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Véronique BRION

Imagerie de diffusion en temps-réel:
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the day of my defense. Thanks to Benôıt for your generosity and for all times you drove

me to Massy-Palaiseau RER station. Thank you Alfredo, Anne-Laure, Dang, François,

Hang, Jennifer, Jing-Rebecca and Pamela for our nice talks together and your support.

Special thanks to the funny and nice Prince-Pepito-Coca-Schweppes-madeleines-take-

as-you-want Glunch team with Denis Fournier, Greg (même si on n’appelait pas encore ces
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Je dédie cette thèse à mes sœurs et mes parents.

iii



iv



Contents

Acknowledgments i

Contents ix

List of figures xvi

List of tables xvii

List of symbols xix

Abstract xxi
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14 Schéma d’un KF utilisé comme un filtre de Wiener. . . . . . . . . . . . . . . xl

15 Comparison entre des jeux d’orientations conventionnels et optimisés . . . . xlii

16 L’architecture hardware adaptée au projet TR . . . . . . . . . . . . . . . . xliii
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31 Comparaison entre les méthodes PKF et “LMMSE & KF” sur les données

simulées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lxi
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Abstract

Most magnetic resonance imaging (MRI) system manufacturers propose a huge set of

software applications to post-process the reconstructed MRI data a posteriori, but few of

them can run in real-time during the ongoing scan. To our knowledge, apart from solutions

dedicated to functional MRI allowing limited relatively simple experiments or for interven-

tional MRI generally developed to perform anatomical scans during surgery, no tool has

been developed in the field of diffusion-weighted MRI (dMRI). However, because dMRI

scans are extremely sensitive to lots of hardware or subject-based perturbations inducing

corrupted data, it can be interesting to investigate the possibility of processing dMRI data

directly during the ongoing scan and this thesis is dedicated to this challenging topic. The

organization of the methodological developments achieved in this thesis is fourfold. First,

a high performance real-time software platform was developed and connected to the 3T

MRI system of the NeuroSpin center offering the computational ressources mandatory to

allow post-processings in a dozen of seconds (corresponding to the average repetition time

needed to acquire a full diffusion-weighted volume). The second objective, in fact the ma-

jor contribution of this thesis, aimed at providing solutions to the challenging problem of

denoising dMRI data in real-time. Indeed, the diffusion-weighted signal may be corrupted

by a significant level of noise strongly reducing the angular resolution of advanced local

angular diffusion models requiring the use of high b-values yielding a low signal-to-noise

ratio (SNR). Because the noise distribution corrupting the magnitude of the MRI signal is

not Gaussian anymore but Rician or noncentral χ, averaging cannot be used as a strategy

to denoise the signal. After making a detailed review of the literature, we extended the

linear minimum mean square error (LMMSE) estimator and adapted it to our real-time

framework. We compared its efficiency to the standard Gaussian filtering approach more

difficult to implement in most scanners as it requires a modification of the reconstruc-

tion pipeline to insert the filter immediately after the demodulation and translation of

the acquired complex signal in the Fourier space. We proved that our real-time LMMSE

denoising method implemented with a Kalman filter was more efficient in practice than

this conventional Gaussian filtering method, since it allowed to preserve anatomical de-

tails by taking into account the underlying structure encoded in the MRI signal. We

also developed a parallel Kalman filter to deal with any noise distribution and we showed

that its efficiency was quite comparable to the non parallel Kalman filter approach. The

third objective of this thesis was to demonstrate the feasibility of computing estimates of

xxi



the field of the orientation distribution functions such as the diffusion tensor model, the

analytical Q-ball model in an incremental way using a Kalman framework, and in less

than a repetition time. We proved that it could be achieved using our high performance

computing environment, thus opening the way to get estimations of any quantitative dif-

fusion map incrementally during an ongoing scan. Last, we addressed the feasibility of

performing tractography in real-time in order to infer the structural connectivity online.

We hope that this set of methodological developments will help improving the diagnosis

of brain pathologies, in particular when a quick diagnosis has to be performed in case of

emergency to check the integrity of white matter fiber bundles.
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Résumé (français)

Chapitre 1: Introduction

L’IRM de diffusion (IRMd), introduite par [LeBihan and Breton (1985); Merboldt et al.

(1985); Taylor and Bushell (1985)], est une modalité d’imagerie très utilisée aujourd’hui.

Ses domaines d’applications vont du diagnostic précoce d’accidents ischémiques jusqu’à

l’inférence de la connectivité anatomique cérébrale. L’IRMd repose sur la mesure du

phénomène physique de diffusion des molécules d’eau contenues dans le cerveau, cette

mesure permettant d’en déduire les directions des faisceaux de fibres de la substance

blanche à l’intérieur du cerveau. Durant les vingt dernières années, de nombreuses méthodes

ont été développées pour représenter au mieux la carte de ces faisceaux reliant des régions

cérébrales entre elles. Avec l’amélioration de la précision de ces cartes représentant les

autoroutes cérébrales, l’enthousiasme s’est intensifié dans la communauté et de nouvelles

investigations se sont multipliées pour mieux étudier la microarchitecture cérébrale.

Récemment, une nouvelle avancée pour l’IRMd, ainsi que pour l’IRM fonctionnelle

(IRMf), a émergée avec l’apparition de l’IRM dite temps-réel (TR). L’IRM TR est un

nouveau concept permettant de réaliser les habituels post-traitement des images par IRM

en direct, c’est-à-dire en même temps que l’acquisition a lieu avec le patient dans le scanner

IRM. L’IRMf TR, introduite par [Cox et al. (1995)], a ouvert de nouvelles portes dans

plusieurs domaines. Cette technique a par exemple permis de communiquer avec des

patients complètement paralysés, dont les médecins pensaient qu’ils étaient dans un état

végétatif [Birbaumer et al. (1999)]. L’IRMf TR a apporté de nouvelles possibilités pour

générer des interfaces cerveau-machine [Weiskopf et al. (2004); deCharms (2007)], jusqu’à

pouvoir réduire des douleurs chroniques chez des patients grâce à un entrâınement dit

de neurofeedback (réponse rétroactive à un stimulus cérébral) [deCharms (2008)]. En

parallèle de ces dévelopements permettant de lire les processus de fonctionnement cérébral

en TR, l’apparition de l’IRMd TR (IRMdtr) [Poupon et al. (2008b)] a ouvert la voie de

la lecture de l’architecture structurale du cerveau en TR, pendant l’examen du patient.

Dans le cadre de cette thèse, nous nous focalisons sur l’IRMdtr.

L’IRMdtr permet de voir en TR le résultat du calcul des cartes d’IRMd qui se raf-

finent chaque fois qu’une nouvelle mesure de la diffusion de l’eau est effectuée. Les cartes

habituelles d’IRMd —comme celles de l’anisotropie fractionnelle, du coefficient de diffu-

sion apparent, des functions de distributions des orientations de la diffusion ou des fibres—
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peuvent être évaluées presque instantanément alors que la séquence d’IRMd est en cours

d’exécution. Les possibilités offertes par ce traitement TR sont puissantes. En effet, les

résultats obtenus en direct permettent de juger efficacement de la qualité des mesures

effectuées sur le patient et éventuellement de corriger les artéfacts dus à des problèmes

inattendus tels que le mouvement du patient ou de détecter un problème technique... En-

fin, ce système TR offre la possibilité d’insérer un traitement incrémental supplémentaire

sur les données acquises, accélérant le processus de traitement des données et permet-

tant d’arrêter l’acquisition dès que les estimations ont produit des résultats suffisamment

informatifs en vue du diagnostic.

L’imagerie de diffusion est caractérisée par une décroissance exponentielle du signal qui

génère un signal résiduel fortement bruité. Alors que ce bruit reste gaussien sur les deux

canaux d’acquisition du signal complexe, il devient ricien ou χ non centré, lorsque l’on

considère l’amplitude du signal des données IRM reconstruites. La tendance actuelle avec

les modèles d’imagerie de diffusion à haute résolution angulaire (HARDI) et d’imagerie de

diffusion hybride (HYDI) est d’augmenter la pondération en diffusion dans le signal, ce qui

intensifie le niveau de bruit dans le signal. De plus, il peut être intéressant de diminuer la

taille du voxel pour augmenter la résolution spatiale des images, ce qui diminue également

le rapport signal à bruit (SNR). Par conséquent, une méthode de débruitage en TR devient

essentielle pour utiliser l’IRMdtr de manière optimale.

Dans cette thèse, nous nous sommes intéressés à la possibilité de corriger le bruit en TR,

ce qui peut être très difficile si l’on considère le laps de temps disponible d’une douzaine de

secondes entre l’acquisition de deux volumes. Tout d’abord, nous nous sommes focalisés sur

une des techniques de débruitage offline (c’est-à-dire effectué en post-traitement). Cette

technique, qui s’adapte bien à nos contraintes de TR, est l’estimateur linéaire minimisant

l’erreur quadratique moyenne (LMMSE) qui a été d’abord dédié au bruit ricien et que

nous avons étendu à la correction de bruit χ non centré. Puis, nous avons développé

une première méthode de correction en TR fondée sur l’association de ce LMMSE étendu

avec un filtre de Kalman connectés ensemble avec l’intégration d’une boucle de feedback

(rétroaction) pour contrôler le surlissage induit par le LMMSE. En plus de cette première

méthode, nous avons développé une autre technique de débruitage TR reposant sur un

outil unique: un filtre de Kalman parallèle prenant directement en compte le caractère non

gaussien du bruit. Chaque technique a été appliquée en TR sur les signaux d’amplitude

reconstruits par la technique dite “sum of squares” (SoS) (par somme des carrés). Nous

avons également élaboré dans cette thèse une méthode de correction du bruit en TR

qui s’applique directement sur les signaux avant la reconstruction SoS. Cette dernière

technique a l’avantage de pouvoir considérer un bruit gaussien à moyenne nulle. L’ensemble

de ce nouvel environnement TR a été testé sur un imageur IRM Tim Trio à 3T et pourrait

être adapté à tout autre système clinique d’IRM. Nous avons également abordé la question

de la faisabilité du suivi de fibres en TR permettant de voir les fibres se construire de

manière incrémentale à chaque nouvelle acquisition. Nous avons étudié l’impact de la

correction du bruit en TR pour cette application de tractographie.
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Cette thèse est organisée de la manière suivante: les chapitres 2, 3 et 4 sont regroupés

dans la partie sur l’état de l’art de l’IRMdtr. Ils couvrent les bases de l’IRM (chapitre

2), celles de l’IRMd (chapitre 3) pour converger vers l’IRMdtr (chapitre 4). La partie

suivante contient nos contributions sur la correction du bruit en TR dédiée l’IRMdtr. Le

chapitre 5 contient un important état de l’art sur la description du bruit en IRM, ainsi

que des contributions sur une méthode d’estimation de la variance du bruit sans utiliser le

fond de l’image et la proposition d’une nouvelle mesure de la qualité d’une image d’IRMd.

Le chapitre 6 présente la problématique de la correction du bruit en TR et apporte une

solution reposant sur un LMMSE étendu. Puis, le chapitre 7 propose trois méthodes

de correction du bruit en TR. La première repose sur la combinaison d’un LMMSE et

d’un filtre de Kalman incorporant une boucle de feedback. La deuxième repose sur un

débruitage effectué sur les données de l’espace k, avant la reconstruction SoS. La dernière,

qui est appliquée comme la première sur les signaux d’amplitude, est fondée sur un filtre de

Kalman parallèle. Enfin, la dernière partie contient le chapitre 8 qui propose de sonder la

possibilité de réaliser un suivi de fibres en TR. Ce dernier chapitre met en valeur l’impact

de la correction du bruit en TR sur l’estimation des fibres réalisée en TR.

Chapitre 2: Principes de base de l’imagerie par résonance

magnétique nucléaire (IRM)

L’imagerie par résonance magnétique nucléaire (IRM) a été introduite par [Lauterbur

(1973)] et [Mansfield (1977)]. Cette modalité permet de générer des images du corps

de manière non invasive. L’IRM est fondée sur la réponse des protons d’hydrogène à

des perturbations magnétiques imposées. En effet, comme le proton possède un moment

magnétique, il est sensible au magnétisme ambiant. Cette sensibilité est à la base de la

modalité d’IRM.

La figure 1 schématise un scanner IRM. Celui-ci est constitué par une bobine supra-

conductrice qui génère un champ magnétique B0 homogène dans un certain champ de

vue situé autour de l’isocentre du champ magnétique. Une antenne permet de perturber

l’équilibre magnétique généré par la bobine supraconductrice. Elle permet de déclencher

le phénomène de résonance magnétique. Elle peut être aussi utilisée pour réceptionner

le signal d’IRM causé par la réponse des protons à la perturbation magnétique imposée.

L’antenne de réception est en général adaptée à la géométrie de l’objet d’intérêt, ici la

tête. Enfin, les bobines de gradients permettent d’encoder spatialement le signal reçu et

de créer l’image.

La résonance magnétique et les phénomènes de relaxation.

On définit le vecteur d’aimantation A comme étant la somme des moments magnétiques

de chaque spin de l’objet étudié divisé par le volume de l’objet. Lorsque le champ B0

est créé par la bobine supraconductrice, l’aimantation A s’aligne le long de ce champ et
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Figure 1: Structure d’un scanner IRM. Fig. adaptée de [Kastler et al. (2006)].

est orientée comme B0. Cet équilibre peut être perturbé par une antenne RF qui crée

un champ tournant B1, comme indiqué sur la figure 2. Pour cela, il faut que la vitesse

angulaire ωexc de B1 respecte la condition de résonance: ωexc = γB0 ([Bloch (1946)],

[Purcell et al. (1946)]). La figure 2 montre comment l’impulsion RF permet de faire

basculer l’aimantation (à 90̊ sur la figure). Au bout d’un certain temps, la relaxation

de la composante transversale de A a lieu, suivie par la relaxation de la composante

longitudinale de A.

L’évolution de l’aimantation peut être décrite par l’équation de Bloch dans le référentiel

du laboratoire (Oxyz) [Bloch (1946)]:

dA

dt
= γ (A×B)− Axx+Ayy

T2
− Az −Am

T1
z , (1)

où × est le produit vectoriel. T1 et T2 sont les temps de relaxation des composantes

respectivement longitudinales et transversales de l’aimantation et Am = Az(∞).
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Figure 2: Effet d’une impulsion RF à 90̊ RF sur le vecteur d’aimantation ~A. Cette impulsion RF

crée un champ magnétique tournantB1 générant le phénomène de résonance magnétique (vignettes

1, 2 et 3). Puis, le phénomène de relaxation a lieu (vignettes 4,5 et 6).

Bases d’une séquence d’écho de spin.

La figure 3 indique les bases d’une séquence d’écho de spin [Hahn (1950)]. La séquence

débute immédiatement après l’impulsion à 90̊ . À t = 0, les spins ont la même phase et
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l’aimantation transversale est à son maximum. Puis, les spins se déphasent entre eux:

c’est la relaxation T ∗
2 , T

∗
2 étant le temps de relaxation transversale effectif. À t = TE/2,

une impulsion RF à 180̊ est appliquée. Elle permet une refocalisation des spins, comme

expliqué sur la figure 4. À t = TE , les spins sont à nouveau en phase et l’aimantation

transversale génère le signal d’écho. Le module de l’aimantation transversale A⊥ est alors

égal à:

A⊥(TE) = Amexp[−TE/T2] . (2)

Signal

Echo
Rephasage

Temps

1 2 3 4 5

TR

Am

A′
m

Déphasage

Figure 3: Bases d’une séquence d’écho de spin. Le bas de la figure indique les étapes de la

séquence constituée d’une impulsion RF à 90̊ et d’une autre à 180̊ . L’origine du temps est

fixée immédiatement après l’impulsion à 90̊ . L’écho est obtenu au temps TE. La séquence est

ensuite répétée au temps TR, le temps de répétition. Le haut de la figure indique l’évolution de

l’aimantation transversale, ainsi que le temps de relaxation T2, et le temps effectif T ∗

2
plus court, dû

aux inhomogénéités du champ B0. La configuration des spins est montrée sous le graphe. Figure

adaptée de [Kastler et al. (2006)]. Les instants numérotés en jaune sont détaillés à la figure 4.
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z

y’

~µ3
~µ1

~µ2

z

y’

sens d’évolution
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Figure 4: Figure détaillé sur l’écho de spin. Les numéros des vignettes correspondent aux numéros

indiqués sur la figure 3.

Le contraste en IRM.

L’aimantation transversale, qui est le signal mesuré en IRM, n’est pas la même suivant

les tissus du cerveau. Ce contraste est dû aux différences des temps de relaxation, ainsi

que du taux de proton selon le tissu. Il est possible de choisir les paramètres de séquence

pour révéler le contraste suivant T1, T2 ou bien la densité protonique, comme indiqué sur

la figure 5.
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Coupe histologique Coupe pondérée en Coupe pondérée en Coupe pondérée en
T1 T2 densité de protons

LCRSG

SB

Figure 5: Coupe histologique d’un cerveau humain (image extraite de

http://www.valley-neuroscience.com) et différents contrastes en IRM à

1.5T: coupes pondérées en T1, T2 et en densité de protons (extraits de

http://users.fmrib.ox.ac.uk/~peterj/lectures/hbm_1/sld031.htm).

L’encodage spatial du signal d’IRM.

L’encodage spatial du signal d’IRM est réalisé par une technique reposant sur l’utilisation

de gradients de champ magnétique [Carr and Purcell (1954); Lauterbur (1973)]. Tout

d’abord, un gradient GSS, dit de sélection de coupe, permet d’exciter les spins d’un plan

de coupe particulier. Ce gradient est appliqué en même temps que l’impulsion d’excitation

RF. Une fois la coupe sélectionnée, un encodage du signal en 2D est réalisé par un gradient

de codage de phase GΦ (noté aussi Gy) et un gradient de fréquence Gω (noté aussi Gx),

également dit gradient de lecture car il est appliqué lors de la lecture du signal. GΦ

modifie les phases des spins contenues dans la coupe sélectionnée par GSS selon des lignes

de voxels. Gω permet de différencier les voxels d’une ligne donnée selon leur fréquence.

La reconstruction de l’image.

Le signal d’aimantation transversale est mesuré par l’antenne de réception. Celle-ci mesure

une tension e(t), dont l’expression découle de la loi d’induction de Faraday et du principe

de réciprocité [Haacke et al. (1999)]:

e(t) = −dΦ(t)

dt
= − d

dt

∫

volume
Breceive(r) ·A(r, t)d3r, (3)

avec Φ(t) le flux magnétique induit dans la bobine de réception par l’aimantation transver-

sale émise, Breceive(r) le champ magnétique créé par la bobine à la position r pour un

courant unitaire et enfin A(r, t) l’aimantation locale. Après une démodulation du signal

e(t) et d’un filtrage passe-bas, il résulte un signal complexe exprimé dans l’espace k tel

que:

s(kx(t), ky(t)) = ω0ΛB⊥

∫∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)e
−i2π(kx(t)x+ky(t)y)dxdy , (4)
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avec ω0 la fréquence de Larmor, Λ un facteur de proportionnalité, B⊥ l’amplitude (module)

du champ magnétique Breceive et A⊥(r, 0) l’amplitude initiale de l’aimantation transver-

sale. kx(t) =
γ
2π

∫ t
0 Gx(t

′)dt′ et ky(t) =
γ
2π

∫ t
0 Gy(t

′)dt′ sont les coordonnées dans l’espace k

définies en fonction des gradients et du rapport gyromagnétique du proton γ. Une double

transformée de Fourier inverse appliquée à s(kx(t), ky(t)) pour t = TE conduit au signal

final:

sfinal(x, y) = ω0ΛB⊥

∫
e−TE/T ∗

2 (x,y,z)A⊥(x, y, z, 0)dz . (5)

L’amplitude de sfinal(x, y) est le signal reconstruit en IRM. La figure 6 en donne un

exemple.

Figure 6: Amplitude du signal dans l’espace k (gauche) et dans le domaine spatial (droite). Pour

passer de l’image de gauche à l’image de droite, une transformée de Fourier inverse 2D doit être

appliquée. Extrait de [Kastler et al. (2006)].

Techniques d’IRM parallèle.

L’IRM parallèle consiste à utiliser un réseau d’antennes pour recueillir le signal d’aimantation

transversale [Roemer et al. (1990)], comme montré sur la figure 7.

L’IRM parallèle permet d’exploiter l’information spatiale délivrée par chaque antenne

grâce à son profil de sensibilité pour remplacer l’encodage spatial du signal effectué par les

gradients de codage de phase et de fréquence en IRM classique. Cela permet de diminuer

le nombre de lignes acquises de l’espace k et ainsi de réduire le temps d’acquisition de

la séquence. Parmi les techniques de reconstruction les plus utilisées en IRM parallèle,

on peut compter l’algorithme SENSE (pour sensitivity-encoding for fast MRI) qui réalise

la reconstruction de l’image dans le domaine spatial. À cause du sous-échantillonnage

de l’espace k, un artéfact de repliement apparâıt dans le domaine spatial et l’algorithme

SENSE permet, à partir des informations de sensibiltés des antennes, de “déplier” l’image.

Un autre algorithme très connu est la technique GRAPPA (generalized autocalibrating

partially parallel acquisition) qui, elle, reconstruit l’image complète dans le domaine de
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Figure 7: Principe de l’IRM parallèle avec ici huit antennes. L’image centrale corre-

spond à la combinaison des images obtenues par chaque antenne. Figure adaptée de

http://black.bme.ntu.edu.tw/courses/course_neuroimaging_fall10/slide_pmri_fhlin.pdf.

Fourier. Il faut pour cela déterminer les lignes manquantes, dues au sous-échantillonnage,

grâce à une technique d’autocalibrage et de reconstruction par blocs.

Chapitre 3: Connaissances sur l’IRM de diffusion (IRMd)

utilisées dans cette thèse

L’IRM de diffusion (IRMd) a été introduite en 1985 par [LeBihan and Breton (1985);

Merboldt et al. (1985); Taylor and Bushell (1985)]. Cette modalité permet de diagnostiquer

des accidents cérébraux ischémiques à un stade précoce [Moseley et al. (1990); LeBihan

et al. (1992)]. Dans ces pathologies, un œdème apparâıt, générant une diminution du

processus de diffusion de l’eau visible en IRMd. D’autre part, l’IRMd est aujourd’hui

le seul moyen non invasif d’explorer la connectivité anatomique cérébrale in vivo. Les

connexions dans le cerveau influent sur la diffusion des molécules d’eau, qui est détectable

par l’IRMd.

Phénomène physique de la diffusion de l’eau.

Dans un milieu sans obstacle ni restriction, des molécules sont gouvernées par un mouve-

ment brownien [Brown (1828)]. On définit alors le coefficient de diffusion D qui mesure la

capacité des molécules à diffuser. Dans un milieu à obstacles comme la substance blanche

(SB), le mouvement des molécules n’est plus brownien car il se heurte à la microarchi-

tecture du tissu (figure 8). On définit alors le coefficient de diffusion apparent (ADC),

différent du coefficient de diffusion libre.
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Figure 8: Représentation du phénomène de diffusion et du libre parcours moyen dans un environ-

nement sans obstacle (a et b) et dans la substance blanche (c et d). En (a), la diffusion est libre

et donc isotrope, comme indiqué en (b). En (c), la diffusion est restreinte à l’intérieur des axones

et entravée de part et d’autre. Le processus de diffusion est donc anisotrope, avec des directions

privilégiées le long des axones (flèches bleues) et des directions perpendiculaires aux axones (flèches

rouges) pour lesquelles le mouvement est inhibé. Figure (a) extraite de Wikipedia, figures (b) et

(d) extraites de [Poupon (2010)] et figure (c) extraite de [Poupon (1999a)].

Outre l’ADC, on définit également la fonction densité de probabilité de déplacement

des protons qu’on appelle le propagateur et que l’on note P (r, τ). Cette fonction représente

la probabilité des protons à se déplacer d’une distance r pendant une durée τ .

Mesure de la diffusion de l’eau avec l’IRMd.

On peut mesurer la diffusion avec une séquence dite pulse gradient spin echo développée

par [Stejskal and Tanner (1965)] et décrite par la figure 9. Cette séquence se distingue

d’une séquence de spin écho par les deux gradients de diffusion g(o) orientés selon la

direction donnée par le vecteur o. Le premier gradient sert à marquer la position des spins

le long de la direction o. S’il y a diffusion des spins, alors ceux-ci se déphasent et ne sont

pas refocalisés suite à l’application du deuxième gradient de diffusion après l’impulsion à

180̊ . Le signal d’aimantation est donc atténué, ce qui permet d’avoir une indication sur

la diffusion des protons le long de la direction testée o.

En faisant l’approximation d’un propagateur de diffusion gaussien, le signal mesuré,

dit alors pondéré en diffusion, s’écrit tel que:

S(b,g) = S0exp[−bADC(o)] ∝ exp[−TE/T2]exp[−bADC(o)], (6)

où b en s ·mm−2 est le paramètre de pondération en diffusion ou b-value [LeBihan (1991)],

S0 est le signal pondéré en T2 qui serait obtenu sans l’application des gradients de diffusion.

Dans le cas de gradients de diffusion de forme rectangulaire: b = γ2‖g‖2δ2(∆ − δ/3) =

γ2‖g‖2δ2τ (γ étant le rapport gyromagnétique du proton et ‖ · ‖ l’opérateur de norme

Euclidienne), avec τ = ∆− δ/3 le temps de diffusion effectif comportant le terme correctif

δ/3 dû à la diffusion qui a lieu lors de la durée d’application des gradients. Les temps ∆

et δ sont indiqués sur la figure 9.
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Figure 9: Séquence PGSE. Pour mesurer le processus de diffusion, deux gradients de diffusion (en

magenta), notés g, sont ajoutés, l’un avant l’impulsion RF à 180̊ et l’autre après.

Modèles locaux de diffusion.

En IRMd, la séquence PGSE permet d’obtenir une grande quantité de volumes de coupes

pondérées en diffusion, chaque volume correspondant à une mesure de la diffusion selon une

orientation donnée. Il s’agit ensuite de rassembler les informations fournies par ces volumes

pour obtenir un seul volume faisant la synthèse de ces données. Pour cela, plusieurs

modèles locaux de diffusion ont été introduits. Ces modèles tentent d’inférer au plus

près le propagateur de diffusion P (r, τ) qui contient l’information de probabilité sur les

trajectoires de diffusion des protons dans le cerveau. On peut se limiter à reconstruire la

projection radiale de ce propagateur [Tuch (2004)]:

Ψ(θi, φi) =

∫ ∞

0
P (r, θi, φi, τ)dr, (7)

où Ψ(θi, φi) est la fonction de distribution des orientations de diffusion (dODF). En réalité,

cette définition ci-dessus est incomplète. La projection radiale du propagateur s’écrit

correctement telle que [Tristán-Vega et al. (2009); Aganj et al. (2010)]:

Ψc(θi, φi) =

∫ ∞

0
P (r, θi, φi, τ)r

2dr, (8)

avec Ψc que l’on appelle la dODF corrigée (cdODF). Ces deux définitions sont utilisées

par certains modèles locaux et permettent de reconstruire une information intéressante

concernant les orientations privilégiées par le phénomène de diffusion dans le cerveau.
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De ces orientations, il est possible de déduire les trajectoires des faisceaux de fibres du

cerveaux qui sont à l’origine de cette anisotropie de diffusion des protons. [Tournier et al.

(2004)] a introduit la function de distribution des orientations des fibres (fODF) qui donne

directement les trajectoires les plus probables de fibres cérébrales. Les trois fonctions

dODF, cdODF et fODF peuvent être reconstruites en utilisant l’espace q. Cet espace,

dont le vecteur unitaire est q = γδg, est l’espace dual de l’espace du propagateur de

diffusion. Exprimé dans cet espace, le signal pondéré en diffusion S(q, τ) peut être relié à

la transformée de Fourier du propagateur de diffusion:

E(q, τ) =

∫

ℜ3

P (r, τ) · e−2πiqTrdr = F [P (r, τ)] , (9)

avec E(q, τ) = S(q, τ)/S0. De cette équation découlent plusieurs modèles locaux de

diffusion [Callaghan (1991)].

Le modèle du tenseur de diffusion (DTI) suppose le propagateur de diffusion gaussien

et en déduit l’expression suivante pour le signal pondéré en diffusion:

S(q, τ) = S0e
−τqTDq, (10)

avec D le tenseur de diffusion [Basser et al. (1994)]. Le modèle DTI reconstruit ce tenseur

de diffusion, qui permet de caractériser la diffusion des protons en 3D. De ce modèle, on

peut calculer des cartes, comme celles de l’ADC et de l’anisotropie fractionnelle (FA).

Une carte de FA peut être réalisée avec un codage en couleurs indiquant l’orientation des

directions d’anisotropie en 3D (carte RGB) (figure 10).

√
2λ3τe3

√
2λ2τe2

√
2λ1τe1

RGBFAADC

code couleurs pour
la carte RGB

tenseur de diffusion

supérieur
faisceau longitudinal

Figure 10: Cartes classiques du modèle DTI.

Cependant, ce modèle présente l’inconvénient de mal retranscrire les configurations

de croisement de faisceaux de fibres à cause de l’hypothèse d’un processus gaussien de
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diffusion ne pouvant représenter correctement qu’une seule population de fibres. C’est

pourquoi, des modèles dits à haute résolution angulaire (HARDI) ont été développés pour

mieux représenter ces configurations à plusieurs groupes de fibres.

Un de ces modèles HARDI, appelé Q-ball numérique [Tuch (2004)], repose sur un

échantillonnage d’une sphère de l’espace q. Ce modèle travaille donc à une seule b-value

et permet d’inférer les orientations privilégiées du processus de diffusion des protons en re-

construisant la dODF précédemment introduite. Cette méthode numérique repose sur une

interpolation du signal qui peut dégrader la reconstruction de la dODF. Pour y remédier,

le modèle du Q-ball analytique a été développé. Il repose sur une décomposition analy-

tique du signal pondéré en diffusion sur une base d’harmoniques sphériques (HS) mod-

ifiées adaptée à la sphère de l’espace q [Frank (2002); Hess et al. (2006); Descoteaux et al.

(2007)]: E = BCDW, avec E le vecteur contenant le signal pondéré en diffusion, acquis

pour différentes orientations de l’espace, normalisé par le signal pondéré en T2. B est la

matrice de la base des HS modifiées et CDW est le vecteur des coefficients du signal E sur

la base. De ce modèle, on peut déterminer les coefficients CODF de la décomposition de la

dODF sur la base des HS modifiées. Ces coefficients permettent de reconstruire la dODF,

donnant lieu à une des cartes montrées sur la figure 11. Il est également possible de re-

construire la cdODF, grâce au modèle analytique utilisant l’angle solide (modèle sa-aQBI)

[Tristán-Vega et al. (2009); Aganj et al. (2010)].

Au lieu de reconstruire des indicateurs des orientations probables du processus de

diffusion, on peut directement inférer les orientations des faisceaux de fibres en faisant

l’hypothèse qu’un faisceau de fibres homogène présente une réponse impulsionnelle au pro-

cessus de diffusion, représentée par un noyau gaussien. Il est alors possible de représenter

la fODF par une déconvolution sphérique du signal pondéré en diffusion [Anderson and

Ding (2002); Tournier et al. (2004); Jian and Vemuri (2007); Tournier et al. (2007)].

aQBI sa−aQBI

carte RGB

Figure 11: Carte d’ODFs à b = 3000s · mm−2 obtenues avec les modèles aQBI et sa-aQBI avec

un ordre maximal d’HS L fixé à 8. Sur la gauche, la région d’intérêt utilisée est indiquée par un

cadre jaune sur la carte RGB.
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Techniques de tractographie.

Les techniques de tractographie construisent in vivo et de manière non invasive des

chemins de fibres, appelés tractogrammes, représentant la connectivité anatomique cérébrale.

Parmi les différentes classes de techniques de tractographie, celle dite déterministe par

lignes de courant est la plus simple et plus rapide. Elle consiste à suivre la direction la

plus probable indiquée par un modèle local de diffusion. Cette méthode n’est cependant

pas capable de traduire des croisements de faisceaux. D’autres techniques, plus longues

en temps de calcul, comme les classes de tractographies probabiliste et globale, proposent

des tractogrammes plus proches de la réalité anatomique (figure 12).

déterministeprobabilisteglobale

Figure 12: Comparison entres les techniques de tractographie globale, probabiliste et déterministe.

La ligne du haut indique les tractogrammes reliant le corps calleux (CC) à la zone motrice primaire

(CCtoM1). La ligne du bas indique les tractogrammes correspondant au faisceau cortico-spinal.

Figure extraite de [Reisert et al. (2011)].

Chapitre 4: Etat de l’art de l’IRMd en temps réel (IRMdtr)

Introduction.

Le principe de l’IRMdtr est de réaliser le traitement d’un volume pondéré en diffusion

immédiatement après son acquisition, avant l’acquisition du prochain volume. Cette ap-

proche, introduite par [Poupon et al. (2008b)], est innovante car le traitement des volumes

acquis par les modèles locaux de diffusion se fait habituellement bien après l’acquisition

(en post-traitement). La méthodologie d’IRMdtr nécessite que le traitement d’un volume

ne dure pas plus longtemps que le temps entre l’acquisition de deux volumes, dit temps

de répétition TR. Un exemple de la mise en œuvre de ce procédé temps-réel (TR) avec le
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modèle du DTI est montré sur la figure 13.

6ième itération 14ième itération 42ième (dernière) itération post-traitement

Figure 13: Résultat de l’IRMdtr sur une carte de FA (trois images les plus à gauche) et compara-

ison avec le résultat du post-traitement (dernière image à droite). La carte de FA est initialisée

après six itérations. Puis, la carte est affinée à chaque nouvelle itération. À la 14ième itération, la

qualité visuelle de la carte est déjà bonne, alors que seulement 34% de l’acquisition a été effectué.

Figure extraite de [Poupon et al. (2008b)].

Les motivations pour développer un traitement TR sont nombreuses. Pour le patient,

ce procédé apporte plus de confort car l’examen peut être écourté si la qualité du résultat

est suffisante avant la fin des itérations. De plus, la qualité des données étant vérifiée en

TR, il y a nettement moins de gaspillage de données. À ce sujet, rappelons qu’aujourd’hui

75% des examens effectués dans le cadre d’études prénatales et néonatales sont jetés à

cause des mouvements incontrôlés du sujet qui rendent les données illisibles. Un traite-

ment TR peut permettre un contrôle fiable sur la qualité de l’examen. Du point de vue

méthodologique, cette nouvelle technique d’imagerie en direct offre un cadre pour corriger

des artéfacts en TR. Une alternative à une correction en TR est de redémarrer une acqui-

sition si nécessaire. D’autre part, cette méthodologie TR rend possible la modification de

paramètres d’acquisition ou de paramètres de traitement en fonction des résultats obtenus

en direct. Cette possibilité d’optimisation du réglage des paramètres se fait grâce au

feedback. Enfin, ce procédé d’imagerie en TR permet un diagnostic immédiat du médecin.

Dans le cadre particulier de l’IRMd, le TR permet de mieux répondre aux exigences

de diagnostic rapide dans le cas d’accidents ischémiques. L’IRMdtr peut informer de

l’état de santé des fibres cérébrales, ce qui peut orienter la décision médicale vers un

traitement spécifique. D’un point de vue plus méthodologique, l’IRMdtr facilite aussi

l’utilisation de certains modèles locaux qui demandent un long temps d’acquisition, avec

beaucoup d’orientations de diffusion: en effet, le processus TR permet d’ajuster le choix

d’orientations pour n’utiliser que le nombre d’itérations nécessaires lorsque le résultat

apparâıt suffisant.

Cadres incrémentaux.

Parmi les nombreux cadres incrémentaux possibles pour réaliser un traitement d’images

d’IRMd en TR, [Poupon et al. (2008b)] se sont intéressés au filtre de Kalman (KF) [Kalman

(1960)]. Ce filtre travaille à partir d’un modèle linéaire reliant des observations à un vecteur
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d’état à estimer. Le KF permet de mettre à jour et ainsi affiner le vecteur d’état au fur et

à mesure que des observations sont faites. Le modèle linéaire sur lequel repose le KF dans

notre cadre d’IRMdtr peut se résumer par:

y = A · x+ ǫ , avec





y: le vecteur de taille K×1 des observations,

A: la matrice de dessin de taille K×N,

x: le vecteur d’état de taille N×1,

ǫ: le vecteur de bruit de taille K×1, dont les composantes sont

distribuées selon N (0,R).

(11)

Dans ce modèle, le vecteur y est rempli par une nouvelle observation à chaque itération

i, i allant de 1 à K. x est le vecteur d’état que l’on cherche à estimer. Les composantes

du vecteur ǫ doivent être des variables aléatoires, indépendantes et distribuées selon une

gaussienne à moyenne nulle et de matrice de covariance diagonale R (avec ses éléments

diagonaux notés Ri). Le filtre de Kalman propose l’estimation de x grâce aux équations

suivantes:




innovation: νi = yi − aix̂i−1,

covariance de l’innovation: si = Ri + aiPi−1a
T
i ,

gain: ki = s−1
i ·Pi−1a

T
i ,

vecteur d’état à l’itération i: x̂i = x̂i−1 + νiki,

covariance de l’erreur d’estimation à l’itération i: Pi = Pi−1 − kiaiPi−1,

(12)

avec ai = [Ai1, ...,AiN ] la iième ligne de la matrice de dessin A. La figure 14 récapitule

le fonctionnement du KF (qui est ici utilisé comme un filtre de Wiener).

Pour appliquer le KF, il reste à initialiser x̂ et P, ce qui, en pratique, se fait souvent

de la façon suivante: x̂0 = 0 et P0 = V I, avec V assez grand de manière à ce que le KF

donne peu de poids à l’estimation initiale.

Adaptation des modèles DTI, aQBI et sa-aQBI au TR avec le filtre de

Kalman.

Avant de décrire l’adaptation des modèles DTI, aQBI et sa-aQBI à une utilisation en

TR grâce au filtre de Kalman, il est nécessaire de faire une première analyse du bruit

en IRM. Pour un voxel et une orientation de diffusion donnés, on peut écrire la mesure

du signal pondéré en diffusion telle que: M = S + ǫ, avec S le signal sans bruit et ǫ

le bruit d’acquisition qui est non-gaussien et fait que le signal bruité M suit une distri-

bution ricienne [Henkelman (1985); Bernstein et al. (1989)] dans le cas d’une acquisition

simple-canal, et une distribution χ non centrée dans le cas d’une acquisition multi-canaux

[Constantinides et al. (1997)]. Le bruit ǫ ne peut alors pas être considéré comme un bruit
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ki

x̂i

Pi−1

x̂i−1

Pi

Connaissance a

Étape de mise à jour avec les

mesures yi
priori de l’état:

d’estimation:

Calcul du gain de Kalman:

Calcul de la covariance de l’erreur

Estimation en sortie du vecteur

d’état:

Figure 14: Schéma d’un KF utilisé comme un filtre de Wiener. Figure adaptée de

en.wikipedia.org et de ccar.colorado.edu. L’estimation de l’état est affinée à chaque nou-

velle itération i.

gaussien à moyenne nulle, en particulier plus le rapport signal à bruit est faible (SNR ≤
4) et plus il y a de canaux utilisés.

Cependant, comme première approximation, les modèles DTI, aQBI et sa-aQBI ont

été adaptés pour le TR en supposant un bruit gaussien à moyenne nulle pour respecter

le cadre d’utilisation du KF. Pour le DTI, [Poupon et al. (2008b)] ont proposé le modèle

linéaire suivant, de la forme y = A · x+ ǫ:

ln
(

S0
M(oi)

)
= bio

TDoi − ln
(
1 + µi

S0
ebio

T
i Doi

)
, (13)

dans lequel oi est l’orientation de diffusion testée à l’itération i et µi est le bruit d’acquisition

à l’itération i. En utilisant l’équation 13, le vecteur d’état à estimer par le KF correspond

aux six coefficients du tenseur de diffusion: x = [Dxx,Dxy,Dxz,Dyy ,Dyz,Dzz]
T .

De manière similaire, on peut écrire deux formes linéaires pour utiliser le KF sur le

modèle aQBI. La première est:

ME = B ·CDW + ǫ , (14)

où ME = [M(0)/S0, ...,M(K)/S0]
T correspond au vecteur des signaux pondérés en diffu-

sion normalisés par le signal pondéré en T2. C
DW est le vecteur des coefficients du signal

sans bruit E et correspond dans le cadre de Kalman au vecteur d’état à estimer en TR.

Enfin, ǫ représente le vecteur du bruit normalisé par le signal pondéré en T2. La deuxième

forme linéaire que l’on peut utiliser est la suivante [Poupon et al. (2008b); Deriche et al.
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(2009)]:

ME =
(
BP−1

)
CODF + ǫ, (15)

dans laquelle le vecteur d’état est le vecteur des coefficients de la dODF permettant de

calculer la dODF.

Enfin, on peut écrire une forme linéaire également pour le modèle sa-aQBI [Caruyer

et al. (2010)]:

ln (−lnME) = B ·CSA + ǫ , (16)

où CSA est le vecteur des coefficients de ln (−lnE) sur la base d’HS modifiée. ǫ est un

vecteur contenant ln (−lnµi) /S0 ∀i ∈ J1;KK, avec µi le bruit d’acquisition à l’itération

i. Dans ce modèle, le vecteur d’état est donc CSA. À partir de ce vecteur, on peut en

déduire le vecteur des coefficients de la cdODF que vise à reconstruire le modèle sa-aQBI:




ĈODFc(j) = 1

2
√
π

si j = 1,

ĈODFc(j) = 1
16π2P ·N · ĈSA(j) si j > 1.

(17)

Pour les modèles aQBI et sa-aQBI, il est possible d’intégrer une régularisation dans

le processus. Cette régularisation doit seulement apparâıtre lors de l’initialisation de la

matrice de covariance P, telle que: P0 = ((1/V )I+ λL)−1, avec V = 106, λ = 0.006 le

facteur de régularisation et L la matrice de Laplace-Beltrami.

Dans chacune de ces formes linéaires dédiées au KF, le bruit est considéré comme

un bruit gaussien à moyenne nulle, ce qui peut conduire à des estimations erronnées des

vecteurs d’état, en particulier à de faibles SNR et/ou pour un nombre de canaux utilisés

élevé.

Contraintes du TR.

Lorsqu’on veut réaliser le traitement et l’analyse des signaux pondérés en diffusion en

TR, le procédé sera optimal si chaque itération apporte une information nouvelle et

complémentaire à celles obtenues lors des précédentes itérations. Ce que l’on souhaite,

c’est avoir dès les premières itérations une information de base cohérente, puis l’affiner

au fur et à mesure des itérations. Pour appliquer ce principe à l’IRMdtr, il est nécessaire

d’avoir un jeu d’orientations de diffusion à tester qui soit approximativement uniforme, non

seulement à la fin de toutes les itérations, mais également aux itérations intermédiaires,

dans le cas où l’examen serait arrêté avant la fin de l’acquisition. Parmi les algorithmes

proposant de générer ces jeux d’orientations, nous avons choisi de travaillé avec le modèle

de [Dubois et al. (2006)], dont une application est montrée à la figure 15.

Pour réaliser un traitement de données d’IRMd en TR, il est absolument nécessaire

d’utiliser des outils logiciels efficaces et rapides. La figure 16 indique en rouge l’architecture

à haute performance de calcul déployée pour le TR et qui permet de traiter les données

acquises par l’imageur et reconstruites par l’unité de reconstruction, puis de les renvoyer
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Figure 15: Comparaison entre des jeux d’orientations conventionnels (en haut) et optimisés (en

bas) pour une séquence avec 42 orientations au total. Les jeux optimisés intermédiaires (à la

14ième et 28ième itérations) sont plus uniformes que les jeux conventionnels correspondants. Figure

extraite de [Poupon et al. (2008b)].

vers la console. Le système de calcul utilise un cluster de 80 processeurs (ou CPUs) pour

arriver à une réduction du temps de traitement d’un volume qui doit être obtenu en-dessous

du TR. De plus, cette architecture dédiée au TR permet de réaliser un feedback sur des

paramètres de séquence par exemple.

Preuve de concept des modèles adaptés au TR.

Le modèle DTI adapté au TR a été validé sur des données réelles à b = 3000s · mm−2

comme le montre la figure 17. De même, les modèles aQBI et sa-aQBI ont été validés

sur les mêmes données. La figure 18 montre les résulats obtenus avec un ordre maximal

des HS fixé à 6 et avec l’utilisation de la régularisation dans l’initialisation de la matrice

de covariance P. Les temps de traitements ont été mesurés avec 1 CPU et en utilisant

le cluster de 80 CPUs. Si les temps dépassent parfois le TR en utilisant un seul CPU, ils

tombent bien en-dessous du TR avec le cluster.
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Figure 16: L’architecture hardware adaptée au projet TR. Le bloc rouge “RT-MRI” constitue la

partie hardware prenant en charge le traitement TR. Avant que l’unité de reconstruction envoie

les données à la console, ces données sont envoyées vers un serveur qui commande l’exécution des

algorithmes de traitement TR sur les données. Pour réduire le temps de traitement, ces algorithmes

sont parallélisés et distribués sur un cluster de 80 CPUs. De plus, un feedback peut être réalisé

sur les paramètres de séquence ou sur les paramètres de contrôle des stimuli dans le cas de l’IRMf

TR. Figure extraite de [Poupon and Riff (2009)].
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Application du KF sur le modèle DTI

6ième itération 10ième itération 19ième itération 39ième itération post-traitement60ième itération (finale)

Figure 17: Application du KF sur le modèle DTI.
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Application du KF sur le modèle aQBI (2 lignes du haut) et sur le modèle sa-aQBI (2 lignes du bas)

10ième itération 19ième itération 29ième itération 39ième itération 60ième itération (finale) post-traitement

Figure 18: Application du KF sur les modèles aQBI et sa-aQBI. L’ordre maximal des HS était fixé à 6 et la régularisation a été utilisée. La région dans

laquelle sont montrées les ODFs est indiquée par un cadre jaune sur la carte RGB de la quatrième colonne.
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Chapitre 5: Analyse du bruit en IRM

Origines du bruit en IRM.

Le bruit en IRM provient principalement de l’agitation thermique des porteurs de charge

dans le circuit de réception du signal d’IRM. On distingue le bruit provenant des tissus

conducteurs du sujet se trouvant dans l’imageur et le bruit provenant de l’antenne de

réception du signal. En IRM parallèle, des corrélations entre les signaux de bruit provenant

des différents canaux existent [Roemer et al. (1990); Hayes and Roemer (1990); Harpen

(1992); Redpath (1992); Brown et al. (2007)]. Elles sont impossibles à éliminer et doivent

être prises en compte dans les modèles du bruit en IRM.

Le bruit qui corrompt le signal complexe mesuré en IRM par un canal de réception c

possède une composante réelle ǫrc et une composante imaginaire ǫic . Pour chaque canal

de réception, ces deux composantes sont supposées suivre chacune une distribution gaussi-

enne à moyenne nulle, et ces deux distributions ne sont pas corrélées l’une avec l’autre

[Henkelman (1985)]. En IRM, il est courant de travailler sur l’amplitude M du signal

mesuré qui est reconstruite par la technique de la somme des carrés (SoS):

M =

√√√√
n∑

c=1

[
(Src + ǫrc)

2 + (Sic + ǫic)
2
]
, (18)

avec Src et Sic les parties réelle et imaginaire, respectivement, du signal sans bruit com-

plexe mesuré par le canal c. n est le nombre de canaux utilisés lors de l’acquisition.

Les parties réelles et imaginaires des signaux mesurés peuvent éventuellement être ac-

cessibles à la fin de l’examen, mais la châıne de reconstruction du fabricant ne permet

pas ou difficilement d’y accéder pendant l’examen. D’autre part, il est plus habituel de

travailler avec l’amplitude du signal qui est exempte d’artéfacts de phase [Henkelman

(1985); Constantinides et al. (1997); Nowak (1999)]. À cause du calcul mathématique

pour obtenir l’amplitude du signal, le bruit final ǫ qui entâche l’amplitude sans bruit

S =

√√√√
n∑

c=1

[Src + Sic ] n’est plus un bruit gaussien à moyenne nulle. C’est un bruit qui

dépend du signal sans bruit S.

Dans le cas d’une acquisition à un canal, le bruit est dit ricien: l’amplitude M suit

une fonction densité de probabilité (PDF) ricienne, définie pour M ≥ 0 et S ≥ 0, par

[Bernstein et al. (1989); Rice (1952)]:

PDF ricienne: p(M ;S, σ) =
M

σ2
. exp

(
−M2 + S2

2σ2

)
· I0
(
S ·M
σ2

)
, (19)

avec σ l’écart-type du bruit gaussien présent sur les parties réelle et imaginaire du canal

de réception et I0 la fonction de Bessel modifiée de première espèce et d’ordre 0. Cette

distribution est tracée sur la figure 5.2. La PDF de ǫ se distingue d’une gaussienne à

moyenne nulle en particulier à de faibles SNR. Un biais ricien apparâıt alors et l’image

bruitée contient une composante non nulle due au bruit dans ce cas.
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Figure 19: PDF de M (à gauche) et de ǫ (à droite) dans le cas d’une acquisition simple-canal

pour plusieurs valeurs de S/σ. Plus le rapport S/σ est élevé, plus la PDF de ǫ ressemble à une

gaussienne à moyenne nulle. La légende des couleurs indiquée à gauche s’applique également pour

les courbes de droite.

Dans le cas d’une acquisition à plusieurs canaux, s’il n’y a pas de sous-échantillonnage

de l’espace k, ni de corrélation entre les canaux et que la variance est la même pour chaque

canal, alors l’amplitude M suit une distribution χ non centrée (χ-nc), définie pour M ≥ 0

et S ≥ 0, par [Constantinides et al. (1997)]:

PDF χ-nc: p(M ;S, σ, n) =
S

σ2

(
M

S

)n

exp

(
−M2 + S2

2σ2

)
· In−1

(
S ·M
σ2

)
, (20)

avec σ l’écart-type du bruit gaussien présent sur les parties réelle et imaginaire de chaque

canal de réception et n le nombre de canaux. In−1 est la fonction de Bessel modifiée

de première espèce et d’ordre n − 1. Cette PDF est une généralisation à n > 1 de la

distribution ricienne. Elle est indiquée sur la figure 20. Comme précédemment, le même

phénomène de biais apparâıt à faible SNR, ainsi que pour de grandes valeurs de n.

Il y a, en pratique, des corrélations entre les canaux, ce qui change la distribution

théorique du bruit. [Aja-Fernández and Tristán-Vega (2012)] ont proposé de prendre en

compte ces corrélations en calculant un nombre effectif de canaux neff et une variance

effective σ2
eff dépendant tous deux de la position v du voxel considéré. En remplaçant

n et σ par ces deux paramètres, la distribution χ-nc (équation 20) est alors une bonne

approximation de la vraie distribution de M dans l’image.

Si, en plus, une technique de reconstruction GRAPPA est utilisée, alors la non-stationnarité

du bruit est plus conséquente. [Aja-Fernández et al. (2011)] ont proposé de calculer neff

et σ2
eff en tenant compte des paramètres de reconstruction GRAPPA. Ces paramètres

injectés dans la distribution χ-nc conduisent à une bonne approximation de la réalité

expérimentale. Dans le cas d’une reconstruction SENSE, le bruit n’est également pas sta-

tionnaire. La PDF suivie par M peut être approximée par une ricienne contenant une

variance voxel-dépendante [Dietrich et al. (2008a); Rajan et al. (2012b)].
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Figure 20: PDF de M (à gauche) et de ǫ (à droite) dans le cas d’une acquisition multi-canaux

respectant les trois conditions suivantes: pas de sous-échantillonnage, pas de corrélation en-

tre les canaux, et la même variance pour chaque canal. Les distributions sont représentées

pour n = 2/4/12 et pour plusieurs valeurs de S/σ.

En IRMd, le signal peut facilement être noyé dans le bruit car le SNR est souvent

faible, en particulier à des valeurs de b élevées (b > 3000s/mm2). Nous avons simulé un

signal pondéré en diffusion en 3D correspondant à un croisement de deux faisceaux de

fibres, et nous avons reconstruit la dODF correspondante. Nous avons comparé ces deux

résultats sans et avec addition de bruit χ-nc à différents SNR pour n = 4. La figure 21

montre que le bruit dégrade la résolution angulaire. Le biais du bruit fait se rétrécir les

lobes des dODF. Enfin, le bruit crée de faux pics pouvant faire croire à des directions du

phénomène de diffusion à prendre en compte.
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Figure 21: Simulations de signaux pondérés en diffusion en 3D sans bruit et bruités à différents

SNR avec leurs dODFs correspondantes. Le SNR a été calculé à partir du signal sans bruit pondéré

en diffusion (S = 7), et non pas à partir du signal sans bruit pondéré en T2 (S0 = 200). La lettre

A indique une perte de résolution angulaire. La lettre B montre l’effet du biais qui fait se rétrécir

les lobes des dODFs. La lettre C indique les pics erronés créés par le bruit sur les dODFs. Les

simulations ont été réalisées à b = 6000s ·mm−2, n = 4 et avec σ allant de 0.23 à 14.

Méthodes d’estimation du bruit en IRM.

Parmi les méthodes d’estimation du bruit en IRM, la plupart reposent sur une estimation

de σ qui s’effectue dans le fond de l’image (zone sans signal utile) [Aja-Fernández et al.

(2009)]. La variance obtenue est alors considérée comme valable pour tous les voxels

du volume. Une méthode, reposant également sur l’analyse du fond, a été proposée par

[Aja-Fernández et al. (2013)] pour tenir compte des corrélations et estimer σeff et neff
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en chaque voxel du volume pour une reconstruction SoS sans sous-échantillonnage, en

supposant que chaque canal a la même variance et que les signaux sans bruit reçus par

les différents canaux sont les mêmes. Enfin, d’autres techniques s’intéressent au cas où

le volume ne possède pas de fond [Coupé et al. (2010); Rajan et al. (2010)]. Nous avons

étendu l’une de ces méthodes [Rajan et al. (2010)], dédiée à l’origine à un bruit ricien,

au cas d’un bruit χ-nc [Brion et al. (2011b)]. Cette méthode estime une variance globale

pour tout le volume. Elle repose sur l’analyse de la skewness dans l’image pour choisir

dans une LUT (lookup table) un facteur de correction à appliquer dans l’estimation de σ

faite à partir d’une estimation supposant un bruit gaussien. Notre technique donne des

résultats similaires à ceux obtenus par la technique de [Rajan et al. (2010)] dans le cas

d’un bruit ricien. Elle peut servir de première approximation lorsqu’il n’y a pas de fond.

Indices de qualité d’images.

Outre les indices classiques d’erreur quadratique moyenne (MSE), de SNR et de contraste

signal à bruit (CNR), nous nous sommes intéressés à développer deux indices spécifiques

à l’IRMd:

1. Une MSE spécifique aux modèles DTI, aQBI et sa-aQBI qui repose sur le vecteur

d’état x qui peut être le tenseur de diffusion D en DTI, le vecteur des coefficients

CDW en aQBI et le vecteur CSA en sa-aQBI. Cet indice se calcule ainsi:

MSE =
1

Nv

∑

v∈V

N∑

j=1

(x̃(j,v) − x(j,v))2 , (21)

avec x̃(j,v) le jième coefficient du vecteur bruité x̃ calculé sur les données bruitées.

x(j,v) est le jième coefficient du vecteur sans bruit x. Dans l’équation 21, V est

le volume considéré, Nv correspond au nombre de voxels de ce volume, et N est

le nombre de coefficients contenus dans le vecteur d’état. Cet indice MSE requiert

l’utilisation d’une référence sans bruit et ne peut donc être utilisé que sur des données

simulées.

2. Un rapport de FA, GFA ou cGFA se calculant ainsi (pour la GFA ici):

GFA ratio =
GFAA

GFAB

, (22)

avec GFAA et GFAB des moyennes de GFA calculées sur la carte de GFA en deux

régions A et B, respectivement. Cet indice a l’avantage de pouvoir être appliqué

sans nécessité d’image de référence sans bruit. Il peut aussi être appliqué sur une

image pour laquelle on ne connâıt pas le modèle de bruit (typiquement une image

filtrée). Ce calcul de rapport correspond à une mesure du contraste entre deux

régions d’intérêt. La région A est choisie avec un niveau uniforme d’anisotropie

moyenne et la région B avec une niveau uniforme d’anistropie faible. Ainsi, plus le

bruit est élevé, plus l’indice est faible.
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Chapitre 6: La correction du bruit en TR

Contraintes provenant du TR.

Parmi la multitude de méthodes de correction du bruit, on peut distinguer plusieurs

groupes répertoriés à la figure 22.

principes de

modèle de bruit

correction sans

modèle de bruit

correction avec

principes de

Abaque

Filtre gaussien &

méthodes least squares

- approche conventionnelle

- LMMSE / filtre de Wiener

- formules de points fixes

- ondelettes

- PCA

- DCT

- diffusion anisotrope

- non local means (NLM)
- UINTA
- template-based filter

- maximum de vraisemblance

- maximum a posteriori

- maximisation de l’espérance

- minimisation de l’entropie
- champs de Markov

- équation aux dérivées partielles
à ordre élevé

- minimisation de la variation
totale

Filtres de diffusion:

Filtres par fenêtres adaptatives:

Modèles de vraisemblance:

Approches utilisant les moments:

Filtres sur transformées:

Figure 22: Principaux groupes de méthodes de correction du bruit avec une application aux

images d’IRM. Les méthodes peuvent être distinguées suivant qu’elles tiennent compte ou non du

caractère ricien ou χ-nc du bruit en IRM.

Notre objectif de correction en TR pour l’IRMdtr impose de respecter certaines con-

ditions obligatoires:

1. la méthode ne doit pas nécessiter d’avoir la connaissance de tous les volumes pondérés

en diffusion à la fois,

2. la méthode doit pouvoir s’appliquer à autant de modèles locaux de diffusion que

possible,

3. la méthode ne doit pas nécessiter plus de mesures que celles fournies par un protocole

clinique habituel,

4. la méthode doit s’exécuter en moins de temps que le TR (généralement égal à une

dizaine de secondes).
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Ces conditions nous ont conduits à éliminer de notre choix les méthodes reposant sur une

correction utilisant l’ensemble des volumes pondérés en diffusion acquis lors de l’examen

[Fillard et al. (2007); Clarke et al. (2008); Brion et al. (2009); Martin-Fernández et al.

(2009); Tristán-Vega and Aja-Fernández (2010)]. Nous avons également écarté les tech-

niques spécifiques à un certain modèle local de diffusion [Chefd’Hotel et al. (2002); Wang

et al. (2004b); Chang et al. (2005); Salvador et al. (2005); Koay et al. (2006); Assem-

lal et al. (2007); Caan et al. (2010); Tristán-Vega et al. (2012)]. Nous avons exclu les

méthodes nécessitant des mesures supplémentaires à celles effectuées lors d’un protocole

usuel d’IRMd [Koay and Basser (2006); Koay et al. (2009a)]. Enfin, la quatrième condition

nous a invités à favoriser une technique rapide, compatible avec une distribution sur un

cluster de CPUs. Notre choix s’est porté sur l’estimateur linéaire qui minimise l’erreur

quadratique moyenne (LMMSE) de [Aja-Fernández et al. (2008a,b)], qui a été à l’origine

développé pour le bruit ricien. Nous avons étendu ce LMMSE à la correction d’un bruit

χ-nc pour traiter des images acquises en IRM parallèle avec la reconstruction GRAPPA.

Correction avec un estimateur linéaire qui minimise l’erreur quadratique

moyenne (LMMSE).

Le LMMSE de [Aja-Fernández et al. (2008a)] adapté à un bruit ricien s’écrit sous la forme:

Ŝ2 = 〈M2〉 − 2σ2

︸ ︷︷ ︸
JR

+

(
1− 4σ2[〈M2〉 − σ2]

〈M4〉 − 〈M2〉2
)

︸ ︷︷ ︸
KR

×
(
M2 − 〈M2〉

)
, (23)

avec 〈·〉 l’opérateur de moyenne spatiale effectué localement sur un voisinage de voxels.

Pour utiliser l’équation 23, il faut estimer l’écart-type du bruit σ. Le terme noté JR revient

à appliquer une moyenne et à en soustraire le biais dû au bruit ricien. Le terme KR est un

terme d’attache aux données qui module l’effet de JR dans les régions hétérogènes pour

conserver les détails des contours.

Le LMMSE adapté au bruit χ-nc s’écrit sous la forme [Brion et al. (2011b,c,a)]:

Ŝ2 = 〈M2〉 − 2nσ2 +

(
1− 4σ2

[
〈M2〉 − nσ2

]

〈M4〉 − 〈M2〉2

)
×
(
M2 − 〈M2〉

)
, (24)

avec n le nombre de canaux. Lorsque n = 1, on retrouve l’équation 23.

Pour tenir compte des corrélations entre canaux en IRM parallèle, nous proposons une

méthode estimant les paramètres effectifs neff et σeff . Notre technique repose sur une

estimation valable pour tout le volume, et non voxel à voxel, ce qui permet un traitement

rapide. Notre détermination de ces deux paramètres est empirique: il s’agit de tester

différentes valeurs pour neff , puis de calculer les σeff correspondants tels que:

ModeM1-χ: σ̂eff =
(√

2(neff )
(1/2)

)−1
mode (〈Mbg(v)〉) , (25)
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où Mbg(v) est l’amplitude mesurée au voxel v dans le fond du volume et mode (〈Mbg(v)〉)
est le mode de la distribution de la moyenne locale de Mbg(v); (neff )

(1/2) est calculé en

appliquant la définition du symbole de Pochhammer. Une fois σeff calculé pour différentes

valeurs de neff , nous testons le LMMSE avec ce panel de couples de paramètres et choi-

sissons le couple (neff ; σeff ) qui produit le rapport de GFA —comme défini dans la

sous-section — le plus élevé.

Résultats & discussion.

Nous avons appliqué le LMMSE original (“Rice LMMSE”) et notre extension au bruit χ-nc

(“nc-χ LMMSE”), avec un voisinage spatial de 5×5×5 voxels, sur nos données simulées à

b = 4500s · mm−2 bruitées avec un bruit χ-nc stationnaire avec n = 4 et σ = 20. Nous

avons reconstruit les cartes de dODFs du modèle aQBI avec un ordre maximal d’HS de

8 et le facteur de régularisation fixé à 0.006. La figure 23 montre que le nc-χ LMMSE

permet de mieux retrouver le croisement de faisceaux au voxel zoomé.

Rice LMMSE & Reg. nc-χ LMMSE & Reg.

sans bruit bruité & Reg.

Figure 23: Comparaison entre le “Rice LMMSE” et le “nc-χ LMMSE” sur données simulées

pondérées en diffusion et corrompues par un bruit χ-nc stationnaire avec n = 4 et σ = 20. Les

cartes dODF ont été obtenues avec régularisation.

Nous avons ensuite comparé les deux LMMSEs sur nos données réelles acquises avec

l’algorithme GRAPPA à b = 1500/3000/4500/6000s · mm−2. Nous avons déterminé les
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paramètres neff et σeff de façon globale —comme expliqué précédemment— et nous avons

comparé cette technique à la méthode d’estimation de ces paramètres voxel à voxel de [Aja-

Fernández et al. (2013)]. Nos résultats (figure 24) donnent des images plus nettes avec la

méthode “nc-χ LMMSE” globale, mais sujettes à des hyperintensités à b = 6000s ·mm−2.
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Figure 24: Comparaison entre le “Rice LMMSE” et le “nc-χ LMMSE” sur cartes de GFA réelles

avec la méthode d’estimation globale (G) des paramètres effectifs ou la méthode voxel à voxel

(VW) à b = 1500/3000/4500/6000s · mm−2. Les hyperintensités sont indiquées par des flèches

blanches.

