
HAL Id: tel-00821836
https://theses.hal.science/tel-00821836v1

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics-Based Testing for Circus
Abderrahmane Feliachi

To cite this version:
Abderrahmane Feliachi. Semantics-Based Testing for Circus. Other [cs.OH]. Université Paris Sud -
Paris XI, 2012. English. �NNT : 2012PA112372�. �tel-00821836�

https://theses.hal.science/tel-00821836v1
https://hal.archives-ouvertes.fr

Université Paris-Sud

École Doctorale Informatique Paris-Sud

Laboratoire de Recherche en Informatique

Thèse de Doctorat

Semantics-Based Testing for Circus

Présentée par:
Abderrahmane Feliachi

pour l’obtention du
Doctorat de l’université Paris-Sud XI

Jury
Pr. Rob Hierons Brunel University, UK Rapporteur
Pr. Stephan Merz INRIA Nancy Rapporteur
Dr. Ana Cavalcanti University of York, UK Examinatrice
Pr. Pascale Le Gall Université d’Evry Examinatrice
Pr. Claude Marché INRIA Saclay Examinateur
Pr. Marie-Claude Gaudel Université Paris-Sud XI Directrice de thèse
Pr. Burkhart Wolff Université Paris-Sud XI Co-Encadrant

soutenue le 12.12.12

Acknowledgments

This PhD would not have been possible without the guidance and the help of several
individuals who in one way or another contributed and extended their valuable
assistance in the preparation and completion of this thesis.

I would like to express my deepest gratitude to my supervisors, Pr. Marie-Claude
Gaudel and Pr. Burkhart Wolff, for their excellent guidance, caring, patience, ad-
vices, and for offering me the best of their knowledge and experience in scientific
research. This thesis would not have been possible without their help and guidance.

I would also like to thank my committee members, Pr. Rob Hierons, Pr. Stephan
Merz, Dr. Ana Cavalcanti, Pr. Pascale Le Gall and Pr. Claude Marché for serving
as my committee members. I also want to thank you for letting my defense be
an enjoyable moment, and for all your brilliant comments and suggestions. Many
thanks go in particular to Dr. Ana Cavalcanti and the colleagues from the university
of York for their help, comments and suggestions during my PhD and also during
my visits to York.

The past and present members of the Fortesse group have contributed immensely
to my personal and professional development. I have had the pleasure to work with
or alongside them. The group has been a source of friendships as well as good advice
and collaboration.

In addition, I have been very privileged to get to know and to collaborate with
many other great people who were or became friends over the last several years. I
learned a lot from them about life, research, how to tackle new problems and how
to develop techniques to solve them. So to all my friends and colleagues: thank you.

After and above all, I would like to thank my parents for instilling in me the
love of science and also for their continuous support and patience at all times. I
would like also to thank my sister and brothers. They were always supporting me
and encouraging me with their best wishes.

Contents

Contents ii

List of Figures v

List of Tables v

1 Introduction 5
1.1 Motivations . 6
1.2 Proposal and Contributions . 6
1.3 Outline . 7

2 Formal Methods and Testing 11
2.1 Introduction . 11
2.2 Formal Testing . 12

2.2.1 Background on testing theories 13
2.2.2 Test generation from formal specifications 17
2.2.3 Oracle and verdict . 29

2.3 Verification and Testing . 31
2.4 Conclusions . 32

3 Context 35
3.1 Introduction . 35
3.2 The Circus Language . 36

3.2.1 Syntax . 36
3.2.2 Semantics . 40
3.2.3 Refinement and testing . 44

3.3 Isabelle/HOL . 50
3.3.1 Isabelle, HOL and Isabelle/HOL 50
3.3.2 Advanced constructs in Isabelle/HOL 53
3.3.3 HOL-Z, HOL-CSP and HOL-TestGen 55

3.4 General Considerations . 57
3.5 Conclusions . 58

ii

CONTENTS iii

4 Isabelle/Circus 61
4.1 Introduction . 62
4.2 Representing UTP in HOL . 62

4.2.1 Predicates and relations . 67
4.2.2 Designs theory . 70
4.2.3 Reactive processes . 71
4.2.4 CSP processes . 73
4.2.5 Proofs . 73

4.3 Circus Denotational Semantics . 74
4.3.1 Circus variables . 76
4.3.2 Synchronization infrastructure 78
4.3.3 Actions and processes . 80

4.4 Using Isabelle/Circus . 88
4.4.1 Writing specifications . 88
4.4.2 Relational and functional refinement in Circus 89
4.4.3 Refinement proofs . 90

4.5 Conclusions . 92

5 Semantics Based Testing 95
5.1 Introduction . 96
5.2 Theorem Prover-based test-generation 96
5.3 Circus Operational Semantics . 97

5.3.1 Symbolic execution: deep vs. shallow embedding 98
5.3.2 Constraints . 99
5.3.3 Actions . 99
5.3.4 Labels . 100
5.3.5 State . 101
5.3.6 Operational semantics rules 103
5.3.7 Representing the introduction rules 108
5.3.8 Derived rules . 121

5.4 Symbolic test-generation with CirTA 122
5.4.1 cstraces generation . 123
5.4.2 test-generation for traces refinement 127
5.4.3 test-generation for deadlocks reduction 131

5.5 Test Selection Hypotheses . 134
5.6 Test Instantiations . 135
5.7 Example . 136

5.7.1 Generating cstraces . 136
5.7.2 test-generation . 138
5.7.3 Test instantiation and presentation 139

5.8 Conclusions . 140

iv CONTENTS

6 Case Study 143
6.1 Introduction . 143
6.2 Remote Monitoring System . 144
6.3 Abstract Queue Specification . 146
6.4 Testing the Queue Implementation 152

6.4.1 Test generation . 152
6.4.2 Test execution . 158
6.4.3 Test results . 164

6.5 Conclusions . 165

7 Conclusions and Future Work 167

A Circus syntax 171
A.1 Full syntax . 171
A.2 Short syntax . 172
A.3 Isabelle/Circus syntax . 173

B Circus denotational semantics 175
B.1 UTP . 175

B.1.1 Observational variables . 175
B.1.2 Healthiness conditions . 176

B.2 Circus denotational semantics . 177
B.2.1 CSP actions . 177
B.2.2 Action invocations, parametrized actions and renaming 180
B.2.3 Commands . 181
B.2.4 Schema expressions . 181
B.2.5 Circus processes . 181

C Circus operational semantics 185
C.1 Generic actions theorems . 185
C.2 Transition relation . 186

C.2.1 Introduction rules . 186
C.2.2 Derived elimination rules . 194
C.2.3 Other derived rules . 199

C.3 Trace composition relation . 204
C.3.1 Introduction rules . 204
C.3.2 Derived elimination rule . 205
C.3.3 Other derived rule . 206

D Refinement laws 207

Bibliography 209

List of Figures

2.1 Testing framework . 13
2.2 An FSM test example . 30
3.1 The Fresh Identifiers Generator in Circus 37
3.2 UTP theories . 41
4.1 Isabelle/Circus syntax . 75
6.1 Remote monitoring system overview . 144
6.2 Messages life cycle . 146
6.3 Test execution environment . 162

List of Tables

4.2 UTP Healthiness conditions . 74
4.3 Proved simulation laws . 91

v

Resumé

Le travail présenté dans cette thèse est une contribution aux méthodes formelles
de spécification et de vérification. Les spécifications formelles sont utilisées pour
décrire un logiciel, ou plus généralement un système, d’une manière mathématique
sans ambigüıté. Des techniques de vérification formelle sont définies sur la base
de ces spécifications afin d’assurer l’exactitude d’un système donné. Cependant, les
méthodes formelles ne sont souvent pas pratique et facile à utiliser dans des systèmes
réels. L’une des raisons est que de nombreux formalismes de spécification ne sont
pas assez riches pour couvrir à la fois les exigences orientées données et orientées
comportement. Certains langages de spécification ont été proposés pour couvrir ce
genre d’exigences. Le langage Circus se distingue parmi ces langues par une syntaxe
et une sémantique riche et complètement intégrées.

L’objectif de cette thèse est de fournir un cadre formel pour la spécification et
la vérification de systèmes complexes. Les spécifications sont écrites en Circus et la
vérification est effectuée soit par des tests ou par des preuves de théorèmes. Des
environnement similaires de spécification et de vérification ont déjà été proposées
dans la littérature. Une spécificité de notre approche est de combiner des preuves de
théorème avec la génération de test. En outre, la plupart des méthodes de génération
de tests sont basés sur une caractérisation syntaxique des langages étudiés. Notre
environnement est différent car il est basé sur la sémantique dénotationnelle et
opérationnelle de Circus. L’assistant de preuves Isabelle/HOL constitue la plate-
forme formelle au dessus de laquelle nous avons construit notre environnement de
spécification et de vérification.

La première contribution principale de notre travail est l’environnement formel
de spécification et de preuve Isabelle/Circus, basé sur la sémantique dénotationnelle
de Circus. Sur la base de Isabelle/HOL nous avons fourni une intégration vérifiée
de UTP, la base de la sémantique de Circus. Cette intégration est utilisée pour
formaliser la sémantique dénotationnelle du langage Circus. L’environnement Is-
abelle/Circus associe à cette sémantique des outils de parsing qui aident à écrire
des spécifications Circus. Le support de preuve de Isabelle/HOL peut être utilisée
directement pour raisonner sur ces spécifications grâce à la représentation superfi-
cielle de la sémantique (shallow embedding). Nous présentons une application de
l’environnement à des preuves de raffinement sur des processus Circus (impliquant à

1

la fois des données et des aspects comportementaux). Une version de Isabelle/Circus
est déjà publiée dans le cadre de l’AFP (archives de preuves formelles) d’Isabelle 1.

La deuxième contribution est l’environnement de test CirTA construit au dessus
de Isabelle/Circus. Cet environnement fournit deux tactiques de génération de
tests symboliques qui permettent la vérification de deux notions de raffinement:
l’inclusion des traces et la réduction de blocages. L’environnement est basé sur
une formalisation symbolique de la sémantique opérationnelle de Circus avec Is-
abelle/Circus. Plusieurs définitions symboliques et tactiques de génération de test
sont définis dans le cadre de CirTA. L’infrastructure formelle permet de représenter
explicitement les théories de test ainsi que les hypothèses de sélection de test.
Des techniques de preuve et de calculs symboliques sont la base des tactiques de
génération de test.

L’environnement de génération de test a été utilisé dans une étude de cas pour
tester un système existant de contrôle de message. Une spécification du système
est écrite en Circus, et est utilisé pour générer des tests pour les deux relations
de conformité définies pour Circus. Les tests sont ensuite compilées sous forme de
méthodes de test JUnit qui sont ensuite exécutées sur une implémentation Java du
système étudié.

Cette thèse est une importante étape vers, d’une part, le développement d’outils
de tests sophistiqués utilisant des preuves de propriétés de la spécification pour
réaliser et justifier des stratégies de test et, d’autre part, l’intégration de test et de
preuves dans des développements logiciels formellement vérifiées.

Mots clefs

Spécification et vérification de logiciels, preuves de théorèmes, test formel.

1http://afp.sourceforge.net/entries/Circus.shtml

http://afp.sourceforge.net/entries/Circus.shtml

Abstract

The work presented in this thesis is a contribution to formal specification and ver-
ification methods. Formal specifications are used to describe a software, or more
generally a system, in a mathematical unambiguous way. Formal verification tech-
niques are defined on the basis of these specifications to ensure the correctness of
the resulting system. However, formal methods are often not convenient and easy
to use in real system developments. One of the reasons is that many specifica-
tion formalisms are not rich enough to cover both data-oriented and behavioral
requirements. Some specification languages were proposed to cover this kind of re-
quirements. The Circus language distinguishes itself among these languages by a
rich syntax and a fully integrated semantics.

The aim of this thesis is to provide a formal environment for specifying and
verifying complex systems. Specifications are written in Circus and verification is
performed either by testing or by theorem proving. Similar specifications and ver-
ification environment have already been proposed. A specificity of our approach is
to combine support for proofs and test generation. Moreover, most test-generation
methods are based on a syntactic characterization of the studied languages. Our
proposed environment is different since it is based on the denotational and opera-
tional semantics of Circus. The Isabelle/HOL theorem prover is the formal platform
on top of which we build our specification and verification environment.

The first main contribution of our work is the Isabelle/Circus specification and
proof environment based on the denotational semantics of Circus. On top of Is-
abelle/HOL we provide a machine-checked shallow embedding of the UTP, the se-
mantic basis of Circus. This embedding is used to formalize the denotational se-
mantics of the Circus language. The Isabelle/Circus environment associates to this
semantics some parsing facilities that help writing Circus specifications. The proof
support of Isabelle/HOL can be used directly to reason about these specifications
thanks to the shallow embedding of the semantics. We present an application of the
environment to refinement proofs about Circus processes (involving both data and
behavioral aspects). A version of the Isabelle/Circus is already released as a part of
the AFP (archive of formal proofs) of Isabelle 2.

2http://afp.sourceforge.net/entries/Circus.shtml

3

The second main contribution is the CirTA testing framework built on top of
Isabelle/Circus. The framework provides two symbolic test-generation tactics that
allow checking two notions of refinement: traces inclusion and deadlocks reduction.
The framework is based on a shallow symbolic formalization of the operational
semantics of Circus using Isabelle/Circus. Several symbolic definitions and test-
generation tactics are defined in the CirTA framework. The formal infrastructure
allows us to represent explicitly test theories as well as test selection hypothesis.
Proof techniques and symbolic computations are the basis of the test-generation
tactics.

The test-generation environment was used for a case study to test an existing
message monitoring system. A specification of the system is written in Circus, and
used to generate tests following the defined conformance relations. The tests are
then compiled in the form of JUnit test methods and executed against a Java im-
plementation of the monitoring system.

This thesis is a step towards, on one hand, the development of sophisticated
testing tools making use of proof techniques and, on the other hand, the integration
of testing and proof within formally verified software developments.

Keywords

Software specification and verification, theorem proving, formal testing.

C
h

a
p

t
e

r

1
Introduction

Software and hardware systems continue increasing in size and complexity. Accord-
ingly, the number of bugs is also increasing in these systems. The testing activity
aims at finding these bugs. Formal testing denotes the use of formal methods and
techniques in testing. Formal methods include mathematically based languages,
techniques and tools for specifying and verifying software and hardware systems.

In formal testing, different formalisms can be used to describe formally the de-
sired (“correct”) behavior of the system. Specification languages are widely used as
description formalisms in specification-based testing techniques. In order to cover
the different aspects of the system behavior, different specification languages can
be used. Some data-oriented languages focus essentially on complex data represen-
tation (e.g. Z). Other languages deal more with complex behavioral aspects of the
system (e.g. CCS and CSP). Since real systems combine complex data and behavior,
some languages have been proposed to cover these two aspects.

It is the case of the Circus language, which combines Z-like data representations
with a CSP-like process algebra. It involves also a particular notion of refinement.
The language comes with well established denotational and operational semantics.
A formal testing theory is defined for Circus on the basis of its semantics.

A natural way of implementing formal methods and tools is by using theorem
provers. These provers offer a formal “trusted” basis for any other formal develop-
ment. One of the most known theorem provers is the Isabelle/HOL proof assistant
for higher order logics.

5

6 CHAPTER 1. INTRODUCTION

1.1 Motivations

Dijkstra stated that “testing can be used to show the presence of bugs, but never to
show their absence”. One objective of formal testing is to show that this thesis is
not always true. In fact, if testing covers all possible behaviors of the system, and
under some hypotheses, it can ensure the absence of bugs. This testing approach is
also called exhaustive testing. It combines testing and proof techniques to define a
notion of correctness i.e. the absence of bugs.

A system is said to be correct w.r.t. a specification if it behaves satisfactorily
w.r.t. this specification. We say then that the system is conform to the specification
for a given conformance relation. A test theorem states that, for a pair of test cases
and test hypotheses, the system behaves correctly w.r.t. a given specification.

The use of theorem provers makes possible the statement of test theorems and
hypotheses, and provides a strong basis for testing strategies. Theorem provers offer
also a powerful logical formal basis. This can be used to formalize rich specification
languages such as Circus.

In this thesis we explore the combination of these two ideas i.e. the use of a
theorem prover as a basis for specifying and testing complex systems. The Circus
language, based on its semantics, is encoded in the Isabelle/HOL theorem prover.
The prover is used also as a basis for a test generation system for Circus.

1.2 Proposal and Contributions

The goal of this work is to provide a formal and comprehensive framework for speci-
fying, testing and reasoning on complex systems. We choose the Circus specification
language to cover the different aspects of these systems. We believe that Circus pro-
vides an exemplary combination of both complex data and behavior descriptions.
Our testing approach is based on the theorem prover Isabelle/HOL. It is used to
formalize the semantics of Circus and its testing theory. It is also used to generate
exhaustive tests from Circus specifications.

In this work, we aimed at a semantics-based approach for specifying, verifying
and testing. Traditionally, specification languages are defined formally with well
established semantics and properties. Some tools can be developed for these lan-
guages, covering parsing, type-checking, animations or test generation. The problem
is that, in most cases, there is a gap between formal “pen and paper” definitions
and the, usually, unverified tools. Moreover, the tools are usually syntax-based, with
little or implicit semantic support. In our work, the gap between the theory and
the tools is extremely reduced. By using the Isabelle/HOL formal environment, all
formal definitions can be mechanized and implemented. This formal environment
makes it also possible to associate semantics to the syntax. Thus, it is possible to
perform more elaborated reasoning on the specifications.

1.3. OUTLINE 7

This thesis presents a pioneering work in the field of formal specification, veri-
fication and testing environments. The formal semantics-based representation of a
complex and rich specification language in a theorem prover is an important achieve-
ment. The main contributions can be summarized in five parts:

� A first contribution of this work is the shallow embedding of UTP, the seman-
tics basis of Circus, in Isabelle/HOL.

� The representation of the denotational semantics of Circus on top of UTP is
also an important contribution of this work, with the definition of several key
notions like state variables, scoping, communication channels and name sets.

� The verification environment Isabelle/Circus, based on this representation, is a
proof environment for Circus that can be used to reason about Circus specifica-
tions. An interesting exercise is explored, where the environment is expanded
with some refinement rules over Circus processes.

� Another substantial contribution of this work is the representation of the oper-
ational semantics and the testing theory of Circus. The operational semantics
rules are defined for Circus actions and some useful inverted rules are derived
from them. The testing theory contains the definitions of many useful notions
(e.g. traces and initials) as well as some testing theorems. These definitions
are based on a shallow symbolic representations and manipulation based on
Isabelle’s symbolic facilities. Automatic test generation tactics are defined for
Circus processes.

� The last but not least contribution is the application of the test environment to
a realistic case study. The target application is a message monitoring module of
a medical remote monitoring system. A specification of the system is written
in Circus, then used as a basis for test generation. The generated tests are
executed, using JUnit on the Java implementation of the system.

1.3 Outline

The aim of this thesis is to introduce a semantics-based testing approach and a
formal testing environment for Circus. This is realized in two steps, covered by two
main contributions. The first step is the definition of a formal specification and
verification environment for Circus. The second step, presents a testing framework
for Circus on top of the specification environment. The thesis is organized around
these two main contributions. It is composed of five chapters (2-6) organized as
follows:

8 CHAPTER 1. INTRODUCTION

Chapter 2: Formal methods and testing

In this first chapter we introduce some aspects of complementarity between formal
methods and testing, with a particular regard for formal testing. After some back-
ground on testing theories, we discuss the state of the art and present the major
formal testing techniques. The relation between traditional verification techniques
and testing is discussed as a special kind of complementarity. In particular, we study
some model checkers and theorem provers used for test generation.

Chapter 3: Context

We introduce in this chapter the two main concepts on which the thesis is built.
The first concept is the formal specification language Circus and the second is the
Isabelle/HOL proof assistant. In the first part of this chapter, we introduce the syn-
tax and the semantics of Circus. These semantics are based on a semantic framework
called UTP (Unifying Theories of Programming) which is also introduced. The first
part of the chapter is devoted to the Isabelle generic theorem prover. We focus on the
extension of the prover with higher order logics called Isabelle/HOL. We introduce
some extensions of Isabelle/HOL which are related to our work: HOL-Z, HOL-CSP
and HOL-TestGen. Finally, the chapter summarizes some general considerations
that guide the following chapters.

Chapter 4: Isabelle/Circus

This chapter introduces the first main contribution of the thesis: the Isabelle/Circus
specification and verification environment. In the first part of this chapter, we dis-
cuss some conceptual choices of representation. Then, we develop our embedding of
a substantial part of UTP constructs on top of Isabelle/HOL. The definition of the
Circus denotational semantics is introduced on the basis of the UTP embedding. The
whole semantics enriched with a high level interface forms our specification environ-
ment Isabelle/Circus. This environment allows for reasoning on Circus specifications
using the prover facilities.

We present a first application of the Isabelle/Circus environment to refinement
proofs. We introduce the notion of data and action refinement in Circus as well as
some general refinement laws. An example of refinement proof is illustrated on a
small example.

Chapter 5: Semantics based testing

The second main contribution of the thesis is explained in this chapter. Based on the
Isabelle/Circus environment, the CirTA testing framework is defined for Circus spec-
ifications. We introduce first our approach of theorem prover-based test generation

1.3. OUTLINE 9

inspired from HOL-TestGen. An important part of this chapter is then devoted to
the operational semantics of Circus. Our representation of the symbolic definitions
and manipulations is also discussed. The symbolic testing approach is explained
and the main definitions are introduced. A small example is used to illustrate the
test generation tactics presented in this chapter.

Chapter 6: Case study

The last chapter illustrates with a case study the application of the proposed frame-
work. A Circus specification of an existing message monitoring system is provided
and used for test generation. JUnit test procedures are automatically extracted from
the concrete test cases generated using CirTA. These test procedures are executed
against the existing Java implementation of the monitoring system.

C
h

a
p

t
e

r

2
Formal Methods and Testing

Contents

2.1 Introduction . 11
2.2 Formal Testing . 12

2.2.1 Background on testing theories 13
2.2.2 Test generation from formal specifications 17
2.2.3 Oracle and verdict . 29

2.3 Verification and Testing . 31
2.4 Conclusions . 32

2.1 Introduction

Formal methods and software testing are not very old friends: they have even been
seen as rivals. For several years, they had failed to converge. Between the late
seventies and early eighties, some propositions for using both approaches together
arose. Since then, formal methods and software testing are increasingly integrated
in what is now known as formal testing.

Formal methods can be defined as mathematically based languages, techniques
and tools for specifying and verifying software and hardware systems. This encloses
mainly two kinds of formal methods: formal specification languages and formal ver-
ification techniques. We believe that formal testing is one of the formal verification

11

12 CHAPTER 2. FORMAL METHODS AND TESTING

techniques. However, we will use the word verification in this chapter to talk about
traditional formal verification techniques and especially model checking and theorem
proving.

Formal testing gather all the impacts and contributions that formal methods can
offer to testing. These contributions may be distinguished in two categories accord-
ing to their original purpose. First, the formal definitions and techniques introduced
in the context of testing, including test theories, test generation, test oracles and
verdicts definitions. The second category includes formal methods and techniques
developed for other purposes but reused for testing. This includes essentially formal
specification languages used as basis for testing and formal verification techniques
reused for testing.

This chapter gives an overview of these different contributions. Section 2.2 intro-
duces formal testing definitions and techniques based on some formal specification
languages. Section 2.3 exposes some ways of reusing verification techniques in the
context of testing.

2.2 Formal Testing

Recently, formal methods have been widely used in testing; several ways of integra-
tion have been explored. When addressing the testing problem in a formal context,
one need to define a formal testing framework. This framework is defined over three
stages: test definition, generation and evaluation.

1. First, a test definition should be introduced according to what needs to be
tested, this is usually done by introducing testing theories. This stage is
explained in section 2.2.1.

2. Then, according to the test definition, tests are generated and executed against
the tested system. Different test generation techniques are introduced in sec-
tion 2.2.2.

3. Finally, the test results have to be evaluated in order to decide if the system
have passed a test or not. This is done by defining test oracles and verdicts
illustrated in section 2.2.3.

Formal testing techniques are usually based on a formal model or specifications.
These techniques are called model-based testing or specification-based testing. In
the context of this chapter, model-based testing and specification-based testing will
be used interchangeably to address testing techniques based on a formal description.

2.2. FORMAL TESTING 13

2.2.1 Background on testing theories

In formal testing, the formal definition of a testing framework is fundamental. A
meta-description of the framework is sketched in Figure 2.1.

Figure 2.1: Testing framework

Such a framework is based on the relation a given system and specification must
satisfy. This satisfaction relation depends on the objective of the testing framework.
For a given relation and a specification formalism some exhaustive test set can be
defined. Informally, exhaustive means that this test set covers all the possibilities
described in the specification. For example, when using a behavioral language, an
exhaustive test set covers all the possible behaviors of the specification. The notion
of exhaustivity is stated more precisely in the sequel.

However, since systems and specifications are of very different nature [Gau11],
the satisfaction relation is formalized by a conformance relation defined between
two models (specifications) often described in the same formalism, complemented
by some hypotheses on the system. This is very important in realistic testing scenar-
ios, since models are not real systems (the map is not the territory). As the entity
under test is a real system, one or more assumptions must be made to ensure that
this system can be considered/observed as a model (specification) in order to be com-
parable with the original model (specification). These assumptions are commonly
known as testing (testability) hypotheses and are part of the testing framework. In
the rest of this chapter, the source model will refer to the original defined model
and the target model to the assumed – but unknown – model (see Figure 2.1).

One of the first testing theories was defined in the work of de Nicola and Hen-
nessy [dNH83]. The authors investigated the use of testing to check equivalence
between formally specified processes. They defined three equivalence and preorder
relations based on two verdicts successful and unsuccessful. The authors applied
their approach to the specification language CCS. This work covers preorder rela-

14 CHAPTER 2. FORMAL METHODS AND TESTING

tions between models. It does not address real system testing: for that, adequate
testability hypotheses should be introduced.

Before the testing theory de Nicola and Hennessy, one of the early testing frame-
works was underlying the W-method proposed by Chow in the late seventies [Cho78].
In this work, the author considered finite-state machines (FSM) as source models.
The tested system is observable as if it was equivalent to an unknown FSM model.
This unknown model is used as target model for the conformance relation in the
testing theory. Several other works tackle the same problem using different source
and target models. To consider the system under test (SUT) as a model, these
methods make, explicitly or not, some assumptions on the SUT. For instance, in
[Cho78, LY94, LY96] one important assumption is that the SUT behaves like an
unknown FSM with a given number of states.

More recent works, notably [BGM91, Gau95], introduced explicitly these as-
sumptions under the name of testability hypotheses. This notion is fundamental
when testing systems using formal specifications. If the SUT is not testable, the
testing activity is useless because its results make no sense. An example of non
testable system would be a demonic one that behaves well w.r.t. the formal specifi-
cation during testing and, maliciously or not, changes its behavior afterwards.

In [Hie02, Hie09], the author rightly pointed out that the notion of testability
hypotheses is very similar to the notion of fault domains. A fault domain is a set of
models such that the SUT is believed to behave like an unknown model of this set.
Therefore, the fault domain can be defined as the set of all the models that satisfy
the testability hypotheses.

Testability hypotheses, associated to a good formalization of the exhaustive test
set, can be used to guarantee correctness (conformance). This somewhat goes
against the famous aphorism of Dijkstra: “testing can be used to show the pres-
ence of bugs, but never to show their absence”. Formal (exhaustive) testing can
be used to show correctness i.e. the absence of bugs: this requires the testability
hypotheses to be satisfied. Globally, one can state a correctness formula as follows:

For a system under test SUT and an exhaustive test set T defined from
a specification S and a given conformance relation, we have:

If the testability hypotheses hold then SUT is conform to S if and only if
SUT passes all tests in T.

Since the exhaustive test set is generally infinite, other selection hypotheses need
to be defined in addition to testability hypotheses. These selection hypotheses al-
lows selections of the tests to be executed from the exhaustive test set. The weakest
selection hypothesis one can imagine is that the SUT only satisfies the testability
hypotheses. This means that all tests in the exhaustive test set should be executed.

2.2. FORMAL TESTING 15

The strongest hypothesis assumes that the SUT behaves correctly w.r.t. the speci-
fication, this means that no test needs to be executed. Proving this hypothesis is
equivalent to a correctness proof on the SUT.

In practice, these two cases are not directly usable: if the exhaustive test set
is infinite, which is the usual case, the selection of all tests is not feasible; if the
correctness proof is impossible: for instance in a black-box testing context where
the details of the SUT are hidden, tests are necessary. Between these two extreme
hypotheses, quite a number of selection hypotheses can be defined to select more
reasonable number of tests.

Some examples of selection hypotheses were studied in the literature:

� One can make the hypothesis that the SUT will behave uniformly for a given
set of data values. This is called uniformity hypothesis [BGM91, Gau95]: it
allows the selection of a subset of data values that will represent the whole set
of values.

� Another hypothesis can be stated if the behavior of the SUT shows some
regularity w.r.t. some properties. This regularity hypothesis [BGM91, Gau95]
allows the selection of a subset of tests up to a given regularity limit to repre-
sent the whole set.

� In [Pha94] some independence and fairness hypotheses were presented for the
test of communication protocols against Input-Output State Machines speci-
fications.

The notion of selection hypotheses is very close to the notion of test (coverage)
criteria. A test criterion is a property that states if the test is sufficient or not. The
relation between test hypotheses and criteria is explained in [Hie02].

Gaudel [Gau10] presented a generic definition of this testing framework. This
definition was instantiated for different specification formalisms e.g. algebraic speci-
fications, object-oriented Petri nets [PBB98], LUSTRE [MA00], LOTOS [GJ98] and
FSM and LTS [LG02]. We sketch a formalization of this generic testing framework
in Isabelle/HOL as follows:

1 type_synonym ’a test = "’a"

2 type_synonym ’a test_set = "’a test set"

The test type is defined above as a generic type that can be instantiated for
concrete situations. The test set type is defined as a set of element of the generic
type test. For an application to FSM testing for instance, the generic test type can
be instantiated to a list of input/output symbols.

16 CHAPTER 2. FORMAL METHODS AND TESTING

1 type_synonym ’b SUT = ’b

2 type_synonym ’b testability_hypothesis = "’b SUT ⇒bool"

The type of the systems under test, SUT, is also defined as a generic type. Its
instantiation depends on the nature of the concretely tested systems. The type of a
testability hypotheses is defined as a predicate over the SUT.

1 type_synonym ’a selection_criterion = "’a test_set ⇒’a test_set"

2 type_synonym (’a, ’b) verdict = "’b SUT ⇒’a test ⇒bool"

Above, we state that a test selection criterion describes the selection of a subset
of tests from a given test set and that the verdict is a predicate that checks if a SUT
passes a given test.

1 definition

2 Test_verdict::"(’a, ’b) verdict ⇒’b SUT ⇒’a test_set ⇒bool" where

3 "Test_verdict pass sut ts = (∀ t∈ts. pass sut t)"

The definition of the verdict is generalized to a predicate over a test set in the
definition Test_verdict.

1 type_synonym ’c Spec = ’c

2 type_synonym (’c, ’a) SBTS = "’c Spec ⇒’a test_set"

As for SUT, the type of a specification is generic and will be instantiated de-
pending on the specification formalism. A specification-based test set type (SBTS)
is defined as a function type that returns a test set from a given specification.

Now we consider selection hypotheses:

1 definition

2 selection_hypothesis::"’a selection_criterion ⇒’b SUT ⇒
3 ’a test_set ⇒(’a, ’b) verdict ⇒bool"

4 where

5 "selection_hypothesis sc sut ts pass =

6 (∀ t∈(sc ts). pass sut t) −→ Test_verdict pass sut ts"

A selection hypothesis is defined from a test selection criterion, a SUT, a test
set and a verdict function. It states that the SUT passes the test set if it passes all
the tests selected by the selection criterion.

Finally, the conformance relation type is defined as a relation over a specification
and a SUT. Exhaustivity of a specification-based test set is then defined w.r.t. a
conformance relation. Given a conformance relation, the pair (test set, hypothesis)
is exhaustive w.r.t. this relation if and only if whenever the testability hypothesis
holds for a given SUT, this SUT conforms to a specification if it passes the test set.

2.2. FORMAL TESTING 17

1 type_synonym

2 (’b, ’c) conformance_relation = "’b SUT ⇒’c Spec ⇒bool"

3

4 definition

5 Exhaustive::"(’c, ’a) SBTS ⇒’b testability_hypothesis ⇒
6 (’a, ’b) verdict ⇒(’b, ’c) conformance_relation

7 ’b SUT ⇒’c Spec ⇒bool"

8 where

9 "Exhaustive ts Hmin pass conf_rel sut spec =

10 (conf_rel sut spec ≡ Hmin sut ∧ Test_verdict pass sut (ts spec))"

where Hmin is the minimal testability hypothesis stated on the SUT.

This framework must be instantiated for specific specification formalisms, classes
of systems under test and the corresponding testability hypotheses, and the confor-
mance relation.

2.2.2 Test generation from formal specifications

One of the most significant contribution of formal methods to testing is the use of
formal specification languages. In the early stages of system development, abstract
specifications of the desired system are performed. These specifications are written
in a formal specification language or formalism. The advantage of such specification
languages is their associated well defined syntax and semantics. These languages are
also usually supported with tools like editors, parsers, type checkers and animators.

Formal specification languages were used in several testing techniques, based on
different test theories and hypotheses. In the following, we discuss some of these
techniques, classified according to the used specification language. More exhaustive
and detailed studies and surveys can be found for instance in [CS94, LY96, Pet01,
HBB+09, Gau10]. According to the main covered aspect (data or behavior), we
classify specification languages in three classes: (i) data-oriented languages, (ii)
behavioral languages and (iii) combined languages.

2.2.2.1 Data-oriented languages

The first class of specification languages is the data-oriented languages also known as
model-based languages. Their main concern is to represent complex data structures
and operations on them. The system is specified by representing its state, and
operations that update it. We present some of these languages in the sequel (VDM,
Z, B and algebraic specifications) as well as some test generation techniques based
on them.

18 CHAPTER 2. FORMAL METHODS AND TESTING

VDM

Vienna Development Method specification language (VDM-SL) [Jon86, VDM] is a
model-based specification language. Specifications define an abstract state and op-
erations which are relations on this state defined in terms of pre/post conditions.
Operations can be defined with inputs and can return outputs in addition to state
variables. The preconditions of operations are first order predicates over the op-
erations inputs. The postconditions give a relation between the operations inputs,
outputs, the old and the new state.

The most significant formal testing approach for VDM was proposed by Dick
and Faivre [DF93]. Even if this work uses VDM as source specification language,
it can be generalized and applied for all model-based specification languages (Z
for instance). As explained above, VDM operations are expressed in term of first-
order predicates describing relations between system states. The test selection is
performed by a partitioning strategy, where the input space is partitioned into sub-
domains, giving one test per sub-domain. This is done by reducing the pre and post
conditions into their disjunctive normal form (DNF), describing the set of disjoint
sub-domains. The result of the partition of all state expressions to DNF is used
to extract a finite state automaton. This automaton is then used to generate test
sequences with the aim of path coverage. This approach was implemented in a
Prolog based tool [DF93] that also provided a VDM editor and type-checker. The
kernel was the transformation of predicates into DNF. Test selection and automaton
extraction were not automated. The main problems of this type of approaches is
the explosion of the DNF size and the introduction of infeasible cases resulting from
the DNF transformation.

Z

The Z specification language [Spi88, Spi92, WD96] is based on schema definitions
and operations to specify systems. The state (with complex data types) is repre-
sented by state schemas. Operations on the state are defined in terms of operation
schemas. A schema consists of variable declarations associated to a predicate that
constrains their values. The predicate of a state schema defines the state invari-
ant. The predicate of an operation schema describes this operation in a pre-post
condition style. Variable names represent their initial values while names decorated
with ′ represent their final values i.e. after the operation is performed. The first ISO
standardization of the Z languages was published in 2002.

An example of a Z specification is the birthday book example presented in [Spi92]
and shown below. First, abstract types NAME and DATE are declared. Three
schema expressions (BirthdayBook , InitBirthday and AddBirthday) are then defined
based on these abstract types.

2.2. FORMAL TESTING 19

[NAME ,DATE]

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

InitBirthday
BirthdayBook

known = ∅

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known

birthday ′ = birthday ∪ {name? 7→ date?}

The first schema BirthdayBook defines the system state, using a set of known
names and a partial function that returns a birthday for a given name. The asso-
ciated predicate states that known names are those for which a birthday is defined.
The second schema InitBirthday describes the initial state of the system in which
the birthday book is empty. The third schema AddBirthday defines an operation
over the state. It adds a name and its corresponding birthday to the state. The pre-
condition of the operation is that the new name is not yet in the birthday book. The
postcondition describes the resulting state by adding the new name and birthday to
the initial state.

Most of the Z based test generation approaches are based on the state parti-
tioning strategy described for VDM. Hall [Hal88] was the first to discuss a general
approach to testing from Z specifications, aiming at test generation and test selection
automation.

Next, Amla and Ammann [AA92] applied a category partitioning method to
Z specifications somewhat similar to [DF93] for VDM. Then Ammann and Offutt
[AO94] proposed a method to specify combinations of category partitions in form of
coverage criterion.

20 CHAPTER 2. FORMAL METHODS AND TESTING

Stocks and Carrington’s Test Template Framework (TTF) [CS94, SC96] offers
a well-known methodology for testing based on Z specifications. It uses a parti-
tion analysis strategy called domain propagation for state partitioning. For each
operation, a set of possible input sub-domains is defined from the specification of
the operation. In a complex expression, the sub-domains of each of its operation is
propagated to build a set of all possible sub-domains. Recently, this method was
(partially) implemented by [CM09] in a model-based testing tool. This tool relies
on the CZT framework for parsing, type-checking and animating Z specifications.
The main problem of this tool is the lack of efficient constraint solving.

Helke et al. [HNS97] provided an embedding of Z in Isabelle/HOL theorem
prover. This embedding is used as a basis for test generation from Z specifica-
tions using the partitioning strategy. The DNF computation and unsatisfiable and
redundant cases elimination were automated using the theorem prover.

Hierons [Hie97] defined a decomposition strategy by rewriting Z specifications
to a flattened expressions based on first order predicate logic and set theory. The
resulting expressions are transformed to a disjunction of pre/post-condition expres-
sions that will be used for test generation. This strategy reduces the number of the
generated sub-domains comparing to a full DNF decomposition.

Singh et al. [SCS97] proposed a combination of the classification-tree method
with the DNF approach. A classification-tree that contains test cases is computed
from a high-level description of the system. A DNF decomposition is then applied
to these test cases to obtain more refined test cases.

B

The B-method is a software development method focused on the refinement of spec-
ifications written in the B notation [Abr96, Sch01]. B specifications can be de-
scribed in terms of abstract machines or as refinements of other B specifications.
An abstract machine defines the state variables, state invariants, initialization and
operations over the state.

Aertryck et al. [vABM97] investigated test (suite) generation from formal (B)
specifications. The proposed approach is based on some predefined or user-defined
test generation strategies described in a so called test case specifications tcs. Con-
straint solving is used to instantiate test data that satisfy each test case specification.
This approach was implemented in a tool called CASTING.

Legeard et al. [LPU02] proposed a boundary testing method1 for B and Z speci-
fications. Boundary goals are computed from the DNF of the model, then boundary
states are computed following these goals. For each boundary state, all possible
behaviors (starting from it) are tested. The BZ-TT environment provides an im-

1Boundary testing is a testing activity that targets the boundaries or limit values of the test
input domain.

2.2. FORMAL TESTING 21

plementation of this testing method including powerful specific constraint solving
techniques.

Algebraic specifications

Systems can be described in terms of their algebraic properties, using the so-called
algebraic specifications. Algebraic specifications are defined by sorts, operations and
some properties (expressed as axioms). Sorts are the data types specified in the given
algebraic specification. The operations (functions) signatures describe the syntax
of the specification. The semantics of the specification is given in terms of axioms
on the operations describing their properties. Examples of algebraic specification
languages are CASL [ABK+02], ACT-ONE [EFH83] and OBJ [GT79].

As said above, algebraic specifications allows the description of abstract data
types as constants, operations and then properties (axioms). Testing techniques
based on algebraic specifications aim at verifying that an implementation of a spec-
ified data type satisfies its axioms. One of the first works on testing using algebraic
specifications was done by Gannon et al. [GMH81]. The authors developed the
DAISTS system, that allows for specifying, implementing and testing abstract data
types. For a user-supplied inputs, the systems generates the corresponding out-
puts from the implementation of the data type operations. The specified axioms are
then used directly as test oracles to determine if the outputs are correct. A notion of
structural coverage criteria was also considered e.g. axioms and operations coverage.

A theory for testing from algebraic specifications was developed by Gaudel et al.
[BCFG86, BGM91, DGM93, GLG08]. Testability hypotheses were expressed as well
as several exhaustive test set definitions. These sets are based on the set of all the
ground instantiations of the axioms in the specification. Due to the infinite nature
of test sets, selection hypotheses (e.g. uniformity and regularity) were proposed.
This approach was implemented in the LOFT tool and applied to an automatic
subway software. This tool is based on constraint solving and predefined selection
hypotheses.

Machado [Mac00] tackled the oracle problem in the case of algebraic specifica-
tions testing. Using the axioms of the specification as oracle reduces the problem
to an equality problem, but can lead to comparing two values of a non observable
sort. This oracle problem is explained with more details in Section 2.2.3.

