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Introduction

La théorie géométrique des groupes est la branche des mathématiques qui s’attache à étu-
dier un groupe en le réalisant comme groupe de symétries d’un espace dont on juge la
géométrie intéressante. La géométrie de l’espace sous-jacent ou les propriétés algébriques et
dynamiques de l’action sont alors utilisées pour extraire des informations sur le groupe en
question. Une telle approche présente deux leviers sur lesquels jouer.

D’un côté, on peut chercher à faire agir le groupe sur un espace dont la topologie ou
la géométrie est particulièrement simple, avec potentiellement des stabilisateurs infinis. Un
exemple illustrant une telle approche est donné par la théorie de Bass-Serre [42], c’est-à-
dire l’étude des groupes qui agissent de manière non triviale sur des arbres simpliciaux. Ces
groupes sont exactement les groupes qui se décomposent comme groupes fondamentaux de
graphes de groupes. Cette théorie s’est révélée fructueuse pour démontrer (ou redémontrer)
diverses propriétés algébriques de groupes. Citons par exemple :

• la liberté des sous-groupes discrets sans torsion de SL2(Qp) (voir [42]),

• le théorème de combinaison de Bestvina-Feighn [3], qui permet notamment de démon-
trer l’hyperbolicité des groupes fondamentaux de variétés de dimension 3 obtenues
comme mapping torus au dessus d’un difféomorphisme pseudo-Anosov d’une surface
hyperbolique,

• l’hyperbolicité relative des groupes limites par Dahmani [14].

À l’inverse, on peut chercher à créer une action avec des stabilisateurs finis, et ten-
ter d’extraire de la géométrie de l’espace sous-jacent des informations algébriques sur le
groupe en question. Un cas particulier est le cas des actions géométriques, c’est à dire
propres et cocompactes, sur des espaces de dimension arbitraire. Dans un tel cas, le groupe
devient quasi-isométrique à l’espace sur lequel il agit, et on a alors à disposition divers
outils topologiques et géométriques pour étudier le groupe. Un point culminant de cette
approche est sans conteste la théorie des groupes hyperboliques, introduite et développée
par Gromov [23]. Ces groupes sont définis à partir d’une condition de finesse sur les tri-
angles géodésiques de leurs graphes de Cayley, condition qui à elle seule a de nombreuses
conséquences algébriques, dynamiques et algorithmiques. Cette classe de groupes est par
ailleurs extrêmement vaste. Citons en exemple les groupes à petite simplification (voir [23]),
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les groupes obtenus par Davis et Januszkiewicz par hyperbolisation de complexes simpli-
ciaux [15], les groupes 7-systoliques [32] et les réseaux uniformes dans les groupes de Lie
semisimples de rang 1 (voir [12]).

Un autre exemple illustrant cette approche est le cas des groupes cubulables au sens de
Wise [45], c’est à dire des groupes qui agissent de manière géométrique sur un complexe
cubique CAT(0). Dans un tel cas, une condition de nature géométrique (typiquement, une
action convenable sur un espace à murs) a des conséquences algébriques remarquables. Par
exemple, le groupe fondamental d’un complexe cubique spécial compact est linéaire sur les
entiers, résiduellement fini et séparable sur ses sous-groupes quasiconvexes [29].

Le présent travail se place dans la situation intermédiaire d’un groupe agissant de ma-
nière cocompacte, mais non nécessairement propre, sur un complexe de dimension quel-
conque à la géométrie contrôlée. Pour illustrer ce cas de figure, citons l’exemple du groupe
modulaire d’une surface agissant sur son complexe des courbes. Masur et Minsky ont montré
que ce complexe est hyperbolique [34], et Bowditch a montré l’acylindricité de l’action [7].
Pour autant, le groupe modulaire d’une surface n’est fortement hyperbolique relativement
à aucune famille de sous-groupes [1]. Dans un autre ordre d’idée, Sageev a montré dans [40]
comment l’existence d’un sous-groupe de codimension 1 peut entraîner l’existence d’une
action cocompacte sur un complexe cubique CAT(0).

Dans de telles configurations, un problème naturel est de déterminer quelles propriétés
du groupe proviennent des propriétés analogues pour ses stabilisateurs de faces. Plus pré-
cisément, le problème général suivant est le fil conducteur de toute cette thèse :

Problème de combinaison : Considérons un groupe G agissant cocompactement sur
un complexe simplicial simplement connexe, et tel que chaque stabilisateur de simplexe
vérifie une propriété P donnée. Existe-t-il des conditions sur la dynamique de l’action, sur
la géométrie de l’espace, et sur les propriétés algébriques des stabilisateurs et de leurs in-
clusions, qui assurent que le groupe G satisfait lui aussi la propriété P ?

Notre étude permet une approche géométrique de groupes qui n’agissent pas de manière
non triviale sur des arbres et ne jouissent pas d’une géométrie aussi riche que celle des
groupes à courbure négative ou nulle, prise ici au sens large : groupes hyperboliques, CAT(0),
ou encore systoliques. La théorie des actions de groupes sur des arbres simpliciaux trouve sa
généralisation naturelle dans la théorie des complexes de groupes développée par Gersten-
Stallings [43], Corson [13] et Haefliger [26]. Tout comme dans le cas de la théorie de Bass-
Serre, les intérêts sont doubles. On peut d’un côté chercher à étudier un groupe en le faisant
apparaître comme groupe fondamental d’un complexe de groupes dont on comprend les
stabilisateurs et la géométrie. De l’autre, la théorie des complexes de groupes fournit de
nouveaux exemples de groupes. Citons ici l’exemple des groupes de Coxeter hyperboliques de
dimension cohomologique virtuelle arbitraire obtenus par Januszkiewicz et Świa̧tkowski [32]
à partir de complexes systoliques de groupes finis.
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Résultats.

Cette thèse se place dans le cas d’un complexe de groupes à courbure négative ou nulle.
Étant donné un tel complexe, on cherche à obtenir des propriétés de son groupe fondamental
à partir des propriétés analogues pour ses groupes locaux. Les propriétés étudiées ici sont
de trois types :

• existence d’un modèle cocompact d’espace classifiant pour les actions propres,

• existence d’un bord au sens de Bestvina,

• hyperbolicité.

Constructions d’espaces classifiants.

On s’intéresse en premier lieu à l’existence d’un modèle cocompact d’espace classifiant pour
les actions propres d’un groupe G. Rappelons qu’un tel espace est un CW-complexe contrac-
tile muni d’une action propre et cocompacte de G, avec une condition sur les ensembles de
points fixes des sous-groupes de G (voir I.4.1 pour une définition précise). Etant donné un
complexe fini de groupes G(Y) de groupe fondamental G, on cherche à construire un modèle
cocompact d’espace classifiant pour G à partir de structures analogues pour ses groupes
locaux. Dans le cas de la théorie de Bass-Serre, Scott et Wall [41] associent à un graphe
fini de groupes une notion de graphes d’espaces qui leur permet de construire un espace
d’Einlenberg-Mc Lane pour G. Un tel espace est un CW-complexe dont le revêtement uni-
versel est précisément un modèle cocompact d’espace classifiant pour les actions libres de G.
Dans le cas plus général des complexes développables de groupes de dimension arbitraire,
nous définissons de manière analogue une notion de complexe d’espaces compatible avec un
complexe de groupes (voir II.2.1). Cela nous permet de construire un modèle cocompact
d’espace classifiant pour les actions propres de G comme complexe d’espaces classifiants au
dessus du revêtement universel de G(Y). Nous démontrons le théorème suivant :

Théorème 1 : Soit G(Y) un complexe développable de groupes au dessus d’un complexe
simplicial fini Y , de revêtement universel contractile. S’il existe un complexe d’espaces
classifiants compatible avec G(Y), alors le groupe fondamental de G(Y) admet un modèle
cocompact d’espace classifiant pour les actions propres.

Comme exemple d’une telle construction, nous présentons la construction d’espaces clas-
sifiants pour les groupes à petite simplification sur un graphe fini de groupes. Ces groupes,
qui généralisent la théorie ordinaire de la petite simplification, fournissent une classe inté-
ressante de groupes qui peuvent ne pas agir de manière non triviale sur un arbre (voir par
exemple les groupes hyperboliques étudiés par Delzant et Papasoglu [17]), mais agissent de
manière cocompacte sur un complexe CAT(0) de dimension 2. Dans le cas de la petite sim-
plification ordinaire, un espace classifiant pour les actions propres de G est obtenu comme
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revêtement universel du 2-complexe de Cayley obtenu à partir d’un bouquet de cercles en
recollant un orbi-disque pour chaque relation de la présentation de G. De manière analogue,
étant donné un graphe de groupes G(Γ) et un quotient G à petite simplification métrique
C ′′(1/6), nous réalisons G/� R� comme groupe fondamental d’un complexe de groupes
obtenu à partir du graphe de groupes G(Γ) en lui recollant une collection d’orbi-disques.
Nous prouvons ainsi le théorème suivant :

Théorème 2 : Soit G(Γ) un graphe de groupes au dessus d’un graphe fini Γ, tel qu’il existe
un graphe d’espaces classifiants compatible avec G(Γ). Soit G le groupe fondamental de ce
complexe de groupes et soit R un ensemble fini d’éléments de G qui agissent de manière
hyperbolique sur l’arbre de Bass-Serre de G(Γ). Si G n’admet pas d’élément non trivial
fixant une droite et si R satisfait la condition de petite simplification métrique C ′′(1/6),
alors G/� R� possède un modèle cocompact d’espace classifiant pour les actions propres.

Donnons ici quelques détails sur les idées qui mènent à la construction. Le sous-groupe
normal � R � agit sur l’arbre de Bass-Serre du graphe de groupes G(Y), et les éléments
de R agissent de manière hyperbolique, ce qui fournit une famille d’axes stable sous l’action
de G. Nous utilisons cette famille pour construire le coned-off space T̂ . L’espace quotient
T̂ /� R� se voit donc muni d’une action cocompacte de G/� R�. Ce 2-complexe est le
candidat naturel pour être un espace contractile avec une action cocompacte de G/� R�.
Toutefois, le fait que deux axes distincts puissent avoir plus d’une arête en commun rend
difficile la question de la contractibilité. Pour parer à cette difficulté, nous suivons une idée
de Gromov [25] et identifions certaines portions de ce 2-complexe ; on montre ensuite que
le 2-complexe obtenu est localement CAT(0) grâce au critère de Gromov sur les links de
sommets (voir I.2.10). Cependant, de manière à pouvoir construire un modèle cocompact
d’espace classifiant pour G/� R� via les complexes d’espaces, il nous faut une compré-
hension fine des stabilisateurs, ce qui s’avère être une tâche ardue. Pour éviter cet écueil,
nous changeons notre point de vue et construisons directement le complexe de groupes
escompté, en utilisant des outils issus de la théorie des orbi-espaces introduite par Haefli-
ger [26]. Nous prouvons que ce complexe de groupes est à courbure négative ou nulle, donc
développable, et admet le groupe quotient G/� R� comme groupe fondamental. Une fois
ce premier complexe de groupes défini, nous en construisons un second dont la combinatoire
plus simple nous permet de lui associer un complexe d’espaces compatible. En appliquant
les résultats précédents, on en déduit donc l’existence d’un modèle cocompact d’espace
classifiant pour les actions propres de G/� R�.

Constructions de bords de Bestvina.

Nous nous intéressons dans un deuxième temps à des compactifications des espaces clas-
sifiants construits ci-dessus. Dans [2], Bestvina définit une notion de bord de groupe qui
est intéressante du point de vue de la géométrie des groupes et de la topologie géomé-
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trique. Par exemple, l’homologie d’un tel bord détermine la cohomologie à coefficients dans
l’anneau du groupe. Farrell et Lafont [20] démontrent la conjecture de Novikov pour un
groupe admettant une version équivariante de la notion de bord de Bestvina, notion qu’ils
appellent EZ-structure. La conjecture de Novikov étant un outil essentiel pour classifier
des variétés ayant le même groupe fondamental à homéomorphisme près, la recherche de
tels bords devient un problème naturel.

L’existence d’EZ-structures, et sa généralisation aux groupes avec torsion, est connue
pour les groupes admettant un espace classifiant dont la géométrie est à courbure négative
ou nulle au sens large. Pour un groupe admettant une action géométrique sur un espace
CAT(0), une telle compactification est obtenue en rajoutant à l’espace CAT(0) son bord
visuel. Dans le cas d’un groupe hyperbolique sans torsion, un classifiant est donné par un
complexe de Rips adéquat (voir I.3.10), et une EZ-structure est obtenue en le compactifiant
à l’aide du bord de Gromov du groupe [4]. Ce résultat est étendu au cas d’un groupe hyper-
bolique avec torsion dans [35]. L’existence d’une telle structure est également connue pour
les groupes systoliques, introduits par Januszkiewicz et Swiatkowski [32] et indépendament
par Haglund [28], d’après les résultats de Osajda-Przytycki [37].

Dans le cas d’un complexe de groupes à courbure négative ou nulle, nous donnons des
conditions sous lesquelles il est possible d’amalgamer les différents bords en présence (bords
de stabilisateurs et bord visuel du revêtement universel) pour obtenir un bord de Bestvina
pour le groupe fondamental du complexe de groupes. Ces conditions sont de deux types :

• Dynamique de l’action : Nous nous restreignons au cas des actions acylindriques,
c’est à dire les actions pour lesquelles il existe une borne uniforme sur le diamètre
d’un sous-complexe stabilisé par un sous-groupe infini.

• Propriétés algébriques et dynamiques des inclusions de stabilisateurs : Le
cas typique qui sera étudié est le cas d’un sous-groupe quasiconvexe d’un groupe
hyperbolique.

Le théorème général de combinaison que nous démontrons est un peu trop technique
pour être énoncé ici (voir IV.0.4). Il possède néanmoins le cas particulier suivant :

Théorème 3 : Soit G(Y) un complexe de groupes simple à courbure négative ou nulle
au dessus d’un Mκ-complexe fini Y (κ ≤ 0), de groupe fondamental G et de revêtement
universel X. Supposons que :

• l’action de G sur X est acylindrique,

• les groupes locaux Gσ sont hyperboliques et les injections Gσ ↪→ Gσ′ sont des plon-
gements quasiconvexes.

Alors G admet une EZ-structure. De plus, on dispose d’une description explicite du bord
de Bestvina.
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La technique pour construire un tel bord suit une construction de Dahmani, utilisée
dans [14] pour des graphes de groupes relativement hyperboliques.

Un théorème de combinaison pour les groupes hyperboliques.

Finalement, nous nous intéressons à une conséquence géométrique d’une telle construction.
Partant d’un complexe de groupes à courbure négative ou nulle dont les groupes locaux
sont hyperboliques, nous donnons des conditions qui assure l’hyperbolicité de son groupe
fondamental. Plus précisément, nous prouvons le théorème suivant :

Théorème 4 : Sous les hypothèses du théorème 3, et si de plus X est hyperbolique, alors
G est hyperbolique. De plus, les groupes locaux Gσ se plongent comme sous-groupes qua-
siconvexes de G.

Dans le cas d’un graphe de groupes, un tel résultat est une conséquence du théorème
de combinaison de Bestvina-Feighn [3]. Un autre résultat de combinaison est connu dans le
cas de groupes locaux commensurables [36].

Pour démontrer ce résultat, nous suivons la stratégie de Dahmani et étudions la dyna-
mique de G sur le bord de Bestvina construit grâce aux résultats précédents. Nous démon-
trons que G est un groupe de convergence uniforme sur ce bord, ce qui implique le résultat
par un théorème de caractérisation topologique de l’hyperbolicité dû à Bowditch [5].

Perspectives

Le travail effectué dans cette thèse est une première étape pour étudier des groupes à travers
leurs actions cocompactes sur des espaces à courbure négative en un sens large : espaces
CAT(0), hyperboliques, systoliques. Partant de là, il y a trois directions naturelles :

• Généraliser les théorèmes exposés à des actions plus générales pour obtenir des infor-
mations sur une classe plus large de groupes ;

• Appliquer ces résultats pour obtenir des résultats concrets sur différentes classes de
groupes.

• Généraliser cette approche pour étudier des problèmes de combinaison pour d’autres
types de propriétés d’un groupe.

Nous détaillons ici quelques pistes pour chacune de ces directions possibles.

Généralisation des résultats précédents. Un exemple pour lequel on souhaiterait
appliquer un théorème de combinaison pour les bords de groupes est le cas du groupe
modulaire d’une surface, agissant sur le complexe des courbes ou des arcs. Si les propriétés
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asymptotiques de ce groupe ont fait l’objet de nombreuses études (voir par exemple [31]),
l’existence d’un bord de Bestvina pour ce groupe reste à ce jour inconnue.

Une première étape serait d’autoriser d’autres types de géométrie. Dans cette thèse,
nous nous sommes concentrés sur le cas de groupes agissant sur des espaces CAT(0), espaces
dont la richesse des géodésiques permettaient certaines constructions topologiques. Il serait
intéressant de généraliser cette approche pour des espaces à la géométrie plus combinatoire
(en particulier pour des complexes systoliques).

Une deuxième étape serait d’autoriser des actions plus générales. Nous nous sommes
restreints ici au cas d’actions acylindriques avec des inclusions de stabilisateurs modelées
sur le cas des sous-groupes quasi-convexes de groupes hyperboliques. Bien qu’il semble
hors de portée pour l’instant de généraliser cette approche en relâchant complètement ces
conditions, un premier cas qui semble riche d’enseignement serait le cas d’un produit amal-
gamé ou d’une extension HNN au dessus d’un sous-groupe quelconque (voir par exemple
les constructions de bords pour les groupes de Baumslag-Solitar par Bestvina [2]).

Actions cocompactes sur des complexes cubiques CAT(0). Comme énoncé plus
haut, on sait depuis les travaux de Sageev que l’existence d’un sous-groupe de codimension 1
d’un groupe G implique dans de nombreux cas l’existence d’une action cocompacte de G sur
un complexe cubique CAT(0). Jusqu’à maintenant de nombreux travaux ont été effectués
pour trouver suffisamment de tels sous-groupes afin d’obtenir une action qui soit également
propre. Il serait néanmoins intéressant d’étudier si l’existence d’un seul tel sous-groupe H
permet d’obtenir des informations sur G, via les théorèmes de combinaison obtenus dans
cette thèse. En particulier, on peut se demander s’il existe des conditions naturelles sur la
paire (G, H) pour que l’hyperbolicité de H implique l’hyperbolicité de G.

De nouvelles propriétés à “combiner”. Si dans cette thèse nous nous sommes
concentrés sur des propriétés de nature asymptotique (existence d’un espace classifiant
et d’un bord), il est naturel de vouloir adopter cette approche pour d’autre propriétés d’un
groupe. Citons-en ici quelques unes.

Les théorèmes de combinaison étudiés ici permettent d’étudier des groupes qui n’ad-
mettent aucune action non triviale sur des arbres simpliciaux. On peut naturellement se
demander s’il est possible d’utiliser ces résultats pour créer des groupes hyperboliques ayant
la propriété (T).

Une autre condition géométrique qui s’avère être riche de conséquences algébriques est
la cubulation d’un groupe. En particulier, les résultats annoncés récemment par Agol ont
des conséquences extrêmement fortes sur les groupes hyperboliques cubulables. Le cas des
complexes de groupes cubulables semble donc être un problème qui fait naturellement suite
au théorème des produits amalgamés de Haglund et Wise [30].

Enfin, dans une direction plus topologique, un problème intéressant serait d’obtenir
un théorème de combinaison pour les groupes de Whitehead. Tout comme la conjecture
de Novikov, le calcul de groupes de Whitehead est un outil important en topologie des
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variétés de grande dimension pour classifier des variétés à homéomorphisme près. Dans cette
direction, l’un des seuls résultats de combinaison est le calcul par Waldhausen du groupe
de Whitehead d’un produit amalgamé [44]. Il serait intéressant de comprendre comment la
géométrie du groupe (et plus particulièrement son action sur l’arbre de Bass-Serre associé)
apparaît en filigranes dans la preuve. On pourrait alors espérer généraliser ce calcul au cas
des complexes cubiques de groupes.
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Chapter I

An overview of geometric group
theory.

The aim of this first chapter is to gather the background material that will be used through-
out this thesis, as well as fixing notations.

I.1 CAT(0) geometry.

We present here basic definitions and results about CAT(0) spaces and CAT(0) simplicial
complexes. The standard reference for such spaces is [9].

I.1.1 CAT(0) metric spaces.

Definition I.1.1 (model space [9]). Given a real number κ, we define Mn
κ as the following

metric space:

• if κ = 0 then Mn
0 is the n-dimensional Euclidean space;

• if κ > 0 thenMn
κ is the n-dimensional sphere with its usual spherical metric multiplied

by a factor 1/
√
κ;

• if κ < 0 then Mn
κ is the n-dimensional real hyperbolic space with its usual hyperbolic

metric multiplied by a factor 1/
√
−κ.

Note that if n ≥ 2, then Mn
κ is the simply-connected Riemannian manifold of curvature

κ.

Definition I.1.2 (geodesic segment, geodesic ray, geodesic space). Let X be a geodesic
metric space and let γ : [0, T ] → X (resp. γ : [0,∞) → X ) be a continuous function. We
say that γ parametrises a geodesic segment (resp. a geodesic ray) of X if for every t, t′, we

1
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have d
(
γ(t), γ(t′)

)
= |t− t′|. The image of γ is called a geodesic segment (resp. a geodesic

ray) of X. Given a geodesic segment between two points x, y ∈ X, we denote it by [x, y].
We say that a metric space X is geodesic if every pair of points of X is joined by a

geodesic segment.
A geodesic triangle between points x, y, z of X is the reunion of a geodesic segment from

x to y, from y to z, and from z to x.

Definition I.1.3 (comparison triangle). Let X be a geodesic metric space, x, y, z points
of X and κ a real number. Let ∆ = ∆([x, y], [y, z], [z, x]) be a geodesic triangle. If κ > 0,
further assume that d(x, y) + d(y, z) + d(z, x) < 2π/

√
κ (the latter constant being the

diameter of M2
κ).

A comparison triangle in M2
κ is the unique (up to isometry) geodesic triangle ∆′ =

∆′([x′, y′], [y′, z′], [z′, x′]) ofM2
κ such that d(x′, y′) = d(x, y), d(y′, z′) = d(y, z) and d(z,′ x′) =

d(z, x).
Let u ∈ ∆ be a point of the geodesic segment [x, y]. The associated comparison point

in ∆′ is the unique point u′ of [x′, y′] such that d(x′, u′) = d(x, u). Comparison points for
points in ∆ are defined in the same way.

Definition I.1.4 (CAT(κ) space). Let (X, d) be a geodesic metric space and κ a real num-
ber. The space X is a CAT(κ) space if for all points x, y, z of X (subject to the additional
requirement that d(x, y) + d(y, z) + d(z, x) < 2π/

√
κ if κ > 0), for every geodesic triangle

∆ = ∆([x, y], [y, z], [z, x]), the associated comparison triangle ∆′ = ∆′([x′, y′], [y′, z′], [z′, x′])
of M2

κ is such that for every two points u, v of ∆ and their comparison points u′, v′ of ∆′,
we have d(u, v) ≤ d(u′, v′).

x y

z

x′ y′

z′

u

v

u′

v′

∆ ∆′

Figure I.1 - The CAT(0) condition.

The CAT(0) property has many useful consequences.

Proposition I.1.5 (II.1.1.4, II.2.2.2, II.4.4.5 of [9]). Let X be a CAT(0) space. Then:
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• The distance is convex, that is, for all γ : [0, T ]→ X and γ′ : [0, T ′]→ X parametris-
ing geodesic segments of X, the map t 7→ d

(
γ(t), γ′(t)

)
is convex.

• For every two points x, y of X, there is a unique geodesic segment joining x to y, and
this geodesic varies continuously with its endpoints.

• (Local geodesics are geodesics) A map γ : I → X parametrises a geodesic if and only
if each of its restrictions to a sub-interval of I does itself parametrise a geodesic of
X.

Theorem I.1.6 (II.2.2.8 of [9]). If X is a CAT(0) space and G a finite group acting by
isometries on X, then the fixed-point set of G is a non-empty convex subset of X. In
particular, there exists a point of X fixed by G.

I.1.2 The boundary at infinity of a complete CAT(0) space.

Let X be a complete CAT(0) space and x0 a basepoint.

Definition I.1.7 (Boundary at infinity of a CAT(0) space). Two geodesic rays c, c′ :
[0,∞) → X are called asymptotic if there exists a constant k such that d

(
c(t), c′(t)

)
≤ k

for every t. The boundary at infinity of X, denoted ∂∞X or simply ∂X when no confusion
is possible, is the set of equivalence classes of geodesic rays, two rays being equivalent if
they are asymptotic. The union X = X ∪ ∂X is called the bordification of X. Let x0 be a
basepoint of X. The boundary ∂X identifies with the set of geodesic rays issuing from x0.
For r > 0 and for a point x ∈ X which is not in the open r-ball centred at x0, we denote
by πr(x) the unique point of the geodesic from x0 to x which is at distance r from x0.

We now define a topology on the bordification of a CAT(0) space.

Definition I.1.8 (Topology of the bordification). We define a topology on the bordification
of X as follows. The space X is an open subset of X. For a point η ∈ ∂X, a basis of
neighbourhoods of η in X is given by the family of subsets

Vr,ε(η) = {x ∈ X : d
(
πr(x), πr(η)

)
< ε}, r, ε > 0.

By embedding X in an appropriate (metrisable) function space, one has the following:

Proposition I.1.9 (Metrisability of the bordification, II.8.8.13 of [9] ). Endowed with that
topology, the bordification X is a metrisable space. If in addition X is locally compact, then
X is compact.
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I.2 Simplicial complexes and their CAT(0) geometry.

I.2.1 The geometry of Mκ-simplical complexes.

Definition I.2.1 (star, link of a simplicial complex). Let X be a simplicial complex and
v a vertex of X. The star of v, denoted St(v,X) or simply St(v) when no confusion is
possible, is the subcomplex of X which is the union of the simplices that contain v. The
open star of v, denoted st(v,X) or st(v) when no confusion is possible, is the union of the
open simplices whose closure contains v. The link of v, denoted lk(v,X), is the subcomplex
St(v) \ st(v). Equivalently, it is the subcomplex of X which is the union of the simplices of
St(v) that do not contain v.

Definition I.2.2 (Simplicial neighbourhood). Let X be a simplicial complex and K be
a subcomplex of X. The union of the closed simplices that meet K is called the closed
simplicial neighbourhood of K, and denoted N(K). The union of the open simplices whose
closure meets K is called the open simplicial neighbourhood of K, and denoted N(K).

Since the present thesis focuses on nonproper group actions, the simplicial complexes
considered herein will not be locally finite in general. Endowing such spaces with a satisfying
topology turns out to be a non trivial problem. In [8], Bridson introduced a class of spaces
that is suitable for a geometric approach.

Definition I.2.3 (Mκ-simplicial complexes, [8]). Let κ be a real number. A simplicial
complex X is called a Mκ-simplicial complex if it satisfies the following two conditions:

• Each simplex of X is modeled after a geodesic simplex in some Mn
κ , that is, each

simplex σ comes with a bijection fσ from σ to a simplex ofMn
κ of the same dimension.

• If σ and σ′ are two simplices of X sharing a common face τ , the composition fσ′ ◦f−1
σ

is an isometry from fσ(τ) to fσ′(τ).

Simplicial Mκ-complexes with κ = 0 (resp. κ = 1, resp κ = −1) are called piecewise
Euclidean (resp. piecewise spherical, resp. piecewise hyperbolic) complexes.

Given aMκ-simplicial complex, it is always possible to consider the associated simplicial
pseudometric, as described below.

Definition I.2.4 (simplicial pseudometric [9]). Let X be aMκ-simplicial complex, x, y two
points of X. An m-string from x to y is a sequence Σ = (x0, . . . , xm) of points of X such
that x0 = x, xm = y, and for each i = 0, . . . ,m− 1, there exists a simplex σi containing xi
and xi+1. We define the length of Σ as

l(Σ) =
∑

0≤i≤m−1

dσi(xi, xi+1),
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where dσi is the distance on σi induced by the Mκ-structure of X. The pseudometric on X
is defined by

d(x, y) = inf{l(Σ) | Σ a string from x to y}.

A fundamental result of Bridson’s thesis is the following:

Theorem I.2.5 (Bridson [8]). If X is a Mκ-simplicial complex with finitely many isometry
types of simplices, then the simplicial pseudometric is a complete and geodesic metric.

Remark: Choosing differentMκ-structures, κ not fixed, yields bi-Lipschitz equivalent met-
rics [9, p. 128].

To some extent, the geometry ofMκ-simplicial complexes, κ ≤ 0, parallels the geometry
of locally finite complexes. Here is an extremely useful illustration of such a similarity:

Proposition I.2.6 (containment lemma, Bridson [8]). Let X be a Mκ-simplicial complex,
κ ≤ 0, with finitely many isometry types of simplices. For every n there exists a constant k
such that for every finite subcomplex K ⊂ X containing at most n simplices, any geodesic
path contained in the simplicial neighbourhood of K meets at most k simplices.

Corollary I.2.7 (Bridson [8]). Let X be aMκ-simplicial complex, κ ≤ 0, with finitely many
isometry types of simplices. For every n there exists a constant k such that every geodesic
segment of X of length at most n meets at most k simplices.

Throughout this thesis, every simplicial complex will implicitely be given a structure of
Mκ-complex, κ ≤ 0, unless stated otherwise.

I.2.2 Simplicial complexes with a CAT(0) simplicial metric.

The CAT(0) condition is a global condition on the geometry of a metric space, making it
particularly hard to check. In the case of a simply-connected simplicial complex endowed
with its simplicial metric, the CAT(0) condition boils down to a local condition.

Definition I.2.8 (piecewise spherical metric on the link). Let X be a Mκ-simplicial com-
plex with finitely isometry types of simplices, and v a vertex of X. Let τ be a simplex of
lk(v,X) and x, y two points of τ . Recall that this implies that there exists a simplex σ of
X containing v and τ and such that τ does not contain v. We define the angular distance
between x and y, denoted ∠(x, y), as the angle at v (measured in σ) between the geodesic
segments [v, x] and [v, y]. This endows each simplex of lk(v,X) with a piecewise spherical
metric, and endows lk(v,X) with a structure of piecewise spherical complex with finitely
isometry types of simplices.

The angular metric on lk(v,X) is the associated simplicial metric.
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Theorem I.2.9 (Gromov’s criterion [23]). Let X be a simply-connected Mκ-complex with
finitely isometry types of simplices. Then X is CAT(κ) if and only if the link of every vertex
of X is CAT(1) for the angular metric.

Checking this local condition turns out to be difficult in full generality. We present here
a particular case, which will be used in this thesis, for which this condition is much simpler
to check.

Corollary I.2.10 (Gromov’s criterion [23]). A 2-dimensional simply-connectedMκ-complex
with finitely many isometry types of simplices is CAT(κ) if and only if an essential loop in
the link of any vertex has length at least 2π for the associated angular metric.

Another case for which this local condition boils down to a much more combinatorial
condition is the case of a finite-dimensional CAT(0) cube complex. Although this criterion
will not be explicitly used in this thesis, it makes the class of CAT(0) cube complexes
particularly suitable to create non-positively curved complexes of groups. We first recall a
standard definition:

Definition I.2.11 (flag complex). A simplicial complex is flag if every set of vertices
pairwise connected by an edge spans a simplex.

Theorem I.2.12 (Gromov’s criterion, [23]). Let X be a simply-connected finite-dimensional
cube complex. Then X is CAT(0) if and only if the link of each of its vertices is a flag
complex.

I.3 Hyperbolic groups.

This section presents elementary material about hyperbolic groups. This class of groups,
introduced by Gromov [23], has an extremely rich geometry and has been extensively studied
during the past twenty years. For a much more in-depth discussion of these groups, we refer
to [12].

I.3.1 Hyperbolic metric spaces and hyperbolic groups.

Let (X, d) be a metric space.

Definition I.3.1 (Gromov product). We define the Gromov product of x and y at z as
follows:

〈x, y〉z =
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
.

Definition I.3.2 (δ-hyperbolic space). Let p be a basepoint of X and δ > 0. We say that
(X, p) is δ-hyperbolic if for every x, y ∈ X:

〈x, y〉p ≥ min
z∈X

(
〈x, z〉p, 〈y, z〉p

)
− δ.



I.3. Hyperbolic groups. 7

Changing the basepoint only changes the hyperbolicity constant. We thus have the
following definition:

Definition I.3.3 (hyperbolic space). We say that a metric space X is hyperbolic if there
exists a point p and a constant δ > 0 such that (X, p) is δ-hyperbolic.

In the case of geodesic metric spaces, there is a very visual alternative definition of
hyperbolicity.

Proposition I.3.4 (thin triangles). Let X be a geodesic metric space. Then X is hyperbolic
if and only if there exists δ > 0 such that X has δ-thin geodesic triangles, that is, for every
x, y, z ∈ X and geodesic segments [x, y], [x, z], [y, z], we have

[x, y] ⊂ Nδ

(
[x, z]

)
∪Nδ

(
[z, y]

)
,

where Nδ(.) represents closed δ-neighbourhoods.

x y

z

Figure I.2 - Thin triangles.

Hyperbolicity is a property preserved under a fundamental kind of application that we
now describe:

Definition I.3.5 (quasi-isometric embedding, quasi-isometry). Let (X, d), (X ′, d′) be two
metric spaces, and f : X → X ′ a map. We say that f is a quasi-isometric embedding if
there exists constant λ ≥ 1 and ε ≥ 0 such that for all x, y ∈ X,

1

λ
d(x, y)− ε ≤ d′(f(x), f(y)) ≤ λd(x, y) + ε.