Nous avons choisi d’exécuter le LMMSE avec un voisinage de 5×5×5 voxels, ce qui

induit un effet de lissage (dû au calcul de moyennes nécessaire au LMMSE) modéré, ainsi

qu’un temps d’exécution faible qui est inférieur au TR pour la méthode globale.
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Chapitre 7: Méthodes de correction du bruit dédiées à l’IRMd

en temps-réel

Intégration du LMMSE dans un cadre de KF dédié au TR.

Cette nouvelle méthode est schématisée à la figure 25. Elle consiste à appliquer le LMMSE

sur la mesure du signal pondéré en diffusion M , puis à injecter le signal corrigé Ŝ dans

le KF qui, pour le modèle aQBI par exemple, en déduit les coefficients ĈDW corrigés

du bruit. En outre, ces résultats sont utilisés via une boucle de feedback pour calculer

une pondération à intégrer dans le calcul des moyennes pour limiter l’effet de lissage du

LMMSE. Cette pondération est calculée ainsi pour un voxel v′ voisin du voxel central v:

w(v,v′) = exp

(−(v′ − v)2

2α2

)

︸ ︷︷ ︸
wSPATIAL

exp




−
N∑

j=1

(
ĈDW

v′ (j) − ĈDW
v (j)

)2

2β2




︸ ︷︷ ︸
wSTRUCTUREL

, (26)

avec ĈDW
v′ et ĈDW

v les vecteurs des coefficients sur la base des HS du voisin et du voxel

central, respectivement. wSPATIAL pondère l’influence des voisins selon leur distance au

voxel central à corriger et wSTRUCTUREL favorise les voisins structurellement équivalents

au voxel central. L’algorithme “LMMSE & KF” ainsi constitué est facilement adaptable

aux modèles DTI et sa-aQBI.

Moyenne anisotrope
utilisant un voisinage 3D

LMMSE ĈDW
v

σ̂

ηv:

oi: orientation

M (v,oi) Ŝ(v,oi)





〈M 2(v,oi)〉
〈M 4(v,oi)〉〈Iv,oi

〉 =

〈Iv,oi
〉 =

∑

v′∈ηv
w(v,v′)Iv′,oi

∑

v′∈ηv
w(v,v′)

Ŝ(v,oi)

Ŝ0(v)
= bi · ĈDW

v + ǫri

v: voxel central
v′: voxel voisin

ĈDW
v : coefficients de

Filtre de

Kalman

w(v,v′) = wspatialwstructurel

bi: i
ième ligne de B

Ŝ0(v): signal pondéré en T2 corrigé

σ̂: écart-type estimé
Ŝ(v,oi)/Ŝ0(v)

signal mesuré signal corrigé

du bruit

Figure 25: Diagramme de l’algorithme de correction du bruit en TR reposant sur un LMMSE et

un KF associés à une boucle de feedback. Ici, la méthode est adaptée pour le modèle aQBI.

La méthode nécessite le réglage de α et de β intervenant dans l’équation 26. α = 2 est
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un bon compromis entre surlissage et manque d’information voisine. β est choisi de telle

sorte que le “LMMSE & KF” appliqué sur des données simulées bruitées par un bruit χ-nc

à n = 4 et à différents niveaux de bruit produise la plus faible MSE. Ces deux paramètres

fixés, on peut comparer cette nouvelle technique au “nc-χ LMMSE” précédent (figure 26)

et constater la forte diminution du lissage apportée par le feedback. Les MSE calculés

confirment ce gain visuel de qualité.

nc-χ LMMSE & Reg.

sans bruit

nc-χ LMMSE & KF
& Reg.

bruité & Reg.

Figure 26: Comparaison entre le “nc-χ LMMSE” et le “LMMSE & KF” sur données simulées

pondérées en diffusion et corrompues par un bruit χ-nc avec n = 4 et σ = 16 à b = 1500s ·mm−2.

Les cartes dODF ont été obtenues avec régularisation.

Nous avons effectué une comparaison similaire sur les données réelles, en reportant les

valeurs (α;β) obtenues pour les données simulées pour le “LMMSE & KF” (figure 27).

L’indice de qualité fourni par le rapport de GFA a été mesuré en utilisant les deux mêmes

régions dans chaque volume et ces mesures confirment le gain apporté par le “LMMSE &

KF”.

Nous avons ensuite observé l’impact de la correction à des itérations intermédiaires

(figure 28), qui a validé l’intérêt de la méthode en TR. Enfin, la méthode “LMMSE & KF”

(version globale) parallélisée et distribuée sur un cluster de 80 CPUs a un temps d’exécution

en-dessous du TR, rendant la méthode totalement compatible pour une utilisation en TR.
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Figure 27: Comparison entre le “nc-χ LMMSE” et le “LMMSE & KF” (versions globale (G) et voxel à voxel (VW)) avec régularisation à

b = 1500/3000/4500/6000s ·mm−2. Les hyperintensités sont indiquées par des flèches blanches.
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Figure 28: Résultats du “LMMSE & KF” en TR à b = 3000s ·mm−2 avec le modèle aQBI avec un ordre maximal d’HS de 6 et le facteur de régularisation

λ = 0.006.
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Filtrage de bruit gaussien dans l’espace de Fourier.

Nous proposons une seconde méthode de correction du bruit en TR devant être insérée

avant la reconstruction SoS, dans la châıne de reconstruction du fabricant. Cette technique

présente l’avantage de corriger les données dans l’espace k d’un bruit gaussien non corrélé

et à moyenne nulle sur chaque canal de réception. Si le modèle de bruit est plus simple

à appréhender par cette technique, la difficulté de cette méthode réside dans l’accès à

la châıne de reconstruction du fabricant. Dans notre cas, nous avons inséré une étape de

traitement codée en ICE dans la châıne du système Siemens 3T Tim Trio. Notre traitement

a consisté en un filtre gaussien passe-bas appliqué sur chaque position (kx, ky) de l’espace

k, sur la composante réelle et sur la composante imaginaire du signal. Notons par exemple

mkx,ky l’une de ses composantes, le signal sans bruit estimé s’écrit alors:

ŝkx,ky = mkx,ky ×G(kx, ky, σGauss) , (27)

avec G(kx, ky, σGauss) = e−
(kx−ox)2+(ky−oy)

2

2
σ2
Gauss une gaussienne en 2D d’écart-type σGauss

dans l’espace k centré en (ox, oy). Nous avons testé ce filtre passe-bas sur des données

réelles pondérées en diffusion à b = 1400s ·mm−2 pour différentes valeurs de σGauss (figure

29). Cette méthode est très rapide (la correction dure moins de 10ms) et donc valide pour

une exécution en TR. Le risque de cette technique est le surlissage lorsque σGauss est trop

élevé.

Correction reposant sur un filtre de Kalman parallèle (PKF).

Nous avons proposé une troisième méthode de correction du bruit en TR, qui, comme

le “LMMSE & KF”, s’applique sur l’amplitude du signal et appréhende donc un bruit

non gaussien. Cette technique repose sur un filtre de Kalman parallèle (PKF) [Platani-

otis et al. (1997)] qui utilise l’approximation d’une distribution de bruit non gaussienne

par une somme de gaussiennes pondérées. De cette approximation, le PKF en déduit

une mixture de gaussiennes approximant la PDF de l’observation p(ME) (ME étant la

mesure du signal pondéré en diffusion normalisé par le signal pondéré en T2). Puis, le

PKF détermine une gaussienne finale approximant p(ME) pour pouvoir utiliser un KF en

respectant l’hypothèse de gaussianité nécessaire au KF. Même si p(ME) est approximée

par une gaussienne, celle-ci est plus proche de la vraie distribution de p(ME) que ne le

serait la gaussienne approximant p(ME) par un KF classique.

L’ensemble de la méthode reposant sur un PKF est schématisé sur la figure 30. Une

première étape consiste à obtenir la somme de gaussiennes représentant la PDF du bruit

grâce à une approximation nécessitant d’estimer le paramètre σ de la courbe χ-nc et le

signal sans bruit S. Puis, à partir de cette somme de gaussiennes, le PKF détermine

les coefficients ĈDW corrigés du bruit et utilise une boucle de feedback, comme dans la

technique “LMMSE & KF”, pour améliorer l’estimation du LMMSE. Les résultats par

cette méthode avec une approximation utilisant trois gaussiennes pour représenter la PDF

du bruit sont convaincants sur les données simulées. Pour améliorer la robustesse de la
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Figure 29: Comparaison entre le filtre gaussien passe-bas, appliqué avec σGauss = 0.01/0.02/0.03 et la méthode LMMSE & KF appliquée avec neff = 1.8,

α = 2 et β = 0.10 sur des données pondérées en diffusion acquises à b = 1400s ·mm−2.
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méthode sur les données réelles, plutôt que d’injecter la mesure bruitée M à l’entrée du

PKF, nous injectons une moyenne anisotrope de M , ce qui nous donne les résultats des

figures 31 et 32.

voxel central
voxel voisin
orientation coefficients de

PKFLMMSE FIT ĈDW
v

v′:
oi:
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Figure 30: La méthode de correction du bruit en TR reposant sur un PKF.

PKF (βA = 0.11, βB = 0.17) LMMSE & KF (β = 0.05)
MSE= 1.85× 10−3MSE= 3.38× 10−3

sans bruit bruité (σ = 16) MSE= 3.91× 10−1

Figure 31: Comparaison entre les méthodes PKF et “LMMSE & KF” sur les données simulées à

b = 4500s ·mm−2, avec un bruit χ-nc de paramètres σ = 16 et n = 4.
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Figure 32: Application de la méthode PKF sur les données réelles à b = 4500s · mm−2 et com-

paraison avec deux configurations de la technique “LMMSE & KF”.

Si les résultats avec le PKF sont quasiment équivalents à ceux obtenus avec le “LMMSE

& KF” sur les données simulées, ils sont légèrement moins précis sur les données réelles

avec un effet de lissage plus important que dans le cas du “LMMSE & KF”.

Chapitre 8: Vers la détermination de la connectivité en TR

Dans ce dernier chapitre, nous nous sommes intéressés à la faisabilité de l’exécution d’une

technique de tractographie en TR. Comme première étape de notre démarche, nous avons

étudié la qualité des résultats intermédiaires de tractographie déterministe de suivi de

fibres. De plus, nous avons analysé l’impact de notre correction de bruit en TR “LMMSE

& KF” sur ces résultats. La comparaison sur des données simulées est montrée à la figure

33 et celle sur des données réelles est indiquée à la figure 34. Nous pouvons voir que les

résultats de tracts en TR sont informatifs dès la 19ième itération. Leur qualité s’affine

avec les itérations. D’autre part, les résultats confirment le gain visuel apporté par le

“LMMSE & KF”.

lxii



dODFs (zoom) dODFs (zoom)dODFs (zoom)dODFs (zoom)

30ième itération

sa
n
s
b
ru

it
b
ru

it
é
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Figure 33: Résultats de dODFs et de tractographie en TR sur les données simulées à b = 4500s ·mm−2. L’algorithme de tractographie déterministe de

suivi de fibres a été exécuté sur les cartes de dODF obtenues par le modèle aQBI avec un ordre maximal d’HS fixé à 4. Quand “Rég.” est indiqué, cela

signifie que le facteur de régularisation Laplace-Beltrami était fixé à 0.006 (sinon il était fixé à 0).
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é
ra

ti
o
n

brut après LMMSE & KF

1
0
iè
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é
ra

ti
o
n

6
0
iè
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Figure 34: Résultats de tractographie en TR sur les données réelles à b = 4500s · mm−2.

L’algorithme de tractographie déterministe de suivi de fibres a été exécuté sur les cartes de dODF

obtenues par le modèle aQBI avec un ordre maximal d’HS fixé à 4. Le facteur de régularisation

Laplace-Beltrami était fixé à 0.006.
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Chapitre 9: Conclusion

Dans cette thèse, nous avons proposé des méthodes d’estimation et de correction du bruit

pour l’IRMdtr, avec une ouverture finale sur la possibilité de faire de la tractographie en

TR. Ce manuscrit a tout d’abord présenté les motivations pour développer l’IRMdtr et

le cadre mathématique sur lequel repose le traitement TR en IRMd. Puis, nous avons

expliqué la modélisation du bruit en IRM et analysé les méthodes de débruitage de la

littérature en regard de nos contraintes TR. Nous nous sommes focalisés sur une solution

fondée sur un LMMSE que nous avons étendu à la correction d’un bruit χ non centré

(χ-nc). Puis, nous avons développé trois méthodes de correction du bruit en TR, prenant

en compte la modélisation théorique du bruit en IRM. La première méthode consiste

en la combinaison du LMMSE et d’un filtre de Kalman avec une boucle de feedback.

Cette première méthode prend en compte le caractère χ-nc du bruit. Notre deuxième

méthode repose sur un débruitage effectué avant la reconstruction SoS, directement sur les

données de l’espace k qui sont corrompues par un bruit gaussien plus facile à appréhender.

Cependant, la technique nécessite de modifier la châıne de reconstruction du fabricant.

Enfin, nous avons proposé une troisième méthode appliquée, comme la première, sur les

données d’amplitude du signal. Cette dernière technique repose sur un filtre de Kalman

parallèle incorporant la nature χ-nc du bruit. Nous avons comparé nos trois méthodes TR

sur des données de diffusion simulées et réelles. Enfin, le dernier chapitre de cette thèse a

proposé une étape supplémentaire dans l’inférence de la connectivité du cerveau humain

en TR, consistant à proposer un cadre permettant de réaliser une tractographie en direct,

pendant l’examen IRM du patient. Ce dernier travail a permis de mettre en évidence le

gain de qualité obtenu sur les cartes de tractographie TR après application d’une de nos

méthodes de correction du bruit en TR.

Contributions mineures.

Nous avons développé une méthode d’estimation de la variance du bruit dédiée à des

données corrompues par un bruit χ-nc et qui ne contiennent pas de fond [Brion et al.

(2011b)]. Nos résultats ont montré que notre méthode est équivalente à la méthode de

[Rajan et al. (2010)] dédiée à un bruit ricien sans considérer le fond. Cette technique

suppose un bruit stationnaire, ce qui est légèrement simpliste dans le cas d’une acquisition

à plusieurs canaux. Elle peut néanmoins servir de première approximation pour estimer

le bruit sur des données ne présentant pas de fond.

Nous avons proposé un nouvel indice de qualité d’image dédié aux images d’IRMd

pour lequel il n’y a besoin ni d’image de référence sans bruit, ni d’une estimation de la

variance du bruit [Brion et al.]. L’avantage de cet indice est qu’il peut être utilisé sur

des images brutes ou filtrées, en se fondant uniquement sur l’intensité des voxels de deux

régions choisies sur une carte d’IRMd, comme une carte de GFA.
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Contributions majeures.

Nous avons proposé une extension du LMMSE pour corriger d’un bruit χ-nc [Brion et al.

(2011a,b,c)]. Cette méthode, dite LMMSE χ-nc, est plus adaptée au bruit présent dans des

images acquises en IRM parallèle par rapport à la méthode LMMSE originale développée

pour un bruit ricien.

De plus, nous avons suggéré de prendre en compte d’éventuelles corrélations entre les

canaux par une solution empirique consistant à tester le LMMSE avec différentes valeurs

pour le nombre de canaux effectif neff [Brion et al.].

Nous avons conçu une première méthode de correction du bruit en TR dédiée à

l’IRMdtr, reposant sur l’association du LMMSE χ-nc et d’un filtre Kalman (KF) per-

mettant de corriger chaque nouveau volume pondéré en diffusion immédiatement après

son acquisition et avant celle du volume suivant [Brion et al. (2010, 2011d,e,f); Brion

et al.]. La méthode exploite les résultats obtenus en TR en les injectant comme donnée

supplémentaire au LMMSE pour améliorer l’estimation des volumes suivants.

Nous avons également développé un filtre passe-bas gaussien appliqué dans l’espace k

sur les parties réelle et imaginaire de chaque canal. Cette méthode nécessite d’être insérée

dans la châıne de reconstruction du fabricant et est donc spécifique à une constructeur

donné.

Enfin, nous avons proposé une troisième méthode de correction du bruit en TR qui

repose sur un filtre de Kalman parallèle et qui est appliquée, comme la première méthode

sur les données d’amplitude entachées d’un bruit χ-nc [Brion et al. (2012a,b,c)]. Cette

dernière technique repose sur l’approximation de la distribution de bruit par une somme

de gaussiennes injectées dans un filtre de Kalman parallèle.

Notre dernière investigation concerne la tractographie en TR que nous avons abordée

en exécutant un algorithme de suivi de fibres déterministe à chaque nouvelle acquisition

d’un volume pondéré en diffusion.

Perspectives.

Nous pensons que les outils développés dans cette thèse contribuent à l’essor de l’IRMdtr.

Nos outils de débruitage vont permettre de gagner en qualité d’images obtenues en TR.

La méthode LMMSE & KF sera d’ailleurs prochainement intégrée dans le logiciel Con-

nectomist, pour être utilisée par la communauté. Par la suite, nous aimerions élaborer

de nouvelles techniques en vue d’applications innovantes de l’IRMdtr. Un brevet [Poupon

et al. (2008a)] a été déposé en 2008, axé sur l’optimisation en TR du jeu de gradients de

diffusion pour affiner la mesure du signal de diffusion et explorer au mieux la structure

anatomique sous-jacente. Ceci est particulièrement valable pour des structures comme la

moelle épinière où les faisceaux sont orientés selon une direction principale. L’avantage

apporté par le TR est la possibilité de régler le gradient de diffusion à l’itération i en fonc-

tion des résultats obtenus aux précédentes itérations. En outre, nous aimerions exploiter

l’immense potentiel de l’IRMdtr pour des applications cliniques pédiatriques. Le projet
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PEDIART, mené avec le Professeur Chiron, le Docteur Hertz-Pannier et le Docteur Sévin,

a d’ailleurs été financé, avec, comme axe d’application, l’épilepsie chez des enfants pour qui

la maladie est pharmaco-résistante. Un traitement en TR des données permettrait notam-

ment de mieux contrôler l’impact des mouvements incontrôlés des patients sur les résultats

des examens. Cela permettrait d’accélérer l’étude de ces cas pathologiques difficiles à

traiter. Enfin, l’IRMdtr offre des possibilités très intéressantes comme l’adaptation d’outils

de segmentation automatique à une mise en œuvre TR [Poupon (1999b); Marrakchi-

Kacem (2011)] qui permettrait d’accélérer l’étude d’une structure anatomique spécifique

du cerveau. Il serait également passionnant d’étendre des outils de classification de groupes

de faisceaux de la substance blanche ([Guevara Alvez (2011)]) en vue d’une exploitation

en TR. Enfin, une calibration axonale de fibres [Assaf et al. (2008)] se faisant en direct

lors de l’examen d’IRMd permettrait d’accélérer l’étude de la distribution de la tailles des

axones dans le cerveau, ainsi que d’améliorer des mesures spécifiques de distributions en

utilisant les résultats obtenus en TR injectés, par feedback, comme donnée d’entrée au

réglage des paramètres de séquence.
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Introduction

1





Chapter 1

Introduction

Context

Diffusion magnetic resonance imaging (dMRI), introduced in [LeBihan and Breton (1985);

Merboldt et al. (1985); Taylor and Bushell (1985)], has become a commonly used imaging

modality going from the early diagnosis of ischemia to the inference of the brain connec-

tivity. This modality relies on the measurement of the water diffusion in the brain and

allows, from this measurement, to infer the directions of the white matter fiber bundles

in the brain. In the last twenty years, several methods were explored to represent at best

the map of the pathways connecting neuronal regions together. With the increase of the

accuracy of these 3D maps of the routes in the brain, the enthusiasm grew a lot in the

community and several other fields were investigated to always image more from the brain

microarchitecture.

Recently, a further advance for dMRI, as well as for functional MRI (fMRI) was pro-

posed with the outcome of real-time (RT) MRI workflows. RT MRI is a new concept

enabling to perform the usual MRI post-processing online, during the acquisition with the

patient in the MRI scanner. Concerning the RT fMRI technique introduced by [Cox et al.

(1995)], it was shown to bring new insights in many fields. It was used for example to com-

municate with completely paralyzed patients, who were thought to be in a vegetative state

[Birbaumer et al. (1999)]. RT fMRI was shown to be a new way towards brain computer

interfaces (BCI) [Weiskopf et al. (2004); deCharms (2007)], enabling to reduce the chronic

pain of patients through a neurofeedback training [deCharms (2008)]. In parallel to these

studies opening the possibility to read out functional brain processes in RT, the outcome

of RT dMRI (rtdMRI), introduced by [Poupon et al. (2008b)], opened the possibility to

read out the structural brain architecture in RT during the exam. In the frame of this

thesis, we will focus on the RT workflow dedicated to the dMRI modality.

rtdMRI allows to see in RT the dMRI maps, which are refined each time a new dif-

fusion measurement is performed. Common dMRI maps like the fractional anisotropy,

the apparent diffusion coefficient, the diffusion or fiber orientation distribution functions’
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maps can be evaluated nearly instantaneously as the dMRI sequence is running. The pos-

sibilities brought by such a workflow are powerful. The online results fully permit to take

decision about the quality of the scan and putatively allow to correct for any unexpected

problem such as motion of the subject, hardware failure... And, it also gives the opportu-

nity to insert any further incremental processing of the acquired MR data to improve the

workflow whenever it is possible, thus enabling to possibly stop the acquisition when the

actual estimates provide enough information with respect to the diagnostic.

Diffusion imaging is characterized by an exponential decay and is consequently inher-

ently corrupted by noise. While this noise remains Gaussian on the two complex acquisition

channels, it unfortunately follows a Rician or a noncentral χ distribution when considering

the magnitude of the reconstructed MR data. In addition, the actual tendency with the

most novel high angular resolution diffusion imaging (HARDI) and hybrid diffusion imag-

ing (HYDI) models is to increase the diffusion sensitization, thus enforcing the noise level.

Furthermore, it can be also interesting to decrease the voxel size to increase the spatial

resolution of the dMRI images, making the signal-to-noise ratio decrease. Consequently,

an RT denoising method becomes essential to use the rtdMRI workflow at its full extent.

In this thesis, we addressed the feasibility of noise correction in RT which can be chal-

lenging when considering the laps of dozen of seconds available between the acquisition of

two volumes. First, we focused on one of the state-of-the-art offline denoising techniques

which copes with our constraints, the linear minimum mean square error (LMMSE) es-

timator, originally dedicated to Rician noise, and we extended it to noncentral χ noise

correction. Then, we proposed a first RT correction method based on an association of

this extended LMMSE estimator with a Kalman filter embedded together with a feedback

loop to tackle the oversmoothing inherently introduced by the LMMSE. In addition, we

proposed another RT denoising technique relying on a unique tool: a parallel Kalman

filter accounting for a non-Gaussian noise. Each technique was applied on the sum of

squares (SoS) recombined signals as an RT process. We also developed in this thesis an

RT noise correction which directly applies on the signals before the SoS reconstruction.

This method has the advantage of accounting for a simple zero-mean Gaussian noise. All

this RT environment was tested on a clinical Tim Trio Siemens 3.0T MRI system but

can easily be adapted to any clinical MRI system. We also addressed the feasibility of

performing tractography in RT to see the tracts being refined after the acquisition of each

new measurement. We studied the impact of the RT noise correction for this tractography

application.

Organization and contributions of this thesis

This thesis manuscript is divided in three main parts (without including the introduction

and conclusion parts). The first part is a large state-of-the-art report on rtdMRI. It con-

tains all the literature background studied for this thesis. The second part focuses on the

main axis of this thesis: the RT noise correction dedicated to rtdMRI. This part contains
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a review of the scientific literature on the MRI noise. It then details our contributions

mostly concerning RT noise issues. Finally, the third part proposes to infer the connec-

tivity in RT with a RT tractography application. Fig. 1.1 shows the organization as a

diagram, showing the connections between the different chapters.

RT tractography

RT noise correction

Noise modeling

MRI, dMRI rtdMRI
chapters 2, 3 chapter 4

chapter 5

chapters 6, 7

chapter 8

Figure 1.1: Organization of the thesis chapters. The chapters in blue concern the first main part

of the thesis with a large state-of-the-art report converging to the rtdMRI method. The chapters

in green are included in the second main part of the thesis. They contain the contributions of this

thesis dedicated to the RT noise correction. Finally, the chapter in magenta is the RT tractography

application. The latter is performed after the RT noise correction.

Part II: State-of-the-art report on real-time diffusion magnetic resonance

imaging (rtdMRI)

This part is a large state-of-the-art report converging to rtdMRI. It contains three chapters,

which go from basics in MRI to detailed specifications for rtdMRI.

Chapter 2 - Basic principles of nuclear magnetic resonance imaging (MRI):

This chapter presents the basic principles of MRI. It goes from the physical principles

used in MRI to the image formation process. This chapter is not fundamental to under-

stand this thesis. We wrote it in a spirit to cover at best the MRI modality from which

dMRI is derived. However, certain elements like the image reconstruction techniques

followed by the parallel MRI techniques will serve as a reference for the next chapters,

especially chapter 5 concerning the MRI noise analysis, which is dependent on the MRI

reconstruction.

Chapter 3 - Knowledge about diffusion MRI (dMRI) used in this thesis: This

chapter moves from MRI to dMRI. It covers all the dMRI knowledge used in this thesis:

from the physical phenomenon, on which the dMRI modality relies to essential notions,

like the propagator, the orientation distribution function and the q space, used in different

local diffusion models. In this chapter, we focus on the diffusion tensor, the Q-ball and

spherical deconvolution models, which will be used for the rest of the thesis. The chapter

ends with a presentation of the various classes of tractography techniques stemming from
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the dMRI literature. This last overview will be useful for the chapter 8, which proposes

to infer the connectivity in RT.

Chapter 4 - State-of-the-art report on real-time dMRI (rtdMRI): Chapter 4

is a central chapter in this thesis. All the next chapters will rely on this one and refer to

it. At this point of the thesis, we explain how rtdMRI was thought and elaborated. We

first explain the numerous motivations behind rtdMRI and then explain the mathematical

Kalman frameworks proposed to achieve the RT goal. These frameworks are adapted to

the diffusion tensor and the Q-ball models presented previously in chapter 3. Finally,

we address in this chapter the hardware architecture necessary to the RT perspective of

making online post-processing. This chapter also gives some insights about the noise issue

in MRI that will be further detailed in chapter 5.

Part III: Real-time noise correction for real-time dMRI (rtdMRI)

This part about the RT noise correction for rtdMRI presents the main tools developed for

this thesis. It goes from the description of the MRI noise to the proposition of solutions

to answer the RT dMRI noise correction issue.

Chapter 5 - Modeling of noise in MRI: This chapter contains an important state-

of-the-art review about the MRI noise modeling and quantification analysis. It describes

the different statistical distributions of the measured noisy MRI signal and their impact

on the visual dMRI results. This will serve as a basis for the next chapters 6 and 7 about

denoising solutions. Different MRI noise estimation techniques are presented, with a new

one emerging from this thesis work. Finally, various image quality indices are detailed,

with a new one proposed specifically for dMRI images which will be used to quantify the

noise removal obtained with our solutions proposed in te next two chapters.

Chapter 6 - Correcting noise in RT Chapter 6 tackles the RT noise problematic,

which is the heart of this thesis work. As this problematic had never been considered

before, the considerations here are completely new and specific to this thesis. This chap-

ter makes a review of the various offline MRI noise correction methods and highlights the

constraints brougt by an RT denoising objective. The offline methods are therefore ana-

lyzed regarding their potential for a RT application. From this review, the linear minimum

mean square error (LMMSE) estimator is selected as a good solution regarding our RT

constraints.

Chapter 7 - Noise correction methods dedicated to real-time dMRI: This chap-

ter presents three different RT noise corection methods. The first RT denoising solution

relies on an LMMSE estimator embedded in a Kalman framework with a feedback loop.

We will show that this technique generates an important improvement in the dMRI re-

sults obtained with the rtdMRI workflow. A second RT denoising possibility is addressed,
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relying on a correction applied directly in the k-space, before the sum of squares (SoS)

recombination to obtain the MRI magnitude signal. This other strategy, for which the

method has to be implemented in the manufacturer reconstruction pipeline, is very simple

regarding the noise analysis, as it has the advantage of accounting for a simple zero-mean

Gaussian noise. However, we highlight the difficulty to implement it in practice in the

manufacturer reconstruction system. Finally, we propose a third RT denoising solution,

which is applied on the magnitude signal, as the first technique presented in this chapter.

This last technique tackles the RT noise removal from a more rigorous point of view than

the first technique and is based on a parallel Kalman filter. We explain in details the

technique and the results obtained. To conclude the chapter, all three methods are com-

pared on their different performances on the theoretical and practical aspects, including

the image quality improvement, as well as the time required to run these techniques in

RT.

Part IV: Real-time tractography application

This part proposes a chapter containg a prototype for a RT tractography application.

Chapter 8 - Inference of the connectivity in RT: Chapter 8 presents the possi-

bility to perform a tractography algorithm in RT. The technique proposed is at its first

development stage and represents a prototype to show the feasibility of the concept. The

idea here is to run a streamline deterministic tractography algorithm at each iteration of

the rtdMRI workflow. Therefore, no algorithmic change in the method is proposed yet,

but the main objective of this chapter is to highlight the effect on the first RT denoising

method presented in chapter 7 on the tracts.

Part V: Appendices

Appendix A - Acquisition of real human brain data: This appendix details the

generation of real human brain data, which were used to test our algorithms. These data

were generated at NeuroSpin in the “Archi database” project on the Magnetom Tim Trio

3T MRI system (Siemens Healthcare, Erlangen, Germany).

Appendix B - Some mathematical functions used in this thesis: This appendix

gives the mathematical expressions of some mathematical functions used in this thesis.

Appendix C - Simulation of DW data: This appendix details the generation of

simulated DW data without and with noise. The noise-free data serve as reference when

evaluating the performances of the algorithms.
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Software contributions

All the methods developed in this thesis were integrated into the Ptk library directed by

Cyril Poupon and Fabrice Poupon. Some of the methods have been integrated to the RT

environment developed under the supervision of Fabrice Poupon with Olivier Riff. In the

future, they will be integrated into the Connectomist software.
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Chapter 2

Basic principles of nuclear

magnetic resonance imaging

(MRI)

How does nuclear magnetic resonance imaging (MRI) operate and what are its applica-

tions? Which physical principles does it rely on? How are the images generated? This

chapter covers the background to answer these questions. First, we present the physical

phenomena which are at the origin of this imaging modality. Then, we describe the ele-

ments of the well-known spin-echo sequence created by [Hahn (1950)] and which generates

a signal revealing the different brain tissues. Finally, we explain the image reconstruction,

as well as the parallel MRI techniques that enable to accelerate the acquisition. This recap

is inspired in majority by the book of [Kastler et al. (2006)], from which we took a lot of

figures, but also by my courses at Phelma given by Dr. Françoise Hippert and Dr. Em-

manuel Barbier, by thesis chapters of [Poupon (1999a)], [Marrakchi-Kacem (2011)], and

finally by the websites http://users.fmrib.ox.ac.uk,

http://www.valley-neuroscience.com and http://www.imaios.com/fr/e-Cours/e-MRI.

2.1 Introduction

MRI was introduced in the 1970’s by Paul Lauterbur [Lauterbur (1973)] and Peter Mans-

field [Mansfield (1977)], who received, for their discovery, the Nobel Prize in physiology and

medicine in 2003. Using the nuclear magnetic resonance (NMR) principles, Paul Lauter-

bur generated the first two dimensional (2D) MRI images and Peter Mansfield developed,

among other works, a method to acquire an image rapidly (in a few seconds), known under

the name of echo planar imaging, which is a key scheme in functional and diffusion MRI.

MRI allows to make images of the whole body, in a non invasive way, contrary to X-rays

for example. MRI contributed to significantly improve the comprehension of the brain

and its pathologies. Today, MRI is widely used in clinical medicine, for the diagnosis of

pathologies (for example: tumors, neurodegenerative diseases, epilepsies, stroke), and also
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in cognitive neuroscience research.
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Figure 2.1: Representation of a proton (black circle) and its magnetic moment ~µ. The two letters

u designate the two quarks up and the letter d designates the quark down which together constitute

the proton.

This imaging technique is based on the response of the hydrogen protons to imposed

magnetic disturbances. Nuclei other than those of hydrogen can sometimes be considered,

but in this thesis, we will only consider hydrogen protons. Those are constituted by three

subparticules: two quarks up and one quark down represented by the symbols u and d,

respectively (fig. 2.1). The up and down quarks rotate about the same axis but in opposite

directions, causing the proton rotation. A rotating particle has an intrinsic kinetic moment

aligned along the particle rotation axis and called “spin”, and the rotating proton is called

spin by extension. A quark is a both charged and rotating particle and consequently

induces a magnetic moment, aligned along its rotation axis. The addition of the three

little magnetic moments created by the three quarks causes a magnetic moment for the

proton. The latter can then be considered as a small magnet. For a set of magnetic

moments, we define the vector of magnetization A such that: A =

N∑

i=1

µi/V, where N

is the number of spins in the observed region and V is the observed volume. In absence

of external magnetic field, the direction of the spins are random, like in the fig. 2.2. The

net magnetization is then nul. What does happen when an external magnetic field or a

strong magnetic disturbance is applied?

First let’s describe the hardware configuration of an MRI scanner (fig. 2.3). Such

a machine is composed of several hardware elements that we will describe. First, a su-

perconductive coil generates an homogeneous magnetic field B0 within a given field of

view around its isocenter. This coil has the advantage of creating a high field, without

consuming any electric current thanks to its superconductivity. It defines the magnetic

equilibrium status of the subject, who is located inside the MRI scanner. The MRI machine

also contains an antenna, which consists of a coil and permits to disturb the magnetic

equilibrium status. It is a key element of the magnetic resonance that we detail in sec-
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Figure 2.2: Representation of the spins in absence of magnetic field. The magnetization ~A is then

zero. Extracted from [Kastler et al. (2006)].
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Figure 2.3: Structure of an MRI scanner. Adapted fig. from [Kastler et al. (2006)].

tion 2.2. This coil can also sometimes play the role of the MRI signal reception antenna,

e.g. receive the protons’ response to the magnetic disturbance. In general, the reception

antenna is adapted to the geometry of the object of interest, the head in our case. And
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finally, the gradient coils permit to spatially encode the MRI signal and thus to create

an image. Other elements exist in the MRI scanner like the cryostat, which contains liquid

helium at a temperature of 4̊ Kelvin (i.e. -269̊ C) and which consequently enables to keep

the coil in its superconductive state. The shim coils help to maintain a static field B0

homogeneous in a region centered around the isocenter of the magnet. Finally, the room,

where the MRI machine is located, is protected from any external radio-frequency (RF)

waves by a Faraday cage.

2.2 Magnetic resonance and relaxation phenomena

When the machine is on, the superconductive coil creates a static magnetic field B0 di-

rected along the z-axis indicated in fig. 2.3. This field starts the precession of the spins

around the z-axis at an angular frequency called the Larmor frequency: ω0 = γB0 with

γ the proton gyromagnetic ratio (γ/(2π) ∼ 43MHz.T−1). Actually, the spins precess at

γ (B0 + b) with b the time fluctuating field created partly by electrons around the hydro-

gen nuclei. As b << B0, the spins’ precession Larmor frequency can be approximated

to ω0. The spins precess in a direction such that their magnetic moment is pointed in

the same direction as B0 or in the opposite direction. As the spins are dephased, those

that precess with a precession axis in the same direction as B0 generate a global magnetic

moment along B0 (fig. 2.4). The other generate a global magnetic moment in the opposite

direction. Thanks to a small majority of spins oriented along B0 and because living tissues

contain water in abundance, the resulting magnetic moment is not zero. Consequently, a

magnetization vector A of the observed tissue is induced. It is static and oriented along

B0. The system of spins is then in a magnetic equilibrium state. How can we disturb this

state and what does happen then?

z

⇔

~µ ~µ ~µ

~µ ~µ ~µ ~µ
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Figure 2.4: Spin precession with magnetic moments designated as ~µ in an environment occupied

by a magnetic field B0. This precession produces a magnetization vector ~A.
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Figure 2.5: Effect of a 90̊ RF pulse on the magnetization vector ~A, introduced in fig. 2.4. This 90̊

RF pulse creates the rotating magnetic field B1. The magnetic resonance phenomenon (vignettes

1, 2 and 3) and the relaxation phenomenon (vignettes 4,5 and 6) occur.
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The equilibrium state of the magnetization A of the observed tissue can be disturbed

by an RF antenna (the head coil visible in the fig. 2.3 for example), which creates a

rotating magnetic field B1 which orientation is perpendicular to the z-axis and which

angular velocity is ωexc = γB1. The components of the vector B1 are:





B1x(t) = B1cos(ωexct),

B1y(t) = B1sin(ωexct),

B1z(t) = 0.

(2.1)

The energy transfer required to excite the spin system only occurs when the angular veloc-

ity ωexc satisfies the resonance condition: ωexc = ωres. In practice, resonance happens

when ωexc is sufficiently close to ωres so that |ωexc − ωres| << γB1. Here, the resonance

angular velocity is ω0. When the resonance condition is satisfied, the spins will precess

around B1, at the angular velocity given by ωexc = ω0, in addition to their precession

around B0. They will also all get the same phase. It is the magnetic resonance phe-

nomenon brought to light by Felix Bloch [Bloch (1946)] and Edward Purcell [Purcell et al.

(1946)] in 1946 who received the Nobel Prize for physics in 1952 for their work. Fig. 2.5

explains the steps, in a vignette form, of the spins’ excitation by an RF wave, called 90̊

RF, as it permits to flip the magnetization by 90̊ . To simplify the phenomenon descrip-

tion, we consider the rotating frame of reference (Ox’y’z), where the vector B1 is fixed

and parallel to the x’-axis. At t = 0 (vignette 1), the magnetization A of the spin system

is still longitudinal, i.e. aligned along B0. Little by little, because of the 90̊ RF pulse,

the magnetization tips into the transverse plane and the spins begin to get all the same

phase (vignette 2). At time tp (vignette 3), i.e. immediately at the end of the RF pulse,

all the spins have the same phase. The magnetization is then strictly transverse. After

some time, there is the relaxation of the transverse component of A which is caused

by the dephasing of the spins in the transverse plane (vignette 4). Later, there is the

relaxation of the longitudinal component of A which begins to recover, because of

a return to the spin equilibrium state (vignettes 5 and 6). The magnetization ends up to

be strictly longitudinal, as it was before the RF pulse.

The magnetization time evolution can be mathematically described by the Bloch

equations in the laboratory (stationary) frame of reference (Oxyz) [Bloch (1946)]:

dA

dt
= γ (A×B)− Axx+Ayy

T2
− Az −Am

T1
z , (2.2)

where × is the vector product operator. The solution of this equation is, in the rotating

frame of reference (Ox’y’z), such that [Haacke et al. (1999)]:





Ax′(t) = exp[−t/T2]
(
Ax′(0)cos [(ω0 − ωexc)t] +Ay′(0)sin [(ω0 − ωexc)t]

)
,

Ay′(t) = exp[−t/T2]
(
Ay′(0)cos [(ω0 − ωexc)t]−Ax′(0)sin [(ω0 − ωexc)t]

)
,

Az(t) = Az(0)exp[−t/T1] +Am (1− exp[−t/T1]) ,

(2.3)
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with T1 and T2 the longitudinal and transverse relaxation times respectively (T1 > T2) and

Am = Az(∞). The transverse relaxation is also called “spin-spin” relaxation because it is

due to interactions between spins. The longitudinal relaxation can be called “spin-lattice”

relaxation because it is due to a return to the spins’ equilibrium inside of their lattice. The

transverse magnetization is, in the frames of reference (Ox’y’z) and (Oxyz), defined

respectively by:



Ax′y′(t) = Ax′(t) + iAy′(t),

Axy(t) = Ax(t) + iAy(t),
(2.4)

with the link between both expressions given by Axy(t) = Ax′y′(t)e
−iωexct. In the particular

case of a 90̊ RF pulse, we have the following relations at t = tp, i.e. immediately at the

end of the RF pulse (see vignette 3 in fig. 2.5):




Ax′(tp) = 0,

Ay′(tp) = Am,

Az(tp) = 0.

With the time origin changed and now fixed immediately after the 90̊ pulse, the transverse

magnetization is found to be: Axy(t) = iAme−t/T2ei(−ω0t+φ(0)), with the constant phase

φ(0) = −ωexctp. We write the magnitude of the transverse magnetization as the modulus

of Axy(t): A⊥(t) = |Axy(t)| . The curves representing the x-component Ax(t) of the

transverse magnetization and the longitudinal magnetization Az(t) are shown in fig. 2.6.

3T2

t

Free Induction Decay
(FID)

3T1

t

Disappearance of the
transverse magnetization longitudinal magnetization

Recovery of the

Ax(t)

Am

Az(t)

Am

Figure 2.6: The transverse relaxation curve, also designated as the Free Induction Decay (FID),

shows the disappearance of the magnetization Ax(t) (left). A similar curve shape is obtained

for Ay(t) (not shown). The longitudinal relaxation curve shows the recovery of the longitudinal

magnetization Az(t) (right).

In MRI, the signal measured by the reception antenna only corresponds to the trans-

verse magnetization. It is maximum right after the 90̊ pulse, and then periodically evolves
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in an exponentially decaying envelope. This is called the free induction decay (FID).

This signal decrease is rapid and this is partially due to inhomogeneities in the B0

magnetic field, which induce spontaneous precessions of the spins with angular veloc-

ities slightly different from ωL. Then, the effective transverse relaxation time T ∗
2

can be defined such that: 1/T ∗
2 = 1/T2 + 1/T2i, with T2i the relaxation time due to the

inhomogeneities of B0 and T2 the “spin-spin” relaxation time due to the molecular inter-

actions. Thus, the T2 parameter in eq. 2.2 and in the system 2.3 has to be replaced by

T ∗
2 . Let us rewrite the expression of the transverse magnetization in the stationary frame

of reference (Oxyz) with the time origin fixed immediately after the 90̊ RF pulse:

Axy(t) = iAme−t/T ∗
2 ei(−ω0t+φ(0)). (2.5)

Knowing the T1, T2 and T ∗
2 parameters, as well as the transverse magnetization time

evolution after a 90̊ pulse, we can now detail the basis of the spin-echo sequence.

2.3 Basis of the spin-echo sequence

Fig. 2.7 shows the principle of the spin-echo sequence, the concept of which was discov-

ered by Erwin Hahn [Hahn (1950)] in 1950. The sequence immediately begins after the 90̊

RF pulse. At t = 0, the spins have all the same phase and the transverse magnetization

is maximum, as illustrated by the vignette 1 in the fig. 2.8. Little by little, the spins are

dephased and the relaxation T ∗
2 happens (vignette 2). At t = TE/2, a 180̊ RF pulse is

applied and enables a flip of the magnetization by an angle of 180̊ (vignette 3 in fig. 2.8).

The flip caused by the 180̊ RF pulse is a mirror flip with respect to the (y’z) plane. It

changes the dephasing sign, without changing the dephasing evolution direction. As the

dephasing of the spins is caused by the inhomogeneities of B0, it only depends on the envi-

ronment. Consequently, the 180̊ RF pulse generates a refocusing of the spins: because of

the 180̊ flip, the spin phases begin to decay to zero and are equal to zero at the echo time

TE (vignette 5). At TE , the spins are again in coherence and the magnetization, which

is again maximum, generates an echo signal: this phenomenon is called the spin echo.

The magnetization at t = TE is however smaller than at t = 0, because of the “spin-spin”

relaxation due to molecular interactions. It is possible to create several successive echoes

when repeating this cycle every TR, TR being the repetition time indicated in fig. 2.7. At

the first echo, i.e. at t = TE, the modulus of transverse magnetization is:

A⊥(TE) = Amexp[−TE/T2] . (2.6)

At the next echoes, i.e. for t > TR, if the recovery of the longitudinal magnetization is

not complete —because of a too short TR—, this phenomenon has also to be considered.

Thus, the modulus of the transverse magnetization at the nth echo with n > 1 is expressed

such that:

A⊥(nTE) = Am (1− exp[−TR/T1]) exp[−nTE/T2] . (2.7)
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Figure 2.7: Basis of the spin-echo sequence. The bottom of the figure indicates the steps of the

sequence, which is constituted by 90̊ and 180̊ RF pulses. The time origin is fixed immediately

after the 90̊ RF pulse. The echo, i.e. the maximum transverse magnetization signal after a 180̊

pulse, is obtained at the echo time (TE). These steps are then repeated at t = TR, TR being

the repetition time after the 90̊ pulse. The top of the figure indicates the time evolution of the

transverse magnetization enabling to reveal the relaxation time T2 and T ∗

2
. The circles under

the graph show the spin configuration during the sequence. At t = TE , the spins are refocused,

producing the echo signal of the transverse magnetization. Figure adapted from [Kastler et al.

(2006)]. The numbered instants in a yellow frame are detailed in the fig. 2.8.

This cycle repeated every TR enables to fill the lines of the Fourier plane from which

we then get access to the image itself. This part of the MRI reconstruction process is

described in section 2.6. But, before creating the image, how can the MRI signal reveal

something interesting of the subjects’ brain inside the MRI machine?
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Figure 2.8: Detailed figure of the spin-echo process. The vignettes’ numbers correspond to those

indicated in fig. 2.7.
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2.4 Contrast in MRI

In MRI, the measured signal is the transverse magnetization. To obtain contrast in the

image, it is essential that this signal reveals the brain region that we want to study. And

yet, depending on the brain tissue, the T1 and T2 relaxation times are not the same.

These two times, as well as the hydrogen proton density, are given in table 2.1 for the

cerebrospinal fluid (CSF), the grey matter (GM) and the white matter (WM).

T1(s) T2(ms) Proton density

CSF 4 500 1

GM 1 80-90 0.92

WM 0.7 70-80 0.79

Table 2.1: Values of the T1 and T2 relaxation times, and of the hydrogen proton density at 1.5T in

the cerebrospinal fluid (CSF), the grey matter (GM) and the white matter (WM). Data extracted

from http://users.fmrib.ox.ac.uk/~peterj/lectures/hbm_1/sld031.htm

These relaxation times induce different longitudinal and transverse magnetization re-

laxation curves according to the tissue (fig. 2.9). Depending on the TR and TE parameters

set up for the sequence, the contrast between the tissues is not the same. Indeed, a long

TR cancels the contrast in T1, whereas a short TE cancels the contrast in T2. The table

2.2 sums up the parameters TR and TE to choose to get either a contrast due to the T1

relaxation (then we do a T1 weighting), or a contrast due to the T2 relaxation (then we do

a T2 weighting). When the contrast in T1 and T2 are both canceled, the contrast in the

image is only due to the proton density in the tissues. Fig. 2.10 allows to see the image

results of these different weightings and to compare them with a histological section.

Short TR(∼14ms) Long TR(∼4s)

Short TE T1 weighting proton density weighting

Long TE(∼100ms) no contrast T2 weighting

Table 2.2: The TR and TE to choose depending on the desired weighting. For a T1 weighting, the

TE to take is about 5ms and for a proton density weighting, the TE to take is about 15ms.

Data taken from http://users.fmrib.ox.ac.uk/~peterj/lectures/hbm_1/sld031.htm

We have seen in this section that the measured MRI signal can reveal a brain tissue.

But, how do we know where this signal exactly comes from in the brain?
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Figure 2.9: Longitudinal relaxation curve (left) and transverse relaxation curve (right) for three

main brain regions: the CSF, the GM and the WM. According to the choice of TR and TE, priority

is given to a contrast coming from the longitudinal relaxation (T1 weighting) or from the transverse

relaxation (T2 weighting). For example, to get a T1 weighting, we need an intermediate TR (like

in this figure) allowing to distinguish the longitudinal magnetizations of the different brain areas.

Moreover, the contrast due to the transverse relaxation has to be canceled. For that, it is necessary

to choose a very short TE (like in this figure).

Histological section T1 weighted image T2 weighted image
weighted image
Proton density

WM

GM CSF

Figure 2.10: Histological section of a humain brain (image extracted from

http://www.valley-neuroscience.com) and images showing three different contrasts in

MRI at 1.5T: the T1 weighting, the T2 weighting and the proton density weighting (extracted

from http://users.fmrib.ox.ac.uk/~peterj/lectures/hbm_1/sld031.htm).

2.5 The MRI signal spatial encoding

To create a brain image from the measured transverse magnetization signal, the spatial

position of the protons which emit this MRI signal has to be determined. It is what is

called the MRI signal spatial encoding, which is done using three pairs of gradient coils

visible in the fig. 2.3. This technique that uses magnetic field gradients to spatially
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encode the MRI signal was first invented by Herman Carr and Edward Purcell with only

one gradient enabling to generate a 1D image [Carr and Purcell (1954)]. Twenty years

later, Paul Lauterbur introduced the concept of 2D MR imaging combining three gradients

[Lauterbur (1973)].
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Figure 2.11: The gradient Gz permits to select a slice whose spins respect the resonance

condition. The slice thickness is related to the transmitted RF bandwidth.

First, a magnetic field gradient Gz is created using a pair of gradient coils which axis

is along the z-axis in our example. When only B0 and this gradient are applied, the

spins precess at an angular velocity which depends on the spin position along the z-axis:

ω(z) = γB0 + γzGz . As a consequence, due to the Larmor resonance, an RF wave of

angular velocity ωexc = ω0 + γz0Gz will excite the spins of a specific plane perpendicular

to the z-axis and of equation z = z0. Therefore, only the spins of this slice will see their

magnetization flip. This slice selection is represented by fig. 2.11, which shows the relation

between the slice thickness ∆z and the transmitted RF bandwidth ∆ω of the RF excitation

pulse. This bandwidth corresponds to the full width at half maximum of the magnitude

spectrum A⊥(ω). As the gradient Gz permits to select a slice, it is also called the slice
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selection gradient and is written GSS. It is not necessarily applied in the direction given

by B0. This gradient GSS is produced at the same time as the RF excitation pulse and

lasts a limited time.

Once the slice has been selected, it is necessary to encode the MRI signal spatially

in this slice using a 2D encoding with two phase and frequency encoding gradients. The

phase encoding gradient GΦ (or Gy), produced by a second pair of coils, modifies the

spins’ phases along the y-axis: the voxel lines in the slice therefore become distinguishable

from each other because of their different phases. The gradient GΦ therefore allows to

differentiate the lines in the slice with respect to their spins’ phases. Finally, a third

pair of coils causes a readout gradient, also called frequency encoding gradient,

Gω (or Gx) which distinguishes the slice columns along the x-axis with respect to their

spin frequencies. This gradient is applied during the MRI signal readout. At this instant,

the signal measurement enables to obtain the information of all frequencies and only one

y x

L1

L2

L3

C1 C2 C3

preserved

phases signal measurement

Information for 1 line

of the Fourier plane

only one frequency modification of the fre-

quencies and phases

frequencies and phases

modification of the

Figure 2.12: Effects of the gradients GΦ and Gω on the transverse magnetization signal: mod-

ification of the phases and frequencies possessed by the signals emitted at the different voxels of

the slice. At the top, we can follow the schematic evolution of the magnetic moments in the slice

voxels selected by GSS. The gradient GΦ permits to distinguish the different lines L1, L2, L3 in

the slice according to their spin phases. The gradient Gω differentiates the columns C1, C2 et C3

according to their spin frequencies. Extracted from [Kastler et al. (2006)].
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phase information, i.e. the frequential content of the line selected by GΦ. This frequential

content corresponds to a line in the Fourier plane. At each TR, a new phase encoding

gradient GΦ is applied which permits to fill in one new line of the Fourier plane. The

repetition of this process enables to fill in the whole Fourier plane (in a sampled way).

Fig. 2.12 sums up this MRI signal encoding process using the three gradients. The slice

columns and lines encoded define together the matrix of pixels which will constitute the

image. This image will be a representation of the field of view (FOV) that has been

scanned by the magnet.

However, a problem appears: each three gradientsGSS, GΦ andGω causes a dephasing

of the spins with respect to their position. This dephasing endures after each gradient

application. If this effect is the one expected from the phase encoding gradient GΦ, it is

not the one expected from GSS and Gω. The phases caused by these two gradients have

to be canceled. For that, bipolar gradients are used. A bipolar gradient has a positive and

a negative lobe. The positive lobe is twice as long as the negative lobe, so that it cancels

the dephasing at the temporal center of the 90̊ RF pulse for GSS and at the temporal

center of the echo readout for Gω, as shown in fig. 2.13.

Once the entire signal spatial encoding system is set, how is the final image recon-

structed?

RF 90◦

t

...
∆Φi

GSS

...
∆Φi

Gω

RF 180◦

by Gφ) in phase during
the echo readout

echo signal

spins (of the line selectedspins (of the slice selected
by GSS) in phase

Figure 2.13: The slice selection gradientGSS and the frequency encoding gradientGω are designed

as bipolar gradients. The gradient bipolarity allows, after the gradient application, to refocus the

spins so that their phases present in the echo signal are only due to the phase encoding gradient

GΦ, which is not bipolar.
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2.6 The image reconstruction

The magnetization signal emitted by the studied volume is measured by the receiving coil

(or antenna). This coil measures a voltage e(t), the expression of which is given by the

Faraday induction law and by the principle of reciprocity [Haacke et al. (1999)]:

e(t) = −dΦ(t)

dt
= − d

dt

∫

volume
Breceive(r) ·A(r, t)d3r, (2.8)

with Φ(t) the magnetic flux induced in the coil by the magnetization, Breceive(r) the

magnetic field created by the receiver coil at the position r for a unit current in the coil

and A(r, t) the local magnetization. The x- and y-components of the field Breceive(r) can

be written in terms of the receive magnetic field magnitude B⊥(r) and angle θB [Haacke

et al. (1999)]:




Breceive

x (r) = B⊥(r)cosθB,

Breceive
y (r) = B⊥(r)sinθB.

The authors of [Haacke et al. (1999)] calculated e(t) for the case where no field gradient is

applied. They showed that, when computing e(t), the derivative of the e−t/T ∗
2 factor can

be neglected. It gives:

e(t) ∝ ω0

∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)B⊥(r)sin (ω0t+ θB(r)− φ0(r)) d
3r, (2.9)

with the phase φ0(r) and the magnitude A⊥(r, 0) determined by the initial RF pulse

conditions. Now, when considering all gradient fields, the previous resonance angular

frequency ω0 has to be replaced by the new resonance angular frequency, which the spins

precess with and which is given by: ω(x, y, z, t) = γB0 + γzGz(t) + γxGx(t) + γyGy(t). A

demodulation followed by a low pass filtering applied to e(t) leads to a data storage in two

“coil components”, a real one and an imaginary one. The resulting received complex

signal is expressed such that:

s(t) ∝ ω0

∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)B⊥(r)e
i[(Ω−ω(r,t))t+φ0(r)−θB(r)]d3r, (2.10)

where Ω is the demodulation angular frequency. The transmitting and receiving RF coils

are assumed to be sufficiently uniform, so that φ0, θB and B⊥ are independent of the

position r. The signal s(t) can be written such that:

s(t) = ω0ΛB⊥

∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)e
i[Ωt−φ(r,t)]d3r , (2.11)

with Λ the factor of proportionality and φ(r, t) = −
∫ t
0 dt

′ω(r, t′) the accumulated phase.

When setting Ω equal to γB0 + γzGz(t), the complex signal s(t) becomes:

s(t) = ω0ΛB⊥

∫∫

volume
e−t/T ∗

2 (r)A⊥(x, y, z, 0)e
−iγ(x

∫ t

0
Gx(t′)dt′+y

∫ t

0
Gy(t′)dt′)dxdy. (2.12)
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Let us write kx(t) = γ
2π

∫ t
0 Gx(t

′)dt′ and ky(t) = γ
2π

∫ t
0 Gy(t

′)dt′ defining the Fourier

plane, also called k space. The following Fourier relation is then obtained:

s(kx(t), ky(t)) = ω0ΛB⊥

∫∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)e
−i2π(kx(t)x+ky(t)y)dxdy . (2.13)

Incrementing the two frequency and phase encoding gradients Gx and Gy enables to

sample the Fourier plane. Then, the double inverse fast Fourier transform of s(kx(t), ky(t))

performed for t = TE yields the final signal:

sfinal(x, y) = ω0ΛB⊥

∫
e−TE/T ∗

2 (x,y,z)A⊥(x, y, z, 0)dz . (2.14)

Then, the modulus of sfinal(x, y) allows to reconstruct the final MRI image in the spatial

domain. This technique utilizing the inverse Fourier transform tool was developed by

Richard Ernst and his team [Kumar et al. (1975)]. Fig. 2.14 represents the chronogram

of a spin-echo sequence showing how the RF pulses and the gradients are put together

in order to sample the Fourier plane. Finally, fig. 2.15 shows the image obtained in the

Fourier plane, as well as the image obtained in the spatial domain after a double inverse

Fourier transform.

To obtain the image of each slice of the scanned volume, the sequence in fig. 2.14

has to be reproduced for different slice selection gradients. To not excessively extend the

sequence duration, we can take advantage of the dead time TR-TE to successively start

the sequences for the other slices. This technique is called the multislice technique.

However, the spin-echo sequence, even with the multislice technique, still lasts 15 min at

least. The longer the sequence, the more laborious the exam, and this especially because

the subject has to stay very still in the MRI machine, as the latter is very sensitive to

movements. Indeed, any movement of the subject can create artifacts on the images.

Staying still in the machine for the subject is easier if the sequence is short. Different

imaging methods permit to reduce the sequence duration. One of them is parallel MRI.
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Figure 2.14: Spin-echo sequence chronogram. The figure shows how the RF pulses and the gra-

dients are put together for a TR duration. The phases induced by the gradients are also indicated.

Extracted from [Kastler et al. (2006)].

Figure 2.15: Magnitude in the k space (left) and in the spatial domain (right). To switch from

the left image to the right one, a 2D inverse Fourier transform has to be applied. Extracted from

[Kastler et al. (2006)].
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2.7 Parallel MRI techniques

Parallel MRI consists of utilizing, for the MRI signal reception, a phased-array coil, i.e.

an array composed by several surface coils or channels arranged in a network [Roemer

et al. (1990)], as shown in fig. 2.16. Each channel is therefore getting the signal of the

anatomical region in front of which it is located. After a demodulation followed by a low

pass filtering applied on each channel signal, the real and imaginary components of each

signal are obtained. These different complex signals, obtained in parallel by the coil array,

are expressed such that:

ml(kx, ky) =

∫∫
sfinal(x, y)cl(x, y)e

−i2π(kxx+kyy)dxdy, (2.15)

with cl(x, y) the sensitivity of the lth coil measuring the signal ml(kx, ky). Then, these

data ml(kx, ky) are combined together to form a global signal. This method permits to

enhance the signal-to-noise ratio (SNR). Indeed, the latter is much higher than the SNR

obtained using a volumic coil exploring the same FOV.

Figure 2.16: Phased-array head coil diagram with eight receiving coils represented by

white lines around the centered image. Next to each coil, the signal received by the coil

is shown. The central image corresponds to the recombined image. Fig. adapted from

http://black.bme.ntu.edu.tw/courses/course_neuroimaging_fall10/slide_pmri_fhlin.pdf.

The aim of parallel MRI is to use the spatial information obtained from the different

coils which receive the MRI signal in parallel. The idea is that the sensitivity encoding of

each coil can partially replace the spatial encoding performed in classical MRI by the phase
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and/or partition encoding gradients. Then the number of gradient encoding steps can be

reduced which leads to an acceleration of the sequence. The first concept of parallel MRI

appeared with [Carlson and Minemura (1993)], but the first practical implementation came

out with [Sodickson and Manning (1997)] as the simultaneous acquisition of spatial

harmonics (SMASH). The latter is a reconstruction method operating in the k-space. It

linearly combines the sensitivities of the different coils to obtain spatial harmonics, such

that:

L∑

l=1

n
(m)
l cl(x, y) ≈ eim∆kyy, (2.16)

with L the number of coils, n
(m)
l the linear weights used to produce, with the sensitivities

cl(x, y) of each lth coil, the composite sensitivity profile eim∆kyy with m an integer and

∆ky = 2π/FOV. These spatial harmonics eim∆kyy enable to reconstruct the missing lines

of the k-space. Indeed, eq. 2.15 becomes:

ml(kx, ky) =

∫∫
sfinal(x, y)e

im∆kyye−i2π(kxx+kyy)dxdy. (2.17)

The spatial harmonics actually replace the gradient-induced modulation of the magneti-

zation: less lines of the Fourier plane than usually are acquired and the missing lines are

reconstructed using eq. 2.17. In practice however, this reconstruction algorithm requires

specific coils which renders the method difficult to achieve.

A more practical solution than SMASH was developed by [Pruessmann et al. (1999)]

and was called sensitivity-encoding for fast MRI (SENSE). In opposition to SMASH,

SENSE reconstructs the missing lines of the FOV in the image domain. As shown in fig.

2.17 for an acquisition with an acceleration factor R of 2, when the subsampled k-space

is reconstructed in the image domain, if the object to examine is bigger than the FOV, it

yields an image with an aliasing artifact. Another consequence is that the FOV dimension

along the y-axis is reduced by half. The SENSE algorithm “unfolds” the image directly

using the sensitivity of each coil, such that, for each lth coil:

ml(x, y) = cl(x, y)sfinal(x, y) + cl(x, y +
FOVy

2
)sfinal(x, y +

FOVy

2
), (2.18)

with ml(x, y) the signal intensity in a voxel in the sub-sampled image, in an aliased region

and FOVy the y-dimension of the FOV. The other notations are the same as before.

Performing eq. 2.18 for each coil permits to reconstruct the global image without any

aliasing.

After SENSE, other reconstruction solutions have been proposed, such as the general-

ized autocalibrating partially parallel acquisition (GRAPPA) algorithm [Griswold

et al. (2002)]. The latter reconstructs the k-space missing lines in the Fourier domain, be-

fore the double inverse Fourier transform application, as in the SMASH method. Contrary

to SMASH, it uses additionally acquired central k-space lines called auto-calibration signal

(ACS) lines. The latter permit to automatically obtain the linear weights n
(m)
l , which are
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Figure 2.17: Subsampling of the k space with a sampling frequency more than twice the highest

frequency in the image (top) (respect of the Nyquist-Shannon theorem), and then application of

the double inverse Fourier transform to obtain the final image in the image domain. Subsampling

of the k space (bottom) with an acceleration factor R of 2. The FOV is then divided by 2 along

the y-axis. As the object to examine is bigger than the FOV, an artifact called aliasing appears

in the image obtained after the double inverse Fourier transform. Image adapted from [Poupon

(2008)].

necessary for the reconstruction of the missing lines. To determine these weights, multiple

lines from all coils are used to fit an ACS line of a coil, following:

sACS
l (ky −m∆ky) ≈

L∑

l=1

n
(m)
l sl(ky), (2.19)

with sACS
l (ky −m∆ky) the ACS signal from the lth coil for a line offset by m∆ky (m an

integer and ∆ky = 2π/FOV as before). sl(ky) is the acquired line at ky from the lth coil.

Eq. 2.19 permits to give the linear weights n
(m)
l . From them, the missing lines can be

determined, using a blockwise reconstruction following:

mj(kx, ky −m∆ky) =

L∑

l=1

Nb−1∑

b=0

n
(m)
l (j, b)sl(ky − bR∆ky), (2.20)

where Nb is the number of blocks —a block being defined as a single acquired line and R-1

missing lines— and R is the acceleration factor. n
(m)
l (j, b) is the linear weight defined for

the block b and the jth coil.

These parallel MRI reconstruction techniques are commonly used to save acquisition

time. In the diffusion MRI modality, which we will present in the next chapter, parallel

31



MRI is very interesting. Indeed, acquisition times in diffusion MRI are usually long,

yielding geometrical distortions caused by phase artifacts. Therefore, the use of parallel

MRI permits to reduce these distortions, in addition of saving acquisition time. The main

disadvantage of the parallel MRI reconstruction technique is that the SNR is reduced with

respect to the non-accelerated sequence, at least by a factor
√
R [Blaimer et al. (2004)].