Logical specifications

Logics are widely used to describe the semantics of model-based specification lan-
guages. They are also used as an independent basic specification formalism to sup-
port logical reasoning on specifications. Theorem provers use logical basis to offer
different specification and symbolic reasoning facilities.

22 CHAPTER 2. FORMAL METHODS AND TESTING

Some testing techniques and tools were proposed for logical specifications, for ex-
ample the HOL-TestGen [BW12] system based on the Isabelle/HOL theorem prover.
This system is based on specifications written in Higher-Order Logic to generate test
cases and test data. Some test selection hypotheses (uniformity and regularity) are
stated explicitly in the system. This system is of particular importance to our work.
It will be introduced with more details in 3.3.3.

2.2.2.2 Behavioral languages

The second class of specification languages contains behavioral languages. These
languages cover sophisticated behavioral aspects of reactive systems such as non-
determinism and concurrency. In the following, we focus on two different kinds of
behavioral languages: process algebras (CSP) and graph based formalisms (finite
state machines and transition systems).

CSP

The Communicating Sequential Processes (CSP) [Hoa85, RHB97, Sch99b] is a well
known process algebra. Reactive systems can be described in CSP in terms of
communicating processes. Processes communicate by events performed by synchro-
nization or value exchange over channels. CSP define a set of operators to describe
internal and external choices, sequential and parallel compositions, conditionals and
hiding. Communications are defined using a prefixing operator.

Testing based on CSP specifications was first studied by Peleska and Siegel
[Pel96, Sie97]. The authors defined a testing method inspired by de Nicola and
Hennessy’s testing theory [dNH83]. They defined different refinement relations in
terms of traces, refusals and divergences. Notions of may and must testing were
introduced producing two verdicts pass and fail. The testing approach was imple-
mented in the VVT-RT system, using the FDR [For05] model checker to retrieve
the LTS representation of a CSP process.

Schneider [Sch99a, Sch99b] defined two conformance relations based on testing
for CSP specifications. The author distinguished two categories of events: refusable
and non-refusable, and introduced on this basis an operational characterization of
process abstraction in term of testing.

Cavalcanti and Gaudel [CG07] introduced a testing theory for CSP based on the
failures-divergences refinement. The proposed testing theory instantiates the generic
testing theory defined in [Gau01] for CSP specifications. The authors characterized
mandatory testability hypotheses for CSP-based testing. They also provided defi-
nitions for exhaustive test sets w.r.t. traces and failures refinement and considered
some selection hypotheses.

Nogueira et al. [NSM08] introduced an other testing theory for CSP based on
the testability hypotheses defined in [CG07] and a new conformance relation cspio.

2.2. FORMAL TESTING 23

This conformance relation is inspired from the ioco relation defined for Input-Output
LTS. The authors proposed a test generation strategy based counter-examples gen-
eration for refinement model checking using FDR. Test purposes, described as CSP
processes, were used for test selection.

FSM

Finite state machines have been widely used as a basis model for several test gen-
eration techniques. In his seminal work, Moor [Moo56] introduced the problem of
testing FSM using a concept used by physicists called gedanken-experiments. The
global idea of an experiment is to interact with a system (sequential machine) in
order to identify a transition diagram that describe its behavior.

Hennie [Hen64] introduced the concept of transition checking using checking se-
quences. His work was focused on fault detection experiments for sequential circuits
represented by FSM. A checking sequence is an input sequence that starts from
the initial state and determines if the target FSM is faulty. The studied FSM are
assumed to have a distinguishing sequence, which is not always the case. A dis-
tinguishing sequence is a sequence of input for which the FSM returns a different
output sequence for any different initial state. This distinguishing sequence is used
to identify which state of the FSM corresponds to a given system state.

Inspired from the last work, number of FSM-based testing methods were pro-
posed. Each method had special considerations and hypotheses on the tested system
(e.g. the presence of an explicit reset or a distinguishing sequence). We already men-
tioned the W-method presented by Chow [Cho78] that used characterization sets
as a basis for testing FSM. A characterization set (also called W-set) is the set of
input sequences that can distinguish any two states of the FSM. This method uses
a testing tree which is the result of flattening the FSM into a tree then computes
minimal partial paths from this tree that cover the transitions. Test sequences are
built by a concatenation of one of the computed paths with the elements of the
characterization set.

Lee and Yannakakis addressed in their remarkable survey on FSM-based testing
[LY94, LY96] the complexity of finding distinguishing sequences and Unique Input
Output (UIO) sequences. The distinguishing sequence is used to identify the initial
state of an FSM and the UIO sequence is used to verify if a given state is the initial
state of an FSM. This notions are very useful when testing systems that behave like
an FSM, particularly when the state of the system cannot be directly observed.

A classical testability hypothesis is considered when testing using FSM. It as-
sumes the SUT to be equivalent to an unknown FSM which have the same input
alphabet and the same number of states or a bigger but known number of states.
Usually, the coverage criterion used in FSM-based testing is transition coverage since
it subsumes the state coverage. Transition coverage is considered as a sufficient cri-

24 CHAPTER 2. FORMAL METHODS AND TESTING

terion because each transition in a traditional FSM is independent from the other
ones. The transition depends only from its source state and input symbol, covering
a transition in one test is then sufficient.

Extended FSM were used to describe systems with state variables, operations
over them and communicated values in inputs and outputs. Transitions may be
guarded i.e. a condition over variable values is associated to each transition. EFSM
can be classified as a combined specification formalism since they deal with both
data and behavioral aspects.

Some test generation techniques transform the EFMS to an equivalent FSM by
enumerating all possible data values. Due to the state explosion problem, symbolic
evaluation techniques were applied in other EFSM-based testing techniques to deal
with huge or infinite data types. These techniques depends usually on the symbolic
traces of this EFSM to define symbolic tests. A symbolic trace is a sequence of sym-
bolic transitions associated to a trace conditions (defined by the transitions guards).
The problem with these symbolic techniques is the number of infeasible traces that
can be generated. Some symbolic test generation methods use a constraint solver
to eliminate infeasible traces early in the generation phase.

LTS, IOTS/IOLTS

Labeled transition systems (LTS) are widely used as a semantic model for reactive
systems. The graphical representation of LTS gives a better view of the different
evolutions of the system. The state of the system is represented as nodes and the
state transitions as labeled edges. Process algebra operational semantics is usually
defined as an LTS that corresponds to the different transition rules. Transitions are
labeled with actions (events) and states represent continuations after these actions.
In classical LTS events represent undirected communications (synchronizations).
In more elaborated models, communications are directed: one distinguishes input
and output communications, for example IOTS (Input Output Transition Systems)
[Tre96] and IOLTS (Input Output LTS) [JJ04].

Number of LTS-based testing techniques have been proposed (see [BT01] for an
annotated bibliography). In general, when testing against LTS (or IOTS/IOLTS),
two conformance relations can be used: conf and ioco. The conf relation [Bri88],
whose source and target models are LTS, checks that all the deadlocks of the SUT
are specified. The ioco relation [Tre96], whose source model is an IOTSL/IOLTS
and target model is an input enabled IOTS/IOLTS, checks that the SUT never
produces an unspecified output.

The formal testing framework for IOTS has been stated by Lestiennes and Gaudel
[LG02], where an exhaustive test set definition for ioco was proposed. The authors
also identified some testability hypotheses that must be considered when testing the
ioco relation. First, the SUT is input enabled i.e. input actions are controlled by

2.2. FORMAL TESTING 25

the environment and cannot be refused by the system. Another hypothesis is the
ability to observe quiescence i.e. when the SUT is waiting for an input from the
environment and no output or internal actions can be performed.

Some tools have been developed implementing ioco-based test generation, we
cite for instance TorX [TB03] and TGV [JJ04]. Other tools developed initially for
process algebra based testing can also be used for LTS testing. This is a natural
consequence of using LTS to represent the operational semantics of many process
algebras (e.g. CSP and LOTOS).

Like for FSM, extended LTS were proposed to specify systems that deal with
huge or infinite data types symbolically. STS (symbolic transition systems) [FTW06]
also called SLTS (symbolic LTS) are transition systems extended with a notion of
data and operation over it. In addition to states and labeled transitions, an STS
contains some state and communication variables. A transition is labeled with a
constraint, a communication and a set of operations over variables.

In [LG02] symbolic definitions of states, actions and trace were proposed for
LTS extended with data types. Based on these definitions, a symbolic exhaustive
test set was introduced for ioco. The presented testing theory contains also some
selection hypotheses and a instantiation based on constraint solving techniques. A
symbolic conformance relation called sioco was introduced in [FTW06] as a symbolic
variant of ioco for STS. The authors proposed a symbolic state coverage criterion
but symbolic test definitions or generation were not addressed yet.

2.2.2.3 Combined languages

Despite the fact that data-oriented languages or behavioral languages were widely
used to specify real systems, the latter usually involve both complex behaviors and
complex data structures. Consequently, only one aspect of these systems can be
specified at the same time. This is one of the reasons that justify the introduction
of a class of combined languages. A combined language is, in most cases, a fusion of
a data-oriented language and a process algebra. We introduce in the sequel some of
these combined languages (LOTOS, SDL and Statecharts) and some testing tech-
niques based on them. LOTOS, SDL and Statecharts are very similar to SLTS and
EFSM. Consequently, several testing techniques for SLTS and EFSM were reused
and adapted for testing based on these formalisms.

Test generation techniques based on combined languages are usually based on
symbolic execution to deal with large and infinite data. This may introduce some
unfeasible data values or behaviors. Efficient constraint solvers must be used in
order to prune infeasible cases and also to instantiate concrete tests. Most of the test
generation techniques for combined languages require powerful symbolic execution
and constraint solving systems. This makes the tools implementing these techniques
not very efficient and thus rarely used for real size applications.

26 CHAPTER 2. FORMAL METHODS AND TESTING

LOTOS

LOTOS (Language of Temporal Ordering Specification) [BB87, lot89] is a specifica-
tion language combining algebraic specifications (based on ACT-ONE) an process
algebras (based on CCS). Specifications in LOTOS are composed of two orthogonal
parts for data and control. The data part contains abstract data types declaration
in ACT-ONE. The control part is a description of the behavior in a process algebra
called basic LOTOS, based on CCS. The so-called full LOTOS supports communi-
cations with the complex data types defined in the data part. The semantics of the
two parts of the language are given separately. It is based on ACT-ONE semantics
for the data part and an automata based operational semantics for the control part.
Several extensions and variants of the language have been proposed, an example is
LOTOS NT [Sig00].

Among the LOTOS based testing techniques, we cite for example Tripathy and
Sarikaya’s technique [TS91]. The authors proposed an approach to derive test cases
from full LOTOS specifications for protocol conformance testing. LOTOS speci-
fications were first translated into charts, a particular kind of transition systems.
Tests are then derived from the resulting charts. Symbolic evaluation techniques
were used to deal with infeasible test cases. This approach was implemented in the
LOTEST test generation tool.

An other substantial work in this direction was developed in CADP [GLMS11], a
toolbox for verifying asynchronous concurrent systems. It allows for efficient parsing,
verifying and testing based on LOTOS specifications. Test generation is also based
on the LTS semantics of the specifications.

Van der Schoot and Ural [vdSU95] introduced a data flow oriented test selec-
tion method for LOTOS. This method starts with static data flow analysis on the
specification to identify input/output relations. Feasible tests are then generated to
cover these relations using a set of inference rules.

SDL

SDL (Specification and Description Language) [IT99] is a formal specification lan-
guage for reactive and distributed systems. SDL is also object oriented and was
originally proposed to describe telecommunication systems. Specifications presenta-
tion can either be textual or graphical in a finite state machine style. Abstract data
type definitions are used to specify the static part of systems. A system is composed
of blocks which are composed of communicating processes. Abstract State Machines
were also used to define the semantics of SDL.

SDL was also used as basis for some test generation techniques especially in
telecommunications area. In [GJK99] for example, an automated test generation
technique for SDL specifications was proposed. It combines two existing tool sup-
ported test generation approaches. The first approach is based state space explo-

2.2. FORMAL TESTING 27

ration with heuristics and implemented in the TVEDA [GR98] tool. The second,
based on an on-the-fly exploration of IOLTS models, is implemented in the TGV
[JJ04] tool. The technique was implemented in a tool called TestComposer.

Statecharts

UML Statecharts [HG96] can be seen as object based finite state machines. They are
very close to object based programming languages. Object oriented notions are used
to describe data and the behavior is represented by a transition system. Statecharts
are represented graphically as transition systems where (possibly guarded) transi-
tions are labeled with pairs event/action. A semantics based on message passing
Abstract State Machines was defined for Statecharts.

For Statecharts based testing, we refer for instance to the work by Hierons et
al. [HSS01] on testing based on specifications that combine Statecharts and Z. The
proposed approach produces an EFSM from the initial specification using state ab-
straction. The state abstraction applies Z state partitioning techniques to decompose
operation domains. The resulting EFSM is used to generate test cases considering
different test criteria.

Bogdanov and Holcombe [BH04] proposed a Statecharts based testing method
supporting hierarchy and concurrency. They also proposed test selection criteria
(refinement constraints) to reduce the size of test sets without weakening the test
conclusions.

2.2.2.4 Circus-based testing

In this thesis, the Circus language is used as a basis for formal specification and
verification techniques. In order to support both static and dynamic aspects of
systems, using a combined language is more convenient. Z provides a very good
basis to describe complex system states and rich data structures. CSP offers well-
established mechanisms to represent complex behavioral aspects like communica-
tions, sequencing and concurrency. Circus combines Z and CSP operators and also
includes specification constructs and (Dijkstra like) guarded commands. It can be
used at different levels of abstraction to write specifications, designs and programs.

Other sophisticated languages similar to Circus were already defined as combi-
nations of a model based language and a process algebra. Examples of these com-
binations are CSP and Z (e.g. CSP-Z [Fis96], CSP-OZ [Fis97] and TCOZ [MD98]),
CSP and B (e.g. CSP||B [ST05] and ProB [LB03]), CSP and CASL (e.g. CSP-CASL
[Rog06]), CCS and Z (e.g. ZCCS [GS97] and CCZ [Gal96]), CCS and CASL (e.g.
CCS-CASL [SAA02]) and CCS and ACT-ONE (e.g. LOTOS[BB87, lot89]).

Even if some of these languages are very close to Circus, the latter distinguishes
itself for different reasons. Circus is provided with well defined denotational and
operational semantics. Its denotational semantics is fully integrated in one unified

28 CHAPTER 2. FORMAL METHODS AND TESTING

framework (UTP). The semantics of schema operations, CSP operators and com-
mands are unified in this formalism. This makes it possible to reason about Circus
as one entity without any need to separation. This integration allows also data
and behavioral operations to be freely mixed in the specifications. For example, a
schema operation can be prefixed by a communication then followed by a command.
The operational semantics of Circus is also provided in terms of UTP. The UTP pro-
vides a well established relational framework for proving its soundness w.r.t. the
denotational semantics.

Theories for refinement and testing were defined for Circus specifications. The
refinement is based on the denotational semantics and cover both data and behav-
ioral aspects. The symbolic testing theory is defined on the basis of the operational
semantics of Circus.

In Section 3.2.3.2 the theory of testing based on Circus specifications is presented.
Symbolic tests are defined w.r.t. two conformance relations inspired from process
algebra testing definitions. These tests are based on a symbolic constrained version
of events, traces, initials and acceptances. Symbolic variables are used to represent
communicated values that can be of any (even infinite) type. Input and output
domains are restricted by some constraints associated with each test.

Since the language and its tests definitions are based on both behavioral and data
aspects, existing testing methods presented previously may be reused or adapted for
Circus. The category partitioning and domain propagation techniques (defined for
VDM and Z) can be applied on Circus symbolic tests. In fact, the input domain
defined by the test constraint can be split to disjunct sub-domains by applying a
DNF decomposition on its constraint. This will lead to possible selection hypotheses
for these symbolic tests. Other selection hypotheses, that may provide more tests,
can be defined using domain propagation techniques.

Some testing techniques based on process algebra (and especially CSP) inspired
the definitions of tests for Circus. The particularity of Circus comparing to CSP is
the manipulation of complex data types. This is covered in the definition of tests
using symbolic execution techniques. A work that is of a particular similarity to
the work presented in this thesis is the one by Helke et al. [HNS97] for CSP based
testing. The similarity is that both works use Isabelle/HOL as a basis of the test
generation framework. Infeasible and redundant test cases can be efficiently pruned
using Isabelle and all constraint solvers it supports.

The Circus operational semantics associates to a Circus specification complex
transition system with some similarities with EFSM and SLTS. In Section 3.2.3.2,
the presented approach for symbolic test definition, selection and generation is some-
how inspired from the works on testing based on EFSM and SLTS. However, these
notions are not directly usable in Circus since its constructs are more rich and com-
plex than EFSM and SLTS. In addition, the tested conformance relations addressed
in both techniques are quite different.

2.2. FORMAL TESTING 29

2.2.3 Oracle and verdict

The verdict states if the tested system passes or not a given test. In many testing
approaches three different verdicts are used pass, fail and inconclusive. The pass
verdicts indicates that the SUT answered correctly to the test i.e. it conforms to
the specification and the test objective is achieved. The fail verdict is emitted
when the SUT fails in the test indicating a fault w.r.t. the specification. If the
test objective is not achieved but no failure has be detected, the test verdict is
inconclusive. When executing a particular test against the SUT, the latter may act
in a (probably) correct way but different to what is defined in this test. This can
happen for example in a nondeterministic situation if the SUT makes a different
choice than what is proposed by the particular test.

The verdict is emitted by oracles i.e. automated or manual decision procedures
that performs some interpretation of the test execution results. Defining such pro-
cedures is often very difficult; this is usually referred to as the oracle problem. This
problem arises when there is an abstraction gap between the specification and the
implementation: the interpretation of the results depends on some implementation
choices unknown at the specification level. The oracle problem is usually reduced to
checking some equality between the expected and the actual resulting value. This
equality cannot always be directly expressed between values of an abstract data type
and its representation in the SUT.

Equality over concrete data types (implementation) can be used as oracle. Un-
fortunately, this equality is usually a part of the implementation of the SUT and
consequently is error-prone. In practice, only equality over some basic types (inte-
gers, booleans, ...) can be trusted since it is usually provided by the compiler. This
can be expressed as a testability hypothesis called oracle hypothesis, stating that
the equality over these basic data types is correctly implemented.

These basic data types are usually called observable; they are used to observe the
implementation of the other non-observable data types. For this second kind of data
types, one possible solution is to introduce observation functions. These functions
compute an observational value from a non observable one, so the equality over the
last can be used as oracle.

In the case of testing methods based on FSM, the verdict depends on the final
state of the system after executing a test. The oracle problem is to determine
without ambiguity this final state in order to emit the verdict; this is also known
as state identification or observation. The only way to know the current state of a
running SUT is by interacting with it and evaluating its outputs.

Some state observations techniques were defined for FSM; the most general one
is the separating family. Each state of an FSM can be distinguished by observing
the output sequences of a set of input sequences. The set of all these sequence set is
called a separating family and it can always be defined for any FSM. A special case

30 CHAPTER 2. FORMAL METHODS AND TESTING

of separating family is when the same input sequences set can be used to identify
all states. In this case this set is called a distinguishing set and it can always be
defined for any given FSM. If the distinguishing set contains only one sequence, the
latter is called a distinguishing sequence. Unfortunately, deciding whether a given
FSM has a distinguishing sequence is PSPACE-complete.

These techniques can be used as oracles to identify the final state after executing
a test. Another related problem in testing based on FSM is to ensure that the SUT
is in a given (initial) state before running a test. This problem is similar to the
state identification problem, but it concerns more the testability hypotheses than
the oracle. Unfortunately, state observation techniques cannot be used for this case,
since they induce a state change. Some systems may have an explicit reset that can
be used to put the system in its initial state. For FSM without a reliable reset, the
so-called homing sequences are used to put the system in a known state. A homing
sequence is an input sequence similar to the distinguishing sequence. The difference
is that the homing sequence determines uniquely the arrival state of the system after
executing it.

Figure 2.2: An FSM test example

An example of a complete test sequence for FSM based testing is given in figure
2.2. This sequence is composed of three parts: a preamble, a transition execution
and then a state observation. Starting from an unknown state, a reset or a homing
sequence is used to put the system in a known (initial) state. From this initial
state, the system is executed against a given trace in order to reach the state to be
tested. Once this state reached, the preamble part is achieved and the transition
checking can be performed. This can be done by presenting an input to the system
then observing its output and final state. This final state is unknown and can
be observed by one of the state identification techniques introduced earlier (i.e.
separating family, distinguishing set or distinguishing sequence). This observation
part is an oracle for these kind of tests.

2.3. VERIFICATION AND TESTING 31

2.3 Verification and Testing

Even if they were assumed to be very different, verification and testing are becom-
ing more and more closer in many aspects. Formal verification was considered as
a static analysis with a full coverage of the model. Testing was seen as a dynamic
activity that covers some aspects of the system. Recently, this distinction is becom-
ing more and more fuzzy, with the introduction of dynamic verification techniques
(e.g. software model checking) and the definition of formal exhaustive testing. Some
works on the cross-fertilization of these two disciplines show that this distinction is
actually unfair. In this section we present some of these ”reconciling” works. Es-
sentially, we give some applications of static program analysis, model checking and
theorem proving techniques for testing.

Symbolic execution [Kin76] is one of the widely used static program analysis
techniques. It provides a symbolic representation of a program, where variable
values are replaced by symbols. Every possible program evolution is described by a
path predicate expressed as a symbolic constraint. The set of all possible symbolic
paths of a program can be represented in a symbolic tree. A symbolic path is
said to be feasible if its constraint is satisfiable, otherwise it is infeasible. Symbolic
execution is usually associated to constraint solving techniques, e.g. for checking
feasibility or for symbolic values instantiations.

When testing against programs or specifications dealing with infinite objects or
infinite type of objects, the number of possible test cases can be huge or infinite too.
Symbolic representation and execution are used in order to represent these tests in
a concise way. A symbolic test case can be represented for example as a symbolic
execution path of a program. This unique test case, is a way to describe a huge
number of cases where symbolic values are replaced by concrete ones. This kind of
instantiation is performed with the help of constraint solving techniques.

Model checking is a static verification technique whose aim is to check that a
model satisfies some properties. Models are finite state transition systems e.g. LTS
or similar to them (Kripke structures, automata). Properties, sometimes called
specifications, express some requirements that the model should preserve e.g. safety
or liveness. Model checking is realized by an exhaustive exploration of the model
with the goal of finding counter examples.

Exploiting the fact that model checkers find counter examples, some of them
were used for test generation. Given a model and a property, model checking the
negation of this property yields a counter example. This counter example repre-
sents a trace that satisfies the property and can be used to obtain test cases. Many
model checkers have been used for test generation, as examples Java Pathfinder
and Isabelle/HOL tools (Quickcheck and Nitpick). Java Pathfinder model checker
has been used for generating test input from descriptions of method preconditions
[VPK04]. The approach combines model checking, symbolic execution and con-

32 CHAPTER 2. FORMAL METHODS AND TESTING

straint solving applied to Java programs. Isabelle/HOL theorem prover encloses
tools for counter example generation used in refutation proofs [BBN11]. Quickcheck
for example is a model checker that uses random model exploration and narrowing
to find counter examples. Nitpick is a SAT based model checker used to generate
finite models that satisfy the negation of the formula to refute.

Theorem provers mainly aim at helping to write machine checked proofs for the-
orems. They were used in many application to perform static verification proofs
over programs. Theorem provers were also used in specification-based testing where
sophisticated reasoning is needed. An example of a prover based testing frame-
work is HOL-TestGen [BW12], and extension of Isabelle/HOL theorem prover. It
supports test cases and test data generation from specifications expressed in higher
order logics. Test selection hypotheses can be expressed explicitly in the system.
Isabelle/HOL theories in addition to automated proof techniques are used in the test
generation tactics. A test theorem is stated as a proof obligation, then test genera-
tion tactics are applied to simplify it in order to get test cases. HOL-TestGen takes
advantage of the powerful symbolic computation and connected constraint solvers to
Isabelle/HOL. An other combination of theorem proving and testing was explored
by Burton et al. [BCM00]. The authors detailed different possible combinations of
testing and proving, for instance a Z based test generation using CADiZ theorem
prover. A similar application of test generation from Z specifications based on Is-
abelle/HOL theorem prover is the work of Helke et al. [HNS97]. Test generation in
this method is based essentially on DNF decomposition using the reasoning facilities
of the prover. Isabelle simplifier is also used in test generation in order to eliminate
infeasible test cases.

2.4 Conclusions

This chapter gives a quick overview of the relation between formal methods and
testing. The formal methods considered in this chapter are of two classes: formal
specification languages and (traditional) formal verification methods. A third kind
of formal methods is introduced in this chapter, which is formal testing methods.
These provide a formal test environment containing test definitions and generation
and result evaluation techniques (verdicts and oracles).

Some relations between formal testing and the other kinds of formal methods
are introduced in this chapter. First, some formal specification methods are used
as basis for some test definitions and generation techniques. These specification
formalisms are used to describe data or behavioral aspects (or both) of systems.
An other kind of interactions appears when some formal verification methods and
techniques are deviated to be used for testing. Examples of this interaction are
theorem prover and model checkers used for testing.

2.4. CONCLUSIONS 33

The next chapter will introduce the context of the formal specification and testing
environment presented in this thesis. The context includes introductions to the
formal specification language Circus. It also contains an introduction to the formal
infrastructure of our work i.e. Isabelle/HOL theorem prover.

C
h

a
p

t
e

r

3
Context

Contents

3.1 Introduction . 35

3.2 The Circus Language . 36

3.2.1 Syntax . 36

3.2.2 Semantics . 40

3.2.3 Refinement and testing . 44

3.3 Isabelle/HOL . 50

3.3.1 Isabelle, HOL and Isabelle/HOL 50

3.3.2 Advanced constructs in Isabelle/HOL 53

3.3.3 HOL-Z, HOL-CSP and HOL-TestGen 55

3.4 General Considerations . 57

3.5 Conclusions . 58

3.1 Introduction

The main goal of this thesis is to provide a formal environment for Circus on the
basis of Isabelle/HOL. This chapter introduces the context and the basics of this
environment: the Circus language and the Isabelle/HOL theorem prover. Circus
is a well-defined formal specification language, covering several aspects of system

35

36 CHAPTER 3. CONTEXT

specifications. Isabelle/HOL is a powerful formal framework for logical reasoning
and theorem proving and many other applications.

The next section introduces Circus, including its syntax, semantics, UTP foun-
dations and refinement and testing theories. Section 3.3 gives an overview of Is-
abelle/HOL and some of its important notions used in this thesis.

3.2 The Circus Language

Circus [WC02] is a formal specification language which integrates the notions of
states and complex data types in a Z-like style and communicating parallel pro-
cesses inspired from CSP. From Z, the language inherits the notion of schema used
to model sets of (ground) states as well as the ability to describe state modifications
via preconditions and postconditions. From CSP, the language inherits the concept
of communication events and typed communication channels, the concepts of de-
terministic and non-deterministic choice (reflected by the combinators P �P ′ and
P u P ′), the concept of concealment (hiding) P\A of events in A occurring in the
evolution of process P . Due to the presence of state variables, the Circus parallel
operator is slightly different from CSP. Its syntax is given as: P Jn | c | n ′KP ′ means
that P and P ′ communicate via the channels mentioned in c; moreover, P may
modify the variables mentioned in n only, and P ′ in n ′ only, n and n ′ being disjoint
name sets. Moreover, the language comes with a formal notion of refinement based
on a denotational semantics.

The language follows the failure/divergence semantics [RHB97], (but coined in
terms of the UTP [OCW07]), providing a notion of execution trace tr, refusals
ref, and divergences. It is expressed in terms of the UTP [HH98] which makes it
amenable to other refinement-notions in UTP. The semantics allows for a rich set
of algebraic rules for specifications and their transitions to program models.

A simple Circus specification of FIG, the fresh identifiers generator process, is
given in Figure 3.1.

In this example, the type ID is first declared in a Z style type declaration.
Channels are then defined, req for synchronization and ret and out to communicate
values of type ID. After these global declarations, the definition of the process is
introduced. It contains a state declaration as a schema expression and schema
operations and actions that may manipulate the state. Finally, a main action is
defined using the previously defined schema operations and actions.

3.2.1 Syntax

The syntax of Circus provides a rich collection of constructs that allows for describing
complex specifications. It integrates the syntax of Z and CSP with new constructs

3.2. THE CIRCUS LANGUAGE 37

[ID]

channel req
channel ret , out : ID

process FIG =̂ begin

state S == [idS : P ID]

Init =̂ idS := ∅
Out
∆S
v ! : ID

v ! /∈ idS
idS ′ = idS ∪ {v !}

Remove
∆S
x? : ID

idS ′ = idS \ {x?}

• Init ; var v : ID •
(µ X • (req → Out ; out !v → Skip 2 ret?x → Remove) ; X)

end

Figure 3.1: The Fresh Identifiers Generator in Circus

for notions specific to Circus. State declaration and manipulation is handled with Z
schemas. Behavioral aspects are described using CSP operators.

The top most element of a Circus specification is a program. We introduce in the
following the global structure of Circus programs based on its syntax [Oli06]. The
complete BNF syntax of Circus can be found in Appendix A.1.

Programs

The top most construct in a Circus specification is a program. A Circus program
describes a possibly empty sequence of paragraphs in a Z style.

Program ::= CircusPar∗

Each Circus paragraph can either be a Z paragraph, a channel declaration, a
channel set definition or a process declaration. The syntax of Z paragraphs is the
same as given in [Spi92]. In the following, the syntactic category N stands for valid
Z identifiers.

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl

38 CHAPTER 3. CONTEXT

In the FIG example given in Figure 3.1, the program is described with 4 para-
graphs. First, a Z paragraph for type declaration, then two channel declaration
paragraphs and finally, a process declaration paragraph.

Channels and channel sets

Communication and synchronization channels must be declared in order to be used
in the process description. The syntactic categories Exp and SchemaExp are Z ex-
pressions and Z schema expressions.

CDecl ::= SimpleDecl | SimpleDecl; CDecl
SimpleDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp

A channel may either be a synchronization channel or a communication chan-
nel. A synchronization channel does not communicate any value. Its declaration is
performed only by giving its name. For communication channels, the type of the
communicated values must be associated with the channel name. Similar channels
declarations can be grouped by giving a comma-separated list of names in the dec-
laration. A channel declaration can also be given in a generic way, defining a family
of channels. Finally, schema expressions (without predicate part) can be used to
declare channels or groups of channels.

In the FIG example (Figure 3.1), two channels declarations are given. The
first declaration introduces the synchronization channel req. The second declaration
encloses two communication channels declarations ret and out having the same
values type ID.

Channel sets are used to define a named set of channels that can be used in some
CSP operators (e.g. parallel composition and hiding). A channel set declaration is
performed by giving its name and a set of previously defined channels names. A
channel set may either be an empty set, an enumeration of channels names or a
combination of channel sets using some set operators.

CSExp ::= {||} | {| N+ |} | N | CSExp \ CSExp | CSExp ∪ CSExp | CSExp ∩ CSExp

Processes

The most interesting part of a Circus specification is process declaration paragraphs.
A process declaration is composed of a process name and a process definition.
Generic declaration of families of processes is also possible.

ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef

A process definition is a (possibly prefixed or parameterized) process. Each
process can be given by an explicit definition or by combining other processes.

3.2. THE CIRCUS LANGUAGE 39

Explicit process definitions are delimited with two keywords begin and end. It is
defined using a sequence of process paragraphs and a state declaration in terms of
a Z schema expression. The definition contains also a nameless action definition
describing the main action of the process.

ProcDef ::= . . . | Proc
Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end

| . . .

In the example of Figure 3.1, the process FIG is declared explicitly. It is com-
posed of a state definition, three paragraphs and a main action.

Actions

A process paragraph can either be a named (possibly parameterized) action or a
variable names set definition. A named action declaration is given by its name and
its definition. The name set declaration is very similar to channel set declaration,
but with variable names instead of channel names.

PPar ::= N =̂ ParAction | nameset N == NSExp

An action definition can either be simple or parameterized where the body is
prefixed by some parameter declaration. An action can be a Z schema expression, a
guarded command, an invocation of a previously defined action or a combination of
action using CSP operators. An action can be defined from another action definition
by renaming variables and state components. This part of the syntax gives a concrete
view of the full integration of CSP, Z and guarded commands.

ParAction ::= Action | Decl • ParAction
Action ::= SchemaExp | Command | N | CSPAction | Action[N+ := Exp+]

Commands may also be defined using Dijkstra’s guarded commands [Dij76].
This category contains, among other commands, assignments, guarded alternations,
variable blocks (scopes) and specification statements.

Command ::= N+ := Exp+ | if GActions fi | var Decl • Action | N+ : [Pred,Pred]
| . . .

CSP operators are used to combine Circus actions. Their syntax is the same as
in [RHB97] except for parallel composition and interleaving. Basic CSP actions are
Stop, Skip and Chaos. Examples of CSP operators are prefixed and guarded actions,
sequential and parallel compositions, internal and external choices and hiding. As
said above, parallel composition requires more elements to deal with local data
updates. Two distinct variable name sets are associated to each parallel action.

40 CHAPTER 3. CONTEXT

Each action has write permissions in the global state for variables appearing in his
name set.

CSPAction ::= Stop | Skip | Chaos | Comm → Action | Pred&Action
| Action; Action | Action 2 Action | Action u Action
| Action |[NSExp | CSExp | NSExp]| Action | Action \ CSExpression
| . . .

Actions can be prefixed by a communication. A communication is either a syn-
chronization, an output, a simple or constrained input or a multi directional com-
munication.

The FIG example of Figure 3.1 is defined using sequential composition, variable
scoping, recursion, prefixing and external choice operators. Prefixed actions includes
a synchronization, an input and an output communications.

In the context of this thesis only a basic (shorter) version of this syntax is con-
sidered. The short BNF syntax of the studied version of Circus is also presented
in Appendix A.2. Our choice can be justified in two points. First, the considered
syntax covers the most important aspects of the language. Number of the omitted
operators can be defined from these basic ones. Another reason of this choice is that
our proposed representation is a shallow embedding i.e. relies on semantics and not
on syntax. Thus, Circus operators and actions are defined independently from each
others. Consequently, the omitted operators can be added to the system without
altering its global consistency. In fact, adding a new action or operator definition
does not require any modifications on the existing operators.

3.2.2 Semantics

Circus is defined semantically using a denotational and an operational semantics.
The basis of these semantics is the Unifying Theories of Programming (UTP) intro-
duced by Hoare and He [HH98]. Both data and behavioral aspects are represented
in the semantics in a unified way. This makes it possible to reason about Circus
specifications as entire entities. We introduce in the sequel the basic notions of
UTP followed by the denotational and operational semantics of Circus.

3.2.2.1 UTP

The Unifying Theories of Programming (UTP) is a semantic framework based on an
alphabetized relational calculus. It provides a theory of relations that can be used
to unify many different languages paradigms. Every theory is represented in UTP
by a set of variable names called alphabet with some relations defined over initial
and intermediate or final observations (values) of variables.

3.2. THE CIRCUS LANGUAGE 41

Common notions such as sequential and parallel compositions, conditionals and
nondeterminism are used in different paradigms and formalisms. UTP provides a
unified representation of these notions in terms of predicates and relations. Sequen-
tial composition can be seen for example as relational composition, conditional as a
predicate, nondeterminism as disjunction and parallel composition is a sort of con-
junction. Other notions related to processes like traces, refusals and termination are
sketched in some particular forms of UTP relations.

The unification of all these notions in one framework makes it possible to address
different paradigms in a unified way. It offers a basis for reasoning about different
languages and greatly facilitates their study and comparison. Moreover, such a
unification offers means of combining different languages describing various facets
and artifacts of software development in a seamless, logically consistent way. This
is the case of Circus which is based essentially on a combination of Z and CSP.

The properties of a language represented in UTP can be expressed in terms of
healthiness conditions. Healthiness conditions restrict the space of predicates or
relations considered for this language. UTP contains definition for healthiness con-
ditions that characterize some common notions e.g. designs and reactive processes.
UTP healthiness conditions are summarized in Appendix B.1.2. The different the-
ories defined in UTP are presented in Figure 3.2, we briefly introduce them in the
sequel.

Figure 3.2: UTP theories

Alphabetized predicates The most general and basic theory of the UTP is the
theory of alphabetized predicates. They are represented as pairs (αP ,P), where P
is a predicate defined over variables whose names appear in the alphabet αP . The

42 CHAPTER 3. CONTEXT

alphabet collects the names of observational variables used to describe systems in
terms of predicates. Logical connectives (e.g. conjunction, disjunction ... etc) are
defined for alphabetized predicates.

Alphabetized relations Special cases of predicates are relations with variables
that can be observed in an initial and in an intermediate or final state. These ob-
servations are denoted respectively by undecorated and dashed variable names. A
relation alphabet αP is composed of an input alphabet inαP and an output alphabet
outαP . The UTP theory of relation introduces some common notions of relational
calculus like assignment, composition, conditional and variable scoping. Nondeter-
minism is captured using relational disjunction and recursion by the weakest fixed
point operator defined for the complete lattice of relations.

Designs In order to characterize a subclass of relations that are more suitable
for program designs, a special observational variable is considered. This variable,
called ok , characterizes with its initial value the fact that the program has already
started. The final observation of this variable i.e. ok ′ indicates if the program has
successfully terminated its execution. The program is then described in forms of
pre- post-conditions and a design is written: (P ` Q). This expression is defined
by the relation ok ∧ P → ok ′ ∧ Q which means the following: if a program started
its execution with a precondition P , at the end of its execution it will satisfy the
postcondition Q . Another way to characterize relations that are designs is the use
of 4 predefined healthiness conditions. An example of designs healthiness conditions
is H2 defined by: “P(A,A′[false/ok]) → P(A,A′[true/ok])” which means that a
design may not require non-termination. A list of all designs healthiness conditions
is given in Appendix B.1.2.

Reactive processes Relations that describe behavioral aspects of reactive pro-
cesses are characterized by adding other observational variables and healthiness
conditions. The variable wait indicates if the output state of a reactive process is
an intermediate or a final state. The second variable of reactive processes is tr ,
recording the trace of events already performed by the process. The last observa-
tional variable of reactive processes is ref , representing the set of events the process
may refuse at a given state. Three healthiness conditions (R1, R2 and R3) are
defined to characterize the properties of reactive processes. Usually, a functional
composition of these three healthiness condition in one condition called R is used
to characterize reactive processes. The definitions of theses healthiness conditions
are given in Appendix B.1.2.

CSP processes A particular class of reactive processes is the class of CSP pro-
cesses, characterized by adding two other healthiness conditions (CSP1 and CSP2).

3.2. THE CIRCUS LANGUAGE 43

These healthiness conditions are defined in Appendix B.1.2. A denotational seman-
tics of CSP basic processes and operators is also given in terms of reactive processes.

Circus actions In UTP designs programs are represented in a pre- post-condition
style. Behavioral aspects of CSP processes are captured in the theory of reactive
processes. Circus actions are defined in a unified theory based on these two aspects.
CSP healthy reactive designs are then used to characterize the class of Circus actions.
In addition to this characterization, other healthiness conditions are defined for
Circus, in order to capture some particular properties.

The complete list of UTP healthiness conditions is given in Appendix B.1.2.

3.2.2.2 Denotational semantics

The first definition of the denotational semantics of Circus was based directly on Z
[WC02]. This definition allowed to reason about particular Circus actions and their
properties as Z specifications. This representation restricted Circus processes to a
particular form and did not allow to prove meta theorems on the language. Another
definition of the denotational semantics was proposed [OCW07]. It was inspired
from the first definition and based on UTP.

This denotational semantics of Circus is given in terms of UTP reactive designs.
The semantics of all actions and operators is given in Appendix B.2. An example
of a Circus action semantics is given in the following:

Skip =̂ R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

This can be read as a reactive design whose precondition is true. The postcondition
states that the trace and the system variables v are not changed, and that the system
is in a final state.

In this version of the denotational semantics, all the actions are defined implicitly
as reactive designs. This makes actions satisfy the healthiness conditions of reactive
processes (R1-R3) and of CSP processes (CSP1-CSP2). In addition, Circus actions
satisfy three other healthiness conditions: C1, C2 and C3, which are given in
Appendix B.1.2.

3.2.2.3 Operational semantics

A Plotkin-style operational semantics for Circus was presented in [WCGF07, CG11].
The transition relation is also based on UTP and on the denotational semantics of
Circus. It is defined over symbolic configurations formed by triples of the form:

(c | s |= A)

44 CHAPTER 3. CONTEXT

where c is a constraint (a UTP condition) over the symbolic variables in use, s a
state i.e. an assignment of symbolic values to all Circus variables in the scope (a
UTP condition over output variables), and A is a Circus action.
The transition relation over configurations is of the form:

(c0 | s0 |= A0)
e−→ (c1 | s1 |= A1)

where e is a label i.e. an event (channel × symbolic variable) or ε. If the label is an
event, this means that the process needs to perform a communication in order to
continue is execution. If the transition is labeled with ε this means that the process
can evolve silently.

The operational semantics is defined by a set of rules defining this transition
relation for each Circus action. The semantics of the transition relation is defined
using the UTP refinement relation. An example of a transition rule for assignment
is given in the following:

c

(c | s |= v := e)
ε−→ (c ∧ (s ; w0 = e) | s ; v := w0 |= Skip)

This defines an internal action represented by a silent transition that updates the
state and ends its execution. The symbolic variable w0 is inserted to represent the
assigned value in the state and in the constraint. The UTP relational composition
operator “ ; ” is used to compose the state with an assignment relation, this is
equivalent to a state update operation.

