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General overview

This thesis is divided in two parts, corresponding to the two main subjects on which I have
worked during my Ph.D. The two parts do not belong to a common project, even if both of
them fit in the field of statistical mechanics.
Part I is an extension of my Master thesis and my work has been supervised by L. Casetti; it
is devoted to equilibrium statistical mechanics of long and short range interacting systems
and in particular, to the application of techniques coming from energy landscape theory to
some specific models.
Part IT has been mainly developed in Lyon under the supervision of T. Dauxois. It is devoted
to the study of forced long-range interacting systems and mainly deals with problems of
non-equilibrium statistical physics.

We refer the reader to the introductory Sections of Part  and Part II for a detailed overview
of both the research fields and of my contribution.







Part 1

Energy landscape approach to

equilibrium phase transitions







Overview

This part of the Thesis is devoted to the study of equilibrium phase transitions in classical
Hamiltonian systems from an energy landscape point of view. In principle, both the Newto-
nian dynamics and the thermodynamical behavior are determined by the potential energy
function V so that one may ask which are the characteristic features of V that are crucial for
the dynamics and/or for thermodynamics of the system.

In the literature, one refers to energy landscape methods [1], or more precisely to poten-
tial energy landscape methods, when the properties of the potential energy V are studied in
connection with the thermodynamical or dynamical behavior. From a mathematical point
of view the stationary points, that is those points g of the phase space I' such that

VV(g)=0, (1)

yield important informations on V. For example, if the temperature of a system is very low,
and V has only one minimum, it is well known that the thermodynamics can be obtained
replacing V by its harmonic expansion around it. On the other hand, in the case in which
the system is frustrated, the Stillinger and Weber thermodynamical formalism takes care of
the contribution of every minimum of the landscape [2,3]. Examples of applications include
clusters [1], disordered systems and glasses [4, 5], biomolecules, protein folding [6]. In most
of the studies only minimum or first order saddles are taken into account. An example of this
second kind is the instanton theory, in which the transition probability and the transition
path of a thermally activated system between two minimum, through a first order saddle,
can be computed via field-theoretical methods.

In some later works, stationary points with an arbitrary number of negative directions
have been considered, for instance to characterize glassy behavior [7, 8]. Most of the works

in energy landscapes, however, deal only with minimum and first order saddles.

The potential relevance of energy landscape techniques to the study of equilibrium phase
transitions was suggested after it was realized that stationary points of the Hamiltonian are
connected with topology changes of the phase space accessible to the system. It was conjec-
tured that some of these topology changes, and therefore some of the stationary points, are
at the origin of thermodynamic phase transitions [9-13]; quite some research activity fol-
lowed [14-34], some focused on specific models, others trying to shed light on the general
mechanisms ( see [35, 36] for reviews).

The main difference with respect to classical studies in energy landscapes is that to apply
the techniques and the ideas developed in this field, all the stationary points of the system
are needed. However, finding all the stationary points of a given Hamiltonian is an essen-
tially impossible task both analytically and numerically, except in some very simple (usu-

ally mean-field or one-dimensional) examples. For this reason, the ideas and the results
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emerged have not been tested if not on very simple models. One of the scope of the work
presented here is to study models whose energy landscape is much more complicated than
what was previously done developing techniques and approximations which do not need
the knowledge of all stationary points to be applied. The drawback is that, often, the ap-
proximations used are not under control, so that it is not simple to understand which is the
degree of approximations in the results. This notwithstanding, we will see that some inter-
esting predictions will be obtained, both in negative (on the applicability of the so-called

KSS criterion) and in positive (especially about O(n) models).

This part of the Thesis is structured as follows:

Chapter 1 In the first Chapter, we review the general results connecting the energy land-
scape properties with equilibrium phase transitions. In particular, we review a re-
cently proved theorem by Kastner et al. [37, 38], the KSS theorem, which gives some
necessary conditions such that the stationary points of V can induce a phase tran-
sition in the thermodynamic limit. We will also review some of the previous results,
such as the Franzosi and Pettini theorem which proves a weak version of the topolog-

ical conjecture and a recent debate which arose around its validity.

Chapter 2 presents the content of [28] and [39] and, in part, of my Master thesis [40]. The
KSS theorem is not of simple applicability to non mean-field systems. In this second
Chapter we reformulate it as a criterion, the KSS criterion, to single out phase tran-
sitions. The advantage of the the KSS criterion with respect to the original theorem
stays in the fact that it is not necessary to know all the critical points of V to apply it.
This gave us the possibility to study a non-exactly solvable model of self-gravitating
particles, the SGR model. We will show that the KSS criterion singles out the phase
transition between a homogeneous and a clustered phase. We shall also show that the
criterion indicates the possible presence of another phase transition, not previously
known, and we conjecture on its nature thanks to an effective model constructed for
this purpose.

Chapter 3 presents the content of [41] and [42]. The reformulation of the KSS theorem
in the form of the KSS criterion has given the possibility of applying this technique
to models in which not all stationary points are known. Thanks to this, Nerattini
et al. [43, 44] have applied the criterion to the two and three dimensional nearest-
neighbors ferromagnetic XY models, in which a special class of stationary points is
known. We review their analysis which clearly shows that the KSS criterion is not use-
ful in these cases. Indeed, the KSS does not single out any peculiar energy in which
the phase transition should be located.

To understand the mechanism by which the phase transition emerges in these mod-




els, we derive an approximate expression of the density of states. The approximation
we do is rather crude, but led us to the following conjecture: if a O(n) model with
ferromagnetic interactions on a hypercubic lattice has a phase transition, its critical
energy density is equal to that of the n =1 case, i.e., a system of Ising spins with the
same interactions. We will see that this conjecture gives extremely good estimates for
the critical energy densities of short-range ferromagnetic O(n) models.

Finally we show that our derivation, which is rather crude for general short-range
O(n) models, can be followed rigorously in the simple cases of mean-field and 1-
dimensional XY models. The difficulties in generalizing such results to the case of
short-range O(7n) models are also discussed.

Conclusions and perspectives We discuss the the general results we obtained and the fu-

ture perspectives opened by our work.







Introduction

We describe here some results on the connections between energy landscape properties and

equilibrium phase transitions in Hamiltonian systems of the form

N _2
Hpa)=Y E+via), a1
i=1

where V is a Morse function. The theory is naturally developed in the microcanonical for-
malism, at variance with the usual formulation of the theory of phase transitions. In this
Chapter, we mainly concentrate on general results and address the reader to [35, 36] for re-
cent reviews on the subject both for the details and for a resume of the works dealing with
specific model systems.

The Chapter is organized as follows. In Section 1.1 we recall some basic concepts about
finite dimensional Morse theory. In Section 1.2 we briefly discuss the topological conjecture,
according to which phase transitions should be connected to sufficiently strong topology
changes of the accessible phase space; a theorem by Franzosi and Pettini proves a weak
version of it. In Section 1.3 we review the work by Kastner et al. showing a correspondence
between stationary points and singularities in the microcanonical entropy of finite systems.
The entropy is however N /2 times differentiable so that this singularities are very weak. It
is natural to ask if there is a mechanism which permits this singularities to survive in the
N — oo limit. This is the content of the KSS theorem, which we review in Section 1.4. Finally,
in Section 1.5 we present the discussion recently emerged about the actual validity of the

Franzosi and Pettini theorem.

