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General overview

This thesis is divided in two parts, corresponding to the two main subjects on which I have

worked during my Ph.D. The two parts do not belong to a common project, even if both of

them fit in the field of statistical mechanics.

Part I is an extension of my Master thesis and my work has been supervised by L. Casetti; it

is devoted to equilibrium statistical mechanics of long and short range interacting systems

and in particular, to the application of techniques coming from energy landscape theory to

some specific models.

Part II has been mainly developed in Lyon under the supervision of T. Dauxois. It is devoted

to the study of forced long-range interacting systems and mainly deals with problems of

non-equilibrium statistical physics.

We refer the reader to the introductory Sections of Part I and Part II for a detailed overview

of both the research fields and of my contribution.
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Part I

Energy landscape approach to

equilibrium phase transitions
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Overview

This part of the Thesis is devoted to the study of equilibrium phase transitions in classical

Hamiltonian systems from an energy landscape point of view. In principle, both the Newto-

nian dynamics and the thermodynamical behavior are determined by the potential energy

function V so that one may ask which are the characteristic features of V that are crucial for

the dynamics and/or for thermodynamics of the system.

In the literature, one refers to energy landscape methods [1], or more precisely to poten-

tial energy landscape methods, when the properties of the potential energy V are studied in

connection with the thermodynamical or dynamical behavior. From a mathematical point

of view the stationary points, that is those points q of the phase space Γ such that

∇V (q ) = 0 , (1)

yield important informations on V . For example, if the temperature of a system is very low,

and V has only one minimum, it is well known that the thermodynamics can be obtained

replacing V by its harmonic expansion around it. On the other hand, in the case in which

the system is frustrated, the Stillinger and Weber thermodynamical formalism takes care of

the contribution of every minimum of the landscape [2,3]. Examples of applications include

clusters [1], disordered systems and glasses [4, 5], biomolecules, protein folding [6]. In most

of the studies only minimum or first order saddles are taken into account. An example of this

second kind is the instanton theory, in which the transition probability and the transition

path of a thermally activated system between two minimum, through a first order saddle,

can be computed via field-theoretical methods.

In some later works, stationary points with an arbitrary number of negative directions

have been considered, for instance to characterize glassy behavior [7, 8]. Most of the works

in energy landscapes, however, deal only with minimum and first order saddles.

The potential relevance of energy landscape techniques to the study of equilibrium phase

transitions was suggested after it was realized that stationary points of the Hamiltonian are

connected with topology changes of the phase space accessible to the system. It was conjec-

tured that some of these topology changes, and therefore some of the stationary points, are

at the origin of thermodynamic phase transitions [9–13]; quite some research activity fol-

lowed [14–34], some focused on specific models, others trying to shed light on the general

mechanisms ( see [35, 36] for reviews).

The main difference with respect to classical studies in energy landscapes is that to apply

the techniques and the ideas developed in this field, all the stationary points of the system

are needed. However, finding all the stationary points of a given Hamiltonian is an essen-

tially impossible task both analytically and numerically, except in some very simple (usu-

ally mean-field or one-dimensional) examples. For this reason, the ideas and the results
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emerged have not been tested if not on very simple models. One of the scope of the work

presented here is to study models whose energy landscape is much more complicated than

what was previously done developing techniques and approximations which do not need

the knowledge of all stationary points to be applied. The drawback is that, often, the ap-

proximations used are not under control, so that it is not simple to understand which is the

degree of approximations in the results. This notwithstanding, we will see that some inter-

esting predictions will be obtained, both in negative (on the applicability of the so-called

KSS criterion) and in positive (especially about O(n )models).

This part of the Thesis is structured as follows:

Chapter 1 In the first Chapter, we review the general results connecting the energy land-

scape properties with equilibrium phase transitions. In particular, we review a re-

cently proved theorem by Kastner et al. [37, 38], the KSS theorem, which gives some

necessary conditions such that the stationary points of V can induce a phase tran-

sition in the thermodynamic limit. We will also review some of the previous results,

such as the Franzosi and Pettini theorem which proves a weak version of the topolog-

ical conjecture and a recent debate which arose around its validity.

Chapter 2 presents the content of [28] and [39] and, in part, of my Master thesis [40]. The

KSS theorem is not of simple applicability to non mean-field systems. In this second

Chapter we reformulate it as a criterion, the KSS criterion, to single out phase tran-

sitions. The advantage of the the KSS criterion with respect to the original theorem

stays in the fact that it is not necessary to know all the critical points of V to apply it.

This gave us the possibility to study a non-exactly solvable model of self-gravitating

particles, the SGR model. We will show that the KSS criterion singles out the phase

transition between a homogeneous and a clustered phase. We shall also show that the

criterion indicates the possible presence of another phase transition, not previously

known, and we conjecture on its nature thanks to an effective model constructed for

this purpose.

Chapter 3 presents the content of [41] and [42]. The reformulation of the KSS theorem

in the form of the KSS criterion has given the possibility of applying this technique

to models in which not all stationary points are known. Thanks to this, Nerattini

et al. [43, 44] have applied the criterion to the two and three dimensional nearest-

neighbors ferromagnetic XY models, in which a special class of stationary points is

known. We review their analysis which clearly shows that the KSS criterion is not use-

ful in these cases. Indeed, the KSS does not single out any peculiar energy in which

the phase transition should be located.

To understand the mechanism by which the phase transition emerges in these mod-
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els, we derive an approximate expression of the density of states. The approximation

we do is rather crude, but led us to the following conjecture: if a O(n ) model with

ferromagnetic interactions on a hypercubic lattice has a phase transition, its critical

energy density is equal to that of the n = 1 case, i.e., a system of Ising spins with the

same interactions. We will see that this conjecture gives extremely good estimates for

the critical energy densities of short-range ferromagnetic O(n )models.

Finally we show that our derivation, which is rather crude for general short-range

O(n ) models, can be followed rigorously in the simple cases of mean-field and 1-

dimensional XY models. The difficulties in generalizing such results to the case of

short-range O(n )models are also discussed.

Conclusions and perspectives We discuss the the general results we obtained and the fu-

ture perspectives opened by our work.
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1
Introduction

We describe here some results on the connections between energy landscape properties and

equilibrium phase transitions in Hamiltonian systems of the form

H (p ,q ) =

N
∑

i=1

p 2
i

2
+V (q ) , (1.1)

where V is a Morse function. The theory is naturally developed in the microcanonical for-

malism, at variance with the usual formulation of the theory of phase transitions. In this

Chapter, we mainly concentrate on general results and address the reader to [35, 36] for re-

cent reviews on the subject both for the details and for a resume of the works dealing with

specific model systems.

The Chapter is organized as follows. In Section 1.1 we recall some basic concepts about

finite dimensional Morse theory. In Section 1.2 we briefly discuss the topological conjecture,

according to which phase transitions should be connected to sufficiently strong topology

changes of the accessible phase space; a theorem by Franzosi and Pettini proves a weak

version of it. In Section 1.3 we review the work by Kastner et al. showing a correspondence

between stationary points and singularities in the microcanonical entropy of finite systems.

The entropy is however N /2 times differentiable so that this singularities are very weak. It

is natural to ask if there is a mechanism which permits this singularities to survive in the

N →∞ limit. This is the content of the KSS theorem, which we review in Section 1.4. Finally,

in Section 1.5 we present the discussion recently emerged about the actual validity of the

Franzosi and Pettini theorem.

1.1 Preliminaries: Morse theory

We briefly review here the basic concepts of finite dimensional Morse theory, to set the no-

tations and the definitions useful for the following. We address the reader to [45] for a com-

plete exposition and the proofs of the quoted results.
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CHAPTER 1. INTRODUCTION

Let us consider a smooth function V : M ⊆ RN → R, where M is a manifold. The points

qc ∈M such that dV (qc) = 0 are called critical points or stationary points or saddles of V . We

denote byHV or simply byH the Hessian of V .

V is called a Morse function if

det[HV (qc )] 6= 0 (1.2)

for every stationary point of V . A critical point qc for which Eq. (1.2) holds is called non-

degenerate. Moreover, the values vc ∈ R which are image under V of critical points are

called critical values or stationary values. Given a critical point, the number of negative

eigenvalues of the Hessian matrix evaluated at that critical point is called index.

It can be shown that, for Morse functions, all critical points are isolated. This can be

deduced by the Morse lemma:

Theorem 1.1.1 (Morse Lemma). Let us consider a non-degenerate critical point qc of V with

index k . It exists a local coordinate system (x1, ...,xN ) in a neighborhood of qc such that

V = V (qc )−x 2
1 − ...−x 2

k
+x 2

k+1+ ...+x 2
N

(1.3)

is exact in the above defined neighborhood.

In the following of this Chapter, we will mainly consider Morse potentials. However, this

is not so restrictive. Indeed, it can be shown that the Morse functions are an open and dense

subset of all C∞ functions [46]. This means that, even if the potential is not a Morse function,

one can add an arbitrarily small perturbation such that the perturbed potential is a Morse

function. For example, from the theorem 1.1.1 we have that any potential with a continuous

symmetry is not a Morse function. In this case, perturbing the potential breaks explicitly

the symmetry. A trick sometimes more useful is to consider the same system fixing a finite

number of coordinates. This method will be used in the following of the Thesis.

The following theorem explains the connection between Morse functions and the topol-

ogy of the set

M v =

�

q ∈M | V (q )
N
≤ v

�

. (1.4)

Indeed, it can be proven the following:

Theorem 1.1.2. Let us consider a smooth Morse function V : M ⊆ RN → R. Suppose that

[a ,b ] ∈ R contains a single critical value vc which corresponds to a single critical point qc

with index k ; if M a and Mb are compact, then Mb is homeomorphic to the manifold obtained

attaching1 a k -handle to M a , where a k -handle is the direct product of a k -disc with a (N−k )-

disc.

1For a precise definition of this operation, we address the reader to [45].
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1.2. TOPOLOGICAL CONJECTURE

Thanks to this theorem, one can study the topology of the accessible phase space M v

“only” studying the critical points of V . Observe, however, that for many-body systems M v

is a high dimensional object and its topology very complicated. A topological invariant of

M v is the Euler characteristic, defined as

χ(M v ) =

N
∑

i=0

(−1)iµi . (1.5)

whereµi is the i -th Morse number, defined as the number of critical points of V with index i

and critical values smaller than v ; to evaluate the Euler characteristic it is necessary to know

all the critical points of V and their index.

1.2 Topological conjecture

The study of a series of simple models (see [35, 36] for reviews on this subject), has shown

that strong changes in the topology2 of

M v =

�

q ∈M | V (q )
N
≤ v

�

(1.6)

at a given value of the potential energy vc are often associated to a singular behavior of

thermodynamic quantities at the same value of the potential energy. This led the authors

of [9] to propose that phase transitions are due to sufficiently strong topology changes in

M v , and this proposal has been indicated as the “topological conjecture” in [11]. At this

level, what exactly means “sufficiently strong” is a completely open question. Quite some

research activity followed [14–34], some focused on specific models, others trying to shed

light on the general mechanisms (see [35, 36] for reviews).

In this Chapter we mainly review the general results that have been obtained though this

approach. We do not review the works in which specific models have been studied, but we

highlight that most of these works concentrate on exactly-solvable mean-field models. The

reason for this is that it is necessary to know all critical points to evaluate topological invari-

ants such as the Euler characteristic (1.5). On the other hand, finding all the critical points

of a generic many-body potential is a very hard, or impossible, task both analytically and

numerically.

Franzosi and Pettini has announced in [47–49] the proof of a theorem3 proving a weaker

version of the the above conjecture.

2In these early studies, the topological invariant which was usually used to characterize topology changes

was the Euler characteristic, or quantities connected to it.
3The validity of this theorem has been recently questioned. We will discuss in Section 1.5 such an issue.
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CHAPTER 1. INTRODUCTION

Theorem 1.2.1 (Franzosi-Pettini theorem). Let us consider a smooth, confining, short-range

and limited from below potential V in the form

VN (q ) =

N
∑

i=1

φ(qi )+

N
∑

i ,j=1

c i jψ(|qi −qj |) .

If there exists N0 and an interval [v1, v2] such that ∀N > N0 the hypersurfaces (M v )v∈[v1,v2] do

not change topology, then in the thermodynamic limit the free energy is at least C 2[β (v1),β (v2)],

where β (v ) is the value of the inverse temperature corresponding to the potential energy v .

The authors state that the extension of such a theorem to take into account higher deriva-

tives of the free energy is, even if laborious, affordable with similar techniques. On the other

hand, it is known that none of the hypotheses of the theorem is merely technical; counterex-

amples are indeed known for long-range, non-confining or singular potentials [35].

Thanks to Morse theory, this theorem can be clearly stated using stationary points. In-

deed, if V is a Morse function, topological changes of the manifolds (M v )v∈[v1,v2] correspond

to the existence of stationary points of the potential V whose energy density value are be-

long to [v1, v2].

At qualitative level, the connection between stationary points of the Hamiltonian and

equilibrium statistical properties can be inferred in the microcanonical formalism. This

can be understood by observing that, for a system with N degrees of freedom, the entropy

density is defined as 4

s (ǫ) =
1

N
logω(ǫ) , (1.7)

where ǫ = E/N is the energy density and ω is the density of states. For a system described

by continuous variables,ω can be written as

ω(ǫ) =

∫

Γ

δ(H −Nǫ)dΓ=

∫

Γ∩Σǫ

dΣ

|∇H | , (1.8)

where Γ denotes the phase space and dΓ its volume measure, Σǫ is the hypersurface of con-

stant energy E = Nǫ, and dΣ stands for the N − 1-dimensional Hausdorff measure on Σǫ.

The rightmost integral stems from a co-area formula [50]. At a stationary point qc , the gradi-

ent∇H (qc ) vanishes and the integrand diverges; at the same time, the measure Σǫ shrinks,

such that ω in general remains finite for finite systems. In next Section, we will see that,

although the integral on the right hand side of Eq. (1.8) remains finite in the vicinity of a

stationary point, the density of states is non-analytic in correspondence of all the stationary

values εc =H (qc )/N of the energy density for any finite N .

4Throughout the Thesis we set Boltzmann’s constant k B to unity.
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1.3. MICROCANONICAL SINGULARITIES IN FINITE SYSTEMS

1.3 Microcanonical singularities in finite systems

At variance with the canonical and grand-canonical ensemble, in which the the free energies

of finite systems are smooth functions [51], the microcanonical entropy shows singularities.

From a conceptual point of view, this should be known since long time because even one-

dimensional systems, such as the pendulum, present this feature. Surprisingly, for many-

body systems, such a property of the entropy has been realized only recently [52–55].

Here, we review the results due to Kastner, Schreiber and Schnetz [37, 56] which com-

pletely characterize, for finite systems, the singularities of the configurational entropy and

their strength. They found a one-to-one correspondence between the stationary values of

the potential energy and the singularities of the configurational entropy. The kind of singu-

lar behavior is also characterized; in particular, the entropy presents a discontinuity only in

a derivative whose order grows linearly with N .

We then discuss the results of [57], in which the role of the kinetic energy is analyzed: the

kinetic energy increases the regularity of the entropy, which remains anyway a singular func-

tion.

1.3.1 Singularities in the configurational entropy

Let us consider a Hamiltonian system of the form (1.1), where V is a smooth and confining

potential. We review here the work presented in [37, 56], where the authors have analyzed

the singularities of the configurational density of states5 , defined as

ωc
N
(v ) =

∫

ΓN

δ(V (q )−N v )dq (1.10)

or, equivalently of the configurational entropy

s c
N
(v ) =

1

N
logωN (v ) . (1.11)

First of all, the singularities ofωc
N (v ) are strictly connected to the critical values of V . Indeed,

it is possible to prove [48] that if there are not critical values of V /N in [v1, v2], thenωc
N and

s c
N are smooth in the same interval.

Let us consider a given value of the potential energy density v and the set

V −1(v ) =

�

q ∈ ΓN |
V (q )

N
= v

�

; (1.12)

5Very similar results are valid considering the integrated density of states Ωc
N (v ) =

∫

ΓN
Θ(V (q )−N v )dq and

the corresponding entropyσc
N (v ) =

1
N

logΩN (v ), which is connected to the previous definitions via

ωc
N
(v ) =

dΩc
N (v )

dv
. (1.9)
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CHAPTER 1. INTRODUCTION

if V −1(v ) does not contain critical points of V , thenωc
N is smooth in v . Otherwise, if V −1(v )

contains critical points, the Morse property guarantees that they are isolated; for every crit-

ical point q i
c
, we can thus choose a neighborhood Uq i

c
which does not contain any other

critical point but q i
c
. We can thus suppose that only one critical point qc is present: the gen-

eralization to the case of many only corresponds to add up the various contributions. The

density of states can be written as

ωc
N
(v ) =

∫

Uqc

δ(V (q )−N v )dq +

∫

ΓN−Uqc

δ(V (q )−N v )dq ; (1.13)

where the second term gives a smooth contribution.

Without any loss of generality, we can choose V (qc ) = 0. Thanks to the Morse lemma, the

neighborhood Uqc
of the critical point and the coordinate system (x1, ...,xN ) can be chosen

such that

V (q (x )) =−
k
∑

i=1

x 2
i
+

N
∑

i=k+1

x 2
i

(1.14)

is valid in the whole neighborhood Uqc
; in the above expression, k is the index of the critical

point qc . Denoting by J (x ) the determinant of the Jacobian of the coordinate transforma-

tion, let us consider the following expansion around x = 0:

J (x ) =
∑

I={i 1,...,i N }
a I x I , (1.15)

where a multi-index notation x I = x
i 1
1 ...x i N

N has been used. The 0-th order is linked to the

second derivatives of the potential at the critical point, that is:

J (0) = a 0 =

�

�

�

�

det

�

HV (0)

2

�
�

�

�

�

− 1
2

. (1.16)

Using these facts and choosing as Uqc
a small enough ball around qc , the authors of [37]

evaluated the non-analytic contribution to the configurational density of states due to the

first term of (1.13) at all the orders in the expansion of the determinant of the Jacobian. To

our scope, the 0-th order6 will be sufficient; in this case the theorem has the form:

Theorem 1.3.1 (Singularities of the configurational entropy for finite systems). Let us con-

sider a Morse function V : G ⊆ RN → R with a single critical point qc with index k in an

open set G ; we denote by
V (qc )

N
= vc the critical value corresponding to qc . The configurational

density of states can be written as the sum of an analytic plus a singular part, that is:

ωc
N
=ωa

N
+ωna

N
. (1.17)

6For the proof and the general statement of the theorem at any order in the expansion of the Jacobian, we

address the reader to [37].
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1.3. MICROCANONICAL SINGULARITIES IN FINITE SYSTEMS

The leading order of the singular part is given by

ωna
N
(v ) =

(Nπ)N /2

NΓ(N

2
)

q�

�

�det
�

HV (qc )

2

�

�

�

�

hna
N ,k (mod 4)(v ) (1.18)

where the singularity is given by

hna
N ,k (mod 4)(v ) =







(−1)k/2v (N−2)/2Θ(v ) k even,

(−1)(k+1)/2v (N−2)/2π−1 log |v | N even, k odd,

(−1)(N−k )/2(−v )(N−2)/2Θ(−v ) N,k odd.

(1.19)

hna
N ,k (mod 4)(v ) is universal in the sense that it is independent of V . In the case in which there

are more than one critical points of V , their contributions sum up. Finally, the contribution of

the singularities due to higher order in the expansion of the determinant (1.15) only changes

the pre-factor in Eq. (1.18) and not the universal function hna
N ,k (mod 4)(v ).

It can be verified that in any of the three cases in Eq. (1.19),ωc
N is ⌊(N −3)/2⌋ times differ-

entiable7, where we denote by ⌊x ⌋ the largest natural number smaller than x . Let us observe

that asking that the potential is a Morse function is actually a stronger hypothesis with re-

spect to what is needed. Indeed, if V is a function with non-degenerate critical points on

ΓN −U , where U is a given set, the previous analysis is still valid for all those values of po-

tential energy except for those included in V (U ).

In short, Theorem 1.3.1 says that the singularities of the configurational entropy of a

Hamiltonian system with a Morse potential are in one-to-one correspondence with the crit-

ical values of the potential. Moreover, the entropy becomes smoother and smoother by in-

creasing N . This could lead us to the conclusion that, in the N →∞ limit, such singularities

disappear. We will see in the next Section, however, that this is not necessarily the case.

1.3.2 Role of the kinetic energy

A standard kinetic energy term, of the form in Eq. (1.1), gives a trivial contribution to the

canonical partition function both for finite systems and in the thermodynamic limit; it just

translates by a constant the thermodynamical functions. In the microcanonical ensemble,

the effect of such a term is more subtle and has been analyzed in [57]. The results are the

following:

(i ) for finite systems: the entropy density is singular in ǫ = vc if and only if the config-

urational entropy density is singular at vc . Moreover, if the configurational entropy

density is m times differentiable, then the entropy density is m + ⌊N /2⌋ times differ-

entiable.

7Considering the integrated density of states, defined in Eq. (1.9), one obtains a slightly higher regularity;

indeed, Ωc
N is ⌊(N −1)/2⌋ differentiable.
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(i i ) in the thermodynamic limit: if the configurational entropy density is singular in vc ,

then the entropy density is singular in ǫ such that 〈v 〉(ǫ) = vc , where 〈v 〉 denotes the

average of the potential energy per particle. Thus the two values ǫ and vc coincide

only if the average kinetic energy is zero.

Let us give a hint of how these results can be obtained; we address the reader to [57] for the

complete proofs. First of all, let us observe that qc is a critical point of V if and only if (0,qc ) is

a critical point of the Hamiltonian (1.1). Moreover, for a system as (1.1), the density of states

can be written as a convolution product [58]. Indeed, defining a kinetic density of states

ωk
N
(γ) =

∫

RN

δ

 

1

2

N
∑

i=1

p 2
i
−Nγ

!

dp =
2πN /2

Γ(N

2
)
(2N

N
2 −1)γ

N
2 −1, (1.20)

we have

ωN (ǫ) =

∫ ∞

0

ωk
N
(ǫ−γ)ωc

N
(γ)dγ . (1.21)

From Theorem 1.3.1, all the singularities ofωc
N (v ) are algebraic; the results for finite systems

can be obtained by directly evaluating the convolution product.

For what concerns infinite systems, assuming the N → ∞ limit of s c
N exists, it can be

proven [58] that also the N →∞ limit of sN exists and is given by

s∞(ǫ) = lim
N→∞

1

N
log

�

max
γ≥0
[ωk

N
(γ)ωc

N
(ǫ−γ)]

�

= s k
∞[γ̃(ǫ)]+ s c

∞[ǫ− γ̃(ǫ)] , (1.22)

where γ̃(ǫ) is the value of γ which maximizes the previous expression. Thus, γ̃(ǫ) coincides

with the average kinetic energy density; the final results is obtained writing the entropy as

s∞(ǫ) = s k
∞[ǫ−〈v 〉(ǫ)]+ s c

∞[〈v 〉(ǫ)] . (1.23)

Let us observe that the the only property needed in the proof, ensured by Theorem 1.3.1,

is that there are only algebraic singularities. Considering a potential which is not a Morse

function but such that singularities in the configurational entropy density are algebraic, the

conclusions above are not altered. A model with these properties has actually been studied

in [57].

Let us conclude with some comments. The classical definition of phase transitions, valid

in the canonical and grand-canonical ensembles, for which a phase transition is a singular

point of the thermodynamical functions, cannot be translated without modifications to the

microcanonical ensemble: typically, the number of critical points of the potential energy is

O (e N ). For finite systems, the number of points in which the entropy is singular is thus of this

order; however, they are essentially irrelevant for the thermodynamics, as the singularity is

on a derivative of order N /2 of the entropy. Is there any way for a singularity of the entropy

of a finite system to survive in the thermodynamic limit, giving rise to a phase transition?

The next Section addresses this point.
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1.4. KSS THEOREMS

1.4 KSS Theorems

It is natural to ask if some of the singularities of the microcanonical entropy of a finite sys-

tem can survive in the N →∞ limit, giving thus rise to a phase transition. Here we discuss

a Theorem due to Kastner, Schreiber and Schnetz [37, 38]which gives a necessary condition

for this to happen, at least from a theoretical point of view. However, the applicability of

such result for non-trivial systems is not completely straightforward. In Chapter 2, we will

see how this problem can be handled. For the moment, however, we give a sketch of the

argument which leads to Theorem 1.4.1 and we state precisely the results.

Let us consider the configurational density of states in a small interval (v0 − ε, v0 + ε)

around a given value of the potential energy density v0; to lighten the notation, we denote

here byωN (v ) the configurational density of states, omitting the apex c . We write

ωv0,ε
N (v ) = A

v0,ε
N (v )+ B

v0,ε
N (v ), (1.24)

where B
v0,ε
N (v ) contains the singular contribution due to all the critical points whose ener-

gies are in the interval (v0−ε, v0+ε), as specified in Theorem 1.3.1:

B
v0,ε
N (v ) =

∑

{vc | |vc−v0|<ε}

∑

n

qc | V (qc )

N
=vc

o

ωna
N ,qc
(v ) . (1.25)

Using Theorem 1.3.1, we can add to B
v0,ε
N (v ) a smooth function A

v0,ε
N (v ) such that Eq. (1.24)

coincides with the configurational density of states in the set (v0−ε, v0+ε).

We are interested to the regularity properties of the entropy density; the latter can be

written, in the set (v0−ε, v0+ε):

s v0,ε(v ) = lim
N→∞

1

N
log[ωv0,ε

N (v )] = lim
N→∞

1

N
log
�

A
v0,ε
N (v )+ B

v0,ε
N (v )

�

. (1.26)

We observe that we can also write

s v0,ε(v ) =max{a v0,ε(v ),b v0,ε(v )}, (1.27)

where

a v0,ε(v ) = lim
N→∞

1

N
log
�

A
v0,ε
N (v )

�

,

b v0,ε(v ) = lim
N→∞

1

N
log
�

B
v0,ε
N (v )

�

, (1.28)

unless

lim
N→∞

B
v0,ε
N (v )

A
v0,ε
N (v )

=−1 , (1.29)

which is a very peculiar situation and therefore not considered here.
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It is clear from Eq. (1.27) that it is impossible to find (necessary or sufficient) conditions

for the regularity of s v0,ε(v ) without the knowledge of both the terms a v0,ε(v ) and b v0,ε(v ).

For example, a mechanism by which it is possible to generate a singularity in s v0,ε(v ) is a

crossover between the two terms in the maximization: in general they will not match an-

alytically. Moreover, even if A
v0,ε
N (v ) is smooth, there are no results ensuring its uniform

convergence in the N →∞ limit, and hence the smoothness of a v0,ε(v ).

In [37, 38], necessary conditions have been found such that the singular term B
v0,ε
N (v )

gives a non vanishing contribution for every small neighbourhood of v0 in the N →∞ limit.

We report the reasoning followed in [37, 38]without entering in the details.

The analytic pre-factor of Eq. (1.18)
(Nπ)N /2

NΓ(N /2)
(1.30)

is exponential in N . Then, B
v0,ε
N (v ) contributes to ωv0,ε

N (v ) with a term which goes to zero

when ε goes to zero. On the other hand, we want that b v0,ε(v ) dominates on a v0,ε(v ) inde-

pendently on ε and thus, the only possibility is that

lim
N→∞

�

�det
�

HV (qc )
�
�

�

1
N = 0. (1.31)

The quantity (1.31) will be called normalized determinant of the Hessian evaluated in qc .

The argument presented here is not rigorous because it is not clear in which order we per-

form the limits N →∞ and ε→ 0. The final Theorem takes the form:

Theorem 1.4.1 (KSS Theorem). Let us consider V : ΓN ⊆ RN → R a confining potential. De-

noting by qc the critical points of V and their index by k (qc ), we call “Jacobian densities” the

following quantities:

j l (v0) = lim sup
N→∞

1

N
log





∑

qc∈Ql ([v0,v0+ε])
J (qc )

∑

qc∈Ql ([v0,v0+ε])
1



 , (1.32)

where

J (qc ) =
1

q�

�

�det
�

HV (qc )

2

�

�

�

�

(1.33)

and

Q l (v0) =

�

qc |
�

V (qc )

N
= v0

�

∧ [k (qc ) = l (mod 4)]

�

. (1.34)

Then, the contribution b v0,ε(v0) defined in Eq. (1.28) cannot induce a phase transition in the

limit N →∞ at the potential energy v0 if

1. the total number of critical points is limited by exp(C N ) for a given constant C > 0;

2. ∀ε small enough the Jacobian densities satisfy j l (v0)<∞, ∀l ∈ {0, 1, 2, 3}.
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The proof consists in finding a estimate from above of b v0,ε(v ) which depends only on ε

and not on V . The estimate is:

b v0,ε(v )≤ 1

2
logε+

p
2πe + max

{l ∈{0,1,2,3} , |v−v ′|<ε}
[n l + j l (v

′)], (1.35)

where

n l = lim
N→∞

1

N
log

∑

qc∈Ql (R)

1 (1.36)

is the total density of critical points. If the hypotheses of the Theorem are satisfied, the last

term in Eq. (1.35) is finite and we can choose ε small enough such that a v0,ε(v ) dominates

over b v0,ε(v ); in this case the contribution of critical points of V is negligible in the limit

N →∞.

In the literature, the KSS Theorem has been applied to three models [37]:

1. the XY mean field model

2. the k -trigonometric model

3. the spherical model with nearest-neighbor interactions. In this case, a singularity

of the Euler characteristic in a value of potential energy vt does not correspond to

a phase transition [22]; this is consistent with the fact that the KSS criterion is not

satisfied.

In these cases the evaluation of j l (v ) is possible inverting the relation between the critical

points and the critical values, that is finding the relation qc = qc (vc ). For a general model

this operation can be essentially impossible and thus the application of the KSS Theorem

is extremely difficult. As we will see in Section 2.1, this problem can be essentially avoided;

this fact will give the possibility to apply the KSS criterion to non-trivial models, and also to

the case in which only a subset of all the critical points is known.

1.5 Controversy on the Franzosi-Pettini theorem

We conclude this introductory part discussing a recent debate on the validity of the Franzosi-

Pettini theorem. The content of this Section contains very recent (and partially not pub-

lished) results, so that it has to be considered as a very preliminary discussion on the subject:

most of the questions raised here are still open.

In [59] the authors claimed that a counterexample to the Franzosi-Pettini Theorem is

provided by the ϕ4 model

Vϕ =
∑

i∈Λ







λ

4!
ϕ4

i
− µ

2

2
ϕ2

i
+

J

4

∑

j∈N (i )
(ϕi −ϕj )

2






, (1.37)
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where J , λ, µ > 0, Λ ⊂ Z2 is a finite square lattice and by N (i ) we denote the four nearest-

neighboring sites of i .

After the claim, in a second paper [60], they proved that the Hamiltonian in Eq. (1.37) satis-

fies the hypotheses of the Franzosi-Pettini theorem. The most difficult hypothesis to prove

is the Morse property, which is not valid for all the values of λ, µ, J and N . However (see

appendix of [60]), the hypotheses of the theorem are still satisfied.

Now, with a very simple calculation [59], it is possible to show that, for every N , there are no

critical points at energy density greater than zero.

However, it is well known that the ϕ4 model undergoes to a phase transition; performing

Monte-Carlo simulations [59, 60], they showed that it occurs at energy density well sepa-

rated from zero for a wide range of parameters. This result is thus in evident contradiction

with the Franzosi-Pettini theorem, as stated in [48].

From private communications with Franzosi, Pettini and Kastner, it looks that the flaw

in the theorem is the absence of an hypothesis in its statement. It looks like that the authors

used for the proof the following additional hypothesis:

there must be no sequences qN ∈ ΓN such that V (qN )→ v0 with v0 ∈ [v1, v2] and

||∇V (qN )|| → 0 in the N →∞ limit.

This hypothesis is clearly much stronger than, as originally asked in Theorem 1.2.1, the

absence of critical points with critical values in [v1, v2] for N large enough. From a qual-

itative point of view, the new request corresponds to ask that “changes in the topology of

(M v )v∈[v1,v2] cannot happen neither asymptotically”. Let us however observe that the infinite-

dimensional Morse theory is not a direct generalization of its finite-dimensional counter-

part, so that our interpretation is just qualitative.

We observe that such a scenario is actually natural. Indeed, stationary points of the poten-

tial can be very easily transformed in non-stationary points with the application of external

fields or fixing different boundary conditions, even in the case in which one expect no dif-

ferences in the thermodynamical behavior. However, a property like the one stated above

should not be altered unless the external fields or the changes in the boundary conditions

are so strong that even the thermodynamical behavior changes.

Anyway, the fact that these results are very recent (and in part not published) makes manda-

tory to revisit them with care before drawing any conclusion. We want to underline that

these results have not influenced our work because they have been obtained after ours.

Observe that results from [48]have been used to prove the Theorem 1.3.1 on singularities

in the microcanonical entropy of finite systems. However, we have not used the Franzosi-

Pettini theorem for this scope but only a much weaker result, on the smoothness of ωa
N for
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1.5. CONTROVERSY ON THE FRANZOSI-PETTINI THEOREM

fixed N ; theϕ4 model is not a counterexample for this result and its validity is not under de-

bate. We thus think that the results presented in this Chapter (with the exception, of course,

of the Franzosi-Pettini theorem) should be free of errors; however, all the discussion here

has to be analyzed with care in the future. Also the fact that the counterexample proposed

by Kastner et al. actually satisfies all the hypotheses of the Franzosi-Pettini theorem, and in

particular the Morse property, should be carefully checked.
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2
The self-gravitating ring model

The applicability of the KSS theorem to non mean-field systems seems very difficult, if not

impossible. To apply it directly, one has indeed to know not only all the critical points of the

potential but also their index; moreover, one should be able to invert the relation between

the critical points qc and the critical energies V (qc ). Each of these steps can be extremely

difficult, or even impossible, for generic Hamiltonian systems.

In Section 2.1, we show how this problem can be handled. It turns out that, from a practical

point of view, the KSS Theorem can be reformulated in terms of a criterion to find phase

transitions. We will call it the “KSS criterion”.

The most interesting fact coming out from this analysis is that the KSS criterion can be ap-

plied even if we do not know all the saddles of the potential V and without any knowledge

of their index. In Section 2.2, we apply the KSS criterion to the Self-Gravitating Ring (SGR)

model, which is the first not exactly solvable model to which the criterion has been applied.

We show analytically that the criterion correctly singles out the phase transition between a

homogeneous and a clustered phase and also suggests the presence of another phase tran-

sition, not previously known.

To analyze the nature of such possible phase transition, we construct in Section 2.3 an ef-

fective model of the SGR whose thermodynamics is analytically solvable. It turns out that

this effective model has an interest in itself: despite the rather crude approximations in-

volved in its derivation, it compares quite well with the SGR model. In [39] the similarities

between our effective model and another model introduced by Thirring1 forty years ago are

discussed. The two models are very similar and can be considered as examples of a class of

minimal models of self-gravitating systems.

The material presented in Sections 2.1 and 2.2 is part of the Master Thesis of the au-

thor [40] and is only briefly sketched here; we address the reader to [40] and [28] for further

1The Thirring model, first introduced in [61], is defined in the following way. N particles are confined in

a box of volume V and two particles interact with a constant potential if both of them finds inside a smaller

volume V0; otherwise, they do not interact.
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CHAPTER 2. THE SELF-GRAVITATING RING MODEL

details.

2.1 KSS criterion

It is commonly believed [1, 62] that the total number of critical points in a generic Hamil-

tonian system does grow exponentially with the number of degrees of freedom. A proof of

this property is not available and, actually, there are examples in which this is not the case:

for example, in the mean-field spherical model [37] the total number of critical points does

not increase with N . Anyway, the exponential behavior is the most common one. The first

hypothesis of Theorem 1.4.1 is probably only technical and we proceed assuming that it is

satisfied.

It is natural to reformulate the KSS theorem under the form of a criterion to find phase

transitions:

In the limit N →∞, there can be a singularity in the configurational entropy induced by

saddles of V in a value v0 of potential energy density only if at least one of the Jacobian

densities j l (v0) diverges.

In this spirit, let us suppose that we want to verify the condition of the above criterion at a

given value of energy density v0. Suppose also that we know only a class of critical points of

V which not necessarily contains all of them. This is the most common situation consider-

ing a non-trivial system, as we will see in the following of this Thesis. We thus have to prove

that l ∈ {0, 1, 2, 3} exists such that, in the limit N →∞, the quantity

1

N
log





∑

qc∈Ql ([v0,v0+ε])
J (qc )

∑

qc∈Ql ([v0,v0+ε])
1



 (2.1)

is not definitely bounded. The first interesting fact is that the index does not play any role:

indeed, if we prove that the quantity in Eq. (2.1) is not bounded, at least one of the four

subsequences is not. Because J (qc ) > 0, the quantity in Eq. (2.1) can be estimated from

above restricting the sums to a subset of the critical points:

1

N
log





∑

qc∈Ql ([v0,v0+ε])
J (qc )

∑

qc∈Ql ([v0,v0+ε])
1



≥ 1

N
log







∑

qc∈Q̃

J (qc )






− constant . (2.2)

Here we have assumed the first hypothesis of the KSS theorem to be valid to neglect the

denominator. Recalling the results in Section 1.3.2, we thus arrive to state the following cri-

terion:

KSS criterion: Consider a classical Hamiltonian system of the form (1.1) and assume that

the stationary points of V are isolated and their overall number grows at most exponentially
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2.2. APPLICATION OF THE KSS CRITERION TO THE SGR MODEL

with N . Then, in the N →∞ limit, a singularity in the microcanonical entropy s (ǫ) at energy

density ǫc induced by saddles of V can be present only if the following two conditions are

met. First, there must be a sequence of critical points {q N
c
}∞N=1 whose corresponding station-

ary values converge to v0 = 〈v 〉(ǫc ), where the brackets denote the statistical average. This

means:

lim
N→∞

v
�

q N
c

�

= v0 . (2.3)

Second, the Hessian matrixHV of the potential V computed on the stationary configurations

q N
c

is such that

lim
N→∞

�

�

�det
�

HV

�

q N
c

��

�

�

�

1/N

= 0 . (2.4)

Since the eigenvalues of HV can be seen as curvatures of the potential energy landscape,

Eq. (2.4) means that the saddles become asymptotically “flat”.

Note that to check whether Eqs. (2.3) and (2.4) are satisfied one does not need to know

all the saddles of the potential V ; it is sufficient to determine the “right” ones. This is a big

difference with respect to other criteria previously proposed, which made use of topological

invariants like the Euler characteristic [11, 35, 36]. It is however important to underline that

without a complete knowledge of the critical points of V , it is impossible to prove the validity

of the second hypothesis of the KSS theorem.

2.2 Application of the KSS criterion to the SGR model

We review in this Section the application of the KSS criterion to the SGR model. The details

can be found in [40].