All the rules of the operational semantics are presented in Appendix C.2.

3.2.3 Refinement and testing

Circus specifications and semantics were used as a basis of two substantial appli-
cations: refinement and testing. In a formal system specification and development
approach, refinement is a very important notion. Abstract specifications are first
written. Then intermediate more concrete specifications are obtained by succes-
sive refinement from the initial one. The last step is to generate, if possible, the
implementation from the most refined specification. In other cases (e.g. the im-
plementation cannot be generated), the last step will be to check that the realized
system is a refinement of the last specification. Refinement proofs are rarely possi-
ble at this stage for different reasons. The verification can be done by testing the
refinement relation on the concrete system.

In this thesis, we provide our formalizations of these two important applications
using the semantics of Circus. In Chapter 4 we show how to assist refinement proofs

3.2. THE CIRCUS LANGUAGE 45

on Circus processes using the Isabelle/HOL proof assistant. In Chapter 5 we present
a test generation procedure for refinement based on Circus.

3.2.3.1 Refinement

In [SWC02] the notion of refinement is defined for Circus processes and actions. This
definition covers both data oriented and behavioral aspects of the language. In UTP,
the refinement relation is defined by a generalized inverted implication as follows:

[P ⇒ S]

which means that the specification S is refined by the program P .
Refinement of Circus actions is defined using the UTP refinement relation. An

action A2 is a refinement of an action A1 means that their respective denotational
semantics satisfy the UTP refinement relation. This refinement relation is defined
as follows:

A1 vA A2 ≡ [A2 ⇒ A1]

This definition is only valid when the two actions A1 and A2 are defined in the same
state space. In a general refinement activity, the state can be refined too in the
same way as variable blocks, and modules can be data refined in imperative pro-
grams. Circus data refinement is based on the well-known forwards and backwards
simulation. In Circus, a simulation is an abstraction relation between the states of
two processes that satisfies some properties.

Forwards simulation If the simulation relation is defined from the abstract state
to the concrete state, it is called a forwards simulation. Forwards means that the
relation follows the same direction as the refinement relation. The definition of
forwards simulation is given by the following:

Definition 3.2.1. A forwards simulation between actions A1 and A2 of processes
P1 and P2, with local state L, is a relation R between P1.st , P2.st , and L, satisfying

1. (feasibility) ∀P2.st L • (∃P1.st • R)

2. (correctness) ∀P1.st P2.st P2.st ′ L • R ∧ A2 ⇒ (∃P1.st ′ L′ • R′ ∧ A1)

were P .st represents the input state of the process P and s ′ is the output state
containing the dashed version of variables in s.

In this case, we write A1 �P1,P2,R,L A2 and say that the action A2 simulates the
action A1, according to the simulation R, and in a state extended by L. When clear
from the context, we omit the subscripts. A forwards simulation between P1 and P2

is a forwards simulation between their main actions.

46 CHAPTER 3. CONTEXT

In addition to this definition, a theorem proving its soundness and some general
simulation laws are provided. The backwards simulation can be seen as a dual of
forwards simulation.

Backwards simulation The simulation relation can be defined as an abstraction
of the concrete state to the abstract state. In this case, it is called a backwards sim-
ulation since it follows the opposite direction of the refinement relation. Backwards
simulation is defined by the following:

Definition 3.2.2. A backwards simulation between actions A1 and A2 of processes
P1 and P2, with local state L, is a relation R between P1.st , P2.st , and L, satisfying

1. (feasibility) ∀P2.st L • (∃P1.st • R)

2. (correctness) ∀P1.st ′ P2.st P2.st ′ L′ • R′ ∧ A2 ⇒ (∃P1.st L • R ∧ A1)

In this case, we write A1 �P1,P2,R,L A2 and say that the action A2 simulates the
action A1, according to the simulation R, and in a state extended by L. When clear
from the context, we omit the subscripts. A backwards simulation between P1 and
P2 is a backwards simulation between their main actions.

Simulation laws Some general refinement laws are defined and proved for the
distributivity of the simulation relation on Circus operators. Basic actions Skip, Stop
and Chaos are independent from the state. Consequently, they are not affected by
the simulation relation e.g. Skip � Skip for any simulation relation.

For other operators, that may be affected by the simulation relation, refinement
laws are defined. The following example describe the forwards simulation rule for
schema expressions, which is very similar to the standard Z rule.

Law 3.1.

ASExp � CSExp

provided

• ∀P1.st ; P2.st ; L • R ∧ pre ASExp ⇒ pre CSExp

• ∀P1.st ; P2.st ; P2.st ′; L • R ∧ pre ASExp ∧ CSExp ⇒ (∃P1.st ′; L′ • R′ ∧ ASExp)

The law contains an applicability condition in addition to the general simulation
relation definition. The applicability condition restricts the simulation relation to
the sub-domain defined by the schema’s precondition. Another example is the input
prefixing operator, whose law is defined as follows:

3.2. THE CIRCUS LANGUAGE 47

Law 3.2.

c?x → A1 � c?x → A2

provided A1 � A2

All defined and proved simulation laws can be found in [Oli06].

3.2.3.2 Testing for refinement

In [CG11] the foundations of testing based on Circus specifications are stated for two
conformance relations: traces refinement and deadlocks reduction (usually called
conf in the research community of test derivation from transition systems). The
basis of this work is the operational semantics that expresses in a symbolic way the
evolution of systems specified in Circus.

Using this operational semantics, symbolic characterizations of traces, initials,
and acceptance sets have been stated and used to define relevant notions of tests.
Two symbolic exhaustive test sets have been defined respectively for traces refine-
ment and deadlocks reduction: the proofs of exhaustivity guarantee that, under
some basic testability hypotheses, a system under test (SUT) that would pass all
the concrete tests obtained by instantiation of the symbolic tests of the symbolic
exhaustive test set satisfies the corresponding conformance relation.

The tests are defined using the following notions:

� cstraces : a constrained symbolic trace is a pair formed by a symbolic trace st
and a constraint c. A symbolic trace is a finite sequence of symbolic events d !α0

or d?α0 or d , where d is a channel, and α0 is a symbolic variable that represents
the value communicated. The constraint c is a predicate over the symbolic
variables used in st . These symbolic variables are different from the variables
used in the state of any Circus model. They are names used to represent
communicated values and the dependencies between them (they are similar to
the indexed symbolic values used during symbolic program execution).

� csinitials : the set csinitials associated with a constrained symbolic trace (st , c)
of a Circus process P contains the constrained symbolic events that represent
valid continuations of (st , c) in P . Constrained symbolic events are pairs
formed by a symbolic event, and a constraint that refers to the symbolic vari-
ables of the event, as well as those occurring in st .

� csinitials : given a process P and one of its constrained symbolic traces (st , c),
the set csinitials contains the constrained symbolic events that represent the
events that are not initials of P for any of the instances of (st , c).

48 CHAPTER 3. CONTEXT

� csacceptances : a csacceptances set associated with a constrained symbolic
trace (st , c) of a Circus process P is a set of sets SX of symbolic acceptances.
In the context of a constraint c1 and a state s1 after the trace (st , c), we
consider all stable configurations that can be reached from it. For each of
them, we require SX to include at least one element of its csinitials . A stable
configuration is one from which there are no available silent transitions.

These notions are illustrated in the following example for the FIG process intro-
duced in 3.1:

cstrace ([req , out !a, req], true)
csinitials {(out !b, a 6= b)}
csinitials {(out !b, a = b), (req , true), (ret?b, true)}
csacceptances contains all the supersets of {(out !b, a 6= b)}

(♣)

Symbolic tests for traces refinement Traces refinement corresponds to trace
inclusion: process P2 is a traces refinement of process P1 if and only if the set of
traces of P2 is included in that of P1. The definition of symbolic tests for traces
refinement is based on a constrained symbolic trace cst of the Circus process P
used to build the tests, followed by a forbidden symbolic continuation, namely a
constrained symbolic event cse belonging to the set csinitials associated with cst in
P . The goal of such tests is to provoke the execution of a trace that is not a trace of
the specification. Some extra events pass , fail , and inc are used for verdicts. They
must not be used in the trace or in the forbidden continuation, or more generally,
in P . The symbolic test is the sequence of the symbolic events of cst and then cse,
interspersed with one of the three verdict events as follows:

� pass in inserted between the last event of cst and cse, since after cst the system
under test must not accept the forbidden continuation and deadlock;

� accordingly, fail is inserted after cse, since cse must not be accepted;

� inc is inserted before cst and between the events of cst , since if a strict prefix
followed by a deadlock is observed, the trace of P has not been executed by
the SUT, and this is quite acceptable from the definition of traces refinement;
the test execution is said to be inconclusive;

Thus, if the last event of an execution of an instance of the symbolic test is pass ,
then the SUT passes the test; similarly, if the last event is fail , then the SUT fails
the test. Finally, if the last event is inc, then the test is inconclusive.

From the example ♣, the resulting symbolic tests are:

inc → req → inc → out?a → inc → req → pass → out?b : (a =b)→ fail → Stop
inc → req → inc → out?a → inc → req → pass → req → fail → Stop
inc → req → inc → out?a → inc → req → pass → ret !b → fail → Stop

3.2. THE CIRCUS LANGUAGE 49

Given a Circus process P the set of all the symbolic tests described above is a
symbolic exhaustive test set with respect to traces refinement: a SUT that would
pass all the instances of all the symbolic tests is a traces refinement of P , assuming
some basic testability hypotheses that are given in [CG11].

Symbolic tests for deadlocks reduction Deadlocks reduction (also called conf)
requires that deadlocks of process P2 are deadlocks of process P1. Actually, the
notion of failures refinement in CSP is the conjunction of traces refinement and
conf , as shown in [CG07]. Similarly to what was done above for traces refinement,
the definition of symbolic tests for deadlocks reduction is based on a constrained
symbolic trace cst of P followed by a choice over a set SX , which is a symbolic
acceptance of cst in P . Verdict events are inserted in a different way as for traces
refinement, since after performing an instance of cst the SUT must accept some
event in the proposed choice an must not deadlock. Namely:

� pass is inserted after every event of SX ;

� fail is inserted after cst , since some event of SX must be accepted;

� inc is inserted before and between the events of cst as for traces refinement.

As above, the last verdict event performed when executing an instance of the sym-
bolic test yields the verdict of the test experiment.

From the example ♣, one resulting symbolic tests may be:

inc → req → inc → out?a → inc → req → fail →
(out?b : (a 6= b)→ pass → Stop� ret !b → pass → Stop)

Given a Circus process P , the set of all the symbolic tests described above is a
symbolic exhaustive test set with respect to deadlocks reduction [CG11].

From symbolic to concrete tests The test sets defined previously are symbolic
since they are based on symbolic traces initials and acceptances. In practice, tests
must be defined on concrete values in order to be executed. Instantiation functions
are defined to instantiate symbolic events and traces to concrete ones. These func-
tions are the basis for other test instantiation functions, returning for a symbolic
test, the set of corresponding concrete tests.

Constraint solving techniques, associated to some selection hypotheses, can be
used for test instantiation. This can either be done off-line (i.e. before test execu-
tion) or on-line (i.e. associated to test execution). Off-line instantiation is simpler
to realize: a concrete test is produced by constraint solving over all symbolic values.
This concrete test is then executed directly on the system. The problem with this

50 CHAPTER 3. CONTEXT

approach is that the system can produce an output that satisfies the original con-
straint of the symbolic test but different from the value produced in the concrete
test. A solution of this problem is to use an on-line instantiation approach.

In on-line test instantiation, concrete values are produced only for system inputs,
outputs are kept symbolic. Values that are returned by the system when executing
the test are used to instantiate remaining values in the test. The definition of the
test is slightly changed to take into account the case of output values that does not
satisfy the associated constraint.

3.3 Isabelle/HOL

Isabelle/HOL is a formal logical framework used as a basis for several formal en-
vironments. All the theories and formal developments of this thesis are built on
top of it. Besides Isabelle/HOL, a number of logical frameworks are used for the
formalization of mathematical theories and proofs. Systems like HOL [HOL], Coq
[Coq], PVS [PVS] and ProofPower [PP] are good examples. All these systems offer
a formal basis for specification and reasoning but with (more or less important)
differences.

Among all the available systems, we made the choice to use Isabelle/HOL as basis
of our work for different reasons. First, Isabelle/HOL is one of the most powerful and
rich proof assistants. It offers a large number of library theories that can be reused
for particular applications. It also integrates several external tools (e.g. constraint
solvers and model checkers) and supports code generation. Isabelle/HOL counts
with a very large community of users and developers that keep it highly maintained
and supported. Another reason is that our work was inspired from some existing
applications based on Isabelle/HOL, e.g. HOL-Z, HOL-CSP and, last but not least,
HOL-TesGen which is a formal test-generation framework.

3.3.1 Isabelle, HOL and Isabelle/HOL

3.3.1.1 Isabelle

Isabelle [NPW02] is a generic theorem prover implemented in SML. It is based on
the “LCF-style architecture”, which makes it possible to extend a small trusted
logical kernel by user-programmed procedures in a logically safe way. New object
logics can be introduced to Isabelle by specifying their syntax and semantics. The
inference rules of these logics can be derived and specific tactic support for the object
logic can be added. Isabelle is based on a typed λ-calculus including a Haskell-style
type-system including type-classes e.g. in ’α::order, the type-variable ranges over
all types that possess a partial ordering.

3.3. ISABELLE/HOL 51

The meta logic of Isabelle [Pau89], provided in the Isabelle/Pure framework,
is a minimal higher order logic. Different object logics (e.g. HOL) are formalized
by extending this meta logic. It defines three (meta) connectives:

∧
for universal

quantification, =⇒ for implication and ≡ for equality. These connectives are used
to introduce inference rules and definitions of an object logic.

For example, the following introduction rules for conjunction and universal quan-
tification:

P
∀ x .P

(allI)
P Q
P ∧ Q

(conjI)

are expressed in the meta logic as follows:

1 (
∧

x. P x) =⇒ ∀ x. P x [[P; Q]] =⇒ P ∧ Q

where the brackets [[...]] delimits premises of a rule and the implication =⇒ sepa-
rates the premises from the conclusion.

3.3.1.2 Higher-order logic (HOL)

HOL [Chu40] is a classical logic based on a simple type system. It provides the usual
logical connectives like ∧,→ and ¬ as well as the object-logical quantifiers ∀ x • P x
and ∃ x • P x . In contrast to first-order logic, quantifiers may range over arbitrary
types, including total functions f : : α ⇒ β. HOL is centered around extensional
equality = : : α ⇒ α ⇒ bool. HOL is more expressive than first-order logic,
since, e.g. , induction schemes can be expressed inside the logic. Being based on
some polymorphically typed λ-calculus, HOL can be viewed as a combination of a
functional programming language like SML or Haskell and a specification language
providing powerful set notations and logical quantifiers ranging over elementary and
function types.

3.3.1.3 Isabelle/HOL

Isabelle/HOL is an instance of Isabelle with higher order logic. It provides a rich
collection of library theories like sets, pairs, relations, partial functions lists, multi-
sets, orderings, and various arithmetic theories which only contain rules derived
from conservative, i.e. logically safe definitions. Setups for the automated proof
procedures like simp, auto, and arithmetic types such as int are provided.

We introduce in the sequel some basic notions of Isabelle/HOL, including types,
logical connectives, sets, pairs and lists. More advanced constructs of Isabelle/HOL
will be introduced in section 3.3.2.

Types HOL is a typed logic with a type system similar to that of functional
programming languages. Isabelle provides a powerful static type-checker, so only

52 CHAPTER 3. CONTEXT

well-typed terms can be expressed. In Isabelle/HOL, 4 type categories can be dis-
tinguished:

base types predefined in the library, including bool the type of truth values, nat
the type of natural numbers and int the type of integers.

type constructors used to define generic types, arguments are associated to the con-
structor in a postfix style. Popular type constructors are list and set that
can be used to define for example nat list or nat set for a list or a set of
natural numbers.

function types noted ⇒, e.g. nat ⇒ bool is the type of predicates over natural
numbers. This definition covers only total functions types, partial functions
are defined using total functions returning optional values.

type variables written ’a, ’b ... and used to define polymorphic types e.g. ’a ⇒
bool for the type of all the predicates.

Isabelle/HOL is strongly typed thus all terms and formulas must be well-typed
in order to be correctly parsed. Generic types can be instantiated implicitly by the
system using type inference e.g. when applying a function of a concrete type to an
argument of a generic type.

Logical connectives The usual logical connectives ∧, ∨, ¬ and −→ as well as
quantifiers ∃ and ∀ are defined in Isabelle/HOL. The implication and the universal
quantification are equivalent to those defined in the meta logic i.e. =⇒ and

∧
. The

scope of HOL quantifiers never extends over meta connectives since HOL formulas
are atomic objects of the meta logic. The logical equivalence is defined using the
polymorphic HOL equality but more often using the object equality of HOL (which
reflects meta equality).

Conditional is also defined for arbitrary types and can be used with its classical
mix-fixed form if _ then _ else _. A more sophisticated case splitting operator
is also available and can be used on defined data types. It can be used a follows:
case e of pattern1 => e1 | pattern2 => e2

Sets HOL defines a generic type ’a set for sets of elements of type ’a. Associated
to this type, the usual set constructs and operators are defined, for instance ∈, ∪, ∩
and ⊆. The empty set is denoted by {} and the universal set b UNIV. A set can be
defined by enumerating its elements e.g. {a, b} or by using the set comprehension
e.g. {x. P x}. Generalized union and intersection operators can be expressed on
sets e.g.

⋃
a∈A.B,

⋂
a.B (which is an abbreviation of

⋂
a∈UNIV.B) and

⋃
B for

union over a set of sets..

3.3. ISABELLE/HOL 53

Pairs Another important type defined in Isabelle/HOL is the type of pairs whose
constructor is written ’a × ’b. Two standard projection functions are defined to
retrieve the first and the second element of a pair i.e. fst and snd. The generic
definition of pairs type makes it possible to defined nested pairs. For example, the
tuple (a, b, c) is defined as a pair nested to the right (a, (b, c)). This idea is
used also in the definition of extensible records where each record field corresponds
to an element of the tuple. In order to distinguish the fields of the record, some
selectors are associated to positions in order to identify directly each element.

Lists An example of inductively defined data types in Isabelle/HOL is the generic
list type ’a list. It is defined using two constructors [] for an empty list and an
infix constructor #. All lists are defined using these constructors e.g. the list [a,

b, c] is an abbreviation of a#b#c#[]. A number of useful operators are defined for
lists e.g. @ for infix concatenation, rev for the reverse and length.

The inductive definition of lists allows for inductive reasoning over them. This
is done using the following induction rule generated with the definition of list type:

1 P [] =⇒ (
∧
a l. P l =⇒ P a#l) =⇒ P l

This rule can be used in inductive proofs to split the general predicate P over the
list l in two distinct cases. The first case is the basic step where the predicate is
applied to the empty list. The second case is the induction step defined using the list
constructor. A similar induction rule is automatically proved with every inductive
data type definition.

3.3.2 Advanced constructs in Isabelle/HOL

3.3.2.1 Constant definitions

In its easiest form, constant definitions are definitional logical axioms of the form
c ≡ E where c is a fresh constant symbol not occurring in E which is closed (both
w.r.t. variables and type variables). For example:

1 definition upd::(α⇒β)⇒α⇒β⇒(α⇒β) ("_L_ := _M")
2 where upd f x v ≡ λ z. if x=z then v else f z

This definition introduces a constant upd with its given type and produces the
axiom upd_def that represents its definition. The pragma ("_L _ := _M") for the
Isabelle syntax engine introduces the notation fLx:=yM for upd f x y.

Moreover, an elaborate preprocessing allows for recursive definitions, provided
that a termination ordering can be established; such recursive definitions are thus
internally reduced to definitional axioms.

54 CHAPTER 3. CONTEXT

3.3.2.2 Type definitions

Types can be introduced in Isabelle/HOL in different ways. The most general way
to safely introduce new types is the type definition using typedef construct. This
allows one to introduce a type as a non-empty subset of an existing type. More
precisely, the new type is specified to be isomorphic to this non-empty subset. For
instance:

1 typedef mytype = "{x::nat. x < 10}"

This definition requires that the set is non-empty: ∃ x. x∈{x::nat. x<10}, which
is easy to prove in this case:

1 by (rule_tac x = 1 in exI, simp)

where rule_tac is a tactic that applies an introduction rule and exI corresponds
to the introduction of the existential quantification.

In a similar way, the datatype command allows one to define inductive data
types. This command introduces a data type using a list of constructors. For
instance, a logical compiler is invoked for the following introduction of the type
option:

1 datatype α option = None | Some α

which generates the underlying type definition and derives distinctness rules and
induction principles. Besides the constructors None and Some, the following match-
operator and his rules are also generated: case x of None⇒ ... | Some a ⇒ ...

3.3.2.3 Type classes

A type class describes a set of types satisfying a common interface. This notion
is very similar to the notion of interfaces or abstract classes in object-oriented lan-
guages. It is inspired on Haskell type classes. In addition to the interface of the
class described by its operations, Isabelle type classes describe general types prop-
erties (class axioms). Any instance of a given class must overload (implement) its
operations and satisfy its properties. For example, one can define a type class eq

for types that supports equality as follows:

1 class eq =

2 fixes eq :: ’α ⇒’α ⇒bool

3 assumes refl: eq a a

This command defines a type class eq that contains an operation eq that must
be reflexive. In order to prove that a given type instantiates this class one should
provide a definition for the eq operation and prove its reflexivity. General theorems
can be proved on type class properties, they can be used for any type instantiating
this class.

3.3. ISABELLE/HOL 55

Moreover, Isabelle provides an inheritance mechanism for type classes, allow-
ing them to be organized hierarchically. All subclasses of a given class inherit its
operations and satisfy its axioms.

3.3.2.4 Extensible records

Isabelle/HOL’s support for extensible records is of particular importance for our
work. Record types are denoted, for example, by:

1 record T = a::T1

2 b::T2

which implicitly introduces the record constructor La:=e1,b:=e2M and the update of
record r in field a, written as rLa:= xM. Extensible records are represented internally
by cartesian products with an implicit free component δ, i.e. in this case by a triple
of the type T1 ×T2 × δ. The third component can be referenced by a special selector
more available on extensible records. Thus, the record T can be extended later on
using the syntax:

1 record ET = T + c::T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later definition
and proofs over ET-values. Using this feature, we can model the effect of defining
the alphabet of UTP processes incrementally while maintaining the full expressivity
of HOL w.r.t. the types of T1, T2 and T3.

3.3.3 HOL-Z, HOL-CSP and HOL-TestGen

HOL-Z [BRW03] is a specification and proof environment for Z built on top of
Isabelle/HOL. It is based on a shallow-embedding of Z semantics in HOL. The key
idea of this embedding is the encoding of schema operations as predicates. A proof
environment for the Z schema calculus is developed on top of this embedding. HOL-
Z allows for importing Z specifications written in LaTeX and type-checked by the
ZeTa System. More recently, an integration of HOL-Z with the well-know CZT
parser and type-checker was developed.

The embedding, presented in this thesis for Circus and the UTP, in Isabelle/HOL
is inspired by the shallow embedding of Z in HOL. However, HOL-Z cannot be used
directly in Circus since the underlying semantics encoding of Z is different and in
particular the state representation. The state representation in Isabelle/Circus is
more modern and relies on predefined theories of Isabelle/HOL. We believe, never-
theless, that several conceptual ideas behind HOL-Z can be reused and adapted to
fit with our work.

56 CHAPTER 3. CONTEXT

HOL-CSP [TW97] is a shallow embedding of CSP failures/divergences semantics
into HOL. The CSP process type is first characterized using the well formedness
rules of CSP. The different operators are then defined by embedding their semantics
in the process type and then by proving that they are well formed. The embedding
instantiates some predefined type classes (e.g. ordering) and reuses their inherited
notions and properties (e.g. fix-point operator). HOL-CSP provides a basis for
reasoning about CSP specifications using the CSP denotational semantics.

The semantics of CSP operators defined in Circus is based on the failures/diver-
gences model but expressed in terms of UTP. The characterization of the process
type and the representation of communication events and traces inspired in a sig-
nificant way our embedding of the Circus action type and communications.

HOL-TestGen [BW12] is a test-generation system based on Isabelle/HOL. The
prover is used for all sorts of symbolic computations, which are controlled by a
number of hand-written tactics. In particular, HOL-TestGen decomposes the initial
property to be checked — the test specification TS — after applying a number of
case-splitting rules into a CNF-like normal form. The clauses of this normal form
— called test cases — are simplified; detected empty test-clauses are eliminated.
The result is a decomposition of the input-output relation of a test-specification
over a variable SUT representing logically the “system under test”. More precisely,
HOL-TestGen generates a test theorem of the form:

C1(a1)⇒ φ(a1, SUT a1) ... Cn(an)⇒ φ(an , SUT an) THYP(H1 ∧ ... ∧ Hm)

TS

The test-theorem states: whenever SUT passes the tests — i.e. for a given constraint
conjunct Ci(ai) a concrete instance for ai can be found, and the result of SUT for
this instance passes the oracle test φ — and whenever the test-hypothesis H1-Hm

like uniformity and regularity hold (see [GLG08]), the test specification TS holds.
(THYP is just a constant used to keep the test-hypothesis generated during the
splitting process; see [BW12] for details). The process of finding a concrete ground-
instance for Ci(ai) is called test-data selection and uses various constraint-solvers,
among them Z3 [DMB08].

While the test-generation method for Circus presented in this thesis is in spirit
very similar to HOL-TestGen’s, the systems are not connected (yet). While HOL-
TestGen’s case-spitting rules and control heuristics are geared towards the splitting
of variables over data types such as lists and trees, the Circus procedure is based on
splitting rules (see section 5.3.8) over Circus actions and configurations thereof. Its
set of control heuristics is at present very different. The HOL-TestGen’s test data

3.4. GENERAL CONSIDERATIONS 57

selection and instantiation can, nevertheless, be reused with little adaptations. This
is possible essentially because of the generality of test data generation.

3.4 General Considerations

In order to clarify the current achievements limits of our work, we summarize here
the testability, i.e. the assumptions on the SUT, and some restrictions that we made
on the Circus language:

� The first testability hypothesis is a classical one, unavoidable in formal testing
[HBH08]. It states that the SUT behaves like some unknown Circus process,
with the same set of observations as the specification.

� The second testability hypothesis states that the SUT satisfies a complete
testing assumption. This means that, after performing a test experiment a
number of times on the SUT, all non-deterministic behaviors of this SUT are
covered. This number of repetitions is different for each SUT and depends on
its internal implementation. Such a property can be ensured by using adequate
test drivers as in reachability testing [LC06] or in CHESS [BBC+10].

� Another hypothesis on the SUT is the presence of a reliable reset. It is es-
sential, before starting a test experiment, to ensure that the SUT is in an
initial state. The presence of a reset in SUT is not exactly a hypothesis, but
a restriction on the systems that can be studied. This restriction is not a part
of the testing theory, but it is important for the test execution process.

� The way of detecting deadlocks in our work can be problematic in divergent
situations. Actually, divergence cannot be distinguished and is detected as a
deadlock. Consequently, Circus specifications that describe a divergent behav-
ior are not considered for test generation. This restriction has already been
used in the literature e.g. TGV [JJ04].

� In general, all HOL types can be used as types for Circus variables and channels
including generic types. This is allowed for reasoning about specifications (e.g.
refinement proofs). However, only concrete HOL types are considered for test
generation. This restriction is needed in particular for test instantiation, where
values of generic types cannot be instantiated.

� The Circus language allows the description of complex communications, in ad-
dition to the simple ones. Complex communications are performed using a
channel that can exchange different values at the same time. In our theories
we consider only one way communications with an input or an output value.

58 CHAPTER 3. CONTEXT

However, the theories can be easily extended to cover complex communica-
tions. This is due to our representation of channels as functions (cf section
4.3).

� Circus specifications may contain all sorts of schema operations. In our theo-
ries, we consider only normalized schema operations as defined in the Z stan-
dard. This makes schema operations expressible as relations on the state vari-
ables. This is not a restriction since arbitrary Z schema can be normalized.
Complex schema declarations are also not considered.

� In our theories, we will consider Circus processes as entities that cannot be
composed. The operations over processes are not expressible at the moment.
We believe, however, that compound processes can be written (by hand) as a
process. The states of both processes will be then merged in one state, and
the main actions of the processes will be composed in one main action. An
automatic rewriting will be considered as a future extension of our theories.

3.5 Conclusions

This chapter presents a condensed introduction to the context of the thesis: Circus
and Isabelle/HOL. Circus is introduced by giving (a big part of) its syntax for pro-
cesses and actions, a simple example is used to show the overall process structure.
A denotational and an operational semantics are associated to this syntax to de-
scribe semantically Circus actions and processes. These semantics are based on a
unified logical framework (UTP), which is also introduced in this chapter. Two
important applications based on Circus and its semantics are presented. The first
application is process refinement, combining action refinement based on the deno-
tational semantics and data refinement based on simulation relations. The second
application is a testing theory from Circus specifications based on the operational
and the denotational semantics.

The second part of the context is Isabelle/HOL theorem prover, used as a formal
framework for all our work. Important basic notions that are relevant to our work
are presented including types, logical connectives, sets pairs and lists. Additional
advanced constructs of Isabelle/HOL are also introduced, this concerns constant and
type definitions, type classes and extensible records. Our work was largely inspired
from three applications based on Isabelle/HOL. These applications (HOL-Z, HOL-
CSP and HOL-TestGen) are also introduced in this chapter.

After this introduction to the context, the next two chapters present our main
contributions. Chapter 4 introduces our embedding of UTP and Circus denotational
semantics in Isabelle/HOL. The central idea of this embedding is the representation
of alphabets by extensible records and channels by functions. A part of the refine-

3.5. CONCLUSIONS 59

ment theory of Circus is also introduced in the next chapter, with the proof of some
refinement laws and a simple example of refinement proof. Chapter 5 presents our
representation of the operational semantics of Circus and the testing theory based
on it. Automatic test generation tactics are defined in the spirit of HOL-TestGen
using the operational semantics rules and some other derived rules.

C
h

a
p

t
e

r

4
Isabelle/Circus

Contents

4.1 Introduction . 62

4.2 Representing UTP in HOL . 62

4.2.1 Predicates and relations . 67

4.2.2 Designs theory . 70

4.2.3 Reactive processes . 71

4.2.4 CSP processes . 73

4.2.5 Proofs . 73

4.3 Circus Denotational Semantics . 74

4.3.1 Circus variables . 76

4.3.2 Synchronization infrastructure 78

4.3.3 Actions and processes . 80

4.4 Using Isabelle/Circus . 88

4.4.1 Writing specifications . 88

4.4.2 Relational and functional refinement in Circus 89

4.4.3 Refinement proofs . 90

4.5 Conclusions . 92

61

62 CHAPTER 4. ISABELLE/CIRCUS

4.1 Introduction

This chapter introduces the first contribution of the thesis: the Isabelle/Circus spec-
ification and verification environment. It is based on the Isabelle generic theorem
prover. This environment allows for writing Circus specifications and proving theo-
rems over them. It contains proof rules and tactic support that allows for proofs of
refinement for Circus processes (involving both data and behavioral aspects).

Circus actions are defined in the Isabelle/Circus environment as semantic entities,
defined over HOL types. Concretely, the type of Circus actions is given as a shallow
embedding of some particular UTP relations. This allows Circus variables and chan-
nels to have arbitrary HOL types. Therefore, the Isabelle/Circus environment offers
a representation of the denotational semantics of Circus in Isabelle/HOL. As seen
in Chapter 3, this denotational semantics was originally defined [OCW07] in terms
of the UTP (Unifying Theories of Programming) [HH98], a semantic framework
based on an alphabetized relational calculus. For this reason, we first introduce a
formalization of UTP in Isabelle/HOL.

The Isabelle/Circus environment is defined in three layers: (i) the first layer is the
formalization of (a substantial part of) UTP theories [FGW10], (ii) the second layer
contains the representation of the Circus denotational semantics [FGW11, FGW12]
and (iii) the top most layer is a proof system for Circus containing rules for refinement
and simulation [FGW11, FGW12].

These layers are presented in the following sections. First, the UTP embedding
in Isabelle/HOL is introduced in section 4.2. Then section 4.3 describes our formal-
ization of the Circus denotational semantics. Finally, we introduce our proof system
for refinement in section 4.4. We illustrate, with an example, how the environment
may be used for refinement proofs.

4.2 Representing UTP in HOL

Textbook UTP presentations reveal a particular syntactic flavor of certain language
aspects, a feature inherited from the Z tradition. The UTP framework is centered
around the concept of alphabetized predicates, relations, etc, which are noted (αP ,P)
where αP is intended to produce the alphabet of the predicate P associated to a
superset of the free variables in it. In prior works based on the ProofPower theorem
prover [PP], providing a formal semantics theory for UTP in HOL [OCW06, ZC09b,
ZC10], the authors observed the difficulty that “the name of a variable is used to
refer both to the name itself and to its value”. For instance, in the relation

({x , x ′}, x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)), (4.1)

the left-most x , x ′ indicates the names x resp. x ′, while the right-most x , x ′ stand
for their values.

4.2. REPRESENTING UTP IN HOL 63

The starting point of any embedding of UTP is the representation of the alphabet
(variable names) and the state space (association of names to values). Another
important consideration when representing an object-language in a meta-language
is the embedding level. In the literature [BGG+92], two major embedding styles
can be distinguished: deep embedding and shallow embedding. The choice of the
embedding level influences drastically the representation of the alphabet, the state
space and the UTP constructs.

Deep vs. Shallow embedding

There exists two well-known solutions for formalizing the semantics of the UTP (or
any other formalism) in the logics of a theorem prover. The formalization may be
either a deep embedding or a shallow embedding. Some examples of deep embed-
dings are: JAVA [ON99], UTP [OCW06] and B [JD07]. Other examples of shallow
embeddings are: TLA [Mer95], CSP [TW97] and Z [BRW03].

Oliveira et al. [OCW06] proposed an embedding of the UTP in the ProofPower
theorem prover. They aimed at the proof of refinement laws. For that, the authors
made the choice of using a deep embedding to prove meta-theorems. In a deep
embedding, an explicit data type for abstract syntax and an explicit semantic inter-
pretation function is defined that relates syntax and semantic domain. While rather
natural and easy to follow, such a representation has a number of drawbacks, both
conceptually as well as practically w.r.t. the goal of efficient deduction:

1. there are necessarily ad-hoc limitations of the cardinality of the semantic do-
main VAL (e.g. sets are limited to be finite in order to keep the recursive
definition of the domain well-founded),

2. the alphabet uses an untyped presentation — there is no inherent link from
names and their type, which must be established by additional explicit con-
cepts adding a new layer of complexity, and

3. the reasoning over the explicit alphabet results in a large number of side-
conditions (“provisos”) hampering deduction drastically.

In contrast to this deep embedding approach we opt for a shallow embedding.
The characterizing feature for the latter is the following: if we represent an object-
language expression E of type T into the meta-language by some expression E ′

of type T ′, then the mapping is injective for both E and T (provided that E
was well-typed with T). In contrast, deep embeddings define a surjective map
from object-language expressions to a data type AST (abstract syntax tree) in the
meta-language. Due to injective map on types, the types are implicit in a shallow

64 CHAPTER 4. ISABELLE/CIRCUS

representation, and thus reference to them via provisos associated to rules is unnec-
essary. It means that type-inference is used to perform a part of the deduction task
beforehand, once and for all, as part of a parsing process prior to deduction.

State space representation

The representation of the state space is crucial for the efficiency of our embedding.
This representation should, on one hand, be expressive enough to cover all the as-
pects present in the UTP (and Circus). On the other hand, it should be efficient
and transparent enough (and preferably shallow) to avoid introducing additional
problems (see below). Different existing solutions for state representation in Is-
abelle/HOL are discussed in [SW09]. The authors listed some general features of
state spaces that must be present in any representation. These features are lookup
and update, typing, modularity and scalability.

The lookup and update are the most important features of a state space. The
value of a name is retrieved using the lookup. The mapping of a value to a name
is modified with the update. In most cases, variables are represented in a typed
way in state spaces. The representation of the state space should preserve its typ-
ing. The modularity of the state representation is also very important in some
cases. in the UTP for example, when composing two relations each with a specific
state, the resulting relation state is composed from these specific ones. Finally, the
representation should be scalable to support efficiently very large state spaces.

The authors discuss some existing state space representations, considering the
features introduced above. The discussed representations are the following:

Functions. The state is represented as a function from names to values. The lookup
corresponds to a function application and the update to the function update.
The main drawback of this representation is that all values must have the same
type. The solution of this problem is to define a global type as a (labeled) union
of the different possible types (as an abstract data type for example). This
will disadvantage the modularity since different states may have different types
and thus a different global type. An other inconvenient of this representation
is that the type checking system cannot detect type errors (since all values
have the same type). Explicit projections and type assertions must be added
to ensure a correct representation of the lookup and update.

Tuples. The state can be represented by tuples. Variables are not identified by
names but by their corresponding positions in the tuple. Lookup and update
must be encoded explicitly for each concrete application. The typing prob-
lems of the first representation are avoided and variables can be associated to
different HOL types. The type checking system is used to detect all ill-typed

4.2. REPRESENTING UTP IN HOL 65

expressions. The main problems with this representation are the lack of mod-
ularity and generality. Composing different states requires special treatment
like variable renaming and some transformations on lookup and update func-
tions. This representation do not scale very well since tuples will be split for
every expression which makes the proofs unnecessarily very heavy.

Records. The definition of (extensible) records in Isabelle/HOL is inspired from the
state representation by tuples. In section 3.3.2.4, we introduced the record
type as a special Cartesian product of the fields types. The lookup and up-
date functions are generated automatically by the system from the record
definition. HOL typing is used for the fields (variables) and the type checking
system can be reused. Generality and extensibility are improved comparing
to the representation in tuples. Modularity is slightly improved thanks to the
extension field and local naming of record fields. Scalability of this represen-
tation is better than for tuples since record splitting is not always performed.
Many useful theorems are generated automatically with the record definition
which makes proofs on records easier.

Abstract types. The state can be represented as an abstract type. The lookup func-
tions are characterized axiomatically. Update functions cannot be defined
directly, but can be expressed in term of relations. Modularity and general-
ity are limited in this representation since all variables should be known in
advance.

Locales. Isabelle locales allows for defining localized theory scopes. The scope de-
fined by a locale may contain local constant definitions, fixed assumptions and
theorems over them. Locales enable renaming, merging and addition of locally
fixed constants. In order to represent the state space in a locale, two type vari-
ables are used for names and values types. Local assumptions are made on
the names (distinctness for example). Injection and projection functions are
defined locally for each concrete variable type. Lookup and update functions
are defined using the injection and projection functions that correspond to the
variable type. This representation enables modularity and extensibility.

In a shallow embedding, the most convenient state representations are records
and locales. Both representations are based on some automatically generated injec-
tion and projection functions to represent lookup and update. In a representation
with locales, variable names can be addressed directly and thus operations over them
can be defined (e.g. renaming). Unfortunately, locales are not first-class objects in
HOL and, consequently, cannot be addressed in proof terms. In records, variable
names are not represented directly but faked somehow with the use of lookup func-
tions. The state is represented by a record and can be addressed directly in proof

66 CHAPTER 4. ISABELLE/CIRCUS

terms. This allows reasoning about the whole state space as an HOL object, inde-
pendently from its specific content. For these reasons, we use a representation of
the state space using records.

Consequently, a price we are ready to pay is that there may be rules (manipulat-
ing variable names) in textbook UTP, which must be implemented by a rule scheme
in our representation. That is, there will be specific tactic support that implements
a rule scheme, e.g. , by inserting appropriate coercions in a more general rule and
applying the result in a specific context. This technique has been used for the Z
schema calculus by Brucker et al. [BRW03].

The essential idea of our shallow embedding is the use of records to represent
both variable names and values. Thus, the equation (4.1) will be represented by the
λ-abstraction:

λσ • σ.x > 0 ∧ (σ.x ′ = σ.x + 1 ∨ σ.x ′ = σ.x − 1) (4.2)

which is of type 〈x ZZ, x ′ ZZ, ...〉 ⇒ bool, which is, in other words, a set of
records in HOL. The reader familiar with SML-like record-pattern-match notation
may also recognize expression (4.2) as equivalent to:

λ{x , x ′, ...} • x > 0 ∧ (x ′ = x + 1 ∨ x ′ = x − 1)

In record notation, the order of the names is insignificant (in contrast to, say, a
representation by tuples). We use extensible records — the dots represent the pos-
sibility of their extensions, allowing to build up the UTP in an incremental way
similar to Brucker and Wolff’s approach [BW08].

In a shallow embedding, the injective representation function must not be a
one-to-one translation of operator symbols; rather, it can introduce coercions in E ′

on the basis of object-language types. For example, it can be necessary to coerce
isomorphically a 〈x ZZ, x ′ ZZ, ...〉 set predicate to a (〈x ZZ, ...〉 × 〈x
ZZ, ...〉) set relation in order to support the semantics of the UTP dash-notation x ′

in terms of relational composition. Similar compiler techniques are necessary to add
or remove fields in extensible records, for example when entering and leaving the
scope of a local variable declaration.

Given this way of dealing with alphabets via extensible records, we introduce the
most general features of UTP: the concepts of alphabetized predicates and alphabet-
ized relations, designs and reactive processes. We represent alphabetized predicates
by sets of extensible records, and the relations by sets of pairs of extensible records;
for the latter, there is already the theory Relation.thy in the Isabelle library that
provides a collection of derived rules for sequential relational composition _ o _ or
operators for least and greatest fixpoints (lfp, gfp).