1.1 Preliminaries: Morse theory

We briefly review here the basic concepts of finite dimensional Morse theory, to set the no-
tations and the definitions useful for the following. We address the reader to [45] for a com-

plete exposition and the proofs of the quoted results.




CHAPTER 1. INTRODUCTION

Let us consider a smooth function V: M € RN — R, where M is a manifold. The points
g. € M such that dV(q.) = 0 are called critical points or stationary points or saddles of V. We
denote by Hy or simply by H the Hessian of V.
V is called a Morse function if

det[H ()] #0 (1.2)

for every stationary point of V. A critical point g, for which Eq. (1.2) holds is called non-
degenerate. Moreover, the values v, € R which are image under V of critical points are
called critical values or stationary values. Given a critical point, the number of negative
eigenvalues of the Hessian matrix evaluated at that critical point is called index.

It can be shown that, for Morse functions, all critical points are isolated. This can be
deduced by the Morse lemma:

Theorem 1.1.1 (Morse Lemma). Let us consider a non-degenerate critical point q. of V with
index k. It exists a local coordinate system (x, ..., Xy) in a neighborhood of q. such that

V=V(qg)—x; — .= x{ X7, +o Xy (1.3)

is exact in the above defined neighborhood.

In the following of this Chapter, we will mainly consider Morse potentials. However, this
is not so restrictive. Indeed, it can be shown that the Morse functions are an open and dense
subset of all C* functions [46]. This means that, even if the potential is not a Morse function,
one can add an arbitrarily small perturbation such that the perturbed potential is a Morse
function. For example, from the theorem 1.1.1 we have that any potential with a continuous
symmetry is not a Morse function. In this case, perturbing the potential breaks explicitly
the symmetry. A trick sometimes more useful is to consider the same system fixing a finite
number of coordinates. This method will be used in the following of the Thesis.

The following theorem explains the connection between Morse functions and the topol-
ogy of the set

M,,:{qu|%5v}. (1.4)

Indeed, it can be proven the following:

Theorem 1.1.2. Let us consider a smooth Morse function V : M € RN — R. Suppose that
[a,b] € R contains a single critical value v, which corresponds to a single critical point q.
with index k; if M, and M, are compact, then M, is homeomorphic to the manifold obtained
attaching' a k -handle to M ,, where a k -handle is the direct product of a k -disc witha (N—k)-
disc.

1For a precise definition of this operation, we address the reader to [45].
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1.2. TOPOLOGICAL CONJECTURE

Thanks to this theorem, one can study the topology of the accessible phase space M,
“only” studying the critical points of V. Observe, however, that for many-body systems M,
is a high dimensional object and its topology very complicated. A topological invariant of

M, is the Euler characteristic, defined as

N
2(M,)=> (-1 (1.5)
i=0
where y; is the i-th Morse number, defined as the number of critical points of V with index i
and critical values smaller than v; to evaluate the Euler characteristic it is necessary to know
all the critical points of V and their index.

1.2 Topological conjecture

The study of a series of simple models (see [35, 36] for reviews on this subject), has shown
that strong changes in the topology? of

MU:{qu|Msu} (1.6)
N

at a given value of the potential energy v, are often associated to a singular behavior of
thermodynamic quantities at the same value of the potential energy. This led the authors
of [9] to propose that phase transitions are due to sufficiently strong topology changes in
M,, and this proposal has been indicated as the “topological conjecture” in [11]. At this
level, what exactly means “sufficiently strong” is a completely open question. Quite some
research activity followed [14-34], some focused on specific models, others trying to shed
light on the general mechanisms (see [35, 36] for reviews).

In this Chapter we mainly review the general results that have been obtained though this
approach. We do not review the works in which specific models have been studied, but we
highlight that most of these works concentrate on exactly-solvable mean-field models. The
reason for this is that it is necessary to know all critical points to evaluate topological invari-
ants such as the Euler characteristic (1.5). On the other hand, finding all the critical points
of a generic many-body potential is a very hard, or impossible, task both analytically and

numerically.

Franzosi and Pettini has announced in [47-49] the proof of a theorem? proving a weaker
version of the the above conjecture.

2In these early studies, the topological invariant which was usually used to characterize topology changes

was the Euler characteristic, or quantities connected to it.
3The validity of this theorem has been recently questioned. We will discuss in Section 1.5 such an issue.
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CHAPTER 1. INTRODUCTION

Theorem 1.2.1 (Franzosi-Pettini theorem). Let us consider a smooth, confining, short-range
and limited from below potential V in the form

N N
(@)=Y _¢@)+ Y ciplai—a;D).

i=1 i,j=1

If there exists Ny and an interval [vy, v,] such that VN > N, the hypersurfaces (M, )i, v, A0
not change topology, then in the thermodynamic limit the free energy is at least C*[B(v1), B(v2)],
where 3(v) is the value of the inverse temperature corresponding to the potential energy v.

The authors state that the extension of such a theorem to take into account higher deriva-
tives of the free energy is, even if laborious, affordable with similar techniques. On the other
hand, it is known that none of the hypotheses of the theorem is merely technical; counterex-
amples are indeed known for long-range, non-confining or singular potentials [35].

Thanks to Morse theory, this theorem can be clearly stated using stationary points. In-
deed, if V' is a Morse function, topological changes of the manifolds (M, ),¢[y,,»,) cOrrespond
to the existence of stationary points of the potential V whose energy density value are be-
long to [y, v,].

At qualitative level, the connection between stationary points of the Hamiltonian and
equilibrium statistical properties can be inferred in the microcanonical formalism. This
can be understood by observing that, for a system with NV degrees of freedom, the entropy
density is defined as *

s(e)= %log w(e), (1.7)

where ¢ = E/N is the energy density and w is the density of states. For a system described

by continuous variables, w can be written as

dx
CL)(E)—J;é(%—NE)dF—J;ﬂZE%, (1.8)

where I" denotes the phase space and dI its volume measure, >, is the hypersurface of con-
stant energy E = N¢, and dX stands for the N — 1-dimensional Hausdorff measure on X,.
The rightmost integral stems from a co-area formula [50]. At a stationary point g, the gradi-
ent V.7¢(q.) vanishes and the integrand diverges; at the same time, the measure ¥, shrinks,
such that w in general remains finite for finite systems. In next Section, we will see that,
although the integral on the right hand side of Eq. (1.8) remains finite in the vicinity of a
stationary point, the density of states is non-analytic in correspondence of all the stationary
values €, = H(q.)/N of the energy density for any finite N.

4Throughout the Thesis we set Boltzmann’s constant k p to unity.
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1.3. MICROCANONICAL SINGULARITIES IN FINITE SYSTEMS

1.3 Microcanonical singularities in finite systems

Atvariance with the canonical and grand-canonical ensemble, in which the the free energies
of finite systems are smooth functions [51], the microcanonical entropy shows singularities.
From a conceptual point of view, this should be known since long time because even one-
dimensional systems, such as the pendulum, present this feature. Surprisingly, for many-
body systems, such a property of the entropy has been realized only recently [52-55].