For the SENSE reconstruction, it was established that [Pruessmann et al. (1999)]:

SNRSENSE =
SNRfull

g
√
R

, (2.21)

where SNRSENSE is the SNR on the SENSE reconstructed image and SNRfull is the

SNR on the image obtained with the non-accelerated sequence. g is the geometry factor

which depends on the geometry of the coil array. Furthermore, we will see later that the

use of parallel MRI changes the noise distribution in the data, compared to a single-coil

acquisition. We will explain how the choice of the reconstruction method and the number

of channels impact the noise distribution definition.

2.8 Conclusion of this chapter

We have presented the principle of magnetic resonance imaging, which opens the way to the

generation of images offering contrasts corresponding to different brain tissues. We have

explained how the spatial encoding works and how the image reconstruction is done, using

an inverse Fourier transform. The steps of the signal reconstruction have an impact on the

noise distribution, as we will see in chapter 5. Finally, we have mentioned the possibilities

to accelerate the MRI sequences using parallel MRI. Again, the use of multiple coils to

acquire the signal, as well as the reconstruction algorithms used in parallel MRI have also

some effects on the noise corrupting the final image. We will come back to it later in the

thesis.

This thesis is fully dedicated to diffusion MRI, for which noise issues are essential. Dif-

fusion MRI is based on the same principles as MRI, with the addition of the measurement

of diffusion inside the brain. It permits to produce images revealing the anatomical con-

nectivity of the brain. Our noise removal work, which we will present later, was performed

for those images.
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Chapter 3

Knowledge about diffusion MRI

(dMRI) used in this thesis

We have seen in the previous chapter that because brain tissues have different relaxation

times, MRI can be used to obtain images of the brain with contrast. For this reason, when

choosing the right MRI sequence parameters, it is possible to see anatomical brain struc-

tures. Is it possible to go further in the observation of anatomical structures? Can we have

access to other contrasts and to more details on the brain tissue microstructure? Answers

to these questions are and continue to be given by the diffusion MRI (dMRI) technique.

dMRI relies on the sensitization of MRI to the random motion of water molecules in tis-

sues. At the beginning of MRI, the Brownian motion due to the diffusion process of water

molecules was considered as an artifact that researchers attempted to reduce. In the eight-

ies however, the biophysical phenomenon behind these artifacts interested researchers, as

they discovered that the random motion of the water molecules inside the brain permitted

to obtain anatomical information at a microscopic scale which had never been achieved

before. In this chapter, we first explain the biophysical phenomenon of water diffusion in

tissues and how to sensitize MRI to the diffusion process. Then, we will see in details how

mathematical models can be developed to encapsulate the diffusion process and how they

can be exploited to infer the structural connectivity and to probe the tissue organisation

at a cellular level. Finally, we concern ourselves with tractography, a tool whose aim is to

represent WM fiber bundles in the most realistic way. This chapter is inspired in majority

by courses given by Dr. Cyril Poupon on dMRI [Poupon (2010)] and by thesis chapters of

[Poupon (1999a)], [Tuch (2002)], [Descoteaux (2008)] and [Marrakchi-Kacem (2011)].

3.1 dMRI basis principles

dMRI is an MRI technique which relies on the measurement of the brain water molecules’

Brownian motion. At first, this Brownian motion was only seen as producing an artifact

on NMR signals: Erwin Hahn noticed that the spin echo signal was attenuated because

of the diffusion of the spins [Hahn (1950)]. The Bloch equations presented in the previous
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chapter (eq. 2.2) were modified to account for the diffusion [Torrey (1956)]. A dozen

years later, the pulse gradient spin echo sequence was proposed by [Stejskal and Tanner

(1965)] enabling to measure the coefficients of the molecular diffusion from diffusion NMR.

With the advent of MRI in the seventies, dMRI was also rendered possible. This new

modality appeared in 1985 [LeBihan and Breton (1985); Merboldt et al. (1985); Taylor

and Bushell (1985)]. An important clinical application of dMRI since its discovery is

the early detection of ischemia and cerebrovascular accidents [Moseley et al. (1990);

LeBihan et al. (1992)]. In such pathologies, an œdema appears and slows down the water

diffusion which is visible on the dMRI images. Contrary to conventional MRI, dMRI

reveals ischemic regions immediately and is consequently used in clinical routine today to

this aim.

More than a diagnosis tool for cerebral ischemia, dMRI is currently the only non

invasive way to explore in vivo the anatomical connectivity in a brain relying on the

measurement of the brain water molecules’ Brownian motion. Indeed, the water diffusion

is modulated by the geometry of the WM fiber bundles. Consequently, dMRI permits

to infer information on these connection structures. This method enables first to detect

eventual anomalies of the nervous fibers and secondly to study the neuronal connections’

functioning in cognitive science.

To understand how the cerebral microstructure is reconstructed with dMRI, we

first describe the physical water diffusion phenomenon and how this phenomenon depends

on the WM tissue geometry. Then, we explain how dMRI measures this water molecules’

movement.

3.1.1 The physical water diffusion phenomenon

In this subsection, we explain the physical water diffusion phenomenon that the dMRI

technique aims to measure.

In every environment, water molecules undergo the thermal agitation. They move and

bang together randomly. In an environment without any obstacle or particular restriction,

molecules behave following aBrownian motion [Brown (1828)]. It is the case for example

for colouring agent molecules that we put in water (far before they go near the container

walls). This Brownian motion can be modeled by a random walk, as shown in fig. 3.1 (a).

A diffusion process, whatever the environment, is described by Fick’s first law of diffusion

[Fick (1855)] that links the colouring agent current density to their concentration in the

environment:

J = −D∇C, (3.1)

with J the molecules’ current density (in molecules ·s−1 ·m−2), D the diffusion coefficient

of the molecules in the environment (in m2 · s−1) and C the concentration of molecules (in

molecules ·m−2) (∇ is the nabla operator). The diffusion coefficient D is a measure of

the molecules’ capacity to diffuse depending on the environment, on the temperature and

on the molecules in question.
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water molecules’
diffusion

myelinated axon

a b c d

Figure 3.1: Representation of the diffusion phenomenon and of the mean free path in an environ-

ment without any obstacle (or whose obstacles have negligible effect like in a liquid) (a and b) and

in the WM (c and d). In (a), the diffusion is free and therefore is an isotropic process, as indicated

by (b), where the blue circles correspond to the colouring agent molecules. In (c), the diffusion is

restricted inside axons and hindered in between. Consequently, the diffusion process is anisotropic

in the WM, with favoured diffusion directions along axons (blue arrows) and inhibited diffusion

directions perpendicular to them (red arrows). Fig. (a) extracted from Wikipedia, fig. (b) and (d)

extracted from [Poupon (2010)] and fig. (c) extracted from [Poupon (1999a)].

Einstein showed that in an environment without any obstacle or restriction, D is linked

to the mean square displacement travelled by molecules during the laps τ written as: 〈rTr〉,
with r corresponding to the displacement vector of one molecule during τ , rT being its

transpose and finally 〈·〉 being the mean operator. This link is given by [Einstein (1905)]:

D =
〈rTr〉
6τ

. (3.2)

In an environment where the diffusion process is isotropic, the mean free path of a particle

(i.e. its mean displacement between two collisions) is the same whatever the movement

direction. On the other hand, in biological tissues, the molecules’ mobility depends on the

tissue microstructure components such as cytoplasmic membranes, myelin, cytoskeleton

and all cell organelles that constitute physical obstacles to the diffusion process (fig. 3.2).

More particularly in WM, diffusion is restricted inside axons and hindered in between.

Moreover, the process is favoured along axons and inhibited in the perpendicular directions.

The water molecules’ mean free path is therefore higher if the molecules’ movement follows

the fiber directions. Fig. 3.1 illustrates the modulation of the diffusion phenomenon by

the WM fiber architecture. In this WM environment full of obstacles, we can measure

the apparent diffusion coefficient (ADC), which is different from the true diffusion

coefficient D because diffusion is here not only governed by Brownian motion, but also

runs up against the environment architecture. The ADC value is around 3 ·10−3mm2 · s−1

in the CSF, 0.8 · 10−3mm2 · s−1 in the GM and between 0.2 and 1.2 · 10−3mm2 · s−1 in the

WM (source: [http://www.irmresonance.over-blog.com/article-13469878.html]).

Diffusion is characterized by the water molecules’ displacement probability density

function, also called propagator and written as P (r, τ). This function represents the
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nucleus
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a Structure of a classical neuron b Transverse section of a WM region

Figure 3.2: In (a), a neuron is represented. Fig. (a) extracted from Wikipedia. In (b), the

transverse section of a WM region shows a myelinated axon (n̊ 1) and an unmyelinated axon

(n̊ 4). The myelin is the black circle around the fibers (n̊ 2) that permits their electric isola-

tion. N̊ 3 indicates a Schwann cell, which provides the myelination. Fig. (b) extracted from

http://zarrouk.e-monsite.com/pages/content/le-tissu-nerveux.html

water molecule probability to move of a distance r during a time τ . This information

contained in the propagator should allow to infer the tissue geometry at a microscopic

level. We will see in section 3.2 that different local diffusion models were proposed to

reconstruct the propagator. Before that, we first explain how to sensitize an MRI image

to the diffusion process.

3.1.2 The diffusion phenomenon measurement with dMRI

The acquisition of diffusion weighted (DW) images requires modifications of the MRI

spin-echo sequence, seen before in section 2.3, so that it is possible to measure the wa-

ter molecules’ motion. This leads to the pulse gradient spin echo (PGSE) sequence

developed by [Stejskal and Tanner (1965)] and illustrated in fig. 3.3. Like the spin-echo

sequence, it is made up of two RF pulses at 90̊ and 180̊ , the latter one permitting to

cancel the dephasing of the spins due to environment inhomogeneities. The PGSE also

contains the gradient GSS permitting to select one slice of the examined object, as well as

the phase encoding gradient GΦ and the frequency encoding gradient Gω.

What distinguishes the PGSE sequence from the spin-echo sequence is that it contains

two diffusion gradients g(o) oriented in the direction indicated by the unitary vector o

used to tag the position of spins along the direction o. These diffusion gradients are applied
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Figure 3.3: PGSE sequence. To measure the diffusion process, two diffusion gradients (in ma-

genta), written as g, are added, one before the 180̊ RF pulse and the other after. (We also added

on the figure the crusher gradients, which are used to compensate the non ideal refocusing pulse

to avoid artifacts due to unwanted signals. These crusher gradients are commonly used in MRI,

and are not specific to dMRI.)

during a time δ. They are separated by the time ∆. The first diffusion gradient, applied

before the 180̊ RF pulse, causes a dephasing of the spins that depends on their position.

The dephasing of the motionless spins is cancelled by the second diffusion gradient after

the 180̊ RF pulse. However, the dephasing of the spins that moved is not compensated

and a dephasing remains that produces a reduced spin echo signal. Indeed, the measured

DW signal S is lower than the T2-weighted signal written as S0, which is obtained without

the application of any diffusion gradient. The measured signal S0 corresponds to the

magnitude of the signal sfinal(x, y) expressed in the previous chapter, as there was no

diffusion gradient. For a spin-echo sequence, as there is a refocusing pulse, the field

inhomogeneities are compensated. Therefore, the T ∗
2 signal in eq. 2.14 has to be replaced

by the T2 signal. Thus, the signal S0 is proportional to exp[−TE/T2]. The measured DW

signal S corresponds to the term |sfinal(x, y)| obtained with the application of diffusion

gradients. When considering the previously introduced diffusion propagator as a Gaussian

function, we show thereafter that we can write:

S(b,g) = S0exp[−bADC(o)] ∝ exp[−TE/T2]exp[−bADC(o)], (3.3)

where b in s ·mm−2 is the diffusion weighting parameter, also called b-value [LeBihan

(1991)]. In the case of rectangular gradients: b = γ2‖g‖2δ2(∆ − δ/3) = γ2‖g‖2δ2τ (γ
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being the proton gyromagnetic ratio seen in section 2.2 and ‖ ·‖ being the Euclidean norm

operator), with τ = ∆− δ/3 the effective diffusion time composed by a corrective term

δ/3 due to the diffusion occurring during the diffusion gradients’ application times. In eq.

3.3, the parameter ADC(o) (in mm2 ·s−1) measures the mean mobility degree of the water

molecules along the direction o. Fig. 3.4 shows DW images, constructed from the signal S

measured at each voxel of the FOV volume for two different diffusion orientations o. When

the molecules mainly diffuse along the diffusion orientation of interest, its corresponding

signal becomes highly attenuated and the corresponding voxel appears dark.

T2-weighted image DW image DW image

gi = (0.826,−0.121, 0.550)T gi = (0.487,−0.137, 0.862)T

Figure 3.4: T2-weighted image and DW images for b = 700s ·mm−2, with two different diffusion

orientations o, given by gi. These are images of a healthy human brain (as most of the brain

images in the whole manuscript).

Such DW images are sufficient to diagnose ischemia. Indeed, when ischemia happens,

the DW signal is instantaneously modified, thus enabling a very rapid detection of the

suffering tissue [Moseley et al. (1990)]. dMRI is not limited to this particular medical

detection. It can also explore the microscopic architecture of the brain, using a local

modeling of the diffusion process.

3.2 Local modeling of the diffusion process

The water molecules’ diffusion information is entirely contained in the diffusion propagator

P (r, τ), introduced in subsection 3.1.1. Is it possible to determine this function? It is

precisely the aim of the local diffusion models. In this section, we first define the several

functions containing information derived from the diffusion process and we introduce the

notion of q space providing an adequate space to define local models. In particular, we

present the historical diffusion tensor imaging (DTI) model, as well as the various

Q-Ball imaging (QBI) and the spherical deconvolution (SD) models.
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3.2.1 Definitions: dODF, cdODF, fODF, q space

With dMRI, the acquisition of the DW signal is performed using an adequate sampling

of the diffusion propagator space and yields a large amount of DW volumes, each corre-

sponding to a specific diffusion sensitization. These DW volumes are then used to infer

a local model of the diffusion process within the brain. During the last twenty years, a

plethora of local diffusion models were proposed to perform a synthesis operation on the

DW data. These local models reconstruct different functions, all derived from the diffusion

propagator.

The propagator P (r, τ) is the proton displacement probability density function, with r

the proton displacement vector and τ the effective diffusion time as defined previously. In-

ferring P (r, τ) would provide the highly probable pathways of interest used by the protons

in the brain. However, reconstructing the propagator itself requires a very long acquisition

time which is not easy to realize in practice. Instead of considering the whole propagator,

it can be easier to consider only a part of it. As we are interested in defining the routes of

the protons, the necessary information can be obtained using the radial projection of the

diffusion propagator. This radial projection was for a long time defined such that [Tuch

(2004)]:

Ψ(θi, φi) =

∫ ∞

0
P (r, θi, φi, τ)dr. (3.4)

Ψ(θi, φi) is called the diffusion orientation distribution function (dODF). Actually,

this definition is erroneous. Indeed, in the spherical coordinate system, the propagator

radial projection is rightly written such that [Tristán-Vega et al. (2009); Aganj et al.

(2010)]:

Ψc(θi, φi) =

∫ ∞

0
P (r, θi, φi, τ)r

2dr, (3.5)

with Ψc the corrected dODF (cdODF) (in opposition to Ψ). Both definitions were

shown to provide interesting information about the angular orientations of the diffusion

process.

From the distribution of the protons’ diffusion process in the brain, the ultimate goal

of researchers is to obtain the fiber geometry, which is at the origin of the anisotropic

diffusion process. The fiber orientation distribution function (fODF), introduced by

[Tournier et al. (2004)], contains the probability in 3D of the fiber bundles’ orientations. In

opposition to the dODF or to the cdODF, the fODF directly gives the routes of the fibers

in the brain which constitute the object of interest in dMRI. It is important to distinguish

the dODF, which constitutes the response of the water molecules to the fiber geometry of

the brain, and the fODF, which delivers the most probable fiber geometry itself.

The dODF, cdODF and fODF can be reconstructed using the q space. The latter

is similar to the k space used in MRI [Mansfield (1977); Ljunggren (1983)]. Here, the q

vector is defined as: q = γδg, with γ the proton gyromagnetic ratio and g the diffusion

gradient, as defined previously. The q space is the dual space of the propagator space and
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its q vector measures a displacement spatial “frequency”. The q vector is also linked to the

well-known diffusion weighting parameter b with the formula: b = τ‖q‖2. Considering the

diffusion gradients as Dirac delta functions, the authors of [Stejskal and Tanner (1965)]

showed that we can link in the q space the dMRI measured signal S with the proton

displacement probability density function P (r, τ) (with r the proton displacement vector

and τ the effective diffusion time as defined previously). Indeed, the normalized signal

E(q, τ) = S(q, τ)/S0 is proportional to 3D Fourier transform of the propagator, written

as F [P (r, τ)]:

E(q, τ) =

∫

ℜ3

P (r, τ) · e−2πiqTrdr = F [P (r, τ)] . (3.6)

Most local diffusion models were established from this equation [Callaghan (1991)].

3.2.2 Local diffusion models’ overview

The first local diffusion model proposed to make a synthesis of the large set of DW data was

the diffusion tensor imaging (DTI) introduced by [Basser et al. (1994)]. This model

delivers a volume containing in each voxel the probability distribution of the diffusion

process using a 3×3 tensor. This model therefore gave an idea of how the routes taken by

the protons in the brain were organized, without having recourse to histology. However,

DTI has its flaw: it does not always accurately express the most likely directions of the

diffusion process, as it assumes in a simplistic way that the water molecules’ diffusion

follows a Gaussian distribution and therefore allows the representation of a single fiber

population. It cannot deal with several populations and efficiently represent complex

fiber configurations such as crossings, kissings or splittings. To overcome this limitation,

alternative local diffusion models were proposed that enable a higher angular resolution.

They are called the high angular resolution diffusion imaging (HARDI) models and

most of them are summarized in fig. 3.5.

Ball & stick

CSD

CHARMED

vMF mixture

Multi−Gaussian
mixture

Wisharts
mixture

SD
QBI

gDTI

PAS−MRI HOT

DOT

sa−aQBIaQBI
DSI

Kurtosis
mixture
De la Vall   Poussin

reconstruction
Model-free

Model-dependent
reconstruction

é

Figure 3.5: Outline of the different HARDI reconstruction methods in dMRI. Fig. inspired from

[Descoteaux (2008)] and [Marrakchi-Kacem (2011)].

The aim of these HARDI models developed in the last fifteen years is to propose the
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most realistic model of the diffusion process. All of these reconstruction methods rely on

eq. 3.6 and are applied in the q space. Some of them make an a priori assumption on the

diffusion propagator and are therefore called model-dependent, whereas other methods do

not make any assumption and are therefore called model-free. Concerning the first group

of methods, one of its historical models is the multi-Gaussian mixture (or multi-DTI)

model, which generalizes the DTI model [Tuch (2002)]: it uses a Gaussian mixture to model

the diffusion process. The resulting DW signal is then a combination of different signals

due to one fiber bundle geometry. This model assumes that there is no water molecules’

exchange between the diffusion compartments. In the same spirit, the ball & stick model

[Behrens et al. (2003); Hosey et al. (2005)] uses two Gaussian distributions to model

the diffusion process. The first one corresponds to a highly anisotropic diffusion process

(referred as the stick, e.g. the fiber bundle) and the other one represents an isotropic

diffusion process (referred as the ball). The composite hindered and restricted model

of diffusion (CHARMED) [Assaf and Basser (2005)] proposes to model the diffusion

process as a combination of an hindered diffusion compartment described by a Gaussian

distribution and a restricted diffusion compartment modeled by a diffusion process inside

a cylinder. For the other model-dependent reconstructions, we invite the reader to read

section 4.3 from the thesis [Descoteaux (2008)] and the more recent paper of [Assemlal

et al. (2011)].

Concerning the model-free reconstructions, the first historical model is the diffusion

spectrum imaging (DSI) ([Callaghan et al. (1988); Wedeen et al. (2000, 2005)]), which

uses a finite cartesian sampling on a grid restricted to a sphere in the q space. This

model estimates the diffusion propagator from eq. 3.6 and computes the inverse Fourier

transform of E(q, τ) at each cartesian sample of the q space. While DSI allows to directly

access the PDF, it requires a very long acquisition time (1h30 for a sampling including 515

points in the q space in case of a whole brain acquisition) which is unrealizable in a clinical

routine. When restricting the reconstruction to the angular information corresponding to

the distribution of the orientations of the diffusion process, it can be shown that a simple

sampling over a sphere in the q space is sufficient. Lots of such single shell HARDI models

were introduced in the past decade that all aimed at providing reliable angular profile of the

diffusion process, while maintaining the number of samples as low as possible. One of the

popular HARDI models is the Q-Ball imaging (QBI) [Tuch (2002)], which reconstructs

the dODF presented previously. We will detail this model later in the chapter. Another

popular model is the persistant angular structure (PAS-MRI) [Jansons and Alexander

(2003)], which determines the radially PAS of the propagator. The peaks of the PAS

enable to reconstruct the orientations of the diffusion process.

The outcome of the local diffusion models is inherently linked to the choice of the q

space sampling. This is summarized in fig. 3.6, which shows the evolution of the sampling

from the historical investigation of diffusion with NMR [Stejskal and Tanner (1965)] until

the advanced dMRI techniques of today. The first HARDI model was the DSI, which

requires many samples to deliver accurate estimations of the diffusion propagator. Then,
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the single-shell HARDI models reduced the DW measurements to a sphere in the q space,

as the information of interest was restricted to the radial projection of the propagator

only. Several HARDI models were proposed with improvements over the years on the

choice of the basis to represent the DW signal or on the a priori information to inject

in the model. These improvements in the modeling decreased the amount of required

samples and offered the possibility to go beyond the angular information. Therefore, other

information than only the angular one was investigated about the diffusion propagator: the

radial information contained in the propagator could be approached using some multiple-

shell reconstruction methods [Özarslan et al. (2009); Assemlal et al. (2009); Kezele et al.

(2010); Descoteaux et al. (2010)]. The latter proposed to estimate the propagator either

for a same orientation in the q space on multiple shells or in a sparse manner on the

multiple shells performing hybrid diffusion imaging (HYDI) [Alexander et al. (2006)].

Such multiple-shell models indicate like other models the main water molecules’ diffusion

orientations.

PGSE DW imaging Diffusion spectrum DTI

Single−shell high angular

[Stejskal & Tanner, 1965] [Le Bihan, 1985] [Callaghan, 1991] [Basser, 1994]

hybrid diffusion imagingimaging
Diffusion spectrum

resolution diffusion
imaging (2000−2008)[Van Wedeen, 2000]

Multiple−shell diffusion
propagator imaging

(2008 − now) (2008 − now)

Multiple−shell sparse

Figure 3.6: The different q space samplings from 1965 until now. Fig. extracted from [Poupon

(2010)].

We will next limit ourselves to present the historical DTI model and the HARDI models

of QBI and spherical deconvolution (SD), which were considered for real-time dMRI as

they have all efficient reconstructions and are therefore easily adaptable to reconstructions

of the tensor, dODF and fODF performed during the acquisition of the DW data.
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3.2.3 The diffusion tensor imaging (DTI) model

The diffusion propagator equation 3.6, seen previously, can be analytically solved if we

suppose the propagator to be Gaussian. The propagator is then written such that:

P (r, τ) =
1√

(4πτ)3|D|
· e− 1

4τ
rTD−1r (3.7)

where D is a 2nd order tensor characterizing the diffusion process, introduced by Peter

Basser et al. [Basser et al. (1994)]. When injecting eq. 3.7 in eq. 3.6, the DW signal S is

then obtained such that:

S(q, τ) = S0e
−τqTDq. (3.8)

D is a symmetric positive matrix that can be determined from a T2 weighted image and

from at least six DW images with typically a constant value for the diffusion gradient and

six different diffusion orientations o. Practically, because of noise, D requires more than

six orientations. The eigensystem of the diffusion tensor D provides three eigenvalues

λ1, λ2 and λ3 corresponding to the three main directions of diffusivity e1, e2 and e3,

such that λ1 > λ2 > λ3. The eigenvector e1 gives the direction along which the water

molecules’ diffusion is the most important. The diffusion tensor can be represented by an

ellipsoid whose three axes are aligned along e1, e2 and e3. In a voxel, if there is only

one fiber bundle, the DTI rightly generates an ellipsoid whose main axis is parallel to the

main diffusion direction (see a and b in fig. 3.7). However, in the case of a fiber bundles’

crossing, the DTI results in what tends to be an oblate spheroid (i.e. λ1 = λ2 >> λ3) or

a sphere and thus is not able to bring to light the main diffusion directions (see c and d in

fig. 3.7). Consequently, despite it is still popular in clinical applications, the DTI model is

problematic because it cannot describe heterogeneous populations inside a voxel, and yet

at a resolution of 8mm3, there is between a third and two-thirds of the WM voxels that

contain fiber bundle crossings [Descoteaux (2008)].

From the tensor, scalar indexes, which are rotationally invariant, can be calculated.

The two most popular are the ADC ([Basser et al. (1994)]) and the fractional anisotropy

(FA) ([Basser (1995)]), which can be computed from the eigensystem:

ADC =
λ1 + λ2 + λ3

3
, (3.9)

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ2
1 + λ2

2 + λ2
3

, (3.10)

with λ = trace/3, trace being the trace of D. An isotropic tissue has an FA near 0, whereas

a very anisotropic tissue with only one main diffusion direction has an FA near 1. A color-

encoded RGB (red-green-blue) map of the FA can also be reconstructed [Pierpaoli (1997)].

Fig. 3.8 shows an ADC, an FA and an RGB map. Important other scalar indexes like the

longitudinal diffusivity λ|| = λ1 and the transverse diffusivity λ⊥ = (λ2+λ3)/2 can

also be deduced to study the maturation of white matter fibers.
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Figure 3.7: For the fiber bundle configurations in (a) and (c), the corresponding diffusion tensors

are represented by an ellipsoid (b) and by an oblate spheroid (d), respectively. On the ellipsoid

surface, the diffusion probability of the water molecules is the same. This is also true for the

spheroid surface. The DTI correctly retrieves the main diffusion direction in the case of one fiber

bundle in a voxel (b), but in the case of a bundle crossing, no one of the two main directions is

retrieved (d). Fig. (a) and (c) are extracted from [Poupon (1999a)]. Fig. (d) is extracted from

Wikipedia.
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Figure 3.8: Popular maps of the DTI model.

As we have seen, the DTI model presents some limitations to describe the true diffusion

phenomenon, but these limitations can be overcome by the use of HARDI models. The lat-

ter also stem from the diffusion propagator equation 3.6, but they do not make any strong
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hypothesis on the propagator like the DTI model. As seen previously, single-shell HARDI

models were developed to estimate with high angular resolution the radial projection of

the diffusion propagator that contains the main diffusion orientations corresponding to the

underlying main fiber directions. Such models rely on the decomposition of the DW signal

over a single shell of the q space using adequate basis functions. The next subsection

explains the decomposition on a modified spherical harmonics basis, which is used in the

analytical QBI model.

3.2.4 Signal decomposition on a modified spherical harmonics basis

Fig. 3.9 shows an exemple of a sphere in the q space on which high angular single shell

dMRI acquisitions are done. Every complex signal on the sphere can be decomposed on an

orthogonal spherical harmonics (SH) basis adapted to the sphere. The modified SH are the

equivalent of the harmonical decomposition in Fourier series. Here, as in signal processing,

a decomposition of the DW signal S on a basis can be very useful to make a synthesis of

the diffusion information. And yet, the signal S is real and symmetric (because in eq. 3.6

P (r, τ) is real and symmetric). The works by [Frank (2002); Hess et al. (2006); Descoteaux

et al. (2007)] consequently define a modified SH basis, which is real and symmetric, to

decompose the signal S. For that, they define the index j from the degree l = 0, 2, 4, ..., L

and the order m = −l, ..., 0, ..., l such that: j(l,m) = (l2 + l+2)/2 +m. The modified SH

basis can then be written in the spherical coordinate system, where θ and φ represent the

colatitude and the longitude, respectively, of the unitary vector oi defining the orientation

along which the diffusion is measured in the q space:

Yj(θ, φ) =





√
2Re(Y

|m|
l (θ, φ)), if m ≤ 0,

Y m
l (θ, φ), if m = 0,

(−1)m+1
√
2Im(Y m

l (θ, φ)), if m ≥ 0,

(3.11)

Figure 3.9: Sphere in the q space sampled in an homogeneous way according to the single shell

HARDI method. The green points represent the samples. (extract from [Poupon (2010)])
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where Re(Y m
l (θ, φ)) and Im(Y m

l (θ, φ)) represent the real and imaginary parts, respec-

tively, of the SH Y m
l (θ, φ), which is defined by: Y m

l (θ, φ) =
√

2l+1
4π

(l−m)!
(l+m)!P

m
l (cos(θ))eimφ,

with Pm
l the associated Legendre function of the first kind with degree l and phase m. As

the indexes l and m are defined for an index j designating the jth SH Yj, they are from

now on written l(j) and m(j). The normalized signal E = S/S0 can be decomposed on

this new basis:

E(θi, φi) =

N∑

j=1

CDW
j Yj(θi, φi), (3.12)

with E(θi, φi) the DW signal normalized by S0 measured for the diffusion orientation oi,

the latter defined by (θi, φi), and with CDW
j the jth coefficient of the DW normalized

signal on the SH Yj(θi, φi). The index i indicates that the measurement was done along

the ith diffusion orientation among the entire set of K directions used during the sequence.

The parameter N = (L+1)(L+2)
2 corresponds to the number of modified SH, L being the

maximum order used in the modified SH basis. We call B the basis matrix:

B =




Y1(θ1, φ1) Y2(θ1, φ1) . . . YN (θ1, φ1)
...

...
. . .

...

Y1(θK , φK) Y2(θK , φK) . . . YN (θK , φK)


 . (3.13)

Eq. 3.12 can then be written in a matrix form:

E = BCDW, (3.14)

where E = [S(θ1, φ1)/S0, . . . , S(θi, φi)/S0, . . . , S(θK , φK)/S0]
T is the DW normalized sig-

nal vector and CDW = [CDW
1 , . . . , CDW

j , . . . , CDW
N ]T is the coefficients’ vector of the

decomposition of E on the modified SH basis.

This modified SH basis notion is essential for the following subsections because the

analytical QBI models rely on it.

3.2.5 Q-Ball imaging (QBI)

In this subsection, we present the three QBI models, which appeared in this order: first

the numerical QBI, then the analytical QBI (aQBI) and finally the analytical QBI

with the solid angle (sa-aQBI).

The numerical QBI

The QBI method [Tuch (2004)] relies on the previously explained spherical sampling with

a spherical radius fixed to a value q. The propagator is therefore reconstructed only

from a sphere of the q space. Indeed, to estimate the fiber bundle orientations, only the

angular information contained in the diffusion propagator is necessary. The advantage of

this technique is that the DW data acquisition on a sphere is far more rapid than on the

entire q space. Let us remind that the q vector is proportional to the diffusion weighting
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parameter b: b = τ · |q|2. Concretely, a single shell acquisition dedicated to QBI requires

the use of a quite high b-value (typically b ≥ 3000s·mm−2), and the use of a set of typically

60 to 200 diffusion directions oi, yielding an acquisition time of 15 to 60 min for a whole

brain scan.

The QBI model is therefore only focused on the fiber bundle orientations and it is

possible to estimate the previously introduced dODF of the water molecules written as

Ψ. For that, the numerical QBI, as well as the aQBI, approximate it by the Funk-Radon

transform (FRT) of the normalized DW signal E [Tuch (2004)]. More details on this

approximation are given in appendix A (section 3.5). To obtain the FRT of the signal E,

the value of E has to be obtained for each direction oi, and then, in the numerical QBI

method, a numerical interpolation is done to complete the values of E on the sphere of the

q space. This approximation of the function Ψ at the sampled and interpolated sphere

points permits to reconstruct the fiber bundle directions, especially when the bundles are

crossing, whereas the DTI is not able to do it.

The numerical QBI model utilizes two angular information smoothing steps, one due

to the FRT, the other due to the signal interpolation along the equators, which are per-

pendicular to the directions oi. This double smoothing damages the angular resolution.

Another method, the aQBI, which relies on a decomposition of the DW signal in the SH

space, permits to avoid the second smoothing step. Indeed it compresses the measured DW

information on a relatively small number of harmonic coefficients (typically 15 to 45 coeffi-

cients depending on the chosen harmonic order), yielding an increase of the reconstruction

method robustness.

The analytical QBI (aQBI)

While the numerical QBI proposes a numerical interpolation of the signal E, the aQBI

uses an analytical equation of E relying on the decomposition of E on the modified SH

basis that we detailed in subsection 3.2.4. Frank and Descoteaux showed that it is pos-

sible to reconstruct the function Ψ in a fast and robust way using this analytical signal

decomposition [Frank (2002); Descoteaux et al. (2007)]. Let us remind the decomposition

equation of the DW normalized signal E on the modified SH basis:

E = B ·CDW. (3.15)

In a similar way, the vector CODF of the coefficients of the decomposition of Ψ on

the modified SH basis is written as:




Ψ(θ1, φ1)
...

Ψ(θi, φi)
...

Ψ(θK , φK)



= B ·CODF. (3.16)
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In the numerical QBI, the FRT of the signal E has to be calculated to approximate the

function Ψ. In the aQBI, the authors of [Descoteaux et al. (2007)] show the link between

the decomposition of the function Ψ and the one of the signal E:

CODF = PCDW, (3.17)

with P the N×N Funk-Hecke matrix, whose diagonal elements are equal to 2πPl(j)(0) ∀j ∈
[[1;N ]], where the functions Pl(j) correspond to the Legendre polynomials of degree l(j)

evaluated at 0.

To reconstruct the function Ψ, the coefficients CDW have to be determined to give

access to the coefficients CODF with eq. 3.17. The vector CDW can be estimated using

the least squares method. Indeed, if we account for noise in the dMRI measurement, eq.

3.15 becomes: ME = BCDW + ǫ, where ME represents the ratio 1/S0 · M, with M the

measured noisy DW signal —S0 being the noise-free T2-weighted signal— and ǫ the vector

of the error due to the noise. Then, the term
(
ME −BCDW

)T (
ME −BCDW

)
has to be

minimized. The least squares solution yields the estimate ĈDW of the noise-free vector

CDW such that:

ĈDW = (BT ·B)−1 ·BT ·ME = B† ·ME, (3.18)

where (·)† corresponds to the Moore-Penrose pseudo-inverse operator. To improve the

estimation of the coefficients CDW, Maxime Descoteaux proposed to use a Tikhonov

regularization in the least squares estimation. Now, the coefficients ĈDW have to mini-

mize
(
ME −BCDW

)T (
ME −BCDW

)
+ λCDWT

LCDW, with λ the regularization factor

and L the N×N Laplace-Beltrami smoothing matrix, which is diagonal with diagonal

elements equal to l(j)2 (l(j) + 1)2 ∀j ∈ [[1;N ]]. The solution is then given by:

ĈDW = (BT ·B+ λL)−1 ·BT ·ME, (3.19)

where λL constitutes the regularization term. The latter permits to smooth the solution

and thus to diminish the number of negative peaks, which appear in the DW signal recom-

posed from the coefficients CDW. There are even more negative peaks if the maximum SH

order L used in the modified SH basis is high. Consequently, the regularization enables to

take advantage of higher SH terms, which offer more details on the signal, while suppress-

ing the terms creating the negative peaks. In [Descoteaux (2008)], the value λ = 0.006 is

specified to be an optimal value for separating configurations with one fiber from configu-

rations with two fibers on a large range of signal-to-noise ratios (SNR) and of b-values. If

λ is fixed to 0, eq. 3.19 simplifies to eq. 3.18. Then, when having obtained the coefficients

ĈODF using eq. 3.17 with ĈDW, the dODF can be reconstructed such that:

Ψ̂ = Bout · ĈODF, (3.20)

with Ψ̂ = [Ψ̂(θ1, φ1), . . . , Ψ̂(θi, φi), . . . , Ψ̂(θKout
, φKout

)]T and Bout a Kout×N matrix

being the matrix of the modified SH basis as the K×N matrix B, unless it contains Kout
rows corresponding to Kout output orientations, with usually Kout ≥K.
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RGB map

numerical QBI aQBI

Figure 3.10: Single shell HARDI results at b = 3000s · mm−2 with the numerical QBI and the

aQBI. On the left, the RGB map depicts the main diffusion directions obtained with DTI, i.e. the

maxima of the eigenvalues of the tensor at each voxel (red along the x-axis, green along the y-axis,

blue along the z-axis). A red ROI is shown inside. In the ROI, the functions Ψ are estimated with

the numerical QBI (middle) and the aQBI (right). The aQBI gives an angular precision on the

diffusion orientations which is equivalent to the precision given by the numerical QBI. Moreover,

the aQBI lightens the computation time and is free from any error due to a numerical interpolation.

Concretely, this analytical estimation of the function Ψ is as precise as the one obtained

using the numerical QBI reconstruction, as shown in fig. 3.10. The main advantage of

the aQBI is to reduce the computation time thanks to the DW signal representation using

only a few set of coefficients and to be free from any error due to a numerical interpolation

along the equator. The main mathematical relations, which are essential for the rest of

the thesis, are summed up in table 3.1.
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Table 3.1: Summary of the notations and main relations of the aQBI.

Analytical decomposition of the normalized signal E on the modified SH basis:

• S = [S(θ1, φ1), . . . , S(θi, φi), . . . , S(θK , φK)]T the K×1 vector of the DW noise-free sig-

nals.

M = [M(θ1, φ1), . . . ,M(θi, φi), . . . ,M(θK , φK)]T the K×1 vector of the measured (and

therefore noisy) DW signals.

ME = [M(θ1, φ1)/S0, . . . ,M(θi, φi)/S0, . . . ,M(θK , φK)/S0]
T the K×1 vector of the mea-

sured DW signals normalized by the noise-free T2-weighted signal S0.

• CDW = [CDW
1 , . . . , CDW

j , . . . , CDW
N ]T the N×1 coefficients’ vector of the decomposition

of the vector E on the modified SH basis, the latter defined as:

Yj(θ, φ) =





√
2Re(Y

|m(j)|
l(j) (θ, φ)), if m ≤ 0

Y
m(j)
l(j) (θ, φ), if m = 0

(−1)m(j)+1
√
2Im(Y

m(j)
l(j) (θ, φ)), if m ≥ 0,

• E = BCDW , with

B =




Y1(θ1, φ1) Y2(θ1, φ1) . . . YN (θ1, φ1)
...

...
. . .

...

Y1(θK , φK) Y2(θK , φK) . . . YN (θK , φK)


 the matrix of the modified SH for

which N = (L+1)(L+2)
2 is the number of SH used, L being the maximum SH order.

Obtaining the coefficients of the dODF Ψ on the modified SH basis:

• The estimation of CDW from ME is written as: ĈDW = (BT ·B+λL)−1 ·BT ·ME, with

λ the regularization factor and L =




. . .

l(j)2(l(j) + 1)2

. . .


 the N×N Laplace-

Beltrami smoothing matrix.

• Finally, the estimation of the coefficients’ vector of the dODF Ψ on the modified SH

basis is such that: ĈODF = P · ĈDW = P · (BT ·B+ λL)−1 ·BT ·ME , with

P =




. . .

2πPl(j)(0)
. . .


 the N×N Funk-Hecke matrix.

• And the dODF Ψ is then determined by: Ψ̂ = Bout · ĈODF, with

Ψ̂ = [Ψ̂(θ1, φ1), . . . , Ψ̂(θi, φi), . . . , Ψ̂(θKout
, φKout

)]T.
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David Tuch defined, similarly to the FA, the concept of generalized fractional

anisotropy (GFA) ([Tuch (2004)]), which extends to the aQBI model:

GFA =

√√√√√√√√√√

K∑

i=1

K (Ψ(θi, φi)− 〈Ψ〉)2

(K − 1)

K∑

i=1

Ψ(θi, φi)
2

=

√√√√√√√
1− CODF

0
2

N∑

j=1

CODF
j

2

(3.21)

with K the number of orientations along which the dODF Ψ is reconstructed. This GFA

has the advantage to present high values in voxels containing fiber crossings, whereas

the FA, which relies on the DTI, presents low values in such voxels, because of the DTI

inability to describe more than one fiber bundle population in a voxel.

The analytical QBI with the solid angle (sa-aQBI)

The sa-aQBI aims at determining the cdODF Ψc, which we rewrite the expression through

the cone of the infinitesimal solid angle dΩ:

Ψc(θi, φi) =

∫ ∞

0
P (r, θi, φi, τ)r

2dr. (3.22)

The authors of [Aganj et al. (2010)] showed that, after mathematical developments from

eq. 3.6, Ψc is written in function of the normalized noise-free signal E(oi) = S(oi)/S0

—oi being the orientation defined by (θi, φi)— such that:

Ψc(oi) =
1

4π
+

1

16π2
G{∇2

b ln (−lnE(oi))}, (3.23)

with G designating the FRT and ∇2
b designating the Laplace-Beltrami operator. As for

the aQBI, the estimate of the coefficients’ vector of the decomposition of the measured

vector ME on the modified SH basis is written as: ĈDW = (BT · B + λL)−1 · BT ·ME.

However, the estimate of the coefficients’ vector of the decomposition of the cdODF on

the modified SH basis written as ĈODFc is different from the aQBI vector ĈODF:




ĈODFc(j) = 1

2
√
π

if j = 1,

ĈODFc(j) = 1
16π2P ·N · (BT ·B+ λL)−1 ·BT · ln ((−lnME)) if j > 1,

(3.24)

with N the N×N diagonal matrix with diagonal elements equal to −l(j) (l(j) + 1) ∀j ∈
[[1;N ]] and ME the measured (therefore noisy) normalized signal defined such that ME =

1/S0 ·M, with S0 the noise-free T2 weighted signal as before. This technique relying on eq.

3.24 requires to calculate ln ((−lnME)). And yet, the latter term is unstable for ME close

to 0 or 1, values which amplify eventual errors present in ME . To avoid such instabilities,

[Aganj et al. (2010)] proposed to keep the values of ME away from the unstable regions

[0,δ1] and [1-δ2,1], with δ1 = 10−3 and δ2 = 10−3. They defined the function f(ME), such
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that:

f(ME) =





δ1/2, if ME < 0

δ1/2 +M2
E/(2δ1), if 0 ≤ ME < δ1

ME, if δ1 ≤ ME < 1− δ2,

1− δ2/2− (1−ME)
2/(2δ2), if 1− δ2 ≤ ME < 1

1− δ2/2, if 1 ≤ ME .

(3.25)

Then, they replaced ME by f(ME) in eq. 3.24 for the computation of the coefficients

ĈODFc . Once these are calculated, it is straightforward to obtain the estimate of the

cdODF similarly to the aQBI model: Ψ̂c = Bout · ĈODFc , with

Ψ̂c = [Ψ̂c(θ1, φ1), . . . , Ψ̂c(θi, φi), . . . , Ψ̂c(θKout
, φKout

)]T.

In the aQBI model, a consequence of the r2 term omission in the radial propagator

projection is that the reconstructed dODF requires an artificial normalization, called min-

max normalization [Tuch (2004)], which leads to the normalized dODF written as Ψnorm:

Ψnorm(oi) =
Ψ(oi)−minΨ(oi)

maxΨ(oi)−minΨ(oi)
, minΨ(oi) and maxΨ(oi) designating the minimum and

maximum values, respectively, of the dODF Ψ. On the contrary, the sa-aQBI does not

require any normalization. However, in our implementation of the sa-aQBI, we usually

use a max normalization to improve the visualization of cdODF and avoid the presence

of very small to very large cdODF: Ψcnorm(oi) =
Ψc(oi)

maxΨc(oi)
. The question is now to know

if the sa-aQBI yields better results than the aQBI. The sa-aQBI detects simulated fiber

crossings, whose angles are too small to be detected by the aQBI [Aganj et al. (2010)].

On simulated and real data, the sa-aQBI produces sharper and more precise dODFc than

the aQBI results in anisotropic regions, while generating more spherical cdODF than the

aQBI results in isotropic regions. However, the r2 term in the cdODF increases the noise

impact on the cdODF in comparison to the ODF of the aQBI model. This yields quite

RGB map

aQBI sa−aQBI

Figure 3.11: Single shell HARDI results at b = 3000s ·mm−2 with aQBI and sa-aQBI with the

maximum SH order L set to 8. On the left, the ROI is shown in yellow in the RGB map. In

the ROI, the functions Ψ and Ψc are estimated with the aQBI (middle) and the sa-aQBI (right),

respectively.
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noisier cdODF than the aQBI dODF. Fig. 3.11 illustrates these both positive and negative

effects.

Another method enabling to produce sharper results than the aQBI is the SD that we

show hereinafter.

3.2.6 Using spherical deconvolution (SD) to get the fODF

The dODF and cdODF are each a measurement of the probability distribution of the

water molecules’ main diffusion orientations. And yet, we are not fundamentally interested

by this diffusion process characteristic, but we use it above all to indirectly explore the

underlying structural tissue organization, making the hypothesis that a link exists between

the fiber distribution, which we are interested in, and the diffusion process anisotropy

due to the fiber configuration. While assuming an impulse response of a homogeneous

fiber bundle to the diffusion process, the reconstruction of the fODF, function introduced

in subsection 3.2.1, was proposed using spherical deconvolution (SD) of the DW signal

[Anderson and Ding (2002); Tournier et al. (2004); Jian and Vemuri (2007)]. A constrained

super-resolved SD was also proposed [Tournier et al. (2007)]. In [Descoteaux (2008)], the

SD of the dODF by the dODF for a single fiber (impulse dODF response) was proposed.

This model considers that the dODF is the result of the convolution of the fODF by the

response of a simple bundle to the diffusion process, as illustrated in fig. 3.12. Thus, the

SD of the dODF directly yields the fODF (indicated at the right bottom in fig. 3.12),

which more precisely describes the bundle orientations. From a technical point of view,

the choice of a modified SH basis leads to a very simple convolution or deconvolution

operation in the harmonic coefficients’ space:

Ψf (θi, φi) =

N∑

j=1

CODF(j)

R(j)
Yj(θi, φi), (3.26)

with R(j) = 2π
∫ +1
−1 Pl(j)(t)R

′(t)dt, where R′ is the convolution kernel corresponding to

the impulse response of an homogeneous fiber bundle to the diffusion process. R′ is

supposed to be a tensor with eigenvalues [λ1, λ2, λ2], such that λ1 >> λ2; the tensor is

then represented by an elongated spheroid, called prolate spheroid, and is expressed as:

R′(t) = 1

8πb
√

λ2
2λ1

1√
(λ2/λ1−1)t2+1

.

It has to be kept in mind that this indirect method to determine the WM fiber bundles’

structure is not totally reliable because it does not account for neither the membranes’

permeability, with or without any membrane’s channel, nor the myelin, which accelerates

the information transmission in axons. That is why other local models combinated with

new dMRI sequences continue to be developed in the aim to create a distant microscope

to deeply explore the cerebral microstructure.

The fODF presents a better angular resolution than the dODF for the fiber tractog-

raphy, a technique permitting to virtually reconstruct the brain fiber bundles. Indeed,

tractography generates virtual fibers approximating the real brain fiber bundle configura-
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tion. We explain in the next section the streamline deterministic tractography tool, which

is one of the tractography algorithms the local models lead to.

Figure 3.12: (a) The convolution product between the dODF corresponding to a simple fiber

bundle (“dODF kernel R′” in the fig.) and the unknown fiber orientation distribution (“fiber dis-

tribution” in the fig.) gives the dODF corresponding to this unknown fiber configuration (“dODF”

in the fig.). (b) After having obtained the dODF using the FRT of the signal E, the fODF, written

as Ψsharp in the fig., can be determined using a SD. (extract from [Descoteaux (2008)]).

3.3 Tractography techniques

Tractography aims at reconstructing in vivo and non invasively the anatomical brain

connectivity. To this aim, it builds pathways from the diffusion propagator field assumed

to correspond to the underlying WM anatomy. Pathways reconstructed with tractography

do not approximate individual axons, but an optimal pathway in the sense of the diffusion

process. This numerical reconstruction relies on the local models’ results, for example

the dODF in the aQBI model or the fODF in the SD model. From these results, the

tractography algorithm follows the main diffusion or fiber directions and creates therefore

routes of fibers that connect the different brain areas. It aims at reconstructing the tracts

for the whole brain as presented in fig. 3.15.

The first class of tractography algorithms to appear in the literature was the class of

streamline deterministic tractography. This streamline method proposes to simply

propagate a line following the voxel to voxel fiber directions given by the local diffusion

model. The streamline deterministic tractography was developed in different research

teams. This method does not depend on any specific local diffusion model and works from

any ODF model. The authors of [Mori et al. (1999); Conturo et al. (1999); Poupon (1999a);

Basser et al. (2000); Westin et al. (2002); Lazar and Alexander (2003)] among others

applied the algorithm from DTI fields, whereas [Tuch et al. (2002); Perrin et al. (2005);
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Figure 3.13: Tracts in the whole brain.

Bergmann et al. (2007); Descoteaux et al. (2009); Chao et al. (2008)] among others applied

it on fields of HARDI models. As we applied the algorithm on the fODFs obtained using

the SD model, we will now explain the principle of the class of streamline deterministic

tractography with the fODF application example [Descoteaux et al. (2009)].

First, the technique arranges many seeds (one or several per voxel) in a region of

interest (ROI) —the whole brain for example— and aims at propagating digital fibers

through the seeds. To build a digital fiber, the streamline deterministic tractography

algorithm considers a seed P in some voxel and estimates its fODF using interpolation.

Then, it looks for the seed P’ such that PP’ is the fiber direction, which is the most likely,

as illustrated in fig. 3.14:

P ′ = P +∆r · argmax
oi

(Ψf [P ](oi)) , (3.27)

with ∆r the step, which is a constant value defined by the user (usually ∆r < 0.25×resv

with resv the voxel resolution) and argmax
oi

(Ψf [P ](oi)) the most likely orientation vector

corresponding to the highest Ψf [P ](oi). The curve is thus updated step by step. One

stopping criterion is that the curvature cannot be greater than a threshold: the curve angle

threshold is usually fixed to 60̊ . Another stopping criterion is that the fiber has to stay in

a region where the GFA is higher than a threshold usually fixed to 0.1 [Descoteaux et al.

(2009)]. This will force the digital fiber to stay in the WM. This criterion is controversial,

as even if the main part of axones are located in the WM, their extremities are located

in the GM. That is why other tractography masks, relying on the T1-weighted data, have

been proposed [Perrin et al. (2008); Guevara et al. (2011)].

The streamline deterministic tractography method is rapid —the algorithm parallelized

on four CPU lasts 6 min for a whole brain with 1 seed per voxel— and is easy to use, but it

is sensitive to initialisation choices and also to noise, which can lead to erroneous fibers: if
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RGB

fODF map

streamline

Figure 3.14: Principle of the streamline deterministic tractography done from a fODF map. The

tool searches the point P’ such that the fiber direction given by PP’ is the most likely. Two digital

fibers in the corpus callosum (CC) and in the longitudinal fasciculus are drawn in blue and red,

respectively.

a tract direction given by the local model contains an error, then this error is propagated

in the next streamilnes. Moreover, this tool is not always able to detect crossing fiber

bundles as it searches for a unique most likely direction given by eq. 3.27.

Another class of tractography techniques, called geodesic tractography, was pro-

posed in [Parker et al. (2002); Jbabdi et al. (2004); Lenglet et al. (2004); Jbabdi et al.

(2008)]. It consists of constructing geodesics in a metric space corresponding to the water

diffusion space. A geodesic is the pathway linking one point to the other and minimiz-

ing the distance between the two points in the metric space. A difficult aspect of the

method is to find a metric space, in which geodesics represent tracts. Moreover, the use of

geodesics for tractography assumes that the unknown tracts are geodesics and vice-versa

with respect to the metric space derived from the local diffusion model. However, this

assumption is not always valid: if a geodesic exists to connect any two points in the brain,

the two points are not necessarily connected by a tract.

Streamline probabilistic tractography techniques [Parker and Alexander (2003);

Perrin et al. (2005); Chao et al. (2008); Berman et al. (2008); Descoteaux et al. (2009)]

make another class of tractography algorithms. They allow not to follow systematically

the optimum direction in order to deal with putative errors in the angular profiles of ODFs.

To choose the next pathway segment, a statistical sampler is used inside an aperture cone

centered on the most probable direction given by the local model. This method cannot

propagate errors such as in the streamline deterministic tractography, as there is a new

statistical sampling at each tracking step, forbidding any determinisitic error propagation.

The advantages of this techniques are its robustness to noise and its success in passing

the crossing bundles, compared to the deterministic approaches. The disadvantage of the

method is its time computation cost.
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Techniques regrouped under the term of bayesian probabilistic tractography [Behrens

et al. (2003); Friman et al. (2006); Jbabdi et al. (2007); Behrens et al. (2007); Zhang et al.

(2007); Morris et al. (2008); Melie-Garćıa et al. (2008)] estimate a global connectivity using

a Bayesian framework relying on a Markov Chain Monte Carlo algorithm to infer the dis-

tribution of the connectivity between regions. The result is a map containing probabilistic

connectivity maps between the different brain regions.

Finally, the class of global tractography techniques appeared in [Poupon (1999a);

Cointepas et al. (2002); Fillard et al. (2009); Kreher et al. (2008); Reisert et al. (2011)].

Instead of attempting to build a fiber tract step by step following the pathway, this tech-

nique considers each tract as a composition of tract segments to be moved in competition

to obtain a whole set of tracts using a global energy minimization. This model stems from

the so-called spin-glass model introduced in [Poupon (1999a); Cointepas et al. (2002);

Fillard et al. (2009)]. The method relies on a priori information about the anatomy of

WM fibers such as, for instance, the low curvature characterizing the geometry of these

fibers. This last tractography algorithm better detects the fiber tracts, but requires a long

computation time.

Fig. 3.15 compares global, probabilistic and deterministic approaches. It is visible that

the global tractography outperforms the other methods in terms of fiber tract inference

and connections retrieved. However, both global and probabilistic techniques require high

computation times compared to deterministic tractography techniques. We will address

in chapter 8 the feasibility of performing tractography in real-time to see the tracts being

estimated and refined during the ongoing acquisition. For this real-time objective, we

will have strong constraints about the time of the tractography algorithm. Therefore, we

will restrict our investigations to streamline deterministic tractography as a first step in

inferring connectivity in real-time.
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probabilisticglobal deterministic

Figure 3.15: Comparison between the global, probabilistic (Gibbstracker) and deterministic trac-

tography techniques. The top line shows the tracts linking the corpus callosum (CC) to the left

motor cortex (CCtoM1). The bottom line shows the corticospinal tracts to the left motor cortex

(CST). Fig. extracted from [Reisert et al. (2011)].

3.4 Conclusion of this chapter

In this chapter, we gave an overview of dMRI. We introduced the principle of sensitization

of the NMR signal using the pulsed gradient spin echo sequence. Then, we introduced

the notion of propagator, ODF and q-space and we provided a quick summary of the

plethora of local diffusion models, focusing on the diffusion tensor, Q-ball and spherical

deconvolution models. Finally, we made an overview of the various classes of tractography

techniques available in the literature.

All these tools are the basis of the framework we will introduce in the next chapter

aiming at offering a real-time environment to perform dMRI analysis immediately during

ongoing scans. In the following chapters, we will present the main contributions of this

thesis consisting of revisiting all the introduced dMRI algorithms to match this real-time

objective.
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3.5 Appendix A: The Funk-Radon transform (FRT) of the

DW signal: an approximation of the dODF Ψ

The FRT of a function f for a unitary given vector u is written such that:

G[f(w)](u) =

∫

|w|=1
δ(uTw)f(w)dw (3.28)

with δ the Dirac delta function. With this formula, it can be seen that the FRT of the

function f is maximum in the perpendicular direction to the direction where f is maximum.

David Tuch showed that the FRT of the normalized signal E for the diffusion orienta-

tion o can be expressed as ([Tuch (2004)]):

G[E(q, τ)](o, q0) = 2πq0

∫

E2

P (r, θ, z)J0(2πq0r)rdrdθdz, (3.29)

where q0 is the radius of the acquisition sphere in the q space; P (r, θ, z) is the diffusion

propagator at the point, whose coordinates are (r, θ, z); J0 is the Bessel function of order

0, shown in fig. 3.16 (right). The FRT of E is thus equal to the integral of the diffusion

propagator P on the equator E2, whose plane is perpendicular to o, as shown in fig. 3.16

(left).

sphere in the q space

Figure 3.16: Left: the FRT of the signal E, which is measured for the direction oi, is equal to

the integral of the diffusion propagator P (r, θ, z) on the sphere equator represented by a yellow

circle. The equator plane is perpendicular to the diffusion orientation o. Right: representation of

the Bessel function of order 0, written as J0 in the space of the displacements r. (extract from

[Tuch (2004))]

The FRT of the signal E is an approximation of the dODF aimed to be reconstructed

in the diffusion local models. Indeed, in the case of a single shell acquisition on the sphere

of radius q0 previously introduced, the dODF can be written as:

Ψ(o) =

∫

E2

P (r, θ, z)δ(r)δ(θ)rdrdθdz, (3.30)

with the direction o along the z-axis (see appendix 7.7 from [Descoteaux (2008)]). The

Dirac delta function can be approximated by a Bessel function of order 0 named J0 (on
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the right in fig. 3.16). Therefore, the FRT of E given by eq. 3.29 can approximate the

dODF expressed in eq. 3.30. The mathematical details are given in the appendix 7.7 from

[Descoteaux (2008)].
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Chapter 4

State-of-the-art report on

real-time dMRI (rtdMRI)

After having presented the dMRI modality in the previous chapter, we now tackle the

real-time (RT) research field, which aims at processing data almost immediately after their

acquisition. In this chapter, we focus on an RT project applied to dMRI. The contributions

of this thesis entirely take place within this project. What are the concepts and goals of

this project? And which methods have been investigated to achieve this innovative MRI

workflow? This chapter first proposes an introduction to the raisons d’être of the RT

project. It then explains the algorithmic methodology, which is adapted to the project

constraints and enables the project’s achievement. The dMRI sequences have also to be

modified to fulfill the RT purpose with an optimization of the orientation set. Finally, the

hardware architecture has to be reconsidered so that the project works. We end the chapter

with the results of the RT project which were obtained at its beginning in 2008, as well as

with some improved results. This chapter is inspired by the publication by [Poupon et al.

(2008b)], from which it uses explanations, notations and figures. The chapter relies also

a lot on the publication by [Deriche et al. (2009)] for the main part of the mathematical

developments, as well as on [Chui and Chen (1987)] and [Kay (1993)].

4.1 Introduction

Running an rtdMRI sequence on a magnet means running a typical dMRI sequence with

an adaptation for an RT processing: each DW acquired volume shall immediately be

processed in the aim of getting and seeing the processing result before the acquisition

of the next volume [Poupon et al. (2008b)]. The big difference with a classical dMRI

sequence is therefore that the DW volume processing is no longer a post-processing step

done after the complete acquisition —meaning when the exam is over—. On the contrary,

it is an RT processing, which therefore happens during the exam itself. As a typical

dMRI sequence consists of a succession of DW volume acquisitions for different diffusion

sensitizations, the RT processing of a DW volume, for which diffusion is measured along a
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given orientation, has to happen during the repetition time TR, before the next acquisition

along another orientation. To illustrate this explanation, let us consider the rtdMRI

technique applied to DTI. The processing result can be the FA map for example. During

the RT sequence, the console will first display the initialized FA map after the 6th diffusion

measurement has been done —because six orientations at least are necessary to reconstruct

the diffusion tensor, as explained in 3.2.3, page 43—. Then, the console will update and

refine this FA map each time a new DW volume has been acquired (i.e. for another

orientation). The example with the FA map is shown in fig. 4.1. At the 14th iteration,

we notice that the map quality is already good, when less than 34% of the complete

acquisition has been done. At the last iteration, the result is the same as the one obtained

by a post-processing technique. rtdMRI can of course be applied to other dMRI maps,

like the ADC, RGB or dODF maps, as we will see it in section 4.2. With these first

explanations, we saw what does rtdMRI produce. What are now the advantages of such

a RT workflow?

14th iteration 42th (last) iteration post-processing6th iteration

Figure 4.1: rtdMRI results (three images on the left) on an FA map built from DTI and comparison

with the post-processing result (last image on the right). The FA map is first initialized after six

iterations (because six orientations at least are necessary to reconstruct the diffusion tensor). Then,

the map is refined gradually with the next iterations. At the 14th iteration, the map quality is

already good, when less than 34% of the complete acquisition has been done. Fig. extracted from

[Poupon et al. (2008b)].

There are different motivations for such a RT workflow. From the patient point of

view, the optimization of the sequence, which produces a reduced scan duration, results

in more comfort for the patient. Indeed, the patient has to stay motionless during

the whole MRI exam which can be constraining. For claustrophobic patients, the exam is

also painful. Therefore, if the exam is shorter, it is easier for the patient. A RT workflow

also decreases the number of non-diagnostic results and therefore generates less waste

of data, as the quality of the data are verified during their acquisition. The presence

of an artifact can be instantaneously detected and the data can either be corrected in

RT or removed and acquired again. It is worth mentioning that concerning the antenatal

and neonatal studies, there is today 75% of the exams which is thrown away because of

the uncontrolled motion of the foetus or the child. A similar problem exists for exams of

epileptic, Parkinson’s and Huntington’s patients who cannot control their movements.
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From the methodological point of view, such a RT workflow gives the possibility to

correct in RT for artifacts and to restart an acquisition when necessary. Concerning

motion artifacts, online motion correction techniques have been proposed [Zaitsev et al.

(2006); Quin et al. (2009); Ooi et al. (2009); White et al. (2010); Aksoy et al. (2011);

Maclaren et al. (2012)]. With the RT process, the acquisition or processing parameters can

be modified during the acquisition to refine the results. That is what is called feedback.

Furthermore, the number of scans can be optimized. For example, the physician can decide

to stop the acquisition if the image quality is sufficient for him to deliver his diagnosis, as

in the case of fig. 4.1, at the 14th iteration for example.

All these advantages apply for the particular case of dMRI. Concerning the RT detec-

tion of motion, methods dedicated to dMRI have been developed in [Caruyer et al. (2010,

2011)] leading to two possible strategies: either the acquisition, for which motion occurs,

has to be redone, or the acquisition plan has to be modified. With rtdMRI, it is also possi-

ble for the physician to deliver a diagnosis during the exam. When a patient has ischemia,

it is essential to detect it as soon as possible to reduce the time between the beginning of

ischemia and the medical treatment. An immediate knowledge about the state of the fibers

where ischemia occurred could even orientate a specific treatment. Furthermore, the time

saving advantage brought by this RT workflow is particularly interesting for local diffusion

models requiring a long acquisition time compared to clinical routines. The use of such

models is easier with rtdMRI, which permits to use only as measurements as necessary

and to stop the acquisition once the results are sufficient. Finally, it is also possible with

this RT process to retro-propagate an information about the fiber orientation to better

choose the next orientations along which the diffusion will be measured.

The low cost of high parallel computing systems with respect to the cost of MRI

systems could in the future yield novel information technology architectures enabling direct

interactions between acquisition, pre- and post-processing that would improve the workflow

of MRI. Not only could the errors of acquisition be corrected online, but the diagnosis

may also be done in RT. The topics of this thesis is fully dedicated to propose such a RT

environment with an application to dMRI.

In the next section, we will make a review of the available techniques to deal with

incremental influence.

4.2 Incremental frameworks

4.2.1 Review of incremental frameworks

The first attempt to solve a general estimation problem and extract a signal of interest x

in a signal-plus-noise setting such as y = f(x) + ǫ, with y the measurement, f a function

and ǫ the noise, was performed with the least-squares estimator [Gauss (1809); Legendre

(1805)]. This method can be used recursively for stationary signals and is then called

the recursive (or sequential) least squares approach. The least squares technique

minimizes a weighted linear least squares cost function, corresponding to the sum of the
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squares of the errors, to estimate the signal x from the data y. No probabilistic assumptions

are made about the measured data. This method is valid for Gaussian, as well as non-

Gaussian noise. However, the performance of the estimator are dependent on the noise

properties. According to the Gauss-Markov theorem, the least squares estimator is optimal

only if the function f is linear, with a white noise ǫ.