If in addition there exists a constant C ≥ 0 such that every point of X ′ is in the C-
neighbourhood of the image of X, we say that f is a quasi-isometry. When there exists a
quasi-isometry between two metric spaces, we say that they are quasi-isometric.
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Proposition I.3.6 (III.2.2 of [12]). Let X,X ′ be two quasi-isometric metric spaces. Then
X is hyperbolic if and only if X ′ is.

Definition I.3.7 (word metric). Let G be a finitely generated group and S a finite
generating set. For elements g, g′ ∈ G, we set dS(g, g′) = 0 if g = g′, and we oth-
erwise define dS(g, g′) as the smallest positive integer n such that there exists elements
g1, . . . , gn ∈ S ∪ S−1 such that g−1g′ = g1 . . . gn. The function dS defines a metric on G
called the word metric associated to the generating set S.

One goal of geometric group theory is to understand a finitely generated group through
the associated metric space obtained by choosing a word metric. If S and S′ are two finite
generating sets, then (G, dS) and (G, dS′) are quasi-isometric, which makes the notion of a
quasi-isometry of fundamental importance. This motivates the following definition:

Definition I.3.8. Let G be a finitely generated group. We say that G is hyperbolic if for
one (hence every) word metric dS , the metric space (G, dS) is hyperbolic.

I.3.2 The Rips complex of a hyperbolic group.

Given a finitely generated group G with a finite generating set S, one wants to understand
G by making it act on a metric space with an interesting topology or geometry. A standard
space on which G acts by isometries is its Cayley graph with respect to a given generating
set. We present here a fundamental construction that yields a contractible space on which
G acts.

Definition I.3.9 (Rips complex). Let G be finitely generated group and dS a word metric
associated to a finite generating set S. For an integer d ≥ 0, we define a simplicial complex
Pd(G) in the following way. Vertices of Pd(G) correspond to elements of G. Elements
g0, . . . , gk ∈ G span a k-simplex if dS(gi, gj) ≤ d for every 0 ≤ i, j ≤ k.

We have the following fundamental theorem:

Theorem I.3.10 (Gromov-Rips, see V.2.2 of [12]). Let G be a hyperbolic group with gen-
erating set S. For d large enough, the Rips complex Pd(G,S) is contractible. Furthermore,
G acts on the first barycentric subdivision of Pd(G,S) by simplicial isomorphism without
inversion, cocompactly and properly.

This theorem has many implications. Let us present a few of them.

Corollary I.3.11 (V.2.3, V.2.4 of [12]). Let G be a hyperbolic group. Then:

• G is finitely presented,

• the cohomology groups Hk(G,Q) vanish for k large enough.
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I.3.3 The Gromov boundary of a hyperbolic group.

Let G be a hyperbolic group.

Definition I.3.12 (Gromov boundary of a hyperbolic space). Let p be a basepoint of X.
We say that a sequence (xn) of points ofX goes to infinity if 〈xn, xm〉p →

n,m
∞. Two sequences

(xn), (x′n) going to infinity are called equivalent, denoted (xn) ' (x′n), if 〈xn, x′n〉p → ∞.
We define the Gromov boundary of X, denoted ∂GromovX or simply ∂X when no confusion
is possible, as the set of equivalence classes of sequences of X going to infinity. For such an
equivalence class η, we say that a sequence (xn) converges to η if it is in the equivalence
class η. The union X = X ∪ ∂X is called the bordification of X.

Definition I.3.13. The Gromov product extends to X by the formula

〈η, η′〉p = sup lim inf
n,m→∞

〈xn, x′m〉p

where the supremum is taken over all the sequences (xn), (x′n) of X such that (xn) converges
to η and (x′n) converges to η′.

Definition I.3.14 (Topology of the bordification). We define a topology on X ∪ ∂X as
follows. For this topology, X is an open subset of X ∪ ∂X. Moreover, for a point η of ∂X,
a basis of neighbourhoods at η is given by the family of subsets

Wk(η) = {ξ ∈ X : 〈ξ, η〉p ≥ k}, k ≥ 1.

Note that we did not indicate the dependance on the basepoint p. This is justified by
the following observation:

Proposition I.3.15. Let X,X ′ two hyperbolic metric spaces and f : X → X ′ a quasi-
isometry. Then f extends to a homeomorphism from ∂X to ∂X ′.

For a complete geodesic metric space X which is both hyperbolic and CAT(0), we have
a priori two notions of a bordification, namely the ones obtained by adding the visual
boundary or the Gromov boundary. In this case, the two notions coincide, as explained
below. This is proven for proper spaces in [9, Prop. III.H.3.7], but the proof generalises to
the following:

Proposition I.3.16. Let X be a complete geodesic metric space which is both hyperbolic
and CAT(0). The identity of X extends to a homeomorphism from X ∪ ∂∞X to X ∪
∂GromovX.

Definition I.3.17 (Gromov boundary of a hyperbolic group). Let G be a hyperbolic group.
The Gromov boundary of G is the Gromov boundary of the hyperbolic space G for any of
its word metrics.

Note that the action of G on itself on the left extends to an action on ∂G.

Proposition I.3.18. The Gromov boundary of a hyperbolic group is a compact metrisable
space. The group G acts on its Gromov boundary by homeomorphisms.
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I.3.4 Convergence groups and hyperbolicity.

Here we explain how the dynamics of a hyperbolic group on its Gromov boundary yields a
topological characterisation of hyperbolicity.

Definition I.3.19 (convergence group). A group G acting on a compact metrisable space
M with more than two points is called a convergence group if, for every sequence (gn) of
elements of G, there exists two points ξ+ and ξ− inM and a subsequence (gϕ(n)), such that
for any compact subspace K ⊂ M \ {ξ−}, the sequence (gϕ(n)K) of translates uniformly
converges to ξ+.

Since the inclusion of G in one its Rips complex is a quasi-isometry, ∂G is also the
Gromov boundary of any of its Rips complexes.

Proposition I.3.20 (Freden [21]). Let G be a hyperbolic group. Then G is a convergence
group on G∪ ∂G. More generally, let Pd(G,S) be some Rips complex of G. Then G is also
a convergence group on Pd(G,S) ∪ ∂G.

Definition I.3.21 (conical limit point). Let G be a convergence group on a compact
metrisable spaceM . A point ζ inM is called a conical limit point if there exists a sequence
(gn) of elements of G and two points ξ− 6= ξ+ in M , such that gnζ → ξ− and gnζ ′ → ξ+ for
every ζ ′ 6= ζ in M . The group G is called a uniform convergence group on M if M consists
only of conical limit points.

Theorem I.3.22 (Bowditch [5]). Let G be a uniform convergence group on a compact
metrisable spaceM with more than two points. Then G is hyperbolic andM is G-equivariantly
homeomorphic to the Gromov boundary of G.

I.3.5 Quasiconvex subgroups of hyperbolic groups.

While arbitrary subgroups of a finitely generated group can be extremely wild, hyperbolic
groups possess an important class of subgroups with a very controlled geometry.

Definition I.3.23 (quasiconvexity). Let X be a geodesic metric space. A subset Y ⊂ X
is called quasiconvex if there exists α ≥ 0 such that every geodesic between two points of
Y lies in the α-neighbourhood of Y .

Definition I.3.24 (quasiconvex subgroup with respect to a finite generating set). Let G
be a finitely generated group and S a finite generating set. A subgroup H < G is said
to be quasiconvex with respect to S if H is a quasiconvex subset of the Cayley graph of G
associated to S.

In the case of a hyperbolic group, the notion of a quasiconvex subgroup does not depend
on the choice of a finite generating set (see [12, Prop. 10.4.1]). In such a case, we simply
speak of a quasiconvex subgroup. Here are a few properties of quasiconvex subgroups of a
hyperbolic group (we refer to [12]).
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Proposition I.3.25. Let G be a hyperbolic group and H a quasiconvex subgroup. Then H
is hyperbolic and the inclusion H ↪→ G is a quasi-isometric embedding.

Proposition I.3.26. Let G be a hyperbolic group and H a quasiconvex subgroup. Then the
inclusion H ↪→ G extends to an embedding H ∪ ∂H ↪→ G ∪ ∂G. More generally, let S be a
finite generating set of G and S′ a finite generating set of H which is contained in S. Then
the equivariant embedding of Rips complexes Pd(H,S′) ↪→ Pd(G,S) naturally extends to an
equivariant embedding Pd(H,S′) ∪ ∂H ↪→ Pd(G,S) ∪ ∂G.

Definition I.3.27 (limit set). Let G be a hyperbolic group and H a subgroup. The limit
set of H is the set ΛH = H ∩ ∂G, where H denotes the closure of the set H, seen as a
subspace of G ∪ ∂G.

Theorem I.3.28 (Bowditch [6]). Let G be a hyperbolic group and H a hyperbolic subgroup of
G. Then H is quasiconvex if and only if the limit set ΛH is H-equivariantly homeomorphic
to the Gromov boundary of H.

Lemma I.3.29. Let G be a hyperbolic group, and H1, H2 two subgroups of G.

• Suppose that H1 ≤ H2. If H1 is quasiconvex in H2, and H2 is quasiconvex in G,
then H1 is quasiconvex in G. If both H1 and H2 are quasiconvex in G, then H1 is
quasiconvex in H2.

• (Gromov [24, p.164]) Suppose that H1, H2 are quasiconvex subgroups of G. Then
H1 ∩H2 is quasiconvex in G, and Λ(H1 ∩H2) = ΛH1 ∩ ΛH2.

I.4 Classifying spaces and boundaries of groups.

Geometric group theory tries to understand a group through its actions on topological
spaces. We present here a fundamental example of such a space.

Definition I.4.1 ((cocompact model of a) classifying space for proper actions). Let G be
a finitely generated group. A cocompact model of a classifying space for proper actions of
G (or briefly a classifying space for G) is a contractible CW-complex EG with a properly
discontinuous cocompact and cellular action of G, such that for every finite subgroup H of
G, the fixed point set EGH is nonempty and contractible.

Compactifications of such spaces are one of the main topics of this thesis. The original
notion of Z-structure is due to Bestvina [2]. A generalisation for groups with torsion was
introduced by Dranishnikov [19]. Farrell and Lafont [20] studied an equivariant analogue,
which they call an EZ-structure.

Definition I.4.2 (Z-structures, EZ-structures). Let G be a discrete group. A Z-structure
for G is a pair (Y,Z) of spaces such that:
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• Y is a Euclidean retract, that is, a compact, contractible and locally contractible
space with finite covering dimension,

• Y \ Z is a classifying space for proper actions of G,

• Z is a Z-set in Y , that is, Z is a closed subspace of Y such that for every open set U
of Y , the inclusion U \ Z ↪→ U is a homotopy equivalence,

• Compact sets fade at infinity, that is, for every compact set K of Y \ Z, every point
z ∈ Z and every neighbourhood U of z in Y , there exists a subneighbourhood V ⊂ U
with the property that if a G-translate of K intersects V , then it is contained in U .

The pair (Y, Z) is called an EZ-structure if in addition we have:

• The action of G on Y \ Z continuously extends to Y .

The importance of such structures stems from the following theorem:

Theorem I.4.3 ( [20] ). If G admits an EZ-structure, then G satisfies the Novikov con-
jecture.

We now present a slightly stronger notion of boundary, which also has stronger impli-
cations for the Novikov conjecture.

Definition I.4.4. Let G be a group endowed with an EZ-structure (EG, ∂G). We say
that (EG, ∂G) is an EZ-structure in the sense of Carlsson-Pedersen if in addition we have:
For every finite group H of G, the fixed point set EGH is nonempty and admits EGH as
a dense subset.

The importance of such finer structures comes from the following implication.

Theorem I.4.5 ([11], [39]). If G admits an EZ-structure in the sense of Carlsson-Pedersen,
then G satisfies the generalised integral Novikov conjecture.

In the case of a hyperbolic group, there is a very explicit example of a classifying space
for proper actions, namely the Rips complex (see [35]). Moreover, there is a natural notion
of boundary, namely the Gromov boundary.

Theorem I.4.6 ( [4], [35] ). Let G be a hyperbolic group and S a finite generating set
of G. For d large enough, the Rips complex Pd(G,S) is contractible and the topology on
Pd(G,S)∪∂G makes (Pd(G,S)∪∂G, ∂G) an EZ-structure in the sense of Carlsson-Pedersen
for G.
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I.5 Complexes of groups.

I.5.1 First definitions.

Graphs of groups are algebraic objects that were introduced by Serre [42] to encode group
actions on trees. To every cocompact action without inversion of a group G on a simplicial
tree, Bass-Serre theory associates a graph of groups structure on the quotient graph, called
an induced graph of groups. Reciprocally, to every graph of groups one can associate an
action of its fundamental group on a simplicial tree, the Bass-Serre tree of the graph of
groups, with quotient the given simplicial graph. Moreover, the fundamental group of a
graph of groups induced by the action of a group G on a simplicial tree T is isomorphic to
G, and its universal cover is G-equivariantly isometric to T .

Thus, graphs of groups can be seen as encoding cocompact actions of groups on trees. If
one wants to generalise that theory to higher dimensional complexes, one needs the theory of
complexes of groups developed by Haefliger [26]. Haefliger defined a notion of complexes of
groups over more general objects called small categories without loops (abbreviated scwol),
a combinatorial generalisation of polyhedral complexes. Although in this thesis we will only
deal with actions on simplicial complexes, we use the terminology of scwols to be coherent
with the existing literature on complexes of groups. For a deeper treatment of the material
covered in this paragraph and for the general theory of complexes of groups over scwols, we
refer the reader to [9].

Definition I.5.1 (small category without loop). A small category without loop (briefly a
scwol) is a set X which is the disjoint union of a set V (X ) called the vertex set of X , and
a set E(X ) called the edge set of X , together with maps

i : E(X )→ V (X ) and t : E(X )→ V (X ).

For an edge a ∈ E(X ), i(a) is called the initial vertex of a and t(a) the terminal vertex of
a.

Let E(2)(X ) be the set of pairs (a, b) ∈ E(X ) such that i(a) = t(b). A third map

E(2)(X )→ E(X )

is given that associates to such a pair (a, b) an edge ab called their composition (and a and
b are said to be composable). These maps are required to satisfy the following conditions:

• For every (a, b) ∈ E(2)(X ), we have i(ab) = i(b) and t(ab) = t(a);

• For every a, b, c ∈ E(X ) such that t(a) = i(b) and t(b) = i(c), we have (ab)c = a(bc)
(and the composition is simply denoted abc).

• For every a ∈ E(X ), we have t(a) 6= i(a).
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Definition I.5.2 (simplicial scwol associated to a simplicial complex). If X is a simplicial
complex, a scwol X is naturally associated to X in the following way:

• V (X ) is the set S(X) of simplices of X,

• E(X ) is the set of pairs (σ, σ′) ∈ V (X )2 such that σ ⊂ σ′.

• For a pair a = (σ, σ′) ∈ E(X ), we set i(a) = σ′ and t(a) = σ.

• For composable edges a = (σ, σ′) and b = (σ′, σ′′), we set ab = (σ, σ′′).

We call Y the simplicial scwol associated to Y .

In what follows, we will often omit the distinction between a simplex σ of Y and the
associated vertex of Y.

Definition I.5.3 (Complex of groups [9]). Let Y be a scwol. A complex of groups G(Y) =
(Gσ, ψa, ga,b) over Y is given by the following data:

• for each vertex σ of Y, a group Gσ called the local group at σ,

• for each edge a of Y, an injective homomorphism ψa : Gi(a) → Gt(a),

• for each pair of composable edges (a, b) of Y, a twisting element ga,b ∈ Gt(a),

with the following compatibility conditions:

• for every pair (a, b) of composable edges of Y, we have

Ad(ga,b)ψab = ψaψb,

where Ad(ga,b) : g 7→ ga,b · g · g−1
a,b is the conjugation by ga,b in Gt(a);

• if (a, b) and (b, c) are pairs of composable edges of Y, then the following cocycle
condition holds:

ψa(gb,c)ga,bc = ga,bgab,c.

A complex of groups is called simple if all the twisting elements are trivial. If Y is a
simplicial complex, a complex of groups over Y is a complex of groups over the associated
simplicial scwol.

Definition I.5.4 (Morphism of complex of groups). Let Y, Y ′ be simplicial complexes, Y
(resp. Y ′) the associated simplicial scwols, f : Y → Y ′ a non-degenerate simplicial map
(that is, the restriction of f to any simplex is a homeomorphism on its image) , and G(Y)
(resp. G(Y ′)) a complex of groups over Y (resp. Y ′). A morphism F = (Fσ, F (a)) :
G(Y)→ G(Y ′) over f consists of the following:
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• for each vertex σ of Y, a homomorphism Fσ : Gσ → Gf(σ),

• for each edge a of Y, an element F (a) ∈ Gt(f(a)) such that

1. for every pair (a, b) of composable edges of Y, we have

Ad(F (a))ψf(a)Fi(a) = Ft(a)ψa,

2. if (a, b) and (b, c) are pairs of composable edges of Y, we have

Ft(a)(ga,b)F (ab) = F (a)ψf(a)(F (b))gf(a),f(b).

If all the Fσ are isomorphisms, F is called a local isomorphism. If in addition f is a simplicial
isomorphism, F is called an isomorphism.

Definition I.5.5 (morphism from a complex of groups to a group). Let G(Y) be a complex
of groups over a scwol Y and G a group. A morphism F = (Fσ, F (a)) from G(Y) to G
consists of a homomorphism Fσ : Gσ → G for every σ ∈ V (Y) and an element F (a) ∈ G
for each a ∈ E(Y) such that

• for every a ∈ E(Y), we have Ft(a)ψa = Ad(F (a))Fi(a),

• for every pair (a, b) of composable edges of Y, we have Ft(a)(ga,b)F (ab) = F (a)F (b).

I.5.2 Developability.

Definition I.5.6 (Complex of groups associated to an action without inversion of a group
on a simplicial complex [9]). Let G be a group acting without inversion by simplicial iso-
morphisms on a simplicial complex X, let Y be the quotient space and p : X → Y the
natural projection. Up to a barycentric subdivision, we can assume that p restricts to a
embedding on every simplex, yielding a simplicial structure on Y . Let Y be the simplicial
scwol associated to Y .

For each vertex σ of Y, choose a simplex σ̃ of X such that p(σ̃) = σ. As G acts without
inversion on X, the restriction of p to any simplex of X is a homeomorphism on its image.
Thus, to every simplex σ′ of Y contained in σ, there is a unique τ of X and contained in
σ̃, such that p(τ) = σ′ To the edge a = (σ, σ′) of Y we then choose an element ha ∈ G such
that ha.τ = σ̃′. A complex of groups G(Y) = (Gσ, ψa, ga,b) over Y associated to the action
of G on X is given by the following:

• for each vertex σ of Y, let Gσ be the stabiliser of σ̃,

• for every edge a of Y, the homomorphism ψa : Gi(a) → Gt(a) is defined by

ψa(g) = hagh
−1
a ,
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• for every pair (a, b) of composable edges of Y, define

ga,b = hahbh
−1
ab .

Moreover, there is an associated morphism F = (Fσ, F (a)) from G(Y) to G, where Fσ :
Gσ → G is the natural inclusion and F (a) = ha.

Definition I.5.7 (Developable complex of groups). A complex of groups over a simplicial
complex Y is developable if it is isomorphic to the complex of groups associated to an action
without inversion on a simplicial complex.

Unlike in Bass-Serre theory, not every complex of groups is developable. Checking
whether or not a complex of groups is developable is a non trivial problem in general. We
will see an algebraic condition that ensures developability in the form of I.5.12, as well as
a geometric condition in the form of I.5.18.

I.5.3 The fundamental group of a complex of groups.

We present here two ways to define the fundamental group of a complex of groups. The
first one is a generalisation of the notion of an orbifold fundamental group.

Definition I.5.8 (G(Y)-loops). AG(Y)-loop based at σ0 is a sequence c = (g0, e1, . . . , en, gn)
where (e1, . . . , en) is an edge-path in Y based at σ0, and such that g0 ∈ Gσ0 and gi ∈ Gt(ei)
for i = 1, . . . , n.

If c′ = (g′0, e
′
1, . . . , e

′
m, g

′
m) is another G(Y)-loop, we define the concatenation of c and

c′ as c ∗ c′ = (g0, e1, . . . , en, gng
′
0, e
′
1, . . . , e

′
m, g

′
m).

Definition I.5.9 (homotopy of G(Y)-loops). Let E+(Y) = E(Y), E−(Y) be obtained from
E+(Y) by reversing the orientations of the edges of the barycentric subdivision of Y , and
set E±(Y) = E+(Y)

∐
E−(Y). We define the group FG(Y) by the following presentation.

It is generated by ∐
σ∈V (Y)

Gσ
∐

E±(Y)

subject to the following relations:

• the relations in the groups Gσ,

• (a+)−1 = a− and (a−)−1 = a+,

• b+a+ga,b = (ab)+ for a pair of composable edges,

• ψa(g) = a−ga+ for an element g ∈ Gi(a).

We say that two loops are homotopic if they have the same image in FG(Y).
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Definition I.5.10 (fundamental group of a complex of groups). The fundamental group of
the complex of groups G(Y) at σ0, denoted π1(G(Y), σ0), is the group of homotopy classes
of G(Y)-loops with the group law induced by the concatenation of G(Y)-loops.

There is an alternative way to define the fundamental group of a complex of groups.
This version generalises the analogous notion introduced by Serre for graphs of groups [42]
and provides an explicit presentation for the group. This is summarised in the following
proposition:

Proposition I.5.11 (presentation of the fundamental group of a complex of groups, Propo-
sition 3.2 of [26]). Let G(Y) be a complex of groups over a simplicial complex Y , and let Y
be the associated simplicial scwol. Consider a vertex σ0 of Y and a maximal tree T in the
1-skeleton of the first barycentric subdivision of Y . We identify T with the corresponding
set of edges of E(Y).

The fundamental group π1

(
G(Y), σ0

)
of G(Y) at σ0 is isomorphic to the abstract group

π1

(
G(Y), T

)
generated by the set

∐
σ∈V (Y)

Gσ
∐

E±(Y)

and subject to the following relations:

• the relations in the groups Gσ,

• (a+)−1 = a− and (a−)−1 = a+,

• b+a+ga,b = (ab)+ for a pair of composable edges,

• ψa(g) = a−ga+ for an element g ∈ Gi(a),

• a+ = 1 for every edge a of T .

The following proposition provides an algebraic criterion to prove the developability of
a complex of groups.

Proposition I.5.12 (Proposition III.C(Y).3.9 of [9]). Let Y be a simplicial complex, Y its
associated simplicial scwol and let G(Y) = (Gσ, ψa, ga,b) be a complex of groups over Y . Let
T be a maximal tree in the 1-skeleton of the first barycentric subdivision of Y .

Then G(Y) is developable if and only if each of the natural homomorphisms Gσ →
π1(G(Y), T ) is injective.



18 Chapter I. An overview of geometric group theory.

I.5.4 The universal covering space of a complex of groups.

Given a developable complex of groups, that is, a complex of groups isomorphic to the one
induced by the action of a group G on a simply-connected simplicial complex space X, we
present a procedure to recover the simplicial complex acted upon.

Definition I.5.13 (The basic construction). Let G(Y) = (Gσ, ψa, ga,b) be a developable
complex of groups over a simplicial complex Y , G a group, and F = (Fσ, F (a)) a morphism
from G(Y) to G.

We define a scwol D(Y, F ) in the following way:

• the vertex set is
V (D(Y, F )) =

(
G×

∐
σ∈V (Y)

{σ}
)
/ '

where
(gF (g′), {σ}) ' (g, {σ}) if g′ ∈ Gσ, g ∈ G.

• the edge set is
E(D(Y, F )) =

(
G×

∐
a∈E(Y)

{a}
)
/ '

where
(gF (g′), {a}) ' (g, {a}) if g′ ∈ Ga, g ∈ G.

• the maps i, t : E(D(Y, F ))→ V (D(Y, F )) are given by

i
(
[g, a]

)
=
(
[g, i(a)]

)
,

t
(
[g, a]

)
=
(
[gF (a)−1, t(a)]

)
,

• the composition of edges of D(Y, F ) is given by

[g, a][h, b] = [h, ab],

where (a, b) is a pair of composable edges of Y and g, h ∈ G are such that g = hF (b)−1

modulo F (Gi(a)).

The vertex set V (D(Y, F )) naturally inherits a partially ordered set (briefly a poset) struc-
ture as follows: given two vertices σ, σ′ of D(Y, F ), we set

σ � σ′

if there exist edges a1, . . . , an of D(Y, F ) such that (a1, a2), . . . , (an−1, an) are pairs of
composable edges, i(a1) = σ and t(an) = σ′.

Finally, we define a simplicial complex X(Y, F ) in the following way:



I.5. Complexes of groups. 19

• vertices of X(Y, F ) are elements of V (D(Y, F )) that are minimal for the partial order
�,

• vertices σ0, . . . , σk of X(Y, F ) span a k-simplex if there exists a vertex τ of D(Y, F )
such that σ0 � τ, . . . , σk � τ .

There is a natural action of G on V (D(Y, F )) given by

g.[h, σ] = [gh, σ].

This action preserves the partial order �, yielding an action of G on X(Y, F ).
If Y is endowed with a Mκ-complex structure, κ ≤ 0, there is a natural Mκ-complex

structure on X(Y, F ).

Note that X(Y, F ) is naturally simplicially isomorphic to the quotient space(
G×

∐
σ∈V (Y)

σ
)
/ '

where
(gF (g′), x) ' (g, x) if x ∈ σ, g′ ∈ Gσ,

(g, iσ,σ′(x)) ' (gF ((σ, σ′))−1, x) if x ∈ σ, (σ, σ′) ∈ E(Y),

and iσ,σ′ : σ ↪→ σ′ is the natural inclusion.

Theorem I.5.14 (Universal covering space of a complex of groups, III.C(Y).3.13, III.C(Y).3.15
of [9]). Let G(Y) = (Gσ, ψa, ga,b) be a developable complex of groups over a simplicial com-
plex Y .

(i) Let T be a maximal tree in the 1-skeleton of the first barycentric subdivision of Y , and
let ιT be the morphism from G(Y) to π1(G(Y), T ) obtained by mapping each element
of the local groups Gσ to the corresponding generator of π1(G(Y), T ) and each edge a
of Y to the corresponding generator of π1(G(Y), T ).

Then X(Y, ιT ) is connected and simply connected. Furthermore, G(Y) is the complex
of groups associated to the action of π1(G(Y), T ) on X(Y, ιT ), and the morphism from
G(Y) to π1(G(Y), T ) associated to that action is ιT .

(ii) Suppose that G(Y) is the complex of groups associated to the action without inversion
by simplicial isometries of a group G on a simply connected simplicial space X, with
quotient space Y , and that F : G(Y)→ G is the associated morphism.

Then there exists a G-equivariant simplicial isometry X(Y, ιT )→ X over the identity
of Y . Such a simplicial complex X is called the universal covering of the complex of
groups G(Y).
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I.5.5 Non-positively curved complexes of groups.

We now turn to a geometric condition that ensures the developability of a given complex
of groups. From now on, we assume that Y is endowed with a Mκ-structure, κ ≤ 0.

Definition I.5.15 (Local complex of groups). Let v be a vertex of Y . We denote by G(Yv)
the complex of groups over the star of v induced by G(Y) in the obvious way.

We have the following result:

Proposition I.5.16 (Proposition III.C. 4.11 of [9]). For every vertex v of Y , the local
complex of groups G(Yv) is developable and its fundamental group is isomorphic to Gσ.
Denote by Xv its universal covering, called a local development. Then the Mκ-structure on
St(v) yields a Mκ-structure with finitely many isometry types of simplices on Xv such that
the Gσ-equivariant projection Xv → St(v) restricts to an isometry on every simplex.

Definition I.5.17 (non-positively curved complex of groups). We say that G(Y) is non-
positively curved if each local development Xv with the simplicial metric coming from the
Mκ-structure of Y is a CAT(0) space.

Theorem I.5.18 (Theorem III.C.4.17 of [9]). If the complex of groups G(Y) is non-
positively curved then it is developable.

In the case of a non-positively curved complex of groups, we have the following useful
proposition.

Proposition I.5.19 (Proposition III.C.4.11 of [9]). Assume that the complex of groups
G(Y) is non-positively curved, and let X be its universal covering. Let v be a vertex of Y
and v a vertex of X that projects to v. Then there is a Gσ-equivariant isometry from the
local development Xv to the star of v in X.



Chapter II

Complexes of spaces and classifying
spaces.

Graphs of spaces were introduced by Scott and Wall [41] as a powerful topological tool to
study graphs of groups. Generalisations to higher dimensional complexes of groups have
been studied by Corson [13] and Haefliger [27] (and, in a different setting, by Davis [16]). In
this chapter, we introduce a notion of complex of spaces that is suitable to our purpose. In
particular, given a developable complex of groups, we explain how one may use the theory
of complexes of spaces to construct a model of classifying space for its fundamental group.

II.1 Complexes of spaces and their topology.

In this section, we introduce the notion of a complex of spaces over a simplicial complex X
and study its basic properties.

II.1.1 Complexes of spaces.

Definition II.1.1. A complex of spaces C(X ) over a simplicial complex X consists of the
following data:

• for every simplex σ of X, a topological space Cσ, called a fibre,

• for every pair of simplices σ ⊂ σ′, a continuous map φσ′,σ : Cσ′ → Cσ, called a gluing
map, such that for every σ ⊂ σ′ ⊂ σ′′, we have φσ,σ′′ = φσ,σ′ ◦ φσ′,σ′′ .

If all the fibres are CW-complexes and all the gluing maps are cellular, we will speak of a
complex of CW-complexes. If all the fibres are pointed spaces and all the maps are pointed,
we will speak of a complex of pointed spaces.

21
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Definition II.1.2 (realisation of a complex of spaces). Let C(X ) be a complex of spaces
over a simplicial complex X. The realisation of C(X ) is the quotient space

|C(X )| =
( ∐
σ∈S(X)

σ × Cσ
)
/ '

where
(iσ,σ′(x), s) ' (x, φσ,σ′(s)) for x ∈ σ ⊂ σ′ and s ∈ Cσ′ ,

and iσ,σ′ : σ ↪→ σ′ is the natural inclusion. The class in |C(X )| of a point (x, s) will be
denoted [x, s].

Definition II.1.3. A complex of spaces C(X ) over a simplicial complex X will be called
locally finite if for every simplex σ of X and every point x ∈ Cσ, there exists an open set
U of Cσ containing x and such that there are only finitely many simplices σ′ containing σ
and satisfying U ∩ Im(φσ,σ′) 6= ∅.

Proposition II.1.4. Let C(X ) be a locally finite complex of CW-complexes over a simplicial
complex X. Then |C(X )| admits a natural locally finite CW-complex structure, for which
the σ × Cσ embed as subcomplexes.

II.1.2 Topology of complexes of spaces with contractible fibres.

Notation. In this paragraph, we will say that a complex of spaces is pointed if each fiber
comes with a chosen basepoint. Note that we do not require the maps to preserve the
basepoints (hence this does not necessarily yield a complex of pointed spaces).

Definition II.1.5. Let C(X ) be a pointed complex of CW-complexes over a simplicial
complex X and Y ⊂ X a subcomplex. We denote by CY (X ) the pointed complex of
CW-complexes over X defined as follows:

• Let (CY )σ = Cσ if σ * Y , (CY )σ is the basepoint of Cσ otherwise,

• For σ ⊂ σ′, let φYσ,σ′ be the composition (CY )σ′ → Cσ′
φσ,σ′−−−→ Cσ � (CY )σ.

We denote by pY : |C(X )| → |CY (X )| the canonical projection, and simply p for
pX : |C(X )| → X. In the same way, if Y ⊂ Y ′ are subcomplexes of X, we denote by
pY,Y ′ : |CY (X )| → |CY ′(X )| the canonical projection.

Lemma II.1.6. Let C(X ) be a pointed complex of CW-complexes over a simplicial complex
X. Let Y be a finite subcomplex of X such that for every simplex σ of Y , the fibre Cσ is
contractible. Then pY : |C(X )| → |CY (X )| is a homotopy equivalence.
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Proof. It amounts to proving the result for Y consisting of a single closed simplex σ. We
have the following commutative diagram:

|C(X )|

'
��

pY // |CY (X )|

'
��

|C(X )|/ (σ × Cσ) =
// |CY (X )|/ (σ × ?) .

The vertical arrows are homotopy equivalences, since we are quotienting by contractible
sub-CW-complexes, hence the result.

Recall that by I.2.5, every simplicial complex X of finite dimension can be given a
piecewise-Euclidean metric structure, by identifying each n-dimensional simplex of X with
the standard n-dimensional simplex of Rn.

Theorem II.1.7 (Dowker [18]). Let X be a simplicial complex of finite dimension. Then
the (continuous) identity map X → X from X with its CW topology to X with its piecewise-
Euclidean metric is a homotopy equivalence.

Proposition II.1.8. Let C(X ) be a complex of CW-complexes with contractible fibres over
a simplicial complex X of finite dimension. Then the projection p : |C(X )| → X is a
homotopy equivalence.

Proof. Endow X with its canonical piecewise-Euclidean metric, and endow C(X ) with a
structure of pointed complex of CW-complexes. By the previous theorem, it is enough
to show that the projection p : |C(X )| → X induces isomorphisms on homotopy groups,
when X is endowed with its CW topology. For that topology, a continuous map from a
compact space to X has its image contained in a finite subcomplex, to which Lemma II.1.6
applies.

II.2 Constructing classifying spaces out of complexes of spaces.

In this section, given a developable complex of groups G(Y) over a finite simplicial complex
Y , we build a classifying space for its fundamental group. In what follows, G(Y) is a non-
positively curved complex of groups G(Y) over a finite simplicial complex endowed with a
Mκ-structure, κ ≤ 0.