In order to support a maximum of common UTP look-and-feel, we define an
Isabelle interface for UTP. Thus, we implement on the SML level implementing

4.2. REPRESENTING UTP IN HOL 67

Isabelle a function that computes for a term denoting an alphabetized predicate (a
cterm in Isabelle terminology) its associated alphabet and term, be it in the format
of an alphabetized predicate or an alphabetized relation. This function is suitably
integrated into the command language of Isabelle such that we can define and query
on the Isabelle level:

1 define_pred sample "({x::int,x’::int, ...}, x = x’ + 1)"

This statement will be expanded internally into definitional constructions of
an alphabetized predicate. In more detail, the alphabetized predicate mechanism
expands internally the define_pred command as follows:

1 record sample_type = x::int, x’::int

2 definition sample "sample ≡λA::sample_type. x A = x’ A + 1"

where the latter introduces by default a constant sample with the right type and a
theorem sample_def containing the constant definition for sample as described in
the definition command.

4.2.1 Predicates and relations

In the UTP, an alphabetized predicate is a pair (alphabet , predicate) where the free
variables appearing in the predicate are all in the alphabet, e.g. ({x , y}, x > y).
As such, it is very similar to the concept of a schema in Z. In the Isabelle/Circus
environment, we represent alphabetized predicates by sets of (extensible) records,
e.g. {A. x A > y A} where A are the extensible records with the alphabet {x , y}
and satisfying x > y .

In the UTP, an alphabetized relation is an alphabetized predicate where the
alphabet is composed of input (undecorated) and output (dashed) variables. In
this case the predicate describes a relation between input and output variables; for
example ({x , x ′, y , y ′}, x ′ = x + y), is represented in Isabelle/Circus by {(A,A’).

x A’ = x A + y A}, which is a set of pairs, thus a relation.
Standard predicate calculus operators are used to combine alphabetized predi-

cates. The definition of these operators is very similar to the standard UTP one,
with some additional constraints on the alphabets.

We introduce the abbreviation α alphabet as a syntactic marker to highlight
types that we use for alphabetized elements; on this basis, alphabetized predicates
as sets of records are defined as follows:

1 types α alphabet = "α"
2 types α predicate = "α alphabet ⇒bool"

The standard logical connectives on predicates are then introduced:

1 definition true::"α predicate" where "true = λA. True"

68 CHAPTER 4. ISABELLE/CIRCUS

2

3 definition false::"α predicate" where "false = λA. False"

4

5 definition not::"α predicate ⇒αpredicate" ("¬ _")

6 where "¬ P = λ A. ¬ (P A)"

7

8 definition conj::"[α predicate, αpredicate] ⇒αpredicate"(infix "∧")
9 where "P ∧ Q = λA. (P A) ∧ (Q A)"

10

11 definition disj::"[α predicate, αpredicate] ⇒αpredicate" ("_ ∨_")
12 where "P ∨ Q = λA. (P A) ∨ (Q A)"

13

14 definition impl::"[α predicate, αpredicate] ⇒αpredicate" ("_ −→_")

15 where "P −→ Q = λA. (P A) −→ (Q A)"

Our typing requires that all arguments range over the same alphabet. This is a
significant restriction compared to textbook UTP, where all alphabets are merged
(by the union of the underlying sets), in the style of Z. Thus, there are implicit
coercions between sub-expressions in the UTP alphabetized predicates that have
to be made explicit by suitable coercion functions. The insertion of such coercion
functions can be done automatically. Using an SML- computation of the alphabet of
each sub-expression, a new alphabet (record) containing the two alphabets is intro-
duced. The resulting expression is defined over this new alphabet. The generation
of new alphabets is optimized if one alphabet is included in the other. The resulting
expression is defined over the more general alphabet, with no need to introduce a
new one. This technique has already been applied by Brucker et. al for the definition
of HOL/Z [BRW03].

Now universal and existential quantifications on UTP predicates are introduced
in terms of HOL quantifications:

1 definition ex::"’β ⇒(’β ⇒’α predicate) ⇒’α predicate" ("∃ _ _")

2 where "∃ x P ≡λA. ∃ x. (P x) A"

3

4 definition all::"’β ⇒(’β ⇒’α predicate) ⇒’α predicate" ("∀ _ _")

5 where "∀ x P ≡λA. ∀ x. (P x) A"

It remains to define the UTP alphabetized relations type as a HOL relation over
inαP and outαP . Several programming constructs are also defined over relations.
First, the conditional statements where the condition is represented as a predicate
over inαP , and the symbols are kept as defined in the UTP book.

1 types αrelation = "(α alphabet ×α alphabet) set"

2 types αcondition = "α ⇒bool"

4.2. REPRESENTING UTP IN HOL 69

3

4 definition

5 cond::"αrelation ⇒αcondition ⇒αrelation ⇒αrelation" ("_/ _ ._")
6 where "(P / b . Q) = λ(A, A’). (b A ∧P (A, A’)) ∨
7 (¬ (b A) ∧Q (A, A’))"

Second, we give the definition of the sequential composition; it uses a predefined
HOL relation operator, which is the relation composition. This operator corresponds
exactly to the definition of sequential composition of alphabetized relations.

1 definition comp::"α relation ⇒αrelation ⇒αrelation" ("_ ;; _")

2 where "(P ;; Q) = P o Q"

Note that the mid alphabets should match in order to make this definition well-
typed. If mid alphabets are different, the type checker will detect a type error in
the composition expression.
Next, we deal with assignments. Since the alphabet is defined as an extensible
record, an update function is generated automatically for every field. For example,
let a be a field in some record, then there is the function rLa := xM, or represented
internally _update_ name a x. We use this internal representation to define by a
syntactic paraphrasing the update relation family defined as {(A,A’). A’= La :=

E AM}.
The syntactic transformation of the assignment to the update function is instru-
mented as follows:

1 syntax

2 "_Assign" :: "[idt, α⇒ β] ⇒α relation" ("_ :== _")

3 translations

4 "x :== E" => "{(A,A’). A’ = _update_ name x (E A)}"

The first command syntax introduces a syntactic constant without any formal def-
inition. The translations transforms a syntactic constant to produce a formal
term or expression. In this case, the _Assign syntactic constant is translated to an
assign relation by adding _update to the name of the variable.
A last construct is the Skip relation, which keeps all the variable values as they were.
We use an equality over inαP and outαP to represent this. By using the record
type for the alphabet, this equality is considered as values equality.

1 definition skip_r::"α relation" ("Π_r")

2 where "Π_r = λ(A, A’). (A’ = A)"

The notion of refinement is equivalent to the universal implication of predicates,
it is defined using the universal closure used in the UTP.

1 definition closure::"α predicate ⇒bool" ("[_]")

2 where "[P] = ∀ A. P A"

70 CHAPTER 4. ISABELLE/CIRCUS

3

4 definition refinement::"[αpredicate,α predicate] ⇒bool" ("_v_")
5 where "P vQ = [Q −→P]"

4.2.2 Designs theory

in the UTP, in order to explicitly record the termination of a program, a subset of
alphabetized relations is introduced. These relations are called designs and their
alphabet should contain the special boolean observational variable ok (and ok’). It
is used to record the start and termination of a program.

The Designs theory is centered around this concept of termination which is cap-
tured by the extra name ok. Thus, we consider alphabets that contain at least this
variable. This fits well with our representation of alphabets by extensible records:
any theorem that we prove once and for all in the Designs theory will hold in future
theories, too.

The name ok.

In short, the definition proceeds straightforwardly:

1 define_pred alpha_d "({ok::bool, ...}, true) "

However, it is worthwhile to look at the internal definitions generated here:

1 record alpha_d = ok::bool

2 types ’α alphabet_d = "’α alpha_d_scheme alphabet"

3 types ’α relation_d = "’α alphabet_d relation"

In this construction, we use the internal type synonym alpha_d_scheme that Isabelle
introduces internally for the cartesian product format where δ captures the possible
type extension.

Since the definition of alphabets and relations uses a polymorphic type, we de-
clare a new alphabet and relation type by instantiating this type to an extensible
alpha_d. All the expressions defined for the first, more general type, will be directly
applicable to this new specific type.

Designs.

Designs are a subclass of relations than can be expressed in the form:

1 (ok ∧P) → (ok’ ∧Q)

which means that if a program starts with its precondition P satisfied, it will fin-
ish and satisfy its post condition Q . The definition of designs uses the previous
definitions of relations and expressions.

4.2. REPRESENTING UTP IN HOL 71

1 definition

2 design::"α relation_d ⇒αrelation_d ⇒αrelation_d" ("(_ `_)")
3 where " (P ` Q) ≡λ(A, A’). (ok A ∧P (A, A’)) −→(ok A’ ∧Q (A ,A’))"

As seen above, ok is an automatically generated function over the record type
alpha_d; it returns the value of the field ok.

Once given the definition of designs, new definitions for skip are stated as follows:

1 definition skip_d::"α relation_d" ("Π_d")

2 where "Π_d ≡(true `Π_r)"

Our definitions make it possible to lead some proofs using Isabelle/HOL.More details
about proofs are given in Sect. 4.2.5.

Some healthiness conditions are defined to ensure that a design satisfies some
well-formedness properties [CW06] (see table 4.2). Four healthiness conditions, H 1
to H 4, are defined to characterize designs.

4.2.3 Reactive processes

Following the way the UTP describes reactive processes, more observational vari-
ables are needed to record the interaction with the environment. Three observational
variables are defined for this subset of relations: wait, tr and ref. The boolean
variable wait records if the process is waiting for an interaction or has terminated.
tr records the list (trace) of interactions the process has performed so far. The vari-
able ref contains the set of interactions (events) the process may refuse to perform.
These observational variables defines the basic alphabet of all reactive processes
called “alpha_rp”.

Proceeding like we did with ok, we extend the alphabet with the variables wait,
tr and ref. The corresponding extended alphabet and the definition of reactive
processes are given in our Reactive Process theory. This kind of alphabet is called
a reactive alphabet .

The names wait, tr and ref.

The variable wait expresses whether a process has terminated or is waiting for
an interaction with its environment. The variable tr records the trace of events
(interactions) the process has already performed. The ref variable is an event set,
that encodes the events (interactions) that the process may refuse to perform at this
state.

The new alphabet is an extension of the alphabet of designs, using the same
construct: extensible records. The traces are defined as polymorphic events lists,
and the refusals as polymorphic events sets.

1 datatype α event = ev α

72 CHAPTER 4. ISABELLE/CIRCUS

2 types α trace = "(α event) list"

3 types α refusals = "(α event) set"

4

5 define_pred alpha_rp

6 "(alpha_d ∪{wait::bool,tr::α trace,ref::αrefusals,...},true)"

and we add the handy type abbreviation:

1 types (α, δ) relation_rp = "(α, δ) alpha_rp_scheme relation"

Again, the δ is used to make the record-extensions explicit.

Reactive Processes.

Reactive processes are characterized by three healthiness conditions defined over
wait, tr and ref. The first healthiness condition R1 states that a reactive process
cannot change the history of performed event.

R1 P = P ∧ (tr ≤ tr ′)

This healthiness condition is encoded as a relation, it uses a function ≤ on traces,
which is defined in our theory.

1 definition R1::"(α, δ) relation_rp"

2 where "R1 (P) ≡λ (A, A’). P (A, A’) ∧(tr A ≤tr A’)"

To express the second healthiness condition R2, we use the formulation proposed
by Cavalcanti and Woodcock [CW06].

R2 (P(tr , tr ′)) = P(<>, tr ′ − tr)

It states that a process description should not rely on what took place before its
activation, and should restrict only the new events to be recorded since the last
observation. These are the events in tr ′ − tr .

1 definition R2::"(α, δ) relation_rp"

2 where "R2 (P) ≡λ (A, A’). P (A(|tr:=[]|),A’(|tr:= (tr A ’ - tr A) |))"
The last healthiness condition for reactive processes, R3, states that a process should
not start if invoked in a waiting state.

R3 (P) = Π / wait . P

A definition is given to Π (Skip process), and the healthiness condition is expressed
as a conditional expression over predicates.

1 definition R3::"(α, δ) relation_rp"

2 where "R3 (P) ≡(Π_rea /(wait o fst) .P)"

4.2. REPRESENTING UTP IN HOL 73

We can now define a reactive process as a relation over a reactive alphabet that
satisfies these three healthiness conditions. This condition can be expressed as a
functional composition of the three conditions.

1 definition R::"(α, δ) relation_rp"

2 where "R ≡R3 o R2 o R1"

4.2.4 CSP processes

A CSP process is a UTP reactive process that satisfies two additional healthiness
conditions called CSP1 and CSP2 (all well-formedness conditions are summarized
in table 4.2). A process that satisfies CSP1 and CSP2 is said to be CSP healthy.

As for reactive processes, a theory CSP Process corresponds to the CSP processes
healthiness conditions. in the UTP, a reactive process is a CSP process if it satisfies
two additional healthiness conditions CSP1 and CSP2.

1 definition CSP1::"(α, δ) relation_rp"

2 where "CSP1 (P) ≡ λ (A, A’). (P (A, A’)) ∨(¬ ok A ∧tr A ≤tr A’)"

3

4 definition J_csp::"(α, δ) relation_rp"

5 where "J_csp ≡λ(A, A’). ok A −→ok A’ ∧tr A = tr A’ ∧ref A = ref A’

6 ∧ wait A = wait A’ ∧more A = more A’"

7

8 definition CSP2::"(α, δ) relation_rp"

9 where "CSP2 (P) ≡ P ;; J_csp"

CSP basic processes and operators can be encoded using their definitions as
reactive designs. Isabelle was used to prove that these reactive designs are CSP
healthy.

4.2.5 Proofs

As mentioned above, the theories contains also proofs for some theorems and lem-
mas. In the relations theory, 100 lemmas are proved using 250 lines of proof, and in
the designs theory 26 lemmas are proved using 120 lines of proof. Since our defini-
tions are close to the library definitions of Isabelle/HOL, we can exploit the power
of the standard Isabelle proof procedures. For example, we consider the proof of the
true−; left zero lemma. These are almost the same proof steps as those used in
the textbook proof.

1 lemma t_comp_lz: "(true;;(P `Q)) = true"

2 apply (auto simp: expand_fun_eq design_def rel_comp_def_raw mem_def)

3 apply (rule_tac x="b(|ok:=False|)" in exI)

4 by (simp add: mem_def)

74 CHAPTER 4. ISABELLE/CIRCUS

In the previous proof we first apply some simplifications using the operators defini-
tions (eg. design def), then we fix the ok value to false and finally some simplifica-
tions will finish the proof.

H 1 : A design may not make any prediction on variable values until the program has started.

P = λ(A,A’). ok A → P (A,A’)

H 2 : A design may not require non-termination.

P(A,A’Lok:=FalseM)→ P(A,A’Lok:=TrueM)
H 3 : If the precondition of a design is satisfiable, its postcondition must be satisfiable too.

P = P ;; Π
H 4 : Exclude miracle design.

P ;; true = true

R1 : The execution of a reactive process never undoes an event that has already been performed.

P = P ∧ λ (A,A’). tr A ≤ tr A’

R2 : The behaviour of a reactive process is oblivious to what has gone before.

P = λ(A,A’). P(ALtr:=[]M,A’Ltr:=(tr A’ - tr A)M)
R3 : Intermediate stable states do not progress.

P = Πrea / wait o fst . P

CSP1 : Extension of the trace is the only guarantee on divergence.

P = P ∨ (λ (A,A’). ¬ ok A ∧ tr A ≤ tr A’)

CSP2 : A process may not require non-termination.

P = P ;; J

J = λ(A,A’). (ok A →ok A’)∧ tr A’ = tr A ∧wait A’ = wait A

∧ ref A’ = ref A ∧more A’ = more A

where Π is the relational Skip, o is the HOL functional composition operator and
fst returns the first element of a pair.

Table 4.2: UTP Healthiness conditions

4.3 Circus Denotational Semantics

Isabelle/Circus is based on a “shallow embedding” of the Circus denotational se-
mantics in Isabelle/HOL, enabling state variables and channels in Circus to have
arbitrary HOL types. Therefore, the entire handling of typing can be completely
shifted to the (efficiently implemented) Isabelle type-checker and is therefore implicit
in proofs. This drastically simplifies the definitions, proofs, and makes the reuse of
standardized proof procedures possible. Compared to implementations based on

4.3. CIRCUS DENOTATIONAL SEMANTICS 75

a “deep embedding” such as [ZC09a] this drastically improves the usability of the
resulting proof environment.

Our representation brings particular technical challenges and contributions con-
cerning some important notions about variables. The main challenge was to rep-
resent alphabets and bindings in a typed way that preserves the semantics and
improves deduction. Thus, we decided to provide a representation of bindings with-
out an explicit management of alphabets. However, the representation of some core
concepts in the unifying theories of programming (UTP) and Circus constructs (vari-
able scopes and renaming) needed some care. Therefore, we propose a (stack-based)
solution that allows the coding of state variables scoping with no need for renam-
ing. This solution is a contribution to the UTP theory, which does not allow nested
variable scoping. Some other challenging and tricky definitions (e.g. channels and
name sets) are explained in the sequel of this section.

Process ::= circusprocess Tpar∗ name = PParagraph∗ where Action
PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP | SchemaP

| ActionP
AlphabetP ::= alphabet [vardecl+]
vardecl ::= name :: type
StateP ::= state [vardecl+]
ChannelP ::= channel [chandecl+]
chandecl ::= name | name type
NamesetP ::= nameset name = [name+]
ChansetP ::= chanset name = [name+]
SchemaP ::= schema name = SchemaExpression
ActionP ::= action name = Action
Action ::= Skip | Stop | Action ; Action | Action � Action | Action u Action

| Action \ chansetN | var := expr | guard & Action | comm → Action
| Schema name | ActionName | µ var • Action | var var • Action
| Action J namesetN | chansetN | namesetN K Action

Figure 4.1: Isabelle/Circus syntax

The Isabelle/Circus environment allows the representation of processes in a syn-
tax that is close to the textbook presentations of Circus (see Fig. 4.1). Similar to
other specification constructs in Isabelle/HOL, this syntax is “parsed away”, i.e.
compiled into an internal representation of the denotational semantics of Circus,
which is a formalization in the form of a shallow embedding of the (essentially un-
typed) paper-and-pencil definitions by Oliveira et al. [OCW07], based on UTP.
Circus actions are defined as CSP healthy reactive processes.

In the UTP representation of reactive processes given in section 4.2.3 the process
type is generic. It contains two type parameters that represent the channel type

76 CHAPTER 4. ISABELLE/CIRCUS

and the alphabet of the process. These parameters are very general, and they are
instantiated for each specific process. This could be problematic when representing
the Circus semantics, since some definitions rely directly on variables and channels
(e.g. assignment and communication). In this section we present our solution to
deal with this kind of problems, and our representation of the Circus actions and
processes.

In the following, we describe the foundation as well as the semantic definition
of the process operators of Circus. A distinguishing feature of Circus processes are
explicit state variables which do not exist in other process algebras like, e.g., CSP.
These can be:

� global state variables, i.e. they are declared via alphabetized predicates in the
state section, or Z-like ∆ operations on global states that generate alphabet-
ized relations, or

� local state variables, i.e. they are result of the variable declaration statement
var var • Action. The scope of local variables is restricted to Action.

On both kind of state variables, logical constraints may be expressed.

4.3.1 Circus variables

In order to cater for the set of variables in scope, the Circus semantics describes
the alphabet of its components, be it on the level of alphabetized predicates, alpha-
betized relations or actions. We recall that these items are represented by sets of
records or sets of pairs of records, following the idea that an alphabet is used to
establish a ”binding” of variables to values. The alphabet of a process is defined by
extending the reactive process alphabet with the corresponding variable names and
types. Considering the example FIG , where the global state variable idS is defined,
this is reflected in Isabelle/Circus by the extension of the process alphabet by this
variable, i.e. by the extension of the Isabelle/HOL record:

1 record α alpha = α alpha_rp + idS :: ID set

This introduces the record type alpha that contains the observational variables of a
reactive process, plus the variable idS. Note that our Circus semantic representation
allows “built-in” bindings of alphabets in a typed way. Moreover, there is no restric-
tion on the associated HOL type. However, the inconvenience of this representation
is that variables cannot be introduced “on the fly”; they must be known statically
i.e. at type inference time. Another consequence is that a ”syntactic” operation
such as variable renaming has to be expressed as a ”semantic” operation that maps
one record type into another.

4.3. CIRCUS DENOTATIONAL SEMANTICS 77

4.3.1.1 Updating and accessing global variables.

Since the alphabets are represented by HOL records, we need a certain infrastructure
to access data in them and to update them. The Isabelle representation as records
gives us already two functions “select” and “update”. The select function returns the
value of a given variable name, the update function updates the value of this variable.
Since we may have different HOL types for different variables, a unique definition
for select and update cannot be provided. There is an instance of these functions
for each variable in the record. The name of the variable is used to distinguish the
different instances: for the select function the name is used directly and for the
update function the name is used as a prefix. For example, for a variable named
“x” the names of the select and update functions are respectively x and x_update.

Since a variable is characterized essentially by these functions, we define a general
type (synonym) called var which represents a variable as a pair of its select and
update function (in the underlying state σ).

1 types (β, σ) var = "(σ ⇒ β) * ((β ⇒ β) ⇒ σ ⇒ σ)"

For a given alphabet (record) of type σ , the type (β, σ) var represents the
type of the variables whose value type is β in this alphabet. One can then extract
the select and update functions from a given variable with the following functions:

1 definition select :: "(β, σ) var ⇒σ ⇒ β"
2 where select f ≡ (fst f)

3

4 definition update :: "(β, σ) var ⇒ β ⇒ σ ⇒ σ "
5 where update f v ≡ (snd f) (λ _ . v)

Finally, we introduce a function called VAR to implement a syntactic translation
of a variable name to an entity of type var.

1 syntax "_VAR" :: "id ⇒(β, σ) var" ("VAR _")

2 translations VAR x => (x, _update_ name x)

Note that in this syntactic translation rule, _update_ name x stands for the con-
catenation of the string _update_ with the content of the variable x; the resulting
_update_x in this example is mapped to the field-update function of the extensible
record x_update by a default mechanism. On this basis, the assignment notation
can be written as usual:

1 syntax

2 "_assign" :: "id ⇒(σ ⇒β) ⇒(α, σ) action" ("_ ‘:=‘ _")

3 translations

4 "x ‘:=‘ E" => "CONST ASSIGN (VAR x) E"

and mapped to the semantics of the program variable (x,x_update) together with
the universal ASSIGN operator defined in Section 4.3.3.2.

78 CHAPTER 4. ISABELLE/CIRCUS

4.3.1.2 Updating and accessing local variables.

In Circus, local program variables can be introduced on the fly, and their scopes are
explicitly defined, as can be seen in the FIG example. In textbook Circus, nested
scopes are handled by variable renaming which is not possible in our representation
due to the implicit representation of variable names. Instead, we represent local
variables by global variables, using the var type defined above, where selection and
update involve an explicit stack discipline. Each variable is mapped to a list of
values, not to only one value (as in state variables). Entering the scope of a variable
corresponds to adding a new value as the head of the corresponding values list.
Leaving a variable scope corresponds to removing the head of the list. The select
and update functions correspond to selecting and updating the head of the list.

Note that this encoding scheme does not require to make local variables lexically
distinct from global variables; local variable instances are just distinguished from
the global ones by the stack discipline. This results in a dynamic scoping mechanism
which is required by the operational semantics.

4.3.2 Synchronization infrastructure

4.3.2.1 Name sets.

An important notion, used in the definition of parallel Circus actions, is name sets.
A name set is a set of variable names, which is a subset of the alphabet. This notion
cannot be directly expressed in our representation since variable names are not
explicitly represented. Its definition is a bit tricky and relies on the characterization
of the variables in our representation. As for variables, name sets are defined by their
functional characterization. Name sets are only used in the definition of the binding
merge function MSt , that describes the merged state after a parallel execution:

∀ v • (v ∈ ns1⇒ v ′ = (1.v)) ∧ (v ∈ ns2⇒ v ′ = (2.v)) ∧ (v /∈ ns1∪ns2⇒ v ′ = v)

The disjoint name sets ns1 and ns2 are used to determine which variable values
(extracted from local bindings of the parallel components) are used to update the
global binding of the process. A name set can be functionally defined as a binding
update function, that copies values from a local binding to the global one. For
example, a name set NS that only contains the variable x can be defined as follows
in Isabelle/Circus:

1 definition NS lb gb ≡ x_update (x lb) gb

where lb and gb stands for local and global bindings, x and x_update are the select
and update functions of variable x. Then the merge function can be defined by
composing the application of the name sets to the global binding.

4.3. CIRCUS DENOTATIONAL SEMANTICS 79

4.3.2.2 Channels.

Reactive processes interact with the environment via synchronizations and commu-
nications. A synchronization is an interaction via a channel without any exchange of
data. A communication is a synchronization with data exchange. In order to reason
about communications in the same way, a datatype channels is defined using the
channels names as constructors. For instance, in:

1 datatype channels = chan1 | chan2 nat | chan3 bool

we declare three channels: chan1 that synchronizes without data , chan2 that com-
municates natural values and chan3 that exchanges boolean values.

This definition makes it possible to reason globally about communications since
they have the same type. A drawback is that the channels may not have the same
type: in the above example the types of chan1, chan2 and chan3 are respectively of
types channels, nat ⇒ channels and bool ⇒channels. Now, in the definition of
some Circus operators, we need to compare two channels. Unfortunately, different
channels like for example chan1 and chan2 cannot be compared since they don’t have
the same type. A solution would be to compare chan1 with (chan2 v). The types
are equivalent in this case, but the problem remains because comparing (chan2 0)
to (chan2 1) will state inequality just because the communicated values are not
equal. We can of course define an inductive function over the datatype channels to
compare channels, but this is only possible when all the channels are known a priori .

Thus, we add some constraint to the generic channels type: we require the
channels type to implement a function chan_eq that tests the equality of two
channels. Fortunately, Isabelle/HOL provides a construct for this kind of restriction:
the type classes (sorts) seen in the section 3.3.2.3. We define a type class (interface)
chan_eq that contains a signature of the chan_eq function.

1 class ev_eq =

2 fixes ev_eq :: "α ⇒α ⇒ bool"

3 begin end

Concrete channels type must implement the interface (class) “ ev_eq” that can
be easily defined for this concrete type. Moreover, one can use this class to add
some definition that depends on the channel equivalence function. For example, a
trace (event list) equivalence function can be defined as follows:

1 fun tr_eq where

2 tr_eq [] [] = True | tr_eq xs [] = False | tr_eq [] ys = False

3 | tr_eq (x#xs) (y#ys) = if ev_eq x y then tr_eq xs ys else False

This function will be applicable for traces of elements whose type belongs to the
sort ev_eq.

80 CHAPTER 4. ISABELLE/CIRCUS

4.3.3 Actions and processes

The Circus actions type is defined as the set of all the CSP healthy reactive processes.
The type (α,σ)relation_rp is the reactive process type where α is of channels
type and σ is a record extensions of action_rp, i.e. the global state variables. On
this basis, we can encode the concept of a process for a family of possible state
instances. We introduce the vital type action via the type-definition:

1 typedef(Action)

2 (α::ev_eq,σ) action = {p::(α,σ)relation_rp. is_CSP_process p}

3 morphisms relation_of action_of

4 proof - {...} qed

As mentioned before, a type-definition introduces a new type associated to a
(non-empty) set of possible values. In our case, this set is the set of reactive processes
that satisfy the CSP-processes healthiness-conditions.

Technically, from this construct the system introduces two constants definitions
action_of of type "(α, σ) relation_rp ⇒ (α,σ) action" and relation_of

of type "(α, σ) action ⇒(α,σ)relation_rp" as well as the usual two axioms
expressing their bijection:

1. action_of (relation_of (X))= X and

2. is_CSP_process p =⇒ relation_of (action_of (p))= p

where the predicate is_CSP_process captures the healthiness conditions.

Every Circus action is an abstraction of an alphabetized predicate. Below, we
introduce the definitions of all the actions and operators using their denotational
semantics. We must provide for each action, the proof that this predicate is CSP
healthy. In this section we show all Circus basic actions and operators definitions.
We also show how a whole Circus process is represented in the UTP framework. The
environment contains the definitions of all the Circus operators shown in the next
section.

Moreover, Isabelle/Circus contains a proof of a theorem stating that every reac-
tive design — based on the above and the subsequent definitions — is CSP healthy.

4.3.3.1 Basic actions.

Stop is defined as a reactive design, with a precondition true and a postcondition
stating that the system deadlocks and the traces are not evolving.

1 definition

2 Stop ≡ action_of (R (true `λ(A, A’). tr A’ = tr A ∧ wait A’))

4.3. CIRCUS DENOTATIONAL SEMANTICS 81

Skip is defined as a reactive design, with a precondition true and a postcondition
stating that the system terminates and all the state variables are not changed. We
represent this fact by stating that the more field is not changed, since this field
is mapped to all the state variables. Recall that the more-field is a result of our
encoding of alphabets by extensible records and stands for all future extensions of
the alphabet (e.g. state variables).

1 definition Skip ≡ action_of (R (true ` λ (A, A’). tr A’ = tr A

2 ∧ ¬ wait A’ ∧ more A = more A’))

4.3.3.2 The universal assignment action.

In the previous section 4.3.1.1, we described how global and local variables were rep-
resented by access- and updates functions introduced by fields in extensible records.
In these terms, the “lifting” to the assignment action in Circus processes is straight-
forward:

1 definition

2 ASSIGN::"(β, σ) var ⇒(σ ⇒ β) ⇒(α::ev_eq, σ) action"

3 where

4 ASSIGN x e ≡ action_of (R (true ` Y))
5 where

6 Y = λ(A, A’). tr A’ = tr A ∧ ¬ wait A’ ∧
7 more A’ = (assign x (e (more A))) (more A)

where assign is the projection into the update operation of a semantic variable
described in section 4.3.1.1.

4.3.3.3 Internal and External Choice.

For the internal choice operator the semantics is quite simple. It is defined as the
relational disjunction of the two actions.

1 definition ndet (infixl "u") where

2 P u Q ≡ action_of ((relation_of P) ∨(relation_of Q))

The external choice semantics is more complicated, the choice of one action or the
other is made only in stable states. A stable state is characterized in the condition
by tr ′ = tr ∧ wait ′, this means that the actions are performing internal steps. One
the actions are in a stable state i.e. they are ready to interact, the choice can be
performed.

The external choice operator is defined in Isabelle/Circus as follows:

1 definition det (infixl "�") where

2 P �Q ≡ action_of(R (X ` Y))

82 CHAPTER 4. ISABELLE/CIRCUS

3 where

4 X = ¬(Spec F F (relation_of P)) ∧¬ (Spec F F (relation_of Q))

5 and

6 Y = (Spec T F (relation_of P)) ∧ (Spec T F (relation_of Q))

7 / λ (A, A’). tr A = tr A’ ∧ wait A’ .
8 (Spec T F (relation_of P)) ∨ (Spec T F (relation_of Q))

where the operation Spec is defined as follows:

1 definition Spec x y P = λ(A, A’). P (A(|wait := y|), A’(|ok := x|))

4.3.3.4 Guarded Actions.

A guarded action is an action that can be executed if the guard value is true only,
otherwise it stops. A guard is defined as a predicate over the action variables and
the semantics of the guarded action is defined as follows:

1 definition guard ("_ & _") where

2 g & P ≡ action_of(R (X ` Y))

3 where

4 X = (g o more o fst) −→¬ (Spec F F (relation_of P))

5 and

6 Y = ((g o more o fst) ∧ (Spec T F (relation_of P))) ∨
7 (¬ (g o more o fst) ∧ (λ (A, A’). tr A’ = tr A ∧ wait A’))

Given this definition, it is easy to prove that if the value of the guard is false the
action will stop. The proof of this property is given by the following:

1 lemma "false & P = Stop"

2 by (simp add: Guard_def Stop_def csp_defs design_defs utp_defs

3 rp_defs)

4.3.3.5 Sequencing.

The sequence operator is defined using the UTP sequential composition operator:
the semantics of composing two actions is given by the relational composition of their
corresponding relations. No restriction is made on the alphabets of the relations,
since it was already made in the definition of the relation composition operator.

1 definition seq (infixl ";") where

2 P ; Q ≡ action_of (relation_of P ;; relation_of Q)

4.3. CIRCUS DENOTATIONAL SEMANTICS 83

4.3.3.6 Schema Expressions.

In order to define the semantics of schema expressions, the function Pre is intro-
duced. This function verifies that the precondition of a schema expression is true
before applying the schema operation. This function is defined by existentially quan-
tifying the output alphabet of the schema, since the precondition depends only on
the input variables.

1 definition Pre ::"’α relation ⇒’α predicate" where

2 Pre sc ≡ λ A. ∃ A’. sc (A, A’)

The semantics of schema expressions is then:

1 definition

2 Schema sc ≡ action_of(R (X ` Y))

3 where

4 X = λ(A, A’). (Pre sc) (more A)

5 and

6 Y = λ(A, A’). sc (more A, more A’) ∧ ¬ wait A’ ∧ tr A = tr A’

4.3.3.7 Prefixed actions and communications.

The definition of prefixed actions is based on the definition of a special relation do_I.
In the Circus denotational semantics, various forms of prefixing were defined. In our
theory, we define one general form, and the other forms are defined as special cases.

1 definition do_I c x P ≡ X / wait o fst . Y

2 where

3 X = (λ (A, A’). tr A = tr A’ ∧ ((c ‘ P) ∩ ref A’) = {})

4 and

5 Y = (λ (A, A’). hd ((tr A’) - (tr A)) ∈ (c ‘ P) ∧
6 (c (select x (more A))) = (last (tr A’)))

where c is a channel constructor, x is a variable (of var type) and P is a predicate.
The do_I relation gives the semantics of an interaction: if the system is ready
to interact, the trace is unchanged and the waiting channel is not refused. After
performing the interaction, the new event in the trace corresponds to this interaction.

The semantics of the whole action is given by the following definition:

1 definition Prefix c x P S ≡ action_of(R (X ` Y)) ; S

2 where

3 X = true

4 and

5 Y = do_I c x P ∧ (λ (A, A’). more A’ = more A)

84 CHAPTER 4. ISABELLE/CIRCUS

where c is a channel constructor, x is a variable (of type var), P is a predicate and
S is an action. This definition states that the prefixed action semantics is given by
the interaction semantics (do_I) composed with the semantics of the continuation
(the action S).

Different types of communication are considered:

� Inputs: the communication is done over a variable.

� Constrained Inputs: the input variable value is constrained with a predicate.

� Outputs: the communications exchanges only one value.

� Synchronizations: only the channel name is considered (no data).

The semantics of these different forms of communications is based on the general
definition above.

1 definition read c x P ≡ Prefix c x true P

2 definition write1 c a P ≡ Prefix c (λs. a s, (λ x. λy. y)) true P

3 definition write0 c P ≡ Prefix (λ_.c) (λ_._, (λ x. λy. y)) true P

where read, write1 and write0 corresponds respectively to input , output and
synchronization, constrained input corresponds to the general definition.

We configure the Isabelle syntax-engine such that it parses the usual communi-
cation primitives and gives the corresponding semantics:

1 translations

2 c ? p →P == CONST read c (VAR p) P

3 c ? p : b →P == CONST Prefix c (VAR p) b P

4 c ! p →P == CONST write1 c p P

5 a → P == CONST write0 (TYPE(_)) a P

4.3.3.8 Hiding.

The hiding operator is interesting because it depends on a channel set. This operator
P \ cs is used to encapsulate the events that are in the channel set cs. These events
become no longer visible from the environment. The semantics of the hiding operator
is given by the following reactive process:

1 definition

2 Hide ::"[(α, σ) action , α set] ⇒(α, σ) action" (infixl "\")

3 where

4 P \ cs ≡ action_of(R(λ (A, A’).

5 ∃ s. (relation_of P)(A, A’(|tr :=s, ref := (ref A’) ∪ cs|))
6 ∧ (tr A’ - tr A) = (tr_filter (s - tr A) cs))); Skip

4.3. CIRCUS DENOTATIONAL SEMANTICS 85

The definition uses a filtering function tr_filter that removes from a trace
the events whose channels belong to a given set. The definition of this function is
based on the function ev_eq we defined in the class ev_eq in Section 4.3.2. This
explains the presence of the constraint on the type of the action channels in the
hiding definition, and in the definition of the filtering function below:

1 fun tr_filter::"a::ev_eq list ⇒a set ⇒a list" where

2 tr_filter [] cs = []

3 | tr_filter (x#xs) cs = (if (¬ chan-in_set x cs)

4 then (x#(tr_filter xs cs))

5 else (tr_filter xs cs))

where the chan-in_set function checks if a given channel belongs to a channel set
using ev_eq as equality function.

4.3.3.9 Parallel Composition.

The parallel composition of actions is one of the most important definitions in our
environment. It involves two important notions presented in the last section, namely
name sets and channel sets. As explained in Section 4.3.2, name sets are used in
the state merge function MSt that merges the final values of the local states into
the global one. The name sets are defined as state update functions that can be
composed to build the global state by the MSt function. On this basis, we define
the MSt function in Isabelle/Circus as follows:

1 definition

2 MSt s1 s2 = (λ (S, S’). (S’ = s1 S)) ;; (λ (S, S’). (S’ = s2 S))

where s1 and s2 are disjoint name sets.
The second important notion in this definition is channel set. As explained

in section 4.3.2, channels are defined as datatype constructors. As channels are
usually defined over different types, channel sets cannot be directly defined since
the types of elements may be not the same (as explained in section 4.3.2). To avoid
this problem, we use the communications type channels as the type of elements
in the channel sets. Thus, in the case of constructors communicating values, we
apply them to some dummy values to obtain a value of type channels. One can
define, for instance, the channel set cs = {chan1, chan2(Some x)}, and define a
new channels membership function over this channel set using the function ev_eq.

Given these definitions, the parallel composition operator is stated as follows:

1 definition Par ("_ [[_ | _ | _]]_") where

2 A1 [[ns1 | cs | ns2]] A2 ≡ action_of(R (X ` Y))

3 where

4 X = (λ (S, S’). ¬∃ tr1 tr2. (Spec F F (relation_of A1) ;;

5 (λ (S, S’). tr1 = tr S)) (S, S’) ∧(Spec F (wait S) (relation_of A2) ;;

86 CHAPTER 4. ISABELLE/CIRCUS

6 (λ (S, S’). tr2 = tr S)) (S, S’) ∧(tr_filter tr1 cs) = (tr_filter tr2 cs)

7 ∧ ¬ ∃ tr1 tr2. (Spec F (wait S) (relation_of A1) ;;

8 (λ (S, S’). tr1 = tr S)) (S, S’) ∧(Spec F F (relation_of A2) ;;

9 (λ (S, S’). tr2 = tr S)) (S, S’) ∧(tr_filter tr1 cs)=(tr_filter tr2 cs))

10 and

11 Y = (λ (S, S’). (∃ s1 s2. (λ (A, A’). (Spec T F (relation_of A1) (A, s1))

12 ∧ Spec T F (relation_of A2) (A, s2)) ;; M_par s1 ns1 s2 ns2 cs) (S, S’))

where A1 and A1 are Circus actions, ns1 and ns2 are name sets defined as update
functions over the state of the actions A1 and A2. Finally, cs is a channel set defined
over the communications type of the actions A1 and A2.

Isabelle/Circus contains also the definitions of tr_filter, M_par and some other
functions used in these definitions.

4.3.3.10 Recursion.

To represent the recursion operator “µ” over actions, we use the universal least
fix-point operator “lfp” defined in the HOL library for lattices and we follow again
[OCW07]. The most substantial deviation from the standard CSP denotational
semantics (which requires Scott-domains and complete partial orderings), is that
Circus actions form a complete lattice. Consequently, the least fix-points are used in
[OCW07] to define recursive Circus actions. The operator lfp is inherited from the
predefined “Complete Lattice class” under some conditions, and all theorems defined
over this operator can be reused. In order to reuse this operator, we have to show
that the least-fixpoint over monotonic actions operators, produces an action that
satisfies the CSP healthiness conditions. This consistency proof for the recursion
operator is the largest contained in the Isabelle/Circus library.

In order to reuse the lfp operator and its inherited proofs, we must prove that
the Circus actions type defines a complete lattice. This requires us to prove that
the actions type belongs to the “Complete Lattice class” of HOL. Since type classes
in HOL are hierarchic, we provide a proof in three steps. First, we prove that
the Circus actions type forms a lattice by instantiating the HOL “Lattice class”.
In the second step, we prove that actions type instantiates a subclass of lattices
called “Bounded Lattice class”. The last step is to prove the instantiation from
the “Complete Lattice class”. The details of these proofs are given in the theories
documentation [FWG12].

1 instantiation action :: (ev_eq, type) lattice

2 begin

3 definition inf_action:

4 inf P Q ≡ action_of ((relation_of P) u (relation_of Q))

5 definition sup_action:

6 sup P Q ≡ action_of ((relation_of P) t (relation_of Q))

4.3. CIRCUS DENOTATIONAL SEMANTICS 87

7 definition leq_action:

8 P ≤ Q ≡ P v Q

9 definition less_action:

10 P < Q ≡ P v Q ∧¬ Q v P

11 instance proof

12 {...}

13 end

A lattice is a partial order with infimum and supremum of any two actions, the u
(meet) and t (join) operations select such infimum and supremum actions. The
instantiation proof of the lattice class requires the introduction of the definitions of
the meet , the join and the ordering operators ≤ and <. In addition to the definition,
the instantiation provides some proof obligations to ensure that all the notions are
well defined (e.g. the ordering relation is reflexive and transitive). After proving
these properties, the action type is considered as a lattice.