The next incremental framework appeared with the Wiener filter, corresponding to

a sequential linear minimum mean square error (sequential LMMSE) estimator

[Wiener and Hopf (1931); Kolmogorov (1941b,a); Wiener (1949)]. The latter is a linear

noise filter dedicated to stationary signals. It minimizes the mean square error (MSE)

defined for an estimator x̂ such that: MSE(x̂) = E[(x̂ − x)2], with E[·] the expectation

operator. The Wiener filter contributed to give rise to the well-known and often used

Kalman filter (KF) [Kalman (1960); Kalman and Bucy (1961)], for which some equivalent

ideas can be found in the earlier works of [Thiele (1880); Swerling (1959)]. This filter was

the first to be adapted to non-stationary signals. Based on a dynamic system between the

measurements (observations) and the unknown parameters (state vector), the KF predicts

the evolution of the state vector with respect to the previous measurements. Moreover, it

also corrects and refines the dynamic result, each time a new measurement is performed.

The KF is based on a linear system with a zero-mean Gaussian assumption concerning

the noise corrupting the system. It can easily be adapted to a Gaussian noise with a

non-zero mean. Other filters extend the KF to non-Gaussian, non-linear filtering, like the

extended KF (EKF) described in [Jazwinski (1970); Gelb et al. (1974); Anderson and

Moore (1979)], which locally linearises the evolution model using Taylor series expansions.

However, the EKF is only reliable for almost linear models and may diverge in other cases

[van der Merwe et al. (2000)]. To overcome the limitation of the EKF, the unscented KF

(UKF) was proposed [Julier et al. (1995); Julier and Uhlmann (1997); Wan and van der

Merwe (2000)]. The latter relies on an unscented transformation, which uses a set of

sampled points to configure the means and covariances of probability distributions. The

UKF was shown to outperforms the EKF, but the UKF can in general only be applied on

models driven by Gaussian noises [van der Merwe et al. (2000)].

In parallel to the developments of derived Kalman filters, point-mass approaches

were developed for the state estimation of discrete-time nonlinear non-Gaussian stochastic

systems [Bucy (1969); Bucy and Senne (1971)]. In opposition to the EKF and UKF, these

methods are called global, as they approximate the probability density functions (PDFs)

of the states in a large area of the state space [S̆imandl et al. (2006)]. These methods are

based on the discretization of the state space by a grid. They estimate the densities only

at a finite fixed set of points. Such techniques are dedicated to small state spaces, as they

are computationally demanding.

Another famous approach to the estimation of dynamic nonlinear systems is the se-

quential Monte Carlo approach, also called as particle filter or bootstrap filter,

which combines a Monte Carlo sampling method with recursive Bayesian filtering [Gordon

et al. (1993); Kong et al. (1994); Liu and Chen (1995, 1998); Pitt and Shephard (1999);
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Doucet et al. (2000)]. Following the idea of the point-mass approach, the sequential Monte

Carlo technique uses a Monte Carlo simulation to describe the densities through a set of

samples. For more details on the different types of particle filters, we invite the reader to

read [Chen (2003)].

Gaussian mixture approximations represent another solution for nonlinear, non-

Gaussian filtering [Sorenson and Alspach (1971); Alspach and Sorenson (1972); Masreliez

(1975); Plataniotis et al. (1997); Ito and Xiong (2000)]. The idea is to use a weighted sum

of Gaussian densities to approximate another density function. The resulting Gaussian

mixture can then be injected in a bank of KFs or EKFs to be run in parallel. Themixture

of Kalman filters proposed by [Chen and Liu (2000)] proposes to use a Gaussian mixture

model with a bank of EKFs, in which each EKF is run with a Monte Carlo sampling

approach.

From these different estimators dedicated to dynamic systems, other methods combin-

ing different techniques, e.g. the unscented particle filter which associates the UKF and

a particle filter, were developed and we invite the reader to read [Chen (2003)] for more

details on these hybrid approaches.

The rtdMRI framework proposed by [Poupon et al. (2008b)] is based on a KF. The

next subsection presents this incremental estimator in details.

4.2.2 The Kalman Filter (KF)

The KF, invented by Rudolf Kalman in 1960 [Kalman (1960)], is a sequential estimator

enabling to update, and even predict, from observations measured over time, the results

of a known linear model. It works in a recursive way and minimizes the mean square

error of the estimation: it is a sequential minimum mean square error (sequential MMSE)

estimator. The model, on which it relies, can be static or dynamic, but has to be linear.

This filter is used in very various fields, some of which are: object tracking, computer-

assisted navigation, weather forecast, production trends and cycles in economy. It is a very

rapid tool enabling RT studies, as the KF estimations are produced almost instantaneously

after the measurement is taken.

In our dMRI framework, the common dMRI results are maps of the brain architecture

that are static at the macroscopic scale. They represent what we want to infer in RT.

Consequently, in our case, the linear model required for the KF comes down to:

y = A · x+ ǫ , with





y: the K×1 observation vector,

A: the K×N design matrix,

x: the N×1 state vector,

ǫ: the K×1 vector of i.d. noises distributed according to N (0,R),

(4.1)

where the vector y is filled with a new observation at each iteration i, i going from 1

to K. A is the design matrix and x is the searched state vector. The i.d. noises are
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independently distributed random variables, which are, in the KF framework, normally

distributed according to the probability distribution function (PDF) N (0,R) with mean

equal to zero and with K×K covariance matrix R = E
[
ǫǫT

]
. As the noise channels are

independent, the matrix R is diagonal with its diagonal elements written as Ri ∀i ∈ J1;KK

(J1;KK meaning the intervall of integers varying from 1 to K). In eq. 4.1, ǫ therefore

represents a zero-mean Gaussian noise [Kay (1993)]. If, additionally, R can be written as

R = R · I, with R a constant and I the identity matrix, then the noise becomes white

Gaussian distributed. The hypothesis of a zero-mean Gaussian noise required for the KF

constitutes a limitation for the estimator, which is not optimal when noise is not Gaussian

distributed. This limitation has to be well kept in mind and we will further deal with it

when considering the RT noise correction issue.

The goal of a RT study is to estimate the state vector x gradually with the measure-

ments performed over time. The state vector has to be updated each time the vector y is

filled with a new observation. In our static dMRI framework, the design matrix, as well

as the state vector are static. As a consequence, the Kalman equations’ system enabling

to estimate the state vector at the ith iteration does not contain any prediction step. The

KF procedure in this static case simplifies into a Wiener filter and is written such that:





innovation: νi = yi − aix̂i−1,

innovation covariance: si = Ri + aiPi−1a
T
i ,

gain: ki = s−1
i ·Pi−1a

T
i ,

state estimate at iteration i: x̂i = x̂i−1 + νiki,

estimation error covariance at iteration i: Pi = Pi−1 − kiaiPi−1,

(4.2)

with ai = [Ai1, ...,AiN ] the ith row of the known matrix A. Let us now explain how to

read this equation system 4.2, which delivers at iteration i the state vector estimate x̂i,

which we are interested in. In our system, the estimation error at iteration i is equal to

x− x̂i with covariance Pi = E
[
(x− x̂i) (x− x̂i)

T
]
. During the KF process, the trace of

the estimation error covariance is minimized. The trace value corresponds to the mean

square error. This quantity at each iteration is therefore an indicator of the procedure

progress. The innovation, also called residual, corresponds to the difference between

the actual observation yi and the estimated observation aix̂i−1. To obtain the innovation

covariance, let us now express the innovation as νi = yi−aix+ai (x− x̂i−1) . In the latter

equation, the term yi − aix corresponds to the noise ǫi whose covariance is Ri = E
[
ǫiǫ

T
i

]
.

The term x− x̂i−1 corresponds to the estimation error whose covariance is Pi. Therefore,

using the linear combination property of the variance, we easily calculate the variance

of νi and obtain the innovation covariance expression given by the equation system

4.2. Finally, to calculate the state estimate, as well as the estimation error covariance,

we need to compute the gain. The latter is calculated so that it minimizes the trace of

the estimation error covariance [Maybeck (1979)]. A Bayesian demonstration of the KF

equations can be done relying on this statement [Kay (1993)]. It is also possible to obtain
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the system given by 4.2 using a weighted least squares (WLS) approach, which minimizes

the cost function given by (y −Ax)TR−1 (y −Ax) [Chui and Chen (1987); Deriche et al.

(2009)]. More details on the KF equations’ derivation using a WLS approach are given in

appendix A (section 7.6) at the end of this chapter. The gain then permits to estimate

the state vector at iteration i with respect to the estimate at the previous iteration. The

same is done to obtain the estimation error covariance. Fig. 4.2 summarizes the process

of the KF, as we use it (i.e. like a Wiener filter).

Prior knowledge
of the state:

Pi−1

x̂i−1

x̂i

Output estimate of the state:

Update step with

measurements yi

ki

Kalman gain computation:

Estimation error covariance computation

of the updated estimate:

Pi

Figure 4.2: Diagram of the KF used as a Wiener filter. Fig. adapted from en.wikipedia.org

and ccar.colorado.edu. The estimation of the state is refined at each new iteration i.

Finally, to utilize the equation system 4.2, an initialization of the unknown x̂ and P is

required. A good initialization favors the KF convergence. In the KF theory, the initial

state vector x0 is supposed to follow a normal distribution with mean µx and variance

Vx. This leads to set: x̂0 = µx and P0 = Vx. However, concretely, when no information

on the distribution of x0 is known, then it is common to set: x̂0 = 0 and P0 = V I,

with V big enough so that the KF has little trust in the initial estimation. In this case

where no prior probabilistic information is known, the KF is not Bayesian anymore and

behaves like a classical sequential WLS estimator. If, additionally, R = I, then the cost

function to minimize with the least squares approach becomes (y −Ax)T (y−Ax) and

the KF behaves no longer as a sequential WLS estimator, but as a sequential ordinary least

squares (OLS) estimator. In case of noise variance inhomogeneities (heteroscedasticity),
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the OLS estimator is less accurate than the WLS estimator because it gives the same

weight to every measurement and thus does not account for the noise variance inequalities

towards the iterations. These OLS and WLS approaches are valid even if the ǫi are not

independent noises distributed according to zero-mean Gaussian PDFs. However, they

may not be optimal in this case. On the contrary, if the ǫi are i.d. noises according

to zero-mean Gaussian PDFs, the OLS estimator, in case of homoscedasticity, and the

WLS estimator in case of heteroscedasticity, are said to be efficient because they then

correspond to the minimum variance unbiased estimator [Kay (1993)]. Consequently, if

the independent zero-mean Gaussian noise condition is required for the KF, it is also

recommended, for a good efficiency in the estimation, when the KF is simply used as a

sequential WLS estimator.

Using these equations given by 4.2 enables to estimate the state vector x and to update

it each time a new observation is done. While the vector y is filled with measurements,

the estimation of x is refined. Even if the KF as we use it here simplifies into a LSE,

we kept the KF notation all along this thesis. This KF tool can be applied on all voxels

of an acquired volume in dMRI, with the requirement of having put in place a linear

model adapted to dMRI that respects the KF constraints, like the independent zero-mean

Gaussian noise condition.

4.3 Adapting dMRI models to the Kalman framework

In this section we first introduce the frame adopted in this thesis and we highlight the

major noise issue to be considered in the KF context. We then explain how to adapt the

dMRI models of the DTI, aQBI and sa-aQBI reconstruction algorithms to the Kalman

framework. The models presented here are fundamental for the rtdMRI workflow. They

constitute the basis for a KF application, as seen in the previous section. Let us remind

here that we write the raw (therefore noisy) and the noise-free DW signal M

and S, respectively. We will also now write the raw and noise-free T2-weighted

signal M0 and S0, respectively.

4.3.1 Brief introduction on the frame adopted in this thesis with a focus

on noise issues

Before beginning to apply the KF on the DTI, aQBI and sa-aQBI diffusion models, it is

essential to globally consider our real framework and think about possible dMRI issues that

could interfere with the KF ideal frame. Indeed, when wanting to apply some theoretical

solution to a real situation, there are often real parameters that need to be considered

because they can perturb the ideal approach. This constitutes the confrontation between

the theory and its experimental use.

When we think of what could interfere with the KF frame presented in the previous

section, we consider the artifacts occuring during a dMRI exam. There are many pos-

sible artifacts. In this thesis however, we will mainly focus on one artifact: the noise
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issues, which directly impact the KF application. Concerning the susceptibility artifacts

(geometrical distortions) which happen in regions in between two tissues having different

magnetic susceptibilities, a B0 field map is acquired before the dMRI sequence to apply a

posteriori a correction on the DW data [Jezzard and Balaban (1995)]. For small motion

of the subject, the manufacturer already provided corrections based on online inference

of the motion using registration techniques and reorientation of the next slice position

accordingly. In the case of dMRI, Eddy currents have to be corrected too when a single

spin echo sequence is used. However, it can easily be combined with motion correction.

More details are provided in appendix A, page 249, where we describe how the real data

used in our study were acquired. For a good understanding of the following subsections,

it is necessary to discuss the basis of noise analysis, even though more details are given

in chapter 5, section 5.1. We perform here a noise analysis considering the DW signal

M , but the same analysis could be performed on any measured signal coming from the

MRI scanner. Let us express, for a given voxel and a given diffusion orientation, the DW

measured signal M with respect to the corresponding noise-free signal S:

M = S + ǫ, (4.3)

where ǫ is the acquisition noise. On most clinical MRI systems, M is acquired using one

of the parallel MRI techniques described in chapter 2, section 2.7. With parallel MRI,

each channel of the phased-array coil receives a signal and all signals coming from all

channels have to be combined together to build the final signal M . A way to do the

combination is to use the sum of squares (SoS) reconstruction, which is defined such

that [Constantinides et al. (1997)]:

M =

√√√√
n∑

c=1

[(Src + ǫrc)
2 + (Sic + ǫic)

2], (4.4)

with c the index designating a channel among the n channels of the phased-array coil. Src

and Sic are the real and imaginary parts, respectively, of the complex signal Sc received

by the channel c. Similarly, ǫrc and ǫic are the real and imaginary parts, respectively,

of the complex noise ǫc present on the channel c. There are other combination methods

than the SoS, but in this thesis, we will only consider the latter, as it was the one used in

the experiments. In the noise literature, both ǫrc and ǫic are assumed to be independent

Gaussian processes with a mean equal to zero and a variance σ2 [Henkelman (1985)]. We

will detail the reasons of this hypothesis which are linked to the noise origins in section 5.1.

From this assumption, it is possible to infer the PDF followed by M : it is a noncentral χ

(nc-χ) distribution [Constantinides et al. (1997)]. This PDF followed by M is defined with

three parameters: the noise-free DW signal S, the variance σ2 of the noise present on each

channel of the receiving coil and the number of channels n. It is a function, somewhat

looking like a Gaussian distribution, but with a certain positive skewness making the

PDF asymmetrical compared to a Gaussian distribution. The nc-χ distribution is called

a Rician distribution when n = 1. For more details, see section 5.1. The nc-χ distribution
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can be approximated by a Gaussian of mean S and variance σ2 when the SNR, defined

as SNR= S/σ, is moderate to high and when the number of channels n is low (like

SNR ≥ 4 for n = 1) [Henkelman (1985); Sijbers et al. (1998)]. Indeed, fig. 4.3 shows the

convergence of E(M) on S, as well as the convergence of the noise standard deviation of

M , written as σM , on σ for high SNR values. Considering now the noise term ǫ = M −S,

its mean is E(ǫ) = E(M)−E(S), using the linearity of the expectation operator. Therefore

E(ǫ) converges on 0. The noise standard deviation of ǫ, written as σǫ, is equal to σM and

therefore converges on σ. As the number of channels n increases, the approximation of

a zero-mean Gaussian noise with standard deviation σ is less true, as shown in fig. 4.3.

Therefore, we have to keep in mind that this approximation does not enable to account

for the true noise nature, especially at low SNR values or with high values of n.

E
(M

)/
σ

σ
M
/σ

S/σS/σ

E(M)/σ = S/σ

σM/σ = 1n=1 n=4
n=12n=2

Figure 4.3: Mean and noise standard deviation of the PDF followed by M

With all this information, let us now tackle the KF model application in dMRI. First,

we will explain the adaptation of the DTI model to a KF.

4.3.2 DTI Kalman framework

DTI, introduced in subsection 3.2.3, proposes to consider water molecules’ diffusion as a

Gaussian process and expresses the noise-free DW signal S(oi) —oi corresponding to the

diffusion orientation given by [ox, oy, oz ]
T— such that:

S(qi, τ) = S0e
−bio

T
i Doi , (4.5)

where bi is the b-value at iteration i, the iteration corresponding to the measurement along

the orientation oi. Let us notice that this equation is written for a considered voxel: let us

keep in mind that all equation variables are voxel-wise, except bi and oi. D is the diffusion

tensor, the eigenvalues of which are required to generate the conventional DTI maps (FA,

MD, PD, TD). The coefficients of D are the unknowns. Now, if we assume that we have

access to the noise-free T2 weighted signal S0, we can then concretely apply eq. 4.5 to the
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measured DW signal M(oi), such that:

M(oi) = S0e
−bioT

i Doi + µi, (4.6)

where µi corresponds to the error and corresponds to the acquisition noise if we assume

that there is no other artifact. The acquisition noise µi is assumed to be independent

from an iteration i to another. As seen in the previous subsection, we know that µi is

distributed according to a PDF that makes M(oi) follow a nc-χ distribution.

In the KF, D corresponds to the state vector x of section 4.2. To transform eq. 4.6

in a linear equation, the natural logarithm of M0
M(oi)

has to be expressed [Poupon et al.

(2008b)]:

ln
(

S0
M(oi)

)
= bio

TDoi − ln
(
1 + µi

S0
ebio

T
i Doi

)
. (4.7)

From this eq. 4.7, we can deduce the following linear model:

y = A · x+ ǫ, (4.8)

where the observations’ vector is written as y = [y1, ..., yK ]T with yi = ln
(

S0
M(oi)

)
for

iteration i corresponding to the measurement along the diffusion orientation oi. The state

vector x corresponds to the six coefficients of the symmetric diffusion tensor:

x = [Dxx,Dxy,Dxz ,Dyy,Dyz ,Dzz]
T . The design K×6 matrix A has rows designated by

a1, ...,aK , whose expression is (here for the ith row): ai = bi[o
2
ix
, 2oixoiy , 2oixoiz , o

2
iy
, 2oiyoiz , o

2
iz
].

Finally, the K×1 noise vector ǫ is expressed such that: ǫi = −ln
(
1 + µi

S0
ebio

T
i Doi

)
for iter-

ation i. ǫi can also be written as: ǫi = ln
(

S0
M(oi)

)
− ln

(
S0

S(oi)

)
= ln (S(oi))− ln (M(oi)).

To satisfy the conditions imposed by the KF on the linear model, the noises ǫi have to be

i.d. according to zero-mean Gaussian distributions. The noises µi of eq. 4.6 are indeed

i.d. and so are also the noises ǫi. However, µi is not Gaussian distributed, as seen in the

previous subsection, and the distribution followed by ǫi should be studied to know whether

it is a Gaussian PDF or not. Nevertheless, for the authors of [Poupon et al. (2008b)], the

first goal was not to perfectly account for the noise nature, but to propose a RT model for

DTI. Therefore, they assumed that the noises ǫi were distributed according to N (0,R),

with R = I. As they initialized the KF with no prior probabilistic information (x0 = 0

and P0 = V I with V = 106), their KF method simplifies into a sequential OLS estima-

tor. However, it is worth mentioning that [Salvador et al. (2005)] studied the distribution

followed by ǫi, when n = 1, therefore in the case of a Rician noise, and they obtained the

three following results on the noise vector ǫ:

• E [ǫ] ≈ 0.

• R = Ri · I with Ri ≈ (σi/S(oi))
2, where σ2

i is the variance of the Gaussian noises on

each real and imaginary parts of the receiving channel.

• For SNR values higher than 5, the noise distribution is approximately a zero-mean

Gaussian PDF with variance R.
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The expression of Ri in the second item can be mathematically confirmed using the propa-

gation of uncertainty. Let us define zi, corresponding to the noise-free yi, and expressed as

zi = ln
(

S0
S(oi)

)
. The error on zi, written as δzi, can be indeed related to the error on S(oi),

written as δS(oi), through: δzi =
∂zi

∂S(oi)
δS(oi) = − δS(oi)

S(oi)
. Applying the variance on this

result gives us: Var (δzi) = Var (δS(oi)) /S(oi)
2. Var (δS(oi)) corresponds to the variance

of the nc-χ distribution followed by M(oi) and it is different from σi. However, as seen in

the previous subsection, when the SNR is high, the nc-χ distribution can be approximated

by a Gaussian PDF of mean S(oi) and variance σ2
i . Using this and as Var (δzi) = Ri, we

obtain the approximation Ri ≈ (σi/S(oi))
2. Applying these results in the DTI Kalman

framework, the authors of [Casaseca-de-la-Higuera et al. (2012)] improved the KF model

developed for DTI by [Poupon et al. (2008b)]: indeed, the latter model permits to use a

KF, which behaves as a sequential OLS estimator, whereas the KF model in [Casaseca-

de-la-Higuera et al. (2012)] behaves, with R = Ri · I, as a sequential WLS estimator. This

WLS estimator is more accurate, as the results obtained by Pablo Casaseca-de-la-Higuera

et al. confirm it. For more details, we invite the reader to read their publication. The

DTI Kalman framework with both assumptions on R (for an OLS or a WLS estimation)

is summarized in table 4.1.

To apply this KF model, we also need to know the noise-free T2-weighted signal S0,

which appears in eq. 4.7. We can either approximate it directly by the measured T2-

weighted signal M0 or we can apply a correction on M0 and use the resulting corrected

T2-weighted signal Ŝ0 in replacement of S0 in eq. 4.6. The results shown later in this

chapter were obtained following the first solution, i.e. replacing S0 by M0 in eq. 4.6,

as the authors of [Poupon et al. (2008b)] and [Casaseca-de-la-Higuera et al. (2012)] did,

assuming that M0 = S0.

72



Table 4.1: The DTI Kalman framework

y = A · x+ ǫ , with for iteration i:




yi = ln
(

S0
M(oi)

)

ai = bi[o
2
x, 2oxoy, 2oxoz, o

2
y, 2oyoz, o

2
z]

x = [Dxx,Dxy,Dxz ,Dyy,Dyz ,Dzz]
T

ǫi supposed to follow N (0,R)

Definition of the noise covariance matrix R:

R is diagonal, such that:

- either R = I following [Poupon et al. (2008b)],

- or R = RiI with Ri ≈ (σi/S(oi))
2 following [Casaseca-de-la-Higuera et al. (2012)]

Initialization for the KF equations’ system 4.2:



x0 = 0

P0 = V I with V = 106.

The equations’ system given by 4.2 can be applied on the model described in this

table.

We will see in subsection 4.5.1 that this set up system achieves its goal of generating

DTI maps in real-time. What are now the aQBI and sa-aQBI Kalman frameworks?

4.3.3 The aQBI and sa-aQBI Kalman frameworks

Here, we develop all aQBI and sa-aQBI model frameworks, which we use as input of a KF.

We begin with the aQBI models.

aQBI Kalman framework

Contrary to DTI, aQBI does not assume that the water molecules’ diffusion follows a

Gaussian distribution. A consequence of that is that aQBI permits to better infer fiber

bundles’ crossings (for more details see subsection 3.2.5). For this reason, this technique is

well-spread in the research world, but is actually not commonly used in clinical protocols

because of its too long required acquisition time. However a RT process enabling to give

the aQBI results almost instantaneously, while the patient is still in the magnet, could

seriously be considered for a clinical exam protocol. Indeed, rtdMRI permits to make as

many acquisition measurements as is necessary, with online processing and visualization,
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and thus to gain a lot of acquisition time, as explained in section 4.1. The possibility of RT

aQBI is demonstrated in [Poupon et al. (2008b)], from which we repeat some explanations.

As seen in subsection 3.2.4, we can write the noise-free DW normalized signals’ vector

E = [S(0)/S0, ..., S(K)/S0]
T as:

E = B ·CDW, (4.9)

with B the matrix of the modified SH basis defined with eq. 3.13. CDW is the N×1 coef-

ficients’ vector of the decomposition of the noise-free DW signals’ vector on the modified

SH basis. Now, we can apply eq. 4.9 to the measured DW normalized signals’ vector

ME = [M(0)/S0, ...,M(K)/S0]
T such that:

ME = B ·CDW + ǫ , (4.10)

where ǫ represents the vector containing the acquisition noise normalized by the noise-free

T2-weighted signal, assuming that there is no other artifact corrupting the DW signal.

As mentioned in the previous subsection, the acquisition noise is independent from an

iteration i to another. Its PDF makes M(oi) follow a nc-χ distribution. For the moment,

we will approximate the noise PDF by a zero-mean Gaussian PDF, as required by the

KF model constraints summed up by eq. 4.1. The authors of [Poupon et al. (2008b)]

worked with a sequential OLS estimator, i.e. R = I, but we could also work with a

sequential WLS estimator with R = RiI where Ri = (1/S2
0)Var (δS(oi)). Using as before

the approximation of the nc-χ distribution followed by M(oi) by a Gaussian PDF of mean

S(oi) and variance σ2
i , we could approximate Ri by σ2

i /S
2
0 . We will come back later on

the noise considerations, which are here not much respected. Eq. 4.10 enables therefore

to apply the KF on the observations’ vector ME, with the design matrix B and the state

vector CDW.

Eq. 4.10 constitutes the first way to apply the KF with the vector CDW being the

state vector. It is also possible to apply the KF in a second way with CODF being the

state vector. For that, we use eq. 3.17, which we rewrite here: CODF = PCDW. The KF

model linear equation is then written as:

ME =
(
BP−1

)
CODF + ǫ. (4.11)

The noise vector is the same as previously.

To apply this second KF model, as well as the first one, we need to know the noise-free

T2-weighted signal S0, as it appears in the observations’ vector definition. As for the DTI

Kalman framework, we can either approximate it directly by the measured T2-weighted

signal M0 or apply a correction on M0 and use the resulting corrected T2-weighted signal

Ŝ0 in replacement of S0 in eq. 4.11. The results shown later in this chapter were obtained

following the first solution.

In both cases, whether the state vector is CDW or CODF, the KF equations are derived

by minimizing the cost function given by (y −Ax)TR−1 (y −Ax) (as done in appendix

A (section 7.6)). But, it is also possible to apply the KF using the Tikhonov regularization
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introduced in chapter 3, subsection 3.2.5. Concerning this, the approach in [Poupon et al.

(2008b)] consisted to work from a linear model containing the regularization. From eq.

3.19, which we rewrite here: ĈDW = (BT ·B+ λL)−1 ·BT ·ME, the authors of [Poupon

et al. (2008b)] applied the Moore-Penrose pseudo-inversion operator and obtained:

ME = B+ ·CDW + ǫ′, (4.12)

with B+ =
((

BT ·B+ λL
)−1 ·BT

)†
. The vector ǫ′ is, unlike ǫ, impacted by the regu-

larization appearing in the design matrix through the term λL. However, as explained in

[Deriche et al. (2009)], the kth row of the design matrix defined as B+ depends on B and

therefore on all K gradient acquisition directions. This means that, to work well, this sys-

tem requires to know in advance the diffusion directions that will be used during the RT se-

quence. And yet, this is not the desired behavior for the RT project. Moreover, the authors

of [Deriche et al. (2009)] showed that the KF model relying on eq. 4.12 is indeed suboptimal

at every estimation step except for the last one. They proposed another way to inject the

regularization in the KF. Their method is based on the incorporation of the regularization

in the cost function, which becomes: (y −Ax)TR−1 (y −Ax) + λxTLx. The latter ex-

pression leads to a derivation of the KF equations which is similar as in appendix A, unless

it contains the regularization term. This derivation can be found in [Deriche et al. (2009)],

which proves that the resulting KF equations are exactly equal to the system given by

4.2. The difference with the KF without regularization lies in the initialization equation of

the estimation error covariance P which becomes: P0 = ((1/V )I+ λL)−1 with V = 106.

Even though the difference between the KF equations without or with regularization ap-

pears in the initialization only, this change is reported in the KF equations’ system given

by 4.2 and therefore still impacts the whole KF process. The two possible equations on

which we can apply the KF, without or with regularization, are resumed in table 4.2.

We will see in subsection 4.5.2 that this set up system achieves its goal.
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Table 4.2: The two aQBI Kalman frameworks

y = A · x+ ǫ , with for the iteration i:

with state vector x = CDW with state vector x = CODF





yi = ME(oi)




yi = ME(oi)

A = B A = B ·P−1

x = CDW x = CODF

ǫi supposed to follow N (0,R) ǫi supposed to follow N (0,R)

Definition of the noise covariance matrix R

R is diagonal and defined such that:

- either R = I following [Poupon et al. (2008b)],

- or R = RiI with Ri ≈ σ2
i /S

2
0 .

Initialization for the KF equations’ system 4.2:

without regularization


x0 = 0

P0 = V I with V = 106.

with regularization


x0 = 0

P0 = ((1/V )I+ λL)−1 with V = 106 ([Deriche et al. (2009)]).

The equations’ system given by 4.2 can be applied on the models described in this table.

sa-aQBI Kalman framework

Concerning sa-aQBI, it is also interesting to make it KF-feasable with a linear model. Let

us remind that the sa-aQBI relies on the following system:




CODFc(j) = 1

2
√
π

if j = 1,

CODFc(j) = 1
16π2P ·N · (BT ·B+ λL)−1 ·BT · ln ((−lnE)) if j > 1,

(4.13)

with the K×1 vector E defined such that its ith element, corresponding to the diffusion

orientation oi, is E(oi) = S(oi)/S0. All other notations in 4.13 are given in subsection

3.2.5. Let us remind the notation ME defined such that ME(oi) = M(oi)/S0. The sa-

aQBI adapted linear model for applying the KF was first introduced in [Caruyer et al.
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(2010)]. It is expressed such that:

ln (−lnME) = B ·CSA + ǫ , (4.14)

where CSA is the coefficients’ vector of the decomposition of ln (−lnE) on the modified SH

basis. ǫ is the vector containing ln (−lnµi) /S0 ∀i ∈ J1;KK, with µi the acquisition noise

vector at iteration i. As for the previous models, we approximate the noise PDF by a zero-

mean Gaussian distribution, as required by the KF model constraints. We can either work

with a sequential OLS estimator, i.e. R = I, or work with a sequential WLS estimator

with R = RiI where Ri ≈ σ2
i

S(oi)2ln(S(oi)/S0)
2 ([Caruyer et al. (2011)]). The expression of

Ri can be explained using the propagation of uncertainty and using the approximation

of the nc-χ distribution followed by M(oi) by a Gaussian PDF of variance σ2
i , as it was

done for the DTI adapted linear model. Again, as for some previous models, to apply this

KF model, we need to know the noise-free T2-weighted signal S0 to be able to compute

ME. As before, we can either approximate it directly by the measured T2-weighted signal

M0 or apply a correction on M0 and use the resulting corrected T2-weighted signal Ŝ0

in replacement of S0 in eq. 4.14. The results shown later in this chapter were obtained

following the first solution, as the authors of [Caruyer et al. (2011)] did. Finally, as for the

aQBI, regularization can be incorporated in the KF model. The difference between the

non-regularized and the regularized models only comes from the initialization, as resumed

in table 4.3. From the estimated state vector ĈSA, it is then possible to estimate the

coefficients of the cdODF ĈODFc , such that:



ĈODFc(j) = 1

2
√
π

if j = 1,

ĈODFc(j) = 1
16π2P ·N · ĈSA(j) if j > 1.

(4.15)

With this sa-aQBI adapted linear model, we come to the end of the section on the

setting up of linear models adapted for rtdMRI. Among the DTI, aQBI and sa-aQBI

linear models adapted to a KF application, we remark that only the aQBI proposed models

incorporate the authentic acquisition noise: the noise vector ǫ is then only constituted by

the acquisition noise. On the contrary, for the DTI linear model, the noise vector ǫ is

defined such that: ǫi = −ln
(
1 + µi

S0
ebio

T
i Doi

)
for iteration i. Concerning the sa-aQBI

linear model, it is defined such that: ǫi = ln (−lnµi) /S0 for iteration i. This means that

for the DTI and sa-aQBI models, the knowledge on the acquisition noise has to be adapted

to the noise term ǫi of the corresponding model. Especially the PDF followed by ǫi does

not correspond to the one followed by the acquisition noise and has to be recalculated. For

this chapter, this specific details are not of much importance as we will approximate in

all three cases the noise PDF by a zero-mean Gaussian distribution. But this information

about noise will be used when incorporating adapted noise correction in the KF process

(see chapter 7).

To concretely apply these theoretical KF-feasable models, it is necessary to have the

practical set up adapted to the RT objective. The next section concerns other aspects,

which have to be considered, so that the RT project works well.
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Table 4.3: The sa-aQBI Kalman framework

y = A · x+ ǫ , with for iteration i:




yi = ln
(
−lnM(oi)

S0

)

A = B

x = CSA

ǫi supposed to follow N (0,R)

Definition of the noise covariance matrix R:

R is diagonal, such that:

- either R = I following [Poupon et al. (2008b)],

- or R = RiI with Ri ≈ σ2
i

S(oi)2ln(S(oi)/S0)
2 following [Caruyer et al. (2011)]

Initialization for the KF equations’ system 4.2:

without regularization


x0 = 0

P0 = V I with V = 106.

with regularization


x0 = 0

P0 = ((1/V )I+ λL)−1 with V = 106 ([Deriche et al. (2009)]).

The equations’ system given by 4.2 can be applied on the model described in this

table.

4.4 RT constraints

This section begins with the explanation of the necessity to optimize the diffusion gradients’

orientation set with the goal of performing an optimized rtdMRI sequence from an RT

point of view. Then, the section is focused on hardware considerations and issues of the

RT project.

4.4.1 Otimization of the diffusion gradients’ orientation set

This section focuses on the diffusion gradients’ orientation set used during a rtdMRI se-

quence. When performing dMRI, the diffusion of the water molecules is probed along

several orientations in the space, using various diffusion gradients in the dMRI sequence.

Thus, during the sequence, each new measurement brings new information about the dif-
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fusion 3D geometry. The orientation set contains all orientations, for which a diffusion

measurement is performed using dMRI. It would be of course ideal to measure diffusion

in all the possible directions, but this is not realistic, because of the too long acquisition

time. Concretely, the best way to optimally cover the angular possibilities seems to have

a uniform orientation set. Nevertheless, as the diffusion process is symmetric, both orien-

tations oi and −oi generate the same diffusion result. Following this analysis, the authors

of [Jones et al. (1999)] proposed an optimized orientation set based on a slightly modified

electrostatic repulsion model. In their model, each gradient direction is represented by

an antipodal pair of identical electric unit charges to precisely account for the diffusion

process symmetry. The charges are placed on the surface of a sphere and forced to stay

on it. Each pair is allowed to pivot and all pairs repulse each other. The optimized —in

the sense of most uniform— set of diffusion gradients is then found when minimizing the

systems’ energy defined as the sum of the electrostatic-like repulsive potentials between

every pair of charges. This global energy, for K orientations played during the sequence,

is written as:

EK(o1, ...,oK) =
K−1∑

i=1

K∑

j=i+1

E0(oi,oj), (4.16)

with

E0(oi,oj) =
1

‖oi − oj‖
+

1

‖oi + oj‖
(4.17)

being the electrostatic-like potential representing the energy between the two orientations

oi and oj. This model is easy to solve for particular numbers of orientations. The solution

for six orientations is shown in fig. 4.4 with a regular icosahedron. But, when such a

perfect solution is not known, the optimization algorithm by Derek Jones et al. can be

run to find the orientations’ configuration yielding the minimum of energy based on some

criterion. Another approach by [Papadakis et al. (2000)] has been proposed to find the

optimal orientations’ configuration. It is also based on the electrostatic repulsion model

and determines the optimized set when maximizing the distance between any pair.

Concerning the particular case of rtdMRI, for which the sequence can be stopped at

any time if the user decides it, the chronological order, in which the orientations are used,

is of paramount relevance. Indeed, along which direction should diffusion be measured at

the beginning, and then later until the end of the exam, so that the RT orientation set is

roughly uniform, should the acquisition be finished before completion? Several works have

answered this question. The publication of [Poupon et al. (2008b)] presents the method by

[Dubois et al. (2006)]. The authors of [Deriche et al. (2009)] compared their own approach

with the techniques by Jessica Dubois et al. and [Cook et al. (2007)]. All methods were

shown to be quite equivalent and we invite the reader to read the article by [Deriche et al.

(2009)] for more details on the several methods and their comparison. As we performed

RT experiments for this thesis with the technique by Jessica Dubois et al., we will only

describe the latter.
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Figure 4.4: Optimized orientation set with six orientations. The same regular icosa-

hedron is shown on the left and on the right, but the six optimal diffusion are

added on the right. The set is obtained strictly uniform. Adapted fig. from

http://www.ilemaths.net/img/forum_img/0271/forum_271542_1.jpg.

The idea of the optimization solution of [Dubois et al. (2006)] is not only to create

a final uniform orientation set whith all orientations planned to be played during the

sequence, but also to generate ordered time-intermediate subsets of orientations which

are approximately uniform. Consequently, if the exam is stopped before completion,

even if all orientations have not been played, the resulting played orientation set will be

approximately uniform. To realize this idea, the authors of [Dubois et al. (2006)] defined

the repulsive potential between two orientations oi and oj , such that:

E(oi,oj) = αijE
0(oi,oj), (4.18)

with αij representing the interaction coefficient between the two orientations. The global

energy to minimize therefore becomes:

EK(o1, ...,oK ) =

K−1∑

i=1

K∑

j=i+1

αijE
0(oi,oj), (4.19)

This parameter αij modulates the interaction between oi and oj , depending if they are far

or not from the acquisition beginning. In the model by [Dubois et al. (2006)], orientation

subsets are defined such that: a subset (S + 1) includes the previous subset (S). Orien-

tations belonging together to the smallest subset are the most constrained to be uniform

and their interaction is maximal: αij = 1. On the other hand, if oi and oj have in com-

mon to belong together only to the last subset, then their interaction is minimum, with

αij = αmin. In [Poupon et al. (2008b)], αmin is set to 0.5. Consequently, minimizing eq.

4.19 favours approximately uniform time-intermediate subsets. However, this criterium is

different from the minimization of eq. 4.16. Therefore, one risk of the method is that it

will not generate the optimal uniform solution for the final global orientation set. But a

suboptimal solution may be sufficient.

To better understand the effects of this algorithm, let us take an example of a total set

of 42 orientations, illustrated in fig. 4.5. The first subset is defined such that it contains the
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Figure 4.5: Comparison between the conventional (top line) and optimized (bottom line) orienta-

tion subsets of a sequence with 42 orientations played in total. The optimized intermediate subsets

(at 14 and 28 orientations played) are more uniform than the corresponding conventional subsets.

Consequently, the optimized subsets have to be used for RT scans, which may be stopped at any

time. Fig. extracted from [Poupon et al. (2008b)].

first 14 orientations played. The second subset contains the first subset with in addition

14 other more orientations played. Finally the last subset is equal to the total set with the

42 orientations. A high constraint is put on the first 14 orientations so that the first subset

is uniform. The constraint will then be a bit released for the next orientations coming

(second subset), and even more for the last orientations (third subset), but still sufficient

to build a final total set of 42 orientations which is roughly uniform. Fig. 4.5 clearly

shows that the intermediate orientation sets are more uniform with the optimized solution

of [Dubois et al. (2006)], than with the conventional method. However, the final set is

more uniform with the latter method. Nevertheless, from a RT perspective as explained

at the beginning of this subsection, the optimized solution is much more desirable.

The next subsection tackles the hardware architecture set up for the RT project.

4.4.2 RT hardware architecture

To run an MRI sequence and perform the data processing in RT, the hardware architecture

has to be well organized.

Before tackling the RT adapted hardware architecture, let us begin with the presen-

tation of the simpler hardware organization when there is no RT goal. When a classical

MRI sequence is played in the MRI scanner, the acquired data follow the flow indicated

by the black arrows in fig. 4.6: the data first go through the reconstruction unit (delivered
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Figure 4.6: The classical hardware architecture with no RT goal. The MRI machine acquires

data, which are sent to the manufacturer reconstruction unit for some rapid processing. Then, the

data are sent to the console for visualization by the MRI technologist. Stimuli can be used in case

of an fMRI sequence. Fig. adapted from [Poupon and Riff (2009)].

by the manufacturer with the magnet itself). This reconstruction unit performs several

processings such as parallel reconstruction, retrospective motion correction that remains

limited to simple tasks due to the limited number of processing units available (8 CPUs on

the Tim Trio). Such processing tasks can be of course deactivated by the user, if wanted.

Then, the unit sends the data to the console, on which the radiologic technologist visual-

izes them and considers if they are of good quality or not. Depending on his decision, he

will command the start of the same sequence or of another MRI sequence on the magnet.

Also, if it is fMRI, the MRI technologist also commands the start of stimuli. With this

system, the data are acquired, then processed and finally stored to files. Once the exam

is completed, these data can be post-processed on the operator console using the available

tools provided by the manufacturer. Clearly, the post-processing of dMRI cannot be done

online and there is no possibility to easily develop custom tools to be installed on the

operator console. Therefore, the information technology architecture has to be revisited

to allow high performance RT computing, such as the RT Kalman frameworks introduced
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Figure 4.7: The hardware architecture adapted to the RT project. In addition to the system

shown in fig. 4.6, the red block “RT-MRI” constitutes the hardware part enabling to perform

RT MRI. Before the reconstruction unit sends the data to the console, these data are sent to a

server, which commands the running of algorithms on the data. To reduce the processing time,

these algorithms are parallelized and distributed on a cluster of 80 CPUs. In addition to this RT

processing, some automatic feedback can be performed on the sequence parameters, as well as on

the stimuli controle console in the case of RT fMRI. Fig. extracted from [Poupon and Riff (2009)].

in subsection 4.3.

This RT environment added to the MRI system is the red block “RT-MRI” of fig. 4.7

that was set up by Fabrice Poupon. It consists of a further loop that allows to send the

data to a custom high performance computing architecture, to process them efficiently and

to put the result back to the operator console. In order to meet the computational require-

ments, a cluster of 80 CPUs is used to take benefits from parallel and distributed imple-

mentations of post-processings on this cluster, yielding a huge reduction of the processing

time. For the processing tasks such as noise removal presented later in the manuscript,

the processing time was always obtained far below the TR. The RT-processed data are

then sent to the console for rendering during the exam.

Fig. 4.7 also shows the feedback possibilities allowed by the RT hardware system.

From the console visualization, the user himself can decide to zoom in a region, to stop

the acquisistion and play another sequence... This feedback is non-automatic. But there

can also be automatic feedbacks, which can be decided at the server level: once the RT-

processing is performed, the server can send modification commands concerning the MRI
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sequence played in the magnet. For instance, the gradients can be modified with respect

to a certain parameter in the results obtained at the iteration played. Concerning fMRI

sequences, the stimuli can also be automatically adapted according to the results obtained.

This entire hardware system is innovative, as well as compatible with a clinical use.

To perform methodological tests on the RT algorithms independently of an acquisition

with a subject in the magnet, an RT MRI simulator was developed which mimics an MR

acquisition from an already acquired dataset.

The next section will show the first results obtained with rtdMRI on real data. These

results constitute a reference in this thesis, as we will often compare our results in part III

of the thesis to these ones.

4.5 Proof of concept: RT local modeling

Here we show the first results obtained with rtdMRI on real data at b = 3000s ·mm−2. For

more details on the acquisition and preprocessing parameters for these data, see appendix

A. In this section, we did not account for any noise information in the KF models: neither

did we estimate a noise variance, nor did we estimate the noise-free DW signals which are

necessary for the calculation of the covariance matrix R in the WLS cases. These results

are therefore based on the OLS versions of the algorithms presented in section 4.3. We

show the DTI results, as well as the aQBI and sa-aQBI results.

4.5.1 RT application for DTI

In this section, we show in fig. 4.8 some DTI results, namely the ADC, FA and RGB maps,

obtained in RT at the 6th, 10th, 19th, 39th and 60th iterations. The 19th, 39th and 60th

iterations correspond to each last iteration of the three subsets of orientations using the

optimized algorithm of [Dubois et al. (2006)]. Therefore, at these three iteration indexes,

the orientations used are almost uniformly distributed and the maps contain structural

information, which was homogeneously depicted. As we can see in fig. 4.8, the maps,

particularly the FA and RGB ones, are already of good quality at the 39th iteration. No

highly significant change in the maps is noticed after this 39th iteration. We also see

that the maps obtained at the last iteration are the same as the ones obtained with the

post-processing algorithms.

The KF algorithm evolution in RT can also be analyzed in a quantitative way using

the trace, at each iteration i, of the estimation error covariance matrix Pi. This quantity is

minimized during the KF process and thus indicates its progress, as pointed out in section

4.2. Let us here notice that this trace is the same at each voxel, as the KF process is

independent from any spatial consideration. Fig. 4.9 shows the evolution of this trace at

one voxel during the RT process. We started the graph only at the 6th iteration, as the

diffusion tensor requires at least six measurements to be estimated. The curve significantly

decreases at the beginning of the process and reaches a plateau around the 40th iteration.

This is consistent with our qualitative analysis on the images in fig. 4.8.
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obtained with the KF applied on the DTI linear model
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Figure 4.8: KF application on the DTI model. The KF was performed as an OLS estimator.
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Fig. 4.9 also depicts the evolution of the mean square error (MSE) between the final

offline estimation of the state vector and its RT estimation. Here, x̂ represents the six

estimated coefficients of the diffusion tensor. The MSEi is then calculated on the whole

3D volume at each iteration, such that:

MSEi =
1

Nv

∑

v∈V

N∑

j=1

(
x̂i(j,v) − xoffline(j,v)

)2
, (4.20)

with V the entire 3D image volume containing Nv voxels. x̂i(j,v) is the RT estimation at

iteration i of the jth coefficient of the state vector for the voxel v. xoffline(j,v) corresponds

to the offline estimated jth coefficient of the state vector for the voxel v. Here, the state

vector is the diffusion tensor, therefore N = 6. The curve representing the MSEi in fig 4.9

presents a similar behavior as the curve of the trace of Pi.

Figure 4.9: Left: evolution of the trace of Pi during the KF process. The trace of Pi, written

as Tr (Pi), is initialized such that Tr (P0) = 6.0 × 106. Right: evolution of MSEi during the KF

process. MSEi is computed using eq. 4.20.

Finally, we also quantified the performance of this RT process in terms of time duration.

We distinguished two times: first, the time tKF required for a KF update, and secondly,

the time tmap required to process the the FA, ADC and RGB maps. The time to display

the maps in RT was negligible compared to these other times, therefore, we will not

indicate it. We run the algorithms over the brain inside the 3D volume on a linux 2.8

GHz workstation. The times of the RT process are shown in fig. 4.10 when using only one

CPU and when using the cluster of 80 CPUs (each CPU is a linux 2 GHz machine). It is

visible that the parallelization and distribution of the C++ code caused a huge decrease

of the global computation time (tKF + tmap) for one iteration of the process. Whereas this

time is close to TR = 14s on one CPU, it then falls far below TR with the cluster. The

computation process is performed in RT, as the update after one iteration is done before

the next iteration happens.
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Figure 4.10: Times to get the FA, ADC and RGB maps’ update after a new iteration: tKF (blue

box) is the time required for one iteration of the KF algorithm and tmap (magenta box) is the time

for processing the maps. These times are compared to TR = 14s.

4.5.2 RT application for aQBI and sa-aQBI

Here we show the results obtained applying the OLS version of the regularized KF on the

aQBI and sa-aQBI linear models with a maximum SH order of 4 —meaning that the size

of the state vector is equal to N = 15—. Fig. 4.11 depicts the RT aQBI maps (GFA

and dODF) and the RT sa-aQBI maps, for which the corrected GFA (cGFA) is calculated

using eq. 3.21 with the dODF coefficients replaced by the cdODF coefficients. As for the

DTI results, fig. 4.11 highlights how the maps are refined in time. As before, no highly

significant change in the GFA maps is noticed after the 39th iteration. Nevertheless, some

changes are more visible on the dODF and cdODF maps after the 39th iteration. All maps

obtained at the last iteration are the same as the ones obtained with the post-processing

algorithms.
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Figure 4.11: KF application on the aQBI and sa-aQBI models. The KF was performed as an OLS estimator, but using the regularized version. The

maximum SH order was set to 4. The ROI for which we show the dODF and cdODF results is shown in yellow in the fourth column.
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We here again calculated the trace of Pi at each iteration i, as well as the MSEi defined

by eq. 4.20. Here, the state vector was either the vector CDW for the aQBI linear model

or the vector CSA for the sa-aQBI linear model. All curves (fig. 4.12) show a decrease

of the error in RT. Note that the orders of magnitude of the MSEi for the DTI, aQBI

and sa-aQBI models are not the same as the corresponding state vectors are of different

orders of magnitude (for the DTI, the first (and usually higher) coefficient of D is around

10−10; for the aQBI, the first (and usually higher) coefficient of CDW is around 102; for the

sa-aQBI, the first (and usually higher) coefficient ofCSA is around 10−1). The decrease for

MSEi does here not reach a plateau as it did previously for the linear DTI model. This

confirms the different choice for the number of orientations (or here iterations) usually

used for DTI and aQBI or sa-aQBI models: whereas for DTI, 40 orientations will be a

very sufficient choice, for the aQBI and sa-aQBI models, it is better to take between 50

to 200 orientations [Deriche et al. (2009)], meaning that the improvement gained will still

be significant after the 50th orientation.

Figure 4.12: MSEs during the KF process on the aQBI and sa-aQBI model. The trace of Pi is

initialized such that Tr (P0) = 106 (regularized KF version). The results are the same whether the

maximum SH order was set to 4 or 8.
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Figure 4.13: KF application on the aQBI and sa-aQBI models. The KF was performed as an OLS estimator, but using the regularized version. The

maximum SH order was set to 6. The ROI for which we show the dODF and cdODF results is shown in yellow in the fourth column.
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Figure 4.14: KF application on the aQBI and sa-aQBI models. The KF was performed as an OLS estimator, but using the regularized version. The

maximum SH order was set to 8. The ROI for which we show the dODF and cdODF results is shown in yellow in the fourth column.
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We did the same experiment with a maximum SH order of 6 and 8 —meaning that the

size of the state vector is equal to N = 28 and N = 45, respectively—. This choice enables

to get more details in the state vector, but also increases the noise impact on this vector.

Indeed the SH decomposition of the DW signal on a SH basis acts a bit as a smoothing

filter regarding noise issues. Nevertheless, this is less and less true, as N increases. This

observation gives an explanation for the results in fig. 4.13 and fig. 4.14: the maps show

no clear structural information for the first iterations (until at least the 39th iteration for

fig. 4.14. In this case, an RT process does not bring any extra information for at least

the first 39th iterations. We will be interested in showing if a noise correction enables to

improve this situation in the chapter 7.

We also computed the evolutions of the trace of Pi at each iteration i, as well as of the

MSEi. We do not show them as they are identical to the ones in fig. 4.12. This shows

that these RT error indicators have to be analyzed with respect to the maximum SH order

used: if the latter is high (e.g. equal to 8), then these RT error indicators do no indicate

the same image quality as when the maximum SH order is low.

Finally, we measured the two durations tKF and tmap defined in the previous subsec-

tion. For these HARDI results, tmap represents the time required to process the GFA map

for the aQBI model (or the cGFA for the sa-aQBI model). As before, we do not indicate

the duration to display the maps in RT, since it is negligible compared to the other dura-

tions. The results are shown in fig. 4.15 for the GFA map and cGFA map reconstructions

when using only one CPU and when using the cluster of 80 CPUs. For the maximum SH

orders set to 6 and 8, the update and map reconstruction time was obtained higher than

the repetition time TR when using the workstation only (1 CPU). With the cluster, this

time decreases far below TR. The results are very similar when using the aQBI or the

sa-aQBI model.
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Figure 4.15: Times to get the GFA map and cGFA map update after a new iteration: tKF (blue

box) is the time required for one iteration of the KF algorithm and tmap (magenta box) is the

time for processing the GFA map for the aQBI model (top) and the cGFA for the sa-aQBI model

(bottom). These times are compared to TR = 14s.

We did the same measurement for the dODF and cdODF maps calculated for the whole

brain. Computing dODF or cdODF maps is actually very time consuming. Indeed, the

representation of such maps is done using many little triangles on a CPU. The display is

then performed using the Open Graphics Library (OpenGL). The use of triangles leads to
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a huge increase in computation time. This was overcome by switching to a computation

technique based on GPU (graphical process unit) and more specifically using shaders as

they are already available in the library we used for the developments.

Concerning the execution of the denoising algorithm on the cluster, additionally to the

display task, a transfer task has to be accounted for. Indeed, each CPU of the cluster

has to transfer the large-sized dODF and cdODF reconstructed maps on the server that

displays the maps. This is taking a supplementary time, compared to the one-CPU process.

To measure these times, we run the algorithms as previously. The dODF and cdODF

calculation times of the RT process are shown in fig. 4.16 when using only one CPU and

when using the cluster of 80 CPUs. We do not indicate the time to display the maps

for some results with one CPU, as they were negligible compared to the other times.

Pay attention that the display times tdisplay indicated for the cases using the cluster also

include the transfer time required when using the cluster. This explains why the green

boxes are higher when using the cluster. We also notice in fig. 4.16 that the green box has

a tendency to decrease when the maximum SH order increases, when using the cluster.

This is surprising as the maps have a bigger size when the maximum SH order increases.

This observation can be explained by the fact that, for a high maximum SH order, there

might be a certain overlap between the reconstruction time and the transfer time. For

example, a CPU may have finished its reconstruction task earlier than another CPU and

the transfer may begin for this CPU earlier. This overlapping induced a decrease of the

green box when the maximum SH order increases, but this does not mean that the display

and the transfer of the maps happen faster with a higher maximum SH order. As before

with the other maps, we obtained a global time far below TR = 14s with the use of the

cluster.
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Figure 4.16: Times to get the dODF map and cdODF map update after a new iteration: tKF

(blue box) is the time required for one iteration of the KF algorithm and tmap (magenta box) is the

time for processing the dODF map for the aQBI model (top) and the cdODF for the sa-aQBI model

(bottom). Finally, tdisplay (green box) is the time required to display the maps. It additionally

contains the time required for the transfer of the data from the CPUs of the cluster to the server,

when using the cluster. When tdisplay is not shown, it is because it is very negligible compared to

the other times. All times are compared to TR = 14s.
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4.6 Conclusion of this chapter

The motivations for RT dMRI are twofold: improving the patient comfort and the diagno-

sis, opening the way to more interactions with the acquisition parameters online to refine

the results. After providing an overview of the various incremental techniques introduced

in the literature, the Kalman framework was presented as well as its implementation to

compute in RT local models such as DTI, aQBI and sa-aQBI. The hardware architecture

was also detailed and used to provide proofs of concept of the feasability of doing RT

inference of local modeling. In the next chapter, we will address the issue of non Gaussian

noise distribution and show how to deal with it accurately in RT.
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4.7 Appendix A: The KF derivation in a static framework

(without regularization)

The KF equations in a static framework, as the one described in section 4.2, can be

derivated from a WLS estimation detailed in [Chui and Chen (1987)], on which we base

this appendix. The weighted error is written as Hǫ, with ǫ the noise vector equal to

y−Ax and with H the weight matrix. The latter is defined such that R−1 = HTH, with

R the noise covariance matrix, presented in section 4.2 which is supposed to be diagonal

with diagonal elements named Ri ∀i ∈ J1;KK. Minimizing Hǫ in the least squares’ sense

means minimizing:

(Hǫ)T (Hǫ) = (Hy −HAx)T (Hy −HAx)

= (y −Ax)TR−1 (y −Ax) .
(4.21)

To minimize (Hǫ)T (Hǫ), we look at its derivative with respect to x. This leads us to the

normal equation:

(
ATR−1A

)
x̂ = ATR−1y. (4.22)

We obtained this normal equation from eq. 4.21. The demonstration is in appendix B.

Let us rewrite eq. 4.22 for iteration i, i.e. when only i measurements have been done (Ai

is then an i×N matrix, Ri an i×i matrix and yi an i×1 vector):

(
AT

i R
−1
i Ai

)
x̂i = AT

i R
−1
i yi. (4.23)

To obtain our sequential estimator, our objective is to link x̂i−1 to x̂i. For that, let us

first detail the term AT
i R

−1
i Ai, considering Ai =

[
Ai−1

ai

]
, with ai representing the ith

row of the matrix A:

AT
i R

−1
i Ai =

[
AT

i−1 aTi

] [ R−1
i−1 0

0 R−1
i

][
Ai−1

ai

]
, (4.24)

From eq. 4.24, we obtain:

AT
i R

−1
i Ai = AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai. (4.25)

Now, let us detail the term AT
i R

−1
i yi.

AT
i R

−1
i yi =

[
AT

i−1 aTi

] [ R−1
i−1 0

0 R−1
i

] [
yi−1

yi

]

= AT
i−1R

−1
i−1yi−1 + aTi R

−1
i yi.

(4.26)

Injecting eq. 4.25 and 4.26 into eq. 4.23 leads us to:

(
AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai

)
x̂i = AT

i−1R
−1
i−1yi−1 + aTi R

−1
i yi. (4.27)
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And, when rewriting eq. 4.23 at iteration i− 1, we obtain:

(
AT

i−1R
−1
i−1Ai−1+

)
x̂i−1 = AT

i−1R
−1
i−1yi−1,

Then:

(
AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai

)
x̂i−1 = AT

i−1R
−1
i−1yi−1 + aTi R

−1
i aix̂i−1. (4.28)

We substract eq. 4.27 with eq. 4.28:

(
AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai

)
(x̂i − x̂i−1) = aTi R

−1
i (yi − aix̂i−1) . (4.29)

We set ki =
(
AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai

)−1
aTi R

−1
i , which represents the gain, and this

gives us: x̂i = x̂i−1 + ki (yi − aix̂i−1) . The expression of ki can be simplified into: ki =

Dia
T
i R

−1
i , with

Di =
(
AT

i−1R
−1
i−1Ai−1 + aTi R

−1
i ai

)−1

=
(
AT

i R
−1
i Ai

)−1
.

(4.30)

In the appendix C, we prove that the estimation error covariance matrix Pi is equal to

Di. From the two expressions of Di written above in 4.30, we can write, with Di replaced

by Pi:

P−1
i = P−1

i−1 + aTi R
−1
i ai. (4.31)

Here, we use the matrix inversion lemma (Lemma 1.), whose proof is given in [Deriche

et al. (2009)] and which is stated such that:

Lemma 1. Let A, B, C be n×n, m×m and n×m matrices respectively such that(
A−1 +CB−1CT

)
and

(
B+CTAC

)
are nonsingular, then:

(
A−1 +CB−1CT

)−1
= A−AC

(
B+CTAC

)−1
CTA.

This lemma enables us to inverse eq. 4.31:

Pi = Pi−1 −Pi−1a
T
i

(
Ri + aiPi−1a

T
i

)−1
aiPi−1. (4.32)

We can show, and the demonstration of it is performed in appendix D, that:

ki = Pi−1a
T
i

(
Ri + aiPi−1a

T
i

)−1
.

Thus, from both latter equations, we obtain: Pi = Pi−1 − kiaiPi−1 . Rewriting the three

boxed equations of this appendix A, we obtain:

x̂i = x̂i−1 + ki (yi − aix̂i−1) ,

ki =
(
Ri + aiPi−1a

T
i

)−1
Pi−1a

T
i ,

Pi = Pi−1 − kiaiPi−1,

which correspond to the KF equations presented in section 4.2.
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4.8 Appendix B: Demonstration of the normal equation

Here, we want to minimize the weighted error Hǫ. In appendix A, we have seen that:

(Hǫ)T (Hǫ) = (y −Ax)T R−1 (y −Ax). This expression can be developed such that:

(Hǫ)T (Hǫ) = yTR−1y − yTR−1Ax− xTATR−1y + xTATR−1Ax.

And yet, we have:

xTATR−1y =
(
xTATR−1y

)T
(because it is scalar)

= yTR−1Ax (because RT = R).

Consequently, we obtain: (Hǫ)T (Hǫ) = xTATR−1Ax − 2xTATR−1y + yTR−1y. Let

us notice that ATR−1A is positive. Therefore, to find the optimum vector x̂ minimizing

(Hǫ)T (Hǫ), we just need to look for x̂ such that:

∂
(
(Hǫ)T (Hǫ)

)
(x̂)

∂x
= 0. (4.33)

And yet, there is a Proposition 1. about the matrix derivative stating that:

Proposition 1. For a vector v ∈ Rk and a matrix M ∈ Rk×k:

∂
∂v

(
vTMv

)
=
(
M+MT

)
v,

and in particular, if M is symmetric, MT = M and:

∂
∂v

(
vTMv

)
= 2Mv,

Knowing the above proposition, eq. 4.33, which is quadratic in x simplifies into: 2ATR−1Ax̂−
2ATR−1y = 0, which finally leads to:

(
ATR−1A

)
x̂ = ATR−1y.
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4.9 Appendix C: Formula for the estimation error covari-

ance matrix Pi

Here, we want to prove that: Pi =
(
AT

i R
−1
i Ai

)−1
. For that, we exactly follow the math-

ematical steps of appendix D in [Deriche et al. (2009)]. The estimation error covariance

matrix is defined such that: Pi = E
[
(x− x̂i) (x− x̂i)

T
]
. From this, we can write that:

E
[
(x− x̂i) (x− x̂i)

T
]

= E

[(
x−

(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i yi

)(
x−

(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i yi

)T]
(using

eq. 4.23)

= E

[(
x−

(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i (Aix+ ǫi)

)(
x−

(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i (Aix+ ǫi)

)T]

= E

[((
AT

i R
−1
i Ai

)−1
AT

i R
−1
i ǫi

)((
AT

i R
−1
i Ai

)−1
AT

i R
−1
i ǫi

)T]

=
(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i E

[
ǫiǫ

T
i

]
R−1

i Ai

(
AT

i R
−1
i Ai

)−1

=
(
AT

i R
−1
i Ai

)−1
AT

i R
−1
i RiR

−1
i Ai

(
AT

i R
−1
i Ai

)−1

=
(
AT

i R
−1
i Ai

)−1 (
AT

i R
−1
i Ai

) (
AT

i R
−1
i Ai

)−1

=
(
AT

i R
−1
i Ai

)−1
.
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4.10 Appendix D: Formula for the Kalman gain matrix ki

In appendix A, when we introduced the Kalman gain, we expressed it as ki = Pia
T
i R

−1
i .

We want to demonstrate that

ki = Pia
T
i R

−1
i = Pi−1a

T
i

(
Ri + aiPi−1a

T
i

)−1
. For that, we exactly follow the mathemat-

ical steps of appendix E in [Deriche et al. (2009)]. Using the matrix inversion lemma

(Lemma 1.) stated in appendix A, we have:

Pi−1a
T
i

(
Ri + aiPi−1a

T
i

)−1

= Pi−1a
T
i

(
R−1

i −R−1
i ai

(
P−1

i−1 + aiR
−1
i aTi

)−1
aTi R

−1
i

)

=
(
Pi−1 −Pi−1a

T
i R

−1
i ai

(
P−1

i−1 + aiR
−1
i aTi

)−1
)
aTi R

−1
i

=
(
Pi−1 −Pi−1a

T
i

(
aiPi−1a

T
i +Ri

)−1 (
aiPi−1a

T
i +Ri

)
R−1

i ai
(
P−1

i−1 + aiR
−1
i aTi

)−1
)
aTi R

−1
i

=
(
Pi−1 −Pi−1a

T
i

(
aiPi−1a

T
i +Ri

)−1 (
aiPi−1a

T
i R

−1
i ai + ai

) (
P−1

i−1 + aiR
−1
i aTi

)−1
)
aTi R

−1
i

=
(
Pi−1 −Pi−1a

T
i

(
aiPi−1a

T
i +Ri

)−1
aiPi−1

(
aTi R

−1
i ai +P−1

i−1

) (
P−1

i−1 + aiR
−1
i aTi

)−1
)
aTi R

−1
i

=
(
Pi−1 −Pi−1a

T
i

(
aiPi−1a

T
i +Ri

)−1
aiPi−1

)
aTi R

−1
i

= Pia
T
i R

−1
i (using eq. 4.32)

= ki.