Here, we review the results due to Kastner, Schreiber and Schnetz [37, 56] which com-
pletely characterize, for finite systems, the singularities of the configurational entropy and
their strength. They found a one-to-one correspondence between the stationary values of
the potential energy and the singularities of the configurational entropy. The kind of singu-
lar behavior is also characterized; in particular, the entropy presents a discontinuity only in
a derivative whose order grows linearly with N.

We then discuss the results of [57], in which the role of the kinetic energy is analyzed: the
kinetic energy increases the regularity of the entropy, which remains anyway a singular func-

tion.

1.3.1 Singularities in the configurational entropy

Let us consider a Hamiltonian system of the form (1.1), where V is a smooth and confining
potential. We review here the work presented in [37, 56], where the authors have analyzed
the singularities of the configurational density of states® , defined as

cofv(v):f o(V(g)—Nv)dg (1.10)
I'nv
or, equivalently of the configurational entropy

1
sfv(v)zﬁlong(v). (1.11)

First of all, the singularities of w§,(v) are strictly connected to the critical values of V. Indeed,
it is possible to prove [48] that if there are not critical values of V/N in [v;, 1;], then w§, and
sy are smooth in the same interval.

Let us consider a given value of the potential energy density v and the set

400 = v} ; (1.12)

Vi(w)= {61 €ly] N

SVery similar results are valid considering the integrated density of states Q% (v) = frv O(V(g)— Nv)dg and
the corresponding entropy o, (v) = ﬁ logQn(v), which is connected to the previous definitions via

dag,(v)
dv

wy(v)= . (1.9)
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CHAPTER 1. INTRODUCTION

if V-1(v) does not contain critical points of V, then w4, is smooth in v. Otherwise, if V-1(v)
contains critical points, the Morse property guarantees that they are isolated; for every crit-
ical point g/, we can thus choose a neighborhood U;: which does not contain any other
critical point but g!. We can thus suppose that only one critical point g. is present: the gen-
eralization to the case of many only corresponds to add up the various contributions. The
density of states can be written as

cofv(v):J 5(V(q)—Nv)dq+J o0(V(g)—Nv)dg; (1.13)
Uflc rN—Uqc
where the second term gives a smooth contribution.

Without any loss of generality, we can choose V(q.) =0. Thanks to the Morse lemma, the
neighborhood U, of the critical point and the coordinate system (x;,..., xx) can be chosen
such that

k N
V(q(x))z—fo—l— Z x7 (1.14)
i=1 i=k+1
is valid in the whole neighborhood U, ; in the above expression, k is the index of the critical
point g.. Denoting by J(x) the determinant of the Jacobian of the coordinate transforma-

tion, let us consider the following expansion around x = 0:

J@= D ax, (1.15)

where a multi-index notation x! = x!'...x." has been used. The 0-th order is linked to the

second derivatives of the potential at the critical point, that is:

D=

J(0)=ao= (1.16)

det [Hv(O)]

2

Using these facts and choosing as U, a small enough ball around ¢., the authors of [37]
evaluated the non-analytic contribution to the configurational density of states due to the
first term of (1.13) at all the orders in the expansion of the determinant of the Jacobian. To
our scope, the 0-th order® will be sufficient; in this case the theorem has the form:

Theorem 1.3.1 (Singularities of the configurational entropy for finite systems). Let us con-

sider a Morse function V : G € RN — R with a single critical point q. with index k in an

V(ge)
N

density of states can be written as the sum of an analytic plus a singular part, that is:

open set G; we denote by = v, the critical value corresponding to q.. The configurational

Wy =Wyt oy (1.17)

6For the proof and the general statement of the theorem at any order in the expansion of the Jacobian, we
address the reader to [37].
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1.3. MICROCANONICAL SINGULARITIES IN FINITE SYSTEMS

The leading order of the singular part is given by

(Nﬂ-)N/Z

Wi (v)= " — h]’z,f’k(mod4)(v) (1.18)
where the singularity is given by
(=1)k/2y(N=2/2Q(p) k even,
A kmoan(V) = (=1)kH2y(N=2)/2 =1 ]og |y | N even, k odd, (1.19)

(—1)N-k)/2(— ) N-22@(—p) N,k odd.

RN imoan)(V) is universal in the sense that it is independent of V. In the case in which there
are more than one critical points of V, their contributions sum up. Finally, the contribution of
the singularities due to higher order in the expansion of the determinant (1.15) only changes

the pre-factor in Eq. (1.18) and not the universal function hy', ,.,44(V)-

It can be verified that in any of the three cases in Eq. (1.19), w$ is [(IN —3)/2] times differ-
entiable’, where we denote by | x] the largest natural number smaller than x. Let us observe
that asking that the potential is a Morse function is actually a stronger hypothesis with re-
spect to what is needed. Indeed, if V is a function with non-degenerate critical points on
I'y — U, where U is a given set, the previous analysis is still valid for all those values of po-
tential energy except for those included in V(U).

In short, Theorem 1.3.1 says that the singularities of the configurational entropy of a
Hamiltonian system with a Morse potential are in one-to-one correspondence with the crit-
ical values of the potential. Moreover, the entropy becomes smoother and smoother by in-
creasing N. This could lead us to the conclusion that, in the N — oo limit, such singularities
disappear. We will see in the next Section, however, that this is not necessarily the case.

1.3.2 Role of the kinetic energy

A standard kinetic energy term, of the form in Eq. (1.1), gives a trivial contribution to the
canonical partition function both for finite systems and in the thermodynamic limit; it just
translates by a constant the thermodynamical functions. In the microcanonical ensemble,
the effect of such a term is more subtle and has been analyzed in [57]. The results are the
following:

(i) for finite systems: the entropy density is singular in &€ = v, if and only if the config-
urational entropy density is singular at v.. Moreover, if the configurational entropy
density is m times differentiable, then the entropy density is m + | N/2] times differ-
entiable.

“Considering the integrated density of states, defined in Eq. (1.9), one obtains a slightly higher regularity;
indeed, Qf is [(N — 1)/2] differentiable.
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(ii) in the thermodynamic limit: if the configurational entropy density is singular in v,,
then the entropy density is singular in € such that (v)(¢) = v., where (v) denotes the
average of the potential energy per particle. Thus the two values ¢ and v, coincide

only if the average kinetic energy is zero.

