequency modulation was suggested to

maintain quadriceps femoris muscle force, which is superior to solely modulating one of

them. Comparably, if the frequency and amplitude are kept constant, the lowest frequency

and longest pulse width can minimize muscle fatigue [Kesar and Binder-Macleod, 2006].

In their following work [Kesar et al., 2008], they further compared frequency modula-

tion with pulse width modulation, and they suggested modulating frequency to improve

muscle performance. Random modulation of FES parameters was also assumed to be able

to reduce muscle fatigue but finally proved to be ineffective regarding the muscle fatigue

rate of isometric contraction in SCI subjects [Graham et al., 2006]. A similar finding was

reported in [Thomas and E.Butler, 2003], who observed that the variations in stimulation

frequency, pulse pattern, and pulse number had little influence on thenar muscle fatigue

in both SCI subjects and healthy subjects.

– Evolutional current wave form has been considered to be helpful in improving stimu-
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lation performance. During surface FES, the synchronous recruitment in which all the

muscle fibers are activated simultaneously causes more rapid fatigue in the paralyzed

limb. A possible means to reduce fatigue is by using intermittent stimulation, in which

fatigue and recovery occur in sequence [Levin and Mizrahi, 1999] [Duan et al., 1999].

High frequency electrical stimulation was suggested in an intermittent stimulation

protocol to reduce fatigue [Matsunaga et al., 1999]. This work was tested on heal-

thy and paraplegic subjects. In addition, the use of N-lets or catch-like stimulation

was proposed to maximize muscle performance and delay fatigue [Karu et al., 1995]

[Routh and Durfee, 2003] [Shimada et al., 2006]. However, an opposite result was re-

ported in [Routh and Durfee, 2003], who showed that doublet stimulation generated fe-

wer cycles in a cycling task compared with conventional singlet stimulation of quadriceps

muscle in healthy subjects.

From these previous works, we find that the main idea to reduce muscle fatigue in FES is

based on the hypothesis that the muscle will generate higher force and less fatigue if it can be

activated in a more natural and physiological manner. Although various protocols have been

proposed, no consensus has been reached to date. Possible reasons are that muscle fatigue is

complex, multi-factorial and task-specific [Russ et al., 2002], which complicates the comparison

among studies, and that insufficient experimentation has led to incomplete understanding of

the muscle fatigue mechanism. As a result, it is difficult to find a generally effective solution to

reduce fatigue in FES. However, I still believe that all of these ideas can contribute to improving

muscle contraction endurance in some specific situations. Probably, a combination of several

methods will contribute to the overall performance.

1.4.2 Identifying and Predicting Muscle Fatigue with FES

Muscle fatigue is not easy to effectively reduce despite the attempts to address this pro-

blem, as outlined above. Another meaningful study is how to detect fatigue and predict force

production when muscle has been fatigued by stimulation. First, objective fatigue monitoring

is especially important in paraplegic patients, who suffer from a lack of sensory feedback from

their paralyzed muscles, because it can be used to readjust stimulation to prevent failure. Se-

cond, force prediction is essential if the muscle force has to be used as feedback in closed-loop

stimulation. Thus, for these purposes, a fatigue model can be useful to predict the force produc-

tion that accounts for muscle fatigue and also the recovery during intermittent stimulation.

Various fatigue models have been established, based on physiological and mathematical

interpretation or fitting from experimental measurements. A biomechanical model was develo-

ped to predict the shank motion induced by FES [Riener et al., 1996]. Individual model para-

meters were identified by specific experiments. A four-parameter nonlinear equation was pro-

posed to extract fatigue indices for predicting torque decrease in paraplegic subjects during

an isometric sustained contraction [Rabischong and Chavet, 1997]. A five-element musculoten-

don model was developed to predict the force generation capacity of the activated muscle,

and a fatigue recovery function, based on the metabolic profile, was introduced into this mo-

del [Mizrahi et al., 1997b]. In [Cai et al., 2010], a Wiener-Hammerstein model was proposed to

predict FES-induced muscle force in unfatigued and fatigued muscle, and this work was verified

by stimulating Soleus in SCI patients. A computer model of activation dynamics was developed
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to interpret FES-induced muscle fatigue in [Lim et al., 2000]. It represented the reduction in

muscle force and fatigue recovery from intermittent stimulation.

Some researchers have attempted to predict force/torque variations with fatigue based

on eEMG. An exponential function was proposed to predict force of the FES-activated qua-

driceps muscles from eEMG Peak-to-Peak (PTP) [Mizrahi et al., 1994]. PTP was suggested as

a fatigue index during constant cycling speed in [Chen and Yu, 1997]. The authors propo-

sed a hyperbolic modeling of PTP to dynamic cycling numbers under intermittent FES. A

high correlation between EMG Mean Absolute Value (MAV) and knee torque was found un-

der continuous stimulation in paraplegic subjects [Erfanian et al., 1996]. In their following

work [Erfanian et al., 1998], they proposed a predictive model of muscle force production un-

der an isometric percutaneous continuous FES system. After comparing the performance of

force prediction from stimulation and from EMG, they suggested using measured EMG si-

gnals instead of stimulation signals to predict muscle torque. A metabolic model was presen-

ted to predict the force decline and recovery from EMG signals under intermittent condition

[Levin and Mizrahi, 1999]. Second Phase Area (SPA) and Root Mean Squares (RMS) were sug-

gested to monitor activation over a long fatigue period during isometric continuous stimulation

in [Heasman et al., 2000].

All of these works suggest that EMG could be used to monitor the muscle fatigue during

electrical stimulation. However, as [Mizrahi and Isakov, 1994] pointed out, the EMG-to-force re-

lationship could be affected by different recruitment levels and muscle recovery in time-domain

analysis. Next, some alternative EMG methods have been investigated for muscle fatigue mode-

ling, or to predict FES-elicited force throughout the entire range of measurement.

Decreases in time-domain parameters (integrated sEMG, MAV, PTP and RMS) and

frequency-domain parameters (Power Spectral Density (PSD), Mean Frequency (MNF) and

Median Frequency (MDF)) with decreased force due to muscle fatigue were observed in

[Tepavac and Schwirtlich, 1997]. They suggested combining time-domain parameters and

frequency-domain parameters to track muscle fatigue. A simple combination was implemen-

ted to validate this proposal and showed some improvement in force prediction, but the accu-

racy was still far from the requirements for practical use. In [Mizrahi et al., 1997a], the authors

reported that both MDF and Total Spectral Power (TSP) decreased with fatigue and were fit

by an exponential function over time. However, when muscle fatigue increased, an extremely

low correlation was found between force and MDF in one of the subjects. In another work

[Chesler and Durfee, 1997], the authors attempted to track fatigue from RMS and MNF. Unfor-

tunately, the results demonstrated that it is difficult to reliably track fatigue for practical FES

applications.

From these previous works, we can conclude that muscle fatigue estimation and force pre-

diction are important if they are used in closed-loop control of FES. For these purposes, the

primary ideas include developing a fatigue model and estimating fatigue from muscle activity.

However, the fatigue properties vary at different fatigue levels and recovery processes, which

complicates the identification of a fatigue model. Moreover, the fatigue model cannot work

when the desired stimulation pattern is unknown in advance. The time-variant EMG-to-force re-

lationship also challenges the identification method and the reliability of force prediction from

EMG information.
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1.4.3 Current FES Control Strategies

In the current FES rehabilitation system, open-loop control is predominantly used, while

closed-loop control is primarily carried out in research. Open-loop control provides an empiri-

cally predefined stimulation pattern to the paralyzed muscle. Due to the lack of feedback on the

real muscle output, the stimulation cannot be adjusted when it is not suitable for eliciting the

intended motion. Thus, some of the present open-loop FES systems require manual adjustment

of the stimulation by pushing buttons or choosing different programs. Others provide additional

support such as a brace or crutch to avoid failure and enhance stability.

First, although open-loop control does not enable adaptive adjustment of stimulation in

reaction to unwanted variations, it can still work when the accuracy of the force is not seriously

required or the muscle variations are not prominent. In this case, identifying the appropriate

stimulation pattern is crucial to improve FES performance in terms of generating more natu-

ral or more complex trajectories. To generate a more natural gait profile, an optimal stimu-

lation envelope was investigated in [O’Keeffe et al., 2003]. They proposed a method to opti-

mize the classic trapezoidal stimulation envelope by comparing the produced muscle activity

with the natural EMG signals of TA muscle from able-bodied persons. The stimulation pattern

was designed by using user-customized model-based control of walking in a simulation work

[Dosen and Popovic, 2006]. In this work, the model was a multi-segment structure with each

muscle modeled by a three-compartment multiplicative model, and optimization was achieved

by minimizing the tracking error of the joint angles and muscle activations levels. A transfer

function to convert the EMG signal recorded from able-bodied subjects into appropriate stimula-

tion signals was proposed [Johnson and Fuglevand, 2011]. This transfer function can modulate

muscle output through both frequency and pulse width modulation.

Second, closed-loop control of FES has attracted increasingly more attention, but to ac-

complish different tasks, different strategies have been designed and evaluated in simulations

and in experiments on able-bodied persons or patients. Afferent neural activity from muscle

spindle fibers was proposed as feedback for controlling ankle angle, which requires the preser-

vation of sensory nerves [Yoshida and Horch, 1996], and this system was tested on animals. In

[Graupe and Kordylewski, 1997], the authors proposed using upper-limb EMG signals to trig-

ger the stimulation of the lower limbs by applying an artificial neural network. A closed-loop

self-adaptive fuzzy logic controller based on reinforcement learning was developed to minimize

upper-limb forces and the terminal velocity of the knee joint for FES standing up in a computer

simulation [Davoodi and Andrews, 1998]. A nonlinear, physiologically based model was deve-

loped for describing the dynamic behavior of the knee joint and muscles [Ferrarin et al., 2001].

Four different control strategies (open-loop, feedback-PID, a combination of both, and an adap-

tive feed-forward control) were tested through simulation and experiments on two paraple-

gic subjects. The three nonadaptive control approaches showed satisfactory results, and the

adaptive controller showed more robust and reasonable adaptation speed. The EMG signal re-

corded from the normal leg was proposed for triggering stimulation of the paralyzed leg in

hemiplegia [Yu et al., 2002]. In order to overcome the errors from subject-specific variations,

a feed-forward artificial neural network was introduced to this process. An artificial neural

network (ANN) system was developed for compensating muscle fatigue during FES by main-

taining a constant joint angle in able-bodied subjects [Winslow et al., 2003]. In this work, the
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ANN system was created using the entire Mwave (including time- and frequency-domain in-

formation) as the input and a discrete fatigue compensation control signal, indicating when

to increase the stimulation current, as the output. The performance of these ANN systems de-

monstrated the feasibility of using surface EMG feedback in a FES control system. A complex

physio-mathematical muscle model was developed based on macroscopic Hill and microscopic

Huxley concepts [Mohammed et al., 2007]. Its control was designed based on a higher order

sliding mode to achieve the prediction of the needed stimulation pattern (amplitude and pulse

width). This controller was mathematically computed and shown to provide satisfactory stability

and tracking errors.
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Controller 2
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FIGURE 1.12 – Sliding mode FES controller proposed in [Jezernik et al., 2004] to control knee

joint movement.

Most closed-loop control strategies aimed to control the onset of stimulation according to

the user’s intention, or in adaption to walking speed. The closed-loop controls with adapti-

vity to subject-specific variations, muscle property changes, and reflex or other external distur-

bances have not been widely researched. In the latter scope, two works are cited here because of

their improvement in FES feedback/closed-loop control. As shown in Fig. 1.12, a sliding mode

controller was developed to control knee joint angle [Jezernik et al., 2004]. In order to reduce

chattering, they proposed to replace the continuous term by a discontinuous one in the control

law. However, the finite-time convergence of the sliding variable could not be guaranteed. Mo-

reover, this approach did not investigate the performance of the controller facing muscle-state

changes.

In another work [Ajoudani and Erfanian, 2009], a control strategy based on the synergis-

tic combination of neural networks with sliding-mode control (neuro-SMC) was developed for

controlling FES as illustrated in Fig. 1.13. The result in paraplegic and able-bodied patients sho-

wed that the controller was able to provide more accurate tracking control with fast convergence

compared with a neural network alone or sliding model control alone. However, chattering still

occurred, especially when it was used to compensate muscle fatigue or external disturbances.
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FIGURE 1.13 – Neuro-Sliding-Mode control strategy for FES control of knee joint movement

[Ajoudani and Erfanian, 2009].

From these works, we find that knee angle control has been widely investigated. Most stu-

dies have focused on adaptive control without attending to the muscle states. Furthermore, how

to achieve good tracking performance with less fluctuation, in order to guarantee patient safety

is still a challenging problem for FES control. Last, after widely investigating the current FES

control strategies, Zhang et al. predicted that the future FES control would have three proper-

ties : learning from natural motor control strategy, adaptivity to unexpected disturbances, and

predictive behavior before stimulation [Zhang et al., 2007]. Coinciding with their suggestions,

this thesis aims to evaluate an EFPC strategy in order to adaptively modulate the stimulation

pattern compensating the effect of variations in FES.

1.5 Conclusion

In this chapter, some fundamentals about the neuromuscular system, motor control and

motor impairment, which engineers from other fields may be unfamiliar with, have been in-

troduced. FES and its limitation in terms of fast muscle fatigue and the corresponding control

problems are discussed. We conclude that, first, FES is a promising technique to help hemiplegic,

para/quadriplegic patients to improve their motor functions. Second, the muscle fatigue indu-

ced by electrical stimulation occurs much faster than voluntary contraction ; hopefully, this can

be reduced or delayed by modulating stimulation parameters or selective stimulation. Third,

if force accuracy is not seriously required, or the muscle fatigue is not significant, open-loop

control of FES can still work, but a suitable and optimal stimulation pattern is required to per-

form the intended motion. Last, if the motion is complex or the muscle fatigue is prominent,

adaptive and predictive closed-loop control is desired, allowing for compensation of the unex-

pected perturbations and assuring muscle safety.
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2.1 Introduction

For patients with SCI or cerebral injury, FES is a potential solution to enhance functional

movements. When electrical currents are delivered to the relevant motor nerve, action potentials

are generated in the alpha motor axon in the place of the CNS. Although these action potentials

are not distinguished from the natural action potentials, the muscle fatigues faster when activa-

ted by FES than by the CNS. The direct result of fast muscle fatigue is rapid muscle force decline

and ultimately the distortion or failure of the intended movement. Therefore, the prediction of

force variations with muscle fatigue is important for adaptive FES control. The idea of predic-

ting muscle force/torque to improve the FES control performance has motivated several works.

The solutions vary from developing mathematical or experimental fatigue models to estimating

fatigue from muscle activity. Although a general effective method of force/torque prediction is

still an open problem, a suitable muscle force/torque model is basically required. This chapter

aims to develop and validate a predictive joint torque model that will be used for the subsequent

design of a predictive torque control framework in FES.

2.1.1 Problem Formulation

Muscle fatigue is a complex phenomenon, and it is often a combination of excitation,

contractile and ischemic fatigue [Erfanian et al., 1994]. Its behavior tends to be distinct in res-

ponse to various factors in FES. For instance, with the same stimulation level, different stimula-

tion patterns (e.g., high frequency or low frequency stimulations), different muscle fiber types

(e.g., fast or slow muscles), and different muscle contraction conditions (e.g., dynamic or static

contractions), produce different muscle fatigue behaviors. Muscle fatigue is hence considered

as a protocol-specific, muscle-specific, task-specific, and even subject-specific phenomenon. In

addition, most SCI patients have lost their sensory functions as well as motor functions ; that

is, they cannot perceive muscle fatigue as FES proceeds. Generally, the patients or therapists

manually adjust the stimulation pattern when they observe fatigue from the decay of motion

performances in practice. Apart from muscle fatigue, reflexes also affect the induced torque

level. These are unwanted in the FES system, even though the withdrawal reflex is used to

actuate some motion restoration. In this context, accurate muscle force/torque information is

important for FES control that adapts to the muscle variations and external disturbances (such

as environmental contact).

However, existing force/torque sensors are not suitable for daily use to provide force/torque

feedback in the FES control. Some works have attempted to tailor force/torque sensors for

human use, such as an implanted force sensor [Hoffer, 1988], or a knee rehabilitation orthosis

that also serves as a torque sensor [Nikitczuk et al., 2009], but they are not yet available for

practical use. Although this hardware-related problem will not be dealt with in this work, it has

motivated us to develop a method for estimating muscle mechanical output from natural sensors

that allow for measurement or accurate estimation (such as EMG).

2.1.2 Previous Work

A muscle model is basically required in a model-based FES controller, and it may vary in

structure from a physiological to a black-box model. Both these model structures have been
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widely investigated in research, with discriminating advantages and drawbacks. Generally, a

suitable model structure is chosen depending on what the user intends to do with the model.

The physiological muscle model is developed on the basis of physiological knowledge or prin-

ciples. The black-box model has a generic mathematic formation that has nothing to do with

physiological meaning, but its ease of use or simplicity makes it popular in practical control

systems.

Physiological Muscle Model

In a physiological muscle mechanical model, the muscle mechanical output is often mo-

deled in response to electrical stimulation, which is strongly nonlinear and time-variant. The

muscle output depends on spatial and temporal muscle fiber recruitment, muscle length, and

the velocity of muscle contraction [Vallery, 2009]. If the model parameters have physiological

meaning, the model provides insight into muscle behavior and the effects of model parameters

on certain behavior, and it is helpful for clinical diagnosis. Specific procedures are required to

identify the individual parameters. The two problems are that, first, a number of parameters

complicate the identification process and, second, some parameters cannot be retrieved from

experiments ; that is, they are not identifiable [Ljung, 1991]. In addition, the parameters identi-

fied from specific conditions are likely to poorly predict the synthetic movement. Furthermore,

the muscle property variations require re-identification of the model, which is difficult to carry

out in practice.

In order to take muscle fatigue into account for muscle force/torque control, various fatigue

models have been proposed as a supplement to the physiological muscle model. For instance,

a muscle fatigue model [Riener et al., 1996] [Ding et al., 2000] and a fatigue recovery model

[Mizrahi et al., 1997a] have been proposed to predict joint torque or muscle force variations

with muscle fatigue. The fatigue models work when the stimulation scheme can be predetermi-

ned. However, the stimulation pattern is unknown in advance in most cases and, if unexpected

events occur during stimulation, the fatigue model no longer works. For muscle force/torque

control, another solution is to take advantage of the muscle activity represented by the EMG

signal. In the course of stimulation, a change in muscle force is accompanied by a change in

the EMG signal, such that it is logical to associate the electrical muscle activity with mechani-

cal muscle activity. For example, the eEMG signal and muscle force were fit by an exponential

function [Mizrahi et al., 1994]. In [Tepavac and Schwirtlich, 1997], a combination of integra-

ted eEMG and median frequency demonstrated some improvement in force prediction during

muscle fatigue, and the force decay was fit by an exponential function with this combined eEMG

parameter. In these works, a fixed relationship between eEMG and muscle force/torque during

continuous stimulation was assumed.

Black-Box Muscle Model

In comparison with the physiological muscle model, if one does not intend to interpret

the physiological mechanism or go through the troubles of physiological modeling, black-

box model is a promising alternative structure, allowing the prediction of muscle output

for controller design. The Hammerstein cascade, comprising a nonlinearity followed by a li-

near subsystem, is one of the most popular black-box model structures [Bernotas et al., 1986]



28 Chapter 2 : Modeling of FES-Induced Torque Based on Evoked EMG

[Chia et al., 1991] [Erfanian et al., 1998] [Le et al., 2010], owing to its identifiability and

controllability. In [Bernotas et al., 1986] and [Chia et al., 1991], stimulation Pulse Width (PW)

and muscle output torque were correlated by a Hammerstein model. In the experimental pro-

tocols on animals or paraplegic patients, special considerations were taken to minimize muscle

fatigue, such as low amplitude, low frequency, and sufficient rest between adjacent stimula-

tion trains. This means the authors did not intend to investigate the fatigue phenomenon.

By comparing the torque prediction performance, using the eEMG signal from stimulated

muscle instead of the stimulation signal was suggested to predict joint torque generation in

[Erfanian et al., 1998]. This work was validated in a percutaneous continuous stimulation pro-

tocol on two paraplegic patients. They assumed that the relationship between eEMG and torque

was constant. In order to compensate day-to-day variances in EMG pickup, an auto-calibration

gain, which was defined by the ratio of steady-state gain on the reference day to steady-state

gain on the tested day, was introduced. The steady-state gains were computed from the iden-

tified model of the muscle excitation process (stimulus-to-eEMG) to catch any change in the

relationship between neural stimulation and eEMG. The torque prediction with fixed contrac-

tion model and auto-calibration was tested in a 200-s continuous stimulation. The result showed

significant increases in prediction accuracy and repeatability to estimate torque without a torque

sensor. However, they did not take into account the different muscle fatigue levels and muscle

recovery processes that are quite noticeable in prolonged or intermittent FES systems.