Notation: Recall that a complex of groups consists of the data (Gσ, ψa, ga,b) of local
groups (Gσ), local maps (ψa) and twisting elements (ga,b). From now on, given an inclusion
σ ⊂ σ′ of simplices, we will often write ψσ,σ′ instead of ψ(σ,σ′). Similarly, given an inclusion
σ ⊂ σ′ ⊂ σ′′, we will sometimes write gσ,σ′,σ′′ instead of g(σ,σ′),(σ′,σ′′). We fix a maximal tree
T in the 1-skeleton of the first barycentric subdivision of Y , which allows us to define the
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fundamental group G = π1(G(Y), T ) and the canonical morphism ιT : G(Y)→ G given by
the collection of injections Gσ → G. Finally, we define X as the universal covering of G(Y)
associated to ιT . The simplicial complex X naturally inherits a Mκ-structure from that of
Y and the simplicial metric d on X makes it a complete geodesic metric space. This space
is CAT(0) by the curvature assumption on G(Y).

Definition II.2.1. A complex of classifying spaces EG(Y) compatible with the complex of
groups G(Y) consists of the following:

• For every vertex σ of Y, a space EGσ that is a model of classifying space for proper
actions of the local group Gσ,

• For every edge a of Y with initial vertex i(a) and terminal vertex t(a), a Gi(a)-
equivariant map φa : EGi(a) → EGt(a), that is, for every g ∈ Gi(a) and every x ∈
EGi(a), we have

φa(g.x) = ψa(g).φa(x),

and such that for every pair (a, b) of composable edges of Y, we have:

ga,b ◦ φab = φaφb,

We emphasise that a complex of classifying spaces compatible with the complex of
groups G(Y) is not a complex of spaces over Y if the twisting elements ga,b are not tivial.
Nonetheless, this data is used to build a complex of spaces over X, as explained in the
following definition.

Definition II.2.2. Suppose that there exists a complex of classifying spaces EG(Y) com-
patible with G(Y). We define the space

ClEG(Y) =

(
G×

∐
σ∈V (Y)

(σ × EGσ)

)
/ '

where

(g, iσ,σ′(x), s) '
(
gιT
(
(σ, σ′)

)−1
, x, φ(σ,σ′)(s)

)
if (σ, σ′) ∈ E(Y), x ∈ σ′, g ∈ G,

(gg′, x, s) ' (g, x, g′s) if x ∈ σ, s ∈ EGσ, g′ ∈ Gσ, g ∈ G.

The canonical projection G×
∐
σ∈V (Y)(σ × EGσ)→ G×

∐
σ∈V (Y) σ yields a map

p : ClEG(Y) → X.

The action of G on G ×
∐
σ∈V (Y)(σ × EGσ) on the first factor by left multiplication

yields an action of G on ClEG(Y), making the projection p : ClEG(Y) → X a G-equivariant
map.
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Note that ClEG(Y) can be seen as the realisation a complex of spaces over X, the fibre
of a simplex [g, σ] being the classifying space EGσ. Indeed, for en edge [g, a] of the first
barycentric subdivision of X, the gluing map φ[gιT (a)−1,i(a)],[g,t(a)] : EGi(a) → EGt(a) is
defined as φi(a),t(a).

For every simplex σ of X, we denote by EGσ the fibre over σ of that complex of space.
For simplices σ, σ′ of X such that σ ⊂ σ′, we denote by φσ,σ′ : EGσ′ → EGσ the associated
gluing map.

Theorem II.2.3. If EG(Y) is a complex of classifying spaces compatible with G(Y), then
the space ClEG(Y) is a classifying space for proper actions of G.

Proof. Local finiteness: Let σ be a simplex of X and U be an open set of EGσ that is
relatively compact. It is enough to prove that for any injective sequence (σn) of simplices
of X containing σ there are only finitely many n such that the image of φσ,σn meets U . By
cocompactness of the action, we can assume that all the σn are in the same G-orbit, and
let σ be a simplex in that orbit. Since the action of Gσ on EGσ is proper, it follows that
for every simplex σ′ containing σ and every compact subset K of EGσ, only finitely many
distinct translates gEGσ′ in EGσ can meet K, hence the result.

Contractibility: The space ClEG(Y) has the same homotopy type as X by II.1.8, which
is contractible since G(Y) is non-positively curved.

Cocompact action: For every simplex σ of Y , we choose a compact fundamental domain
Kσ for the action of Gσ on Dσ = EGσ. Now the image in ClEG(Y) of

⋃
σ∈S(Y ) σ × Kσ

clearly defines a compact subset of ClEG(Y) meeting every G-orbit.

Proper action: As ClEG(Y) is a locally finite CW-complex, hence a locally compact
space, it is enough to show that every finite subcomplex intersects only finitely many of its
G-translates.
Let us first show that for every cell τ of ClEG(Y), there are only finitely many g ∈ G such
that gτ = τ . Indeed, let g ∈ G such that gτ = τ . The canonical projection ClEG(Y) → X
is G-equivariant and sends a cell of ClEG(Y) on a simplex of X, thus g also stabilises the
simplex p(τ) ⊂ X. Since G acts without inversion on X, g pointwise stabilises the vertices
of p(τ). Let s be such a vertex. Then g ∈ Gs and, by construction of ClEG(Y), the action
of Gs on ClEG(Y) induces on EGs the natural action of Gs on EGs. Thus, by definition
of a classifying space for proper actions, this implies that there are only finitely many
possibilities for g.

Now, let F be a finite subcomplex of ClEG(Y) and S(F ) the (finite) set of pairs (τ, τ ′)
of cells of F that are in the same G-orbit. The set {g ∈ G | gF ∩ F 6= ∅} is contained
in
⋃

(τ,τ ′)∈S(F ) {g ∈ G | gτ = τ ′} , and {g ∈ G | gτ = τ ′} has the same cardinality as the
set {g ∈ G | gτ = τ}, which is finite by the previous argument.
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Fixed sets: Let H be a finite subgroup of G. As G acts without inversion on the CAT(0)
complex X, the subset XH is a nonempty convex subcomplex of X. Furthermore, for every
simplex σ of XH , the subcomplex (EGσ)H of EGσ is nonempty and contractible. Thus
ClHEG(Y) is the realisation of a complex of spaces over the contractible complex XH and
with contractible fibres, hence it is nonempty and contractible by II.1.8.

If H is an infinite subgroup of G, we prove by contradiction that ClHEG(Y) is empty. If
this was not the case, there would exist a simplex σ fixed pointwise under H and a point x
of EGσ that is fixed under H ⊂ Gσ. But this is absurd as (EGσ)H = ∅ by assumption.

Remark: Theorem II.2.3 still holds if, instead of assuming that the complex of groups
G(Y) is non-positively curved, we simply assume G(Y) to be developable and such that the
fixed set of any finite subgroup of its fundamental group is contractible.



Chapter III

Metric small cancellation over graphs
of groups.

In this chapter, we study metric small cancellation groups over a finite graph of groups.
This yields a new class of groups acting on 2-dimensional CAT(0) complexes and which
admit a cocompact model of classifying space for proper actions.

Theorem III.0.4. Let G(Γ) be a finite graph of groups over a finite simplicial graph Γ,
with fundamental group G and Bass-Serre tree T , and such that no non-trivial element
of G fixes a line of T . Let R be a finite symmetrized collection of hyperbolic elements
of G satisfying the small cancellation condition C ′′(1

6) for the action of G on T . Then
the quotient G/� R� is the fundamental group of a non-positively curved 2-dimensional
complex of groups whose local groups are either finite or subgroups of the local groups of
G(Γ).

Theorem III.0.5. Let G(Γ) be a graph of groups satisfying the hypotheses of III.0.4. If
there exists a graph of classifying spaces compatible with G(Γ), then G/� R� admits a
cocompact model of classifying space for proper actions.

Here is an outline of the chapter. The first section contains gluing constructions for
complexes of groups which are reminiscent of the theory of orbispaces introduced by Hae-
fliger [26]. Section 3.2 is an introduction to small cancellation theory, and presents the
theory of small cancellation over a graph of groups from a geometric viewpoint. Given a
small cancellation group G/� R� over a finite graph of groups, we construct in Section
3.3 various examples of developable 2-complexes of groups that admit G/� R� as their
fundamental group. Using the theory of complexes of spaces developed in the previous
chapter, this is used to construct a classifying space for proper actions for G/� R�.

27
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III.1 Trees of complexes of groups.

In this section, we explain how, given a simplicial complex Y , subcomplexes (Yi) whose
interiors cover Y and such that the nerve of the associated open cover is a tree, and a family
of complexes of groups G(Yi) over Yi, one can glue them together to obtain a complex of
groups G(Y) over Y . This procedure can be thought as making “trees of complexes of
groups”. In order to lighten notations, we will only detail the case of a cover consisting of
two subcomplexes with a connected intersection.

III.1.1 Immersions of complexes of groups.

Definition III.1.1 (Immersion of complexes of groups.). Let G(Y1) and G(Y2) be two
complexes of groups over two simplicial complexes Y1 and Y2 and F : G(Y1) → G(Y2) a
morphism of complexes of groups over a simplicial morphism f : Y1 → Y2. We say that F
is an immersion if f is a simplicial immersion and all the local maps Fσ are injective.

Note that if in addition both complexes of groups are assumed to be developable, then
the simplicial immersion f lifts to an equivariant simplicial immersion between their uni-
versal coverings.

For i = 1, 2, let Xi, Yi be simplicial complexes, Gi a group acting without inversion
on Xi by simplicial isomorphisms, pi : Xi → Yi a simplicial map factoring through Xi/Gi
and inducing a simplicial isomomorphism Xi/Gi ' Yi. Suppose we are given a simplicial
immersion f : Y1 → Y2, a homomorphism α : G1 → G2 and an equivariant simplicial
immersion f : X1 → X2 over f such that for every simplex σ of X1, the induced map
α : Stab(σ) → Stab(f̄(σ)) is a monomorphism. Recall that from the action of Gi on Xi,
it is possible to define a complex of groups over Yi that encodes it. We now explain how
to define such complexes of groups G(Y1) and G(Y2) over Y1 and Y2, such that there is an
immersion G(Y1)→ G(Y2).

Recall that to define a complex of groups over Y1 induced by the action of G1 on X1,
we had to associate to every vertex σ of Y1 a simplex σ of X1, and to every edge a of Y1

an element ha of G1 (see I.5.6). Assume we have made such choices to define G(Y1). We
now make such choices for Y2.

• Let σ′ be a vertex of Y2, which we identify with the associated simplex of Y2. If
σ′ = f(σ) for a simplex σ of Y1, we choose σ′ = f(σ). Otherwise, we pick an
arbitrary lift of σ′.

• Let a′ be an edge of Y2. If a′ = f(a) for an edge a of Y1, we choose ha′ = α(ha).
Otherwise, we choose an arbitrary element ha′ that satisfyies the conditions described
in I.5.6.
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This yields a complex of groups G(Y2) over Y2. We now define a morphism of complex of
groups F = (Fσ, F (a)) : G(Y1)→ G(Y2) over f as follows:

• The maps Fσ : Gσ → Gf(σ) are the monomorphisms α : Stab(σ)→ Stab(f(σ)),

• The elements F (a) are all trivial.

It is straightforward to check that this indeed yields an immersion F = (Fσ, F (a)) :
G(Y1)→ G(Y2) over f .

Definition III.1.2. We call the immersion F = (Fσ, F (a)) : G(Y1) → G(Y2) over f an

immersion associated to (Y1
f→ Y2, X1

f̄→ X2, G1
α→ G2).

III.1.2 Amalgamation of non-positively curved complexes of groups.

In what follows, Y is a finite simplicial complex, Y1, Y2 are subcomplexes of Y whose in-
teriors cover Y , and Y0 = Y1 ∩ Y2. We assume that Y0 is connected. We further assume
that, for i = 0, 1, 2, we are given a simplicial complex Xi, a Gi a group acting without
inversion on Xi, pi : Xi → Yi a simplicial map factoring through Xi/Gi and inducing
a simplicial isomorphism Xi/Gi ' Yi. We assume that, for i = 1, 2, we are given a
homomorphism αi : G0 → Gi and an equivariant simplicial immersion f̄i : X0 → Xi

over the inclusion fi : Y0 ↪→ Yi such that for every simplex σ of X0, the induced map
αi : Stab(σ)→ Stab(f̄i(σ)) is an isomorphism.

Y0

Y1 Y2

X0

X1
X2

G0
G1 G2

p0

p1 p2

f1 f2

α1 α2

f̄1 f̄2

Figure III.1 - A diagram of maps.



30 Chapter III. Metric small cancellation over graphs of groups.

By the results of the previous paragraph, we can choose complexes of groups G(Yi)
over Yi associated to these actions in such a way that there are immersions G(Y0)

Fi→
G(Yi) associated to (Y0

fi→ Yi, X0
f̄i→ Xi, G0

αi→ Gi). Note that the local maps (Fi)σ are
isomorphisms.

We now use these immersions to amalgamate G(Y1) and G(Y2) along G(Y0). So as
to emphasize which complex of groups is under consideration, we will indicate it as a
superscript (see below). We define a complex of groups G(Y) over Y as follows:

• If σ is a vertex of Y0, we set GYσ = GY0σ .

If σ is a vertex of Yi \ Y0, we set GYσ = GYiσ .

• If a is an edge of Y0, we set ψYa = ψY0a .

If a is an edge of Yi \ Y0, we set ψYa = ψYia .

If a is an edge of Yi such that i(a) is a vertex of Yi \Y0 and t(a) is a vertex of Y0, we
set ψYa =

(
(Fi)t(a)

)−1 ◦ ψYia .

• If (a, b) is a pair of composable edges of Y0, we set gYa,b = gY0a,b.

If (a, b) is a pair of composable edges of Yi \ Y0, we set gYa,b = gYia,b.

If (a, b) is a pair of composable edges of Y such that b is not an edge of Y0 but t(a)

is a vertex of Y0, we set gYa,b =
(
(Fi)t(a)

)−1
(gYia,b).

Definition III.1.3 (Amalgamation of complexes of groups). We denote by G(Y1) ∪
G(Y0)

G(Y2) the previous complex of groups.

Theorem III.1.4 (Seifert-van Kampen Theorem for complexes of groups, Theorem III.C.3.11.(5)
of [9]). With the same notations as above, the fundamental group of G(Y1) ∪

G(Y0)
G(Y2) is

isomorphic to the pushout G1 ∗
G0

G2.

We now assume in addition that Y comes equipped with an Mκ-simplicial structure
(κ ≤ 0). This endows X0, X1, X2 with an Mκ-simplicial structure that turns the maps
fi : X0 → Xi into local isometries. Let v be a vertex of Y . Since the interiors of Y1 and Y2

cover Y , the star of v is fully contained in one of these subcomplexes. We thus obtain from
I.5.18 and I.5.19 the following developability theorem:

Theorem III.1.5. Under the same assumptions as above, if X1 and X2 are CAT(0) for
their induced Mκ-structure, then G(Y1) ∪

G(Y0)
G(Y2) is non-positively curved, hence devel-

opable.
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As stated at the beginning of this section, this theorem generalises directly to the case
of a finite complex Y covered by the interiors of a finite family of subcomplexes (Yi) such
that the nerve of the associate open cover is a tree. We give the following particular case,
which will be used in the article.

Let Y be a finite simplicial complex endowed with aMκ-structure (κ ≤ 0), let Y0, Y1, . . . , Yn
be a family of connected subcomplexes of Y whose interiors cover Y , and for i = 1, . . . , n,
let Y ′i = Y0 ∩ Yi. We assume that each Y ′i is non empty and connected. We further assume
that for 1 ≤ i 6= j ≤ n, we have Yi ∩ Yj = ∅.

For each Yi (resp. Y ′i ), we are given a simplicial complex Xi (resp. X ′i), a group Gi
(resp. G′i) acting without inversion on Xi (resp. X ′i), pi : Xi → Yi (resp. p′i : X ′i →
Y ′i ) a simplicial map factoring through Xi/Gi) (resp. X ′i/G

′
i) and inducing a simplicial

isomorphism Xi/Gi ' Yi (resp. X ′i/G′i ' Y ′i ). This yields an Mκ-structure on each Xi. We
assume that, for i = 1, . . . , n, we are given homomorphisms αi : G′i → G0 and βi : G′i → Gi,
an αi-equivariant simplicial immersion fi : X ′i → X0 over the inclusion Y ′i ↪→ Y0 and a
βi-equivariant simplicial immersion gi : X ′i → Xi over the inclusion Y ′i ↪→ Yi. We finally
assume that for every simplex σ of X ′i, the induced maps αi : Stab(σ) → Stab(f̄i(σ)) and
βi : Stab(σ)→ Stab(ḡi(σ)) are isomorphisms.

As before, we can construct induced complexes of groups G(Yi) over Yi and G(Y ′i)
over Y ′i , along with immersions G(Y ′i) → G(Y0) and G(Y ′i) → G(Yi). These complexes of
groups can in turn be amalgamated to obtain a complex of groups G(Y) over Y . We get
the following:

Theorem III.1.6. If each simplicial complex Xi, i = 0, . . . , n, is CAT(0) for its induced
Mκ-structure, then G(Y) is non-positively curved, hence developable.

III.2 Actions on trees and metric small cancellation theory.

III.2.1 Ordinary small cancellation theory.

We present metric small cancellation theory from a geometric viewpoint. For a more com-
binatorial approach, we refer to [33]. Let Fn be te free group on n generators, acting freely
cocompactly on the associated 2n-valent tree Tn. To every element g of Fn corresponds an
isometry of Tn. When g is non-trivial, such an isometry is hyperbolic, that is, it admits an
invariant embedded line, called the axis of g and denoted A(g), on which it acts by transla-
tion. The associated translation length, denoted l(g), is the minimal number of generators
necessary to obtain an element in the conjugacy class of g.

Let R be a finite set words of Fn. We assume that R is symmetrized, that is, inverses
and cyclic conjugates of elements of R belong to R.

Definition III.2.1 (Small Cancellation Condition). We say that a symmetrized set R of
elements satisfies the small cancellation condition C ′(λ), with λ > 0, if for every r, r′ ∈ R
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and g ∈ Fn such that A(r) 6= g.A(r′), the diameter of A(r) ∩ g.A(r′) is strictly less than
λ ·min

(
l(g), l(g′)

)
.

The following result is a fundamental theorem of small cancellation theory. Rips re-
marked that small cancellation groups have δ-thin geodesic triangles [38]. Hyperbolic groups
were later introduced by Gromov [23] so as to treat simultaneously a rich class of groups,
ranging from small cancellation groups to fundamental groups of compact manifolds with
negative curvature.

Theorem III.2.2. Let R a finite symmetrized set of elements satisfying the C ′(1/6) con-
dition. Then G = Fn/� R� is a hyperbolic group. Moreover, its presentation Cayley
complex is aspherical.

III.2.2 Actions on trees and small cancellation theory over a graph of
groups.

This geometric approach to small cancellation theory extends to more general group actions
on trees. Let G be a group acting without inversion by simplicial isometries on a simplicial
tree T . By the classification theorem for isometries of a tree (see [12]) an element g of G
either fixes a vertex of T or is hyperbolic, that is, it admits an invariant embedded line,
called the axis of g and denoted A(g), on which it acts by translation. In the latter case, the
associated translation length, denoted l(g), is called the translation length of g, or simply
the length of g.

Let R be a finite symmetrized set of hyperbolic elements of G. We denote by Rmin the
minimal length of an element of R.

Definition III.2.3 (Metric Small Cancellation Condition). We say that a symmetrized
set R of hyperbolic elements satisfies the metric small cancellation condition C ′′(λ), with
λ > 0, if for every r, r′ ∈ R and g ∈ G, the diameter of A(r) ∩ g.A(r′) is strictly less than
λ.Rmin. We set

lmax = maxr,r′∈R,g∈G
A(r)6=g.A(r′)

diam
(
A(r) ∩ g.A(r′)

)
.

This small cancellation condition is much stronger than the usual metric condition C ′(λ)
that is used in ordinary metric small cancellation theory, but coincides with the usual notion
when all the elements of R have the same translation length. In particular, R is necessarily
finite in the context of metric small cancellation, whereas there are examples of non finitely
presented groups in ordinary small cancellation theory.

III.2.3 Some preliminaries on Bass-Serre theory.

We recall here a few facts about Bass-Serre theory. The conventions in this setting (see [42])
are slightly different from the ones described in Chapter I to study complexes of groups.
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Let Γ be a simplicial graph and v0 a chosen vertex. Let G(Γ) = (Gσ, ψa) be a graph of
groups over Γ. To the simplicial graph Γ we associate a scwol DΓ obtained by “doubling”
every edge as follows:

• The vertex set of DΓ is the set of vertices of Γ.

• The edge set of DΓ is the set of oriented edges of Γ, that is, pairs of the form (v, e)
where e in an edge of Γ containing the vertex v. The initial vertex of an edge (v, e) of
DΓ is defined as the vertex of e other than v, the terminal vertex as v. For an edge
e = [v, w] of Γ, we write (v, e) = (w, e)−1.

The fundamental group π1(G(DΓ), v0) =: G is the set of homotopy classes of G(DΓ)-
loops, where two G(DΓ)-loops are homotopic if they have the same image in the abstract
group generated by ∐

v∈V (DΓ)

Gv
∐

E(DΓ)

and subject to the following relations:

• the relations in the groups Gv,

• aa−1 = a−1a = 1 for every edge a ∈ E(DΓ),

• ψ(v,e)(g) = a−1ga for an edge a = (v, e) of DΓ and an element g ∈ Ge.

The group G is isomorphic to π1(G(Γ), v0).
Let τ be a maximal tree in the first barycentric subdivision of Γ. Let T be the associated

Bass-Serre tree, that is, the universal covering space of G(Γ) with respect to T . Choose
a lift τ̃ of τ to T and let T0 be the minimal subtree of T containing τ̃ . This yields a
fundamental domain for the action of G on T . Let T (Γ) be the set of G(DΓ)-paths of
the form g0e1g1 . . . en. This set comes with a π1(G(DΓ), v0)-action on the left. To an
element g0e1g1 . . . en of T (Γ), we associate an edge of T as follows: Let γ be an edge-path
from v0 to t(en) which is contained in τ , and γ−1 the reverse edge-path. The G(DΓ)-
loop g0e1g1 . . . enγ

−1 defines an element of G, and we associate to g0e1g1 . . . en the edge
(g0e1g1 . . . enγ

−1) · ẽn of T , where ẽn is the unique (oriented) lift of en contained in T0.
In what follows, we will sometimes speak of the edge g0e1g1 . . . en, so as to avoid writing

(g0e1g1 . . . enγ
−1) · ẽn.

Lemma III.2.4. The aforementioned map T (Γ)→ T is G-equivariant.

III.3 Complexes of groups arising from small cancellation the-
ory.

From now on, we consider a graph of groups G(Γ) over a finite graph Γ, with fundamental
group G and associated Bass-Serre tree T , which satisfies the assumptions of Theorem
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III.0.4. We consider a finite symmetrized set of hyperbolic elements R satisfying the metric
small cancellation condition C ′′(1

6). With the above notation, this simply reads lmax <
1
6Rmin.

III.3.1 A non-positively curved complex of groups.

The cone-off construction. Let Λ = {g.A(w), w ∈ R} be the collection of translates of
axes of elements of R, seen as a collection of subsets of the Bass-Serre tree T . Note that
Λ is G-invariant. For every λ ∈ Λ, let Cλ be the cone over λ, with a simplicial structure
coming from that of λ and in which every triangle is modelled after a flat isosceles triangle
τ whose basis has length 1 and whose other edges have length r =

(
2 sin( π

Rmin
)
)−1 (the

angle at the apex Oλ being 2π
Rmin

). Let T̂ be the 2-dimensional simplicial complex obtained
from the disjoint union of T and the Cλ’s by identifying the base of Cλ with λ ⊂ T in the
obvious way. The action of G on T naturally extends to T̂ .

Coordinates. We introduce some coordinates as follows. For an element u ∈ Cλ ⊂ T̂ ,
we write u = [λ, x, t], where x is the intersection point of the ray [Oλ, u) with T , and
t = d(u,Oλ).

Slices. Let λ and λ′ be two elements of Λ with a nonempty intersection I ⊂ T . By
the hypothesis of small cancellation, I is a segment [x1, x2] of T ⊂ T̂ of length at most
lmax. Following an idea of Gromov [25], we now identify elements [λ, x, t] and [λ′, x′, t′] if
x = x′ ∈ I, t = t′ and the unoriented angles ∠x1(Oλ, u) and ∠x2(Oλ, u) are greater than
θ = π

2 −π
lmax
Rmin

(θ is the angle ∠x1(Oλ, x2) when the segment [x1, x2] has exactly lmax edges).
This amounts to identifying slices of cones as indicated in the following picture.

θ θ

Cλ

Cλ′

I

Figure III.2 - A slice identification.
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Lemma III.3.1. We have θ > π
3 . Furthermore, a point [λ, x, t] of Cλ can be identified with

a point in a different cone only if t ≥ r sin(θ) >
√

3
2 r.

Proof. Since θ = π
2 − π

lmax
Rmin

, the first part of the lemma follows from the small cancellation
condition lmax

Rmin
< 1

6 . The second part is an elementary application of triangle geometry.

Let Z be the space obtained from T̂ by making such identifications for every λ, λ′ ∈ Λ
with a nontrivial intersection and let Y be the quotient complex G\Z. This space can be
seen as the graph G\T with a collection of polygons attached and partially glued together
along slices, a polygon corresponding to the image of a cone of T̂ .

Let U ′λ (resp. U ′′λ ) be the polygonal neighbourhood of Oλ in T̂ obtained by taking the
image of Cλ under the homothety of centre Oλ and ratio 1

2 (resp. 1
4). We define Uλ as

the subcomplex obtained from U ′λ by deleting the interior of U ′′λ . Up to making simplicial
subdivisions, we can assume that the various Uλ, U ′λ and U ′′λ are subcomplexes of T̂ . We
identify them with their images in Z.

Let g be an element of R. Since g acts hyperbolically on T , we can write g = hn

where n ≥ 1 and h ∈ G is not a proper power of an element of G. Note that h also acts
hyperbolically on T , and has the same axis as g. Let λ ∈ Λ be the element corresponding
to that axis. Note that the action of the subgroup generated by h on its axis yields an
action of Z = 〈h〉 on U ′λ by simplicial isometries.

Let Pλ be the quotient of U ′λ under the action of 〈g〉. This is a regular polygon with
l(g) = n · l(h) edges. Note that there is an action by isometries of the cyclic group Z/nZ on
Pλ by rotation of l(h) triangles. Let βg : Z → Z/nZ the canonical projection. Then there
is a βg-equivariant local isometry Uλ → Pλ.

We define U as the subcomplex obtained from Z by deleting the interiors of all the
subcomplexes U ′′λ . This subcomplex comes equipped with an action of G by simplicial
isometries. Note that there is an isometric embedding Uλ ↪→ U . As no non-trivial element
of G fixes the axis λ, simplices in the image of the embedding Uλ ↪→ U (green region in
Figure III.3) have trivial pointwise stabilisers. Let αg : Z→ G be the morphism sending 1
to h ∈ G. Then the isometric embedding Uλ ↪→ U is αg-equivariant.

U

Pλ

Uλ
. . . . . .

G

Z

Z/nZαg βg
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Figure III.3.

We also define the following finite complexes:

• Let V be the quotient of U by the action of G.

• Let Qg be the quotient of Pλ by the action of Z/nZ.

• Let Vg be the quotient of Uλ by the action of Z = 〈h〉.

Note that the αg-equivariant embedding Uλ ↪→ U yields an isometric embedding Vg ↪→
V . Moreover, the βg-equivariant local isometry Uλ → Pλ yields an isometric embedding
Vg ↪→ Qg. The finite complex obtained from the disjoint union of V and the various com-
plexes Qg by identifying the embedded copies Vg ↪→ V and Vg ↪→ Qg is naturally isometric
to the quotient Y ; we will thus think of the complexes V, Vg, Qg as subcomplexes of Y .

The following result will be proved in Section 3.4 by studying links of points of U .

Proposition III.3.2. The simplicial complex U is CAT(0).

We have the following:

Proposition III.3.3. The simplicial complex Pλ is CAT(0).

Proof. The link of the apex of Pλ is a loop of length l(g) 2π
Rmin

≥ 2π, so the result follows
from Gromov’s criterion I.2.10.

Using the results of the previous sections, we can thus amalgamate all these actions to
get a complex of groups G(Y) over Y .

Theorem III.3.4. The complex of groups G(Y) is non-positively curved, hence developable,
and its fundamental group is isomorphic to G/� R�.

Proof. The complex Y is covered by the interiors of V and the various subcomplexes Qg. As
U and Pλ are CAT(0) by III.3.2 and III.3.3, the complex of groups G(Y) is non-positively
curved, hence developable by Theorem III.1.6. To compute the fundamental group of G(Y)
we can assume that R is reduced to a single element g = hn (with the same notations
as before), the general case following in the same way. It follows from the Van Kampen
theorem III.1.4 that the fundamental group of G(Y) is isomorphic to the amalgamated
product G ∗Z Z/nZ, where the morphism αg : Z→ G sends 1 to h ∈ G, and the morphism
βg : Z → Z/nZ is the canonical projection. Thus this group is isomorphic to G/� hn �,
and the result follows.

This theorem implies the following corollary, which is well-known for ordinary small
cancellation over free products with amalgamation or HNN extensions (see [33]):
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Corollary III.3.5. The quotient map G→ G/� R� embeds each local group of G.

Proof. Let G(V) be the complex of groups over V associated to the action of G on U . By
construction, this complex of groups is the restriction of G(Y) to the subcomplex V , that
is, there exists a morphism of complexes of groups F = (Fσ, F (a)) : G(V)→ G(Y) over the
inclusion V ↪→ U such that each local map Fσ : Gσ → Gσ is the identity and all the elements
F (a) are trivial. The morphism F induces a map π1(G(V), v0) → π1(G(Y), v0) which is
conjugated to G → G/� R�. As G(Y) is developable, the maps Gσ → G/� R� are
injective by I.5.12, hence the result.

Recall that a torsion element of a group acting by simplicial isometries without inversion
on a CAT(0) space necessarily fixes a vertex (see [9]). Hence the CAT(0) geometry of the
universal cover of G(Y) yields a geometric proof of the following result, which is well-known
for ordinary small cancellations over free products (see [33] p. 281):

Corollary III.3.6. Let g be a torsion element in G/� R�, then either

(i) g is the projection of a torsion element in a local factor of G, or

(ii) g is conjugate to a power of an element of R.

III.3.2 A more tractable complex of groups.

Gluing slices together was used to prove that the complex of groups G(Y) is non-positively
curved. Now that we know it to be developable, we modify the construction so as to get a
complex of groups that is easier to describe.

Let X be the universal covering of G(Y) and Γ̃ the preimage of Γ under the projection
X → Y . The complex X can be thought as obtained in the following way. Recall that
Y is obtained from Γ by attaching to it a bunch of polygons and identifying slices of such
polygons. For a polygon corresponding to the element g ∈ R, any connected component of
the preimage of its interior is the interior of a polygon of X. Such polygons of X are glued
together according to the same slice identifications procedure.

Let P be a polygon of X and let UP be the polygonal neighbourhood of its apex which
is the image of P by the homthety of ratio 2

3 centred at the apex (blue region in Figure
III.4). We now collapse radially the complement of UP in P (green and red regions in
Figure III.4), simultaneously for every polygon P of X.

Let X ′ be the space obtained after such collapses. This space is topologically the graph
Γ̃ with a bunch of polygons glued to it. Identifying slices in X ′ yields an equivariant map
X ′ → X. The action of G/� R� on X yields an action on X ′ and we denote by Y ′ the
quotient space. Note that Y ′ is obtained from Y by applying the same collapsing procedure.
It is the graph Γ with a collection of polygons attached to it. As this can be done without
loss of generality, we will consider for the remaining of this section that this collection is
reduced to a single polygon, so as to lighten notations.
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θ

Figure III.4 - Radial collapsing.

The action of G/� R� on X ′ yields a complex of groups over Y ′. In order to describe
it, we first describe the complex of groups associated to the action of G on T̂ .

Choose a basepoint v0 of Γ which is a vertex. Let τ be a maximal tree in the first
barycentric subdivision of Γ. Choose a lift τ̃ of τ to T and let T0 be the minimal subtree
of T containing τ̃ . This yields a fundamental domain for the action of G on T . Let ṽ0 be
the unique lift of v0 in τ̃ . Let P be the polygon attached to Γ. Such a polygon corresponds
to an element g ∈ R. Since g acts hyperbolically on T , we can write g = hn where n ≥ 1
and h ∈ G is not a proper power of an element of G. Note that h also acts hyperbolically
on T , and has the same axis as g. Up to taking a conjugate, we can assume that the axis
of h meets τ̃ . Let γ̃ be the edge-path associated to the geodesic segment between ṽ0 and
the projection v of ṽ0 on A(g), let γ be its projection on Γ and γ−1 the reverse edge-path.
We can thus write h as a G(Γ)-loop h = γg0e1g1 . . . enγ

−1 in such a way that:

• the geodesic segment [v, hv] is the union
⋃

1≤i≤n γg0e1g1 . . . ei,

• the axis A(g) is the union
⋃
m∈Z h

m[v, hv].

Note that the polygon P is attached to Γ along the edge-path e1 . . . en, which yields a
labelling on the boundary loop of P . Let u0, . . . , un be vertices of Γ such that ei = [vi−1, vi]
for each i = 1, . . . , n. Let σi be the triangle of P whose boundary edge is labelled ei, and
ai the edge of P between s and the boundary vertex labelled ui.