Let us give a hint of how these results can be obtained; we address the reader to [57] for the
complete proofs. First of all, let us observe that g, is a critical point of V if and only if (0, g.) is
a critical point of the Hamiltonian (1.1). Moreover, for a system as (1.1), the density of states

can be written as a convolution product [58]. Indeed, defining a kinetic density of states

k 1 3 2 27N/ Ny, Y1
ofn=| (5> pi-Nr dp =Ty @NF e (1.20)
RN i=1 2
we have Oo
wpy(e)= f a)]’i,(s —7r)wi,(r)dy. (1.21)
0

From Theorem 1.3.1, all the singularities of w{,(v) are algebraic; the results for finite systems
can be obtained by directly evaluating the convolution product.
For what concerns infinite systems, assuming the N — oo limit of s§, exists, it can be

proven [58] that also the N — oo limit of s exists and is given by
.1 c - c _
Seo(#) = lim < log {nTlZE})X[w,’“V(T)wN(E - y)]} = sk [7(e)] + s [e — F(e)], (1.22)

where 7(¢) is the value of y which maximizes the previous expression. Thus, 7(¢) coincides

with the average kinetic energy density; the final results is obtained writing the entropy as
Soo(€) =X [e = (U)(E)] + 5 [(v)(e)]. (1.23)

Let us observe that the the only property needed in the proof, ensured by Theorem 1.3.1,
is that there are only algebraic singularities. Considering a potential which is not a Morse
function but such that singularities in the configurational entropy density are algebraic, the
conclusions above are not altered. A model with these properties has actually been studied
in [57].

Let us conclude with some comments. The classical definition of phase transitions, valid
in the canonical and grand-canonical ensembles, for which a phase transition is a singular
point of the thermodynamical functions, cannot be translated without modifications to the
microcanonical ensemble: typically, the number of critical points of the potential energy is
0(eV). For finite systems, the number of points in which the entropy is singular is thus of this
order; however, they are essentially irrelevant for the thermodynamics, as the singularity is
on a derivative of order N /2 of the entropy. Is there any way for a singularity of the entropy
of a finite system to survive in the thermodynamic limit, giving rise to a phase transition?

The next Section addresses this point.
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1.4. KSS THEOREMS

1.4 KSS Theorems

It is natural to ask if some of the singularities of the microcanonical entropy of a finite sys-
tem can survive in the N — oo limit, giving thus rise to a phase transition. Here we discuss
a Theorem due to Kastner, Schreiber and Schnetz [37, 38] which gives a necessary condition
for this to happen, at least from a theoretical point of view. However, the applicability of
such result for non-trivial systems is not completely straightforward. In Chapter 2, we will
see how this problem can be handled. For the moment, however, we give a sketch of the
argument which leads to Theorem 1.4.1 and we state precisely the results.

Let us consider the configurational density of states in a small interval (vy — €, vy + €)
around a given value of the potential energy density vy; to lighten the notation, we denote
here by wx(v) the configurational density of states, omitting the apex c. We write

Wy (V) =AY (v)+ By (v), (1.24)

where By “(v) contains the singular contribution due to all the critical points whose ener-

gies are in the interval (vy — €, vp + €), as specified in Theorem 1.3.1:

Boi(v)= Y e (). (1.25)

{ve|lve—vol<e} {qc | ngv):yc}

Using Theorem 1.3.1, we can add to By “(v) a smooth function Ay“(v) such that Eq. (1.24)
coincides with the configurational density of states in the set (vy — €, vy + €).

We are interested to the regularity properties of the entropy density; the latter can be
written, in the set (vy— €, vy + €):

1 1
s”"’e(v):glj_rgoﬁlog[w}(}”e(y)] :}Ii_rgoﬁlog [AV“(v)+ By (v)] . (1.26)

We observe that we can also write

s"“(v)=max{a"(v),b"(v)}, (1.27)
where 1
a"(v)= lim <log[Ay*(v)],
V0,€ . 1 Vo, €
b™ (V)nglfgoﬁlog[BN )], (1.28)
unless Vo€
By (v) _

lim —=-1, 1.29
N—-oo AK?'E(U) ( )

which is a very peculiar situation and therefore not considered here.
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It is clear from Eq. (1.27) that it is impossible to find (necessary or sufficient) conditions
for the regularity of s¥¢(v) without the knowledge of both the terms a*¢(v) and b"¢(v).
For example, a mechanism by which it is possible to generate a singularity in s*¢(v) is a
crossover between the two terms in the maximization: in general they will not match an-
alytically. Moreover, even if A“(v) is smooth, there are no results ensuring its uniform
convergence in the N — oo limit, and hence the smoothness of a*¢(v).

In [37, 38], necessary conditions have been found such that the singular term By“(v)
gives a non vanishing contribution for every small neighbourhood of v, in the N — oo limit.
We report the reasoning followed in [37, 38] without entering in the details.

The analytic pre-factor of Eq. (1.18)
(NT)N/2

is exponential in N. Then, By“(v) contributes to w,'“(v) with a term which goes to zero

when € goes to zero. On the other hand, we want that b">¢(v) dominates on a"¢(v) inde-

pendently on € and thus, the only possibility is that

z|=

=0. (1.31)

lim |det [Hy(q.)]

The quantity (1.31) will be called normalized determinant of the Hessian evaluated in ¢g..
The argument presented here is not rigorous because it is not clear in which order we per-

form the limits N — oo and € — 0. The final Theorem takes the form:

Theorem 1.4.1 (KSS Theorem). Let us consider V :T'y C RN — R a confining potential. De-
noting by q. the critical points of V and their index by k(q.), we call “Jacobian densities” the

following quantities:
1 Vo vode ](qc)
ji(ve) =limsup — log lz"”e@“ o v+el) ] , (1.32)
N N chte([V0:V0+6])l
where )
J(qc)= — (1.33)
det[ VZ‘h ]
and Vg
Qi(vo) = {qcl ( ]\cllc = Uo) ANlk(gc)= l(m0d4)]}- (1.34)

Then, the contribution b"¢(v,) defined in Eq. (1.28) cannot induce a phase transition in the
limit N — oo at the potential energy v, if

1. the total number of critical points is limited by exp(CN) for a given constant C > 0;

2. Ve small enough the Jacobian densities satisfy j;(vy) < oo, VI €{0,1,2,3}.
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The proof consists in finding a estimate from above of b*¢(v) which depends only on €
and not on V. The estimate is:

1
b"(v) < =loge+v2me + max [+ ji(v)], (1.35)
2 {1€{0,1,2,3}, |[v—v'|<€}
where .
n = lim —log > (1.36)
q.€Qi(R)

is the total density of critical points. If the hypotheses of the Theorem are satisfied, the last
term in Eq. (1.35) is finite and we can choose € small enough such that a*¢(v) dominates
over b"¢(v); in this case the contribution of critical points of V is negligible in the limit
N — 0.

In the literature, the KSS Theorem has been applied to three models [37]:

1. the XY mean field model
2. the k-trigonometric model

3. the spherical model with nearest-neighbor interactions. In this case, a singularity
of the Euler characteristic in a value of potential energy v; does not correspond to
a phase transition [22]; this is consistent with the fact that the KSS criterion is not
satisfied.

In these cases the evaluation of j;(v) is possible inverting the relation between the critical
points and the critical values, that is finding the relation g, = gq.(v.). For a general model
this operation can be essentially impossible and thus the application of the KSS Theorem
is extremely difficult. As we will see in Section 2.1, this problem can be essentially avoided;
this fact will give the possibility to apply the KSS criterion to non-trivial models, and also to

the case in which only a subset of all the critical points is known.