101



102



Part III

Real-time noise correction for

real-time dMRI (rtdMRI)
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Chapter 5

Modeling of noise in MRI

Among the phenomena which corrupt the quality of MRI images, noise is a considerable

one, particularly in dMRI where the sensitization to the diffusion process is characterized

by a strong signal decay. Indeed, the dMRI measurement corresponds to the loss of

phase consistency in the transverse magnetization signal, a loss, which is due to the water

molecules’ diffusion (see chapter 3). The signal level in dMRI quite often falls down to the

noise level. What are the origins and the nature of this noise? Can we estimate it and if so,

how? What actual —measurable ?— effect does it have on images? This chapter attempts

to assemble all up-to-date knowledge about MRI noise while answering these questions.

The first section gives a detailed description of noise according to different MRI sequence

parameters. The second section summarizes the various methods of the literature available

to estimate the noise, highlighting the difficulty to accurately estimate it. Finally, in the

third section, we describe some classical image quality indices and propose a new one

specific to dMRI images.

5.1 Origins of noise in MRI

When we perform an MRI exam on a subject, the collected data are always noisy. How is

noise defined and what are its origins?

5.1.1 The origins and the experimental aspects of noise

Noise can be considered as being all the signal, which does not originate from the measured

physical phenomenon and corresponds to what covers up and degrades the true signal.

This parasite can have several origins: it can be a thermal noise (also called Johnson-

Nyquist noise), which is due to random motion of charge carriers in electrical conductors

of the MRI scanner system, as well as in the subject’s body, which is also conductive.

Noise can also come from the external environment (outside temperature changes...).

Finally, a last possibility is that noise originates from quantization error due to analog-

to-digital signal conversion. Among all the sources of corruption described above, only

the thermal noise is random [Barbier (2004)]. In our study, we will not deal with noise
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coming from the external environment that we consider to have very little effect on brain

MRI results. Concerning the quantization error, it is also small and is negligible regarding

thermal noise if the latter’s standard deviation is not approximately equal or lower than

one [Dietrich et al. (2008b)], which was always the case in our studies.

The noise, which we are interested in, is therefore the random thermal noise. It comes

from ohmic losses in the receiving circuit, as well as from noise due to the pre-amplifier.

The latter is used to amplify the measured signal before the analog-to-digital conversion

followed by the double inverse Fourier transform of the measured signal (or the parallel

reconstruction technique). The circuit between the receiving antenna and the pre-amplifier

must have low losses and the pre-amplifier itself must have a low noise figure. This is

usually achieved [Vlaardingerbroek and den Boer (2004)]. From the ohmic losses only

remain those from the receiving circuit whose sources are divided in two: first, the RF

antenna has its own losses. Secondly, eddy current losses exist in the subject itself

produced by the Brownian motion of charge carriers within the body’s conductive tissues.

These eddy currents generate randomly varying magnetic fields, which then induce a noise

electromotive force in the RF receiving antenna [Hoult and Richards (1976); Redpath

(1998)]. At mid to high magnetic fields (B0 ≥ 1T ), the dominant source of the receiving

circuit is the one coming from the subject, except if the RF antenna is very small. In

any case, the impact of thermal noise is that, even when no magnetic excitation is applied

to acquire a signal, the voltage across the receiving coil, which measures the transverse

magnetization, is not equal to zero: it contains the noise signal. This thermal noise is

white, and therefore theoretically contains all frequencies. However, during the MRI

signal detection process, a low pass filtering is used to only detect signals in a frequency

read bandwidth (RBW) centered around the frequency of the MRI signal. Therefore, only

the noise signals with frequencies contained in this RBW have an impact on the final

result.

Let us now define the SNR in the MRI hardware context. In the first chapter, we saw

with eq. 2.9 that the output of the receiving antenna, in a general case when no field

gradient is applied, is proportional to:

eprop(t) = ω0

∫

volume
e−t/T ∗

2 (r)A⊥(r, 0)B⊥(r)sin (ω0t+ θB(r)− φ0(r)) d
3r, (5.1)

with ω0 the Larmor angular frequency, T ∗
2 the effective transverse relaxation time and

A⊥(r, 0) the initial transverse magnetization at the localization given by r. B⊥(r) is the

magnitude of the transverse magnetic field for a unit current in the coil with θB(r) its

angle measured in the laboratory frame of reference. Finally, φ0(r) is the initial phase of

the transverse magnetization. Now, for what concerns noise, we can write the root mean

square of the noise voltage. Using the definition of the Johnson-Nyquist noise, the root

mean square of the noise voltage is:

Vnoise =
√
4kBT ·∆f · (Ra +Rs), (5.2)

with kB the Boltzmann’s constant, T the absolute temperature of the resistive object

and ∆f the RBW. Finally, Ra is the resistance due to the antenna, whereas Rs is the
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resistance due to subject. We then define the SNR at the location r in this hardware

context as the ratio between the instantaneous output of the receiver to the root mean

square noise voltage, and consequently [Vlaardingerbroek and den Boer (2004)]:

SNR(r) ∝ |eprop(t)|
Vnoise

,

∝ ω0e
−t/T ∗

2 (r)|A⊥(r, 0)||B⊥(r)|√
4kBT ·∆f · (Ra +Rs)

.

(5.3)

Several teams studied the effects of the hardware configuration on the SNR, and namely

the effect of the field strength (neglecting the effect of B0 on T ∗
2 ). For mid to high field

systems (B0 ≥ 1T ), with a not too small antenna, the SNR increases linearly with B0.

Therefore, a gain in image quality is obtained with the use of high field scanners. Studies

about hardware factors impacting the SNR can be found in [Haacke et al. (1999); Redpath

(1998); Edelstein et al. (1986)].

From eq. 5.3, an SNR expression can be derived in the specific case of 2D imaging that

depends on the scanning parameters. For a single-shot echo-planar DW spin echo pulse

sequence in 2D, we have the following proportionality relation, which accounts for the use

of partially parallel MRI reconstruction and for which T ∗
2 is replaced by T2 because of the

refocusing pulse in the sequence:

SNR(r) ∝ exp(−TE/T2(r))(∆x ·∆y ·∆z)
√

NxNyNacqB0√
∆f · RG , (5.4)

with ∆x, ∆y and ∆z the dimensions of the voxel which indicate the resolution level.

Nx and Ny are the dimensions in number of voxels of the image (i.e. the acquisition

matrix). Nacq is the number of repetitions of the same acquisition. R is, as in chapter 2,

the parallel acceleration factor. Finally, G is the quality factor of the receiving antenna.

Some conclusions can be obtained from eq. 5.4: as before, we see that the SNR increases

with B0. However, the time T2 also decreases with B0. To make sure that the SNR

gain obtained with an increase of B0 is not too much impacted by the decrease of T2, a

powerful gradient system has to be used: gradients with a high amplitude and high slew

rates enable to reduce the echo time TE and therefore reduce the T2 attenuation. Eq. 5.4

also informs us that the higher the spatial resolution, the lower the SNR. Moreover, the

higher the acquisition matrix size (for a same resolution), the higher the SNR. The SNR

can be improved by a factor
√
p when repeating p times the same acquisition. Finally, a

low value of the RBW increases the SNR, but low RBW values increase the echo train

duration inducing more geometrical distortions (due to susceptibility effects...). Some

trade-off has therefore to be found [Redpath (1998)].

An important choice impacting the SNR is about the receiver. The choice of a phased-

array coil increases the SNR, in comparison to the use of a volumic coil exploring the

same FOV, as mentioned in the first chapter. Research teams studied more deeply the

impact of a phased-array system on the noise. They highlighted the fact that in phased
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array systems, noise correlations exist [Roemer et al. (1990); Hayes and Roemer (1990);

Harpen (1992); Redpath (1992); Brown et al. (2007)]. These correlations reduce the SNR

performance of the array. Noise correlations have two sources [Redpath (1992); Constan-

tinides et al. (1997)]: they can come from mutual coupling between the channels. They

are then due to the noise components arising from the coils themselves. Such correlation

type can be eliminated by an adapted preamplifier hardware configuration. The second

source of noise correlations is noise arising from the subject. The resulting correlations are

then impossible to eliminate. If they impact the SNR performance of the phased array,

they also produce a correlated noise signal in MRI images. This is an important point to

keep in mind for next subsection.

Further analysis is possible on the impact of other contrasts and sequence choices on

the SNR. But this is behind the scope of our introduction on noise. In the rest of this

section, we will detail the characteristics of thermal noise in the case of an acquisition

with one channel, and in the case of parallel MRI. We will insist on what makes this noise

difficult to correct.

5.1.2 Noise modeling

The MRI signal received on each channel is complex with a real and an imaginary com-

ponent. The expression of the MRI signal before the double inverse Fourier transform is

given by eq. 2.13 in chapter 2. The thermal noise, described in the previous subsection,

corrupts this complex signal. It also has a real and an imaginary component. These two

noise components are assumed to be zero-mean and uncorrelated Gaussian distributed

[Henkelman (1985)] which is consistent with the previous description of a white random

noise. The zero-mean uncorrelated Gaussian distribution of each noise component remains

true after the inverse Fourier transform is applied to each real and imaginary parts of the

channel [Gudbjartsson and Patz (1995)]. Indeed, the inverse Fourier transform does not

change the zero-mean Gaussianity characteristic of a function. However, in general the

magnitude of the complex MRI signal is exploited. The magnitude of this complex signal

leads to the usual MRI images examined by physicians. Indeed, it is most common to use

the magnitude of the measured signal, instead of its real and imaginary parts, to avoid

artifacts due to the phase, as explained in [Henkelman (1985); Constantinides et al. (1997);

Nowak (1999)]. In most clinical MRI scanners, there exist a way to extract the complex

k-space data, but in general, through proprietary file formats and tools not designed to be

used in clinical routine. Furthermore, reconstruction pipelines are generally not opened

to the customer and there is consequently no possibility to deal with noise correction at

the complex signal level. Therefore, it turns to be necessary to develop ways to directly

analyse noise from the magnitude images. Besides, the community of researchers working

on estimation and correction of noise on the magnitude is large.

In this section, we will therefore present the statistics of the noise corrupting the

magnitude. Let us consider the general case of a multiple-channel acquisition. Assuming

an SoS reconstruction, the magnitude signal is written such that [Constantinides et al.
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(1997)]:

M =

√√√√
n∑

c=1

[
M2

rc +M2
ic

]
, (5.5)

with n the number of channels and Mrc and Mic the real and imaginary parts, respec-

tively, of the MRI complex signal measured by the channel c. The magnitude can also be

expressed by the following relation:

M =

√√√√
n∑

c=1

[
(Src + ǫrc)

2 + (Sic + ǫic)
2
]
, (5.6)

with Src and Sic the real and imaginary parts, respectively, of the noise-free complex signal

Sc received by the channel c. The terms ǫrc and ǫic represent the real and imaginary parts,

respectively, of the complex noise ǫc corrupting the signal received by the channel c. For a

single-channel acquisition, this complex noise has always been assumed to be a zero-mean

and uncorrelated Gaussian distributed process, as mentioned earlier [Henkelman (1985)].

Concerning a multiple-channel acquisition, the real and imaginary parts of the complex

noise signals are also assumed to be zero-mean Gaussian processes. However, we explained

in the previous subsection that noise correlations exist. Therefore, the complex noise on

a channel is eventually correlated with the complex noise signals on the other channels.

Consequently, ǫrc and ǫic may be correlated with the other real and imaginary parts of the

signals from the rest of the channels. At first, we will neglect these correlations’ issues and

study noise in the simplified case. If we want to study the noise corrupting the magnitude

M , we may write:

M = S + ǫ , with





S =

√√√√
n∑

c=1

[
S2
rc + S2

ic

]
=

√√√√
n∑

c=1

S2
c ,

ǫ =

√√√√√√
n∑

c=1


ǫ2rc + ǫ2ic︸ ︷︷ ︸

ǫ2c

+2 (Srcǫrc + Sicǫic)


.

(5.7)

The noise term ǫ corrupting the magnitude M is the noise which we are interested in and

that many researchers have studied. The non-linear transformation to get ǫ modifies the

characterics of the noise: ǫ, in opposition to ǫrc and ǫic , is no longer zero-mean Gaussian

distributed. It is also a noise-free signal dependent noise.

Fig. 5.1 provides a short history of the investigations conducted about noise in MRI

from the magnitude of the signal. First, in 1984, the team of Edelstein studied the noise

in the MRI image background, in the single-channel case (i.e. n = 1). They showed that

the background magnitude M follows a Rayleigh distribution, defined for M ≥ 0

as [Edelstein et al. (1984)]:

RAYLEIGH PDF: p(M ;σ) =
M

σ2
. exp

(
−M2

2σ2

)
, (5.8)
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Aja-Fernández et al.

Aja-Fernández et al.

Dietrich et al.

Thunberg et al.

Constantinides et al.

Bernstein et al.1989

1997

2006

2008

2011

2012

time (years)

1984 Edelstein et al. Background noise shown to follow a Rayleigh distribution.

1985 Henkelman Noise shown to be non-gaussian, especially when the SNR is low.

PDF of M expressed according to a Rice distribution for a single-channel
acquisition.

correlation between channels.
2)Quantitative confirmation of the noise stationarity disappearance due to
correlations between channels.

1)PDF of M expressed according to a nc-χ distribution for a multiple-
channel acquisition with an SoS reconstruction, no subsampling, and no

Study of the noise distribution in SENSE- and SoS GRAPPA-reconstructed
images.

1)Background noise analysis and classification with respect to the recon-
struction type (SoS, GRAPPA, SENSE...).
2)Introduction of an effective number of channels in an empirical way to
account for the noise non-stationarity.

Nc-χ model set up with theoretical definition of an effective number of

Simplification of the previous theoretical model for an SoS reconstruction
without subsampling, with consideration for noise non-stationarity.

channels and of an effective noise variance for an SoS GRAPPA recon-
struction.

Figure 5.1: A brief history∗ of MRI noise modeling. ∗(Inspired by Stephen Hawking...)

with p(M ;σ) the PDF of M with σ its standard deviation. The latter PDF is drawn in

dark blue in fig. 5.2, on page 112. It looks like a Gaussian, with the big difference that

it is not symmetric and that it contains a positive skewness. Moreover, its mean is not

zero. Then, in 1985, Mark Henkelman emphasized the non zero-mean Gaussian nature of

the noise in MRI magnitude images when n = 1, especially in regions with a low SNR.

It has to be well accounted for a good noise correction or a good SNR measurement. In

1989, Mattew Bernstein et al. were the first to express, for the whole image, the PDF

of M concluding it follows a Rice distribution in the case of a single-channel acquisition

(n = 1). This distribution is defined for M ≥ 0 and S ≥ 0 and written as [Bernstein et al.

(1989); Rice (1952)]:

RICIAN PDF: p(M ;S, σ) =
M

σ2
. exp

(
−M2 + S2

2σ2

)
· I0
(
S ·M
σ2

)
, (5.9)

with I0 the modified Bessel function of the first kind of order 0 (defined at the end of

the manuscript, in appendix B) and σ the noise standard deviation on the imaginary

and real components of the receiving channel. Chris Constantinides et al. studied the

case of multiple-channel acquisitions (n > 1) with an SoS reconstruction, assuming that

there is no noise correlation in the phased array system. Moreover, the impact of parallel

MRI accelerated sequence with subsampling on the noise characteristics was not tackled.
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Finally all channels were assumed to have the same variance. In this case, they showed

that the PDF of the signal received by n channels is a nc-χ distribution, defined for

M ≥ 0 and S > 0, and written such that [Constantinides et al. (1997)]:

NC-χ PDF: p(M ;S, σ, n) =
S

σ2

(
M

S

)n

exp

(
−M2 + S2

2σ2

)
· In−1

(
S ·M
σ2

)
, (5.10)

with In−1 the modified Bessel function of the first kind of order n − 1. But, when corre-

lations between channels exist, the noise —more precisely its distribution— loses its sta-

tionarity, as pointed out by [Hayes and Roemer (1990); Redpath (1992); Constantinides

et al. (1997)]. This means that the noise standard deviation σ is then voxel-dependent,

as well as signal-dependent. This non-stationarity is indeed caused by the fact that the

correlations are dependent on the noisy signals at each voxel. As the noisy signals are

voxel-dependent, so are also the correlations. In 2006, Per Thunberg et al. showed the

spatial variation of noise with two partially parallel MRI techniques, namely SENSE (with

and without regularization) and SoS GRAPPA [Thunberg and Zetterberg (2007)]. In 2008,

Olaf Dietrich et al. studied histograms of the background noise in different reconstruction

situations to build a classification of the noise PDF depending on many reconstruction

criteria [Dietrich et al. (2008a)]. They also introduced, for the SoS reconstruction, an

effective number of channels in an empirical way to account for the correlations’ effects on

the PDF of M . Finally in 2011 and 2012, the team of Santiago Aja-Fernández and Antonio

Tristán-Vega built a theoretical definition of this effective number of channels, as well as

of an effective noise variance, in case of an SoS GRAPPA reconstruction [Aja-Fernández

et al. (2011)] and in case of an SoS reconstruction without subsampling [Aja-Fernández

and Tristán-Vega (2012)]. They showed that the nc-χ distribution defined with these two

effective parameters was a good approximation for the PDF of M in such cases.

We will now detail the noise nature for the single-channel and the multiple-channel

acquisitions. The SoS GRAPPA case is of particular interest for us, as we will deal with

real data obtained using this reconstruction process.

Noise distribution in case of a single-channel acquisition

In case of a single-channel acquisition, the magnitude follows a Rice distribution, which

we rewrite here for M ≥ 0 and S ≥ 0:

RICIAN PDF: p(M ;S, σ) =
M

σ2
. exp

(
−M2 + S2

2σ2

)
· I0
(
S ·M
σ2

)
. (5.11)

Its first and second moments are:



E(M) =

√
2 · σ · Γ

(
3
2

)
· 1F1

(
−1

2 ; 1;− S2

2σ2

)
,

E(M2) = S2 + 2 · σ2,
(5.12)

with Γ the Gamma function, defined at the end of the manuscript in appendix B. 1F1 is

the confluent hypergeometric function of the first kind defined in the same appendix.
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From eq. 5.11, the PDF followed by the noise ǫ can be derived, using the following

Theorem 1.:

Theorem 1. fX is the PDF of the random variable X. If a random variable Y is written

such that Y = g(X), with g a differentiable and strictly monotonic function, then the

resulting PDF followed by Y is expressed such that:

fY (y) = fX
(
g−1(y)

)
·
∣∣∣ 1
g′(g−1(y))

∣∣∣ ,

where g−1 is the inverse function of g and g′ is the derivative of g.

Then, the PDF of ǫ, with ǫ = M − S, is given by:

p(ǫ;S, σ) =
ǫ+ S

σ2
. exp

(
−(ǫ+ S)2 + S2

2σ2

)
· I0
(
S · (ǫ+ S)

σ2

)
. (5.13)

Both PDF curves given by eq. 5.11 and eq. 5.13 are drawn in fig. 5.2 for different values

of S/σ. When S = 0, M follows a Rayleigh distribution given by eq. 5.8. It corresponds

to the dark blue curve in fig. 5.2. We also note that the higher the ratio S/σ, the more

the PDF of ǫ looks like a zero-mean Gaussian distribution.

p(
M

;S
,σ

)

M/σ

p(
ǫ;
S
,σ

)

=0

=1

=2

=4

S
σ
S
σ

S
σ

S
σ

ǫ/σ

Figure 5.2: PDF of M (left) and ǫ (right) in case of a single-channel acquisition for several values

of S/σ. The higher the ratio S/σ, the more the PDF of ǫ looks like a zero-mean Gaussian. The

legend for colors indicated in the square on the left also applies on the right.

In the previous chapter, we saw that for ratios S/σ ≥ 4, the PDF followed by ǫ can be

approximated by a Gaussian N (0, σ2) [Henkelman (1985); Sijbers et al. (1998)]. Indeed,

fig. 5.3 shows the convergence of E(M) on S, as well as the convergence of the noise

standard deviation of M , written as σM , on σ for high SNR values. Considering now

the noise term ǫ = M − S, its mean is E(ǫ) = E(M − S) and therefore it converges on

0. Its noise standard deviation σǫ is equal to σM and therefore converges on σ. For low

SNR values, the approximation of a zero-mean Gaussian noise with a standard deviation

equal to σ is no longer valid. We then speak of the Rician bias [Gudbjartsson and Patz
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(1995); Sijbers et al. (1998)], which corresponds to the value of ǫ at low SNR. Compared

to a zero-mean Gaussian noise, the noise ǫ described here is far more difficult to remove,

precisely because it is dependent on the noise-free signal. Indeed, the PDF given by

eq. 5.13 depends on S. Least-squares estimators, which are efficient to remove zero-mean

Gaussian noise, will here not be able to remove the Rician bias at low SNR values. And

yet, we will see in section 5.1.3 that the SNR can be very low in dMRI and therefore it is

required to account for the non zero-mean and non Gaussian nature of the noise.

S/σ S/σ

E
(M

)/
σ

σ
M
/σ

E(M)/σ = S/σ

σM/σ = 1

Figure 5.3: Mean and noise standard deviation of the PDF followed by M in case of a single-

channel acquisition.

What are the noise characteristics when the acquisition is performed using a phased-

array coil system?
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Noise distribution in case of a multiple-channel acquisition

In neuroimaging, it is increasingly common to acquire MRI data using receiving antenna

arrays containing from 8 to 32 channels. There are several reconstruction techniques in

parallel MRI. Well-known examples are GRAPPA and SENSE among others. A simple

SoS reconstruction without subsampling can also be performed. In this manuscript, we

will only focus on three reconstruction algorithms: the SoS reconstruction without sub-

sampling, the SoS GRAPPA reconstruction and finally the SENSE algorithm.

SoS reconstruction without subsampling. We rewrite here the expression of the

magnitude signal obtained with an SoS reconstruction [Constantinides et al. (1997)]:

M =

√√√√
n∑

c=1

((Src + ǫrc)
2 + (Sic + ǫic)

2), (5.14)

with Src and Sic the real and imaginary parts, respectively, of the noise-free complex signal

Sc received by the channel c. The terms ǫrk et ǫik represent the real and imaginary parts,

respectively, of the complex noise corrupting the signal received by the channel c. These

two noise components for each channel are assumed to be zero-mean and uncorrelated

Gaussian distributed [Henkelman (1985); Constantinides et al. (1997)]. We consider the

following hypotheses: there is no correlation between the channels and all real and imagi-

nary parts of the different channels have all the same noise standard deviation written as

σ. Consequently, the noise corrupted final magnitude M , written as M = S + ǫ, follows a

nc-χ distribution, defined for M ≥ 0 and S > 0 by [Constantinides et al. (1997)]:

NC-χ PDF: p(M ;S, σ, n) =
S

σ2

(
M

S

)n

exp

(
−M2 + S2

2σ2

)
· In−1

(
S ·M
σ2

)
. (5.15)

Its first and second moments are:



E(M) =

√
2 · σ · (n)(1/2) · 1F1

(
−1

2 ;n;− S2

2σ2

)
,

E(M2) = S2 + 2 · n · σ2,
(5.16)

with (n)(1/2) calculated applying the definition of the Pochhammer rising factorial symbol

given at the end of the manuscript in appendix B. For a single-channel acquisition (i.e.

n = 1), eq. 5.15 simplifies to the Rice distribution given by eq. 5.11 and eq. 5.16 simplifies

to eq. 5.12. When S = 0, M follows a central χ distribution, which equation is the

following for M ≥ 0:

C-χ PDF: p(M ; 0, σ, n) =
1

Γ(n)σ2

(
M

2σ2

)n−1

Mn exp

(
−M2

2σ2

)
. (5.17)

As for the Rician distribution, it is possible to derive the PDF followed by the noise ǫ,

using the Theorem 1, page 112:

p(ǫ;S, σ, n) =
S

σ2

(
(ǫ+ S)

S

)n

exp

(
−(ǫ+ S)2 + S2

2σ2

)
· In−1

(
S · (ǫ+ S)

σ2

)
. (5.18)
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Both PDF curves given by eq. 5.15 and eq. 5.18 are drawn in fig. 5.4 for different values

of S/σ, as well as for different values of n. The central χ distributions (when S = 0)

corresponds to the dark blue curves in the left column in fig. 5.4.

We also remark that the higher the n, the smaller the skewness of the curves, especially

at low SNR values: the curves are then more symmetric. Also, as in fig. 5.2, the higher

the ratio S/σ, the more the PDF of ǫ looks like a zero-mean Gaussian.
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M/σ ǫ/σ

ǫ/σ
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Figure 5.4: PDF of M (left) and ǫ (right) in case of a multiple-channel acquisition under the three

following hypotheses: no subsampling, no correlation between the channels, and same

variance for each channel. The PDF curves are represented for n = 2/4/12 and for several

values of S/σ. The higher the n, the smaller the skewness of the curves, especially at low SNR

values: the curves are then more symmetric. Also, as in fig. 5.2, the higher the ratio S/σ, the

more the PDF of ǫ looks like a zero-mean Gaussian. The convergence on this similarity is slower

as n increases. The legend for colors indicated in the top left square applies to all plots.

The latter observation is confirmed by fig. 5.5, which shows the convergences of E(M)

and σM on S and σ, respectively. This convergence is however slower as n increases.

Considering now the noise term ǫ = M − S, its mean is E(ǫ) = E(M − S) and therefore
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it converges on 0. Its noise standard deviation σǫ is equal to σM and therefore converges

on σ. As for the previously described Rician noise, this nc-χ noise is very difficult to

remove especially for low SNR values, as it can no longer be approximated by a zero-

mean Gaussian noise. A nc-χ bias appears, which depends on the noise-free signal.

Moreover, compared to the Rician PDF, the approximation by a zero-mean Gaussian noise

is here valid for larger SNR values than in the single-channel case. This effect is increased

with higher values of n.

E
(M

)/
σ

E(M)/σ = S/σ

S/σ

σM/σ = 1

S/σ

σ
M
/σ

n=2
n=4
n=12

Figure 5.5: Mean and noise standard deviation of the PDF followed by M in case of a multiple-

channel acquisition, under the three same hypotheses as in fig. 5.4. The higher the number of

channels n, the slower the convergences of E(M) and σM on S and σ, respectively. The legend

indicated in the left square also applies for the right square.

To obtain the above described statistical characteristics of the noise with an SoS recon-

struction without subsampling, we needed to assume that there is no correlation between

the noise signals and that all channels have the same variance σ2. However, in pratice,

these conditions, particularly the first one, are often not satisfied. In phased array systems,

noise correlations exist and they induce a spatial variation of noise —more precisely of its

distribution—, as mentioned previously.

Concerning SoS reconstructions without subsampling, the authors of [Dietrich et al.

(2008a)] proposed to calculate an effective number of channels neff to account for these

correlations. Their study only concerned the background. It was based on producing

the histogram of noise in an assumed stationary region of the background. They created

a lookup table (LUT) linking integer values of the number of channels n with the corre-

sponding theoretical ratio of the mean value over the standard deviation of the background

signal. They obtained the ratio using the characteristics of the nc-χ PDF. Then, they mea-

sured the experimental ratio obtained with the measurements inside the large background

region and designated the corresponding number of channels in the LUT as neff . The

latter was always obtained lower than the true n used in the experiment. Indeed, this

lower neff reflects the fact that correlations reduce the number of independent channels’

outputs.
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The authors of [Aja-Fernández and Tristán-Vega (2012)] went recently further in the

analysis: they considered the whole image, and not only the background anymore. They

showed that the nc-χ model does not hold to describe the distribution of M for SoS

reconstructions without subsampling. But, they proved that a nc-χ distribution defined

with an effective number of channels, as well as an effective noise variance is a good

approximation for the true noisy distribution in the whole volume. It is highlighted in

their paper that these both effective parameters are non-stationary, and therefore have

to be calculated at each voxel of the volume. This calculation requires to compute the

following voxel-wise covariance matrix:

Σ2(v) =




σ2
1 σ2

12(v) . . . σ2
1n(v)

σ2
21(v) σ2

2 . . . σ2
2n(v)

...
...

. . .
...

σ2
n1(v) σ2

n2(v) . . . σ2
n




, (5.19)

with σ2
i the stationary variance of the noise on the channel i and σ2

ij(v) the covariance of

the noise signals from channels i and j defined at the voxel v. The effective number of

channels neff (v) and the effective noise variance σ2
eff (v) are given by:

neff (v) =
S2(v) · Tr(Σ2(v)) + Tr(Σ2)2(v)

S∗
c(v) ·Σ2(v) · Sc(v) + ‖Σ2(v)‖2F

, (5.20)

σ2
eff (v) =

Tr(Σ2(v))

neff (v)
, (5.21)

where Tr(·) is the trace operator. The n×1 vector Sc contains all complex noise-free signals

received on each channel: Sc(v) = [S1(v), . . . , Sn(v)]
T. Its conjugate transpose is written

as S∗
c(v). Finally, ‖·‖F represents the Frobenius norm, defined, for a matrix X, such that:

‖X‖F =
√

Tr (XX∗). These voxel-wise expressions of both effective parameters seem

difficult to use in practice: indeed, with this information, calculating neff (v) and σ2
eff (v)

requires a simultaneous estimation at each voxel of neff (v), σ
2
eff (v) and the noise-free

signals’ vector Sc(v). This is very difficult to achieve in pratice. But a simplified scenario

with some approximations was developed to account for this theory and we will present it

in the paragraph page 124.

How does the distribution model change with an SoS GRAPPA reconstruction?

SoS GRAPPA reconstruction. An SoS GRAPPA reconstruction has been shown to

increase the non-stationarity of the noise distribution in the data volume [Dietrich et al.

(2008a); Aja-Fernández et al. (2011)]. Besides, the authors of [Dietrich et al. (2008a)]

obtained a lower empirical neff in the background with an SoS GRAPPA reconstruction

compared to an SoS reconstruction without subsampling. The team of Santiago Aja-

Fernández and Antonio Tristán-Vega performed the same analysis of the PDF of M as

previously, with an adaptation for the GRAPPA reconstruction. For that, they used the
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voxel-wise GRAPPA interpolation matrix, defined by:

W(v) =




W1(1,v) . . . Wn(n,v)
... . . .

...

Wn(1,v) . . . Wn(n,v)


 , (5.22)

with Wi(j,v) the GRAPPA reconstruction coefficient in the spatial domain. This coef-

ficient is obtained by the double inverse Fourier transform of the GRAPPA convolution

kernel defined in the k-space [Aja-Fernández et al. (2011); Breuer et al. (2009)]. Using

the GRAPPA interpolation matrix, the covariance matrix of the interpolated data at each

voxel v is then expressed such that:

C2(v) = W(v) ·Σ2(v) ·W∗(v), (5.23)

with Σ2(v) the voxel-wise covariance matrix given by eq. 5.19. The authors of [Aja-

Fernández et al. (2011)] then adapted the previous expressions of the effective parameters,

replacing the matrix Σ2 by C2 in eq. 5.20 and 5.21:

neff (v) =
S2(v) · Tr(C2(v)) + Tr(C2)2(v)

S∗
c(v) ·C2(v) · Sc(v) + ‖C2(v)‖2F

, (5.24)

σ2
eff (v) =

Tr(C2(v))

neff (v)
. (5.25)

Similarly as previously, these expressions are difficult to use in pratice.

Finally, how does the distribution model change with a SENSE reconstruction?

SENSE reconstruction. With a SENSE method, the noise distribution is also non-

stationary. It was shown to vary spatially according to the voxel-wise geometry factor,

which is an indicator of the geometry arrangement between the coils [Weiger et al. (2001)].

The authors of [Thunberg and Zetterberg (2007)] also studied the mSENSE algorithm

[Wang et al. (2001)] that includes a regularization. For both SENSE algorithms, noise

varies spatially and quite less uniformly than with GRAPPA. We invite the reader to

read [Thunberg and Zetterberg (2007)] for more details on the spatial noise variations

with SENSE and mSENSE. Concerning a theoretical PDF that could be defined as for

the GRAPPA case on the whole MRI volume, nothing has been deeply experimented yet.

However, with SENSE, as the final reconstructed image is generated from the modulus of

only one complex image, the number of channels should be intuitively taken as 1: a Rician

PDF with a voxel-wise noise variance could then be intuitively used to describe the noisy

measured MRI signal statistics, as experimentally demonstrated for a background area in

[Dietrich et al. (2008a)] and as assumed for noise correction in [Rajan et al. (2012b)].

The approximative statistical noise models in case of a parallel MRI reconstruction are

summed up in fig. 5.6. What is now the impact of this noise on DW images and more

particularly on HARDI data?
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Figure 5.6: Approximative statistical noise models for three parallel MRI reconstructions: SoS,

SoS GRAPPA and SENSE (from top to bottom). For both SoS and SoS GRAPPA algorithms, the

nc-χ distribution was shown to be a good approximation for the actual noise distribution in MRI

images at one condition: to account for the noise non-stationarity, σ and n have to be replaced by

voxel-wise effective parameters neff and σeff , using eq. 5.20, 5.21, 5.24 and 5.25. For the SENSE

algorithm, a Rician distribution is commonly assumed. To account for the noise non-stationarity,

the variance has to be estimated at each voxel.

5.1.3 Noise impact on DW images and HARDI models

In DW MRI, the diffusion process in tissues induces a signal loss in the images, as seen

in chapter 3. This signal loss increases with b, and for high b-values (b > 3000s/mm2),

the signal can easily be swallowed up in noise. Indeed, the higher the diffusion, the lower

the DW signal and the higher the noise impact on this signal. Consequently, DW images

often have a low SNR, and this is more pronounced on HARDI data, often involving
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higher b-values. This can be verified in fig. 5.7. A non-zero component appears in the

image, whereas the signal is either zero or very low: this is the bias effect mentioned in

the previous subsection, as well as in [Jones and Basser (2004)] for ADC profiles and in

[Clarke et al. (2008)] for fODF profiles. Fig. 5.8 highlights this noise bias effect on the DW

signal shape for the case of a pancake shape in a vertical fiber bundle. This bias makes

the signal contrast between directions of strong and low diffusion significantly attenuated,

and leads, for instance, to some decrease of the FA. Fig. 5.9 shows the noise impact on

RGB maps, which are reconstructed from the DW images. Again, the higher the b, the

higher the noise level in the image.

b = 1500s ·mm−2 b = 3000s ·mm−2

b = 4500s ·mm−2 b = 6000s ·mm−2

T2-weighted image (b = 0s ·mm−2)

Figure 5.7: DW images for four different b-values and a T2-weighted image. These data are taken

from the “Archi database” described in appendix A at the end of the manuscript. Pay attention

that the color scale is not the same between the images.
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b = 1500s ·mm−2 b = 6000s ·mm−2S = S0e
−τqTDq

noisy DW signal

vertical fiber bundle

noise-free DW signal
(pancake shape)

noise bias

FA= 0.203 FA= 0.107

Figure 5.8: Noise bias on the DW signal found in a vertical bundle (e.g. the superior longitudinal

fasciculus) as shown on the FA map. Two FA maps are presented for two different b-values. These

data are taken from the “Archi database” described in appendix A at the end of the manuscript.

Pay attention that the color scale is not the same between the images.

b = 1500s ·mm−2 b = 6000s ·mm−2

Figure 5.9: RGB maps for two different b-values. These data are taken from the “Archi database”

described in appendix A at the end of the manuscript. Pay attention that the color scale is not

the same between the images.

Finally, we performed the simulation of a noise-free DW signal corresponding to the

crossing of two fiber bundles. We simulated the same DW signal with the addition of a nc-

χ noise. We performed the simulations using b = 6000s ·mm−2, n = 4 channels and σ in a

range of values between 0.23 (SNR= 30) to 14 (SNR= 0.5) (see more details on the other

simulation parameters in appendix C). We computed the corresponding noise-free and

noisy dODFs. The comparison between both DW signals and the corresponding dODFs

is shown in fig. 5.10. A low DW signal along an orientation corresponds to a high level of

diffusion and therefore to a dODF peak. Consequently, we see in fig. 5.10 that the yellow

and magenta dotted lines representing two lobes in the 3D DW signal generate dODF lobes

in the perpendicular directions (where the diffusion process is at its highest). Fig. 5.10

highlights the effects of nc-χ noise on the DW 3D signal and on the dODF. First, noise

corrupts the noise-free object and degrades its angular resolution which is shown by the
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Figure 5.10: Simulations of noise-free and noisy 3D DW signals with their corresponding dODFs

for several SNR values. Pay attention that the SNR is calculated from the noise-free DW signal

(S = 7), and not from the noise-free T2-weighted signal (S0 = 200). The yellow and magenta

dotted lines representing two lobes in the 3D DW signal generate dODF lobes in the perpendicular

directions (where the diffusion process is at its highest). On the noisy dODFs, the letter A shows

the loss of angular resolution. The letter B indicates the noise bias effect, making the lobes of

the dODFs being shrinked. Finally, the letter C shows the wrong peaks created by noise on the

dODFs. The simulations were performed using b = 6000s · mm−2, n = 4 and σ from 0.23 to 14.

More details on the simulation parameters are given in appendix C at the end of the manuscript.

letter A in the noisy dODF: it is more difficult to differentiate the two peaks representing

the two most probable diffusion direction. Moreover, we can notice that the vertical lobe

in the noise-free dODF is deviated after the noise addition (this is particularly visible at
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SNR= 0.5). Secondly, the bias due to noise appears in regions of very low noise-free DW

signal and is pointed out by the letter B. On the dODF, this bias squashes the dODF

lobes, similarly as for the ADC profiles as explained in [Jones and Basser (2004)]. Finally,

noise is also responsible for creating spurious peaks in the dODF. This is shown by the

letter C (and also by the letter A at SNR= 0.5). This may induce the belief that there is

another orientation to account for in the dODF. Again, we see that noise can really bring

errors in the data analysis, and consequently lead to putative errors in the direction full

yielding false positives during the tractography steps.

That is why an adapted noise correction becomes essential to get reliable and detailed

information about the directionality of tissue structures. Before correcting the noise, it is

necessary to estimate its level given by the variance parameter.

5.2 MRI noise estimation methods

In this section, we detail two kinds of noise estimation methods: the background-dependent

and background-free noise variance estimation techniques. Moreover, to account for the

noise non-stationarity, the estimation should be done at each voxel.

5.2.1 Background-dependent noise estimation methods

Most of the noise estimation methods are background-dependent. And most of them define

a noise variance globally for the whole data volume. This global variance corresponds to

the variance of the noise present on each channel of the receiving coil in the hypotheses

of no subsampling, no correlation and the same variance for each channel. The unknown

parameter is therefore the σ parameter of the nc-χ PDF eq. 5.10.

Global noise variance estimation

A review of such global noise variance estimation techniques can be found in [Aja-Fernández

et al. (2009)]. Let us here point out that another interesting method, called PIESNO, was

developed recently by [Koay et al. (2009b)], which proposes a way to identify the noise-only

voxels to improve the noise variance estimation.

In this study, we chose to test three commonly used techniques introduced by the review

of [Aja-Fernández et al. (2009)]. They correspond to the ones called “mode M1-χ”, “mode

M2-χ” and “mode V1-χ” in the review. These methods can be applied either in the entire

image or in the segmented background. These methods therefore depend on the presence

of a background in the image, but do not require any background segmentation. However,

in our procedure with real DW data, the background was automatically segmented, as

explained in appendix A at the end of the manuscript. Thus, we could easily estimate σ

using only the background voxels, leading to a more robust estimation.

The “mode M1-χ” method relies on the computation of the first moment of the mea-

sured magnitude in the background. It is derived from the first moment expression given
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by eq. 5.16 for a nc-χ distribution in a background area, with 1F1

(
−1

2 ;n; 0
)
= 1. This

first moment can be calculated locally in the background with the use of a neighborhood.

Its histogram is drawn and the mode of the histogram is then considered. The estimated

global noise standard deviation σ̂ using the “mode M1-χ” method is:

ModeM1-χ: σ̂ =
(√

2(n)(1/2)
)−1

mode (〈Mbg(v)〉) , (5.26)

where Mbg(v) is the measured magnitude at the voxel v in the background region and

mode (〈Mbg(v)〉) is the distribution mode of the local mean of Mbg(v); n is the number

of channels and (n)(1/2) is calculated applying the definition of the Pochhammer symbol,

which can be found in appendix B at the end of the manuscript.

The so called “mode M2-χ” method is based on the computation of the second moment

of the measured magnitude in the background. It is derived from the second eq. in the

eq. system 5.16 and it gives the following estimated noise standard deviation:

ModeM2-χ: σ̂ =

√
1

2n
mode

(
〈M2

bg(v)〉
)
, (5.27)

with the same parameters as previously.

Finally, the so called “mode V1-χ” method is based on the computation of the local

variance of the measured magnitude in the background. It is derived from eq. 5.26 and

eq. 5.27. It gives the following estimated noise standard deviation:

ModeV1-χ: σ̂ =

√√√√
[
2n− 2

Γ2(n+ 1
2)

Γ2(n)

]−1

mode [Var(Mbg(v))] , (5.28)

with Γ the Gamma function defined in appendix B at the end of the manuscript. Var(Mbg(v))

is the locally computed variance of Mbg(v).

We tested these methods on simulated data. The results are given in subsection 5.2.3.

However, these methods estimate a stationary noise variance, whereas we showed page

117 the necessity to estimate a voxel-wise variance. Would it be possible to have such a

voxel-wise estimation?

Voxel-wise noise variance estimation

We saw in the previous paragraphs that noise is non-stationary in most cases of parallel

MRI. Concerning SENSE reconstructions, a spatially variable noise variance estimation

was proposed by [Landman et al. (2009)]. In this manuscript however, we deal with data

obtained using SoS and SoS GRAPPA reconstructions, therefore we prefered to focus on

the corresponding noise variance estimation techniques.

For the SoS reconstruction without subsampling and for the SoS GRAPPA reconstruc-

tion, expressions of a voxel-wise effective noise variance were proposed (see eq. 5.21 and

5.25, respectively). However, these expressions require a simultaneous estimation at each
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voxel of neff (v), σ
2
eff (v) and the noise-free signals’ vector Sc(v). This is actually very

difficult to achieve. However, for the case of the SoS reconstruction without subsampling,

the authors of [Aja-Fernández and Tristán-Vega (2012)] and [Aja-Fernández et al. (2013)]

proposed to study a simplified scenario with the following hypotheses: the variance of

noise is the same for every channel and the noise-free signals received by each channel

for the voxel v are the same. With this simplified scenario, it is possible to obtain the

lower and upper bounds of the effective variance across the whole volume: indeed, the

authors of [Aja-Fernández and Tristán-Vega (2012)] showed that σeff can be estimated

in the background (lower bound) and in the high-SNR areas (upper bound). This sce-

nario therefore assumes that the effective variance is stationary through the background,

as well as through high-SNR areas. Following this simplified scenario, the authors of [Aja-

Fernández et al. (2013)] went further and proposed an estimation of the effective variance,

as well as of the effective number of channels, at each voxel v of the image volume. How-

ever, their estimation is only valid if the previously mentioned hypotheses of the scenario

are respected. Moreover, it was developed for SoS reconstruction without subsampling

only. But, it is the only existing estimation of both voxel-wise effective parameters to

date. This estimation requires to follow the computation steps enumerated in table 5.1.

For more details about the mathematical demonstration, we invite the reader to look in

[Aja-Fernández et al. (2013)].

The authors of [Aja-Fernández et al. (2013)] emphasized the fact that the product

neff (v) · σ2
eff (v) does not require such a simplified scenario to be computed. Indeed,

for an SoS reconstruction without subsampling, this product is equal to Tr
(
Σ2(v)

)
=

n∑

i=1

σ2
i , with σi the standard deviation of the ith channel. Thus, neff (v) · σ2

eff (v) is then

stationary. For a GRAPPA reconstruction, this product is equal to Tr
(
C2(v)

)
, which is

not stationary, but does not depend on any noise-free signal value and can be estimated

using the GRAPPA reconstruction coefficients and the covariance matrix. This detail

about the product neff (v) ·σ2
eff (v) can be helpful in case of noise correction methods that

rely on this product rather than on each effective parameter separately [Aja-Fernández

et al. (2013)]. Nevertheless, we will see in the next chapters that it was not our case.

Therefore, we could not use this trick.

The noise variance estimation methods described so far required the presence of a back-

ground area in the image volume. Is there any method, which is free from a background

presence in the image?
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Table 5.1: Summary of the voxel-wise variance estimation method proposed by [Aja-Fernández

et al. (2013)] and valid for a simplified scenario in case of an SoS reconstruction without any

partially parallel MRI reconstruction.

The estimation works contains the following steps:

1. A noise level estimator, written as σ̂2
n, is defined such that:

σ̂2
n =

1

2
mode

(
〈Mbg(v)

2〉
)
, (5.29)

where Mbg(v) is the measured magnitude at the voxel v in the background region.

Using eq. 5.27, σ̂2
n is also equal to the product neff (v) · σ2

eff (v). In the case of

an SoS reconstruction without partially parallel MRI reconstruction, this product is

equal to Tr
(
Σ2(v)

)
=

n∑

i=1

σ2
i , which is stationary.

2. Then, the variance of M is calculated in the background region such that:

σ̂2
Mbg

= mode (Var (Mbg(v))) , (5.30)

3. From the two latter parameters, the effective noise variance and the effective number

of channels are estimated in the background with a stationarity assumption across

the background region. Their estimation requires the following iterative process:





(
σ2
eff,B

)
t+1

=
σ̂2
Mbg

2(neff,B)t−2

[
Γ2((neff,B)t+

1
2)

Γ2((neff,B)t)

] ,

(neff,B)t+1 =
σ̂2
n

(σ2
eff,B)t+1

,

(5.31)

with (neff,B)0 set to the real number of channels n. Eq. 5.31 is based on eq. 5.28.

4. Concerning high-signal regions, the effective noise variance and the effective number

of channels are estimated such that:




σ̂2
eff,S = mode (Var (MS(v))) ,

neff,S = σ̂2
n

σ̂2
eff,S

,
(5.32)

5. Finally, the effective voxel-wise parameters are obtained such that:

Eff-v:





σ̂2
eff (v) =

(
1− Ψ̂n(v)

)
· σ̂2

eff,S + Ψ̂n(v) · σ̂2
eff,B,

n̂eff (v) =
σ̂2
n

σ̂2
eff

(v)
,

(5.33)

with Ψn(v) a function estimated such that: Ψ̂n(v) =
σ̂2
n

〈M2
bg
(v)〉−σ̂2

n

.
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5.2.2 Background-free noise estimation method

Some methods were developed to estimate a global variance σ2 without knowledge of the

background. These methods assumed a Rician noise [Coupé et al. (2010); Rajan et al.

(2010)]. We have extended the technique by [Rajan et al. (2010)] to nc-χ noise in [Brion

et al. (2011b)]. It constitutes one contribution of this thesis work. The technique requires

to estimate the variance σ2
M and the skewness γ of the magnitude MRI signal, at each

voxel of the image, using:

σ2
M = E(M2)− E(M)2 (5.34)

γ =
(
2E(M)3 − 3E(M)E(M2) + E(M3)

)
/σ3

M , (5.35)

where the expectations E(·) can also be replaced by a local spatial mean 〈·〉. The method

relies on the computation of a local correction factor ϕ which tunes the proximity of the nc-

χ distribution toward the central χ distribution for very low SNR, or toward the Gaussian

distribution for very high SNR. For a central χ distribution, the variance can be estimated

using: σ̂ =

√[
2n − 2

Γ2(n+ 1
2
)

Γ2(n)

]−1

mode
[
σ2
M

]
, as in eq. 5.28. For a Gaussian distribution,

the variance can be estimated using: σ̂ =
√

mode
[
σ2
M

]
, similarly as in eq. 5.32. The

proximity of the nc-χ distribution toward the central χ or the Gaussian distribution is

measured by the skewness: the smaller the skewness, the less the distribution looks like a

central χ distribution and the more it is close to a Gaussian. We created as in [Rajan et al.

(2010)] a lookup table ϕ(γ) between the local correction factor ϕ and the local skewness γ

for a nc-χ distribution with a given n, by varying the value of S and keeping σ constant.

In order to build this lookup table (fig. 5.11), the three first nc-χ moments have been

calculated from the range of values of S and σ:

E(M) =
√
2σ(n)(

1
2
) × 1F1

(
−1

2 , n,− S2

2σ2

)

E(M2) = 2nσ2 + S2

E(M3) = 2
√
2σ3(n)(

3
2
) × 1F1

(
−3

2 , n,− S2

2σ2

)
,

with (x)(a) being the Pochhammer rising factorial symbol and 1F1 (a, b, c) being the con-

fluent hypergeometric function, both detailed in appendix B at the end of the manuscript.

Then, γ is obtained by injecting the three expressions above in eq. 5.35. In the same

manner, the local variance σM is computed using eq. 5.34. Finally, ϕ is calculated from

ϕ = σ2/σ2
M . Once the ϕ(γ) lookup table is computed, the estimation of the variance can

be performed on an image. From the local estimates σ2
M (eq. 5.34) and γ (eq. 5.35)

computed at each voxel using the neighbors, the final noise standard deviation can be

estimated from:

Bg-free: σ̂ =
√

mode
(
ϕ× σ2

M

)
, (5.36)

where mode
(
ϕ× σ2

M

)
is the distribution mode of ϕ× σ2

M calculated on the image.
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Figure 5.11: Look up tables ϕ(γ) used in the background-free noise estimation method for n = 1

(Rician case) and n = 4.

5.2.3 Comparison between the global noise estimation methods in a sta-

tionary simulation case

We compared the previous background-free noise standard deviation method, called “Bg-

free”, with the methods called “mode M1-χ”, “mode M2-χ” and “mode V1-χ” on a sim-

ulated T1-weighted image, on which we added stationary nc-χ noise. The noise-free T1-

weighted image was taken from the BrainWeb database [Collins et al. (1998)]. Its intensity

values are comprised between 0 and 255. This T1-weighted image, shown in fig. 5.12, con-

tains a background. First, we added to this image a Rician noise (n = 1) to test the

original “Bg-free” technique of [Rajan et al. (2010)]. Second, we added a nc-χ noise with

n = 4 to the noise-free image to test our extension of the “Bg-free” technique. The noise

addition was performed with different global standard deviations. The noise addition pro-

cess on the BrainWeb simulated image is explained in the appendix C at the end of the

manuscript. (It is the same process as the one used on our simulated DW volume).

Concerning our experiment, our purpose was to evaluate the proposed nc-χ extended

background-free noise variance estimation technique. The latter was therefore compared

to the “mode M1-χ”, “mode M2-χ” and “mode V1-χ” methods, known to offer very good

results as demonstrated in [Aja-Fernández et al. (2009)]. We thus tested all methods

below:

• the “Bg-free” technique on the image without its background,

• the “mode M1-χ”, “mode M2-χ” and “mode V1-χ” techniques on the segmented

background.
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noisy T1-weighted (σ = 20, n = 4)noise-free T1-weighted

Figure 5.12: Noise-free and noisy T1-weighted images.

All techniques were performed using a 7 × 7 neighborhood, and the histograms were cal-

culated using 500 bins “Bg-free” technique and using 1000 bins for the other methods.

Concerning the parameters’ choice for the “mode M1-χ”, “mode M2-χ” and “mode V1-χ”

techniques, we followed the advice in [Aja-Fernández et al. (2009)]. Concerning the “Bg-

free” technique, it was shown to be quite sensitive to the choice of these parameters and

we made our decision after several trials.

We present our results in fig. 5.13 in a similar manner as in [Rajan et al. (2010)].

Concerning the comparison between the “Bg-free” technique and the “mode M1-χ”, “mode

M2-χ” and “mode V1-χ” techniques, it is clear that the latter methods perform better

than the former one. The methods which use the background information are therefore

more robust than the “Bg-free” technique which estimates the noise level without the

background knowledge. It seems that the “Bg-free” technique, in both Rician and nc-χ

noise cases, overestimate the standard deviation for low noise levels and then underestimate

it for high noise levels. This latter method does not necessitate any background in the

data, which can be a determinant point when working with some data that do not have

enough background (for instance when using a small FOV). However, it has to be well kept

in mind that this method is sensitive to the choice of the neighborhood size and that it

can yield an error on σ̂ of at least 20% (calculated here for σ = 20 with n = 1). Moreover,

this method should be tested on other data to really define its performances, as it was

shown to work better on the cardiac image used in [Rajan et al. (2010)].
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Figure 5.13: The ratio of the estimated σ over the actual σ for various values of σ ranging from

10 to 100. The estimations were performed on the BrainWeb simulated T1-weighted image with

an addition of stationary nc-χ noise with n = 4. We used the “Bg-free” technique on the image

without its background, as well as the “mode M1-χ”, “mode M2-χ” and “mode V1-χ” techniques

on the segmented background.

Nevertheless, we have to keep in mind that the “Bg-free” method, as well as the “mode

M1-χ”, “mode M2-χ” and “mode V1-χ” techniques estimate a global noise variance for

the whole image. Therefore, they do not account for the noise non-stationarity, whereas,

in practice, with a multiple-channel acquisition, noise is non-stationary in most cases as

explained previously. Then, the most accurate method to use is the one presented previ-

ously in the paragraph page 124, which was introduced and evaluated in [Aja-Fernández

et al. (2013)]. It was shown that, in case of noise non-stationarity, this estimated voxel-

wise effective noise variance was better than a global estimated variance and improved a

lot some noise correction algorithms which rely on the variance value.

We will now present some indicators to assess the quality of an image.

5.3 Indices of image quality

In this section, we present some image quality indices. Our purpose was not to make a

complete review of all indices, therefore we only introduce some classical ones. We first

focus on some popular classical indices, and then we present two dMRI-specific indices,

which we precisely developed for this thesis work.

5.3.1 Conventional indices

Among the classical indices that we present here, some require to have the knowledge

of the noise-free volume. Others can be evaluated with the measured (therefore noisy)

volume only.
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Mean square error (MSE)

The mean square error (MSE) is based on the calculation of differences between the noisy

volume and the noise-free volume. This index gives the average of the squared errors

between an image volume V and its noise-free reference. Both volumes have the same size.

The MSE is computed such that:

MSE =
1

Nv

∑

v∈V
(M(v)− S(v))2 , (5.37)

with Nv the number of voxels in the volume V. M(v) and S(v) are the intensity values at

the voxel v of the volume, whose quality is assessed, and of the noise-free volume reference,

respectively. The MSE therefore indicates how two image volumes are voxel-wise similar.

We want to underline here that there are other possible indices using a noise-free

reference which we did not use in this thesis work because of a lack of time: the mean

structural similarity index matrix [Wang et al. (2004a)] and the quality index based on

local variance [Aja-Fernández et al. (2006)] among others.

Signal-to-noise ratio (SNR)

The SNR, which compares the noise-free signal level with the noise level, is defined at each

voxel of the image volume such that [Constantinides et al. (1997)]:

SNR(v) =
S(v)

σ(v)
, (5.38)

with S(v) the noise-free signal and σ(v) the noise standard deviation, both defined at

the voxel v. In SoS reconstructions, σ(v) has to be replaced by σeff (v) to account for

eventual correlations between the noise signals from the n channels.

This SNR definition can be applied in a local noise stationary region of interest (ROI),

with S(v) and σ(v) replaced by their means. It can also be extended to an estimated

SNR, written as ŜNR and defined on the measured data only, such that:

ŜNRROI =
〈M(v)〉ROI

〈σ(v)〉ROI

, (5.39)

with M(v) the measured magnitude signal and 〈·〉ROI the expectation operator defined in

a unique local noise stationary ROI of the volume.

Many researcher teams proposed different ways to estimate the SNR on the measured

data. A review of SNR measurement methods can be found in [Dietrich et al. (2007);

Goerner and Clarke (2011)] for the case of multiple-channel acquisition. At the time of

these reviews, the authors were not aware of the voxel-wise variance estimation method

proposed in [Aja-Fernández et al. (2013)]. Therefore, they did not propose to estimate

the SNR following eq. 5.39. These reviews condamn the SNR estimation methods that

use separate regions to estimate the signal and noise levels. Indeed, such methods do not

account for the fact that the noise standard deviation is voxel-dependent, as well as signal-

dependent. Because of these spatial noise variations in the image, such methods are not
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accurate. Among the other more accurate methods proposed, some (called “SNRmult” in

[Dietrich et al. (2007)]) require many repetitions of images acquired with the same imaging

parameters. This is not easily achieved in practice, in particular for dMRI sequences, which

last an already long time. Other methods propose to estimate the SNR only in high-signal

regions, assuming a Gaussian noise (“SNRdiff” in [Dietrich et al. (2007)]). However, we

think that, if it is interesting to have a measurement of one of the highest SNR in the

image, it is also interesting to measure the SNR in medium to low signal regions. Indeed,

in dMRI, these latter regions are more likely to be found, especially at high b-values.

But, it must also be highlighted that it is very difficult to define an ROI in dMRI images

obtained at high b-values: the signals are so noisy that the structures disappear on a DW

image, as can be seen in fig. 5.7, page 120.

Contrast-to-noise ratio (CNR)

The contrast-to-noise ratio (CNR) brings a complementary information in addition to the

SNR. Indeed it indicates how easy or not it is to differentiate structural regions in the

volume. It gives a measurement of the contrast between two regions A and B. It is defined

such that [Haacke et al. (1999)]:

CNR = |SNRA − SNRB|, (5.40)

with SNRA and SNRB the SNR calculated for the regions A and B, respectively.

As previously for the SNR, the CNR can be estimated on the measured data, using:

ĈNR = |ŜNRA − ŜNRB|, (5.41)

with ŜNRA and ŜNRB the estimated SNR for the regions A and B, respectively.

As for the SNR, the CNR index is difficult to get on DW images, for which the struc-

tures are not easily distinguishable. That is why we developed some dMRI-specific indices.

5.3.2 dMRI-specific indices

We defined dMRI-specific indices to evaluate the noise impact on DW images.

DTI, aQBI and sa-aQBI MSE

We adapted the definition of the MSE to the DTI, aQBI and sa-aQBI data. This definition

relies on the vector x, which is either equal to the diffusion tensor D for DTI data, the

coefficients’ vector CDW for aQBI data or the coefficients’ vector CSA for sa-aQBI data:

MSE =
1

Nv

∑

v∈V

N∑

j=1

(x̃(j,v) − x(j,v))2 , (5.42)

with x̃(j,v) the jth coefficient of the noisy vector x̃ calculated on the noisy DW data.

x(j,v) is the jth coefficient of the noise-free vector x. This diffusion-specific MSE is faster
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to compute compared to the classical MSE given by eq. 5.37. Indeed, there are always less

coefficients than DW measurements: N < K, K being the number of orientations leading

to K different values of M(i,v) with i ∈ [[1;K]].

FA, GFA and cGFA ratios

The previous image quality index requires the knowledge of the noise-free reference image.

It is ideal when working with simulated data, but it cannot be used on real data. That is

why we chose to develop an new index which performs a measurement that only depends

on the raw (and therefore noisy) data. This new index is an FA, GFA or cGFA ratio which

is intuitively similar to a CNR index. However, in opposition to the SNR or CNR index,

it is performed on a diffusion derived map (such as the GFA map), on which structures

can be distinguished, which is not the case on the simple DW images. It is defined for the

aQBI data such that:

GFA ratio =
GFAA

GFAB

, (5.43)

with GFAA and GFAB the GFA means calculated on the GFA map for the regions A and B,

respectively. Similarly, the FA and cGFA ratios can be computed with the corresponding

means.

In contrary to the SNR or CNR indices, this ratio does not contain any noise level.

Indeed, the noise variance estimated on the DW image cannot be used on a diffusion

derived map such as the GFA. The absence of any noise variance in the index gives the

following advantage that this ratio can be easily used on filtered images, for which the

noise statistics is usually unknown. Else, the presence of the noise variance in the index

would have required to correctly estimate the noise statistics in the filtered image to rightly

obtain its noise variance. There is however one requirement for this index: it is to know

two ROI whose GFA (or FA, or cGFA depending on the diffusion model) are different. On

real data, it is for example advised to use for ROI A a region of medium anisotropy (like

in a fiber bundle or a fiber bundle crossing) and for ROI B a region of low anisotropy (like

in the CSF). Then, the higher the noise level on the image, the lower the index.

Later in the manuscript, we will use this index to compare the quality of raw and noise

corrected diffusion maps. For now, we first need to evaluate this new index in comparing

it to the previous ones.

5.3.3 Comparison between the indices on a simulated DW field

We evaluated the new index on a simulated DW volume as the one at b = 4500s ·mm−2

described in the appendix C at the end of the manuscript. We added stationary nc-χ noise

with n = 4 and with different values of σ on this DW volume. To perform our evaluation,

we measured:

• the MSE developed for the aQBI using eq. 5.42,
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• the SNR in ROI A on the noise-free DW image shown in fig. 5.14,

• the CNR between the ROI A and B on the noise-free DW image shown in fig. 5.14,

• the GFA ratio between the ROI A and B on the noisy GFA image.

The results are shown in fig. 5.14 for several values of noise standard deviation. As

expected, the aQBI MSE increases with the noise level: the noisier the image, the less

it looks like the noise-free reference. The SNR decreases with the noise variance, also

as expected. Finally, the higher the noise level, the less distinguishable are ROI A and

ROI B: the CNR decreases with σ, as expected. Concerning now our proposed index,

the GFA ratio measured directly on the noisy GFA, it also decreases with σ. This new

index expresses the loss of contrast on the GFA map between the two ROI. Fig. 5.14

demonstrates that it is a good image quality indicator on the simulated data.
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Figure 5.14: Comparison between the GFA ratio and other image quality indices, such as the

MSE adapted to the aQBI model, the SNR and the CNR. The comparison was performed on a

simulated DW volume with an addition of stationary nc-χ noise with n = 4 and with different

values of σ.

The results here were shown using the aQBI model. Similar results were obtained

using the DTI and sa-aQBI models.

5.4 Conclusion of this chapter

We presented in this chapter the knowledge to date on noise nature and noise models in

MRI. We detailed different methods to estimate noise. Among them, one arises from this

thesis work and enables a global variance estimation on images without any background, in

case of stationary noise. However, noise is in pratice non-stationary and therefore requires

a voxel-wise estimation, as the one we explained from the literature. Finally, we presented

several indicators to assess the image quality. Among them, we adapted the MSE for dMRI

data. We also proposed the GFA (or FA, or cGFA) ratio, which can be calculated on real

data, without a noise-free reference. The contributions of our work are listed below.
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5.4.1 Contributions of this chapter:

• A detailed state-of-the-art review on the statistical distribution of the measured MRI

signal.

• A new noise estimation method adapted to the nc-χ PDF of the measured MRI

signal. This method does not necessitate any background in the data, which can

be a determinant point when working with some data that do not have enough

background. It does however not produce as good results as methods relying on

the background knowledge. The technique is valid for stationary noise only. This

contribution appears in [Brion et al. (2011b)].

• A new image quality index, the GFA (or FA, or cGFA) ratio, which is specific

for dMRI images. This index can be measured without any noise-free reference.

Moreover, it can be used on images, for which the noise statistics are unknown (like

in filtered images).

In this chapter, we emphasized the impact of noise in dMRI, especially at high b-

values. We showed the nc-χ bias, which appears at low SNR values and high n values.

To be removed, this bias requires a correction adapted to nc-χ noise. That is why a

correction accounting for the noise statistics explained in this chapter is necessary to

obtain an accurate and reliable information on the anatomical structures presented in the

data. Also, it is important to keep in mind our RT objective. The next chapter establishes

the issue regarding noise correction for rtdMRI.