We first describe the complex of groups associated to the action of G on T̂ . In order to
do that, we first associate to each simplex of Y a lift in T̂ as follows:

• We associate to the centre s of P the apex t of the cone over A(h).

• We associate to a vertex of Γ its unique lift contained in τ̃ .

• We associate to an edge e of Γ its unique lift ẽ contained in T0.

• We associate to the triangle σi its unique σ̃i lift that contains an edge of [v, h.v]
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• We associate to the edge ai its unique lift ãi that is contained in σ̃i+1.

Note that the edge of σ̃i contained in T is γg0e1g1 . . . ei =: fi. Let w0, . . . , wn be vertices
of T such that fi = [wi−1, wi] for each i = 1, . . . , n. Let γ̃i be the edge-path associated to
the geodesic segment of T0 between ṽ0 and the initial vertex of ẽi, let γi its projection to Γ
and γ−1

i the reverse edge-path. Then ki := γg0e1g1 . . . eiγ
−1
i defines an element of G which

sends the lift ẽi = γiei ⊂ T0 of ei to γg0e1g1 . . . ei.
Let K ⊂ T be the subcomplex T0 ∪ (

⋃
1≤i≤n σ̃i). For every simplex σ of K, we now

define an element kσ sending σ to the chosen lift of the image of σ in Γ:

• For i = 1, . . . , n, set kfi = k−1
i .

• For i = 0, . . . , n− 1, set kwi = k−1
i .

• Set kwn = h−1.

• Set kh.ã0 = h−1.

• For each remaining simplex σ of K, choose an arbitrary element kσ sending σ to the
lift of the image of σ in Γ.

With this set of elements, it is now possible to construct the complex of groups over
Y ′ associated to this action. Notice already that since no non-trivial element fixes the axis
A(h) and h is not a proper power, the stabiliser of A(h) is the subgroup generated by h,
and the stabiliser of any edge or triangle of P that is not contained in Γ vanishes. We get
the following list of twisting elements:

• g(u0,e1),(e1,σ1) = g−1
0 ,

• g(ui−1,ei),(ei,σi) = h−1
i hi−1 = γig

−1
i γ−1

i ,

• g(s,a0),(a0,σn) = h−1,

• all the other twisting elements vanish.

This yields the following complex of groups over Y ′:

• The local groups and maps for vertices and edges of Γ are the same as the ones in
the graph of groups over Γ.

• The local group at the centre of the polygon P is Gs =< h >.

• All the other local groups and maps are trivial.

• g(u0,e1),(e1,σ1) = g−1
0 ,

• g(ui−1,ei),(ei,σi) = g−1
i ,
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• g(s,a0),(a0,σn) = h−1,

• all the other twisting elements vanish.

We now turn to the complex of groups G′(Y ′) over Y ′ associated to the action of
G/� R� on X. By construction, this complex of groups can be obtained as an amalga-
mation of the complexes of groups induced by the action of G on T̂ with the interior of the
various U ′λ deleted, and the action of Z/nZ on Pλ. This yields the following complex of
groups:

• The local groups and maps for vertices and edges of Γ are the same as the ones in
the graph of groups over Γ.

• The local group for the centre of the polygon is Gs = Z/nZ.

• All the other local groups and maps are trivial.

• g(u0,e1),(e1,σ1) = g−1
0 ,

• g(ui−1,ei),(ei,σi) = g−1
i ,

• g(s,a0),(a0,σn) is the image of −1 under the canonical map Z→ Z/nZ.

• all the other twisting elements vanish.

In order to construct a compatible complex of classifying spaces, we replace G′(Y ′) by
the complex of groups G(Y ′) defined as follows:

• The local groups and maps for vertices and edges of Γ are the same as the ones in
the graph of groups over Γ.

• The local group the centre of the polygon is Gs = Z/nZ.

• All the other local groups and maps are trivial.

• g(u0,a0),(a0,σ1) = g0,

• g(ui−1,ai−1),(ai−1,σi) = gi,

• g(s,a1),(a1,σ1) is the image of −1 under the canonical map Z→ Z/nZ.

• all the other twisting elements vanish.
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gn g0

g1

g2

e1

e2

en

Γ
e1

e2

Figure III.5 - The complex of groups G(Y ′).

Note that there is an isomorphism of complexes of groups (Fσ, F (a)) : G′(Y ′)→ G(Y ′)
over the identity of Y ′:

• For each simplex σ, the local map Fσ is the identity of Gσ

• For each i = 1, . . . , n, F ((ui−1, σi)) = gi

• All the other elements F (a) are trivial.

In particular, the fundamental group of G(Y ′) is G/� R�.

III.3.3 A model of classifying space.

From now on, we assume that we are under the hypotheses of Theorem III.0.4. With the
description in the previous section of a developable complex of groups G(Y ′) with funda-
mental group G/� R�, it is possible to define a complex of classifying spaces compatible
with G(Y ′).

Lemma III.3.7. There exists a graph of pointed classifying spaces compatible with G(Γ).

Proof. For each edge e of Γ, choose an arbitrary basepoint be of the fibre EGe. Let EG′e
be the CW-complex obtained by coning-off every Ge-translate of be (that is, EG′e is the
mapping cone of the obvious map Ge×{be} → EGe), and b′e be the apex corresponding to
the identity element of Ge. Then the space EG′e is a cocompact model of classifying space
for Ge.

For every vertex v of Γ, consider the (finite) set of images φv,e(be) ∈ EGv, where e
ranges over the set of edges containing v, and choose a compact embedded tree Kv ⊂ EGv
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containing all these images. Let EG′v be the CW-complex obtained by coning-off every
Gv-translate of Kv (that is, EG′v is the mapping cone of the obvious map Gv × Kv →
EGv), and b′v be the apex corresponding to the identity element of Gv. Then the space
EG′v is a cocompact model of classifying space for Gv and the ψv,e-equivariant map φv,e :
EGe → EGv extends to a ψv,e-equivariant map φ′v,e : EG′e → EG′v sending b′e to b′v.
Thus, the collection

(
(EG′v, b

′
v), (EG

′
e, b
′
e), φ

′
v,e

)
defines a graph of pointed classifying spaces

compatible with G(Γ).

So as to lighten notations, we consider from now on a graph of pointed classifying
space EG(Γ) =

(
(EGv, bv), (EGe, be), φv,e

)
compatible with G(Γ). We define a complex of

classifying spaces EG(Y ′) compatible with G(Y ′) as follows:

• The restriction of EG(Y ′) to Γ is just EG(Γ).

• We associate to each triangle σi of P and to the apex s of P a classifying space reduced
to a point. We associate to each edge ai of P a copy EGai of the unit interval [0, 1].

• We define the map φvi,ai : EGai → EGvi as follows: φvi,ai sends 0 to the basepoint
bvi of EGvi and sends 1 to gi.bvi . Moreover, φvi,ai sends the unit interval to a path
from bvi to gi.bvi .

• The map φai−1,σi : EGσi → EGai−1 sends the basepoint of EGσi to 1 ∈ [0, 1].

• The map φai,σi : EGσi → EGai sends the basepoint of EGσi to 0 ∈ [0, 1].

• The map φei,σi : EGσi → EGei sends the basepoint of EGσi to the basepoint of EGei .

• All the remaining local maps are trivial.

Theorem III.3.8. If all the local groups of the graph of groups G(Γ) admit cocompact
models of classifying spaces then so does G/� R�.

Proof. It is straightforward to check that the previous complex of classifying spaces is
compatible with the complex of group G(Y ′). If G/� R� contains torsion, let H be a
non-trivial finite subgroup of G/� R�. First notice that the fixed point set (X ′)H is
contained in the graph Γ̃. We claim that it does not contain any non-trivial loop. If this
was not the case, by considering the image of a non-trivial loop of (X ′)H in the CAT(0)
space X under the equivariant projection X ′ → X, Proposition I.1.6 would imply that
there exists a polygon of X with a non-trivial pointwise stabiliser, which is absurd. Thus
(X ′)H is contractible and one can use the remark following Theorem II.2.3 to conclude.
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EG

X

Figure III.6 A portion of the realisation of the associated complex of spaces.

III.4 The geometry of Z.

We now prove that U is CAT(0). Note that U being homotopy equivalent to the Bass-
Serre tree U , it is contractible, hence we only have to prove that it is locally CAT(0).
Since U is a 2-dimensional complex, it is enough to prove, by the Gromov criterion I.2.10,
that injective loops in links of points of U have length at least 2π. As this condition is pre-
served by taking subcomplexes, it is thus enough to prove that the space Z itself is CAT(0).

There are three types of points in Z: apeces of cones of Z, points in the Basse-Serre
tree T and points in the interior of a cone.

Apex of a cone. Each apex of a cone of Z has a link simplicially isomorphic to a bi-infinite
line, hence the Gromov criterion I.2.10 is satisfied.

Point in the interior of a cone. Let u be a point that is in the interior of a cone but
is not an apex. A neighbourhood of u in Z is obtained from neighbourhoods of u in the
various cones containing it by gluing them together in an appropriate way. Let Λu be the
set of λ such that Cλ contains u and let λ ∈ Λu. A polygonal neighbourhood of u = [λ, x, t]
in Cλ ∈ Λ is obtained as follows. Consider four small segments aλ, bλ, cλ, dλ issuing from u
with an unoriented angle θ(t) and π− θ(t) with the ray [0λ, u), where θ(t) = arcsin( rt sin θ)
is the angle indicated in Figure III.7 (note that we have θ(t) ≥ θ ≥ π

3 ). We use these
segments to define an arbitrarily small polygonal neighbourhood of u as indicated in the
following picture, along with the link of u with respect to that polygonal neighbourhood:
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aλ bλ

cλdλ 2θ(t)

π − 2θ(t)

θ(t)

Cλ

aλ bλ

cλdλ
u

π − 2θ(t)

2θ(t)

Figure III.7 - The link lk(u,Cλ).

We now explain how these graphs are glued together under the identifications defining
Z. Let λ, µ ∈ Λu and let us look at u inside Cλ. Let us call Cλ,µ ⊂ Cλ the slice along
which Cλ and Cµ were glued. If u belongs to the interior of Cλ,µ, then the two graphs are
identified in the obvious way. If u belongs to the boundary of Cλ,µ, then the two graphs
are glued as follows:

∪

Figure III.8- Some link identifications.

Thus, the link of u in Z is a graph without loop or double edge, and which has four
types of vertices: a vertex a corresponding to edges aλ after identification, a vertex b
corresponding to edges bλ after identification, vertices c1, c2, . . . corresponding to edges cλ,
which are of valence at least 2, and vertices d1, d2, . . . corresponding to edges dλ., which are
of valence at least 2. Moreover, the following holds:

• There is exactly one edge between a and b (of length 2θ(t)).

• There is exactly one edge between a and each di (of length π−2θ(t)) and exactly one
edge between b and each ci (of length π − 2θ(t)).

• The graph is bipartite with respect to the decomposition of the set of vertices into
the sets {a} ∪ {c1, c2, . . .} and {b} ∪ {d1, d2 . . .}.
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• Edges of the form [ci, dj ] are of length 2θ(t).

a b

c1

c2

c3

c4

d1

d2

Figure III.9 - The link lk(u, Z).

Lemma III.4.1. An injective loop in the link lk(u, Z) has length at least 2π.

Proof. As the link is a bipartite graph, an injective loop contains an even number of edges.
Since the graph has no double edge, the loop is made of at least four edges. Now since
the subgraph with all but one of the edges of the form [a, b] or [ci, dj ] removed is a tree,
the loop must contains two edges of the form [a, b] or [ci, dj ]. As these edges have length
2θ(t) ≥ 2π

3 and the remaining ones have length π − 2θ(t) ≤ π
3 , such a loop has length at

least 2.2θ(t) + 2(π − 2θ(t)) = 2π.

Points in the Bass-Serre tree. Let v be a point in the Bass-Serre tree T . If v is not a
vertex of T , then a neighbourhood of v in Z is given by choosing a small neighbourhood of
v in any cone containing it, hence such points have CAT(0) neighbourhoods. Now let v be
a vertex of T . Let Λv be the set of λ such that Cλ contains v and let λ ∈ Λv. A polygonal
neighbourhood of v in Cλ is obtained as follows. Let aλ, a′λ be the two edges of T issuing
from v that are contained in Cλ. Let cλ be the radius [Oλ, v]. Let bλ (resp. b′λ) be the
segment of Cλ issuing from v that makes an unoriented angle π−θ(t) with the ray aλ (resp.
a′λ). We use these segments to define an arbitrarily small polygonal neighbourhood of u as
indicated in the following pictrue:
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aλ

bλ

cλ

b′λ

a′λ

v
aλ

bλ

cλ
b′λ

a′λ
θ θ

Figure III.10 - The link lk(v, Cλ).

We now look at how the links lk(v, Cλ) and lk(v, Cλ′) are glued together. Let λ, µ ∈ Λv
and let us look at v inside Cλ. If v belongs to the interior of Cλ,µ, then the two links are
identified in the obvious way. If v belongs to the boundary of Cλ,µ, then the two links are
glued along a common edge as follows:

∪

Figure III.11 - Some link identifications.

Thus, the link lk(v, Z) is a graph with no double edge or loop and which has three types
of vertices:

• Vertices a1, a2, . . . (type A) corresponding to edges of T . These vertices are of valence
1.

• Vertices b1, b2, . . . (type B) corresponding to segments bλ, b′λ, λ ∈ Λv. These vertices
are of valence at least 2.

• Vertices c1, c2, . . . (type C) corresponding to edges cλ, λ ∈ Λv. These vertices are of
valence 2.

Furthermore, lk(v, Z) is a tripartite graph with respect to the partition of the set of its
vertices into the aforementioned three types A, B and C.
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Type A

Type B

Type C

Figure III.12 - The link lk(v, Z).

Lemma III.4.2. An injective loop in the link lk(v, Z) has length at least 2π.

Proof. Let γ be an injective loop in lk(v, Z). Since type A vertices have valence 1, γ
only meets type B and type C vertices. Moreover, γ is a bipartite graph for the induced
colouring, hence it has an even number of edges. As there is no double edge, γ has at least
four edges.

We prove by contradiction that it cannot contain exactly four edges. Indeed, γ would
then contain two type C vertices corresponding to edges cλ, cλ′ (λ, λ′ ∈ Λv) and the re-
maining two vertices would thus correspond to the associated edges bλ, b′λ, bλ′ , b

′
λ′ after

identification. Consequently, γ would be contained in the image of lk(v, Cλ) ∪ lk(v, Cλ′)
after identification, but the above discussion shows that this image does not contain an
injective cycle (see Figure III.11).

Thus, γ contains at least six edges, all of whose being between a type B vertex and a
type C vertex. As the length of such an edge is θ > π

3 , the length of γ is at least 6θ > 2π.

Corollary III.4.3. The complex Z is CAT(0).
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Chapter IV

A combination theorem for
boundaries of groups.

In this chapter, we give conditions under which it is possible to construct a Bestvina bound-
ary for the fundamental group of a non-positively curved complex of groups out of such
structures for its local groups.

Theorem IV.0.4 (Combination Theorem for Boundaries of Groups). Let G(Y) be a non-
positively curved complex of groups over a finite simplicial complex Y endowed with a Mκ-
structure, κ ≤ 0. Let G be the fundamental group of G(Y) and X be a universal covering
of G(Y). Suppose that the following global condition holds:

(i) The action of G on X is acylindrical, that is, there exists a uniform bound on the
diameter of a subset of X with infinite pointwise stabiliser.

Further assume that there is an EZ-complex of classifying spaces compatible with G(Y) that
satisfies each of the following local conditions:

(ii) the limit set property: For every pair of simplices σ ⊂ σ′ of Y , the embedding EGσ′ ↪→
EGσ realises an equivariant homeomorphism from ∂Gσ′ to the limit set ΛGσ′ ⊂ ∂Gσ.
Furthermore, for every simplex σ of Y , and every pair of subgroups H1, H2 in the
family Fσ =

{⋂n
i=1 giGσig

−1
i | g1, . . . , gn ∈ Gσ, σ1, . . . , σn ⊂ st(σ), n ∈ N

}
, we have

ΛH1 ∩ ΛH2 = Λ(H1 ∩H2) ⊂ ∂Gσ.

(iii) the convergence property: for every pair of simplices σ ⊂ σ′ in Y and every sequence
(gn) of Gσ whose projection is injective in Gσ/Gσ′ , there exists a subsequence such
that (gϕ(n)EGσ′) uniformly converges to a point in EGσ.

(iv) the finite height property: for every pair of simplices σ ⊂ σ′ of Y , Gσ′ has finite height
in Gσ (see [22]), that is, there exist an upper bound on the number of distinct cosets
γ1Gσ′ , . . . , γnGσ′ ∈ Gσ/Gσ′ such that the intersection γ1Gσ′γ

−1
1 ∩ . . . ∩ γnGσ′γ−1

n is
infinite.

49
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Then G admits an EZ-structure (EG, ∂G). Furthermore, the following properties hold:

(ii′) For every simplex σ of Y , the map EGσ → EG realises an equivariant embedding from
∂Gσ to ΛGσ ⊂ ∂G. Moreover, for every pair H1, H2 of subgroups in the family F ={⋂n

i=1 giGσig
−1
i | g1, . . . , gn ∈ G, σ1, . . . , σn ∈ S(Y ), n ∈ N

}
, we have ΛH1 ∩ ΛH2 =

Λ(H1 ∩H2) ⊂ ∂G.

(iii′) For every simplex σ of Y , the embedding EGσ ↪→ EG satisfies the convergence prop-
erty.

(iv′) For every simplex σ of Y , the local group Gσ has finite height in G.

The chapter is organised as follows. In Section 1, we continue our study of geodesics
in Mκ-complexes. We define the boundary ∂G of G and the compactification EG of EG
as sets in Section 2. In Section 3, we introduce further conditions on a complex of groups
or spaces. In Section 4 we study the geometry of important subcomplexes of X, called
domains, which were implicitly used to define ∂G. Section 5 is devoted to the proof of
some geometric results that are used throughout the chapter. We define a topology on
EG in Section 6 and we prove that it makes EG a compact metrisable space in Section
7. The proof of Theorem IV.0.4 is completed in Section 8, where the properties of ∂G are
investigated.

We choose once and for all a non-positively curved complex of groups G(Y) over a
finite simplicial complex endowed with a Mκ-structure, κ ≤ 0. Recall that a complex of
groups consists of the data (Gσ, ψa, ga,b) of local groups (Gσ), local maps (ψa) and twisting
elements (ga,b). We fix a maximal tree T in the 1-skeleton of the first barycentric subdivision
of Y , which allows us to define the fundamental group G = π1(G(Y), T ) and the canonical
morphism ιT : G(Y)→ G given by the collection of injections Gσ → G. Finally, we define
X as the universal covering of G(Y) associated to ιT . The simplicial complex X naturally
inherits aMκ-structure from that of Y and the simplicial metric d on X makes it a complete
geodesic metric space, which is CAT(0) by the curvature assumption on G(Y).

IV.1 Geodesics in Mκ-complexes.

In this section, we study the geometry of the set of geodesics of anMκ-complex. Recall that
X is assumed to be a Mκ-complex, κ ≤ 0, with finitely many isometry types of simplices.

IV.1.1 The finiteness lemma.

Definition IV.1.1. For subsets K,L of X, we define Geod(K,L) as the set of points lying
on a geodesic segment from a point of K to a point of L.
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Definition IV.1.2 (Simplicial neighbourhood). Let K be a subcomplex of X. The union
of the closed simplices that meet K is called the closed simplicial neighbourhood of K, and
denoted N(K). The union of the open simplices whose closure meets K is called the open
simplicial neighbourhood of K, and denoted N(K).

We recall the following proposition of Bridson, which follows from the Claim contained
in the proof of Theorem 1.11 of [8].

Proposition IV.1.3 (containment lemma, Bridson [8]). For every n there exists a constant
k such that for every finite subcomplex K ⊂ X containing at most n simplices, any geodesic
path contained in the open simplicial neighbourhood of K meets at most k simplices.

We also recall this useful related result, which follows from Theorem 1.11 of [8].

Corollary IV.1.4 (Bridson [8]). For every n there exists a constant k such that every
geodesic segment of length at most n meets at most k simplices.

Lemma IV.1.5 (Finiteness lemma). Let X be as before. For subcomplexes K,K ′ ⊂ X,
Geod(K,K ′) meets only finitely many open simplices.

Proof. It is enough to prove the result when K and K ′ consist of two closed simplices σ
and σ′. For every x ∈ σ and every x′ ∈ σ′, we consider the sequence of open simplices
σ1, . . . , σn met by the geodesic segment [x, x′] and set Cx,x′ = σ ∪ σ1 ∪ . . . ∪ σn ∪ σ′. Note
that by Corollary IV.1.4 there is a uniform k bound on the number of simplices contained
in Cx,x′ . Since there is only finitely many isometry types of simplices in X, there is, up
to simplicial isometry fixing pointwise σ and σ′, finitely many subcomplexes of the form
Cx,x′ . Following Bridson, we call such an equivalence class of subcomplexes a model (see
the proof of I.7.57 in [9]).

We now claim that for every x, y ∈ σ and every x′, y′ ∈ σ′ such that Cx,x′ and Cy,y′

are in the same model, we have Cx,x′ = Cy,y′ . Indeed, choose a simplicial isometry φ :
Cx,x′ → Cy,y′ that fixes pointwise σ and σ′. Then φ sends the geodesic segment [x, x′] ⊂
Cx,x′ to a simplicial path of the same length between φ(x) = x and φ(x′) = x′. As X
is CAT(0), geodesic segments are unique, hence φ pointwise fixes [x, x′]. We thus have
[x, x′] = φ

(
[x, x′]

)
⊂ Cy,y′ , hence Cx,x′ ⊂ Cy,y′ . The same reasoning applied to the geodesic

segment [y, y′] yields Cy,y′ ⊂ Cx,x′ , hence Cx,x′ = Cy,y′ .
We have

Geod(σ, σ′) ⊂
⋃

x∈σ,x′∈σ′
Cx,x′

and the previous discussion shows that this is a finite union, which concludes the proof.

IV.1.2 Paths of simplices of uniformly bounded length.

Definition IV.1.6. A path of simplices is a sequence of open simplices σ1, . . . , σn such
that σi ⊂ σi+1 or σi+1 ⊂ σi for every i = 1, . . . , n−1. Equivalently, it is a finite path in the
first barycentric subdivion of X. The integer n is called the length of the path of simplices.
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Up to rescaling the metric, we also make the following assumption:

From now on, we will assume that the distance from any simplex to the boundary of its
(closed) simplicial neighbourhood is at least 1.

Here we prove the following lemma:

Lemma IV.1.7 (Short paths of simplices). For every n ≥ 1, there exists m ≥ 1 such that
the following holds: Let K be a convex subcomplex of X and K ′ a connected subcomplex of
X, both containing at most n simplices. Let x, y ∈ K and x′, y′ ∈ K ′ and assume that there
exists a path in K ′ between x′ and y′ that does not meet K. Let τ, τ ′ be two simplices of
N(K) \K such that the geodesic segment [x, x′] (resp. [y, y′]) meets the interior of τ (resp.
τ ′). Then there exists a path of simplices in N(K) \K of length at most m between τ and
τ ′.

K

K ′

x

x′

τ

τ ′

y

y′

. . .

Figure IV.1

Definition IV.1.8 (I.7.8 of [9]). For x ∈ X, let

η(x) = inf{d(x, σ)| σ ⊂ st(σx), x /∈ σ}.

The constant is such that for every y ∈ B(x, η(x)), we have σx ⊂ σy.

The following lemma is a controlled version of Lemma I.7.54 in [9].

Lemma IV.1.9. There exist constants η0 > ε0 > 0 such that:

• for every simplex σ of X, the 2η0-neighbourhood of σ is contained in the open simplicial
neighbourhood of σ;

• for every point x ∈ X, there exists y ∈ B(x, η0) such that B(x, ε0) ⊂ B(y, η(y)).
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Proof. For a simplex σ of X, let

η(σ) = inf{d(σ, τ)| τ ⊂ N(σ), σ ∩ τ = ∅}.

The above set of distances is finite sinceX has only finitely many isometry types of simplices,
thus η(σ) > 0. For the same reason, we can define η0 = 1/2 · min η(σ) > 0, where the
minimum is taken over all the simplices of X.

Now that η0 is defined, we construct constants η1, . . . , ηD by induction, where D is the
maximal dimension of a simplex of X, as well as subets T0, . . . , TD of X, such that each Tk
is an open neighbourhood of the k-skeleton X(k) of X.

Let
T0 =

⋃
v∈V (X)

B(v, η0),

where η0 is as above. Suppose that η0, . . . , ηk and T0, . . . , Tk are defined. For each simplex
σ ⊂ X of dimension k+1, the function η (as defined in IV.1.8) is continuous on the compact
set σ \ Tk and does not vanish, hence is bounded below by a constant ηk+1(σ) > 0. As
X has finitely many isometry types of simplices, we define ηk+1 = 1/2 ·min ηk+1(σ) > 0,
where the minimum is taken over all simplices of dimension k + 1. We can further assume
that ηk+1 ≤ ηk. Let

Tk+1 = Tk ∪
( ⋃

σ⊂X,
dim σ=k+1

⋃
x∈σ\Tk

B(x, ηk+1)

)
.

Finally, let ε0 = ηD. We have T0 ⊂ . . . ⊂ TD = X. Let x ∈ X. There exists a unique k
such that x ∈ Tk \ Tk−1. For such a k, there exists y ∈ X(k) \ Tk−1 with d(x, y) ≤ ηk (in
particular d(x, y) ≤ η0). As ε0 ≤ ηk, we get

B(x, ε0) ⊂ B(x, ηk) ⊂ B(y, 2ηk) ⊂ B(y, ηk(σy)) ⊂ B(y, η(y)),

which concludes the proof.

Proof of Lemma IV.1.7. First notice that since X has only finitely many isometry types of
simplices, there exists a constant l, which depends only on n and X, points x = x0, . . . , xl =
y in K and x′ = x′0, . . . , x

′
l = y′ in K ′ such that for every k, d(xk, xk+1) < ε0 , d(x′k, x

′
k+1) <

ε0, xk, xk+1 belong to the same simplex of K, and x′k, x
′
k+1 belong to the same simplex of

K ′. For every k = 1 . . . , l−1, let τk be a simplex of N(K)\K whose interior meets [xk, x
′
k].

In order to prove Lemma IV.1.7, it is thus enough to consider the case where d(x, y) < ε0,
d(x′, y′) < ε0, x, y belong to the same simplex σ of K, and x′, y′ belong to the same simplex
σ′ of K ′. We treat separately two cases.

Case 1: Suppose that the geodesic segments [x, x′] and [y, y′] are both contained in the
open η0-neighbourhood of K. Recall that by definition of η0, this implies that they are
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contained in the open simplicial neighbourhood of K. The geodesic segment [x, x′] yields a
geodesic segment, contained in N(K)\K by convexity of K, between a point in the interior
of τ and x′. By Proposition IV.1.3, there exists a constant m1 (which depends only on X
and n) such that there exists a path of simplices in N(K)\K of length at most m1 between
τ and σ′. Reasoning similarly for [y, y′], we get a path of simplices in N(K) \K of length
at most m1 between τ ′ and σ′. We thus get a path of simplices in N(K) \K of length at
most 2m1 between τ and τ ′.

Case 2: Suppose that the geodesic segment [x, x′] is not contained in the η0-neighbourhood
of K. We then choose a point u on that geodesic segment which belongs to B(K, 2η0) \
B(K, η0) (such a subset is contained in N(K) by definition of η0). By Lemma IV.1.9, we
can choose z ∈ X \K such that B(u, ε0) ⊂ B(z, η(z)). Since d(x, y) < ε0 and d(x′, y′) < ε0,
the CAT(0) geometry of X implies that [y, y′] meets the ball B(u, ε0) ⊂ B(z, η(z)) at a
point v. By definition of η(z), we thus have σz ⊂ σu and σz ⊂ σv, which yields the path of
simplices σu, σz, σv in N(K)\K between σu and σv. Now the geodesic segment [x, x′] (resp.
[y, y′]) yields a path of simplices in N(K) \ K (by convexity of K) of length at most m1

between τ and σu (resp. between τ ′ and σv). We thus get a path of simplices in N(K) \K
of length at most 2m1 + 1 between τ and τ ′.

IV.2 Construction of the boundary

We now turn to the construction of a boundary of G.

Definition IV.2.1. We say that a complex of classifying spaces EG(Y) compatible with
a complex of groups G(Y) extends to an EZ-complex of classifying spaces if it satisfies the
following extra conditions:

• Each fibre EGσ is endowed with an EZ-structure (EGσ, ∂Gσ).

• Each local map φa : EGi(a) → EGt(a) is an equivariant embedding and extends to
an equivariant embedding φa : EGi(a) → EGt(a), such that for every pair (a, b) of
composable edges of Y, we have:

ga,b ◦ φab = φaφb.

Definition IV.2.2. We define the space

Ω(Y) =

(
G×

∐
σ∈V (Y)

({σ} × ∂Gσ)

)
/ '

where (
gg′, ({σ}, ξ)

)
'
(
g, ({σ}, g′ξ)

)
if ξ ∈ ∂Gσ, g′ ∈ Gσ, g ∈ G.
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It should be noted here that {σ} denotes a point labeled by σ and not the simplex itself.
The set Ω(Y) comes with a natural projection to the set of simplices of X. If σ is a simplex
of X, we denote by ∂Gσ the preimage of {σ} under that projection. We now define

∂StabG = Ω(Y)/ ∼

where ∼ is the equivalence relation generated by the following identifications:[
g,
{
σ′
}
, ξ

]
∼
[
gF ((σ, σ′))−1, {σ}, φ(σ,σ′)(ξ)

]
if g ∈ G, (σ, σ′) ∈ E(Y) and ξ ∈ ∂Gσ′ .

The action of G on G ×
∐
σ∈V (Y)({σ} × ∂Gσ) by left multiplication on the first factor

yields an action of G on Ω(Y) and on ∂StabG.

Definition IV.2.3. We define the spaces ∂G = ∂StabG ∪ ∂X and EG = EG ∪ ∂G.

Our aim is to endow EG with a topology that makes (EG, ∂G) an EZ-structure for G.

Notation: Since the φσ,σ′ are embeddings, we identify φσ,σ′(EGσ′) ⊂ EGσ with EGσ′ .
For instance, if U is an open subset of EGσ, we will simply write “ we have EGσ′ ⊂ U in
EGσ” instead of “we have φσ,σ′(EGσ′) ⊂ U in EGσ”.

From now on, we assume that there is a complex of classifying spaces EG(Y) that extends
to an EZ-complex of classifying spaces compatible with the complex of groups G(Y).

IV.2.1 Further properties of EZ-complexes of spaces.

In this section, we define additional properties of EZ-complexes of spaces, which will enable
us to study the properties of the equivalence relation ∼ previously defined.

The limit set property.

Recall that for a discrete group Γ together with an EZ-structure (EΓ, ∂Γ) and a subgroup
H, the limit set ΛH of H in ∂Γ is the set Hx ∩ ∂Γ, where x is an arbitrary point of EΓ.

Definition IV.2.4 (Limit set property for an EZ-complex of classifying spaces). We say
that the EZ-complex of classifying spaces EG(Y) compatible with the complex of groups
G(Y) satifies the limit set property if the following conditions are satisfied:

• For every pair of simplices σ ⊂ σ′ of Y , the map φσ,σ′ is an equivariant homeomor-
phism from ∂Gσ′ to the limit set ΛGσ′ ⊂ ∂Gσ.

• For every simplex σ of Y , and every pair of subgroups H1, H2 in the family Fσ ={⋂n
i=1 giGσig

−1
i | g1, . . . , gn ∈ Gσ, σ1, . . . , σn ⊂ st(σ), n ∈ N

}
, we have ΛH1 ∩ ΛH2 =

Λ(H1 ∩H2).
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Remarks. (i) Let Γ be a hyperbolic group, and H a subgroup. Then H is quasicon-
vex if and only if its limit set in ∂Γ is equivariantly homeomorphic to ∂H, by a result of
Bowditch [6].
(ii) Let Γ be a hyperbolic group and ∂Γ its Gromov boundary. Let H1 and H2 be two
quasiconvex subgroups of Γ. Then ΛH1 ∩ ΛH2 = Λ(H1 ∩H2) by a result of [24].

The finite height property.

Recall that, for Γ a discrete group and H a subgroup, the height of H is the supremum of
the set of integers n ∈ N such that there exist distinct cosets γ1H, . . . , γnH ∈ G/H such
that the intersection γ1Hγ

−1
1 ∩ . . . ∩ γnHγ−1

n is infinite (see [22]). If such a supremum is
infinite, we say that H is of infinite height in Γ. Otherwise, H is said to be of finite height
in Γ. A quasiconvex subgroup of a hyperbolic group is of finite height, by a result of [22].

Definition IV.2.5 (Finite height property). We say that the EZ-complex of classifying
spaces EG(Y) compatible with the complex of groups G(Y) satifies the finite height property
if for every pair of simplices σ ⊂ σ′ of Y , Gσ′ is of finite height in Gσ.

IV.3 The geometry of the action.

In this section, we gather a few geometric tools that will be used to construct a topology
on EG = EG ∪ ∂G. From now on, we assume that the EZ-complex of classifying spaces
EG(Y) compatible with G(Y) satisfies the limit set property IV.2.4 and the finite height
property IV.2.5. We further assume that the action of G on X is acylindrical and we fix
an acylindricity constant A > 0, that is, a constant such that every subcomplex of X of
diameter at least A has a finite pointwise stabiliser.

IV.3.1 Domains and their geometry.

In this section, we study the topological properties of the identifications made to build the
boundary of G.