1.5 Controversy on the Franzosi-Pettini theorem

We conclude this introductory part discussing a recent debate on the validity of the Franzosi-
Pettini theorem. The content of this Section contains very recent (and partially not pub-
lished) results, so that it has to be considered as a very preliminary discussion on the subject:
most of the questions raised here are still open.

In [59] the authors claimed that a counterexample to the Franzosi-Pettini Theorem is

provided by the ¢* model

—Z 90,——90+ Z(% 0’| (1.37)

ieA ]e/V(l)
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where J, A, u > 0, A C Z? is a finite square lattice and by .#'(i) we denote the four nearest-
neighboring sites of i.

After the claim, in a second paper [60], they proved that the Hamiltonian in Eq. (1.37) satis-
fies the hypotheses of the Franzosi-Pettini theorem. The most difficult hypothesis to prove
is the Morse property, which is not valid for all the values of A, u, J and N. However (see
appendix of [60]), the hypotheses of the theorem are still satisfied.

Now, with a very simple calculation [59], it is possible to show that, for every N, there are no
critical points at energy density greater than zero.

However, it is well known that the ¢* model undergoes to a phase transition; performing
Monte-Carlo simulations [59, 60], they showed that it occurs at energy density well sepa-
rated from zero for a wide range of parameters. This result is thus in evident contradiction

with the Franzosi-Pettini theorem, as stated in [48].

From private communications with Franzosi, Pettini and Kastner, it looks that the flaw
in the theorem is the absence of an hypothesis in its statement. It looks like that the authors
used for the proof the following additional hypothesis:

there must be no sequences qy €1y such that V(qn) — vy with vy € (11, V2] and
[IVV(gn)l| — 0 in the N — oo limit.

This hypothesis is clearly much stronger than, as originally asked in Theorem 1.2.1, the
absence of critical points with critical values in [v;, ;] for N large enough. From a qual-
itative point of view, the new request corresponds to ask that “changes in the topology of
(M)vem, ) cannot happen neither asymptotically”. Let us however observe that the infinite-
dimensional Morse theory is not a direct generalization of its finite-dimensional counter-
part, so that our interpretation is just qualitative.

We observe that such a scenario is actually natural. Indeed, stationary points of the poten-
tial can be very easily transformed in non-stationary points with the application of external
fields or fixing different boundary conditions, even in the case in which one expect no dif-
ferences in the thermodynamical behavior. However, a property like the one stated above
should not be altered unless the external fields or the changes in the boundary conditions
are so strong that even the thermodynamical behavior changes.

Anyway, the fact that these results are very recent (and in part not published) makes manda-
tory to revisit them with care before drawing any conclusion. We want to underline that

these results have not influenced our work because they have been obtained after ours.

Observe that results from [48] have been used to prove the Theorem 1.3.1 on singularities
in the microcanonical entropy of finite systems. However, we have not used the Franzosi-

Pettini theorem for this scope but only a much weaker result, on the smoothness of w$, for

20




1.5. CONTROVERSY ON THE FRANZOSI-PETTINI THEOREM

fixed N; the ¢4 model is not a counterexample for this result and its validity is not under de-
bate. We thus think that the results presented in this Chapter (with the exception, of course,
of the Franzosi-Pettini theorem) should be free of errors; however, all the discussion here
has to be analyzed with care in the future. Also the fact that the counterexample proposed
by Kastner et al. actually satisfies all the hypotheses of the Franzosi-Pettini theorem, and in
particular the Morse property, should be carefully checked.

21







The self-gravitating ring model

The applicability of the KSS theorem to non mean-field systems seems very difficult, if not
impossible. To apply it directly, one has indeed to know not only all the critical points of the
potential but also their index; moreover, one should be able to invert the relation between
the critical points g, and the critical energies V(q.). Each of these steps can be extremely
difficult, or even impossible, for generic Hamiltonian systems.

In Section 2.1, we show how this problem can be handled. It turns out that, from a practical
point of view, the KSS Theorem can be reformulated in terms of a criterion to find phase
transitions. We will call it the “KSS criterion”.

The most interesting fact coming out from this analysis is that the KSS criterion can be ap-
plied even if we do not know all the saddles of the potential V and without any knowledge
of their index. In Section 2.2, we apply the KSS criterion to the Self-Gravitating Ring (SGR)
model, which is the first not exactly solvable model to which the criterion has been applied.
We show analytically that the criterion correctly singles out the phase transition between a
homogeneous and a clustered phase and also suggests the presence of another phase tran-
sition, not previously known.

To analyze the nature of such possible phase transition, we construct in Section 2.3 an ef-
fective model of the SGR whose thermodynamics is analytically solvable. It turns out that
this effective model has an interest in itself: despite the rather crude approximations in-
volved in its derivation, it compares quite well with the SGR model. In [39] the similarities
between our effective model and another model introduced by Thirring! forty years ago are
discussed. The two models are very similar and can be considered as examples of a class of

minimal models of self-gravitating systems.

The material presented in Sections 2.1 and 2.2 is part of the Master Thesis of the au-
thor [40] and is only briefly sketched here; we address the reader to [40] and [28] for further

1The Thirring model, first introduced in [61], is defined in the following way. N particles are confined in
a box of volume V and two particles interact with a constant potential if both of them finds inside a smaller
volume 14; otherwise, they do not interact.
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details.

2.1 KSS criterion

It is commonly believed [1, 62] that the total number of critical points in a generic Hamil-
tonian system does grow exponentially with the number of degrees of freedom. A proof of
this property is not available and, actually, there are examples in which this is not the case:
for example, in the mean-field spherical model [37] the total number of critical points does
not increase with N. Anyway, the exponential behavior is the most common one. The first
hypothesis of Theorem 1.4.1 is probably only technical and we proceed assuming that it is
satisfied.

It is natural to reformulate the KSS theorem under the form of a criterion to find phase

transitions:

In the limit N — oo, there can be a singularity in the configurational entropy induced by
saddles of V in a value v, of potential energy density only if at least one of the Jacobian

densities j;(vo) diverges.