135



136



Chapter 6

Correcting noise in RT

As we introduced it in chapter 4 and 5, dMRI is generally significantly corrupted by noise

unfortunately characterized by a non-Gaussian distribution at high b-values. There is

a clear interest for developing a framework to compute DTI, HARDI and HYDI in RT

and we have shown that it is possible using incremental solvers such as Kalman filters.

However, such filters are designed to deal with a zero-mean Gaussian noise distribution

and are therefore biased in dMRI. In this chapter, we will first present a detailed state-

of-the-art about noise correction methods and we will propose a method to correct the

non-Gaussian noise of dMRI that is compatible with RT objectives.

6.1 Constraints stemming from RT

In this section, we will first attempt to summarize most of the existing denoising methods

which have been introduced in the field of MRI. Then, we will discuss them in light of an

RT requirement.

6.1.1 State-of-the-art of the noise correction methods

Today, there is a plethora of noise correction techniques for application to MR datasets.

These numerous techniques usually rely on well-known denoising concepts. We attempted

to classify them in groups indicated in fig. 6.1, but some of them combine methods

stemming from different groups. We want to highlight here that we cannot exhaustively

detail all the denoising techniques, as there are too many, but we will focus on the most

important methods quite often referenced in the literature. First methods were introduced

in 1985 and there is still active research today to deal with the complex noise model

characterizing the magnitude signal of the most recent parallel imaging techniques.

MRI denoising techniques can be separated into two categories: a first category con-

taining methods which do not account for the specific Rician or nc-χ noise model. Such

methods usually assume a Gaussian noise. The second category incorporates the noise

distribution model in the denoising method. For this last group of techniques, and con-

cerning the dMRI dedicated methods, they can be distinguished whether they incorporate
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− entropy minimization
− expectation maximization
− maximum a posteriori
− maximum likelihood

− Markov random field

− conventional approach
− LMMSE / Wiener filter
− fixed−point formulas

Diffusion filters

− anisotropic diffusion
− high order PDE
− TV minimization

Transform domain filters

− wavelets

− DCT

− PCA

Adaptive window filtering

− non local means (NLM)
− UINTA
− template−based filter

Gaussian filter

model−free
MRI noise

MRI noise

Moments−based methods

model−dependent
Likelihood models

correction principles

correction principles

& LS methods

Abacus−based
method

Figure 6.1: Main groups of noise correction methods with an application to MRI images. These

methods are either based on a correction principle relying on the MRI Rician or nc-χ noise model

(green), or not (magenta).

the noise model directly in the diffusion propagator estimate or in the propagator-derived

functions like the dODF, or whether they only correct the DW signal. We will now make a

review of families of methods relying on a specific denoising concept. We will first present

the techniques, for which the original denoising concept does not account for the MRI

noise model.

Principles of noise correction in MRI using model-free approaches.

Transform domain filters. The group of transform domain filters gathers techniques

processing images in a transformed domain. Such a domain provides a multiscale rep-

resentation of an image, for which the lower scales contain the basic components of the

image and the higher scales contain the details and boundaries between different structural

regions of the image. The idea of transform domain filters is to keep the scales, which are

lower than a certain threshold, so that the noise, which is contained in the higher scales, is

removed. Well-known examples of such methods are wavelet-based approaches [Healy and

Weaver (1992); Donoho and Johnstone (1994); Hilton et al. (1996); Wood and Johnson

(1999); Nowak (1999); Piz̆urica et al. (2003); Delakis et al. (2007)]. The wavelet coeffi-
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cients with high SNR are kept, whereas the coefficients with low SNR containing mostly

noise are discarded. The wavelet-based method is an edge-preserving technique [Nowak

(1999)], however it can produce artifacts due to the structure of the underlying wavelets

[Awate and Whitaker (2007); Manjón et al. (2008)]. For this technique, which does not

initially account for the MRI noise model, some methods were developed to incorporate

the Rician MRI noise nature [Nowak (1999); Wood and Johnson (1999)]. Others included

a local noise variance estimation, which accounts for the non-stationarity of this param-

eter in the case of parallel MRI [Delakis et al. (2007)]. Another transform domain filter

was proposed in [Muresan and Parks (2003)], based on the use of a principal component

analysis (PCA), assuming a white noise model. The principal components provide a lo-

cal adapted basis used to decompose the signal, followed by a thresholding to select only

the principal wavelets. Finally, the use of the discrete cosine transform (DCT) was also

proposed. [Yaroslavsky et al. (2001); Guleryuz (2003, 2007); Manjón et al. (2012)].

Gaussian filter & least squares (LS) methods. This group contains techniques

relying on a Gaussian filter [Lindenbaum et al. (1994); Ashburner and Friston (2000)]

which present some risk of a final blurring result. The other filters of this group are based

on many kinds of least squares (LS) methods, which can be linear or not, constrained or

not and also weighted or not: [Chang et al. (2005); Salvador et al. (2005); Koay et al.

(2006); Tristán-Vega et al. (2012)]. These methods directly work on the DTI model and

are not adapted to other local diffusion models. Because of the simplicity behind the LS

algorithm, such techniques are still commonly used. However, it is highlighted in [Tristán-

Vega et al. (2012)] that they are not efficient in medium-to-low SNR situations, where the

noise bias due to the Rician or to the nc-χ noise nature is not correctly removed.

Diffusion filters. Diffusion filters to remove noise are based on anisotropic diffusion

equations [Perona and Malik (1990); Catté et al. (1992); Gerig et al. (1992); Yang et al.

(1995); Alvarez (1996); Sapiro and Ringach (1996); Black et al. (1998); Parker et al. (2000);

Ling and Bovik (2002); Samsonov and Johnson (2004); Chen and Hsu (2005); Basu et al.

(2006); Tschumperlé and Brun (2009); Krissian and Aja-Fernández (2009)]. The diffusion

equation, originally proposed by [Perona and Malik (1990)], relies on the idea to apply

the diffusion process on an image with a spatially varying diffusion coefficient. The lat-

ter is chosen to encourage intra-region smoothing and to limit inter-region smoothing. A

good tuning of this coefficient enables to avoid the blurring of the edges contained in the

image. To control the smoothing in boundaries’ regions, the diffusion coefficient is ex-

pressed as a function of the image gradient. A threshold-parameter is required to control

the sensitivity to the egdes of the image. This parameter is either determined experimen-

tally or calculated as a function of the noise in the image. The use of the anisotropic

diffusion does not incorporate the knowledge of the noise distribution. It was shown in

[Sijbers et al. (1999a)], that there is a noticeable advantage in incorporating this distri-

bution knowledge. A comparison between the anisotropic diffusion filter of [Yang et al.
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(1995)] and the same method with an additional maximum likelihood estimation of the

filter parameters accounting for the Rician noise nature showed that the second method

outperformed the first one. Among the previous techniques, the method by [Samsonov

and Johnson (2004)] proposes a local estimation of the noise variance to cope with the

non-stationarity of this parameter due to parallel MRI. Other diffusion filters were also

developed aiming at minimizing the total variation (TV) norm of the image [Rudin et al.

(1992); Strong and Chan (1996); McGraw et al. (2004)]. The underlying idea is that the

TV norm, which corresponds to the integral of the absolute image gradient, contains the

details of the image. As noise corresponds to the spurious details, minimizing the TV norm

of the image will help reducing the noise. However, such methods may generate staircase

effects yielding gradual contrast variations in homogeneous regions of the image. The TV

minimization technique leads to the resolution of a partial differential equation (PDE).

Other filters based on higher order PDEs were developed to outperform the performances

of the TV minimization technique and the anisotropic diffusion equation method [Lysaker

et al. (2003); Greer and Bertozzi (2004); Kim and Lim (2009); Liu et al. (2011)]. We

can also cite here some variational methods using such PDEs for directly regularizing the

DTI or HARDI calculations [Chefd’Hotel et al. (2002); Assemlal et al. (2007); Wang et al.

(2004b)].

Adaptive window filtering. The last group of denoising methods which relies on a

correction concept that does not account for the noise distribution is the group of adaptive

window filters. Such estimators are based on the choice of an adapted window containg

neighborhing information to improve noise removal. Among these filters, the template-

based filter of [Ahn et al. (1999); Guo et al. (2006)] proposes to test different templates (or

windows) of different sizes and geometries around the voxel to correct and to choose the

biggest template containing the voxels of interest representing a locally constant region.

The method therefore excludes any template containing edges. The underlying idea of such

a concept is similar to the diffusion filters that stop the diffusion process at edges to keep

the structural boundaries intact in the image. Other adaptive window filters search the

optimal neighbors accross the entire image (or in a very large part of it). To find similar

structural neighbors to the voxel of interest, the method compares the local patch of voxels

around the neighbor with the patch of the voxel of interest. The choice of the optimal

neighbors is done using a similarity criterion between the patches. Such a concept taking

advantage of the recurrences inside an image appeared in the non local means (NLM)

filter of [Buades et al. (2005)] and in the unsupervised, information-theoretic, adaptive

(UINTA) image filtering for image restoration of [Awate and Whitaker (2006)]. The NLM

filter was extended in many other works, which incorporated the Rician nature of the

MRI noise [Manjón et al. (2008); Wiest-Daesslé et al. (2008); Descoteaux et al. (2008)]. A

paper additionally proposed to account for the spatially varying noise variance with the

use of parallel MRI [Manjón et al. (2010)]. Other approaches attempted to reduce the

heavy computational cost of the filter [Coupé et al. (2008b); Tristán-Vega et al. (2012)].
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Finally, this NLM filter was also combined with other denoising or optimizing methods

[Coupé et al. (2008a); Tristán-Vega and Aja-Fernández (2010); Hong et al. (2012); Manjón

et al. (2012); He and Greenshields (2009); Rajan et al. (2011, 2012a,b)]. A unique NLM

method by [Aja-Fernández et al. (2013)] was developed to account for the nc-χ noise model.

Additionally, it relies on the use of the effective parameters neff and σeff detailed in the

previous chapter, page 117), and therefore accounts more precisely for the non-stationarity

of the MRI noise, in case of an SoS reconstruction without subsampling of the k-space.

MRI noise model-dependent correction principles.

Abacus-based method. Among the noise removal techniques relying on the MRI noise

distribution, the abacus-based method introduced by [Henkelman (1985)] is actually the

first historical technique proposed to correct for noise in MRI images. This method consists

of using a lookup table (LUT) correction scheme accounting for the Rician bias. This

technique can be seen as the first work which attempts to evaluate and extract the noise

bias from the MRI measurements.

Moments-based methods. The second historical MRI denoising method came out

with the conventional approach based on the expression of the Rician 2nd order moment

[McGibney and Smith (1993); Miller and Joseph (1993)]. A technique very close to the

two latter, with an additional absolute value operator, was developed by [Gudbjartsson

and Patz (1995)]. All these techniques do not perform so well, but are often referred as

historical MRI denoising methods. More elaborated techniques also rely on the knowledge

of the moments of the measured magnitude M . The linear minimum mean square error

(LMMSE) estimator, which was adapted for MRI Rician noise removal by [Aja-Fernández

et al. (2008a,b)], is based on the 2nd and 4th order moments of M . It presents a closed-

form solution, which does not require any iterative optimization procedure. Therefore, the

LMMSE is a computationally straightforward and efficient technique. A DTI dedicated

anisotropic extension of the LMMSE was combined with a maximum likelihood technique

permitting a spatially varying noise level estimation to account for the variance non-

stationarity in case of parallel imaging [Caan et al. (2010)]. Another improvement of

the original LMMSE was proposed in [Tristán-Vega and Aja-Fernández (2010)] which

consisted in using simultaneously the joint information contained in the DW volumes

along the different diffusion orientations. Such a technique is not consistent with an RT

denoising. We will come back to it later. Finally, an extension of the LMMSE to nc-χ noise

was also proposed in [Brion et al. (2011b)] with further improvements yielding anisotropic

schemes [Brion et al. (2011f); Vegas-Sánchez-Ferrero et al. (2012); Casaseca-de-la-Higuera

et al. (2012)]. Later, the LMMSE was proposed to be used with the effective parameters

neff and σeff to account for the noise correlations in parallel MRI, as explained in the

previous chapter. This last technique is adapted to the case of an SoS reconstruction

without subsampling in the k-space [Aja-Fernández et al. (2013)]. As the Wiener filter is

a sequential version of the LMMSE, we can also cite in this group the method by [Martin-
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Fernández et al. (2009)], which relies on a Wiener filter incorporating the Rician noise

characteristics. A third group of moments-based methods concerns the techniques using

fixed point formulas of either the SNR or the noise-free magnitude S [Koay and Basser

(2006); Koay et al. (2009a)]. A fixed point formula is a relation of equality between a

parameter and a function of this parameter. Finding the solution of the fixed-point formula

of the SNR of an MRI image enables to obtain the noise-free MRI image [Koay and Basser

(2006)]. Based on the fixed-point formula of the noise-free magnitude S, a framework was

derived to transform the magnitude signals so that they follow Gaussian distributions,

allowing the use of least squares approaches [Koay et al. (2009a)]. These two methods

were adapted for a Rician noise, as well as for a nc-χ noise. In practice, they require either

many repetitions of the measurements or a very large number of measurements performed

at different b-values, which are conditions that are unaffordable in clinical routine, as they

would make the scan far too long.

Likelihood models. The methods relying on a likelihood model also contain this pow-

erful advantage of incorporating the noise model, making them more adapted to MRI

denoising than other methods. Several techniques making use of the likelihood models

have been investigated. The maximum likelihood (ML) technique provides a noise-free

estimate, which maximizes the likelihood function of a sample of independent observa-

tions. It was adapted to the Rician properties of the MRI noise in [Sijbers et al. (1998)]

and was shown to yield accurate results at low SNRs [Sijbers et al. (1999b)], compared

to other methods, which do not account for the specific Rician noise nature. The ML

method was also used in [Sijbers and den Dekker (2004); Haldar et al. (2012)], directly in

the Fourier domain on the complex data before the SoS reconstruction. A simple Gaussian

noise could then be assumed for these two methods, as noise is Gaussian before the SoS

recombination. A comparison was performed in [Sijbers and den Dekker (2004)] between

the ML technique applied either on the complex data containing Gaussian noise, or on

the magnitude data containing Rician noise: in the common case of phase artifacts on the

real and imaginary channels, the technique performed on the magnitude data was shown

to yield better results. Many other works were proposed to inject the ML method in some

local diffusion models and to denoise simultaneously the set of DW data along different

diffusion orientations [Fillard et al. (2007); Clarke et al. (2008); Brion et al. (2009)]. Such

methods take advantage of the joint information contained in the DW data set, but are

dedicated to a specific local diffusion model. Finally, other methods combine the ML

technique with a NLM filter to get the best of both methods [He and Greenshields (2009);

Rajan et al. (2011, 2012a,b)]. Bayesian methods like the maximum a posteriori (MAP)

techniques, which maximize a posterior probability describing the data, can also be used

for denoising [Basu et al. (2006); Andersson (2008); Lam et al. (2012)]. To iteratively

find the ML or the MAP estimates of parameters, an expectation-maximization can be

used [Marzetta (1995)]. Other denoising methods based on likelihood models rely on the

Markov random field properties of the data [Liévin et al. (2002); Awate and Whitaker
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(2007)]. Sometimes, a regularization using Markov random fields is directly performed on

the noisy diffusion tensors [Martin-Fernández et al. (2004); Poupon et al. (2000)]. Finally,

some Markov random field based techniques were combined with an entropy minimization

algorithm for improved performances [Awate and Whitaker (2005, 2006)].

Characteristics of the denoising methods.

Among this huge list of denoising methods, it is important to choose an adequate technique

with respect to a particular situation. To this aim, we propose here to summarize the key

features of these techniques, as shown in fig. 6.2.

concerning MRI noise correction techniques Examples CounterexamplesDifferent characteristics to look at

[Nowak, 1999]

[Brion et al., 2009]...

[Koay & Basser, 2006]

[Rajan et al., 2012]...

[Aja-Fernández et al., 2012]

[Delakis et al., 2007]...

[Samsonov & Johnson, 2004]

[Chen & Hsu, 2005]

[Clarke et al., 2007]...

[Tristán-Vega et al., 2010]...

[Fillard et al., 2007]

[Aja-Fernández et al., 2012]...

[Martin-Fernández et al., 2004]

[Koay et al., 2009]...

[Basu et al., 2006]...

[Parker et al., 2000]

[Manjón et al., 2008]...

[Aja-Fernández et al., 2008a,b]

[Buades et al., 2005]...

[Sijbers et al., 1998]

[Healy & Weaver, 1992]...

[Perona & Malik, 1990]

[Koay & Basser, 2006]

[Koay et al., 2009]...
[Koay et al., 2006]...

[Liévin et al., 2002]

[Buades et al., 2005]

[Aja-Fernández et al., 2008a,b]...

...[Awate & Whitaker,2005,2007]

[Gudbjartsson & Patz, 1995]...

[Lysaker et al., 2003]...

[Perona & Malik, 1990]

[Manjón et al., 2010]...

[Sijbers & den Dekker, 2004]

[Haldar et al., 2012]
all other cited methods

most of other cited methods

most of other cited methods

all other cited methods

requiring other than the typical dMRI settings

(DTI, aQBI, SDT...)
local diffusion model dependent

together
processing the DW data along all orientations

dMRI specific method

proposed by [Aja-Fernández et al.,2011,2012]
accounting for the nc-χ statistical model

nc-χ noise dedicated

Rician noise dedicated

zero-mean Gaussian characteristics of MRI noise
applied before the SoS reconstruction using the

processing slices (at one orientation) independently

(for a possible distribution on a cluster of CPU)

compared to the state-of-the-art methods

without critical parameter tuning

with a spatially varying noise variance

Figure 6.2: Some characteristics to look at concerning MRI noise correction methods. The char-

acteristics in the yellow frame concern how much the method accounts for the true noise statistics.

The characteristics in the pink frame are specific to dMRI data denoising.

The characteristics in yellow in fig. 6.2 concern how much the method accounts for

the true noise statistics. In our previous review, most of the MRI denoising methods are

adapted to Rician noise, but to our knowledge, none of them are adapted to nc-χ noise

distributions that characterize the noise present in the SoS GRAPPA technique described
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in the previous chapter. We are particularly interested in this acquisition case, because our

real data were acquired with a multiple-channel acquisition and reconstructed with the SoS

GRAPPA algorithm. The techniques approaching the most the nc-χ noise model proposed

for the SoS GRAPPA technique in [Aja-Fernández et al. (2011)] (see in the previous

chapter, page 117) are the ones, which incorporate the nc-χ distribution knowledge, and

additionally account for a spatially varying noise variance across the image, and more

precisely, account for the non-stationnarities of both the effective noise variance and the

effective number of channels. The methods in [Aja-Fernández et al. (2013)] propose such

a framework, but the latter is adapted to an SoS reconstruction without subsampling in

the k-space.

Among the review of noise removal methods, two techniques [Sijbers and den Dekker

(2004); Haldar et al. (2012)] directly work in the Fourier domain on the complex data and

therefore use the zero-mean Gaussian characteristics of the noise. Indeed, this choice to

denoise the data before the SoS reconstruction on each real and imaginary data is very

clever, as the noise is then simply zero-mean Gaussian. However, this choice was not

usually performed in the denoising community. This can be explained by the fact that the

real and imaginary images may not be systematically available [Nowak (1999); Lam et al.

(2012)]. Another reason is that it is better to process the magnitude because of artifacts

in the phase images [Henkelman (1985); Constantinides et al. (1997); Nowak (1999); Si-

jbers and den Dekker (2004)]. Therefore, the majority of the correction techniques were

developed for an application after the SoS reconstruction on the magnitude images. Con-

sequently, they have to account for a nc-χ noise, as explained in the previous chapter.

We also deliberately made this choice to develop an RT denoising technique. But we shall

keep in mind that it is also possible to denoise the real and imaginary data from zero-mean

Gaussian noise.

Other characteristics of MRI denoising methods, shown in pink in fig. 6.2, are spe-

cific to dMRI data denoising. The method can for example be specific towards the dMRI

modality. Such dMRI specific method may process all DW data along all diffusion ori-

entations together, taking advantage of the joint information. Some are dependent on

the local diffusion model and apply directly on the model. In that case, the denoising

method is not generic towards the different diffusion models. Finally, some techniques

require unusual dMRI settings, like for example many different b-values as in [Koay et al.

(2009a)]. Denoising methods can also be distinguished with respect to the necessity or

not of a critical parameter tuning by the user. The ideal method should adapt itself to

any kind of images without the requirement of a parameter tuning. Some methods tend

to this ideal: [Liévin et al. (2002); Awate and Whitaker (2005, 2007)]. A good technique

has usually been compared to the state-of-the-art methods to prove its relevance. Finally,

when wanting to distribute the computation on a cluster of CPU, it is necessary that the

technique processes slices (or small groups of slices) independently. Indeed, the more the

data volume is split into small volumes to process independently, the more time will be

saved during the denoising task.
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To conclude with this state-of-the-art of the noise correction methods, we want to

highlight that no gold standard technique has really been brought to light in the past years,

although some techniques like the NLM are quite often cited in the community. Moreover,

no RT noise removal had ever been investigated until recently, with some works emanating

from this thesis [Brion et al. (2010, 2011f,d, 2012a)], followed by others [Casaseca-de-la-

Higuera et al. (2012)], as we will see in the next chapter. Before, it is essential to explain

that, for choosing the most appropriate method for our RT denoising purpose, we looked

at the contraints imposed by our willing to perform the correction in RT.

6.1.2 Constraints imposed by RT

Our goal was to perform a noise correction, which would be easily integrated in the rtdMRI

framework environment described in chapter 4. The desired method has to give noise

corrected results before each new measurement during the ongoing scan. To obtain this

RT correction, four conditions are mandatory:

1. the method should not require the knowledge of all the DW dataset, but only a

subset of it,

2. the method should address as many local diffusion models as possible,

3. the method should not depend on other measurements than the DW measurements

and be usable with clinical protocols,

4. the method should compute any intermediate result in less than the repetition time

TR (usually around 10s), and should therefore be very fast.

With these requirements, it is straightforward to see that some previously mentioned

methods cannot be used for our purpose. Indeed, all techniques processing the orientations

together, like [Fillard et al. (2007); Clarke et al. (2008); Brion et al. (2009); Martin-

Fernández et al. (2009); Tristán-Vega and Aja-Fernández (2010)], do not satisfy the first

condition. To respect the second condition, we excluded all methods, which apply to only

one diffusion local model, like [Chefd’Hotel et al. (2002); Wang et al. (2004b); Chang et al.

(2005); Salvador et al. (2005); Koay et al. (2006); Assemlal et al. (2007); Caan et al. (2010);

Tristán-Vega et al. (2012)]. Concerning the third condition, we also excluded [Koay and

Basser (2006); Koay et al. (2009a)], which require extra measurements for the denoising

process. Finally, the fourth condition invited us to look at the computational efficiency

of the method, as well as its compatibility with a distribution over the nodes of a cluster.

It is essential to understand here that the time parameter in the method is not only a

criterion to look at after having been assured that the technique performs well. It is a

point to consider in the same time as when evaluating the denoising performances of the

technique. To respect this last condition, we decided to work with the LMMSE estimator

—referred simply as LMMSE— of [Aja-Fernández et al. (2008a,b)], originally developed

for a Rician noise and shown to outperform, in terms of time and quality performances,
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other methods. An also very good —maybe better?— technique, the NLM filter relies

on a weighted mean of voxels inside a large and therefore non local search window. The

weight of a voxel is computed using the similarity of the patch surrounding this voxel and

the patch surrounding the voxel of interest. This technique had not been considered in our

choice because of its too long computational time. Indeed, this last method is quite long as

it requires to compare neighborhoods across the entire data volume. Its computation time

is of several hours for a 181×217×181 volume on a 3 GHz CPU [Coupé et al. (2008b)].

But, the optimized version developed by [Coupé et al. (2008b)] uses a selection of the most

relevant voxels, and a blockwise implementation with some parallelization on a cluster. It

reduces the computation time to around one minute for the same volume with 8 CPU of

3 GHz each. More recently, [Tristán-Vega et al. (2012)] proposed a further acceleration

with the measurement of the similarity between patches using a truncated local Taylor

series expansion. Compared to the method by [Coupé et al. (2008b)], it was shown to be

at least 1.7 times faster.

We wanted to address the nc-χ nature of the noise in GRAPPA DW images and

consequently, we investigated the possibility to extend the LMMSE approach originally

developed under the assumption of a Rician noise to a nc-χ noise. A similar study was

also conducted by [Aja-Fernández et al. (2013)] to SoS configurations. We explain in the

next section the theoretical basis of the LMMSE and we show afterwards how this method

combines the RT compatibility with good performances on our dMRI data.

6.2 Correction with a linear minimum mean square error

(LMMSE) estimator

Because RT imposes some strong requirements on the computational aspects of the denois-

ing method, we have decided to focus on the LMMSE method introduced in [Aja-Fernández

et al. (2008a)] and [Aja-Fernández et al. (2008b)]. We will present this technique, first for

a single-channel acquisition and then we will show the extension for a multiple-channel

acquisition with a nc-χ noise. We will detail three particular cases of the LMMSE. Finally,

we will propose a trade-off with the empirical estimation of global effective parameters to

account for putative noise correlations.

6.2.1 The original LMMSE adapted to Rician distributions

The generic expression for the LMMSE estimator θ̂ of a parameter θ from a vector of data

X is [Kay (1993)]:

θ̂ = E(θ) + Cov(θ,X) ·Var(X)−1 · (X− E(X)) , (6.1)

where E(θ) is the expectation of θ, Cov(θ,X) is the covariance of θ and X and Var(X) is

the variance of X. Replacing θ by the squared noise-free MR signal magnitude S2 and X
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by the squared measured magnitude M2 results in:

Ŝ2 = E(S2) + Cov(S2,M2)Var(M2)
−1 ×

(
M2 − E(M2)

)
. (6.2)

This expression is true for any voxel and any diffusion orientation; thus, to simplify the

notation, we do not add the corresponding indices. Eq. 6.2 allows an estimation of the

noise-free magnitude and relies on the knowledge of E(S2), Cov(S2,M2) and Var(M2).

The authors of [Aja-Fernández et al. (2008a)] expressed the three latter terms in function

of measurable quantities. We explain their approach here. The expression of the variance

Var(M2) is straightforward:

Var(M2) = E
(
[M2 − E(M2)]2

)
,

= E
(
M4 − 2ME(M2) +E(M2)2

)
.

Therefore, using the expectation linearity, we obtain:

Var(M2) = E(M4)− E(M2)2 . (6.3)

Now, we detail the approach of [Aja-Fernández et al. (2008a)] to simplify the covariance

term Cov(S2,M2). In the case of a single-channel acquisition, the magnitude is written

such as: M =
√

(Sr + ǫr)2 + (Si + ǫi)2, with Sr and Si the real and imaginary parts,

respectively, of the noise-free signal S =
√

S2
r + S2

i , and ǫr and ǫi the real and imaginary

parts, respectively, of the noise signal. ǫr and ǫi are supposed to be uncorrelated, zero-mean

Gaussian noises of variance σ2 [Henkelman (1985)]. Therefore, we can write:





E(ǫk) = 0, if k is odd,

E(ǫ2) = σ2,

E(ǫ4) = 3σ4.

(6.4)

The imaginary and real parts of the noise signal are supposed to be independent. The

same hypothesis is applied between the noise ǫ and the noise-free signal S, thus:




E(ǫrǫi) = E(ǫr)E(ǫi) = 0,

E(ǫS) = E(ǫ)E(S) = 0.
(6.5)

We can then express the covariance term Cov(S2,M2) of eq. 6.2 such that:

Cov(S2,M2) = E
(
[S2 − E(S2)][M2 − E(M2)]

)
,

= E
(
S2M2 − S2E(M2)−E(S2)M2 + E(S2)E(M2)

)
,

= E
(
S2[(Sr + ǫr)

2 + (Si + ǫi)
2]
)
− E(S2)E(M2),

= E
(
S2[S2

r + S2
i + 2Srǫr + ǫ2r + 2Siǫi + ǫ2i ]

)
−E(S2)E(M2).

When simplifying this last line using the equation systems 6.4 and 6.5, we obtain:

Cov(S2,M2) = E(S4) + 2E(S2)σ2 − E(S2)E(M2) . (6.6)

147



We can then rewrite eq. 6.2 using the expressions of the variance and covariance terms

given by eq. 6.3 and eq. 6.6, respectively:

Ŝ2 = E(S2) +

(
E(S4) + 2E(S2)σ2 − E(S2)E(M2)

)

E(M4)− E(M2)2
×
(
M2 − E(M2)

)
. (6.7)

Now, it is necessary to express the 2nd and 4th order moments of S in measurable quantities,

so that S2 can be estimated with the LMMSE. In the case of a single-channel acquisition,

we saw in chapter 5 that M follows a Rician distribution. We therefore know that:

E(M2) = E(S2) + 2σ2 , (6.8)

and:

E(M4) = E(S4) + 8σ2E(S2) + 8σ4 . (6.9)

These two latter equations can be found, without assuming any Rician distribution, as done

in [Tristán-Vega and Aja-Fernández (2010)] for a real noise-free signal. The extension to

a complex noise-free signal S can be found in the appendix A (section 6.5), at the end of

this chapter. Using eq. 6.8 and 6.9, the 2nd and 4th order moments of S are determined

by:



E(S2) = E(M2)− 2σ2,

E(S4) = E(M4)− 8σ2E(M2)− 8σ4.
(6.10)

Finally, using the latter equations’ system, the LMMSE eq. 6.7 becomes:

Ŝ2 = E(M2)− 2σ2 +

(
1− 4σ2[E(M2)− σ2]

E(M4)− E(M2)2

)
×
(
M2 − E(M2)

)
. (6.11)

The authors of [Aja-Fernández et al. (2008a)] use the assumption of local ergodicity to

replace the expectation E(·) by 〈·〉 corresponding to a local spatial mean calculated on a

neighborhood. Then, the LMMSE in the case of a single-channel acquisition is written

such that:

Ŝ2 = 〈M2〉 − 2σ2

︸ ︷︷ ︸
JR

+

(
1− 4σ2[〈M2〉 − σ2]

〈M4〉 − 〈M2〉2
)

︸ ︷︷ ︸
KR

×
(
M2 − 〈M2〉

)
. (6.12)

Eq. 6.12 is the equation of the original LMMSE introduced in [Aja-Fernández et al.

(2008a,b)] and is valid for Rician noise only. The JR term is equal to the conventional

estimator introduced in [McGibney and Smith (1993); Miller and Joseph (1993)] which

consists of applying a mean and a Rician bias removal to obtain the noise-free squared

magnitude. The parameter KR is a data attachment term that modulates the effect of

the JR term in heterogeneous regions. To resume, the LMMSE acts as a filter allowing some

smoothing in homogeneous regions without losing details in the features of heterogeneous

regions. Particular cases can appear when the denominator 〈M4〉− 〈M2〉2 in the KR term
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approaches zero or also when the final squared LMMSE estimation Ŝ2 is negative. These

cases do not often appear in practice. They will be deeply discussed in section 6.2.3.

Let us now detail how we extended this LMMSE to nc-χ distributions for the multiple-

channel acquisition case (SoS and SoS GRAPPA).

6.2.2 The extended LMMSE adapted to nc-χ distributions

The extension of the LMMSE to nc-χ noise constitutes one contribution of this thesis

work [Brion et al. (2011b,c,a)]. To extend the LMMSE estimator to nc-χ distributions, we

followed the process documented in [Aja-Fernández et al. (2008b)] with the assumption

of a multiple-channel acquisition yielding a nc-χ distribution given by eq. 5.15, page

114, in chapter 5. We demonstrated the LMMSE extension to nc-χ distributions in the

assumption of an SoS reconstruction without subsampling, without correlation between

the channels and with each channel having the same variance. This simplified case is the

one described in chapter 5, page 114. We consider the SoS reconstruction method to obtain

the magnitude: M =

√√√√
n∑

c=1

[
(Src + ǫrc)

2 + (Sic + ǫic)
2
]
, where S =

√√√√
n∑

c=1

[
S2
rc + S2

ic

]
=

√√√√
n∑

c=1

S2
c . The terms Src and Sic are the real and imaginary parts, respectively, of the noise-

free complex signal Sc received by the channel c. ǫrc and ǫic are the real and imaginary

parts, respectively, of the complex noise ǫc corrupting the signal received by the channel

c. They are assumed to be zero-mean, uncorrelated and independent Gaussian noises.

Because of these assumptions, the variance and covariance terms can be written:




Var(M2,M2) = E(M4)− E(M2)2,

Cov(S2,M2) = E(S4) + 2nσ2E(S2)− E(S2)E(M2).
(6.13)

The derivation of these latter values is detailed in appendix B (section 6.6), at the end of

this chapter. Injecting both variance and covariance expressions into eq. 6.2, we obtain:

Ŝ2 = E(S2) +
E(S4) + 2nσ2E(S2)− E(S2)E(M2)

E(M4)− E(M2)2
×
(
M2 − E(M2)2

)
. (6.14)

Now, if we use the 2nd and 4th order moments of the nc-χ distribution —whose demon-

stration is in appendix C (section 6.7) at the end of this chapter—, we have:




E(S2) = E(M2)− 2nσ2,

E(S4) = E(M4)− 4(n + 1)σ2E(M2) + 4n(n+ 1)σ4,
(6.15)

and the LMMSE eq. 6.14 for a nc-χ noise can finally be expressed as:

Ŝ2 = 〈M2〉 − 2nσ2 +

(
1− 4σ2

[
〈M2〉 − nσ2

]

〈M4〉 − 〈M2〉2

)
×
(
M2 − 〈M2〉

)
. (6.16)
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As performed in [Aja-Fernández et al. (2008a)], and under the assumption of local er-

godicity, we replaced the expectation E(·) by 〈·〉 corresponding to a local spatial mean

calculated on a neighborhood. For a single-channel acquisition (i.e. n = 1), eq. 6.16

simplifies to its Rician form given by eq. 6.12, as expected.

This demonstration was performed for the SoS reconstruction without subsampling,

without correlation between the channels and with each channel having the same variance.

However, the demonstration is also valid for the more general SoS and SoS GRAPPA

reconstructions with σ and n replaced by σeff (v) and neff (v). In [Aja-Fernández et al.

(2013)], the LMMSE was performed using the expressions of the effective parameters for

the simplified scenario described in table 5.1, in the previous chapter.

6.2.3 Singularities in the LMMSE

After having described the LMMSE adapted to Rician and nc-χ noises, we have to mention

three particular cases of the LMMSE which require a specific treatment:

1. It can happen that the LMMSE result Ŝ2 is negative. This is an impossible solution.

In a fruitful discussion with Dr. Aja-Fernández and with Dr. Tristán-Vega, these

two authors of [Aja-Fernández et al. (2008b)] and [Tristán-Vega and Aja-Fernández

(2010)] recommended us to set Ŝ = 0, since this artifact generally occurs in CSF

regions and in the background, but very seldom in the grey matter. In dMRI, the

main region of interest is the white matter, therefore this case does not have an

impact on the post-analysis of the corrected DW data.

2. In LMMSE eq. 6.12, we set KR =
(
1− 4σ2[〈M2〉−σ2]

〈M4〉−〈M2〉2
)
. And in eq. 6.16, we can set

similarly: KC =

(
1− 4σ2[〈M2〉−nσ2]

〈M4〉−〈M2〉2

)
. These two expressions KR and KC exist only

if the denominators of the fractions are not equal to zero. These denominators can

also be written as Var(M2). If the term Var(M2), calculated using the neighborhood,

is equal to zero, then it means that the voxel studied is located in an homogeneous

region. In the appendix A of [Aja-Fernández et al. (2008b)], the authors introduced a

simple spatial mean to compute Ŝ2 in the Rician noise situation. We chose a similar

approach in the nc-χ noise situation. The estimation is then done simply using:

Ŝ2 = E(M2) − 2σ2 for the Rician case and Ŝ2 = E(M2) − 2nσ2 for the nc-χ case.

This solution is equivalent to setting KR and KC equal to zero. If this estimation

yields negative squared results, we are in the same case as previously and follow the

same treatment.

3. Finally, Aja-Fernández et al. (2008b) explained that KR < 0 corresponds to numer-

ical artifacts. After empirical tests, they decided to set KR = max(KR, 0). We have

followed this choice in the nc-χ noise situation, which suited well to our data.
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6.2.4 Empirical tuning of global effective parameters in the nc-χ model

Practically, using eq. 6.16 requires a good estimate of the noise standard deviation σ.

Ideally, to account for the spatially varying nature of the noise due to the noise correlations,

it is recommended in [Aja-Fernández et al. (2011); Aja-Fernández and Tristán-Vega (2012)]

to calculate an effective noise standard deviation, as well as an effective number of channels

at each voxel. As this is very time-consuming, which goes against our speed constraint, we

proposed a trade-off : the latter consists of limiting the estimation to a global effective

variance and a global effective number of channels used for all the voxels in the

volume. We determined both global parameters σeff and neff empirically in the following

manner: we tested different values for neff , each of which impacted the computation of

σeff , which was performed using the “mode M1-χ” method resumed by eq. 5.26 (page

124) with n replaced by neff . We rewrite the estimation equation in our context here:

ModeM1-χ: σ̂eff =
(√

2(neff )
(1/2)

)−1
mode (〈Mbg(v)〉) , (6.17)

where Mbg(v) is the measured magnitude at the voxel v in the background region and

mode (〈Mbg(v)〉) is the distribution mode of the local mean of Mbg(v); (neff )
(1/2) is calcu-

lated applying the definition of the Pochhammer symbol, which can be found in appendix

B at the end of the manuscript. Then we chose the values of (neff ; σeff ) that produced

the highest FA, GFA or cGFA ratio — as defined in chapter 5, subsection 5.3.2, depending

on the local diffusion model— between a white matter (WM) region and a cerebrospinal

fluid (CSF) region. This concerned the correction performed on our real data and some

experimental details are given in subsection 6.3.4.

6.3 Results & discussion

6.3.1 Generation of our simulated data

To validate our correction methods, we generated simulated DW data. Here we briefly

present these simulated data. More details can be found in the appendix C at the end of

the manuscript.

For ground truth, we created 3D volumes (volume size=27×31×27) of noise-free T2-

weighted and DW data (with 500 diffusion orientations) depicting a fiber crossing. The

DW volume was artificially corrupted with nc-χ noise to perform validations. The noise-

free diffusion data were modeled using a Gaussian mixture to create two fiber bundles

crossing at 60̊ :

S(b,oi) = S0

2∑

k=1

fke
−boT

i Dkoi , (6.18)

with oi corresponding to the orientation at the ith iteration, fk being the volumic fraction

(
∑2

k=1 fk = 1) and Dk being the diffusion tensor, both associated to the kth fiber bundle.
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All other notations are the same as before. This generation of data performed with eq. 6.18

assumes that there is no water molecule exchange between the two bundle compartments.

This assumption is acceptable, as exchange time between compartments is much longer

than the diffusion time used in dMRI experiments. To simulate two bundles crossing

at 60̊ , we set the same [λ1, λ2, λ3] = [1.7 × 10−9, 0.3 × 10−9, 0.3 × 10−9] eigenvalues (in

m2 ·s−1) [Tuch (2002); Descoteaux (2008)] to both bundles and computed the eigenvectors

to obtain the desired angle. The b-value was set to b = 4500s · mm−2. To add the

nc-χ noise with a number of channels n = 4, we first calculated the noise-free signals

S(c) that each channel would receive, assuming that all channels receive the same signal:

∀c ∈ [[1;n], S(c) = S/
√
n, with S the noise-free signal given by eq. 6.18. Thus, the noisy

signal is given by the nonlinear transform M =

(
n∑

c=1

(S(c) + ǫr(c))
2 + ǫi(c)

2

)1/2

, where

ǫr(c) and ǫi(c) are the real and imaginary noises, respectively, on the channel c. They

are generated using a Gaussian noise distribution of standard deviation σ = 20 for a T2-

weighted signal S0 = 200. The parameter values for these simulations were chosen close to

the real values measured on our real DW data acquired at b = 4500s ·mm−2. Moreover, we

decided to work with b = 4500s ·mm−2, a typical b-value for HARDI which also represents

a challenging case for noise correction, as the DW signal is very low at this b-value.

6.3.2 Results on simulated data & discussion

We compared the original LMMSE adapted to Rician distribution developed by Aja-

Fernández et al. (2008b) with the LMMSE adapted to nc-χ distributions on these simulated

DW data at b = 4500s · mm−2 corrupted by a nc-χ noise with σ = 20. For simplicity,

we designate these methods as the Rice LMMSE and the nc-χ LMMSE, respectively. No

noise correlation was involved in the simulated data, so we used the real number of re-

ceiver channels n in the nc-χ LMMSE analyses of those data. We computed both LMMSE

using a 5×5×5 neighborhood. We will discuss this neighborhood choice at the end of the

subsection. We show the results for the aQBI model, for which the maximum SH order N

was set to 8. This high value yields 45 coefficients for the modified SH basis. With this

high number, noise has a higher impact on the results. This case, which is a little higher

than the common setting (usually N = 4 or N = 6) permits to assess the performances

of the denoising tools at a higher noise level. In the aQBI model, the Laplace-Beltrami

regularization λ was first set to 0 and then to 0.006 for the generation of the aQBI maps.

This permits a comparison between the correction alone and the correction followed by the

regularization. Before the computation of the LMMSE, the noise variance σ was estimated

using the “mode M1-χ” method resumed by eq. 5.26 (page 124) with n = 1 for the Rice

LMMSE and with n = 4 for the nc-χ LMMSE.

Fig. 6.3 shows the results on the dODF fields. It allows to compare the noisy dODF

and the corrected dODF, with either the Rice or the nc-χ LMMSE, with the noise-free

dODF. Moreover, the impact of the regularization can also be analyzed. Because of a nor-

malization of each dODF by its maximal amplitude, the region outside the bundles, where
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noise-free Rice LMMSE

nc-χ LMMSEnoisy

noisy & Reg.

nc-χ LMMSE & Reg.

Rice LMMSE & Reg.

Figure 6.3: Comparison between the Rice LMMSE and the nc-χ LMMSE on simulated DW data

corrupted by nc-χ noise with σ = 20. The dODF fields were generated from the noise-free, the

noisy and the results of both LMMSE without and with regularization (when “& Reg.” is written).

On each field a zoom of a dODF from the crossing region is displayed.

the configuration is defined by isotropic tensors, appears blank in some cases. The results

presented in fig. 6.3 show that both correction techniques, without any regularization,

improve the noisy dODF field yielding a higher similarity to the noise-free field. However,

there is an oversmoothing effect on the dODF field generated by both LMMSE. Indeed,

the vertical bundle of dODF after these LMMSE is almost 80% wider than the original

one. This effect of the LMMSE is due to the isotropic averages performed using neigh-
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borhoods. We will come back to it later. The zoomed dODF in fig. 6.3 reveals that only

the nc-χ LMMSE retrieves the noise-free angular information composed of two distinct

peaks. Finally, the impact of the regularization is a very small smoothing on each dODF

which does not significantly change the results. These qualitative results are confirmed by

the graph in fig. 6.4 which shows the MSE calculated as explained in section 5.3 of the

previous chapter, such that:

MSE =
1

Nv

∑

v∈V

N∑

j=1

(x̃(j,v) − x(j,v))2 , (6.19)

with Nv the number of voxels in the region shown in fig. 6.3, x̃(j,v) the jth coefficient of

the noisy vector x̃ calculated on the noisy DW data. x(j,v) is the jth coefficient of the

noise-free vector x. The MSE was calculated on all configurations. The MSE calculated

on the results obtained with regularization was found practically the same as the MSE

of the corresponding result without regularization. For very small values of σ (σ ≤ 3.5),

the regularization produces a slightly higher MSE, whereas for values of σ higher than

3.5, it produces a slightly lower MSE than the MSE of the results without regularization.

Consequently, for these values of noise levels, the regularization does not damage the

LMMSE correction and even improves it. The graph shows that the lowest MSE was

achieved with the nc-χ LMMSE (with regularization) for the panel of noise levels.
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Figure 6.4: Comparison between the MSE of the noisy dODF field without and with regularization

and the MSE of the dODF fields after the Rice LMMSE and after the nc-χ LMMSE also without

and with regularization. The noisy MSE is of 2.3 at σ = 35. The black and cyan dotted curves

were obtained superimposed, as well as the red and green dotted curves, and finally the magenta

and blue dotted curves.

Choice of the neighborhood used in the nc-χ LMMSE.

Fig. 6.3 shows LMMSE results performed with a 3D neighborhood of 5×5×5 voxels. We

chose a 3D neighborhood instead of a 2D neighborhood, as the resolution of the generated

3D volume is isotropic (This is also true for our real data). This allowed us to consider

neighbors in the three spatial dimensions. Then, it seemed more accurate to use the

same number of neighbors for all directions around the central voxel being considered for

correction. The last choice to make concerned the number of neighbors. For that, we

compared the results obtained with the nc-χ LMMSE with 3×3×3, 5×5×5 and finally

7×7×7 neighborhoods. Fig. 6.5 shows the comparison between the three results. It is

obvious that when the neighborhood size increases, the smoothing effect also increases

and this makes the MSE greater. However, it also permits to better retrieve the crossing

configuration of the zoomed dODF, with a more accurate removal of the noise (see the

black arrows). To choose the optimal neighborhood size, we considered a trade-off to obtain

an accurate noise removal and a good crossing definition with the most limited smoothing

effect. The 5×5×5 size offered us this trade-off. To better control the smoothing effect,

a solution will be presented in the next chapter allowing to cancel it. To get an efficient

noise correction, it requires enough amount of neighbor information. Typically, the 3×3×3
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neighborhood will not be large enough. Therefore we made our choice of the neighborhood

size not only looking at the smoothing effect and MSE, but also looking at the crossing

precision retrieved by the method.

noise-free (MSE=0) noisy (MSE=6.604 10−1)

7×7×7 (MSE=1.15 10−2)3×3×3 (MSE=6.5 10−3) 5×5×5 (MSE=8.0 10−3)

Figure 6.5: Comparison between the 3×3×3, 5×5×5 and 7×7×7 neighborhood sizes used in the

nc-χ LMMSE. The nc-χ LMMSE was performed on a noisy DW volume with σ = 20 (similarly as

before). The dODF fields were generated from the noise-free configuration without regularization

and from the noisy and the results of the LMMSE with regularization. On each field a zoom of a

dODF from the crossing region is displayed. The MSE is also indicated.

The size of the neighborhood also has an impact on the computation time of the method

and it has to be accounted when performing RT denoising. We will come back to it later

when discussing the nc-χ LMMSE results on real data.

6.3.3 Presentation of our real data

We applied the correction methods on real data, which acquisition protocol is detailed

in the appendix C at the end of the manuscript. Here, we briefly present the DW data

acquired at four b-values.

These data were collected on a human brain using a Magnetom Tim Trio 3T MRI

system (Siemens Medical Solutions, Erlangen, Germany), employing a spherical direction

sampling of 60 orientations uniformly distributed over each shell at b = 1500/3000/4500/6000s·
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mm−2. Three T2-weighted volumes were acquired at b = 0s ·mm−2. The acquisition pa-

rameters were as follows: TE/TR = 116ms/14s, field of view FOV= 220mm, matrix

128×128, 70 slices, resolution 1.7×1.7×1.7mm3, GRAPPA factor of 2, read bandwidth

RBW=1628Hz/pixel. Fig. 6.6 shows three DW images obtained for three different dif-

fusion gradients. The acquisition was performed with a 12-element head coil available on

the Tim Trio, for which the 12 coil elements are combined into 4 groups of 3 coil elements.

These groups are received through 4 distinct receiver channels, yielding n = 4.

oi = [0.08; 0.99; 0.08]T

oi = [−0.82; 0.34; 0.47]T

oi = [−0.74; 0.63; 0.24]T

oi = [−0.16; 0.28;−0.95]T

oi = [−0.54;−0.47;−0.70]T

oi = [−0.14;−0.43; 0.89]T

Figure 6.6: DW data for three diffusion gradients. In the center, the sphere of the q space is

represented, with green dots corresponding to the projections of the orientations chosen for the

measurement of the diffusion. Three DW images are shown for three diffusion orientations oi.

6.3.4 Results on real data & discussion

We performed a similar comparison on the real DW data acquired at b = 4500s ·mm−2.

Again, we computed the results for the aQBI model, for which the maximum SH order N

was set to 8 and the Laplace-Beltrami regularization λ was first set to 0 and then to 0.006

for the generation of the aQBI maps. This permits a comparison between the correction

alone and the correction followed by the regularization. In the case of the Rice LMMSE,

the noise variance σ was estimated using the “mode M1-χ” method resumed by eq. 5.26

(page 124) with n = 1 for the Rice LMMSE Concerning the nc-χ LMMSE, we accounted
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for the possible noise correlations in the real data in two different ways. The first way

calculates global effective parameters for the whole DW volume. Therefore, this solution

is not rigorous regarding the analysis in [Aja-Fernández et al. (2011); Aja-Fernández and

Tristán-Vega (2012)], as the effective parameters should be voxel-wise. However, this

first solution allows to already account for eventual noise correlations and is above all far

more computationnaly efficient than a voxel-wise technique. This trade-off is explained in

subsection 6.2.4. Fig. 6.7 reveals how in practice we obtained the optimum global effective

parameters for the nc-χ LMMSE applied with regularization at b = 4500s·mm−2, following

the steps detailed in subsection 6.2.4. The second way to handle these correlations is the

more rigorous calculation of the voxel-wise parameters as described in table 5.1, page

126 [Aja-Fernández et al. (2013)]. This technique can be applied in RT, when performed

separately on each DW volume acquired for a given diffusion orientation: in the RT process,

the method is executed on the new DW volume acquired before the LMMSE algorithm.

This solution was developed for a simplified scenario in case of an SoS reconstruction

without any partially parallel MRI reconstruction. Therefore, this solution is not entirely

adapted to our real data acquired with GRAPPA. Nevertheless, to date, it is the only

solution proposed to obtain both neff and σeff separately.

2

G
F
A

ra
ti
o

GFA ratio=

@b=4500 s ·mm−2 after nc-χ LMMSE & Reg.

neff

mean of 2
mean of 1

1

optimum neff=3.2

Figure 6.7: The method to determine the global σeff and the global neff for the nc-χ LMMSE

applied with regularization at b = 4500s ·mm−2. Two ROI are chosen on the GFA map (the map

shown here (left) is the raw GFA at b = 1500s ·mm−2). The GFA ratio is computed as indicated

for a panel of values of neff . The optimum neff is chosen when the GFA ratio is at its maximum.

Fig. 6.8 depicts the results obtained with the Rice and the nc-χ LMMSE performed

on the DW data at b = 4500s ·mm−2. Both methods, the global one and the voxel-wise

one, were used to estimate the effective parameters. These results on real data show that

the oversmoothing effect is high with the Rice LMMSE, whereas it is far more acceptable

with the nc-χ LMMSE. The comparison between the global and the voxel-wise estimations

of the effective parameters show a slightly higher smoothing on the DW image obtained

using the global parameters. In both cases, the smoothing happens in approximately
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raw Rice LMMSE (G)

nc-χ LMMSE (G) nc-χ LMMSE (V-W)

Figure 6.8: Comparison between the Rice LMMSE and the nc-χ LMMSE on real DW data at

b = 4500s ·mm−2 with either the global (G) or the voxel-wise (V-W) effective parameters.

homogeneous regions and is stopped in the borders to preserve the details. Then, we

compared the GFA maps obtained either without or with regularization. We show in fig.

6.9 the comparison on the raw maps and the maps corrected using the nc-χ LMMSE with

the voxel-wise effective parameters. The message is clear: the regularization improves a

lot the visual quality of the maps. Similar results were obtained with the other techniques.

raw nc-χ LMMSE (V-W) raw & Reg. nc-χ LMMSE (V-W)
& Reg.

Figure 6.9: Comparison between the nc-χ LMMSE on real GFA maps at b = 4500s ·mm−2 with

either regularization (“& Reg.”) or not.
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Therefore, from now on, we only show the results obtained with regularization.

Finally, fig. 6.10 regroups the resulting GFA maps generated with the Rice and the

nc-χ LMMSE with regularization. It also compares the use of the global and the voxel-wise

estimation of the effective parameters in the case of the nc-χ LMMSE. It is again visible

that the nc-χ LMMSE yields better corrected GFA maps than the Rice LMMSE, which

oversmoothes the maps. Concerning the comparison between the global and the voxel-wise

methods, it seems that there is no clear winner. Indeed, at b = 1500s ·mm−2, the voxel-

wise technique produces a smoothed GFA, whereas the global technique is much finer. For

the other b-values, it is the opposite: the global technique produce GFA with a little more

raw & Reg.
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& Reg. & Reg.
nc-χ LMMSE (VW)nc-χ LMMSE (G)Rice LMMSE & Reg.

Figure 6.10: Comparison between the Rice and the nc-χ LMMSE on real GFA maps with regu-

larization (“& Reg.”) and with either the global (G) or the voxel-wise (V-W) effective parameters

at b = 1500/3000/4500/6000s ·mm−2. Hyperintensities in the maps are shown by white arrows.
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smoothing, compared to the voxel-wise version. This is due to the fact that the global

neff for these three b-values are lower than most of the voxel-wise neff , as we will analyze

it later. We also notice in fig. 6.10 that there are hyperintensities located near the border

of the mask in the case of the global technique (which are also present in worth with the

Rice LMMSE). These hyperintensities are shown by white arrows. They are probably due

to an intensity artifact in this area in the raw DW data. In the process of the LMMSE,

the voxels located in this region may fall in the two first particular cases, described in

subsection 6.2.3, for which the final LMMSE result is set to zero. Consequently, if the DW

signals in a region are set to zero for most of the orientations and different from zero for

very few of them, then the result is a very high anisotropy in that region, leading to white

hyperintensities on the GFA maps. However, with the use of the voxel-wise method, these

hypeintensities disappear thanks to the locally adapted noise variance estimation.

To quantitatively analyze the results presented in fig. 6.10, we calculated the GFA

ratios on each configuration (fig. 6.11). The GFA ratio, as explained in the previous

chapter, in subsection 5.3.2, is defined such that:

GFA ratio =
GFAA

GFAB

, (6.20)

with GFAA and GFAB the GFA means calculated on the GFA map for the regions A

and B, respectively. The ROI were chosen as shown in fig. 6.7. To obtain a GFA ratio

indicator, which rightly measures the contrast change due to the method applied, it was

important to choose for the region A an area of medium signal and not high signal. That

is why we chose a region A located in a subcortical white matter (WM) area. For region

B, we chose a low signal region in a CSF area located close to a WM region, so that a

smoothing effect of the correction technique can be detected: if a smoothing effect appears

(as in our previous presented results on simulated data), this region B will contain traces

of WM signals, making the GFA ratio decrease. We can see in fig. 6.11 that the GFA

ratio has indeed a tendency to decrease with the Rice LMMSE, which oversmoothes the

map. Both global and voxel-wise nc-χ LMMSEs produce the highest GFA ratios, with a

better result for the global technique. We have to keep in mind that this quality indicator

is however local and has to be analyzed not alone, but together with the visual inspection

of the quality of the images.
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Figure 6.11: Comparison between the GFA ratios of the raw map and the map obtained after

application of the Rice and the nc-χ LMMSE with regularization and with either the global or the

voxel-wise effective parameters at b = 1500/3000/4500/6000s · mm−2. The ROI were chosen as

shown in fig. 6.7.

To better understand the comparison between the global and the voxel-wise estimations

of the effective parameters, we draw the histograms of the voxel-wise σeff and neff on

the entire DW volumes. These histograms are shown in fig. 6.12. From these histograms,

we can see that: first, the histogram of σeff is less spread when the b-value increases

(for b > 3000s · mm−2). This means that for high b-values (b > 4500s · mm−2), the

voxel-wise estimation of σeff tends to a global estimation with a nearly unique σeff for

the whole volume. Secondly, concerning neff , it is almost one in the whole volume at

b = 1500s ·mm−2 and increases with b, yielding almost four (i.e. the number of channels)

at b = 6000s · mm−2 for the whole DW volume. These histograms can be linked with

the visual results in fig. 6.10 and to the values of σeff and neff obtained with the global

method and given in table 6.1. Indeed, the voxel-wise estimation at b = 1500s · mm−2

generates too much smoothing because the values of neff are close to one. For the other

b-values, the smoothing is subtler, yielding a small denoising, this corresponding to values

of neff closer to four, as indicated by the histograms of neff . In comparison, the neff

values obtained with the global solution (in table 6.1) are lower for b > 3000s · mm−2,

yielding a stronger denoising with some smoothing side effect.
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Figure 6.12: Histograms, performed inside the brain, of the voxel-wise parameters σeff and neff

obtained with the voxel-wise technique by [Aja-Fernández et al. (2013)].

Global effective neff and σeff obtained for the

nc-χ LMMSE

b (s ·mm−2) 1500 3000 4500 6000

neff 2.0 2.2 3.2 3.2

σeff 24.1 22.3 18.2 18.0

Table 6.1: The global effective neff and σeff obtained for the nc-χ LMMSE at b = 1500s ·mm−2

/ b = 3000s ·mm−2 / b = 4500s ·mm−2 / b = 6000s ·mm−2. Regularization was used to generate

the GFA maps on which the GFA ratios necessary to obtain these global effective parameters were

calculated.
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Computational efficiency.

Finally, we also measured the computation time for the noise correction methods. For

the global solution, we obtained a time of 2.2s on one CPU @ 2.8 GHZ, for a real DW

volume of 128×128×70 at each orientation acquired. This time increased to 14.2s with the

voxel-wise method, almost corresponding to the repetition time of the dMRI acquisition.

These LMMSE computation times depend on the choice of the neighborhood used to

calculate the LMMSE averages. In subsection 6.3.2 we explained that we chose a 5×5×5

neighborhood, as it was a good trade-off between a precise noise removal and a limited

smoothing effect. Fig. 6.13 shows that the choice of this neighborhood size keeps the

computation times lower than with higher neighborhood sizes.

Figure 6.13: Impact of the neighborhood size on the LMMSE computation time. Both global (G)

and voxel-wise (VW) versions of the LMMSE were tested.

It is important to notice here that the denoising of the global method, obtained without

any parallelization on a cluster yet, is very low compared to other methods’ times, e.g. the

NLM filter time mentioned in 6.1.2 for an approximatively 6 times bigger data volume:

for a 181×217×181 volume on a 3 GHz CPU, the NLM lasted several hours in its original

version. This time was reduced, in parallelized versions with 8 CPU @ 3 GHz each, to

around one minute with the accelerated method by [Coupé et al. (2008b)] and at most 35s

with the accelerated method by [Tristán-Vega et al. (2012)].

Although the times of the global and voxel-wise methods are already very low, they

can be further reduced. Indeed, for the RT process to be truly RT, it is essential that

the denoising method delivers the corrected DW volume before the acquisition of the next

DW volume. Therefore, the denoising process should last less than the repetition time TR

of typically a dozen of seconds. To achieve this time reduction, we used a cluster of 80

CPUs. The parallelization and distribution of the C++ code on this cluster permitted to
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obtain times of 48ms and 307ms for the global and the voxel-wise nc-χ LMMSE, clearly

far below the TR.

6.3.5 Conclusion on the extended LMMSE adapted to nc-χ distributions

The extended LMMSE adapted to nc-χ distributions produced nice results on our simu-

lated and real data. However, it caused a smoothing effect, clearly visible on our simulated

data that is due to averages performed isotropically and that requires to be attenuated.

This smoothing effect will be addressed in the next chapter.

The global solution presents the disadvantage of finding the optimum σeff and neff in

an empirical way by testing the nc-χ LMMSE for several values of neff . This cannot be

performed in RT. Consequently, our global method is proposed for a study of a database

acquired with a unique set of constant parameters: the optimum neff can be tuned on

one DW volume set, and its value can be used on the rest of the database, without any

supplementary tuning. This disadvantage does not appear with the voxel-wise solution,

however this latter technique was shown to yield sometimes less adequate effective param-

eters values than the global method.

Finally, the small time required by our method, as well as its good denoising results

confirmed our choice to use LMMSE and LMMSE-derived algorithms for our RT noise

correction objective.

6.4 Conclusion of this chapter

In this chapter, after providing an overview of denoising methods actually available to cor-

rect dMRI, we focused on LMMSE methods. We proposed an original extended LMMSE

algorithm compatible in terms of computational efficiency with the objective of this thesis

to run it in RT during the ongoing scan. To account for eventual noise correlations, we

proposed an alternative to the voxel-wise determination of effective parameters of [Aja-

Fernández et al. (2013)]. Indeed, we suggested to use a trade-off consisting of an empirical

estimation of the effective parameters defined globally for the data volume. We analyzed

the advantages and disadvantages proposed by such a method. We also qualitatively and

quantitatively studied the performances of the LMMSE on simulated and real DW data

and implemented a parallel version of it on a cluster of CPUs. The contributions of our

work are listed below.

6.4.1 Contributions of this chapter

• A detailed state-of-the-art review on the noise correction methods.

• An extension of the LMMSE to nc-χ distributions. This nc-χ LMMSE filter was

shown to outperform the Rice LMMSE on simulated and real data corrupted by

nc-χ noise [Brion et al. (2011b,c,a)].
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• A trade-off with the empirical estimation of effective parameters to account for even-

tual noise correlations in the data to correct. This solution was shown to be faster

than its voxel-wise alternative proposed by [Aja-Fernández et al. (2013)] and to de-

liver accurate results.

• An analysis of the performances of the LMMSE (time and results) regarding our RT

denoising purpose.

In this chapter, we highlighted the constraints to face when wanting to operate a noise

correction in RT. The LMMSE respects these constraints and can be performed in RT.

The next chapter presents the incorporation of this estimator in the RT framework based

on a Kalman filter described in chapter 4. The next chapter also details other methods

for an RT noise correction.

6.5 Appendix A: Calculation of the 2nd and 4th order mo-

ments of the measured magnitude for a single-channel

acquisition

In this chapter, page 148, we used the expressions of the 2nd and 4th order moments of

the measured magnitude for a single-channel acquisition with the assumption that noise

is Rician. It is possible to obtain these expressions from the equation giving the measured

magnitude M =
√
(Sr + ǫr)2 + (Si + ǫi)2 (with S =

√
S2
r + S2

i ) and from the hypotheses

detailed page 147 concerning the noise signals. Let us begin with the 2nd order moment

of M :

E(M2) = E
(
(Sr + ǫr)

2 + (Si + ǫi)
2
)
,

= E(S2
r ) + 2E(Srǫr)︸ ︷︷ ︸

=0

+E(ǫ2r) + E(S2
i ) + 2E(Siǫi)︸ ︷︷ ︸

=0

+E(ǫ2i ),

= E(S2
r + S2

i ) + 2σ2.

The latter equation leads to:

E(M2) = E(S2) + 2σ2 (6.21)

Similarly, we calculate E(M4):

E(M4) = E
(
[(Sr + ǫr)

2 + (Si + ǫi)
2]2
)
,

= E
(
(Sr + ǫr)

4 + 2(Sr + ǫr)
2(Si + ǫi)

2 + (Si + ǫi)
4
)
.

For two reals a and b, we have: (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4. This enables to

simplify the expression of E(M4) into:

E
(
(Sr + ǫr)

4
)
= E

(
S4
r + 4S3

r ǫr + 6S2
r ǫ

2
r + 4Srǫ

3
r + ǫ4r

)

= E(S4
r ) + 6E(S2

r )σ
2 + 3σ4.
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Similarly, we obtain: E
(
(Si +Bi)

4
)
= E(S4

i ) + 6E(S2
i )σ

2 + 3σ4. It remains to calculate

E
(
(Sr + ǫr)

2(Si + ǫi)
2
)
.