Definition IV.3.1. Let ξ ∈ ∂StabG. We define D(ξ), called the domain of ξ, as the
subcomplex of X whch is the union of the simplices σ such that ξ ∈ ∂Gσ. We denote by
V (ξ) the set of vertices of D(ξ).

The aim of this paragraph is to prove the following:

Proposition IV.3.2. Domains are finite convex subcomplexes of X with a uniformly
bounded number of simplices.
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The containment lemma IV.1.3 and Proposition IV.3.2 imply the following:

Corollary IV.3.3. For every ξ ∈ ∂StabG, there exists an integer dξ such that D(ξ) has at
most dξ simplices, and such that a geodesic segment in the open simplicial neighbourhood of
D(ξ) meets at most dξ open simplices. Furthermore, there exists an upper bound dmax on
the set of integers dξ, ξ ∈ ∂StabG.

Recall that Ω(Y) is defined in IV.2.2 as the disjoint union of the ∂Gv’s (v ∈ V (X)) and
that ∂StabG is a quotient of Ω(Y) defined by making identifications along edges of X. We
start by proving the following proposition:

Proposition IV.3.4. Let v be a vertex of X. Then the projection π : ∂Gv → ∂G is injective.

Definition IV.3.5. Let ξ ∈ ∂StabG. A ξ-path is the data {(vi)0≤i≤n, (ξi)0≤i≤n, (xi)1≤i≤n}
of:

• a sequence v0, . . . , vn of adjacent vertices of X,

• a sequence ξ0, . . . , ξn of elements of Ω(Y), such that ξi ∈ ∂Gvi for every i, and such
that each ξi is in the equivalence class ξ,

• a sequence x1, . . . , xn of elements of Ω(Y), such that xi ∈ ∂G[vi−1,vi] for every i, and
such that φvi−1,[vi−1,vi](xi) = ξi−1 (resp φvi,[vi−1,vi](xi) = ξi).

To lighten notations, a ξ-path will sometimes just be denoted [v0, . . . , vn]ξ. The path in
the 1-skeleton of X induced by a ξ-path is called the support of [v0, . . . , vn]ξ, and denoted
[v0, . . . , vn]. If v0 = vn, a ξ-path will rather be called a ξ-loop.

Lemma IV.3.6. Let v0, . . . , vn be vertices of X, H = ∩0≤i≤nGvi , and K be a connected
subcomplex of X pointwise fixed by H. Suppose that H is infinite, and let ξ ∈ ∂StabG such
that, in Gv0, we have

ξ ∈ ΛH ⊂ ∂Gv0 .

Then ξ ∈ ΛH ⊂ ∂Gσ for every simplex σ of K, hence K ⊂ D(ξ).

Proof. As K is connected, it is enough to prove that for every path of simplices σ0 =
v0, . . . , σd contained in K, we have ξ ∈ ∂H ⊂ ∂Gσd . Now this follows from an easy
induction on the number of simplices contained in such a path.

Lemma IV.3.7. Let ξ ∈ ∂StabG, [v0, . . . , vn]ξ a ξ-path and H = ∩0≤i≤nGvi . Then

• H is infinite,

• ξ ∈ ΛH ⊂ ∂Gvi for every i = 0, . . . , n.
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Proof. We show the result by induction on n ≥ 1. The result is immediate for n = 1 by
definition of ∼. Suppose the result true up to rank n and let ξ ∈ ∂StabG together with a
ξ-path [v0, . . . , vn+1]ξ. By restriction, we get a ξ-path [v0 . . . , vn]ξ for which the result is
true by the induction hypothesis. Thus ξ ∈ Λ(∩0≤i≤nGvi) ⊂ ∂Gvn . But since ξ is also in
∂G[vn,vn+1] = ΛG[vn,vn+1] by assumption, we get

ξ ∈ Λ
( ⋂

0≤i≤n
Gvi
)
∩ ΛG[vn,vn+1] = Λ

( ⋂
0≤i≤n+1

Gvi
)
⊂ ∂Gvn ,

the previous equality following from the limit set property IV.2.4. Now, by Lemma IV.3.6,
we get ξ ∈ Λ(∩0≤i≤n+1Gvi) ⊂ ∂Gvi for every i = 0, . . . , n+1, which concludes the induction.

Proof of Proposition IV.3.4. Let ξ, ξ′ be two elements of Ω(Y) in the image of ∂Gv, that are
equivalent for the equivalence relation∼. Then there exists a ξ-loop {(vi)0≤i≤n, (ξi)0≤i≤n, (xi)1≤i≤n}
with ξ0 = ξ, ξn = ξ′. It is enough to prove the result when the support [v0, . . . , vn] of
that ξ-loop is injective. Let Y be the set of all points on a geodesic between two points
of [v0, . . . , vn]. By the previous lemma, there is an infinite subgroup H of G stabilising
pointwise v0, . . . , vn. As X is CAT(0), H also stabilises pointwise every point of Y . As
[v0, . . . , vn] is contractible inside Y , the finiteness lemma IV.1.5 implies that we can choose
a finite 2-complex F such that the loop [v0, . . . , vn] is contractible inside F , and such that
F is pointwise fixed by H. We call such a subcomplex a hull of the loop [v0, . . . , vn]. Hence
the result will follow from the following fact, which we now prove by induction.

(Hd): For every ξ ∈ ∂StabG and every ξ-loop {(vi)0≤i≤n, (ξi)0≤i≤n, (xi)1≤i≤n} admitting
a hull containing at most d triangles, we have ξ0 = ξn.

If d = 1, then n = 2, and the hull considered is just a single triangle σ. Since H ⊂ Gσ
because H stabilises σ pointwise, we can choose x ∈ ∂Gσ such that φv1,σ(x) = ξ1. From the
commutativity of the diagram of embeddings for a simplex, it follows that φ[v0,v1],σ(x) = x1

and φ[v1,v2],σ(x) = x2. Hence ξ0 = φv0,[v0,v1](x1) = φv0,σ(x) = φv0,[v2,v0](x2) = ξ2.
Suppose the result true up to rank d, and let ξ ∈ ∂StabG, together with a ξ-loop

{(vi)0≤i≤n, (ξi)0≤i≤n, (xi)1≤i≤n} admitting a hull F containing at most d + 1 triangles.
Choose any triangle σ of F containing the segment [v1, v2]. As σ is stabilised by H, we can
find x ∈ ∂Gσ such that φv1,σ(x) = ξ1. There are now two possible cases, depending of the
nature of σ:

• If another side of σ is contained in the support of the ξ-loop, for example [v2, v3], we
set x′ = φ[v1,v3],σ(x).

Now the commutativity of the diagram of embeddings for σ yields the following new
ξ-loop

{(v0, v1, v3, v4, . . . , vn), (ξ0, ξ1, ξ3, . . . , ξn), (x1, x
′, x4, . . . , xn)}.
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A hull for that new loop is given by the closure of F \ σ, thus containing at most d
triangles, and we are done by induction.

• If no other side of σ is contained in the support of the ξ-loop, we set a to be the
remaining vertex of σ, α = φa,σ(x), x2 = φ[v1,a],σ(x) and x′2 = φ[a,v2],σ(x).

The commutativity of the diagram of embeddings for σ yields the following new ξ-
loop:

{(v0, v1, a, v2, . . . , vn), (ξ0, ξ1, α, ξ2, . . . , ξn), (x1, x2, x
′
2, x3, . . . , xn)}.

A hull for that new loop is given by the closure of F \ σ, thus containing at most d
triangles, and we are done by induction.

Proof of Proposition IV.3.2. Convexity : Let x, x′ be two points of D(ξ). Let v (resp. v′)
be a vertex of σx (resp. σx′). We can thus find a ξ-path {(vi)0≤i≤n, (ξi)0≤i≤n, (xi)1≤i≤n}
with v0 = v and vn = v′. As ξ ∈ ∂Gσx and ξ ∈ ∂Gσx′ , we can assume without loss of
generality that its support [v0, . . . , vn] contains all the vertices of σx and σx′ . By Lemma
IV.3.7, this implies that the subgroup H = ∩0≤i≤pGvi is infinite and that ξ ∈ ΛH ⊂ ∂Gv0 .
Now since H fixes pointwise all the vertices of σx and σx′ , and since X is CAT(0), H also
fixes pointwise the geodesic segment [x, x′]. But by Lemma IV.3.6, the fixed-point set of H
is contained in D(ξ), hence so is [x, x′]. Thus D(ξ) is convex.

Finiteness: Let σ be a simplex of D(ξ) and σ1, σ2, . . . be a (possibly empty) sequence
of simplices containing strictly σ and contained in D(ξ). It follows from the proof of
Proposition IV.3.4 that ξ ∈ ∂Gσi ⊂ ∂Gσ for every i. Thus, the limit set property IV.2.4,
the finite height property IV.2.5 and the cocompactness of the action imply that there can
be only finitely many such simplices. Thus D(ξ) locally finite. To prove that it is also
bounded, consider x, x′ two points of D(ξ). By Lemma IV.3.7 the stabiliser of {x, x′} is
infinite. Thus the domain of ξ has a diameter bounded above by the acylindricity constant.
The complex D(ξ) is locally finite and bounded, hence finite. Moreover, it is clear from the
above argument that the bound can be chosen uniform on ξ.

IV.3.2 Nestings and Families.

Definition IV.3.8 (the convergence property). We say that an EZ-complex of classifying
spaces compatible with G(Y) satisfies the convergence property if, for every pair of simplices
σ ⊂ σ′ in Y and every injective sequence (gnGσ′) of cosets of Gσ/Gσ′ , there exists a
subsequence such that (gϕ(n)EGσ′) uniformly converges to a point in EGσ.

From now on, besides the limit set property IV.2.4, the finite height property IV.2.5 and
the acylindricity assumption, we assume that the EZ-complex of classifying spaces EG(Y)

satisfies the convergence property IV.3.8.
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Definition IV.3.9. Let ξ ∈ ∂StabG, v a vertex of D(ξ), and U a neighbourhood of ξ in
EGv. We say that a subneighbourhood V ⊂ U containing ξ is nested in U if its closure is
contained in U and for every simplex σ of st(v) not contained in D(ξ), we have

EGσ ∩ V 6= ∅⇒ EGσ ⊂ U.

Lemma IV.3.10 (nesting lemma). Let ξ ∈ ∂StabG, v a vertex of D(ξ) and U a neighbour-
hood of ξ in EGv. Then there exists a subneighbourhood of ξ in EGv, V ⊂ U , which is
nested in U .

Proof. We show this by contradiction. Consider a countable basis (Vn)n of neighbourhoods
of ξ in EGv, and suppose that for every n, there exists a simplex σn ∈ st(v)\D(ξ) such that
EGσn∩Vn 6= ∅ and EGσn ( U . Up to a subsequence, we can assume that (σn)n is injective.
By cocompactness of the action, we can also assume that all the σn cover a unique simplex
σ of Y . Now the convergence property IV.3.8 implies that there should exist a subsequence
σλ(n) such that EGσλ(n) uniformly converges to a point in EGv, a contradiction.

Since, in ∂G, boundaries of stabilisers of vertices are glued together along boundaries
of stabilisers of edges, we will construct neighbourhoods in EG of a point ξ ∈ ∂StabG
using neighbourhoods of the representatives of ξ in the various EGv, where v runs over the
vertices of the domain of ξ.

Definition IV.3.11 (ξ-family). Let ξ ∈ ∂StabG. A collection U of open sets {Uv, v ∈ V (ξ)}
is called a ξ-family if for every pair of vertices v, v′ of X that are joined by an edge e and
every x ∈ EGe,

φv,e(x) ∈ Uv ⇔ φv′,e(x) ∈ Uv′ .

Proposition IV.3.12. Let ξ ∈ ∂StabG. For every vertex v of D(ξ), let Uv be a neighbour-
hood of ξ in EGv. Then there exists a ξ-family U ′ such that U ′v ⊂ Uv for every vertex v of
D(ξ).

Proof. For every simplex σ of D(ξ), we construct open sets U ′σ by induction on dim(σ),
starting with simplices of maximal dimension, that we denote d.

If dim(σ) = d, we set
U ′σ =

⋂
v∈σ

φ−1
v,σ(Uv).

Assume the U ′σ constructed for simplices of dimension at least k ≤ d, and let σ0 be of
dimension k − 1. If no simplex of dimension ≥ k contains σ0, set

U ′σ0 =
⋂
v∈σ

φ−1
v,σ0(Uv).
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Otherwise, since the φσ,σ′ are embeddings,⋃
σ0⊂σ⊂D(ξ)

dim(σ)=k

φσ0,σ(U ′σ)

is open in ⋃
dim(σ)=k

σ0⊂σ⊂D(ξ)

φσ0,σ(EGσ).

We can thus write it as the trace of an open set U ′σ0 of EGσ0 . This yields for every vertex v
of D(ξ) a new open set U ′v. By intersecting it with Uv, we can further assume that U ′v ⊂ Uv.
This new collection of neighbourhoods clearly satisfies the desired property.

Definition IV.3.13. Let ξ ∈ ∂StabG, together with two ξ-families U ,U ′. We say that U ′
is nested in U if for every vertex v of D(ξ), U ′v is nested in Uv. Furthermore we say that U ′
is n-nested in U if there exist ξ-families

U ′ = U [0] ⊂ . . . ⊂ U [n] = U

with U [i] nested in U [i+1] for every i = 0, . . . , n− 1.

IV.4 A geometric toolbox.

We now prove some results which will be our main tools in studying EG and ∂G. Since the
proofs in this section rely heavily on the geometry of X, we start with a few definitions.

Definition IV.4.1. Let ξ ∈ ∂StabG, x ∈ X, η ∈ ∂X and ε ∈ (0, 1).
Let d be the simplicial metric onX, and choose a basepoint v0 ∈ X. We denote by [v0, x]

the unique geodesic segment from v0 to x, and by γx : [0, d(v0, x)]→ X its parametrisation.
We denote by [v0, η) the unique geodesic ray from v0 to η, and by γη : [0,∞) → X its
parametrisation.

We denote by Dε(ξ) the open ε-neighbourhood of D(ξ).
We say that a geodesic in X parametrised by γ goes through (resp. enters) Dε(ξ) if

there exist t0 such that γ(t0) ∈ Dε(ξ) and t1 > t0 such that γ(t1) /∈ Dε(ξ) (resp. if there
exists t0 such that γ(t0) ∈ Dε(ξ)) .

If the geodesic [v0, x] goes through Dε(ξ), we define an exit simplex σξ,ε(x) as the first
simplex touched by [v0, x] after leaving Dε(ξ). If x ∈ Dε(ξ), we set σξ,ε(x) = σx.

Note that, by the assumption on the distance from a simplex to the boundary of its
closed simplicial neighbourhood, we always have Dε(ξ) ⊂ N(D(ξ)).
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Definition IV.4.2. Let ξ ∈ ∂StabG , U a ξ-family and ε ∈ (0, 1). We define ConeU ,ε(ξ)
(resp. C̃oneU ,ε(ξ)) as the set of points x of X \ D(ξ) such that the geodesic [v0, x] goes
through (resp. enters) Dε(ξ) and such that for some vertex v of D(ξ) (hence for every by
Definition IV.3.11) contained in the exit simplex σξ,ε(x), we have, in EGv:

EGσξ,ε(x) ⊂ Uv.

Definition IV.4.3. For ξ ∈ ∂StabG and U a ξ-family (Definition IV.3.11), we define the
subcomplex NU (D(ξ)) as the union of closed simplices σ ⊂ N(D(ξ)) such that for some
(hence for every) vertex v of D(ξ) ∩ σ, we have, in EGv:

EGσ ∩ Uv 6= ∅.

IV.4.1 The crossing lemma.

Lemma IV.4.4 (crossing lemma). Let ξ ∈ ∂StabG, U , U ′ two ξ-families, and σ1, . . . , σn
(n ≥ 1) a path of open simplices contained in N

(
D(ξ)

)
\D(ξ). Suppose that U ′ is n-nested

in U (Definition IV.3.13), and that σ1 ⊂ NU ′
(
D(ξ)

)
. Then for every k ∈ {1, . . . , n} and

every vertex v of D(ξ) contained in σk, we have EGσk ⊂ Uv in EGv.

Proof. We prove the result by induction on n, by using the definition of nested families.
The result for n = 1 follows from the definition of a nested family. Suppose the result

true for 1, . . . , n, and let σ1, . . . , σn+1 be a path of simplices in N
(
D(ξ)

)
\D(ξ) and U [0] ⊂

. . . ⊂ U [n+1] = U . By induction, the result is true for the path σ1, . . . , σn and the filtration
U [0] ⊂ . . . ⊂ U [n], so the only inclusion to be proved is the aforementioned one for σn+1.

If σn ⊂ σn+1, every vertex v of σn is also a vertex of σn+1, so the result is already true
for vertices of D(ξ) contained in σn. Now by the definition of ξ-families (see Definition
IV.3.11), this implies the result for every vertex of D(ξ) ∩ σn+1.

Suppose now that σn ⊃ σn+1, and let v be a vertex of D(ξ) contained in σn+1. Since v
is also in σn, EGσn ⊂ U

[n]
vd in EGσn , so we have EGσn+1 ∩ U

[n]
vn 6= ∅, which in turn implies

EGσn+1 ⊂ U
[n+1]
v since U [n] is nested in U [n+1]. Now by the definition of ξ-families IV.3.11,

the same result holds for every vertex v of D(ξ) contained in σn+1.

IV.4.2 The geodesic reattachment lemma.

Recall that Definition IV.3.3 yields for every ξ ∈ ∂StabG a constant dξ ≤ dmax such that
D(ξ) contains at most dξ simplices and such that a geodesic contained in the open simplicial
neighbourhood of D(ξ) meets at most dmax open simplices.

Definition IV.4.5 (refined families). Let n ≥ 1. By Lemma IV.1.7, we can choose a
constant m such that the following holds:
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Let K be a convex subcomplex of X and K ′ a connected subcomplex of X, both
containing at most max(n, dmax) simplices. Let x, y ∈ K and x′, y′ ∈ K ′ and assume that
there exists a path in K ′ between x and y that does not meet K. Let τ, τ ′ be two simplices
of N(K) \ K such that the geodesic segment [x, x′] (resp. [y, y′]) meets the interior of τ
(resp. τ ′). Then there exists a path of simplices in N(K) \K of length at most m between
τ and τ ′.

Let ξ ∈ ∂StabG, U a ξ-family. A ξ-family that is m-nested in U is said to be n-refined
in U . For n the number of simplices of D(ξ), we denote by mξ such a choice of m.

Lemma IV.4.6. Let ξ ∈ ∂StabG. There exists a ξ-family Vξ such that for every vertex v of
D(ξ) and every simplex σ of

(
st(v) \D(ξ)

)
∩Geod

(
v0, D(ξ)

)
, we have (Vξ)v ∩ EGσ = ∅.

Proof. Let σ a simplex of N(D(ξ)) \D(ξ) whose interior meets Geod(v0, D(ξ)). Let v be a
vertex of D(ξ)∩ σ. Let Uv be a neighbourhood of ξ in EGv that is disjoint from EGσ. For
every other vertex w of D(ξ), set Uw = EGw. By Proposition IV.3.12, we choose a ξ-family
Vξ that is (dξ + 1)-refined in the collection of open sets {Uw, w ∈ V (ξ)}. The result now
follows from Definition IV.4.5.

Lemma IV.4.7. Let ξ ∈ ∂StabG. Let U be a ξ-family that is mξ-nested in Vξ (recall that Vξ
is assumed to satisfy Lemma IV.4.6). Let x ∈ X \D(ξ) be such that there exists a simplex

σ ⊂
(
N(D(ξ))\D(ξ)

)
that meets Geod

(
x,D(ξ)

)
and such that for some (hence any) vertex

v of σ ∩D(ξ) we have EGσ ⊂ Uv. Then x /∈ Geod(v0, D(ξ)).

Proof. We prove the lemma by contradiction. Let x and σ be as in the statement of the
lemma. Let z ∈ D(ξ) be such that x ∈ [v0, z] and z′ ∈ D(ξ) be such that the geodesic
segment [x, z′] meets σ. Let σ′ be the last simplex touched by [v0, z] before meeting D(ξ),
and v′ a vertex of σ′.

x

D(ξ)

σσ′

v0

z z′

Figure IV.2.
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Since U is mξ-nested in Vξ, it follows from the inclusion EGσ ⊂ Uv and Lemma IV.1.7
that EGσ′ ⊂ (Vξ)v′ , contradicting the definition of Vξ.

The next lemma gives a useful criterion that ensures that a given path is a global
geodesic.

Lemma IV.4.8 (geodesic reattachment lemma). Let ξ ∈ ∂StabG, V a ξ-family satisfying
Lemma IV.4.6, U a ξ-family which is (mξ + dξ)-nested in V, and x ∈ X \D(ξ). Suppose
that there exists a simplex σ ⊂ N(D(ξ)) \ D(ξ) that meets Geod

(
x,D(ξ)

)
such that for

some (hence any) vertex v of σ ∩ D(ξ) we have EGσ ⊂ Uv. Then [v0, x] meets D(ξ) and
x ∈ C̃oneV,ε(ξ) for every ε ∈ (0, 1).

In such a case, the geodesic from v0 to x meets D(ξ), and is the concatenation of a
geodesic segment in Geod(v0, D(ξ)) and a geodesic in Geod(D(ξ), x).

Proof. Let K = Geod(v0, D(ξ)) ∪ Geod(D(ξ), x) and let [v0, x]K be the geodesic from v0

to x in K (which meets finitely many simplices by Lemma IV.1.5). Our aim is to prove
that [v0, x]K = [v0, x]. By Lemma IV.4.7, x /∈ Geod(v0, D(ξ)). As D(ξ) is convex by
Proposition IV.3.2, let v1, v2 ∈ D(ξ) be such that [v0, x]K = [v0, v1] ∪ [v1, v2] ∪ [v2, x] and
such that [v0, v1) and (v2, x] do not meet D(ξ). Let ε ∈ (0, 1). Let a ∈ [v0, v1] be such that
d(a, v1) = ε. If x /∈ Dε(ξ) let b ∈ [v2, x] be such that d(v2, b) = ε. Otherwise, let b = x.
Since X is CAT(0), it is enough to prove that [v0, x]K is a local geodesic at every point.
We already have that [v0, v1] ∪ [v1, v2] and [v1, v2] ∪ [v2, x] are geodesics, so it is sufficient
to prove the result when v1 = v2. We thus have

[v0, x]K = [v0, v1] ∪ [v1, x],

with [v0, v1] ⊂ Geod(v0, D(ξ)) and [v1, x] ⊂ Geod(D(ξ), x). Assume by contradiction that
[v0, x]K is not a local geodesic at v1. Then the geodesic segment [a, b] does not meet D(ξ).
This geodesic segment yields a path of simplices between σa and σb of length at most dξ in
N(D(ξ)) \ D(ξ). Furthermore, there is a path of simplices between σ and σb of length at
most mξ in N(D(ξ))\D(ξ) by Definition IV.4.5. Thus, there is a path of simplices between
σ and σa of length at most mξ + dξ in N(D(ξ)) \ D(ξ). But since EGb ⊂ Uv and U is
(mξ + dξ)-nested in V, the crossing lemma IV.4.4 implies EGa ⊂ Vv, which contradicts the
fact that V satisfies Lemma IV.4.6.

Thus [v0, x]K = [v0, x] and σb = σξ,ε(x). It follows from the above discussion that for
some (hence every) vertex v′ of σξ,ε(x) we have EGσξ,ε(x) ⊂ Vv′ , hence x ∈ C̃oneV,ε(ξ).

From now on, every ξ-family will be assumed to be contained in a ξ-family Uξ satisfying
Lemma IV.4.8.

As a consequence, we get the following:
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Corollary IV.4.9. Let ξ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). Then for every x ∈
C̃oneU ,ε(ξ), the geodesic segment [v0, x] meets D(ξ).

Proof. By Lemma IV.4.7 applied to x and σξ,ε(x), we get x /∈ Geod(v0, D(ξ)). Let y be a
point of σξ,ε(x) ∩ [v0, x] ∩Dε(ξ). It follows from the geodesic reattachment lemma IV.4.8
applied to y and σξ,ε(x) that [v0, y], hence [v0, x], meets D(ξ).

IV.4.3 The refinement lemma.

Lemma IV.4.10 (refinement lemma). Let ξ ∈ ∂StabG, U a ξ-family and n ≥ 1. Let U ′ be
a ξ-family which is n-refined in U . Then the following holds:

For every ε ∈ (0, 1) and every path of simplices σ1, . . . , σn in X \D(ξ) such that there
exists a point x1 ∈ σ1 such that [v0, x1] enters Dε(ξ) and σξ,ε(x1) ⊂ NU ′

(
D(ξ)

)
, we have

σ1, . . . , σn ⊂ C̃oneU ,ε(ξ).

Proof. Let us prove that for every x ∈ ∪1≤i≤nσi, the geodesic segment [v0, x] meets D(ξ).
Let x1 ∈ σ1 such that σξ,ε(x1) ⊂ NU ′(D(ξ)). Note that Corollary IV.4.9 implies that [v0, x1]
meets D(ξ). Let v be a vertex of D(ξ) ∩ σξ,ε(x1).

Let x ∈ ∪1≤i≤nσi and σ be a simplex of N(D(ξ)) \ D(ξ) touched by [v, x] after leav-
ing D(ξ). Let also w be a vertex of σ ∩ D(ξ). We can apply Lemma IV.1.7 to the
geodesic segments [v, x] and (a portion of) [v0, x1], and to simplices σ and σξ,ε(x1). Since
EGσξ,ε(x1) ⊂ U ′v and U ′ is n-refined in U , we get EGσ ⊂ Uw. Thus the geodesic reattach-
ment lemma IV.4.8 implies that [v0, x] meets D(ξ).

v0

x1
x

D(ξ)

σ

σξ,ε(x1)

Figure IV.3.
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Let x ∈ ∪1≤i≤nσi and let w be a vertex of σξ,ε(x) ∩D(ξ). We apply apply once again
Lemma IV.1.7, this time to portions of the geodesic segments [v0, x] and [v0, x1], and to
simplices σξ,ε(x) and σξ,ε(x1). Now since U ′ is n-refined in U and EGσξ,ε(x1) ⊂ U ′v, we get

EGσξ,ε(x) ⊂ Uw, hence x ∈ C̃oneU ,ε(ξ).

IV.4.4 The star lemma.

Lemma IV.4.11 (star lemma). Let ξ ∈ ∂StabG, ε ∈ (0, 1) and x ∈ X \ Dε(ξ) such that
the geodesic segment [v0, x] goes through Dε(ξ). Then there exists δ > 0 such that for every
y ∈ B(x, δ)\Dε(ξ), the geodesic segment [v0, y] goes through Dε(ξ). Furthermore, for every
y ∈ B(x, δ) \Dε(ξ), we have

σξ,ε(y) ⊂ st(σξ,ε(x)).

Proof. Let T = dist(v0, x), and let γx : [0, T ] → X be the parametrisation of the geodesic
segment [v0, x]. Let t0 > 0 such that [v0, x] leaves Dε(ξ) at time t0. Since D(ξ) is convex
by Proposition IV.3.2, the map z 7→ dist(z,D(ξ)) is convex. Thus, there exists r > 0 such
that

γx
(
[t0 − r, t0)

)
⊂ Dε(ξ),

γx
(

[t0 − r, t0]
)
⊂ st (σξ,ε(x)) .

We also choose τ > 0 such that for every y−, y+ in the τ -neighbourhood of γx
(

[t0 − r, t0]
)
,

the geodesic segment [y−, y+] is contained in st(σξ,ε(x)).
Let

k = ε− dist(γx(t0 − r), D(ξ)) > 0.

We set δ1 = 1/10 · min(k, τ, r). If x ∈ Dε(ξ), set δ = δ1. If x /∈ Dε(ξ), we can assume
without loss of generality that δ1 < 1/10 · (T − t0). By convexity of the distance, we have
d
(
γx(t0 + δ1), D(ξ)

)
> ε, and we set δ = 1/2 ·min

(
δ1, d(γx(t0 + δ1), Dε(ξ))

)
> 0.

Let y ∈ B(x, δ) \Dε(ξ), and let γy be its parametrisation.
Since δ ≤ r, we have d(v0, y) ≥ t0− r. Now, γx and γy parametrise geodesics starting at v0

and such that d(x, y) < δ, so since X is a CAT(0)-space, we get d(γx(t0− r), γy(t0− r)) ≤
2δ ≤ τ . The inequality 10δ ≤ k now implies

d

(
γy(t0 − r), D(ξ)

)
≤ d
(
γx(t0 − r), D(ξ)

)
+ d

(
γx(t0 − r), γy(t0 − r)

)
≤ (ε− 10δ) + 2δ

< ε,

so γy(t0 − r) ∈ Dε(ξ). Since y /∈ Dε(ξ), it follows that the geodesic segment [v0, y] goes
through Dε(ξ) and leaves it for some t1 > t0 − r.
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Moreover, after leaving Dε(ξ) the geodesic [v0, y] meets the τ -ball centred at γx(t0) for
some t2 ≥ t1. Indeed, this is clear if x ∈ Dε(ξ) since d(x, y) < δ ≤ τ . If x /∈ Dε(ξ),
then [v0, y] meets the 2δ-ball centred at γx(t0 + δ1), which is contained in (X \ Dε(ξ)) ∩
B(γx(t0), 2δ1) by definition of δ . Hence, [v0, y] meets B(γx(t0), τ) \Dε(ξ) for some t2 ≥ t1.

We thus have d(γx(t0− r), γy(t0− r)) ≤ τ and d(γx(t0), γy(t2)) ≤ τ . By definition of τ ,
it follows that

γy

(
[t0 − r, t2]

)
⊂ st (σξ,ε(x)) ,

which implies σξ,ε(y) ⊂ st
(
σξ,ε(x)

)
.

The star lemma IV.4.11 immediately implies the following:

Corollary IV.4.12. Let ξ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). Then the sets ConeU ,ε(ξ)
and C̃oneU ,ε(ξ) are open in X.

IV.5 The topology of EG.

In this section, we define a topology on EG and study its first properties.

IV.5.1 Definition of the topology.

In this paragraph, we define a topology on EG, by defining a basis of open neighbourhoods
at every point. Since points of EG are of three different kinds (EG, ∂X and ∂StabG), we
treat these cases separately.

Definition IV.5.1. Let x̃ ∈ EG. We define a basis of neighbourhoods of x̃ in EG, denoted
OEG(x̃), as the set of open sets of EG containing x̃.

We now turn to the case of points of the boundary of X. Recall that since X is a
simplicial CAT(0) space with countably many simplices, the bordification X = X ∪∂X has
a natural metrisable topology, though not necessarily compact if X is not locally finite. For
every η ∈ ∂X, a basis of neighbourhoods of η in that bordification is given by the family of

Vr,δ(η) =

{
x ∈ X

∣∣∣∣d(v0, x) > r and γx(r) ∈ B(γη(r), δ)

}
, r, δ > 0.

Remark: For r, δ > 0, η ∈ ∂X and if γ is the parametrisation of a geodesic such that there
exists T ≥ 0 with γ(T ) ∈ Vr,δ(η), then γ(t) ∈ Vr,δ(η) for every t ≥ T .

We denote by OX(η) this basis of neighbourhoods of η in X. Endowed with that
topology, X is a second countable metrisable space (see [9]).

Note that the topology of X satisfies the following properties:
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Lemma IV.5.2. Let η ∈ ∂X. Then there exists a basis of neighbourhoods (Un) of η in X
such that Un and Un \ ∂X are contractible for every n ≥ 0.

Proof. For r, δ > 0, let Ur,δ(η) = Vr,δ(η) ∪ B(γη(r), δ). This defines a basis of neighbour-
hoods of η in X. As Ur,δ(η) \ ∂X can be retracted by strong deformation along geodesics
starting at v0 onto B(γη(r), δ), it is contractible. Furthermore, as Ur,δ(η) can be retracted
by strong deformation onto Ur,δ(η) \ ∂X, the same holds for Ur,δ(η).

Lemma IV.5.3. Let η ∈ ∂X, U a neighbourhood of η in X and k ≥ 0. Then there exists
a neighbourhood U ′ of η in X that is contained in U and such that d(U ′ ∩X,X \ U) > k.

Proof. The definition of the topology of X implies the following: if (xn) and (yn) are two
sequences of X such that d(xn, yn) is bounded, then (xn) converges to a point of ∂X if
and only if (yn) converges to the same point. Reasoning by contradiction thus implies the
lemma.

Definition IV.5.4. Let η ∈ ∂X, and let U be a neighbourhood of η in X. We set

VU (η) = p−1(U ∩X) ∪ (U ∩ ∂X) ∪ {ξ ∈ ∂StabG|D(ξ) ⊂ U} .

When U runs over the basis OX(η) of neighbourhoods of η in X, the above formula defines
a collection of neighbourhoods for η in EG, denoted OEG(η).

We finally define open neighbourhoods for points in ∂StabG.

Definition IV.5.5. Let ξ ∈ ∂StabG, U ⊂ Uξ be a ξ-family, and ε ∈ (0, 1). A neighbourhood
VU ,ε(ξ) is defined in four steps as follows:

• Let WU ,ε(ξ) be the set of points x̃ ∈ EG whose projection x ∈ X belongs to Dε(ξ)
and is such that for some (hence every) vertex v of D(ξ)∩σx, we have φv,σx(x̃) ∈ Uv.

• Let W1 be the set of points of EG whose projection in X belongs to ConeU ,ε(ξ).

• Let W2 be the set of points of ∂X that belong to ConeU ,ε(ξ).

• Let W3 be the set of points ξ′ ∈ ∂StabG such that D(ξ′) \D(ξ) ⊂ C̃oneU ,ε(ξ) and for
every vertex v of D(ξ) ∩D(ξ′) we have ξ′ ∈ Uv.