1 instantiation action :: (ev_eq, type) bounded_lattice

2 begin

3 definition bot_action:

4 bot ≡ action_of true

5 definition top_action:

6 top ≡ action_of (R(true `false))
7 instance proof

8 {...}

9 end

For the instantiation of the bounded lattice class, we add definitions of bounds (top
and bottom of the lattice) and prove that these bounds are well defined w.r.t the
ordering relation.

1 instantiation action :: (ev_eq, type) complete_lattice

2 begin

3 definition Sup_action:

4 Sup S ≡ if S={} then bot else action_of
⊔
(relation_of ‘S)

5 definition Inf_action:

6 Inf S ≡ if S={} then top else action_of
d
(relation_of ‘S)

7 instance proof

8 {...}

9 end

Finally, a complete lattice is a partial order with general (infinitary) infimum of any
set of actions, a general supremum exists as well. The general

d
(meet) and

⊔
(join)

operations select such infimum and supremum actions. These operations indeed
determine bounds on this complete lattice structure. The Knaster-Tarski Theorem

88 CHAPTER 4. ISABELLE/CIRCUS

(in its simplest formulation) states that any monotone function on a complete lattice
has a least fixed-point. This is a consequence of the basic boundary properties of
the complete lattice operations. Instantiating the complete lattice class allows one
to inherit these properties with the definition of the least fixed-point for monotonic
functions over Circus actions.

4.3.3.11 Circus processes

A Circus process is defined in our environment as a local theory by introducing qual-
ified names for all its components. This is very similar to the notion of namespaces
popular in programming languages. Defining a Circus process locally allows us to
encapsulate definitions of alphabet, channels, schema expressions and actions in the
same namespace. It is important for the foundation of Isabelle/Circus to avoid the
ambiguity between local process entities definitions. It is ensured by prefixing, e.g.
FIG.Out and DFIG.Out in the example of section 4.4.

4.4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a max-
imum of common Circus syntactic look-and-feel, we have programmed at the SML
level of Isabelle a compiler that parses and (partially) pretty prints Circus process
given in the syntax presented in Figure 4.1.

4.4.1 Writing specifications

A specification is a sequence of paragraphs. Each paragraph may be a declaration
of alphabet, state, channels, name sets, channel sets, schema expressions or actions.
The main action is introduced by the keyword where. Below, we illustrate how to
use the environment to write a Circus specification using the FIG process example
presented in Figure 3.1.

1 circusprocess FIG =

2 alphabet = [v::nat, x::nat]

3 state = [idS::nat set]

4 channel = [req, ret nat, out nat]

5 schema Init = idS := {}

6 schema Out = ∃ a. v’ = a ∧ v’ /∈ idS ∧ idS’ = idS ∪ {v’}
7 schema Remove = x ∈ idS ∧ idS’ = idS - {x}

8 where var v · Schema Init; (µ X ·(req →Schema Out; out!v →Skip)

9 � (ret?x →Schema Remove); X)

4.4. USING ISABELLE/CIRCUS 89

Each line of the specification is translated into its corresponding representation.
In the following, we describe the result of executing each command:

� circusprocess command introduces a scope of local components whose names
are qualified by the process name (FIG in the example).

� alphabet generates a list of record fields to represent the binding. These fields
map names to value lists.

� state generates a list of record fields that corresponds to the state vari-
ables. The names are mapped to single values. This command, together
with alphabet command, generates a record that represents all the variables
(for the FIG example the command generates the record FIG_alphabet, that
contains the fields v and x of type nat list and the field idS of type nat set).

� channel introduces a datatype of typed communication channels (for the FIG

example the command generates the datatype FIG_channels that contains
the constructors req without communicated value and ret and out that com-
municate natural values).

� schema allows the definition of schema expressions represented as an alphabet-
ized relation over the process variables (in the example the schema expressions
FIG.Init, FIG.Out and FIG.Remove are generated).

� action introduces definitions for Circus actions. These definitions are based
on the denotational semantics of Circus. The type parameters of the action
type are instantiated with the locally defined channels and alphabet types.

� where introduces the main action as in action command (in the example the
main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.4.2 Relational and functional refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus pro-
cesses. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers the
possibility to reuse proof procedures, infrastructure and theorem libraries already
existing in Isabelle/HOL. Moreover, once a process specification is encoded and
parsed in Isabelle/Circus, proofs of, eg, refinement properties can be developed us-
ing the ISAR language for structured proofs.

To show in more detail how to use Isabelle/Circus, we provide a small example of
action-refinement proof. The refinement relation is defined as the universal reverse
implication in the UTP. In Circus, it is defined as follows:

1 definition A1 vc A2 ≡(relation_of A1) vutp (relation_of A2)

90 CHAPTER 4. ISABELLE/CIRCUS

where A1 and A2 are Circus actions, vc and vutp stand respectively for refinement
relation on Circus actions and on UTP predicate.

This definition assumes that the actions A1 and A2 share the same alphabet
(binding) and the same channels. In general, refinement involves an important
data evolution and growth. The data refinement is defined in [SWC02, CSW03]
by backwards and forwards simulations. Here, we give an example of a special
case, the so-called functional backwards simulation. This refers to the fact that the
abstraction relation R that relates concrete and abstract actions is just a function:

1 definition Simulation ("_ �_ _") where

2 A1 �R A2 = ∀ a b.(relation_of A2)(a,b) −→(relation_of A1)(R a,R b)

where A1 and A2 are Circus actions and R is a function mapping the corresponding
A1 alphabet to the A2 alphabet.

4.4.3 Refinement proofs

We can use the definition of simulation to transform the proof of refinement into a
simple proof of implication by unfolding the operators in terms of their underlying
relational semantics. A problem with this approach is that the size of proofs will
grow exponentially with respect to the size of the processes. To avoid this problem,
some general refinement laws were defined in [CSW03] to deal with the refinement
of Circus actions at operators level and not at UTP level. We introduced and proved
this set of laws in Isabelle/Circus (see table 4.3).

In table 4.3, the relations “x ∼S y” and “g1 'S g2” record the fact that the variable
x (repectively the guard g1) is refined by the variable y (repectively by the guard
g2) w.r.t the simulation function S .

These laws can be used in complex refinement proofs to simplify them at the
Circus level. More rules can be defined and proved to deal with more complicated
statements like combination of operators for example. Using these laws, and ex-
ploiting the advantages of a shallow embedding, the automated proof of refinement
becomes surprisingly simple.

Coming back to our example, let us consider the DFIG specification below, where
the management of the identifiers via the set idS is refined into a set of removed
identifiers retidS and a number max, which is the rank of the last issued identifier.

1 circusprocess DFIG =

2 alphabet = [w::nat, y::nat]

3 state = [retidS::nat set, max::nat]

4 channel = FIG.channels

4.4. USING ISABELLE/CIRCUS 91

P �S Q P ′ �S Q ′

P ; P ′ �S Q ; Q ′
SeqI

P �S Q g1 'S g2

g1&P �S g2&Q
GrdI

P �S Q x ∼S y
var x • P �S var y •Q

VarI
P �S Q x ∼S y

c?x → P �S c?y → Q
InpI

P �S Q P ′ �S Q ′

P u P ′ �S Q uQ ′
NdetI

P �S Q x ∼S y

c!x → P �S c!y → Q
OutI

[X �S Y]
....

P X �S Q Y mono P mono Q

µX • P X �S µY •Q Y
MuI

P �S Q P ′ �S Q ′

P�P ′ �S Q�Q ′
DetI

[Pre sc1 (S A)]
....

Pre sc2 A

[Pre sc1 (S A) sc2 (A,A′)]
....

sc1 (S A, S A′)

schema sc1 �S schema sc2
SchI

P �S Q
a → P �S a → Q

SyncI

P �S Q P ′ �S Q ′ ns1 ∼S ns ′1 ns2 ∼S ns ′2
PJns1 | cs | ns2KP ′ �S QJns ′1 | cs | ns ′2KQ ′

ParI
Skip �S Skip

SkipI

Table 4.3: Proved simulation laws

5 schema Init = retidS’ = {} ∧max’ = 0

6 schema Out = w’ = max ∧ max’ = max+1 ∧ retidS’ = retidS - {max}

7 schema Remove = y < max ∧retidS’ = retidS ∪ {y} ∧ max’ = max

8 where var w · Schema Init; (µ X ·(req →Schema Out; out!w →Skip)

9 � (ret?y →Schema Remove); X)

We provide the proof of refinement of FIG by DFIG just instantiating the sim-
ulation function R by the following abstraction function, that maps the underlying
concrete states to abstract states:

1 definition Sim A = FIG_alphabet.make (w A) (y A)

2 ({a. a < (max A) ∧ a /∈ (retidS A)})

where A is the alphabet of DFIG, and FIG_alphabet.make yields an alphabet of
type FIG_Alphabet initializing the values of v, x and idS by their corresponding
values from DFIG_alphabet: w, y and {a. a < max ∧ a /∈ retidS}).

92 CHAPTER 4. ISABELLE/CIRCUS

To prove that DFIG is a refinement of FIG one must prove that the main action
DFIG.DFIG simulates the main action FIG.FIG. The definition is then simplified,
and the refinement laws are applied to simplify the proof goal. Thus, the full proof
consists of a few lines in ISAR:

1 theorem "FIG.FIG �Sim DFIG.DFIG"

2 apply (auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq

3 intro!: VarI SeqI MuI DetI SyncI InpI OutI SkipI)

4 apply (simp_all add: SimRemove SimOut SimInit Sim_def)

5 done

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined
refinement laws are used by the auto tactic as introduction rules. The second step
replaces the definition of the simulation function and uses some proved lemmas
to finish the proof. The three lemmas used in this proof: SimInit, SimOut and
SimRemove give proofs of simulation for the schema Init, Out and Remove.

4.5 Conclusions

This chapter introduced our shallow embedding of the Circus language denotational
semantics in Isabelle/HOL. This embedding is based on a formalization of the UTP
in Isabelle/HOL. In particular, by representing the concept of UTP alphabet in
form of extensible records, we achieved a fairly compact, typed presentation of the
language. This shallow embedding allows arbitrary (higher-order) HOL-types for
channels, events, and state-variables, such as, e.g., sets of relations etc. Besides,
systematic renaming of local variables is avoided by compiling them essentially to
global variables using a stack of variable instances. The necessary proofs for show-
ing that the definitions are consistent i.e. satisfy is_CSP_healthy have been done,
together with a number of algebraic simplification laws on Circus actions.

Since the encoding effort can be hidden behind the scene by flexible extension
mechanisms of Isabelle, it is possible to have a compact notation for both specifica-
tions and proofs. Moreover, existing standard tactics of Isabelle such as auto, simp
and metis can be reused since our Circus semantics is representationally close to
HOL. Thus, we provide an environment that can cope with combined refinements
concerning data and behavior. Finally, we show a small, but prototypic example of
process specification and refinement proofs.

The whole formalization of UTP and Circus on top of it, forms the Isabelle/Circus
environment. It can be used as a basis of a plenty of (formally defined) application.
A first application was shown in this chapter, with the definition of a refinement
notion for Circus that allows performing refinement proofs. The next chapter will
introduce another substantial application based on the Isabelle/Circus environment.

4.5. CONCLUSIONS 93

This extension contains the basic notions of Circus-based testing with test generation
techniques.

C
h

a
p

t
e

r

5
Semantics Based Testing

Contents

5.1 Introduction . 96
5.2 Theorem Prover-based test-generation 96
5.3 Circus Operational Semantics . 97

5.3.1 Symbolic execution: deep vs. shallow embedding 98
5.3.2 Constraints . 99
5.3.3 Actions . 99
5.3.4 Labels . 100
5.3.5 State . 101
5.3.6 Operational semantics rules 103
5.3.7 Representing the introduction rules 108
5.3.8 Derived rules . 121

5.4 Symbolic test-generation with CirTA 122
5.4.1 cstraces generation . 123
5.4.2 test-generation for traces refinement 127
5.4.3 test-generation for deadlocks reduction 131

5.5 Test Selection Hypotheses . 134
5.6 Test Instantiations . 135
5.7 Example . 136

5.7.1 Generating cstraces . 136
5.7.2 test-generation . 138
5.7.3 Test instantiation and presentation 139

95

96 CHAPTER 5. SEMANTICS BASED TESTING

5.8 Conclusions . 140

5.1 Introduction

The present chapter explains in detail the second contribution of this thesis: Circus-
based testing with Isabelle/HOL. The testing theory of Circus presented in Section
3.2.3.2 is based on its operational and denotational semantics. Isabelle/HOL makes
it possible to define a testing approach based on the semantics of Circus. To dis-
tinguish this kind of approach from other, more syntax-based, approaches we call it
Semantics-based Testing.

The general principles of our theorem prover-based test-generation approach are
explained in Section 5.2. Section 5.3 introduces the encoding of the Circus oper-
ational semantics in Isabelle/HOL. This includes state representation and variable
scoping, transition rules and some useful derived rules. Symbolic test definitions and
generation tactics are explained in Section 5.4 and illustrated with a small example.

5.2 Theorem Prover-based test-generation

test-generation is subject of many research projects, and several approaches have
been proposed. One important approach is the use of theorem provers for test-
generation. The use of theorem provers is motivated by the fact that such kind of
systems is verified and logically safe. Theorem provers offer a formal framework for
any formal specification or verification method. In addition, test-generation systems
can greatly benefit from the automatic and interactive proof techniques to define
automatic and interactive test-generation techniques. Our test-generation system
presented here belongs to this category of approaches. As mentioned in Section 3.3.3
our test-generation approach is developed in the spirit of HOL-TestGen.

As seen in Chapter 3 HOL-TestGen [BW12] is a test-generation system based
on the Isabelle theorem prover. The main goal of this system is to use the facilities
offered by Isabelle to help test-generation. First, a test specification is stated to
describe the test set to be generated. Then different sorts of symbolic computations
offered by the prover are used to transform and simplify this test specification. The
result is an enumeration of test cases and some test selection hypotheses. For a test
specification TS , the test theorem generated by the system can be stated as follows:

C1(a1)⇒ φ(a1, SUT a1) ... Cn(an)⇒ φ(an , SUT an) THYP(H1 ∧ ... ∧ Hm)

TS

which can be read: whenever SUT passes the tests — i.e. for a given constraint
Ci(ai) a concrete instance for ai can be found, and the result of SUT for this

5.3. CIRCUS OPERATIONAL SEMANTICS 97

instance passes the test oracle φ — and whenever the test-hypotheses H1..Hm hold,
the test specification TS is satisfied.

Let us now consider our approach for Circus test-generation; similar ideas are then
used in this case. A test specification is first stated, for example to generate tests
from a specification SP , one test specification would be: ∀ t ∈ Tests(SP)→ prog(t)
where Tests is the test-generation method, t is a test and prog is a free variable used
to collect test cases. A first simplification is performed by the system by unfolding
the definition of Tests . This depends on the definition of the conformance relation
and on the test strategy. Symbolic computations are applied using specific defini-
tions and rules and the resulting cases are described in the form of inference rules.
The premises describe the test conditions (constraints) and the conclusions contain
the actual tests (stored by prog). The non-feasible cases are automatically removed,
since they have a false premise: the system proves it and removes these cases. Sym-
bolic computations are essentially applications of case splitting and introduction or
elimination rules defined from the operational semantics.

The operational semantics rules play a very important role in the test-generation,
since they are the basis of the symbolic computations. Test specifications are in-
troduced as inference rules, where the premises describe the test conditions and
the conclusion gives the test structure. Symbolic computations and simplifications
are mainly preformed on the premises. This cannot be done using the introduction
rules1 used to define the operational semantics, but requires the definition of elim-
ination rules2. These elimination rules are derived from the operational semantics
and used in test-generation. In some more complex situations, the test specification
addresses sets of transitions and not single transitions. In this case, a third kind of
rules is derived to handle sets of evolutions and not only single evolutions. All these
rules and definitions are explained in the following sections.

5.3 Circus Operational Semantics

The configurations of the transition system for the operational semantics of Circus
actions are triples (c | s |= A) where c is a constraint (a UTP condition) over
the symbolic variables in use, s an assignment of values to all Circus variables in
scope, and A a Circus action. The transition rules over configurations have the form:
(c0 | s0 |= A0)

e−→ (c1 | s1 |= A1), where e is a label i.e. a pair (channel × symbolic
variable) or ε.

The transition relation is also defined in terms of UTP and Circus actions. The
formalization of the operational semantics is realized on top of Isabelle/Circus. In

1An introduction rule is an inference rule that introduces a construction in the conclusion.
2An elimination rule is an inference rule that eliminates a construction from the premises.

98 CHAPTER 5. SEMANTICS BASED TESTING

order to introduce the transition relation for all Circus actions, configurations must
be defined first. The representation of configurations including constraints, states,
actions and labels is given below. The definition of the transition relation is then in-
troduced based on these definitions. Additional rules –very useful in test-generation–
are derived from the transition relation rules.

Before giving more details on the representation of the rules, an important and
fundamental notion must be discussed first. The operational semantics and testing
theory of Circus are based on symbolic executions and symbolic variables. The
representation of this symbolic execution in our testing theory can be either deep
or shallow. As for the encoding of UTP in Isabelle/HOL (cf section 4.2), we discuss
these two levels of embedding and justify our choice.

5.3.1 Symbolic execution: deep vs. shallow embedding

The test definitions and generation techniques introduced in [CG11] are based on
symbolic execution and variables. Symbolic variables are syntactic names that rep-
resent some value without any typing information. These variables are introduced
to represent a set of values (or a single, loosely defined, value), possibly constrained
by a predicate. An alphabet a is associated to all symbolic definitions of the testing
theory containing the symbolic variable names.

A deep symbolic representation requires the definition of these symbolic notions
on top of Isabelle/HOL. This is rather hard to realize and may introduce some
inconsistency to our theory. The main problem is that symbolic variables are not
typed. Consequently, all type information recorded in Circus variables is lost at
this stage. Moreover, constraints must also be syntactic entities, and thus, cannot
be directly expressed using HOL predicate calculus. To avoid these problems, one
can represent symbolic variables in a typed way like ordinary variables. However,
the representation of UTP variables in Isabelle/Circus (namely, extensible records)
does not allow dynamic variable introduction and renaming. This is because the
record structure defines its type, and consequently cannot be dynamically changed
due to static type checking. Thus symbolic variables cannot be represented as UTP
variables.

As an alternative to this deep symbolic execution, we opt for a shallow embed-
ding. This embedding is based directly on the Isabelle symbolic representation and
computation facilities. Isabelle, as a formal framework, provides powerful symbolic
computation facilities that can be reused directly in our environment. This requires
symbolic variables to be HOL variables, which are fresh semantic typed entities in-
troduced by the prover. Expressions over these variables are written directly using
HOL predefined operators or logical connectors. Consequently, constraints are also
semantic entities represented as HOL predicates. With our representation, all the
symbolic execution is carried out by Isabelle’s symbolic computations.

5.3. CIRCUS OPERATIONAL SEMANTICS 99

This representation choice is more natural and wise since symbolic computations
and higher-order manipulations are not of the same nature. It is clear that these two
notions are of two different abstraction levels. This is not the case in deep symbolic
execution which is represented in the same level of Circus definitions. In the shallow
representation, low-level symbolic computations are the basis of high-level formal
definitions.

This choice of embedding strongly influences the definition and representation of
the operational semantics and testing theory. The impact of this choice is explained
in the different sections. A lot of explicit symbolic manipulations (e.g. fresh symbolic
variable introduction) are managed implicitly by the prover.

In the context of this chapter, we use the terms “symbolic execution” to refer to
the explicit symbolic manipulations defined in [CG11]; we use the terms “symbolic
computations” to refer to the Isabelle’s symbolic manipulations used for the shallow
symbolic execution.

5.3.2 Constraints

In the Circus testing theory [CG11], symbolic execution is used to define symboli-
cally the transition relation of the operational semantics. The symbolic execution
system used in this case is based on UTP constructs. Symbolic variables (values)
are represented by UTP variables with fresh names generated on the fly. The (se-
mantics of the) constraint is represented by a UTP predicate over the values of these
symbolic variables.

The representation of the constraint in our testing environment depends on our
representation of symbolic variables and our implementation of symbolic execution.
We made the choice to represent symbolic variables directly as HOL variables. This
choice of representation is justified in section 5.3.1.

Constraints are represented by HOL predicates over these symbolic (HOL) vari-
ables. In transition rules that can update the constraint (e.g. schema expressions
or guarded actions), a fresh HOL variable will be introduced to represent the cor-
responding value in the constraint. Expressions of the form ”(s; v = e)” that are
used in some of the rules of operational semantics cannot be expressed directly. A
semantically equivalent expression is provided according to the representation of the
state; this point is discussed in detail in section 5.3.5.

5.3.3 Actions

The action component of the operational semantics defined in [CG11] is a syntactic
characterization of some Circus actions. This corresponds to the syntax of actions
defined in the denotational semantics. Special actions are defined to cover some
particular situations i.e. local choice and local parallel blocks.

100 CHAPTER 5. SEMANTICS BASED TESTING

In our representation of the operational semantics, the action component is a
semantic characterization of Circus actions. Section 4.3.3 introduces a definition
of Circus action type as the set of reactive CSP processes (CSP-healthy reactive
designs). Isabelle/Circus theories contain also definitions for basic Circus actions
(e.g. Skip) and Circus operators over actions (e.g. ; for sequential composition). The
Circus action type is given by (Θ, σ) action where Θ and σ are polymorphic type
parameters for channels and alphabet ; these type parameters are instantiated for
concrete processes.

Even if the denotational semantics of the actions is not directly used by the rule
inference system, the type of actions in the configuration corresponds to the deno-
tational type of actions. This representation of the operational semantics using the
denotational semantics corroborate our claim that our testing method is semantics
based. A consequence of this representation is that it makes it possible reasoning
on both denotational and operational semantics. A very interesting exercise would
be to prove, using Isabelle/Circus the soundness of the operational semantics w.r.t.
the denotational one [WCGF07]. However, the required amount of work prevented
us from tackling it during this thesis.

The denotational and operational semantics of the special actions are introduced.
These actions are used in rules (5.17 to 5.23) for local choice blocks (�) and in rules
(5.28 to 5.34) for local parallel blocks.

5.3.4 Labels

All the transitions over configurations are decorated with labels to keep a trace of
the events that the system may perform. A label may refer to a communication
with an input or output value, a synchronization (without communication) or an
internal (silent) transition. In Circus, an input communication is represented by
chan?var and an output communication by chan!val where chan is a channel, var
is a variable and val is a value. A synchronization is represented by chan where chan
is a channel. The labels keep track of these events as follows: chan?symbvar for
inputs, chan!symbvar for outputs and chan for synchronizations where symbvar is a
symbolic variable. Silent transitions are labeled by a special label ε, that corresponds
to an internal evolution of the system.

As explained in section 4.3.2.2, the channels type is represented in our theory
as a datatype; every channel is a function (constructor) that returns for a given
communicated value an event of type Channels .

Transition Labels type is also defined as a datatype as follow:

1 datatype Θ TransitionLabel = Inp Θ| Out Θ| Sync Θ| ε

where Θ is a type parameter representing an event in our transition relation. The
transitions are labeled by one of these labels, an event (chan, symbvar) is yielded

5.3. CIRCUS OPERATIONAL SEMANTICS 101

by applying the function chan(symbvar). Labels are built either with ε or by using
one of the constructors. For example, the label chan!symbvar is represented by
Out(chan(symbvar)) in the transition relation.

5.3.5 State

In the theory of Circus testing [CG11], the symbolic state is represented by a UTP
condition over output (dashed) variables. Concretely, it consists of an assignment
of symbolic values to all Circus variables in scope. Scoping is handled by variable
introduction and removal and nested scopes are avoided using variable renaming.
The state is updated in the operational semantics rules by composing one of the three
relations: var x , end x or x := e, that corresponds to variable scope delimiters and
update of mapped symbolic values. The state is also used to build the constraints
in expressions of the form ”s ; v = expr” that corresponds to an evaluation of the
expression expr in the context (binding) of the state s .

Our representation of the state is explained in the following, including variable
introduction, removal and nested scopes representations. Subsequently {||} denotes
the empty state.

The representation

The state conceptually maps Circus variable names to symbolic values. It also man-
ages local scopes by a standard compilation mechanism as a stack. Each variable
binding in the state consists of a vector of values, which keeps track of nested state-
ments. The representation of the state must preserve the properties of the transition
relation as defined in the operational semantics.

The symbolic state is the binding of Circus variables to symbolic values of the
form (variable 7→ symbolic variable). As explained in section 5.3.2, symbolic vari-
ables are represented by HOL variables. As a consequence, the symbolic state can
be represented as a symbolic binding (variable name 7→ HOL variable). Following
the representation of bindings by extensible records (cf section 4.2), the state corre-
sponds to a record that maps field names to HOL variables: the state can be updated
by usual record update functions; the evaluation of expressions (in constraints for
example) is done using select functions over records. This representation is based on
Isabelle’s symbolic computations and Isabelle/HOL’s extensible records definitions.
Thus, it increases efficiency since a lot of superfluous simplifications are avoided to
the system simplifier.

Variable scopes

We explained in section 4.2 that the main idea of representing alphabets as records
raises the limitation that alphabets cannot be modified. Consequently, introducing,

102 CHAPTER 5. SEMANTICS BASED TESTING

removing or renaming variables cannot be expressed. To recover from this limitation,
the representation of variables in the state must preserve the semantics of variable
scopes and assignments in Circus.

Since the state is a mapping between variables and symbolic values, a nested
scope of a variable should not affect this mapping. This means that the value of a
global variable should be the same before var and after end of a local variable. One
possible solution is to use a stack, in this case the state is no more a mapping (vari-
able 7→ value) but rather (variable 7→ vector of values), which keeps track of nested
statements. For example, for a Circus action containing var x ; x := 1; var x ; x := 2,
the state must contain the mapping between x and the vector [1,2]. The vector of
values is represented in our theories by lists, the first element of the list is the value
of the variable in the current scope, var and end correspond to adding and remov-
ing the first item of this list. The following example lists the different mappings
variable/values in the state after each command.

var x x Z⇒ [?]
var x ; x := 1 x Z⇒ [1]
var x ; x := 1; var x x Z⇒ [?, 1]
var x ; x := 1; var x ; x := 2 x Z⇒ [2, 1]
var x ; x := 1; var x ; x := 2; end x x Z⇒ [1]
var x ; x := 1; var x ; x := 2; end x ; end x x Z⇒ []

This representation affects slightly the semantics of assignments and evaluations
over the state in the operational semantics transition relation. The value of a variable
is no more the corresponding value in the mapping but the first element of it. The
select and update functions are modified to preserve their original semantics. For
a variable x a symbolic value e, the definitions of var , end , select and update are
given as follows:

� var x e ≡ x := e # x

� end x ≡ x := tl x

� x update e ≡ (hd x) := e

� x select ≡ (hd x)

where # is the list constructor, tl gives the tail of a list and hd gives the head of a
list (cf section 3.3.1.3). Entering a scope is equivalent to adding a new value to the
top of the list. This is done using var , which defines in this case the introduction of
an initialized variable. Leaving a scope is defined by removing the first element of
the list. Update and select functions affect only the top element of the list. These
operators are only defined and used in the operational semantics; their semantics
differ from the usual UTP operators, where nested scopes are not possible.

5.3. CIRCUS OPERATIONAL SEMANTICS 103

This modification will also affect the actions semantics because the state uses
the same alphabet as the actions. The problem is not related to the alphabet itself,
but to the bindings, since our representation does not make a difference between
alphabets and bindings (names and values). Since the binding is now referring to a
list of values, actions cannot anymore be defined using the same binding. To deal
with this problem two solutions are possible. The first solution is use two different
alphabets (bindings) for state and actions and introduce transformations between
these two bindings. This solution will hamper efficiency by adding superfluous
transformations.

We opted for a second solution which consists of changing (slightly) the use
of variables in the denotational semantics of Circus actions that depends explicitly
on variables. This means that global variables will be manipulated using classical
select and update functions. Local variables in scopes will be manipulated using the
new select and update functions defined above. This solution is simple and easy to
implement and the modifications are transparent. It is also more convenient for an
efficient and globally unified representation of the semantics.

5.3.6 Operational semantics rules

The operational semantics is defined by a set of inductive inference rules over the
transition relation of the form:

C

(c0 | s0 |= A0)
e−→ (c1 | s1 |= A1)

where (c0 | s0 |= A0) and (c1 | s1 |= A1) are configurations, e is a label and C is the
applicability condition of the rule. Isabelle/HOL uses this specification to define the
relation as least fixed-point on the lattice of powersets (according to Knaster-Tarski).
From this definition the prover derives three kinds of rules:

� the introduction rules of the operational semantics used in the inductive defi-
nition of the transition relation,

� the inversion of the introduction rules expressed as a huge case-splitting rule
covering all the cases, and

� an induction principle over the inductive definition of the transition relation.

The soundness of these rules w.r.t. the denotational semantics has to be proved:
it is the subject of another on-going work in the Circus group [WCGF07]. In our
work, we assume the soundness of these rules by stating some axioms.

104 CHAPTER 5. SEMANTICS BASED TESTING

The case-splitting rule can be instantiated to concrete patterns for the actions,
say A = Skip or A = B uC , and simplified using some knowledge from the denota-
tional semantics. This results in a collection of elimination rules, which are essential
for test-generation (as mentioned in section 5.2).

In the inductive definition of the transition relation, some rules make explicit
introduction and use of arbitrary (symbolic) variables e.g. assignment or input com-
munication. Since all HOL variables are typed, this explicit reference to external
variables introduces additional type parameters to the inductive definition. This
parametrized definition can be seen as a definition of families of operational seman-
tics rules, depending on the instantiation of this type parameter. This is problematic,
because it restricts all variables to be of the same type for any given Circus process
in order to be applicable. In order to get over this restriction, two different solutions
are possible.

The first possible solution is to use one general type for all the variables and
channels. This general type gathers all the different types used in the process in
a so-called tagged union type. This global type is used to instantiate the type
parameter in the inductive definition of the rules. A projection function should be
defined for each concrete type in order to retrieve it from the global type. Some
simplification rules can be introduced to the simplifier in order to make type packing
and unpacking more transparent. This solution has an important drawback which is
the loss of type information when type checking Circus actions. The benefits of the
representation of the state space as records are lost with this global type definition.
The semantics of Circus actions that explicitly involve variables or events must be
adapted to this representation. Thus, a second solution is proposed that solves
the type problem by preserving type checking without changing the denotational
semantics of Circus actions.

By analyzing the rules that contain the extra type parameter, two categories
can be distinguished. The first category contains Circus actions that manipulate the
state explicitly e.g. schema expressions and scoping. The second category concerns
rules that make explicit use of communicated values e.g. input and output com-
munications. The solution we adopt of the type parameter problem is to hide the
expressions that have this parameter as type. This solution is explained in detail
for the two categories of rules.

For the first category, two generic state update actions (state update before and
state update after) are introduced in the denotational semantics. These actions
provide a global scheme for all Circus actions that may update the state i.e. as-
signment, schema expressions and variable scoping (var , let and end). Using the
denotational semantics as formalized in Isabelle/Circus, all these Circus actions that
manipulate the state were proved to be special cases of one of these two generic
actions. These theorems are given in Appendix C.1. As a consequence, generic
rules can be defined in the operational semantics using these generic actions. No

5.3. CIRCUS OPERATIONAL SEMANTICS 105

explicit use of variables is done in these generic rules, only a state update relation is
involved; thus no extra type parameter is needed. The specific transition rules for
the other actions can be derived from these generic rules preserving the semantics
of the original transition rules defined in [CG11].

We introduce in the following the denotational semantics of the generic state
update actions:

1 definition

2 state_update_before::"’σ relation ⇒(’ϑ,’σ) action ⇒(’ϑ,’σ) action"

3 where

4 state_update_before sc Ac = action_of(R (X `Y) ;; relation_of Ac)

5 where

6 X = λ(A, A’). (Pre sc) (more A)

7 and

8 Y = λ(A, A’). sc (more A, more A’) & ¬wait A’ & tr A = tr A’

1 definition

2 state_update_after::"’σ relation ⇒(’ϑ,’σ) action ⇒(’ϑ,’σ) action"

3 where

4 state_update_after sc Ac = action_of(relation_of Ac ;; R (true `Y))
5 where

6 Y = λ(A, A’). sc (more A, more A’) & ¬wait A’ & tr A = tr A’

The action (state_update_before sc Ac) updates the initial state using a state
update relation sc then behaves like a given action Ac. Analogously, the action
(state_update_after sc Ac) behaves first like the given action Ac then updates
the intermediate state using the state update relation sc.

As seen above, all actions that update the state are proved to be particular cases
of these global definition. An example is the schema expression action, that can be
written using state_update_before sc Ac as stated by the following lemma:

1 lemma Schema-is_state_update_before:

2 "Schema sc = state_update_before sc Skip"

3 <proof>

This states that a schema expression defined by a relation sc is equivalent to a state
update action using the same relation sc followed by Skip.

The second category of rules that refer to the additional type parameter contains
rules in which communicated values are used explicitly. For example, in a paral-
lel synchronization of two output events happening on the same channel, the two
exchanged values are stated to be equal in the constraint. Communicated values
can be manipulated in three elements: transition labels, constraints and actions.
For transition labels, the solution is to hide these values in the channels and use

106 CHAPTER 5. SEMANTICS BASED TESTING

directly an event instead of a channel and a value. Since channels are represented
by functions from value types to events, this used event represents the application of
the channel on this value. When present in constraints, the communicated value is
always used in an equality: with a new symbolic variable or in parallel synchroniza-
tions. Instead of using a symbolic variable to represent the communicated value, a
symbolic variable is used to represent the symbolic event. For parallel synchroniza-
tions, the equality can be reproduced by using equality on the events since channels
are also assumed to be equal.

For communicated events used in actions (i.e. input and output prefixing), the
solution is more tricky. The input communications introduce a new scope for the
communication variable and initialize it with a symbolic value. The output commu-
nications send the symbolic value representing the evaluation of the communicated
expression in the current state. The symbolic value and operations that manipulate
it must be hidden in the definition of the actions. Two syntactical envelopes are
defined to hide all these elements while preserving the original semantics of prefixed
actions. These envelopes are defined as follows:

1 definition

2 iPrefix::"(’σ⇒’ϑ)⇒’σ relation⇒((’ϑ,’σ) action⇒(’ϑ,’σ) action)⇒
3 ’ϑ set ⇒(’ϑ,’σ) action ⇒(’ϑ,’σ) action"

4 where

5 iPrefix c i j S P ≡
6 action_of(R(true `(do_I c S) ∧(λ (A, A’). more A’ = more A)))‘;‘ P

The first action iPrefix c i j S P represents an input prefixed action. It is de-
fined over 5 parameters: c is a function that produces an event for a given state, S
is a set of events and P is an action. The additional parameters i and j are not used
in the semantics; they are used to hold additional information that will be used in
the operational semantics.

1 definition

2 oPrefix::"(’σ ⇒’ϑ) ⇒’ϑ set ⇒(’ϑ, ’σ) action ⇒(’ϑ, ’σ) action"

3 where

4 oPrefix c S P ≡
5 action_of(R(true `(do_I c S) ∧(λ (A, A’). more A’ = more A)))‘;‘ P

The second action oPrefix c S P defines an output prefixed action with three
parameters: a generalized event constructor, a set of events and ac action. All
parameters are of known types, that depend only on the events type ’ϑ or on the
state type ’σ . Using these actions in the operational semantics will avoid using
additional type parameters in the rules.

The concrete definitions of input and output communication actions are defined
using these envelopes. First, the universal input prefixed action is defined over
a channel c, a variable x and an action P using iPrefix. The first parameter of

5.3. CIRCUS OPERATIONAL SEMANTICS 107

iPrefix which is the generalized event constructor is built by composing the channel
(i.e. event constructor) with the variable selector over a state. The set of events is
instantiated with the range of the channel function and the action is the same action.
The two additional parameters are replaced by a state update relation (opening the
scope of the variable) and a scoping action.

1 definition

2 read::"(’v ⇒’ϑ) ⇒(’v,’σ) var ⇒(’ϑ, ’σ) action ⇒(’ϑ, ’σ) action"

3 where

4 read c x P ≡
5 iPrefix (λ A. c (select x A)) (λ (s, s’). ∃ a. s’ = increase x a s)

(Let x) (range c) P

The restricted input prefixed action is also defined using iPrefix but with an
additional parameter representing the set of valid input values. It is very similar to
the universal input except for two differences. The set of events is represented by
the image of the set of values under the channel function. The second difference is
that the value of the variable in the new scope must be in the set of valid values.

1 definition

2 read1::"(’v⇒’ϑ)⇒(’v,’σ) var⇒’v set⇒(’ϑ,’σ)action⇒(’ϑ,’σ)action"
3 where

4 read1 c x S P ≡
5 iPrefix (λ A. c (select x A)) (λ (s, s’). ∃ a. s’ = increase x a s

∧a∈S) (Let x) (c‘S) P

The output prefixed action is defined over a channel c, an expression over the
state a and an action P using oPrefix. The generalized event constructor is built
by composing the channel with the value of the expression in a given state. The set
of events is instantiated with the range of the channel function and the action is the
same action.

1 definition

2 write1::"(’v ⇒’ϑ) ⇒(’σ ⇒ ’v) ⇒ (’ϑ, ’σ) action ⇒(’ϑ, ’σ) action"

3 where

4 write1 c a P ≡ oPrefix (λ A. c (a A)) (range c) P

These concrete definitions are based on an additional type ’v that corresponds
to the type of the communicated values. This type is used in the channel constructor
functions, variable definitions, communicated expressions and value sets. All these
elements are somehow hidden in the definition of iPrefix and oPrefix in a way
that ensures to get rid of the additional type. In this situation, general rules can
be introduced in the operational semantics based on iPrefix and oPrefix. Con-
crete rules can be then derived from these general rules to cover input and output
communications. All these rules will be introduced in the next section.

108 CHAPTER 5. SEMANTICS BASED TESTING

5.3.7 Representing the introduction rules

In this section we consider all the rules of the operational semantics given in [CG11]
and we present their corresponding representation in our theory. A list of all the
operational semantics rules represented in our theory is given in Appendix C.2.1.

First, the generic rules defined to recover the extra type problem are introduced.
These rules are not part of the original operational semantics, but are used to derive
some important rules e.g. for assignment and schema expressions. As explained be-
fore, these rules are divided in two categories: state update rules and communication
rules. The first category contains three rules and the second one contains two rules.

The first rule (5.1) of the first category covers the state_update_before action.
This rules is applicable if the initial constraint is satisfiable and the state update
relation is applicable to the current state. The output state s ′ is introduced in the
rule as a fresh HOL variable, so it can be seen as a fresh symbolic state. The effect of
the rule is to apply internally the state update relation and continue the remaining
action in one of the possible output states represented symbolically by s ′.

c sc(s, s ′)

(c | s |= state update before sc A)
ε−→ (c ∧ sc(s, s ′) | s ′ |= A)

(5.1)

The second rule (5.2) of the first category is the final step of the evolution of
state_update_after where the action is Skip. The state update can be applied in
this case following the same idea as for rule 5.1, producing a new symbolic state s ′.

c sc(s, s ′)

(c | s |= state update after sc Skip)
ε−→ (c ∧ sc(s, s ′) | s ′ |= Skip)

(5.2)

The last rule (5.3) of the first category describes the evolution step of the
state_update_after for general actions different from Skip. In this case, if the
action can evolve independently from the state update to some new configuration,
then the state update can be applied after this new configuration.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) A1 6= Skip

(c1 | s1 |= state update after sc A1)
l−→ (c2 | s2 |= state update after sc A2)

(5.3)

The second category of generic rules covers input and output communications.
The first rule (5.4) of this category covers the general input prefixed action iPrefix.
As said before in section 5.3.6, two additional parameter i and j are used in this
action representing a state update relation and a scoping action. Applicability
conditions are the same as for state update actions, and the target configuration

5.3. CIRCUS OPERATIONAL SEMANTICS 109

is defined using the new state and the scoping over the remaining action. The
transition is labeled with an input symbolic event using the label constructor in
and the symbolic event. This symbolic event is obtained by applying the channel
function d to the new symbolic state s ′.

c i(s, s ′)

(c | s |= iPrefix d i j S Ac)
in (d s′)−−−−−−→ (c | s ′ |= j Ac)

(5.4)

The last rule 5.5 of the second category covers the output prefixed action. This
rule is simpler than the input action rule since it does not involve any additional
parameters. The only applicability condition is the satisfiability of the initial con-
straint and the rule produces an output symbolic event label. The symbolic event is
built by applying the event constructor function d to the initial state. The result-
ing constraint and state are unchanged and the action corresponds exactly to the
continuation action.

c

(c | s |= oPrefix d S Ac)
out (d s)−−−−−−→ (c | s |= Ac)

(5.5)

The general rules presented above cover special cases of actions that manipulate
values of an extra type. The complete list of rules given in [CG11] is presented in the
sequel, associated with its representation in our theories. Some rules are represented
directly in the inductive definition of the transition relations and other are derived
from the generic ones presented above. Each original rule is introduced (with a
different numbering than [CG11]) and its representation is marked with (+).