In this spirit, let us suppose that we want to verify the condition of the above criterion at a
given value of energy density vy. Suppose also that we know only a class of critical points of
V which not necessarily contains all of them. This is the most common situation consider-
ing a non-trivial system, as we will see in the following of this Thesis. We thus have to prove
that / €{0, 1,2, 3} exists such that, in the limit N — oo, the quantity

1 €Q;([vo,vo+e ]( C)
log lzﬂic Qi ([vo,vo+€]) q ]

- 2.1
N chte([VO;VO"'E]) 1
is not definitely bounded. The first interesting fact is that the index does not play any role:
indeed, if we prove that the quantity in Eq. (2.1) is not bounded, at least one of the four
subsequences is not. Because J(q.) > 0, the quantity in Eq. (2.1) can be estimated from

above restricting the sums to a subset of the critical points:

1 lthEQl([Uo,vo—i—e])](qc)jI

1
Zﬁlog Z](qc) — constant. 2.2)

—lo
& 1 4
qc.€Q

N ZQcGQz([Vo,Vo-‘rG])

Here we have assumed the first hypothesis of the KSS theorem to be valid to neglect the
denominator. Recalling the results in Section 1.3.2, we thus arrive to state the following cri-

terion:

KSS criterion: Consider a classical Hamiltonian system of the form (1.1) and assume that

the stationary points of V are isolated and their overall number grows at most exponentially
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with N. Then, in the N — oo limit, a singularity in the microcanonical entropy s(¢) at energy
density &, induced by saddles of V can be present only if the following two conditions are
met. First, there must be a sequence of critical points {g¥}3_, whose corresponding station-
ary values converge to v, = (v)(&.), where the brackets denote the statistical average. This
means:

lim v () = v,. (2.3)

N—o0
Second, the Hessian matrix Hy of the potential V computed on the stationary configurations

gY is such that
1/N
}lim =0. (2.4)

—00

det [Hy (V)]

Since the eigenvalues of Hy can be seen as curvatures of the potential energy landscape,

Eq. (2.4) means that the saddles become asymptotically “flat”.

Note that to check whether Egs. (2.3) and (2.4) are satisfied one does not need to know
all the saddles of the potential V; it is sufficient to determine the “right” ones. This is a big
difference with respect to other criteria previously proposed, which made use of topological
invariants like the Euler characteristic [11, 35, 36]. It is however important to underline that
without a complete knowledge of the critical points of V, it is impossible to prove the validity
of the second hypothesis of the KSS theorem.

2.2 Application of the KSS criterion to the SGR model

We review in this Section the application of the KSS criterion to the SGR model. The details

can be found in [40].

2.2.1 The model

The model we studied is the Self-Gravitating Ring (SGR) model, first introduced in [63] as a
simplified model of a self-gravitating system. It is a model of N points of unitary mass mov-
ing on a circle of unitary radius and mutually interacting via gravitational forces, regularized

at short distances. Its Hamiltonian is of the form (1.1) with potential

— > ! , (2.5)
2NV2 i,j=1 \/l—cos (qi—qj) +a

where g; € (—m, ], i =1,..., N, are the angles giving the position of the i-th particle on the
ring and a > 0 is the softening parameter regularizing the potential for (g; — g;) — 0. The
% factor in Eq. (2.5) ensures extensivity according to the Kac prescription. Observe that the
quantity 1/ [1 —cos (qi - qj)] is the length of the chord connecting g; and g;, see Fig. 2.1.
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Figure 2.1 — SGR model with unitary radius. The particles are visualized on the circle and their position
is specified by the angles g;, measured with respect to a given direction. The distance between two
particles is given by the length of the chord show in the Figure.

Numerical results (IV-body simulations [63] as well as variational calculations in the
N — oo limit [64]) for the microcanonical thermodynamics show that the system has a phase
transition separating a homogeneous high-energy phase from a clustered phase where the
rotational symmetry of the potential is spontaneously broken. If the softening parameter
a is sufficiently small the clustered phase contains an energy interval with negative spe-
cific heat, there is nonequivalence between the microcanonical and the canonical ensem-
ble and the qualitative behavior of the system is very similar to that of three-dimensional
self-gravitating models. In the opposite limit @ — oo SGR becomes equivalent to the ferro-
magnetic HMF model [65].
Assuming that in the high-energy phase the particles are homogeneously distributed on the
ring, as suggested by the numerical results, one can calculate the expectation value of the

potential energy density at the transition in the limit NV — oo, obtaining

1 2
e = )= A , (2.6)
ve=(wlee) T4/ 2(2+ ) (2"‘0‘)

where 4 (x)= f On/z d/4/1— xsin®¥ is the complete elliptic integral of the first kind.

2.2.2 Saddles of the landscape and phase transitions in the SGR model

Let us now study the potential energy landscape of the SGR model. First of all let us note that
the stationary points of the potential (2.5) are not isolated, due to its rotational invariance.
However, this difficulty can be circumvented by fixing the value of one of the g’s, which has
an irrelevant effect on the thermodynamic functions as N — oo and only fixes the position

of the center of the cluster in the broken-symmetry phase: from now on we assume ¢; =0.

The stationary points of V are the solutions of the form (§; =0, G, ...,qn) of the N cou-
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pled nonlinear equations VV =0, i.e.,

sin (g; — qx)
—cos(gi—qx) +

1 N
VV= 2.7
ZNﬁ; [1 &0

with k =1,..., N. Physically the above equations mean that the force acting on each particle

]3/2 =%

is radial. There are at least two classes of solutions that can be easily found.

e First of all there are the solutions we shall refer to as 0-7 saddles, where N, particles
are in g = 7 and the others are in g = 0, with 0 < N, < N — 1. We shall denote such
configurations as ¢,, where n, = N/N.

e The other class of solutions of Egs. (2.7) that is easily found is that of configurations
where the particles are in the p vertices of a regular polygon, with the same number r
of particles in each vertex; from symmetry considerations one sees that the force can
be only radial. We shall refer to the latter solutions as polygonal saddles and we shall
denote them as g,,,, with N =pr.

There are also many other saddles of the SGR potential that do not belong to any of these
two classes. For instance, consider three angles 0, y and 6, and put N, particles in 0, N, in
y and Ns in 0. It can be shown that for almost any value of y and 6 such that 0 <y < 7,
—m <0 <0and0 <6 -7 < one can choose sufficiently large N, Ny, N, and N5 such that
this configuration is stationary; moreover, one can find arguments suggesting that also more
complex stationary configurations exist [40]. The polygonal and 0-7 saddles, then, are not
the only saddles of the potential energy landscape of the SGR model.

The fact that we do not know all the saddles of the potential energy landscape, does
not prevent the KSS criterion to be effectively applied to this model. Let us calculate the
stationary values v = V/N corresponding to the 0-7 and polygonal saddles, respectively.
For g, we have

v(ng)=—

1- 7T2 2 T —lig
1 l( ng)’+n2 2n.(1 n)- 2.8

2v2 Va * V2¥a

The maximum of v(n,) is attained for n, = 1/2 and the minimum, corresponding to n, =0,

is also the absolute minimum of the potential. Hence

1
<vn)<-— | =+

1 1 1
2v2a " 42 [ﬁ \/2+a] ’

and the values of v(7n,) become dense in the above interval as N — oo.

(2.9)

For polygonal saddles g,,, we have that the stationary values depend only on the number of
vertices p:

1 & 1
U(p):—p Z _ . (2.10)
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The function v(p) is monotonously increasing with p and

1 [1 1
v(P)E—m [ﬁ+\/2+—a] , (2.11)

so that v(p) > v(n,) Vp,n,. Moreover, a simple calculation shows that lim,_ v(p) = v,
where v, is given by Eq. (2.6) and is also the upper bound of the potential energy per particle.

We have thus two nontrivial results:

(i) since as N — oo the distance between two successive stationary values tends to zero in
both cases of v(n,) and v(p), although 0-7 and polygonal saddles are not the only
stationary values of V, their stationary values do encompass all the available values of
the potential energy of the model;

(ii) the sequence of stationary values v(p) converges to the critical potential energy v, of

the phase transition between the homogeneous and the clustered phase as p — oo.