Now set
VU ,ε(ξ) = WU ,ε(ξ) ∪W1 ∪W2 ∪W3.

This collection of neighbourhoods of ξ in EG is denoted OEG(ξ). Note that these neigh-
bourhoods depend on the chosen basepoint v0. If we need to specify the basepoint used to
define the various sets ConeU ,ε(ξ), VU ,ε(ξ), we will indicate it in superscript. In that case,
we will speak of the topology (of EG) centred at a given point.
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Note that for ξ-families U ′ ⊂ U and ε′ < ε, we do not necessarily have the inclu-
sion VU ′,ε′(ξ) ⊂ VU ,ε(ξ) since these two neighbourhoods are defined by looking at the way
geodesics leave two (a priori non related) different neighbourhoods of the domain D(ξ).
However, the crossing lemma IV.4.4 immediately implies the following:

Lemma IV.5.6. Let ξ ∈ ∂StabG, U ,U ′ two ξ-families, and 0 < ε′ < ε. If U ′ is dξ-nested
in U , then VU ′,ε′(ξ) ⊂ VU ,ε(ξ).

Definition IV.5.7. We define a topology on EG by taking the topology generated by the
elements of OEG(x), for every x ∈ EG. We denote by OEG the set of elements of OEG(x)
when x runs over EG. Thus, any an open set in EG is a union of finite intersections of
elements of OEG.

We will show in the next subsection that OEG is actually a basis for the topology of
EG.

IV.5.2 A basis of neighbourhoods.

Here we prove that the set of neighbourhoods we just defined is a basis for the topology of
EG. In order to do that, we need the following:

Filtration Lemma. Let z, z′ ∈ EG and U ∈ OEG(z) an open neighbourhood of z. If
z′ ∈ U , then there exists an open neighbourhood of z′, U ′ ∈ OEG(z′), such that U ′ ⊂ U .

Since points of EG are of three different natures (EG, ∂X, and ∂StabG), the proof
breaks into six distinct cases. We first introduce a notation that will be useful to treat
similar cases at once.

Definition IV.5.8. We extend the projection p : EG→ X to a map p̄ from EG to the set
of subsets of X in the following way:

• For x̃ ∈ EG, we define p̄(z) to be the singleton {p(x̃)}.

• For η ∈ ∂X, we define p̄(η) to be the singleton {η}.

• For ξ ∈ ∂StabG, we set p̄(ξ) = D(ξ).

• Finally, for K ⊂ EG, we set p̄(K) =
⋃
z∈K p̄(z).

Lemma IV.5.9. Let x̃, ỹ ∈ EG and U ∈ OEG(x̃) an open neighbourhood of x̃ in EG. If
ỹ ∈ U , then there exists an open neighbourhood of ỹ in EG, U ′ ∈ OEG(ỹ) such that U ′ ⊂ U .

Proof. By definition of the topology, we can take U ′ = U .

Lemma IV.5.10. Let η, η′ ∈ ∂X and U ∈ OX(η) an open neighbourhood of η in X. If η′ ∈
VU (η), then there exists an open neighbourhood U ′ of η′ in X, such that VU ′(η′) ⊂ VU (η).
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Proof. Since OX is a basis of neighbourhoods for X, there exists a neighbourhood U ′ ∈
OX(η′) such that U ′ ⊂ U . Now one clearly has η ∈ VU ′(η′) ⊂ VU (η).

Lemma IV.5.11. Let x̃ ∈ EG, η ∈ ∂X and U an open neighbourhood of η in X. If
x̃ ∈ VU (η), then there exists an open neighbourhood U ′ of x̃ in EG, U ′ ∈ OEG(x̃), such that
U ′ ⊂ VU (η).

Proof. It is enough to choose an arbitrary open neighbourhood U ′ of x̃ contained in p−1(U∩
X).

Lemma IV.5.12. Let ξ ∈ ∂StabG, η ∈ ∂X and U ∈ OX(η) an open neighbourhood of η in
X. If ξ ∈ VU (η), then there exist ε ∈ (0, 1) and a ξ-family U such that VU ,ε(ξ) ⊂ VU (η).

Proof. The subcomplex D(ξ) ⊂ U is finite, hence compact, so choose ε ∈ (0, 1) such that
Dε(ξ) ⊂ U . Let U be any ξ-family. For every x ∈ C̃oneU ,ε(ξ), the geodesic segment [v0, x]
meets D(ξ) by Corollary IV.4.9. As D(ξ) is contained in U , the same holds for x. It then
follows that VUξ,ε(ξ) ⊂ VU (η).

Lemma IV.5.13. Let η ∈ ∂X, ξ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). If η ∈ VU ,ε(ξ),
then there exists an open neighbourhood U of η in X such that VU (η) ⊂ VU ,ε(ξ).

Proof. Let γη : [0,∞)→ X be a parametrisation of the geodesic ray [v0, η). The subcomplex
D(ξ) being finite by Proposition IV.3.2, choose R > 0 such that D(ξ) ⊂ B(v0, R), and let
x = γη(R+ 1). Since η ∈ VU ,ε(ξ), we have x ∈ ConeU ,ε(ξ), which is open in X by Corollary
IV.4.12. Let δ > 0 such that B(x, δ) ⊂ ConeU ,ε(ξ). Now if we set U ′ = VR+1,δ(η) ∈ OX(η),
it follows that VU ′(η) ⊂ VU ,ε(ξ).

Lemma IV.5.14. Let x̃ ∈ EG, ξ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). If x̃ ∈ VU ,ε(ξ),
then there exists a U ∈ OEG(x̃) such that U ⊂ VU ,ε(ξ).

Proof. It is enough to prove that VU ,ε(ξ) ∩ EG is open in EG. First, since the maps φσ,σ′
are embeddings, it is clear that WU ,ε(ξ) is open in EG. Let ỹ ∈ VU ,ε(ξ) ∩ EG with y =
p(ỹ) /∈ Dε(ξ). The star lemma IV.4.11 yields a δ > 0 such that for every z ∈ B(y, δ)\Dε(ξ),
the geodesic segment [v0, z] goes through Dε(ξ) and σξ,ε(z) ⊂ st(σξ,ε(y)). We can further
assume that B(y, δ) ⊂ st(σy). It now follows immediately from the construction of VU ,ε(ξ)
that p−1 (B(y, δ)) is an open neighbourhood of x̃ contained in VU ,ε(ξ), which concludes the
proof.

Lemma IV.5.15. Let ξ, ξ′ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). If ξ′ ∈ VU ,ε(ξ), then
there exists a ξ′-family U ′ and ε′ ∈ (0, 1) such that VU ′,ε′(ξ′) ⊂ VU ,ε(ξ).

By Lemma IV.4.11, let δ ∈ (0, ε) be such that for all y ∈ Dδ(ξ′)\Dε(ξ), the geodesic seg-
ment [v0, y] goes through Dε(ξ) and is such that σξ,ε(y) ⊂ st (σξ,ε(x)), for some x ∈ D(ξ′).
We now define a ξ′-family using the following lemma.
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Lemma IV.5.16. There exist nested ξ′-families U [dξ] ⊃ . . . ⊃ U [0] = U ′ such that the
following holds: Let x be a point of ConeU ′,δ(ξ′) such that the geodesic from v0 to x leaves
Dδ(ξ′) at a point which is still inside Dε(ξ). Let σ1 = σξ′,δ(x), . . . , σn = σξ,ε(x) (n ≤ dξ) be
the path of simplices met by the geodesic segment [v0, x] inside Dε(ξ) after leaving Dδ(ξ′)
(cf Figure IV.4).

Dε(ξ)

v0

Dδ(ξ′)

σξ′,δ(x)

σξ,ε(x)

Figure IV.4.

We then have the following, for every 1 ≤ k ≤ n:

(i) The simplex σk is contained in
⋃
v′∈V (ξ)∩V (ξ′) st(v

′) but not in
⋃
v∈V (ξ)\V (ξ′) st(v).

(ii) For every vertex v′ of σk contained in D(ξ′), the inclusion EGσk ⊂ U
[k]
v′ holds in

EGv′ .

Proof. If v′ is a vertex of D(ξ) ∩D(ξ′), then for every vertex v of st(v′) ∩ (D(ξ) \D(ξ′)),
choose a neighbourhood Wv,v′ of ξ′ in EGv′ missing EG[v,v′], and set

Wv′ =

 ⋂
v∈st(v′)∩(V (ξ)\V (ξ′))

Wv,v′

 ∩ Uv′ .
If v′ is a vertex not in D(ξ), set Wv = EGv′ .

We now define U ′ to be a ξ′-family that is dξ-nested in the family ofWv′ , v
′ ∈ D(ξ′), that is,

U ′ is a ξ′-family such that there exists a sequence of nested ξ′-families U [dξ] ⊃ . . . ⊃ U [0] = U ′

satisfying Wv′ ⊃ U
[dξ]
v′ ⊃ . . . ⊃ U

[0]
v′ = U ′v′ for every vertex v′ of D(ξ′).

We now prove (i) and (ii) by induction on k. Since the geodesic segment [v0, x] leaves
Dδ(ξ′) while inside Dε(ξ), we have σ1 = σξ′,δ(x) ⊂

⋃
v′∈V (ξ)∩V (ξ′) st(v

′). To prove (i) for
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k = 1, we reason by contradiction. Suppose there exists a vertex v′ of D(ξ) ∩D(ξ′) and a
vertex v of D(ξ) \D(ξ′) such that σ1 ⊂ st

(
[v, v′]

)
, then we have EGσ1 ⊂ EG[v,v′] in EGv′ .

But the former set is contained in Uv′ since x̃ ∈ VU ′,δ(ξ′), and the latter is disjoint from Uv′

by construction of U ′, which is absurd.
Suppose the result has been proved up to rank k. If σk+1 ⊂ σk, the result is straightfor-

ward, so we suppose that σk ⊂ σk+1. We prove (i) by contradiction. Suppose there exists
a vertex v′ of D(ξ) ∩ D(ξ′) and a vertex v of D(ξ) \ D(ξ′) such that σk+1 ⊂ st

(
[v, v′]

)
.

Then by the induction hypothesis, we have EG[v,v′] ∩ U
[k]
v′ 6= ∅ in EGv′ , hence EG[v,v′] ⊂

U
[k+1]
v′ ⊂ Wv′ since U [k] is nested in U [k+1],and the last inclusion contradicts the definition

of U ′.
We now prove (ii). Let vk a vertex of D(ξ) ∩ D(ξ′) contained in σk (hence in σk+1).

Thus we have EGσk+1
⊂ EGσk ⊂ U

[k]
vk ⊂ U

[k+1]
vk in EGvk . Now let v′ be another vertex of

D(ξ′) ∩ D(ξ) contained in σk+1 (if any). We thus have EG[vk,v′] ∩ U
[k]
vk 6= ∅ in EGvk , so

EG[vk,v′] ⊂ U
[k+1]
vk in EGvk . But by Proposition IV.3.12, this implies EG[vk,v′] ⊂ U

[k+1]
v′ ,

which proves (ii).

Proof of Lemma IV.5.15. Let us show now that VU ′,δ(ξ′) ⊂ VU ,ε(ξ). Let z ∈ VU ′,δ(ξ′) and
x ∈ p̄(z). The geodesic [v0, x] meets Dδ(ξ′), hence Dε(ξ). To prove that z ∈ VU ,ε(ξ), it is
now enough to prove that x ∈ C̃oneU ,ε(ξ).

If x ∈ WU ′,δ(ξ′) ∩ Dε(ξ), it follows from the definition of U ′ (defined in IV.5.16) that
z ∈WU ,ε(ξ).

If the geodesic segment [v0, x] meets Dδ(ξ′) outside Dε(ξ), it follows from the definition
of δ that there exists x′ ∈ D(ξ′) \ D(ξ) such that σξ,ε(x) ⊂ st (σξ,ε(x

′)). But since x′ ∈
C̃oneU ,ε(ξ), the same holds for x.

Thus the only case left to consider is when the geodesic segment [v0, x] leaves Dδ(ξ′)
while still being inside Dε(ξ). But by the previous lemma, we get that for every vertex v′ of
σξ,ε(x) contained inD(ξ), EGσξ,ε(x) ⊂ U

[n]
v ⊂ Uv in EGv, which now implies x ∈ C̃oneU ,ε(ξ).

This concludes the proof.

Theorem IV.5.17. OEG is a basis for the topology of EG, which makes it a second count-
able space. For this topology, EG embeds as a dense open subset.

Proof. To prove that OEG is a basis for the topology of EG, it is enough to show that for
every open sets U1, U2 of EG and every z ∈ U1 ∩ U2, there exists an open neighbourhood
W ∈ OEG such that z ∈W ⊂ U1 ∩ U2.

If z ∈ EG: By the results from the previous paragraph, there exists V1, V2 ∈ OEG(z)
such that V1 ⊂ U1 and V2 ⊂ U2. Then take W to be any element of OEG(z) = OEG(z)
contained in V1 ∩ V2.

If z = η ∈ ∂X: By the results from the previous paragraph, let O1, O2 ∈ OX(η) such
that VO1(η) ⊂ U1 and VO2(η) ⊂ U2. Choosing a neighbourhood W ∈ VX(η) contained in
O1 ∩O2, it follows that VW (η) ⊂ U1 ∩ U2.
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If z = ξ ∈ ∂StabG: By the results from the previous paragraph, let VU1,ε1(ξ), VU2,ε2(ξ)
such that VU1,ε1(ξ) ⊂ U1 and VU2,ε2(ξ) ⊂ U2. Let U be a ξ-family which is dξ-nested
in {(U1)v ∩ (U2)v, v ∈ V (ξ)}, and let ε = min(ε1, ε2). It follows from Lemma IV.5.6 that
VU ,ε(ξ) ⊂ VU1,ε1(ξ) ∩ VU2,ε2(ξ) ⊂ U1 ∩ U2.

To prove that this topology is second countable, we define countable many open sets
(Un)n≥0 such that for every open set U in OEG and every x in U , there exist an integer m
such that x ∈ Um ⊂ U .

Since EG is the realisation of a complex of spaces over a simplicial complex with count-
ably many simplices, and with fibres that have a CW-structure with countably many cells,
it inherits a CW-complex structure with countably many cells. Thus its topology is second
countable, and we can choose a countable basis of neighbourhoods (Un), n ≥ 0 of EG.

Since X is a simplicial complex with countably many cells, it is a separable space, hence
so is the set Λ of points lying on a geodesic from v0 to a point of ∂X (note that a given
geodesic segment may not necessarily be extendable to a geodesic ray). Let Λ′ be a dense
countable subset of Λ. Now the family of open sets Vr,ε(η) for η ∈ ∂X, γη(r) ∈ Λ′ and
ε ∈ Q is a countable family, yielding a countable family of open neighbourhoods of EG,
denoted (Vn)n≥0. Note that (Vn)n≥0 contains a basis of neighbourhoods for every point of
EG that belongs to ∂X.

A neighbourhood of a point ξ of ∂StabG is defined by choosing a constant ε ∈ (0, 1), a
finite subcomplex of X (the domain of ξ), and for every vertex v of that subcomplex an
open set of EGv. Since domains of points of ∂StabG are finite by Proposition IV.3.2, there
are only countably many such subcomplexes. Furthermore, for every vertex v of X, EGv
has a countable basis of neighbourhoods. It is now clear that we can define a countable
family (Wn)n≥0 of open neighbourhoods, containing a basis of neighbourhoods of every
element of ∂StabG.

The family consisting of all the Un, Vn,Wn is now a countable basis of neighbourhoods
of EG.

Finally, the subset EG, which is open by construction of the topology, is dense in EG
since every open set in that basis of neighbourhoods meets EG by construction.

Lemma IV.5.18. The topology of EG does not depend on the choice of a basepoint. More-
over, the action of G on EG continuously extends to ∂G.

Proof. Choose x0 and x1 two points of X (note that we do not assume these points to
be vertices). Throughout this proof, we will indicate the dependence on the basepoint by
indicating it in superscript, as explained in Definition IV.5.5. It is a well known fact that the
topology of X does not depend on the basepoint, so it is enough to consider neighbourhoods
of points in ∂StabG.

Recall that the number of simplices in a domain D(ξ), ξ ∈ ∂StabG is uniformly bounded
by the constant dmax defined in IV.3.3. Let ξ ∈ ∂StabG, U0 a ξ-family for the topology
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centred at x0 and ε > 0. Now let U1 be a ξ-family for the topology centred at x1, which
is 2dmax-refined in U0. Let x be a point of C̃one

x1
U1,ε(ξ). Then the geodesic reattachment

lemma IV.4.8 implies that [x0, x] meets D(ξ). We can thus apply Lemma IV.1.7 to subseg-
ments of [x0, x] and [x1, x], and to simplices σx0ξ,ε(x) and σx1ξ,ε(x). Since U1 is 2dmax-refined

in U0, it follows that x ∈ C̃one
x0
U0,ε(ξ), hence C̃one

x1
U1,ε(ξ) ⊂ C̃one

x0
U0,ε(ξ). Moreover, since U1

is contained in U0, we get V x1
U1,ε(ξ) ⊂ V

x0
U0,ε(ξ).

We extend the G-action on EG to ∂G as follows. First note that the action naturally
extends to ∂X. Indeed, G acts on the CAT(0) space X by isometries, and those isometries
naturally extend to homeomorphisms of the visual boundary ∂X. Furthermore, we defined
in Section 2 a G-action on ∂StabG. Thus we have an action of G on EG, which we now
prove to be continuous.

Let g ∈ G. Since EG is open in EG and the action of G on EG is continuous, it is
enough to check the continuity at points of ∂G. For a point z ∈ ∂G, the element g sends a
basis of neighbourhood of z for the topology centred at v0 to a basis of neighbourhoods of
g.z for the topology centred at g.v0. Since the topology does not depend on the basepoint
by the above discussion, the action of g is continuous at points of ∂G.

IV.5.3 Induced topologies.

Proposition IV.5.19. The topology of EG induces the natural topologies on EG, ∂X and
EGv for every vertex v of X.

We first prove that for any open set U in the basis of neighbourhoods OEG previously
defined, U∩EG is open in EG. For x ∈ EG, the result is obvious for points in OEG(x) since
open sets in OEG(x) are open sets of EG by definition. For η ∈ ∂X and U a neighbourhood
of η inX, we have VU (η)∩EG = p−1(U∩X) which is open in EG. For ξ ∈ ∂StabG, ε ∈ (0, 1)
and U a ξ-family, it was proven in Lemma IV.5.14 that VU ,ε(ξ) ∩ EG is open in EG.

We now prove that for any open set U in the basis of neighbourhoods OEG, U ∩ ∂X is
open in ∂X. For a point η ∈ ∂X and U a neighbourhood of η in X, we have VU (η)∩ ∂X =
U ∩ ∂X, which is open in ∂X. Now consider ξ ∈ ∂StabG , ε ∈ (0, 1) and U a ξ-family.
If VU ,ε(ξ) ∩ ∂X is empty there is nothing to prove, otherwise let η ∈ VU ,ε(ξ) ∩ ∂X. By
Lemma IV.5.13, let U ′ be a neighbourhood of η in X such that VU ′(η) ⊂ VU ,ε(ξ). Thus,
η ∈ U ′ ∩ ∂X ⊂ VU ,ε(ξ) ∩ ∂X, and VU ,ε(ξ) ∩ ∂X is open in ∂X.

Before proving the analogous result for EGv, with v a vertex of X, we need the following
lemma.

Lemma IV.5.20. Let ξ ∈ ∂StabG, U a ξ-family and ε ∈ (0, 1). Recall that dmax was defined
in IV.3.3 as an integer such that domains of points of ∂StabG meet at most dmax simplices.
Let U ′ be a ξ-family which is dmax-refined in U . Then we have

⋃
v∈D(ξ) U

′
v ∩∂Gv ⊂ VU ,ε(ξ).
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Proof. Let ξ′ ∈
⋃
v∈D(ξ) U

′
v ∩ ∂Gv and x ∈ D(ξ′). If x is a vertex of D(ξ) ∩ D(ξ′), the

definition of a ξ-family implies that ξ′ ∈ Ux. Otherwise, sinceD(ξ′) is convex by Proposition
IV.3.2, let γ be a geodesic path in D(ξ′) from x to D(ξ) and meeting D(ξ) at a single point.
This yields a path of open simplices from a simplex σ ⊂ N(D(ξ)) \ D(ξ) to σx of length
at most dmax in D(ξ′) \D(ξ). Since ξ′ ∈

⋃
v∈D(ξ) U

′
v ∩ ∂Gv also belongs to ∂Gσ, we have

σ ⊂ NU ′(D(ξ)). Now since U ′ is dmax-refined in U , we get σx ⊂ C̃oneU ,ε(ξ) by Lemma
IV.4.10.

Proof of Proposition IV.5.19. Let v be a vertex of X. We now prove that for every open
set U in the basis of neighbourhood OEG, U ∩ EGv is open in EGv.

We proved already that the topology of EG induces the natural topology on EG. Now
using the filtration lemmas IV.5.12 and IV.5.15, it is enough to show, for every ξ ∈ ∂Gv,
every ε ∈ (0, 1) and every ξ-family U , that VU ,ε(ξ)∩EGv contains a neighbourhood of ξ in
EGv. By Lemma IV.5.20, let U ′ be a ξ-family contained in U and such that every point of
U ′v ∩ ∂Gv belongs to VU ,ε(ξ). Then we have ξ ∈ U ′v ⊂ VU ,ε(ξ)∩EGv, and so VU ,ε(ξ)∩EGv
is open in EGv. Thus the topology of EG induces the natural topology on EGv.

Finally, note that the map EGv → EG is injective by Proposition IV.3.4. As EGv is a
compact space, that map is an embedding.

In the exact same way, we can prove the following:

Lemma IV.5.21. Let σ be a closed cell of X. Then the quotient map σ × EGσ → EG is
continuous.

IV.6 Metrisability of EG.

In this section, we prove that EG is a compact metrisable space. Recall that by the classical
metrisation theorem, it is enough to prove that EG is a second countable Hausdorff regular
space (see below for definitions) which is sequentially compact.

IV.6.1 Weak separation

In this paragraph, we prove the following:

Proposition IV.6.1. The space EG satisfies the T0 condition, that is, for every pair of
distinct points, there is an open set of EG containing one but not the other.

Note that this property does not imply that the space is Hausdorff. However, we will
prove in the next subsection that EG is also regular, and it is a common result of point-
set topology that a space that is T0 and regular is also Hausdorff. As usual, the proof of
Proposition IV.6.1 splits in many cases.
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Lemma IV.6.2. Let x̃, ỹ be two distinct points of EG ⊂ EG. Then x̃ and ỹ admit disjoint
neighbourhoods.

Proof. Open sets in EG are open in EG by definition. The result thus follows from the
fact that EG is a Hausdorff space.

Lemma IV.6.3. Let η, η′ be two distinct points of ∂X ⊂ EG. Then η and η′ admit disjoint
neighbourhoods.

Proof. The space X is metrisable, hence Hausdorff. Choosing disjoint neighbourhoods U
of η in X (resp. U ′ of η′ in X ) yield disjoint neighbourhoods VU (η), VU ′(η

′).

Lemma IV.6.4. Let x̃ ∈ EG and η ∈ ∂X. Then x̃ and η admit disjoint neighbourhoods.

Proof. Let x = p(x̃) ∈ X. Since X is a Hausdorff space, let U be a neighbourhood of x in
X and U ′ be a neighbourhood of η′ in X that are disjoint. Then p−1(U) is a neighbourhood
of x̃ in EG and VU ′(η) is a neighbourhood of η in EG that is disjoint from p−1(U).

Lemma IV.6.5. Let ξ ∈ ∂StabG and η ∈ ∂X. Then there exists a neighbourhood of η in
EG that does not contain ξ.

Proof. Since D(ξ) is bounded, let R > 0 such that the D(ξ) is contained in the R-ball
centred at v0. Now take a neighbourhood U of η in X that does not meet that R-ball. The
subset VU (η) is a neighbourhood of η in EG to which ξ does not belong.

Lemma IV.6.6. Let x̃ ∈ EG and ξ ∈ ∂StabG. Then there exists a neighbourhood of x̃ in
EG that does not contain ξ.

Proof. Choose any neighbourhood of x̃ in EG. This is by definition a neighbourhood of x̃
in EG, to which ξ does not belong.

Lemma IV.6.7. Let ξ, ξ′ be two different points of ∂StabG. Then there exists a neighbour-
hood of ξ in EG that does not contain ξ′.

Proof. If D(ξ)∩D(ξ′) 6= ∅, let v be a vertex in that intersection and let Uv be a neighbour-
hood of ξ in EGv that does not contain ξ′. Now we can take a ξ-family U ′ small enough so
that U ′v ⊂ Uv and thus ξ′ /∈ VU ′, 1

2
(ξ) by Proposition IV.5.19.

If D(ξ) ∩D(ξ′) = ∅, let x ∈ D(ξ′). There are two cases to consider:

• If [v0, x] does not meet D(ξ), then VUξ, 12 (ξ) does not contain ξ′ by Corollary IV.4.9.

• Otherwise, [v0, x] meets D(ξ) and leaves it. Let σ be the first simplex touched by
[v0, x] after leaving D(ξ), v a vertex of σ∩D(ξ) and Uv a neighbourhood of ξ in EGv
that does not contain EGσ. Now let U ′ be ξ-family such that U ′v ⊂ Uv and U ′′ a
ξ-family that is dξ-nested in U ′. It then follows from the crossing lemma IV.4.4 that
ξ′ /∈ VU ′′, 1

2
(ξ).
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IV.6.2 Regularity

In this paragraph, we prove the following:

Proposition IV.6.8. The space EG is regular, that is, for every open set U in EG and
every point x ∈ U , there exists another open set U ′ containing x and contained in U , and
such that every point of EG \ U admits a neighbourhood that does not meet U ′.

Since we previously defined a basis of neighbourhoods for EG, it is enough to prove
such a proposition for open sets U in that basis. As usual, the proof of Proposition IV.6.8
splits in many cases, depending on the nature of the open sets U and points of U involved.

Lemma IV.6.9. Let x̃ ∈ EG and U an open neighbourhood of x̃ in EG. Then there exists
a subneighbourhood U ′ of EG containing x̃ and such that every point in EG \ U admits a
neighbourhood that does not meet U ′.

Proof. The space EG being a CW-complex, its topology is regular, so we can choose a
neighbourhood U ′ of x̃ in EG whose closure (in EG) is contained in U . Let us call V that
closure, and let x = p(x̃). Since EG is locally finite, we can further assume that p(V )
meets only finitely many simplices and that it is contained in st(σx). We now show that V
is closed in EG, which implies the proposition.

A point of EG \ V clearly admits a neighbourhood in EG that does not meet V , since
open subsets of EG are open in EG. For a point η ∈ ∂X, choosing any neighbourhood of
η in X that does not meet p(V ) yields a neighbourhood of η in EG not meeting V . Thus
the only case left is that of a point ξ ∈ ∂StabG. There are two cases to consider:

If x ∈ D(ξ), then since p(V ) meets only finitely many simplices, it is easy to find a
ξ-family U such that WU , 1

2
(ξ) misses V , which implies that the whole VU , 1

2
(ξ) misses V .

If x /∈ D(ξ), then Lemma IV.1.5 ensures the existence of a finite subcomplex K ⊂ X
containing Geod(v0, p(V )). We define a ξ-family U and a constant ε as follows. Let v be a
vertex of D(ξ). For every σ ⊂ (st(v) ∩K) \D(ξ), let Uv,σ be a neighbourhood of ξ in EGv
which is disjoint from EGσ. We now set

Uv =
⋂

σ⊂(st(v)∩K)\D(ξ)

Uv,σ.

Let U be a ξ-family which is contained in {Uv, v ∈ V (ξ)}, and choose

ε = min
(1

3
dist(p(V ), D(ξ)), 1

)
,

which is positive since p(V ) ⊂ st(σx).
We now show by contradiction that VU ,ε(ξ)∩V = ∅. Suppose there exists a point ỹ in that
intersection and let y = p(ỹ). By Corollary IV.4.9, [v0, y] goes through D(ξ). But since
ỹ ∈ V , we have σξ,ε(y) ⊂ K, which contradicts the construction of U .

Thus every point of EG\V admits a neighbourhood missing V , so V is closed in EG.
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Lemma IV.6.10. Let η ∈ ∂X and U be an open neighbourhood of η in X. Then there
exists an open neighbourhood U ′ of η in X such that every point not in VU (η) admits a
neighbourhood that does not meet VU ′(η).

Proof. By Lemma IV.5.3, we first choose a neighbourhood W of η in X contained in U
and such that d(W ∩X,X \ U) > A + 1, where A is the acylindricity constant. Since X
is metrisable, hence regular, we can further assume that W ⊂ U . Finally, we can choose
R > 0 and δ > 0 such that U ′ = VR,δ(η) is contained in W and B(γη(R), δ) is contained in
the open star of the minimal simplex containing γη(R) (recall that γη is a parametrisation
of the geodesic ray [v0, η)). We now show that every point not in VU (η) admits a neigh-
bourhood that does not meet VU ′(η).

Let z ∈ EG \ VU (η). Then p(z) is not in U , hence not in U ′. Since U ′ is closed in X,
there exists an open set U ′′ of X containing p(z) and such that U ′′ ⊂ X \U ′. Then p−1(U ′′)
is open in EG and p−1(U ′′) does not meet VU (η).

Let η′ ∈ ∂X \ VU (η). Then η′ /∈ U ∩ ∂X hence η′ /∈ U ′. Since U ′ is closed in X, we
choose an open set U ′′ in OX(η) disjoint from U ′. It is now clear that VU ′′(η′) does not
meet V ′U (η).

Let ξ ∈ (∂StabG) \ VU (η). To find a neighbourhood of ξ that does not meet VU ′(η), is
enough to find a ξ-family U ′ such that U ′ ∩ C̃oneU ′, 1

2
(ξ) = ∅. We define such a ξ-family as

follows:
Let x = γη(R). By Lemma IV.1.5, define a finite subcomplex K of X as the union of the
closed simplices whose interior meet Geod(D(ξ), x). Let v be a vertex of D(ξ). For every
simplex σ contained in (st(v) ∩K) \D(ξ), let Uv,σ be an open neighbourhood of ξ in EGv
disjoint from EGσ. We then set

Vv =
⋂

σ⊂(st(v)∩K)\D(ξ)

Uv,σ.

Now take U to be a ξ-family contained in {Vv, v ∈ V (ξ)}, and let U ′ be a ξ-family that is
2-refined in U .

We now show by contradiction that U ′ ∩ C̃oneU ′, 1
2
(ξ) = ∅ . Let y be an point of

this intersection. Then [v0, y] meets D(ξ) (by Corollary IV.4.9) and B(x, δ) ∩ S(v0, R) (by
construction of U ′).

Since d(U ′, X \ U) ≥ A + 1 and D(ξ) meets X \ U , it follows that N(D(ξ)) ∩ U ′ = ∅.
Hence the geodesic segment [v0, y] enters D(ξ) before meeting B(x, δ)∩S(v0, R). Let y′ be
the point of [v0, y] inside B(x, δ)∩S(v0, R). By construction of R and δ, it follows that σy′
is in the open star of σx. Now since x ∈ ConeU ′, 1

2
(ξ), the refinement lemma IV.4.10 implies

that σy′ ⊂ ConeU , 1
2
(ξ), which contradicts the definition of U .

Lemma IV.6.11. Let ξ ∈ ∂StabG, ε ∈ (0, 1) and U a ξ-family. Then there exists a ξ-family
U ′ such that every point not in VU ,ε(ξ) admits a neighbourhood that misses VU ′,ε(ξ).
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Proof. Recall that domains of points of ∂StabG contain at most dmax simplices (see Definition
IV.3.3). Choose a ξ-family U ′ which is dmax-refined and nested in U . We now show that
every point not in VU ,ε(ξ) admits a neighbourhood that misses VU ′,ε(ξ).

Let x̃ ∈ EG \ VU ,ε(ξ), and x = p(x̃).

• If x ∈ Dε(ξ), let v be a vertex of D(ξ)∩ σx. We have φv,σx(x̃) /∈ Uv, hence φv,σx(x̃) /∈
U ′v. Let Wx be a neighbourhood of φv,σx(x̃) in EGv that does not meet U ′v, and V be
an open neighbourhood of x in X contained in st(σx). Let W be the neighbourhood
of x̃ consisting of those elements ỹ ∈ EG whose projection p(ỹ) is in V and such
that φv,σx(ỹ) belongs to Wx. Since U ′ is refined in U , it then follows that W is a
neighbourhood of x̃ which does not meet VU ′,ε(ξ).

• If x /∈ Dε(ξ), let V be an open neighbourhood of x in X \Dε(ξ) contained in st(σx).
As U ′ is refined in U and x /∈ VU ,ε(ξ), Lemma IV.4.10 implies that p−1(V ) is a
neighbourhood of x̃ that does not meet VU ′,ε(ξ).

Let η ∈ ∂X \ VU ,ε(ξ). We construct a neighbourhood V of η in X that does not meet
C̃oneU ′,ε(ξ). First, since D(ξ) is bounded, let R > 0 such that D(ξ) is contained in the
R-ball centred at v0, and let x = γη(R+ 1).

• If [v0, η) does not meet D(ξ), let δ = 1
2dist

(
γη
(
[0, R + 1]

)
, D(ξ)

)
> 0, and let V be

a neighbourhood of η in X that is contained in VR+1,δ(η). For every y in V , [v0, y]

does not meet D(ξ), hence V ∩ C̃oneU ′,ε(ξ) = ∅.