2.1.3 Discussion

On the basis of pioneering work [Erfanian et al., 1998], this work takes advantage of the

eEMG signal from the stimulated muscle for torque prediction and the subsequent torque

control. A Hammerstein with eEMG as the model input is adopted to correlate with the joint

torque under isometric condition. In this context, the first problem is how eEMG relates to the

torque generation that alters with muscle fatigue during different stimulation conditions. If a

fixed relationship exists, the eEMG information can be directly applied to indicate fatigue and

identify fatigue levels. If this relationship varies with subjects or stimulation conditions, another

problem is subsequently exposed, which is the need to determine whether this model can co-

ver these variations. Based on these considerations, this work introduces a muscle model which

would be useful for different purposes, such as the prediction of torque decline with muscle

fatigue, and the design of model-based controllers for muscle fatigue compensation.

In this chapter, the muscle model structure and model identification are described. The

variations in the eEMG signals with fatigue in the time-domain and frequency-domain are pre-

sented. The eEMG-to-torque model is verified using experimental data from an implanted conti-

nuous and a surface intermittent stimulation protocol. Last, the main benefits and challenges of

using this model for EMG-feedback torque control in an FES system are discussed.

2.2 Modeling of the Electrically Stimulated Muscle

In the design of a model-based controller of FES, a suitable model which is able to catch the

system behavior, especially predicting the future changes of a time-variant system is essential

for improving control performance. In an FES system, the stimulation conditions are based on
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the requirements for completing a certain task and involve various processes. With regard to

the muscle contraction condition, isometric contraction, where the muscle tension increases

with constant muscle length and static joint, explicitly occurs in specific tasks, such as standing,

sitting and maintaining posture. Moreover, as controlled dynamic motion is usually slow and

smooth in a patient, quasi-isometric behavior is dominant, allowing for ignoring the effects of

inertia and velocity [Le et al., 2010]. In addition, since this preliminary work aims to investigate

a pure excitation-contraction process in a stimulated muscle, the isometric condition is preferred

to avoid complex dynamic properties such as the muscle force-length-velocity relationship. Thus,

isometric muscle contraction is the concern of this work.

For an electrically stimulated muscle under isometric condition, excitation and contraction

processes are involved, from delivering current impulses to obtaining joint movement. As descri-

bed above, the Hammerstein model is a popular structure to model muscle with fixed length, so

it was chosen to represent the muscle contraction dynamics here. In biomechanical systems mo-

deling, it has been used to model the stretch reflex EMG signal [Dempsey and Westwick, 2004],

and it has been shown to extend to dynamic conditions [Farahat and Herr, 2005], which is es-

sential for developing stable adaptive controllers for future dynamic movement production.

2.2.1 Model Structure

A Hammerstein structure consists of a memoryless nonlinearity followed by a time-variant

linear subsystem. It has been popularly applied to model the muscle contraction system in

isometric condition because its nonlinearity represents the motor unit recruitment characte-

ristics, and all the muscle dynamics are assumed to be linear [Riener, 1999]. These compo-

nents are shown in Fig. 2.1. The nonlinearity has been parameterized by polynomial func-

tion [Erfanian et al., 1998] and cubic spline [Dempsey and Westwick, 2004]. The linear dyna-

mics can been modeled as either a finite impulse response (FIR), Autoregressive with External

Input (ARX) or output error (OE) model [Ljung, 1999] [Ikharia and Westwick, 2006].

g ( )

w(t)

u(t) h(t) y(t)z(t)B(q)

A(q)

1

A(q)

e(t)

Memoryless 

nonlinearity
Time variant 

linear dynamic

.

FIGURE 2.1 – Hammerstein model structure.

To model muscle electrical-mechanical behavior, the eEMG signal from stimulated muscle

and the isometric torque are considered as system input u(t) and output y(t), respecti-

vely, as [Erfanian et al., 1998] proposed. The memoryless nonlinear function maps the sys-

tem input u(t), to the intermediate variable h(t), which represents the activation level

of the stimulated muscle. It is traditionally modeled by an nth-order polynomial of u(t)
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[Dempsey and Westwick, 2004] as follows :

h(t) = g(u(t)) =
n∑

i=1

γiu
i(t) (2.1)

where n is the polynomial order.

The linear time-variant system is described by an ARX, which has been shown

experimentally to yield good prediction of output torque/force in isometric situation

[Bernotas et al., 1986]. It can be described as :

A(q)y(t) = B(q)h(t) + e(t) (2.2)

where A(q) and B(q) are polynomials in the backward shift operator, q−1, given by,

A(q) = 1 + a1q
−1 + a2q

−2 + · · · + alq
−l

B(q) = b1q
−1 + b2q

−2 + · · · + bmq−m (2.3)

where q−1 makes q−1y(t) = y(t − 1), with l and m being the maximum time delay for the

numerator and denominator dynamics, respectively. Term e(t) is zero mean and Gaussian white

noise, which corrupts system (model) output and is statistically independent of h(t). Note that

the h(t) is the output of the nonlinear element, and the input of the linear element as seen in

Fig. 2.1. Dividing both sides of (2.2) by A(q) produces

y(t) =
B(q)

A(q)
h(t) +

1

A(q)
e(t) (2.4)

The linear model and noise model thus have the same poles, with transfer function B(q)/A(q)

and 1/A(q), respectively, as shown in Fig. 2.1. Next, substituting (2.1) and (2.3) into (2.2), the

PHM is parameterized by

y(t) =f(u(t − i), y(t − i), θ)

=

l∑

i=1

aiy(t − i) +

m∑

i=1

n∑

j=1

µij(u(t − i))j (2.5)

coefficient µij = biγj . The stimulated muscle model has l + m × n unknown parameters in all,

which are contained in parameter vector θ. If we care about how torque and eEMG change with

fatigue, we can observe the changes of parameters in θ = [θt θe], where θt = [a1 a2 · · · al] are

the coefficients of the past system output and θe = [µ11 µ12 · · · µ21 · · · µmn] are the coeffi-

cients of the past system input.

The structure in (2.5) implies that the current output ŷ(t) is predicted as a weighted sum

of past output values plus past input values. The value of past torque y(t-i) has two versions —

past measured torque ym(t − i) and past predicted torque ŷp(t − i). When model identification

is performed, the past measured torque is preferred, as the measurement represents the model

output. For model validation, both can be employed, whereas from a practical point of view,

the cross-validation based on predicted torque is more convincing to verify the model suitability

for different data. Accordingly, two possible calculations of the past torque in (2.5) lead to two
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corresponding predicted output forms — ŷm(t) and ŷp(t), which are computed as a function of

past measured eEMG, past measured torque or past predicted torque in this way :

ŷm(t|t − 1) = f(u(t − i), ym(t − i), θ) (2.6)

ŷp(t|t − 1) = f(u(t − i), ŷp(t − i), θ) (2.7)

The second approach shown in (2.7) only uses measured eEMG signals to predict future torque,

which implies the use of eEMG as a synthetic torque sensor for torque estimation when torque

measurement is not available [Erfanian et al., 1998]. In this case, the predicted torque can be

initialized at zero, ŷp(0) = 0, when no stimulation is delivered to the muscle.

2.2.2 Model Identification

Model identification — a process to determine model order and identify model parameters

— and model validation are two operations of a model. The model order determines the model

complexity, and then the number of model parameters which need to be identified. For a black-

box model, if the model order is large enough, it can represent most system behaviors, but the

resultant huge parameters are difficult to identify. Thus, a tradeoff between model complexity

and accuracy should be taken into account when identifying the model order. In contrast, model

parameter identification is to determine a set of coefficients from input output data sets. The

performance of model predictability depends on various factors, such as model accuracy, pre-

diction horizon, uncertainty level and identification method. In this chapter, the accuracy of the

eEMG-to-torque model is evaluated based on the Ordinary Least Squares (OLS) method, and

the next chapter will go into an adaptive identification method.

Model Parameter Identification

γ2 ( ) 2

w(t)

u(t) h(t) y(t)z(t)B(q)

A(q)

1

A(q)

e(t)

γ1 ( )

γn ( ) n

.
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.

.....
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FIGURE 2.2 – Multi-Hammerstein model structure.

In the PHM, the nonlinear polynomial function enables us to transform a single-input single-

output model into a multi-input single-output linear model. This is achieved by treating each

polynomial term as a separate input to the filter. The configuration is shown in Fig. 2.2, where

the (·)i denotes (u(t))i. Then the nonlinear identification problem is transformed to resolve a

multi-input single-output linear identification problem. The model (2.5) can be rewritten as a
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linear equation,

y(t) =
[

a1 · · · al µ11 · · ·µmn

]














y(t − 1)
...

y(t − l)

u(t − 1)
...

u(t − m)n














︸ ︷︷ ︸

= θ X(t) (2.8)

X(t)

where X(t) ∈ R
(l+m∗n)×1 contains modified multi-inputs.

To determine various unknown model parameters in θ, the known model input and mea-

surable output data are filtered. Although it is not possible to find exact model parameters, a

cost function permits optimal parameters to be found by resolving an optimization problem. For

example, the Least Squares (LS) method, which aims to minimize the residuals between the

experimental output and the predicted output, is widely used to achieve approximately optimal

model parameters. Consider a system like (2.8), the residual is defined by ǫ(t) = y(t) − ŷ(t),

where y(t) is the output of measurement and ŷ(t) is the predicted output from the model.

The collected data after sampling consist of N samples of modified input, X(k), and N

samples of output measurement, y(k), where k = 1, 2, · · ·N . The observation data sets

[(X(1), y(1)), · · · , (X(N), y(N))] are formed for model identification. The best parameter es-

timate θ̂(k) is computed by minimizing the prediction error ǫ(k) between y(k) and ŷ(k|k − 1) at

instant k,

θ̂(k) =arg min
θ

N∑

k=1

‖ǫ(k)‖2

=arg min
θ

N∑

k=1

‖ŷ(k | k − 1) − y(k)‖2

where ‖ · ‖ denotes the Euclidean or ℓ2 norm. The identification procedure is illustrated in Fig.

2.3.

For resolving the optimization problem, the OLS method is carried out. Once the model

parameters are obtained, they are applied to predict system output through (2.5) or (2.8), and

yield output estimates. In order to evaluate the performance of the prediction, Normalized Root

Mean Squares (NRMS) error, which is a frequently-used measure of the differences between

model prediction and real sensor measurement, is calculated simultaneously. It is defined as :

NRMS(ŷ(k)) =

√

E[(ŷ(k | k − 1) − y(k))2]

ymax − ymin

=

√
√
√
√

1

N

N∑

k=1

(ŷ(k | k − 1) − y(k))2

ymax − ymin

Model Complexity Identification

The size of parameter vector θ in (2.5), depending on model complexity, needs to be iden-

tified. Increasing model complexity will decrease systematic error but increase the system varia-
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FIGURE 2.3 – Identification scheme of muscle contraction model.

bility [Ljung, 1999]. Therefore, the selection of model order (l,m,n) is a key step in the iden-

tification of the unknown parameters in θ. The nonlinearity — that is, the recruitment curve

of the muscle — is modeled as a 3rd-order polynomial of instantaneous eEMG ; that is, (n=3),

as suggested in [Chia et al., 1991]. Linear model order is determined by comparing the Rissa-

nen’s Minimum Description Length (MDL) [Rissanen, 1978] obtained for different model order

options, since the MDL principle provides a criterion for tradeoff between the simplicity of the

model and the model’s applicability to the data. The MDL is defined by the following equation

under the hypothesis of Gaussian disturbances.

MDL = V ∗ (1 + d ∗
ln(N)

N
) (2.9)

where d = dim(θ) is the number of identified parameters, N is the length of data samples for

this identification, and V is the loss function given by

V =
1

2
ǫT (θ̂(k), k) ǫ(θ̂(k), k)

where ǫ is a N-by-1 vector of the residuals between measurements and model estimates and θ̂(k)

is the identified model parameter at instant k. Using MDL to perform a relative comparison of

the different model complexities, the smaller value of MDL indicates a better model.

Next, the eEMG-to-torque model is identified and cross-validated by experimental data.

Two experiments were performed on SCI patients with a fatigue-inducing test. The experiments

and relevant data processing are described in the next section. The fatigue properties and model

identification for torque prediction are presented further on.

2.3 Experimental Description and Signal Processing

As we know, intermittent stimulation is useful to reduce muscle fatigue in FES, but the

muscle recovery complicates the fatigue behavior. Previous works [Erfanian et al., 1998] have
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focused on percutaneous intramuscular FES and a continuous stimulation protocol, and the

method they proposed did not involve torque prediction during different fatigue states. In this

work, two types of FES are carried out to investigate the fatigue properties and torque prediction

method via the eEMG signal. The experiment of surface FES is described here and another

experiment of a special case—implanted FES—can be found in Appendix A. To help understand

the description of the FES experiments, some fundamental concepts are also given in Appendix

A.
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FIGURE 2.4 – Experimental set-up for electrical stimulation and EMG, torque acquisition.

The experiments of surface FES were conducted on five SCI subjects in the Propara Reha-

bilitation Center, Montpellier, France. All subjects were classified as ASIA A at different injury

levels (see TABLE 2.1). The experimental set-up is depicted in Fig. 2.4. This study was appro-

ved by the ethical committee for person’s protection of Nîmes, and all subjects signed informed

consent forms.

TABLE 2.1 – Patient configurations

subject Age Weight Height Level Months

(years) (kg) (cm) of injury post injury

S1(M) 39 50 169 T6 3

S2 22 54 172 C7 30

S3 26 64 192 T6 36

S4 32 61.5 177 C5 8

S5 48 76 177 T6 18

2.3.1 Experiment Design

The subjects were seated on the chair with the ankle at 90o, while the joint center was ali-

gned with the axis of a calibrated dynamometer (Biodex 3, Shirley Corp., NY, USA). The shank
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was adjusted to be horizontal to the ground with the knee joint at approximately 40o. The foot

was strapped to the pedal to transmit ankle torque to the dynamometer, and to allow the optimal

recording of isometric ankle torque. Electrical current pulses were delivered to the right Triceps

Surae muscle group via surface electrodes (10 cm × 3 cm) to induce muscle contractions and

to plantarflex the ankle joint as a result. One electrode was placed 5 cm beneath the popliteal

cavity and the other beneath the insertion point of the Medial and Lateral Gastrocnemius on the

Achilles tendon. The muscle group was stimulated with amplitude modulation at a constant fre-

quency (30 Hz) and constant PW (450 µs), under isometric condition, by a portable stimulator

(Cefar physio 4, Cefar Medical, Lund, Sweden).

TABLE 2.2 – Stimulation parameters (FS = 30Hz, PW = 450µs)

Subject S1 S2 S3 S4 S5

Imax 65mA 85mA 80mA 60mA 100mA

2.3.2 Data Collection

Evoked EMG activity of the soleus in the Triceps Surae muscle group was collected, am-

plified (gain 1000) by a bipolar differential amplifier (Biopac MP 100, common mode rejection

ratio (CMRR) > 110 db (50/60 Hz), Biopac Systems Inc., Santa Barbara, CA, USA), and sampled

at 4 kHz, with a band-pass filter between 10-500 Hz and Signal to Noise Ratio (SNR) around

37 dB. EMG signals were then directed through a 12-bit analog-to-digital converter (Biopac MP

100) and stored on a laptop. In order to reduce the impedance between the skin and EMG elec-

trodes, the skin under the electrodes was shaved, rubbed with sandpaper, cleaned with alcohol,

and all the electrodes were firmly adhered and fastened. The bipolar Ag/AgCl EMG electrodes

were positioned over the muscle belly in the direction of the muscle fiber with 20 mm interelec-

trode spacing. The reference electrode was placed on the patella of the other leg. Isometric ankle

plantarflexion torque was measured using the dynamometer (Biodex 3), sampled at 2 kHz, and

interfaced with the acquisition system (Biopac MP 100).

2.3.3 Experimental Protocol

The maximum stimulation amplitude (Imax) was found for each subject at the beginning

(TABLE 2.2), by gradually increasing stimulation amplitude until torque arrived at saturation.

For each subject, the experiment consisted of three test sessions, as shown in Fig. 2.5.

1. The fatigue-inducing session consists of several sequences (called fatigue1-fatigue5). Each

sequence contains five trapezoidal trains with each trapezoidal train consisting of 4 s of

stimulation (1-s ramp-up, 2-s plateau and 1-s ramp-down) and 2 s of rest. The stimulation

amplitude during the plateau is chosen at 50% of the Imax with 30 Hz, 450 µs. In order

to induce muscle fatigue, three such stimulation sequences are applied to subjects S1 and

S2, four sequences to S3, and five sequences to S4 and S5.
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FIGURE 2.5 – Schematic representation of the experimental sessions.

2. The fatigue-recovery session consists of one trapezoidal train at Imax, which is delivered

to the muscle just before and after each fatigue-inducing sequence. After the stimulation

train postE, the same stimulation train is applied every 5 minutes, up to 15 minutes.

3. The random session delivered one stimulation sequence including several trapezoidal

trains to the muscle. In this case, the stimulation amplitude in each train is increased

from zero to a randomly determined value (≤ Imax) and is then symmetrically decreased

over two minutes in total.

2.3.4 Signal Processing

Unlike in voluntary muscle contraction, artificially recruited motor units depolarize syn-

chronously. Consequently, the eEMG is a synchronous summation of the recruited MUAPs, the

so-called Mwave. Moreover, the surface eEMG signals are contaminated by stimulation artifacts

which have quite larger magnitude than eEMG signals. Several works have proposed to remove

the stimulation artifacts by software method [Sennels et al., 1997] [O’Keeffe et al., 2001], hard-

ware method [Erfanian et al., 1998] or both [Chesler and Durfee, 1997]. The blanking window

or blanking circuit is useful as long as the Mwave is not overlapped with stimulation artifacts,

based on the assumption that the early Tarf from the onset of stimulation is the duration that

contains the stimulation artifacts. This duration of the stimulation artifacts is usually variant

with changes in the electrode location and stimulation PW in the same subjects, and differs

among subjects. Fortunately, once the experimental setup is fixed for one subject, the duration

of the stimulation artifacts is almost constant. Thus, we can estimate the duration of artifacts

Tarf by pre-experiment.

The hardware blanking method removes the artifacts by switching the stimulation circuit

off at the start of sending each stimulation pulse over a period of Tarf . Similarly, the software

blanking window suppresses the stimulation artifacts by making the recording signal zero du-

ring Tarf . As the hardware method is not available to implement in the existing experimental

system, the software method is adopted to remove stimulation artifacts from eEMG recording.
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The removal of artifacts by zeroing the samples during Tarf probably generates some high fre-

quency signals artificially, so the Fast Fourier Transform (FFT) is used to show the underlying

frequency components of the eEMG signals. A cutoff frequency is selected accordingly to filter

the high frequency components of the eEMG signals. Likewise, a cutoff frequency is determined

for lowpass filtering of the torque signals.

MAV =
1

T

∫ T

0
|x(t)|dt (2.10)

Various EMG variables can be used to represent EMG characteristics. MAV, a "moving ave-

rage" of full-wave rectified EMG, is chosen in this work. MAV is computed by (2.10), where x(t)

is the eEMG signal at time t, and T is the length of data being used for calculation. It is easy

for determining the muscle contraction level and convenient for real-time calculation. As the

EMG and torque levels are usually quite different among subjects, they are usually normalized

by their maximum or initial value for comparison among subjects. Briefly, the collected eEMG

and torque data were processed off-line in five steps as follows.

1. The stimulation artifact is removed from the raw eEMG signals by the blanking window

method [Frigo et al., 2000], and the Mwave is consequently extracted.

2. The measured torque is offset with respect to the torque baseline to obtain the torque

level. The torque baseline is the torque measurement when the muscle is at rest.

3. A lowpass filter is applied to the measured ankle torque (6th-order, cutoff frequency 100

Hz) and the measured eEMG (6th-order, cutoff frequency 300 Hz).

4. The filtered eEMG signals are divided into epochs with each epoch containing one Mwave,

and the MAV of eEMG is calculated within five epochs. The average torque is calculated

within the same time window.

5. The MAV and average torque are normalized with respect to their maximum values.

An example of the processed results is illustrated in Fig. 2.6, where Tarf =3 ms. Note that

the normalized MAV of eEMG and normalized torque are prepared as system input and output.

An example of the relationship between eEMG and torque in a random session is shown in Fig.

2.7.

2.4 Results in Surface FES

The muscle fatigue characteristics in this intermittent stimulation protocol is investigated

first. After identifying model parameters, the capacity of model prediction is verified. Finally, a

comparative study is conducted in order to find a solution to improve model prediction quality.

2.4.1 Muscle Fatigue and Recovery Characteristics

In intermittent FES, the rest period is important to reduce muscle fatigue, and more practi-

cal in tasks when continuous stimulation is not necessary for a single muscle, such as in walking.