The assignment rule (5.6) is the first example of state update rule derived from
the general one 5.1. As said in section 5.3.6, using the denotational semantics, the
assignment is proven to be equivalent to a state update relation where only one
variable value is updated. Consequently, the rule will be similar to the state update
rule where the variable value is updated with a new symbolic variable. This symbolic
variable w0 is introduced as a fresh HOL free variable and the symbolic output state
is given by updating the initial state. The application of the expression e to the
current state s replaces the variables in e by their corresponding symbolic variables
in this state.

c

(c | s |= v := e)
ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(5.6)

110 CHAPTER 5. SEMANTICS BASED TESTING

c

(c | s |= v := e)
ε−→ (c ∧ w0 = e s | v update w0 s |= Skip)

(+)

For schema expressions the rule (5.7) is also derived from the general state update
rule 5.1. The schema is used as a state update relation defining a symbolic output
state from the initial state. In the original rule, output variables occurring in the
schema are substituted with fresh symbolic values in the current state. In our
representation, no substitution is needed because the variables are already bound
to fresh symbolic variables in the new symbolic state s ′.

c (s; pre Op)

(c | s |= Op)
ε−→ (c ∧ (s; Op[w0/v ′]) | s; v := w0 |= Skip)

v = outαs (5.7)

c Op(s, s ′)

(c | s |= Op)
ε−→ (c ∧ Op(s, s ′) | s ′ |= Skip)

(+)

The second example of rules derived from state update rules considers variable
scoping actions. First, the variable scope declaration rule (5.8) is derived from the
general state update rule 5.1. The update relation in this case corresponds to the
variable scope introduction in the state defined in section 5.3.5. All type checking
and side conditions are not needed in the representation of the rules since all Circus
variables are typed as well as HOL symbolic variables. The type checking system
will ensure that both variables are of the same type.

c ∧ T 6= ∅ x /∈ αs

(c | s |= var x : T •A)
ε−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x •A)

(5.8)

c

(c | s |= var x •A)
ε−→ (c | var x w0 s |= let x •A)

(+)

For scoped actions, the rules are defined from the state_update_after rules
where the update relation corresponds to closing the variable scope. The Skip case
rule (5.9) is derived from the general rule 5.2 where the end function is used to close
the scope of the variable x (see section 5.3.5).

c

(c | s |= let x • Skip)
ε−→ (c | s; end x |= Skip)

(5.9)

5.3. CIRCUS OPERATIONAL SEMANTICS 111

c

(c | s |= let x • Skip)
ε−→ (c | end x s |= Skip)

(+)

The step case of scoped actions is covered by rule 5.10 which is derived from the
general one 5.3. The representation of this rule is not shown because it corresponds
exactly to the original rule.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x •A1)
l−→ (c2 | s2 |= let x •A2)

(5.10)

An other example of derived rules contains input and output communications
whose rules are extracted from the general ones defined earlier. The output prefixed
action rule is derived from 5.5 by replacing the corresponding definition of the action.
A fresh symbolic HOL variable is introduced to represent the communicated value.
The transition is labeled by the corresponding label out (d w0) as for the general
oPrefix rule.

c

(c | s |= d !e → A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(5.11)

c

(c | s |= d !e → A)
out (d w0)−−−−−−→ (c ∧ w0 = e s | s |= A)

(+)

The input prefixed action rules (5.12) are derived from the general rule for
iPrefix 5.4. The original definition of input communications contains a predicate T
that restricts the type of the received values. In our representation of he semantics,
the channels are well typed functions and the type checking system will ensure that
received values are well-typed. The predicate can be omitted from the definition of
the prefixed action and the rule is simpler. However, in the case of restricted input
communications, this predicate is very important since it carries more information
than just type information. This is a consequence of the difference between Circus
types and HOL types. A second rule is introduced to cover the case of restricted
input communications using a set of valid values T . The input communication rule
introduces a variable to the state like for the variable introduction rule 5.8. The
transition is labeled by in (d w0), where w0 is a fresh symbolic HOL variable.

112 CHAPTER 5. SEMANTICS BASED TESTING

c ∧ T 6= ∅ x /∈ αs

(c | s |= d?x : T → A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x •A)

(5.12)

c

(c | s |= d?x → A)
in (d w0)−−−−−→ (c | var x w0 s |= let x •A)

(+)

c w0 ∈ T

(c | s |= d?x ∈ T → A)
in (d w0)−−−−−→ (c ∧ w0 ∈ T | var x w0 s |= let x •A)

(+)

A special case of prefixed actions is synchronizations where no value is exchanged.
The transition rule 5.13 describes the evolution of this action.

c

(c | s |= d → A)
d−→ (c | s |= A)

(5.13)

c

(c | s |= d → A)
ev (d)−−−−→ (c | s |= A)

(+)

The sequence action rules are introduced directly in the inductive definition of the
transition relations since they do not manipulate variables explicitly. The first rule
for sequence (5.14) is the final step where the first action is Skip. The representation
of this rule is omitted because it is the same as the original rule.

c

(c | s |= Skip ; A)
ε−→ (c | s |= A)

(5.14)

The second rule (5.15) for sequential composition contains the evolution step
when the first action can evolve. The representation of the rule is almost the same,
only a condition is added to the premises to ensure that the action is not Skip.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1 ; B)
l−→ (c2 | s2 |= A2 ; B)

(5.15)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) A1 6= Skip

(c1 | s1 |= A1 ; B)
l−→ (c2 | s2 |= A2 ; B)

(+)

5.3. CIRCUS OPERATIONAL SEMANTICS 113

The internal choice rules (5.16) describe an internal non-deterministic choice
between two actions. The representation of the rules is the same as the original, it
is then omitted here.

c

(c | s |= A1 u A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A2)

(5.16)

In an external choice between two actions, the choice is controlled by the envi-
ronment by interacting with the system. The choice is not made immediately, but
only if one of he actions proposes a communication. A special action is used to define
local blocks that ensure the evolutions of the two actions until a communication is
proposed. This action is written (loc c1 | s1 • A1)� (loc c2 | s2 • A2).

The external choice rule (5.17) introduces a local block with the two actions in
the initial constraint and state. The representation of this rule is not shown since
it is not changed.

c

(c | s |= A1 2 A2)
ε−→ (c | s |= (loc c | s •A1)� (loc c | s •A2))

(5.17)

Local blocks allow actions to evolve until a communication is possible or to the
end of their evolution (Skip). This behavior is described in three couples of dual
rules. The first couple of rules (5.18 and 5.19) covers the final case where one of
the actions is Skip. In this case the finished action is automatically chosen in the
resulting configuration. The representation of these rules corresponds exactly to the
rules themselves.

c1

(c | s |= (loc c1 | s1 • Skip)� (loc c2 | s2 •A))
ε−→ (c1 | s1 |= Skip)

(5.18)

c2

(c | s |= (loc c1 | s1 •A)� (loc c2 | s2 • Skip))
ε−→ (c2 | s2 |= Skip)

(5.19)

The second couple of rules for local blocks (5.20 and 5.21) covers silent evolution
of the local actions. If one of the actions can evolve silently to a given configuration,
the whole local block will evolve following the same configuration.

114 CHAPTER 5. SEMANTICS BASED TESTING

(c1 | s1 |= A1)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 •A1)

�
(loc c2 | s2 •A2)

 ε−→

c | s
|= (loc c3 | s3 •A3)

�
(loc c2 | s2 •A2)

(5.20)

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 •A1)

�
(loc c2 | s2 •A2)

 ε−→

c | s
|= (loc c1 | s1 •A1)

�
(loc c3 | s3 •A3)

(5.21)

The last couple of rules (5.22 and 5.23) represents the most important case where
the choice is actually made. If one of the actions can interact with the environment
using a communication, the whole block will follow the same evolution of this action.

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 •A1)� (loc c2 | s2 •A2))
l−→ (c3 | s3 |= A3)

(5.22)

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 •A1)� (loc c2 | s2 •A2))
l−→ (c3 | s3 |= A3)

(5.23)

Guarded actions define a conditional behavior using a guard g defined as a
predicate and an action A. The transition rule for guarded actions (5.24) requires as
a premise that the guard predicate must be satisfiable in the current state. In this
case, the guard predicate is added to the constraint, and the execution continues
with the associated action. The expression (g s) evaluates the guard g in the current
state s : it replaces the variables in g with their corresponding symbolic variables.

c ∧ (s; g)

(c | s |= g & A)
ε−→ (c ∧ (s; g) | s |= A)

(5.24)

c (g s)

(c | s |= g & A)
ε−→ (c ∧ g s | s |= A)

(+)

5.3. CIRCUS OPERATIONAL SEMANTICS 115

The hiding operator is used to internalize some events whose channels are in a
given channel set cs . The elementary case is when the action is Skip, the hiding
will not affect this action since no interaction will be made. The first rule (5.25)
describes this situation when hiding over Skip can only evolve silently to Skip. The
representation of this rule is omitted because it is unchanged.

c

(c | s |= Skip \ cs)
ε−→ (c | s |= Skip)

(5.25)

Hiding over other actions different from Skip requires the definition of additional
functions. The first function is chan which is a partial function from labels to events
defined as follows:

1 fun chan::"’ϑ label ⇒’ϑ option" where

2 chan ε = None

3 | chan (in e) = Some e

4 | chan (out e) = Some e

5 | chan (ev e) = Some e

This definition is different from the original one since it returns an event and not
a channel because channels are not of the same type in our representation. This
problem was already discussed in the denotational semantics 4.3.2.2 where a type
class (ev_eq) defines a channel equality operator for events.

The second function needed in hiding rules is a channel set membership, that
checks if the channel of an event is contained in the channels of a set of events. This
function (filter_chan_set) is defined using ev_eq as follows:

1 definition filter_chan_set::"’ϑ ⇒’ϑ set ⇒bool" where

2 filter_chan_set a cs = ¬(∃ e∈cs. ev_eq a e)

The rules of hiding operator can be defined using these two functions. The first
rule (5.26) covers the case of external event i.e. an interaction on a channel which is
not in the hidden channel set. In this case the event is not hidden and the execution
continues by hiding the remaining action. In the representation of this rule, the
channel set cs is replaced with an event set es and the corresponding function is
used to check channels membership.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε chan l /∈ cs

(c1 | s1 |= A1 \ cs)
l−→ (c2 | s2 |= A2 \ cs)

(5.26)

116 CHAPTER 5. SEMANTICS BASED TESTING

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε filter chan set (the (chan l)) es

(c1 | s1 |= A1 \ es)
l−→ (c2 | s2 |= A2 \ es)

(+)

The last rule (5.27) covers the second case where the evolution of the action is
internal. An internal evolution can either be with a silent transition or with an
event that must be hidden, in both cases the transition will be labeled with ε. In
the representation of this rule, event sets are used instead of channel sets and the
corresponding channel membership function filter chan set is used.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs)
ε−→ (c2 | s2 |= A2 \ cs)

(5.27)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ ¬ filter chan set (the (chan l)) es

(c1 | s1 |= A1 \ es)
ε−→ (c2 | s2 |= A2 \ es)

(+)

Like external choice, parallel composition requires a particular action to keep
track of the evolution of parallel action blocks. This particular action is written
(par s1 | x1 • A1) |[cs]| (par s2 | x2 • A2), where x1 and x2 are name sets and cs is
a channel set. This action is a bit different from the one defined in [CG11], where
each block contains also a local constraint. The definition used in this thesis is given
in [CG10] and uses only one global constraint. The local constraints are omitted
because, in addition to be redundant with the global constraint, they prevent global
restrictions over synchronization values.

The rule 5.28 describes a silent transition from the parallel operator to the par-
allel blocks operator. In the formalization of the rule, the channel set is represented
by an event set and the name sets are represented by a special state update function
(see section 4.3.2).

c

(c | s |= A1 |[x1 | cs | x2]|A2)
ε−→

c | s
|= (par s | x1 •A1)

|[cs]|
(par s | x2 •A2)

 (5.28)

The parallel blocks may evolve in three different scenarios: (i) with final actions,
(ii) with a non synchronized event or (iii) with a synchronization of the two blocks.
The first case is described in rule 5.29, where the two actions cannot evolve anymore

5.3. CIRCUS OPERATIONAL SEMANTICS 117

(i.e. Skip). The parallel blocks are merged in one final configuration, where the
action is Skip and the state is the merge of the local blocks states.

The representation of the rule depends on the representation of the name sets
and the state merge operation ((∃ x ′2 • s1) ∧ (∃ x ′1 • s2)). As explained in section
4.3.2, a name set is a special state update function, that copies some values from a
local state to a global state. Using this definition, the state merge operation can be
defined by the composition of the two name sets as follows:

1 definition

2 StateMerge::"’σ local_state ⇒’σ local_state ⇒’σ ⇒’σ "
3 where

4 StateMerge (s1, ns1) (s2, ns2) s = ns2 s2 (ns1 s1 s)

where the local_state is defined by a pair (state, name set) and the state merge
will copy the corresponding values from local states to the global state.

c
c | s
|= (par s1 | x1 • Skip)

|[cs]|
(par s2 | x2 • Skip)

 ε−→

 c | (∃ x ′
2 • s1) ∧ (∃ x ′

1 • s2)
|=

Skip

 (5.29)

c
c | s
|= (par s1 | x1 • Skip)

|[cs]|
(par s2 | x2 • Skip)

 ε−→

 c | StateMerge (s1, x1) (s2, x2) s
|=

Skip

 (+)

The second possible evolution of the parallel block is when one of the actions
evolves silently or with an event whose channel is not in the synchronization set.
The full parallel block will evolve following the local evolution, without any synchro-
nization. The rules 5.30 and 5.31 cover this situation. Only the representation of the
first one is shown, the second is just the dual. Note that the channel membership
function filter chan set is also used in this rule.

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 l−→

c3 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s2 | x2 •A2)

(5.30)

118 CHAPTER 5. SEMANTICS BASED TESTING

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ (filter chan set (the (chan l)) es) c3

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 l−→

c3 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s2 | x2 •A2)

(+)

(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 l−→

c3 | s
|= (par s1 | x1 •A1)

|[cs]|
(par s3 | x2 •A3)

(5.31)

The last –and more interesting– evolution is the synchronization of the two ac-
tions with events whose channels are in the synchronization set. In this situation,
three different cases are possible depending on the resulting event type in the la-
bel. The first case is when the two actions can perform a synchronization on the
same channel without exchanging values. This case is described in rule 5.32 where
the resulting configuration is the synchronization of the two local configurations.
The representation of this rule uses also the filter chan set as channel membership
function for the synchronization event.

(c | s1 |= A1)
d−→ (c3 | s3 |= A3) (c | s2 |= A2)

d−→ (c4 | s4 |= A4)
d ∈ cs c3 ∧ c4

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 d−→

c3 ∧ c4 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(5.32)

(c | s1 |= A1)
ev d−−−→ (c3 | s3 |= A3) (c | s2 |= A2)

ev d−−−→ (c4 | s4 |= A4)
¬ (filter chan set d es) c3 ∧ c4

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 ev d−−−→

c3 ∧ c4 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(+)

The second case is the synchronization of two input events on the same channel:
this produces also an input event and the exchanged value is the same in both ac-
tions. This situation is described in rule 5.33 with its corresponding representation.

5.3. CIRCUS OPERATIONAL SEMANTICS 119

Since labels are represented by symbolic events, the distinction between the channel
and the symbolic value is not possible. Fortunately, the equality of the two symbolic
events implies the equality of channels and the equality of symbolic values.

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)
d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 d?w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(5.33)

(c | s1 |= A1)
in d1−−−→ (c3 | s3 |= A3) (c | s2 |= A2)

in d2−−−→ (c4 | s4 |= A4)
¬ (filter chan set d1 es) ¬ (filter chan set d2 es) c3 ∧ c4 ∧ d1 = d2

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 in d2−−−→

c3 ∧ c4 ∧ d1 = d2 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(+)

The last case of synchronization occurs when one action produces an output on
some channel and the other action interacts on the same channel (with an input
or an output). This case is described in rule 5.34 where the whole parallel block
produces an output on the same channel. In the representation of this rule, event
equality is used to represent channel and value equality and channel membership is
done using filter chan set .

(c | s1 |= A1)

d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d!w2−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d?w2−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d!w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 d!w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(5.34)

120 CHAPTER 5. SEMANTICS BASED TESTING

(c | s1 |= A1)

in d1−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
out d2−−−−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

out d1−−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
in d2−−−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

out d1−−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
out d2−−−−→ (c4 | s4 |= A4)

¬ (filter chan set d1 es) ¬ (filter chan set d2 es) c3 ∧ c4 ∧ d1 = d2

c | s
|= (par s1 | x1 •A1)

|[cs]|
(par s2 | x2 •A2)

 out d2−−−−→

c3 ∧ c4 ∧ d1 = d2 | s
|= (par s3 | x1 •A3)

|[cs]|
(par s4 | x2 •A4)

(+)

The last considered action is the recursion. Its rule defines an additional element
in the configuration representing an environment for actions. This environment as-
sociates process variables to their corresponding actions. The behavior of recursion
is described using two rules 5.35 and 5.36. The first rule introduces the mapping
between the process variable and the action in the environment and continues the
execution with this action. The second rule replaces the process variable with its
corresponding action from the environment in order to continue with the recursion.
The recursion may introduce nested scopes of the same variable, which is not sup-
ported in the original UTP scope definition. Some variable renaming is needed in
order to avoid this problem.

The representation of this rule depends on our representation of recursion in
Isabelle/Circus. As explained in section 4.3.3 the HOL least fixed-point operator lfp
is used to define recursion over Circus actions. The rules of recursion are represented
using only one rule that unfolds the lfp operator using a predefined HOL rule. This
unfolding rule is only possible for monotonic functions over actions, this condition
is proved to be satisfied for all considered Circus operators. No process environment
is needed in this case and the variables renaming is avoided thanks to the state
representation that supports nested scoping.

c

(c | s |= µ X •A, δ)
ε−→ (c | s |= A, δ ⊕ {X 7→ A})

(5.35)

c

(c | s |= X , δ)
ε−→ (c | s |= δ X , δ)

(5.36)

monotonic A

(c | s |= (µ X •A(X))) = (c | s |= A(µ X •A(X)))
(+)

5.3. CIRCUS OPERATIONAL SEMANTICS 121

The transition relation is defined inductively using the rules presented earlier.
The soundness of these rules w.r.t. the denotational semantics is still to be proved,
but not in the context of our work. This requires the introduction of a denota-
tional definition of the transition relation based on UTP. This definition is given in
[WCGF07] where the soundness proof is already performed for an earlier version of
the operational semantics of Circus.

5.3.8 Derived rules

As explained in section 5.2, operational semantics elimination rules are very im-
portant for test-generation. These rules are derived from the introduction rules of
the transition relation. In addition to elimination rules, other rules are defined to
handle sets of transition relations and not single transitions. These rules are used,
for example, in the generation of a (possibly infinite) set of continuations. These
two kinds of derived rules are explained in the sequel.

5.3.8.1 Elimination rules

The inductive definition of the operational semantics states introduction rules of a
labeled transition relation over configurations. Isabelle/HOL uses this specification
to define the least fixed-point of the relation on the lattice of power sets (according to
Knaster-Tarski). From that the prover derives the introduction rules, their inversion
(as case-splitting rule), and an induction principle.

The case-splitting rule can be instantiated to concrete patterns for the actions,
say A = Skip or A = B uC , and simplified using some knowledge from the denota-
tional semantics. This results in a collection of elimination rules, which are essential
for test-generation. For each introduction rule, a corresponding elimination rule is
derived. For example an introduction rule is given in the following:

c

(c | s |= Skip ; A)
ε−→ (c | s |= A)

The elimination rule corresponding to this rule is:

(c | s |= Skip ; A)
l−→ cf1

[cf1 = (c | s |= A) l = ε c]
···

Q

Q

122 CHAPTER 5. SEMANTICS BASED TESTING

This rule can be used in a proof state where the premises contain a similar transition
relation where the target configuration cf1 is unknown. Using this rule, the unknown
configuration is replaced with its value in the premise as well as the transition label.

The complete list of elimination rules of the operational semantics can be found
in Appendix C.2.2.

5.3.8.2 Additional derived rules

The definitions of the test sets in Circus requires us to reason about sets of events
and not only single events. The operational semantics rules presented earlier are
defined for single events and thus describe single transitions. In some cases, sets
of transitions must be defined and thus rules over sets of events are needed. We
derived a new set of equality rules based on the introduction and elimination rules
of the operational semantics. An example is the equality rule for schema expressions
given below:

{t | c1 s1 A1 l • (c | s |= Op)
l−→ (c1 | s1 |= A1) ∧ P t c1 s1 A1 l}
=⋃

s ′ ∈ {s ′′ | Op(s , s ′′)} • {t | c ∧ P t (c ∧ Op(s , s ′)) s ′ Skip ε}

This rules describes all the possible evolutions of a schema expression Op in a
given state s and with a given constraint c. This rule can be applied for any set of
this form, were the free variable P can be instantiated to any set definition predicate.
The set elements t are generic and depends on the definition of the set predicate
P . In some cases, it will be used as an event or a label in order to compute the set
of possible transition labels. In other cases, it will be used to describe the set of
configurations that can occur after a given configuration.

The way of writing these rules is very important, especially the presented rule
for schema expressions. All possible evolutions of the schema expression are given
by a union over all the possible output states of the schema relation. Since schema
expressions define state updates using relations, an infinite number of output states
may be possible. This infinite set of output states is isolated using the global union
operator. The remaining set definition is based on the predicate P which addresses
only one possible thus symbolic output state.

Similar rules are derived for each Circus action; the complete list of rules is given
in Appendix C.2.3.

5.4 Symbolic test-generation with CirTA

CirTA stands for Circus Testing Automation, which is a test-generation environment

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 123

for Circus based on Isabelle/Circus. As explained in Section 3.2.3.2, testing for
refinement in Circus is defined for two conformance relations: traces inclusion and
deadlocks reduction. These conformance relations are based on the important notion
of cstraces . In this section we give first the definition of cstraces – based on the
Circus operational semantics – and how they are generated. The test-generation is
then explained for each conformance relation, in addition to some useful definitions.

As explained in section 5.3.1, all symbolic definitions and computations are shal-
low. Consequently, all symbolic notions defined in [CG11] are symbolic from the
Isabelle’s point of view. In our higher-level point of view, all these notions are
introduced and defined concretely.

5.4.1 cstraces generation

As informally explained in section 3.2.3.2, cstraces(P) is the set of constrained
symbolic traces of the process P . A cstrace is a list of symbolic events associated
with a constraint defined as a predicate over the symbolic variables used in the
symbolic events. Events are given by the labels (different from ε) of the operational
semantics transitions. Some additional rules are defined in order to build those lists
from the operational semantics rules. We introduce a relation noted “=⇒” and
defined inductively by:

cf1
[]

=⇒ cf1

cf1
ε−→ cf2 cf2

st
=⇒ cf3

cf1
st

=⇒ cf3

cf1
e−→ cf2 cf2

st
=⇒ cf3 e 6= ε

cf1
e#st
=⇒ cf3

(*)

where cf1, cf2 and cf3 are configurations.
The introduction rules (*) are represented in our theories in the same way as

for the operational semantics rules (using an inductive relation definition). Some
inverted (elimination) rules are also derived from this definition in the same way as
for the operational semantics.

cstraces definition

The cstraces set definition is given in [CG11] using the trace composition relation
(*) as follows:

Definition 5.4.1.

cstracesa(c0, s0,P) =

{(st ,∃(αc \ αst) • c) | s P1 • αst ≤ a ∧ (c0 | s0 |= P)
st

=⇒ (c | s |= P1)}
cstracesa(begin state[x : T]P • end) = cstracesa(w0 ∈ T , x := w0,P)

124 CHAPTER 5. SEMANTICS BASED TESTING

One can read: the constrained symbolic traces of a given configuration are the
constrained symbolic traces that can be reached using the operational semantics
rules and starting from this configuration. The constrained symbolic traces of a
given action are those of an initial configuration defined by a true constraint, an
empty state and the this given action.

The shallow symbolic representation of this definition is simpler since the sym-
bolic alphabet a is not addressed explicitly. The symbolic constraint is also removed
because it is described by the set predicate. The definition of cstraces is introduced
in our theory as follows:

Definition 5.4.2.

cstraces(c0, s0,P) = {st | s P1 • c0 ∧ (c0 | s0 |= P)
st

=⇒ (c | s |= P1)}

Since the operational semantics rules contain premises that ensure the validity of
the target constraint, the trace constraint is a part of the set predicate. In a higher
point of view, the symbolic trace is represented by a set of concrete traces restricted
by the final constraint.

cstraces generation tactic

As explained in Section 5.2, tests are introduced as test specifications that will be
used for test-generation. The same idea is applied for trace generation, where a proof
goal is stated to define the traces a given system may perform. This statement is
given by the following rule, for a given process P :

length(tr) ≤ k tr ∈ cstraces(P)

Prog(tr)
(5.37)

where k is a constant used to bound the length of the generated traces.

Using proof techniques, a proof for this rule is started following a step by step
trace generation tactic. In each step, different simplification rules are applied on
the premises until no simplification is possible. The shallow symbolic definition of
cstraces makes it possible to simplify the set membership operator to a predicate
in the premises. This representation of the test specification as an inference rule is
very elegant. The premises describe the generation goal and the conclusion stores
the generation results. The derived elimination rules of the operational semantics
are the basis of the computations performed on the premises.

The final step of the generation produces a list of propositions, describing the
generated traces stored by the free variable Prog . This step is final since no more
simplifications are possible on the undefined free variable Prog . The trace generation
tactic is described by the following algorithm:

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 125

Data: k : the maximum length of traces

Simplify the test specification using the cstraces Definition 5.4.2;

while length ≤ k ∧ more traces can be generated do

Apply the elimination rules of (*) on the current goal;

Apply the elimination rules of the operational semantics on the resulting
subgoals;

end

The test specification 5.37 is introduced as a proof goal in the proof configuration.
The premise of this proof goal is first simplified using the definition of cstraces given
in 5.4.2. Each constrained symbolic trace can be seen as a concrete trace at this
stage of generation. The constraint is described in the premises by a predicate over
the HOL variables contained in the trace. After the first step, the resulting proof
goal premises contain predicates over the “=⇒” relation. The application of the
elimination rules (*) on this proof goal generates three possible continuations: the
empty trace, a trace preceded by an ε and an event followed by a trace. Each
possible continuation is described in a subgoal, describing a different possible trace.

The first resulting subgoal allows the construction of partial traces by considering
empty continuations. The other two cases make it possible to construct the traces
element by element using the operational semantics. The first element is given by
the label of a transition relation and the “=⇒” relation is used to describe the
continuation.

The elimination rules of the operational semantics are applied to the two last
subgoals in order to instantiate the first element. The system will try to match
the transition in the premise of the subgoal with the transitions of the operational
semantics. If a matching is found, the transition is replaced by an instantiation
of the configurations; this may lead to more than one subgoal if different match-
ings are possible (e.g. internal choice). Infeasible traces are described in subgoals
whose premises are false. In this case, the system is able to close these subgoals
automatically since ex falso sequitur quodlibet.

Specifications can describe an infinite recursive behavior and thus yields an in-
finite number of symbolic traces. The generation is then limited by a given trace
length k , defined as a parameter for the whole generation process. The rules are
applied repeatedly until this given depth k , or until there is no possible continuation.
The list of subgoals corresponds to the list of all possible traces whose length do not
exceed the given limit. The final proof state represents all the cstraces the system
can perform. An example is given in section 5.7 to illustrate this trace generation
process on a small specification.

The trace generation process is implemented in Isabelle as a tactic. The trace

126 CHAPTER 5. SEMANTICS BASED TESTING

generation tactic can be seen as an inference engine that operates with the derived
elimination rules of the operational semantics and the trace composition relation.
It is encoded in ML and added as a top-level tactic that can be used directly in
Isabelle proofs. This tactic is given as follows:

1 fun trace_generation_tac ctxt k = SELECT_GOAL

2 let

3 fun rules i = ...;

4 fun os_rule_tac i = (CHANGED o FIRST) (rules i);

5 fun os_rules_tac = TRY o REPEAT_ALL_NEW (os_rule_tac);

6 in

7 (eres_Inst_tac ctxt [(("k", 0), string_of_Int k)] @{thm reg_hyp})

1

8 THEN

9 REPEAT_ALL_NEW

10 ((empty_trace ctxt ORELSE’ split_trace ctxt)

11 THEN_ALL_NEW os_rules_tac) 1

12 THEN distinct_subgoals_tac

13 end

The tactic is defined as a function with to parameter ctxt that represents the
proof context and k which is the generation depth. Some predefined tactical com-
binators are used to describe the tactic (e.g. FIRST, TRY and THEN) Three local
functions are defined to simplify the definition:

� rules (line 3) contains the operational semantics elimination rules.

� os_rule_tac (line 4) uses the first function to define an application attempt
of the elimination rules.

� os_rules_tac (line 5) iterate -while possible- the application of the second
function.

The main tactic is defined in three sequential steps composed using the tacti-
cal combinator THEN . The first step (line 7) applies a regularity hypothesis (see
5.5) to limit the length of generated traces to the value of k. The second step
(lines 9-11) performs the trace generation repeatedly on all resulting subgoals using
REPEAT_ALL_NEW combinator. The trace generation is done by applying one of the
trace elimination rules empty_trace or split_trace. This corresponds to the ap-
plication of the elimination rules of the relation “=⇒” defined in *. The symbolic
events are retrieved by applying the operational semantics rules on all the resulting
subgoals. The last step of the generation tactic is the application of a predefined
tactic distinct_subgoals_tac to remove redundant subgoals (line 12).

This trace generation tactic needs to be installed as a proof method to the current
theory. This is done using the method_setup that associates to a rule name an ML

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 127

expression that describes the tactic to apply. The definition of the proof method for
trace generation is done as follows:

1 method_setup trace_generation =

2 Scan.lift Parse.nat --|

3 Method.sections Simplifier.simp_modifiers >>

4 (fn k => fn ctxt => SIMPLE_METHOD’ (trace_generation_tac ctxt k))

The description of the method starts by parsing two parameters: a natural num-
ber and an optional simplifier modifier (lines 2-3). The first parameter is the length
limit k of the generated traces. The second optional parameter is used to add some
simplification rules that will be used by the simplifier during the trace generation.
After installing this new method, it can be used directly in proof scripts. For exam-
ple, to generate traces of length less than 3, the defined proof method can be called
as follows:

1 apply (trace_generation 3)

5.4.2 test-generation for traces refinement

The first studied conformance relation for Circus-based testing corresponds to the
traces-inclusion refinement relation. This relation states that all the traces of the
SUT belong to the traces set of the specification, or in other words, the SUT should
not engage in traces that are not traces of the specification. Thus, a forbidden
cstrace is defined by a prefix which is a valid cstrace of the specification followed
by a forbidden symbolic event (continuation). As seen in Section 3.2.3.2 the set of
forbidden continuations is called csinitials , its definition is based on valid continua-
tions given by the csinitials set. Because of the constrained symbolic nature of the
cstraces and events, csinitials is not exactly the complement of csinitials .

csinitials definition

The csinitials set is the set of constrained symbolic events a system may perform
after a given trace. The csinitials set is defined in [CG11] as follows:

Definition 5.4.3. for every (st , c) ∈ cstracesa(P) we define

csinitialsa(P , (st , c)) =
{(se, c ∧ c1) | (st@[se], c1) ∈ cstracesa(P) ∧ (∃ a • c ∧ c1)}

Symbolic initials after a given symbolic trace are symbolic events that concate-
nated to this trace yield other valid symbolic traces. In this case, only events whose
constraints are compatible with the trace constraint are considered.

The shallow symbolic representation of this definition is given as follows:

128 CHAPTER 5. SEMANTICS BASED TESTING

Definition 5.4.4. for every tr ∈ cstraces(P) we define

csinitials(P , tr) = {e | tr@[e] ∈ cstraces(P) ∧ (c ∧ c1)}

All explicit symbolic manipulation is removed, since they are implicitly handled
by the prover. The constraint of the trace is not considered, since at this level tr is
considered as a single concrete value.

csinitials generation tactic

The generation of csinitials is done using a similar tactic as for cstraces . Each
resulting subgoal corresponds to one possible csinitial after a given cstrace. Unfor-
tunately, this technique enumerates the elements of csinitials and does not generate
the whole csinitials set, which is more important for test-generation. The reason is
that the test specification is usually written in form of an implication and not as an
equivalence. Consequently, the trace generation tactic based on case-splitting rules
generates only a subset of csinitials because of the implication. In order to generate
the full set of csinitials , a different test theorem is written using set equality. This
test theorem is defined as follows:

S = csinitials(P , tr)

Prog S
(5.38)

in this case, the free variable Prog will record the set S of all csinitials of P after
the (symbolic) trace tr .

Due to the form of the new test specification 5.38 for csinitials sets, the defined
operational semantics rules cannot be used directly. The generic derived rules in-
troduced in section 5.3.8.2 can be used to generate the set of possible events after
a given configuration. Using these rules the csinitials set generation tactic becomes
very simple. The rules are added as simplification rules to the system simplifier and
the latter will apply them automatically when it is invoked.

An additional equality rule is defined for the trace-composition relation “=⇒”,
because the definition of csinitials is based on cstraces . This rule is similar to the
derived rules introduced in section 5.3.8.2. Its definition is given by the following:

{t | ∃ cf1 • cf
tr

=⇒ cf1 ∧ P t cf1 tr} =
{t | tr = [] ∧ P t cf []} ∪
{t | ∃ cf1 cf2 • cf

ε−→ cf1 ∧ cf1
tr

=⇒ cf2 ∧ P t cf2 tr} ∪{
t | ∃ cf1 cf2 e tr1 • cf

e−→ cf1 ∧ cf1
tr1

=⇒ cf2 ∧
e 6= ε ∧ tr = e#tr1 ∧ P t cf2 (e#tr1)

}

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 129

All sets defined from the trace-composition relation “=⇒” between two configu-
rations cf and cf1 can be written as a union of three sets. The first one covers the
case of empty traces, the configurations are then equal. The second set contains all
continuations after an internal transition. The last set splits the transition to one
simple transition with one element followed by a trace transition over the remaining
tail of the trace.

csinitials definition

The csinitials set contains the continuations that are not possible in the specification.
In order to generate tests for the traces inclusion relation, we need to introduce the
definition of csinitials . This set contains the constrained symbolic events the system
should refuse to perform after a given trace. These elements will be used to lead
the SUT to execute a prohibited trace, an error is then detected if the SUT do so.
The csinitials set is defined as follows:

Definition 5.4.5. for every (st , c) ∈ cstracesa(P) we define

csinitials
a
(P , (st , c)) =

(d .α0, c1) |(
α0 = a(#st + 1) ∧
c1 = c ∧ ¬

∨
{c2 | (d .α0, c2) ∈ csinitialsa(P , (st , c))}

)
The csinitials set is built from the csinitials set: if an event is not in the accepted
csinitials it is added to the csinitials constrained with the constraint of the trace.
If the event is in the csinitials it will be added with the negation of its constraint.

The new symbolic variable α0 is defined as a fresh variable in the alphabet a after
the symbolic variables used in the symbolic trace st . The definition of this symbolic
variable is part of the symbolic execution defined in [CG11] for Circus testing.

In our theories, the symbolic execution is carried out by the symbolic computa-
tions of the prover. Consequently, all explicit symbolic constructs are not added in
the representation of csinitials . This representation is introduced as follows:

Definition 5.4.6. for every tr ∈ cstraces(P) we define

csinitials(P , tr) = {d .α0 | ¬ Sup{d .α0 ∈ csinitials(P , tr)}}

where the Sup operator is the supremum of the lattice of booleans which is predefined
in the HOL library, i.e. generalized set union. No constraint is associated to the
trace tr because it is seen as a concrete trace at this level. Symbolic csinitials are
represented by sets of events where the constraint is built using the set membership
operator over the csinitials set.

130 CHAPTER 5. SEMANTICS BASED TESTING

The test specification for the traces inclusion conformance relation is given by:

tr ∈ cstraces(P) ∧ e ∈ csinitials(P , tr)

Prog(tr@[e])
(5.39)

The resulting symbolic tests are built from a (symbolic) trace of P concatenated to
an element of its csinitials set. The constraint is retrieved from the simplification
of the set membership operator in the premises of the proof goal. Starting from the
resulting symbolic sequences, the symbolic tests can be obtained by inserting special
verdict events pass , fail , and inc as described in Section 3.2.3.2. This last step is
not part of the general test-generation process, since it depends on the concrete
implementation of the SUT.

csinitials generation tactic

The generation of tests (smaller than a given length k) for traces inclusion is done
in two stages. First, the trace generation tactic is invoked to generate the symbolic
traces of length smaller than k . For each generated trace, the set of the possible
csinitials after this trace is generated using the corresponding generation tactic.
Using this set, the feasible csinitials are generated and added as a subgoal in the
final generation state. The generation tactic can be represented in the following
algorithm:

Data: k : the maximum length of tests

Generate cstraces using trace generation tactic for a length k;

foreach generated trace tr do

Simplify the test specification (5.39) using the csinitials Definition 5.4.6;

Generate the csinitials after tr using csinitials set generation tactic;

Apply case-splitting and simplification rules to generate the elements of
csinitials ;

end

The derived rules defined for sets of transitions are used in this case to generate
the csinitials set after a given trace tr . The trace is seen as a concrete trace in a
higher point of view, with a constraint which is expressed in the premises of the
test specification. The elements of csinitials can be generated using this set and
listed one by one using case-splitting rules. Each case describes a possible element
of csinitials , whose constraint is defined in the premises.

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 131

In order to introduce test verdicts into the generated tests, a recursive function
is defined in the testing theory. Before introducing this function, the verdict data
type must be defined first.

1 datatype ’Θ verdict_event = pass | fail | inc | int ’Θ

This defines a new type verdict_event with four constructors: the three verdicts
pass, fail and inc and an interaction defined by int. The verdict introduction
function is defined recursively on the trace and on a given csinitials event as follows:

1 fun add_verdict_trincl::"’Θ list ⇒’Θ ⇒’Θ verdict list" where

2 add_verdict_trincl [] a = [pass, int a, fail]

3 | add_verdict_trincl (e#l) a = [inc, int e]@(add_verdict_trincl l a)

As seen in Chapter 3.2.3.2, a pass verdict is inserted after the trace, followed
by the tested element and a fail verdict. All the elements of the trace are added
preceded by an inc verdict.

5.4.3 test-generation for deadlocks reduction

The deadlocks reduction conformance relation, also known as conf, states that all the
deadlocks must be specified. Testing this conformance relation aims at verifying that
all specified deadlock-free situations should be accepted by the SUT. A deadlock-
free situation is defined by a symbolic trace followed by the choice among a set of
events the system should not refuse, i.e. if the system is waiting for an interaction
after performing a valid trace, it should accept to perform at least one element of
the proposed csacceptances set (see section 3.2.3.2).

From this definition, we note that the csacceptances set is potentially infinite.
Indeed, adding elements to an acceptance set gives another acceptance set. For
practical reasons, we consider a new definition, the csacceptancesmin set which is a
set of minimal acceptance sets. Minimal means that removing any element from an
acceptance set leads to a non-acceptance (possibly blocking) set.

In a csacceptances set, input and output events are not treated in the same
way because they represent different situations. Inputs are controlled by the envi-
ronment, consequently, any instance of the input symbolic value is accepted if the
symbolic input event is accepted. Outputs are different since they are controlled by
the system and the concrete output value may be chosen in a nondeterministic way.
All instantiations of output symbolic events must be considered in order to cover
this internal nondeterminism.

csacceptances definition

In order to distinguish input symbolic events from output symbolic events, a new
set called IOcsinitials set is defined. This set contains, for a given configuration, the

132 CHAPTER 5. SEMANTICS BASED TESTING

constrained symbolic initials where input and output information is recorded. Since
inputs and outputs are considered separately in the labels of the transition relation,
the set of IOcsinitials is easy to define. It contains the set of labels (different from ε)
of all possible transitions of a given configuration. The set of IOcsinitials is defined
by the following:

Definition 5.4.7.

IOcsinitialsa
st(c1, s1,A1) ={

(l ,∃(αc2 \ (α(st@[l]))) • c2) | s2, A2 •
(c1 | s1 |= A1)

l−→ (c2 | s2 |= A2) ∧ l 6= ε ∧ α(st@[l]) ≤ a

}

A symbolic acceptance set after a given trace must contain at least one symbolic
event from each IOcsinitials set obtained from a stable configuration after this trace.
In our representation of this definition the symbolic alphabets a and st are not
addressed explicitly. In addition to this, the constraint is defined in the set predicate.
The definition of IOcsinitials is given in our theories as follows:

Definition 5.4.8.

IOcsinitials(c1, s1,A1) =

{l | c2, s2, A2 • (c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) ∧ l 6= ε}

The general definition of csacceptances was introduced in [CG11] as follows:

Definition 5.4.9. for every (st , c) ∈ cstracesa(P) we define

csacceptancesa(c1, s1,A1, (st , c)) = SX |

∀ c2, s2,A2•(

(c1 | s1 |= A1)
st

=⇒ (c2 | s2 |= A2) ∧
(∃ a • c2 ∧ c) ∧ stable(c2 | s2 |= A2)

)
•

∃ iose ∈ SX • iose ∈ IOcsinitialsa
st(c2, s2,A2) �a c

where

stable(c1 | s1 |= A1) = ¬ ∃ c2, s2,A2 • (c1 | s1 |= A1)
ε−→ (c2 | s2 |= A2)

S �a c = {(se, c ∧ c1) | (se, c1) ∈ S ∧ (∃ a • c ∧ c1)}

The csacceptances are computed using the IOcsinitials after a given stable config-
uration of the specification. A configuration is stable if no internal silent evolution
is possible directly for its action. Only IOcsinitials whose constraints are compat-
ible with the constraint of the tested trace are considered. A filter function � is
introduced in order to remove unfeasible initials.