E
(
(Sr + ǫr)

2(Si + ǫi)
2
)

= E
(
S2
rS

2
i + 2SiǫiS

2
r + S2

r ǫ
2
i + 2SrS

2
i ǫr + 4SrSiǫrǫi + 2Srǫrǫ

2
i + ǫ2rS

2
i + 2ǫ2rSiǫi + ǫ2rǫ

2
i

)

= E(S2
rS

2
i ) + σ2E(S2

r ) + σ2E(S2
i ) + σ4.

Gathering the three simplified terms together, we obtain:

E(M4)

= E(S4
r ) + 6E(S2

r )σ
2 + E(S4

i ) + 6E(S2
i )σ

2 + 6σ4+

2
(
E(S2

rS
2
i ) + σ2E(S2

r ) + σ2E(S2
i ) + σ4

)

= E(S4
r + 2S2

rS
2
i + S4

i ) + 8σ2E(S2
r + S2

i ) + 8σ4.

It results that:

E(M4) = E(S4) + 8σ2E(S2) + 8σ4 . (6.22)

6.6 Appendix B: LMMSE calculation for a multiple-channel

acquisition with an SoS or an SoS GRAPPA reconstruc-

tion

To calculate the LMMSE for nc-χ distributions for a multiple-channel acquisition (with

an SoS or an SoS GRAPPA reconstruction), it is first necessary to rewrite the expression

of the magnitude with the SoS reconstruction:

M =

√√√√
n∑

c=1

(Src + ǫrc)
2 + (Sic + ǫic)

2. (6.23)

Then, we rewrite the expression of the noise-free magnitude:

S =

√√√√
n∑

c=1

S2
rc + S2

ic
,

=

√√√√
n∑

c=1

S2
c ,

(6.24)

with Src and Sic the real and imaginary components, respectively, of the complex noise-free

signal on the channel c. ǫrc and ǫic are the real and imaginary components, respectively,

of the complex noise signal on channel c. The noises ǫrc and ǫic are supposed to be

uncorrelated, zero-mean Gaussian noises of standard deviation σ. Therefore, let us remind

that we can write:




E(ǫk) = 0, if k is odd,

E(ǫ2) = σ2,

E(ǫ4) = 3σ4.

(6.25)
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The imaginary and real parts of the noise signal are supposed to be independent. The

same hypothesis is applied between the noise ǫ and the noise-free signal S, thus:




E(ǫrǫi) = E(ǫr)E(ǫi) = 0,

E(ǫS) = E(ǫ)E(S) = 0.
(6.26)

After these statements, let us now rewrite the estimation of the squared noise-free

magnitude signal, noted as Ŝ2, using the LMMSE:

Ŝ2 = E(S2) + Cov(S2,M2)Var(M2)
−1 ×

(
M2 − E(M2)

)
. (6.27)

This latter equation requires to explicit the unknown terms with respect to known or

measurable quantities. The expression of the variance term is easy to get, as in the case

of a single-channel acquisition:

Var(M2) = E
(
[M2 − E(M2)]2

)

= E
(
M4 − 2M2E(M2) + E(M2)2

)
.

Therefore, we obtain:

Var(M2) = E(M4)− E(M2)2 . (6.28)

Let us now calculate the covariance term: Cov(S2,M2):

Cov(S2,M2) = E
(
[S2 − E(S2)][M2 − E(M2)]

)

= E
(
S2M2 − S2E[M2]− E[S2]M2 + E[S2]E[M2]

)

= E

(
S2

[
n∑

k=1

(
(Srk +Brk)

2 + (Sik +Bik)
2
)
])

− E(S2)E(M2)

= E

(
S2

[
n∑

k=1

S2
k

])
+ E

(
S2

[
n∑

k=1

2(SrkBrk + SikBik)

])

︸ ︷︷ ︸
=0

+2nσ2E[S2]−

E(S2)E(M2).

Therefore, we obtain:

Cov(S2,M2) = E
(
S4
)
+ 2nσ2E(S2)− E(S2)E(M2) . (6.29)

Let us now incorporate eq. 6.28 and eq. 6.29 in the LMMSE model eq. 6.27:

Ŝ2 = E(S2)+
(
E
(
S4
)
+ 2nσ2E[S2]−E(S2)E(M2)

) (
E(M4)− E(M2)2

)−1×
(
M2 − E(M2)

)
.

Then, we have to simplify the expressions of the 2nd and 4th order moments of S.

These moments are demonstrated in the next appendix 6.7, to be equal to:

E(S2) = E(M2)− 2nσ2, (6.30)
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E(S4) = E(M4)− 4(n + 1)σ2E(M2) + 4n(n+ 1)σ4. (6.31)

Using eq. 6.30 and eq. 6.31 in the previous LMMSE equation, we obtain the final

result:

Ŝ2 = 〈M2〉 − 2nσ2 +

(
1− 4σ2[〈M2〉−nσ2]

〈M4〉−〈M2〉2

)
×
(
M2 − 〈M2〉

)
. (6.32)

We easily remark that when setting n = 1, eq. 6.32 simplifies to its Rician form given by

eq. 6.12, page 148.

6.7 Appendix C: Calculation of the 2nd and 4th order mo-

ments of the measured magnitude for a multiple-channel

acquisition

In the previous appendix 6.6, we used the expressions of the 2nd and 4th order moments

of the measured magnitude for a multiple-channel acquisition with n channels. Here

we give the demonstration of eq. 6.30 and eq. 6.31 using only the following relations:

M =
√∑n

k=1 (Srk +Brk)
2 + (Sik +Bik)

2,and S =
√∑n

k=1 S
2
rk

+ S2
ik

=
√∑n

k=1 S
2
k , as

well as the assumptions regarding the noise signals detailed page 167. We begin with the

2nd order moment of M :

E(M2) = E

(
n∑

k=1

(Srk +Brk)
2 + (Sik +Bik)

2

)

= E

(
n∑

k=1

S2
k

)
+ E

(
n∑

k=1

2SrkBrk + 2SikBik

)

︸ ︷︷ ︸
=0

+E

(
n∑

k=1

B2
rk

)

︸ ︷︷ ︸
=nσ2

+E

(
n∑

k=1

B2
ik

)

︸ ︷︷ ︸
=nσ2

= E

(
n∑

k=1

S2
k

)
+ 2nσ2.

Consequently, we obtain:

E(M2) = E(S2) + 2nσ2 . (6.33)
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Then to compute E(M4), we first detail M4:

M4 =

(
n∑

k=1

(Srk +Brk)
2 + (Sik +Bik)

2

)2

=

(
n∑

k=1

S2
k + 2(SrkBrk + SikBik) +B2

rk
+B2

ik

)2

=

(
S2 + 2

n∑

k=1

(SrkBrk + SikBik) +

n∑

k=1

B2
rk

+

n∑

k=1

B2
ik

)2

= S4 + 4S2
n∑

k=1

(SrkBrk + SikBik)

︸ ︷︷ ︸
=A1

+2S2

(
n∑

k=1

B2
rk

+
n∑

k=1

B2
ik

)

︸ ︷︷ ︸
=A2

+

4

n∑

k=1

(SrkBrk + SikBik) ·
n∑

k=1

(SrkBrk + SikBik)

︸ ︷︷ ︸
=A3

+4

n∑

k=1

(SrkBrk + SikBik)

n∑

k=1

B2
rk

︸ ︷︷ ︸
=A4

+

4

n∑

k=1

(SrkBrk + SikBik)

n∑

k=1

B2
ik

︸ ︷︷ ︸
=A5

+

(
n∑

k=1

B2
rk

)2

+ 2

n∑

k=1

B2
rk

·
n∑

k=1

B2
ik
+

(
n∑

k=1

B2
ik

)2

︸ ︷︷ ︸
=A6

.

Let us calculate the expectation of each Ai term:

E(A1) = E(S4) + 0,

E(A2) = 2E(S2)× 2nσ2 = 4nσ2E(S2),

E(A3) = 4E

(
n∑

k=1

(SrkBrk + SikBik)
2

)
+

4E




n∑

k=1

(SrkBrk + SikBik) ·
n∑

j=1
j 6=k

(
SrjBrj + SijBij

)



︸ ︷︷ ︸
=0

= 4E

(
n∑

k=1

S2
rk
B2

rk
+ 2SrkBrkSikBik + S2

ik
B2

ik

)

= 4σ2E

(
n∑

k=1

S2
rk

+ S2
ik

)

= 4σ2E(S2),

E(A4) = E(A5) = 0,
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E(A6) = E




n∑

k=1


B4

rk
+

n∑

j=1
j 6=k

B2
rk
B2

rj





+ E




n∑

k=1


B4

ik
+

n∑

j=1
j 6=k

B2
ik
B2

ij





+

2E

(
n∑

k=1

B2
rk

·
n∑

k=1

B2
ik

)

= 2×
(
3nσ4 + n(n− 1)σ4

)
+ 2n2σ4.

We add the six Ai terms together:

E(M4) = E(S4) + 4nσ2E(S2) + 4σ2E(S2) + 2
(
3nσ4 + n(n− 1)σ4

)
+ 2n2σ4.

After some simplification, the result is given by:

E(M4) = E(S4) + 4(n+ 1)σ2E(S2) + 4n(n+ 1)σ4 . (6.34)

From eq. 6.33 and eq. 6.34, we obtain the following 2nd and 4th order moments of S:

E(S2) = E(M2)− 2nσ2 ,

E(S4) = E(M4)− 4(n+ 1)σ2E(M2) + 4n(n+ 1)σ4 .
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Chapter 7

Noise correction methods

dedicated to real-time dMRI

In this chapter, we address the feasibility of denoising in real-time (RT). First, we present

an adaptation of the LMMSE in the RT framework based on a Kalman filter (KF) described

in chapter 4. Second, we propose to implement a denoising filter to be applied in the

complex Fourier domain, in order to take benefit of the Gaussian noise distribution present

on the real and imaginary channels. Last, we propose an alternative solution based on

the use of a parallel Kalman filter able to deal with non-Gaussian noise distributions. All

three methods are compared in terms of quality of the denoising, time performances and

practical aspects for the user.

7.1 LMMSE integration into the KF-based framework ded-

icated to RT

This section explains our first RT noise correction method. The latter relies on the inte-

gration of the LMMSE, presented in the previous chapter, into the KF-based framework

detailed in chapter 4. This RT method constitutes one contribution of this thesis work

[Brion et al. (2010, 2011d,f,e)].

7.1.1 Presentation of the RT method

We present here this first RT noise correction method for the aQBI, DTI and sa-aQBI

models. The presentation is detailed for the aQBI model, but its extension to DTI and

sa-aQBI is straightforward.

Detailed presentation adapted to the aQBI model

Our RT denoising method is represented by the diagram given in fig. 7.1 for the aQBI

model. Let us describe what happens to the DW signal M(v,oi) measured at the voxel

v and at the orientation oi. After having acquired a diffusion-sensitized volume at on
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orientation oi, we get this measured signal M(v,oi) and inject it into the LMMSE. The

LMMSE requires the estimation of the noise standard deviation σ. This estimation can

be global or voxel-wise defined. For the first case, we performed the empirical tuning, as

explained in subsection 6.2.4 of chapter 6, page 151. For the second case, we relied on

the method introduced by [Aja-Fernández et al. (2013)] detailed in table 5.1, page 126.

The LMMSE enables to obtain the noise corrected DW signal Ŝ(v,oi) that we inject in

the KF, after having divided it by the noise LMMSE corrected T2-weighted signal. In our

case on real data, we directly injected the ratio performed with the averaged T2-weighted

signal, which does not require a correction, as explained in the appendix A. Here, the KF

is necessarily used as an OLS estimator because nothing is known about the residual noise

after the LMMSE application, and nothing is known a fortiori about the noise variance.

In this KF process, the residual noise is required to be assumed as a zero-mean Gaussian

noise, as explained in chapter 4. The KF adapted to the linear aQBI model relies on the

following linear equation:

Ŝ(v,oi)

Ŝ0(v)
= bi · ĈDW

v + ǫr, (7.1)

with bi the ith row of B, the matrix of the modified SH basis defined by eq. 3.13, page

46. The index i is the iteration index of the RT process (or equivalently the orientation

we are considering). The noise term ǫr corresponds to the residual noise after the LMMSE

filtering. The KF is used in its regularization form with the adapted initialization of

DW signal DW signal
Corrected

Anisotropic average
using a 3D neighborhood

LMMSE
Filter

Kalman
ĈDW

v

σ̂

v′: neighbor voxel

standard deviation
σ̂: estimated noise

v: central voxel

ηv:

oi: orientation

M (v,oi) Ŝ(v,oi)

w(v,v′) = wspatialwstructural





〈M 2(v,oi)〉
〈M 4(v,oi)〉〈Iv,oi

〉 =

Ŝ0(v): corrected T2-weighted signal

bi: the i
th row of B

ĈDW
v : SH coefficients of Ŝ(v,oi)/Ŝ0(v)

〈Iv,oi
〉 =

∑

v′∈ηv
w(v,v′)Iv′,oi

∑

v′∈ηv
w(v,v′)

Ŝ(v,oi)

Ŝ0(v)
= bi · ĈDW

v + ǫri

Figure 7.1: Diagram of the RT noise correction algorithm based on an LMMSE and a KF embed-

ded together with a feedback loop. The blocks in yellow indicate the main steps of the algorithm

with first the LMMSE, then the KF and finally the feedback loop, which calculates a weight to

enable an anisotropic computation of the averages required by the LMMSE. Here the method is

adapted for the aQBI model.
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the estimation error covariance given in chapter 4. Finally the output of the KF is the

coefficients’ vector ĈDW
v of the decomposition of the LMMSE estimated DW signals’ vector

on the modified SH basis. From these coefficients, we can calculate the aQBI maps,

but this time, in opposition to what we saw in chapter 4, they will now contain a noise

correction. At each new diffusion orientation acquired, the LMMSE followed by the KF

will be performed and the vector ĈDW
v , as well as the maps, will be iteratively refined.

As mentioned previously in chapter 6, a disadvantage of the LMMSE is that it uses

averages calculated on neighborhoods. This can lead to oversmoothing effects. As the esti-

mation is embedded in an incremental system, we can use information stemming from the

RT results that are refined at each new iteration in the LMMSE to reduce this oversmooth-

ing effect. To this aim, we added a feedback loop. It calculates a weight that can be

used for the average computations required by the LMMSE: instead of calculating isotropic

averages as in the previous chapter, the idea here is to calculate anisotropic averages

to make the LMMSE more edge-preserving. This weight constrains the LMMSE spatially

and structurally for better accuracy. Its effect is similar to an anisotropic diffusion filter.

We chose to define this weight as follows:

w(v,v′) = exp

(−(v′ − v)2

2α2

)

︸ ︷︷ ︸
wSPATIAL

exp




−
N∑

j=1

(
ĈDW

v′ (j) − ĈDW
v (j)

)2

2β2




︸ ︷︷ ︸
wSTRUCTURAL

. (7.2)

The wSPATIAL component modulates the influence of the neighboring voxels according to

their distance from the central voxel, thus preserving the resolution of thin structures. The

wSTRUCTURAL component is based on an mean square error (MSE) of the SH coefficients

between the neighbors and the central voxel. This MSE, presented in chapter 5, is similar

to the metric of dODF similarities introduced in [Descoteaux (2008)]: it favors neighboring

voxels that have a similar underlying structure. As the diffusion process encodes for the

microstructure, the SH decomposition naturally embeds the structural information and any

metric defined using the ĈDW
v vector can be used to characterize the structural similarities

between two voxels. It is essential that the T2-weighted signal is incorporated in the

wSTRUCTURAL component to efficiently characterize the structural similarities between

two voxels. The weight w(v,v′) relies on two parameters α and β, that need to be tuned

to get the best correction. Their tuning is explained in subsection 7.1.2.

Before going on with the presentation of this RT method for the DTI and sa-aQBI linear

models, we want to highlight here that the feedback loop allows us to take advantage

at some point of the joint information in the DW data along the several diffusion

orientations. Our RT constraints do not allow to process all data along all diffusion

orientations together, but the addition of the feedback loop offers an alternative enabling

to take advantage of the previously acquired measurements to improve the filtering of the

current measurement.
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The RT method adapted to the DTI and sa-aQBI linear models

Adaptation to the DTI model. To adapt the diagram in fig. 7.1 to the DTI model, the

linear equation on which the KF relies has to be replaced by the following linear equation

of chapter 4, subsection 4.3.2:

y = A · x+ ǫr, (7.3)

with, for iteration i, yi = ln
(

S0

Ŝ(oi)

)
(where Ŝ(oi) is the LMMSE estimate of M(oi)) and

ai = bi[o
2
x, 2oxoy, 2oxoz, o

2
y, 2oyoz, o

2
z], bi being the b-value. The state vector x corresponds

to the six LMMSE & KF estimated coefficients of the symmetric diffusion tensor: x =

[D̂xx, D̂xy, D̂xz , D̂yy, D̂yz , D̂zz]
T . Finally, the noise residual ǫri , for iteration i, can be

considered as before as a zero-mean Gaussian noise. The KF is then performed as an

OLS. We want here to point out that [Casaseca-de-la-Higuera et al. (2012)] added some

information about this noise to improve our original LMMSE & KF filter. Their approach

relies on the empirical study by [Aja-Fernández et al. (2008b)] performed for n = 1 and

showing that the LMMSE residual noise can be approximated as a Rician noise when

n = 1. Therefore, they evaluated the variance σr of this residual noise and then computed

the covariance matrix R used in the KF, such that, for each iteration i: Ri =
(
σr/Ŝ(oi)

)2
.

Consequently, with this approach, the KF will behave as a WLS estimator, as the matrix

R varies across the iterations. [Casaseca-de-la-Higuera et al. (2012)] demonstrated that

the LMMSE & KF technique computed with this WLS filter outperformed the LMMSE

& KF technique computed with an OLS filter.

As for the aQBI model, the KF is used in its regularization form with the adapted

initialization of the estimation error covariance given in chapter 4. The feedback loop

requires an adaptation to the DTI model, such that:

wSTRUCTURAL(v,v
′) = exp




−
6∑

j=1

(
D̂v′(j)− D̂v(j)

)2

2β2




, (7.4)

where
(
D̂v′(j) − D̂v(j)

)2
is the l2-norm of the vector of differences between the two

tensors D̂v′ and D̂v.

Adaptation to the sa-aQBI model. The adaptation of the RT noise correction method

to the sa-aQBI linear model requires also to modify the linear equation for the KF, fol-

lowing again the details given in chapter 4, subsubsection 4.3.3

y = A · x+ ǫr, (7.5)

with, for iteration i, yi = ln
(
−lnÊ(oi)

)
/S0 (where Ê(oi) = Ŝ(oi)/S0 is the LMMSE

& KF estimate of ME(oi))and ai corresponding to the ith row of the matrix B of the
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modified SH basis. The state vector x corresponds to the LMMSE estimated coefficients’

vector ĈSA. Finally, the noise residual ǫri , for iteration i, can be considered as before as

a zero-mean Gaussian noise. As for the DTI model, the KF can be computed as an OLS

assuming a non-varying variance of the residual noise across the iterations (R = I), or as

an WLS estimator computing the covariance matrix R, such that: Ri =
σ2
r

Ŝ(oi)2ln(Ŝ(oi)/S0)
2 ,

with σr the estimated variance of the residual noise. For n = 1, we can estimate the latter

assuming that the residual noise is Rician, as done in [Casaseca-de-la-Higuera et al. (2012)]

for the LMMSE & KF application on the DTI model.

As for the aQBI model, the KF is used in its regularization form with the adapted

initialization of the estimation error covariance given in chapter 4. The feedback loop

requires an adaptation to the sa-aQBI model, such that:

wSTRUCTURAL(v,v
′) = exp




−
N∑

j=1

(
ĈSA

v′ (j)− ĈSA
v (j)

)2

2β2




. (7.6)

Let us now explain how we tuned α and β.

7.1.2 Tuning of the α and β parameters

We performed the tuning of α and β empirically. For α, we simply looked at different

configurations of wSPATIAL for different α, as represented in fig. 7.2. The tuning of α

was performed considering a 5×5-voxel neighborhood in 2D. α was chosen to produce a

good compromise between a too low spatial weight, leading to insufficient neighboring

information, and a too high spatial weight, yielding excessive smoothing. We chose α = 2.
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Figure 7.2: Configurations of wSPATIAL for different values of α. The central point of the mesh

corresponds to the voxel, which is considered for the LMMSE step. Each other point of the mesh

corresponds to a neighbor used in the average computation for the LMMSE.

Then, we tuned β on simulated DW data (for more details on the generation of these

data, see appendix C, at the end of the manuscript) by choosing the value that produced

the lowest MSE between the noise-free simulation and the corrected one. This MSE was

calculated, as in the previous chapter, in the region shown in fig. 7.5. For the application
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of our algorithm, which we call “LMMSE & KF”, on these data, we used the real number

of receiver channels n in the nc-χ LMMSE, as no noise correlation was involved in the

simulated data. The true noise variance σ was used, so that the tuning of β only depends

on the RT denoising algorithm and not on the variance estimation. The maximum SH

order N was set to 8 and the Laplace-Beltrami regularization λ was first set to 0 (no

regularization) and then to 0.006 (regularization) in the initialization of the estimation

error covariance matrix defined by P0 = ((1/V )I+ λL)−1 (as in chapter 4). The initial

weight at the first iteration was defined such that: w(v,v′) = wspatial(v,v
′).

Fig. 7.3 shows the curve of the MSE for several values of β tested on the simulation case

at b = 4500s ·mm−2 with the RT correction method adapted to the aQBI model without

and with regularization. The minimum of MSE was obtained without regularization at

β = 0.13. With regularization, it was obtained at β = 0.05. It is visible that there exists

another local minimum for this latter configuration. We will come back to it later.
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Figure 7.3: Tuning of β on a simulated data for the LMMSE & KF adapted to aQBI without

(left) and with (right) regularization (indicated as “& Reg.”). The LMMSE & KF method was

applied on the simulated data corrupted by nc-χ noise at b = 4500s ·mm−2 with σ = 16. A panel

of β values were tested. The optimum β was found as the one yielding the smallest MSE.

Fig. 7.4 shows the optimum β found for different noise levels at b = 4500s · mm−2

without and with regularization. Without the regularization, for σ ≥ 25, the optimum

β was found much higher than at lower noise levels. We can see that the curve presents

a jump between σ = 22.5 and σ = 25. For the highest noise levels, as βopt increases,

wSTRUCTURAL approaches one: all neighbors are then considered equally, without a priori

discrimination and the LMMSE & KF becomes equivalent to the LMMSE alone without

any feedback loop. At this point, there is so much noise in the data that the LMMSE

& KF requires as much neighboring information as available to denoise the data. The

curve in fig. 7.4, right, obtained for the algorithm performed with regularization, does not

contain a jump like for the curve on the left. It is likely that the regularization already

decreases the noise level. In this case, the feedback is still used at high noise levels. The
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σ values corresponding to the green dotted square refer to cases like the one presented in

fig. 7.4 on the right: for these σ values, two local MSE minima were found. One was the

global minimum and yielded βopt. The other local minimum was found greater (equal to

0.11). The latter was shown to be more adapted for our real data, as we will discuss later.
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Figure 7.4: The optimum β, designed by βopt, plotted against σ at b = 4500s · mm−2 for the

LMMSE & KF without and with regularization.

Finally, we performed a similar tuning of β on other noisy configurations with σ = 16

and n = 4 at b = 1500s·mm−2, b = 3000s·mm−2, b = 4500s·mm−2 and b = 6000s·mm−2.

The values of β are presented for the aQBI model in table 7.1 for the algorithm performed

without regularization and in table 7.2 for the algorithm performed with regularization. It

is visible that the βopt value found without regularization at b = 6000s ·mm−2 corresponds

to the high noise level situation discussed earlier for fig. 7.4. As previously, when using

the regularization, this value is much lower.
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LMMSE & KF without regularization (α = 2)

b (s ·mm−2) 1500 3000 4500 6000

βopt (aQBI) (N = 8) 0.24 0.21 0.13 10

Table 7.1: The optimum values of β for the first presented RT noise correction method called

“LMMSE & KF” adapted to the DTI, aQBI and sa-aQBI models. The parameter α was set to 2

in all cases. The β values were obtained on simulated data corrupted by nc-χ noise with σ = 16

at the four following b-values : b = 1500s · mm−2 / b = 3000s · mm−2 / b = 4500s · mm−2 /

b = 6000s ·mm−2. No regularization was used in the RT process.

LMMSE & KF with regularization (α = 2)

b (s ·mm−2) 1500 3000 4500 6000

βopt (aQBI) (N = 8) 0.10 0.11 0.05 0.06

Table 7.2: The optimum values of β for the first presented RT noise correction method called

“LMMSE & KF” adapted to the DTI, aQBI and sa-aQBI models. The parameter α was set to 2

in all cases. The β values were obtained on simulated data corrupted by nc-χ noise with σ = 16

at the four following b-values : b = 1500s · mm−2 / b = 3000s · mm−2 / b = 4500s · mm−2 /

b = 6000s ·mm−2. Regularization was used in the RT process.

The next subsection shows the results obtained on these simulated data. The compar-

ison between the use of regularization or not is presented.

7.1.3 Results on simulated data & discussion

We compared the RT anisotropic version of the nc-χ LMMSE introduced in this chapter

with the previous isotropic nc-χ LMMSE presented in chapter 6. We refer to them as the

“LMMSE & KF” and the “LMMSE”, respectively. We computed both methods using a

5×5×5 neighborhood. Before running the two methods, the noise variance σ was estimated

using the “mode M1-χ” method resumed by eq. 5.26 (page 124) with n = 4, as there was

no correlation in our data. We used the same four different simulations as in the previous

subsection. They are all corrupted by a nc-χ noise with σ = 16 at b = 1500s · mm−2,

b = 3000s · mm−2, b = 4500s · mm−2 and finally b = 6000s · mm−2. We show the

results for the aQBI model, for which the maximum SH order N was set to 8 and the

Laplace-Beltrami regularization λ was first set to 0 (no regularization) and then to 0.006

(regularization) in the initialization of the estimation error covariance matrix defined by

P0 = ((1/V )I+ λL)−1 (as in chapter 4). Fig. 7.5 shows the results on the dODF fields

at b = 4500s · mm−2. On these simulated data, the nc-χ LMMSE & KF, both without

and with regularization, remarquably corrects the smoothing effect of the isotropic nc-χ

LMMSE which we had already mentioned in chapter 5. With the LMMSE & KF, the

crossing bundles have similar width as in the noise-free configuration. Moreover, as shown

by the zoomed dODF, the crossing is retrieved closer to the noise-free crossing: it is
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particularly visible that the two lobes of the zoomed dODF are more equally proportioned

than on the dODF obtained with the nc-χ LMMSE alone. Finally, the result of the nc-

χ LMMSE & KF performed with regularization is visually the closest to the noise-free

image. The improvement brought by the regularization is higher compared to its effect on

the nc-χ LMMSE. This is due to the fact that, with the LMMSE & KF, the regularization

is incorporated during the RT denoising process and therefore does affect each iteration of

the algorithm which was not the case with the LMMSE, for which the regularization was

only applied at the end of the process to obtain the dODF results.

noise-free

noisy

noisy & Reg.

nc-χ LMMSE nc-χ LMMSE & Reg.

nc-χ LMMSE & KF nc-χ LMMSE & KF
& Reg.

Figure 7.5: Comparison between the nc-χ LMMSE and the nc-χ LMMSE & KF on simulated DW

data corrupted by nc-χ noise with σ = 16 at b = 1500s ·mm−2. The dODF fields were generated

from the noise-free, the noisy and the results of both methods without and with regularization.

On each field a zoom of a dODF from the crossing region is displayed.

These qualitative results are confirmed by the graph in fig. 7.6. Concerning the nc-

χ LMMSE & KF performed without regularization, it yields a lower MSE for σ ≤ 20.
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For higher noise levels, it does not bring much improvement —even no improvement

sometimes— compared to the nc-χ LMMSE without regularization, and even less im-

provement compared to the nc-χ LMMSE with regularization. We want here to point out

that the slightly chaotic aspect of all curves for σ > 20 is due to a less accurate estimation

of σ in the correction methods. This less precise σ estimation also explains the fact that

at σ = 22.5, the nc-χ LMMSE & KF yiels a very slightly higher error than the nc-χ

LMMSE. Indeed, the βopt found for σ = 22.5 is the not the most appropriate here, as

the noise variance was not accurately estimated. Finally, this graph shows that the nc-χ

LMMSE & KF performed with regularization outperforms all other methods.

Figure 7.6: Comparison between the MSE of the noisy dODF field without and with regularization

and the MSE of the dODF fields after the nc-χ LMMSE and after the nc-χ LMMSE & KF also

without and with regularization. The noisy MSE is of 3000 at σ = 35.

We performed a similar comparison of the MSE on the four configurations at b =

1500s · mm−2, b = 3000s · mm−2, b = 4500s · mm−2 and finally b = 6000s · mm−2 with

σ = 16, corresponding to real variance values measured on real data. These four simulated

configurations are therefore close to real ones. Fig. 7.7 highlights again the improvement

obtained by the anisotropic LMMSE & KF method, especially when regularization was

used. The regularization brings a robustness regarding high b-values, as well as high noise

levels.
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Figure 7.7: Comparison between the MSE of the noisy dODF field without and with regularization

and the MSE of the dODF fields after the nc-χ LMMSE and after the nc-χ LMMSE & KF also

without and with regularization. The comparison was performed at different b-values with σ = 16.

After having validated this first RT method on our simulated data, we applied it on

our real data.

7.1.4 Results on real data & discussion

Results at the end of the RT process & discussion.

We performed a similar comparison on the real DW data acquired at b = 1500s ·mm−2,

b = 3000s ·mm−2, b = 4500s ·mm−2 and finally b = 6000s ·mm−2. For more details on

the acquisition parameters of these real data, we refer the reader to the appendix A at

the end of the manuscript. As for the simulated data, we performed all denoising methods

using a 5×5×5 neighborhood. The value of the α parameter was 2, similarly as before.

Concerning the β parameter, we reported the values of table 7.2 for b = 1500s · mm−2

and b = 3000s · mm−2. For b = 4500s · mm−2 and b = 6000s · mm−2, the βopt obtained

for the simulated data were too low for our real data. Therefore, we prefered choosing the

value of 0.11 for β, corresponding to the second local minimum described in the previous

subsection (see fig. 7.4). To summarize, the values of β used for our real data are 0.10 /

0.11 / 0.11 / 0.11 for b = 1500/3000/4500/6000s ·mm−2, respectively. We performed the

LMMSE & KF technique with the maximum SH order N set to 8 and the Laplace-Beltrami

regularization λ was set to 0.006 in the initialization of the estimation error covariance

matrix of the KF. We run the algorithms with regularization only, as regularization was

shown to increase the quality of the maps. To have an idea of the GFA maps obtained with

the LMMSE & KF without regularization, we refer the reader to fig. 6.9 in the previous
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chapter. The latter figure shows some intensity artifacts obtained without regularization

that we similarly have when using the LMMSE & KF without regularization on our real

data.

As in the previous chapter for the LMMSE method, we estimated the noise variance

σ accounting for the possible noise correlations in the real data using effective parameters

calculated globally for the whole DW volume. The resulting effective parameters for the

four b-values are shown in table 7.3. We notice that the values of neff found are lower than

the ones obtained for the isotropic LMMSE in table 6.1, page 163. We saw in the previous

chapter that when neff decreases, the LMMSE method yields a higher smoothing effect.

However, here, this effect will be much more controlled by the feedback loop inherent to

the LMMSE & KF technique. Therefore, lower values of neff will not produce smoothed

results, as it would have done with the isotropic LMMSE. We also compared our RT

method using this trade-off with the nc-χ LMMSE and with the nc-χ LMMSE & KF,

both performed using voxel-wise effective parameters.

Global effective neff and σeff obtained for the

nc-χ LMMSE & KF

b (s ·mm−2) 1500 3000 4500 6000

neff 1.8 1.8 2.6 2.4

σeff 26.0 25.5 20.7 21.4

Table 7.3: The global effective neff and σeff obtained for the nc-χ LMMSE & KF at b =

1500s ·mm−2 / b = 3000s · mm−2 / b = 4500s · mm−2 / b = 6000s ·mm−2. Regularization was

used in the RT process.

First, we show in fig. 7.8 the results obtained with the nc-χ LMMSE and with the nc-χ

LMMSE & KF in their global and voxel-wise versions performed with regularization. The

DW images obtained with our RT method, either with the global or the voxel-wise solution,

better reveal the underlying anatomical structure than the other ones. The features are

better retrieved than with the non RT denoising methods (see the yellow circle) thanks

to the feedback loop. This feedback loop uses the anatomical knowledge from the T2-

weighted signal to discriminate the neighbors in the average computations of the LMMSE.

Therefore, the DW images obtained with the nc-χ LMMSE & KF gives a better perception

of the anatomical information contained in the raw DW image. Between the global and the

voxel-wise versions of our RT technique, there is more smoothing effect with the first one.

This smoothing effect appears in homogeneous regions, without corrupting the features

definitions.

Fig. 7.9 shows the same comparison as in fig. 7.8 on the GFAmaps at b = 1500/3000/4500/6000s·
mm−2. As in the previous figure, it is here visible that the use of the feedback loop im-

proves the definition of the anatomical structures, especially for the global version of

the nc-χ LMMSE & KF. Concerning the voxel-wise nc-χ LMMSE & KF, it yields more

accurate results compared to the voxel-wise nc-χ LMMSE for b = 1500s · mm−2 and
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nc-χ LMMSE & KF
& Reg. (G)

nc-χ LMMSE & KF
& Reg. (VW)

raw nc-χ LMMSE (G) nc-χ LMMSE (V-W)

Figure 7.8: Comparison between the nc-χ LMMSE & KF (G) on real DW data at b = 4500s·mm−2

with either the global (G) or the voxel-wise (V-W) effective parameters with the nc-χ LMMSE.

The yellow circle indicates the anatomical structures depicted by the nc-χ LMMSE & KF technique

thanks to the feedback loop.

b = 3000s ·mm−2. However at higher b-values, although the GFA signal is globally higher,

the noise reduction is not much improved by the feedback loop. This is explained by the

fact that the voxel-wise LMMSE analyzed in the previous chapter yielded a high neff

value at b ≥ 4500s · mm−2, which did not produce much smoothing effect. Therefore,

the feedback loop, in this case, cannot bring much improvement, as there is originally not

enough smoothing effect. The global nc-χ LMMSE & KF produced a higher contrast on

all maps. The hyperintensity artifact appearing at b = 6000s ·mm−2 for the global version

of the nc-χ LMMSE is much reduced with the nc-χ LMMSE & KF. This latter method

generated maps with finely preserved anatomical structures and noise removal yielding an

improved visual contrast.
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Figure 7.9: Comparison between the nc-χ LMMSE on real GFA maps with regularization (“& Reg.”) and with either the global (G) or the voxel-wise

(V-W) effective parameters and with the nc-χ LMMSE & KF at b = 1500/3000/4500/6000s · mm−2. Hyperintensities in the maps are shown by white

arrows.
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Figure 7.10: Comparison between the GFA ratios of the raw map and the map obtained after

application of nc-χ LMMSE and the nc-χ LMMSE & KF with regularization and with the global

effective parameters at b = 1500/3000/4500/6000s ·mm−2. The ROI were chosen as shown in fig.

6.7, in the previous chapter.

To quantitatively confirm our results, we calculated the GFA ratios on each config-

uration (fig. 7.10). The ROI were chosen as before in fig. 6.7. This graph shows

that all methods yielded at all b-values a higher GFA ratio than the raw one. For

b = 1500/3000/4500s · mm−2, the highest GFA ratio is obtained for the nc-χ LMMSE

& KF, in its global version, validating our qualitative results. At b = 6000s ·mm−2, the

GFA ratio of this method is very slightly smaller than the ratio obtained with the nc-χ

LMMSE global technique. However, it is still very high and also confirms the gain in GFA

contrast visible in fig. 7.9. Moreover, we have to keep in mind that the GFA ratio is a

partial index of image quality, as it does not indicate if the structures are preserved or not

after the application of the method which is essential to know to assess the quality of the

denoising technique.

Fig. 7.11 compares again all methods on the RGB maps calculated in the aQBI model.

This figure confirms the previous results. And finally, fig. 7.12 and fig. 7.13 present the

effects of the global version of the LMMSE & KF method on zoomed dODF maps at

b = 1500/3000s · mm−2 and b = 4500/6000s · mm−2, respectively. The results obtained

with our RT denoising method are more coherent (see the black squares) than the raw

dODF maps, while respecting the raw anatomy configuration.
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Figure 7.11: Comparison between the nc-χ LMMSE on real RGB maps with regularization (“& Reg.”) and with either the global (G) or the voxel-wise

(V-W) effective parameters and with the nc-χ LMMSE & KF at b = 1500/3000/4500/6000s · mm−2. Hyperintensities in the maps are shown by white

arrows.
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Figure 7.12: Comparison between the raw real dODF map with the dODF map obtained after

our nc-χ LMMSE & KF with regularization and with the global effective parameters at b =

1500/3000s ·mm−2. The maps were performed in the yellow region indicated in the RGB coronal

slice.
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Figure 7.13: Comparison between the raw real dODF map with the dODF map obtained after

our nc-χ LMMSE & KF with regularization and with the global effective parameters at b =

4500/6000s ·mm−2. The maps were performed in the yellow region indicated in the RGB coronal

slice.
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Results along the RT process & discussion.

Here we show the results with our nc-χ LMMSE & KF method in its global version along

the RT process on the real data at b = 3000s · mm−2. These results were obtained for

the aQBI model with the maximum SH order N first set to 4 (fig. 7.14) and then to 6

(fig. 7.15) and to 8 (fig. 7.16). The Laplace-Beltrami regularization λ was set to 0.006, as

previously. These results can be compared to the aQBI maps (GFA and dODF) without

noise correction that were presented in fig. 4.14, page 91 (chapter 4).

From these three figures, it is visible that the RT noise correction visually better brings

to light the structural information present in the GFA maps. At the maximum SH order of

4 (fig. 7.14), both raw and denoised RT processes achieve a good quality of the GFA map

from early iterations. It is particularly visible on this figure that the RT noise correction

brings a visual improvement, which can also be observed on the dODF map. The latter

map contains more coherent and denser fiber bundles with the noise correction, while

respecting the raw anatomy configuration. Concerning the fig. 7.15 and 7.16, to obtain

accurate GFA and dODF maps, one has to wait until the 29th and the 60th iterations,

respectively, without or with denoising. This requirement for more iterations to obtain

accurate maps is due to the fact that the number of components (the unknowns) in the

coefficients’ vector ĈDW
v is equal to 28 and 45 for a maximum SH order set to 6 and 8,

respectively. Therefore, we need enough measurements —at least 28 and 45 iterations, plus

the T2-weighting measurement— to rightly estimate ĈDW
v . The noise correction process

therefore does not permit to accelerate the process of getting maps of sufficient quality.

However, the denoising is still efficient, as the structural information is better depicted

with the application of the “LMMSE & KF” filter.
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Figure 7.14: LMMSE & KF results along the RT process at b = 3000s ·mm−2 for the aQBI model. The method was performed with N = 4 and λ = 0.006

(regularization).
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Figure 7.15: LMMSE & KF results along the RT process at b = 3000s ·mm−2 for the aQBI model. The method was performed with N = 6 and λ = 0.006

(regularization).
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Figure 7.16: LMMSE & KF results along the RT process at b = 3000s ·mm−2 for the aQBI model. The method was performed with N = 8 and λ = 0.006

(regularization).
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Computational efficiency.

We also measured the duration of our RT noise correction method (the global version

only). To meet the RT constraints, this denoising processing for one DW encoded volume

has to be entirely performed before the acquisition of a new diffusion sensitized volume.

It is consequently required that the denoising processing duration does not exceed the

repetition time TR of the dMRI sequence. We measured different durations involved in

the RT denoising process: tLMMSE is the time required to compute the LMMSE at one

iteration i. This time does not include the feedback loop calculation. tKF is the time

accounting for the KF computation, as well as the feedback loop. Finally, tmap and tdisplay

are, as in chapter 4, the time for the GFA or dODF map reconstructions and the time to

display these maps, respectively. As in chapter 4, concerning the dODF case run on the

cluster, an additional transfer time is accounted for. Our time measurements are shown

in fig. 7.17.

Thanks to the parallelization and distribution on a cluster (80 CPUs), the whole pro-

cessing duration per volume decreased far below the TR. Because of the communication

time required to transfer the data from the master CPU to the nodes and to collect the

results, the processing time after the parallelization and distribution is slightly higher

than the time spent on only one CPU divided by 80. In fig. 7.17, we can notice that the

LMMSE computation time (without the feedback loop) is much lower than others. It is

again visible that the choice of the LMMSE algorithm permitted to perform a RT noise

correction for DW data. When we performed the correction online during an exam with a

subject, we could also verify that these very short durations easily allowed to achieve the

correction methods before the acquisition of the next DW volume.
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Figure 7.17: Times to get the GFA map and dODF map denoising update after a new iteration:

tLMMSE (brown box) is the LMMSE computation time for a neighborhood size of 5×5×5 voxels.

tKF (blue box) is the time required for one iteration of the KF algorithm and tmap (magenta box) is

the time for processing the GFA map for the aQBI model (top) and the dODF for the aQBI model

(bottom). Finally, tdisplay (green box) is the time required to display the maps. It additionally

contains the time required for the transfer of the data from the CPUs of the cluster to the server,

when using the cluster. tdisplay is not shown when it is very negligible compared to the other times.

These times are compared to TR = 14s. Pay attention to the logarithmic scale giving the feeling

that tLMMSE is higher than other times, which is actually the opposite.
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7.1.5 Conclusion

This first RT noise correction method satisfied us for its quality and time performances. It

is dependent on the choice of the parameters α and β. In the method, α was chosen with

no dependence on the data. However, it was not the case for β, which was tuned using our

simulated data. We want to point out here that our simulated DW data were generated

using parameters of the diffusion process and of the fiber geometry which were very close

to the real ones. Therefore, we can rely on the values we found for our configurations at

the different b-values and for the σ chosen. But, it must not be forgotten that if a data is

obtained with a completely different noise level, the β parameter may not be the optimum

one and has to be tuned again.

Another possible flaw of the method concerns its theory. After having applied the

LMMSE to the measured DW signal, there is a residual noise, called ǫr. This noise

appears in the linear eq. 7.1 required for the KF. From the LMMSE &KF perspective,

this noise is supposed to be zero-mean Gaussian, as required in the KF model detailed

in chapter 4. However, this assumption was not verified. [Aja-Fernández et al. (2008b)]

studied the distribution of the LMMSE filter output and empirically showed that it could

be considered as a Rician distribution in the case of n = 1. Therefore, the residual noise

may not follow a zero-mean Gaussian distribution.

The next section proposes another way to perform RT noise removal which deals with

a simpler noise distribution.

7.2 Gaussian noise filtering in the complex Fourier space

7.2.1 Presentation of this reconstructor-integrated RT method

We propose a noise correction method that we integrated in the Siemens reconstruction

system. This method is defined as a functor inserted before the SoS reconstruction in

the Siemens reconstruction pipeline shown in fig. 7.18. Therefore, the advantage of this

technique is that it directly corrects the k-space data acquired on each channel before

their combination and consequently the noise to consider in these data is assumed to be

uncorrelated zero-mean Gaussian distributed. Such a noise is much simpler to correct

than a nc-χ noise. Furthermore, with this technique incorporated directly in the Siemens

reconstruction pipeline, the denoising task is performed close to the acquisition step and

before any partially parallel MRI reconstruction technique, thus yielding a generic cor-

rection method: whatever the parallel algorithm chosen, the correction is independent on

this choice. We can call this algorithm an online pre-processing technique of denoising.
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Part of the Siemens reconstruction pipeline without RT denoising

Part of the Siemens reconstruction pipeline with the addition of our RT denoising block
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SourceFactor RootFactor Unpacker RootFactor NoiseAdjust Flags
source FeedbackRoot Unpacker root NoiseAdjust Flags RawFunctor
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Figure 7.18: Location of the RT correction block in the Siemens reconstruction pipeline.
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However, one challenge of such a technique is to access to the reconstruction pipeline

of the manufacturer and to develop in his environment. This was doable with our Siemens

Tim Trio system, and we implemented our denoising algorithm in the ICE programming

environment. The code corresponds to a functor inserted in the pipeline shown in fig.

7.18.

When dealing with noise correction in the k space, as the noise is contained in the

high frequencies, the common idea is to discard these high frequencies. Several low-pass

filters have been developed to this aim. The simplest low-pass filter is called the ideal

low-pass filter and simply eliminates all frequencies above a cutoff frequency, which has to

be defined. A more sophisticated filter, the Butterworth filter is a low-pass filter relying

on the use of normalized Butterworth polynomials and proposes a smoother transition to

partially eliminate the high frequencies. The Chebyshev filter, named after the Chebyshev

polynomials used in this filter, gives a similar filter with this difference compared to the

Butterworth filter that it can contain some undulations in its magnitude frequency re-

sponse. Other filters like the Bessel filter (with no undulation) and the elliptic filter (with

undulations) were also proposed. Their gain-magnitude frequency responses are compared

in fig. 7.19. Some of these filters (like the ideal low-pass filter or the Butterworth filter)

can generate reverberation or undulation effects in the structural edges of the image in

the spatial domain.

Magnitude of the filter (dB)

frequency (rad/s)

Figure 7.19: Gain-magnitude frequency responses of different low-pass filters. Fig. extracted from

aune.lpl.univ-aix.fr/~fulltext/2758.pdf.

Another simple low-pass filter is the Gaussian filter, which avoids undulation effects

in the borders of the structures contained in the image. This is due to the fact that

the Fourier transform of a Gaussian PDF remains a Gaussian PDF, whereas for example

the ideal filter becomes a sinc function after the inverse Fourier transform, leading to

undulations effects in the image in the spatial domain. For our RT noise correction, we

focused on such a Gaussian low-pass filter. Its shape is given by a 3D Gaussian PDF (fig.

7.20).

The Gaussian filter is based on the following equation adapted to our 1D filtering at

199

aune.lpl.univ-aix.fr/~fulltext/2758.pdf


Figure 7.20: Shape of 3D Gaussian PDF with σGauss = 0.015.

the position (kx, ky) on the k-space free induction decay (FID) line, considering the raw

real or imaginary signal mkx,ky :

ŝkx,ky = mkx,ky ×G(kx, ky, σGauss) , (7.7)

where ŝkx,ky is the noise-free estimated signal andG(kx, ky, σGauss) = e−
(kx−ox)2+(ky−oy)

2

2
σ2
Gauss

is a 3D Gaussian PDF of standard deviation σGauss in the k-space centered at (ox, oy).

The parameter σGauss has to be tuned to get the optimum noise removal, with a lim-

ited smoothing effect. This low-pass filter is applied on each FID line (for each real and

imaginary received lines at each channel).

We show in the next subsection the results obtained on real data, which are different

from the previous data from the “Archi database”, as we did not have their corresponding

raw data anymore.

7.2.2 Results on real data & discussion

Presentation of the real DW data used here.

The real DW data, which we used here, were collected on a human brain using a Magnetom

Tim Trio 3T MRI system (Siemens Medical Solutions, Erlangen, Germany), employing a

spherical direction sampling of 60 uniformly distributed over a shell at b = 1400s ·mm−2.

A T2-weighted volume was acquired at b = 0s · mm−2. The acquisition parameters were

as follows: TE/TR = 92ms/12s, field of view FOV= 256mm, matrix 128×128, 60 slices,

resolution 2×2×2mm3, GRAPPA factor of 2. The acquisition was performed with a 12-

element head coil available on the Tim Trio, for which the 12 coil elements are combined
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into 4 groups of 3 coil elements. These groups are received through 4 distinct receiver

channels, yielding n = 4.

We applied the Gaussian low-pass (L-P) filter with the functor on the T2-weighted

data (as they were not averaged) and the DW data with three values for σGauss: σGauss =

0.01/0.02/0.03. We also applied the nc-χ LMMSE & KF method with the same parameters

used in subsection 7.1.4 for the DW volume at b = 1500s ·mm−2. These parameters are

defined as follows: neff = 1.8, α = 2 and β = 0.10. Concerning the correction by this

filter on the T2-weighted data, we only used a spatial weighting in the feedback loop with

α = 2, without any structural weighting. Fig. 7.21 shows the results obtained with each

method on a DW image, a GFA and an RGB map.

From fig. 7.21, we can first see that the Gaussian low-pass filter rightly removes noise

with σGauss = 0.02/0.03. For σGauss = 0.01, the effects of the filter are very small. At

σGauss = 0.02, a certain smoothing effect is visible on all images. This effect increases

at σGauss = 0.03 and has a tendency to appear isotropically in the image, independently

of the structural features contained in the image. The smoothing effect is nevertheless

still very low. When we compare the images obtained with the Gaussian low-pass filter

with the images obtained with the LMMSE & KF, it appears that the LMMSE & KF

has a higher smoothing effect in homogeneous regions which is however better controlled

in the borders between different structural regions thanks to the spatial and structural

feedback loop. Anyway, the maps present an efficient noise removal, with a slightly better

contrast and a slightly more accurate definition of the anatomical structures than with the

Gaussian low-pass filter.
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Figure 7.21: Comparison between the Gaussian low-pass (L-P) filter, applied with σGauss = 0.01/0.02/0.03 and the LMMSE & KF method applied with

neff = 1.8, α = 2 and β = 0.10 on DW data acquired at b = 1400s ·mm−2.
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These qualitative results are confirmed in fig. 7.22, showing the comparison between

the GFA ratios, calculated as indicated in the figure, on the raw GFA and the GFAs

obtained with all four methods. The GFA ratio is increased after each method, with the

highest ratio obtained for the LMMSE & KF technique.

GFA ratio=

2

1

L-P L-P L-Praw
mean of 2
mean of 1 LMMSE

(0.01) (0.02) (0.03) & KF

Figure 7.22: Comparison between the GFA ratios of the raw map and the maps obtained after

application of the Gaussian low-pass (L-P) filter with σGauss = 0.01/0.02/0.03 (number indicated

in brackets), and the map obtained after application of the LMMSE & KF with neff = 1.8, α = 2

and β = 0.10. The GFA ratio computation was performed for a data acquired at b = 1400s ·mm−2.

Finally, we studied the computational efficiency of the Gaussian low-pass filter in-

tegrated in the Siemens reconstruction pipeline. We could measure the global time to

reconstruct a DW volume at one iteration. This time therefore accounts for the entire

Siemens reconstruction pipeline (including the Gaussian low-pass filter functor), but does

not account for the dMRI maps’ generation. This time is equal to 0.534s per iteration.

When performing the same measurement on the raw pipeline (not including the Gaussian

low-pass filter functor), we could not measure a noticeable duration difference. Conse-

quently, the functor is executed in a very short time (less than 10 ms). Finally, this

pipeline integrated method is definitely a RT technique, as its computation time is far

below the repetition time TR of 14s.

7.2.3 Conclusion

To conclude on this RT noise correction, we can say that it is a theoretical simple method.

Its difficulty lies in the fact that it is not straightforward to change the Siemens recon-

struction pipeline. Furthermore, this was possible in our case, but it may not be always

the case, depending on the manufacturer. Concerning the results of this technique, they

were shown to improve the quality of the maps. We want to highlight here that our evalu-

ation was performed at a quite low b-value, and therefore does not represent high b-values’
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cases with a lower SNR. This method present the risk of blurring the images. To avoid

such an effect, the σGauss parameter has to be carefully chosen. Finally, compared to the

LMMSE & KF technique, the Gaussian low-pass filter did not achieve a similar contrast.

A perspective regarding denoising methods applied on the k-space data would be to test

other low-pass filter and compare their performances. Finally, we want to highlight that

such methods cannot incorporate a structural feedback loop as proposed in the LMMSE

& KF technique. Indeed, as they work in the k-space, a structural information measured

in the spatial domain is not easily integrated.

7.3 Correction relying on a parallel Kalman filter (PKF)

After having developed the “LMMSE & KF” incremental denoising technique, we wanted

to propose a more rigorous RT noise correction technique. For that, we looked more deeply

in the literature about incremental solvers accounting for a non-Gaussian noise. Concern-

ing incremental solvers like the KF, methods were developed to create a similar framework

enabling filtering of non-Gaussian noise. We made a quick review of such techniques in

chapter 4, subsection 4.2.1 (page 63). Our intention was here to build a simple incremental

framework (close to the KF simplicity) and incorporate in this framework the non-Gaussian

distribution information about noise. For that, we eliminated computationally demanding

methods like point-mass approaches or particle filters. We also eliminated the extended

KF (EKF), as well as the unscented KF, which are not always reliable methods (especially

the EKF). We preferred Gaussian mixture approximations.

Among this latter group of techniques, some methods like [Sorenson and Alspach

(1971); Alspach and Sorenson (1972); Masreliez (1975)] either present increasing computa-

tional complexity in time or cannot operate in a changing noise environment ([Plataniotis

et al. (1997)]) and thus would not be convenient for an RT nc-χ noise correction. Never-

theless, one technique, namely the parallel Kalman Filter (PKF) of [Plataniotis et al.

(1997)], shows computational efficiency without the necessity of similar assumptions. It

was demonstrated to be efficient in the field of narrowband interference suppression. The

work presented here is based on the PKF. It is the first adaptation of the PKF to this

particular RT nc-χ noise correction issue for rtdMRI. It also constitutes one contribution

of this thesis work [Brion et al. (2012b,a,c)].

7.3.1 Presentation of this RT method based on a PKF

In this subsection, we first give insights to understand on which principles the PKF relies.

Then, we present this RT noise correction method for the aQBI, DTI and sa-aQBI linear

models. The presentation is detailed for the aQBI model.
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The principle of the PKF.

In the previous “LMMSE & KF” method, the entire noise correction step is performed

by the bayesian LMMSE filter, which contains the knowledge on the MRI nc-χ noise (fig.

7.23). The KF is used as a recursive least squares technique to iteratively obtain the

coefficients of the decomposition of the normalized DW signal on the modified SH basis.

The KF therefore does not contain any noise removal process and is only used for its

incremental framework.

Gaussian mixture
approximation of the
noise distribution

KFLMMSE

Bayesian correction

PKF

Bayesian correction
y = ME

x̂ = ĈDW
v

P

(raw observations)

P
x̂ = ĈDW

v
y = Ŝ/S0

(corrected observations)

Figure 7.23: Comparison between the “LMMSE & KF” and the PKF principles.

The method, which we propose here, first contains a Gaussian mixture approximation

of the noise distribution. Second, this mixture is injected in a PKF to propose an incre-

mental noise-free signal estimation. This new method is very different from the previous

“LMMSE & KF” method, because it deals with a Bayesian noise correction from its be-

ginning to its end (fig. 7.23). Whereas in the previous technique, the performance of the

algorithm was entirely dependent on the LMMSE, here, there are several required steps

dedicated to noise correction.
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Gaussian PDF 2: N2(ŷ2, Py2)
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Figure 7.24: Principle of the PKF.

Fig. 7.24 summarizes in three steps the principle of the PKF. First, using the charac-

teristics of the nc-χ PDF followed by the noisy DW signal M , the acquisition noise PDF
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is approximated by a Gaussian mixture (first graph in fig. 7.24). From the latter, the

parameters of the Gaussian mixture approximating the noise normalized by the noise-free

T2-weighted signal are determined. These parameters are the weight pg, the mean µg and

the standard deviation σg of each Gaussian PDF of the mixture. Then, KFs’ equations

give the expression of the mean ŷg and the covariance Pyg of each new Gaussian PDF

used in a mixture to approximate the PDF of the observations p(ME) (second graph in

fig. 7.24). We also call this mixture as the “pre-collapsed PDF”. Finally, a collapsed PDF

is calculated. It is a Gaussian PDF, which approximates the previous mixture. As this

collapsed PDF is a Gaussian distribution, it can be used as input for a simple KF.

The reason of this final collapse to obtain a Gaussian PDF approximating p(ME), is to

be able to perform a final KF to determine the state vector x and the error covariance P.

With this collapsing process, we see that the PKF has a computational complexity that is

nearly equivalent to the one of a simple KF. There is no increasing complexity in time with

the PKF, in opposition to other Gaussian mixture filters. Although the Gaussian mixture

is reduced to a Gaussian PDF at the end of the process, before the injection into the KF,

the PKF does not reduce to a KF adapted to a Gaussian noise with a non-zero-mean. As

we will see later, the final collapsed density is not equal to the Gaussian PDF we would

get with a simple KF.

Detailed presentation adapted to the aQBI linear model.

Fig. 7.25 synthesizes the whole algorithm based on a PKF and designed to obtain from the

measured DW signals M the resulting noise corrected coefficients ĈDW. These coefficients

define the noise corrected normalized signal Ŝ/S0 in the modified SH basis introduced in

subsection 3.2.4. The RT method is performed for each voxel v of the input DW volume

and is repeated at each new diffusion orientation oi during the acquisition. In fig. 7.25,

the blocks in orange show the different steps of the RT method. In our case, the PKF

purpose is to simplify the nc-χ noise correction problem to a Gaussian one, using

the idea that the distribution of a signal corrupted by any non-Gaussian noise can be

approximated by a Gaussian mixture [Plataniotis et al. (1997)]. The global method can

be resumed as follows:

1. The LMMSE estimates the noise-free DW magnitude Ŝ(v,oi), which, with the

noise standard deviation σ completely defines the noise PDF.

2. Then, a fit approximates this noise distribution by a Gaussian mixture.

3. Finally, the PKF [Plataniotis et al. (1997)] accounts for each Gaussian noise through

linear systems working in parallel. It joins the results in a resulting collapsed den-

sity with only one Gaussian term, and then, as a classical KF, gives the optimal

coefficients ĈDW, corrected from noise.

4. Also, a feedback loop is added, as in the previous RT method presented in section

7.1, to calculate a weight w(v,v′) using the results ĈDW. The weight is then injected
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in the LMMSE to limit smoothing effects.

To resume, the LMMSE and the fit enable the noise estimation and the PKF realizes the

main correction step using the measured magnitude as an input. All algorithms involved

in this PKF-based method are generic and require only two conditions to be used:

• the LMMSE depends on the knowledge of the two moments of the PDF of the noisy

measurement,

• the state estimation problem must be linear to be solved by the PKF.

Such a method could be applied to any kind of noise as long as these two conditions are

respected.

central voxel
neighbor voxel

estimated noise standard deviation
orientation

DW signal

SH coefficients of

corrected
DW signal

selected
noise PDF

LMMSE FIT PKF

corrected      −weighted signal

M (v,o)

v:
v′:
oi:
σ̂:

σ̂

Ŝ(v,oi)
M (v,oi)

Gaussian
mixture ĈDW

v

ĈDW
v :

Ŝ0(v):

w(v,v′)

w(v,v′) = wspatialwstructural

T2

Ŝ(v, oi)/Ŝ0(v)

Figure 7.25: The RT noise correction method based on a PKF in a global view. The blocks in

orange show the different steps of the RT method.

Fig. 7.25 synthesizes the global method which can be summarized as follows: first,

the LMMSE is applied to the measured DW signal M(v,oi), at position v ∈ R3 for the

orientation oi ∈ S2, in order to give an estimate of the noise-free signal Ŝ(v,oi). Also,

the noise standard deviation is estimated either globally or voxel-wise for the DW volume.

For the first case, we performed the empirical tuning, as explained in subsection 6.2.4,

of chapter 6, page 151. For the second case, we relied on the method by [Aja-Fernández

et al. (2013)] detailed in table 5.1, page 126. Both estimations σ̂ and Ŝ(v,oi), with the

measured magnitude M(v,oi) completely define the nc-χ distribution of M(v,oi). From

this distribution, we can also characterize the distribution of the noise ǫ which corrupts

M(v,oi). Indeed, we saw in chapter 5, how the noise PDF is written. It is given by eq.

5.18, page 114. This allows, in a second stage, to approximate the noise distribution by a

Gaussian mixture using a Levenberg-Marquardt non-linear fit. It corresponds to the FIT

block in the fig. 7.25.
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We have to pay attention that this Gaussian mixture approximates the acquisition

noise on the DW signal M . However, the linear system on which relies the PKF is the

following one:

M(v,oi)

S0(v)
= bi ·CDW

v + ǫ, (7.8)

with bi the ith row of B, the matrix of the modified SH basis defined by eq. 3.13, page

46. The index i is the iteration index of the RT process. The noise term ǫ corresponds to

the acquisition noise normalized by the noise-free T2-weighted signal. Consequently, the

Gaussian mixture has to be adapted to this normalized noise. To this aim, we used the

Theorem 1., page 112, and deduced, from the original Gaussian mixture

f∑

g=1

pgN (µ′
g, σ

′
g)

approximating the acquisition noise, the following Gaussian mixture approximating the

normalized noise ǫ:

f∑

g=1

pgN (µg, σg) with µg = µ′
g/Ŝ0 and σg = σ′

g/Ŝ0. This latter mixture

of f Gaussian distributions is injected in a PKF, which calculates, in RT, the coefficients

characterizing the noise-corrected signal in the modified SH basis.

The PKF details are given in fig. 7.26, which shows the refinement, also called update,

after the acquisition of the ith diffusion orientation, of the previously corrected results of

the (i−1)th diffusion orientation. The job of the PKF is to account for each Gaussian noise

through linear systems working in parallel, using the results of the approximation done by

the Levenberg-Marquardt algorithm and using the vector ai = [Ai1, ..., AiR] corresponding

to the ith row of the M × R matrix B of the modified SH basis, defined by eq. 3.13,

page 46. These linear systems (fig. 7.26), calculated in the PKF, are then gathered in

a single density being a Bayesian a posteriori estimate of the Gaussian mixture. This

collapsed density has only one Gaussian term and can be injected in a Kalman-like filter

(fig. 7.26). The Kalman-like filter equations give the expressions of the innovation νi, the

Kalman gain ki, the normalized covariance matrix Pi of the state vector x and the updated

estimate of the state vector x̂i. The Kalman-like filter delivers the updated estimates of

the state vector, corresponding to the optimal corrected coefficients’ vector ĈDW
v . From

it, the corrected DW signals can be obtained, as well as any map of the aQBI model. More

information about the derivation of the PKF can be found in appendix 7.6 at the end of

this chapter.

As for the first RT noise correction method relying on the LMMSE followed by a KF,

a feedback loop is used to limit the smoothing effect induced by the LMMSE. This loop

defines weighting coefficients that are composed of a spatial and a structural term that

are defined for the aQBI model as:

wspatial(v,v
′) = exp

(
−(v′ − v)2

2α2

)
, (7.9)
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Figure 7.26: The detailed PKF adapted from [Plataniotis et al. (1997)].

and

wstructural(v,v
′) = exp



−

N∑

j=1

(
ĈDW

v′ (j) − ĈDW
v (j)

)2

2β2




, (7.10)

where ĈDW
v is the current value of the PKF state vector at voxel v (N being the length

of the state vector), and α and β are two constants to be tuned.

The PKF was initialized by setting the initial guess x̂0 to the null vector. The initial

covariance matrix was set to P0 = (cI + λL)−1 with c = 10−6, as suggested by [Deriche

et al. (2009)] for the KF, to optimize its convergence. I represents the identity matrix, λ is

a regularization factor, and L is the Laplace-Beltrami operator. This operator regularizes

the solution and prevents remaining negative peaks to contribute to the final solution.

The initial weight was defined such that: w(v,v′) = wspatial(v,v
′).

The RT method adapted to the DTI and sa-aQBI linear models.