The muscle fatigue is represented as torque decline with the same stimulation. For example, the

torque decrease over time in subject S3 is demonstrated in Fig. 2.8. Joint torque declines 19%

of initial torque with 151 s of stimulation within 191 s of intermittent stimulation.
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FIGURE 2.6 – An example of processed eEMG and torque. The raw eEMG signal and Mwave are

zoomed in (0.5 s ∼ 1.15 s) to show the details during stimulation increase. The raw eEMG was

contaminated by stimulation artifacts. The blanking window is applied to remove artifacts so

that the Mwave is effectively extracted. Note that the magnitudes of raw EMG and Mwave are

quite different.
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FIGURE 2.7 – An example of the relationship of eEMG and torque in intermittent stimulation.

The maximum stimulation intensity during the plateau and the stimulation duration of each

train is randomly determined. The MAV of eEMG is highly correlated with torque in the primary

course.
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FIGURE 2.8 – Demonstration of FES-induced muscle fatigue in subject S3. Joint torque declines

19% of initial torque with 151 s of stimulation within 191 s of intermittent stimulation.

In order to observe the variations in torque and eEMG during this stimulation condition, the

experimental data of the stimulation-recovery session are processed for this purpose. To keep a

consistent comparison situation, the data during the plateau in each stimulation train are picked

out for the analysis due to the same stimulation intensity during this period. The data are first

treated as the processing step (1) (2) described in Section 2.3.4. Then the average torque, MAV

and standard deviations are computed simultaneously and are depicted in Fig. 2.9. The torque of

ankle plantarflexion gradually declines after each fatigue-inducing sequence, until around 90%

(81% for S3) of initial torque in all subjects. After 5 minutes of rest, the average torque recovers

less than 5% and then remains at the same level in all subjects, except in subject S1, in whom the

torque recovers after 10 minutes of rest. As a whole, torque transition in fatigue generally shows

a similar tendency in all subjects. As to the MAVs of eEMG, they represent different transitions

among these subjects as depicted in Fig. 2.9 (b). Although the same tendency can be found in

subjects S3 and S5, different tendencies are found among the five subjects. The results in S3 and

S5 show a simple decline of MAV due to fatigue, S4 shows potentiation phenomenon within the

first 2 s due to high frequency stimulation resulting in extreme muscle contraction, while S1 and

S2 present somewhat combined characteristics of potentiation and fatigue.

Here, although we do not intend to interpret the fatigue characteristics, we confirm that

the different fatigue behaviors of the subjects match the assumption that fatigue dynamics are

subject-specific. Even for the same subject, the eEMG-to-torque relationship gradually varies

over time, rather than remaining constant, as most prior works assumed in such intermittent

fatigue protocol.

2.4.2 Model Identification and Prediction

Before model identification, the model order is determined as described in Section 2.2.2.

The nonlinear model order is fixed at 3, and the model order of the linear ARX model is identi-

fied using processed eEMG and torque data by comparing MDL values at different model-order

options. Model order ranging from 2 ≤ l ≤ 6, and from 2 ≤ m ≤ 6 are considered. The MDL

values for all five subjects in the fatigue-inducing test are shown in Fig. 2.10. Ultimately, model

order (l = 3, m = 4) was chosen with relatively less MDL value and a simpler model, and this

choice is used for all subsequent analysis relating to this experiment.
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To validate whether the model represents muscle electrical-mechanical behavior, the model

parameters are identified by the OLS method first. Then the model prediction is driven by eEMG

and the identified model. The experimental data in the random test are used for identification

and prediction. Fig. 2.7 illustrates the relationship between eEMG and torque in this random

test. The model parameters in θ are identified using the data before 68 s as (2.6), and the

predicted torque is calculated for all the 98-s data. The difference is that the first 68-s torque

prediction is calculated according to (2.6), whereas the next 30-s torque prediction is driven

by the eEMG information and previously identified model parameters, without using torque

measurement according to (2.7).

Fig. 2.11 illustrates the prediction result in subject S5. The corresponding prediction errors,

NRMS errors, are shown in this figure. The randomly modulated stimulation PW results in ran-

dom muscle response, which is more realistic when performing some complex movements. Fur-

thermore, the random FES protocol has never been investigated for fatigue analysis in previous

works. Therefore, it is vital to predict torque levels from the eEMG signal for fatigue tracking. In

Fig. 2.11, the torque reproduction before 68 s has high quality with available eEMG and torque

measurements, and the prediction is still good (7.13% NRMS error) in the last 30 s prediction

without using torque measurement. At the end, the prediction has some higher error probably

due to an increased fatigue level over prolonged stimulation.

The result in this random stimulation test represents the feasibility of model identification

and its prediction performance. The good prediction in Fig. 2.11 benefits from enough data for

identification and the assumption of similar muscle states for short-term stimulation durations

(for example, 30 s in this test). However, as shown in Fig. 2.9, when muscle is stimulated inter-

mittently, muscle fatigues and recovers alternatingly, resulting in complicated fatigue characte-

ristics. Whether the model and identification methods can remedy this problem for prolonged

intermittent application will be investigated in the next section.

2.4.3 Comparative Analysis to Improve Torque Prediction

In this section, the experimental data from the fatigue-inducing test session are used to com-

pare the prediction quality of two different methods : the fixed-parameter model and adapted-

parameter model. The fixed-parameter model is processed the same as above : the model pa-

rameters are identified with the data of the first sequence (fatigue1) and then cross-validated

for all the remaining sequences (fatigue2-fatigue5). The prediction errors for all five subjects

are shown in TABLE 2.3. Assuming a fixed eEMG-to-torque relationship, the prediction errors

become higher as the muscle states vary through the entire stimulation in all subjects.

We then assume that if the model is identified again with the data in the latest sequence,

the prediction will be improved. Therefore, the second method, the adapted-parameter model,

is proposed. This time, the latest data are used to re-identify the model ; that is, the torque

prediction of fatigue3 is based on the model parameters obtained from fatigue2, and so on.

The prediction errors with the adapted-parameter model in all subjects are compared in TABLE

2.3. For example, for fatigue3 of subject S3, the NRMS error with the adapted model is 0.0345

(3.45% error), as compared with 0.0639 (6.39% error) with the fixed model. The average pre-

diction of the adapted model was superior by 16.7-50.8% compared with the fixed model in all

subjects.
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the random test of subject S5. The vertical dotted line is shown to separate the data into two

parts. The model is identified by the OLS method using the data in the left part. (1) The torque is

predicted based on the past measured MAV of eEMG and past measured torque. (2) The torque

is predicted based on the past measured MAV of eEMG and past predicted torque, with initial

predicted torque at zero.
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Fig. 2.12 illustrates the predictions with the two methods (fixed model and adapted model)

under different fatigue conditions in subject S3. Fatigue3 is not plotted in this figure, as there is

only a small difference between fatigue3 and fatigue4. Apparently, FES-induced torque declines

with the same stimulation as a result of muscle fatigue. The fixed model can still be used for

torque prediction, as shown by the dotted red lines. In comparison with fatigue1 and fatigue2,

the prediction of fatigue4 becomes less accurate based on the fixed model. For enhancing the

prediction quality, the adapted model shows superior performance, as the dashdotted black line

shows. Regarding the torque predictions in the intermittent experiment, when the torque mea-
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FIGURE 2.12 – The measured and predicted torque obtained by the eEMG-to-torque model in

the fatigue-inducing protocol of subject S3. The solid blue lines indicate the measured torques.

The dotted red lines represent the corresponding predicted torques based on the fixed model,

which was identified using the data of fatigue1. The dashdotted black line represents the torque

prediction of fatigue4 based on the adapted model, which was identified using the data of

fatigue3. All the torques are normalized by the maximum measured torque in fatigue1.

surement is available, the model has high predictability probably due to similar muscle states

and the autoregressive feature of the model. When torque measurements are suspended, the mo-

del is able to catch most mechanical behavior during finite stimulation duration. With prolonged

or repetitive stimulations, the muscle fatigue levels change over the course of time, resulting in

degraded prediction accuracy with fixed model parameters. The adapted-parameter model is

assumed to improve prediction quality in this scenario. This improvement implies that, even

though the relationship between eEMG and torque represents a time-varying property, it varies

slowly in such a stimulation condition. Therefore, in order to achieve accurate torque prediction

regardless of the fatigue levels, an online model identification and prediction is proposed in the

next chapter.
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TABLE 2.3 – Summary of the prediction error obtained with fixed or adapted eEMG-to-torque

model

Subject Model
NRMS Error

Fatigue1 Fatigue2 Fatigue3 Fatigue4 Fatigue5

S1
Fixed 0.0381 0.1009 0.2037 / /

Adapted / / 0.1272 / /

S2
Fixed 0.0642 0.0767 0.1559 / /

Adapted / / 0.1298 / /

S3
Fixed 0.0253 0.0467 0.0639 0.0572 /

Adapted / / 0.0345 0.0254 /

S4
Fixed 0.0511 0.0520 0.0575 0.0702 0.0631

Adapted / / 0.0480 0.0447 0.0438

S5
Fixed 0.0594 0.0641 0.0591 0.0597 0.0715

Adapted / / 0.0457 0.0447 0.0476

2.5 Model Validation in Implanted FES

Apart from the validation of surface FES on SCI patients, we were fortunate to be able to

perform an experiment on an implanted patient in order to investigate the mechanism of muscle

fatigue in this special condition, as well as the feasibility of eEMG-based torque prediction. This

work was conducted as part of a European project, Stand Up And Walk (SUAW), which our team

participates in. The implantation was successfully carried out in 1999 and 2000 on a completely

paraplegic subject (ASIA A, T8 level) [Guiraud et al., 2001]. For this patient, the stimulation

electrodes were placed on the epimysium of the Gluteus Maximus and Medius, the Hamstrings

and the Illiacus muscle groups, and around the appropriate nerve for the Quadriceps (femoral

nerve) and the TA muscle (peroneal branch of the sciatic nerve). After implantation, the patient

achieved standing and assisted walking until muscle fatigue occurred. The feasibility of gait res-

toration without using the withdrawal reflex was also demonstrated. In [Guiraud et al., 2006],

the results of a 5-year patient follow-up after implantation were reported. In the 12-channel

FES implantable system, the peroneal branch of the sciatic and femoral nerves was directly sti-

mulated along the nerve axis by bipolar half-cuff electrodes. It was thus possible to perform an

accurate, physiological ankle dorsiflexion owing to TA activation during the swing phase without

using the unstable triple reflex employed by most other works [Kobetic et al., 1997]. The qua-

driceps, a key muscle group for the lower limbs, was also clearly and efficiently activated. The

sequential stimulation command was transmitted to the implanted module through an Radio

Frequency (RF) transmitter and computed on a portable microcontroller-based system. Neural

stimulation has proved to be more efficient and stable over time than epimysial stimulation. In

addition, this mode requires less energy supply and provides more selective stimulation. When
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an EMG sensor is used in the case of neural stimulation, the eEMG signals are much less conta-

minated by stimulation artifacts.

2.5.1 Muscle Fatigue in Implanted FES

Although implanted stimulation is considered promising and superior to surface stimulation

in terms of reliability, accuracy and selectivity, few works have reported lower limb movement

restoration using implanted neural stimulation. Moreover, the muscle electrical behavior and its

correlation with mechanical behavior during muscle fatigue have never been reported due to

the limited number of available subjects. The experiment of this implanted FES is described in

Appendix A.

With implanted neural stimulation, there is no typical stimulation artifact because the loca-

tions of the target muscle and neural stimulation site are far enough apart. Besides, the stimulus

is at low intensity (Imax = 3.15 mA) and localized due to the use of bipolar electrodes. Instead,

the RF signal could contaminate the EMG signal. Particularly during the stimulation, RF has

high power to provide energy transfer for the battery of the implanted system, as well as to

trigger each stimulus pulse while the implanted wires are both electrically connected to the cuff

electrodes and the implanted electronics.

As only TA muscle is stimulated, by activating merely the corresponding peroneal branch of

sciatic nerve to provide ankle dorsiflexion, the eEMG signals recorded from quadriceps provide

only stimulation artifacts. They are thus used to detect the stimulation onset and remove artifacts

from the TA eEMG signals. The recorded eEMG from TA and ankle torque are processed in

Section 2.3.4 to retrieve artifact-free Mwave. The time-domain EMG parameter, MAV, is then

calculated by (2.10), and the frequency-domain EMG parameter, MDF, is calculated by (2.11).

MDF is the frequency at which the power spectrum is divided into two parts of equal power

∫ MDF

0
P (ω)dω =

∫ ∞

MDF

P (ω)dω =
1

2

∫ ∞

0
P (ω)dω (2.11)

where P (ω) is the power spectrum density of the EMG signal and ω is the frequency variable.

The relationship between measured torque and MAV, and MDF variations over time, are

plotted in Fig. 2.13 and Fig. 2.14. In these two fatigue tests, the same stimulation pattern

(I=3.15 mA, PW = 600 µs, FS = 30 Hz) is applied. In the first 50-s continuous stimulation

(Fig. 2.13), before 17 s, the torque represents potentiation, then it maintains for around 10 s

and starts decaying until 24.1% of the maximum torque. The MAV of eEMG presents the same

tendency with the change of torque with fatigue progress, except during the initial potentiation,

where the eEMG increases slowly before arriving at the maximum and then decreases with fa-

tigue. MDF shifts to the lower frequency with increasing muscle fatigue, as fast muscle fibers

drop out and slow muscle fibers contribute dominantly to the muscle contraction. Polynomial

approximations (fifth order) of MDF are plotted to show the global tendency of the frequency

components of eEMG. From the frequency domain of the eEMG signal, the TA muscle proves to

be fatigued in the course of stimulation and this can be observed in the measured eEMG using

the classical fatigue index of MDF.

In the second fatigue test (Fig. 2.14), the torque and MAV of eEMG are normalized by

the maximum value of the first fatigue sequence. The torque varies wildly during the first 4 s,

then maintains at 42.8% of the maximum, and gradually decreases to 14.3%. The MAV varies
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similarly to torque, but more mildly during initial potentiation. Comparing the torque level

variations in Fig. 2.13 and Fig. 2.14, even though the muscle is stimulated continuously except

for a short pause for switching programs, the joint torque still recovers from 24.1% (47 s ∼ 50

s in Fig. 2.13) to 42.8% (after 4s in Fig. 2.14). This phenomenon indicates the fast fatigue and

fast recovery features in the continuous stimulation protocol. Several factors may contribute to

this fast fatigue. First, this subject has been damaged for ten years and thus suffer from severe

muscle atrophy. In addition, TA muscle is a fast contraction muscle and it is more fatigable

after paralysis due to the variations in muscle fiber components. Second, the continuous fatigue

protocol allows the muscle to rest. Even though eEMG changes differently compared with torque

variations during intermittent FES (Section 2.4.1), the findings in this implanted experiment

support the use of eEMG to indicate muscle fatigue and to predict torque decline with fatigue in

implanted stimulation condition.
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FIGURE 2.13 – Top : Normalized measured torque and MAV of eEMG in fatigue sequence 1.

The measured torque becomes negative after the strong contraction, due to the reaction force

generated when the muscle relaxes suddenly. Bottom : MDF transition in the same test fit by a

fifth-order polynomial function.

2.5.2 Muscle Model Validation in Implanted FES

With the experimental data collected from the implanted SCI patient, the muscle fatigue

behavior is investigated, and the feasibility of torque prediction based on eEMG signals is further

verified using the identification method described above.

The two approaches to eEMG-to-torque model prediction (2.6) and (2.7) were carried out

to predict joint torque in two fatigue tests. The model identification is processed using data from

the first recruitment test and the first fatigue test, respectively. Fig. 2.15 illustrates the prediction

results for two 50-s fatigue sequences. The blue solid line indicates the measured torque. The
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FIGURE 2.14 – Top : Normalized measured torque and MAV of eEMG in fatigue sequence 2.

Bottom : Median frequency transition in the same test fit by a fifth-order polynomial function.

dashdotted black line represents Prediction1, which corresponds to a torque prediction based

only on eEMG signals, and the dotted red line represents Prediction2, which is the predicted

torque based on the torque and eEMG measurements. Note that the output scale is the absolute

value of the ankle torque in Nm.

In fatigue sequence 1, the NRMS error is 0.145 for Prediction1 and 0.00884 for Prediction2

within the entire measured data. As in practice the potentiation can be avoided by warming

up the muscle in advance, we also calculate the NRMS error after the potentiation period. The

prediction performance is higher exclusive of potentiation, with the NRMS error 0.0725 for Pre-

diction1 and 0.0047 for Prediction2. In fatigue sequence 2, the potentiation is localized, and

the NRMS is 0.0876 for Prediction1 and 0.00822 for Prediction2 during the entire stimulation.

However, we need to pay attention to the underestimation when muscle fatigue increases ; for

instance, after 40 s in Fig. 2.15. These underestimates possibly result from constant model pa-

rameters unsuitable to catch the current muscle behaviors.

2.6 Discussion and Perspectives

This thesis focuses on the design of a model-based controller with muscle fatigue com-

pensation in FES. A suitable model is important to achieve accurate prediction for enhancing

control performance. In previous works, most researchers assumed that eEMG could be used

directly for monitoring muscle fatigue or predicting force. Other researchers found that the re-

lationship between the variations in eEMG and force could change in severe muscle fatigue or

during the recovery process [Yu and Chang, 2009]. The complex features of fatigue, sensitive
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FIGURE 2.15 – The measured and predicted torque obtained with the eEMG-to-torque model du-

ring implanted continuous fatigue protocol. The torque prediction when both eEMG and torque

measurement are used matches the torque measurement quite well. Interestingly, the torque

prediction only based on eEMG signal and previously identified model is acceptable, with NRMS

error around 7.25% and 8.76% in two fatigue tests.

sensor recording and insufficient clinical experiments have restricted its practical development.

Two experimental protocols on SCI patients are conducted in this work to look for solutions for

model-based FES control in the presence of muscle fatigue. The FES-evoked EMG signal from

stimulated muscle was correlated with the induced joint torque under isometric condition.

The stimulation artifacts in EMG recording were rejected by the blanking window method.

Note that, in order to ensure artifact removal without eliminating useful muscle response infor-

mation, the recording electrodes should be located as far away as possible from the stimulation

electrodes. Another problem in EMG recording is muscle cross-talk, which occurs when the

muscle of interest is not easily separated from neighboring muscles. To overcome these recor-

ding problems, suitable filters, careful placement of the electrodes, and preparation of the skin

are required. Besides, implanted EMG recording is quite interesting and possibly provides more

reliable recording. In addition, although this work did not investigate the day-to-day variations

in data acquisition, they are probably noticeable in practice.

The muscle fatigue properties were explored with two different FES systems. In intermittent

stimulation on triceps surae muscle, with a stimulation intensity of Imax, the torque decreases

slowly to around 90% (81% for S3) of the initial torque and recovers slowly during a 15-min rest

(Fig. 2.9) in all subjects. The eEMG signals vary progressively during stimulation, but in different

trends compared with torque among all the subjects. The fatigue-inducing stimulation with an

intensity of Imax∗ 50% was delivered just after each fatigue-recovery train. Assuming the same

muscle states during neighboring sessions, and comparing the torque decrease rate in postC of

the fatigue-recovery session and that in fatigue4 of the fatigue-inducing session in S3, the lower
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stimulation intensity in the fatigue-inducing session generates more fatigue, representing more

decrease in torque (76%). A possible explanation is that high stimulation intensity activates both

the slow and fast muscle fibers, whereas low stimulation intensity activates more fast muscle

fibers and fewer slow muscle fibers. Thus, due to the fatigability of fast muscle fiber, lower

stimulation intensity generates more fatigue than higher stimulation intensity. In comparison

with the intermittent condition, in implanted continuous stimulation on TA muscle, the torque

decreases faster and recovers faster, as described in section 2.5.1. The amplitude parameter

(MAV) and frequency parameter (MDF) both vary with fatigue, indicating the feasibility of using

these eEMG variables for fatigue monitoring.

In order to predict torque in fatiguing muscle, an eEMG-to-torque model has been adopted

with the OLS method being applied to identify model parameters. First, when the muscle state

does not change significantly in a short time, the fixed-parameter model is able to provide good

prediction, as shown in Fig. 2.11 and 2.15. Prolonged stimulation likely leads to severe fatigue

at a high rate, and the rest process leads to different recovery rates in muscle electrical and

mechanical activities. As a result, the torque prediction gets worse in these situations, indicating

that the fixed-parameter model is no longer suitable to predict muscle behavior. Fortunately,

when the model was identified again with the latest experimental data, the torque prediction

performance could be improved, as shown in Fig. 2.12. This finding indicates that muscle fa-

tigues with gradual stimulation, the relationship between eEMG and torque is time-variant, and

the parameters of the eEMG-to-torque model should be updated accordingly when eEMG is used

to predict torque.

2.7 Conclusion

This chapter has investigated the feasibility of torque prediction based on eEMG signals in

two different stimulation conditions. The muscle fatigue properties, muscle contraction mode-

ling and torque prediction using eEMG have been explored. The results demonstrate some clues

and also challenges when using the eEMG signal for torque prediction. First, both eEMG and

torque change with fatigue, but the varying tendencies are different in some conditions (such as

potentiation and recovery) and among subjects. Second, the eEMG-to-torque model is validated

with the experimental data in surface FES and implanted FES. A fixed-parameter model is able

to track most of the force decline with the development of fatigue. However, the quality of torque

prediction degrades when potentiation occurs or when the fatigue level increases. The potentia-

tion problem can usually be resolved by warming up the muscle in advance. Still, the improve-

ment of torque prediction during different fatigue levels should be taken into account. Last, an

adapted-parameter model is proposed and presents higher accuracy in predicting torque. This

improvement implies that the relationship between eEMG and torque is time-varying, but pro-

bably slow. Thus, the adaptively updated model is able to catch the time-varying information for

more accurate prediction.