2.2.1 The model

The model we studied is the Self-Gravitating Ring (SGR) model, first introduced in [63] as a

simplified model of a self-gravitating system. It is a model of N points of unitary mass mov-

ing on a circle of unitary radius and mutually interacting via gravitational forces, regularized

at short distances. Its Hamiltonian is of the form (1.1) with potential

V =− 1

2N
p

2

N
∑

i ,j=1

1
Æ

1− cos
�

qi −qj

�

+α
, (2.5)

where qi ∈ (−π,π], i = 1, . . . , N , are the angles giving the position of the i -th particle on the

ring and α > 0 is the softening parameter regularizing the potential for (qi − qj )→ 0. The
1
N

factor in Eq. (2.5) ensures extensivity according to the Kac prescription. Observe that the

quantity 1/
�

1− cos
�

qi −qj

��

is the length of the chord connecting qi and qj , see Fig. 2.1.
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pled nonlinear equations∇V = 0, i.e.,

∇V =
1

2N
p

2

N
∑

i=1

sin
�

qi −qk

�

�

1− cos
�

qi −qk

�

+α
�3/2
= 0 , (2.7)

with k = 1, . . . , N . Physically the above equations mean that the force acting on each particle

is radial. There are at least two classes of solutions that can be easily found.

• First of all there are the solutions we shall refer to as 0-π saddles, where Nπ particles

are in q = π and the others are in q = 0, with 0 ≤ Nπ ≤ N − 1. We shall denote such

configurations as qnπ , where nπ =Nπ/N .

• The other class of solutions of Eqs. (2.7) that is easily found is that of configurations

where the particles are in the p vertices of a regular polygon, with the same number r

of particles in each vertex; from symmetry considerations one sees that the force can

be only radial. We shall refer to the latter solutions as polygonal saddles and we shall

denote them as qp ,r , with N = p r .

There are also many other saddles of the SGR potential that do not belong to any of these

two classes. For instance, consider three angles 0, γ and δ, and put N0 particles in 0, Nγ in

γ and Nδ in δ. It can be shown that for almost any value of γ and δ such that 0 < γ < π,

−π < δ < 0 and 0 < δ− γ < π one can choose sufficiently large N , N0, Nγ and Nδ such that

this configuration is stationary; moreover, one can find arguments suggesting that also more

complex stationary configurations exist [40]. The polygonal and 0-π saddles, then, are not

the only saddles of the potential energy landscape of the SGR model.

The fact that we do not know all the saddles of the potential energy landscape, does

not prevent the KSS criterion to be effectively applied to this model. Let us calculate the

stationary values v = V /N corresponding to the 0-π and polygonal saddles, respectively.

For qnπ we have

v (nπ) =−
1

2
p

2

�

(1−nπ)
2
+n 2

πp
α

+
2nπ (1−nπ)p

2+α

�

. (2.8)

The maximum of v (nπ) is attained for nπ = 1/2 and the minimum, corresponding to nπ = 0,

is also the absolute minimum of the potential. Hence

− 1

2
p

2α
≤ v (nπ)≤−

1

4
p

2

�

1
p
α
+

1
p

2+α

�

, (2.9)

and the values of v (nπ) become dense in the above interval as N →∞.

For polygonal saddles qp ,r we have that the stationary values depend only on the number of

vertices p :

v (p ) =− 1

2p
p

2

p−1
∑

j=0

1
q

1− cos
�

2πj

p

�

+α

. (2.10)
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The function v (p ) is monotonously increasing with p and

v (p )≥− 1

4
p

2

�

1
p
α
+

1
p

2+α

�

, (2.11)

so that v (p ) > v (nπ) ∀p , nπ. Moreover, a simple calculation shows that limp→∞ v (p ) = vc ,

where vc is given by Eq. (2.6) and is also the upper bound of the potential energy per particle.

We have thus two nontrivial results:

(i ) since as N →∞ the distance between two successive stationary values tends to zero in

both cases of v (nπ) and v (p ), although 0-π and polygonal saddles are not the only

stationary values of V , their stationary values do encompass all the available values of

the potential energy of the model;

(i i ) the sequence of stationary values v (p ) converges to the critical potential energy vc of

the phase transition between the homogeneous and the clustered phase as p →∞.

The last result suggests to investigate whether the KSS criterion is satisfied for v = vc , i.e.,

whether a sequence of saddles satisfying Eqs. (2.3) and (2.4) exists, with vc given by Eq. (2.6).

To this end, consider the sequence of polygonal saddles with one particle in each vertex,

qN ,1, where N is prime; Eq. (2.3) is satisfied—see item (i i ) above.

It remains to show that also Eq. (2.4) is satisfied. Define

f k =
1

4N
p

2

2− (2+2α)cos 2πk

N
+ sin2 2πk

N
�

1− cos 2πk

N
+α
�5/2

; (2.12)

then the diagonal elements of the Hessian matrix are

�

HV

�

qN ,1
��

k k =−
N−1
∑

i=1

f i (2.13)

and the off-diagonal ones are
�

HV

�

qN ,1
��

l k = f k−l , (2.14)

so that the Hessian calculated in qN ,1 is a circulant matrix. Since we fixed the position of the

first particle, in Eq. (2.4) the HessianHV must be replaced byH′V which is obtained fromHV

by deleting the first row and the first column. Using the Hadamard inequality [66] to obtain

an upper bound to the absolute value of the determinant of a matrix as the product of the

Euclidean norms of its rows and observing that in a circulant matrix all the rows have the

same norm, after some algebra we can write

lim
N→∞

�

�

�det
�

H′
V

�

qN ,1
�
�

�

�

�

1/N

≤ lim
N→∞

�

�

�

�

�

N−1
∑

k=1

f k

�

�

�

�

�

. (2.15)
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The r.h.s. of the above equation can be written as an integral, so that Eq. (2.4) is satisfied if
∫ 2π

0

d x
2− (2+2α)cosx + sin2 x

(1− cosx +α)5/2
= 0 ; (2.16)

the above result can be proved by explicit integration, so that the KSS criterion is satisfied

for v = vc .

The properties of the circulant matrices [67] can also be used to prove that Eq. (2.4) is not

satisfied for all the stationary values v (p ) 6= vc (details may be found in [40]). Hence, as far

as the stationary values of V associated to polygonal saddles are concerned, we have shown

analytically that the KSS criterion is satisfied if and only if v = vc . Since the system is not

exactly solvable, this is, to the best of our knowledge, the only analytical indication of the

presence of a phase transition between a homogeneous and a clustered phase in the SGR

model.

To complete the analysis of the whole range of potential energy values we now turn to

the 0-π saddles. Since the stationary values (2.8) depend only on nπ =Nπ/N , let us consider

sequences of saddles qnπ with varying N at fixed nπ. The Hessian calculated on such saddles

can be written as

HV

�

qnπ

�

=D+A , (2.17)

where A has rank 2 and D= diag(d 1, . . . , d k )with

d k =

(

Nπ
Nλ1
− N−Nπ

Nλ2
if 1≤ k ≤Nπ ,

N−Nπ
Nλ1
− Nπ

Nλ2
if Nπ+1≤ k ≤N ;

(2.18)

here λ1 = 2
p

2α3 and λ2 = 2
p

2(2+α)3. Using such decomposition one can prove that only

the elements of D contribute to
�

�det
�

H′V
�

qnπ

��
�

�

1/N
when N →∞:

lim
N→∞

�

�

�det
�

H′
V

�

qnπ

�
�

�

�

�

1/N

= [a (nπ)]
nπ [b (nπ)]

1−nπ , (2.19)

where

a (nπ) =
nπ

λ1
− (1−nπ)

λ2
(2.20)

and

b (nπ) =
(1−nπ)λ2

λ1λ2−nπ
. (2.21)

The quantity in Eq. (2.19) vanishes if and only if nπ = n c
π

or nπ = 1−n c
π

, where

n c
π
=

α3/2

(2+α)3/2+α3/2
(2.22)

and v (n c
π
) = v (1−n c

π
) = v ′

c
, with

v ′
c
=− 4+α[6+α(5+2α)]
p

2α
�

(2+α)3/2+α3/2
� . (2.23)
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The KSS criterion is then satisfied not only at vc given by Eq. (2.6) but also at v ′
c

given by

Eq. (2.23).

Is there a phase transition in the SGR model at ǫ′
c

such that 〈v 〉(ǫ′
c
) = v ′

c
, as suggested

by the KSS criterion? We do not have a final answer. Previous numerical studies of the SGR

model [63, 64] have not detected such a phase transition. However, we note that v ′
c

is ex-

tremely close to the absolute minimum of the potential for small values of α, where the SGR

model is close to a “true” self-gravitating system. Conversely, v ′
c
≃ vc for large values of α,

where it behaves like a mean-field ferromagnet. Only for α ≃ 1 one has that v ′
c

is clearly

separated from both the minimum and vc , but these values of α have not been thoroughly

studied in [63, 64].

Moreover, the analysis that we will carry on the next Section suggest that such a phase tran-

sition may indeed exist but its effect on the thermodynamic quantities may be weak, so that

it may not be easy to detect numerically.

If such a phase transition exists, which phases does it separate? An answer may be suggested

again by an analysis of the potential energy landscape. Computing the number of negative

eigenvalues of the Hessian one can show that saddles qnπ with nπ < n c
π

are proper saddles,

i.e., their index is greater than zero, while saddles with nπ > n c
π

are minimum. Minima are

visited with high probability, at variance with higher-order saddles. One is thus lead to the

conjecture that for 〈v 〉 < v ′
c

the equilibrium phase is such that the fraction of particles that

may cross q =π, i.e., visit the whole circle, is zero, while it becomes nonzero as 〈v 〉> v ′
c
, i.e.,

at ǫ > ǫ′
c
.

2.3 An effective model obtained from SGR

In this Section, we introduce and discuss an effective model of SGR whose equilibrium ther-

modynamics can be solved in the microcanonical ensemble, up to a maximization with re-

spect to a single variable. Such a model can be derived from the SGR model, allowing a

quantitative comparison between the thermodynamics of the two. Originally, our main mo-

tivation for this study was to understand the possible presence (and in case the nature) of a

second phase transition suggested by the KSS criterion in the SGR model at potential energy

density v ′
c

given by Eq. (2.23).

Even if the effective model we present here does not give a definitive answer to this question,

a crossover and not a phase transition is indeed found in the effective model in the very low

energy region. This suggest that something similar could actually happen in the SGR model

and this is in accord with recent numerical works [68].

Apart from this, it turns out that the effective model has some interest in itself. Indeed, de-

spite the rather crude approximations involved in its derivation, it compares quite well with

the SGR model not only qualitatively but also quantitatively.
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In [39], we have also discussed the relation between the effective model presented here and

another model introduced by Thirring forty years ago. The two are indeed very similar, al-

though the latter was not aimed at approximating any particular explicit model. We do not

report here this analysis, because it would lead us a bit too far from the central theme of this

part of the Thesis, that is, the energy landscape approach to equilibrium phase transitions.

2.3.1 Effective model

We now want to approximate the SGR Hamiltonian in order to make it solvable, i.e., such

that the density of states can be explicitly computed.

Numerical simulations of the dynamics of the SGR model reported in [63] have shown

that, at a given energy, particles can be roughly divided into three classes according to their

dynamical behavior: cluster particles, gas particles, and halo particles. Cluster particles are

tightly bound in a cluster and never get far from it; gas particles move almost freely around

the ring; halo particles have a complicated dynamics that is somehow intermediate between

the other two. The relative population of particles in the three classes depends on the energy

(or temperature): at low energy almost all the particles are cluster particles, while at high

energy all the particles are gas particles.

The strategy we are going to implement in order to define an effective model is to con-

sider only the first two classes of particles (cluster and gas) and to assume that each particle

belongs to one of the two classes. This allows a simplification of the potential energy which

makes the model solvable.

Let us then assume that Ng particles, with 1≤Ng ≤N , are gas particles. We can split the

potential energy V into three parts:

V (q1, . . . ,qN ) = Vgas(q1, . . . ,qNg
)+Vcluster(qNg+1, . . . ,qN )+Vint(q1, . . . ,qN ) , (2.24)

where

Vgas(q1, . . . ,qNg
) = − 1

2N
p

2

Ng
∑

i ,j=1

v
�

qi −qj

�

, (2.25)

Vcluster(qNg+1, . . . ,qN ) = −
1

2N
p

2

N
∑

i ,j=Ng+1

v
�

qi −qj

�

, (2.26)

Vint(q1, . . . ,qN ) = −
1

N
p

2

Ng
∑

i=1

N
∑

j=Ng+1

v
�

qi −qj

�

, (2.27)

where

v (x ) =
1

p
1− cosx +α

. (2.28)

Up to this point we have only rewritten the potential energy in a different form. However,

this form naturally allows to introduce the approximations which make the model soluble.

Let us now discuss the approximations.
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(i ) Since the Ng gas particles are essentially free particles, as far as their interaction Vgas is

concerned, we consider them as uniformly distributed on the circle. The interaction

energy (2.25) between these particles is then a constant:

Vgas =−γ
N 2

g

2N
p

2
(2.29)

where

γ=
1

2π

∫ π

−π
v (x )d x =

2

π
p

2+α
K
�

2

2+α

�

(2.30)

andK (x ) is the complete elliptic integral of the first kind.

(i i ) We consider the N −Ng remaining particles as confined in a cluster. We assume the

cluster is tight, i.e., the particles are all close to each other:

qi −qj ≪ 1 ∀i , j =Ng +1, . . . , N . (2.31)

We can thus expand the interaction energy (2.26) among these particles up to the har-

monic order, and write

Vcluster =−
�

N −Ng

�2

2N
p

2α
+

1

8αN
p

2α

N
∑

i ,j=Ng+1

�

qi −qj

�2
; (2.32)

such an approximation is reliable if an assumption stronger than (2.31) holds, i.e.,

�

qi −qj

�2

α
≪ 1 ∀i , j =Ng +1, . . . , N . (2.33)

Moreover, since the particles in the cluster do not “feel” the S1 topology of the circle,

we assume that

−∞<qi <+∞, ∀i =Ng +1, . . . , N ; (2.34)

this will allow the analytical computation of the configurational integrals in the den-

sity of states.

(i i i ) As far as the interaction (2.27) between cluster and gas particles is concerned, we note

that as long as the assumption (2.31) holds, the typical distance between a gas particle

and a cluster particle is much larger than typical interparticle distances in the cluster,

so that we may assume that all the cluster particles are in the same location, i.e., q = 0.

Being the gas particles uniformly distributed on the circle, this yields a constant for

Vint, i.e.,

Vint =−γ
Ng (N −Ng )

N
p

2
, (2.35)

where γ is given by (2.30).
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The Hamiltonian of our effective model is then

Heff =
1

2

N
∑

i=1

p 2
i
+Veff , (2.36)

where

Veff =−V0(N , Ng ,α)+
µ

2

N
∑

i ,j=Ng+1

�

qi −qj

�2
, (2.37)

and where we have set

V0(N , Ng ,α) =

�

N −Ng

�2

2N
p

2α
+γ

�

Ng (N −Ng )

N
p

2
+

N 2
g

2N
p

2

�

(2.38)

and

µ=
1

2N (2α)3/2
. (2.39)

2.3.2 Microcanonical thermodynamics

Let us now discuss the solution of the effective model in the microcanonical ensemble; also

the canonical ensemble has been considered in [39] but we will not report the results here.

In the limit N →∞, at fixed Ng the model is exactly solvable in both ensembles. However,

Ng is not a priori assigned and must be fixed in a self-consistent way. The simplest way to

do so is to take into account all possible values of Ng ; as we shall show in the following, in

the limit N →∞ the model is still solvable up to a maximization in a single variable which

must be performed numerically, whose physical meaning is just to determine the value of

Ng that maximizes the entropy.

To solve the model in the microcanonical ensemble we need to calculate the entropy

density

s (ǫ) = lim
N→∞

1

N
logωN (ǫ) , (2.40)

whereωN is the density of states calculated for the HamiltonianHeff:

ωN (ǫ) =

∫ ∞

−∞
d p1 · · ·d pN

∫ π

−π
d q1 · · ·d qNg

∫ ∞

−∞
d qNg
· · ·d qN δ (Heff−Nǫ)

=

N
∑

Ng=0

N !

Ng !
�

N −Ng

�

!

∫ ∞

−∞
d p1 · · ·d pN

∫ π

−π
d q1 · · ·d qNg

(2.41)

×
∫ ∞

−∞
d qNg+1 · · ·d qN δ







1

2

N
∑

i=1

p 2
i
+
µ

2

N
∑

i ,j=Ng+1

�

qi −qj

�2−V0−Nǫ






.

In the above expression we have summed over all the possible choices of Ng , properly counted

by the degeneracy factor
� N

Ng

�

.
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The calculation of the above integral is straightforward, albeit a bit involved, and can be

performed following a procedure similar to that used in [55, 69]. The details are reported in

Appendix A.1. It turns out that the entropy density in the thermodynamic limit is given by

s (ǫ) = sup
n g ∈[0,n max

g (ǫ)]

s (ǫ, n g ) . (2.42)

where we have introduced the fraction of gas particles n g =
Ng

N
and n max

g
(ǫ) is the maximum

fraction of gas particles allowed at a given energy density ǫ, given by Eq. (A.15). The explicit

expression of s (ǫ, n g ) is

s (ǫ, n g ) =
1−n g

2
log

�

4π(2α)3/2

(1−n g )(2−n g )

�

+
1

2
log

�

2π
p

2

2−n g

�

+
2−n g

2

�

1+ log a (n g ,α,ǫ)
�

+n g log(2π) (2.43)

− n g log n g − (1−n g ) log(1−n g ) ,

with

a (n g ,α,ǫ) =
γ

2
p

2
n g (2−n g )+

�

1−n g

�2

2
p

2α
+ ǫ ; (2.44)

one can check that a (n g ,α,ǫ) > 0 if n g ∈ [0, n max
g
(ǫ)] and ǫ > ǫmin, where ǫmin = − 1

2
p

2α
is the

absolute minimum of the potential energy per degree of freedom.

As anticipated, the solution of the effective model in the microcanonical ensemble amounts

to finding the value n g (ǫ) of n g realizing the extremum in (2.42). This can be easily done nu-

merically, since the explicit form (2.43) of s (ǫ, n g ) is available.

Results for the thermodynamic quantities

In the following we report the results for the fraction of gas particles n g (ǫ) and for the caloric

curve, i.e., the temperature T (ǫ) =
�

d s

d ǫ

�−1
, as a function of ǫ. We also compare the lat-

ter quantity with that computed for the SGR model via the numerical method introduced

in [64]; for n g (ǫ) such a comparison is impossible, because no such quantity is easily defined

for the SGR model. In Fig. 2.2 we report n g (ǫ) and T (ǫ) computed for a softening parameter

α= 10−2, as well as a comparison with T (ǫ) for the SGR model; in Fig. 2.3 we report the same

quantities for α = 3× 10−5. The agreement with the SGR model is reasonably good already

at α= 10−2 and becomes very good at α= 3× 10−5. In both cases we find a phase transition

from a homogeneous phase (characterized by n g ≃ 1) to a clustered phase while lowering

ǫ below a critical value ǫc ; the critical energy is ǫc ≃ −0.46 for α = 10−2 and ǫc ≃ −0.8 for

α = 3× 10−5. These values should be compared with those found for the SGR model, i.e.,

ǫc ≃ −0.32 for α = 10−2 and ǫc ≃ −0.5 for α = 3× 10−5. The agreement is good, especially

for the lower value of α. In the case α = 10−2 the phase transition is continuous, while it is

discontinuous (the temperature T jumps between two different values at ǫc ) at α= 3×10−5.
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2.4 Conclusions

The interpretation of the KSS theorem in the form of the KSS criterion gave us the oppor-

tunity to study more complicated models than what done previously. Indeed, it is not nec-

essary to know all the critical points of the potential to apply the KSS criterion and it is not

necessary to invert the relation between critical points and critical energies.

We have discussed in this Chapter the application of the KSS criterion to the SGR model

which, at variance with the few models the criterion had previously been applied to, is not

exactly solvable. The KSS criterion, as formulated by us, has been applied to other models

later on [30, 31, 44, 74]. In particular, we will review the case of the short-range ferromag-

netic XY models in the next Chapter. We stress that such applications would not have been

possible using directly the KSS theorem instead of the KSS criterion.

In the case of the SGR model, the KSS criterion correctly singles out the phase transition

between a homogeneous and a clustered phase. We have also shown that the criterion indi-

cates the possible presence of another phase transition, not previously known, and we have

conjectured on its nature.

To understand the possible presence of such a second phase transition, we have constructed

a solvable effective model; unfortunately, this has not given a final answer to the question.

Indeed, the effective model does not present a phase transition at very low energies; how-

ever, there is a low-energy region where the fraction of gas particles n g is very small and

stays very small up to a certain energy where it starts rising rapidly. Just after our work, T.

Tatekawa [75] has performed precise numerical computations with the variational method

proposed in [64]without finding any evidence of the presence of a phase transition.

One could thus think that a weaker transition or a transitional phenomenon without a true

singularity of the thermodynamic functions occurs in the SGR model. According to the ef-

fective model, such transitional phenomenon should separate two phases, one in which all

the particles are bound in the cluster and the other one in which a finite fraction of parti-

cles is not bounded. The authors of [68] have performed very precise N -body simulations

and mean-field calculations with the method of [64] showing that such a crossover phe-

nomena actually happens in the SGR model in a similar way as in our effective model. The

energy value at which this phenomena occurs, however, does not quantitatively match with

v ′
c
. Analogously, the authors of [76] have performed a geometrical study of the energy land-

scape of the SGR model and found analogous results for geometric observables, known to

be very sensitive order parameters.

The effective model introduced here possesses an interest in itself: on the one hand it

is very similar to the Thiring model3 and, on the other hand, it provides a very accurate ap-

3The thermodynamical behavior of the Thirring model is qualitatively similar to our effective model; more-

over, the the fraction of particles belonging to V0 plays the same role as (1− n g ) in our effective model. We
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proximation of the thermodynamics of the SGR model for values of the softening parameter

such that the potential is very close to the gravitational one. It was not previously known

that such toy models can give a quantitative, and not only qualitative, description of the

thermodynamics of self-gravitating systems.

address the reader to [39] for further details.
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3
O(n ) spin models

This Chapter is devoted to the study of ferromagnetic short-range and long-range O(n )

models on hyphercubic lattices from an energy landscape perspective.

In Section 3.1, we discuss a very simple class of critical points of these models: all the con-

figurations of the Ising model defined on the same graph with the same interaction matrix

as the O(n ) model are stationary points. In Section 3.2, we review the application of the

KSS criterion to two and three-dimensional XY models with nearest-neighbor interactions,

which was been analyzed by Nerattini et al. in [43, 44]: the criterion does not single out the

energy at which the phase transitions are located.

To understand the mechanism by which the phase transition emerges, we thus construct in

Section 3.3 an approximate relation between the density of states of the O(n ) models and

the one of the Ising model, which ends with Eq. (3.14). By means of it we are lead to the fol-

lowing conclusion: if a O(n )model with ferromagnetic interactions on a lattice has a phase

transition, its critical energy density is equal to that of the n = 1 case, i.e., a system of Ising

spins with the same interactions.

We will see from numerical data that this conclusion is verified at least with an extremely

good accuracy, except for the case of two dimensions and n = 2, in which the agreement is

less good. Surprisingly, such a striking similarity between critical energies was not known

before.

The approximations needed to obtain Eq. (3.14) are not easily controlled. In Section 3.4, we

show that the same derivation can be followed rigorously in the cases of the one-dimensional

and mean-field XY models.

The content of this Chapter is mainly based on the results presented in [41, 42], except

for Section 3.2 in which the analysis performed by Nerattini et al. in [43, 44] is resumed.
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3.1 O(n ) spin models and Ising stationary configurations

We consider in this Chapter classical isotropic spin models defined on a lattice (or more

generally on a graph) with Hamiltonian

H (n ) =−
N
∑

i ,j=1

Ji j Si ·S j =−
N
∑

i ,j=1

Ji j

n
∑

α=1

Sa
i

Sa
j

, (3.1)

where i and j run over the N lattice sites and the classical spin vectors Si = (S
1
i , . . . ,Sn

i ) have

unitary norm, i.e.,
n
∑

a=1

�

Sa
i

�2
= 1 (3.2)

∀i = 1, . . . , N . The real matrix Ji j dictates the interactions; in case they are long-ranged a

normalization is understood such as to obtain an extensive energy, using e.g. the Kac pre-

scription.

The Hamiltonian (3.1) is globally invariant under the O(n ) group. In the special cases n = 1,

n = 2, and n = 3, one obtains the Ising, X Y , and Heisenberg models, respectively. The case

n = 1 is even more special because O(1) ≡ Z2 is a discrete symmetry group. In this special

case the Hamiltonian (3.1) becomes the Ising Hamiltonian

H (1) =−
N
∑

i ,j=1

Ji jσiσj , (3.3)

where σi =±1 ∀i . In all other cases n ≥ 2 the O(n ) group is continuous; each spin vector Si

lives on an n −1 unit sphere Sn−1.

In this Chapter, we will mainly consider O(n )models defined on hypercubic lattices and

ferromagnetic interactions non-vanishing only among nearest-neighbors. Their thermody-

namical behavior is a very classical topic in statistical mechanics: we only recall here that

all of them have a continuous phase transition in dimension greater than two and belong

to different universality classes. The case of two dimensions is peculiar: the Ising model

was solved exactly by Onsager and has a second order phase transition; the XY model has a

Berežinskij-Kosterlitz-Thouless transition and it is believed that no transition is present for

n > 2.

Let us now consider the stationary configurations of H (n ) for n ≥ 2, i.e., the solutions

S = (S1, . . . ,SN ) of the N vector equations ∇H (n ) = 0. The latter can be written as nN scalar

equations,

−
N
∑

j=1

Jk j S
a
j
+λkSa

k
= 0 , a = 1, . . . , n , k = 1, . . . , N , (3.4)
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where theλ’s are N Lagrange multipliers, plus the N nonlinear constraints in Eq. (3.2), which

prevent the above equations from being easily solved. However, a particular class of solu-

tions can be found by assuming that all the spins are parallel or antiparallel to a given direc-

tion (here the n-th direction of the spins):

S1
i
= · · ·=Sn−1

i
= 0 ∀i . (3.5)

In this case, the N (n−1) equations (3.4) with a = 1, . . . , n−1, corresponding to the first n−1

components of the spins, are trivially satisfied. As to the n-th component, the constraints

(Sn
i )

2 = 1 imply Sn
i =σi ∀i , so that the remaining N equations read as

−
N
∑

j=1

Jk jσj +λkσk = 0 , k = 1, . . . , N . (3.6)

The above equations are satisfied by any of the 2N possible choices of the σ’s provided one

puts

λk =
1

σk

N
∑

j=1

Jk jσj , k = 1, . . . , N . (3.7)

The Hamiltonian (3.1) becomes the Ising Hamiltonian (3.3) when the spins belong to this

class of stationary configurations.

Therefore we have a one-to-one correspondence between a class of stationary configura-

tions of the Hamiltonian (3.1) of a O(n ) spin model and all the configurations of the Ising

model (3.3), i.e., the Ising model defined on the same graph with the same interaction ma-

trix Ji j ; the corresponding stationary values are just the energy levels of this Ising Hamilto-

nian. We shall refer to the class of stationary configurations Si = (0, . . . , 0,σi ) ∀i = 1, . . . , N as

“Ising stationary configurations”.

We stress anyway that there are other stationary configurations [44] in these models and,

generically, not all of them are known except for the special cases of one dimension [31]

and mean-field interactions [13]. Nonetheless, we believe that the 2N Ising ones are a non-

negligible fraction of the whole, especially at large N because the number of stationary

points of a short-range potential is expected to be1 O (e N ) [77].

The above results hold for O(n ) and Ising models defined on any graph. From now on we

shall restrict to regular d -dimensional hypercubic lattices and to ferromagnetic interactions

Ji j > 0. In this case, in the thermodynamic limit N →∞ the energy density levels of the Ising

Hamiltonian (3.3),
1

N
H (1)(σ1, . . . ,σN ) , ∀σi =±1 , (3.8)

become dense and cover the whole energy density range of all the O(n )models.

1We use here the imprecise notation O (e N ) to indicate an exponential law of the form a N where a is a

positive constant.
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Finally, we want to highlight a property of the Ising configurations. If we perturb the

Hamiltonian (3.1) with external fields h i = (0, ..., hn
i ) parallel to a given direction (here the

n-th direction of the spins) but with a strength which can be different from site to site, that

is

H (n )
P =−

N
∑

i ,j=1

Ji j

n
∑

α=1

Sa
i

Sa
j
+

N
∑

i=1

hn
i

Sn
i

, (3.9)

still the Ising configurations are stationary points of the perturbed Hamiltonian. This is of

course not true generically for other stationary points.

All these facts made us suppose that the Ising configurations are not merely a subclass

of the stationary points of the O(n ) models but are actually the most important class. In

the following of this Chapter we will take seriously this statement to understand if some

prediction can be obtained from it.

3.2 Application of the KSS criterion to short range

systems

Nerattini et al. [44]have applied the KSS criterion to the two and three-dimensional XY mod-

els, defined by the Hamiltonian

H (2) =−1

2

N
∑

i=1

∑

j∈N (i )
cos(qi −qj ) , (3.10)

where N (i ) denotes the set of nearest neighbors and the lattice is an hypercubic lattice.

We review here the aspects of their work which are relevant for the following of this Thesis.

In their analysis, the authors have not only considered Ising stationary configurations but

also other classes of critical points. However, we will restrict here only to Ising stationary

configurations, because no much information is added by the others.

Even restricting only to Ising stationary configurations, the application of the KSS criterion

for these models is not trivial. The main problem is the following: given an Ising stationary

configuration it is simple to calculate its energy. However, the converse is not true: given

an energy at which we want to check if the KSS criterion holds, it is not straightforward to

construct Ising configurations at that energy.

The authors of [44] used MonteCarlo simulations on the Ising model to solve this prob-

lem and, once a large number of configurations with a given energy had been obtained,

they calculated the normalized determinant of the Hessian of the Hamiltonian and its index

divided by N . The results are shown in Fig. 3.1 and 3.2 for the two and three dimensional

cases. Of course this procedure does not fully sample the Ising stationary configurations.

However, we see that both the normalized determinant and the index divided by N show a

thermodynamical behavior, in the sense that they seem to converge to a single curve in the
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tions. To this end, let us first rewrite Eq. (1.8) as

ω(n )(ǫ) =
∑

p

∫

Up∩Σǫ

dΣ
�

�∇H (n )
�

�

(3.11)

where p runs over the 2N Ising stationary configurations and Up is a neighborhood of the

p -th Ising configuration such that
¦

Up

©2N

p=1
is a proper partition of the configuration space

Γ= (Sn−1)
N , that coincides with phase space for spin models (3.1). Since Ising configurations

are isolated points in the configuration space of a O(n )model, such a partition always exists.

Let us now introduce two assumptions allowing to write Eq. (3.11) in a more transparent,

albeit approximate, way:

(i ) We assume that the integrals in Eq. (3.11) depend only on ǫ, i.e., the neighborhoods U

can be chosen, or deformed, such as
∫

Up

δ(H (n )−Nǫ)dΓ=

∫

Uq

δ(H (n )−Nǫ)dΓ= g (n )(ǫ) (3.12)

for any p ,q such thatH (n )(p ) =H (n )(q ) =Nǫ.

(i i ) At a given value of ǫ, the largest contribution to ω(n )(ǫ) in Eq. (3.11) is likely to come

from those Up such thatH (n )(p ) = Nǫ, because ifH (n )(q ) 6= Nǫ then
�

�∇H (n )(x )
�

� 6= 0

∀x ∈Uq ∩Σǫ, unless a zero in
�

�∇H (n )(x )
�

� comes from a stationary configuration which

does not belong to the Ising class. Since it was assumed that non-Ising stationary

configurations could be neglected, only neighborhoods centered around stationary

configurations at energy density ǫ have been retained in the sum (3.11).

Hence, using assumptions (i ) and (i i ), Eq. (3.11) becomes

ω(n )(ǫ)≃ g (n )(ǫ)
∑

p

δ
�

H (n )(p )−Nǫ
�

. (3.13)

The sum in the r.h.s. of Eq. (3.13) is over Ising configurations, so that it equals the density of

states of the corresponding Ising model, that we shall denote byω(1)(ǫ). We can thus write

ω(n )(ǫ)≃ω(1)(ǫ) g (n )(ǫ) . (3.14)

We do not expect such relation to be exact for a general O(n )model. We will discuss in

the following of this thesis the validity of these hypotheses. For the moment, let us see which

predictions can be obtained from Eq. (3.14).

3.3.1 A striking similarity between critical energy densities

Were exact, Eq. (3.14) would imply that ifω(1)(ǫ) is nonanalytic at ǫ = ǫc , then alsoω(n )(ǫ) is

nonanalytic at ǫ = ǫc for any n , unless the function g (n )(ǫ) precisely cancels this nonanalyt-

icity, which seems a rather special case.
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Table 3.1 – Comparison of critical energy densities ǫc and critical temperatures Tc for ferro-

magnetic models with long-range (LR) interactions (first row) and nearest-neighbor inter-

actions on a d -dimensional hypercubic lattice (all the other rows). LR interactions means

here Ji ,j ∝ |i − j |α with 0≤α≤ d and the exact values for the two-dimensional Ising model

are given by ǫc =−
p

2 and Tc = 2/ log(1+
p

2)

model ǫc Tc derivation method

LR
Ising 0 1 exact solution

O(n ) 0 1/n exact solution [79]

d = 1
Ising -1 0 exact solution

O(n ) -1 0 exact solution

d = 2
Ising -1.414. . . 2.269. . . exact solution

O(2) -1.4457(4) 0.8929(1) numerical [80, 81]

d = 3

Ising -0.991(1) 4.5112(3) numerical [82]

O(2) -0.99184(6) 2.20167(9) numerical [83]

O(3) -0.9896(1) 1.44298(2) numerical [84]

There are very simple arguments that imply, or at least suggest, that Eq. (3.14) is not exact,

even in the thermodynamic limit N →∞, unless, again, g (ǫ) has some very special features:

with a generic g (ǫ) a density of states of the form (3.14) would not reproduce the known crit-

ical exponents of the O(n ) universality classes [78]; However, with a generic g (ǫ) Eq. (3.14)

correctly implies a negative value for the specific heat critical exponent of O(n ) spin models

(i.e., the specific heat of continuous models does not diverge at criticality, but rather has a

cusp-like behavior), see Appendix B.1 and the conclusions of this Chapter. This is a common

feature of O(n )models [78] and reinforces the belief that the approximation (3.14), although

rather crude, may properly capture the main features of the nonanalyticities of the density

of states when N →∞, as the location of such nonanalyticies. Therefore we put forward the

following

Conjecture. If a O(n ) spin model defined on a d -dimensional hypercubic lattice with Hamil-

tonian (3.1) and ferromagnetic interaction matrix Ji j > 0 has a phase transition, its critical

energy density ǫc = Ec/N is equal to that of the n = 1 case, i.e., a system of Ising spins with the

same interactions.

We stress that the above conjecture concerns the critical value of the control parameter

of the microcanonical ensemble, the energy density, and says nothing about critical tem-

peratures, which may well be different—and typically are— at different n .

We now discuss known results, both analytical and numerical, in order to assess the va-

lidity of this conjecture in some particular cases. The results we were able to collect are
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reported in Table 3.1. The conjecture is true for systems with long-range interactions on

d -dimensional lattices, Ji j = N (α/d )−1|i − j |−α with 0 ≤ α < d ; α = 0 is the mean-field case

of models defined on complete graphs with the same interaction strength between any two

sites, Ji j = 1/N . All these systems have a mean-field-like phase transition at the maximum

value of ǫ (ǫc = 0 with our choice of units), with critical temperatures Tc = 1/n [79]. We stress

again that critical energy densities are equal but critical temperatures are not and depend

on n . As to systems with nearest-neighbor interactions, ǫ ∈ [−d , d ] and the conjecture is

true for d = 1 at any n , although this case is somehow trivial because there is no transition

at finite temperature.

For d = 2, the Mermin-Wagner theorem rules out a long-range-ordered phase for any n > 1.

However, a remarkable transition between a disordered and a quasi-ordered phase occurs

for n = 2 (X Y model), usually referred to as the Berežinskij-Kosterlitz-Thouless (BKT) transi-

tion [85]. In Table 3.1 we report the best recent estimate of the critical temperature obtained

by Hasenbusch [81] and the corresponding critical energy density (estimated from a Mon-

teCarlo simulation of a system with 256×256 spins [80]). The difference between this value

and the exact value of the critical energy density of the Ising model on a square lattice is

around 2%. This difference, though small, appears significant since it is orders of magni-

tude larger than the statistical error on the numerical estimate of the energy. Based on this

result one should conclude that the conjecture is not verified in the case of the X Y model

in d = 2. However, we are comparing an exact result in the thermodynamic limit with a

numerical estimate of the energy on a finite lattice, whose statistical accuracy does not con-

sider the systematic error due to the finite size effects, which could be quite large in this

particular case [86, 87].

Moreover, also the precise determination of the critical temperature of the BKT transition

is a subtle and difficult task due to its elusive nature. This is witnessed by the remarkable

spread of values of Tc reported in different papers: the summary given in Ref. [87] shows that

estimated critical temperatures vary in the interval [0.88, 0.99]while Ref. [88] gave [0.85, 0.95]

as confidence interval for Tc . The energy values given in Ref. [80] corresponding to both

these temperature intervals do contain the Ising value ǫc =−
p

2; for instance, the tempera-

ture interval [0.85, 0.95] corresponds to ǫc ∈ [−1.48,−1.38]. We thus believe that the available

data are not conclusive as far as a confirmation of the conjecture is concerned in this par-

ticular case.

For d = 3 the comparison is entirely between simulation outcomes, since no exact solu-

tion exists even for the Ising case. Results in Table 3.1 show that the critical energy measured

for a O(2) spin system (X Y model) [83] is clearly consistent with that measured for the Ising

case [82]. The difference between the estimated ǫc of the O(3) case (Heisenberg model) [84]

and that of the Ising model is less than 1.5 times the error on the latter. Therefore the two

estimates are consistent if one considers quoted errors as standard statistical errors.
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Concluding, it would be very surprising if the conjecture proposed, being deduced from

the very approximate Eq. (3.14), would hold exactly. Preliminary numerical results we ob-

tained with a cluster MonteCarlo provided in the ALPS package [89], indeed indicate a very

small difference between critical energy densities also in the cases of d = 3; more work is

however needed to fully clarify this point.

Anyway, the striking similarities between critical energy densities, as well as the prediction

of a negative exponent for the specific heat suggests that some physics is actually captured

by the argument presented here. In order to better understand this point, we will now con-

centrate on the simpler possible system in the class of Hamiltonians (3.1).

3.4 The one-dimensional and mean-field XY models

The approximations which led us to the Eq. (3.14) are not under control, the argument we

presented being only qualitative. It is thus natural to ask if the argument of the previous

Section can be derived with controlled approximations, or even exactly, in those cases in

which the equality between critical energy densities holds. This is the scope of the present

Section.

We consider here the mean-field X Y model and the 1-dimensional nearest-neighbor X Y

model, i.e., two n = 2 representatives of the two classes of O(n ) models where the critical

energies are known to be exactly equal to that of the corresponding Ising model. We will

show that for these two models the following expression holds for any energy:

ω(n )(ǫ) =ω(1)(ǫ̃)G (n )(ǫ, ǫ̃) , (3.15)

where ǫ̃ is a suitable function of ǫ. The function ǫ̃ has the property that ǫ̃→ ǫc when ǫ→ ǫc ;

we thus recover Eq. (3.14 for ǫ→ ǫc .