• If [v0, η) goes through D(ξ), then since x does not belong to C̃oneU ,ε(ξ), let v be a
vertex of D(ξ) in σξ,ε(x) such that EGσξ,ε(x) * Uv in EGv. Lemma IV.4.11 yields
a constant δ > 0 such that for every y ∈ B(x, δ), [v0, y] goes through Dε(ξ) and
σξ,ε(y) ⊂ st

(
σξ,ε(x)

)
. Let V := VR+1,δ(η) and y ∈ V . Then [v0, y] goes through

B(x, δ), hence σξ,ε(y) ⊂ st
(
σξ,ε(x)

)
. As U ′ is nested in U and EGσξ,ε(x) * Uv in EGv,

it follows that EGσξ,ε(y) * U ′v, hence y /∈ C̃oneU ′,ε′(ξ) and V ∩ C̃oneU ′,ε′(ξ) = ∅.

Let ξ′ ∈ (∂StabG) \ VU ,ε(ξ). To find a neighbourhood of ξ′ that misses VU ′,ε(ξ), it is
enough, since cones are open subsets of X by Corollary IV.4.12, to find a ξ′-family U ′′
such that C̃oneU ′′ ,ε(ξ

′)∩ C̃oneU ′,ε(ξ) = ∅ and such that for every vertex v of D(ξ)∩D(ξ′),
we have U ′v ∩ U ′′v = ∅. We define such a ξ′-family as follows. By Lemma IV.1.5, let K
be a finite subcomplex containing Geod(v0, D(ξ)). Let v be a vertex of D(ξ′). For every
σ ⊂ (st(v) ∩K) \ D(ξ′), let U ′′v,σ be a neighbourhood of ξ′ in EGv which is disjoint from
EGσ, and set

U
′′
v =

⋂
σ⊂(st(v)∩K)\D(ξ′)

U
′′
v,σ.
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If v is also in D(ξ), note that since the closure of U ′v is contained in Uv, we can assume that
U ′v ∩ U ′′v = ∅. Furthermore, we can assume by the convergence property IV.3.8 that the
only EGσ inside EGv meeting both Uv and U ′′v contain ξ and ξ′. Now let U ′′ be a ξ′-family
which is dmax-refined in

{
U
′′
v , v ∈ D(ξ′)

}
.

Let us prove by contradiction that C̃oneU ′′ ,ε′ (ξ
′) ∩ C̃oneU ′,ε(ξ) = ∅. Let x be in such

an intersection. Then, by Corollary IV.4.9, the geodesic [v0, x] goes through both D(ξ) and
D(ξ′). Note that, by construction of the various neighbourhoods U ′′v , the geodesic segment
[v0, x] cannot leave D(ξ′) before leaving D(ξ); nor can it leave both D(ξ) and D(ξ′) at the
same time. If D(ξ) ∩D(ξ′) = ∅, it follows from the fact that U ′ is dmax-refined in U that
D(ξ′) ⊂ C̃oneU ,ε(ξ) by Lemma IV.4.10, hence ξ′ ∈ VU ,ε(ξ), which is absurd. Otherwise,
let x′ be the last point of D(ξ′) met by [v0, x] and let γ be a geodesic path in D(ξ′) from
x′ to a point of D(ξ), such that γ meets D(ξ) in exactly one point. Let σ be the last
simplex touched by γ before touching D(ξ). The fact that U ′ is dmax-refined in U implies
that EGσ ⊂ Uv for some (hence every) vertex v of σ ∩ D(ξ) by Lemma IV.4.10, hence
ξ′ ∈ Uv ⊂ VU ,ε(ξ), a contradiction.

Finally, for every vertex v of D(ξ)∩D(ξ′), we have U ′v ∩U ′′v = ∅ by construction of U ′′v ,
hence the result.

Theorem IV.6.12. The space EG is separable and metrisable.

Proof. It is second countable by Theorem IV.5.17, regular by Proposition IV.6.8 and sat-
isfies the T0 condition by Proposition IV.6.1. Thus it is Hausdorff and the result follows
from Urysohn’s metrisation theorem.

IV.6.3 Sequential Compactness.

In this subsection, we prove the following:

Theorem IV.6.13. The metrisable space EG is compact.

First of all, note that since EG is dense in EG by Theorem IV.5.17, it is enough to prove
that any sequence in EG admits a subsequence converging in EG. Let (x̃n)n≥0 ∈ (EG)N.
For every n ≥ 0, let xn = p(x̃n). Furthermore, to every xn we associate the finite sequence
σ

(n)
0 = v0, σ

(n)
1 , . . . , of simplices met by [v0, xn]. Finally, let ln ≥ 1 be the number of sim-

plices of such a sequence.

Lemma IV.6.14. Suppose that for all k ≥ 0,
{
σ

(n)
k , n ≥ 0

}
is finite.

• If (ln) admits a bounded subsequence, then (x̃n) admits a subsequence that converges
to a point of EG ∪ ∂StabG.

• Otherwise, (x̃n) admits a subsequence that converges to a point of ∂X.
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Proof. Up to a subsequence, we can assume that there exist open simplices σ0, σ1, . . . such
that for all k ≥ 0, (σ

(n)
k )n≥0 is eventually constant at σk. There are two cases to consider:

(i) Up to a subsequence, there exists a constant m ≥ 0 such that each geodesic [v0, xn]
meets at most m simplices. This implies that the xn live in a finite subcomplex. Up
to a subsequence, we can now assume that there exists a (closed) simplex σ of X
such that xn is in the interior of σ for all n ≥ 0. This in turn implies that x̃n is in
σ × EGσ (or more precisely in the image of σ × EGσ in EG) for all n ≥ 0. This
space is compact since the canonical map σ × EGσ ↪→ EG is continuous by Lemma
IV.5.21, hence we can take a convergent subsequence.

(ii) Up to a subsequence, we can assume that ln →∞. For r > 0, let πr : X → B(v0, r) be
the retraction on B(v0, r) along geodesics starting at v0. By assumption, we have that
for every r > 0, the sequence of projections (πr(xn))n≥0 lies in a finite subcomplex of
X. A diagonal argument then shows that, up to a subsequence, we can assume that
all the sequences of projections (πm(xn))n≥0 converge in X for every m ≥ 0. As the
topology of X is the topology of the projective limit

B(v0, 1)
π1←− B(v0, 2)

π2←− . . . ,

it then follows that (xn) converges in X. As ln →∞, (xn) converges to a point η of
∂X. The definition of the topology of EG now implies that (x̃n) converges to η in
EG.

Lemma IV.6.15. Suppose that there exists k ≥ 0 such that
{
σ

(n)
k , n ≥ 0

}
is infinite. Then

(xn) admits a subsequence that converges to a point of ∂StabG.

Proof. Without loss of generality, we can assume that such a k is minimal. Up to a subse-
quence, we can assume that there exist open simplices σ1, . . . , σk−1 such that for all n ≥ 0,
σ

(n)
0 = σ0, . . . , σ

(n)
k−1 = σk−1, and

(
σ

(n)
k

)
n≥0

is injective. By cocompactness of the action,

we can furthermore assume (up to a subsequence) that the σ(n)
k are above a unique simplex

of Y . This corresponds to embeddings EG
σ
(n)
k

↪→ EGσk−1
. By the convergence property

IV.3.8, we can assume, up to a subsequence, that in EGσk−1
the sequence of subspaces

EG
σ
(n)
k

uniformly converges to a point ξ ∈ ∂Gσk−1
. Let us prove that (x̃n)n≥0 converges to

ξ in EG.

Since EG has a countable basis of neighbourhoods, it is enough to prove that for every
ε ∈ (0, 1) and every ξ-family U there exists a subsequence of (x̃n) lying in VU ,ε(ξ). By
construction of ξ, we have σk−1 ⊂ D(ξ), and there exists a vertex vk of D(ξ) such that
σ

(n)
k ⊂ st(vk) for all n ≥ 0. Two cases may occur:
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• Up to a subsequence, all the [v0, xn] leave Dε(ξ) inside σ(n)
k . Since EG

σ
(n)
k

uniformly

converges to ξ in EGσk−1
and thus in EGvk , we can assume, up to a subsequence,

that EG
σ
(n)
k

⊂ Uvk inside EGσk . This implies that x̃n ∈ VU ,ε(ξ), which is what we
wanted.

• Up to a subsequence, all the [v0, xn] remain inside Dε(ξ) when inside σ(n)
k . Up to

a subsequence, we can further assume that all the σ(n)
k+1, n ≥ 0 are above a unique

simplex of Y . Thus there exists a vertex vk+1 of D(ξ) ∩ st(vk) such that σ(n)
k+1 ⊂

st(vk+1) for all n ≥ 0.

In particular we have σ(n)
k ⊂ st(vk)∩ st(vk+1) and thus ξ ∈ ∂Gvk+1

. Since U is a ξ-
family, the fact that EG

σ
(n)
k

uniformly converges to ξ in EGvk implies that that EG
σ
(n)
k

uniformly converges to ξ in EGvk+1
. Note that since the sequence (σ

(n)
k )n≥0 takes

infinitely many values, the finiteness lemma IV.1.5 implies that (σ
(n)
k+1)n≥0 also takes

infinitely many values. Up to a subsequence, we can thus assume by the convergence
property IV.3.8 that EG

σ
(n)
k+1

uniformly converges in EGvk+1
. As EG

σ
(n)
k

uniformly

converges to ξ in EGvk+1
, the same holds for EG

σ
(n)
k+1

, and we are back to the previous
situation.

By iterating this algorithm, two cases may occur:

• There is a value k′ ≥ k such that, up to a subsequence, all the [v0, xn] leave Dε(ξ)

while being inside σ(n)
k′ and the same argument as before shows that we can take a

subsequence satisfying x̃n ∈ VU ,ε(ξ).

• Up to a subsequence, at every stage k′ ≥ k all the [v0, xn] remain within Dε(ξ). In
the latter case, the containment lemma IV.1.3 implies that there exists an integer
m ≥ 0 such that each geodesic segment [v0, xn] meets at most m simplices. Up to
a subsequence, we can further assume that all the [v0, xn] meet exactly m simplices.
Thus we can iterate our algorithm up to rank m, which yields the existence of a
vertex vm of Dε(ξ) such that σ(n)

m ⊂ st(vm) for all n ≥ 0 and such that EG
σ
(n)
m

uniformly converges to ξ in EGvm . Up to a subsequence, we can furthermore assume
that EG

σ
(n)
m
⊂ Um in EGvk+1

for all n ≥ 0. This in turn implies x̃n ∈WU ,ε(ξ), hence
x̃n ∈ VU ,ε(ξ) and we are done.

Proof of Theorem IV.6.13. This follows immediately from Theorem IV.6.12, Lemma IV.6.14
and Lemma IV.6.15.

As a direct consequence, we get the following convergence criterion.
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Corollary IV.6.16. Let (Kn) be a sequence of subsets of EG.

• Kn uniformly converges to a point η ∈ ∂X if and only if the sequence of coarse
projections p̄(Kn) uniformly converges to η in X.

• Suppose that there exists ξ ∈ ∂StabG such that, for n large enough, every geodesic
from v0 to a point of p̄(Kn) goes through D(ξ). For every such n and every z ∈ Kn,
choose x ∈ p̄(z) and let σn,x be the first simplex touched by the geodesic [v0, x] after
leaving D(ξ). If there exists a vertex v ∈ D(ξ) contained in each σn,x and such that
for every neighbourhood U of ξ in EGv, there exists an integer N ≥ 0 such that for
every (n, x) ∈ ∪n≥N{n} ×Kn, we have EGσn,x ⊂ U , then (Kn) uniformly converges
to ξ.

IV.7 The properties of ∂G.

In this section we prove the following:

Theorem IV.7.1. (EG, ∂G) is an EZ-structure.

IV.7.1 The Z-set property

Here we prove the following:

Proposition IV.7.2. ∂G is a Z-set in EG.

Proving this property is generally technical. However, Bestvina and Mess proved in [4]
a useful lemma ensuring that a given set is a Z-set in a bigger set, which we now recall.

Lemma IV.7.3 (Bestvina-Mess [4]). Let (X̃, Z) be a pair of finite-dimensional metrisable
compact spaces with Z nowhere dense in X̃, and such that X = X̃ \ Z is contractible and
locally contractible, with the following condition holding:

(*) For every z ∈ Z and every neighbourhood Ũ of z in X̃, there exists a neighbourhood
Ṽ contained in Ũ and such that

Ṽ \ Z ↪→ Ũ \ Z

is null-homotopic.

Then X̃ is an Euclidian retract and Z is a Z-set in X̃.

We now use this lemma to prove that the boundary ∂G is a Z-boundary in EG.

Lemma IV.7.4. EG and ∂G are finite-dimensional.
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Proof. We have

∂G =

( ⋃
v∈V (X)

∂Gv

)
∪ ∂X.

Each vertex stabiliser boundary is a Z-boundary in the sense of Bestvina, hence finite-
dimensional, and they are closed subspaces of ∂G by Proposition IV.5.19. As the action of
G on X is cocompact, their dimension is uniformly bounded above, so the countable union
theorem implies that

⋃
v∈V (X) ∂Gv is finite-dimensional. Furthermore, X is a CAT(0)

space of finite geometric dimension, so its boundary has finite dimension by a result of
Caprace [10]. Thus, the classical union theorem implies that ∂G is finite-dimensional. Now
EG = EG ∪ ∂G. EG is a CW-complex that can be decomposed as the countable union of
its closed cells, all of which have a dimension bounded above by dim(X) · supσ(dim EGσ).
It follows from the countable union theorem in covering dimension theory that EG is finite
dimensional, and the same holds for EG by the classical union theorem.

We now turn to the proof of the Z-set property, using the lemma of Bestvina-Mess
recalled above. As usual, the proof splits in two cases, depending on the nature of the point
of ∂G that we consider.

Lemma IV.7.5. Let η ∈ ∂X and U be a neighbourhood of η in X. Then there exists a
subneighbourhood U ′′ ⊂ U of η in X such that the inclusion

VU ′′(η) \ ∂G ↪→ VU (η) \ ∂G

is null-homotopic.

Proof. Lemma IV.5.3 yields a neighbourhood U ′ of η in X such that d(U ′ ∩X,X \U) > 1.
In particular, Span(U ′ \ ∂X) ⊂ U , and p−1(Span(U ′ \ ∂X)) can be seen as the realisation
of a complex of spaces over Span(U ′ \ ∂X) the fibres of which are contractible. Thus
Proposition II.1.8 implies that the projection p−1(Span(U ′ \ ∂X)) → Span(U ′ \ ∂X) is a
homotopy equivalence. Now Lemma IV.5.2 yields another neighbourhood U ′′ ⊂ U ′ of η in
X such that U ′′ \ ∂X is contractible. We thus have the following commutative diagram:

VU (η) \ ∂G p−1(Span(U ′ \ ∂X))

'
��

? _oo VU ′′(η) \ ∂G

��

? _oo

Span(U ′ \ ∂X) U ′′ \ ∂X.? _

0
oo

Now since U ′′\∂X is contractible, the inclusion VU ′′(η)\∂G ↪→ VU (η)\∂G is null-homotopic.

Lemma IV.7.6. Let ξ ∈ ∂StabG, ε ∈ (0, 1) and U a ξ-family. Then there exists a ξ-family
U ′ such that VU ′,ε(ξ) is a subneighbourhood of VU ,ε(ξ) and such that the inclusion

VU ′,ε(ξ) \ ∂G ↪→ VU ,ε(ξ) \ ∂G
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is null-homotopic.

Lemma IV.7.7. There exists a ξ-family U ′′, a subcomplex X ′ of X with C̃oneU ′′,ε(ξ) ⊂
X ′ ⊂ C̃oneU ,ε(ξ), and a subset C ′ of EG with VU ′′,ε(ξ) \ ∂G ⊂ C ′ ⊂ VU ,ε(ξ) \ ∂G, such that
p(C ′) ⊂ X ′ and the projection map C ′ → X ′ is a homotopy equivalence.

Proof. Let U ′ be a ξ-family that is 2-refined in U and dξ-nested in U . It follows from the

refinement lemma IV.4.10 that Span
(
ConeU ′,ε(ξ)

)
⊂ C̃oneU ,ε(ξ). By Lemma IV.5.6, we

have VU ′,ε(ξ) ⊂ VU ,ε(ξ). Let

X ′ = Span(ConeU ′,ε(ξ)) ∪
(
Dε(ξ) ∩ C̃oneU ,ε(ξ)

)
.

Note that it is possible to give Dε(ξ) ∩ C̃oneU ,ε(ξ) a simplicial structure from that of X
such that a vertex of Dε(ξ) ∩ C̃oneU ,ε(ξ) for that structure either is a vertex of D(ξ) or
belongs to an edge in X between a vertex of D(ξ) and a vertex of X \D(ξ). Furthermore,
we can give Span(ConeU ′,ε(ξ)) a simplicial structure that is finer that that of X, whose
vertices are the vertices of Span(ConeU ′,ε(ξ)) and vertices of Dε(ξ) ∩ C̃oneU ,ε(ξ) (for its
given simplicial structure), that is compatible with that of Dε(ξ), and which turns X ′ into
a simplicial complex such that an open simplex is completely contained either in Dε(ξ) or
in X \Dε(ξ) (see Figure IV.5). Thus X ′ is endowed with a simplicial structure.

Dε′(ξ)

Span(ConeU ′,ε(ξ)) X ′

Figure IV.5.

We now define a contractible open subset C ′σ of EGσ for every open simplex σ of X ′. This
will allow us to define the following subset of EG:

C ′ =
⋃

σ∈S(X′)

σ × C ′σ.

Note that although C ′ is not naturally the realisation of a complex of spaces in the sense
of the first section, it is nonetheless possible to endow it with one, so as to use Proposition
II.1.8.

We first define these spaces C ′σ for vertices of X ′. Let v be such a vertex.
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• If v is a vertex of D(ξ), the compactification EGv is locally contractible so we can
choose a contractible open set U ′v of EGv contained in Uv and containing ξ, and set
C ′v = U ′v ∩ EGv. As ∂Gv is a Z-boundary, C ′v is a contractible open subset.

• If v does not belong to Dε(ξ), set C ′v = EGv.

• If v is a vertex of Dε(ξ) \ D(ξ) (for the chosen simplicial structure of Dε(ξ) ⊂ X ′),
then either v belongs to Span(ConeU ′,ε(ξ)), in which case we set C ′v = EGv, or it does
not, in which case v belongs to a unique edge e (for the simplicial structure of X)
between a vertex v′ of D(ξ) and a vertex of X \D(ξ). In that case, EGe is contained
in Uv′ since U ′ is nested in U and we set C ′v = EGe.

We now define the subsets C ′σ for simplices σ ⊂ X ′. Let σ be such a simplex, and let σ′ be
the unique open simplex of X such that σ ⊂ σ′ as subsets of X. We set C ′σ = EGσ′ .

We define the space C ′ =
⋃
σ∈S(X′) σ×C ′σ. As explained above, the projection C ′ → X ′

is a homotopy equivalence. Furthermore, we can choose a ξ-family U ′′ small enough so that
the subset VU ′′,ε(ξ) \ ∂G is contained in C ′.

Proof of Lemma IV.7.6. We apply the previous lemma twice to get the following commu-
tative diagram:

VU,ε(ξ) \ ∂G C ′

'
��

? _oo VU ′′,ε(ξ) \ ∂G

��

? _oo C(3)

'
��

? _oo

X ′ C̃oneU ′′,ε(ξ)? _oo X(3).? _

0
oo

Since X(3) retracts by strong deformation (along geodesics starting at v0) inside C̃oneU ′,ε(ξ)
on the contractible subcomplex D(ξ) (relatively to D(ξ)), the inclusion X(3) ↪→ C̃oneU ′,ε(ξ)
is nullhomotopic, hence C(3) ↪→ VU ,ε(ξ) \ ∂G is null-homotopic. As there exists a ξ-family
U (4) such that VU(4),ε(ξ) \ ∂G ↪→ C(3), this concludes the proof.

Proof of Proposition IV.7.2: Thus, Theorem IV.6.13 and Lemma IV.7.4 together with Lemma
IV.7.5 and Lemma IV.7.6 yield the desired result.

IV.7.2 Compact sets fade at infinity

Here we prove the following:

Proposition IV.7.8. Compacts subsets of EG fade at infinity in EG, that is, for every
x ∈ ∂G, every neighbourhood U of x in EG and every compact K ⊂ EG, there exists a
subneighbourhood V ⊂ U of x such that any G-translate of K meeting V is contained in U .
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As usual, we split the proof in two parts, depending on the nature of the points consid-
ered.

Proposition IV.7.9. Let η ∈ ∂X. For every neighbourhood U of η in X and every compact
subset K ⊂ EG, there exists a neighbourhood U ′ of η contained in U and such that any
G-translate of K meeting VU ′(η) is contained in VU (η).

Proof. By Lemma IV.5.3, let U ′ be a neighbourhood of η in X which is contained in U and
such that

d(U ′, X \ U) > diam(p(K)).

Let g ∈ G such that gK meets VU ′(η). Since G acts on X by isometries, we have

diam (p(g.K)) = diam (g.p(K)) = diam (p(K)) ,

which implies that gK ⊂ VU (η).

The proof for points of ∂StabG is slightly more technical. We start by defining a class
of compact sets of EG which are easy to handle.

Definition IV.7.10. Let F be a finite subcomplex ofX, together with a collection (Kσ)σ∈S(F )

of non empty compact subsets of EGσ for every simplex σ of F . Suppose that for every
simplex σ of F and every face σ′ of σ, we have φσ′,σ(Kσ) ⊂ Kσ′ . Then the set⋃

σ∈S(F )

σ ×Kσ.

is called a standard compact subset of EG over F . Every compact subset of EG obtained
in such a way is called a standard compact of EG.

Note that the projection inX of any compact subset of EGmeets finitely many simplices
of X, so every compact subset of EG may be seen as a subset of a standard compact subset
of EG.

Definition IV.7.11. Let ξ ∈ ∂StabG and U a ξ-family. We define WU (ξ) as the set of
points x̃ of EG whose projection x ∈ X belongs to the domain of ξ and is such that for
some (hence any) vertex v of σx ∩D(ξ) we have

φv,σx(x̃) ∈ Uv.

Before proving that compact sets fade near points of ∂StabG, we prove the following
lemma.

Lemma IV.7.12. Let ξ ∈ ∂StabG, ε ∈ (0, 1) and U a ξ-family. Let K be a compact
subspace of EG. Then there exists a ξ-family U ′ contained in U such that for every point
g ∈ G, the following holds:

If gK meets WU ′(ξ), then gK ∩ p−1(D(ξ)) is contained in WU (ξ).
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Proof. Let L be a standard compact subset of EG over the (finite) full subcomplex of X
defined by Span p(K). By choosing the Lσ big enough, we can assume that L contains K.
Let N ≥ 0 be such that any two vertices of L can be joined by a sequence of at most N
adjacent vertices.

Since D(ξ) and p(L) meet finitely many vertices of X, there are only finitely many
elements of G such that g.p(L) meets D(ξ) up to left multiplication by an element of
Gv, v ∈ V (ξ). Let (gλ.p(L))λ∈Λ be such a finite family of cosets. For every vertex v of V (ξ),
{gλL ∩ EGv, λ ∈ Λ} is a finite (possibly empty) collection of compact subsets of EGv. Since
∂Gv is a Bestvina boundary for Gv, compact subsets fade at infinity in EGv, so there exists
a subneighbourhood U ′v of Uv such that any Gv-translate of one of these gλL meeting U ′v
is contained in Uv. Repeating this procedure N + 1 times, we get a sequence of ξ-families
denoted

{Uv, v ∈ V (ξ)} ⊃ U [N ] ⊃ U [N−1] ⊃ . . . ⊃ U [0].

Let g ∈ G such that gK meets WU ′(ξ), and let w be a vertex of D(ξ) such that gK,
hence gL, meets U [0]

w . In order to prove the lemma, it is enough to show by induction on
k = 0, . . . , N the following:

(Hk) : For every chain of adjacent vertices w0 = w,w1, . . . , wk of D(ξ) such that gL
meets EGw0 , . . . , EGwk , we have gL ∩ EGwk ⊂ U

[k+1]
w .

Since gL meets D(ξ), let λ ∈ Λ such that gL = gλL pointwise. The result is true for
k = 0 by definition of U [0] and U [1]. Suppose we have proven it up to rank k, and let
w0 = w,w1, . . . , wk+1 a chain of vertices of D(ξ) such that gL meets EGw0 , . . . , EGwk . By
induction hypothesis, we already have gL ∩ EGwk ⊂ U

[k+1]
wk . Since p(L) is a full subcom-

plex of X, it follows from the fact that gL meets EGwk and EGwk+1
that gL also meets

EG[wk,wk+1]. In particular, since gL ∩ EGwk ⊂ U
[k+1]
wk , it follows from the properties of

ξ-families that gL∩EGwk+1
meets U [k+1]

wk+1 . This in turn implies that gL∩EGwk+1
⊂ U [k+2]

vk+1 ,
which concludes the induction.

Proposition IV.7.13. Let ξ ∈ ∂StabG, ε ∈ (0, 1) and U a ξ-family. Let K be a connected
compact subset of EG. Then there exists a ξ-family U ′ contained in U and such that every
G-translate of K meeting VU ′,ε(ξ) is contained in VU ,ε(ξ).

Proof. Let k be the number of simplices met by p(K), and let U ′ be a ξ-family that is
k-refined in U . Applying the previous proposition to VU ′,ε(ξ) yields a ξ-family U ′′. Finally,
let U ′′′ be a ξ-family that is k-refined in U ′′.

Suppose that gK meets VU ′′′,ε(ξ), and let x̃0 ∈ gK ∩ VU ′′′,ε(ξ). Let x̃ ∈ gK, and let
us prove that x̃ ∈ VU ,ε(ξ). Since p(K) is connected, let γ be a path from x0 = p(x̃0)
to x = p(x̃) in p(gK). This yields a path of open simplices σ1, . . . , σn, with n ≤ k. If
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gK does not meet D(ξ), the refinement lemma IV.4.10 implies that σn ⊂ C̃oneU ,ε(ξ), and
x̃ ∈ VU ,ε(ξ).

Otherwise, let n0 (resp. n1) be such that σn0 (resp. σn1) is the first (resp. the last)
simplex contained in D(ξ). If x0 is not in D(ξ), we can apply the refinement lemma IV.4.10
to the path σ1, . . . , σn0−1, which implies σn0−1 ⊂ NU ′′(D(ξ)). In particular, we see that gK
meets WU ′′(ξ), which is also true if x0 is in D(ξ). Now by definition of U ′′, we have that
gK ∩ p−1(D(ξ)) ⊂ WU ′(ξ). If γ goes out of D(ξ) after σn1 , then σn1+1 ⊂ NU ′(D(ξ)), and
we can apply the refinement lemma IV.4.10 to the path of simplices σn1+1, . . . , σn. In any
case, we get in the end x̃ ∈ VU ,ε(ξ), which concludes the proof.

Proof of Proposition IV.7.8: This follows from Proposition IV.7.9 and Proposition IV.7.13.

Proof of Theorem IV.7.1: This follows from Theorem IV.6.13, Lemma IV.5.18, Proposition
IV.7.2, and Proposition IV.7.8.

IV.7.3 Proof of the main theorem.

We are now ready to conclude the proof of Theorem IV.0.4.

Lemma IV.7.14. Let X,Y and G as in the statement of the main theorem. Then for
every simplex σ of Y , the embedding EGσ ↪→ EG realises an equivariant homeomorphism
from ∂Gσ to ΛGσ ⊂ ∂G. Moreover, for every pair H1, H2 of subgroups in the family
F =

{⋂n
i=1 giGσig

−1
i | g1, . . . , gn ∈ G, σ1, . . . , σn ∈ S(Y ), n ∈ N

}
, we have ΛH1 ∩ ΛH2 =

Λ(H1 ∩H2) ⊂ ∂G.

Proof. The equivariant embedding EGσ ↪→ EG induces an equivariant embedding ∂Gσ ↪→
ΛGσ ⊂ ∂G. But since EGσ is a closed subspace of EG by Proposition IV.5.19, and which
is stable under the action of Gσ, the reverse inclusion ΛGσ ⊂ ∂Gσ follows.

Now let σ1, . . . , σn be simplices of X. The inclusion

Λ(
⋂

1≤i≤n
Gσi) ⊂

⋂
1≤i≤n

ΛGσi

is clear, and the reverse inclusion follows directly from Lemma IV.3.7.

Lemma IV.7.15. Let X and G be as in the statement of the main theorem. Then for
every simplex σ of X, the embedding EGσ ↪→ EG satisfies the convergence property IV.3.8.

Proof. Let (gnGσ) be a sequence of distinct G-cosets. This yields an injective sequence of
simplices (gnσ) of X. Let x̃ be any point of EGσ. By compactness of EG, we can assume
up to a subsequence that gnx̃ converges to a point l ∈ EG. But it follows immediately from
Lemma IV.6.14 and Lemma IV.6.15 that l ∈ ∂G and that gnEGσ uniformly converges to
l.



90 Chapter IV. A combination theorem for boundaries of groups.

Lemma IV.7.16. Let X and G be as in the statement of the main theorem. Then for
every simplex σ of X, the group Gσ is of finite height in G.

Proof. Let g1Gσ, . . . , gnGσ be distinctG-cosets such that g1Gσg
−1
1 ∩. . .∩gnGσg−1

n is infinite.
Thus the simplices g1σ, . . . , gnσ of X are distinct and such that the boundary of their
stabilisers have a nonempty intersection in ∂StabG. But as there is a uniform bound on the
number of simplices contained in the domain of a point of ∂StabG by Proposition IV.3.2,
Lemma IV.3.6 implies that there is a uniform bound on the number of simplices whose
stabilisers have an infinite intersection, hence the result.

Proof of Theorem IV.0.4: This follows from Theorem IV.7.1, Lemma IV.7.14, Lemma IV.7.15
and Lemma IV.7.16.

IV.7.4 Boundaries in the sense of Carlsson-Pedersen.

So far we have been concerned with the notion of an EZ-structure. We now turn to
the notion of an EZ-structure in the sense of Carlsson-Pedersen. In order to obtain a
combination theorem for such finer structures, we need an additional assumption that we
now describe.

Definition IV.7.17. We say that an EZ-structure in the sense of Carlsson-Pedersen
(EG, ∂G) is strong if in addition we have the following:

For every finite group H of G, (∂G)H is either empty or a Z-set in EGH .

Without any assumption of a strong EZ-structure, it is still possible to prove the
following partial result.

Lemma IV.7.18. Let H ⊂ G be a finite subgroup. Then the closure of EGH in EG is
exactly EGH .

Proof. As EG is a classifying space for proper actions of G, EGH is nonempty. We now
prove that it is dense in EGH .

Let ξ ∈ ∂StabG ∩ EG
H . The domain D(ξ) is thus stable under the action of H. As

D(ξ) is a finite convex subcomplex of X, the fixed point theorem for CAT(0) spaces implies
that there is a point of D(ξ) fixed by H. Since the action is without inversion, we can
further assume that H fixes a vertex v of D(ξ). Moreover, EGHv is dense in EGHv . Thus,
by definition of a basis of neighbourhoods at ξ, any neighbourhood of ξ in EG meets EGH .

Now let η ∈ ∂X ∩EGH . Let γ be a geodesic from a point of XH to η. Then γ is fixed
pointwise by H. Let U be a neighbourhood of η in X. Since the path γ eventually meets
U , let σ be a simplex of X contained in U and met by γ. Thus σ is fixed pointwise by H.
Now since EGHσ is nonempty by assumption, it follows that EGH meets VU (η), and the
result follows.
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However, the previous reasoning does not show the contractibility of EGH . We now
reformulate our main theorem in the setting of EZ-structures in the sense of Carlsson-
Pedersen.

Definition IV.7.19. AnEZ-complex of classifying spaces in the sense of Carlsson-Pedersen
(compatible with the complex of groups G(Y)) is an EZ-complex of classifying spaces com-
patible with G(Y) such that each local EZ-structure (EGσ, ∂Gσ) is a strong EZ-structure
in the sense of Carlsson-Pedersen.

Theorem IV.7.20. The combination theorem for boundaries of groups IV.0.4 remains true
if ones replaces “EZ-complexes of classifying spaces” with “EZ-complexes of classifying
spaces in the sense of Carlsson-Pedersen”.

Proof. The only thing to prove is that (EG, ∂G) is an EZ-structure in the sense of Carlsson-
Pedersen. We already know that it is an EZ-structure by Theorem IV.0.4. Let H be a
finite subgroup of G. To prove that EGH is contractible, we want to apply the lemma
IV.7.3 of Bestvina-Mess to the pair (EG

H
, EG

H \ EGH).
In order to do this, first notice that EGH is nothing but the complex of spaces over

XH with fibres the subcomplexes EGHσ of EGσ. Thus, it is possible to apply the exact
same reasoning with XH in place of X and the EGHσ in place of the EGσ. As XH is a
convex, hence contractible subcomplex of X, this is enough to recover the fact that EGH

is contractible.
Now, notice that, because of Lemma IV.7.18, EGH is obtained from EGH by the same

procedure as before, compactifying every EGHσ (for σ a simplex fixed under H) by EGσ
H

and adding the visual boundary of the CAT(0) subcomplex XH , ∂(XH) = (∂X)H . We now
briefly indicate why this is enough to prove the Z-set property for (EG

H
, EG

H\EGH). The
only properties that were required are the fact that X is a CAT(0) space, the convergence
properties of the embeddings between the various classifying spaces, and the fact that ∂Gσ
is a Z-set in EGσ. But since XH is convex in a CAT(0) space, it is itself CAT(0). Moreover,
the convergence properties of the embeddings are clearly still satisfied for simplices that
are fixed under H. Finally, by assumption, (∂Gσ)H is a Z-set in EGσ

H . Thus, the same
reasoning as in Lemma IV.7.5 and Lemma IV.7.6 shows that the lemma IV.7.3 of Bestvina-
Mess applies, thus implying that (EG

H
, EG

H \EGH) is a Z-compactification, and we are
done.
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Chapter V

A combination theorem for
hyperbolic groups.