If the muscle fatigue cannot be detected or fed back when FES proceeds, it is not possible to

adjust stimulation accordingly. As a result, the patients cannot achieve the desired motion, and

probably collapse. Therefore, accurate torque estimation that can be implemented in real-time

is vital for designing a model-based controller reacting to muscle state changes. To achieve this

purpose, an adaptive estimation method will be developed in the next chapter.
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3.1 Introduction

The goal of this chapter is to develop an adaptive torque estimation method that takes

into account different fatigue states and subject-specific factors for the design of an advanced

model-based FES controller. When FES is applied in a rehabilitation system, motor function

is achieved by muscle contraction triggered by electrical current. The mechanical output level

depends not only on the stimulation level but also on the muscle excitation and contraction

abilities under isometric condition. Muscle fatigue, which results from the failure of the muscle

excitation, excitation-contraction coupling or muscle contraction mechanism, is one of the main

factors directly affecting muscle mechanical production. The idea of this work is to predict joint

torque from muscle activity for fatigue tracking and compensation.

In Chapter 2, the muscle fatigue features during various stimulation conditions are dis-

played. Muscle activity–that is, eEMG signals recorded from activated muscle–drives a predictive

model for estimating FES-induced torque. The prediction is accurate, assuming similar muscle

states over a short prediction horizon. In the meantime, we found that the prediction accuracy

degraded during prolonged stimulation or recovery. Thus, although valuable information ex-

tracted from eEMG signals can be applied for torque estimation, a suitable estimation method

to compensate time-variant muscle responses is important to improve the accuracy and robust-

ness of fatigue tracking during FES. The prediction improvement through an adaptive eEMG-

to-torque model motivates us to develop an adaptive estimation method to track time-varying

fatigue for advanced FES control. This method should also adapt to different stimulation situa-

tions and subject-specific differences. In addition, when motor nerve is activated by surface FES,

it transforms into muscle activation via direct (efferent) and indirect (afferent) pathway—the

so-called reflex. As a result, the reflex produces additional muscle forces which are difficult to

model and predict, while a changing environment distorts the torque measurement. This proba-

bly occurs during walking and, therefore, the robustness of this method with regard to sensing

failure, reflexes and environmental contacts is important.

This chapter is organized as follows. First, a probabilistic framework based on KF with

forgetting factor is proposed to estimate the time-variant muscle contraction dynamics. Second,

a simulation study and experimental assessment are conducted to present the performance and

improvement of the proposed prediction method. The torque prediction method integrated into

a fatigue tracking problem allows for the estimation of the temporary torque based only on

eEMG information. The performance of the tracking robustness is evaluated and discussed.

3.2 Previous Works

In classic studies in FES, many researchers assumed that the muscle dynamics remain the

same as the stimulation proceeds. However, in practice, the dynamics change during muscle

contraction. In order to adapt the stimulation parameters to various uncertainties (e.g., fatigue),

the prediction of muscle output is vital. Although several fatigue models have been proposed

through mathematical or experimental statistical analysis, various factors limit the range of

their applications, as described in section 2.1.2. In addition, as most works have been assessed

in simulation and specific stimulation situations or tasks, further research is required to verify

whether these methods can work in real applications or be extended to other conditions.
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Evoked EMG is a potential approach to indicate fatigue and predict force or torque.

Most of the previous works reported a high correlation between this muscle electrical beha-

vior and muscle mechanical behavior. For example, when muscle force decreased with stimu-

lation, Peak-to-Peak (PTP), RMS or MAV decreased [Tepavac and Schwirtlich, 1997], Second

Phase Area (SPA) increased [Zhang et al., 2009], and frequency shifted to the lower component

[Mizrahi et al., 1997a]. However, other works showed that this correlation was time-variant

at different muscle fatigue levels [Mizrahi and Isakov, 1994] and during the recovery process

[Yu and Chang, 2009]. Our experiments on SCI patients also found different variation tenden-

cies in eEMG and torque during an intermittent protocol and different fatigue rates in an im-

planted continuous protocol, as presented in Chapter 2. Such evidence indicates the limitations

of previous force/torque prediction strategies based on fixed-parameter models. Although an

adaptive tuning of the parameters of eEMG was suggested for predicting the stimulated force

in [Yu and Chang, 2009], they did not propose a feasible and effective method to do this. Fur-

thermore, the reliability of the eEMG signals suffered from pickup variations and complex signal

processing, which suggests other challenges for employing eEMG for muscle force/torque pre-

diction. The first two problems may be resolved by implanting the EMG electrodes, which has

been explored by several groups [Lowery et al., 2006] [Farnsworth et al., 2008].

Time-variant fatigue dynamics complicate the design of the FES controller. Even though the

estimation of muscle output has been deemed as an active work for more advanced FES control,

it has not been extensively studied in terms of different fatigue levels, compensating reflexes and

day-to-day variations. The estimation method is related to the muscle model being employed and

the facility for implementation. In the application of feedback control to physiological systems,

a compromise between model complexity and control performance must be taken into account.

In [Ziai and Menon, 2011], although OLS was considered to be superior to several com-

monly used regression models for estimating isometric joint torque based on eEMG signals,

retraining the model was suggested to regain high estimation quality due to degraded esti-

mation accuracy over time. Therefore, the online estimation method proposed in this work is

preferable to characterize the muscle contraction dynamics for real-time FES control. In the

scenario of biomechanics, several works estimated nonlinear time-varying muscle dynamics

through the recursive least squares (RLS) method or KF, which are especially effective for es-

timating slowly time-variant systems. In [Chia et al., 1991], the authors proposed an RLS me-

thod with time-varying parameter constraints in order to enhance the accuracy of parameter

identification. The constraints were determined from available a priori knowledge about re-

cruitment nonlinearity. A Hammerstein model, which was constructed by a polynomial and ARX

function, was identified via the standard weighted LS method [Erfanian et al., 1998]. However,

these authors did not consider the effects of different muscle fatigue states and subject-specific

differences. In [Schauer et al., 2005], a modified KF, the extended Kalman filter (EKF), was

adopted to estimate the joint angle for FES control. Another modified KF, the sigma point Kal-

man filter (SPKF), was proposed to online estimate nonlinear muscle force induced by FES in

[Hayashibe et al., 2008]. For tremor suppression with FES, both EKF and SPKF were assessed to

estimate joint motion and tremor motion in [Bó et al., 2011].

In this work, a KF is therefore proposed to online estimate muscle contraction dynamics,

with a forgetting factor for tracking time-variant muscle fatigue. As long as the updated model

provides sufficient torque predictions, the stimulation parameters are adaptively adjusted before
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being delivered to the muscle. As a result, perturbations such as muscle fatigue can be compen-

sated. KF is a recursive estimation method that is useful when parameter estimates are required

in real-time, such as when the information is used in adaptive control or real-time diagnosis.

This formulation explicitly takes into account the uncertainties related to the model, the measu-

rement and the parameters. Moreover, the implementation can be easily extended to multi-input

multi-output models, as long as additional sensors are introduced.

3.3 Online Torque Prediction during Muscle Fatigue

In the proposed formulation, KF is used for the online parameter identification of the muscle

contraction model. KF is efficient for estimating the internal states and parameters of a discrete-

time system from a series of noisy measurements. The PHM described in Chapter 2 is employed

here.

3.3.1 State-Space Representation and Filter Configuration

State-space representation is basically required to implement the recursive algorithm for

model estimation. It provides a convenient and compact way for estimation and control pro-

blems with its notational expression. The state-space form relates a set of input, output, and

state variables by first-order differential equations, and permits us to track the internal state

variables from input-output data sets, whether they are measurable or not.

Considering a time-variant PHM (l,m,n) as described in (2.5),

f(u(k − i), y(k − i), θ(k)) =
l∑

i=1

ai(k)y(k − i) +
m∑

i=1

n∑

j=1

µij(k)(u(k − i))j , (3.1)

θ(k) is the vector containing the time-variant model parameters :

θ(k) = [a1(k), · · · , al(k), µ11(k), · · · , µ1n(k), · · · , µm1(k), · · · , µmn(k)]T . (3.2)

Consequently, a PHM (l,m,n) has (l+m*n) parameters. At a given time instant t, the com-

putation of future joint torque estimates using (3.1) is straightforward, assuming a stationary

or slowing varying system within the prediction horizon. Next, we will describe the chosen pa-

rameter model, the state space representation, and the measurement model.

Parameter model

In a time-varying muscle contraction model, if indicative information about the evolution

in muscle fatigue is available–for instance, the fatigue rate is indicated by eEMG amplitude

or frequency components–the model parameters can be easily modeled by incorporating into

(3.3). Otherwise, the changes in model parameters are considered absolutely random, and the

parameters are represented by a random walk process,

θ(k) = θ(k − 1) + ε(k) (3.3)

where k indicates the current time step and θ(k) is the kth-step parameters. The parameter

transition is assumed to be Gaussian white noise ε, ε ∼ N(0, σ2). This implies that the mean of
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the parameter process is constant, but its variance is not constant. Thus, the parameter model

is non-stationary, and the variance is variant with time. In practice, this model structure makes

the prediction process very simple since all the future values of θ(k + s) for s > 0 are assumed

to be equal to θ(k) and the variance is set according to the system dynamics. For example, if

the variation in torque is considered higher in comparison with the variation in eEMG with an

increase in muscle fatigue level, the coefficients of past torque ai(k) should be set relatively

higher than the coefficients of past eEMG µij(k). In other words, we assume more uncertainty

concerning muscle mechanical behavior than muscle electrical behavior with increasing fatigue.

Process and measurement models

A state-space model consists of a measurement model relating the observations to the state

vector, and a Markovian transition equation describing the evolution in the state vector over

time. The detailed process to obtain the state-space model of a PHM is described in Appendix

B.1. For a PHM (l,m,n), the state vector, which consists of q=max(l,m) variables, is given by

x(k) =
[

x1(k) x2(k) · · · xq(k)
]T

(3.4)

The previous state x(k − 1) is transferred to the current state x(k) by a transfer matrix A(k) ∈

R
q×q, such that

x(k) = A(k)x(k − 1) + B(k)u(k − 1) + w(k)
︸ ︷︷ ︸

(3.5)

f(x(k − 1), u(k − 1),w(k))

u(k − 1) =









u(k − 1)

u(k − 1)2

...

u(k − 1)n









(3.6)

where u(k − 1) ∈ R
n×1 contains the exponents of previous model inputs, which are known at

each current step. Vector w(k) is Gaussian white noise of the system model. B(k) ∈ R
q×n relates

the previous model input u(k−1) to the current state x(k). The state process has a linear feature
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with matrix A(k) and matrix B(k), which are represented as follows :

A(k) =


















a1(k) 1 0 · · · 0 0

a2(k) 0 1 · · · 0 0
...

...
...

. . .
...

...

al−1(k) 0 0 · · · 0 1

al(k) 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0


















, B(k) =









µ11(k) µ12(k) · · · µ1l(k)

µ21(k) µ22(k) · · · µ2l(k)
...

...
...

...

µm1(k) µm2(k) · · · µml(k)









, when l < m,

A(k) =











a1(k) 1 0 · · · 0 0

a2(k) 0 1 · · · 0 0
...

...
...

. . .
...

...

al−1(k) 0 0 · · · 0 1

al(k) 0 0 · · · 0 0











, B(k) =
















µ11(k) µ12(k) · · · µ1l(k)

µ21(k) µ22(k) · · · µ2l(k)
...

...
...

...

µm1(k) µm2(k) · · · µml(k)

0 0 · · · 0
...

...
...

...

0 0 · · · 0
















, when l ≥ m.

(3.7)

As for the measurement model, it relies only on the first state element x1(k), being written

in vector expression as

y(k) = Cx(k) + v(k), (3.8)

where v(k) is Gaussian white noise of the measurement sensor. When the system has a single

output, the observer is scaler variable y ; otherwise, it is a vector and the corresponding noise

element is also with vector expression. The current state x(k) is correlated with the current

system output y(k) by measurement matrix C ∈ R
1×q

C =
[

1 0 · · · 0 0
]

.

In the prediction phase of KF, the evolution in the model states is given by (3.5), while the

evolution in the model parameters is given by (3.3). In the correction phase, the measurement

from output sensor, y(k), will be applied to update the estimates of model states and model

parameters.

3.3.2 Kalman Filter with Forgetting Factor

In order to identify the time-variant model states in x(k) and the parameters in θ(k),

even though a dual KF is a solution to identify them in two parallel KF, as described in

[Aboy et al., 2005], another treatment is more direct and convenient for this purpose and is

used in this work. The main idea is to identify the model states and the model parameters

concurrently by regarding the unknown model parameters as elements of the state vector. In

this way, the basic KF algorithm does not need to be modified, except that the state vector x(k)

will be augmented with the unknown parameters in θ(k). That is, the meta-state vector Θ(k) is
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given by

Θ(k) =

[

x(k)

θ(k)

]

[(q+l+m×n)×1]

(3.9)

Accordingly, from equation (3.3) (3.5) and (3.8), the augmented system is rewritten by

Θ(k) =

[

f(x(k − 1), u(k − 1),w(k))

θ(k − 1) + ε(k)

]

︸ ︷︷ ︸

(3.10)

F(Θ(k − 1), u(k − 1), ν(k))

y(k) =
[

C 01×(l+m×n)

]

Θ(k) + v(k)
︸ ︷︷ ︸

(3.11)

G(Θ(k), v(k))

where the process noise w(k), the parameter noise ε(k) and the measurement noise v(k) are

the same as shown in (3.3) (3.5) and (3.8). They are assumed to be independent, white and

normally distributed,

ν(k) =

[

w(k)

ε(k)

]

p(ν) ∼ (0,Q) (3.12)

p(v) ∼ (0, R) (3.13)

The recursive algorithm of KF is a mature technique that consists of two phases, prediction

and correction. In the prediction phase, the system is assumed to be stationary, which implies

the a priori estimate of the state at instant k, Θ̂−(k), is equal to the a posteriori state at the

previous instant k-1, Θ̂(k − 1),

Θ̂−(k) = F(Θ̂(k − 1), u(k − 1), 0) (3.14)

The estimate error covariance P(k) is propagated according to (3.15) :

P−(k) = D(k)P(k − 1)DT (k) + Q(k − 1) (3.15)

where Q(k − 1) is a diagonal matrix containing the process noise covariance, and D(k) is the

Jacobian matrix of partial derivations of process transfer function F with respect to the variables

involved in Θ, with each element Dij being computed by :

Dij(k) =
∂Fi

∂Θj

(Θ̂(k − 1), u(k − 1), 0) (3.16)

In the correction phase, K(k) in (3.17) is called a KF gain that minimizes the a posteriori

error covariance,

K(k) = P−(k)HT (k)(H(k)P−(k)HT (k) + R(k))−1 (3.17)
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where R(k) is a scalar measurement noise covariance (for a single output system). H(k) is the

Jacobian matrix of partial derivations of sensor transfer function G with respect to Θ, with each

element Hij being computed by :

Hij(k) =
∂Gi

∂Θj

(Θ̂−(k), 0) (3.18)

incorporating to (3.11), H(k) =
[

C 01×(l+m×n)

]

.

When actual measurement y(k) is available, an a posteriori state estimate is generated by

incorporating measurement as in (3.19). An a posteriori error covariance estimate is obtained

via equation (3.20).

Θ̂(k) =Θ̂−(k) + K(k)(y(k) − G(k)(Θ̂−(k), 0)) (3.19)

P(k) =(I − K(k)H(k))P−(k) (3.20)

Although the KF is an effective way of estimating the state and parameters of a discrete

time-controlled process, its performance in estimating the time-varying parameters is degraded

by the fact that it refers to the entire history of past measurements [Mack and Jain, 1983]. This

is particularly troublesome when it is used to estimate the muscle contraction system, since the

activity of stimulated muscles tends to vary, with prolonged or repetitive stimulation leading to

variant muscle states. In order to track the time-varying muscle condition, a forgetting factor

λ is deliberately introduced to forget the old measurements when muscle fatigue increases.

Consequently, (3.15) and (3.17) can be rewritten as,

P−(k) = D(k)P(k − 1)DT (k)/λ (3.21)

K(k) = P−(k)HT (k)(H(k)P−(k)HT (k) + λ)−1 (3.22)

Choosing the forgetting factor λ ∈ [0, 1] depends on how much of the old measurements

we expect the filter to forget. If the forgetting factor is smaller, the filter will forget more past

measurements that are farther away from the present instant. A smaller forgetting factor enables

us to track changes in the system quickly, but it requires a longer time to arrive at convergence,

which may lead to more fluctuations. Whereas if a forgetting factor is close to 1, it assures fast

convergence but is not sensitive to the system variations. Consequently, a tradeoff between the

smoothness of tracking and the lag in detecting system changes should be considered when a

forgetting factor is introduced to a KF. Generally, λ ∈ [0.9, 1] is suitable for most applications.

Moreover, if a system changes slowly over time, one can select a forgetting factor close to 1.

Otherwise, a smaller forgetting factor is usually preferred. In summary, the implementation of

the KF with forgetting factor is listed as follows.

3.3.3 Filter Configuration

In classic KF, the tuning parameters are the process covariance matrix Q and measurement

covariance matrix R. Generally, they are empirically chosen depending on our confidence in

the model and the measurements. In this work, the tuning problem is reduced to only one

parameter—forgetting factor λ, in accordance with the muscle fatigue level. In other words, the

forgetting factor should be farther away from 1 with the increase in muscle fatigue severity.
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Algorithm The algorithm of KF with forgetting factor

1. k ← 0

2. initialize states of the filter Θ̂(0), corresponding covariance P(0), initial measure-

ment y(0), observation matrix H using equation (3.18), and forgetting factor λ

3. while system is running do

4. k ← k + 1

// prediction phase

5. compute a priori state estimates Θ̂−(k) using equation (3.14)

6. compute a priori observation estimate considering ŷ−(k) = HΘ̂−(k)

7. compute the Jacobian matrix D(k) using equation (3.16)

8. compute a priori error covariance estimates P−(k) using equation (3.21)

// correction phase

9. update Kalman gain K(k) using equation (3.22)

10. compute a posteriori state estimates Θ̂(k) using equation (3.19)

11. compute a posteriori covariance estimates P(k) using equation (3.20)

12. end

For a PHM (l,m,n), a max(l, m) + (l + m × n) dimensional meta-state will be estimated. The

max(l,m) parameters are the internal states of the filter and the rest are the parameters of the

muscle model. The elements of the meta-state vector are initialized as Θ̂(0) = 0. The initial

output estimate y(0) is set at zero whenever the muscle is at rest. The estimate error covariance

is initialized as P(0) = I, where I is an identity matrix.

3.4 Results of Time-Variant Torque Prediction

The elements of θ, as well as the eEMG-to-torque features, are time-varying in nature due

to the effects of fatigue and the associated biochemistry. At a given time k, the future torque is

predicted using (3.1) by assuming the system is stationary, or slowly time-varying, during the

prediction horizon. In this section, the time-varying parameter estimation performed by the KF

is evaluated in simulations and with experimental data. The outlines of the muscle model and

KF were described previously. NRMS error is used to quantify the performance of estimation

accuracy and parameter convergence during a period of interest.

3.4.1 Time-Variant Parameter Tracking in Simulation

In simulation, invariant parameter tracking is evaluated first with the KF to investigate

the convergence of the muscle model. Second, in order to investigate the filter’s adaptivity to

the time-varying fatigue phenomenon, the model parameters are slowly changed at different

instants to simulate changes in muscle condition. The advantage of simulation is that the true
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parameters are known to be compared with the estimated ones. The simulation model order is

chosen as (l=2, m=2, n=1) to reduce model complexity, as it is difficult to know how the model

output changes when too many parameters change. Thus, four parameters, a1, a2, µ11, µ21, are

estimated via the KF algorithm in simulation. In the beginning, all the parameters are kept

constant. After 33 s or 50 s, they are changed linearly (a1 and µ21) or in steps (a2 and µ11).

As the variation rates of the parameters are designed high, a KF with forgetting factor 0.97 is

selected to identify the model. The pseudorandom binary sequence (PRBS), which is commonly

used in muscle identification [Farahat and Herr, 2005], is chosen as the model input. The output

is corrupted with zero mean white noise with SNR of 25 dB and 50 dB. The two SNR levels are

selected, as experimental SNR is approximately 37 dB. The SNR is defined as

SNR = 10 ∗ log10








N∑

k=0

y2(k)

N∑

k=0

v2(k)








where y(k) is a clean signal and v(k) is the measurement noise at time k, and N is sample

length. The real model input, output and the a posteriori estimate of the output (SNR = 50 dB)

are shown in Fig. 3.1.