The technical aspects of the derivation strongly rely on the peculiarities of the two models

so that we do not see an immediate possibility of generalization of the results derived in this

Section to generic O(n )models. This notwithstanding, we are convinced that our derivation

and results may help in understanding more deeply the relation between O(n ) and Ising

models, as we shall argue in the conclusions.

Sections 3.4.1 and 3.4.2 are devoted to the explicit derivation of the relation between

the Ising model density of states and the density of states of the mean-field X Y and 1-

dimensional X Y models, respectively. In Sec. 3.5 the results are discussed in a more general

perspective, with emphasis on generalization to general d dimensional lattices.

3.4.1 The mean-field X Y model

We shall now show that the density of states of the mean-field X Y model can be written in

the form (3.15), with ǫ̃→ ǫ when ǫ→ ǫc .
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The mean-field X Y model is a system of N globally coupled planar spins (or alternatively

of N globally interacting particles constrained on a ring), with Hamiltonian

HMF =−
1

2N

N
∑

i ,j=1

cos
�

qi −qj

�

, (3.16)

where qi ∈ [0, 2π), so that the configuration (or phase) space of the system is the torus TN .

This model has a mean-field phase transition from a ferromagnetic (or clustered, if one

thinks of particles) to a paramagnetic (or uniform) phase at ǫc = ǫmax = 0 and has been

thoroughly studied being one of the simplest models of systems with long-range interac-

tions [90]; it belongs to the class (3.1) with n = 2 and Ji j = 1/N . By introducing the magneti-

zation density vector m=
�

mx , my

�

, where

mx =
1

N

N
∑

i=1

cosqi , (3.17)

my =
1

N

N
∑

i=1

sinqi , (3.18)

(3.19)

we can write the total energy of the system as a function of the modulus m = |m| of the

magnetization density:

HMF =−
N m 2

2
. (3.20)

For X Y models, Ising stationary points are configurations where the angles qi differ from

each other by either 0 or π. Due to the O(2) invariance of the Hamiltonian, these stationary

solutions are not isolated but belong to a manifold. We make them isolated by fixing3 qN = 0,

so that the Ising stationary configurations are all the configurations q =
�

q i

	N

i=1 where the

angles are either 0 or π, and can be parametrized by the number Nπ of angles equal to π.

The configurations with given Nπ are

q i = π ∀ i = 1, . . . , Nπ (3.21)

q i = 0 ∀ i =Nπ+1, . . . , N (3.22)

and all the others obtained by permutations of the indices i . The number ν (Nπ) of such

configurations is given by the binomial coefficient

ν (Nπ) =
N !

Nπ!(N −Nπ)!
, (3.23)

3This does not affect the thermodynamics of the system in the N →∞ limit but for the fact that it chooses

the direction of the breaking of the O(2) symmetry below the critical energy density in such a way that
¬

my

¶

≡ 0

also in the broken symmetry phase.
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while their magnetization and energy density depend only on Nπ and are given by

m (Nπ) = mx (Nπ) =
N −2Nπ

N
= 1−2nπ , (3.24)

ǫ(Nπ) = −
m 2(Nπ)

2
=− (N −2Nπ)

2

2N 2
=− (1−2nπ)2

2
, (3.25)

where we have introduced the fraction of angles equal to π, nπ =Nπ/N .

Given a stationary configuration p =
�

q 1, . . . ,q N

	

, let us define the neighborhood

Up =















qi ∈
�

π

2
,

3π

2

�

if q i =π

qi ∈
�

3π

2
,
π

2

�

if q i = 0

(3.26)

so that {Up}2N

p=1 is a partition of the phase space TN . The density of statesωMF of the mean-

field X Y model can thus be written as

ωMF(ǫ) =

N
∑

Nπ=0

ν (Nπ)GMF(ǫ, Nπ) (3.27)

where

GMF(ǫ, Nπ) =

∫ 3π/2

π/2

d q1 · · ·d qNπ

∫ π/2

3π/2

d qNπ+1 · · ·d qN δ
�

HMF(q1, . . . ,qN )−Nǫ
�

. (3.28)

We note that ν (Nπ) given by Eq. (3.23) is nothing but the density of statesω(1)MF of the mean-

field Ising model

H (1)
MF =−

1

2N

N
∑

i ,j=1

σiσj , (3.29)

as a function of the number of “up” spinsσ= 1; using the relation (3.25) to obtain the energy

density ǫ′ of the Ising stationary configuration as a function of Nπ, Eq. (3.27) can be written

as

ωMF(ǫ) =
∑

ǫ′

ω
(1)
MF(ǫ

′)GMF(ǫ,ǫ′) , (3.30)

where the sum runs over the energy density levels of the Ising mean-field Hamiltonian (3.29).

It is important to stress that this result is a consequence of the fact that the energy of a Ising

stationary configuration depends only on Nπ and that all the neighborhoods Up with the

same Nπ contribute equally to the sum (3.27).

Let us now compute the function GMF defined in Eq. (3.28). To make the calculation

simpler it is useful to express GMF as a function of m instead of ǫ; one then gets back to

ǫ using Eq. (3.20). Since we fixed the magnetization to be along the x axis, the function
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GMF(m , Nπ) is given by

GMF(m , Nπ) = (3.31)

=

∫ 3π/2

π/2

d q1...d qNπ

∫ π/2

3π/2

d qNπ+1...d qN δ

 

N
∑

i=1

cosqi −N m

!

δ

 

N
∑

i=1

sinqi

!

.

Using the integral representation of the Dirac delta distribution, Eq. (3.31) becomes

GMF(m , Nπ) =

�

1

2π

�2
∫ 3π/2

π/2

d q1...d qNπ

∫ π/2

3π/2

d qNπ+1...d qN

∫ ∞

−∞
d q1

∫ ∞

−∞
d q2

exp



iq1

 

N
∑

i=1

cosqi −N m

!

 exp



iq2

 

N
∑

i=1

sinqi

!

 ; (3.32)

by writing

A(q1,q2) =

∫ 3π/2

π/2

d q e iq1 cosq+iq2 sinq , (3.33)

B (q1,q2) =

∫ π/2

3π/2

d q e iq1 cosq+iq2 sinq =

∫ 3π/2

π/2

d q e iq1 cos(q−π)+iq2 sin(q−π) , (3.34)

we get

GMF(m , Nπ) =

�

1

2π

�2
∫ ∞

−∞
d q1

∫ ∞

−∞
d q2 e N(−i mq1+nπ log A(q1,q2)+(1−nπ) log B (q1,q2)) . (3.35)

The integrals in Eq. (3.35) can be computed with the saddle-point method [91] in the

limit N →∞. The saddle point is given by q2 = 0 e q1 = −iγ, where γ ∈ R satifies the self-

consistency equation

m = nπ
I1(γ)− L−1(γ)

I0(γ)− L 0(γ)
+ (1−nπ)

I1(γ)+ L−1(γ)

I0(γ)+ L 0(γ)
; (3.36)

in Eq. (3.36), Ik (γ) are modified Bessel functions of order k and L k (γ) are modified Struve

functions of order k [92]. We can thus write, in the thermodynamic limit N →∞,

GMF(m , nπ) =

�

1

2π

�2

exp
¦

N
�

−mγ+nπ log Ã(γ, 0)+ (1−nπ) log B̃ (γ, 0)
�©

, (3.37)

where we have written nπ instead of Nπ since we are in the N →∞ limit, γmust be numeri-

cally determined solving Eq. (3.36), and the functions Ã and B̃ are

Ã(γ, 0) = π[I0(γ)− L 0(γ)] , (3.38)

B̃ (γ, 0) = π[I0(γ)+ L 0(γ)] . (3.39)
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Figure 3.3 – Numerical results for the function h(m ) defined in Eq. (3.42) for the mean-field X Y model.

The red (dotted) part of the curve is obtained by interpolation (see text).

We can thus write, in the large N limit, the density of states (3.27) as a function of m as

ωMF(m ) =

∫ 1

0

d nπ exp
�

N (−mγ+nπ log Ã(γ, 0)+ (1−nπ) log B̃ (γ, 0)−nπ log nπ− (1−nπ) log(1−nπ))
�

,

(3.40)

where we have neglected the subleading contributions in N . Again, the integral (3.40) can be

computed with the saddle-point method as N →∞, so that, given m and thus ǫ, only a par-

ticular value of nπ (and thus of m ′ and, in turn, of ǫ′) is singled out and the density of states

ωMF assumes the product form (3.15). The particular value of nπ which is singled out is the

one such that the exponent in Eq. (3.40) is maximum; it has to be computed numerically.

The saddle point on Eq. (3.40) singles out a value m̃ of the magnetization such that

ωMF(m ) =ω
(1)(m̃ )GMF(m , m̃ ) . (3.41)

In order to show that the value of m̃ as a function of m converges to m as m →mc , where

mc = 0 is the critical value of the magnetization, in Fig. 3.3 we plot the function

h(m ) =m − m̃ . (3.42)

Figure 3.3 shows that h→ 0 as m → 0, so that the density of statesωMF(m ) is such that

ωMF(m )→ω(1)(m ) g MF(m ) , (3.43)

where g MF(m ) =GMF(m , m ), for m →mc . More precisely, h appears to be a linear function of

m as m → 0, h(m )∝−m . When m → 1 the numerical procedure we used to compute h(m )

had some convergence problems. Since m = 1 implies h(m ) = 0 and nπ = 1, to avoid these

numerical problems the curve plotted in Fig. 3.3 in the range m ∈ [0.97, 1] has been evalu-

ated interpolating the numerical results obtained for m < 0.97 with the constraint h(1) = 0.
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Figure 3.4 – Numerical results for the function η(ǫ) = h(−
p

2ǫ) defined in Eq. (3.46) for the mean-field

X Y model. The red (dotted) part is obtained by interpolation (see Fig. 3.3 and text).

The interpolating curve is drawn in red and in dotted style in Figure 3.3. We stress that the

part of the curve relevant to the phase transition is that in the opposite limit, m → 0, where

the numerical procedure easily converges.

We can now go back to the energy, using ǫ =−m 2/2, and write

ωMF(ǫ) =ω
(1)(ǫ̃)GMF(ǫ, ǫ̃) , (3.44)

where ǫ̃→ ǫ as ǫ→ ǫc = 0. One can thus write, as ǫ→ ǫc ,

ωMF(ǫ)→ω(1)(ǫ) g MF(ǫ) , (3.45)

where g MF(ǫ) =GMF(ǫ,ǫ), for ǫ→ ǫc . Figure 3.4 shows the function

η(ǫ) = h(
p

−2ǫ) = ǫ− ǫ̃ ; (3.46)

as ǫ → ǫc = 0, η(ǫ) ∝ −
p
−ǫ. Since |η(ǫ)| is the difference between the energy ǫ̃ singled

out by the saddle point and the energy ǫ at which the density of states is calculated, it

somehow measures also the “distance” between the function GMF(ǫ, ǫ̃) and the function

g MF(ǫ) =GMF(ǫ,ǫ). From Fig. 3.4 we see that this difference reaches its maximum (roughly

equal to 1.2× 10−2) around the center of the energy density range. Comparing this value to

the width of the energy range itself we see that this difference is at most of the order of 2%.

3.4.2 The one-dimensional X Y model

Let us now consider the one-dimensional X Y model, which is a system of N planar spins

with nearest-neighbor coupling, described by the Hamiltonian

H1d =−
N−1
∑

i=1

cos
�

qi+1−qi

�

, (3.47)
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where, as in the mean-field X Y model, qi ∈ [0, 2π), so that the configuration (or phase) space

of the system is the torus TN . This model does not have a bulk broken symmetry phase; it is

ordered only in its state of minimum energy. Hence, the phase transition from a ferromag-

netic to a paramagnetic phase occurs at ǫc = ǫmin =−1, and at zero temperature. It belongs

to the class (3.1) with n = 2 and Ji j = 1 for i and j nearest-neighbors and zero otherwise.

As we shall see in the following, also for this model the density of states can be written as

ω1d (ǫ) =ω
(1)(ǫ̃)G1d (ǫ, ǫ̃) , (3.48)

where, in this case,ω(1) is the density of states of the one-dimensional Ising model

H (1)
1d =−

N−1
∑

i=1

σiσi+1 , (3.49)

and ǫ̃→ ǫ as ǫ→ ǫc = ǫmin. One can thus write, as ǫ→ ǫc ,

ω1d (ǫ)→ω(1)(ǫ) g 1d(ǫ) , (3.50)

where g 1d (ǫ) =G1d (ǫ,ǫ), for ǫ→ ǫc . The derivation follows very closely that of the mean-field

model, with a few differences that will be underlined.

Let us fix qN = 0, and leave open the boundary condition at the other side of the chain. As

in the mean-field case, the Ising stationary configurations are those where the angles q are

either 0 or π. However, their energy is no longer parametrized by Nπ. On an Ising stationary

configuration, the energy can be written as

H1d (q 1, . . . ,q N−1) =H
(1)

1d = 2Nd −N +1 , (3.51)

where Nd is the number of the domain walls in the configuration, i.e., the number of flips

between q = 0 and q =π (and viceversa) along the chain. This implies that one can no longer

use the definition (3.26) of the neighborhoods Up to build the partition of the configuration

space, because this would imply that stationary points with the same energy would give

different contributions.

Let us then change variables from (q1, . . . ,qN ) to (x1, . . . ,xN ) as follows:







xk = qk+1−qk if k = 1, . . . , N −1,

xN = qN = 0 .

(3.52)

In the new variables the Ising stationary points are still such that x k = 0 or x k = π, but now

the energy is given in terms of the number of x ’s equal to π, because the number of domain

walls Nd is precisely that number. One can thus define the partition of the configuration
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space using the neighborhoods Up defined as

Up =















x i ∈
�

π

2
,

3π

2

�

if x i =π

x i ∈
�

3π

2
,
π

2

�

if x i = 0

(3.53)

and write the density of states of the 1-d X Y model as

ω1d (ǫ) =

N−1
∑

Nd=0

ν (Nd )G1d (ǫ, Nd ) (3.54)

where

ν (Nd ) =
(N −1)!

Nd !(N −Nd −1)!
(3.55)

is the number of Ising configurations with Nd domain walls, i.e., the density of statesω(1)(ǫ′)

of the one-dimensional Ising model with energy density

ǫ′ =
2Nd −N +1

N
, (3.56)

and

G1d (ǫ, Nd ) =

∫ 3π/2

π/2

d x1 · · ·d xNd

∫ π/2

3π/2

d xNd+1 · · ·d xN−1δ

 

−
N−1
∑

k=1

cosxk −Nǫ

!

. (3.57)

The computation then proceeds following very closely what already done for the mean-field

case. The 1-d case is even simpler, because one can directly compute G1d as a function of

the energy density, without the need to consider it as a function of the magnetization. Using

the integral representation of the δ and integrating on the x variables we can write in the

large N limit

G1d (ǫ, n d ) =
1

2π

∫ ∞

−∞
d q exp

�

N
�

−iqǫ+n d logb (q )+ (1−n d ) log a (q )
�	

, (3.58)

where n d =Nd /N and the functions a and b are given by

a (q ) =

∫ π/2

3π/2

d x exp
�

−iq cosx
�

, (3.59)

b (q ) =

∫ 3π/2

π/2

d x exp
�

−iq cosx
�

. (3.60)

Performing again a saddle point with q =−iγwe get, in the N →∞ limit,

G1d (ǫ, n d ) =
1

π
exp

¦

N
�

−γǫ+n d log b̃ (γ)+ (1−n d ) log ã (γ)
�©

, (3.61)
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where

ã (γ) = Ã(γ, 0) , (3.62)

b̃ (γ) = B̃ (γ, 0) , (3.63)

with Ã and B̃ given by Eqs. (3.38) and (3.39), respectively, and where γ satisfies the self-

consistency equation

ǫ = (1−n d )
I1(γ)− L−1(γ)

I0(γ)− L 0(γ)
+n d

I1(γ)+ L−1(γ)

I0(γ)+ L 0(γ)
. (3.64)

We can thus realize that Eqs. (3.61) and (3.64) coincide with the same equations derived for

the mean-field case, i.e., Eqs. (3.37) and (3.36), provided
(

m → ǫ

nπ → 1−n d

(3.65)

The latter reflect the fact that in the 1-d case the transition occurs at the minimum value of

ǫ instead of at the maximum.

From now on, the calculation of ω1d (ǫ) is exactly the same as that of ωMF(m ), with the

substitutions (3.65). A given value of ñ d of n d will be singled out, which corresponds to an

energy density ǫ̃ via Eq. (3.56). We thus obtain

ω1d (ǫ) =ω
(1)(ǫ̃)G1d (ǫ, ǫ̃) , (3.66)

where ǫ̃→ ǫ as ǫ→ ǫc = ǫmin; more precisely, defining the function

ζ(ǫ) = ǫ− ǫ̃ = h(m = ǫ+1) , (3.67)

where h(m ) is the function (3.42) defined for the mean-field X Y model, we have that ζ→ 0

when ǫ → ǫc = ǫmin = −1, and in particular ζ ∝ −(1+ ǫ) for ǫ close to ǫc = −1. If one plots

ζ as a function of ǫ one thus obtains exactly the same curve reported in Fig. 3.3, with the

horizontal axis shifted so that ǫ ∈ [−1, 0]. Since |h(m )| is maximum for m ≃ 0.75, the function

|ζ(ǫ)| reaches its maximum value (roughly equal to 0.15) around ǫ ≃ −0.25; the maximum

difference between ǫ and ǫ̃ in this case is around 15% of the full energy density range, larger

than in the mean-field case.

3.5 Conclusions

In this Chapter we have analyzed the energy landscape of ferromagnetic O(n )models with

short and long range interactions. We have shown that every configuration of the Ising

model defined on the same graph and with the same interaction matrix as the O(n )model

is a stationary configuration of the O(n )model with n > 2.
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The KSS criterion, thanks to the formulation given in Chapter 2, has been applied by Ner-

attini et al. [44] in the cases of two and three dimensional ferromagnetic nearest-neighbors

XY models. However the criterion is not predictive because it does not single out any en-

ergy value at which the phase transition should be located. We do not expect differences

considering short-range O(n )models.

Analyzing, from an energy landscape perspective, the mechanism by which the phase

transition in O(n ) models should emerge, we arrived to an approximate relation between

the density of states of O(n ) models and the one of the Ising model defined on the same

lattice with same interactions. This approximate relation is given in Eq. (3.14). Even if we do

not expect this relation to be exact, it led us to the conjecture on a striking relation between

the critical energy densities of O(n )models.

Available analytical and numerical data are consistent with the conjecture, with the excep-

tion of the O(2) case in d = 2. Preliminary numerical results for O(n )models with power-law

decaying interactions 1/|i − j |α with α> d as well for short-range O(n )models in dimension

greater than three and/or n > 3, show that the conjecture is still well verified.

In the case of d = 2 and n = 2, i.e. the Berežinskij-Kosterlitz-Thouless transition, the

conjecture does not hold but available data seem not conclusive. In our opinion, more pre-

cise numerical estimates of the critical energy of the BKT transition would be very inter-

esting, as well as estimates of other critical parameters made using the conjectured value

of ǫc . Besides yielding an exact value for the critical energy of the BKT transition, a con-

firmation of the conjecture for the X Y model in two dimensions might hint at a stronger

version of the conjecture. Such a stronger conjecture would be that any O(n ) spin model

on a d -dimensional hypercubic lattice has a phase transition at the critical energy density

of the d -dimensional Ising model, even for n > 2 in d = 2. We note that the presence of a

phase transition in O(n )models at any n in two dimensions has already been suggested by

Patrascioiu et al. [93,94]. Although, to the best of our knowledge, no direct evidence of such

a transition has been found yet and the scenario is believed to be unlikely on the basis of

numerical simulations [95–97], the possibility remains that the transition exists but is weak

and elusive: our conjecture might help in finding it, suggesting where to look at.

Equation (3.14) has been derived with approximations which are not under control. For

this reason, we have shown that the argument leading to Eq. (3.14) can be followed rigor-

ously in the cases of 1-d and mean-field XY models. The relation between their density of

states and the one of the Ising model is given by Eq. (3.15), which reduces to Eq. (3.14) for

ǫ→ ǫc . These two models are very special and both of them are exactly solvable in the mi-

crocanonical ensemble. This feature is crucial for the derivation we have presented. As a

consequence, a generalization of these results to O(n )models with short-range interactions

on a d -dimensional lattice is not straightforward at all, the difficulties being similar to ex-

actly solving their thermodynamics in the microcanonical ensemble.
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Our work on 1-d and mean-field XY models confirms that Eq. (3.14) cannot be exact for

a generic value of the energy density; at most, it could be valid for ǫ = ǫc . Indeed, we already

pointed out that the relation (3.14) could not hold with an equality for a generic O(n )model,

since the specific heat critical exponent α of a O(n )model would then have the correct sign,

but the wrong absolute value. More precisely, Eq. (3.14) implies that if αI is the microcanon-

ical specific heat exponent of the Ising model on a given lattice, then the microcanonical

specific heat exponent of the O(n )model on the same lattice and with the same interactions

is α = −αI , regardless of n . In d = 3, for instance, this yields the correct sign of the O(n )

exponents, because αI > 0 so that α < 0; the O(n ) specific heat is not divergent, but cuspy

at the transition. However, the absolute value of the exponent is wrong, because it should

depend on n , as shown by well-established results for the O(n ) universality classes [78].

In principle, our results could apply to more general models, like those with competing

interactions or frustration; however, in this case the overlap of the energy ranges between

Ising and O(n )models is no longer guaranteed so that further work is needed to understand

whether such generalization may be possible.

Following the argument that led us to Eq. (3.14) with approximations that can be taken

under control, is a completely open issue for the moment. Some results in this direction

would be of interest: they would help, for example, in a deeper understanding of the striking

similarity between critical energy densities of ferromagnetic models on hypercubic lattices

and would shed light on the generality of the phenomena for different models. We are cur-

rently working in collaboration with L. Casetti and R. Nerattini in this direction.

As a starting point, we write the density of states as a sum over Ising configurations

ω(n )(ǫ) =
∑

p

C̃ (p ,Up ,ǫ) , (3.68)

where C̃ are given by

C̃ (p ,Up ,ǫ) =

∫

Up

dΓδ(H (n )−Nǫ) ; (3.69)

the variable dependence of C̃ means here that, in general, it depends both on the Ising con-

figuration p and on the choice of the set Up . The exact evaluation of Eq. (3.69) is a task as

difficult as the exact solution of the density of states of the O(n )model and thus it is, in the

case of short-range systems and d > 1, not achievable.

We believe that some results can be obtained by approximating the continuous weights C̃ .

Possible techniques may be a harmonic expansion ofH (n ) around every Ising configuration

and a local mean-field approximation, as developed in [43].

Once that the C̃ (p ,Up ) are approximated, they will generically depend on some parameters,

instead of depending on p and Up :

C̃ (p ,Up ,ǫ)≃C (z(p ),ǫ) , (3.70)
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where z(p ) is a vector of intensive parameters whose value is given by the Ising configura-

tion p . For example, using a harmonic expansion ofH (n ), these parameters are the index

(divided by N ), the determinant (raised to 1/N ) of the Hessian ofH (n ) evaluated on p and

the energy density of the stationary configuration ǫp =H (n )(p ).

We can thus approximate the full density of states in the following way:

ω(n )(ǫ)≃
∑

z

Ω(z)C (z,ǫ) , (3.71)

whereΩ(z) is a degeneracy factor, due to the fact that many distinct Ising configurations can

give the same continuous weight. In general, both Ω(z) and C (z,ǫ) satisfy a large deviations

law:

Ω(z)≃N≫1 exp [N s (z)] (3.72)

C (z)≃N≫1 exp [N c (z)] . (3.73)

If one is able to evaluate (analytically or numerically) the large deviation functions s and

c , Eq. (3.71) can be obtained with a saddle point procedure. If the computation of c usu-

ally does not pose much problems, because the approximations to evaluate the continuous

weights can be chosen appropriately, s is usually harder to be obtained. For example, in

the case of the harmonic approximation, Ω(z) gives the number of Ising configurations at

energy density ǫp with a given index and a given value of the determinant: the evaluation

of this quantity with numerical techniques (such as MonteCarlo simulations) is not a trivial

task and we are currently working to understand how to handle such a problem.
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Conclusions and perspectives

A number of results, some focused on specific models, others trying to shed light on the

general mechanisms, appeared in last years trying to connect equilibrium phase transitions

and energy landscape properties [35, 36] of classical Hamiltonian systems. However, a gen-

eral picture is still lacking; one of the main obstacles is that only very simple systems, mean-

field and one-dimensional, could be studied, being necessary to know all the saddles of the

potential energy to apply these techniques or to verify the proposed ideas and conjectures.

The main scope of our work was to study models whose energy landscape is much more

complicated than what previously done, developing techniques and approximations which

do not need the knowledge of all the stationary points to be applied. The drawback is that,

often, the approximations we used are not under control. This notwithstanding, we have

obtained some interesting result, mainly on the applicability of the so-called KSS criterion

and on the critical behavior of ferromagnetic O(n )models on hypercubic lattices.

In parallel to our work, Kastner et al. [59, 60] have found a counterexample to the Fran-

zosi and Pettini theorem, see Section 1.5. The implications of such results have still to be

explored. In particular, it seems that the flaw in the theorem 1.2.1 stands in a forgotten hy-

pothesis, used in the proof but not stated.

From a qualitative point of view, this additional hypothesis corresponds to the request that

“topology changes cannot happen neither asymptotically”. If this is true, not only stationary

points at finite N but also points that become stationary only in the N →∞ limit may be at

the origin of phase transitions. We observed that such scenario is actually natural, because

it is very simple to destroy stationary points without altering the thermodynamics of a sys-

tem; on the other hand, a property like the one stated above should not be altered unless

the external fields or change in the boundary conditions are so strong that even the ther-

modynamical behavior changes. The fact that this results are very recent (and in part not

published) makes mandatory to revisit them with care before drawing any conclusion. We

want to underline that these observations have not influenced the works presented in this

thesis mainly because they have been obtained after ours.

In [37,38] a theorem which gives necessary conditions such that the saddles of the poten-

tial energy of finite systems can induce a phase transition in the thermodynamic limit has

been proven. Our reformulation of the KSS theorem as a criterion for searching phase tran-

sitions, the KSS criterion, gave the possibility to study systems in which not all the stationary

points are known. We have applied the KSS criterion to the SGR model and we have shown

that it correctly singles out the phase transition between a homogeneous and a clustered

phase. We have also shown that the criterion indicates the possible presence of another

phase transition, not previously known, and we have conjectured on its nature constructing
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an effective model of the SGR. We have also seen that the effective model possess an interest

in itself, providing a very accurate approximation of the thermodynamics of the SGR model

for values of the softening parameter such that the potential is very close to the gravitational

one. It was not previously known that such toy models can give a quantitative, and not only

qualitative, description of the thermodynamics of self-gravitating systems.

Initially we had the impression that the KSS criterion may be a useful instrument for the

search of phase transitions in non-exactly solvable models. However, we rapidly realized

with the results in [30, 31, 74] and in particular with those concerning the short-range XY

models [44] reviewed in Chapter 3, that this is not the case. The KSS criterion is not able to

single out the phase transition in short-range ferromagnetic XY models and it is quite safe

to say that the same thing should happen for any short-range ferromagnetic O(n )model.

We thus asked, from an energy landscape point of view, if it is a different mechanism that

causes the presence of the phase transition in O(n )models. This led us to an approximate

relation, given in Eq. (3.14), between the density of states of O(n )models and the one of the

Ising model defined on the same lattice with same interactions. Even if we do not expect

this relation to be exact, it led us to our conjecture on a striking relation between the critical

energy densities of O(n )models.

We thus compared the conjecture with analytical and numerical data available in literature,

finding a very good agreement with the exception of the O(2) case in d = 2, in which the

difference between critical energies is around 2%. Preliminary numerical results for O(n )

models with power-law decaying interactions 1/|i − j |α with α > d as well for short-range

O(n )models in dimension greater than three and/or n > 3, show that the conjecture is still

well verified in these cases. It would be very surprising if the conjecture proposed, being

deduced from the very approximate Eq. (3.14), would hold exactly. Anyway, the striking

similarities between critical energy densities, as well as the prediction of a negative expo-

nent for the specific heat suggests that some physics is actually captured by our argument.

Besides yielding an exact value for the critical energy of the BKT transition, the conjecture for

the X Y model in two dimensions might hint that any O(n ) spin model on a d -dimensional

hypercubic lattice has a phase transition at the critical energy density of the d -dimensional

Ising model, even for n > 2 in d = 2. The presence of a phase transition in O(n )models at

any n in two dimensions has already been suggested in literature [93, 94] and believed to

be unlikely on the basis of numerical simulations [95–97]. However, the possibility remains

that the transition exists but is weak and elusive: our conjecture might help in finding it,

suggesting (at least approximately) where to look at.

The approximations leading to Eq. (3.14) are not under control, but it seems from the

arguments above that some physics is actually captured. As a first step in understanding

with more rigor the argument which led us to Eq. (3.14), we concentrated on the simplest
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cases possible, the 1-d and mean-field XY models, showing that the argument leading to

Eq. (3.14) can be followed rigorously. The relation between their density of states and the

one of the Ising model is slightly more general, see Eq. (3.15), but reduces to Eq. (3.14) for

ǫ that tends to ǫc . Unfortunately, these results have been obtained using the fact that these

models are exactly solvable and we see no direct generalization for short-range systems. We

are currently working in collaboration with L. Casetti and R. Nerattini to try to develop some

approximation that may enable to follow the argument leading to Eq. (3.15) with approxi-

mations that can be taken under control.
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Part II

Perturbed long-range interacting systems
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tems is usually characterized by the time scales that govern the equations of motion of the

elementary constituents [110]. For systems without disorder, these time scales are typically

small when compared to the observational time scales. Sometimes these systems can be

trapped in metastable states that last for long times. These states are local extrema of ther-

modynamic potentials and, in practical cases, their realization requires a very careful prepa-

ration of the system (e.g. undercooled liquids and superheated solids). If perturbed, the

system rapidly converges towards the equilibrium state.

For long-range systems, dynamics can be very slow and the approach to equilibrium can

take a very long time, that increases with the number N of elementary constituents [98,102,

111]. This feature is induced by the long-range nature of the interaction itself and is not a

consequence of the existence of a collective phenomenon. The state of the system during

this long transient is usually quasi-stationary [112, 113], since its very slow time evolution

allows us to define slowly varying macroscopic observables, like for local equilibrium or

quasi-static transformations. It should be however remarked that Quasi-Stationary states

(QSSs) are not thermodynamic metastable states, since they do not lie on local extrema of

equilibrium thermodynamic potentials.

The emergence of Quasi-Stationary states is nowadays well understood in terms of ki-

netic theory which is, as well as the Boltzmann kinetic theory, a perturbative approach to

the macroscopic evolution of the system. However, at variance to the case of perfect gases,

the small parameter here is 1/N . At leading order one obtains the Vlasov equation, which

is simply the mean-field approximation of the dynamics of the system. Stationary and sta-

ble solutions of the Vlasov equation are the QSS of the N -body system. At next order in

1/N , one obtained the Lenard-Balescu equation, first obtained independently in [114] and

in [115], which describes the slow evolution of a particle system with long-range interactions

from the initial condition to the final Maxwell-Boltzmann equilibrium through a sequence

of Quasi-Stationary States.

Most of these features are well known in plasma physics and astrophysical commu-

nity since a long time [98, 102, 111]. They have attracted some attention in last years, in

which much study has been devoted to simplified systems with long-range interactions,

where numerical simulations can be performed with high precision: we address the reader

to [90, 106, 107] for recent reviews and for broad discussions on the study of simplified

models with long-range interactions. Still, some important questions remain open, among

which: the possible selection of periodic solutions of the Vlasov equation instead of a QSS;

the complete understanding of the timescales for the relaxation to equilibrium, especially

when the system remains trapped in a non-homogeneous QSS; the rigorous derivation of

the equations of the kinetic theory (especially the Lenard-Balescu equation); the construc-

tion of controllable laboratory experiments in which the peculiarities of long-range inter-

acting systems may be studied [116]. However, the general setting on which studying these

68



features is well settled.

On the other hand, much less is known on the behavior of long-range interacting sys-

tems under the effect of external driving. In this thesis we start to work in this direction,

considering perturbations which evolves both deterministically and stochastically in time.

We think this second case to be of particular interest and most of our work has been devoted

to the of study long-range interacting systems driven away from equilibrium by external

stochastic forces.

Our work stands at the edge between the study of long-range interacting systems and the

study of non-equilibrium systems [117–120], where stationary states are sustained by fluxes

of conserved quantities. The main difference with most of the studies in non-equilibrium

statistical mechanics, is that short-range interacting systems are naturally coupled locally to

the driving forces: for example, thermostats act at the boundary of a short-range interacting

system or independently on each degree of freedom (such as in the case of mesoscopic par-

ticles in water). On the other hand, long-range interacting systems are naturally acted upon

by fields that couple coherently to all the degrees of freedom.

This situation is classical in geophysical flows, in which large scale structures are often

observed [104, 105, 108], such as strong jet streams, atmospheric cyclones or ocean currents

which stands for very long times with respect to the internal dynamical time-scales. Such

large scale structures emerge from a balance between energy injection provided by the en-

vironment and dissipation due to boundaries effects.

Also long-range interacting particle systems are often acted upon by external stochastic

forces, which can be due to the effect of the environment, such as in self-gravitating sys-

tems [121, 122] or to imposed external electric or magnetic fields [123].

In this part of the thesis, we present a generalization of the theoretical and numerical

techniques, well developed for isolated long-range interacting systems, to study the behav-

ior of systems driven away of equilibrium. Because of technical reasons, the analysis of

particle systems is simpler than for fluid models; we thus concentrated mainly in the first

case, the generalization of our results to turbulence models being one of the most interest-

ing perspectives of our work. This part of the thesis is structured as follows:

Chapter 4 In this first Chapter, we mainly review the kinetic theory description of isolated

long-range interacting particle systems. We present phenomenologically their intrigu-

ing slow relaxation to the Maxwell-Boltzmann equilibrium and the presence of QSSs

in which the system remains trapped for a time-scale diverging with the system size.

This behavior can be understood using kinetic theory, which is a perturbation theory

in the small parameter 1/N . At leading order in kinetic theory, one obtains the Vlasov

equation and at next order the Lenard-Balescu equation. Developing the kinetic the-

ory, we also present the phenomena of the Landau damping for homogeneous states.
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The results in this Chapter are very classical in plasma physics and astrophysics; how-

ever, the derivation of the Lenard-Balescu equation as presented here is in some way

original. The generality with which we derive the Lenard-Balescu equation will be use-

ful in the following of the thesis for the derivation of kinetic theories for stochastically

forced systems, in Chapter 6 and 7, and will be contained in [124].

Chapter 5 presents the content of [125]. For short-range interacting systems, Kubo linear

response theory is a very classical and fundamental result which describes how a sys-

tem prepared in equilibrium responds to a small external perturbation. Long-range

interacting systems, however, are often found trapped in QSS; Kubo theory is of little

utility here.

As a first step in understanding the effect of perturbations on systems with long-range

interactions, we consider here the following situation: we prepare a long-range inter-

acting system in a QSS and we apply a (small) external field which evolves determin-

istically in time. We show that a formula similar to the Kubo formula holds, where

the differences arise from the non-linearity of the Vlasov equation in contrast to the

Liouville equation. Explicit predictions can be simply obtained for systems homoge-

neous in coordinates, using techniques very similar to those presented in Chapter 4 to

obtain the Landau damping. Theoretical predictions are successfully compared with

N -body simulations. Our results have been recently generalized to some case of non-

homogeneous initial states by Ogawa et al. [126] and by Patelli et al. [127].

Chapter 6 presents the content of [128] and [129]. We consider here a long-range interact-

ing particle system stochastically forced by external fields which act coherently on all

particles: one should think to these fields as electric fields, gravitational fields, etc. In

situations of stochastic driving, the systems at long times often reach a nonequilib-

rium stationary state that violates detailed balance. In such a state, the power injected

by the external random fields balances on average the dissipation, and there is a steady

flux of conserved quantities through the system.

Beside the fact that we are dealing with long-range interacting systems, the study of

nonequilibrium stationary states (NESS) is an active area of research of modern day

statistical mechanics. Our work provides, to the best of our knowledge, the first study

of NESS in long-range systems with statistical mechanical perspectives.

The main theoretical results of this Chapter is a detailed development of a generaliza-

tion of the kinetic theory for isolated long-range systems to describe nonequilibrium

stationary states in systems with long-range interactions driven by external stochas-

tic forces, valid in the limit of small external stochastic fields and for homogeneous

systems. Our kinetic theory is quite general, being applicable to any long-range in-

teracting system composed by particles. In the limit of small external forcing. The
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predictions of our kinetic equation for spatially homogeneous stationary states com-

pare very well with results of our extensive N -particle numerical simulations on the

stochastically forced HMF model.

Moreover, we study numerically how the phase transition at equilibrium is altered

when the detailed balance is broken. We demonstrate the occurrence of bistability

between homogeneous and non-homogeneous states, with a mean residence time

that diverges as an exponential in the inverse of the strength of the external stochas-

tic forces. Similar bistable behavior has recently been observed in two-dimensional

turbulence with stochastic forcing and thus look as a quite general phenomena for

stochastically driven long-range interacting systems.

Chapter 7 contains preliminary results. A very interesting situation in which a long-range

interacting system is acted upon by random fields comes from geophysics, in which

two-dimensional and quasi two-dimensional turbulence models are often used to ex-

plain the emergence of large scale structures with very long life times. In these cases,

the effect of the environment resulting in turbulent fluctuation acting at small spa-

tial scales, is not negligible, and some friction is present at large spatial scales due to

boundary effects. Again, the system reach stationary states in which fluxes of energy

and other conserved quantities break the detailed balance.

The situation is very analogous to the one studied in Chapter 6, so that one can hope

that the theory there developed for particle systems is generalizable to the present

case. From a phenomenological point of view, there are some efforts in this direction

in literature, see for example [130–134], going under the name of second order closure

expansion or stochastic structural stability theory. In this Chapter, we start the study

of the problem from a theoretical point of view, identifying the forcing amplitude as

the small parameter in which the kinetic theory is a perturbation theory. It is of in-

terest to develop a theoretical framework at least for two reasons: to clarify when the

kinetic theory gives reliable predictions and to find the simplest possible way to ob-

tain explicit results on the stationary state attained and on the evolution of the mean

flow. We show that the theory is well posed and we describe how to obtain explicit

predictions. However, we do not discuss explicit numerical results, being only partial

for the moment.

Conclusions and perspectives We resume the work presented and we discuss the perspec-

tives of this part of the thesis.
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4
Isolated long-range interacting systems

In this introductory Chapter we present a brief review of isolated long-range interacting sys-

tems in which the degrees of freedom are particles. Even if these systems show a peculiar be-

havior both for what concern the equilibrium and the relaxation to equilibrium [90], we only

concentrate here on this second aspect, discussing the kinetic theory [98, 102, 111, 135, 136].