The last result suggests to investigate whether the KSS criterion is satisfied for v = v, i.e.,
whether a sequence of saddles satisfying Egs. (2.3) and (2.4) exists, with v, given by Eq. (2.6).
To this end, consider the sequence of polygonal saddles with one particle in each vertex,
qn1, where N is prime; Eq. (2.3) is satisfied—see item (ii) above.

It remains to show that also Eq. (2.4) is satisfied. Define

2rtk . 2 2nk
1 2—(2+2a)cosT+smT

C= N T (1—cosZt 1 a)” ; (2.12)
then the diagonal elements of the Hessian matrix are
N-1
[Hy (gn0)] e == fi (2.13)
i=1
and the off-diagonal ones are
[Hy (qn,)] 1 = frt (2.14)

so that the Hessian calculated in gy is a circulant matrix. Since we fixed the position of the
first particle, in Eq. (2.4) the Hessian H must be replaced by H, which is obtained from Hy
by deleting the first row and the first column. Using the Hadamard inequality [66] to obtain
an upper bound to the absolute value of the determinant of a matrix as the product of the
Euclidean norms of its rows and observing that in a circulant matrix all the rows have the

same norm, after some algebra we can write

1N N-1
lim ‘det (7, (gv1) ]| < lim Z fel - (2.15)
k=1
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The r.h.s. of the above equation can be written as an integral, so that Eq. (2.4) is satisfied if

(2.16)

5/2 -

Jgn 2—(242a)cosx +sin’x
dx =
0

(1—cosx+a)

the above result can be proved by explicit integration, so that the KSS criterion is satisfied
forv=v..

The properties of the circulant matrices [67] can also be used to prove that Eq. (2.4) is not
satisfied for all the stationary values v(p) # v, (details may be found in [40]). Hence, as far
as the stationary values of V associated to polygonal saddles are concerned, we have shown
analytically that the KSS criterion is satisfied if and only if v = v.. Since the system is not
exactly solvable, this is, to the best of our knowledge, the only analytical indication of the
presence of a phase transition between a homogeneous and a clustered phase in the SGR

model.

To complete the analysis of the whole range of potential energy values we now turn to
the 0-7r saddles. Since the stationary values (2.8) depend only on n, = N;/N, let us consider
sequences of saddles g, with varying N at fixed n,. The Hessian calculated on such saddles
can be written as

Hy (gn,) =D+A, (2.17)

where A has rank 2 and D =diag(d;,...,d) with

N2y N2,

N-N; _ Ny .
N~ N ifN;+1<k<N;

(2.18)

Do NNz if1 <k <N,
dy=

here A; =2v2a3 and A, = 24/2(2+ a)®. Using such decomposition one can prove that only
the elements of D contribute to |det [HY, (g.)] \UN when N — oo:

1/N
lim [det [1, (9,.)]| = latn1" bOn) " 2.19)
where a )
Ny — Ny
n)==- 2.20
a(nz) o % (2.20)
and a v
— Ngp)A2
b(n,)=——""2 2.21
(n7) I (2.21)
The quantity in Eq. (2.19) vanishes if and only if n, = n¢ or n, =1— n¢, where
a2
n¢ (2.22)

T R+
and v(n¢)=v(1—n¢)=v/, with

o 44 a[6+ a(5+2a)] (2.23)
T V2a[@+apl+aed?]” '
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The KSS criterion is then satisfied not only at v, given by Eq. (2.6) but also at v/ given by
Eq. (2.23).

Is there a phase transition in the SGR model at ¢/ such that (v)(¢)) = v/, as suggested
by the KSS criterion? We do not have a final answer. Previous numerical studies of the SGR
model [63, 64] have not detected such a phase transition. However, we note that v/ is ex-
tremely close to the absolute minimum of the potential for small values of a, where the SGR
model is close to a “true” self-gravitating system. Conversely, v/ ~ v, for large values of «,
where it behaves like a mean-field ferromagnet. Only for a ~ 1 one has that v/ is clearly
separated from both the minimum and v,, but these values of a have not been thoroughly
studied in [63, 64].

Moreover, the analysis that we will carry on the next Section suggest that such a phase tran-
sition may indeed exist but its effect on the thermodynamic quantities may be weak, so that
it may not be easy to detect numerically.

If such a phase transition exists, which phases does it separate? An answer may be suggested
again by an analysis of the potential energy landscape. Computing the number of negative
eigenvalues of the Hessian one can show that saddles g,,, with n, < n¢ are proper saddles,
i.e., their index is greater than zero, while saddles with n, > n¢ are minimum. Minima are
visited with high probability, at variance with higher-order saddles. One is thus lead to the
conjecture that for (v) < v/ the equilibrium phase is such that the fraction of particles that
may cross g = 7, i.e., visit the whole circle, is zero, while it becomes nonzero as (v) > v/, i.e,,
ate>el.

2.3 An effective model obtained from SGR

In this Section, we introduce and discuss an effective model of SGR whose equilibrium ther-
modynamics can be solved in the microcanonical ensemble, up to a maximization with re-
spect to a single variable. Such a model can be derived from the SGR model, allowing a
quantitative comparison between the thermodynamics of the two. Originally, our main mo-
tivation for this study was to understand the possible presence (and in case the nature) of a
second phase transition suggested by the KSS criterion in the SGR model at potential energy
density v/ given by Eq. (2.23).

Even if the effective model we present here does not give a definitive answer to this question,
a crossover and not a phase transition is indeed found in the effective model in the very low
energy region. This suggest that something similar could actually happen in the SGR model
and this is in accord with recent numerical works [68].

Apart from this, it turns out that the effective model has some interest in itself. Indeed, de-
spite the rather crude approximations involved in its derivation, it compares quite well with
the SGR model not only qualitatively but also quantitatively.
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In [39], we have also discussed the relation between the effective model presented here and
another model introduced by Thirring forty years ago. The two are indeed very similar, al-
though the latter was not aimed at approximating any particular explicit model. We do not
report here this analysis, because it would lead us a bit too far from the central theme of this

part of the Thesis, that is, the energy landscape approach to equilibrium phase transitions.

2.3.1 Effective model

We now want to approximate the SGR Hamiltonian in order to make it solvable, i.e., such
that the density of states can be explicitly computed.

Numerical simulations of the dynamics of the SGR model reported in [63] have shown
that, at a given energy, particles can be roughly divided into three classes according to their
dynamical behavior: cluster particles, gas particles, and halo particles. Cluster particles are
tightly bound in a cluster and never get far from it; gas particles move almost freely around
the ring; halo particles have a complicated dynamics that is somehow intermediate between
the other two. The relative population of particles in the three classes depends on the energy
(or temperature): at low energy almost all the particles are cluster particles, while at high
energy all the particles are gas particles.

The strategy we are going to implement in order to define an effective model is to con-
sider only the first two classes of particles (cluster and gas) and to assume that each particle
belongs to one of the two classes. This allows a simplification of the potential energy which
makes the model solvable.