48 48. 5 49 49. 5 50 50. 5 51 51. 5 52

0

0.5

1

1.5

M
o
d
el

 o
u
tp

u
t

Model output and its KF estimate

48 48. 5 49 49. 5 50 50. 5 51 51. 5 52

0

0.2

0.4

0.6

0.8

1

Time (s)

M
o
d
el

 i
n
p
u
t

Model input signal

FIGURE 3.1 – Top : The model output (blue) and its estimate (red) by KF with forgetting factor.

Outputs are generated by simulation using a PHM (2,2,1) and corrupted by noises with SNR =

50 dB. Bottom : Model input (PRBS signals).

The corresponding parameter estimates of the model (SNR = 50 dB) are depicted in Fig.

3.2. The solid lines indicate the true parameters, while the dotted lines indicate parameter

estimates. All the parameters converge steadily after 5 s when the parameters are static. After
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FIGURE 3.2 – Convergence and tracking of both static and time-variant parameters. Solid lines

indicate true parameters. Dotted lines indicate parameter estimates. All the initial estimates are

set at zero.

33 s or 50 s, the model parameters gradually vary, and the estimates track the changes well,

which implies that the estimation method is suitable for time-variant parameter tracking with a

PHM.

A statistical average error, for estimates of system output and parameters at various SNR

(25 dB and 50 dB), is given in TABLE 3.1. It demonstrates that the accuracy and convergence

of the estimation are both better with higher SNR. However, when SNR is low (25 dB), the

estimation error is not wild, which implies that the estimation method can still work even when

the signal is quite noisy.

TABLE 3.1 – NRMS error of estimation

Estimate
Signal-to-Noise Ratio (SNR)

25 dB 50 dB

output 0.0773 0.0306

a1 0.0821 0.0743

a2 0.0421 0.0363

µ11 0.0396 0.0373

µ21 0.0561 0.0422
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3.4.2 Fatigue Tracking Based on Experimental Data

In this section, the estimation of time-varying parameters and the torque prediction for fa-

tigue tracking are performed based on experimental data using the KF with forgetting factor.

The robustness of the KF-based estimator is also investigated. The experimental data from sur-

face and implanted stimulation are used for this study. Moreover, the data from successive series

of fatigue-inducing tests in surface FES are concatenated to have sufficient data and obvious

fatigue states. The model order is chosen at (3,4,3) and the KF is configured as described in

3.3.3. Apart from the NRMS error over the entire period of interest, the identification error and

prediction error are calculated and displayed. The identification error, reflecting the accuracy of

parameter estimation, is calculated as the absolute difference between measured and estimated

torque at each evolution. The prediction error, measuring the prediction ability of the identified

model, is calculated as the NRMS error and Normalized Peak Error (NPE) between the measured

and predicted torque within a given prediction horizon.
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FIGURE 3.3 – The estimated torque and identification error in subject S5. At each instant, the

eEMG-to-torque model parameters are updated adaptively by KF with forgetting factor 0.997.

The identification error of each evolution is plotted at the bottom. The identification takes ap-

proximately 1 s to converge.

First, to illustrate the evolution in the model parameters, the torque estimates and iden-

tification error in both FES systems are plotted. One result is shown in Fig. 3.3 for subject S5,

where the torque declines 21%, and the estimator updates the model parameters adaptively and

accurately tracks the fatigue effect. The estimation takes approximately 1 s to converge and then

the identification error maintains almost less than 0.1 (corresponding to 10% of the measured
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torque). Notably, after a 40-s evolution, the model arrives at a steadier state, representing less

than 5% identification errors. Similarly, Fig. 3.4 is plotted for the implanted subject in fatigue

sequence 1, where the torque decreases to around 24.1% of the maximum torque. Except for the

first 17-s potentiation, the identified parameters afterward are suitable to estimate the torque.

Large errors at the sharp corner between two adjacent trains probably arise from a quickly alte-

red muscle response but sparse data for the estimator to find the optimal parameters. This can

hopefully be avoided by designing a suitable rising and falling period during each train, and

allowing a period of rest between two adjacent trains. More results are shown in Appendix C to

demonstrate the torque estimates and parameter evolutions (see Fig. B.1, Fig. B.2 and Fig. B.3).

Apparently, the model parameters vary over time and generally with a low varying rate, which

makes it possible to obtain good torque prediction in a given prediction horizon.
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FIGURE 3.4 – The estimated torque and identification error in the implanted subject. At each ins-

tant, the eEMG-to-torque model parameters are updated adaptively by KF with forgetting factor

0.997. The identification error of each evolution is plotted at the bottom. The high identification

error during the initial potentiation indicates dissociation between eEMG and torque during this

period.

3.4.2.1 Fatigue Dynamics

The estimation of the muscle contraction process is used to explore the dynamics of fa-

tigue phenomena. The parameter estimates in θ̂(k) are used to compute the poles of the muscle

contraction system by making A(q) in (2.4) equal to 0. At each evolution, a PHM (l,m,n) has l
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poles, and the solution is to solve a polynomial function as

ql + a1q
l−1 + · · · + al−1q + al = 0

The locations of these poles in subjects S1 and S3 are indicated in Fig. 3.5. The unit circles are

also plotted in this figure. All the poles are located within the unit circles, which is of signifi-

cance in ensuring the model stability under such a stimulation protocol. The arrows denote the

direction of movement of the z-plane poles. The time-varying property of the poles may also

interpret the muscle dynamics. Moreover, the locations and movements of the z-plane poles in

all subjects present similar characteristics, suggesting that it is possible to assess muscle fatigue

dynamics from such information. In general, the damping ratio increases when the muscle is

highly fatigued. This matches our intuition concerning the effect of muscle fatigue.

FIGURE 3.5 – The changes of the muscle contraction dynamics of muscle behavior due to fatigue

during surface FES in subjects S1 (left) and S3 (right). The arrows denote the direction of

"movement" of the z-plane pole. The plot color is changed every 16s to show the time transition.

3.4.2.2 Torque Prediction Performance

To investigate the torque prediction performance in time, t1, t2 and t3, corresponding to

6-s, 18-s and 30-s ahead predictions, are evaluated. The idea is illustrated in Fig. 3.6, which

features the estimated model at time instant t0. The torque predictions are computed using

(3.1) and are only driven by the eEMG signals and identified model at t0, assuming a stationary

system within the prediction horizon. At each instant, the NRMS error and NPE during a given

prediction horizon are computed. NRMS has been defined before, and NPE is the peak error

during the prediction horizon at each evolution. The prediction errors in all subjects in surface

FES are quantified in TABLE 3.2. Eighteen seconds is considered to be appropriate, as it provides

a tradeoff between a sufficient interval for measurement update in KF and satisfactory prediction

performance. The prediction errors for the 6-s, 18-s and 30-s prediction horizons in subject S3

are plotted in Fig. 3.7. The solid blue line indicates the NRMS error, while the dotted black line

indicates peak error. The identification error at each instant is also displayed in the bottom plot.

Since the estimation algorithm is intended for online implementation in real-time FES

control, the computational time is important to guarantee the adaptive response of the control-

ler. The elapsed time taken to perform torque prediction of different prediction horizons is listed
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TABLE 3.2 – Prediction performance with experimental data

Subject Average error
Prediction horizon

6s 18s 30s

S1
NRMS 0.0638 0.0974 0.1282

NPE 0.1616 0.2990 0.3414

S2
NRMS 0.0763 0.0925 0.1110

NPE 0.2466 0.3402 0.4230

S3
NRMS 0.0278 0.0314 0.0366

NPE 0.0743 0.0962 0.1146

S4
NRMS 0.0524 0.0534 0.0556

NPE 0.1208 0.1523 0.1697

S5
NRMS 0.0387 0.0418 0.0437

NPE 0.1036 0.1360 0.1510

in TABLE 3.3 for one subject, S3. A laptop with Core 2 Duo CPU P8400 @ 2.226 GHz 2.27 GHz

and 4.00 GB memory, was used for computation.
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FIGURE 3.6 – Illustration of torque estimation based on eEMG information. For evaluating pre-

diction performance at t0, the prediction errors for prediction horizons t1, t2, and t3 (6 s, 18 s

and 30 s, respectively) are measured. A KF with forgetting factor 0.997 is used to estimate the

model.

3.4.2.3 Adaptive Performance for Internal and External Disturbances

The prediction filter must be robust for the internal and external changes in muscle res-

ponse. For instance, when joint motion suffers from sudden torque variations, such as a resistant

effect from environmental contact, the torque measurement is affected unexpectedly. Without

knowledge of the muscle activity, the control is likely to be unstable. On the contrary, when

muscle activity is taken into account, if the prediction is accurate enough, the controller can
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FIGURE 3.7 – Prediction errors in subject S3 - From top to bottom, the NRMS and NPE error for

a 6-s, 18-s, and 30-s prediction horizon and estimation error, respectively.
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TABLE 3.3 – Computational time of different prediction horizons

Prediction horizon Elapsed time (ms)

2s 0.264

6s 0.275

18s 0.349

30s 0.488

provide suitable stimulation for compensating such sudden change. Otherwise, the controller

will wait for reestablishment of prediction quality. In order to investigate the filter’s behavior in

response to such sudden torque changes, a resistive torque is simulated in an arbitrarily selected

period. For subject S3, the amplitude of torque is decreased to 85% of the original value from

instant 19 s to 24.8 s. For the implanted subject, the amplitude of torque is decreased to 80%

of the original value from instant 25.9 s to 31 s. The behavior of the filter and the evolution in

the prediction errors for a prediction horizon of 6 s are analyzed and plotted in Fig. 3.8 and Fig.

3.9.
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FIGURE 3.8 – (Top) The original torque is decreased from 19 s to 24.8 s to 85% of its original

value in subject S3. (Bottom) The prediction errors of the 6 s horizon indicate a big prediction

error against such an event. Nevertheless, the estimator reestablishes the prediction quality in

12 s.

As the reflex that occurrs during stimulation of motor point in surface FES certainly affects

muscle response, the adaption of the filter to such an event is also investigated. For subject S3,
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FIGURE 3.9 – (Top) The original torque is decreased from 25.9 s to 31 s to 80% of its original

value in the implanted subject (fatigue sequence 2). (Bottom) The prediction error of a 6-s

prediction horizon indicates fast filter adaptation to such sudden change.

additional torque with a value equal to 10% of the original value is induced from 30.8 s to 37

s. For the implanted subject, additional torque with a value equal to 20% of the original value

is induced from 20.8 s to 25.9 s to simulate any other source resulting in additive torque. The

prediction results and prediction errors of the 6-s prediction horizon are plotted in Fig. 3.10 and

Fig. 3.11.

3.4.2.4 Discussion on Filter Predictive Performance

Given the identification accuracy as shown in Fig. 3.3 and Fig. 3.4, the identification er-

rors are large at the corner between adjacent trains and during initial potentiation (Fig. 3.4).

However, except for these cases, the small estimation errors indicate suitable identification of

the model. Although increasing the model order of the PHM may improve prediction quality,

the improvement is not significant. Therefore, the model order is kept small to avoid possible

instabilities and aggressive computational cost.

The prediction results presented in Fig. 3.7 reveal good performance of the predictive filter,

which successively acquires the mechanical behavior of the muscle under FES. In addition, the

error values given in TABLE 3.2 indicate that neither NRMS error nor NPE increases significantly

when the prediction horizon is extended. This indicates that the proposed eEMG-to-torque mo-

del properly fits muscle behavior. If the prediction quality degrades when an expanded predic-

tion horizon is selected, this is probably due to the variations in severe internal or external dis-

turbances during the horizon. For instance, continuous stimulation may result in severe muscle

fatigue over a short time. In this case, a possible solution is to select a smaller forgetting factor
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FIGURE 3.10 – (Top) Additional torque disturbances with a value equal to 10% of the original

value for simulating reflex is induced from 30.8 s to 37 s in subject S3. (Bottom) The prediction

quality of the 6-s horizon is quickly reestablished after the disturbances.
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FIGURE 3.11 – (Top) Additional torque with a value equal to 20% of the original is induced from

20.8 s to 25.9 s in the implanted subject (fatigue sequence 2). (Bottom) The prediction error of

a 6-s prediction horizon indicates fast filter adaptation to such an event.
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that allows the forgetting of more previous information. Furthermore, the computational power

with various prediction horizons is high enough to be implemented in real-time identification.

The adaptive capability of the filter to torque variations due to unexpected torque changes

is presented in Fig. 3.8 and Fig.3.9. Observing the prediction error, the filter takes approximately

twice as much time to re-adapt the torque changes and then stabilizes at a low level. Reflex is

another challenging physiological phenomenon in the FES system, such as correcting drop foot

via the withdrawal reflex in surface FES. The prediction performance reacting to additive torque

variations (such as reflex) is shown in Fig. 3.10. Another example of reacting to additional

torque in the implanted FES is shown in Fig. 3.11. The filter in both conditions reestablishes the

prediction quickly after the disturbances.

3.4.3 Robust Fatigue Tracking

The fatigue tracking method described above assumes torque measurement is always avai-

lable, and the model parameters are updated immediately when new measurements are obtai-

ned. Then the identified parameters are applied to predict torque in a prediction horizon. As a

result, tracking is not robust to disturbances caused by sensing failure. In order to resolve this

problem, torque prediction is integrated into a fatigue tracking task. The objective is to use joint

torque estimated by KF to bridge the period of disturbances or the absence of torque sensing.

Any event such as interrupted or unreliable torque measurement is assumed to result in

such tracking failure. If the prediction tracks the measured torque well, this suggests that when

torque measurement is unavailable or unreliable, the predicted torque based on eEMG can be

used to bridge such gaps to perform the model-based FES control. Otherwise, they are just used

for bridging the unexpected events, and the controller will wait for sufficient tracking quality.

This procedure can be explicitly accomplished in a predictive controller by specifying suitable

output and/or input constraints, which can be obtained for each subject in a pre-experiment.

The idea for verifying the robustness of the filter is that, assuming measurement is unavai-

lable or unreliable from time instant t0 to t1, the identified model at t0 can be used to predict

the torque induced by stimulation until instant t1, as shown in Fig. 3.12. When prediction is

executed, the model is only driven by the eEMG and identified model at t0, while model up-

dating is suspended. To evaluate the prediction performance in different muscle fatigue states,

this process is repeated until the end of stimulation, where the measurement update in KF is

switched off for 18 s.

Fig. 3.12 and Fig. 3.13 illustrate fatigue tracking performance in subjects S3 and S1 for

surface FES. The predicted torque is calculated either with identification on or with identification

off as indicated in the figure. The parameter evolutions have been partly plotted in these figures.

As a whole, the model changes over time representing variant muscle systems, as seen from the

variant model parameters. When identification is suspended, the model parameters maintain

stationary, while the torque can still be well tracked. More results on other subjects are shown

in Appendix C. The forgetting factor is still fixed at 0.997 for these subjects in surface FES. The

high tracking quality may result from two factors. One is that the Hammerstein model is suitable

to catch the muscle electrical mechanical behavior under isometric condition. The other is that

the intermittent stimulation protocol causes a slow fatigue rate, which yields a time-variant but



3.4 Results of Time-Variant Torque Prediction 71

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

t0N
o

rm
a

liz
e

d
 t

o
rq

u
e

 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

a1

a2

a3

P
a

ra
m

e
te

rs

0 10 20

30

40 50 60 70 80 90 100

 -0.1

0

0.1

0.2

0.3

Time (s)

P
a

ra
m

e
te

rs

-0.2

-0.3

-0.2

µ13
µ33

µ23

µ43

t1

Measured

Predicted
Identification off 

FIGURE 3.12 – Robust fatigue tracking based on the eEMG-to-torque model and KF in subject

S3. The model identified at t0 is used to predict the torque from t0 to t1, while the online

identification is switched off for 18 s (with background color in the upper plot). The predicted

torque is accurate enough for use in a model-based controller. Middle : The identified model

parameters of the past torque. Lower : The identified model parameters of the 3rd power of the

past eEMG. The identified model parameters are maintained stationary during identification off.
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FIGURE 3.13 – Robust fatigue tracking based on the eEMG-to-torque model and Kalman filter in

subject S1. The model identified at t0 is used to predict the torque from t0 to t1, while the online

identification is switched off for 15 s (with background color in the upper plot). The identified

model parameters are maintained stationary during identification off.
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stable muscle system as shown in Fig. 3.5. Consequently, the KF is suitable to track the gradually

time-varying fatigue by adaptively identifying the model.
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FIGURE 3.14 – Robust fatigue tracking based on the eEMG-to-torque model and Kalman filter in

implanted FES. The model identified at t0 is used to predict the torque from t0 to t1, where the

online identification is suspended for 15 s. The forgetting factor is chosen at 0.97 to react to the

fast fatigue under continuous stimulation condition.

As continuous stimulation produces a higher fatigue rate in comparison with the intermit-

tent pattern, when assessing the robustness of the filter to track fatigue in such conditions, the

forgetting factor is preferably lower to react to muscle changes quickly. The measurement failure

is simulated by suspending the prediction phase of KF at an arbitrary instant t0. To reestablish

the tracking of muscle fatigue, the identified model at t0 is used for the prediction of torque

generation for 15 s. To reveal the accuracy of the predicted torque, the measured torque is also

shown for comparison. The results of two fatigue sequences in the implanted subject are illus-
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trated in Fig. 3.14. Note that the torque and MAV of eEMG in both sequences are normalized by

the maximum values in fatigue sequence 1.

3.4.4 Discussion

Stimulus-evoked EMG has been previously proposed to predict the mechanical behavior of

muscles in FES rehabilitation systems [Tepavac and Schwirtlich, 1997] [Erfanian et al., 1998].

These prediction methods were investigated on the hypothesis of a fixed eEMG-to-torque mo-

del during stimulation. Other researchers found that this relationship is time-variant under dif-

ferent muscle conditions [Mizrahi and Isakov, 1994] [Yu and Chang, 2009]. However, they did

not propose a feasible, effective method to resolve the torque prediction problem in a systema-

tic way. In this work, we also found the time-varying property of myoelectrical and mechanical

muscle behavior from experiments on SCI subjects. This implies the limitations of the torque

prediction method based on the fixed eEMG-to-torque model, and increases the difficulties of

torque estimation when muscle response is time-variant. The present work proposes the use of

the PHM to represent muscle contraction dynamics with the MAV of eEMG as input, with an

adaptive identification method performed by a KF with forgetting factor.

In the simulation study, both stationary and extremely time-variant systems are simulated.

As the SNR of the experimental data is approximately 37 dB, additional noises with SNR of 25 dB

and 50 dB were added to corrupt the system output, respectively. The KF adaptively identified

the model and tracked the real parameters well even when the simulated output was quite

noisy. The forgetting factor was chosen at 0.97 as the parameters all change fast ; for example,

parameter µ21 increased eleven times from 0.1 to 1.2 within 50 s. If the model varies slowly, a

bigger forgetting factor is preferred to improve the tracking performance and avoid divergence.

With the experimental data, the plots of z-poles display a slow time-variant but stable

muscle contraction system in such a stimulation situation. The adaptive performance of the

filter is verified by simulating internal and external perturbations. Unexpected torque reduction

due to environmental contact is simulated ; the filter presents sufficiently fast adaptivity to such

torque amplitude changes. The filter also adapts to external force or reflex phenomena in a short

time compared with the duration of the events. The robustness of the torque prediction method

is verified in terms of torque sensing failure. From the results of the surface intermittent FES

system, Fig. 3.12 and Fig. 3.13, the torque predictions during the suspended model updating

are still accurate, and they can thus be used in a model-based controller. Although the torque

prediction has some oscillations in the implanted continuous FES system, the torque does not

deviate extremely. Moreover, we find that the torque tracking in all these results is accurate and

converges quickly after the failure event. This phenomenon means the predicted torque suc-

cessfully bridges the gap resulting from sensing failure. Therefore, although the controller does

not use the predicted torque to adaptively modulate the stimulation pattern, it can wait for the

ending of the event and retrieve high tracking performance.

The muscle contraction dynamics model were described in a previous work

[Erfanian et al., 1998], where the recursive least squares method was used for identification in

percutaneous continuous stimulation. However, there was no consideration of different fatigue

states, or subject-specific and protocol-specific differences. In this study, the proposed identi-

fication method is validated for ankle torque prediction and fatigue tracking using processed
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eEMG signals under isometric condition. A promising next step would be to verify this in dyna-

mic conditions by introducing a torque-joint angle model combined with the proposed muscle

model, as proposed in [Farahat and Herr, 2005].

Even though the forgetting factor is empirically chosen, λ = 0.97 ∼ 0.997 is considered

suitable in these experiments. As an improper forgetting factor may lead to divergence or mi-

sestimation, an adaptive forgetting factor can hopefully improve the prediction adaptation and

accuracy. A simple solution is using a big forgetting factor at the beginning of the recursion,

when the muscle state is relatively stable, and using a smaller one later, when the muscle res-

ponse tends to be time-variant with prolonged or repetitive stimulation.