Isolated long-range interacting particle systems show an intriguing slow relaxation to

the Maxwell-Boltzmann equilibrium. Starting from an arbitrary initial condition, they often

remain trapped in out of equilibrium states, called Quasi-Stationary State (QSSs), whose

lifetime diverge with the system size; the QSS in which the system remains trapped depends

on the initial condition. Only after a time diverging algebraically with the system size, the

system relaxes to the Maxwell-Boltzmann equilibrium. Such behavior can be understood

using kinetic theory, which is a perturbation theory in the small parameter 1/N , where N is

the number of particles.

At leading order in kinetic theory, one obtains the Vlasov equation, which is the mean-

field approximation of the dynamics of the system. Vlasov equation is an infinite dimen-

sional dynamical system and posses an infinite number of stationary states. If a given sta-

tionary states of the Vlasov equation is stable with respect to small perturbations, starting

close to it the N -body system remains close for long times, until when corrections to the

Vlasov equation have to be taken into account. Stationary and stable states of the Vlasov

equation are the QSS of the N -body system.

At next order in the parameter 1/N , one can take into account two particles correla-

tions while discarding three-particle and higher-order correlations. This is the analogous in

the Boltzmann theory of taking into account two-body encounters while discarding three

body and higher order encounters. We will show that this is a self-consistent procedure

(even if not rigorously founded) for long-range interacting systems in the large N limit. One

thus arrives to the Lenard-Balescu equation, independently obtained in [114] and [115]. The

Lenard-Balescu equation describes the slow evolution of a particle system with long-range

interactions from the initial condition to the final Maxwell-Boltzmann equilibrium through

a sequence of Quasi-Stationary States.
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CHAPTER 4. ISOLATED LONG-RANGE INTERACTING SYSTEMS

The Chapter is organized as follow: in Section 4.1 we introduce isolated particle systems

with long-range interactions and we set some notations; we also introduce the Hamiltonian

Mean Field (HMF) model, a simplified system with long-range interactions. In Section 4.2

we discuss numerical simulations showing the existence of QSSs and the relaxation to equi-

librium in the HMF model. Then, we introduce the kinetic theory. In Section 4.3, we discuss

the BBGKY hierarchy of a long-range interacting system and its closures. We derive at lead-

ing order in 1/N , in Section 4.4, the Vlasov equation; we also discuss the notion of linear

stability of a stationary state of the Vlasov equation, which leads us to discuss the phenom-

ena of the Landau damping.

We then consider the problem of going beyond the mean field approximation. In Section 4.5

we develop some technique useful to solve Lyapunov equations; this is useful because the

second equation of the BBGKY hierarchy, which describes the evolution of two-particle cor-

relations, is a Lyapunov equation. Finally, we apply in Section 4.6 the techniques of the

previous Section to obtain the Lenard-Balescu equation.

This Chapter mainly contains results which are known since long time in plasma physics [102,

111,135,136]. However, for what concern the derivation of the Lenard-Balescu equation, we

follow a non-standard way, through the BBGKY hierarchy; this is not the usual approach

followed in many books and reviews, in which usually the Klimontovich approach or some

diagrammatic technique is preferred. As far as the author know, only in the book of Nichol-

son [102] the theory is fully developed using the BBGKY hierarchy. However a number of

obscure points in this reference, forced us in carefully reviewing its derivation. The way in

which the results are presented here, in particular the results in Section 4.5 and their appli-

cation to obtain the Lenard-Balescu equation, are thus original and form a part of [124]. The

general results of Section 4.5 will be useful in the following of the Thesis for the derivation

of kinetic theories for stochastically forced systems, in Chapter 6 and 7.

4.1 Long-range interacting particle systems

In this Part of the Thesis, we mainly consider systems composed of N particles interacting

through a pair potential, and described by the Hamiltonian

H =

N
∑

i=1

p 2
i

2
+

1

2

N
∑

i ,j=1

v (qi −qj ) . (4.1)

Here, qi and p i are, respectively, the coordinate and the momentum of the i -th particle, and

v (q ) is the two-body interaction pair potential. For the sake of simplicity in the notations,

we take the particles to be of unit mass and we regard the variables qi as scalar periodic vari-

ables of period 2π. We will also suppose that the particles in the system belong to only one
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species excluding thus the case, for example, of a plasma of electrons and protons. Anyway,

all the theoretical discussions present in this thesis are very easily generalizable to qi ∈ Rn ,

with arbitrary n and to systems composed by more than one species of particles. In the few

cases in which differences arise, they will be underlined.

This Part of the Thesis is about systems with long-range interactions, which means that

the pair potential v has a slow decay at infinity; in particular we say that a system of the

form (4.3) is a long-range interacting system is bounded by

v (q )∼ 1

qα
α< d (4.2)

for large distances, where d is the spatial dimension of the system1. Systems with long-range

interactions do not only include particle systems but also models from two dimensional and

quasi two dimensional turbulence, such as the Euler equation, the quasi-geostrophic equa-

tion and the shallow-water equation. We will only deal with turbulence models in Section 7;

we address the reader to [104, 105, 108] for broad reviews on this subject.

In plasma physics, the typical number of particles interacting with one particle is given

by the coupling parameter Γ = nλ3
D , where n is the number density, and λD is the Debye

length. It is then usual to rescale time such that the inverse of Γ multiplies the interaction

term [102]. Analogously, in self-gravitating systems, the dynamics is dominated by collective

effects, so that it is natural to rescale time in such a way that the parameter 1/N multiplies

the interaction potential [139]. Rescaling time with N in such a way that a factor 1/N ap-

pears in front of the potential energy is called the Kac prescription [140]. From now on, we

will consider Hamiltonian system of the form

H =

N
∑

i=1

p 2
i

2
+

1

2N

N
∑

i ,j=1

v (qi −qj ) . (4.3)

where we emphasize that no generality is lost in adopting the Kac prescription

If considering one dimensional systems or higher dimensional system, as well as the

form of the potential v (q ), is not so important from a theoretical point of view2, it makes

an huge difference in numerical simulations. Indeed, due to the long-range character of

the forces, the cost of N -body simulations using codes such as symplecting integrators

1For systems in d > 1, with attractive potentials with strong (but finite) variations in v , recent results sug-

gest [137, 138] that the bound α < d is not sufficient to ensure the typical dynamical properties of long-range

interacting systems, such as the existence of Quasi-Stationary States. In this cases the bound α< (d −1) seem

to be more appropriate.
2We observe anyway that rigorous mathematical results, such as for example the Braun-Hepp theorem [141]

(see the Section 4.7), usually strongly rely on the hypothesis of a smooth interparticle potential.
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4.3. KINETIC APPROACH

4.3.1 BBGKY hierarchy

The BBGKY hierarchy corresponding to the Hamiltonian in Eq. (4.3) can be obtained with

standard techniques [51, 102]. The starting point is to write the corresponding Liouville

equation, obtaining:

∂ f N

∂ t
=

N
∑

i=1

−p i ·
∂

∂ qi

f N +
1

2N

N
∑

i ,j=1

∂

∂ qi

v (qi −qj ) ·
�

∂

∂ p i

− ∂

∂ p j

�

f N , (4.7)

where f N (q1, ...,qN , p1, ..., pN , t ) is normalized to unity. We observe here that everywhere in

the Thesis we will use both the notation ∂ g

∂ x
or g ′(x ) when no confusion is possible to indi-

cate the derivative of a function. The Liouville equation for Hamiltonian systems is a very

detailed description of the system. Using kinetic theory, we want to describe the evolution

of the one-particle distribution function

f (z 1, t ) =

∫ N
∏

i=2

dz i f N (z 1, ..., z N , t ), (4.8)

where we have used the notation z i ≡ (qi , p i ). We note that with this definition, the normal-

ization is
∫

dz f (z , t ) = 1. Substituting in the Liouville equation (4.7) the reduced distribu-

tion functions4 ( f 1 = f )

f s (z 1, ..., z s , t ) =
N !

(N − s )!N s

∫ N
∏

i=s+1

dz i f N (z 1, ..., z N , t ), (4.9)

and using standard techniques, we get the BBGKY hierarchy, as follows:

∂ f s

∂ t
+

s
∑

i=1

p i ·
∂

∂ qi

f s −
1

N

s
∑

i ,j=1

∂

∂ qi

v (qi −qj ) ·
∂

∂ p i

f s =

=

s
∑

i=1

∫

d z s+1
∂

∂ qi

v (qi −qs+1) ·
∂

∂ p i

f s+1 (4.10)

for s = 1, ..., N − 1. Observe moreover that we will always suppose that f N , and thus also f s ,

is invariant for permutations of its arguments z i ’s, which corresponds to suppose that the

system is composed only by one species of particles and no correlations are present in the

initial state:

f N (z 1, ...z N , t = 0) =
N
∏

i=1

f (z i , t = 0) , (4.11)

which is called a product state.

4One could be tempted to use reduced distribution functions defined without the normalization factor
N !

(N−s )!N s . This procedure, however, gives a hierarchy of equations which is not useful to define self-consistent

closures.
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The BBGKY hierarchy, as well as the Liouville equation, is an exact description of the

dynamics of the system and thus an unnecessarily complicated to describe its macroscopic

behavior. The first important step is then to understand how to close the BBGKY hierarchy,

depending on the time-scale at which we want to describe the dynamics.

4.3.2 Closures of the BBGKY hierarchy

As is usual in kinetic theory, we split the reduced distribution functions into connected and

non-connected parts, e.g.,

f 2(z 1, z 2, t ) = f (z 1, t ) f (z 2, t )+ g̃ (z 1, z 2, t ), (4.12)

f 3(z 1, z 2, z 3, t ) = f (z 1, t ) f (z 2, t ) f (z 3, t )+ f (z 1, t )g̃ (z 2, z 3, t )

+ f (z 2, t )g̃ (z 1, z 3, t )+ f (z 3, t )g̃ (z 1, z 2, t )+h(z 1, z 2, z 3, t ), (4.13)

and similarly, for other f s ’s for s ≥ 4.

Introducing such definitions in the BBGKY hierarchy (4.10), we get for the first equation

∂ f

∂ t
+p

∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
=
∂

∂ p

∫

dq1dp1 v ′(q −q1)g̃ (z , z 1, t ), (4.14)

where

Φ[ f ](q , t ) =

∫

dq1dp1 v (q −q1) f (q1, p1, t ) (4.15)

is the mean-field potential. For the second equation of the hierarchy, we obtain

∂ g̃ (z 1, z 2, t )

∂ t
=
h

−p1
∂ g̃

∂ q1
+
∂ g̃

∂ p1

∂ Φ[ f ]

∂ q1
+

f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
+

1

N

∂ v (q1−q2)

∂ q1

∂ g̃

∂ p1

+
∂ f

∂ p1

∫

dz 3
∂ v (q1−q3)

∂ q1
g̃ (z 2, z 3)+

∫

dz 3
∂ v (q1−q3)

∂ q1

∂ h

∂ p1

i

+ {1↔ 2}, (4.16)

where the symbol {1↔ 2} stands for an expression obtained from the bracketed one on the

right hand side by exchanging the subscripts 1 and 2.

Let us analyze the order of magnitude of the terms in Eq. (4.16). First of all, we have

f ∼ 1, as it is normalized to unity. However, we do not know a priori the order of magnitude

of g̃ and h. Thus, the order of magnitude of all but the term f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
is unknown; we

have
f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
∼ 1

N
≪ 1 . (4.17)

If we suppose h of higher order in 1/N with respect to g , we thus obtain that g̃ ∼ 1/N .

Observe that to have g̃ ∼ 1/N , we have supposed that there are no correlations in the initial

condition for f N , that is Eq. (4.11); otherwise, g̃ ∼ 1/N is already false at t = 0 and, in general,

false at every time.
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Once we have established that g̃ ∼ 1/N , one can write down the equation of the hierar-

chy for h and, with a similar reasoning as above, one then finds that h is of order 1/N 2, so

that the term
∫

dz 3
∂ v (q1−q3)

∂ q1

∂ h

∂ p1
(4.18)

is of order 1/N 2 and thus negligible in Eq. (4.16). The iterative procedure can be repeated at

any order of the hierarchy. Discarding three-particle and higher-order correlations is thus a

self-consistent procedure.

Moreover, we note that in Eq. (4.16), also the term

1

N

∂ v (q1−q2)

∂ q1

∂ g̃

∂ p1
(4.19)

is of order 1/N 2 and thus can be discarded.

Because we have concluded that g̃ ∼ 1/N , it is convenient to rescale g̃ with the small

parameter 1/N . In the following, we will then use the expansion in the connected and non-

connected parts of the reduced distribution functions, once discarded three-particle and

higher order correlations, as follows:

f 2(z 1, z 2, t ) = f (z 1, t ) f (z 2, t )+
1

N
g (z 1, z 2, t ), (4.20)

f 3(z 1, z 2, z 3, t ) = f (z 1, t ) f (z 2, t ) f (z 3, t )+
1

N
f (z 1, t )g (z 2, z 3, t ) (4.21)

+
1

N
f (z 2, t )g (z 1, z 3, t )+

1

N
f (z 3, t )g (z 1, z 2, t ) (4.22)

so that the final form of the fist two equations of the hierarchy is:

∂ f

∂ t
+p

∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
=

1

N

∂

∂ p

∫

dq1dp1 v ′(q −q1)g (z , z 1, t ), (4.23)

and

∂ g (z 1, z 2, t )

∂ t
=
h

−p1
∂ g

∂ q1
+
∂ g

∂ p1

∂ Φ[ f ]

∂ q1
+ f (z 2)

∂ v (q1−q2)

∂ q1

∂ f

∂ p1

+
∂ f

∂ p1

∫

dz 3
∂ v (q1−q3)

∂ q1
g (z 2, z 3)

i

+ {1↔ 2} . (4.24)

4.4 Vlasov equation

We have seen that the connected part of the two-particle correlations is of order 1/N . This

imply that the right hand side of the first equation of the BBGKY hierarchy (4.14) is of or-

der 1/N and thus negligible in the large N limit, because all the other terms are of order 1.
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This is the mean-field approximation of the dynamics of the system and leads to the Vlasov

equation (or collisionless Boltzmann equation, in astrophysical community)

∂ f

∂ t
+p

∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
= 0, (4.25)

where

Φ[ f ](q , t ) =

∫

dq1 v (q −q1)ρ(q1, t ) (4.26)

is the mean-field potential and the spatial density ρ is given by

ρ(q , t ) =

∫

dp f (q , p , t ) . (4.27)

The Vlasov equation is an infinite dimensional Hamiltonian5 system [155] describing the

evolution of the density of particles in the µ-space, that is the single particle phase space.

Many of the interesting properties of the Vlasov equation are connected to the fact that there

are an infinite number of integrals of motion. Indeed, for any smooth function s , the quan-

tity

C [s ] =
∫

dp dq s ( f (q , p , t )) (4.28)

is an invariant of the Vlasov dynamics; C [s ] are called Casimirs. Observe, that, among all

the Casimirs, there is the mean-field entropy

S[ f ] =−
∫

dp dq f log f . (4.29)

The other invariants of the Vlasov equation are the single particle Hamiltonian

h[ f ](q , p ) =
p 2

2
+Φ[ f ] (4.30)

and, if present, the other single particle quantities associated to the invariants of the N -body

dynamics, such as the momentum, angular momentum etc.

Vlasov equation possess an infinite number of stationary solutions. For example, if we

suppose the system to be homogeneous at all times,

f (q , p , t ) = f (p , t ) , (4.31)

then we directly obtain ∂t f = 0.

As usual for dynamical systems, not all stationary solutions are stable. In the following, we

study the stability of stationary solutions of the Vlasov equation. Stable stationary solutions

of the Vlasov equations are the Quasi-Stationary states of the N -body dynamics.

5The formal definition of the Hamiltonian structure is slightly more involved than usual due to the infinite

dimensionality of the system and this fact lead to non-canonical Poisson parenthesis. We address the reader

to [155] on this topic.

82





CHAPTER 4. ISOLATED LONG-RANGE INTERACTING SYSTEMS

p : this will be important for the following. Moreover, we suppose r to be normalizable, so

that it decays sufficiently fast at infinity.

Of course Eq. (4.32) can be solved explicitly: f (q , p , t ) = r (q − p t , p ). The simplicity of this

formula is deceptive, and the free transport equation displays much trickier behavior than

one would imagine at first sight.

To study the properties of Eq. (4.32) it is useful to use the Fourier transform in space

and Laplace transform in time. Here and in the following, our conventions for the Fourier

transform of a given function h are

hk =

∫ 2π

0

dq

2π
h(q )e−i kq , h(q ) =

∞
∑

k=−∞
hk e i kq . (4.33)

For the Laplace transform in time of a function h we have:

h̃(ω) =

∫ ∞

0

dt h(t )e iωt , Im(ω)> 0 ; (4.34)

if no confusion is possible, we will use the notation h(ω) = h̃(ω) omitting the tilde symbol.

The inverse Laplace transform, reads:

h(t ) =

∫

Γ

dω

2π
h̃(ω)e−iωt , (4.35)

where Γ is a contour which passes above all the singularities of the integrand. Observe that,

for the latter definition to be valid, we have to suppose that the integral does not depends

on the choice of Γ. This can be proved, for example, for integrands h(ω)e−iωt that decay

sufficiently fast at−i∞ so that the contour Γ can be appropriately chosen, or for integrands

which decay sufficiently fast at infinity in a stripe around the real axis. We will not comment

further this point, which is sometimes a bit tricky, when using the inverse Laplace trans-

form6.

Applying the Fourier transform to Eq. (4.32), we get:

∂ f k

∂ t
+ i k p f k (p , t ) = 0 . (4.36)

We already see that the 0-th mode does not evolve

f 0(p , t ) = r0(p ) . (4.37)

For the other modes, applying the Laplace transform, we have:

f k (p ,ω) =
rk (p )

−iω+ i k p
, Im(ω)> 0 , (4.38)

6The careful inversion of the Laplace transform is the most tricky point in the rigorous proof of the Landau

damping [157, 158].
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and thus for the spatial density:

ρk (ω) =

∫ +∞

−∞
dp

rk (p )

−iω+ i k p
, Im(ω)> 0 . (4.39)

To perform the inverse Laplace transform, as to obtain ρk (t ), we need to analytically con-

tinue the above expression toω ∈R. The expression forρk (ω) can be analytically continued

because the integrand posses a single pole on the real axis, located atω= k p . All along the

thesis we will not change notation for a function and its analytic continuation; we get for the

spatial density:

ρk (ω) =

∫

dp
rk (p )

−iω+ i k p
+πl (ω)

sgn(k )

k
rk

�

ω

k

�

(4.40)

where

l (ω) =







0 Im(ω)> 0

1 Im(ω) = 0

2 Im(ω)< 0 .

(4.41)

In Eq. (4.40), sgn(k ) denotes the sign of k and the integral has to be considered as a Cauchy

(or Principal Value) integral when Im(ω) = 0.

From Eq. (4.40) one sees ρk (ω) can have a singularity in ω̄ only if Im(ω̄) < 0. This can be

deduced by the fact that we are supposing the initial datum rk (p ) to be a real analytic func-

tion of the p variable. Indeed, any real analytic function is a complex analytic function on a

sufficiently small stripe around the real axis.

We can now perform the inverse Laplace transform; recalling that ρk (ω) is analytic for

ω ∈ R, we can choose Γ to be below the real axis. The integral term in Eq. (4.40) vanishes

closing the contour at −i∞ because it has no singularities in the lower half plane. We thus

get

ρk (t ) =π
sgn(k )

k

∫

Γ

dω

2π
l (ω)rk

�

ω

k

�

e−iωt (4.42)

where Γ passes above all the singularities of rk . With a change of variables, we have

ρk (t ) =

∫

Γ

dωrk

�

ωsgn(k )
�

e−i |k |ωt , (4.43)

where Γ is below the real axis. In the large time limit, we thus obtain that ρk (t ) goes to

zero (at least) exponentially for all k 6= 0. The rate at which ρk (t ) goes to zero depends on

two things: the spatial mode k we are considering (higher modes decay faster) and how far

from the real axis the contour Γ can deformed. For example if the only singularities of f k

are single poles and the integrand decays sufficiently fast at −i∞, ρk (t ) can be explicitly

computed with the Residue theorem. We observe that this argument does not hold if rk is
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Gaussian, because in this case the contour cannot be closed at −i∞; in this case a different

closure of Γ leads to a super-exponential decay.

This is the mechanism of the Landau damping: from a macroscopic point of view, the

system loose memory of its initial state and relaxes to an homogeneous state. This behavior

is, of course, not in contradiction with the time-reversibility of the free transport equation.

Indeed, the relaxation happens only in quantities which are average of the distribution func-

tion over the space. The behavior of the distribution function f never ends leading to a finer

and finer structure; this is the process of filamentation, see Fig. 4.4. To see it explicitly, it

suffice to apply the inverse Laplace transform to Eq. (4.38), considered as a function defined

on the whole complex plane. We get

f k (p , t ) = 2πrk (p )e
−i k p t ; (4.44)

the velocity structure of the k -th mode of the distribution f at time t̄ is on a velocity scale of

order 1/(k t̄ ).

Observe that for the Landau damping to take place it is necessary that the system is

confined in a box. Otherwise, there are modes with arbitrary small k that are damped at

slower and slower rate. Moreover the request that the initial datum r is analytic is important;

if this is not the case, the above argument does not hold and the decay can be much slower

than exponential or there could be no decay at all: more regular is the initial datum, faster

is the decay [157].

Landau Damping for homogeneous states

Let us now describe the Landau damping mechanism for homogeneous systems described

by the Vlasov equation. We will also introduce some very important quantities for the fol-

lowing of this Thesis: the resolvent operator and the dielectric function. The procedure

presented here is exactly the analogous of what we have done for the free transport, except

that the solution in Fourier and Laplace transform of the linear Vlasov equation is a bit more

involved.

Let us consider an homogeneous long-range interacting system in a box whose initial con-

dition is f (p ). As for the free transport, it is important that the system is confined in a box

and that f (p ) is analytic.

We want to understand the evolution of a perturbation h(q , p , t ) to the state f (p ); for easi-

ness in the notation, we call r the initial value of the perturbation h(q , p , t = 0) = r (q , p ). We

suppose the perturbation r to be small with respect to f and to be a real analytic function. It

is thus natural to guess that the evolution is well described by the linearized Vlasov equation

around f , that is

∂ h

∂ t
+p

∂ h

∂ q
− ∂ f

∂ p

∂ Φ[h]

∂ q
= 0 h(q , p , t = 0) = r (q , p ) , (4.45)
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where we have neglected the non-linear contribution in h; moreover, we have used that the

system is homogeneous, that is f is a steady state of the Vlasov equation and the mean field

force vanishes. In this case, the Vlasov operator linearized around f and acting on a function

h(q , p ) is given by
�

L f h
�

(q , p ) = p
∂ h

∂ q
− ∂ f

∂ p

∂ Φ[h]

∂ q
. (4.46)

Because the system is homogeneous, it is useful to use the Fourier transform with respect

to the spatial variable, obtaining

∂ h

∂ t
+
�

L f ,k hk

�

(p , t ) = 0 (4.47)

where L f ,k is the k -th component of the linear Vlasov operator and its action on a given

function h(p ) is
�

L f ,k h
�

(p ) = i k p h(p )−2πi k vk f ′(p )

∫

dp ′h(p ′) . (4.48)

Let us observe a very important property: because of the homogeneity of the system, the

evolution of every Fourier mode is independent on the others. Moreover, we get

∂ h0

∂ t
= 0 , (4.49)

that is h0(p , t ) = r0(p ): again, the 0-th mode does not evolve.

We can now use the Laplace transform on Eq. (4.47), to obtain for Im(ω)> 0

hk (p ,ω) =
1

−iω+ i k p

�

rk (p )+2πi k vk f ′(p )

∫

dp ′hk (p
′,ω)

�

. (4.50)

Integrating such expression to obtain
∫

dp ′hk (p ′,ω) and substituting the result in the last

term of the previous one, we have

hk (p ,ω) =
�

R f ,k (ω)rk

�

(p ) , (4.51)

where R f ,k (ω) is the resolvent operator associated with L f ,k in frequency space defined as

R f ,k (ω)≡
1

−iω+ L f ,k
. (4.52)

Explicitly, we have

�

R f ,k (ω)h
�

(p ) =
1

−iω+ i k p

�

h(p )+
2πi k vk

ε(k ,ω)
f ′(p )

∫

dp ′
h(p ′)

−iω+ i k p ′

�

, (4.53)

where ε(k ,ω) is the dielectric function, defined for I m (ω)> 0 as

ε(k ,ω) =

�

1−2πi vk k

∫

dp
f ′(p )

−iω+ i k p

�

. (4.54)
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From Eq. (4.51) we also obtain for the k -th mode of the spatial density

ρk (ω) =

∫

dp
�

R f ,k (ω)rk

�

(p ) =
1

ε(k ,ω)

∫

dp
rk (p )

−iω+ i k p
(4.55)

from which is simple to evaluate the mean field potential. One should recall that all the ex-

pressions above are valid for Im(ω)> 0.

To obtain the time behavior of the spatial density ρk (t ) and of hk (p , t ) we have to invert

the Laplace transform; to do it, it is necessary, exactly as in the free transport case, to give

a meaning to the expressions presented above for Im(ω) ≤ 0. We thus perform, whenever

possible, an analytic continuation to ω ∈ R. This corresponds to replace the terms of the

form
∫

dp
g (p )

−iω+ i k p
(4.56)

where g is an analytic function, with
∫

dp
g (p )

−iω+ i k p
+πl (ω)

sgn(k )

k
g (ω/k ) . (4.57)

For example, for the dielectric function, we obtain

ε(k ,ω) = 1−2πi vk k

∫

dp
f ′(p )

−iω+ i k p
−2π2i l (ω)sgn(k )vk f ′

�

ω

k

�

(4.58)

where l (ω) is given by Eq. (4.41) and the integral has to be interpreted as a Cauchy integral

for Im(ω) = 0.

Suppose now that the roots ω̄ of ε(k ,ω̄) = 0 are only such that Im(ω̄) < 0. In this case, it is

possible to perform the analytic continuation of the integral of the resolvent operator (4.55).

Indeed, interpreting ε as in Eq. (4.58), it is a real analytic function. Thus, it is a complex

analytic function on a small enough stripe around the real line. From the identity theorem

we thus get that the set in which ε vanishes cannot contain an accumulation point in a

stripe around the real line. Because we are also supposing r to be an analytic function, the

integral of the resolvent operator is free of singularities around the real axis. This proves

that Eq. (4.55) can be analytically continued to ω ∈ R and the procedure to do it is the one

sketched above. We get

ρk (ω) =
1

ε(k ,ω)

�∫

dp
rk (p )

−iω+ i k p
+π l (ω)

sng(k )

k
rk

�

ω

k

�

�

, (4.59)

where, as usual, the integral has to be interpreted as a Cauchy integral for Im(ω) = 0.

We can now perform the inverse Laplace transform to get ρk (t ). We have

ρk (t ) =

∫

Γ

dω

2π

e−iωt

ε(k ,ω)

�∫

dp
rk (p )

−iω+ i k p
+π l (ω)

sng(k )

k
rk

�

ω

k

�

�

(4.60)
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where Γ can be chosen to stay below the real axis. Observe that the singularities of the first

term in Eq. (4.60) are given only by the zeros of the dielectric function whereas, in the sec-

ond one, singularities can be given also by the initial datum rk . The rate of the damping is

again given by how far from the real axis the contour Γ can be deformed and this depends

both on where the zeros of the dielectric function are located and where are the possible

singularities of rk seen as a complex function of its argument.

The case we have treated is the one in which the zeros of the dielectric function are

present only in the lower half plane. In this case, the state f is called a stable state; the spatial

density or the mean field potential of any small perturbation to the base state decays expo-

nentially to zero in time. On the other hand, if zeros of the dielectric function are present

for Im(ω)> 0, ρk (t ) diverges exponentially in time. The state f will be thus called unstable.

Finally, if zeros of ε are found only for Im(ω)≤ 0, ρk (t ) present undamped oscillations and

in this case f is called marginally stable.

The time evolution of h itself is very different to the one of ρ or of the mean field po-

tential. To see this, we have first to give a meaning to Eq. (4.51) for Im(ω) ≤ 0; this can be

done replacing the integral in Eq. (4.53) with Eq. (4.57). Then, applying the inverse Laplace

transform, we see that the contribution of the pole ω = k p give an undamped oscillation.

This term is only due to the free transport in the Vlasov equation, i.e. it is exactly the same

effect we have already seen for the free transport equation.

Stability is a very important property of a stationary states because only stable (and

marginally stable) states can be observed for not very small times: in a numerical or real

experiment it is impossible to exactly prepare the system in a given state. Quasi-Stationary

States we talked about phenomenologically in Section 4.2 are nothing else than stationary

and stable solution of the Vlasov equation.

However, in practice, it is quite hard to explicitly compute the zeros of the dielectric func-

tion (as it is generically hard to compute the zeros of a general complex-valued function).

Among the many available criteria to determine it, we highlight the one proposed by Pen-

rose in [159]: f is a stable distribution if and only if for every ω ∈ R such that f ′(ω) = 0,

∫ ∗

dp
f ′(p )

p −ω < 1 , (4.61)

where
∫ ∗

stands for a Cauchy integral.

The analysis carried here for the Landau damping is not rigorous, mainly due to our use

of the inverse Laplace transform. The first completely rigorous treatment of the linear Lan-

dau damping is due to Backus [158] who checked carefully the invertibility of the Laplace

transform of the solution. Around the same time Penrose [159] proposed an alternative rea-

soning based on the general theory of the Laplace transform, and more importantly derived
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the stability criterion now called Penrose criterion.

Recently Villani and Mouhot proved that Landau damping persist considering the non-

linear Vlasov equation instead of the linearized one [160] in the perturbative regime. We

refer the reader to [157] for further references on the (broad) mathematical literature on

Landau damping.

Landau Damping for non-homogeneous states

We have presented the Landau damping in the case in which f is an homogeneous state.

However, in many physical situations such as in astrophysical systems, the relevant states

are not homogeneous: a galaxy, for example, shows a very high density contrast between the

central and the outer parts. One of the main difficulties of proving Landau damping for non-

homogeneous states is that the evolution of different spatial modes do not decouple, as in

the homogeneous case. Very few works [161, 162] are present, especially at theoretical level,

to deal with this situation, due to the much more involved mathematical analysis which is

needed.

We highlight [163,164] in which the problem is solved for states in which the one-particle

dynamics is integrable, such that one can use action-angle variables. The main difference

with the homogeneous states is that the dispersion relation analogous to the dielectric func-

tion in Eq. (4.58) presents branch cuts which can touch the real axis. This impose a much

more refined analysis to perform the analytic continuation. This branch cuts in the dis-

persion relation give rise to algebraic Landau damping after an exponential transient. The

situation is analogous to what has been found before in the 2d Euler equation for shear flows

that we will briefly discussed in Chapter 7.

4.5 Lyapunov equations

In this section we study the Ornstein–Uhlenbeck process and Lyapunov equations in a gen-

eral setting, which will turn out to be useful both in the derivation of the Lenard-Balescu

equation and in kinetic theories presented in Chapters 6 and 7. Indeed it will turn out in all

this cases, that the equation describing the evolution of the connected part of two-particle

correlations is a Lyapunov equation.

The standard solution of the finite dimensional Ornstein–Uhlenbeck process can be

generalized to the infinite dimensional case. However, for what concern the long-time limit,

different techniques have to be used. We will describe how this problem can be handled: in

particular, if the solution to the Lyapunov equation converges exponentially in time, a sim-

plified expression for the stationary solution can be given working in the frequency space.
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4.5.1 Definition of the Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process [165] is a Gaussian process defined by the following stochas-

tic differential equation:

∂t h(r, t )+ (Lh) (r, t ) =
p

2F (r, t ) (4.62)

where r ∈ D ⊆ Rn and h ∈ H is a complex function belonging to some Hilbert spaceH ; L

is a linear operator acting onH and generically infinite dimensional. F (r, t ) is a complex

Gaussian random process with variance:

〈F (r, t )F ∗(r′, t ′)〉=C (r− r′)δ(t − t ′) , (4.63)

where ∗ denotes the adjoint operation (or the complex conjugate, depending on the case in

hand).

We will consider here the Ornstein–Uhlenbeck process with initial condition h(r, t = 0) = 0,

because this is the relevant case for kinetic theories: the generalization of all the results

presented below to general initial conditions is straightforward.

The Ornstein–Uhlenbeck process is characterized by the two point correlations func-

tions. We will consider in the following the single-time correlation function φ (r, r′, t ) =

〈h (r, t )h∗ (r′, t )〉. The equation for the time evolution of φ is easily obtained using the Ito

formula and averaging:

∂tφ+ L(1)φ+ L∗(2)φ =C (r− r′) , (4.64)

where L(1) (respectively L(2)) is the linear operator L acting on the first (the second) variable

of φ and C is the average effect of the stochastic force. Eq. (4.64) is called the Lyapunov

equation associated to the Ornstein–Uhlenbeck process (4.62).

Introducing the Fourier basis {ek (r) = e i kr}k , we write the correlation function in Fourier

transform

C (r− r′) =
∑

k

f kek(r)e
∗
k(r
′) . (4.65)

Because of the linearity of the Lyapunov equation, the solution to Eq. (4.64) can be written

as

φ(r, r′, t ) =
∑

k

f kφk(r, r′, t ) , (4.66)

whereφk is the solutions of

∂tφk+ L(1)φk+ L∗(2)φk =bk(r)b
∗
k(r
′) , (4.67)
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with bk = ek. We introduce the Ornstein–Uhlenbeck processes

∂t hk(r, t )+ (Lhk) (r, t ) =
p

2bk(r)W (t ) , (4.68)

where Wk are independent complex Gaussian processes:

〈Wk(t )W
∗

k (t
′)〉=δk,k′δ(t − t ′) . (4.69)

We thus recover Eq. (4.70) as the evolution equation forφk (r, r′, t ) =
¬

hk (r, t )h∗k (r
′, t )
¶

.

We consider in the following of this section Lyapunov equations of the form

∂tφk+ L(1)φk+ L∗(2)φk =b (r )c (r′) , (4.70)

for generic functions b and c .

4.5.2 Formal solutions in real time

The solution to the Lyapunov equation (4.70) can be found using the formal solution of the

Ornstein–Ulhenbeck process, as in the case in which the operator L is finite dimensional;

we refer to [165] for standard results in the finite dimensional case.

The solution of the Ornstein–Uhlenbeck process is given by the following stochastic integral

h(r, t ) =
p

2

∫ t

0

�

e−(t−u )Lb
�

(r)dW (u ) , (4.71)

as can be proven differentiating Eq. (4.71). Observe that e−(t−u )Lb is the solution at time t of

the deterministic equation

∂t h(r, t )+ (Lh) (r, t ) = 0 (4.72)

with initial condition h(r, t = 0) =b (r).

By direct computation, we then obtain the solution to the Lyapunov equation (4.70)

φ(r, r′, t ) = 2

∫ t

0

�

e−u Lb
�

(r)
�

e−u L∗c
�

(r′)du . (4.73)

Let us observe that we can also easily obtain the evolution for linear transforms of φ. If S is

a linear operator acting onH , we have
�

S(2)φ
�

(r, r′, t ) = 〈h(r, t ) (Sh∗) (r′, t )〉 and, explicitly:

�

S(2)φ
�

(r, r′, t ) = 2

∫ t

0

�

e−u Lb
�

(r)
�

Se−u L∗c
�

(r′)du , (4.74)

where S(2) is the linear operator S acting on the first variable of φ and Se−u L∗ denotes the

composition of the operator S with the operator e−u L∗ ; an analogous expression holds for

S(1)φ or for more general linear transforms ofφ.
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For what concern kinetic theories, we are mainly interested in stationary values of ex-

pressions like Eq. (4.74). In the finite dimensional case, when L is a normal operator, the

time-asymptotics of Eq. (4.74) can be explicitly computed in terms of the eigenvalues of L,

see [165]. In kinetic theories, however, L is infinite-dimensional and usually not normal.

Thus we are not able to find an explicit expression.

Equation (4.73) and (4.74) express the fact that, if we are able to compute the solution

to the deterministic equation (4.72), we can compute the solution to the Lyapunov equa-

tion (4.70) or its linear transforms.

4.5.3 Formal solution in frequency space

If the deterministic evolution e−t Lb is bounded and Se−t L∗c decrease exponentially in time,

then we can simplify the expression for the long time limit of Eq. (4.74) working in the fre-

quency space. This is expressed below in Theorem 4.5.1.

In this section, we do not take a different notation for the function h(t ) its Laplace trans-

form h(ω) except for their variable dependence.

The solution of the Lyapunov equation in frequency space is easily obtained taking the

Laplace transform of the Ornstein–Uhlenbeck process and following the same step of the

previous section to compute φ(r, r′,ω); we then write φ(r, r′, t ) by means of the inverse

Laplace transform. Introducing the Resolvent operators RL(ω) = (−iω+ L)−1 and RL∗(ω) =

(−iω+ L∗)−1, and with some simple manipulations, we get

�

S(2)φ
�

(r, r′, t ) =
i

2π2

∫

Γ1

dω1

∫

Γ2

dω2
e−i (ω1+ω2)t

ω1+ω2

�

RL(ω1)b
�

(r)
�

SRL∗(ω2)c
�

(r′), (4.75)

where Γ1 and Γ2 are contours in the complex plane passing above all the poles of the re-

spective integrands; observe that RL(ω) is the Laplace transform of the operator e−t L and

analogously for RL∗(ω).

The following theorem, whose proof is a simple manipulation of Eq. (4.75), permits to

evaluate the time asymptotics of
�

S(2)φ
�

(r, r′, t ) under certain hypothesis.

Theorem 4.5.1. Let us suppose that (RL(ω)b ) (r) is an analytic function of ω for ω such that

Im(ω) > 0 and that [SRL∗(ω2)c ] (r′), can be analytically continued to ω ∈ R. Then, without

changing notation for the analytic continuation, we have

lim
t→∞

�

S(2)φ
�

(r, r′, t ) =
1

π

∫

Γ

dω
�

RL(ω)b
�

(r)
�

SRL∗(−ω)c
�

(r′), (4.76)

where Γ is a contour which passes above all the poles of [RL(ω)b ] (r).
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Proof. Let us consider the Eq. (4.75): Γ1 passes above all the poles of (RL(ω1)b ) (r), where Γ2

passes above all the poles of (SRL∗(ω2)c ) (r′) and above −ω1 for everyω1 ∈ Γ1.

Now, because(RL(ω1)b ) (r) is an analytic function of ω1 for I mω1 > 0 and (SRL∗(ω2)c ) (r′) is

an analytic function ofω2 for I mω2 ≥ 0, we can choose Γ1 and Γ2 such that −Γ1 is above all

the poles of (SRL∗(ω2)c ) (r′).

Consider then the integral overω2. We can make Γ2 passes belowω1 for everyω1 using the

Residue theorem. We get

�

S(2)φ
�

(r, r′, t ) =
i

2π2

∫

Γ1

dω1

∫

Γ′2

dω2
e−i (ω1+ω2)t

ω1+ω2

�

RL(ω1)b
�

(r)
�

SRL∗(ω2)c
�

(r′)+ (4.77)

+
1

π

∫

Γ1

dω1

�

RL(ω1)b
�

(r)
�

SRL∗(ω2)c
�

(r′) , (4.78)

where the contour Γ′2 appearing in the first term on the right hand side passes below −ω1

and above all the poles of (SRL∗(ω2)c ) (r′).