5.4. SYMBOLIC TEST-GENERATION WITH CIRTA 133

The csacceptances set defined above is infinite and contains redundant elements
since any superset of a csacceptances is also a csacceptances. A minimal sym-
bolic acceptances set csacceptancesmin can be defined to avoid this problem. The
csacceptancesmin set after a given cstrace must contain exactly one element from
each IOcsinitials set. Unlike csacceptances, the csacceptancesmin contain only ele-
ments that are possible IOcsinitials . The csacceptancesmin is defined as follows:

Definition 5.4.10. for every tr ∈ cstraces(P) we define

csacceptancesmin(c1, s1,A1, tr) =

⊗iose |

 ∀ c2, s2,A2 |(
(c1 | s1 |= A1)

tr
=⇒ (c2 | s2 |= A2) ∧ stable(c2 | s2 |= A2)

)
• iose ∈ IOcsinitials(c2, s2,A2)

The
⊗

operator defined below is a generalized Cartesian product whose elements
are sets, rather than tuples. It takes a set of sets SX as argument, and defines also
a set of sets, characterized as follows:⊗

SX =

{
S1 |

(∀ S2 ∈ SX • S2 6= ∅ ∧ (∃!e ∈ S2 • e ∈ S1))
∧ (∀ e ∈ S1 • (∃ S2 ∈ SX • e ∈ S2))

}
The resulting csacceptancesmin of this definition is minimal (not redundant), but

can still be infinite. This can raise from an unbound internal nondeterminism in the
system that leads to infinite possibilities. In this case, the set cannot be restricted
and all elements must be considered.

The test specification for the deadlocks reduction conformance relation is:

tr ∈ cstraces(P) ∧ S ∈ csacceptancesmin(true, {||},P , tr)

Prog(tr , S)
(5.40)

The symbolic tests are composed of a first part, which is a (symbolic) trace of P , and
a second one, which is a choice over the elements of one of the constrained symbolic
acceptance set of the trace. The final symbolic tests are obtained from these parts
by insertion of the verdict events as in Section 3.2.3.2.

csacceptances generation tactic

test-generation in this case is based on the generation of the csacceptancesmin set.
For a given symbolic trace generated from the specification, the generation of the
sets of csacceptancesmin is performed in three steps. First, all possible stable con-
figurations that can be reached by following the given trace are generated. This is
done using the same set of derived rules introduced in section 5.4.2 and used for
csinitials set generation. In the second step, all possible IOcsinitials are generated

134 CHAPTER 5. SEMANTICS BASED TESTING

for each configuration obtained in the first step. The generation is performed by
applying one more time the same set of rules. Finally, the generalized Cartesian
product is computed from all resulting IOcsinitials . The generation tactic is defined
in the following algorithm:

Data: k : the maximum length of tests

Generate cstraces using trace generation tactic for a length k;

foreach generated trace tr do

Simplify the test specification using the csacceptancesmin Definition
5.4.10;

Generate all stable configurations after tr using the derived rules;

foreach generated stable configuration cf do

Generate all IOcsinitials after this configuration cf using the derived
rules;

end

Introduce the definition of
⊗

for the resulting set;

Apply simplification rules to generate the sets csacceptancesmin ;

end

5.5 Test Selection Hypotheses

Symbolic tests cannot be used directly for testing. A finite number of concrete
(executable) tests must be instantiated first from these symbolic tests. However,
in some situations, no finite number of instances can be found. This problem can
result from two cases: (i) either the symbolic test is unbounded, (ii) or the symbolic
test accepts an infinite number of instances. Some selection criteria can be used
to choose a finite subset of concrete tests. They are formalized as test selection
hypotheses: assuming these hypotheses the selected tests form an exhaustive test
set [GLG08, CG11].

The length of the symbolic tests can be unbounded if the specification contains
loops. A classical selection hypothesis that can be used in this case is the regularity
hypothesis over values that support a size function. This regularity hypothesis is
defined over the traces length. It states that if the SUT behaves correctly for traces
shorter than a given length, it will then behave correctly for all the possible traces.

For the case of other value types used to define infinite symbolic tests, other
selection criteria are needed to choose a finite subset of concrete tests. A unifor-
mity hypothesis can be used to state that the SUT will behave correctly for all the

5.6. TEST INSTANTIATIONS 135

instances if it behaves correctly for some subset of them. Such a subset can be
obtained using on-the-fly constraint solving as, for instance, in [BW07, BW12]

Test selection hypotheses are used explicitly in our test-generation framework
CirTA (Circus Test Automation). A regularity hypothesis is used on traces length,
where the maximum regularity length is provided as parameter. This hypothesis is
integrated in the test theorem before the generation starts. The trace length limit
is then used to stop the traces generation. The generated symbolic traces are then
used to generate symbolic tests corresponding to each conformance relation. For
each resulting symbolic test, a uniformity hypothesis is stated to extract a witness
value for each symbolic value in the test. Concrete (witness) values are represented
by Isabelle schematic variables representing arbitrary (but constrained) values.

The regularity and uniformity hypotheses are respectively defined as introduction
rules as follows:

[length(tr) < k]
....

P (tr) THYP((∀ tr | length(tr) < k • P (tr))→ (∀ tr • P (tr)))

∀ tr • P (tr)

P ?x1...?xn THYP((∃ x1, ..., xn • P x1...xn)→ (∀ x1, ..., xn • P x1...xn))

∀ x1, ..., xn • P x1...xn

where P is a predicate that characterizes a (symbolic) test case, tr is a (symbolic)
trace and THYP is a constant used to preserve test hypotheses from automatic
simplifications. Schematic variables are represented in Isabelle by prefixing their
names with the ? symbol.

5.6 Test Instantiations

The last step of test-generation is the selection of witness values corresponding
to schematic variables produced by the uniformity hypothesis. Constraint solvers
that are integrated with Isabelle are used for this instantiation, in the same way
as what was done in [BW12]. Two kind of solvers can be used: random solvers
and SMT solvers. The random constraint solving is performed using QuickCheck,
that instantiates randomly the values of the schematic variables. An integration of
QuichCheck with the Isabelle simplifier defined for HOL-TestGen can also be used
for more efficient random solving. The second kind of integrated constraint solvers
are SMT solvers and especially Z3.

136 CHAPTER 5. SEMANTICS BASED TESTING

An important drawback of the “off-line” test instantiation presented so far, is
that it instantiates input but also output values. When executing such a test,
the system may return different but correct output values, that might be seen as
inconclusive tests. The solution to this problem is to use the so-called “on-line”
test instantiation performed at test execution time. In this case, only input values
are instantiated and every output value is tested against the constraint to check its
validity. If the returned value is correct w.r.t. to the constraint, it will be used to
simplify the remaining test constraint and the execution continues.

5.7 Example

In this section, the test-generation tactics are illustrated using our small example,
the FIG specification (Fig. 3.1). First, we recall the specification of FIG , then the
three generation tactics are illustrated. For this example, we use a concrete version
of FIG , where identifiers are natural numbers:

channel req channel ret , out : N

process FIG =̂ begin

state S == [idS : P N]

Init =̂ idS := ∅
Out
∆S
v ! : N

v ! /∈ idS
idS ′ = idS ∪ {v !}

Remove
∆S
x? : N

idS ′ = idS \ {x?}

• Init ; var v : N •
(µ X • (req → Out ; out !v → Skip 2 ret?x → Remove) ; X)

end

5.7.1 Generating cstraces

For generating the cstraces of FIG , the test specification (5.37) is used as proof
state:

tr ∈ cstraces(FIG)

Prog(tr)

The regularity hypothesis is applied for a length less than 4, this results in two
subgoals:

5.7. EXAMPLE 137

length(tr) < 4 tr ∈ cstraces(FIG)

Prog(tr)

THYP(
∀ tr • length(tr) < 4 ∧ tr ∈ cstraces(FIG) −→ Prog(tr)

∀ tr • tr ∈ cstraces(FIG) −→ Prog(tr)
)

The first subgoal describes the selected tests using the regularity principle. The
second subgoal contains the regularity hypothesis protected using the constant
THYP . This constant is used to prevent the system from simplifying the hypothe-
ses. The first subgoal is simplified with the definition of cstraces (see Definition
5.4.2) and the result is:

length(tr) < 4 ∃ s2 P2 • (true | {||} |= FIG)
tr

=⇒ (c2 | s2 |= P2)

Prog(tr)

Applying the elimination rules of the relation “=⇒” leads to three new subgoals:

∃ s2 P2 • (true | {||} |= FIG)
[]

=⇒ (true | {||} |= FIG)

Prog([])

length(tr) < 4 ∃ s2... • (true | {||} |= FIG)
ε−→ (c1 | s1 |= P1)

∧ (c1 | s1 |= P1)
tr

=⇒ (c2 | s2 |= P2)

Prog (tr)

length(tr) < 3 ∃ e s2... • (true | {||} |= FIG)
e−→ (c1 | s1 |= P1) ∧

(c1 | s1 |= P1)
tr

=⇒ (c2 | s2 |= P2) ∧ e 6= ε

Prog (e#tr)

The first case gives the empty trace, the last two cases introduce a predicate
with the transition relation of the operational semantics. The application of the
elimination rules of the operational semantics to the second rule attempts to find an
applicable transition rule with a label ε. If the system fails to find any applicable
rule then the subgoal is removed (false premise). For the third subgoal, the system
tries to find a rule that matches the premise and instantiates the unknown variables
by their corresponding values. The generation tactic is applied repeatedly until no
simplification is possible.

The final proof state represents all the cstraces (up to the given length 4) of the
FIG process:

138 CHAPTER 5. SEMANTICS BASED TESTING

Prog ([]) Prog ([ret .a, req , out .a])
Prog ([req]) Prog ([ret .a, ret .b, req])
Prog ([ret .a]) a 6= b −→ Prog ([req , out .a, req , out .b])
Prog ([req , out .a]) Prog ([req , out .a, ret .b, req])
Prog ([ret .a, req]) Prog ([req , out .a, ret .b, ret .c])
Prog ([ret .a, ret .b]) Prog ([ret .a, req , out .a, req])
Prog ([req , out .a, req]) Prog ([ret .a, ret .b, ret .c])
Prog ([req , out .a, ret .b])

The final proof state – corresponding to the test theorem – contains also the subgoal
stating the regularity hypothesis.

5.7.2 test-generation

5.7.2.1 test-generation for traces inclusion

To generate the csinitials of FIG , the test specification (5.39) is set as proof goal.
The system follows the same steps to generate cstraces up to length 4. For example,
we consider the trace [req , out .a, req] generated earlier and the test theorem is then
simplified to:

e ∈ csinitials(P , [req , out .a, req])

Prog([req , out .a, req]@[e])

The test specification is simplified using the csinitials Definition 5.4.6 and the
initials sets rules are applied to generate the csinitials for this trace. This results in
the following subgoal:

e ∈ {d .α0 | ¬
∨
{d .α0 ∈ {out .b | a 6= b}})}

Prog([req , out .a, req]@[e])

The elements of csinitials are then computed using simplification and case-
splitting rules. The resulting proof state is the following:

Prog ([req , out .a, req , out .a])
Prog ([req , out .a, req , req])
Prog ([req , out .a, req , ret .b])

Each symbolic test case is composed of the symbolic trace [req , out .a, req] con-
catenated with a symbolic forbidden continuation. Tests can then be generated from
this proof state, this will be shown in section 5.7.3.

5.7. EXAMPLE 139

5.7.2.2 test-generation for deadlocks reduction

To verify the second conformance relation the csacceptances set must be generated
for each trace. The test theorem for deadlocks reduction corresponds to (5.40). For
example, considering the previous symbolic trace [req , out .a, req] the initial proof
goal is simplified to:

S ∈ csacceptancesmin(true, {||},P , ([req , out .a, req]))

Prog([req , out .a, req], S)

The IOcsinitials sets after this trace are then generated using the corresponding
rules. The result is given in the following subgoal:

S ∈
⊗
{{out?b | a 6= b}}

Prog([req , out .a, req], S)

The minimal csacceptances sets are then computed for this trace by simplifying
the general Cartesian product. The final proof state for this case contains the
following subgoal:

Prog ([req , out !a, req], {out?b | a 6= b})

5.7.3 Test instantiation and presentation

The obtained symbolic tests must be instantiated in order to be executed. Explicit
test verdicts are also introduced in the final representation of tests in form of Circus
prefixed actions. The verdict of the execution of a test is given by the last produced
verdict event after this execution.

Considering the same symbolic trace treated earlier [req , out .a, req], the unifor-
mity hypothesis rule is applied for each resulting test. Constraint solving is then
applied to instantiate schematic variables in the test definitions. The resulting proof
state contains 4 concrete tests and 4 uniformity hypotheses expressed as follows:

Traces inclusion

Prog ([req , out .1, req , out .1])
THYP(∃ a • Prog ([req , out .a, req , out .a])→ ∀ a • Prog ([req , out .a, req , out .a]))

Prog ([req , out .1, req , req])
THYP(∃ a • Prog ([req , out .a, req , req])→ ∀ a • Prog ([req , out .a, req , req]))

Prog ([req , out .1, req , ret .2])
THYP(∃ a b • Prog ([req , out .a, req , ret .b])→ ∀ a b • Prog ([req , out .a, req , ret .b]))

140 CHAPTER 5. SEMANTICS BASED TESTING

Deadlocks reduction

Prog ([req , out !1, req], {out?b | 1 6= b})
THYP(∃ a b • Prog ([req , out .a, req], {out?b | a 6= b})→

∀ a b • Prog ([req , out .a, req], {out?b | a 6= b}))

The different test verdicts are inserted in the corresponding places as seen in
section 5.4.2 and section 5.4.3 and the tests are presented in forms of prefixed actions.
The 4 generated tests are given as follows:

Traces inclusion

inc → req → inc → out .1 → inc → req → pass → out .1 → fail → Stop

inc → req → inc → out .1 → inc → req → pass → req → fail → Stop

inc → req → inc → out .1 → inc → req → pass → ret .2 → fail → Stop

Deadlocks reduction

inc → req → inc → out .1 → inc → req → fail → out?x : x 6= 1 → pass →
Stop

5.8 Conclusions

We have described in this section the CirTA test-generation framework for Circus
specifications. Test definitions were introduced in [CG11], which provides a basis
for the development of various testing strategies from Circus specifications. Our
approach to test-generation is based on the logical environment of Isabelle/HOL.
In Chapter 4 we presented formalizations of UTP and Circus as Isabelle theories.
These theories provide a framework for CirTA.

The test definitions are based on the operational semantics of Circus defined as a
labeled transition relation. We provide a formalization of the rules of the operational
semantics on top of Isabelle/Circus and explain some representation choices. Using
these rules, we derive a number of other rules that are important for test-generation.
Test definitions are introduced and then automatic generation tactics are defined as
a proof method in Isabelle.

Isabelle/HOL is a mature theorem prover and easily supports our requirements
for add-on tools for symbolic computation, but substantial efforts had to be in-
vested for building our formal testing environment nonetheless. With regard to the
experience of the last 10–20 years of the interactive theorem proving community,
this initially steep ascent is in fact quite common, and we can anticipate eventual
pay-off for more complex examples at the next stage. HOL as a logic opens a wide

5.8. CONCLUSIONS 141

space of rich mathematical modeling, and Isabelle/HOL as a formal tool environ-
ment supports many mathematical domains by proof tools, say for simplification
and constraint solving. Many of these Isabelle tools already incorporate other ex-
ternal proof tools, such as Z3. Thus we take advantage from this rich collection of
formal reasoning tools for our particular application of Circus conformance testing,
and exploit the full potential of theorem prover technology for our work.

For instance, the choice of a shallow symbolic representation using Isabelle’s sym-
bolic facilities for test definitions and generation has turned out to be judicious and
powerful since it avoids lots of heavy technicalities (in particular in the management
of symbolic alphabets).

A small example is given at the end of this chapter to illustrate the test defini-
tion and generation process. Test specifications are stated as proof goals, and test
selection hypotheses are expressed as introduction rules. In this first presentation
we consider off-line testing but it is clear that more realistic applications require
on-line testing.

In Chapter 6, the test-generation environment is applied on a larger case study.
A Circus specification is written for a message monitoring system, implemented as
a multi-queue. The test-generation tactics are used to generate tests from this
specification. A Java implementation of the monitoring system is tested using the
generated tests.

C
h

a
p

t
e

r

6
Case Study

Contents

6.1 Introduction . 143

6.2 Remote Monitoring System . 144

6.3 Abstract Queue Specification . 146

6.4 Testing the Queue Implementation 152

6.4.1 Test generation . 152

6.4.2 Test execution . 158

6.4.3 Test results . 164

6.5 Conclusions . 165

6.1 Introduction

In this section we present a case study on Circus-based testing using CirTA. The
studied system is a message monitoring module implemented as a FIFO queue.
This module is a part of a remote medical monitoring server, which is described in
section 6.2. In section 6.3, an abstract Circus specification of the queue module is
provided. This section contains also the Isabelle/Circus specification used by the
test generation system. This specification is used as a basis for test generation and
execution as described in section 6.4. The generated tests are used to test a concrete

143

144 CHAPTER 6. CASE STUDY

Java implementation of the queue. Finally, some conclusions and discussions on the
case study are given in section 6.5.

6.2 Remote Monitoring System

Our case study is a part of the remote monitoring system used in a worldwide health-
care network developed by BIOTRONIK SE & Co. KG1. The network connects a
variety of remote devices that are in general pacemaker controllers or similar medical
devices. The automatic monitoring system keeps track of the status of all connected
devices that regularly send diagnostic, therapeutic, and technical data on the current
clinical status of the patients.

The monitoring system collects a huge number of messages received from the
different patients’ devices. The messages are then routed to their corresponding
processing services in order to be processed. The routing policy is a bit particular
and depends on the nature of the message and the type of the device. This routing
policy is very critical and must be correctly implemented in the monitoring system.
A wrong message routing may lead to information misinterpretation that can be
risky for the patients health.

An overview of the remote monitoring system (also called home monitoring)
is given in Figure 6.1. The whole system connects different local patients devices
and physicians control systems. Patients devices periodically send messages to the
remote monitoring system describing its status. The monitoring system synthesizes
the messages and send health reports to the physicians control systems.

Figure 6.1: Remote monitoring system overview

The remote monitoring system is composed essentially of a queue module and
a set of processing services. The different message manipulations and routing oper-
ations are carried out by the queue module. Each message is characterized with a
device identifier and its actual content. The queue receives, stores, and then assigns
messages to the corresponding processing services. The main operations that can
be performed by the queue are:

PUT: The queue receives the messages using the PUT operation. These messages
are stored in the queue with the new status.

1www.biotronik.com

www.biotronik.com

6.2. REMOTE MONITORING SYSTEM 145

GET: The processing services can retrieve new messages from the queue in order
to process them. During the processing time, the message is marked as active.

FINISH: When a processing service successfully completes a message processing, it
informs the queue using the FINISH operation. This active message is then
completely removed from the queue.

RENEW: An active message can be reconsidered as a new message if its processing
was not successful (after some time). This can be done using the RENEW
operation and the message can be assigned again to another processing service.

DISCARD: An active message can be removed even if its computation was not
finished successfully using the DISCARD operation. This is needed if several
processing services attempt to process this message but never succeed. The
reason is generally that the message is erroneous.

DELETE: In some situations, some messages are not required anymore. These
messages can then be removed directly from the queue using the DELETE
operation.

Figure 6.2 gives a representation, as a state diagram, of the life cycle of a message
in a queue. First, the new message is added using the PUT operation. Once
added, the new message can either be retrieved by a processing service or completely
deleted. In the first case, and after the GET operation, the message becomes active.
An active message can be processed successfully and then be removed from the
queue using the FINISH operation. It can also be reconsidered for processing using
the RENEW operation. Erroneous messages can be discarded and removed from
the queue using the DISCARD operation. Obsolete or superfluous messages can
also be removed using the DELETE operation.

All these operations operate on topics, that define the kind of job described in
the message. For example, one topic may be sending faxes, while another one can
be medical patient data that was gathered by a pacemaker. Each processing service
is defined for a given kind of messages, i.e. topic, and thus receives only messages of
this topic. The ordering of messages of different topics is irrelevant. Only messages
of the same topic are ordered since they can be processed by the same processing
services. In a more abstract view, the queue can be seen as a multi-queue, where
each individual queue deals with a different topic.

As said above, device identifiers are usually associated with the messages. The
ordering of the messages depends on their source. Two messages sent from the
same device should not be processed simultaneously; the processing order follows
the sending order. This order is important since the processing of the later message
may depend on the results of the processing of the first one. Messages that come

146 CHAPTER 6. CASE STUDY

Figure 6.2: Messages life cycle

from different sources are processed following the arrival order following a FIFO
discipline.

6.3 Abstract Queue Specification

In this section, we provide an abstract Circus specification of the queue module. For
the sake of simplicity, some general considerations and abstractions are stated. The
first one is that only one topic is considered; all messages are assumed to belong
to the same topic. This simplification will reduce the number of generated tests
by avoiding redundancy. The second consideration is about message identifiers and
contents: they are considered as natural numbers in this specification. A last restric-
tion is made on the operations that are supported in the specification. Only three
operations are considered: PUT, GET and FINISH. The other operations depend
more on the processing services behavior than on the queue itself; for instance, on
extra information (time, message content ...) that is not considered in this abstract
specification. This test objective has been delimited by the available knowledge of

6.3. ABSTRACT QUEUE SPECIFICATION 147

the environment of the system. It is clear that it limits the overall coverage of the
generated tests to the considered operations.

We start the specification by the definition of the process channels. Each queue
operation corresponds to a channel in our specification. Three channels are defined
get , put and finish, all of type N× N (pairs of natural numbers).

channel get , put , finish : N× N

The type of the channels describes the structure of the communicated messages.
The first element of the message is the device identifier and the second element
represents the actual content of the message.

Once the channels are defined, we introduce the internal state of the queue.

state QueueState == [new : seq(N× N); active : P(N× N)]

The state contains two fields: new and active. The first field new is the sequence
of messages that have been newly added to the queue. These messages are ordered
following the order of their arrival. The active field gives the set of messages that
have been retrieved by a processing service in order to be processed.

The global behavior of the process can be described as follows:

var x , y : N× N • InitQueue ; (µX • (Put 2 Get 2 Finish) ; X)

First, the queue internal state is initialized using the InitQueue action. Then, the
queue offers recursively a choice over the three actions Put , Get and Finish. These
three actions corresponds to the three queue operations of the same names.

The initialization is given by the InitQueue schema expression. The new field is
initialized by an empty sequence and the active field by an empty set.

InitQueue
QueueState ′

new ′ = 〈 〉 ∧ active ′ = ∅

The Put action corresponds to the PUT operation of the queue. Whenever
the queue receives a message on the put channel, it stores it in the new messages
sequence.

Put =̂ put ?x → AddNew

The AddNew schema appends the message at the end of the new sequence.

148 CHAPTER 6. CASE STUDY

AddNew
∆QueueState
x? : N× N

new ′ = new a 〈x?〉

The second action Get corresponds to the GET operation of the queue. If mes-
sages are available, processing services can retrieve them via the get channel. The
availability of messages is ensured by a guard stating that it exists at least one new
message whose identifier is not in the active set. The returned message is chosen
using the Choose action and the message activation is done by the Activate action.

Get =̂ (dom new \ dom active 6= ∅) & (Choose; get !y → Activate)

The Choose action is defined by a schema that returns a message from the sequence
of new messages. The chosen message is the first element of this sequence whose
identifier is not presently processed. This will prevent two messages that have the
same identifier from being processed in the same time.

Choose
QueueState
y ! : N× N

dom new \ dom active 6= ∅
y ! = head (new � {a, b : N | a /∈ dom active • (a, b)})

After sending the message to a processing service, the queue must mark this message
as active. This means that the message is added to the active set and its first
occurrence is removed from the new sequence. Only the first occurrence is removed
to avoid deleting intentionally duplicated messages.

Activate
∆QueueState
y? : N× N

new ′ = RemoveFirst(new , y?) ∧ active ′ = active ∪ {y?}

In order to remove the first occurrence of a message from a sequence of messages,
we introduce a recursive function RemoveFirst .

RemoveFirst : seq(N× N)× (N× N)→ seq(N× N)

RemoveFirst(〈 〉, n) = 〈 〉
∀ S : seq1(N× N), n : (N× N) •
RemoveFirst(S , n) =

ifZ head S = n then tail S else 〈head S 〉a RemoveFirst(tail S , n)

6.3. ABSTRACT QUEUE SPECIFICATION 149

The last action is Finish, which corresponds to the FINISH operation of the
queue. Whenever a processing service finishes the processing of an active message,
this one is completely removed from the queue. Note that only active messages can
be returned via the finish channel.

Finish =̂ finish?x ∈ active → Remove

The Remove schema removes the returned message from the active messages set.

Remove
∆QueueState
x? : N× N

active ′ = active \ {x?}

The full Circus specification of the abstract queue process is given in the following.

channel get , put , finish : N× N

process Abstract Queue =̂ begin

state QueueState == [new : seq(N× N); active : P(N× N)]

RemoveFirst : seq(N× N)× (N× N)→ seq(N× N)

RemoveFirst(〈 〉, n) = 〈 〉
∀ S : seq1(N× N), e : (N× N) , n : (N× N) •
RemoveFirst(〈e〉a S , n) =

ifZ e = n then S else 〈e〉a RemoveFirst(S , n)

InitQueue
QueueState ′

new ′ = 〈 〉 ∧ active ′ = ∅

AddNew
∆QueueState
x? : N× N

new ′ = new a 〈x?〉

150 CHAPTER 6. CASE STUDY

Choose
QueueState
y ! : N× N

dom new \ dom active 6= ∅
y ! = head (new � {a, b : N | a /∈ dom active • (a, b)})

Activate
∆QueueState
y? : N× N

new ′ = RemoveFirst(new , y?) ∧ active ′ = active ∪ {y?}

Remove
∆QueueState
x? : N× N

active ′ = active \ {x?}

Put =̂ put ?x → AddNew
Get =̂ (dom new \ dom active 6= ∅) & (Choose; get !y → Activate)
Finish =̂ finish?x ∈ active → Remove

• var x , y : N× N • InitQueue ; (µX • ((Put 2 Get) 2 Finish) ; X)
end

Using the syntax of Isabelle/Circus given in Appendix A.3, we introduce in the
CirTA system a formalization of the abstract queue process. First, we define the
RemoveFirst function, that removes the first occurrence of an element from a list.

1 fun RemoveFirst::(nat×nat) list ⇒(nat×nat) ⇒(nat×nat) list where

2 RemoveFirst [] _ = []

3 | RemoveFirst (a#l) n = (if a=n then l else (a#(RemoveFirst l n)))

The definition of the Abstract_Queue process is then introduced using the
circusprocess command. This definition introduces system variables (alphabet),
the state definition, channels declaration, schema expressions and actions defini-
tions. The system variables (alphabet) and the state variables are introduced first.
The alphabet contains two variables x and y which are pairs of natural numbers.
The state contains two fields, new: a list of pairs and active: a set of pairs.

1 alphabet = [x::nat×nat, y::nat×nat]
2 state = [new::(nat×nat) list, active::(nat×nat) set]

The channels are declared by giving their names and types. Three channels are
defined get, put and finish communicating the same type: pairs of naturals.

6.3. ABSTRACT QUEUE SPECIFICATION 151

1 channel = [get nat×nat, put nat×nat, finish nat×nat]

All schema expressions are introduced using the schema command. The first
expression is InitQueue which initializes the queue state as follows:

1 schema InitQueue = new’ = [] ∧active’ = {}

The AddNew schema appends the new element contained in the variable x at the
end of the new list. The @ operator is the list concatenation operator and [x] is the
singleton list that contains only the variable x.

1 schema AddNew = new := new@[x]

The Choose schema returns the first activable element of the new list. An ac-
tivable element is a message whose identifier is not in the active set. The list of
activable elements is retrieved by filtering new list using the HOL filter function.
This function accepts two arguments: a filter function and a source list. It returns
a list containing the elements of the source list that satisfy the filter function.

1 schema Choose = (∃ a∈set new. fst a /∈fst ‘ active) ∧
2 y := hd (filter (λb.∀ a∈active. fst a 6=fst b) new)

An element is activated using the Activate schema operations. The first occur-
rence of this element, contained in the variable y, is removed from the new list using
RemoveFirst. This element is added to the active element set.

1 schema Activate = new’ = RemoveFirst new y ∧active’ = active ∪{y}

An element can be completely removed from the queue using the Remove schema.

1 schema Remove = active := active - {x}

The Abstract_Queue process contains three actions: Put, Get and Finish. The
Put action receives a message on the put channel then calls the AddNew schema.

1 action Put = put?x →(Schema AddNew)

The second action Get is a guarded action. It is applicable only if there exist
elements in new whose identifiers are not in active. In this case, the Choose schema
is called to choose the oldest of these element. This element is the returned via the
get channel and activated using the Activate schema.

1 action Get =

2 (λ A. (fst‘(set (new A))) - (fst‘(active A)) 6={}) &

3 ((Schema Choose); get!y →(Schema Activate))

The last action is Finish. It completely removes from the queue the active
element retrieved on the finish channel.

1 action Finish = finish?x∈active →(Schema Remove)

152 CHAPTER 6. CASE STUDY

The main action of the process is composed of an initialization, then a recursive
choice over the three defined actions.

1 (Schema InitQueue); µX ·(((Put � Get) � Finish); X)

The full definition of the Abstract_Queue process in Isabelle/Circus is given by
the following command:

1 circusprocess Abstract_Queue =

2 alphabet = [x::nat×nat, y::nat×nat]
3 state = [new::(nat×nat) list, active::(nat×nat) set]

4 channel = [get nat×nat, put nat×nat, finish nat×nat]
5 schema InitQueue = new’ = [] ∧active’ = {}

6 schema AddNew = new := new@[x]

7 schema Choose = (∃ a∈set new. fst a /∈fst ‘ active) ∧
8 y := hd (filter (λb.∀ a∈active. fst a 6=fst b) new)

9 schema Activate = new’ = RemoveFirst new y ∧active’ = active ∪{y}
10 schema Remove = active := active - {x}

11 action Put = put?x →(Schema AddNew)

12 action Get =

13 (λ A. (fst‘(set (new A))) - (fst‘(active A)) 6={}) &

14 ((Schema Choose); get!y →(Schema Activate))

15 action Finish = finish?x∈active →(Schema Remove)

16 where (Schema InitQueue); µX ·(((Put � Get) � Finish); X)

6.4 Testing the Queue Implementation

The queue is implemented in Java and integrated to the whole remote monitoring
system. In order to test this implementation, JUnit testing facilities are used for test
execution. Starting from the queue specification, tests are generated then translated
into JUnit test cases. The resulting test cases are then directly executed on the given
implementation.

6.4.1 Test generation

The test generation for the Queue process is done in two steps. First, all possible
traces (up to a given length) are generated. Then, for each generated trace, two
test sets are generated, one for trace inclusion and one for deadlock reduction. The
symbolic generated tests are then transformed into instantiated tests via some HOL-
TestGen’s method called gen_test_data, and then into executable tests that will
be exercised against the system (see subsection 6.4.2).

6.4. TESTING THE QUEUE IMPLEMENTATION 153

6.4.1.1 Trace generation

As seen in section 5.4, a test specification is stated as a proof goal describing the
traces to generate. This test specification, in our case, is given by the following
formula:

1 tr ∈cstraces Abstract_Queue =⇒ prog tr

The trace generation tactic is invoked on this proof goal, using different trace
lengths. A first (expected) drawback of the present trace generation tactic is the lack
of efficiency due to the fact that we generate exhaustively. In our case, the generation
time grows exponentially w.r.t. the trace length. For a length of 4, the generation
takes more than 20 seconds against a maximum of 5 seconds for shorter traces. For
traces of length 5, the generation time is around 5 minutes. The generation is done
using Isabelle2011-1 running on a computer working on Windows 7. The computer
has an 8-core processor (Intel i7 2600) and 6 GB of RAM.

This is due also to the heavy machinery used for trace generation and also to
the multiple silent transitions of the operational semantics. A characteristic of our
specification is that, after the initialization, it behaves in a recursive way. We can
take advantage of this characteristic to improve the trace generation efficiency by
factorizing the generations steps. During one recursion, different silent transitions
are performed, in addition to one communication transition. All these transitions
can be factorized in a one-step transition that covers the silent and the communica-
tion transitions. A specific rule for this transition called OneStep was proved from
the operational semantics.

Using the OneStep rule, the exhaustive generation time is reduced. For a length
of 5, the generation takes less than 10 seconds and for 6 less than 25 seconds. For
longer traces, the generation time grows also exponentially, e.g. 5 minutes for traces
of length 7. For traces of length 8 or less, the generation time is around 1 hour,
producing more than 2560 different traces.

Thus we were led to limit the length of generated traces to 6 and thus the
generated tests will have a maximum length of 7. This limit is chosen only for
practical reasons, due to the current bad performance, and the number of traces:
the number of generated traces using this limit is around 150. Thus the whole test
generation will take an important execution time. In the near future, we plan to
consider more restrictive selection hypothesis in order to focus on interesting and
longer selected tests. Moreover, the remaining manual tasks must be automated to
reduce the test construction time.

Examples of generated traces are the following:

1
∧
a b aa ba ab bb ac bc.

2 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc)]

3
∧
a b aa ba ab bb.

154 CHAPTER 6. CASE STUDY

4 prog [put (a, b), put (aa, ba), put (ab, bb), get (a, b)]

5
∧
a b aa ba ab bb.

6 prog [put (a, b), put (aa, ba), put (ab, bb)]

7
∧
a b aa ba.

8 prog [put (a, b), put (aa, ba), get (a, b), finish (a, b)]

9
∧
a b aa ba ab bb.

10 prog [put (a, b), put (aa, ba), get (a, b), put (ab, bb)]

11 ...

As said above, for practical reasons the length limit considered for the moment
is 6. A regularity hypothesis is stated on the length of traces. This regularity
hypothesis is given as follows:

1 THYP ((length tr ≤ 6 −→ prog tr) −→ (∀ tr. prog tr))

6.4.1.2 Test generation for trace inclusion

For each trace generated in the first step, different test cases are generated to test
the trace inclusion relation. A test specification is stated as a proof goal in order to
start the generation. The complete test specification is given as follows:

1 tr ∈cstraces Abstract_Queue ∧ e ∈ csinitialsb Abstract_Queue tr

2 =⇒ prog tr@[e]

The trace generation tactic instantiates the variable tr of this test specification to
all the possible traces. This results into different test specifications each associated to
a different trace. The initials generation tactic is used to generate the corresponding
initials for each test specification. The brute force combination of these two tactics
would be very slow and require a lot of resources. More efficient combinations will
be discussed in the conclusion of this chapter. For the moment, we avoid this by
separating (manually) the different test specifications into different theory files.

A test specification is written for each trace; it describes the set of non-initials
after this trace. The test cases are then retrieved by unfolding the definition of
csinitialsb in the test specification, then simplifying the resulting proof goal.
Like for traces, the generation of initials is also slow when using the operational
semantics rules directly. A factorized version of the initials generation rules was
also derived and proved.

As an example, let us consider the generated trace [put (a, b), put (aa,

ba), put (ab, bb), put (ac, bc), put (ad, bd), put (ae, be)]. This trace
is used to illustrate the test generation tactic and its results. The test specification
corresponding to this trace is given in the following:

1
∧
a b aa ba ab bb ac bc ad bd ae be.

6.4. TESTING THE QUEUE IMPLEMENTATION 155

2 e∈csinitialsb Abstract_Queue [put (a, b), put (aa, ba), put (ab, bb)

, put (ac, bc), put (ad, bd), put (ae, be)] =⇒
3 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

put (ad, bd), put (ae, be), e]

The result of the test generation tactic is the list of the possible tests, defined by
the trace and a non initial element. In this case, three different tests are generated,
each one associated to a constraint (af 6= a and bf 6= b).

1
∧
a b aa ba ab bb ac bc ad bd ae be af bf. af 6= a =⇒

2 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

put (ad, bd), put (ae, be), get (af, bf)]

1
∧
a b aa ba ab bb ac bc ad bd ae be af bf. bf 6= b =⇒

2 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

put (ad, bd), put (ae, be), get (af, bf)]

1
∧
a b aa ba ab bb ac bc ad bd ae be af bf.

2 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

put (ad, bd), put (ae, be), finish (af, bf)]

These tests are represented in a symbolic way, using symbolic HOL variables
(e.g. a, b, ba ...). To obtain concrete finite test cases, some selection hypotheses
must be stated on the symbolic tests. We reused in this step the gen_test_cases

method of the HOL-TestGen system [BW12]. This method makes more simplifi-
cations on the current symbolic tests, especially on the constraint part. It applies
also a uniformity hypothesis on the simplified symbolic tests and returns concrete
test cases. Concrete values are represented by schematic variables (e.g. ?X32X18)
which are also constrained. These schematic variables can be instantiated by any
values satisfying the constraints. The resulting schematic test cases are presented
as follows:

1 ?X32X18 6= ?X44X30 =⇒
2 prog [put (?X44X30, ?X43X29), put (?X42X28, ?X41X27), put (?X40X26,

3 ?X39X25), put (?X38X24, ?X37X23), put (?X36X22, ?X35X21),

4 put (?X34X20, ?X33X19), get (?X32X18, ?X31X17)]

1 ?X16X17 6=?X28X29 =⇒
2 prog [put (?X29X30, ?X28X29), put (?X27X28, ?X26X27), put (?X25X26,

3 ?X24X25), put (?X23X24, ?X22X23), put (?X21X22, ?X20X21),

4 put (?X19X20, ?X18X19), get (?X17X18, ?X16X17)]

1 prog [put (?X14X29, ?X13X28), put (?X12X27, ?X11X26), put (?X10X25,

2 ?X9X24), put (?X8X23, ?X7X22), put (?X6X21, ?X5X20),

3 put (?X4X19, ?X3X18), finish (?X2X17, ?X1X16)]

156 CHAPTER 6. CASE STUDY

In addition to the schematic test cases, a uniformity hypothesis, corresponding
to the constraint, is stated for each test case. The uniformity is applied on all the
symbolic variables of the symbolic test, so only one hypothesis is associated to each
symbolic test. The resulting proof state contains then the following hypotheses:

1 THYP ((∃ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

2 xa 6=xm ∧prog [put (xm, xl), put (xk, xj), put (xi, xh),

3 put (xg, xf), put (xe, xd), put (xc, xb), get (xa, x)]) −→
4 (∀ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

5 xa 6=xm −→prog [put (xm, xl), put (xk, xj), put (xi, xh),

6 put (xg, xf), put (xe, xd), put (xc, xb), get (xa, x)]))

1 THYP ((∃ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

2 x 6=xl ∧prog [put (xm, xl), put (xk, xj), put (xi, xh),

3 put (xg, xf), put (xe, xd), put (xc, xb), get (xa, x)]) −→
4 (∀ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

5 x 6=xl −→prog [put (xm, xl), put (xk, xj), put (xi, xh),

6 put (xg, xf), put (xe, xd), put (xc, xb), get (xa, x)]))

1 THYP ((∃ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

2 prog [put (xm, xl), put (xk, xj), put (xi, xh), put (xg, xf),

3 put (xe, xd), put (xc, xb), finish (xa, x)]) −→
4 (∀ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

5 prog [put (xm, xl), put (xk, xj), put (xi, xh), put (xg, xf),

6 put (xe, xd), put (xc, xb), finish (xa, x)]))

In order to be executed, the schematic test cases must be instantiated with con-
crete values. For this, we use also a HOL-TestGen’s method called gen_test_data.
This method uses smt solvers (e.g. Z3) to instantiate concrete values for the schematic
variables. The resulting test cases of our example are given as follows:

1 prog [put (3, 1), put (0, 0), put (0, 2), put (0, 1), put (5, 3),

2 put (1, 4), get (0, 1)]

1 prog [put (0, 0), put (3, 1), put (0, 1), put (0, 0), put (0, 0),

2 put (0, 0), get (3, 2)]

1 prog [put (1, 2), put (1, 6), put (1, 0), put (2, 0), put (2, 4),

2 put (0, 4), finish (0, 1)]

6.4.1.3 Test generation for deadlock reduction

Similarly to what is done for the trace inclusion relation, each generated trace is
used to generate the corresponding tests w.r.t. the deadlock reduction conformance

6.4. TESTING THE QUEUE IMPLEMENTATION 157

relation. The test specification corresponding to all the possible traces is given as
follows:

1 tr ∈cstraces Abstract_Queue ∧ e ∈ csacceptances Abstract_Queue tr

2 =⇒ prog tr e

The trace generation tactic presented earlier instantiates the variable tr to the
possible symbolic traces. As seen for trace inclusion, this results in different test
specifications corresponding to each trace. The acceptances generation tactic is
then applied automatically to all the resulting cases. The combination of the trace
generation tactic and the test generation tactic (including acceptances) would make
the whole generation fully automatic. Unfortunately, as for trace inclusion, such
a generation would be very slow for exhaustive tests due to the huge size of the
resulting proof state.