In this work, we did not consider the effect of day-to-day changes, but the online identifica-

tion is able to identify parameters for different subjects. Therefore, as long as we do not intend

to research how the parameters change depending on the experimental set-up–for example,

electrode position–this method itself can work even if there are day-to-day changes. Of course,

it is important to investigate the effect of different experimental set-ups. In this case, we may

introduce a tuning function to offset the day-to-day variances, and to assess the underlying

relationship between these variances and the corresponding conditions.

3.5 Conclusion

The objective of this work is to develop a model-based FES controller for muscle fatigue

compensation. As FES induces fast fatigue and unexpected disturbances, whereas the patients

cannot perceive the muscle fatigue, accurate torque estimation is essential to feedback muscle

output for adaptive adjustment of the stimulation. In this work, we confirm that muscle contrac-

tion dynamics are time-varying with FES. A time-varying eEMG-to-torque model was employed

to represent the electrical and mechanical behaviors of stimulated muscle, with the model pa-

rameters identified by a KF with forgetting factor. The predictive performance of the adaptive

identification method has been validated in simulation and with experimental data. The results

demonstrate sufficient adaptivity to internal muscle changes or external disturbances in a syste-

matic way.

In terms of improvements in fatigue tracking, when the measurement of the torque sen-

sor suffers from recording interruption or distortion, the proposed method could bridge these

problems and provide sufficiently accurate fatigue tracking only on eEMG measurement. The

success of torque prediction only based on eEMG is significant in FES. In addition, we may have

good torque estimation ability both in surface and implanted FES. On the basis of predicted

torque, the torque can be used in a model-based predictive controller aiming at torque control.

In the classic FES system, the actual muscle activation is never explicitly taken into conside-

ration. However, since the muscle response is time-variant, it is essential to improve and even

break the limitations of the current FES control paradigm. The next chapter focuses on the novel

FES control strategy with EMG-feedback function.
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In this chapter, an EMG-based feedback system for predictive control of FES is proposed,

rather than conventional position control, in order to achieve closed-loop torque control for a

more accurate, safe and robust FES system. An FES system delivers electrical charges that are

determined by a control unit to excitable motor neurons, in order to contract target muscle. The

intended movement is achieved by the correct stimulation pattern, which depends on the spe-

cific applications and stimulation interface. The challenge in the present FES system starts with

the problem of how to process the high nonlinearity and complexity of musculoskeletal systems,

which complicate the model identification process. Another challenge arises from time-varying

muscle dynamics due to physiological and biochemical factors (such as fatigue, reflex), as these

need to be compensated in order to augment the applications of FES. In addition, as most pa-

tients who would benefit from FES have lost both motor function and sensory function, safe and

natural stimulation pattern is particularly important. Therefore, in this work, eEMG feedback,

which represents muscle activity, contributes by taking the muscle state into account in the FES

control system. The predictive nature facilitates the prediction of the muscle response and there-

fore the system can respond to the time-variant muscle state changes in advance. The following

section presents the experimental data collected from healthy subjects in an FES-induced drop

foot correction protocol. The control performance, robustness, and fatigue compensation ability

are evaluated and discussed on the basis of experimental and simulation studies.

4.1 Control System for Movement Induced by FES

The conventional control systems for FES are illustrated in Fig. 4.1. Most current FES sys-

tems work in an open-loop paradigm (Fig. 4.1 (a)), where predefined stimulation patterns are

delivered to the muscle without feedback on the real response. When the actual trajectory is not

suitable for performing the desired task, the stimulation pattern cannot be accordingly adjusted.

The application of an open-loop FES system is thus limited due to the degradation in perfor-

mance caused by muscle state changes or other disturbances. The currently used manual FES

modulation (such as a hand switch) tends to cause distraction and is thus suboptimal. Compared

with open-loop control, a closed-loop controller is superior as it feeds back useful information

on the current state of the system for regulating system input in accordance with the desired

output. A sensor-based closed-loop control scheme is shown in Fig. 4.1 (b). It is driven by the

errors between the actual trajectory and the desired trajectory. The integration of more avai-

lable sensors would be beneficial to provide more useful information, but mounting, calibrating

and computing the time of signal processing are complicated in implementation. In this context,

the standard Proportional Integral Derivative (PID) controller and extended PID controller have

been investigated. However, tuning the PID parameters to produce satisfactory tracking perfor-

mance and robustness is difficult. The model-based closed-loop controller shown in Fig. 4.1 (c)

is a promising means to deal with the nonlinear and time-varying characteristics of the muscu-

loskeletal system. Model-based control techniques, such as feed-forward and predictive control

strategies, require sensors and dynamic models of the system, as well. The FES control per-

formance would thus be enhanced by a model-based controller if sufficient knowledge of the

system were available.
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FIGURE 4.1 – Organization of traditional functional electrical stimulation control systems : open-

loop (a), closed-loop (b) and model-based control scheme (c) [Popović and Sinkjær, 2000].
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4.2 Previous Works

In the current FES systems, closed-loop control has been investigated in the lab but has not

been widely applied in practice. Regarding the scenario of lower limb FES closed-loop control,

one goal has been to adaptively modulate the stimulation onset according to effects, such as wal-

king speed, gait rhythm, or the intentions of users. For example, when the movement event was

detected through physical sensors such as force-sensing resistor [Liberson et al., 1961], accele-

rometer and gyroscope [Williamson and Andrews, 2001], the stimulation was triggered when

necessary to accomplish a task. In [Chen et al., 2001], a closed-loop FES system controlled by

position sensors and triggered by a foot-switch was proposed. A micro-controller dynamically

adjusting the FES intensity through a built-in algorithm was presented in [Breen et al., 2006],

which was able to generate a stimulation envelope with any shape, reflecting walking speed

changes. By taking advantage of EMG signals, an eEMG-triggered FES control system was pre-

sented through a pattern recognition approach, and the eEMG signals were collected from upper

trunk above-lesion sites [Kordylewski and Graupe, 2001]. In another work [Dutta et al., 2008],

the FES system was triggered by the recognition of the patient’s intention from eEMG signals

from incompletely paralyzed muscles. Natural sensory feedback provided another solution for

closed-loop FES control [Haugland and Sinkjaer, 1995] [Djilas, 2008], when a recording im-

plant was available. These works contributed to the adaptive adjustment of the stimulation on-

set with regard to walking speed or walking surface. However, they did not compensate muscle

property changes, nor did they provide a reliable stimulation pattern for the desired complex

movement (such as stepping up/down stairs with different stair heights, or various sports mo-

vements).

To achieve a reliable stimulation pattern and compensate muscle property changes du-

ring FES, the ideas have varied from a sensor-based approach to a model-based approach.

All these works investigated knee joint angle control in FES and have been reviewed in sec-

tion 1.4.3. For example, in [Ferrarin et al., 2001], the authors suggested using model-based

approaches to achieve an efficient and robust FES system. In [Jezernik et al., 2004], a sliding

model closed-loop control method was proposed to control shank movement. Another work

[Ajoudani and Erfanian, 2009] combined the classic sliding model control and a neural network

to control FES to track the desired knee joint trajectory. In these works, the feedback signal was

based on joint motion recording. However, as muscle contraction is induced by artificial stimula-

tion in FES, the drawback of closed-loop control of joint motion is that the resultant motion may

not only derive from stimulation but also from external forces (such as environmental contact).

A stimulation pattern based only on motion sensors is likely to be unsafe and unreliable in this

case.

By using eEMG signals, the stimulation was adjusted according to the intended motion

functions, which were obtained from EMG-based pattern recognition in [Graupe et al., 1989].

In another work [Winslow et al., 2003], the authors proposed a method to indicate when to

add stimulation signals for fatigue compensation, via two artificial neural network modules.

Their control purpose was to maintain the joint angle at a constant level. However, neither

group considered how to compensate the torque changes arising from various fatigue levels

or the subject-specific variations. In this work, eEMG is used as the feedback of actual muscle

activation information, which is useful to predict torque and then to achieve torque control
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rather than position control. This chapter aims at developing an FES control strategy based on

FES-evoked EMG feedback from stimulated muscle to induce the desired torque trajectory.

Furthermore, the stimulation pattern of FES should be reliable to avoid over-stimulation,

for the safety of patients. Smooth and natural muscle activation is desired due to the limi-

tation of muscle response rate. That is, even if the stimulation should be suddenly changed,

muscle cannot respond to such input due to the limitations from physiological natures. There-

fore, assuming that the muscle response is predictable, by using a predictive control method,

we can regulate the stimulation pattern before they are delivered. From these considerations

and assumption, a model-based predictive control strategy taking the eEMG signal as feedback

is proposed in this work. Predictive control has been widely applied in chemical or biomecha-

nical situations with a variety of interesting benefits, such as conceptually simple treatment of

control constraints and the cost function in the optimization [Camacho and Bordons, 1999]. In

the domain of FES, several simulation studies can be found in [Mohammed et al., 2007] and

[Esfanjani and Towhidkhah, 2005] for different purposes.

This chapter first introduces the muscle excitation and contraction model and their state-

space representation briefly. Next, an EFPC consisting of two Nonlinear Generalized Predictive

Control (NGPC) is addressed. Experimental data from FES-supported drop foot correction are

used to validate the control scheme and some simulation studies are conducted. Finally, discus-

sion on this control strategy and future perspectives are given.

4.3 Muscle Excitation and Contraction Model

In FES, external electrical currents are used to excite the peripheral motor nerves via surface

or implanted electrodes ; action potentials are subsequently generated and propagate toward the

muscle. When the action potentials reach the target muscle, the muscle contracts and produces

joint torque and then joint movement. Joint torque control is carried out by adjusting stimula-

tion parameters, either stimulation frequency, stimulation amplitude or PW. By introducing an

additional EMG sensor to accompany the torque sensor, the muscle excitation and contraction

dynamics are respectively modeled. Just as the muscle contraction dynamics are modeled by a

PHM model, a PHM is also applied to describe the muscle excitation responding to the stimu-

lation impulses. This model structure is able to represent a time-varying nonlinear process, as

described in Chapter 2 and Chapter 3.

For complete and subsequent usage, the model structure of a PHM is recalled and reformu-

lated in order to separately identify the parameters of the linear and nonlinear terms in PHM.

This separation is useful to employ a predictive controller without approximating the nonlinear

model. Although two PHM models are involved to resolve the control problem of both the excita-

tion and contraction processes, a generic PHM structure and its state-space form are introduced

here for simplification as they have the same structure. By modeling the linear and nonlinear

parts of the Hammerstein cascade with an ARX and a polynomial basis function, respectively,

the PHM at a given time k is parameterized as :

f(u(k − i), y(k − i), θ) =

l∑

i=1

aiy(k − i) +

m∑

i=1

n∑

j=0

biγj [u(k − i)]j (4.1)

Note that the MAV of the eEMG is the input u of the contraction dynamics, but for simplification,
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the abbreviation of eEMG is used instead of the MAV of eEMG in the following description. The

weights of inputs are separated for linear and nonlinear terms, rather than being coupled as in

(3.1).

The delivered stimulus, the collected eEMG, and the torque signals are provided to identify

both the muscle excitation and contraction models, as shown in Fig. 4.2. Apparently, the eEMG

acts as the output of the excitation model with stimulation as the input, as well as the input of the

contraction model with joint torque as the output. To indicate the two distinct statuses of eEMG

in these two models, different notations are used for eEMG, with u as input and y as output.

Furthermore, the model input u, the unmeasurable internal variable h, and the model output

y in the above-mentioned generic formulation are substituted by us, hs, ym in the excitation

model and um, hm, yt in the contraction model, as shown in Fig. 4.2.

FIGURE 4.2 – Model structure of stimulated muscle for model identification. The contraction

dynamics model relates eEMG to torque. The excitation dynamics model relates stimulation to

eEMG.

With the same model structure representing the muscle excitation and contraction dyna-

mics, the identifications of both models are processed in the same way. The only difference

is that data sets (us(i), ym(i)) are prepared to identify the stimulation-to-eEMG model, while

data sets (um(i), yt(i)) are prepared to identify the eEMG-to-torque model. When constructing

the state-space form of the generic PHM (l,m,n) model, the following process equation is used

instead of the equation (3.5) in Chapter 3 :

x(k) = Ax(k − 1) + BΨu(k − 1) + w(k)
︸ ︷︷ ︸

(4.2)

f(x(k − 1),u(k − 1),w(k))

where u(k − 1) is the previous model input as (3.6) and subscript k denotes the current time

step. The current state vector x(k) =
[

x1(k) x2(k) · · · xq(k)
]T

, q = max(l, m). Matrix A ∈
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R
q×q correlates the previous states with the current states as (3.7). Vector B and Ψ contain

linear and nonlinear weights of eEMG,

B =
[

b1 b2 · · · bm

]T

(4.3)

Ψ =
[

γ0 γ1 · · · γn

]

(4.4)

Thus, the linear and nonlinear parameter vectors can be written as

θl =
[

a1 a2 · · · al b1 b2 · · · bm

]T

(4.5)

θn =
[

γ0 γ1 · · · γn

]

(4.6)

This improvement is meaningful for the direct application of the predictive control scheme with

the linear part of the PHM model. Next, all the time-varying states and parameters involved are

identified concurrently by KF with forgetting factor, as proposed in Section 3.3.2.

4.4 Controller Design

This work aims at developing an EMG feedback closed-loop control strategy which can

adaptively modulate the stimulation pattern to obtain the desired torque trajectory. This control

scheme is developed based on the two internal PHM models described above. Accordingly, the

controller consists of two NGPC in series, as shown in Fig. 4.3. The control target is to generate

an optimal stimulation signal us to produce the desired isometric joint torque yd. The main idea

is to use the eEMG signal for a dual purpose resulting in EFPC, which involves an activation

controller and a stimulation controller. The activation controller takes eEMG as the control si-

gnal md to drive the predicted torque yp, close to the desired torque trajectory yd, based on the

contraction dynamics model. The stimulation controller takes md obtained from the activation

controller as the desired eEMG trajectory, so that the control signal, stimulation PW us, is com-

puted to drive the predicted eEMG mp close to md, based on the excitation dynamics model.

In both the activation controller and the stimulation controller, the same model structure — a

generic PHM model — is used for process prediction and optimization. Therefore, the overall

control problem can be reduced to resolve two single NGPC problems. The link between these

two NGPC controllers lies in that, at each sample time, the output of the activation controller

is used as the input of the stimulation controller. Therefore, in the next section, the control so-

lution based on a single generic PHM model is discussed. The notations are kept consistent, as

described in section 4.3.

4.4.1 Nonlinear Generalized Predictive Control

As a whole, the solution of a single NGPC consists of two parts : a linear part and a nonlinear

part, as shown in Fig. 4.4. The control problem of the linear part is first resolved by the Genera-

lized Predictive Control (GPC) algorithm, which has been described in a number of publications

such as [Camacho and Bordons, 1999] and [Zhu et al., 1991]. Although different methods can

be used to obtain the control law of GPC, the general idea is to minimize a multistage cost
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FIGURE 4.3 – Diagram illustrating the EMG-feedback predictive control strategy. The control

signal obtained from the activation controller is used as the desired reference of the stimulation

controller. In each controller, a nonlinear generalized predictive control algorithm is applied

based on a PHM model. The torque measurement ym and eEMG measurement mm are only

used for model identification, as shown by the dashed lines.

function given by

J =

Np∑

j=1

ξj [ŷk+j|k − vk+j ]
2 +

Nu∑

j=1

δj [∆hk+j−1]
2 (4.7)

where ŷk+j|k is an optimum j-step ahead prediction of the controlled variable using data up to

time instant k, vk+j is the future reference trajectory, and ∆hk+j−1 = hk+j|k−hk is the increment

of control action. Weighting coefficients ξj , δj respectively penalize the tracking performance

regarding ŷk+j|k and the smoothness of the control signal regarding ∆hk+j−1. Np is known

as the prediction horizon and the control horizon is Nu ; 1 ≤ Nu ≤ Np implies that all the

increments of the control effort are assumed to be zero for j > Nu.

FIGURE 4.4 – A single nonlinear generalized predictive controller based on a PHM model. The li-

near solution is provided by the linear generalized predictive control law. The nonlinear solution

is obtained by resolving a polynomial function.

In this work, a simpler formulation of GPC is applied to resolve the linear control problem,

instead of solving recursive Diophantine equations [Albertos and Ortega, 1989], with the main
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idea described in Appendix C.1. In short, the optimization problem is computed online and

in real-time in terms of the control action sequence [hk|k, hk+1|k, · · · , hk+Nu−1|k], so that the

predicted controlled variables [ŷk+1|k, ŷk+2|k, · · · , ŷk+Np|k] follow a desired reference trajectory

[vk+1, vk+2, · · · , vk+Np
].

The control signal hi|k, i = k ∼ k + Nu − 1 computed by GPC is a solution of the linear

predictive control problem at step k, which is required to be applied to the linear part of the

system. It is also provided to generate the plant input uk on the basis of function (2.1). The

nonlinear problem can be stated such that, at each time step, the signal hi|k is obtained as

described above, the nonlinear model coefficients γ0, · · · , γn are known by model identification,

and the nonlinear problem is to find the control input signal ui|k, i = k ∼ k + Nu − 1. It can be

resolved as finding zeros of the following function

p(ui|k) = γ0 + γ1ui|k + γ2ui|k
2 + · · · + γnui|k

n − hi|k. (4.8)

In this work, ui|k is calculated by finding eigenvalues using the Frobenius companion matrix

[Malek and Vaillancourt, 1995]. Until now, the control problem of a nonlinear generalized pre-

dictive controller was solved in two steps, first a linear solution and then a nonlinear solution.

Usually, only the first element of the control sequence uk|k, uk+1|k, · · · , uk+Nu−1|k is actually im-

plemented during time interval [k,k+1] ; that is, uk = uk|k. The procedure is repeated at the

next sampling time. However, the control signals in this sequence can be delivered to the plant,

if it is unnecessary to update the control signal calculation at every sample update. This can hap-

pen when the system changes slowly or the implementation is not accomplished at one sample

time.

In this way, an NGPC has four tuning parameters : Np, Nu, ξ and δ. The tuning processes of

these parameters are not independent from one another but are interactive. Usually, the selec-

tion of prediction horizon Np relies on the sampling time. The selection of control horizon Nu

depends on a trade-off between reducing the amount of computation and achieving global opti-

mization [Henson, 1998]. A large Nu may avoid a violation of constraints before they are arrived

at, but it may also result in a substantial amount of computation [Camacho and Bordons, 1999].

The effect of δ is related to suppressing aggressive control action, while ξ allows the assignment

of weight to reduce the prediction error for trajectory tracking. The tuning of δ and ξ can be

simplified by fixing one of them as a constant and tuning the other one.

4.4.2 Closed-Loop Implementation of the Dual Predictive Controller

As described above, the proposed dual predictive controller consists of two NGPC controllers

that work successively. Each of them works as described in section 4.4.1. The entire control

scheme is illustrated in Fig. 4.5. However, as opposed to the single NGPC, where the first element

in the control signal sequence is usually sent to the plant, in this dual NGPC, the control signal

sequence (black dots) obtained in the activation controller is treated as the reference trajectory

(black dots) for the stimulation controller. In the stimulation controller, only the first control

signal is sent to the stimulator at each sample time. The closed-loop implementation of the

EFPC consists of the following steps periodically :
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FIGURE 4.5 – Diagram illustrating the dual predictive control strategy. The output (predicted

control signal) of the activation controller is used as input (reference eEMG) for the stimulation

controller. In each controller, a nonlinear generalized predictive control algorithm is applied

based on an internal PHM model.
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Algorithm Closed-Loop Implementation of the Dual Predictive Controller

1. k ← 0

2. Initialize the KF, and the control parameters for the activation and stimulation

controllers : prediction horizon Np1, Np2, control horizon Nu1, Nu2, and weighting

factors ξ1, δ1, ξ2, δ2.

3 while system is running do

4. k ← k + 1

5. Collect the eEMG and torque signals (at current instant k)

6. Update the model parameter estimates by KF for both the muscle excitation model

and the contraction model. Note that, both the linear parameters in θl (4.5) and the

nonlinear parameters in θn (4.6) are simultaneously identified

//activation controller

7. Calculate linear solution sequence hm by GPC (see Fig. 4.4)

8. Calculate control signal sequence md using (4.8), and then these are used as the

desired reference for the stimulation controller

//stimulation controller

9. Calculate the intermediate signal hs by GPC (see Fig. 4.4)

10. The control signal us is calculated using (4.8)

11. Apply us to the stimulator

12. end

4.5 Evaluation of Predictive Performance for Drop Foot Correction

Drop foot is a condition in which an individual is not able to adequately dorsiflex or lift

the foot. It is associated with a variety of conditions such as stroke, head injury, spinal cord

injury, multiple sclerosis, and cerebral palsy [Lyons et al., 2002]. Regardless of the mechanism

of injury, the drop foot condition can be improved by different techniques, which are typically

referred to as drop foot correction. FES is one of the solutions, and it was put forward for

lower limb rehabilitation in 1961 [Liberson et al., 1961]. In this context, most interest is focused

on methods for detecting gait events [Azevedo and Héliot, 2005] and the development of an

optimal stimulation system and optimal stimulation patterns [O’Keeffe et al., 2003]. However,

closed-loop FES control for drop foot correction has not yet attracted a lot of attention.