Adaptation to the DTI linear model. To adapt this RT method to the DTI linear

model, the linear equation on which the PKF relies has to be replaced by the following
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linear equation of chapter 4, subsection 4.3.2:

y = A · x+ ǫ, (7.11)

with, for iteration i, yi = ln
(

S0
M(oi)

)
and ai = bi[o

2
x, 2oxoy, 2oxoz, o

2
y, 2oyoz, o

2
z ], bi being the

b-value. The state vector x corresponds to the six LMMSE estimated coefficients of the

symmetric diffusion tensor: x = [D̂xx, D̂xy, D̂xz, D̂yy , D̂yz, D̂zz]
T . The noise is expressed,

for iteration i, such that: ǫi = −ln
(
1 + µi

S0
ebio

T
i D̂oi

)
, with µi the acquisition noise. There-

fore, the Gaussian mixture approximating the acquisition noise µi has again to be adapted

to this different noise signal ǫi. Finally, the feedback loop also requires an adaptation to

the DTI linear model, such that:

wSTRUCTURAL(v,v
′) = exp




−
6∑

j=1

(
D̂v′(j) − D̂v(j)

)2

2β2




. (7.12)

Adaptation to the sa-aQBI linear model. The adaptation of the RT noise correction

method to the sa-aQBI linear model requires also to modify the linear equation for the

PKF, following again the details given in chapter 4, subsubsection 4.3.3

y = A · x+ ǫ, (7.13)

with, for iteration i, yi = ln (−lnME(oi)) /S0 and ai corresponding to the ith row of

the matrix B of the modified SH basis. The state vector x corresponds to the LMMSE

estimated coefficients’ vector ĈSA. The noise is expressed, for iteration i, such that:

ǫi = ln (−lnµi) /S0, with µi the acquisition noise. Therefore, the Gaussian mixture ap-

proximating the acquisition noise µi has again to be adapted to this different noise signal

ǫi. Finally, the feedback loop also requires an adaptation to the sa-aQBI linear model,

such that:

wSTRUCTURAL(v,v
′) = exp




−
N∑

j=1

(
ĈSA

v′ (j)− ĈSA
v (j)

)2

2β2




. (7.14)

7.3.2 Evaluation of the FIT performances

In the PKF-based method, it is essential that the fit performs well. One parameter to

adjust is the number f of Gaussian PDFs used to fit the PDF of ǫ. To this aim, we

tested the PKF-based method on our simulated data at b = 4500s · mm−2 with a nc-

χ noise with σ = 16 and n = 4. To restrict the evaluation to the FIT performances

themselves, we injected the true noise-free signal S, instead of the LMMSE estimate in

the FIT block represented in fig. 7.25. We can therefore call this algorithm: “FIT & PKF”.
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Additionally, we used the true noise standard deviation σ instead of the estimated one.

Therefore, the correct nc-χ noise PDF could be reconstructed with its true parameters

(S, σ). The Gaussian mixture approximation (fit) of the nc-χ noise PDF was performed

under these conditions. Then, the PKF was run, using the fit outputs. We tested different

values for the number f of Gaussian PDFs that we used to make the Gaussian mixture

approximation of the noise distribution. We computed the MSE between the noise-free

configuration and the “FIT & PKF” processed configuration. The MSE calculation was

performed for each number f of Gaussian PDFs on the five slices containing the crossing

of the two fiber bundles of the simulated volume. Therefore, we got an MSE measurement

computed on many samples of voxels contained (27×31×5×500) in this region of interest

in our data. Our results are shown in fig. 7.27.

Figure 7.27: Evaluation of the optimum number of Gaussian PDFs to be used in the FIT. As a

reference, the MSE calculated on the noisy regularized configuration is equal to 7.84× 10−2.

From this fig. 7.27, it is visible that the MSE decreases from the configuration with 1

Gaussian PDF used for the fit —then, the PKF is equivalent to a simple KF incorporating a

Gaussian noise knowledge (with non-zero-mean)— to the other configurations. We remark

that f = 3 is a local optimum. This led us to choose for the next experiments a Gaussian

mixture approximation performed with 3 Gaussian PDFs.

Fig. 7.28 shows this approximation of the acquisition noise PDF (red curve) by a

Gaussian mixture with f = 3 (blue points) for a noise-free signal S = 8 and a noise

standard deviation σ = 16. The quadratic error between both curves is equal to 6.6×10−8.
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Figure 7.28: Fit curve result.

7.3.3 Evaluation of the PKF performances

In this subsection, we again injected the true noise-free signal S, instead of the LMMSE

estimate in the FIT block represented in fig. 7.25. Therefore, we limited our experiments to

the observation of the PKF algorithm performed with the true nc-χ distribution knowledge.

The goal of the PKF is to estimate the state vector x at each iteration i. To account

for the non-Gaussian noise, it incorporates the Gaussian mixture approximating the noise

PDF. From this Gaussian mixture, another Gaussian mixture is deduced in the PKF

process which is used to estimate the PDF of the observation y, corresponding to the

normalized DW signal ME . This new mixture is called pre-collapsed PDF. The latter is

used to obtain the collapsed PDF, which is a Gaussian PDF and serves as input in a KF.

This collapsed distribution is the final approximation of the true p(ME).

Fig. 7.29 shows several PDFs at two iterations among the 500 iterations of the RT

process performed on our simulated data. First, at i = 50, we can see that the PKF is at

its beginning: the state vector x is estimated with a high error covariance P yielding large

covariances for the curves involved in the approximation of the true p(ME). In opposition,

at i = 350, the different curves have lower variances and better fit the true p(ME). In

fig. 7.29, we also show the comparison between the PKF performed with mixtures using

3 Gaussian PDFs and a PKF performed with only one Gaussian PDF. In the latter case,

the PKF is equivalent to a KF accounting for Gaussian noise with a non-zero mean. It is

visible that this collapsed PDF resulting from the case f = 1 is different from the collapsed

PDF obtained through Gaussian mixtures with 3 Gaussian PDFs (f = 3). Thefore, we

can conclude that although there is a collapse process in the PKF algorithm which leads

to account for a unique final Gaussian PDF to serve as input of a KF, this collapse does

not make the PKF algorithm equivalent to the KF algorithm. Furthermore, we see in

fig. 7.29 that the final collapsed density with f = 3 better approximates the pre-collapsed
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Figure 7.29: Evolution of the PDF curves involved in the PKF algorithm along the iterations.

density, as well as the true p(ME).

Fig. 7.30 shows the dODF results of this “FIT & PKF” process obtained on our

simulated data. It is visible that the PKF-denoised maps retrieve an angular information

closer to the noise-free reference than the noisy dODF map. Here, we do not remark any

improvement in taking three Gaussian PDFs (f = 3) instead of one. This can be explain

by the fact that the nc-χ PDF, we are dealing with, is very close to a Gaussian PDF,

except for its skewness at low SNRs and low number of channels n. In our case, the PKF

results are equivalent compared to those obtained with a simple KF accounting for the
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non-zero-mean of a Gaussian noise approximating the nc-χ noise.

noise−free noisy

PKF-denoised (f = 1) PKF-denoised (f = 3)

Figure 7.30: Comparison on dODF maps of the PKF performed with the true nc-χ PDF knowledge

as input (the LMMSE is not used).

The rest of our results are shown with f = 3.

7.3.4 Improving robustness of the PKF

In this subsection, we show in fig. 7.31 the result obtained with the PKF on the real GFA

map at b = 4500s ·mm−2. This result surprised us, as it was not similar to what we had

obtained previously on the simulated data.

Fig. 7.31 highlights that the GFA signal after application of the PKF global method

is very much increased with a loss of some anatomical structures’ perception in the image.

Such a result led us to think that there is some mathematical indeterminacy in the PKF

process. As a temporary solution, we proposed a solution that improves the robustness of

the PKF-based method.
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raw GFA GFA after PKF

Figure 7.31: Application of the PKF on real data. The raw GFA at b = 4500s ·mm−2 is shown

with the GFA after the application of the entire PKF-based method explained in subsection 7.3.1.

To make the PKF more robust, we propose to inject a spatial and structural mean of

the raw magnitude M , instead of M as input for the PKF. Therefore the observations to

inject in the PKF are no longer the normalized signals ME , but they become: y = 〈M〉
S0

,

with the mean 〈M〉 defined for the voxel v and the orientation oi, such that: 〈M(v,oi)〉 =∑

v′∈ηv
wB(v,v

′)M(v′,oi)

∑

v′∈ηv
wB(v,v

′)
, with wB = wBspatial

× wBstructural
. Both components of this

weight are expressed such that:

wBspatial
(v,v′) = exp

(
−(v′ − v)2

2α2
B

)
, (7.15)

and

wBstructural
(v,v′) = exp



−

N∑

j=1

(
ĈDW

v′ (j) − ĈDW
v (j)

)2

2β2
B




, (7.16)

where ĈDW
v is the current value of the PKF state vector at voxel v (N being the length

of the state vector), and αB and βB are two constants to be tuned. We write them with

the index B, in opposition to the parameters used in the feedback loop injected in the

LMMSE which we will write with the index A.

This mean to be injected as input in the PKF is not an ideal solution, as it will

necessarily induce some smoothing effect. However, it will give the PKF the required

neighborhood information to achieve more stable results. Furthermore, the parameters

αB and βB have to be tuned to limit the smoothing effect and produce a edge-preserving

result. We show in the next subsection how we tuned the four parameters αA, βA, αB and

βB .
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7.3.5 Tuning of four parameters αA, βA, αB and βB

Concerning the tuning of the two parameters αA and αB , we chose to set αA = 2 and

αB = 2, for the same reasons as the ones explained in subsection 7.1.2.

Concerning the tuning of the two parameters βA and βB , we performed similarly as

for the “LMMSE & KF” method. Here, we tested the global PKF method (with the

LMMSE step) with the knowledge of the true σ for different values of the two parameters

and calculated the corresponding MSE on the same region as previously for the “LMMSE

& KF” method. Fig. 7.32 shows that the minimum MSE for our simulated data at

b = 4500s · mm−2, with a nc-χ noise of parameters σ = 16 and n = 4, was found for

βA = 0.11 and βB = 0.17.

Figure 7.32: Tuning of βA and βB for the PKF-based method on our simulated DW volume at

b = 4500s ·mm−2, with a nc-χ noise of parameters σ = 16 and n = 4.

7.3.6 Results on simulated data & discussion

We applied the PKF-based method with f = 3 and with the previously tuned parameters

αA, βA, αB and βB for the configuration at b = 4500s · mm−2, with a nc-χ noise of

parameters σ = 16 and n = 4. The Laplace-Beltrami regularization λ was set to 0.006

(regularization) in the initialization of the estimation error covariance matrix defined by

P0 = ((1/V )I+ λL)−1 (as in chapter 4). The initial weight at the first iteration was

defined such that: w(v,v′) = wspatial(v,v
′).

We show the results on the dODF fields in fig. 7.33. We also compare the PKF-based

method with the “LMMSE & KF” technique. We can see that the PKF-based method

rightly corrects the noisy data with a small smoothing effect. The zoomed dODF shows two

finely retrieved crossing orientations. The “LMMSE & KF” technique produces a result

close to the noise-free configuration with less smoothing effect than the PKF-based method.
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The zoomed dODF presents two equivalent lobes, compared to the dODF generated by

the PKF-based technique, although the difference is very subtle. Finally, the calculated

MSE is smaller with the “LMMSE & KF” filter than with the PKF-based technique, but

is of the same order of magnitude. Compared to the noisy MSE, the gain of the LMMSE

& KF technique over the PKF-based method is less than 0.4 %. We can therefore conclude

that the PKF-based method achieves comparable performances compared to the LMMSE

& KF technique, while being more rigorous in the way the non-Gaussian noise nature is

accounted.

noise-free noisy (σ = 16) MSE= 3.91× 10−1

PKF (βA = 0.11, βB = 0.17) LMMSE & KF (β = 0.05)
MSE= 1.85× 10−3MSE= 3.38× 10−3

Figure 7.33: Comparison between the PKF-based method and the “LMMSE & KF” technique

on our simulated data at b = 4500s ·mm−2, with a nc-χ noise of parameters σ = 16 and n = 4.
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7.3.7 Results on real data & discussion

We applied the PKF-based method with f = 3 and with the previously tuned parameters

αA, βA, αB and βB on real data at b = 4500s ·mm−2. To account for the eventual noise

correlations, we used neff = 2.6, as in the “LMMSE & KF” method.

Fig. 7.34 gives the result of the PKF-based method on the real GFA at b = 4500s ·
mm−2. We remark that after the application of the PKF technique, the GFA is enhanced

with a smoothing effect in homogeneous regions. Some white pixels appear, which are

due to too strong constraints imposed by wB . Indeed, after several trials, we concluded

that the PKF global method performed at its best without any feedback loop injected in

the LMMSE and with αB = 2, βB = 0.3 for wB , and neff = 3. We compared the result

obtained using these parameters with the “LMMSE & KF” method on GFA maps in fig.

7.35.

raw GFA GFA after PKF
(neff = 2.6, βA = 0.11, βB = 0.17)

Figure 7.34: Application of the PKF based method with the previously tuned βA and βB on a

real data at b = 4500s ·mm−2.

Fig. 7.35 presents an improved PKF result on the GFA map. The map is more

consistent and does not contain any hyperintense voxel. Furthermore, the GFA values

are enhanced in anisotropic regions (fiber bundles). The drawback of the method is the

smoothing effect generated by our temporary solution of injecting a mean instead of the

voxel-wise measured magnitude as input in the PKF. The results of this method are

promising and the technique should be deeper investigated to understand the gap of per-

formances between the applications of the technique on simulated data and real data.

From fig. 7.35, it is visible that the “LMMSE & KF” technique is better than the PKF

global method on real data: both resulting “LMMSE & KF” GFA maps are more accurate

than the smoothed GFA map obtained with the PKF-based method. Although the GFA

is as high or even higher in anisotropic regions after the PKF global method, compared

to the “LMMSE & KF” GFA, the contrast in the map is not as good as with the latter

method, especially because of the smoothing effect. This is confirmed in fig. 7.36, which

shows the highest GFA ratio —measured as previously for fig. 7.10— obtained for the
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W

G
F

A

(neff = 2.6, β = 0.17)(neff = 2.6, β = 0.11)(neff = 3, βA = +∞, βB = 0.3)
LMMSE & KF LMMSE & KFraw PKF

Figure 7.35: Application of the PKF based method with other parameters on a real data at

b = 4500s ·mm−2 and comparison with two configurations of the “LMMSE & KF” technique.

LMMSE & KF technique.

4500

Figure 7.36: Comparison between the GFA ratios of the raw map and the map obtained after

application of the PKF-based method and the LMMSE & KF at b = 4500s ·mm−2 with the same

parameters as in fig. 7.35.

Finally, concerning the computational efficiency of the PKF-based method, it was

nearly as good as the LMMSE & KF technique. Indeed, for a maximum SH order set

to 8, we compared the LMMSE & KF and the PKF durations. Whereas the LMMSE
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& KF takes 131s, the PKF takes 138s. We did not perform the parallelization of the

latter technique on the cluster, because of its weaker denoising results than the LMMSE

& KF. Nevertheless, it could also be parallelized yielding a computation duration below

the repetition time TR.

7.3.8 Conclusion

The RT noise correction that we presented here relies on another incremental denoising

technique than the LMMSE & KF technique. Its theoretical aspects seem more rigorous

than the ones of the LMMSE & KF technique. However, from our practical results we

showed that the PKF is equivalent to the LMMSE & KF on simulated data, but its

results on real data are less satisfaying. This can be due to the fact that the nc-χ noise

we are dealing with is better evaluated and outlined with the LMMSE rather than with

the Gaussian mixture used in the PKF global method. We need further investigations on

the PKF tricks to improve its quality on real data.

7.4 Comparison between the three RT noise correction tech-

niques

7.4.1 Comparison

This subsection is dedicated to a comparison of the performances of the three RT noise

correction techniques we proposed. This comparison is summarized in fig. 7.37.

In this figure, we gathered aspects that concerned us for our RT denoising objective.

The theoretical aspects are different between the Gaussian low-pass filter and the two other

techniques. Indeed, in the first case, the noise removal is performed on the k-space data,

assuming an uncorrelated zero-mean Gaussian noise, whereas the two other techniques

are performed on the magnitude data, accounting for a non-stationary nc-χ noise process.

This is a fundamental difference which leads to different mathematical approaches in the

denoising algorithms.

Another essential aspect of the techniques is their dependence on a critical parameter

tuning or not. The Gaussian low-pass filter is a simple method, which only involves one

parameter (σGauss) to tune. However, as we saw in section 7.2, this parameter has a

huge impact on the result: a too high parameter could blur the results. Moreover, as the

Gaussian low-pass filter is directly integrated in the Siemens reconstruction pipeline, we

had to extract raw data from the MRI scanner to test the method. Additionally, we could

not test it on simulated data. Therefore, it was impossible to perform the same tuning

approach of this parameter as for the β parameter used in the LMMSE & KF technique.

Finally, σGauss may have to be tuned for different dMRI sequence configurations, e.g.

with different b-values. In comparison to the Gaussian low-pass filter, both LMMSE &

KF and PKF-based methods rely on the tuning of two or three parameters. To tune the

neff parameter, we proposed an heuristic based on several trials on the real data. This
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Figure 7.37: Comparison between theoretical and practical aspects of the three RT noise correction

techniques.

heuristic is not optimal, as it is not an automatic RT tuning of the parameter. However,

it could be used for a study on a database acquired with the same parameters (like the

“Archi database”). Concerning the tuning of β, we proposed in the LMMSE & KF and

PKF-based techniques to tune it on simulated data first and to report the values of β

found for the simulated data on the real data. Indeed, for the LMMSE & KF technique,

the β value had to be increased from the application on the simulated data to the real

data. A similar increase had to be performed for the PKF-based method. Nevertheless,

we noticed that a value of around 0.11 for β was shown to yield accurate results on the

real data, independently from the b-value. A certain caution has still to be kept to avoid

white pixels to appear, due to a too low β value at high b-values. A similar analysis can

be done for the PKF global method.

Concerning the practical use, we could compare both LMMSE & KF and PKF tech-

niques on our simulated data with the noise-free simulated reference. Different aspects

of the noise removal were compared: the MSE reduction, the visual noise reduction, the

visual evaluation of the control of the smoothing effect, the retrieval of the angular cross-

ing information. Both methods were shown to propose accurate results regarding these

criteria, with a slightly better performance with the LMMSE & KF technique.
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The comparison between the three RT methods performed on the real data showed

that all methods achieved a visual noise reduction, with a higher smoothing effect for

the Gaussian low-pass filter and the PKF-based method. The measurement of the GFA

ratio before and after each correction confirmed this visual comparison. The smallest

computation time was obtained with the Gaussian low-pass filter. Both other methods

respected the RT constraints (a computation time lower than the repetition time), after

a parallelization and distribution on a cluster of 80 CPUs. Finally, these latter methods

were easily implemented and tested as they did not require any implementation inside the

reconstruction pipeline of the manufacturer like for the Gaussian low-pass filter.

7.4.2 Future prospects

The comparison between the three different RT methods brought several ideas for future

prospects.

Concerning the Gaussian low-pass filter, a future prospect would first be to test the

Gaussian low-pass filter on DW data with high b-values to better probe the performances

of this solution at low signal levels. Concerning the LMMSE & KF and PKF techniques,

we could also further investigate very high b-values for all studies focused on a very high

diffusion resolution imaging. For the PKF-based method, as its results are promising,

especially on the simulated data, it would be required to first understand and correct the

weaker performances obtained on the real data.

?
-b-value
-T2-weighted signal range
-DW signal range on the first image acquired
-GRAPPA / SENSE
-number of channels
...

Acquisition parameters:

neff

β Denoising parameter(s)

LMMSE & KF

σGauss
neff

βA
βB

Gaussian low-pass filter PKF

-α
-neighborhood size (2D or 3D)
Other parameters:

-maximum SH order N

-Laplace-Beltrami factor λ

Figure 7.38: Future prospects about the tuning of image-dependent parameters.
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An other prospect would be to attempt finding an automatical solution for tuning the

parameters used in all methods. This is shown by fig. 7.38. An idea would be to find a

relation between the parameters of the denoising method and the acquisition parameters

defining the quality level of the raw data (the b-value, the range of intensities in the T2-

weighted image, the range of intensities in the first DW volume...), as well as its noise

characteristics (the use of GRAPPA/ SENSE..., the number of channels...). The ideal

solution would be to propose an autocalibration of the denoising parameters with respect

to these acquisition parameters.

Finally, concerning the methods performed on the magnitude data (LMMSE & KF

and PKF), it would be interesting to further investigate the voxel-wise estimation of the

effective parameters (neff ,σeff ) introduced by [Aja-Fernández et al. (2011); Aja-Fernández

and Tristán-Vega (2012); Aja-Fernández et al. (2013)] to accurately account for the true

noise distribution at each voxel of the data and the non-stationarity of the noise across

the voxels.

7.5 Conclusion of this chapter

This chapter attempted to answer the requirement of a RT noise correction. It proposed

three methods. The LMMSE &KF, embedding an LMMSE filter and a KF with a feedback

loop, was shown to yield very accurate and improved results. The Gaussian low-pass

filter, which is integrated in the Siemens reconstruction pipeline represents an interesting

alternative closer to the acquired signal. Finally, the PKF propose a rigorous mathematical

framework which achieved accurate results on simulated data. This latter technique would

require a further study to improve its performances on real data. Finally, through this

chapter, we tackled the typical problem of tuning the parameters and of decreasing the

computation times to respect RT goals. We proposed some future prospects aiming at

improving the RT noise removal. The contributions of our work are listed below.

7.5.1 Contributions of this chapter

• An LMMSE integration in the KF-based framework dedicated for RT purpose. This

integration includes a feedback loop enabling to compute anisotropic averages re-

quired by the LMMSE to limit the smoothing effects. This contribution can be

found in [Brion et al. (2010, 2011d,f,e)].

• A correction scheme located before the SoS reconstruction and which has the advan-

tage to only deal with a zero-mean Gaussian noise. This scheme was incorporated

to the Siemens reconstructor.

• A parallel Kalman filter as an alternative solution for denoising the MRI magnitude

images. This contribution can be found in [Brion et al. (2012a,b,c)].

• A comparison between the methods.
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7.6 Appendix A: More details about the derivation of the

PKF filter

In the appendix of [Plataniotis et al. (1997)], the authors detailed the derivation of the

PKF. They proceeded from analogy with the KF idea. We follow their mathematical steps

here.

Let us write our linear model, introduced in chapter 4:

y = A · x+ ǫ , with





y: the K×1 observation vector,

A: the K×N design matrix,

x: the N×1 state vector,

ǫ: the K×1 vector of i.d. noises distributed according to N (0,R),

(7.17)

A Bayesian KF can be applied on this model, as seen in chapter 4, if the initial state

vector x0 follows a normal distribution with known mean and variance. Concerning the

demonstration of this KF, it relies on the Bayes’ theorem, which expresses the a posteriori

density p
(
xi|yi, Y i−1

)
. This posterior is the PDF of the parameters xi given the data

yi at iteration i and given the data Y i−1 = [y0, y1, ..., yi−1]
T of all the previous iterations

before i. This posterior PDF is expressed following the Bayes’ rule such that:

p
(
xi|yi, Y i−1

)
=

p
(
yi|xi, Y

i−1
)
p
(
xi|Y i−1

)

p (yi|Y i−1)

=
p
(
yi|xi, Y

i−1
)
p
(
xi|Y i−1

)
∫
p (yi|xi, Y i−1) p (xi|Y i−1) dxi

,

(7.18)

where the term p
(
yi|xi, Y

i−1
)
is designated as the likelihood, which corresponds to the

conditional density of the data yi given the parameters xi and the previous data Y i−1.

The term p
(
xi|Y i−1

)
is the prior, i.e. the distribution of the parameters in the absence

of any data at the considered iteration i. Finally the denominator in eq. 7.18 is just a

normalization factor to ensure that p
(
xi|yi, Y i−1

)
integrates to 1. This Bayes’ rule is used

to determine the posterior, which then enables to obtain the MMSE estimator:

x̂i = E
(
xi|yi, Y i−1

)

=

∫
xi · p

(
xi|yi, Y i−1

)
dxi.

(7.19)

From this MMSE estimator, the KF can be derived using the hypotheses inherent to the

linear model on which the KF relies.

Consequently, the KF only depends on the estimation of the likelihood p
(
yi|xi, Y

i−1
)

and on the prior p
(
xi|Y i−1

)
to determine the posterior. The KF theory requires that the

initial state vector x0 follows a normal distribution with known mean and variance. This

hypothesis permits to explicit the prior. Concerning the likelihood, it can be expressed
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such that:

p
(
yi|xi, Y

i−1
)
= p (yi|xi) assuming that the data yi are independent for all i

= pǫi (yi − bi · xi|xi) as yi = bi · xi + ǫi,

= pǫi (yi − bi · xi) ,

(7.20)

assuming that ǫi is independent of xi [Kay (1993); Plataniotis et al. (1997)]. Then, using

the hypothesis of a zero-mean Gaussian noise, which is a requirement to use the KF, the

likelihood is equal to:

p
(
yi|xi, Y

i−1
)
= N (ŷi,Pyi) , (7.21)

with the mean of the latter Gaussian defined using the KF equations such that:

ŷi = E
(
yi|Y i−1

)
,

= E
(
bi · xi + ǫi|Y i−1

)
,

= bi · x̂i,

(7.22)

as E
(
bi · xi + ǫi|Y i−1

)
= E

(
bi · xi|Y i−1

)
+ E

(
ǫi|Y i−1

)
= bi · E

(
xi|Y i−1

)
because ǫi

is a zero-mean noise. Concerning the covariance matrix Pyi , it is the covariance of the

following measurement error: yi − ŷi = bi · (xi − x̂i) + ǫi. Therefore, Pyi is equal to:

Pyi = bi ·Pi · bi
T +R. (7.23)

With this information, how can this KF be improved to account for non-Gaussian

noise? At this point of the appendix of [Plataniotis et al. (1997)], an analogy is performed

with the KF to build an estimator close to the KF. Instead of having a zero-mean Gaussian

noise, [Plataniotis et al. (1997)] expressed the noise PDF as a Gaussian mixture:

p(ǫi) =

f∑

g=1

pgN (µg, σ
2
g), (7.24)

with pg the weight of the Gaussian N (µg, σ
2
g) of mean µg and variance σ2

g . Similarly as

before, [Plataniotis et al. (1997)] deduced that the PDF p
(
yi|xi, Y

i−1
)
is also a Gaussian

mixture, such that:

p
(
yi|xi, Y

i−1
)
=

f∑

g=1

wgN (ŷg, Pyg ), (7.25)

with wg the weight of the Gaussian N (ŷg, Pyg ) of mean ŷg and covariance matrix Pyg . The

Gaussian N (ŷg, Pyg ) describes the contribution of the gth elemental Gaussian term to the

density p
(
yi|xi, Y

i−1
)
and we write it as p

(
yi|xi, Y

i−1, bg
)
(bg being the indicator of the

gth member). From the Bayes’ rule, wg is expressed such that: wg = p
(
bg|yi,xi, Y

i−1
)

At this point, Plataniotis et al. applied the following Theorem 2., in which p
(
bg|yi,xi, Y

i−1
)

simplifies to p (bg|i) [Laniotis (1976)]:

Theorem 2. Let us consider the following equation:
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y(i) = A(i, bg) · x(i) + ǫ(i),

where x(i) and y(i) are the n- and m-dimensional state and measurement processes, re-

spectively, at the ith iteration. ǫ(i) is the measurement noise random process, which condi-

tioned on bg (∀g ∈ [[1; f ]]) is independent, zero-mean and white Gaussian, with covariance

R(i). The initial state vector x(0) is independent of ǫ(i) when conditioned on bg, and has a

bg-conditional Gaussian density with mean and variance x(0|bg) and P(0|bg), respectively.
The unknown parameters bg, which if known would completely specify the model, are

assumed to be time-invariant random parameters with known or assumed a priori PDF

p(bg).

The MMSE estimate x̂(i) of x(i) and the corresponding error covariance matrix P(i)

are given by:

x̂(i|i) =
f∑

g=1

x̂(i|i, bg) · p(bg|i), (7.26)

P(i|i) =
f∑

g=1

(
P(i|i, bg) + [x̂(i|i, bg)− x̂(i|i)][x̂(i|i, bg)− x̂(i|i)]T

)
· p(bg|i), (7.27)

where x̂(i|i, bg) and P(i|i, bg) are the bg-conditional MMSE state vector estimate and the

corresponding bg-conditional error covariance matrix. The a posteriori PDF p(bg|i) is

expressed such that:

p(bg|i) =
L(i|bg)p(bg|i− 1)

∑f
h=1 L(i|bh)p(bh|i− 1)

, (7.28)

where

L(i|bg) =
1√
2π

|Py(i|i− 1, bg)|−1/2 · exp
(
−‖ỹ(i|i− 1, bg)‖2

2Py(i|i− 1, bg)

)
, (7.29)

where the model-conditional innovation process ỹ(i|i − 1, bg), defined as ỹ(i|i − 1, bg) =

y(i)−A(i, bg)x̂(i|i− 1, bg), is a white noise process conditioned on bg, with bg-conditional

covariance matrix:

Py(i|i− 1, bg) = A(i, bg)P(i|i − 1, bg)A
T(i, bg) +R(i). (7.30)

Following the general solution to multiple-model estimation problem given by the latter

theorem (eq. 7.26 to eq. 7.30), [Plataniotis et al. (1997)] derived the PKF equations

regrouped in fig. 7.26. They replaced the term p(bg|i − 1) by wg, which is the coefficient

of the corresponding Gaussian PDF in the Gaussian mixture in eq. 7.25. After the

application of the Theorem 2., [Plataniotis et al. (1997)] replaced the final a posteriori

Bayesian estimate of the density p
(
yi|xi, Y

i−1
)
by a Gaussian distribution to inject the

latter in a simple KF. This approximation by a collapsed Gaussian density is valid if the
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Gaussian members of the original mixture are close. Using the Theorem 2., the final

collapsed Gaussian density has its mean and covariance at iteration i equal to:

ŷ =

f∑

g=1

wg ŷg, (7.31)

Py =

f∑

g=1

wg

[
Pyg + (ŷ − ŷg)

2
]
. (7.32)
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Chapter 8

Inference of the connectivity in RT

Along the thesis manuscript, we dealt with online dMRI processing possibilities. We

focused on diffusion local models which enable to reconstruct the diffusion or fiber orien-

tation distribution function inside the whole brain. These models, close to the DW data,

constitute the first step to infer the distribution of the white matter (WM) fiber bundles

inside the brain. The next step is performed using tractography, as seen in chapter 3,

section 3.3. In this chapter, we address the feasibility of tracking the digital fiber tracts in

RT and see them being refined at each new diffusion measurement during the exam. Such

an approach is delicate, as the tractography algorithms are computationally demanding.

What are the motivations behind this innovative idea? What is our first approach and

what are the future prospects concerning RT tractography? In this chapter, we detail the

prototype we tested as a first step towards an inference of the connectivity in RT. We

show its results and highlight the effect on the tracts of our RT noise correction based on

the LMMSE & KF framework.

8.1 Introduction

Tractography offers an information about the organization of the fiber tracts in the brain.

Although a fiber tract is a digital pathway and does not necessarily correspond to an

anatomical white matter (WM) fiber, it gives the most likely pathway with respect to the

diffusion process that could use a WM fiber to connect two areas of the brain. Having

access to the structural connectivity is of importance in clinical applications either to detect

any atrophy of WM fiber bundles and better understand the physiopathology of brain

diseases, or to avoid damaging WM pathways when performing surgical interventions.

Several navigators have been developed to make the visualization of the tracts more flexible

for neurosurgical planning, like for example [Golby et al. (2011); Vaillancourt et al. (2010);

Mittmann et al. (2011); Chamberland et al. (2012)].

Because most tractography techniques are computationally intensive, no RT algorithm

has been introduced up to now. This processing has only be performed offline yet. We

wanted to address its feasibility in RT. Our motivations are twofold. First, a RT trac-
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tography technique would improve a medical treatment or intervention if the tracts could

be inferred during the dMRI exam. Indeed, it would accelerate the medical care of the

patient, improving its chances of success. Some acceleration of certain tractography algo-

rithms have been proposed in the literature with the aim of facilitating on-site diagnosis

and making the acquisition of supplementary scans possible, while the patient is still in

the MRI scanner [Kwatra et al. (2006); Singh et al. (2006)]. What we propose here, is

different. Our objective is to perform tractography truly in RT, meaning that after each

new diffusion measurement during the dMRI sequence, a map of tracts is incrementally

refined. This process would allow to go further into the analysis. This brings us to our

second motivation behind RT tractography which is to improve the methodology itself

since the intermediate results can be exploited to improve the analysis. A RT workflow

for tractography would give the possibility to adapt the parameters of the dMRI sequence

and/or of the tractography algorithm during its own execution.

8.2 RT tractography workflow

8.2.1 Objectives

To study the feasibility of performing tractography in RT, we divided this ambitious project

into several steps to reach, listed below:

1. The first step consists of running a tractography algorithm at each new iteration.

This first evaluation would permit to judge about the quality and the possible ex-

ploitation of the intermediate tracts. In a first attempt, the RT constraint may

not be satisfied, but would allow to queue the incoming DW data to process any

new intermediate tractogram as soon as possible. In order to take into account a

minima the time constraint, we decided to implement it using a streamline fiber

tracking algorithm (deterministic or probabilistic) as it is known to be the most

computationally efficient.

2. The second step would consist of distributing the code on a cluster of 80 CPUs to

meet the RT requirement. Because we used a streamlining technique, this paral-

lelization step is straightforward and is actually a work in progress.

3. The third step would investigate the possibility to transform the actual streamlin-

ing process into an incremental process in order to gain in efficiency to be able to

make streamlines infered at iteration (i − 1) evolve from the knowledge of the DW

data acquired at iteration i rather than reprocessing the entire streamline from the

updated ODF field.

4. The fourth step would ultimately investigate the feasibility of global tractography in

an incremental way to provide more accurate tracts than blind streamline tractog-

raphy algorithms. In opposition to streamlining, this global solution would have to
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account for the interactions between the tracts and would no longer consider each

tract independently of the others.

In the frame of this thesis, we achieved the first step and we are currently distributing

it on an RT environment.

8.2.2 RT results and discussion

RT results on simulated data & discussion.

We applied the RT streamline deterministic tractography workflow, using the aQBI model

RT results, with a maximum spherical harmonic (SH) order set to 8 yielding 45 compo-

nents of the coefficients’ vector CDW of the decomposition of the normalized DW signal

on the modified SH basis. The aQBI model was performed without any Laplace-Beltrami

regularization on a noise-free simulated DW field, and with the Laplace-Beltrami regu-

larization factor λ set to 0.006 on a noisy simulated DW field. The simulated data were

generated with b = 4500s · mm−2, for which a nc-χ noise addition considering n = 4

channels and a noise standard deviation of σ = 16 was performed, assuming no noise

correlation between the channels. More details on the generation of these simulated data

can be found in appendix C, at the end of the manuscript. The streamline deterministic

tractography was executed with 27 seeds per voxels to create a dense tractogram, with a

streamlining forward step of 1.25 mm (corresponding to 0.25×resv , with resv = 5mm the

voxel resolution), with a minimum and a maximum fiber lengths set to 5 mm and 191

mm, respectively. The aperture angle, in which the tracts are allowed to grow, was set to

60̊ . We studied the connectivity between ROI 1 and ROI 3 and the connectivity between

ROI 2 and ROI 4 (see fig. 8.1). When performing an additional RT noise correction, we

used the “LMMSE & KF” RT denoising method with a 5×5×5 neighborhood and with

the Laplace-Beltrami regularization factor λ set to 0.006. The values of the α and β pa-

rameters were 2 and 0.05, respectively, similar to what was chosen in the previous chapter,

in subsection 7.1.3.
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Figure 8.1: Description of the connectivity studied in our simulated data.

During the iterative process, the local dODFs remain quite smooth until the number of

acquisitions reach the number of SH coefficient components corresponding to the minimum

number of data required to correctly solve the underlying inverse problem of dODF (fig.

8.2). During these iterations, the intermediate tractograms depict almost random fibers

(or no fiber at all) as the corresponding dODFs do not provide a coherent angular profile.

In the following iterations of the process, the dODFs become sharper and the branches

of the phantom become visible with a coherence of the fibers increasing at the same time

of the sharpening of the dODFs (fig. 8.3). When noise is not corrected, the intermediate

tractograms depict a fanning phenomenon due to the loss of accuracy in the main directions

of the dODFs. One can notice that this fanning effect becomes less severe after each new

acquisition because the Laplace-Beltrami regularization helps dealing a bit with noise even

if it does not sharpen the dODFs.

When an LMMSE & KF denoising method is inserted in the RT pipeline between the

acquisition and the dODF computation, the quality of the intermediate tractograms is

significantly improved. The dODFs are sharpened and the main directions of the dODFs

become less corrupted after few iterations providing quite reasonable results after only a

fifth of the acquisitions. The final result does not present any spurious fiber like in the

uncorrected RT tractography and looks quite similar to the ground truth tractogram.
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Figure 8.2: Tractography and dODF RT results on our simulated data along the RT process at b = 4500s · mm−2. The streamline deterministic

tractography algorithm was performed using the dODF results obtained with the aQBI model with a maximum SH order N set to 8. When “Reg.” is

indicated, it means that the Laplace-Beltrami regularization λ was set to 0.006 (else, it was set to 0). All maps of tracts were displayed with the same

opacity.
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Figure 8.3: Tractography and dODF RT results on our simulated data along the RT process at b = 4500s · mm−2. The streamline deterministic

tractography algorithm was performed using the dODF results obtained with the aQBI model with a maximum SH order N set to 8. When “Reg.” is

indicated, it means that the Laplace-Beltrami regularization λ was set to 0.006 (else, it was set to 0). All maps of tracts were displayed with the same

opacity.
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RT results on real data & discussion.

We applied the RT streamline deterministic tractography workflow, using the aQBI model

RT results obtained with a maximum SH order first of 4 and then of 6 and with the regu-

larization Laplace-Beltrami factor λ set to 0.006, on the real data of the “Archi database”

acquired at b = 4500s ·mm−2. For more details on the acquisition parameters of these real

data, we refer the reader to the appendix A at the end of the manuscript. The streamline

deterministic tractography was executed with 27 seeds per voxels, with a streamlining

forward step of 0.5 mm, with a minimum and a maximum fiber lengths set to 5 mm and

200 mm, respectively. The aperture angle, in which the tracts are allowed to grow, was

set to 60̊ . As for the simulated data, we additionally performed the “LMMSE & KF”

RT denoising method using a 5×5×5 neighborhood. The value of the α parameter was

2, similarly as before. Concerning the β parameter, we set it to 0.11, as in chapter 7,

subsection 7.1.4. The neff parameter was set to 1.8.

Fig. 8.4 depicts the results obtained at the 10th, 19th, 29th, 39th and at the final 60th

iterations for a maximum SH order N set to 4. With this latter parameter choice, we

remark that the estimation of the tracts is efficient only starting from the 19th iteration.

This is consistent with the previous results shown in fig. 7.14 in the previous chapter, page

192, where we can see that the dODF map was presenting some structural information

only from the 19th iteration. This is due to the fact that the number of coefficients is equal

to 15 with a maximum SH order set to 4. As long as there are less measurements than the

number of unknowns, the estimation is not accurate. Concerning the next iterations in fig.

8.4, it is visible that the tracts gain in density along the iterations. When comparing the

raw tracts with the tracts obtained after the application of the RT LMMSE & KF noise

correction technique, it is visible that the tracts obtained with the correction present a

higher coherence and the maps are globally clearer. Some tracts, which are absent in the

raw configuration at the early iterations (19th and 29th), are better detected when using

the noise removal.

Fig. 8.5 shows the same results for a maximum SH order N set to 6. For this higher

parameter, the noise is a bit higher as more components of the coefficient of the DW

signal are kept. Here, we see that the estimation of the tracts is efficient only from the

29th iteration. This is again due to the fact that the number of coefficients is equal to

28 with a maximum SH order set to 6. As long as there are less measurements than the

number of unknowns, the estimation is not accurate. This is again consistent with the

previous results shown in fig. 7.15 in the previous chapter, page 193, where we can see that

the dODF map was presenting some structural information only from the 29th iteration.

For the other iterations, the results are very similar to the ones obtained in fig. 8.4, with

N = 4. Both figures highlight the improvement achieved with the LMMSE & KF on the

tracts.

Finally, the computation time of the streamline deterministic tractography algorithm

for a whole brain, with here 27 seeds per voxel, was of around 20 min for each iteration. The

algorithm version tested here contained a parallelization on four CPUs. The high compu-
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Figure 8.4: Tractography RT results on our real data along the RT process at b = 4500s ·
mm−2. The streamline deterministic tractography algorithm was performed using the dODF

results obtained with the aQBI model with a maximum SH order N set to 4. The Laplace-Beltrami

regularization λ was set to 0.006.
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Figure 8.5: Tractography RT results on our real data along the RT process at b = 4500s ·
mm−2. The streamline deterministic tractography algorithm was performed using the dODF

results obtained with the aQBI model with a maximum SH order N set to 6. The Laplace-Beltrami

regularization λ was set to 0.006.
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tation time points out the requirement for a more rapid algorithme through an incremental

version of the tractography technique, as well as a distribution and parallelization on our

cluster of 80 CPUs.

8.3 Conclusion

This last RT tractography application showed that it was possible to obtain accurate trac-

tography results from a certain iteration, depending on the maximum SH order. We filled

our objective, which was to investigate a prototype for running a tractography algorithm

at each iteration of the dMRI sequence. This is a preliminary work and it would be very

interesting to further investigate the development of a true RT workflow for deterministic

tractography, as well as for other classes of tractography, like the global one. This devel-

opment would necessarily require a modification of the algorithm to make it incremental,

so that the computation cost of the algorithm decreases, as it would rely on the previous

iteration and it would only add the modification brought by the change in the dODF map

due to the current iteration.

Finally, this application strengthened the usefulness of our RT noise correction method

relying on the combination of the LMMSE and the KF embedded with a feedback loop.

Indeed, our results on simulated and real data highlighted the improvement gained when

the noise removal was performed.

8.3.1 Contributions of this chapter

• The investigation of an interest for a RT workflow dedicated to tractography results,

using a simple prototype.

• The application of the LMMSE & KF noise correction RT scheme for tractography

results. Similar results were presented in the submitted paper (under revision) [Brion

et al.].
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Chapter 9

Conclusion

In this thesis, we proposed innovative methodological tools dedicated to the recently in-

troduced real-time (RT) dMRI workflow. Our methods were mainly focused on RT dMRI

noise estimation and correction, with a final opening towards the feasibility of performing

tractography during the ongoing scan. This thesis manuscript consisted of a first part en-

titled State-of-the-art report on real-time diffusion magnetic resonance imaging (rtdMRI)

containing all the background necessary to understand the motivations behind the out-

come of the RT dMRI workflow, as well as the mathematical framework on which this

RT system relies. Then, we presented a second part entitled Real-time noise correction

for real-time dMRI (rtdMRI) in which we first tackled the MRI noise field with a large

state-of-the-art concerning the MRI noise modeling. Then, we explained our problematic

and analyzed the literature about the offline denoising techniques used in MRI with regard

to our RT constraints. We focused on a solution based on an LMMSE which we extended

to deal with noncentral χ (nc-χ) noise correction. Furthermore, we developed three RT

noise correction techniques accounting for our previous noise modeling analysis. Our first

method consists of an embedding of the extended LMMSE with a Kalman filter and a

feedback loop. In opposition to this first method applied on the magnitude data, our sec-

ond RT noise removal technique is located before the sum of squares reconstruction, in the

k-space, and applies on the k-space complex data, corrupted by an uncorrelated zero-mean

Gaussian noise. This technique requires to modify the reconstruction pipeline of the man-

ufacturer. Finally, we proposed a third RT solution applied on the magnitude data. This

last technique relies on a parallel Kalman filter accounting for a nc-χ noise. We compared

all RT noise correction techniques together on diffusion-weighted (DW) simulated and real

data. Our last part Real-time tractography application focused on a further step to infer

human brain connectivity in RT through a prototype for performing tractography online

during the exam of the patient. This last application enabled to reinforce the usefulness

of one of our RT noise correction technique on tractography maps. We hope that this

novel possibility of performing tractography in RT may contribute to the improvement of

clinical diagnosis of WM connectivity in situations where decisions have to be taken in

emergency.
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Contributions

In this thesis, we listed all our contributions at the end of the chapters presented in

parts III and IV. We detail them again hereinafter, dividing them into minor and major

contributions.

Minor contributions.

We investigated a new noise estimation method [Brion et al. (2011b)], extended from

the technique introduced by [Rajan et al. (2010)] and dedicated to data corrupted by

nc-χ noise and which do not contain any background. This contribution is new for

the community, as there is, to our knowledge, no other noise variance estimation technique

accounting for a nc-χ noise and which does not rely on the background knowledge. Our

results presented on a simulated T1-weighted image showed that this method was less

robust than others relying on the background knowledge. This technique also assumes

a stationary noise which is in practice not realistic when using multiple coils for the

acquisition of the MRI signal. However, it can serve as a first approximation when handling

data, for which no background is present.

We proposed a new image quality index dedicated to dMRI images, for which

neither a noise-free reference, nor a noise estimation is necessary [Brion et al.].

Our index was shown to be accurate in comparison with other commonly used indices,

when tested on simulated data in chapter 5. The advantage of this index over other

classical quality indices, is that is can be used on raw or filtered images, only relying on

the intensity of voxels in two regions of a dMRI map, like the GFA map. The measurement

of this index, called the GFA ratio as we used it on GFA maps, requires to choose two

regions of different mean intensity. Our experiments on real data throughout this thesis

were quantified thanks to this index, which was shown to be close to our visual perception

of the data, although it is a local indicator of the quality and is therefore dependent on

the two regions chosen.

Major contributions.

We proposed an extension of the LMMSE method introduced by [Aja-Fernández

et al. (2008b)] to produce a nc-χ noise correction [Brion et al. (2011a,b,c)]. This

new filter which we called nc-χ LMMSE was shown to outperform the original LMMSE

dedicated to Rician noise on simulated and real data corrupted by nc-χ noise. The nc-

χ LMMSE presents the same advantages of rapidity and robustness than the original

LMMSE and is therefore of interest for anyone working with noisy MRI data, acquired

with multiple coils and required to be filtered with a fast technique.

For a better accuracy of this nc-χ LMMSE, we proposed an empirical new solution

to account for eventual noise correlations known to appear with parallel MRI

acquisitions [Brion et al.]. Our solution requires to test the nc-χ LMMSE with different

values of the effective number of channels neff . Consequently, our technique is based

244



on a trial and can only be used in RT when handling a database with constant sequence

parameters, after having tuned the neff parameter on a first subject of the database. Once

the trial has been performed, the nc-χ LMMSE runs as fast as before, with an effective

number of channels neff and an effective noise standard deviation σeff accounting for

correlations. This technique was shown to produce accurate denoised results.

We developed the first RT noise correction technique dedicated to the RT

dMRI workflow introduced by [Poupon et al. (2008b)]. This new technique [Brion et al.

(2010, 2011d,e,f); Brion et al.], relying on the association of the extended LMMSE and a

Kalman filter (KF), fully enables to correct each DW volume acquired along the iterations

of a dMRI sequence, while its computation time remains below the repetition time when

using a parallelization and a distribution on a cluster of 80 CPUs. Our new method

was elaborated to exploit the RT dMRI results obtained at an iteration in injecting them

through a feedback loop in the estimation of the noise-free DW volume at the next iteration.

Therefore, our solution makes full use of its RT workflow. Our results demonstrated that

our method was accurate on both simulated and real DW data on a panel of b-values

yielding low to high signal levels. A clear improvement was depicted on typical aQBI maps

like the dODF maps, and further on deterministic tractography results. Furthermore, the

technique fully respected the RT constraints imposed by our problematic.

We developed a correction scheme based on a Gaussian low-pass filter which is

applied on the k space real and imaginary data for which noise follows a zero-mean

Gaussian distribution with a stationary noise variance across each image. This noise con-

figuration allows a simple correction method, but requires its insertion in the manufacturer

reconstruction pipeline. We inserted our method in the Siemens reconstruction pipeline

and therefore it is specific to sequences performed with a Siemens MRI magnet. Our re-

sults showed accurate results, with a slightly less controlled smoothing effect, compared

to the previous RT noise correction.

Finally, we developed a third RT noise correction relying on a parallel Kalman filter

being applied on the magnitude data for which a nc-χ noise has to be accounted [Brion et al.

(2012a,b,c)]. This last technique is based on a global Bayesian framework performing the

nc-χ noise removal in approximating each non-Gaussian noise distribution by a Gaussian

mixture. This last denoising technique was shown to be efficient on simulated data and to

have a comparable computation time with our first LMMSE & KF technique.

Last, we investigated the interest for performing a tractography RT workflow

in showing for the first time intermediate results, given by the streamline deterministic

tractography algorithm, along iterations of a dMRI sequence. Our approach did not

include any change of the algorithm, but assessed for the interesting new field of RT

tractography executed at each new iteration of a dMRI sequence.

To conclude on these major contributions dedicated to rtdMRI, we believe that they

are useful to improve the image quality for the dMRI RT workflow. We believe that this

RT workflow could improve a lot the efficiency of dMRI exams and that this thesis work

contributes to further encourage the enthusiasm to develop rtdMRI as a clinical tool for
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more accurate results, faster treatment of the patient and less waste of data, as the quality

of the data is assessed online.

Future prospects

We believe that the tools developed in this thesis and dedicated to the RT dMRI workflow

will improve the quality of the images processed in RT during the dMRI sequence. We

want to highlight that the LMMSE & KF correction technique will be integrated into the

Connectomist software to be used by the community.

As future prospects, we would like to elaborate further methodological tools for several

applications. A patent [Poupon et al. (2008a)] has been filed in 2008 with the objective

to use rtdMRI for the development of an optimal set of diffusion gradients to make the

diffusion measurement more informative concerning the underlying structure. A typical

example for which the common uniform set of diffusion gradients is not optimal is the study

of the spinal cord, for which the fibers are mostly centered around one main direction. A

method for optimizing the sampling of the gradients has been proposed in [Caruyer and

Deriche (2009)]. Such methodological improvements would be useful in clinical practice

to obtain more accurate images with higher details on the microarchitecture of the WM

fibers. The advantage brought by the RT workflow would be the possibility to tune the

next gradient orientation online, with respect to the previous result.

As we already mentioned it in this manuscript, the RT workflow proposed for dMRI

has a huge potential for clinical applications. It could be used when there is a need of an

emergency diagnosis or for clinical non-emergency routine in pediatric studies. Besides,

an ANR (Agence Nationale de la Recherche) research project called PEDIART, with

Professor Chiron, Dr. Hertz-Pannier and Dr. Sévin, has been validated and funded to

integrate and further develop the rtdMRI environment for pediatric imaging studies. This

project contains a focus on epileptic children, for which the disease is drug resitant. The

dMRI RT workflow would permit in such cases to better handle uncontrolled movements

of the patients in assessing the image quality in RT. This would improve the quality of the

exam and therefore accelerate the medical understanding of these epileptic drug resistant

cases.

Further methodological investigations would be very interesting to perform, like ex-

tending automatic segmentation tools [Poupon (1999b); Marrakchi-Kacem (2011)] to be

able to segment anatomical brain structures in RT. Such a workflow would accelerate any

study of a particular anatomical structure in the brain. Concerning the study of WM fiber

bundles, a technique enabling the clustering of bundles [Guevara Alvez (2011)] dedicated

to an RT investigation during the dMRI sequence would accelerate a study on specific

groups of bundles for example. Finally, recent techniques have been developed to propose

an axonal calibration of WM fibers [Assaf et al. (2008)]. An RT extension of such a tech-

nique would enable to rapidly infer distributions of axons in the brain and also to improve

specific measurements in using feedback of the RT results on the sequence parameters.
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Appendix A

Acquisition of real human brain

data

The algorithms developed in our work were applied on real human brain data acquired at

NeuroSpin in the “Archi database” project directed by Dr. Cyril Poupon ([Schmitt et al.

(2013)]). This project consisted of acquiring a database of healthy human brain MRI data

with the best resolution achievable at 3T. Among the sequences used, many were diffusion

weighted. Therefore, this database is very convenient for diffusion studies and was used

in the frame of this work.

The subjects were mostly right-handed and between 20 to 40 years old. The exams

consisted of a single-shot echo-planar DW spin echo pulse sequence. They were performed

on a Magnetom Tim Trio 3T MRI system (Siemens Healthcare, Erlangen, Germany).

Each individual dataset includes three T2-weighted volumes acquired at b = 0s ·mm−2 and

60 uniformly distributed orientations at b = 1500s ·mm−2 and b = 3000s ·mm−2 using the

strategy of [Dubois et al. (2006)]: each acquisition was divided into 3 consecutive scans of

5 minutes each, to improve the comfort of the subject. Three uniform gradient orientation

subsets were used, as explained in chapter 4, subsection 4.4.1. They consisted of three

blocks of 19, 20 and 21 orientations each. Other acquisition parameters are listed in the

table A.1. Finally, the acquisition was performed with the 12-element head coil available

on the Tim Trio, for which the 12 coil elements are combined into 4 groups of 3 coil

elments each. These groups are connected to 4 distinct receiver channels, yielding n = 4 .

To combine together the data received by the different channels, the SoS algorithm was

used.

Among the several acquisitions for the “Archi database” project, one sequence was

especially performed for our study with the same parameters as previously, but for four b-

values instead of two, and namely: b = 1500s ·mm−2 , b = 3000s ·mm−2 , b = 4500s ·mm−2

and b = 6000s ·mm−2 . The images obtained with this acquisition were used extensively

for the results described in the manuscript. Indeed, as noise has a higher impact at high

b-values, it is more interesting to show the results on this dataset.
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Table A.1: Some “Archi database” acquisition parameters.

TE = 93ms for b = 1500s ·mm−2 and TE = 117ms for b = 3000s ·mm−2

TE = 135ms for b = 4500s ·mm−2 and TE = 149ms for b = 6000s ·mm−2

TR = 14s

FOV = 220mm

matrix of 128× 128

70 slices

resolution of 1.7× 1.7× 1.7mm3

phase partial Fourier 6/8

GRAPPA acceleration factor of 2

read bandwidth (RBW) of 1628 Hz · pixel−1

Fat saturation ON

Apodization filter ON

An apodization filter was used prior to the Fourier transformation. This filter forces

the signal to zero at the end of the data collection period [Brown and Semelka (2010)]: it

results that the central k-space data are more weighted than the peripheral k-space data.

Such a process increases the SNR. The noise remains normally distributed before the SoS

combination, but with a lower standard deviation [Dietrich et al. (2008a)]. Because of

the zero-padding process, a voxel-to-voxel correlation appears: the real and imaginary

noise components of the different channels are no longer uncorrelated [Brown and Semelka

(2010); Liang and Lauterbur (1999)]. This may slightly change the noise PDF definition.

Concerning the small processing done immediately after the exam, some was done to

correct the effects due to some artifacts using the Connectomist software [Duclap et al.

(2012)]. The final T2-weighted volume was averaged over the three volumes acquired, to

improve its SNR [Haacke et al. (1999)]. Let us here highlight that this average changes

the noise nature in the final T2-weighted volume: the nc-χ distribution approximation

may no longer be valid. That is why in our algorithms, we prefered to apply neither

noise correction nor noise variance estimation algorithms on this final T2-weighted volume.

Moreover, as the quality of the T2-weighted images of this average volume was visually

very good from a noise point of view, it was justified to not perform any noise removal.

This T2-weighted volume was however corrected from the susceptibility artifact, which

is due to the difference of susceptibility between side by side regions (for example at an

interface between bone and tissue: at the interface, an intrisic magnetic field is created

which induces a dephasing of the spins, creating the artifact). The DW volumes were

also corrected from the susceptibility artifact, as well as from outliers (due to spikes or

vibration effects). Furthermore, as the subjects were all healthy, they could voluntarily stay

unmoving, and there was no big motion artifact. Nevertheless, to correct from small motion

artifact, the Connectomist motion correction algorithm was applied. The correction of the
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gradients’ non-linearities were done directly during the reconstruction on the Siemens

console and the distortions due to susceptibility effects were corrected using a fieldmap

and the Connectomist software. The T2-weighted image was threshold and improved using

morphological operations to provide a rough mask of the brain. No noise correction or noise

modification —like averaging— was performed on the DW data. With all this information

we considered that all the noise analysis explained in chapters 4 and 5 is valid for these

data.
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Appendix B

Some mathematical functions used

in this thesis

In this appendix, we list some mathematical functions used in this thesis.

• The modified Bessel functions of the first kind:

The modified Bessel function of the first kind of order n (always a postive integer in

our case) is defined by:

In(x) =
∞∑

k=0

1

k!Γ(k + n+ 1)

(x
2

)2k+n
. (B.1)

In the C++ code, we implemented this function using the following approximation:



If 0 < x <<

√
n+ 1, then In(x) ≈ 1

Γ(n+1)

(
x
2

)n
,

If x >> n, then In(x) ≈ ex√
2πx

,
(B.2)

with Γ the Gamma function.

• The Gamma function:

The Gamma function is defined by the following integral for a real x:

Γ(x) =

∫ +∞

0
tx−1e−tdt. (B.3)

For a positive integer n, the Gamma function is defined by:

Γ(n) = (n− 1)!, (B.4)

with the following property: Γ(n+ 1
2) =

(2n)!
4n·n!

√
π.

• The Pochhammer rising factorial symbol:

The Pochhammer rising factorial symbol is defined for a real x and a real a such that:

(x)(a) =
Γ(x+ a)

Γ(x)
, (B.5)
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with Γ the Gamma function.

• The confluent hypergeometric function of the first kind:

The confluent hypergeometric function of the first kind is defined, for a, b and z all

reals, by:

1F1(a; b; z) =1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ ...

=
∞∑

k=0

(a)(k)

(b)(k)
zk

k!
,

(B.6)

where (a)(k) and (b)(k) are Pochhammer rising factorial symbols, with k a positive integer.

For high values of |z| (|z| > 105), we can use the Kummer’s transformation to compute

this function: 1F1(a; b; z) = ez1F1(b− a; b;−z).
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Appendix C

Simulation of DW data

To estimate the efficiency of our noise estimation and correction methods, we simulated

DW data. We first created noise-free DW data to serve as reference (ground truth). Then,

we added nc-χ noise to these data to obtain the noisy DW data, on which we applied our

algorithms.

C.1 Noise-free DW data simulation

To generate a DW signal we used, as in [Descoteaux (2008)], the hypothesis that the

diffusion propagator for a bundle of fibers is Gaussian. It is the same hypothesis as the

one used in the DTI model. We saw in chapter 3 that the MRI signal is then given by:

S(q, τ) = S0e
−τqTDq. (C.1)

As we have the following relationship between the b-value and the norm of the q vector,

b = τ‖q‖2, the MRI signal can be expressed such that:

S(b,oi) = S0e
−boT

i Doi , (C.2)

with oi being the unit orientation vector of the diffusion gradients. The set of the orien-

tations designated by oi for i ∈ [[1;K]] is simulated using an electrostatic repulsion model,

such as the ones of [Jones et al. (1999); Papadakis et al. (2000)] described in chapter 4. In

our simulations, we set K = 500.

Eq. C.2 can then be extended for a crossing of two (or more) fiber bundles. The MRI

signal of such a crossing is then modeled by the addition of the MRI signals due to the

separate bundles:

S(b,oi) = S0

2∑

k=1

fke
−boT

i Dkoi , (C.3)

where fk is the volumic fraction (
∑2

k=1 fk = 1) and Dk is the diffusion tensor, both asso-

ciated to the kth fiber bundle. We simulated a crossing of two bundles of equivalent size,

thus f1 = f2 = 0.5. This choice of a Gaussian mixture model means that we assume that
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there is no water molecules’ exchange between the two compartments. This assumption is

acceptable as the exchange time between the two compartments is much longer than the

diffusion time in the typical dMRI sequences.

We simulated three signal configurations: a signal due to isotropic diffusion, a signal

from a fiber bundle and a signal from two bundles crossing at 60̊ . We set the eigenvalues

of the diffusion tensor such that: [λ1, λ2, λ3] = [0.3 × 10−9, 0.3 × 10−9, 0.3 × 10−9] (in

m2 · s−1) for the isotropic tensor. For the anisotropic tensor, we set: [λ1, λ2, λ3] = [1.7 ×
10−9, 0.3 × 10−9, 0.3 × 10−9] (in m2 · s−1). These values are the same as in [Tuch (2002);

Descoteaux (2008)]. Finally, we used these simulations with different b-values, such as:

b = 1500s · mm−2, b = 3000s · mm−2, b = 4500s · mm−2 and b = 6000s · mm−2. The

noise-free T2-weighted signal S0 was set to 200, assuming the same proton density and T2

relaxation time through all the voxels.

We used this DW signal simulation method to generate a DW data field containing

several voxels. We chose to represent the crossing of two fiber bundles across a 27 × 31

volume of voxels containing 27 slices. Outside of this crossing we chose to simulate isotropic

diffusion. We also added a background to the simulated field. This background is useful

to test our variance estimation methods described in chapter 5, section 5.2. The result of

this noise-free DW simulated field is shown with the dODF representation in fig. C.1 at

b = 4500s ·mm−2. On this figure, the background was removed for rendering purpose (the

background is visible at the bottom of the image in fig. C.2).

Figure C.1: Simulation of a noise-free DW field. Here the dODF map result is shown, with a

zoom. Because of a normalization of each dODF by its maximal amplitude, the region outside the

bundles with the isotropic tensors appears blank. Here, the simulated background is not shown.
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C.2 Addition of nc-χ noise on the DW data

To test our noise estimation and filtering methods, we added a nc-χ noise using n = 4

channels corresponding to the standard case of the 12-element head coil antenna available

on the Magnetom Tim Trio 3T MRI system (Siemens Healthcare, Erlangen, Germany)

for which the 12 coil elements are combined into 4 groups of 3 coil elements each. To add

the nc-χ noise with n = 4, we first calculated the noise-free signals S(c) that each channel

would receive, assuming that all channels receive the same signal: ∀c ∈ [[1;n], S(c) = S/
√
n,

with S the noise-free signal given by eq. C.3. Then, the SoS recombined noisy signal M

is given by the nonlinear transform:

M =

(
n∑

c=1

(S(c) + ǫr(c))
2 + ǫi(c)

2

)1/2

, (C.4)

where ǫr(c) and ǫi(c) are the real and imaginary noises, respectively, on the channel c.

They are generated using a Gaussian noise distribution of standard deviation σ.

Fig. C.2 shows the addition of nc-χ noise on the previous noise-free simulation at

b = 4500s · mm−2. Here, we set σ to 16, yielding an SNR on the T2-weighted image of

S0/σ = 12.5. For other values of quality indexes on this simulated field, see chapter 5,

section 5.3.

Figure C.2: Addition of nc-χ noise, with σ = 16 and n = 4, on the previous noise-free simulated

DW field. The same zoom as previously is shown. Here, the simulated background is shown at the

bottom in the magenta square.
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Publications of the author arising

from this work

Journal papers

1. V. Brion, C. Poupon, O. Riff, S. Aja-Fernández, A. Tristán-Vega, J.-F. Mangin, D.

Le Bihan, F. Poupon. Noise correction for HARDI and HYDI data obtained with

multi-channel coils and Sum of Squares reconstruction: an anisotropic extension of

the LMMSE, Magnetic Resonance Imaging, In press.

2. S. Aja-Fernández, V. Brion, A. Tristán-Vega. Effective Noise Estimation and Filter-

ing from Correlated Multiple-Coil MR data, Magnetic Resonance Imaging, Volume

31, Pages 272-285, 2013.
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han. Reduced-Distortion Diffusion MRI of the Craniovertebral Junction, American
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Conference papers
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squared-magnitude approaches to DWI denoising: An adaptive Wiener filter tuned
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2. V. Brion, O. Riff, M. Descoteaux, J.-F. Mangin, D. Le Bihan, C. Poupon, F. Poupon.

The Parallel Kalman Filter: an efficient tool to deal with real-time non central χ
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2012.

3. V. Brion, C. Poupon, O. Riff, S. Aja-Fernández, A. Tristán-Vega, J.-F. Mangin, D.
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Westin, and R. S. J. Estépar: 2012, ‘Optimal real-time estimation in diffusion tensor

imaging’. Magnetic Resonance Imaging 30, 506–517. 72, 73, 141, 145, 176, 177
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