The proof is completed using the fact that the real part of−i (ω1+ω2) is negative so that the

first ingral in Eq. (4.77) vanishes in the limit t →∞.

As anticipated above, the hypothesis of the theorem are equivalent to require that
�

e−t Lb
�

is bounded and
�

Se−t L∗c
�

decreases exponentially in time. In kinetic theory of particles sys-

tems with long-range interactions, and for homogeneous states, the exponential decay is

given by the mechanism of the Landau damping (see Section 4.4.1).

4.6 Lenard-Balescu equation

In terms of the linearized Vlasov operator, the first two equations of the BBGKY hierar-

chy (4.23) and (4.24) can be rewritten as

∂ f

∂ t
+p

∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
=

1

N

∂

∂ p

∫

dq1dp1 v ′(q −q1)g (z , z 1, t ), (4.79)

and

∂ g (z 1, z 2, t )

∂ t
+ L

(1)
f g + L

(2)
f g =

∂ v (q1−q2)

∂ q1

�

∂

∂ p1
− ∂

∂ p2

�

f (z 1) f (z 2) (4.80)

where L
(1)
f (resp. L

(2)
f ) is the linearized Vlasov operator around f acting on the first variable

of g (z 1, z 2, t ) (resp. the second variable).

It is now straightforward to realize that the Eq. (4.80) is a Lyapunov equation; however, the

two equations of the BBGKY hierarchy are coupled and hence, difficult to solve even numer-

ically.
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We thus assume that the distribution function f is a stationary solution of the Vlasov

equation at all times. This correspond to

p
∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
= 0 (4.81)

for every time t . With this assumption, we readily see that the two-particle correlation g

evolves over a timescale of order one, whereas the one-particle distribution function f (p , t )

evolves over a timescale of order N . We may then use this timescale separation and com-

pute the long-time limit of g from Eq. (4.80) by assuming f to be steady in time; this is

the so called Bogoliubov’s hypothesis or the Markovianization procedure. Note that for this

timescale separation to be valid, we must also suppose that the one-particle distribution

function f (p , t ) is a stable solution of the Vlasov equation at all times. Indeed, if this is not

the case, one sees from Eq. (4.74) that g diverges in the limit t → ∞. The physical con-

tent of this hypothesis is that the system slowly evolves from the initial condition through a

sequence of Quasi Stationary states.

In principle, to obtain the long time limit of g with f fixed in time, one can use the ma-

chinery presented in Section 4.5 and in particular the Eq. (4.74). However, as we have seen

in Section 4.4, the solution to the linear Vlasov equation analytically achievable with simple

techniques only if the state f around which the Vlasov operator is linearized is homoge-

neous. We thus suppose that f is homogeneous in space at all times, that is f (q , p , t ) =

f (p , t ) and g depends only on q1−q2 and not on q1 and q2 separately. With this hypothesis,

the linearized Vlasov operator becomes the one in Eq. (4.46) so that we have for L
(1)
f g ,

�

L
(1)
f g
�

(q1−q2, p1, p2, t ) = p1
∂ g

∂ q1
− f ′(p1, t )

∫

dq3dp3 v ′(q1−q3)g (q3−q2, p3, p2, t ). (4.82)

L
(2)
f g is obtained from Eq. (4.46) by exchanging the subscripts 1 and 2.

Because we assume the system to be homogeneous in space, it is useful to Fourier trans-

form Eqs. (4.79) and (4.80) with respect to the spatial variable; we get

∂ f

∂ t
=−2πi

N

∞
∑

k=−∞
k vk

∂

∂ p

∫

dp ′ g k (p , p ′, t ), (4.83)

and
�

∂ g k

∂ t
+ L

(1)
f ,k g k + L

(2)
f ,−k g k

�

(p1, p2, t ) = i vk k

�

∂

∂ p1
− ∂

∂ p2

�

f (p1) f (p2), (4.84)

where g k (p1, p2, t ) is the Fourier transform of g (q , p1, p2, t ) with respect to the spatial vari-

able, and vk is the k -th Fourier coefficient of the pair potential v (q ). We recall here the

explicit expression, already given in Eq. (4.48), for the k -th Fourier component of the linear
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Vlasov operator L f ,k acting on a function h(p )

�

L f ,k h
�

(p ) = i k p h(p )−2πi k vk f ′(p )

∫

dp ′h(p ′). (4.85)

One has analogous expressions for L
(1)
f ,k and for L

(2)
f ,−k . We readily see that L∗f ,k = L f ,−k .

From the right hand side of Eq. (4.83), we see that to obtain a single kinetic equation, we

only need the Fourier transform g k (p , p ′, t ) and more specifically, thanks to the time-scales

separations, we want to compute
∫

dp ′ g∞
k
(p , p ′, t ) = lim

t→∞

∫

dp ′ g k (p , p ′, t ) . (4.86)

The integral with respect to the second momentum variable p ′ is the linear operator S ap-

pearing in the Theorem 4.5.1. From Section 4.4.1 and Section 4.5.2, we know that g k (p , p ′, t )

is an oscillating quantity, it is bounded in time but it does not have a well-defined time-

asymptotic (it converges only in weak sense). However, its integral with respect to p ′ does

have.

To apply the Theorem 4.5.1 and obtain the Lenard-Balescu equation, we need the Resolvent

operator R f ,k (ω) associated with the linearized Vlasov operator L f ,k defined in Eq. (4.46). As

we have seen in Section 4.4.1, this is connected to the mechanism of the Landau Damping

and it is given by Eq. (4.53).

As we have seen, the linear stability of stationary states of the Vlasov equation is defined

through the properties of the dielectric function [90, 113, 159]: f is a stable stationary state

if zeros of the dielectric functions are present only for ω such that Imω < 0; in the case

in which zeros are present for ω such that Imω = 0, we have a marginally stable state; fi-

nally, we have an unstable state if zeros are present for ω such that Imω > 0. We then see

that the hypothesis that the one-particle distribution function f is a stable solution of the

Vlasov equation is equivalent to require that the Resolvent operator is an analytic function

for Imω> 0, as asked in the hypothesis of the Theorem 4.5.1.

Moreover, it can be readily seen that the integral with respect to p of
�

R f ,−k (ω)h
�

(p )

∫

dp
�

R f ,−k (ω)h
�

(p ) =
1

ε(−k ,ω)

∫

dp
h(p )

−iω− i k p
(4.87)

admits an analytic continuation to ω ∈ R. We thus conclude that the hypothesis of the

Theorem 4.5.1 are satisfied. We can then compute
∫

dp ′ g∞
k
(p , p ′, t ) (4.88)

using Eq. (4.76).

The derivation of the Lenard-Balescu equation is then obtained applying the Theorem 4.5.1

and it is just a long exercise in complex analysis. We report the details in the next section.
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4.6.1 Explicit derivation of the Lenard-Balescu equation

To perform the computation explicitly, it is useful to split g k in two parts

g k = g A
k
+ g B

k
(4.89)

such that
�

∂ g A
k

∂ t
+ L

(1)
f ,k g A

k
+ L

(2)
f ,−k g A

k

�

(p1, p2, t ) = i vk k
∂

∂ p1
f (p1) f (p2), (4.90)

and
�

∂ g B
k

∂ t
+ L

(1)
f ,k g B

k
+ L

(2)
f ,−k g B

k

�

(p1, p2, t ) =−i vk k
∂

∂ p2
f (p1) f (p2) . (4.91)

We start computing

lim
t→∞

∫

dp ′ g A
k
(p , p ′, t ) (4.92)

by setting

b (p ) = i k vk f ′(p ) and c (p ) = f (p ) (4.93)

in the Theorem (4.5.1).

Using Eq. (4.53), the definition of the dielectric function and recalling that ω ∈ Γ and Γ

passes above all the poles of
�

R f ,k (ω)b
�

, we obtain

�

R f ,k (ω)b
�

(p ) =
i k vk f ′(p )

−iω+ i k p

1

ε(k ,ω)
, (4.94)

which is valid for allω once that ε(k ,ω) is the analytic continuation of the Eq. (4.54).

With a similar reasoning, we obtain for the quantity in Eq. (4.87)
∫

dp
�

R f ,−k (ω)c
�

(p ) =
i

ε(−k ,ω)

∫

dp ′
f (p ′)

k p ′+ω
, (4.95)

valid for Im(ω)> 0. For the analytic continuation of such function we have
∫

dp
�

R f ,−k (ω)c
�

(p ) =
i

ε(−k ,ω)

∫

dp ′
f (p ′)

k p ′+ω
+
πl (ω)

ε(−k ,ω)

∫

dp ′ f (p ′)δ(k p ′+ω) (4.96)

where l (ω) is defined in Eq. (4.41).

Recall now that Γ passes above the poles of
�

R f ,k (ω)b
�

(p ), so that Im(ω)> 0 for allω ∈ Γ.

Using Theorem 4.5.1, Eq. (4.94) and Eq. (4.96), we obtain

lim
t→∞

∫

dp ′ g A
k
(p , p ′, t ) = (4.97)

=
1

π

∫

Γ

dω
1

−iω+ i k p

i k vk f ′(p )

ε(k ,ω)ε(−k ,−ω)

∫

dp ′
f (p ′)

iω− i k p ′
+

+

∫

Γ

dω

∫

dp ′
1

−iω+ i k p

i k vk f ′(p )

ε(k ,ω)ε(−k ,−ω) l (ω) f (p
′)δ(ω−k p ′) (4.98)
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Let us now consider the second term

lim
t→∞

∫

dp ′ g B
k
(p , p ′, t ) (4.99)

which again can be computed from Theorem 4.5.1 by setting

b (p ) = f (p ) and c (p ) =−i k vk f ′(p ) . (4.100)

The reasoning goes as in the previous case. We obtain

�

R f ,k (ω)b
�

(p ) =
1

−iω+ i k p

�

f (p )+
2πi k vk

ε(k ,ω)
f ′(p )

∫

dp ′
f (p ′)

−iω+ i k p ′

�

(4.101)

which is valid for allω once that ε(k ,ω) is the analytic continuation of the Eq. (4.54).

We also have
∫

dp
�

R f ,−k (ω)c
�

(p ) =
1

2π

�

1

ε(−k ,ω)
−1

�

, (4.102)

which again is valid for allω once that ε(k ,ω) is the analytic continuation of the Eq. (4.54).

We thus obtain for Eq. (4.99)

lim
t→∞

∫

dp ′ g B
k
(p , p ′, t ) = (4.103)

=
1

2π2

∫

Γ

dω
1

−iω+ i k p

�

1

ε(−k ,−ω) −1

�

f (p )+

+
1

2π2

∫

Γ

dω
1

−iω+ i k p

2πi k vk

ε(k ,ω)ε(−k ,−ω) f ′(p )

∫

dp ′
f (p ′)

−iω+ i k p ′
−

− 1

2π2

∫

Γ

dω
1

−iω+ i k p

2πi k vk

ε(k ,ω)
f ′(p )

∫

dp ′
f (p ′)

−iω+ i k p ′
.

Closing the integration contour at −i∞ in the first integral in the right hand side of

Eq. (4.103) and observing that f is supposed to be a linearly stable distribution, the only

enclosed pole is atω= k p ; we thus get for this term:

f (p )

2π

�

1

ε∗(k , k p )
−1

�

, (4.104)

where we have used that ε(−k ,−ω) = ε∗(k ,ω) forω ∈R.

On the other hand, the third integral in the right hand side of Eq. (4.103) vanishes closing

the contour Γ at +i∞. With this results, summing up the Eq. (4.97) and (4.103), we obtain

lim
t→∞

∫

dp ′ g k (p , p ′, t ) =
f (p )

2π

�

1

ε∗(k , k p )
−1

�

+ (4.105)

+

∫

Γ

dω

∫

dp ′
1

−iω+ i k p

i k vk f ′(p )

ε(k ,ω)ε(−k ,−ω) l (ω) f (p
′)δ(ω−k p ′) . (4.106)
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From Eq. (4.83), we observe that we need only the Imaginary part of Eq. (4.105); we thus get

Im

�

lim
t→∞

∫

dp ′ g k (p , p ′, t )

�

=
iπk vk

|ε(k , k p )|2

∫

dp ′δ(k (p −p ′))

�

∂

∂ p
− ∂

∂ p ′

�

f (p ) f (p ′) . (4.107)

Inserting Eq. (4.107) in the right hand side of Eq. (4.83) we finally obtain the Lenard-Balescu

equation:

∂ f

∂ t
=

2π2

N

∫ ∞

−∞
dk (k vk )

2 ∂

∂ p

∫

dp ′
1

|ε(k , k p )|2δ(k (p −p ′))

�

∂

∂ p
− ∂

∂ p ′

�

f (p ) f (p ′) . (4.108)

As it is known since long time in plasma physics [166], and it can be easily checked from

Eq. (4.108) using the Dirac delta, the Lenard-Balescu operator vanishes7. This is due to the

fact that we are dealing with one-dimensional systems and it is consistent with the fact that

the relaxation time in Fig. 4.2 scales as N δ with δ> 1.

The derivation presented here could be done in any dimension without any difference. The

result is

∂ f

∂ t
=
π(2π)d

N

∫

dk v 2(k)k ·∇p

∫

dp′
1

|ε(k, k ·p)|2δ(k · (p−p′))
�

k ·
�

∇p−∇p′
��

f (p) f (p′) ,

(4.109)

for a d -dimensional system [102, 111, 135] in which qi ∈ [0, 2π]d ; it is straightforward to

observe that in dimension greater than one, the Lenard-Balscu operator does not vanishes.

4.6.2 About the Lenard-Balescu equation

Lenard-Balescu equation has a number of properties analogous to the Boltzmann equa-

tion [135]: if f is positive at the initial time, it remains positive at all times; the mass of the

system, the momentum and its kinetic energy is conserved. Besides these facts which are

not more than consistency checks, however, any Maxwellian is a stationary solution of the

Lenard-Balescu equation and it is possible to prove a version of the H theorem. Thus, from

a physicist perspective, any solution approaches to a Maxwellian in the t →∞ limit.

The dielectric function ε entering in the Lenard-Balescu operator, describes collective

effects. For ionized plasmas, this term takes into account the effect of the Debye screen-

ing, which cuts off the interaction at large enough distances [111, 168]. The Landau equa-

tion [111], does not describes collective effects and can be recovered from the previous one

replacing ε by the unity.

In dimension greater than one, Lenard-Balescu equation explains the relaxation to the

Maxwell-Boltzmann equilibrium of a long-range interacting system previously settled in a

QSS after a time-scale of order N . Observe that to derive this equation, it is necessary to

7This is also due to the fact that we are dealing with a one-component systems; for more components

systems, the Lenard-Balescu operator does not vanish [167]
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suppose that the system is in a stationary stable solution of the Vlasov equation at all times.

The Lenard-Balescu equation does not describe the evolution of unstable initial states.

We have presented the derivation of the Lenard-Balescu equation when the system is

homogeneous. Heyvaerts [169], see also [170] for a previous and more abstract work, has re-

cently generalized the Lenard-Balescu equation to non-homogeneous systems using action-

angle variables. His equation, technically much more complicated than the one presented

here, is valid under the hypothesis that the system stays at all times in a state f in which

the single-particle Vlasov dynamics is integrable; the technique used are analogous to those

developed in [163, 164] to obtain the Landau damping for non-homogeneous states under

the same assumptions. However, due to the high complexity of the Heyvaerts kinetic equa-

tion, the kind of informations that can be obtained from it is at the moment not clear to the

author; some result in this direction would have some interest.

On the other hand, we recall here that the Landau equation, albeit approximate, is very sim-

ply generalizable to non-homogeneous states [111] and predicts that even for one-dimensional

systems the relaxation time-scale of non-homogeneous QSS is of order N . This seems in

agreement with recent numerical simulations performed on simplified models [150].

We conclude observing that, due to its high non-linear character, the Lenard-Balescu

equation has not been extensively used in plasma community, for which it mainly repre-

sents a theoretical motivation to derive the Landau equation. Very few works, for example,

perform extensive numerical comparisons between the predictions of the Lenard-Balescu

equation and results from N -body dynamics: we are only aware of [167, 171, 172] in this

respect.

4.7 Conclusions

We have presented in this Chapter the kinetic theory for Hamiltonian long-range interact-

ing systems (4.3), describing the derivation of the Vlasov and of the Lenard-Balescu equa-

tion. Vlasov equation is the mean field approximation of the dynamics of the system, where

Lenard-Balescu equation, which takes into account two-particle correlations while discard-

ing three-particle and higher order correlations, is the analogous of the Boltzmann equation

for long-range interacting systems: it gives the first order correction in the small parameter

1/N to the mean-field dynamics.

Stationary and stable states of the Vlasov equation are the QSSs in which the N -body

system get trapped starting from arbitrary out of equilibrium initial conditions. We want

to stress here that instead to converging to a QSS, the system may be also converge to a

time-dependent solution of the Vlasov equation, see for example [173, 174]. The life-time
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of QSS, except for the special case of one dimensional homogeneous systems, is expected

to be of order N according to kinetic theory. At this time scale, correlations have to be

taken into account and the Lenard-Balescu equation describes the slow relaxation to the

Maxwell-Boltzmann equilibrium. However, because the truncation of the BBGKY hierarchy

(and hence the kinetic theory) is not a rigorous procedure, one may wonder if such conclu-

sions are correct.

Braun and Hepp [141] have rigorously proven that two solutions (in weak sense) of the

Vlasov equation diverge at most exponentially in time, under the hypothesis that the inter-

particle potential is a smooth function. From here it is simple to prove that, for uncorrelated

initial states, the solution to the Vlasov equation approximate well the trajectory of the N -

body system at least for a time of order log N . On the basis of numerical results [175] it

is believed that this estimate is actually optimal when the system starts from an unstable

initial state. As far as we know, there are no results aiming to understand if the first two

equations of the hierarchy (4.79) and (4.80), without any further assumption, can describe

the emergence of this time-scale. In practice, it is not simple to handle this problem because

the two equations (4.79) and (4.80) are coupled. A study of this kind could be probably done

on simple quantum systems like those considered in [176], because in these cases the equa-

tions of the hierarchy are ordinary, instead of partial, differential equations and thus much

easier to handle.

Caglioti and Rousset [177] proved that if the N -body system starts close to a stationary

and stable solution of the Vlasov equation and for smooth two-body potentials, the N -body

dynamics remains close to the Vlasov one at least for times of order N 1/8. This seems to go in

the direction of the prediction of the kinetic theory, but we are not aware of further rigorous

results.

From numerical experiments on one-dimensional systems, it emerges that the relax-

ation time-scale of a long-range interacting system does scale as N when the system is not

homogeneous [150] and as N 2 when the system is homogeneous at all times [178]. The first

fact is consistent with the fact that the Landau kinetic equation for non-homogeneous sys-

tems is not trivial already in dimension one [111] and the second one with the fact that the

Lenard-Balescu operator vanishes in dimension one, for one component systems [167]. The

scaling N 1.7 found in the HMF model when going from an homogeneous initial state from a

non-homogeneous Maxwell-Boltzmann equilibrium can be quite reasonably interpreted as

mixed situation between the precedent two [179].

The content of this Chapter form the basis for the following Chapters. In particular, the

structure of kinetic theory and the general results of Section 4.5 will be useful in Chapters 6

and 7 for the derivation of kinetic theories for stochastically forced systems.
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5
Deterministic perturbations: linear

response theory on the Vlasov equation

For short-range interacting systems, Kubo linear response theory [180,181] is a very classical

and fundamental result which describes how a system prepared in equilibrium responds to

a small external perturbation. Long-range interacting systems, however, are often found

trapped in QSSs; Kubo theory is of little utility here.

As a first step in understanding the effect of perturbations on systems with long-range

interactions, we consider the following situation: we prepare a long-range interacting sys-

tem in a QSS and we apply a (small) external field which evolves deterministically in time.

Working in the limit N → ∞, we show that a formula similar to the Kubo formula holds,

where differences arise due to the non-linearity of the Vlasov equation in contrast to the Li-

ouville equation. Explicit results can be obtained reformulating the techniques we used to

derive the Landau Damping in Section 4.4.1.

The Chapter is organized as follows. In Section 5.1, we obtain the analogous to the Kubo

formula for the Vlasov equation whose initial condition is a generic stationary and stable

state of the unperturbed system. In Section 5.2, we specialize to QSSs homogeneous in the

coordinate, and derive a closed form expression for the change induced by the external per-

turbation in a single-particle dynamical quantity. Section 5.3 is devoted to the application

of the theory to study the response of three representative homogeneous QSSs in the HMF

model, namely, the widely studied water-bag QSS, the Fermi-Dirac QSS and the homoge-

neous equilibrium state. In the following Section, we compare results from N -particle nu-

merical simulations of the HMF dynamics with those from the linear response theory, and

obtain good agreement. We also discuss the long-time relaxation of the water-bag QSS to

Boltzmann-Gibbs equilibrium under the action of the perturbation. We draw our conclu-

sions in Section 5.5.

Our results, reported in [125], have been recently generalized to some non-homogeneous

states by Ogawa et al. [126] and by Patelli et al. in [127].
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5.1 Linear response theory for QSS

Consider a system of N particles interacting through a long-ranged pair potential (4.3). The

system evolves under deterministic Hamiltonian dynamics: the equations of motion for the

i -th particle are

q̇i = p i , (5.1)

ṗ i =−
∂

∂ qi

1

N

N
∑

i<j

v (qi −qj ), (5.2)

where dots denote differentiation with respect to time. As usual, we regard qi variables on a

unit circle, even if the formalism can be easily extended to Rn with a generic n .

We start with the system in a QSS at time t = 0 and apply an external field K (t ). Assuming the

field K (t ) to couple to the coordinates of the individual particles, the perturbed Hamiltonian

is

H (t ) =H0+Hext =H0−K (t )

N
∑

i=1

b (qi ). (5.3)

Here, b (qi ) denotes the dynamical quantity for the i th particle that is conjugate to K (t ). The

equations of motion are modified from Eq. (5.2) to

q̇i = p i , (5.4)

ṗ i =−
∂

∂ qi

1

N

N
∑

i<j

v (qi −qj )+K (t )
∂ b (qi )

∂ qi

. (5.5)

In this work, we study the temporal response of the initial QSS to the field K (t ), in par-

ticular, the linear response. We ask: How does a single-particle dynamical quantity a (q ),

that starts from a value corresponding to the QSS, evolve in time under the action of K (t )?

We seek answers to this question by considering the system in the limit N →∞, so that size

effects are negligible and the evolution of the QSS is due to the field K (t ) alone. Because a

QSS is represented by a stable stationary solution of the dynamics (5.2), we will work at the

level of Vlasov equation instead than at the level of N -body dynamics. We also regard K (t ) to

satisfy the following conditions: K (t ) is a monotonically increasing function of t and has a

value≪ 1 at all times, K (t = 0) = 0, and K (t →∞) equals to a constant much smaller than 1.

While discussing the time-asymptotic response, we will mean the ordering of limits N →∞
first, followed by t →∞. The Vlasov equation associated to the Hamiltonian (5.3) is1

∂ f

∂ t
−L (q , p , t )[ f ] f = 0, (5.6)

1Observe that in this Chapter, we use a slightly different notation for the operators acting on a function and

thus we write them in calligraphic style. The reason for this is that here we have in mind that L (q , p , t )[ f ] is

the analogous to the Liouville operator.
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where the operatorL (q , p , t )[ f ] is just the Vlasov operator given by

L (q , p , t )[ f ] =−p
∂

∂ q
+
∂ Φ[ f ](q , t )

∂ q

∂

∂ p
−K (t )

∂ b

∂ q

∂

∂ p
, (5.7)

while Φ[ f ](q , t ) is the mean-field potential in Eq. (4.15).

We investigate the response of the system to the external field by monitoring the observ-

able

〈a (q )〉(t )≡
∫

dqdp a (q ) f (q , p , t ). (5.8)

To obtain its time dependence, we need to solve Eq. (5.6) for f (q , p , t ), with the initial con-

dition

f (q , p , 0) = f 0(q , p ). (5.9)

Here, f 0(q , p ) characterizes a QSS, i.e., a stable stationary solution of the Vlasov equation for

the unperturbed dynamics (5.2). Thus, f 0(q , p ) satisfies

L0(q , p )[ f 0] f 0 = 0, (5.10)

where

L0(q , p )[ f 0] =−p
∂

∂ q
+
∂ Φ[ f 0](q )

∂ q

∂

∂ p
. (5.11)

To solve Eq. (5.6) for K (t )≪ 1, we expand f (q , p , t ) to linear order in K (t ) as

f (q , p , t ) = f 0(q , p )+∆ f (q , p , t ), (5.12)

with the initial condition

∆ f (q , p , 0) = 0. (5.13)

Substituting Eq. (5.12) in Eq. (5.6), and separating terms to order 1 and K (t ), we get,

respectively,

∂ f 0

∂ t
−L0(q , p )[ f 0] f 0 = 0, (5.14)

and

∂∆ f

∂ t
−L0(q , p )[ f 0]∆ f =Lext(q , p , t )[∆ f ] f 0. (5.15)

Here, the operator

Lext(q , p , t )[∆ f ] =
∂ Φ[∆ f ](q , t )

∂ q

∂

∂ p
−K (t )

∂ b

∂ q

∂

∂ p
(5.16)

describes the effects of the external field, which are two-fold: (i) to generate a potential due

to its direct coupling with the particles, and (ii) to modify the mean-field potential from

its value Φ[ f 0](q ) in the absence of the field. Clearly, this second effect is only due to the
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non-linear character of the Vlasov equation and is absent in Kubo linear response theory.

Defining an effective single-particle potential,

veff[∆ f ](q , t ) = Φ[∆ f ](q , t )−K (t )b (q ), (5.17)

Eq. (5.15) may be written as

∂∆ f

∂ t
−L0(q , p )[ f 0]∆ f =

∂ veff(q , t )[∆ f ]

∂ q

∂ f 0

∂ p
. (5.18)

Equation (5.14) is satisfied by virtue of the definition of f 0(q , p ). We thus solve Eq. (5.18)

for∆ f (q , p , t ) in order to determine f (q , p , t ) from Eq. (5.12). With the condition (5.13), the

formal solution is

∆ f (q , p , t ) =

t
∫

0

dτ e (t−τ)L0(q ,p )[ f 0]
∂ veff[∆ f ](q ,τ)

∂ q

∂ f 0(q , p )

∂ p
. (5.19)

Using Eq. (5.19) in Eqs. (5.8) and (5.12) gives the change in the value of 〈a (q )〉(t ) due to

the external field

〈∆a (q )〉(t )≡
∫

dqdp a (q )
�

f (q , p , t )− f 0(q , p )
�

=

t
∫

0

dτ

∫

dqdp a (q )e (t−τ)L0(q ,p )[ f 0]× ∂ veff[∆ f ](q ,τ)

∂ q

∂ f 0(q , p )

∂ p

=−

t
∫

0

dτ
D∂ a (t −τ)

∂ p

∂ veff[∆ f ](q ,τ)

∂ q

E

f 0

. (5.20)

Here, angular brackets with f 0 in the subscript denote averaging with respect to f 0(q , p ), e.g.,

〈a (q )〉 f 0 ≡
∫

dqdp a (q ) f 0(q , p ), (5.21)

while

a (t −τ) = e−(t−τ)L0(q ,p )[ f 0]a (q ) (5.22)

is the time-evolved a (q ) under the dynamics of the unperturbed system. In obtaining the

last equality in Eq. (5.20), we have used the definition of L0, have performed integration

with respect to q , and have assumed the boundary terms involving f 0(q , p ) to vanish.

Defining the Poisson bracket between two dynamical variables g (q , p ) and g ′(q , p ) in the

single-particle phase space as

{g (q , p ), g ′(q , p )} ≡ ∂ g

∂ q

∂ g ′

∂ p
− ∂ g ′

∂ q

∂ g

∂ p
, (5.23)
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Eq. (5.20) may be rewritten as

〈∆a (q )〉(t ) =

t
∫

0

dτ
D

�

a (t −τ), veff[∆ f ](q ,τ)
	

E

f 0

. (5.24)

This is the central result of this Chapter. The above equation is the analogous to the Kubo

formula for the response of a dynamical quantity defined in the full 2N -dimensional phase

space to an external perturbation [180, 181]. The difference between the two is that in

Eq. (5.24) we have an effective potential veff, defined in Eq. (5.17), and not the external field

alone. This is due to the non-linearity of the Vlasov equation in contrast to the linearity of

the Liouville equation. The external field not only generates a potential due to its direct cou-

pling with the particles, but it also modify the mean-field potential from its value Φ[ f 0](q )

in the absence of the field. The relation of formula (5.24) with more general ones derived

by Ruelle [182] in the context of dynamical system theory remains to be investigated. In the

following section, we discuss the special case of a homogeneous QSS, i.e., f 0(q , p ) = f 0(p ) is

a function solely of the momentum, to obtain an explicit form of the formal solution (5.19).

5.2 Homogeneous QSS

We consider a homogeneous QSS with f 0(q , p ) = f 0(p ), where f 0(p ) is any distribution of the

momentum, with the normalization
∫

dqdp f 0(p ) = 1,

∫

dp f 0(p ) =
1

2π
, (5.25)

where 2π is the total volume of the coordinate space.

For a homogeneous QSS, Eq. (5.11) gives

L0(q , p )[ f 0] =−p
∂

∂ q
, (5.26)

so that Eq. (5.19) becomes

∆ f (q , p , t ) =

t
∫

0

dτ e
−(t−τ)p ∂

∂ q
∂ veff[∆ f ](q ,τ)

∂ q

∂ f 0(p )

∂ p
, (5.27)

which implies that the spatial Fourier and temporal Laplace transform of∆ f (q , p , t ) satisfies

∆ f k (p ,ω) =
∂ f 0(p )

∂ p
i k

1

−iω+ i k p

h

2πvk

∫

dp ′ ∆ f k (p
′,ω)−K (ω)bk

i

. (5.28)

assuming Im(ω) to be positive. Integrating both sides of Eq. (5.28) with respect to p gives
∫

dp ∆ f k (p ,ω) =
K (ω)bk

2πvk

�ε(k ,ω)−1

ε(k ,ω)

�

. (5.29)
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Here, ε(k ,ω) is the dielectric function given, for Im(ω) > 0, by Eq. (4.54). As discussed in

Section 4.4.1, to obtain the time behavior of∆ f k , we need to give a meaning to Eq. (5.29) in

the whole complex plane. This can be done just interpreting ε(k ,ω) as in Eq. (4.58). For the

integral of the distribution function, we have
∫

dp f (q , p , t ) =
1

2π
+

1

2π

∫

Γ

dω e−iωt

∫

d k e i kq
hK (ω)bk

2πvk

�ε(k ,ω)−1

ε(k ,ω)

�i

, (5.30)

whereΓ is the Laplace contour. Let us suppose that the expression enclosed by square brack-

ets has singularities which are isolated poles of any order. Let {ωp(k )} be the set of poles,

while {rp(k )} is the set of residues at these poles. Then, by the theorem of residues, we get

∫

dp f (q , p , t ) =
1

2π
+

1

2π

∫

d k e i kq
∑

p

(2πi )rp(k )e
−iωp(k )t . (5.31)

From Eq. (5.30), we see that the poles correspond either to poles of K (ω) or to the zeros

of the dielectric function, i.e., valuesωp(k ) (complex in general) that satisfy

ε(k ,ωp(k )) = 0. (5.32)

Equation (5.31) implies that these poles determine the growth or decay of
∫

dp∆ f k in time

depending on the location of the poles in the complex-ω plane, as we have already seen

discussing the Landau damping in Section 4.4.1. For example, when there are poles in the

upper-half complex ω-plane, the difference grows in time. If, on the other hand, the poles

lie either on or below the real-ω axis, the difference does not grow in time, but oscillates or

decays in time, respectively.

We have to ensure that our analysis leading to Eq. (5.31) is consistent with the decompo-

sition in Eq. (5.12) for perturbations about a stable stationary state f 0(q , p ) = f 0(p ). It is thus

required that
∫

dp∆ f k does not grow in time, which means that the aforementioned poles

cannot lie in the upper-half ω-plane. Now, since K (t ) was chosen to satisfy the conditions

K (t = 0) = 0 and K (t →∞) = a constant much smaller than 1, it follows that K (ω) cannot

have poles in the upper-half ω-plane. We therefore conclude that Eq. (5.31) is valid when

the polesωp(k ) that come from the zeros of ε(k ,ω) satisfy

ε(k ,ωp(k )) = 0; Im(ωp(k ))≤ 0, (5.33)

corresponding to linear stability of the stationary state f 0(p ). The condition Im(ωp(k )) = 0

corresponds to marginal stability of f 0(p ). In this case, the zeros of the dielectric function

lie on the real-ω axis so thatωp(k ) =ωpr(k ) is real. From Eqs. (5.32) and (4.58), we find that

ωpr(k ) satisfies

1−2πk vk

∫ ∗
dp

k p −ωpr(k )

∂ f 0(p )

∂ p
− i 2π2vk

∂ f 0(p )

∂ p

�

�

�

�

ωpr(k )/k

= 0 , (5.34)
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where
∫ ∗

stands for the Cauchy integral. Equating the real and the imaginary parts to zero,

we get

1−2πk vk

∫ ∗
dp

k p −ωpr(k )

∂ f 0(p )

∂ p
= 0, (5.35)

∂ f 0(p )

∂ p

�

�

�

�

ωpr(k )/k

= 0. (5.36)

We now move on to apply our analysis to the Hamiltonian mean-field model, a paradig-

matic model of long-range interactions.

5.3 Application to the Hamiltonian mean-field model

5.3.1 Model

In the following, we apply the previous formalism to the HMF model, defined in Section 4.1.

Let us recall some useful facts.

The model in the equilibrium state shows a continuous transition from a low-energy

clustered phase, in which the particles are close together on the circle, to a high-energy

homogeneous phase corresponding to a uniform distribution of particles on the circle. The

clustering of the particles is measured by the magnetization vector 〈m〉(t )with components

(〈mx 〉(t ), 〈my 〉(t )) =
∫

dqdp (cosq , sinq ) f (q , p , t ), (5.37)

and magnitude 〈m 〉(t ) =
p

〈mx 〉2(t )+ 〈my 〉2(t ). In terms of 〈m 〉(t ), the energy density is

e =
Dp 2

2

E

(t )+
1

2

h

1−〈m 〉2(t )
i

, (5.38)

where the kinetic energy defines the temperature T of the system:

Dp 2

2

E

(t ) =

∫

dqdp
p 2

2
f (q , p , t ) =

T

2
. (5.39)

Note that e is conserved under the dynamics.

In equilibrium, the single-particle distribution assumes the canonical form, f eq(q , p ),

which is Gaussian in p with a non-uniform distribution for q below the transition energy

density ec and a uniform one above [183]:

f eq(q , p ) =

p

β exp
h

−β
�

p 2

2
−m

e q
x cos(q −φ)

�i

(2π)3/2I0(βm
e q
x )

. (5.40)

Here, I0 is the modified Bessel function of zero order, β is the inverse temperature, while

m
e q
x is the equilibrium magnetization that decreases continuously from unity at zero energy
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density to zero at ec and remains zero at higher energies. The arbitrary phaseφ in Eq. (5.40)

is a result of the rotational invariance of the HMF Hamiltonian. The energy at equilibrium

is

e =
1

2β
+

1− (m e q
x )

2

2
. (5.41)

The phase transition in the HMF model occurs within both microcanonical and canoni-

cal ensembles [65,184]. Thus, ensemble equivalence, though not guaranteed for long-range

interacting systems [109], holds for the HMF model [90]. The microcanonical transition en-

ergy is ec = 3/4, which corresponds to a transition temperature Tc = 1/2 in the canonical

ensemble.

5.3.2 Linear response of homogeneous QSS

Consider the QSS distribution f 0(q , p ) = f 0(p ) which is homogeneous in coordinate (thus,

〈mx 〉 f 0 = 〈my 〉 f 0 = 0), but has an arbitrary normalized distribution for the momentum. Here,

we study the response of this QSS to the external perturbation

Hext =−K (t )

N
∑

i=1

cosqi , (5.42)

which corresponds to the choice

b (q ) = cosq . (5.43)

in Eq. (5.3). The specific K (t )we choose is a step function:

K (t ) =

(

0 for t < 0,

h for t ≥ 0; h≪ 1.
(5.44)

The changes in the magnetization components due to the field are

〈∆mx 〉(t ) =
∫

dqdp
�

f (q , p , t )− f 0(p )
�

cosq

=
1

2

∫

Γ

dω e−iωt

∫

dp
�

∆ f 1(p ,ω)+∆ f−1(p ,ω)
�

, (5.45)

and

〈∆my 〉(t ) =
∫

dqdp
�

f (q , p , t )− f 0(p )
�

sinq

=
1

2i

∫

Γ

dω e−iωt

∫

dp
�

∆ f−1(p ,ω)−∆ f 1(p ,ω)
�

. (5.46)

Using

vk =
h

δk ,0−
δk ,−1+δk ,1

2

i

, (5.47)
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bk =
δk ,−1+δk ,1

2
, (5.48)

K (ω) =− h

iω
, (5.49)

and Eq. (5.29) in Eqs. (5.45) and (5.46) gives

〈∆mx 〉(t ) =
h

2π

∫

Γ

dω e−iωt 1

iω

�ε(1,ω)−1

ε(1,ω)

�

, (5.50)

and

〈∆my 〉(t ) = 0. (5.51)

Here, we have used the fact that for the HMF model,

ε(1,ω) = ε(−1,ω) . (5.52)

It may also be seen that

ε(k ,ω) = 1 for k 6=±1. (5.53)

Now, using the fact that 〈mx 〉 f 0 = 〈my 〉 f 0 = 0, Eqs. (5.50) and (5.51) imply that

〈mx 〉(t ) =
h

2π

∫

Γ

dω e−iωt 1

iω

�ε(1,ω)−1

ε(1,ω)

�

, (5.54)

and

〈my 〉(t ) = 0. (5.55)

It can be proven straightforwardly from the Vlasov equation (5.6) that Eq. (5.55) holds also

in the non-linear response regime (K (t ) not necessarily small) for all homogeneous f 0(p )

which are even in p .

When the zeros of ε(1,ω) lie only in the lower-half complex-ω plane, Eq. (5.54) gives the

time-asymptotic response

m x ≡ lim
t→∞
〈mx 〉(t ) = h

�1−ε(1, 0)

ε(1, 0)

�

. (5.56)

Note that K (ω), given in Eq. (5.49), has a pole only at ω = 0. Following the discussions

in Section 5.2, we thus conclude that the conditions (5.35) and (5.36) solely determine the

parameters characterizing the distribution f 0(p ) such that it is marginally stable. For the

HMF model, we need to consider only k =±1 in these conditions. Since ε(1,ω) = ε(−1,ω),

we writeωpr(1) =ωpr(−1) =ωpr, so that these conditions become

1+π

∫ ∗
dp

p ∓ωpr

∂ f 0(p )

∂ p
= 0, (5.57)

∂ f 0(p )

∂ p

�

�

�

�

ωpr

= 0. (5.58)
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Observe that the quantity m x/h is the susceptibility of the system, which clearly depends

on f 0(p ). For distributions f 0(p ) with a simple bump in p = 0, the above formula implies

that the susceptibility diverges when the state loss its stability. This is a generalization of the

divergence of the susceptibility at equilibrium when the system is close to a second order

phase transition. For what concerns the explicit prediction of m x , Eq. (5.56) has a meaning

only if m x < 1: the closer we are to the situation of marginal stability, the smaller is the region

of values of the external field h such that the predictions of the linear response theory are

reliable.