To assess the performance of the proposed EFPC, preliminary experiments for drop foot

correction are conducted on three healthy subjects. Surface stimuli are applied with stimulation

PW modulation and constant amplitude and frequency. The common peroneal nerve and the

TA are both activated as usual to induce dorsiflexion. Isometric ankle torque and eEMG signals

are collected for off-line analysis. For each subject, recruitment, random and fatigue stimulation

protocols are alternatingly carried out. The stimulation parameters are listed in TABLE 4.1, and
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TABLE 4.1 – Stimulation parameters for drop foot correction (Stimulation frequency FS = 40

Hz, maximum stimulation PW PWmax = 450µs)

Subject OR HG ZQ

Stimulation amplitude 35 mA 26 mA 52 mA

a detailed experimental description can be found in [Hayashibe et al., 2011a]. After signal pro-

cessing as described in section 2.3.4, the relationship between stimulation, MAV of eEMG, and

torque in 45-s recruitment and random stimulation sessions are respectively plotted in Fig. 4.6.

In random test sessions, the stimulation PW at a plateau of each train is randomly determined

from 20% ∼ 100% of maximum PW. This protocol is important to verify more realistic and

complex gait events and is rarely investigated.
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FIGURE 4.6 – Relationship among stimulation pulse width, MAV of eEMG, and torque in recruit-

ment (top) and random (bottom) tests. All variables are normalized by their maximum value.

4.5.1 Experimental Validation of Predictive Torque Control

First, the control performance is evaluated by comparing the obtained control signal with

the actual experimental stimulation PW. The measured torque is considered as the desired

torque reference, where the control signal is computed by the EFPC, as described in section



4.5 Evaluation of Predictive Performance for Drop Foot Correction 89

TABLE 4.2 – Coefficient initialization for online identification of the muscle excitation and

contraction models

Parameters a1 a2 a3 b1 b2 b3 b4 γ0 γ1 γ2 γ3

Initial values 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.01 1.0 1.0 1.0

4.4.2. As we use experimental data for this study, the actual stimulation input corresponding

to the generated torque is known. Here, we try to verify whether the input solution from the

EFPC controller is appropriate in comparison with the true stimulation input. If they match

well, this implies that the model identification and controller work correctly. The forgetting fac-

tor of the Kalman filter is fixed at 0.999 as the muscle fatigue rate is lower in healthy subjects

than in patients with SCI. The initial model parameters (for both the excitation and contrac-

tion models) are listed in Table 4.2. The sampling time is 0.025 s, consistent with a 40-Hz

stimulation frequency. The control signal us, the normalized MAV of eEMG, is constrained wi-

thin [0,1], representing respectively, non-fiber recruitment and maximal fiber recruitment. For

convenience, in each NGPC, the weighting coefficient of the controlled variables is set at ξ = 1,

while the weighting coefficient of the control signal is adjustable. Therefore, the tuning problem

is reduced to tuning one weighting parameter δ1 in the activation controller and one δ2 in the

stimulation controller. The RMS errors of torque tracking and PW matching in a random test in

subject OR are shown in TABLE 4.3. After comparing these RMS errors among three subjects,

δ1 = 1.5, δ2 = 0.01 was selected for all the control problem in this work. Some other parame-

ters are chosen to take into account the tradeoff between tracking accuracy and the amount of

computation as presented in TABLE. 4.4.

Three examples of the obtained results are shown in Fig. 4.7 ∼ Fig. 4.9 and more results

can be found in Appendix D. The reproduced torque through the EFPC shows good fidelity

with the desired trajectory. The control signals show acceptable accuracy with an RMS error of

7.2% ∼ 9.1% of PWmax. Moreover, the muscle fatigue that results from repetitive stimulation

and the effect of withdrawal reflex in this stimulation protocol are unavoidable, so the control

performance also indicates the ability of this control strategy to compensate muscle fatigue and

reflex to some extent. Hopefully, the mismatch between the control signal and the actual PW

will be improved by the increasing prediction quality.

Torque control only based on the eEMG signal

In order to assess the robustness of the proposed controller in the scenario where a torque

sensor is not available or controllability is based only on eEMG information, the identification

of the muscle contraction model is switched off at an arbitrary time instant t. This scenario is

quite useful for FES control in the presence of sensor failure or control based only on eEMG

feedback while torque control quality is maintained. The results in two subjects are illustrated

in Fig. 4.10 and Fig. 4.11. The performance is not extremely degraded compared with Fig. 4.7

and Fig. 4.8. This indicates that control without a torque update is feasible in the identification

process, especially when muscle fatigue develops slowly, which may occur in some subjects. The

RMS errors of controlled torque, intermediate state — the MAV of eEMG and the control signal

— stimulation PW, are averaged in several tests in each subject and summarized in TABLE 4.5.
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TABLE 4.3 – The selection of penalty weights in a dual NGPC controller

penalty weights RMS error of torque tracking RMS error of PW matching

(δ1, δ2) (Nm) (µs)

(5, 0.01) 2.23 34.2

(3, 0.01) 1.88 32.3

(2, 0.01) 1.68 32.1

(1.5, 0.01) 1.58 32.4

(1, 0.01) 1.48 33.1

(0.5, 0.01) 1.39 34.6

(0.1, 0.01) 1.44 37

(1.5, 1) 3.64 35.8

(1.5, 0.5) 2.91 34.1

(1.5, 0.1) 1.97 32.6

(1.5, 0.05) 1.78 32.5

(1.5, 0.01) 1.58 32.4

(1.5, 0.005) 1.53 32.4

(1.5, 0.001) 1.47 32.5

(0.5, 0.001) 1.29 34.5

(1, 0.001) 1.37 33.1

(5, 0.001) 2.12 35

TABLE 4.4 – Configuration of dual predictive controller (Weighting factor ξ = 1)

Prediction horizon Np Control horizon Nu Weighting factor δ

Activation controller 40 30 1.5

Stimulation controller 20 10 0.01

TABLE 4.5 – Summary of the control errors while eEMG-to-torque model identification is swit-

ched on/off

Subject (Number of tests) Variable
Averaged RMS Error

ON OFF

OR (N=6)

Torque (Nm) 2.28 2.16

PW (us) 39.8 40.47

HG (N=9)

Torque (Nm) 1.77 1.78

PW (us) 45.5 46.9

ZQ (N=2)

Torque (Nm) 0.895 0.915

PW (us) 49 50.4
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FIGURE 4.7 – Evaluation of EFPC to obtain randomly changed torque in subject OR. Upper :

Reproduced torque from the muscle model (dashed blue) tracks the desired torque (solid black)

well. Middle : The actual eEMG and the reproduced eEMG through the excitation model are

shown. Bottom : The control signal matches the actual stimulation input well, indicating the

controllability and fatigue compensation ability of the proposed EFPC.
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FIGURE 4.8 – Evaluation of EFPC to obtain gradually increased torque in subject HG.
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FIGURE 4.9 – Evaluation of EFPC to obtain gradually increased torque in subject ZQ. The torque

baseline shift is apparent, which probably leads to degraded prediction quality and thus a mis-

match in the control signal.
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FIGURE 4.10 – Evaluation of the robustness of the proposed EFPC to obtain randomly changed

torque in subject OR. Top : The reproduced torque tracks the desired torque well. Bottom : The

control signal still matches the actual stimulation PW well, even when eEMG-to-torque model

identification is switched off from instant t, simulating unreliable torque measurement.
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FIGURE 4.11 – Evaluation of the robustness of the proposed EFPC to obtain randomly changed

torque in subject HG. Top : The reproduced torque tracks the desired torque well. Bottom : The

control signal does not deteriorate extremely, even when eEMG-to-torque model identification

is switched off from instant t.
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4.5.2 Simulation Results on Predictive Control Performance

In this preliminary work, the fatigue compensation approach is not incorporated into real-

time FES control. Therefore, simulation studies are carried out to evaluate the performance

of the EFPC in generating an appropriate stimulation pattern for an arbitrary torque envelope

and compensating fatigue. Virtual subjects are constructed with the model identified by the

experimental data. From the successful experimental results in section 4.5.1, we expect that the

identified model reflects the actual muscle properties quite well. The effects of the weighting

factor and input constraints in guaranteeing patient safety are assessed. Next, the versatility of

the proposed EFPC is evaluated in terms of muscle fatigue compensation and the generation of

the stimulation pattern.

Effects of weighting factors

The torque reference consists of a sequence with a square train and a trapezoidal train.

The tracking performance of the desired torque is shown in the left plot of Fig. 4.12. Three

sets of weighting coefficients are tested, respectively referred to as EFPC1 (δ1 = 0.1, δ2 = 20),

EFPC2 (δ1 = 0.5, δ2 = 5) and EFPC3 (δ1 = 20, δ2 = 2). It is found that, on the one hand,

different weighting coefficients lead to different converging times to the desired torque and, on

the other hand, even though different weighting coefficients are selected, the controlled torque

is able to track the torque reference in a limited time and the transient processes are smooth in

both torque tracking and control input, which is important for muscle to gradually respond to

the stimulation. It also matches the intuitive requirements of muscle response during electrical

stimulation.
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FIGURE 4.12 – Left : To track the torque reference (black), three sets of weighting factors are

tested, EFPC1 (green), EFPC2 (red), and EFPC3 (blue). Right : Torque reference (black) and

reproduced torque (red) are shown in the top plot. The normalized control signal is constrained

in [0,1] to guarantee stimulation safety of subjects (bottom).

In particular, when these two torque types are compared, the trapezoidal ramp-up period is

important to reduce the spasticity resulting from sudden stimulation and the ramp-down period

is important to avoid foot-flap or foot-slap [Lyons et al., 2002]. Thus, the trapezoidal profile is

more realistic than the square profile in practice. The tracking performance of trapezoidal torque
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is better than the tracking of square torque. This implies that a realistic torque trajectory ensures

better controller performance. Moreover, even if an unrealistic torque trajectory is designed by

mistake, the controller can generate a more realistic stimulation signal by adjusting the weigh-

ting coefficients. This feature is important since the muscle reactive rate is limited, whereas the

controller has the ability to ensure practical input transition.

Effects of control constraints

The desired torque reference consists of a sequence of two triangular trains, where different

maximum peaks are set. The simulation result is shown in the right plot of Fig. 4.12. The pro-

posed EFPC is used to generate the stimulation PW to drive the predicted torque as close as

possible to the desired torque. The stimulation pulse width represents saturation when the sti-

mulation arrives at the maximum value within the predefined stimulation range. This property

is important so that the FES controller ensures the safety of patients, rather than damaging them

with overstimulation.

Muscle fatigue compensation

The goal of this study is to assess the ability of the EFPC to compensate fatigue effects. A

torque trajectory with the same torque level is assumed as the torque reference, and the virtual

subject is used as above. The EFPC works to generate suitable stimulation PW in order to main-

tain the torque level. Fig. 4.13 and Fig. C.4 depict the results for a desired trapezoidal torque

trajectory. The averages of the RMS errors are approximately 2.18 Nm and 2.31 Nm for the two

virtual subjects. The torque trajectories converge to obtain constant maximum torque, and the

stimulation has to be increased gradually, as the virtual models are identified by experimental

data representing real muscle states. Even though these results were obtained in simulation, the

virtual model was identified with experimental data. Thus, this result is significant for advanced

FES control that allows torque control with automatic muscle fatigue compensation.

Complex stimulation pattern generation

The proposed EFPC is also able to track the torque trajectory with any shape in order to

perform a complex task. In Fig. 4.14, the envelope of torque reference is simulated according

to muscle activity during natural gait [O’Keeffe et al., 2003]. The control framework yields the

stimulation PW that is required to produce the desired trajectory. This is important and conve-

nient to generate the required stimulation pattern for the intended trajectory, which is superior

to the empirically defined stimulation pattern. Fig. 4.15 shows another torque trajectory with

different levels of torque. The torque level changes frequently from 0.7 Nm to 9.05 Nm, and the

EFPC calculates the required stimulation pattern, and reproduces the torque through the virtual

model with small RMS error (0.194 Nm).

4.6 Discussion

Open-loop control of FES delivers a predefined stimulation pattern to target muscle. It does

not provide feedback on the real muscle response. Closed-loop control is preferred in order to

adaptively adjust the stimulation in reaction to unexpected variations in the muscle properties,

thereby improving FES performance in terms of robustness. In the context of gait restoration

by FES, some research has attempted to develop the optimal stimulation pattern to produce

natural gait for open-loop control of FES, which is still useful when the muscle state does not

change much, as we see from the performance of existing commercial FES systems. But if we
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FIGURE 4.13 – The torque is desired to be maintained with constant maximum level. The PW

required to obtain this torque trajectory is calculated by the proposed EFPC and represents the

compensation effect against fatigue.
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FIGURE 4.14 – The top plot traces the torque trajectory (black) and the reproduced torque from

the muscle model. The bottom plot traces the stimulation pattern that was created by EFPC for

the designed gait torque trajectory.
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FIGURE 4.15 – The desired torque has different levels from 0.7Nm to 9.05Nm (top), and the

instantaneous stimulation PW is shown in the bottom.

need to specify the exact torque trajectory for a certain desired motion, the appropriate stimula-

tion pattern is still unknown for complex gait events. Thus, it is also important to find a way to

generate an optimal stimulation pattern, even for open-loop control, while minimizing muscle

fatigue. For this purpose, an optimal stimulation pattern was proposed in [O’Keeffe et al., 2003]

by time-consuming optimization. In another work [Johnson and Fuglevand, 2011], a transfer

function converting eEMG signals into an appropriate pattern of electrical stimulation was pro-

posed to generate the desired torque trajectory.

In this work, an EFPC framework for FES is developed. This framework provides control

adaptability and torque control rather than classical position control. The eEMG signal recorded

from stimulated muscle is used to feedback the actual muscle activity to achieve torque control,

which has never been tried in the FES context, since an appropriate torque sensor has not been

available for human joints, which differ from robotic joints. As muscle mechanical behavior al-

ways lags after muscle electrical behavior, it is feasible to use eEMG to predict torque generation

before delivering a stimulus to the target muscle. In addition, the predictive feedforward pro-

perty of the predictive controller contributes smooth input transition, taking into account the

physiological muscle activation process in advance. This EFPC contributes to augmenting the

FES system in several aspects. First, an appropriate and secure stimulation pattern can easily be

generated to produce the desired torque for open-loop use. This is useful when muscle fatigue

is not evident or tracking accuracy is not strictly required. Second, in this control strategy, the

control signal can be explicitly constrained to guarantee stimulation safety. Last, this control

strategy is capable of muscle fatigue or reflex compensation. Moreover, the solution of the EFPC

mainly consists of a two-step solution with a simple NGPC structure, where only the linear sys-

tem is considered in the cost function, while the nonlinear term is excluded. Consequently, the

calculation of each control update takes less than 15 ms in the Matlab environment, which is
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sufficient for real-time implementation of FES with the commonly used stimulation frequency

of 20 Hz∼50 Hz. The typical drawback of predictive control is that model inaccuracy may af-

fect control performance. This issue is covered in this work by KF with forgetting factor for

time-varying and subject-specific model identification.

The proposed controller is validated using experimental data for drop foot correction on

three healthy individuals, where the dorsiflexion is elicited through surface FES in isometric

condition. The evoked EMG signal and ankle torque are recorded for model identification and

controller validation. The proposed EFPC enables the production of a stimulation PW profile to

obtain the desired torque trajectory. It is also able to track the desired torque well even when

only based on an eEMG signal in the absence of a torque measurement update, as shown in Fig.

4.10 and Fig. 4.11. This implies that it is feasible to use this control strategy without a torque

sensor when the muscle condition does not significantly change. When the muscle state changes

greatly over time, it is possible to use the estimated torque instead of the torque update, and this

can be calculated by the inverse dynamics from motion sensors. The proposed control framework

allows many types of applications, depending on the available sensors. Online identification of a

stimulation-to-eEMG model may not be required in the scenario where the time-varying property

is not significant.

With the proposed method, we can easily obtain the open-loop stimulation profile taking

into account subject-specific characteristics. The results in Fig. 4.14 and Fig. 4.15 demonstrate

that the proposed controller also provides a method to automatic FES pattern generation with a

given complex shape of the joint torque profile. For instance, the desired joint torque trajectory

from natural gait can be directly given to the controller and the appropriate stimulation pattern

can be instantly generated for each subject. In this context, the advantages of our approach

compared with that of [O’Keeffe et al., 2003] and [Johnson and Fuglevand, 2011] are that it

yields good fidelity with explicit and easy implementation, and it can systematically deal with

subject-specific differences and muscle condition differences by online identification.

Although only the constraint of the stimulation signal is considered in this work, in prac-

tice, the torque and eEMG can also be explicitly constrained, if necessary. Generally, the torque

constraints depend on what the task requires, and the eEMG constraints relate to the physiolo-

gical limitations allowing reasonable muscle activation speed.

4.7 Conclusions

The purpose of this work is to improve the performance of FES systems in terms of accurate,

safe and robust control of stimulation. As eEMG has been validated for torque prediction in the

last chapter, an EFPC strategy is developed. To obtain the desired joint torque while taking into

account the time-varying muscle dynamics, the eEMG signal is used to feedback actual muscle

states. The control problem of the EFPC is resolved as a solution of dual NGPC in series. In

practical application, when torque tracking is successful, the controller simply sends a constant

stimulation pattern, as it works in open-loop. Once the torque deviates from the desired trajec-

tory due to the effects of variations in muscle states or unexpected disturbances, the controller

will recalculate the appropriate stimulation pattern to achieve the desired torque as long as

it does not conflict with stimulation constraints. This control framework provides satisfactory

control accuracy and notable robustness for sensing failure, according to the experimental and



4.7 Conclusions 101

simulation investigations. In addition, the controller is able to generate a suitable stimulation

pattern for a given torque trajectory, which is superior to the empirically predetermined one.

This model-based control framework is useful for various applications in isometric FES condi-

tions and also in dynamic motion control, if an appropriate joint model is introduced along with

the proposed muscle modeling.
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General Conclusion

Concluding remarks

This thesis is focused on the prediction and control of FES-induced joint torque based on

eEMG feedback under isometric condition. The goal is to achieve more accurate, safe and robust

torque control in FES rather than conventional position control. The time-varying muscle fatigue

and subject-specific properties complicate the prediction of torque variations with fatigue and

the subsequent control of joint torque. To resolve these problems, this thesis mainly contributed

to two aspects as described below.

First, in order to predict the generated torque in FES, eEMG signals recorded from the acti-

vated muscle are used, as this reflects the actual muscle activity and can be easily incorporated as

feedback information in the FES control system. Due to the highly nonlinear and time-varying

properties of muscle dynamics, PHM is employed to describe muscle activation and myoelec-

trical and mechanical responses. PHM, which consists of a memoryless nonlinear subsystem

followed by a linear dynamic subsystem, contributes to the identifiability and controllability of

muscle excitation and contraction processes. In order to resolve the time-variant torque predic-

tion problem, an adaptive estimation method based on KF with forgetting factor is proposed.

Integration of the eEMG-based predictive torque model and KF-based adaptive identification si-

gnificantly improves the tracking accuracy, the subject-specific and protocol-specific differences,

and the robustness to external disturbances, internal variations (such as muscle fatigue) and

sensing failure.

Next, we proposed a new type of FES control strategy based on eEMG feedback compared

to conventional position control, which mainly modulates stimulation pattern corresponding

to the desired joint position trajectory. Position control is not robust when the position is ge-

nerated both by muscle contractions and contacts with external environment since the sensor

information from different sources is not distinguishable. In this scenario, development of tech-

niques such as feedback torque control is essential with confirmation of the actual time-variant

muscle activity. In this thesis, an EFPC strategy has been proposed based on accurate torque

prediction and fatigue tracking performance. The controller was able to drive the joint torque

close to the predefined torque reference using eEMG feedback. In a closed-loop control scena-

rio, if the torque tracking is successful, the proposed controller maintains the stimulation. When

the torque tracking deteriorates, the controller recalculates the stimulation signals for systema-

tically compensating the muscle property variations. In addition, the proposed controller was

able to automatically generate appropriate stimulation pattern for desired torque trajectory in

any shape.

In a robust controlled FES environment, the compensation process needs to be accom-

plished synchronously with sending the stimulation commands. It requires fast computational

power to track the muscle state changes and their control. The proposed EFPC can be computed

at frequencies up to 70 Hz, which is sufficient for real-time FES application on patients, since a

stimulation frequency of 20 Hz ∼ 50 Hz is commonly used in conventional FES systems.
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Perspectives

In order to achieve a reliable EMG-feedback torque control system with compensation of

muscle state changes, the following issues should be taken into account.