In this chapter, we apply our construction of boundaries to get a generalisation of a com-
bination theorem of Bestvina-Feighn to complexes of groups of arbitrary dimension. This
will be done by constructing an EZ-structure for G and proving that G is a uniform con-
vergence group on its boundary. The proof has the advantage of yielding a construction of
the Gromov boundary of G.

Theorem V.0.21 (Combination Theorem for Hyperbolic Groups). Let G(Y) be a non-
positively curved complex of groups over a finite simplicial complex Y endowed with a Mκ-
structure, κ ≤ 0. Let G be the fundamental group of G(Y) and X be a universal covering
of G(Y). Assume that:

• The universal covering X is hyperbolic1.

• The local groups are hyperbolic and all the local maps are quasiconvex embeddings,

• The action of G on X is acylindrical.

Further assume that there exists an EZ-complex of classifing spaces compatible with G(Y).
Then G is hyperbolic and the local groups embed in G as quasiconvex subgroups.

An important case where compatible EZ-complexes of classifying spaces always exist
is the case of simple complexes of hyperbolic groups (see Lemma V.1.1). We thus get the
following:

Corollary V.0.22. Let G(Y) be a simple non-positively curved complex of groups over a
finite simplicial complex Y endowed with a Mκ-structure, κ ≤ 0. Let G be the fundamental
group of G(Y) and X be a universal covering of G(Y). Assume that:

1For instance, when κ < 0.
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• The universal covering X is hyperbolic.

• The local groups are hyperbolic and all the local maps are quasiconvex embeddings,

• The action of G on X is acylindrical.

Then G is hyperbolic and the local groups embed in G as quasiconvex subgroups.

V.1 Complexes of hyperbolic groups and their EZ-complexes
of classifying spaces.

Lemma V.1.1. Let G(Y) be a simple complex of hyperbolic groups. Then there exists an
EZ-complex of classifying spaces compatible with G(Y).

Proof. We define an EZ-complex of classifying spaces over Y as follows:

• We define inductively sets of generators for the local groups of the complex of groups
G(Y) induced over Y in the following way: Start with simplices σ of Y of maxi-
mal dimension, and choose for each of them a finite symmetric set of generators for
Gσ. Suppose we have defined a set of generators for local groups over simplices of
dimension at most k. If σ is a simplex of dimension k−1, choose a finite set of gener-
ators which contains all the generators of local groups of simplices strictly containing
σ. This allows us to define for every simplex σ of Y a set of generator such that
ψσ,σ′(Sσ′) ⊂ Sσ whenever σ ⊂ σ′.

• Let n ≥ 1 be an integer. Define Dσ as the Rips complex Pn(Gσ) associated to the set
of generators Sσ. Moreover, if σ ⊂ σ′, let φσ,σ′ be the ψσ,σ′-equivariant embedding
Pn(Gσ′) ∪ ∂Gσ′ ↪→ Pn(Gσ) ∪ ∂Gσ.

• Since there are only finitely many hyperbolic groups involved, choose n ≥ 0 such that
all the previously defined Rips complexes are contractible.

Since all the twisting elements are trivial, it follows that EG(Y) is an EZ-complex of
classifying spaces compatible with G(Y).

From now on, G(Y) is a complex of groups over a simplicial complex Y satisfying the
conditions of V.0.21. We will denote by G the fundamental group of G(Y) and by X its
universal covering

Lemma V.1.2. The EZ-complex of classifying spaces EG(Y) satisfies the limit set property
IV.2.4.
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Proof. For every pair of simplices σ ⊂ σ′ of Y , Gσ′ is a quasiconvex subgroup of Gσ, so the
map φσ,σ′ : ∂Gσ′ → ∂Gσ realises a Gσ′-equivariant homeomorphism ∂Gσ′ → ΛGσ′ ⊂ ∂Gσ
by a result of Bowditch [6].

For every simplex σ of Y , the family

Fσ =

{
n⋂
i=1

giGσig
−1
i | g0, . . . , gn ∈ Gσ, σ1, . . . , σn ∈ st(σ), n ∈ N

}
is contained in the family of quasiconvex subgroups of Gσ. Indeed, let g0, . . . , gn be ele-
ments of G. Then, as X is CAT(0),

⋂
0≤i≤n giGσg

−1
i =

⋂
v∈Γ giGvg

−1
i , where Γ is a graph

containing all the vertices of the simplices g0σ, . . . , gnσ and contained in the convex hull
of the g0σ, . . . , gnσ. For such subgroups, the equality ΛH1 ∩ ΛH2 = Λ(H1 ∩H2) holds by
Lemma I.3.29.

Lemma V.1.3. The EZ-complex of classifying spaces EG(Y) satisfies the convergence
property IV.3.8.

Proof. This is Proposition 1.8 of [14].

Lemma V.1.4. The EZ-complex of classifying spaces EG(Y) satisfies the finite height
property IV.2.5.

Proof. A quasiconvex subgroup of a hyperbolic group has finite height by a result of [22].

Theorem IV.0.4 now implies the following:

Corollary V.1.5. The fundamental group of G(Y) admits a classifying space for proper
actions and an EZ-structure.

Note that this corollary does not use the hyperbolicity of X.

V.2 A combination theorem.

Let (EG, ∂G) be the EZ-structure constructed in the previous section. We now prove that
G is a hyperbolic group, by proving that it is a uniform convergence group on its boundary.

So far, the topology on EG and ∂G was defined by choosing a specific, although arbi-
trary, basepoint. In forthcoming proofs, we will choose neighbourhoods centred at points
which are relevant to the geometry of the problem.

Definition V.2.1. Let δ ≥ 0 be such that the space X is δ-hyperbolic. We denote by
〈., .〉 the Gromov product on X and an extension to X. For z ∈ X, k ≥ 0 and x0 ∈ X a
basepoint, let

Wk(z) =
{
x ∈ X such that 〈x, z〉x0 ≥ k

}
.

For η ∈ ∂X and k ≥ 0, the family of subsets (Wk(η)) forms a basis of (not necessarily open)
neighbourhoods of η in X.
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Recall that dmax was defined in IV.3.3 as a constant such that domains of points of
∂StabG have at most dmax simplices and a geodesic segment contained in the open simplicial
neighbourhood of the domain of a point of ∂StabG meets at most dmax simplices.

We also give the following useful lemma.

Lemma V.2.2. Let Γ be a finite connected graph contained in the 1-skeleton of X, and
Γ′ ⊂ Γ a connected subgraph. Then ∩v∈ΓGv is hyperbolic and quasiconvex in ∩v∈Γ′Gv.

Proof. This follows from an easy induction on the number of vertices of Γ, together with
Lemma I.3.29.

Lemma V.2.3. Let (gn) be an injective sequence of elements of G, and suppose there
exist vertices v0 and v1 of X such that gnv0 = v1 for infinitely many n. Then there exist
ξ+, ξ− ∈ ∂G and a subsequence (gϕ(n)) such that for every compact subset K of ∂G \ {ξ−},
the sequence of translates gϕ(n)K uniformly converges to ξ+.

Proof. It is enough to prove the result when gnv0 = v0 for infinitely many n. Since Gv0
is hyperbolic, we can assume that there exists a subsequence of (gn), that we still denote
(gn), and points ξ+, ξ− ∈ ∂Gv0 such that for every compact subset K of EGv0 \ {ξ−}, the
sequence of translates gnK uniformly converges to ξ+. Throughout this proof, we choose
v0 as the basepoint.

Let σ be a simplex of X containing v0.
If σ is not contained in D(ξ−), then the convergence property IV.3.8 implies that, up

to a subsequence, we can assume that the sequence of gn∂Gσ uniformly converges to ξ+ in
∂Gv0 .

If σ is contained in D(ξ−), then the subset ∂Gσ ⊂ ∂Gv0 consists of at least two points
among which there is ξ−. Since for any other point α of ∂Gσ we have that gnα tends to
ξ+, the convergence property IV.3.8 implies that one of the following situations happens:

• gnGσ only takes finitely many values of cosets, in which case we can find a subsequence
(gn) such that gn∂Gσ is constant and contains ξ+. This means that we can write
gn = g′n.g where g is in the stabiliser of v0 and g′n in a sequence in the stabiliser of σ.
Up to replacing gn by g′n, we can assume that gn fixes σ.

• gnGσ takes infinitely many values of cosets, in which case we can find a subsequence
(gn) such that gn∂Gσ uniformly converges to ξ+.

As domains are finite subcomplexes of X by Proposition IV.3.2, we can iterate this
procedure a finite number of times so as to obtain a subsequence (gn) and a subcomplex
F ⊂ D(ξ−) ∩D(ξ+) such that

• F is fixed pointwise under all the gn,

• for every simplex σ in (st(F ) \ F ) and every vertex v of σ ∩ F , we have that gn∂Gσ
uniformly converges to ξ+ in ∂Gv.
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Figure V.1.

For every vertex v of D(ξ−), choose Uv to be a neighbourhood of ξ− in ∂Gv0 . Choose
a ξ−-family U ′ which is nested in {Uv, v ∈ D(ξ−)}, and choose ε ∈ (0, 1). We can further
assume that for every simplex σ of F and every vertex v of σ, the subset EGσ \ U ′v is
infinite. Let K = ∂G \ VU ′,ε(ξ−).

We now prove that, up to a subsequence, the sequence of translates gnK uniformly
converges to ξ+. Because of the definition of neighbourhoods of points of ∂StabG, we need
to treat different cases.

Let σ be a simplex of F containing v0, so that Gσ ⊂ Gv0 , and v a vertex of σ distinct
from v0. Since Gv is hyperbolic, there exists a subsequence of (gn), that we still denote
(gn), and points ξ′+, ξ′− ∈ ∂Gv such that for every compact subset K ′ of EGv \

{
ξ′−
}
, the

sequence of translates gnK ′ uniformly converges to ξ′+. By definition of ξ+ and ξ−, we
already have that the sequence gn(EGv0 \U ′v0) uniformly converges to ξ+ in ∂Gv0 . We thus
have that gn(EGσ \ U ′v0) uniformly converges to ξ+ in ∂Gv. Since EGσ \ U ′v0 is infinite by
construction, this implies that ξ′+ = ξ+. If we had ξ′− 6= ξ−, then gnEGσ would uniformly
converge to ξ+, contradicting the fact that gnEGσ = EGσ since gn fixes σ. Therefore
ξ′− = ξ−. This implies that gn(∂Gv \ U ′v) uniformly converges to ξ+ in ∂Gv. Since F is
finite, an easy induction shows that there exists a subsequence, still denoted (gn), such that
gn(∂Gv \ U ′v) uniformly converges to ξ+ in ∂Gv for every vertex v of F .

Let x̃ ∈ K, and x ∈ p̄(x̃) \ F . Let σ be the first simplex touched by [v0, x] after leaving
F . It follows from the definition of F that the sequence of simplices (gnσ) is such that for
some (hence any) vertex v of σ ∩ F , the sequence of (∂Ggnσ) uniformly converges to ξ+ in
∂Gv. It follows from the convergence criterion IV.6.16 that the sequence (gnx̃) converges
to ξ+. Since x̃ /∈ VU ,ε(ξ−), we have ∂Gσ 6⊂ Uv for some (hence any) vertex v of F . Since U ′
is nested in {Uw, w ∈ V (ξ−)}, it follows that

∂Gσ ∩ U ′v = ∅,

this being true for every x̃ ∈ K and x ∈ p̄(x̃) \ F . We already have that for every vertex
v of F , the sequence of gn.(∂Gv \ Uv) uniformly converges to ξ+ by the above discussion.
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As F is a finite subcomplex of X, the convergence criterion IV.6.16 now shows that the
sequence (gn.K) uniformly converges to ξ+.

Lemma V.2.4. Let (gn) be an injective sequence of elements of G. Suppose that for some
(hence any) vertex v the sequence (gnv) is bounded, but there do not exist vertices v0 and
v1 of X such that gnv0 = v1 for infinitely many n. Then there exist ξ+, ξ− ∈ ∂G and a
subsequence (gϕ(n)) such that for every compact subset K of ∂G \ {ξ−}, the sequence of
translates gϕ(n)K uniformly converges to ξ+.

Proof. Choose an arbitrary vertex v and a point x̃ of EGv. As ∂G is compact by Theorem
IV.6.13 and (gnv) is bounded, we can choose a subsequence, still denoted (gn), and points
ξ+, ξ− ∈ ∂StabG such that gnx̃ → ξ+ and g−1

n x̃ → ξ−. We choose a vertex v0 of D(ξ+) to
be the basepoint, and let x̃0 ∈ EGv0 . By Theorem IV.7.1, we still have gnx̃0 → ξ+ and
g−1
n x̃0 → ξ−.

Claim 1:

• For every η ∈ ∂X, the geodesic ray [gnv0, gnη) does not meet D(ξ+) for n large
enough.

• For every ξ ∈ ∂StabG, the subset Geod(gnv0, gnD(ξ)) does not meet D(ξ+) for n large
enough.

Let z ∈ ∂G. If z ∈ ∂X, we denote by D(z) the singleton {z}. By contradiction, sup-
pose that there exists an infinite number of n for which there exist yn ∈ D(ξ+) and
xn ∈ Geod(v0, D(z)) such that gnxn = yn. As (yn) is bounded by Proposition IV.3.2,
the assumption on (gn) implies that (xn) is bounded too. Since xn lies on Geod(v0, D(z))
for every n, the containment lemma IV.1.3 and the finiteness lemma IV.1.5 imply that, up
to a subsequence, we can assume that xn always lies in the same simplex σ of X. Further-
more, since D(ξ+) is finite by Proposition IV.3.2, we can assume, up to a subsequence, that
yn lies in a simplex σ′ of X for every n. As the action of G on X is without inversion, this
implies that gnσ = σ′ for every n, which was excluded by assumption.

Claim 2: For every ξ in ∂G, the sequence gnξ converges to ξ+.

Let U be a ξ+-family, U ′ a ξ+-family that is 3dmax-nested in U and ε > 0. Recall
that, by assumption on (gn), the vertex gnv0 does not belong to D(ξ+) for n big enough.
Furthermore, since gnx̃0 → ξ+, we have that EGσξ+,ε(gnv0) ⊂ U ′v for n large enough and for
some (hence every) vertex v of D(ξ+) ∩ σξ+,ε(gnv0). We split the proof of the claim in two
cases.

Let η ∈ ∂X. For n large enough, the path [gnv0, gnη) does not meet D(ξ+) by Claim
1. By Proposition IV.3.2 ,we can choose y ∈ D(ξ+) which minimises the distance to
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Geod(gnv0, gnη). Let τ (resp. τ ′) be a simplex of N(D(ξ+)) \ D(ξ+) whose interior is
crossed by [y, gnv0] (resp. [y, gnη)) at a point u (resp. u′). By convexity of the function
z 7→ d(z, [gnv0, gnη)), it follows from the definition of y that the geodesic segment [u, u′]
does not meet D(ξ+), thus yielding a path of simplices of length at most dmax between τ
and τ ′ in N(D(ξ+)) \ D(ξ+). Lemma IV.1.7 implies that there exists a path of simplices
of length at most dmax between τ and the exit simplex σξ+,ε(gnv0) (resp. between τ ′ and
the exit simplex σξ+,ε(gnη)) in N(D(ξ+)) \D(ξ+). Thus for n large enough, there is a path
of simplices of length at most 3dmax from σξ+,ε(gnv0) to σξ+,ε(gnη) in N(D(ξ+)) \D(ξ+).
As EGσξ+,ε(gnv0) ⊂ U ′v for n large enough and for some (hence every) vertex v of D(ξ+) ∩
σξ+,ε(gnv0), it follows from the fact that U ′ is 3dmax-nested in U that EGσξ+,ε(gnη) ⊂ Uv for
n large enough and for some (hence every) vertex v of D(ξ+) ∩ σξ+,ε(gnη). It thus follows
that (gnη) converges to ξ+.

Let ξ ∈ ∂StabG. For n large enough, Geod(gnv0, gnD(ξ)) does not meet D(ξ+) by Claim
1. Let x ∈ D(ξ) and, by Proposition IV.3.2, let y be a point of D(ξ+) which minimises
the distance to Geod(gnv0, gnx). Using the same reasoning as above, we get, for n large
enough, a path of simplices of length at most 3dmax from σξ+,ε(gnv0) to σξ+,ε(gnx) in
N(D(ξ+)) \D(ξ+). As EGσξ+,ε(gnv0) ⊂ U ′v for n large enough and for some (hence every)
vertex v of D(ξ+) ∩ σξ+,ε(gnv0), it follows from the fact that U ′ is 3dmax-nested in U that,
for n large enough and for every x ∈ D(ξ), EGσξ+,ε(gnx) ⊂ Uv for some (hence every) vertex
v of D(ξ+) ∩ σξ+,ε(gnx). It thus follows that (gnξ) converges to ξ+.

In the same way, we prove that for every ξ ∈ ∂G, the sequence g−1
n ξ converges to ξ−.

To conclude the proof of the lemma, it remains to show that this convergence can be made
uniform away from ξ−:

Claim 3: For every ξ 6= ξ− in ∂G, there is a subsequence (gn) and a neighbourhood U
of ξ in ∂G such that the sequence of gnU uniformly converges to ξ+.

Once again, we split the proof in two cases.
Let ξ ∈ ∂StabG. We already have that gnξ → ξ+ by Claim 2. In order to find a ξ-family

U and a constant ε such gnVU ,ε(ξ) uniformly converges to ξ+, it is enough, using the same
reasoning as in Claim 2, to find a ξ-family U and a constant ε such that for every x in
D(ξ) ∪ ConeU ,ε(ξ), the geodesic from gnv0 to gnx does not meet D(ξ+).
By Claim 1, we already have that for n large enough, no geodesic from gnv0 to a point of
gnD(ξ) meets D(ξ+). As ξ 6= ξ−, we choose a ξ-family U , a ξ−-family U ′ and constants
ε, ε′ ∈ (0, 1) such that the neighbourhoods VU ,ε(ξ) and VU ′,ε′(ξ−) are disjoint. Up to a
subsequence, we have by the first claim that gnD(ξ) does not meet D(ξ+). It now follows
from the definition of U and the fact that g−1

n ξ+ → ξ− that ConeU ,ε(ξ) does not meet the
sets g−1

n D(ξ+), hence the sets gnConeU ,ε(ξ) do not meet D(ξ+). Now this implies that
for every x in ConeU ,ε(ξ), the geodesic from gnv0 to gnx does not meet D(ξ+): indeed,
this geodesic must meet gnD(ξ) since the geodesic from v0 to a point of ConeU ,ε(ξ) must



100 Chapter V. A combination theorem for hyperbolic groups.

meet D(ξ), and we already proved that a geodesic segment from gnv0 to a point of gnD(ξ)
does not meet D(ξ+). Now the same proof as in Claim 2 shows that gnVU ,ε(ξ) uniformly
converges to ξ+.

Let η ∈ ∂X. We already know that gnη → ξ+ by Claim 2. In order to find a neighbour-
hood U of η in X such that such gnVU (η) uniformly converges to ξ+, it is enough, using
the same reasoning as in Claim 2, to find a neighbourhood U of η in X such that for every
x in U , the geodesic from gnv0 to gnx does not meet D(ξ+).
First, notice that the distance from the geodesic rays [gnv0, gnη) to D(ξ+) is uniformly
bounded below: indeed, if this was not the case, the same reasoning as in Claim 1 would
imply the existence of simplices σ, σ′ of X such that gnσ∩σ′ 6= ∅. This in turn would imply
that, up to a subsequence, there exist subsimplices τ ⊂ σ and τ ′ ⊂ σ′ such that gnτ = τ ′,
which was excluded. Thus, let ε > 0 be such a uniform bound. Let also

M = sup
x∈D(ξ+),n≥0

d(gnv0, x).

Now consider the neighbourhood VM,ε(η) of η in X. Let x ∈ X be in that neighbour-
hood, and let γ be a parametrisation of the geodesic from v0 to x. Suppose by contradic-
tion that the geodesic from gnv0 to gnx does meet D(ξ+). Then, by definition of M , the
geodesic segment gnγ

(
[0,M ]

)
meets D(ξ+). But as this geodesic segment is in the open

ε-neighbourhood of [gnv0, gnη), we get our contradiction from the definition of ε.
Thus for every x in VM,ε(η), the geodesic from gnv0 to gnx does not meet D(ξ+), and we
are done.

Lemma V.2.5. Let (gn) be an injective sequence of elements of G, and suppose that for
some (hence every) vertex v0 of X, d(v0, gnv0) → ∞. Since (EG, ∂G) is an EZ-structure
for G by Theorem IV.7.1, we can assume up to a subsequence that there exist ξ+, ξ− ∈ ∂G
such that for every compact subset K ⊂ EG, we have gnK → ξ+ and g−1

n K → ξ−. Then
there exists a subsequence (gϕ(n)) such that for every compact subset K of ∂G \ {ξ−}, the
sequence of translates gϕ(n)K uniformly converges to ξ+.

Proof. If ξ− ∈ ∂X, let U be a neighbourhood of ξ− in ∂X and K = ∂G \ VU (ξ−). Since
X has finitely many isometry types of simplices, it follows from Lemma IV.5.3 that we can
choose a subneighbourhood U ′ of U containing ξ− and such that any path from U ′ ∩X to
X \ U meets at least dmax simplices.

If ξ− ∈ ∂StabG, let U be a ξ−-family, and ε ∈ (0, 1), and let K = ∂G \VU ,ε(ξ−). We also
choose another ξ−-family U ′ which is 2dmax-refined in U .
We want to prove that (gnK) uniformly converges to ξ+. Recall that the sets Wk(gnv0)
were defined in V.2.1.

Claim 1: For every k, the following holds:

• If ξ− ∈ ∂X, we have gn
(
X \ U ′

)
⊂Wk(gnv0) for n large enough.
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• If ξ− ∈ ∂StabG, we have gn
(
X \ C̃oneU ′,ε(ξ−)

)
⊂Wk(gnv0) for n large enough.

We split the proof in two cases.
Suppose that ξ− ∈ ∂X. First notice that since g−1

n v0 → ξ−, there exists a constant C
such that for every n ≥ 0 and every x /∈ U , we have 〈g−1

n v0, x〉v0 ≤ C. Since we also have
d(g−1

n v0, v0)→∞, the claim follows.
Suppose now that ξ− ∈ ∂StabG. We start by proving by contradiction that there exists a

constant C such that for every n ≥ 0 and every x /∈ C̃oneU ′,ε(ξ−), we have 〈g−1
n v0, x〉v0 ≤ C.

The containment lemma IV.1.3 yields a constant m such that a geodesic path of length at
most δ meets at most m simplices, where δ is the hyperbolicity constant of X. Let U ′′
be a ξ−-family that is m-nested in U ′. Since we are reasoning by contradiction, then,
up to a subsequence, there exist points yn /∈ C̃oneU ′,ε(ξ−) such that 〈g−1

n v0, yn〉v0 → ∞.
By hyperbolicity of X , the geodesic segments [v0, g

−1
n v0] and [v0, yn] stay δ-close until

time 〈g−1
n v0, yn〉v0 → ∞. Moreover, as g−1

n x̃0 → ξ− for any point x̃0 ∈ EGv0 , we have
g−1
n v0 ∈ ConeU ′′,ε(ξ−) for n large enough. Thus, for n large enough, there exist points
an ∈ [v0, yn] and bn ∈ [v0, g

−1
n v0] ∩ ConeU ′′,ε(ξ−) and a path of simplices of length at most

m between an and bn which is contained in X \D(ξ−) (see Figure V.2).

≤ δ
an

bn

v0

g−1
n v0

yn

D(ξ−)
C̃oneU ′,ε(ξ−)

Figure V.2.

The refinement lemma IV.4.10 now implies that an and yn both are in ConeU ′,ε(ξ−) for n
large enough, a contradiction.
Now the same reasoning as before shows that for every k ≥ 0, there exists N such that for
every n ≥ N and every x /∈ C̃oneU ′,ε(ξ−), 〈v0, x〉g−1

n v0
≥ k, hence 〈gnv0, gnx〉v0 ≥ k.

Claim 2: For every k, we have gnp̄(K) ⊂Wk(gnv0) for n large enough.

Suppose that ξ− ∈ ∂X. By definition of U ′, we have that for every z ∈ K, p̄(z)∩U ′ = ∅.
Thus p̄(K) ⊂ X \ U ′ and the result follows from Claim 1.

Suppose now that ξ− ∈ ∂StabG, and let z ∈ K. Suppose by contradiction that
p̄(z) ∩ C̃oneU ′,ε(ξ−) 6= ∅. If p̄(z) is contained in X \ D(ξ−), then the refinement lemma
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IV.4.10 implies that p̄(z) ⊂ C̃oneU ,ε(ξ−); hence z ∈ VU ,ε(ξ−), which is absurd. If p̄(z) meets
D(ξ−), then since U ′ is 2dmax-refined in U it follows from the refinement lemma IV.4.10
and Lemma IV.5.20 that z ∈ VU ,ε(ξ−), a contradiction. Thus p̄(K) ⊂ X \ C̃oneU ′,ε(ξ−) and
the result follows from Claim 1.

Claim 3: gnK uniformly converges to ξ+.

Once again, we split the proof in two cases.
Suppose that ξ+ ∈ ∂X. Then, as gnv0 → ξ+, it follows from Claim 2 that for every

k, gnp̄(K) ⊂ Wk(ξ+) for n large enough. It then follows from the convergence criterion
IV.6.16 that gnK uniformly converges to ξ+.

Suppose now that ξ+ ∈ ∂StabG. Let U+ be a ξ+-family and ε ∈ (0, 1). Since X is
δ-hyperbolic, let m be a constant such that a geodesic path of length at most δ meets at
most m simplices, and let U ′+ be a ξ+-family that is m-nested in U+. As gnx̃0 → ξ+ for any
x̃0 ∈ EGv0 , we have gnv0 ∈ ConeU ′+,ε(ξ+) for n large enough. For every T ≥ 0, we can choose
n large enough so that the geodesic segments [v0, gnv0] and [v0, gnx], x ∈ p̄(K), remain δ-
close up to time T (if we choose k large enough in Claim 2). In particular, we can choose
k and N large enough so that, for every n ≥ N and every x ∈ p̄(K), there exists a path of
simplices of length at mostm inX\D(ξ+) between a point of [v0, gnv0]∩ConeU ′+,ε(ξ+) and a

point of [v0, gnx]. The refinement lemma IV.4.10 now implies that gnp̄(K) ⊂ C̃oneU+,ε(ξ+)
for n ≥ N , hence gnK ⊂ VU+,ε(ξ+) for n ≥ N . Thus, gnK uniformly converges to ξ+.

Corollary V.2.6. The group G is a convergence group on ∂G.

Proof. This follows from Lemma V.2.3, Lemma V.2.4 and Lemma V.2.5.

To prove that G is hyperbolic, it remains to show that every point of ∂G is conical.

Lemma V.2.7. Every point of ∂G is a conical limit point for ∂G.

Proof. Consider first a point in ∂Gv for some vertex v of X. It is a conical limit point for
Gv on ∂Gv, since Gv is hyperbolic. Therefore it is a conical point for Gv on ∂G, hence for
G since G is a convergence group on ∂G by Corollary V.2.6.

Now consider a point η ∈ ∂X. Since the action of G on X is cocompact, we can find a
sequence (gn) of elements of G and a simplex σ such that (gnσ) uniformly converges to η
in X and such that for every n, the geodesic ray [v0, η) meets the interior of gnσ. Let v be
a vertex of σ and x̃ ∈ EGv.

Claim: Up to multiplying each gn on the right by an element of Gv and taking a sub-
sequence, we can further assume that g−1

n x̃ converges to a point ξ− ∈ ∂G \ ∂Gv.
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Consider the first simplex touched by the geodesic [v, g−1
n v] after leaving v. Since the

action of G on X is cocompact, we can assume up to a subsequence that this sequence of
simplices is in the same G-orbit. Now up to multiplying each gn by an element of Gv, we
can further assume that this sequence of simplices is constant at a unique simplex σ1. Up
to a subsequence, we can further assume that all the geodesic segments [v, g−1

n v] leave σ1

along the same open simplex τ1. Now consider the simplex σ(n)
2 touched by [v, g−1

n v] after
leaving τ1 and choose a Gσ1-orbit in EGτ1 . Since Gσ1 is quasiconvex in Gτ1 , this orbit
is a quasiconvex subset Q1 of EGτ1 ; choose a basepoint y of Q1. For every n, choose a
point xn ∈ EG

σ
(n)
2

and let yn be a projection of xn on the quasiconvex subset Q1. By
definition of Q1, there exists an element hn ∈ Gσ1 ⊂ Gv such that hnyn = y. This implies
that for every n, the subset hnEGσ(n)

2

contains a point that projects to y. In particular,

no subsequence of hnEGσ(n)
2

converges to a point of ∂Gσ1 . Suppose by contradiction that

there exists a subsequence of hnEGσ(n)
2

which converges to a point z ∈ ∂Gτ1 . Since Gτ1
is a convergence group on EGτ1 by Proposition I.3.20, it follows that for every x ∈ EGτ1
except maybe one point, hnx converges to z. But as Q1 is stable under all the hn, such a z
belongs to ∂Gσ1 ⊂ ∂Gτ1 , contradicting the fact that no subsequence of hnEGσ(n)

2

converges

to a point of ∂Gσ1 . Thus, no subsequence of hnEGσ(n)
2

converges to a point of ∂Gτ1 and
the convergence property IV.3.8 now implies that, up to a subsequence, we can assume that
hnEGσ(n)

2

is constant. Up to a subsequence, we can further assume that σ(n)
2 is constant at

σ2 and every geodesic segment [v, g−1
n v] leaves σ2 along the same open simplex τ2. In view

of the above, we replace the sequence (gn) by (gnh
−1
n ). Now one of the following happens:

(i) Suppose that Gσ1 ∩ Gσ2 is finite. By applying the same reasoning as in the proof
of the compactness lemmas IV.6.14 and IV.6.15, either there exists a subsequence
of (gn) such that g−1

n x̃ converges to a point of ∂X and we are done, or the path of
simplices σ1, σ2 extends to a path of simplices σ1, . . . , σm which are crossed by every
geodesic segment [v, g−1

n v] and g−1
n x̃ converges to a point ξ− ∈ ∂Gσm . As D(ξ−) is

convex by Proposition IV.3.2 and Gσ1 ∩ Gσ2 is finite, it follows from Lemma IV.3.7
that ξ− /∈ ∂Gv and we are done.

(ii) Suppose that Gσ1 ∩Gσ2 is infinite. Let σ(n)
3 be the simplex touched by [v, g−1

n v] after
leaving τ2, and let Q2 be a Gσ1 ∩Gσ2-orbit in EGτ2 . Note that Q2 is quasiconvex in
EGτ2 by Lemma V.2.2. We are thus back to the previous situation with EGτ2 instead
of EGτ1 , EGσ(n)

3

instead of EG
σ
(n)
2

and Q2 instead of Q1.

We claim that this procedure eventually stops. Indeed, the containment lemma IV.1.3
yields a constant m such that every geodesic meeting at least m simplices has length at
least A, where A is the acylindricity constant. Thus, after at most m applications of this
algorithm, we get to situation (i), which concludes the proof of the claim.
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By the above discussion, we already have that g−1
n x̃ → ξ− for every x̃ ∈ EGv. Thus,

by Lemma V.2.5, it is enough, in order to prove Lemma V.2.7, to show that g−1
n η does not

converge to ξ−, which we now prove by contradiction.
Suppose g−1

n η was converging to ξ−. For every n, let xn be a point of [g−1
n v, g−1

n η) that
is contained in the interior of σ. Since the geodesic ray [g−1

n v, g−1
n η) meets σ for every

n, the Gromov product 〈g−1
n v, g−1

n η〉v is bounded. Thus, ξ− cannot belong to ∂X, and
ξ− ∈ ∂StabG.

Now since both g−1
n η and g−1

n x̃ converge to ξ− ∈ ∂StabG, both geodesics [v, g−1
n η) and

[v, g−1
n v] must go through D(ξ−) for n large enough. But Lemma IV.1.7 and Lemma IV.4.8

imply that for n large enough and any x ∈ σ, both geodesic rays [x, g−1
n η) and [x, g−1

n v]
also meet D(ξ−). In particular, [xn, g

−1
n η) and [xn, g

−1
n v] meet D(ξ−) for n large enough.

As D(ξ−) is convex by Proposition IV.3.2, this implies that xn belongs to D(ξ−), hence so
does v, which is absurd by construction of (gn).

Corollary V.2.8. G is a hyperbolic group and ∂G is G-equivariantly homeomorphic to its
Gromov boundary.

Proof. The group G is a convergence group on ∂G by Corollary V.2.6, and every point of
∂G is conical by LemmaV.2.7, thus the result follows from Theorem I.3.22.

To conclude the proof of Theorem V.0.21, it remains to show that stabilisers embed as
quasiconvex subsets.

Proposition V.2.9. Stabilisers of simplices of X are quasiconvex subgroups of G.

Proof. It is enough to prove the result for the stabiliser of a vertex v of X. Notice that, by
Proposition IV.5.19, the boundary of Gv embeds Gv-equivariantly in ∂G, the latter being
G-equivariantly homeomorphic to the Gromov boundary of G by Corollary V.2.8. Hence,
the result follows from Theorem I.3.28

Proof of Theorem V.0.21: This follows from Corollary V.2.8 and Proposition V.2.9.

Proof of Corollary V.0.22: This follows from Theorem V.0.21 and Lemma V.1.1.
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