We now consider two representative f 0(p ) and obtain the linear response of the corre-

sponding QSS by using Eq. (5.54). For the first case, we obtain the full temporal behavior of

the response, while in the second case, we discuss only the time-asymptotic response.

Water-bag QSS

The water-bag state corresponds to coordinates uniformly distributed in [0, 2π] and mo-

menta uniformly distributed in [−p0, p0]:

f 0(p ) =
1

2π

1

2p0

h

Θ(p +p0)−Θ(p −p0)
i

; p ∈ [−p0, p0]. (5.59)

Here,Θ(x ) denotes the unit step function. The energy density is obtained from Eq. (5.38) as

e =
p 2

0

6
+

1

2
. (5.60)

We get

ε(1,ω) = 1− 1

2(p 2
0 −ω2)

, (5.61)

which, a priori, should be considered only for Im(ω) > 0. However, the previous expres-

sion does not admit an analytic continuation for ω ∈ R and it is univocally determined by

Eq. (5.61) on the whole complex plane. We observe that Eq. (5.61) is analytic in the whole of

theω-plane, except at the two pointsω=±p0.

As discussed in Section 5.2, the zeros of the dielectric function determine the temporal

behavior of
∫

dp ∆ f (q , p , t ). The zeros of Eq. (5.61) occur at ωp = ±
p

p 2
0 −1/2. For p0 <

p ∗0 = 1/
p

2, (correspondingly, e < e ∗ = 7/12), the pair of zeros lies on the imaginary-ω axis,

one in the upper half-plane and one in the lower. The one in the upper half-plane makes

the water-bag state linearly unstable for e < e ∗. As e approaches e ∗ from below, the zeros

move along the imaginary-ω axis and hit the origin when e = e ∗. At higher energies, the

zeros start moving on the real-ω axis away from the origin in opposite directions. The fact

that the zeros of the dielectric function are strictly real for e ≥ e ∗ implies that the water-bag

state is marginally stable at these energies.

From the discussions in Section 5.2 and those following Eq. (5.56), it follows that the

result of the linear Vlasov theory, Eq. (5.54), is valid and physically meaningful only when
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p 2
0 > 1/2. Using Eq. (5.61) in Eq. (5.54) and performing the integral by the residue theorem

gives

〈mx 〉(t ) =
2h

2p 2
0 −1

sin2
� t

2

Ç

p 2
0 −

1

2

�

; p 2
0 >

1

2
. (5.62)

Thus, the linear Vlasov theory predicts that in the presence of an external field along x , the

corresponding magnetization exhibits oscillations for all times and does not approach any

time-asymptotic constant value. This prediction is verified in numerical simulations dis-

cussed in Section 5.4.1. The average of 〈mx 〉(t ) over a period of oscillation is

〈mx 〉Time average ≡
1

T

∫ T

0

d t 〈mx 〉(t ) =
h

2p 2
0 −1

; p 2
0 >

1

2
, (5.63)

where T is the period of oscillation. In Section 5.4, we will compare this average with nu-

merical results.

Fermi-Dirac QSS

We now consider a Fermi-Dirac state in which the coordinate is uniformly distributed in

[0, 2π], while the momentum has the usual Fermi-Dirac distribution:

f 0(p ) = A
1

2π

1

1+ e β (p
2−µ) ; p ∈ [−∞,∞]. (5.64)

Here, β ≥ 0 and µ ≥ 0 are parameters characterizing the distribution, while A is the nor-

malization constant. We consider the state (5.64) in the limit of large β in which analytic

computations of various physical quantities is possible. As β → ∞ the Fermi-Dirac state

converges to the water-bag state (5.59) with p0 =
p
µ.

As shown in Appendix C.1, to leading order in 1/β 2, the normalization is given by

A =
1

2
p
µ

�

1+
π2

24β 2µ2

�

, (5.65)

while the energy density is

e =
µ

6

�

1+
π2

6β 2µ2

�

+
1

2
. (5.66)

Let us now investigate the conditions (5.57) and (5.58) for the marginal stability of the

state (5.64). Since f 0(p ) satisfies ∂ f 0(p )

∂ p

�

�

�

p=0
= 0, the condition (5.58) implies that ωpr = 0,

which on substituting in condition (5.57) gives

ε(1, 0) = 0, (5.67)

where, as shown in the Appendix, to order 1/β 2, we have

ε(1, 0) = 1− 1

2µ

�

1+
π2

6β 2µ2

�

. (5.68)
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Solving Eq. (5.67) givesµ∗, the value ofµ at the marginal stability of the state (5.64). To order

1/β 2, we get

µ∗ =
1

2
+

2π2

3β 2
, (5.69)

which gives the corresponding energy density

e ∗ =
7

12
+
π2

6β 2
, (5.70)

such that at higher energies, the state (5.64) is a QSS.

Following our earlier discussions on the regime of validity of the linear Vlasov theory,

and using Eq. (5.68) in Eq. (5.56), we get

m x =
h
�

1+ π2

6β2µ2

�

2µ−1− π2

6β2µ2

; µ>µ∗. (5.71)

5.3.3 Linear response of the homogeneous equilibrium state

It is interesting to consider the response of the distribution (5.40) with magnetization m
e q
x =

0, which is the equilibrium state of the HMF model for energies e > ec . We thus consider the

choice

f 0(p ) =

Ç

β

2π
exp

h

− βp 2

2

i

. (5.72)

The stability condition (5.58) givesωpr = 0, so that Eq. (5.57) gives

ε(1, 0) = 0, (5.73)

where ε(1, 0) is given by

ε(1, 0) = 1− β
2

. (5.74)

Thus, the state (5.40) is marginally stable at β = 2, and correspondingly, e = e ∗ = 3/4 = ec .

For e > e ∗, the state is a QSS and also the Boltzmann-Gibbs equilibrium state.

Using Eqs. (5.74) and (5.56), one gets

m x =
h

2/β −1
; β < 2. (5.75)

Therefore, under the perturbation, Eqs. (5.42) and (5.44), the equilibrium state evolves to

an inhomogeneous QSS predicted by our linear response theory. Let us compare the value

of m x in Eq. (5.75) with the one predicted by equilibrium statistical mechanics, m
e q
x (β , h), at

the same values of the energy and h. This latter quantity is obtained by solving the implicit

equation
X

β
−h =

I1(X )

I0(X )
, (5.76)
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with I1(X ) the modified Bessel function of first order, and using the solution X̄ (β , h) to get

m e q
x
(β , h) =

I1(X̄ )

I0(X̄ )
. (5.77)

The corresponding energy is

e =
1

2β
+

1− (m e q
x (β , h))2

2
−hm e q

x
(β , h). (5.78)

The two values given in Eqs. (5.75) and (5.77) are in general different. However, in the

high-energy regime, one can solve Eq. (5.76) for small X to obtain for the equilibrium mag-

netization the same formula as the one obtained by the linear response theory, Eq. (5.75).

While comparing the two magnetization values with numerical results at high energies in

Section 5.4.2, we are thus not able to distinguish between equilibrium and QSS magnetiza-

tion in the presence of the field.

5.4 Comparison with N -particle simulations

To verify the analysis presented in Section 5.3, we performed extensive numerical simula-

tions of the N -particle dynamics (5.5) for the HMF model for large N . The equations of mo-

tion were integrated using a fourth-order symplectic scheme [185], with a time step varying

from 0.01 to 0.1. In simulations, we prepare the HMF system at time t = 0 in an initial state

by sampling independently for every particle the coordinate q uniformly in [0, 2π] and the

momentum according to either the water-bag, the Fermi-Dirac, or the Gaussian distribu-

tion. Thus, the probability distribution of the initial state is

f N (q1, p1,q2, p2, . . . ,qN , pN ) =

N
∏

i=1

f 0(p i ) (5.79)

where f 0(p ) is given by either Eq. (5.59), (5.64), or (5.72). The energy of the initial state is cho-

sen to be such that it is a QSS. Then, at time t0 > 0, we switch on the external perturbation,

Eqs. (5.42) and (5.44), and follow the time evolution of the x -magnetization.

In obtaining numerical results, two different approaches were adopted. In one approach,

we followed in time the evolution of a single realization of the initial state. These simulations

are intended to check if our predictions based on the Vlasov equation for the smooth dis-

tribution f (q , p , t ) for infinite N are also valid for a typical time-evolution trajectory of the

system. As discussed in Chapter 4, when f 0(p ) is a stable stationary solution of the Vlasov

equation, it is known numerically and analytically that these times diverge as a power of

N , and are therefore sufficiently long to allow us to check even for moderate values of N

the predictions of our linear Vlasov theory for perturbations about Vlasov-stable stationary

solution f 0(p ).

115



CHAPTER 5. DETERMINISTIC PERTURBATIONS: LINEAR RESPONSE
THEORY ON THE VLASOV EQUATION

In a second approach, we obtained numerical results by averaging over an ensemble of

realizations of the initial state. The time evolution that we get using this second method is

different from the first one. This approach allows us to reach the average and/or asymp-

totic value of an observable, here 〈mx 〉(t ), on a faster time scale because of a mechanism of

convergence in time, as we describe below.

5.4.1 Linear response of homogeneous QSS: Single realization

The oscillatory behavior of 〈mx 〉(t ) predicted for the water-bag state, see formula (5.62), is

checked in Fig. 5.1(a). Oscillations around a well-defined average persist indefinitely with

no damping, as predicted by the theory. In the inset of the same panel, the theoretical pre-

diction is compared with the numerical result for a few oscillations. While the agreement is

quite good for the first two periods of the oscillations, the numerical data display a small fre-

quency shift with respect to the theoretical prediction. Moreover, an amplitude modulation

may also be observed. We have checked in our N -particle simulations that different initial

realizations produce different frequency shifts, which has a consequence when averaging

over an ensemble of initial realizations, as discussed below.

In Fig. 5.1(b), we show 〈mx 〉(t ) for the Fermi-Dirac QSS. In this case, we have the theo-

retical prediction only for the asymptotic value m x given in Eq. (5.71). The time evolution

of 〈mx 〉(t ) displays beatings and revivals of oscillations around this theoretical value, shown

by the dashed horizontal line in the figure. There is no sign of asymptotic convergence, even

running for longer times. For this high value of β , which makes the Fermi-Dirac distribution

very close to the water-bag one, we cannot conclude that there will be damping in time. We

have observed a damping for smaller values of β when the Fermi-Dirac distribution comes

closer to a Gaussian.

5.4.2 Linear response of the homogeneous equilibrium state: Single re-

alization

In Fig. 5.2, we show 〈mx 〉(t ) for the Gaussian QSS. After the application of the external field,

the magnetization sharply increases and fluctuates around a value which is slightly below

the theoretical prediction, Eq. (5.75). Convergence to this latter value is observed on longer

times.

5.4.3 Average over initial realizations

In this section, we present numerical results for the three initial QSSs (water-bag, Fermi-

Dirac, Gaussian), obtained after averaging the time evolution of 〈mx 〉(t ) over a set of realiza-
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Figure 5.1 – 〈mx 〉(t ) vs. time t for the (a) water-bag QSS, and (b) Fermi-Dirac QSS, in the HMF model

under the action of the perturbation, Eqs. (5.42) and (5.44), with h = 0.1 switched on at time t0 =

25. (a) The full line in the main plot shows the result of N -particle simulation, while the dashed

horizontal line is the theoretical time-averaged value of 〈mx 〉(t ) given in Eq. (5.63). The system size

is N = 105, while the parameter p0, corresponding to energy e = 0.7, is approximately 1.095. In the

inset, the numerical result (full line) is compared with the theoretical prediction (5.62) (dashed line).

(b) The full line represents simulation results, while the horizontal dashed line is the theoretical

asymptotic value given in Eq. (5.71). The system size is N = 105, while β = 10 and µ = 1.2, giving

energy e ≈ 0.7.
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Figure 5.2 – 〈mx 〉(t ) vs. time t for the Gaussian QSS in the HMF model under the action of the per-

turbation, Eqs. (5.42) and (5.44), with h = 0.1 switched on at time t0 = 25. The line made of pluses

represents the result of N -particle simulation, while the dashed horizontal line is the theoretical

asymptotic value given in Eq. (5.75). The system size is N = 105, while β = 0.5, so that the energy

e = 1.5.

tions (typically a thousand) of the initial state. We define the average

〈mx 〉Ensemble average(t ) =
1

Ns

Ns
∑

n=1

〈mx 〉n (t ), (5.80)
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Figure 5.3 – Linear response of a water-bag QSS (panels 1(a), 1(b)), a Fermi-Dirac QSS with β = 10

(panels 2(a), 2(b)), and the homogeneous equilibrium state (panels 3(a), 3(b)) for the HMF model

under the perturbation, Eqs. (5.42) and (5.44), with h = 0.01. All simulation data have been aver-

aged over several thousand realizations of the initial state. In each case, panel (a) shows the time

evolution of the 〈mx 〉Ensemble average(t ) as obtained from N -particle simulations, and its asymp-

totic approach either to the time average in Eq. (5.63) for the water-bag initial state or to m x given

in Eq. (5.71) for the Fermi-Dirac QSS, or to m x given in Eq. (5.75) for the Gaussian QSS. In panel (b),

we show the N -particle simulation results for the asymptotic magnetization as a function of energy

(the parameter µ in the Fermi-Dirac case). The error bars denote the standard deviation of fluctua-

tions around the asymptotic value. The results compare well with the theoretical predictions. The

system size N is 16, 000 for panels 1(a), 1(b) and panels 2(a), 2(b), and 10, 000 for panels 3(a), 3(b).
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where 〈·〉n labels the sample and Ns is the total number of different realizations.

In all cases, we observe a relaxation to an asymptotic value. For the water-bag distri-

bution, this value compares quite well with the time-averaged magnetization given in for-

mula (5.63), see Fig. 5.3 panels (a) and (b). The mechanism by which the relaxation to the

asymptotic value occurs in the water-bag case, in the absence of a true relaxation of a sin-

gle initial realization, is the frequency shift present in the different initial realizations. This

leads at a given time to an incoherent superposition of the oscillations of the magnetization.

For other distributions, the numerically determined asymptotic value is compared with the

theoretical value for the single realization m x , given in Eq. (5.71) and Fig. 5.3 panels 2(a) and

2(b), and formula (5.75) and Fig. 5.3 panels 3(a) and 3(b). The agreement is quite good.

5.4.4 Relaxation of QSS to equilibrium

For finite values of N , the perturbed HMF system finally relaxes to the Boltzmann-Gibbs

equilibrium state. The presence of a two-step relaxation of the initial water-bag QSS with

energy e = 0.65, first to the perturbed Vlasov state and then to equilibrium, is shown in

Fig. 5.4 for increasing system sizes for perturbation, Eqs. (5.42) and (5.44), with h = 0.01.

The relaxation to the first magnetization plateau with value ≈ 0.125 predicted by the linear

response theory takes place on a time of O(1). The final relaxation to the equilibrium value of

the magnetization≈ 0.42 occurs on a timescale that increases with system size, presumably

with a power law that remains to be investigated further.

5.5 Conclusions

In this Chapter, we studied the response of a Hamiltonian long-range system in a QSS to a

deterministic external perturbation. The perturbation couples to the canonical coordinates

of the individual constituents. We pursued our study by analyzing the Vlasov equation for

the time evolution of the single-particle phase space distribution. We linearized the per-

turbed Vlasov equation about the QSS for weak enough external perturbation to obtain a

formal expression for the response observed in a single-particle dynamical quantity. From

a theoretical point of view, we obtained a formula (5.24) which is the analogous of the Kubo

formula. The difference between the two is that it enters an effective potential veff, defined

in Eq. (5.17), and not the external field alone. This is due to the non-linearity of the Vlasov

equation in contrast to the linearity of the Liouville equation. The external field not only

generates a potential due to its direct coupling with the particles, but it also modify the

mean-field potential from its value Φ[ f 0](q ) in the absence of the field.

The explicit use of Eq. (5.24) relies on techniques very similar to those presented to obtain

the Landau Damping in the previous Chapter and it is thus easily feasible when the QSS is
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Figure 5.4 – Two-step relaxation of the water-bag QSS toward the Boltzmann-Gibbs equilibrium:

〈mx 〉(t ) vs. time t for increasing system size from N = 2000 to N = 64000 (left to right). Under

the perturbation, Eqs. (5.42) and (5.44) with h = 0.01, the water-bag initial QSS with e = 0.65 relaxes

to an intermediate inhomogeneous QSS with 〈mx 〉 ≈ 0.125 (lower horizontal dash-dotted line) and

then to the equilibrium state with 〈mx 〉 ≈ 0.42 (upper horizontal dashed line). The blue thick lines

refer to running averages performed to smooth out local fluctuations.

homogeneous in the coordinate. In this case, we derived a closed form expression for the

response function. We applied this formalism to the Hamiltonian mean-field model, and

compared the theoretical predictions for three representative QSSs (the water-bag QSS, the

Fermi-Dirac QSS and the Gaussian QSS) with N -particle simulations for large N . We also

showed the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium

state.

The explicit application of Eq. (5.24) is possible with techniques very similar to those

used to derive the Landau damping in Section 4.4.1. The results presented here has been

also derived by Ogawa et al. [126]; in this work even some cases of spatially non-homogeneous

f 0 is discussed. The technique, relying on the use of action-angle variables, follows the one

employed to prove the Landau damping for non-homogeneous states in [163,164]when the

single-particle dynamics is integrable. An interesting observation of this work is that for the

non-homogeneous equilibrium state, the prediction of the linear theory for the divergence

of the susceptibility at the phase transition is different to the one obtained from statistical

mechanics. We believe that the reason for this behavior is that, even if the system starts from

equilibrium, it is found in a QSS after the action of the perturbation. Only finite size effects

makes it relax to the new equilibrium of the perturbed Hamiltonian. Also for homogeneous

QSS this behavior of the susceptibility would be possible, in principle; however, we have
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seen that in this case, the prediction of the linear theory is exactly the same as the one of

statistical mechanics.

After our work, we realized that some of the theoretical results obtained here were already

note in plasma physics, see [186].

Another approach to deal with non-homogeneous states, starting from Eq. (5.24), has

been developed by Patelli et al. in [127]; the interesting point in this reference is that they do

not suppose the one-particle dynamics to be integrable and hence they do not use action-

angle variables. For their calculation it is supposed that the system, under a perturbation

saturating to some value in time, does converge to a stationary state in the t → ∞ limit

(without proving it); moreover, only a finite number of Casimirs is taken into account. Their

approach, even if approximate, compares very well with numerics performed on the HMF

model and we think it deserve some attention in the future.
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6
Stochastic forcing on particle systems

In this and in the next Chapter we study stochastically forced long-range interacting sys-

tems. We concentrate here on particle systems such as plasma or self-gravitating systems,

whereas in the next Chapter we describe our first progress in generalizing the techniques

developed to two-dimensional and geophysical turbulence models: this is the principal mo-

tivation and the long-term perspective of our work.

On the one hand, long-range interacting systems are often acted upon by external stochas-

tic forces that drive them out of equilibrium. Unlike systems with short-range interactions,

stochastic forces in long-range interacting systems can act coherently on all particles, and

not independently on each particle. Consider, e.g., globular clusters being influenced by the

gravitational potential of their galaxy, which produces a force that fluctuates. In addition,

galaxies themselves feel the random potential of other surrounding galaxies, and their ha-

los are subjected to transient and periodic perturbations, which may be due to the passing

of dwarfs or to orbital decaying [121]. Dynamics of plasmas are also strongly influenced

by fluctuating electric and magnetic fields due to the ever-changing ambiance [123] or im-

posed external fields. In situations of stochastic driving, the systems at long times often

reach a nonequilibrium stationary state that violates detailed balance. In such a state, the

power injected by the external random fields balances on average the dissipation, and there

is a steady flux of conserved quantities through the system. This situation is also very clas-

sical in geophysical turbulence, as will be discussed in Chapter 7.

On the other hand, the study of nonequilibrium stationary states (NESS) is an active

area of research of modern day statistical mechanics. One of the primary challenges in this

field is to formulate a tractable framework to analyze nonequilibrium systems on a common

footing, similar to the one due to Gibbs and Boltzmann that has been established for equi-

librium systems [117–120].

Our work provides, to the best of our knowledge, the first study of NESS in long-range sys-

tems with statistical mechanical perspectives.

As we have seen in Chapter 4, one of the main theoretical approaches to study isolated
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systems with long-range interactions is the kinetic theory description of relaxation towards

equilibrium. In plasma physics and astrophysics, this approach leads to the Lenard-Balescu

equation (see Section 4.6) or to the approximate Landau equation.

The main theoretical results of this Chapter is a detailed development of a generaliza-

tion of this kinetic theory approach to describe nonequilibrium stationary states in systems

with long-range interactions driven by external stochastic forces, valid in the limit of small

external stochastic fields. We will see that the techniques on Lyapunov equations devel-

oped in Section 4.5 are applicable to this case, as well as they were to the derivation of the

Lenard-Balescu equation. Our kinetic theory is quite general, being applicable to any long-

range interacting system composed by particles. In the limit of small external forcing, the

system settles into a stationary state, in which we find the one-particle momentum distribu-

tion to be non-Gaussian. The predictions of our kinetic equation for spatially homogeneous

stationary states compare very well with results of our extensive N -particle numerical sim-

ulations on the stochastically forced HMF model.

The HMF model, at equilibrium, presents a second order phase transition below which

the state is not homogeneous. It is thus natural to ask how such phase transition will be al-

tered when the dynamics breaks the detailed balance. Our numerical simulations exhibit a

nonequilibrium phase transition between homogeneous and inhomogeneous states. Close

to the phase transition point, we demonstrate the occurrence of bistability between these

two types of states, with a mean residence time that diverges as an exponential in the in-

verse of the strength of the external stochastic forces, in the limit of low values of such forces.

Similar bistable behavior has recently been observed in two-dimensional turbulence with

stochastic forcing [187] and thus looks a quite general phenomena for stochastically forced

long-range interacting systems.

The structure of this Chapter is as follows. In the following section, we define the dynam-

ics we are going to consider of a long-range interacting system driven by external stochastic

forces. We also discuss the paradigmatic example of the stochastically forced (HMF) model.

In section 6.2, we discuss the methods we adopt to analyze the dynamics. In particular, we

give a detailed derivation of the kinetic theory to study spatially homogeneous stationary

states of the dynamics. We describe the numerical simulation scheme that we employ to

study the dynamics, specifically, to check the predictions of our kinetic theory. This is fol-

lowed by a discussion in section 6.3 of the results obtained from the kinetic theory, and their

comparison with numerical simulation results for spatially homogeneous stationary states.

In section 6.4, we discuss the results of numerical simulations of spatially inhomogeneous

stationary states. We report on the interesting bistable behavior in which the system in the

course of its temporal evolution switches back and forth between homogeneous and inho-
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mogeneous states, with a mean residence time that we show to be diverging as an exponen-

tial in the inverse of the strength of the external stochastic forcing, in the limit of low values

of such forcing. We close the Section with concluding remarks. Some of the technical details

of our computation are collected in the four appendices D.1, D.2, D.3 and D.4.

This Chapter mainly contains the results reported in [128, 129].

6.1 Long-range interacting systems driven by stochastic

fields

Consider a system of N particles interacting through a long-range pair potential, and de-

scribed by the Hamiltonian in Eq. (4.3). For simplicity, we regard qi ’s as scalar periodic vari-

ables of period 2π; generalization to qi ∈Rn , with n = 1, 2 or 3, is straightforward.

We perturb the system (4.3) by a statistically homogeneous Gaussian stochastic field

F (q , t )with zero mean, and variance given by

〈F (q , t )F (q ′, t ′)〉=C (|q −q ′|)δ(t − t ′). (6.1)

The resulting equations of motion for the i -th particle are

q̇i =
∂H

∂ p i

, and ṗ i =−
∂H

∂ qi

−αp i +
p
αF (qi , t ). (6.2)

The property that the Gaussian fields F (qi , t ) are statistically homogeneous, i.e., the cor-

relation function C depends solely on |q −q ′|, is consistent with any perturbation that re-

spects space homogeneity. Such a property is necessary for the discussions later on the

kinetic theory approach to describe spatially homogeneous stationary states of the dynam-

ics (6.2). Note that C (q ) is the correlation, so that it is a positive-definite function [188], and

its Fourier components are positive:

ck ≡
1

2π

∫ 2π

0

dq C (q )e−i kq > 0; c−k = ck , C (q ) = c0+2
∞
∑

k=1

ck cos(kq ). (6.3)

We find it convenient to use the equivalent Fourier representation of the Gaussian field

F (q , t ) as follows:

F (q , t ) =
p

c0 X0(t )+

∞
∑

k=1

p

2ck

�

cos(kq )Xk (t )+ sin(kq )Yk (t )
�

, (6.4)

where X0(t ), Xk (t ) and Yk (t ) are independent scalar Gaussian white noises satisfying

〈Xk (t )Xk ′(t
′)〉=δk ,k ′δ(t − t ′), (6.5)

〈Yk (t )Yk ′(t
′)〉=δk ,k ′δ(t − t ′), (6.6)

〈Xk (t )Yk ′(t
′)〉= 0. (6.7)
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Using the Itō formula [165] to compute the time derivative of the energy density e =

H/N , and averaging over noise realizations give
�

d e

d t

�

+ 〈2ακ〉= α
2

C (0), (6.8)

where κ=
∑N

i=1 p 2
i /(2N ) is the kinetic energy density. On integration, we get

〈k (t )〉 =
�

〈k (0)〉− C (0)

4

�

e−2αt +
C (0)

4
. (6.9)

The average kinetic energy density in the stationary state is thus 〈κ〉s s = C (0)/4. We define

the kinetic temperature of the system as

〈κ〉s s ≡
T

2
; (6.10)

as a result, we have

T =
C (0)

2
. (6.11)

Let us note that in the dynamics (6.2), fluctuations of intensive observables due to stochas-

tic forcing are of order
p
α, while those due to finite-size effects are of order 1/

p
N . Moreover,

the typical timescale associated with the effect of stochastic forces is 1/α, as is evident from

Eq. (6.9), while the one associated with relaxation to equilibrium due to finite-size effects is

of order N , see [90] and Chapter 4.

Our theoretical analysis to study the dynamics (6.2) by means of kinetic theory is valid

for any general two-particle interaction potential v (q ). However, in order to perform simple

numerical simulations with which we may check the predictions of the kinetic theory, we

specifically make the choice v (q ) = 1−cosq , that defines the stochastically-forced Hamilto-

nian mean-field (HMF) model, as detailed below. We note for later purpose that the Fourier

transform of the HMF interparticle potential is, for k 6= 0, vk =−
�

δk ,1+δk ,−1
�

/2, where δk ,i

is the Kronecker delta.

6.2 Methods of analysis

6.2.1 Kinetic theory for homogeneous stationary states

Here, we develop a suitable kinetic theory description to study the dynamics (6.2) in the

joint limit N →∞ and α→ 0. While the first limit is physically motivated on grounds that

most long-range systems indeed contain a large number of particles, the second one allows

us to study stationary states for small external forcing. Moreover, for small α, we will be able

to develop a complete kinetic theory for the dynamics. For simplicity, we discuss here the

continuum limit Nα ≫ 1, when stochastic effects are predominant with respect to finite-

size effects. The generalization of the following discussion to the cases Nα of order one and
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Nα ≪ 1 is straightforward, as pointed out at the end of this subsection. For the develop-

ment of the kinetic theory, we assume the system to be spatially homogeneous; a possible

generalization to the non-homogeneous case will be discussed in the conclusions.

The development of the kinetic theory here strongly resemble the derivation of the Lenard-

Balescu equation as presented in Chapter 4. As a starting point to develop the theory, we

consider the Fokker-Planck equation associated with the equations of motion (6.2). This

equation describes the evolution of the N -particle distribution function

f N (q1, ...,qN , p1, ..., pN , t ) , (6.12)

which is the probability density (after averaging over noise realizations) to observe the sys-

tem with coordinates and momenta around the values {qi , p i }1≤i≤N at time t . This equation

can be derived by standard methods [165]; we have

∂ f N

∂ t
=

N
∑

i=1

�

−p i

∂ f N

∂ qi

+
∂ (αp i f N )

∂ p i

�

+
1

2N

N
∑

i ,j=1

∂ v (qi −qj )

∂ qi

�

∂

∂ p i

− ∂

∂ p j

�

f N

+
α

2

N
∑

i ,j=1

C (|qi −qj |)
∂ 2 f N

∂ p i∂ p j

. (6.13)

In D.1, by applying the so-called potential conditions [189] for the above Fokker-Planck

equation, we prove that a necessary and sufficient condition for the stochastic process (6.2)

to verify detailed balance is that the Gaussian noise is white in space, that is, ck = c for all

k . This condition is not satisfied for a generic correlation function C (q ), in which case, the

steady states of the dynamics are true nonequilibrium ones, characterized by non-vanishing

probability currents in phase space, and a balance between external forces and dissipation.

Similar to the Liouville equation for Hamiltonian systems, the N -particle Fokker-Planck

equation (6.13) is a very detailed description of the system. Using kinetic theory, we want to

describe the evolution of the one-particle distribution function

f (z 1, t ) =

∫ N
∏

i=2

dz i f N (z 1, ..., z N , t ), (6.14)

where we have used the notation z i ≡ (qi , p i ). We note that with this definition, the nor-

malization is
∫

dz f (z , t ) = 1. Substituting in the Fokker-Planck equation (6.13) the reduced

distribution functions

f s (z 1, ..., z s , t ) =
N !

(N − s )!N s

∫ N
∏

i=s+1

dz i f N (z 1, ..., z N , t ), (6.15)

we get a hierarchy of equations, similar to those of the BBGKY hierarchy presented in Sec-
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tion 4.3, as follows:

∂ f s

∂ t
+

s
∑

i=1

p i

∂ f s

∂ qi

− 1

N

s
∑

i ,j=1

∂ v (qi −qj )

∂ qi

∂ f s

∂ p i

−
s
∑

i=1

∂

∂ p i

[αp i f s ]

−α
2

s
∑

i ,j=1

C (|qi −qj |)
∂ 2 f s

∂ p i∂ p j

=

s
∑

i=1

∫

d z s+1
∂

∂ qi

v (qi −qs+1)
∂ f s+1

∂ p i

(6.16)

for s = 1, ..., N−1. With a slight abuse of the standard vocabulary, we will refer in this Chapter

to Eq. (6.16) as the BBGKY hierarchy equation.

Now, as is usual in kinetic theory, we split the reduced distribution functions into con-

nected and non-connected parts, e.g.,

f 2(z 1, z 2, t ) = f (z 1, t ) f (z 2, t )+ g̃ (z 1, z 2, t ), (6.17)

and similarly, for other f s ’s with s > 2. In D.2, we show that the connected part g̃ (z 1, z 2, t ) of

the two-particle correlation is of order α, so that we may write

f 2(z 1, z 2, t ) = f (z 1, t ) f (z 2, t )+αg (z 1, z 2, t ), (6.18)

where g is of order unity; moreover, the connected part of the k -particle correlation is of

higher order, with respect toα, in the small parametersα and 1/N . Then, to close the BBGKY

hierarchy, we neglect the effect of the connected part of the three-particle correlation on the

evolution of the two-particle correlation function. This scheme is justified at leading order

in the small parameter α, and is the simplest self-consistent closure scheme for the hierar-

chy while taking into account the effects of the stochastic forcing. With our assumption that

the system is homogeneous, i.e., f depends on p , and g depends on |q1−q2|, p1 and p2 only,

the first two equations of the hierarchy are then

∂ f

∂ t
−α ∂
∂ p
[p f ]− α

2
C (0)

∂ 2 f

∂ p 2
=α

∂

∂ p

∫

dq1dp1v ′(q1)g (q1, p , p1, t ), (6.19)

and

∂ g

∂ t
+ L

(1)
f g + L

(2)
f g = C (|q1−q2|) f ′(p1, t ) f ′(p2, t ), (6.20)

where L
(1)
f and L

(2)
f are the Vlasov operators linearized about the one-particle distribution f ,

and acting, respectively, on the first pair (q1, p1) and on the second pair (q2, p2) of variables

of the function g = g (q1, p1,q2, p2, t ). Recall that the explicit expressions for L f is given in

Eq. (4.46).

Exactly as in the derivation of the Lenard-Balescu equation, to obtain from Eqs. (6.19)

and (6.20) a single kinetic equation for the distribution function f , we have to solve Eq. (6.20)

for g as a function of f and plug the result into the right hand side of Eq. (6.19). Observe now
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that the difference between Eq. (6.20) and (4.80), stands only in the right hand side.

Also in this case, because the two equations are coupled, we cannot go further without mak-

ing any simplifying assumption. Nevertheless, we readily see from these equations that the

two-particle correlation g evolves over a timescale of order one, whereas the one-particle

distribution function f (p , t ) evolves over a timescale of order 1/α. We may then use this

timescale separation and compute the long-time limit of g from Eq. (6.20) by assuming f to

be steady in time; this is the equivalent of the Bogoliubov’s hypothesis in the kinetic theory

for isolated systems with long-range interactions. Note that for this timescale separation to

be valid, we must also suppose that the one-particle distribution function f (p , t ) is a sta-

ble solution of the Vlasov equation at all times. Indeed, if this is not the case, g diverges

in the limit t →∞, as can be readily seen from Eq. (4.74). The physical content of this hy-

pothesis is that the system slowly evolves from the initial condition through a sequence of

Quasi-Stationary States to the final stationary state.

Because we assume the system to be homogeneous in space, it is useful to Fourier trans-

form Eqs. (6.19) and (6.20) with respect to the spatial variable; we get

∂ f

∂ t
−α ∂
∂ p
[p f ]− α

2
C (0)

∂ 2 f

∂ p 2
=−2πiα

∞
∑

k=−∞
k vk

∂

∂ p

∫

dp ′ g k (p , p ′, t ), (6.21)

and
�

∂ g k

∂ t
+ L

(1)
f ,k g k + L

(2)
f ,−k g k

�

(p1, p2, t ) = ck f ′(p1) f
′(p2), (6.22)

where g k (p1, p2, t ) is the Fourier transform of g (q , p1, p2, t ) with respect to the spatial vari-

able, and vk is the k -th Fourier coefficient of the pair potential v (q ). Remember that the

explicit expression for the k -th Fourier component of the linear Vlasov operator L f ,k is given

by Eq. (4.85) and that L∗f ,k = L f ,−k .

The equation for g , i.e. Eq. (6.20) or equivalently Eq. (6.22), is a Lyapunov equation.

Moreover, as in the derivation of the Lenard-Balescu equation, we see from Eq. (6.21), we

see that to obtain a single kinetic equation, we need only the Fourier transform g k (p , p ′, t ),

more specifically, its integral with respect to the second momentum variable p ′. We can thus

compute
∫

dp ′ g∞
k
(p , p ′) = lim

t→∞

∫

dp ′ g k (p , p ′, t ) . (6.23)

using Theorem 4.5.1. The fulfillment of the hypothesis is ensured, as in the derivation of the

Lenard-Balescu equation, supposing f to be a stationary and stable solution of the Vlasov

equation. By direct application of Theorem 4.5.1, we obtain
∫

dp1 g∞
k
[ f ](p , p1) =−

1

2π

ck

k vk

f ′(p )

∫

Γ

dω

2π

1

ω−k p

1−ε(−k ,−ω)
ε(k ,ω)ε(−k ,−ω) (6.24)

where Γ passes above all the poles of the integrand. To obtain such result, we have used that

�

R f ,k (ω) f
′
�

(p ) =
1

−iω+ i k p

f ′(p )

ε(k ,ω)
(6.25)
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and that
∫

dp
�

R f ,−k (ω) f
′
�

(p ) =
1

2πi k vk

ε(−k ,ω)−1

ε(−k ,ω)
. (6.26)

Observe that Eq. (6.26) is valid for allω ∈C once that ε is interpreted as the analytic contin-

uation of Eq. (4.54).

To get from here the final form of the kinetic equation, we still have to observe that we are

interested only in the real part of Eq. (6.21). It can be written, observing that the term k = 0

gives no contribution, as:

Re







iα
∑

k 6=0

ck

∂

∂ p
f ′(p )

∫

Γ

dω

2π

1

ω−k p

1−ε(−k ,−ω)
ε(k ,ω)ε(−k ,−ω)







, (6.27)

where we have used Eq. (6.24). Using now the Plemelj formula to evaluate the integral con-

taining the real part of the dielectric function (the choice of the sign is given by the position

of Γwith respect to the poleω= k p ), we get:

α
∑

k 6=0

ck

∂

∂ p
f ′(p )

¨

1−Re[ε(k , k p )]

2|ε(k , k p )|2 + i Im

�∫ ∗
dω

2π

1

ω−k p

1−ε∗(k ,ω)

|ε(k ,ω)|2

�«

, (6.28)

where we have used that ε∗(k ,ω) = ε(−k ,−ω) for Im(ω) = 0 and the fact that in the Cauchy

integral the variableω is Real so that ε∗(k , k p ) = ε(−k ,−k p ).

Using now the expression for the dielectric function (4.58) forω ∈R and observing that the

terms in the sum labeled by k or by −k give the same contribution, we get:

2πα
∞
∑

k=1

vk ck

∂

∂ p
f ′(p )

¨

1

|ε(k , k p )|2

∫ ∗

dp1
f ′(p1)

p1−p
+

∫ ∗

dp1
f ′(p1)

p1−p

1

|ε(k , k p1)|2

«

. (6.29)

Finally, inserting such expression in the r.h.s. of Eq. (6.21) we get the final form of the kinetic

equation (6.30):
∂ f

∂ t
−α∂ (p f )

∂ p
−α ∂
∂ p

�

D[ f ]
∂ f

∂ p

�

= 0, (6.30)

where

D[ f ](p ) =
1

2
C (0)

+2π
∞
∑

k=1

vk ck

∫ ∗

dp1

�

1

|ε(k , k p )|2 +
1

|ε(k , k p1)|2
�

1

p1−p
f ′(p1, t ). (6.31)

We recall that vk is the k -th Fourier coefficient of the pair potential v (q ), the quantity ck is

defined in Eq. (6.3), ε is the dielectric function defined (for real argument) in Eq. (4.58), and
∫ ∗

indicates the Cauchy integral or Principal Value.

The kinetic equation (6.30) is the central result of the kinetic theory developed in this

Chapter. It has the form of a non-linear Fokker-Planck equation [189] because the diffusion
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it turns out that this algorithm is unstable with respect to not-too-small∆t , in the sense that

one obtains different magnetization profiles as a function of time t = tn∆t . The situation

gets worse for small α, when one needs to use very small∆t to obtain consistent results.

Implementing an higher order algorithm is not a trivial matter because in the Eq. (6.2) the

noise is multiplicative. Therefore, for faster and efficient simulation, we adopted a “mixed"

scheme which we describe now.