• Time-varying rate of muscle state changes - The proposed torque prediction method

through KF with forgetting factor is developed based on the hypothesis that the system

varying rate is low. Once the muscle system changes too fast, the prediction performance

probably decreases. As a result, the proposed EFPC is likely to be unable to generate a sui-

table stimulation pattern to track torque trajectory. An adaptive forgetting factor is one so-

lution to improve prediction adaptivity to different muscle fatigue rates. However, as the

stimulation pattern is adjustable in a limited range, fast muscle fatigue probably drives

the stimulation parameter to reach the maximum value quickly, which consequently leads

to suboptimal improvement in FES. Therefore, an optimal stimulation protocol, such as

intermittent or selective stimulation, is still important when designing a FES system to

reduce the muscle fatigue rate.

• Fatigue level identification - Apart from an optimal stimulation protocol to delay fatigue

or reduce the fatigue rate, an effective method for indicating the fatigue level could

contribute to more adaptive and accurate FES control. For instance, if we could extract

suitable information from eEMG (in frequency domain) to indicate the fatigue level, this

process could be used along with the EFPC to adaptively adjust the forgetting factor.

The results of the implanted continuous FES are promising with regard to achieving this

purpose. For other stimulation conditions, more advanced signal processing techniques

or sensing modalities are required.

To execute torque tracking with compensation of muscle changes in real time, a schematic

overview of the FES system is depicted in Fig. 4.16. The acquisition of eEMG and torque is

completed by an EMG block (Biopac EMG 100C) and dynamometer (Biodex 3), respectively. An

acquisition card (NI DAQ 6036E, US) is chosen to accomplish A/D conversion. The stimulator

(ProStim, MXM, France) is computer-controlled and important for realizing real-time processing

and control of FES.

In a short-term perspective, this work will be validated in two aspects.

• Identifying a stimulation pattern for open-loop FES - This function allows us to conve-

niently generate a stimulation pattern for the intended trajectory in any shape. In this

case, the PHM is identified by a priori experimental data collected from a given subject.

EFPC is performed to generate the stimulation pattern for a desired torque trajectory as

shown in Fig. 4.14 and Fig. 4.15. When we assume that the muscle fatigue is not si-

gnificant, the FES system works in open-loop. The generated stimulation pattern is then

delivered to the same subject with the same experimental set-up. The differences between

the desired and real torque trajectories are used to evaluate the efficacy and accuracy of

this method.

• Compensation in closed-loop FES - The stimulation pattern obtained above can also be

used for torque control in a closed-loop FES system ; that is, when the torque tracks the

trajectory well, the stimulation pattern is maintained at a predefined level. When the real
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FIGURE 4.16 – FES system for real-time fatigue compensation and torque tracking. Torque and

eEMG signals are recorded by an EMG block first. After A/D conversion with an acquisition card,

the digital signals are processed to produce control signals with the method proposed in this

thesis. The stimulator receives the commands for the stimulation parameters from the computer

and then sends them to the stimulation electrodes to contract muscle — another control loop is

followed.

torque deviates from the desired trajectory, closed-loop EFPC allows adaptive modulation

of the stimulation pattern to compensate the time-variant muscle changes.

In a long-term perspective, an extensive work for dynamic motion control will probably

be accomplished by estimating torque from other sensors, such as gyroscopes, accelerometers,

electrogoniometers or multi-sensor integration, along with a joint dynamics model. In this case,

torque control for dynamic motion would be achieved by introducing the joint dynamics model

[Farahat and Herr, 2005] and without a torque sensor. In this scenario, as we do not need a

dynamometer, this would provide mobility to patients during FES torque control that could be

used in their daily lives.
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APPENDIX A

FES Experiment Description

A.1 Fundamental Concepts in FES

Before explaining the experiment, we would like to introduce some fundamental concepts

commonly used in FES, which may confuse some engineers who do not work on FES, but on

other fields, such as mechanical, control or information. Different stimulator genearte different

stimulation impulse waveform to meet specific requirements as shown in Fig. A.1. In each sti-

mulation pulse, three stimulation parameters — pulse amplitude (current I or voltage U), PW,

and stimulation frequency FS = 1/T — can be modulated as shown in Fig. A.2. Single stimu-

lation pulse can only induce muscle twitch, while successive stimulation pulses are generally

delivered to induce fused muscle force. The successive stimulation pulses compose a stimulation

train (Fig. A.3). To obtain desired trajectory, suitable stimulation envelope should be designed

with appropriate Choosing different stimulation parameters, different can be generated, which

ultimately result in different force profiles. Two examples of stimulation envelopes are shown

in Fig. A.3. Several stimulation trains designed according to the requirement of intended task,

make up of a stimulation sequence. The rest time between neighboring trains can be zero or

nonzero, respectively being called continuous or intermittent stimulation (Fig. A.3).

FIGURE A.1 – Common stimulus output waveform : (a) Monophasic (b) Symmetric biphasic

(such as Cefar) (c) Asymmetric biphasic (such as ProStim) (d) Symmetric biphasic with inter-

pulse interval.

A.2 Experiment Description of Implanted FES

A.2.1 Experimental design

The experiment was conducted with the implanted patient, a completely paraplegic subject

(ASIA A, T8 level), 15 years post injury and 10 years post implantation. A fully implantable sys-

tem was applied on this subjects as described in [Guiraud et al., 2006]. This study was approved

by the ethical committee of Nîmes, France, 2008-2010 and the subject signed informed consent

form. The implanted electrodes and experimental set-up are depicted in Fig. A.4. The subject

was seated on a chair with the right foot being strapped on the pedal. The ankle oriented at 90o,

while the joint center was aligned with the axis of a calibrated dynamometer (Biodex3). The
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FIGURE A.2 – The stimulation parameters which can be modulated : (1) pulse width PW (µs) ;

(2) pulse amplitude I (mA) or U (mV) ; (3) stimulation period T (ms).

shank was adjusted to be horizontal to the ground with the knee joint at 40o. During the expe-

riments reported here, only TA muscle was stimulated, by activating merely the corresponding

peroneal branch of sciatic nerve to provide ankle dorsiflexion.

TABLE A.1 – Stimulation parameters

Thresholds Maximum

Amplitude (I) 400µA 3.15mA

Pulse width (PW) 300µs 816µs

Stimulation frequency (FS) 25Hz 31.25Hz

A.2.2 Data collection

The EMG signals were collected using the same acquisition system (Biopac MP100) as in the

first experiment. Two channels of EMG signals were recorded from TA and quadriceps muscle.

On the TA muscle, the active electrodes were placed on the muscle belly and aligned along the

muscle fiber direction, with 20 mm interelectrode spacing. Aluminum foil was used to cover

the electrodes in order to reduce the effect of radio transmitting. The EMG recording from the

quadriceps was just used for detecting the stimulation onset. The reference electrode was placed

on the patella. The EMG signal was recorded, amplified (gain 1000) and sampled at 4 KHz by

an acquisition system (Biopac MP100) synchronizing with torque measurement as described

above. The isometric ankle dorsiflexion torque was recorded with the dynamometer (Biodex3),

interfaced with the acquisition system.

A.2.3 Experimental protocol

The TA muscle was stimulated using stimulation amplitude modulation at constant stimu-

lation frequency and constant pulse width in each session. The stimulation waveform is current-

controlled, square pulse followed by a passive exponential recovery phase. The stimulation para-
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FIGURE A.3 – Top : One simulation train is made up of successive stimulation pulses. One stimu-

lation sequence is made up of several stimulation trains. Bottom : Various stimulation envelope

is designed depending on desired movement. The phases that can be designed include : (1) ramp

up (or rising) ; (2) plateau (or plateau) ; (3) ramp down (or falling) ; (4) rest. Continuous stimu-

lation pattern has no rest between two adjacent trains. Otherwise, it is intermittent stimulation

pattern.

meters are shown in TABLE A.1. In order to induce muscle fatigue, stimulation PW was chosen at

600 µs, which generates maximum torque while amplitude at Imax. The stimulation frequency is

selected a little lower than the available maximum frequency when all the channels are used at

the same time according to [Guiraud et al., 2006]. The experiment consists of two test sessions,

recruitment and fatigue, with no interval between them.

1. Recruitment test : The stimulation sequence consists of eight stimulation trains with duty

cycle around 43% (0.5-s ramp-up, 1-s plateau and 2-s rest). The stimulation amplitude at

stimulation plateau was gradually increased from 20 ∼ 100% of Imax. The session was

repeated three times, with stimulation frequency at 20Hz, 25Hz and 30Hz respectively.

FIGURE A.4 – Implant position and experimental set-up illustration. The neural stimulation elec-

trodes are located at the bottom right.
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2. Fatigue test : The fatigue inducing pattern is a 50s sequence consisting of a 5s periodic

ramp-and-hold signal (1s ramp-up and 4s plateau). No rest was set between two neigh-

boring trains in order to induce a high level of fatigue to exhibit visible fatigue phenome-

non. The practical stimulation scheme activates the TA with a duty cycle around 30% and

with lower intensities. This test session was conducted after recruitment test and repeated

twice.

A.2.4 Data Processing

In the case of implanted neural stimulation, there is no stimulation artifact effect because

the locations of the target muscle and neural stimulation site are far enough apart. Besides, the

stimulus is at low intensity and localized due to the use of bipolar electrodes. Instead, RF signal

could contaminate the eEMG signals. As the quadriceps muscle was not stimulated, its eEMG si-

gnal contained only RF signal. The main phase of the RF signal occurs within the first 3 ms after

the onset of stimulation in the captured EMG signal, and there is a time delay of about 20 ms

from the onset of stimulation to the first Mwave spike. Thus, the eEMG signal on quadriceps was

used to detect the stimulation onset at the beginning of each RF signal occurrence. The recor-

ded eEMG and torque signals were processed as section. 2.3.4, with removal of the radio signals

instead of the stimulation artifacts. An example of processed result is shown in Fig.A.5. The RF

is efficiently removed and Mwave is retrieved simultaneously for the subsequent analysis. The

MAV was calculated every three epoches, and Tarf = 3ms. As seen from three recruitment tests

which performed successively at the beginning, the induced torque increases with increasing sti-

mulation amplitude and increasing stimulation frequency. However, the MAV of eEMG changes

slightly when frequency arrived at 30Hz (Fig. A.6), probably due to the occurrence of slight

fatigue.
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APPENDIX B

State-Space and Kalman Filter

B.1 State-Space of Polynomial Hammerstein Model

In order to derive the state-space form of a PHM, we consider a simple system and then

obtain the generic form from the simple example. Considering a discrete PHM with model order

(2,2,2), we treat the linear ARX model first and then the nonlinear polynomial part.

State-Space of ARX model

According to (2.2),

y(k) =

2∑

i=1

aiy(k − i) +

2∑

i=1

bih(k − i)

= a1y(k − 1) + a2y(k − 2) + b1h(k − 1) + b2h(k − 2)

(B.1)

Its state variables can be expressed as :

x2(k + 1) = a2y(k) + b2h(k) (B.2)

x1(k + 1) = x2(k) + a1y(k) + b1h(k) (B.3)

From (B.2),

x2(k) = a2y(k − 1) + b2h(k − 1) (B.4)

Substitute (B.4) into (B.3),

x1(k + 1) = a1y(k) + a2y(k − 1) + b1h(k) + b2h(k − 1)

and then

x1(k) = a1y(k − 1) + a2y(k − 2) + b1h(k − 1) + b2h(k − 2)

Comparing (B.1) and (B.5), we get

y(k) = x1(k) (B.5)

Substitute (B.5) into (B.2) and (B.3),

x2(k + 1) = a2x1(k) + b2h(k)

x1(k + 1) = a1x1(k) + x2(k) + b1h(k)

Therefore, the state-space model of a ARX (2,2) model can be written as :

x(k) =Ax(k − 1) + Bh(k − 1) (B.6)

y(k) =Cx(k) (B.7)

113
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where

x(k) =

[

x1(k)

x2(k)

]

A =

[

a1 1

a2 0

]

B =

[

b1

b2

]

C =
[

1 0
]

State-Space of PHM Model

When we think about the state-space model of an PHM (l,m,n) model, we can use the

polynomial function (2.1) to substitute the h(k) in (B.6). Still assuming a PHM (2,2,2) model,

its state-space has a form as below,

y(k) =

2∑

i=1

aiy(k − i) +

2∑

i=1

2∑

j=1

biγj(u(t − i))j

= a1y(k − 1) + a2y(k − 2) + b1γ1u(k − 1) + b1γ2(u(k − 1))2

+ b2γ1u(k − 1) + b2γ2(u(k − 1))2

= a1y(k − 1) + a2y(k − 2) + µ11u(k − 1) + µ12(u(k − 1))2

+ µ21u(k − 1) + µ22(u(k − 1))2

(B.8)

where, we write µij = biγj to make it simple, when we do not care about the value of bi and γj .

Otherwise, we do not use this replacement. If we consider (u(k))j as a model input, the state

variables of this PHM (2,2,2) can be derived as above,

x1(k) =a1x1(k − 1) + x2(k − 1) + µ11u(k − 1) + µ12(u(k − 1))2

x2(k) =a2x1(k − 1) + µ21u(k − 1) + µ22(u(k − 1))2

y(k) =x1(k)

As a result, the state-space corresponding to (B.8) is

x(k) =Ax(k − 1) + Bu(k − 1) (B.9)

y(k) =Cx(k)

where

u(k − 1) =

[

u(k − 1)

u(k − 1)2

]

x(k) =

[

x1(k)

x2(k)

]

A =

[

a1 1

a2 0

]

B =

[

µ11 µ12

µ21 µ22

]

C =
[

1 0
]

In addition, when we need individual linear and nonlinear coefficients bi and γj in (B.8),

the (B.9) in state space model is changed to

x(k) =Ax(k − 1) + BΨu(k − 1) (B.10)

y(k) =Cx(k)
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where

B =

[

b1

b2

]

Ψ =
[

γ1 γ2

]

When we identify the model state and parameters, the measurement is noisy, we do not

need add a Gaussian white noise element in the model. But when we use the model for simula-

tion, a noise model should be added to simulate the process and measurement noise in practice.

For example, the state-space model in (B.9) is rewritten as,

x(k) =Ax(k − 1) + Bu(k − 1) + w(k) (B.11)

y(k) =Cx(k) + v(k) (B.12)

where,

w(k) =

[

w1(k)

w2(k)

]

(B.13)

and P (w) ∼ N(0,Q), P (v) ∼ N(0, R).

B.2 Results of Model Identification and Torque Prediction
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FIGURE B.1 – Estimated torque and model parameters in subject S4.
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APPENDIX C

EMG Feedback Predictive Control

C.1 Generalized Predictive Control

In order to resolve a GPC control problem, a simpler formulation of GPC is used instead

of solving recursive Diophantine equations [Albertos and Ortega, 1989]. Considering a discrete-

time system in state-space form as (B.6) :

x(k + 1) = Ax(k) + Bh(k)

y(k) = Cx(k) (C.1)

If the control increment ∆hk is considered as model input, and substitute h(k) = h(k−1)+∆h(k)

to the above system,

[

x(k + 1)

h(k)

]

=

[

A B

0 I

][

x(k)

h(k − 1)

]

+

[

B

I

]

∆h(k)

y(k) =
[

C 0
]
[

x(k)

h(k − 1)

]

(C.2)

By introducing wk =
[

x(k) h(k − 1)
]T

, the system can be rewritten as

w(k + 1) = Mw(k) + N∆h(k)

y(k) = Qw(k) (C.3)

where

M =

[

A B

0 I

]

, N =

[

B

I

]

, Q =
[

C 0
]

The output prediction can be obtained recursively from (C.3) :

ŷ(k + j |k) = QMjŵ(k) +

j−1
∑

i=0

QMj−1−iN∆h(k + i)

In the form of vector, the optimal j-step ahead output predictions along the prediction

horizon are given by :

y = Fŵ(k) + H∆h (C.4)

where

y =









ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k + Np|k)









∆h =









∆h(k|k)

∆h(k + 1|k)
...

∆h(k + Nu − 1|k)









F =









QM

QM2

...

QMNp








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and H is a Np × Nu block lower triangular matrix with its non-null elements defined by

Hij = QMi−jN.

As the control objective is to obtain a vector ∆h of future control sequence, which will

minimize the cost function (4.7), the cost function can be rewritten as following by substituting

(C.4) to (4.7) :

J = (H∆h + Fŵ(k) − v)T R̄(H∆h + Fŵ(k) − v) + ∆hT Q̄∆h (C.5)

in which R̄ and Q̄ are diagonal weighting matrices whose diagonal elements are
[

ξ1, · · · , ξNp

]

and
[

δ1, · · · , δNu

]

, respectively. Assuming there are no constraints on the control signals, the

minimum of J , can be computed by making differential of J with respect to ∆hT equal to zero,

which leads to :

∆h = K(v − Fŵ(k)) (C.6)

where K is known as predictive controller gain matrix. It is determined by the dynamic

matrix, and the weight matrices R̄ and Q̄.

K = (HT R̄H + Q̄)−1HT R̄ (C.7)

As a receding horizon strategy is used, only the first element of the control sequence,

∆h(k|k) is sent to the plant during time interval [k,k+1], and the procedure is repeated at

the next sampling time. In this case,

∆h(k|k) = KK(v − Fŵ(k)) (C.8)

where KK is the first row of K, such that the future control input applied to the plant is

h(k) = h(k − 1) + KK(v − Fŵ(k)) (C.9)

C.2 Results of Control Performance
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Abstract

Functional electrical stimulation (FES) is a potential technique to provide active improvement to spinal cord

injured (SCI) patients in terms of mobility, stability and side-effect prevention. FES-elicited muscle force is required

to be appropriate and persistent to perform intended movement or maintain a posture balance. However, muscle

state changes such as muscle fatigue degrade the performance of FES. In addition, most of complete SCI patients

don’t have sensory feedback to detect the fatigue and in-vivo joint torque sensor is not available yet. Conventional

FES control systems are either in open-loop or not robust to muscle state changes. Therefore, this thesis aims at a

development of joint torque prediction and feedback control method in order to enhance the joint torque control of

FES in terms of accuracy, robustness, and safety to the patients.

In order to predict FES-induced joint torque, evoked-Electromyography (eEMG) has been applied to corre-

late the muscle electrical activity and mechanical activity. Although muscle fatigue represents time-variant, subject-

specific and protocol-specific characteristics, the proposed Kalman filter-based adaptive identification is able to pre-

dict the torque generation systematically. The robustness of the torque prediction has been investigated in a fatigue

tracking task through experiments in SCI subjects. The results demonstrate good tracking performance against muscle

state variations and external disturbances.

Based on accurate predictive performance of the proposed method, a new control strategy, EMG-Feedback

Predictive Control (EFPC), is proposed to adaptively adjust stimulation pattern to obtain the desired joint torque

trajectory. This control strategy is not only able to explicitly avoid over-stimulation to the patients and conveniently

generate appropriate stimulation pattern for the desired torque trajectory, but also able to track the desired torque

trajectory compensating time-variant muscle state changes.

Résumé

La stimulation éléctrique fonctionnelle (SEF) peut améliorer de manière significative la mobilité des blessés

médullaires ainsi que la stabilité et la prévention des effets secondaires. Dans le domaine de la SEF pour les membres

inférieurs, le couple articulaire doit être fournie de façon appropriée pour effectuer le mouvement prévu afin de

maintenir l’équilibre postural. Toutefois, les changements d’état du muscle telle que la fatigue musculaire est une

cause majeure qui dégrade ses performances. En outre, la plupart des patients, dont la blessure médulaire est com-

plète, n’ont pas le retour sensorielle qui permet de détecter la fatigue. De plus, et les capteurs de couples in-vivo ne

sont pas disponibles à l’heure actuelle. Les systèmes conventionnels de commande SEF sont soit en boucle ouverte

ou en boucle fermée mais cependant pas assez robustes aux changements d’état du muscle. L’objectif de cette thèse

est le développement de la prédiction du couple articulaire et de la commande en boucle fermée afin d’améliorer les

performances de la commande SEF en termes de précision, de robustesse et de sécurité pour les patients.

Afin de prédire le couple articliare induit de la SEF, l’électromyographie (EMG) induit est utilisée pour corréler

l’activité musculaire éléctrique et mécanique. Bien que la fatigue musculaire représente une variation dans le temps,

une dépendance aux sujets et aux protocoles, la méthode proposée d’identification adaptative, basée sur le filtre de

Kalman, est capable de prédire le couple articlaire variant dans le temps de manière systématique. La robustesse de

la prédiction du couple articulaire a été evaluée lors d’une tâche de suivi de la fatigue en expérimentation chez des

sujets blessés médullaires. Les résultats montrent une bonne performance de suivi des variations d’état des muscles

en présence de fatigue et face à d’autres perturbations.

Basée sur les performances de precision de la méthode prédictive proposée, une nouvelle stratégie de com-

mande utilisant le retour EMG, "EMG-Feedback Predictive Control (EFPC)", est proposée afin de contrôler de ma-

nière adaptative les séquences de stimulation en compensant la variation dans le temps de l’état du muscle. De plus,

cette stratégie de commande permet explicitement d’éviter d’appliquer une stimulation excessive aux patients, et de

générer les séquences de stimulation appropriées pour obtenir la trajectoire désirée des couples articulaires.