Let us then assume that N, particles, with 1 < Ng < N, are gas particles. We can split the

potential energy V into three parts:

V(ql! .. 7qN) = ‘/éas(ql" . -,QNg)‘i‘ Vcluster(GINg—H» .. !qN)+ [/int(ql) . --qu) ) (224)
where
1 &
V(G- Gv,) = —ZNﬁ;v(qi—qj), (2.25)
1 N
V:user yeooy = - v i —Yi)> (226)
uster(GNg+1 qn) INVZ i,j:ZNg+1 (q 6]])
1 & X
Vilg1, ..o qn) = ——&= vigi—4q;), (2.27)
Nﬁ;]:%;_l ( )
where )
V(X)) ———. 2.28
() v1—cosx+a ( )

Up to this point we have only rewritten the potential energy in a different form. However,
this form naturally allows to introduce the approximations which make the model soluble.

Let us now discuss the approximations.
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(i) Since the N, gas particles are essentially free particles, as far as their interaction Vj, is
concerned, we consider them as uniformly distributed on the circle. The interaction

energy (2.25) between these particles is then a constant:

N2
Vias = — 2.29
g 2N\/_ ( )
where i
! (x)d 2 9{( 2 ) (2.30)
=— v(x)dx = .
"= . V2+a 2+a

and % (x) is the complete elliptic integral of the first kind.

(ii) We consider the N — N, remaining particles as confined in a cluster. We assume the

cluster is tight, i.e., the particles are all close to each other:
gi—q; <1 Vi,j=Ng+1,...,N. (2.31)

We can thus expand the interaction energy (2.26) among these particles up to the har-

monic order, and write

o (veN) .
%luster— 2Nm 8&N\/ﬁ”§+l ) » (2.32)

such an approximation is reliable if an assumption stronger than (2.31) holds, i.e.,

2
M<<l Vi,j=Ng+1,...,N. (2.33)

Moreover, since the particles in the cluster do not “feel” the S! topology of the circle,
we assume that
—00<(g;<+00, Vi=Ng+1,...,N; (2.34)

this will allow the analytical computation of the configurational integrals in the den-
sity of states.

(iii) Asfar asthe interaction (2.27) between cluster and gas particles is concerned, we note
that as long as the assumption (2.31) holds, the typical distance between a gas particle
and a cluster particle is much larger than typical interparticle distances in the cluster,
so that we may assume that all the cluster particles are in the same location, i.e., g =0.
Being the gas particles uniformly distributed on the circle, this yields a constant for
Vi, i€, N.(N—N.)

g g
Vine = TNz (2.35)

where 7 is given by (2.30).
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The Hamiltonian of our effective model is then

N
1 2
Hefi = E;pi + Verr, (2.36)
where .
_ H 2
Vr=-W(N.Nga)+5 >, (ai-a) (2.37)
i,j=Ng+1

and where we have set

W(N,Ng, )=

2
N—N _ N2
( ) + lNg(N Ng)+ 8 ] (2.38)

2NV2a NV?2 2NV?2

and
1

= —2N(2a)3/2 ) (2.39)

u

2.3.2 Microcanonical thermodynamics

Let us now discuss the solution of the effective model in the microcanonical ensemble; also
the canonical ensemble has been considered in [39] but we will not report the results here.
In the limit N — oo, at fixed N, the model is exactly solvable in both ensembles. However,
N, is not a priori assigned and must be fixed in a self-consistent way. The simplest way to
do so is to take into account all possible values of N; as we shall show in the following, in
the limit N — oo the model is still solvable up to a maximization in a single variable which
must be performed numerically, whose physical meaning is just to determine the value of
N, that maximizes the entropy.

To solve the model in the microcanonical ensemble we need to calculate the entropy
density

1
s(e)= ]1[11)130 N logwn(e), (2.40)

where wy is the density of states calculated for the Hamiltonian J:

wn(e) = J dpl"'deJ dﬂh"'dCINgJ dqn,---dqn 6 (et — Ne)

S o[ Capan [ a
- dp:---dpy qi---dqy (2.41)
Ng=0 Ng! (N_Ng)! —00 - ¢
h 1 u = 2
* J dayday6 |53 pi+s D, (ai-a;) — ¥~ Ne
—00 i=1 i,j:Ng-‘rl

In the above expression we have summed over all the possible choices of Ny, properly counted
by the degeneracy factor ( ]y ).
4
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The calculation of the above integral is straightforward, albeit a bit involved, and can be
performed following a procedure similar to that used in [55, 69]. The details are reported in
Appendix A.1. It turns out that the entropy density in the thermodynamic limit is given by

s(e)= sup s(e,ng). (2.42)

nge[O,ng‘a"(s)]

where we have introduced the fraction of gas particles n, = % and nlgnax(s) is the maximum
fraction of gas particles allowed at a given energy density ¢, given by Eq. (A.15). The explicit

expression of s(¢,ng) is

(o) — 1—n, an(2a)3/? +110 21v/2
Me) T T -n)2-ng| 2 2\2-n,
+ Mg [1+10ga(ng,a, 8)] +nglog(2m) (2.43)

— nglogng—(1—ng)log(l—nyg),
with )
Y (1-nyg)
ang, a,e)=——n,(2—ny,)+ ——

(e t,£)=5 s net

one can check that a(ng,a,¢) > 0if ng € [0, n?ax(a‘)] and € > &yin, Where &, =

+é€; (2.44)

1

— 5755 18 the

absolute minimum of the potential energy per degree of freedom.

As anticipated, the solution of the effective model in the microcanonical ensemble amounts
to finding the value 714(¢) of n realizing the extremum in (2.42). This can be easily done nu-
merically, since the explicit form (2.43) of s(¢, n) is available.

Results for the thermodynamic quantities

In the following we report the results for the fraction of gas particles 77;(¢) and for the caloric

ds
de

ter quantity with that computed for the SGR model via the numerical method introduced

curve, i.e., the temperature T(¢) = ( )_1, as a function of €. We also compare the lat-
in [64]; for n1g(¢) such a comparison is impossible, because no such quantity is easily defined
for the SGR model. In Fig. 2.2 we report 71g(¢) and T(¢) computed for a softening parameter
a=1072, as well as a comparison with T(¢) for the SGR model; in Fig. 2.3 we report the same
quantities for @ = 3 x 107°. The agreement with the SGR model is reasonably good already
at ¢ =102 and becomes very good at a =3 x 107°. In both cases we find a phase transition
from a homogeneous phase (characterized by 77y ~ 1) to a clustered phase while lowering
¢ below a critical value ¢,; the critical energy is &, ~ —0.46 for ¢ = 1072 and &, ~ —0.8 for
a = 3 x 107°. These values should be compared with those found for the SGR model], i.e.,
€.~ —0.32 for ¢ = 102 and &, ~ —0.5 for ¢ = 3 x 10~°. The agreement is good, especially
for the lower value of a. In the case @ = 1072 the phase transition is continuous, while it is

discontinuous (the temperature T jumps between two different values at €.) at @ =3 x 1075.
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