To simulate the dynamics over a given time interval [0 : T ], choose a time step size ∆t ,

and set tn = n∆t as the n-th time step of the dynamics. Here, n = 0, 1, 2, . . . , Nt , where

Nt = T /∆t . In our numerical scheme, at every time step, we first discard the effect of the

noise and employ a fourth-order symplectic algorithm to integrate the deterministic Hamil-

tonian part of the dynamics [190]. Subsequently, we add the effect of noise and implement

an Euler-like first-order algorithm to update the dynamical variables. Specifically, one step

of the scheme from tn to tn+1 = tn +∆t involves the following updates of the dynamical

variables for i = 1, 2, . . . , N : For the symplectic part, we have, for m = 1, . . . , 4,

p i

�

tn +
m∆t

4

�

= p i

�

tn +
(m −1)∆t

4

�

+b (m )∆t
h

− ∂H

∂ qi

({qi

�

tn +
(m −1)∆t

4

�

})
i

,

(6.33)

qi

�

tn +
m∆t

4

�

=qi

�

tn +
(m −1)∆t

4

�

+a (m )∆t p i

�

tn +
m∆t

4

�

,

where the constants a (m )’s and b (m )’s are given in Ref. [190]. At the end of the update (6.33),

we have the set {qi (tn+1), p i (tn+1)}. Next, one includes the effect of the stochastic noise by

leaving qi (tn+1)’s unchanged, but by updating p i (tn+1)’s as

p i (tn+1)→ p i (tn+1)
h

1−α∆t
i

+
p
α
hp

c0∆X (0)(tn+1)

+

NR
∑

k=1

p

2ck

n

∆X (k )(tn+1)cos
�

kqi (tn+1)
�

+∆Y (k )(tn+1)sin
�

kqi (tn+1)
�oi

. (6.34)

The outcome of implementing this mixed scheme for the stochastically-forced HMF model

is shown in Fig. 6.1, where one may observe consistent results with respect to change of∆t

over a wide range of values. In numerical simulations reported later, we exclusively used this

mixed scheme to simulate the dynamics (6.2).

6.3 Predictions of the kinetic theory and comparison

with simulations

We now focus on how to obtain from the kinetic equation (6.30) predictions for the nonequi-

librium stationary states of the system. According to Eq. (6.30), 1/α is only a timescale; thus,

at leading order in α and except for a time rescaling, the parameter α does not affect the

time evolution of the system. This statement holds also beyond the leading order for what
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Figure 6.4 – The same as in Fig. 6.3 and 6.4 but only in linear scale, forα= 0.01 and kinetic temperature

T = 0.75. In this plot is excited only the mode 1 with amplitudes satisfying c1 =C (0)/2, where C (0) =

2T . The difference with respect to the Gaussian is thus stronger. The value of N is 10000,∆t = 0.01

and 1000 independent realizations of the dynamics were been used to obtain the average.

for large momenta of the integrals which appear in the diffusion coefficient. We report the

straightforward computation in D.4. From the same analysis, one can deduce that, even

though the distribution function is not Gaussian, its tails are Gaussian.

On the basis of the above discussions, we expect that for values of T and c1 such that

T > 0.5 and c1 ≪ 2T , the stationary states will be close to homogeneous states with Gaus-

sian momentum. In order to locate the actual stationary states of the kinetic equation, we

have devised a simple numerical scheme, based on the observation that a linear Fokker-

Planck equation whose diffusion coefficient D(p ) is strictly positive admits a unique sta-

tionary state

f s s (p ) = A exp

�

−
∫ p

0

dp ′
p ′

D(p ′)

�

. (6.37)

For a given distribution f n (p ), we compute the diffusion coefficient Dn (p ) through Eq. (6.31),

and then f n+1 using Dn and Eq. (6.37). This procedure defines an iterative scheme. When-

ever convergent, this scheme leads to a stationary state of Eq. (6.30). Each iteration in-

volves integrations, so that we expect the method to be robust enough when starting not

too far from an actual stationary state. However, we have no detailed mathematical analysis

yet. Implementing this iterative scheme, we observed that the distribution f∞ to which the

scheme converges is independent of the initial distribution f 0. Moreover, the convergence

time is exponential in the number of steps n whenever T is not too close to loss of stability of

f∞ with respect to the linear Vlasov dynamics; in practice, we are able to get reliable results

for T ¦ 0.65.

In order to check the theoretical predictions discussed above, we performed numerical

simulations of the stochastically forced HMF model. Figure 6.2 shows the evolution of the

kinetic energy and 〈p 4〉= (1/N )
∑N

i=1 p 4
i , where they have been compared with our theoreti-
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system settles into an equilibrium state in which it exhibits a second-order phase transition

at the kinetic temperature T = Tc = 1/2: on increasing T from low values, the magnetization

decreases continuously to zero at Tc and remains zero at higher temperatures. In the follow-

ing, we excite only a limited number of modes NR , but the amplitudes of all excited modes

are equal (ck equals c for all k ≤NR , and is zero otherwise, where the constant c is related to

the temperature). Figure 6.6(a) shows that with NR = 50, one reproduces very well the equi-

librium profile of the magnetization as a function of temperature. On reducing the value of

NR , the system is driven more and more out of equilibrium. Indeed, Fig. 6.6(b) shows that

with NR = 7, the magnetization profile changes; in particular, it develops a discontinuity

around a temperature Tt r a ns ≈ 0.49, reminiscent of a first-order phase transition. The tran-

sition temperature is denoted by the vertical dashed line. With NR = 3, Fig. 6.6(c) shows that

the discontinuity gets more pronounced, and Tt r a ns is now shifted to a higher value (denoted

again by the vertical dashed line). A new feature appears in this plot, namely, at a temper-

ature Td y n ≈ 0.4, the magnetization attains the maximal value of unity, which it retains for

all lower temperatures. This value of unity corresponds to a state in which the particles are

very close to one another on the circle, thus defining a “collapsed" state. We found that this

state, as well as the transition to it, persist on changing the system size N .

Now, it is known that trajectories of ensembles of dissipative dynamical systems forced

by the same realization of a stochastic noise converge to a single one [197–200]. These at-

tracting trajectories are referred to as the ones due to the so-called stochastic attractor. Al-

though we did not perform a detailed characterization of the collapse in our model, we be-

lieve that the phenomenon is related to stochastic attractors.

Coming back to Fig. 6.6(c), we see that for temperatures Td y n < T < Tt r a ns , the mag-

netization shows strong fluctuations. Reducing the number of excited modes to a single

one, namely, to the one that coincides with the Fourier mode of the HMF potential, it seems

from Fig. 6.6(d) that only the dynamical transition to the collapsed state at a temperature

Td y n ≈ 0.66 persists.

The hint that the nature of the phase transition at Tt r a ns is of first-order comes from the

hysteresis plots of Fig. 6.7. To obtain these plots, one monitors the magnetization while tun-

ing adiabatically the kinetic temperature across Tt r a ns from higher to lower values and back

to complete a full cycle. As is evident from Fig. 6.7, the observed hysteresis is between the

collapsed state and the zero-magnetization state. In principle, it should be possible to ob-

serve a hysteretical behavior between the magnetized and the zero-magnetization state. To

achieve this in simulations involving adiabatic tuning of temperature, one should not allow

the system to make the transition to the collapsed state, which requires conditions close to

those that ensure detailed balance. However, a possible drawback of this method is that

closeness to detailed balance might lead to narrow hysteresis loops. Moreover, the adiabatic

tuning of temperature should not be very slow, as otherwise one observes bistability instead
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To study spatially homogeneous stationary states, we developed a kinetic theory approach

by generalizing the known results for isolated long-range systems. Our theoretical approach

is quite general, being applicable to any long-range inter-particle potential, space dimen-

sions and boundary conditions. Our extensive numerical simulations on a paradigmatic

model of long-range interacting systems demonstrated a very good agreement with the

theory. We observe that this is a non trivial result: On the one hand, the kinetic theory

approach (mainly because of the truncation of the hierarchy) cannot be made rigorous.

On the other hand, because of the difficulties introduced by strong non-linearities, even

the Lenard-Balescu equation has not been tested extensively against numerical simula-

tions [167, 171, 172]; the approximate Landau equation is more often used in plasma com-

munity and the analogous methods of Chandrasekar is used in astrophysics.

Besides kinetic theory, our simulations for the representative case of the stochastically forced

HMF model, illustrated interesting bistable behavior between homogeneous and inhomo-

geneous states, with a mean residence time that diverges as an exponential in the inverse of

the strength of the external stochastic forces in the limit of low values of such forces. Anal-

ogous bistable behaviors have been observed for the stochastically forced Euler equation

in [187]. This kind of behavior is analogous to the one observed in real geophysical systems

such as the reversal of Earth magnetic field [205], the multiple equilibrium of atmospheric

flows [206] or the paths of the Kuroshio current [207]. We believe that such phase transitions

are essential phenomena for geophysical flows and climate, for which the two-dimensional

Euler equations are a simplified paradigmatic model. There exists a very strong analogy

between the two-dimensional Euler equations and the Vlasov equation relevant for lead-

ing order dynamics of the model we discuss in this Chapter. One of the motivations of the

present work is to be able to study analogous phenomena in a setup for which the theory

can be more easily worked out.

Let us note that another route to deriving the kinetic theory studied in this paper is to

adopt an approach similar to the one due to Klimontovich for isolated systems, by writ-

ing down the time evolution equation for the noise-averaged empirical measure ρ(p ,q , t ) =

(1/N )
∑N

i=1〈δ(qi (t )−q )δ(p i (t )−p )〉. In the resulting equation, the noise appears as a mul-

tiplicative term, which can be treated perturbatively, leading to the kinetic equation (6.30).

We note that Ref. [208] presents a computation of this kind, which do not quite agree with

the ones obtained in our work; the reason for this disagreement is unknown, but the very

good agreement between our theoretical predictions and numerical simulations (which have

not been performed in [208]) give us confidence in the kinetic equation (6.30) derived here1.

1We also observe that, differently to our kinetic equation, the one derived in [208] does not respect the

energy balance, Eq. (6.9).
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This work leaves open some interesting issues, e.g., for technical simplicity, we only stud-

ied the stationary states of the kinetic equation and not its dynamics. This could probably

be done using a numerical method analogous to the one developed here to find stationary

states.

Another open point is about the relevance of the kinetic theory to describe a single tra-

jectory. Indeed, the kinetic theory as developed here describes the average over noise real-

izations of the dynamics of the system. However, it is not clear for the moment how close

a single trajectory of the stochastic system is to the average. Preliminary analytical results

in this direction show that the variance of the trajectories is smaller when forcing a large

number of modes. Anyway, preliminary results from numerical simulations show that the

description given by the kinetic theory is good for every forcing we have used.

Moreover, we assumed an homogeneous stationary state for the development of the ki-

netic theory. We think it is possible to generalize the theory to non-homogeneous states at

least when the single particle dynamics is integrable so that action-angle variables can be

used. In this regard, the method due to Heyvaerts reported recently [169], and the analysis

of the Landau damping for some non-homogeneous states presented in [163, 164] are the

technique we have in mind to handle the problem.

However, we expect that the resulting kinetic equation, similarly to the Lenard-Balescu equa-

tion for non-homogeneous states obtained in [169], will be so complex that it will not be

simple to extract some information on the behavior of the system from it. For this rea-

son, instead of aiming to write down analytically a kinetic equation, it could be more useful

to solve numerically the second equation of the BBGKY hierarchy with techniques simi-

lar to those which will be presented in the next Chapter. Anyway, the fact that for non-

homogeneous states different spatial modes do not decouple in the linear Vlasov equation

(see Section 4.4.1) makes us wonder on the feasibility of such approach. In this respect,

the techniques developed by Patelli et al. [127] to work out the linear response for non-

homogeneous states without the using action-angle variable could come in help.

The most interesting perspective of this work is to develop kinetic theories similar to

the one analyzed here for models relevant for geophysical applications. Models of two-

dimensional and quasi-two dimensional turbulence such as the Euler equation, the beta-

plane barotropic equations, the quasi-geostrophic equations and the shallow-water equa-

tions do share important properties with the Vlasov equation, relevant for leading order dy-

namics of the model we discuss in this Chapter. In the next one, we will start the develop of

kinetic theory for the stochastically forced Euler equation, which is the simpler one among

turbulence models.
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Stochastic forcing on fluid models

Stochastically forced long-range interacting systems naturally arise in the context of geo-

physical flows. For example, in planetary atmospheres and in oceans, large scale structures

with very long life-times are very common [108, 209–211]: jet streams, cyclones and anti-

cyclones, currents such as the Gulf Stream, ocean rings, ... These structures emerge from

a balance between the energy injected by the environment (due to, e.g, solar heating, wind

on the surface of the oceans, action of different layers in the atmosphere, ...) resulting in

turbulent fluctuations at small spatial scales, and dissipation due to boundary effects. Large

scale structures can be interpreted as non-equilibrium stationary states.

How to model such phenomena depends both on the degree of accuracy and on the

physical insight that one wants to obtain. On one side, there is the very detailed global circu-

lation model, including not only fluid modeling but also thermodynamic terms for various

energy sources, usually employed for weather forecasting and for climate modeling. How-

ever, as it usually happens for realistic models, the only method of analysis are numerical

simulations and it is hard to get physical insight from the outcomes, because of the many

parameters involved. For this reason, simplified models play an important role; in this re-

spect, we can identify a hierarchy of models going from the primitive equations, through

the shallow-water and quasi-geostrophic equations, to the barotropic beta-plane and two-

dimensional Euler equations which are simpler and simpler but relevant for the physics of

large scale structures.

Similar approaches to the kinetic theory have already been considered in the litera-

ture for the description of the formation, of the evolution and of the qualitative proper-

ties of large scale structures: we highlight in this respect the second order closure expan-

sion [134, 212–214] and the stochastic structural stability theory [132, 215, 216]. However,

most of these works are of phenomenological in nature, presenting and discussing results

of direct numerical integration of equations similar to the first two equations of the BBGKY

hierarchy presented in previous Chapters. In particular, it is usually not recognized that

the kinetic theory is a perturbative approach in the limit of small forcing and dissipation

parameter is not realized. Moreover, no analysis on the validity and the accuracy of the ap-
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proximations is proposed; the presence of a time-scale separation between the time-scale

of evolution of the mean flow and of the fluctuations.

We believe that it is important to develop a theoretical framework, both for clarifying when

a kinetic theory approach is expected to give reliable results and to find the simplest possi-

ble way to obtain explicit predictions about the large scale structures attained and on their

evolution.

In this Chapter we present preliminary results on the generalization of the kinetic theory

developed in Chapter 6 to the case of fluid models. To begin with this study, we consider here

the simplest possible case, the stochastically forced two-dimensional Euler equation under

the hypothesis that the average flow is a jet stream. We show how the kinetic theory can

be developed and we describe how one might predict the non-equilibrium stationary states

and the slow evolution of the system. We do not discuss here explicit results, there being

currently in development; we are working on this topic in collaboration with F. Bouchet and

T. Tangarife [217].

The Chapter is organized as follows. In Section 7.1, we introduce the stochastic Euler

equation and we describe the general structure of kinetic theory for fluid models. In Sec-

tion 7.2, we discuss the Orr mechanism, an analogous phenomena to the Landau damping,

which will be useful to prove the consistency of the kinetic theory approach. In Section 7.3

we consider the Lyapunov equation, analogous to the second equation of the BBGKY hier-

archy in Chapter 6; we show that the quasi-linear approximation is well posed and that, also

in this case, there is a time-scale separation in the evolution of the mean flow and of the

fluctuations. Then, in Section 7.4, we discuss one possible way to find the stationary solu-

tion for two-point correlations. The difficulty with respect to Chapter 6 is that this solution

cannot be found analytically but numerically techniques have to be employed. We conclude

in Section 7.5 discussing how we think to pursue this work.

7.1 Quasi-linear approximation

We start from the stochastic two-dimensional Navier-Stokes equation

∂tω+v ·∇ω= ν∆ω−αω+
p

2σF (r, t ), (7.1)

where (x , y ) = r ∈ D, v(r, t ) is the two-dimensional non divergent velocity field (∇ · v = 0),

and ω = (∇∧v) the vorticity. We will consider periodic boundary conditions over D =
[0, Lx ]× [0, L y ], even if the discussion can be easily generalized to more general settings.

ν is the viscosity, α is the Rayleigh friction parameter: indeed, the term−αωmodeling large

scale friction due for example to boundary effects; σ is the energy injection rate (see be-

low). The stream functionψ(r, t ) is defined by v= (−∂yψ,∂xψ), and is related to the vorticity

146



7.1. QUASI-LINEAR APPROXIMATION

through ω = ∆ψ. The velocity can be reconstructed from the vorticity using a Green func-

tion formalism; we will use the notation

v(r, t ) =G[ω](r, t ) (7.2)

where G is the linear operator transforming the vorticity in the velocity; we do not need its

explicit expression, for which we refer the reader to [104, 218].

The forcing F is a Gaussian process with zero average and variance

〈F (r, t )F (r′, t ′)〉=C (r− r′)δ(t − t ′), (7.3)

where we have assumed F invariant with respect to space translations. Even if more general

Gaussian processes could be considered, this hypothesis will be essential for the following

discussion, as we will consider mainly translational invariant averaged vorticity distribu-

tions. We denote by f k the k-th Fourier component of the correlation function:

f k =
1

Lx L y

∫

D
drC (r)e−i kr, (7.4)

where k= (2πnx/Lx , 2πn y /L y ) with nx and n y integers. We have the equality f k = f ∗k = f−k

because F is real; moreover, as the correlation C is a positive function, we have f k ≥ 0 for all

k. We set
1

2

∑

k

f k

|k|2 = 1 (7.5)

so thatσ is the energy injection rate.

In the stochastic Navier-Stokes equation, it is natural to fix the the average energy to be

of order one , by using the typical turnover time as a new time unit. Putting t ′ = t
p

σ/(2α),

ω′ =ω
p

2α/σ, α′ = (2α)3/2/(2
p
σ) and ν ′ = ν

p

2α/σ and dropping the primes, the dimen-

sionless Navier-Stokes equation becomes

∂tω+v ·∇ω= ν∆ω−αω+
p

2αF (r, t ) . (7.6)

The unforced equation (α= ν = 0) is the Euler equation and conserves energy

E [ω] = 1

2

∫

D
v2(r, t )dr=−1

2

∫

D
ω(r, t )ψ(r, t )dr (7.7)

and all Casimirs, defined as

C [ω] =
∫

D
s (ω(r, t ))dr (7.8)

for every function s ; the quadratic invariant Z =
∫

D drω2(r,t) is called enstrophy. Euler equa-

tion shares many analogies with the Vlasov equation, both of them being advection equa-

tions of a scalar quantity [219, 220].
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We can write the evolution of the energy for the dynamics (7.6). Taking the time deriva-

tive of the Energy functional in Eq. (7.7), using the Ito’s formula and averaging over noise

realizations, we get
�

dE
dt

�

=−ν〈Z 〉−2α〈E 〉+α . (7.9)

The energy has, for small α and ν , a slow evolution on a time-scale determined by 1/α

and 1/ν .

For flows with large scale structures, Rayleigh friction dominates dissipation: 2α〈E 〉 ≫
ν〈Z 〉. Moreover, for most geophysical flows and experiments, the case of weak forcing and

dissipation (inertial limit) is the relevant one. It is then natural to study the stochastic

Navier-Stokes equation in the joint limits α ≪ 1 and ν ≪ 1, such that α/ν ≫ 1. We then

get the so-called stochastic Euler equation

∂tω+v ·∇ω=−αω+
p

2αF (r, t ) , (7.10)

for which we describe the kinetic approach in the following. From the energy balance for

the stochastic Euler equation, Eq. (7.9) with ν = 0, it is then natural to suppose that the evo-

lution will be described at leading order by the Euler equation. Weak stochastic forces, of

order α, lead to weak correlations that induce a long-time evolution on a time scale of or-

der 1/α.

Let us now describe the kinetic approach1: we use here the quasi-linear approxima-

tion [221]. Let us consider the projection operator P on slow modes; in general, P is the

Fourier transform on the mode on which the system has a large scale structure. For sim-

plicity, we will restrict here to the case of large scale structures invariant with respect to

translations in the x direction, so that we set

h0(y )≡P [h](y ) =
1

Lx

∫ Lx

0

dx h(r) (7.11)

for any function h. We also suppose in the following P [F ] = 0, meaning that there is no

forcing at large scales.

We call base flow the flow specified by ω0 = P [ω], v0 = P [v] and ψ0 = P [ψ]; we readily

see that v0(y ) = (U (y ), 0) for some function U (y ); this is called a shear flow. The fluctuations

from the base flow will be denoted by

p
αδω=ω−P [ω] =ω−ω0 (7.12)

and analogously for δv and δψ. With this notation, we mean that δω is of order one, and

this is the analogous rescaling as we had in Chapter 6 for the connected part of two particle

1A more formal treatment, which is the analogous to the BBGKY hierarchy presented in Chapters 4 and 6 for

particle systems, could be also used and goes under the name of cumulant expansion, see for example [212].
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correlations. This can be expected because fluctuations are induced by a Gaussian process

with variance proportional to
p
α; however, a formal justification of this rescaling goes ex-

actly as in Chapter 6 through the cumulant expansion, a hierarchy analogous to the BBGKY

hierarchy. One starts introducing the cumulants

P [δω(r1, t )δω(r2, t )] (7.13)

P [δω(r1, t )δω(r2, t )δω(r3, t )] (7.14)

... (7.15)

Then, with the same reasoning as in Appendix D.2, one can show that it is self-consistent to

suppose

αP [δω(r1, t )δω(r2, t )]∼α (7.16)

α3/2P [δω(r1, t )δω(r2, t )δω(r3, t )]∼α3/2 (7.17)

... (7.18)

and thus we have αδω ∼ pα. We do not enter in such a derivation2, being very similar to

the case of Chapter 6.

Taking the projection of the stochastic Euler equation (7.10), we get

∂tω0+αP [δv ·∇δω] =−αω0 , (7.19)

where we have used that, by definition, we have P [δω] = 0 and that any shear flow is a

stationary solution of the Euler equation (v0 ·∇ω0 = 0).

The evolution of the base flow, in Eq. (7.19), is coupled to the equation which determines

the evolution of δω. The equation for δω can be obtained substracting Eq. (7.19) from the

stochastic Euler equation (7.10)

∂tδω+ Lω0δω+
p
α[δv ·∇δω−P [δv ·∇δω]] =−αδω+

p
2 F, (7.20)

where Lω0δω is the linearized Euler operator around the base flow ω0 and acting on δω.

Explicitly, it reads

Lω0δω= v0 ·∇δω+δv ·∇ω0. (7.21)

The term in square brackets of Eq. (7.20) describes fluctuations of a two-point func-

tion. The quasi-linear approximation consists in neglecting this term to obtain, instead of

Eq. (7.20), the following

∂tδω+ Lω0δω=−αδω+
p

2 F. (7.22)

2We only stress that, for such an argument to be valid, the hypothesis thatP [F ] = 0 is necessary.
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The quasi-linear approximation is analogous to discard three-particles and higher order cor-

relations in the BBGKY hierarchy for particle systems, as it can be seen by writing the cumu-

lant expansion3. As in that case, it is not rigorously justified, but it is self-consistent, because

the quantity
p
α[δv ·∇δω−P [δv ·∇δω]] (7.23)

is negligible in the limit α≪ 1. Moreover, the quasi-linear approximation does not alter the

energy balance, Eq. (7.9) with ν = 0. This can be proven using the fact thatP is a projection

operator (P 2 = 1) and the same argument holds for the enstrophy.

We are mainly interested in the average of physical quantities over a time scale which

is long with respect to the time-scale of the microscopic dynamics but short with respect

to the time-scale of the evolution of the large scale structures. If the system has only one

attractor, we can replace such average with an average over noise realizations, which will be

denoted by 〈·〉; we thus get from Eq. (7.19)

∂t 〈ω0〉+α〈P [δv ·∇δω]〉=−α〈ω0〉. (7.24)

Moreover, replacing Eq. (7.19) by Eq. (7.24), we do not address the question of how close a

single trajectory obtained from Eq. (7.19) is to the average. Of course this is a very important

point both at theoretical level and for what concern applications. This question could be

answered studying the variance of the termP [δv ·∇δω]. Even if the calculation is probably

feasible, it goes beyond the scope we have here and we leave it for future investigations.

Equations (7.24) and (7.22) are still complicated because they are coupled: the simplest

approximation is the Markovianization hypothesis, and it is based on the presence of a time-

scale separation. From Eq. (7.24), we readily see that the base flow evolves on a time-scale of

order 1/α. On the other hand, in Eq. (7.22), we see the presence of two separated time-scales

in the evolution ofδω: a time-scale of order one due to the term Lω0 and a much longer time

scale of order 1/α, given by the term −αδω. It is then natural to approximate the dynamics

replacing 〈P [δv ·∇δω]〉 in Eq. (7.24) by its steady state

limt→∞〈P [δv(r, t ) ·∇δω(r, t )]〉= g∞[ω0](y ) , (7.25)

where g∞[ω0] is calculated from Eq. (7.22) supposingω0 fixed in time. Section 7.3 is devoted

to prove that this procedure is well posed in the sense that 〈P [δv ·∇δω]〉 actually converges

to a well defined function. This is due to the so-called algebraic Orr mechanism, which is the

analogous to the exponential Landau damping for Euler equation present for homogeneous

systems with long-range interactions, see the following.

Let us observe that, in Eq. (7.20), the term −αδω is of higher order in α, so that one

could think to neglect it. However, as we will see in Section 7.3, such term just makes the

3Writing the cumulant expansions, one easily sees that the quasi-linear approximation exactly corresponds

to discard three-points and higher order projections: P [δω(r1, t )δω(r2, t )δω(r3, t )], ...
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value of 〈P [δv ·∇δω]〉 in the regime 1≪ t ≪ 1/α very similar to the asymptotic value. This

is consistent with the physical interpretation of the t →∞ limit in Eq. (7.25). Indeed, on a

time-scale of order 1/α, the base flow ω0 changes so that the Markovianization hypothesis

surely breaks down.

As in the case of the stochastically forced systems with long range interactions, a nec-

essary condition for the time-scale separation to be valid is that the base flow is a stable

solution of the Euler equation for all times t . Indeed if the initial condition is not stable, the

average of the base flow 〈ω0〉will have a fast evolution on a time scale of order one, breaking

down the time-scale separation. Next Section is devoted to a brief review of some notions of

stability of a stationary flow of the Euler equation.

To summarize we obtained the kinetic equation

∂t 〈ω0〉+αg∞[ω0] =−α〈ω0〉 (7.26)

where g∞[ω0] is defined by Eq. (7.25) and δω satisfies Eq. (7.22) withω0 fixed in time.

We will not write explicitly a single kinetic equation for the evolution of 〈ω0〉, because we

are not able to compute analytically g∞[ω0]; however, we believe that the computation of

g∞[ω0] can be afforded numerically, as it is described in Section 7.4.

7.2 The linearized two-dimensional Euler equation

Before proving that the limiting procedure in Eq. (7.25) is actually well defined, we need

to briefly review the notions of linear stability for the two-dimensional Euler equation. We

concentrate here on the notions of spectral and asymptotic stability, the latter mechanism

being the analogous for the Euler equation to the Landau damping for the Vlasov equation.

The presentation we gave in this Section is very partial: only the results useful for the fol-

lowing have been discussed. We address the reader to [218, 222] and references therein for

more complete expositions on the Orr mechanism and to [223] general discussion of stabil-

ity concepts in fluid dynamics.

7.2.1 Spectral stability

Let us consider the two-dimensional Euler equation linearized around the base flowω0

∂t ω̃+ Lω0[ω̃] = 0 . (7.27)

As we have supposed the system to be translational invariant along x , it is useful to con-

sider the Fourier transform in the x direction: we use the notation ω̃m (y , t ) for the Fourier
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transform with respect to the first variable of ω̃(x , y , t ) and analogous expressions for other

quantities. In Fourier transform, Eq. (7.27) is

∂t ω̃m + Lω0,m [ω̃m ] = 0 . (7.28)

Observe that, asω0 is a shear flow, each mode of the Fourier transform in the x direction is

decoupled from the others.

The spectral stability is defined looking for solutions of the form ω̃m (y )e−i m s t which thus

verify

Lω0,m [ω̃m ] = i m s ω̃m , (7.29)

and are called proper modes. The explicit expression for the m -th component of the Fourier

transform of the Euler operator linearized aroundω0 and acting on ω̃m is given by

�

Lω0,m ω̃m

�

(y , t ) = i mU (y )ω̃m (y , t )−U ′′(y )ṽ(y )
m
(y , t ) , (7.30)

where we have used that v0 = (U (y ), 0) and we denote by ṽ(x ) and ṽ(y ) the first and second

component of ṽ. Observe that Lω0,−m = L∗
ω0,m .

If a base of regular solutions {ω̃s
m
} of this equation can be found, one can write every so-

lution of Eq. (7.28) as a superposition of them. One may thus study the asymptotic stability

of a given initial condition, as a function of the sign of Im(s ). This is the so called spectral

stability. However, in many cases4, Eq. (7.29) does not admit any solution except, of course,

for m = 0. This is due to the fact that the operator Lω0,m acts on a infinite dimensional space.

If {ω̃m , s } is a solution of Eq. (7.29), then also {ω̃∗
m

, s ∗} is a solution: stable proper modes

exist (Im(s ) < 0) if and only if unstable proper modes exist (Im(s ) > 0). Very classical re-

sults [223, 224] on the stability of stationary flows are focused on the absence of unstable

proper modes. For example, Rayleigh proved [223] that a necessary condition for spectral

instability is the presence of points yI such that U ′′(yI ) = 0.

7.2.2 Asymptotic stability: the Orr mechanism

Let us consider the case in which no modes (neither unstable nor neutral) are present. In

this case, the Euler equation show a mechanism analogous to the Landau damping that

we have seen in Chapter 4 for the Vlasov equation. This phenomena, called Orr mecha-

nism [225], was first studied in the case of a linear profile U (y ) =σy in [222]. We briefly re-

view here the results contained in [218], in which the problem is addressed for a shear flow,

even in the case in which the profile U (y ) admit stationary points yc such that U ′(yc ) = 0.

The authors of [218] have shown that the asymptotic behavior of the vorticity is given by

ω̃m (y , t )∼t→∞ ω̃
∞
m
(y )e−i mU (y )t . (7.31)

4A simple example of a flow without modes is given by the linear shear flow U (y ) = σy , as it can be easily

checked.
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For the m -th velocity components one has:

ṽ(x )
m
(y , t )∼t→∞

ω̃∞
m
(y )

i mU ′(y )

e−i mU (y )t

t
(7.32)

for the x component, and

ṽ(y )
m
(y , t )∼t→∞

ω̃∞
m
(y )

i m (U ′(y ))2
e−i mU (y )t

t 2
(7.33)

for the y component. Analogously, for the stream function, it is proven that

ψ̃m (y , t )∼t→∞
ω̃∞

m
(y )

(i mU ′(y ))2
e−i mU (y )t

t 2
. (7.34)

In all the above formula, higher order corrections are present and decay with higher powers

in 1/t . One should also observe that the initial condition enters only in ω̃∞
m
(y ), which can

be numerically computed from the initial condition ω̃(y , 0) without integrating the Euler

equation.

These results are valid for every shear flow U (y ) also in the case of presence of stationary

points yc in the profile U (y ), but for points y 6= yc . For y = yc , the damping is still algebraic

but no theoretical prediction is available5.

One thus find an algebraic damping of the velocity which is the analogous to the ex-

ponential damping of the potential given by the Landau damping for homogeneous states.

The emergence of an algebraic behavior is due to the singularities of the Green functions

necessary to invert the relations between the velocity and the vorticity.

7.3 Stochastic Orr mechanism

In Section 7.1, using the quasi-linear approximation, we have obtained the two equations (7.26)

and (7.22) describing, respectively, the averaged evolution of the base flow and of the fluc-

tuations. Thanks to the presence of a time-scale separation, we have decoupled these two

equations, reducing the problem to the computation of g∞[ω0], defined in Eq. (7.25). How-

ever, we have not checked that the limiting procedure in Eq. (7.25) is well-posed, that is the

quantity 〈P [δv ·∇δω]〉 actually converges: this is the topic of the present Section. As we will

see, an exponential convergence is ensured by the term −αδω in Eq. (7.22); however also

neglecting such term, which in principle is of higher order in α, the Orr mechanism ensures

an algebraic convergence.

Taking the Fourier transform of Eq. (7.22), we have that every component of the vorticity

(m 6= 0) obeys a Ornstein-Ulhenbeck process

∂tδωm + Lω0,mδωm +αδωm =
p

2ηm (y , t ) , (7.35)

5See [218] for precise numerical results in the case y = yc .
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where ηm (y , t ) are independent complex Gaussian processes with correlation

¬

ηm (y , t )η∗
m ′(y

′, t )
¶

=δm ,m ′

∑

l

f ke l (y )e
∗
l
(y ′) , (7.36)

where k= (m , l ), components f k being defined in Eq. (7.4) and e l (y ) = e−i l y .

The Lyapunov equation associated to Eq. (7.35) is

∂tφm + L(1)
ω0,mφm + L(2)

ω0,−m
φm +2αφm =

∑

l

f (m ,l )e l (y )e
∗
l
(y ′) , (7.37)

where

φm (y , y ′, t ) =



δωm (y , t )δω−m (y
′, t )
�

. (7.38)

Because of the linearity of the Lyapunov equation, we will consider in the following just the

case in which the right hand side is given by cm (y )c−m (y ′), where cm are generic function

such that c ∗, = c−m ; the general case can be recovered using Eq. (4.66).

We are interested in computing 〈P [∇δω ·δv]〉. Using the Fourier transform, it can be

written as

〈P [∇δω(r, t ) ·δv(r, t )]〉= (7.39)

=
∑

m

i m
¬

δωm (y , t )δv(x )−m
(y , t )

¶

+
D

�

∂yδωm (y , t )
�

δv(y )−m (y , t )
E

,

and each component of the sum can be obtained as a linear transform of φm (y , y ′, t ). We

denote by G(x )m and G(y )m the first and second components of the linear operator Gm which

transforms the m -th component of the vorticity in the m -th component of the velocity. We

then have

G(x )(2)−m
[φm ](y , y , t ) =

¬

δωm (y , t )δv(x )−m
(y , t )

¶

, (7.40)

where G(x )(2)−m acts on the second variable ofφ, and analogously for the second quantity in the

sum in Eq. (7.39).

We can then use Eq. (4.74) to compute 〈P [δv · ∇δω]〉. We have, for the two terms in

Eq. (7.39)
¬

δωm (y , t )δv(x )−m
(y , t )

¶

= 2

∫ t

0

du ω̃m (y , u ) ṽ(x )−m
(y , u )e−2αu (7.41)

and
D
�

∂yδωm (y , t )
�

δv(y )−m (y , t )
E

= 2

∫ t

0

du
�

∂y ω̃m (y , u )
�

ṽ(y )−m (y , u )e−2αu (7.42)

where ω̃m obeys to the linearized Euler equation (7.28) with the initial condition

ω̃m (y , t = 0) = cm (y ) (7.43)

and ṽm is the associated velocity field.
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From the previous expressions and the results presented in Section 7.2, one easily re-

alizes that Eq. (7.39) converges for t → ∞ to a well defined function whenever ω0 has no

unstable, nor neutral, modes. Clearly, the exponential term in Eq. (7.41) and (7.42), due to

the effect of the Rayleigh friction on the evolution of the fluctuations, gives an exponential

damping on a time-scale of order 1/(2α). However, such a damping is not necessary to prove

that the limiting procedure (7.39) is well defined.

At first sight, one could expect a logarithmic divergence of Eq. (7.39) if the exponential

damping is neglected: indeed, both terms in the sum have this behavior. However, the de-

tailed computation6 shows that the leading order behavior given by Eq. (7.41) and (7.42)

exactly cancels out. Equation (7.39) does converge because the higher order corrections to

the long-time behavior of the vorticity and the velocity are in powers of 1/t . We thus con-

clude7 that, even neglecting the exponential damping given by the dissipation, the function

g∞[ω0] is well defined by the limiting procedure of Eq. (7.25).

Let us also comment on the effect of the friction term in Eq. (7.22): as anticipated be-

fore, it only gives an exponential damping to the integrands in Eq. (7.41) and (7.42). This

is in agreement with the physical interpretation of the Markovianization: indeed, for every

small α, we should remember that 1/α is the typical time-scale on which ω0 changes. Tak-

ing into account the Rayleigh friction on the evolution of the fluctuations, the value attained

by 〈P [δv · ∇δω]〉 in the regime 1≪ t ≪ 1/2α does not differ much with respect to the one

attained in the t →∞ limit.

We conclude that the kinetic approach to the stochastic Euler equation as obtained here

through the quasi-linear approximation is well posed. In next Section, we propose a method

to numerically compute 〈P [δv·∇δω]〉 and to evaluate the stationary state and the evolution

of the kinetic equation (7.26).

7.4 How to obtain explicit results?

Differently to the case of stochastically forced particle systems, the analytic evaluation of

Eq. (7.25), which would permit to explicitly write the kinetic equation (7.26), is probably not

feasible. However, we expect that this does not restrict the applicability of the kinetic ap-

proach because we can numerically compute Eq. (7.25). We describe in this Section one of

the methods that can be employed for this scope; other possibilities are currently under in-

vestigation.

6This has been already observed in [218, 226] for the self-consistency of the quasi-linear approximation for

the two-dimensional Euler equation without the stochastic forcing and dissipation.
7This results can be extended even to the case of y = yc on the base of the numerical results reported

in [218].

155



CHAPTER 7. STOCHASTIC FORCING ON FLUID MODELS

The filamentation phenomena given by the Orr mechanism (but this is a general phenom-

ena in fluid dynamics, at least on a qualitative level) indicates the presence of structures

which becomes finer and finer as the time goes on. From a numerical point of view, this fact

leads to numerical instabilities in the solution of, for example, the linearized Euler equation;

in general, a viscosity (or hyperviscosity) term regularizes these instabilities. However, for

geophysical flows, the viscosity is often negligible on the time-scale of formation and evo-

lution of large scale structures and it looks unphysical to add such a term just for numerical

reasons. We thus looked for an integral equation to compute directly Eq. (7.25), which we

expect to be simpler to be solved.

It is useful to rewrite Eq. (7.39) in the following way

〈P [∇δω(r, t )δv(r, t )]〉=− d

d y

∑

m

i m hm (y , y , t ) , (7.44)

where

hm (y , y ′, t ) =



δωm (y , t )δψ−m (y
′, t )
�

, (7.45)

is called the Reynolds tensor. We recall that

δωm (y , t ) =

�

d 2

d y 2
−m 2

�

δψm (y , t ) ⇐⇒ δψm (y , t ) =

∫

dy ′Hm (y , y ′)δωm (y
′, t ) ,

where Hm is the Green function of the Fourier transform of the Laplacian [218]. With this

definition of hm , the kinetic equation (7.26) is

∂t 〈ω0〉(y , t )−α d

d y

∑

m

i m h∞
m
(y , y )+α〈ω0〉(y , t ) = 0 , (7.46)

with8

h∞
m
(y , y ′) = lim

t→∞
hm (y , y ′, t ) (7.47)

and where we have used that

g∞[ω0](y ) =−
d

d y

∑

m

i m h∞
m
(y , y ) . (7.48)

We want to write an integral equation for h∞
m
(y , y ′). For this scope, we first consider

φm (y , y ′, t ) defined in Eq. (7.38), that we recall obeys to

∂tφm + L(1)
ω0,mφm + L(2)

ω0,−m
φm −2αφm = cm (y )c

∗
m
(y ′) . (7.49)

8With a similar reasoning to the one of the previous Section, we can prove that the t →∞ limit of hm is well

defined.
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Explicitly, this equation reads

∂tφm (y , y ′, t )+
�

i m
�

U (y )−U (y ′)
�

+2α
�

φm (y , y ′, t ) = (7.50)

=i mU ′′(y )h∗
m
(y ′, y , t )− i mU ′′(y ′)hm (y , y ′, t )+ cm (y )c

∗
m
(y ′) .

We can formally integrate such an equation, by regarding the terms on the r.h.s. as a source

terms

φm (y , y ′, t ) = cm (y )c
∗
m
(y ′)

∫ t

0

ds e−[i m(U (y )−U (y ′))+2α](s−t )+ (7.51)

+i m

∫ t

0

ds
�

U ′′(y )h∗
m
(y ′, y , s )−U ′′(y ′)hm (y , y ′, s )

�

e [i m(U (y )−U (y ′))+2α](s−t )

Using the relation between hm and φm , the change of variables s ′ = s − t and performing

the t →∞ limit, we get the integral equation for h∞
m
(y , y ′)

h∞
m
(y , y ′) =− i

m

∫

dy1

Hm (y ′, y1)cm (y )c ∗m (y1)

U (y )−U (y1)− 2iα

m

+ (7.52)

+

∫

dy1
Hm (y ′, y1)

U (y )−U (y1)− 2iα

m

�

U ′′(y )h∞∗
m
(y1, y )−U ′′(y1)h

∞
m
(y , y1)

�

.

The integral equation (7.52) is the main result of this Section. It is a closed integral equa-

tion for hm of the form

r =S+T [r ] , (7.53)

where S is a source term, not depending on the unknown h∞
m

while T is the linear operator

entering in Eq. (7.52). We can thus try to solve such an equation iteratively with a scheme of

the form

r (k+1) =S+T [r (k )] . (7.54)

On the one hand, we want to stress that we have no mathematical proof that such a scheme

does converge to a self-consistent solution, neither in the case α = 0 nor in the case α 6= 0.

On the other hand, we expect this equation to be simpler to solve with respect to the asso-

ciated differential problem. Indeed, the quantities entering in Eq. (7.52) are only averaged

quantities, in which the effect of filamentation is smoothed out. Some encouraging prelimi-

nary results on the solution of Eq. (7.52) has been obtained, in collaboration with F. Bouchet

and T. Tangarife, numerically implementing the iterative algorithm [217]. We are not going

to present them, being incomplete for the moment.

Once that one is able to obtain h∞
m
(y , y ′) for a generic base flow ω0, one can apply a

first order Euler algorithm to integrate the kinetic equation (7.26). Otherwise, in the case
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in which one is interested only in the stationary flow predicted by the kinetic equation, one

can apply a second iterative scheme to the equation

g∞[ω0] =−〈ω0〉 . (7.55)

The stability of these methods in the actual case, as well as their practical implementation,

is currently under investigation.

7.5 Conclusions and perspectives

We have presented in this Chapter some preliminary results on the generalization of the

kinetic theory to the stochastically forced two-dimensional Euler equation, concentrating

on the case of shear flows. We have seen how to develop the theory which we have shown to

be well-posed.

Differently to the case of particle systems treated in Chapter 6, it is probably not possi-

ble to write explicitly a kinetic equation. Anyway, we do not expect that this does limit the

predictions that is possible to obtain with the kinetic theory. We have proposed a numeri-

cal scheme that can be employed to evaluate the Reynold stresses; other ways are probably

possible, even if not explored for the moment: indeed, the problem is reduced to solve the

linear Euler equation. Semi-analytical (see for example [227]) or purely numerical methods

may be employed for this scope.

We have not presented the explicit results we have on the iterative solution of the integral

equation (7.52), being incomplete for the moment. We are currently working in collabora-

tion with F. Bouchet and T. Tangarife [217] on these topics.

We expect that the techniques presented here can be used both to obtain the non equi-

librium stationary states attained by the system at long times and the time-evolution of the

mean flow using a simple Euler scheme to integrate Eq. (7.26). Our program is to compare

these results with direct numerical simulations of the stochastically forced Euler equation.

As in the case of particle systems, we have only considered the evolution of the averaged

base flow with respect to noise realizations. As in that case, an important question is to

understand how far it is a single trajectory from the mean flow. We think that it is possible

to answer to this question but our results are not conclusive for the moment.

The kinetic theory, as well as the numerical method presented in Section 7.4, has been

sketched here for the two-dimensional Euler equation. The generalization to the barotropic

beta-plane equation9, defined by

∂t q +v ·∇q =−αq +
p

2αF , q =ω+βy , (7.56)

9The term βy (beta effect) takes into account in the most simple way the effect of the Coriolis force.
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should present no additional difficulties. This simple model is already relevant for geophys-

ical applications [108], for example for what concern the formation of jet streams in plane-

tary atmospheres, and has already been studied using the quasi-linear approximation [134]

with encouraging results.

On the other hand, more work is necessary to generalize the kinetic theory to quasi-

geostrophic and shallow-water equations, as well to the primitive equations, or to cases

where the mean flow is given by a vortex or by a dipole. An important point we understood

in this respect is that it is probably not necessary to study the analogous to the Orr mecha-

nism, which poses strong difficulties in many cases. Indeed, as we have seen in Section 7.3,

the Rayleigh friction on the evolution of the fluctuations gives an exponential damping to

the stochastic Orr mechanism which is not present in the deterministic case. Some weaker

result on the asymptotic stability of the base flow, without an explicit computation of the

decay rates of the velocity for large times as in Section 7.2, may thus be sufficient for the

kinetic theory to be well-posed.
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We have discussed the results we obtained on long-range interacting systems forced by

some external fields, considering both the cases of a deterministic and stochastic external

driving.

In the case of deterministic perturbations (see Chapter 5), we asked the following ques-

tion: how does a long-range interacting system prepared in a QSS react to an external forc-

ing? We have performed a linear study obtaining the analogous to the Kubo formula which

is valid for any Vlasov stationary state. However, the explicit application of such a formula is

possible essentially with the techniques by which the Landau damping is derived. We thus

obtained explicit theoretical predictions in the case of homogeneous stationary states. The

results agree quite well with N -body simulations.

Later on, Ogawa et al. [126] obtained predictions also for non-homogeneous states in

the cases in which the single-particle dynamics is integrable, so that action-angle variables

can be used. Their work relies on the results obtained in [163, 164] on the Landau damping

for these kind of states. Patelli et al. [127] have also obtained results for non-homogeneous

states but without invoking action-angles variables: they assume that, under a perturbation

saturating in time to some value, the system will converge to a stationary state; in the case it

does, they obtain (with further approximations involving the conservation of the Casimirs)

the time asymptotic behavior. However, the hypothesis and approximations they use have

still to be investigated. We are working with Patelli to understand on the basis of his work if

the techniques they developed could be useful to define the stability of a generic stationary

state of the Vlasov equation, even in the cases in which the single-particle dynamics is not

integrable.

Most of the work in this part of the thesis is devoted to the study of stochastically driven

long-range interacting systems, in which the dynamics breaks the detailed balance and

stationary states are maintained by currents of conserved quantities. Unlike systems with

short-range interactions, stochastic forces in long-range interacting systems can act coher-

ently on all the degrees of freedom, and not independently on each particle (e.g., gravi-

tational or electric fields). Beside the fact that we are dealing with long-range interacting

systems, the study of nonequilibrium stationary states (NESS) is an active area of research

of modern day statistical mechanics. Our work provides, to the best of our knowledge, the

first study of NESS in long-range systems with statistical mechanical perspectives.

Non equilibrium stationary states of this kind are very common in geophysics, where the en-

ergy injection on large scale structures is provided by turbulent fluctuations and the dissipa-

tion is given by friction at the boundaries of these structures. Unfortunately, the direct the-

oretical analysis of models which are relevant for geophysical applications is complicated

at technical level. Because they are amenable for analytical results, we mainly concentrated
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on particle systems.

In this case, we generalized the kinetic theory leading to the Lenard-Balescu equation for

isolated long-range interacting systems, to describe the evolution of homogeneous stochas-

tically driven systems in the limit of small forcing. To do it, we carefully reviewed the deriva-

tion of the Lenard-Balescu equation in Chapter 4, putting it on a general basis. We then used

this general formulation to develop the kinetic theory for stochastically forced long-range

interacting particle systems. Our theoretical approach is quite general, being applicable to

any long-range inter-particle potential, space dimensions and boundary conditions.

Extensive numerical simulations on the stochastically forced HMF model demonstrated a

very good agreement with the theory, predicting with a very high accuracy the velocity pro-

file of homogeneous stationary states. We observe that this is a non trivial result: indeed, the

kinetic theory approach (mainly because of the truncation of the hierarchy) cannot be made

rigorous and it was not clear a priori how good are the predictions. In this respect we ob-

serve that, because of the difficulties introduced by strong non-linearities, even the Lenard-

Balescu equation has not been tested extensively against numerical simulations; the only

results we know in this direction are those in [167,171,172]. The approximate Landau equa-

tion is more often used in plasma community and the analogous method of Chandrasekhar

is used in astrophysics.

A simple step forward, with respect to our work, is to work out explicitly the full time

evolution as predicted by the kinetic equation (6.30) and to compare it with numerical sim-

ulations. In this respect, we also note that the kinetic theory as developed here does describe

the average of the evolution over noise realizations. But how far is typically a single trajec-

tory from this average? For the moment we have no final answer for this question, but we

have some preliminary results saying that more the dynamics of the system is close to the

detailed balance, smaller is the variance of the trajectories.

Other open questions concerning these works are: the possible generalization of the

kinetic theory to describe the evolution of non-homogeneous states using the techniques

developed in [163, 164, 169]when the single particle dynamics is integrable or those in [127]

which, albeit approximate, do not rely on the hypothesis of integrability.

Beside kinetic theory, we numerically observed a very interesting bistable behavior be-

tween homogeneous and non-homogeneous states that we observed numerically when the

parameters of the forcing are set in such a way that the system is close to a phase transi-

tion. We believe that such behaviors, already observed in stochastically forced Euler equa-

tions [187], are quite general phenomena in long-range interacting systems whose dynamics

breaks the detailed balance and we believe that they are essential phenomena for geophys-

ical flows. Similar phenomena indeed happen to the Earth magnetic field, to the Kuroshio

current and in other systems. The theoretical understanding of such phenomena may be

affordable with large deviations techniques; J. Laurie, F. Bouchet and O. Zaboronski have
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preliminary results on this topic [228] for the two-dimensional Euler equation and the ap-

plicability of such methods to particle systems is actually under investigation.

One of the most interesting perspective of our work is, in our opinion, the generalization

of the kinetic theory approach to fluids and, in particular, to models relevant for geophysical

applications. In this respect, we have described our first efforts to generalize the kinetic the-

ory to the stochastically forced Euler equation. There are already some approaches in liter-

ature, called second order closure expansion or stochastic structural stability theory, which

are very close to kinetic theory, see for example [130–134]. However, these studies are of

phenomenological nature and mainly based on direct numerical solution of the quasi-linear

system. No theory is developed: they did not realized that the quasi-linear approximation is

valid for small external forcing; they did not try to verify if the quasi-linear approximation is

a well-posed procedure and, moreover, they do not use the time scale separation between

the time-scale governing evolution of the mean flow and the one governing the relaxation of

correlations.

It is necessary to develop a theoretical framework at least for two reasons: to clarify when

the kinetic theory gives reliable predictions and to find the simplest possible way to obtain

explicit results on the stationary state attained and on the evolution of the mean flow. In

Chapter 7 we have described our first results in this direction working on the stochastically

forced 2d Euler equation in the case of shear flows. We have however not shown the explicit

predictions we have because the results are not satisfactory for the moment.

It is simple to generalize what we have presented in Chapter 7 to the barotropic dynam-

ics on a beta plane, the model considered for example in [134], which is already relevant

for geophysical applications in the explanation of strong jets in the planetary atmospheres.

More effort is however necessary to deal with mean flows represented by vortices or to deal

with more complicated models such as the Shallow water or the Quasi-geostrophic equa-

tions.
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A
Appendix to Chapter 2

A.1 Density of states of the effective model

To solve the model in the microcanonical ensemble we need to calculate the density of

states (2.41), i.e.,

ωN (E ) =

N
∑

Ng=0

N !

Ng !
�

N −Ng

�

!

∫ ∞

−∞
d p1 · · ·d pN

∫ π

−π
dϑ1 · · ·dϑNg

∫ ∞

−∞
dϑNg+1 · · ·dϑN

× δ







1

2

N
∑

i=1

p 2
i
+
µ

2

N
∑

i ,j=Ng+1

�

ϑi −ϑj

�2−V0−E






. (A.1)

To compute the above integral we follow a procedure similar to that used in [55, 69]. First,

we expand the square in the last sum, obtaining

ωN (E ) =
1

µ

N
∑

Ng=0

N !

Ng !
�

N −Ng

�

!

∫ ∞

−∞
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−π
dϑ1 · · ·dϑNg
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−∞
dϑNg+1 · · ·dϑN
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i
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ϑi







2

− V0+E
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, (A.2)

and then we search for a coordinate transformation diagonalizing the coupling between the

ϑ’s. As to this point, we note that

(N −Ng )

N
∑

i=Ng+1

ϑ2
i
−







N
∑

i=Ng+1

ϑi







2

= (ϑNg+1, . . . ,ϑN )A(ϑNg+1, . . . ,ϑN )
T , (A.3)

where the symmetric (N −Ng )× (N −Ng )matrix A reads as

A=−











1 · · · 1
...

...
...

1 · · · 1











+(N −Ng )IN−Ng
(A.4)
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and Id is the d × d identity matrix. The matrix A has eigenvalues λ1 = 0 and λ2 = · · · =
λN−Ng

= N −Ng , and can be diagonalized by an orthogonal transformation that does not

change the integration measure. Hence we can write

ωN (E ) =
1

µ

N
∑

Ng=0

N !

Ng !
�

N −Ng

�

!
(2π)Ng
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p 2
i
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i
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µ






, (A.5)

where we have also performed the Ng integrals over the circle. With the change of variables

ψi = ϑi

p

N −Ng , i =Ng +1, . . . , N −1 we get

ωN (E ) =
1

µ
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The last integral in Eq.(̃A.6) stems from the zero mode due to the O(2) invariance of the

Hamiltonian; it is divergent but does not affect the thermodynamic quantities so that from

now on we will ignore it.

When 1
2µ

h

2(V0+E )−
∑N

i=1 p 2
i

i

≥ 0, the integrals over theψ’s give the volume of the (N −

Ng − 2)-dimensional sphere S
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R of radius R = 1

2µ

h

2(V0+E )−
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i=1 p 2
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i

; on the other

hand, when 1
2µ

h

2(V0+E )−
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i=1 p 2
i

i

< 0 the same integrals vanish. As to the integrations

over the momenta, we note that the integrand depends only on

p =

s

N
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i , (A.7)

so that we can write
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where Γ(x ) is the Euler gamma function,Θ(x ) is the Heaviside step function and E ′ = V0+E .

We want to compute

s (ǫ) = lim
N→∞

1

N
logωN (Nǫ) , (A.9)

where we have introduced the energy density ǫ = E

N
. Clearly,

ωN (Nǫ)≡ 0 if ǫ < ǫmin , (A.10)

166



A.1. DENSITY OF STATES OF THE EFFECTIVE MODEL

where ǫmin is the absolute minimum of the potential energy per degree of freedom,

ǫmin =−
1

2
p

2α
, (A.11)

so that the domain of the entropy density (A.9) is ǫ > ǫmin. For large N , computing the

integral in Eq.(̃A.8) with the Laplace (or saddle-point) method we get

ωN (Nǫ) =
2N /2

µ

N max
g (ǫ)
∑

Ng=0

(2π)Ng
N !
�

N −Ng

�−(N−Ng−1)/2

Ng !
�

N −Ng

�

!

2π(N−Ng−1)/2

Γ
�

N−Ng−1

2

�

2πN /2

Γ
�

N

2

�

×
�

N 22(2α)3/2
�(N−Ng−2)/2

exp

¨

N

�

1

2
log

�

N

2−n g

�

(A.12)

+
2−n g

2
log a (n g ,α,ǫ)+

1−n g

2
log

�

1−n g

2−n g

��«

+o
�

e N
�

,

where

a (n g ,α,ǫ) =
γ

2
p

2
n g (2−n g )+

�

1−n g

�2

2
p

2α
+ ǫ , (A.13)

and we have introduced the fraction of gas particles n g =
Ng

N
; N max

g
(ǫ) is the maximum num-

ber of gas particles allowed at a given energy density ǫ, so that the quantity a (n g ,α,ǫ) given

by Eq.(̃A.13) is positive in the domain ǫ > ǫmin with 0≤Ng ≤N max
g

.

Neglecting the sub-exponential terms and using the Stirling approximation, Eq.(̃A.12)

can be written as

ωN (Nǫ) =

∫ n max
g (ǫ)

0

d n g exp
�

N s (ǫ, n g )
�

, (A.14)

where1

n max
g
(ǫ) =

N max
g
(ǫ)

N
= 1−

È

1− 1+2ǫ
p

2α
p

2−γpα
(A.15)

and

s (ǫ, n g ) =
1−n g

2
log

�

4π(2α)3/2

(1−n g )(2−n g )

�

+
1

2
log

�

2π
p

2

2−n g

�

+
2−n g

2

�

1+ log a (n g ,α,ǫ)
�

+n g log(2π) (A.16)

− n g log n g − (1−n g ) log(1−n g ) ;

hence, we can write the entropy (A.9) as

s (ǫ) = sup
n g ∈[0,n max

g ]

s (ǫ, n g ) . (A.17)

1Eq. (A.15) holds for sufficiently small α, i.e., such that
p

2−γpα> 0.
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B.1 Specific heat critical exponent from Eq. (3.14)

In Chapter 3, we have discussed the implications of Eqs.(̃3.14) and (3.15) in case they would

exactly hold. Here we give the details about the predictions on the specific heat critical

exponent α obtained by assuming that the density of states has the form given by Eqs.(̃3.14)

or (3.15), respectively. Let us recall that, in the microcanonical ensemble, the specific heat

is defined as

C (ǫ) =− [s
′(ǫ)]2

s ′′(ǫ)
, (B.1)

where s (ǫ) is the entropy density and the temperature is defined as T (ǫ) = 1/s ′(ǫ). With s ′(ǫ)

and s ′′(ǫ)we denote the first and second derivative of the function s (ǫ).

Let us consider a short-range O(n ) model and assume the relation (3.14) holds as an

equality. We assume in the following that the phase transition occurs for a value of the en-

ergy density in the interior of the domain of the entropy density1. Without loss of generality,

let us shift the energy density ǫ such that ǫc = 0. The entropy density of the continuous

model can then be written as:

s (ǫ) = s I (ǫ)+ log f (ǫ) , (B.2)

where here and in the following we use the notation s I (ǫ) instead of s (1)(ǫ) for the entropy

density of the Ising model, to avoid possible misunderstanding with derivatives. We also

omit the symbol (n ) indicating which O(n ) model we are considering because our argu-

ments do not depend on it. Finally, we denoted g (n )(ǫ)1/N by f (ǫ).

Let us now consider, for the moment, only energy densities larger than the critical one,

i.e., ǫ > 0. Three facts are relevant for the following:

1. we consider 0<αI < 1, i.e., the case d > 2. Moreover, because the critical temperature

of the Ising models is finite, s ′′I (ǫ)∝ ǫαI for ǫ→ 0+.

1As a consequence, what follows does not apply to the mean-field and 1-d Xy models.
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2. s ′(ǫ) is finite around ǫ = 0 because the critical temperature of the continuous model

does not vanish at the transition.

3. we assume f (ǫ) is analytical. We can then expand f (ǫ) in a Taylor series around ǫ = 0.

Inserting Eq.(̃B.2) into Eq.(̃B.1), we get

C (ǫ) =−

h

s ′I (ǫ)+
g ′(ǫ)
f (ǫ)

i2

s ′′
I
(ǫ)+

g ′′(ǫ)
f (ǫ)
−
h

g ′(ǫ)
f (ǫ)

i2 . (B.3)

Using the expansions described above around ǫ = 0, neglecting the higher order terms and

expanding the fraction, we obtain

C (ǫ)≃ a++b+ ǫ
αI (ǫ→ 0+), (B.4)

where a+ and b+ are constants whose exact value is irrelevant to our purposes. We can

repeat the same calculations for ǫ < 0, obtaining the same result as in Eq.(̃B.4) but for that

ǫ→−ǫ and that the constants may be different. Hence the specific heat close to ǫ = 0 is

C (ǫ)≃ a±+b± |ǫ|αI . (B.5)

We then obtain the result stated in Sec. 3.3: the specific heat of the continuous model does

not diverge at the transition and the critical exponent α of the continuous model is related

to the one of the Ising model via α=−αI .
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C.1 Normalization, energy density, and stability criterion

for the Fermi-Dirac distribution

Normalization: Consider the distribution Eq. (5.64). The normalization A satisfies

A

∫ ∞

−∞

dp

1+ e β (p
2−µ) = 1. (C.1)

Changing variables and doing an integration by parts, we get

2βA

∫ ∞

0

d x

p
x e β (x−µ)

h

1+ e β (x−µ)
i2 = 1. (C.2)

The left hand side may be written in terms of the derivative ∂ f FD(x )/∂ x of the Fermi-Dirac-

like function f FD(x ) = 1/[1+ e β (x−µ)]. We get

2A

∫ ∞

0

d x
p

x
�−∂ f FD(x )

∂ x

�

= 1. (C.3)

In the limit of large β , the derivative ∂ f FD(x )/∂ x approaches the Delta function:

limβ→∞ ∂ f FD(x )/∂ x =−δ(x −µ). In this limit, we may expand
p

x in a Taylor series about µ,

p
x =

p

µ+
x −µ
2
p
µ
− (x −µ)

2

8µ3/2
+ . . . , (C.4)

which on substituting in Eq. (C.3) gives

A
�

2
p

µI0+
1

β
p
µ
I1−

1

4β 2µ3/2
I2+ . . .

�

= 1. (C.5)

Here,

I0 =

∫ ∞

0

d x
�−∂ f FD(x )

∂ x

�

=

∫ ∞

−βµ
d y

e y

(1+ e y )2
β→∞−→

∫ ∞

−∞
d y

e y

(1+ e y )2
= 1, (C.6)
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I1 =β

∫ ∞

0

d x (x −µ)
�−∂ f FD(x )

∂ x

�

=

∫ ∞

−βµ
d y

y e y

(1+ e y )2
β→∞−→

∫ ∞

−∞
d y

y e y

(1+ e y )2
= 0, (C.7)

I2 =β
2

∫ ∞

0

d x (x −µ)2
�−∂ f FD(x )

∂ x

�

=

∫ ∞

−βµ
d y

y 2e 2

(1+ e y )2
β→∞−→

∫ ∞

−∞
d y

y 2e y

(1+ e y )2
=
π2

3
. (C.8)

Thus, to order 1/β 2, we find from Eq. (C.5) that

A
�

2
p

µ− π2

12β 2µ3/2

�

= 1, (C.9)

which gives

A =
1

2
p
µ

�

1+
π2

24β 2µ2

�

. (C.10)

Average energy: The average energy density is obtained from Eq. (5.38) as

e = A

∫ ∞

−∞
dp

p 2/2

1+ e β (p
2−µ) +

1

2
. (C.11)

Changing variables and doing an integration by parts, we get

e =
A

3

∫ ∞

0

d x x 3/2
�−∂ f FD(x )

∂ x

�

+
1

2
. (C.12)

Expanding x 3/2 in a Taylor series about µ and substituting in Eq. (C.12) give

e =
A

3

�

µ3/2I0+
3

2β

p

µI1+
3

8β 2pµI2+ . . .
�

+
1

2

=
Aµ3/2

3

�

1+
π2

8β 2µ2

�

+
1

2
. (C.13)

Using Eq. (C.10), we find that to O(1/β 2), the energy density is

e =
µ

6

�

1+
π2

6β 2µ2

�

+
1

2
. (C.14)

Dielectric function: Using Eqs. (5.64), we get

ε(1, 0) = 1−A

∫ ∞

0

d x
1
p

x

�−∂ f FD(x )

∂ x

�

. (C.15)

Expanding 1/
p

x in a Taylor series about µ, and substituting in Eq. (C.15) give

ε(1, 0) = 1−A
� I0p
µ
− I1

2βµ3/2
+

3I2

8β 2µ5/2
+ . . .

�

, (C.16)

so that to O(1/β 2), we get

ε(1, 0) = 1− 1

2µ

�

1+
π2

6β 2µ2

�

, (C.17)

where we have used Eq. (C.10).
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D
Appendices to Chapter 6

We report in these appendices some computations relative to Chapter (6) which have not

found space in the text.

D.1 Condition of detailed balance for the dynamics (6.2)

We prove here that the dynamics defined by the equations of motion (6.2) satisfies detailed

balance if and only if ck = c for all k , that is, if the stochastic forcing has a white spectrum in

space.

We start from the N -particle Fokker-Planck equation (6.13) associated with the equa-

tions of motion (6.2). It will be useful to rewrite it in the following way:

∂ f N (x)

∂ t
=−

2N
∑

i=1

∂

∂ x i

[A i (x) f N (x)]+
1

2

2N
∑

i ,j=1

∂ 2

∂ x i∂ x j

[Bi ,j (x) f N (x)] , (D.1)

where x i =qi for i = 1, ..., N , x i = p i−N for i = (N+1), ..., 2N , and we use the notation x= {x i }.
The drift vector A i (x) is a function of the x i ’s, and is given by

A i (x) = p i for i = 1, ..., N , (D.2)

A i (x) =−αp i−N − 1
N

∑N

j=1
∂ v (qi−N−qj )

∂ qi−N
for i = (N +1), ..., 2N . (D.3)

Similarly, the expression for the (symmetric) diffusion matrix Bi ,j is:

Bi ,j (x) =αC (|qi−N −qj−N |) for i >N ∧ j >N , (D.4)

and Bi ,j (x) = 0 otherwise. We moreover introduce the constants εi = ±1, which denote the

parity with respect to time inversion of the variables x i , and the notation εx= {εi x i }.
It can be shown (see [165], Sect. 5.3.5, or [189], Sect. 6.4) that the dynamics described

by a Fokker-Planck equation of the form (D.1) satisfies detailed balance if and only if the

following two conditions are satisfied (i = 1, ..., 2N ):

εiεj Bi ,j (εx) = Bi ,j (x), (D.5)
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and

εi A i (εx) f s
N
(x) =−A i (x) f

s
N
(x)+

2N
∑

j=1

∂

∂ x j

Bi ,j (x) f
s
N
(x), (D.6)

where f s
N (x) is the stationary solution of (D.1).

In our case, in which the drift and the diffusion terms are given by Eqs. (D.2) and (D.4),

respectively, the condition (D.5) is trivially satisfied. Our proof goes as follows: we solve

formally Eq. (D.6), and show that f s
N (x) is a stationary solution of Eq. (D.1) if and only if the

non-vanishing part of Bi ,j is proportional to the identity matrix. Then, it is simple to show

that this implies that the spectrum of the forcing has to be white in space.

Equation (D.6) for i = 1, ..., N is also trivially satisfied. On the other hand, for what con-

cerns i = (N +1), ..., 2N , we have

2pk f s
N
(x) =−

N
∑

j=1

C (|qk −qj |)
∂ f s

N (x)

∂ p j

, (D.7)

where k = i−N . We introduce the N×N matrixC whose components are given byCk ,j (x) =

C (|qk −qj |), and observe that, for generic values of the qi ’s, C admits an inverse C −1. Inte-

grating Eq. (D.7), we thus have

f s
N
(x) = d (q1, ...,qN )exp






−

N
∑

k ,j=1

pk

�

C −1
�

k ,j
p j






, (D.8)

where d (q1, ...,qN ) is an undetermined function. Inserting Eq. (D.8) into the Fokker-Planck

equation (D.1), imposing that it is a stationary solution, and with some calculations, we get

N
∑

i=1

�

−∂ f s
N

∂ qi

∂H

∂ p i

+
∂H

∂ qi

∂ f s
N

∂ p i

�

= 0 . (D.9)

Then, f s
N is a function of the Hamiltonian H , that is f s

N (x) = ψ(H (x)) for some function ψ.

On the other hand, because f s
N is given by the formula in Eq. (D.8), we can also deduce that

ψ is an exponential, and thus, that f s
N is Gaussian in the velocities. We conclude that C −1

(and hence, C ) has to be independent of the qi ’s and proportional to the identity. Finally,

from the form of C (|qi −qj |) in Eq. (6.3), we see that this condition on C is satisfied if and

only if the spectrum of the forcing is white in space.

D.2 Closure of the BBGKY hierarchy

We analyze here in detail the closure of the BBGKY hierarchy discussed in the text, in par-

ticular, the reasons for which the connected part of the two-particle correlation is of order

α, while higher correlations are negligible at leading order in α, so that this closure is self-

consistent.
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In the following, we expand the functions f 2 and f 3 as

f 2(z 1, z 2, t ) = f (z 1, t ) f (z 2, t )+ g̃ (z 1, z 2, t ), (D.10)

and

f 3(z 1, z 2, z 3, t ) = f (z 1, t ) f (z 2, t ) f (z 3, t )+ f (z 1, t )g̃ (z 2, z 3, t )

+ f (z 2, t )g̃ (z 1, z 3, t )+ f (z 3, t )g̃ (z 1, z 2, t )+h(z 1, z 2, z 3, t ), (D.11)

and similarly, for other f s ’s for s ≥ 4.

Now, let us write explicitly the first two equations of the BBGKY hierarchy (6.16). The

first one, obtained from Eqs. (6.16) and (D.10), is

∂ f

∂ t
+p

∂ f

∂ q
− ∂ f

∂ p

∂ Φ[ f ]

∂ q
−α ∂
∂ p
[p f ]− α

2
C (0)

∂ 2 f

∂ p 2
=
∂

∂ p

∫

dq1dp1 v ′(q −q1)g̃ (z , z 1, t ), (D.12)

where

Φ[ f ](q ) =

∫

dq1dp1 v (q −q1) f (q1, p1, t ) (D.13)

is the mean-field potential. For the second equation of the hierarchy, we use Eqs. (D.11) and

(D.12) to get

∂ g̃ (z 1, z 2, t )

∂ t
=

h

−p1
∂ g̃

∂ q1
+
∂ g̃

∂ p1

∂ Φ[ f ]

∂ q1
+

f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
+

1

N

∂ v (q1−q2)

∂ q1

∂ g̃

∂ p1

+
∂ f

∂ p1

∫

dz 3
∂ v (q1−q3)

∂ q1
g̃ (z 2, z 3)+

∂

∂ p1
[αp1 g̃ ]+

α

2
C (|q1−q2|)

∂ f

∂ p1

∂ f

∂ p2

+
α

2
C (0)

∂ 2 g̃

∂ p 2
1

+
α

2
C (|q1−q2|)

∂ 2 g̃

∂ p1∂ p2
+

∫

dz 3
∂ v (q1−q3)

∂ q1

∂ h

∂ p1

i

+{1↔ 2}, (D.14)

where the symbol {1↔ 2} stands for an expression obtained from the bracketed one on the

right hand side by exchanging the subscripts 1 and 2.

Let us analyze the order of magnitude of various terms in Eq. (D.14). First of all, we

have f ∼ 1, as it is normalized to unity. However, we do not know a priori the order of

magnitude of g̃ and h. Thus, the order of magnitude of all but the terms f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
and

α

2
C (|q1−q2|) ∂ f

∂ p1

∂ f

∂ p2
is unknown. In the continuum limit Nα≫ 1, we have

f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
∼ 1

N
≪α∼ α

2
C (|q1−q2|)

∂ f

∂ p1

∂ f

∂ p2
, (D.15)

so that it is natural to guess that g̃ ∼α. Let us also observe that in the limit Nα≪ 1, we have

f (z 2)

N

∂ v (q1−q2)

∂ q1

∂ f

∂ p1
∼ 1

N
≫α∼ α

2
C (|q1−q2|)

∂ f

∂ p1

∂ f

∂ p2
, (D.16)
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so that we obtain g̃ ∼ 1/N . In the limit Nα ≪ 1, the kinetic theory leads to the Lenard-

Balescu equation.

Once we have established that g̃ ∼ α, one can write down the equation of the hierarchy

for h and, with similar reasoning as above, one then finds that h is at least of order α/N ≪α
(or, α2 depending on whether α/N ≪α2, or, the converse), so that the term

∫

dz 3
∂ v (q1−q3)

∂ q1

∂ h

∂ p1

is negligible in Eq. (D.14), as may be straightforwardly checked. The iterative procedure

can be repeated at all orders of the hierarchy. Discarding three-particle and higher-order

correlations is thus a self-consistent procedure. Moreover, note that in Eq. (D.14), some of

the terms are of higher orders (α2, α/N ,...) with respect to α, and thus, can be discarded.

The final form of the second equation of the BBGKY hierarchy is thus

∂ g̃ (z 1, z 2)

∂ t
=

h

−p1
∂ g̃

∂ q1
+
∂ g̃

∂ p1

∂ Φ[ f ]

∂ q1
+
∂ f

∂ p1

∫

dz 3v ′(q1−q3)g̃ (z 2, z 3)

+
α

2
C (|q1−q2|)

∂ f

∂ p1

∂ f

∂ p2

i

+ {1↔ 2}. (D.17)

Note that g̃ ∼ α implies, see Eq. (D.12), that the mean-field effect of the stochastic forces

gives a contribution at the same order to the two-particle correlation induced by them.

D.3 Evolution of the kinetic energy for the dynamics

We derive here the evolution of the kinetic energy as obtained from the kinetic equation (6.30).

Let us recall that the average kinetic energy density at time t in the continuous limit can be

written as

〈k (t )〉= 1

2

∫

dp p 2 f (p , t ). (D.18)

The starting point to obtain its time evolution is to multiply the kinetic equation (6.30) by
1
2

p 2, and then, to integrate over p . Neglecting for the moment the non-linear part of the

diffusion coefficient, and integrating by parts, we get

�

∂ k (t )

∂ t

�

+ 2α 〈k (t )〉 − α
2

C (0) = 0, (D.19)

which gives

〈k (t )〉 =
�

〈k (0)〉− C (0)

4

�

e−2αt +
C (0)

4
. (D.20)

The kinetic energy density in the stationary state is thus 〈κ〉s s =C (0)/4.

We now have to prove that the non-linear part of the diffusion coefficient (6.31) does not

contribute to the time evolution of the kinetic energy. Such a result is expected and is usu-

ally valid for collisional terms (i.e., those terms in the kinetic equations which are given by

two-particle correlation), for example, in the Boltzmann equation or in the Lenard-Balescu

176



D.4. PROOF THAT THE KINETIC EQUATION ADMITS NON-GAUSSIAN
STATIONARY DISTRIBUTION WITH GAUSSIAN TAILS

equation [111]. The contribution to k (t ) from the non-linear part of the diffusion coefficient

is a sum of terms proportional to

T =
1

2

∫

dp p 2

× ∂
∂ p

¨

f ′(p , t )

�

1

|ε(k , k p )|2

∫ ∗

dp1
f ′(p1, t )

p1−p
+

∫ ∗

dp1
f ′(p1, t )

p1−p

1

|ε(k , k p1)|2

�«

;

(D.21)

we will show that each of such terms vanishes independently. Indeed, integrating the last

expression over p1 by parts, we get that

T =−
∫

dp

∫ ∗

dp1 p f ′(p , t )

�

f ′(p1, t )

p1−p

1

|ε(k , k p )|2 +
f ′(p1, t )

p1−p

1

|ε(k , k p1)|2
�

. (D.22)

Exchanging now the variables p1 and p and the order of integration, we get that the above

equation may be rewritten as

T =

∫

dp

∫ ∗

dp1 p1 f ′(p1, t )

�

f ′(p , t )

p1−p

1

|ε(k , k p1)|2
+

f ′(p , t )

p1−p

1

|ε(k , k p )|2
�

. (D.23)

Summing up the last two equations, we therefore have

T =
1

2

∫

dp

∫

dp1 f ′(p1, t ) f ′(p , t )

�

1

|ε(k , k p1)|2
+

1

|ε(k , k p )|2
�

, (D.24)

which vanishes on integrating by parts both with respect to p1 and p .

D.4 Proof that the kinetic equation admits non-Gaussian

stationary distribution with Gaussian tails

We prove here that for a general forcing spectra, the Gaussian distribution function in Eq. (6.35)

is not a stationary solution of the kinetic equation (6.30), and that the tails of any station-

ary state are Gaussian. For the first point, we have to prove that the contribution to ∂ f /∂ t

from the non-linear part of D[ f ](p ) in Eq. (6.31) is not vanishing. This result can be proven

with an asymptotic expansion [136] for large momenta of the integrals which appear in the

diffusion coefficient. Given any function g (p ), we approximate integrals of the form
∫ ∗

dp1
g (p1)

p1−p
(D.25)

by expanding 1
p1−p

in Taylor series. We get, for example,

∫ ∗

dp1
f ′G (p1)

p1−p
≃ 2
p
π
β 3/2

∫ ∞

−∞
e−βp 2

1

�

p1

p
+

�

p1

p

�2

+

�

p1

p

�3

+ ...

�

≃ 1

p 2
, (D.26)
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where, in the last equality, we have taken into account the fact that the Gaussian distribution

being even, the terms containing
�

p1

p

�k

with k odd do not contribute. In a similar way, we

have

|ε(k , k p )|2 ≃ 1− 4πv (k )

p 2
, (D.27)

and
∫ ∗

dp1

�

f ′G (p1)

p1−p

1

|ε(k , k p1)|2
�

≃ 2β 3/2

p
πp 2

∫

dp1

p 2
1 e−βp 2

1

|ε(k , k p1)|2
, (D.28)

where we have used the fact that |ε(k , k p )|2 is an even function of p . With these results,

we can evaluate the non-linear part of the kinetic equation: for large p1, the non-linear

contribution to ∂ f /∂ t is

2πα
∞
∑

k=1

vk ck

�

1+
2β 3/2

p
π

∫

dp
p 2e−p 2

|ε(k , k p )|2

�
�

4β 5/2

p
π

e−βp 2
1

�

. (D.29)

It can be shown that such a term is a non-vanishing function of p1. This completes the proof:

for a generic forcing spectra, the stationary state, when exists, is not Gaussian.

Using the same asymptotic expansion as before, it can be checked that the diffusion

coefficient D[ f ](p ) converges to C (0)/2 for any distribution f . From this observation and

Eq. (6.37), it follows that any stationary solution of the kinetic equation (6.30) has Gaussian

tails.
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