For the moment, in order to avoid these problems and to introduce some par-
allelization, each test specification (corresponding to one possible trace) is treated
separately. We split (manually) the proof goal resulting from the trace generation
tactic to different test specifications, written in different theory files. If we consider
for example the trace [put (a, b), put (aa, ba), put (ab, bb), put (ac,

bc), put (ad, bd), put (ae, be)], then the corresponding test specification is
given by the following:

1
∧
a b aa ba ab bb ac bc ad bd ae be.

2 e ∈ csacceptances Abstract_Queue [put (a, b), put (aa, ba),

3 put (ab, bb), put (ac, bc), put (ad, bd), put (ae, be)] =⇒
4 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

5 put (ad, bd), put (ae, be)] e

The acceptances generation tactic is used to retrieve the corresponding accep-
tance sets. The resulting proof goal contains in each subgoal the variable prog

associated to a trace and an acceptance set. As for the trace refinement relation,
some factorized rules were derived and used in the generation in order to reduce the
generation time. The previous example produces one test case presented as follows:

1
∧
a b aa ba ab bb ac bc ad bd ae be af bf.

2 prog [put (a, b), put (aa, ba), put (ab, bb), put (ac, bc),

3 put (ad, bd), put (ae, be)] {get (a, b), put (af, bf)}

The generated symbolic acceptance set is finite in this case, due to the structure
of the specification. This is the case for all the generated tests. As a consequence,
test selection, instantiation and translation are not very complicated.

Following the same strategy as for trace inclusion, HOL-TesGen is reused for test
selection and instantiation. First, the gen_test_cases method is applied on the
proof goal. This method applies some simplifications and then states a uniformity

158 CHAPTER 6. CASE STUDY

hypothesis on the symbolic variables of the test. This results on the following
schematic test case:

1 prog [put (?X14X45, ?X13X44), put (?X12X43, ?X11X42), put (?X10X41,

2 ?X9X40), put (?X8X39, ?X7X38), put (?X6X37, ?X5X36), put (?X4X35,

3 ?X3X34)] {get (?X14X45, ?X13X44), put (?X2X33, ?X1X32)}

Besides the test case, the following uniformity hypothesis is added to the proof
goal:

1 THYP ((∃ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

2 prog [put (xm, xl), put (xk, xj), put (xi, xh), put (xg, xf),

3 put (xe, xd), put (xc, xb)] {get (xm, xl), put (xa, x)}) −→
4 (∀ x xa xb xc xd xe xf xg xh xi xj xk xl xm.

5 prog [put (xm, xl), put (xk, xj), put (xi, xh), put (xg, xf),

6 put (xe, xd), put (xc, xb)] {get (xm, xl), put (xa, x)}))

Finally, and in order to make the tests executable, the schematic test cases are
instantiated to concrete tests. As in the previous subsection, this is done using the
gen_test_data method provided by HOL-TestGen. For our example, the resulting
concrete test obtained by this method is given by:

1 prog [put (1, 1), put (10, 5), put (0, 0), put (1, 3), put (0, 0),

2 put (1, 1)] {get (1, 1), put (0, 2)}

6.4.2 Test execution

In order to execute the concrete tests against the provided Java implementation
of the queue, these test cases must be expressed in terms of JUnit test methods.
Each event of the trace is translated to a call to the corresponding method in the
implementation. The execution is then done directly in the Eclipse platform using
JUnit testing facilities.

6.4.2.1 Trace inclusion

For the first conformance relation, the concrete tests generated previously are au-
tomatically translated into Java methods. This translation is done using a new
method called export_test_file that we have developed for this purpose. The
translation (ML) method implements some translation rules for each event of the
concrete tests. Two cases can be distinguished: the trace events and the last event
that represents a non initial event.

For the trace events, the translation is straightforward, put and finish events
are translated directly to the corresponding methods. The get event is translated
into a call to the corresponding method, followed by a check of the resulting value.

6.4. TESTING THE QUEUE IMPLEMENTATION 159

The call of these methods may fail. This is detected by an exception or by a wrong
result returned by get. If the call to these methods fails, the test is considered
inconclusive. A message is printed in this case and the test execution is aborted.

In the second case, for the test to pass, the last event must not be executed
correctly: the put and finish are supposed to throw an exception if they are
called; the get event is translated as in the case of trace events, but the check of
the resulting value is inverted in this case. A test succeeds if one of the methods
throws an exception or if the result of the get method corresponds to the incorrect
value described in the test.

In order to check the resulting value returned by a call to the get method, an
oracle function must be defined. As we already explained in section 2.2.3, using
the equality functions provided by the implementation as an oracle is not safe. In
our example, the equality method defined for the message type does not implement
the desired behavior. Using this equality as an oracle will produce a lot of biased
test results (and we have experienced that in our very first test campaign). For this
reason, a specific equality function is defined and used to check the resulting values.

The three test cases presented previously, produce the following test methods:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObjectImpl o_3_1 = new NamedEntry (” t op i c ” , 3 , 1) ;
3 AbstractQueueableObjectImpl o_0_0 = new NamedEntry (” t op i c ” , 0 , 0) ;
4 AbstractQueueableObjectImpl o_0_2 = new NamedEntry (” t op i c ” , 0 , 2) ;
5 AbstractQueueableObjectImpl o_0_1 = new NamedEntry (” t op i c ” , 0 , 1) ;
6 AbstractQueueableObjectImpl o_5_3 = new NamedEntry (” t op i c ” , 5 , 3) ;
7 AbstractQueueableObjectImpl o_1_4 = new NamedEntry (” t op i c ” , 1 , 4) ;
8 AbstractQueueableObjectImpl o = nu l l ;
9 tm . begin () ;

10
11 t ry {
12 queueManager . put (o_3_1) ; tm . commit () ;
13 } catch (Exception e) {
14 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
15 }
16

17 t ry {
18 queueManager . put (o_0_0) ; tm . commit () ;
19 } catch (Exception e) {
20 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
21 }
22

23 t ry {
24 queueManager . put (o_0_2) ; tm . commit () ;
25 } catch (Exception e) {
26 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
27 }
28
29 t ry {
30 queueManager . put (o_0_1) ; tm . commit () ;
31 } catch (Exception e) {
32 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
33 }

160 CHAPTER 6. CASE STUDY

34
35 t ry {
36 queueManager . put (o_5_3) ; tm . commit () ;
37 } catch (Exception e) {
38 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
39 }
40

41 t ry {
42 queueManager . put (o_1_4) ; tm . commit () ;
43 } catch (Exception e) {
44 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
45 }
46

47 o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ;
48 assertFalse (equals (o_0_1 , o)) ;
49 }

1 pub l i c void testqueue1_2 () throws Exception {
2 AbstractQueueableObjectImpl o_0_0 = new NamedEntry (” t op i c ” , 0 , 0) ;
3 AbstractQueueableObjectImpl o_3_1 = new NamedEntry (” t op i c ” , 3 , 1) ;
4 AbstractQueueableObjectImpl o_0_1 = new NamedEntry (” t op i c ” , 0 , 1) ;
5 AbstractQueueableObjectImpl o_3_2 = new NamedEntry (” t op i c ” , 3 , 2) ;
6 AbstractQueueableObjectImpl o = nu l l ;
7 tm . begin () ;
8
9 t ry {

10 queueManager . put (o_0_0) ; tm . commit () ;
11 } catch (Exception e) {
12 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
13 }
14
15 t ry {
16 queueManager . put (o_3_1) ; tm . commit () ;
17 } catch (Exception e) {
18 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
19 }
20
21 t ry {
22 queueManager . put (o_0_1) ; tm . commit () ;
23 } catch (Exception e) {
24 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
25 }
26

27 t ry {
28 queueManager . put (o_0_0) ; tm . commit () ;
29 } catch (Exception e) {
30 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
31 }
32
33 t ry {
34 queueManager . put (o_0_0) ; tm . commit () ;
35 } catch (Exception e) {
36 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
37 }
38
39 t ry {
40 queueManager . put (o_0_0) ; tm . commit () ;

6.4. TESTING THE QUEUE IMPLEMENTATION 161

41 } catch (Exception e) {
42 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
43 }
44

45 o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ;
46 assertFalse (equals (o_3_2 , o)) ;
47 }

1 pub l i c void testqueue1_3 () throws Exception {
2 AbstractQueueableObjectImpl o_1_2 = new NamedEntry (” t op i c ” , 1 , 1) ;
3 AbstractQueueableObjectImpl o_1_6 = new NamedEntry (” t op i c ” , 1 , 6) ;
4 AbstractQueueableObjectImpl o_1_0 = new NamedEntry (” t op i c ” , 1 , 0) ;
5 AbstractQueueableObjectImpl o_2_0 = new NamedEntry (” t op i c ” , 2 , 0) ;
6 AbstractQueueableObjectImpl o_2_4 = new NamedEntry (” t op i c ” , 2 , 4) ;
7 AbstractQueueableObjectImpl o_0_4 = new NamedEntry (” t op i c ” , 0 , 4) ;
8 AbstractQueueableObjectImpl o_0_1 = new NamedEntry (” t op i c ” , 0 , 1) ;
9 AbstractQueueableObjectImpl o = nu l l ;

10 tm . begin () ;
11
12 t ry {
13 queueManager . put (o_1_2) ; tm . commit () ;
14 } catch (Exception e) {
15 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
16 }
17
18 t ry {
19 queueManager . put (o_1_6) ; tm . commit () ;
20 } catch (Exception e) {
21 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
22 }
23
24 t ry {
25 queueManager . put (o_1_0) ; tm . commit () ;
26 } catch (Exception e) {
27 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
28 }
29
30 t ry {
31 queueManager . put (o_2_0) ; tm . commit () ;
32 } catch (Exception e) {
33 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
34 }
35

36 t ry {
37 queueManager . put (o_2_4) ; tm . commit () ;
38 } catch (Exception e) {
39 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
40 }
41
42 t ry {
43 queueManager . put (o_0_4) ; tm . commit () ;
44 } catch (Exception e) {
45 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
46 }
47
48 t ry {
49 queueManager . finish (o_0_1) ; tm . commit () ;

162 CHAPTER 6. CASE STUDY

50 fail (” expected except ion was not thrown”) ;
51 } catch (Exception e) {
52 // expected
53 }
54 }

The exhaustive test generation produces more than 1000 test methods from all
the traces of length smaller than 6. All resulting test methods are collected in a
Java test file and executed against the implementation. This compilation is not
automated. It is done using some external tool, in order to group all resulting
test methods into one Java class. We could avoid this manual step by generating
automatically a class for each test case containing its test methods. In our case, this
will result in around 150 Java classes for each conformance relation. In the future,
we plan to make the generation fully automatic, and thus all generated tests can be
grouped into a single Java class.

The resulting Java class is integrated to the Eclipse environment in order to be
executed. A screen-shot of the test execution environment is given in Figure 6.3.
The execution of the 1087 generated test methods ended with no errors and 479
inconclusive tests. The analysis of these results is given in the next section.

Figure 6.3: Test execution environment

6.4. TESTING THE QUEUE IMPLEMENTATION 163

6.4.2.2 Deadlock reduction

The generated tests for the second conformance relation are also automatically trans-
lated into Java methods. This is done using a method called export_test_file2,
which is slightly different from the first one. The translation rules are the same for
the (sub)traces, by transforming each event into the corresponding method. For
the acceptances set, the translation is more tricky. Since our acceptances sets are
finite, the concrete acceptances can be enumerated and translated to produce the
following behavior: First, the queue state is saved using a commit operation. Then
for the first acceptance event, the corresponding method is called. If the call fails,
the queue state is retrieved using the rollback operation and the execution continues
with the remaining acceptances. As soon as a call is successfully performed, the test
passes. If all the acceptances fail then the test fails as well.

In the special case of infinite acceptances sets (explicitly enumerating an un-
bounded number of inputs) the translation will be slightly different. The instantia-
tion is not possible at the generation step, so the symbolic test must be translated
directly to the corresponding method call. The obtained input is used to check if
the constraint associated to this test is satisfied.

The concrete test case generated previously produces the following test method:

1 pub l i c void testqueue1_1 () throws Exception {
2 AbstractQueueableObjectImpl o_2_0 = new NamedEntry (” t op i c ” , 2 , 0) ;
3 AbstractQueueableObjectImpl o_2_4 = new NamedEntry (” t op i c ” , 2 , 4) ;
4 AbstractQueueableObjectImpl o_0_4 = new NamedEntry (” t op i c ” , 0 , 4) ;
5 AbstractQueueableObjectImpl o_0_1 = new NamedEntry (” t op i c ” , 0 , 1) ;
6 AbstractQueueableObjectImpl o_0_0 = new NamedEntry (” t op i c ” , 0 , 0) ;
7 AbstractQueueableObjectImpl o_0_3 = new NamedEntry (” t op i c ” , 0 , 3) ;
8 AbstractQueueableObjectImpl o = nu l l ;
9 tm . begin () ;

10
11 t ry {
12 queueManager . put (o_2_0) ; tm . commit () ;
13 } catch (Exception e) {
14 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
15 }
16

17 t ry {
18 queueManager . put (o_2_4) ; tm . commit () ;
19 } catch (Exception e) {
20 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
21 }
22
23 t ry {
24 queueManager . put (o_0_4) ; tm . commit () ;
25 } catch (Exception e) {
26 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
27 }
28
29 t ry {
30 queueManager . put (o_0_1) ; tm . commit () ;

164 CHAPTER 6. CASE STUDY

31 } catch (Exception e) {
32 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
33 }
34

35 t ry {
36 queueManager . put (o_2_0) ; tm . commit () ;
37 } catch (Exception e) {
38 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
39 }
40

41 t ry {
42 queueManager . put (o_0_0) ; tm . commit () ;
43 } catch (Exception e) {
44 System . out . println (” i n c on c l u s i v e ”) ; r e turn ;
45 }
46

47 t ry {
48 o = queueManager . get (NamedEntry . c l a s s , ” t op i c ”) ; tm . commit () ;
49 } catch (Exception e) {
50 tm . rollback () ; queueManager . put (o_0_3) ; tm . commit () ;
51 }
52

53 i f (o == nu l l | | ! equals (o_2_0 , o)) {
54 tm . rollback () ; queueManager . put (o_0_3) ; tm . commit () ;
55 }
56 }

The exhaustive test generation produces not less than 660 test methods from all
the traces of length smaller than 6. As for trace inclusion, all resulting test methods
are collected in a Java test file and executed against the implementation. The
execution of the 660 generated test methods revealed no errors and 315 inconclusive
tests. These results are discussed in the next section.

6.4.3 Test results

The exhaustive test generation for length at most 7 produced a total of 1747 test
cases using the 150 traces of length smaller or equal to 6. Using the generic rules, the
generation time was very significant. This time was reduced by using some specific
factorized rules, but it is still important (5 minutes for traces of length 7). All the
generated test cases are concrete, where all communicated values are instantiated.
As explained before, all these test cases are compiled into Java test methods that are
executed using JUnit. The test execution time is negligible w.r.t. the test generation
time (less than 10 seconds).

For the trace-inclusion conformance relation, the execution of the 1087 test meth-
ods ended without finding errors, but with 479 inconclusive tests. In the second case
of deadlock reduction relation, no errors and 315 inconclusive tests resulted from
executing the 660 test cases. The specification being very abstract at this stage, the
generated tests cover a simple sequential behavior of the queue. This behavior was

6.5. CONCLUSIONS 165

intensively tested during the development of the system; no errors were detected by
our generated tests.

Almost half of the test cases ended with an inconclusive verdict (794 from 1747),
which reduces the efficiency of our test. In order to reduce the number of inconclusive
tests, one possible solution is to combine the tests of the two conformance relations.
The structure of the tests will be more complex (as a tree for example), but the
number of resulting tests would be smaller.

6.5 Conclusions

This chapter presents an application of our specification and test-generation environ-
ment (CirTA) to a realistic case study. The studied system is a message monitoring
module implemented as a FIFO multi-queue. This module is a part of a remote
monitoring system that connects a variety of devices and especially patients pace-
maker controllers. The overall system is explained in the first section, with some
details on the queue module. The Java implementation of this queue is used to
execute the generated tests.

A Circus specification of the queue is given in the second section of this chapter.
The queue operations are represented by communication channels and the queue is
handled by state variables. The representation of this specification in the syntax of
Isabelle/Circus is also given in the second section.

The rest of this chapter covers the test generation, preparation and execution.
First, the queue specification is used to generate all the traces up to a given length.
For each generated trace, the sets of the corresponding tests are generated for the
two conformance relations. Tests are then translated into Java methods in order to
be tested against the queue implementation. Test execution is done using the JUnit
testing tool in the Eclipse platform.

The first test campaigns raised two important issues related to test generation
and execution. First, the choice of the simplification rules used in the test gen-
eration is very critical. Using a big number of simplification rules increases the
generation time, especially when the proof goal is very complex. Moreover, some
simplification rules may lead to oversimplifications of the assumptions and thus a
loss of constraints. The reason is that the simplifier may refine the starting speci-
fication to produce the resulting subgoals. The set of simplification rules has been
reduced to avoid these problems. Only useful and safe rules are used in the test
generation. All the rules that can induce a loss of constraints are removed from the
set of simplification rules. The final proof state should be equivalent to the starting
test specification, and not just a refinement of the later. This property might be
proved for each simplification rule used by the simplifier.

A second important issue is the definition of a specific oracle function for the

166 CHAPTER 6. CASE STUDY

evaluation of test results. As mentioned earlier, the use of the equality method
defined in the implementation for the message type gave biased results. A specific
equality function, based on the equality of integers, is defined and used to check the
resulting messages values.

The tests revealed no errors, which is not a big surprise given that the system
under test is already in use. However, this case study presents a proof of technology
of how our environment can be used for a real system. On the basis of this envi-
ronment, it remains to introduce more realistic testing strategies than exhaustivity.
It will be done by introducing stronger test hypotheses, thus some guidance of the
test-generation tactics.

C
h

a
p

t
e

r

7
Conclusions and Future Work

Summary of Contributions

This PhD thesis presents a semantics-based approach for specification, verification
and testing. We take advantage of the formal framework provided by theorem
provers, in our case Isabelle/HOL. Such formal frameworks offer machine-checked
support for any logics-based development.

The Circus language, whose semantics is based on a relational calculus, is the
object of our formal developments. This language provides a notation and some
techniques to reason about designs and implementations of specifications describing
complex data and reactive processes. Its rich and fully integrated semantics makes
it a very good formalism for specifying real world systems. The semantic integration
of this language in the Isabelle/HOL framework is the basis of our work. On top of
this integration, we formalize several verification and testing techniques for Circus.

The work presented in this thesis brings several contributions to the field of
formal specification, verification and testing environments. In itself, the formal
semantics-based representation of a complex and rich specification language in a
theorem prover is an important achievement.

The main results of this thesis are listed below:

UTP in Isabelle/HOL The first contribution is the shallow embedding of UTP,
the semantics basis of Circus, in Isabelle/HOL. UTP stands for Unifying Theories
of Programming, which is a semantic model based on an alphabetized relational
calculus. UTP offers a set of theories that can be used to unify the semantics of

167

168 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

languages from different paradigms. It is used, for instance, to define the seman-
tics of Circus, combining the notions of complex data manipulations and complex
behavior descriptions. We introduce in section 4.2 a formalization of UTP in Is-
abelle/HOL. This formalization is expressed as a shallow embedding of the UTP
relational calculus in HOL.

Circus denotational semantics in Isabelle/HOL The representation of the
denotational semantics of Circus on top of UTP Isabelle encoding is another contri-
bution of this work, with the definitions of several key notions like state variables,
scoping, communication channels and name sets. These definitions make it possible
to introduce a shallow embedding of the Circus language denotational semantics in
Isabelle/HOL, given in section 4.3. This shallow embedding is based on the above
formalization of UTP. Existing standard proof tactics of Isabelle such as auto and
simp can be reused to reason about Circus specifications.

Isabelle/Circus We provide the Isabelle/Circus environment, based on the embed-
ding of Circus in Isabelle/HOL. It can be used to reason about Circus specifications,
or as a basis for a number of formal applications combining data and behavior de-
scriptions. An interesting exercise is explored in section 4.4, with the formalization
of one of the refinement notions of Circus with some support for refinement proofs.

Circus operational semantics in Isabelle/HOL In chapter 5, we introduce an-
other substantial application based on the Isabelle/Circus environment. We provide
a formalization of the rules of the operational semantics on top of Isabelle/Circus
and explain some representation choices. Using these rules, we derive a number of
other rules that are important for test generation.

CirTA We describe in chapter 5 the CirTA (Circus Testing Automation) test-generation
framework. Test definitions are introduced and then automatic-generation tactics
are defined as proof methods in Isabelle. The test definitions and generation tactics
are defined for Circus processes, using the operational semantics. The choice of a
shallow symbolic representation using Isabelle’s symbolic facilities for test defini-
tions and generation has turned out to be judicious and convenient since it avoids
lots of heavy technicalities (in particular in the management of symbolic alphabets).

Case study In Chapter 6, the test generation environment (CirTA) is applied
to a real case study. The studied system is a message monitoring module that
binds together a variety of devices and especially patients pacemaker controllers. A
Circus specification is written for this system and is used to generate tests up to a
given length. A Java implementation of the monitoring system is tested using the

169

generated tests. Test execution is done using the JUnit testing tool in the Eclipse
platform.

Future Work

The work presented in this thesis is a significant advance in the instrumentation
of complex real system specification and verification. However, it is clear that a
number of interesting questions and future improvements must be addressed. Below,
we sketch those that we plan to work through in the future.

Denotational semantics At the Circus denotational semantics level, some actions
that are not considered yet must be defined (see section 3.4). Complex communi-
cations operations are not yet considered. In addition to this, some generalized
operators (e.g. indexed choices) are not yet defined in the theory. Adding these
actions will make our supported language easier to use.

Moreover, in the current version of the theories, no operations over processes are
considered. Basically, they are similar as for actions, but with a special handling
of local states (which may be challenging). These operations need to be defined to
enable the writing of complex specifications in a more modular way.

Isabelle/Circus At the Isabelle/Circus level, parsing facilities must be improved
to cover complex schema definitions and operations. External Circus specifications
can be considered by integrating the environment with the existing CZT-parser for
Circus. More proof support for refinement can be added, including some automatic
refinement proof tactics.

Operational semantics For the operational semantics, an important achieve-
ment would be to prove the consistency of the rules w.r.t. the denotational semantics.
This problem was already addressed in the scope of the Circus semantics [WCGF07],
but no mechanized proofs are provided.

Another improvement would be to cover the additional Circus actions mentioned
above for the denotational semantics: some new rules must be added to the opera-
tional semantics to describe the behavior of these actions.

CirTA At the CirTA level, several improvements are necessary. First, the whole
test generation and preparation activities must be made more automated, in order
to improve the whole time dedicated to test generation and compilation.

The integration of the test-generation environment in HOL-TestGen would be
extremely fruitful for both environments. A first (weak) integration was already

170 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

presented in the case study. It covers the reuse of HOL-TestGen for test selection
and instantiation.

Clearly, the efficiency of the generation procedures must be improved. The case
study revealed that the test generation time is very important, mainly because of its
exhaustivity. But it is also due to the number of simplification rules that are tried
at each step of the generation. The size of the proof state plays also an important
role in the efficiency of the generation. Several improvements are possible, either
by adding more parallelization to the generation tactic or by lightening the set of
involved simplification rules. The efficiency can also be improved using some lazy
simplification techniques. This requires freezing some parts of the test specification
at some points, to avoid the simplifier from attempting any simplifications on the
frozen parts.

Last but not least, we have now the bases for more elaborated test selection,
generation and execution strategies. A first step is some combination of the tests
generated for the two conformance relations in order to reduce the number of incon-
clusive tests, with a proof that the exhaustivity results are kept. This requires the
definition of new test structures and test-generation techniques. An other possible
step is the formalization of coverage criteria, test purposes, and their associated
selection hypotheses, based on the exploitation of both Isabelle/Circus and CirTA.

Moreover, on-line testing techniques can be used in order to reduce the number
of inconclusive tests and of false negatives. This requires the testers to be connected
with some constraint solvers to support on-line instantiations. We have already
explored such techniques in a similar work covering web service testing [SWS].

A
p

p
e

n
d

i
x

A
Circus syntax

A.1 Full syntax

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl
CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp
CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp
ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef
ProcDef ::= Decl • ProcDef | Decl� ProcDef | Proc
Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end

| Proc; Proc | Proc 2 Proc | Proc u Proc
| Proc |[CSExp]| Proc | Proc 9 Proc | Proc \ CSExp
| (Decl • ProcDef)(Exp+) | N(Exp+) | N
| (Decl� ProcDef)bExp+c | NbExp+c | Proc[N+ := N+]
| N[Exp+] | o

9 Decl • Proc | 2Decl • Proc | uDecl • Proc
| |[CSExp]| Decl • Proc | |||Decl • Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp
| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N == NSExp

ParAction ::= Action | Decl • ParAction
Action ::= SchemaExp | Command | N | CSPAction | Action [N+ := N+]

171

172 APPENDIX A. CIRCUS SYNTAX

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action
| Action; Action | Action 2 Action | Action u Action
| Action |[NSExp | CSExp | NSExp]| Action
| Action ||[NSExp | NSExp]|| Action
| Action \ CSExp | ParAction(Exp+) | µN • Action
| o

9 Decl • Action | 2Decl • Action | uDecl • Action
| |[CSExp]| Decl • |[NSExp]| Action
| |||Decl •||[NSExp]|| Action

Comm ::= N CParameter∗ | N [Exp+]CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp
Command ::= N+ := Exp+ | if GActions fi | var Decl • Action

| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl • Action | res Decl • Action
| vres Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

A.2 Short syntax

Program ::= CircusPar∗

CircusPar ::= ZParagraph | channel CDecl | chanset N == CSExp
| ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : ZExp
CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp
ProcDecl ::= process N =̂ ProcDef
ProcDef ::= begin PPar∗ state SchemaExp PPar∗ • ParAction end
NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp
PPar ::= ZParagraph | N =̂ ParAction | nameset N == NSExp

ParAction ::= CSPAction | SchemaExp

CSPAction ::= Skip | Stop | Chaos | Command | Comm → Action
| Pred & Action | µN • Action | Action \ CSExp
| Action; Action | Action 2 Action | Action u Action
| Action |[NSExp | CSExp | NSExp]| Action

Comm ::= N CParameter∗

CParameter ::= ?N | ?N : Pred | !Exp | .Exp
Command ::= N+ := Exp+ | var Decl • Action

A.3. ISABELLE/CIRCUS SYNTAX 173

A.3 Isabelle/Circus syntax

Process ::= circusprocess Tpar∗ name = PParagraph∗ where Action
PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP

| ActionP | SchemaP
AlphabetP ::= alphabet [vardecl+]
vardecl ::= name :: type
StateP ::= state [vardecl+]
ChannelP ::= channel [chandecl+]
chandecl ::= name | name type
NamesetP ::= nameset name = [name+]
ChansetP ::= chanset name = [name+]
SchemaP ::= schema name = SchemaExpression
ActionP ::= action name = Action
Action ::= Skip | Stop | Action ; Action | Action � Action

| Action u Action | Action \ chansetN | var := expr
| guard & Action | comm → Action | Schema name
| ActionName | µ var • Action | var var • Action
| Action J namesetN | chansetN | namesetN K Action

A
p

p
e

n
d

i
x

B
Circus denotational semantics

B.1 UTP

B.1.1 Observational variables

ok Indicates if the system has been properly started in a stable state.

ok ′ Indicates if the system is in a subsequent stable observable state.

wait ′ Indicates if the subsequent state is an intermediate or a final state.

tr Records the trace of events performed before the system starts.

tr ′ Records the events performed by the system.

ref Collects the set of refused events before the system starts.

ref ′ Collects the set of refused events at a subsequent state.

v Indicates the initial values of program variables.

v ′ Indicates the final values of program variables.

175

176 APPENDIX B. CIRCUS DENOTATIONAL SEMANTICS

B.1.2 Healthiness conditions

H 1: A design may not make any prediction on variable values until the program has started.

P = λ(A,A’). ok A → P (A,A’)

H 2: A design may not require non-termination.

P(A,A’Lok:=FalseM)→ P(A,A’Lok:=TrueM)

H 3 : If the precondition of a design is satisfiable, its postcondition must be satisfiable too.

P = P ;; Π

H 4 : Exclude miracle design.

P ;; true = true

R1 : The execution of a reactive process never undoes an event that has been performed.

P = P ∧ λ (A,A’). tr A ≤ tr A’

R2 : The behavior of a reactive process is oblivious to what has gone before.

P = λ(A,A’). P(ALtr:=[]M,A’Ltr:=(tr A’ - tr A)M)

R3 : Intermediate stable states do not progress.

P = Πrea / wait o fst . P

CSP1 : Extension of the trace is the only guarantee on divergence.

P = P ∨ (λ (A,A’). ¬ ok A ∧ tr A ≤ tr A’)

CSP2 : A process may not require non-termination.

P = P ;; J

J = λ(A,A’). (ok A →ok A’)∧ tr A’ = tr A ∧wait A’ = wait A

∧ ref A’ = ref A ∧more A’ = more A

C 1 : After termination, the value of ref ′ has no relevance.

P = P ; Skip

C 2 : A deadlocked process will stay deadlocked in an environment offering fewer events.

P = P ||[ns1 | ns2]|| Skip

C 3 : The precondition of a process expressed as a reactive design contains no dashed variables.

P = R (¬P(ALwait:=falseM,A’Lok:=falseM); true `
P(ALwait:=falseM,A’Lok:=trueM))

where Π is the relational Skip, o is the HOL functional composition operator and
fst returns the first element of a pair.

B.2. CIRCUS DENOTATIONAL SEMANTICS 177

B.2 Circus denotational semantics

B.2.1 CSP actions

Definition B.2.1.

IIrea =̂ (¬ okay ∧ tr ≤ tr ′)
∨ (okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v)

Definition B.2.2. Stop =̂ R(true ` tr ′ = tr ∧ wait ′)

Definition B.2.3. Skip =̂ R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

Definition B.2.4. Chaos =̂ R(false ` true)

Definition B.2.5. A1; A2 =̂ A1;R A2

Definition B.2.6.

g & A =̂ R((g → ¬ Af
f) ` ((g ∧ At

f) ∨ (¬ g ∧ tr ′ = tr ∧ wait ′)))

Definition B.2.7.

A1 2 A2 =̂

R((¬ A1
f
f ∧ ¬ A2

f
f) ` ((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f)))

Definition B.2.8. A1 u A2 =̂ A1 ∨ A2

Definition B.2.9.

doC (c, v) =̂ tr ′ = tr ∧ (c, v) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, v)〉

Definition B.2.10. c → Skip =̂ R(true ` doC (c, Sync) ∧ v ′ = v)

Definition B.2.11. c.e → Skip =̂ R(true ` doC (c, e) ∧ v ′ = v)

Definition B.2.12. c!e → Skip =̂ c.e → Skip

Definition B.2.13. For any non-input communication c,

c → A =̂ (c → Skip); A

178 APPENDIX B. CIRCUS DENOTATIONAL SEMANTICS

Definition B.2.14.

doI (c, x ,P) =̂
tr ′ = tr ∧ {v : δ(c) | P • (c, v)} ∩ ref ′ = ∅
Cwait ′B
tr ′ − tr ∈ {v : δ(c) | P • 〈(c, v)〉} ∧ x ′ = snd(last(tr ′))

Definition B.2.15.

c?x : P → A(x) =̂ var x • R(true ` doI (c, x ,P) ∧ v ′ = v); A(x)

Definition B.2.16. c?x → A =̂ c?x : true → A

Definition B.2.17.

A \ cs =̂
R(∃ s • A[s , cs ∪ ref ′/tr ′, ref ′] ∧ (tr ′ − tr) = (s − tr) � (EVENT − cs))

; Skip

Definition B.2.18. µX • F (X) =̂
d
{X | F (X) vA X }

Definition B.2.19.

A1 ||[ns2 | ns2]|| A2 =̂

R

 (¬ A1
f
f ∧ ¬ A2

f
f)

`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M9cs

M9 =̂ tr ′ − tr ∈ (1.tr − tr 9 2.tr − tr)

∧

 ((1.wait ∨ 2.wait) ∧ ref ′ ⊆ 1.ref ∩ 2.ref)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

〈〉 9 〈〉 =̂ {〈〉}
tr1 9 〈〉 =̂ {tr1}
〈〉 9 tr2 =̂ {tr2}
e1 : tr1 9 e2 : tr2 =̂ {x | hd(x) = e1 ∧ tl(x) ∈ (tr1 9 e2 : tr2)}

∪
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 9 tr2)}

B.2. CIRCUS DENOTATIONAL SEMANTICS 179

Definition B.2.20.

A1 |[ns1 | cs | ns2]| A2 =̂

R

¬ ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr) ∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs
`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M‖cs

U 1(v ′1, . . . , v

′
n) =̂ 1.v ′1 = v1 ∧ · · · ∧ 1.v ′n = vn

αU 1(v ′1, . . . , v
′
n) = {1.v ′1, . . . , 1.v ′n , v1, . . . , vn}

U 2(v ′1, . . . , v
′
n) =̂ 2.v ′1 = v1 ∧ · · · ∧ 2.v ′n = vn

αU 2(v ′1, . . . , v
′
n) = {2.v ′1, . . . , 2.v ′n , v1, . . . , vn}

MSt =̂ ∀ v • v ∈ ns1 → v ′ = 1.v
∧ v ∈ ns2 → v ′ = 2.v
∧ v /∈ ns1 ∪ ns2 → v ′ = v

M‖cs =̂ tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

(

(1.wait ∨ 2.wait)
∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

〈〉 ‖cs 〈〉 =̂ {〈〉}
e : tr ‖cs 〈〉 =̂ {〈〉}C e ∈ cs B {x | hd(x) = e ∧ tl(x) ∈ (tr ‖cs 〈〉)}
〈〉 ‖cs e : tr =̂ {〈〉}C e ∈ cs B {x | hd(x) = e ∧ tl(x) ∈ (〈〉 ‖cs tr)}
e : tr1 ‖cs e : tr2 =̂
{x | hd(x) = e ∧ tl(x) ∈ (tr1 ‖cs tr2)}
Ce ∈ csB {x | hd(x) = e ∧ tl(x) ∈ (tr1 ‖cs e : tr2)}
∪
{x | hd(x) = e ∧ tl(x) ∈ (e : tr1 ‖cs tr2)}

e1 : tr1 ‖cs e2 : tr2 =̂ {〈〉}Ce2 ∈ csB
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 ‖cs tr2)}

Ce1 ∈ csB
{x | hd(x) = e1 ∧ tl(x) ∈ (tr1 ‖cs e2 : tr2)}
Ce2 ∈ csB {x | hd(x) = e1 ∧ tl(x) ∈ (tr1 ‖cs e2 : tr2)}
∪
{x | hd(x) = e2 ∧ tl(x) ∈ (e1 : tr1 ‖cs tr2)}

180 APPENDIX B. CIRCUS DENOTATIONAL SEMANTICS

B.2.1.1 Iterated operators

Definition B.2.21. o
9 x : 〈v1, . . . , vn〉 • A(x) =̂ A(v1); . . . ; A(vn)

Definition B.2.22. 2 x : T • A(x) =̂ A(v1) 2 · · · 2 A(vn)

Definition B.2.23. u x : T • A(x) =̂ A(v1) u · · · u A(vn)

Definition B.2.24.

|[cs]| x : {v1, . . . , vn} • |[ns(x)]| A(x) =̂
A(v1)
|[ns(v1) | cs |

⋃
{x : {v2, . . . , vn} • ns(x)}]| . . .

 A(vn−1)
|[ns(vn−1) | cs | ns(vn)]|
A(vn)

Definition B.2.25.

||| x : {v1, . . . , vn} •||[ns(x)]|| A(x) =̂
A(v1)
||[ns(v1) |

⋃
{x : {v2, . . . , vn} • ns(x)}]|| . . .

 A(vn−1)
||[ns(vn−1) | ns(vn)]||
A(vn)

B.2.2 Action invocations, parametrized actions and

renaming

In what follows, we consider the function action, given its name.

Definition B.2.26. N =̂ B(N)

Definition B.2.27. N (e) =̂ B(N)(e)

Definition B.2.28. (x : T • A)(e) =̂ A[e/x]

Definition B.2.29.

A[old1, . . . , oldn := new1, . . . , newn]
=̂
A[old1, . . . , oldn/new1, . . . , newn]

B.2. CIRCUS DENOTATIONAL SEMANTICS 181

B.2.3 Commands

Definition B.2.30.

x1, . . . , xn := e1, . . . , en =̂
R(true ` tr ′ = tr ∧ ¬ wait ′ ∧ x ′1 = e1 ∧ · · · ∧ x ′n = en ∧ u ′ = u)

Definition B.2.31.

w : [pre, post] =̂ R(pre ` post ∧ ¬ wait ′ ∧ tr ′ = tr ∧ u ′ = u)

Definition B.2.32. {g} =̂ : [g , true]

Definition B.2.33. [g] =̂ : [g]

Definition B.2.34.

if [] i • giAi fi =̂ R((
∨

i • gi) ∧ (
∧

i • gi → ¬ Ai
f
f) `

∨
i • (gi ∧ Ai

t
f))

Definition B.2.35. var x : T • A =̂ var x : T ; A; end x : T

Definition B.2.36.

(val x : T • A)(e) =̂ (var x : T • x := e; A)

provided x /∈ FV (e)

Definition B.2.37. (res x : T • A)(y) =̂ (var x : T • A; y := x)

Definition B.2.38.

(vres x : T • A)(y) =̂ (var x : T • x := y; A; y := x)

provided x 6= y

B.2.4 Schema expressions

Definition B.2.39. [udecl ; ddecl ′ | pred] =̂ ddecl : [∃ ddecl ′ • pred , pred]

B.2.5 Circus processes

Definition B.2.40.

begin state [decl | pred] PPars • A end =̂ var decl • A

182 APPENDIX B. CIRCUS DENOTATIONAL SEMANTICS

Definition B.2.41. For op ∈ { ; ,2 ,u}:

P op Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act op Q .Act

end

Definition B.2.42.

P |[cs]|Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act |[α(P .State) | cs | α(Q .State)]|Q .Act

end

Definition B.2.43.

P 9 Q =̂ begin state State =̂ P .State ∧ Q .State
P .PPar ∧Ξ Q .State
Q .PPar ∧Ξ P .State
• P .Act ||[α(P .State) | α(Q .State)]|| Q .Act

end

Definition B.2.44. P \ cs =̂ state State =̂ P .State P .PPar • P .Act \ cs end

Definition B.2.45. x : T � P =̂ (x : T • P)[c : usedC (P) • c x .x]

Definition B.2.46. (x : T � P)bvc =̂ (x : T � P)(v)

Definition B.2.47. N bv1c =̂ B(P)bvc

Definition B.2.48. N =̂ B(N)

Definition B.2.49. N (e) =̂ B(N)(e)

Definition B.2.50. (x : T • P)(e) =̂ P [e/x]

Definition B.2.51. o
9 x : 〈v1, . . . , vn〉 • P(x) =̂ P(v1); . . . ; P(vn)

Definition B.2.52. 2 x : {v1, . . . , vn} • P(x) =̂ P(v1) 2 · · · 2 P(vn)

Definition B.2.53. u x : {v1, . . . , vn} • P(x) =̂ P(v1) u · · · u P(vn)

Definition B.2.54.

|[cs]| x : {v1, . . . , vn} • P(x) =̂ P(v1) |[cs]| (. . . (P(vn−1) |[cs]| P(vn)))

B.2. CIRCUS DENOTATIONAL SEMANTICS 183

Definition B.2.55. ||| x : {v1, . . . , vn} • P(x) =̂ P(v1) 9 (. . . (P(vn−1) 9 P(vn)))

Definition B.2.56. P [oldc := newc] =̂ P [newc/oldc]

In what follows, we consider the function paragraphs and channels within a
generic process (declared using generic parameters T0, . . . ,Tn) with the types that
are given.

Definition B.2.57. P [te0, . . . , ten] =̂ I(B(P), 〈te0, . . . , ten〉)

A
p

p
e

n
d

i
x

C
Circus operational semantics

C.1 Generic actions theorems

Theorem 1.
Schema sc = state update before sc Skip

Theorem 2.

v := e = state update before (λ(s , s ′). s ′ = (update v (λ . (e s))) s) Skip

Theorem 3.

var x • A = state update before (λ(s , s ′). ∃ a. s ′ = increase v a s) (let v • A)

Theorem 4.

let x • A = state update after (λ(s , s ′). s ′ = decrease v s) A

Theorem 5.
g & P = state update before (λ(s , s ′). g s) P

Theorem 6.

c?x ∈ S → P =
iPrefix (λ s . c (select x s)) (λ(s , s ′). ∃ a. a ∈ S ∧ s ′ = increase x a s)

(λA. let x • A) (c‘S) P

Theorem 7.
c!a → P = oPrefix (λ s . c (a s)) (range c) P

185

186 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

C.2 Transition relation

C.2.1 Introduction rules

c sc(s , s ′)

(c | s |= state update before sc A)
ε−→ (c ∧ sc(s , s ′) | s ′ |= A)

(C.1)

c sc(s , s ′)

(c | s |= state update after sc Skip)
ε−→ (c ∧ sc(s , s ′) | s ′ |= Skip)

(C.2)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) A1 6= Skip

(c1 | s1 |= state update after sc A1)
l−→ (c2 | s2 |= state update after sc A2)

(C.3)

c i(s , s ′)

(c | s |= iPrefix d i j S Ac)
in (d s′)−−−−−→ (c | s ′ |= j Ac)

(C.4)

c

(c | s |= oPrefix d S Ac)
out (d s)−−−−−→ (c | s |= Ac)

(C.5)

c

(c | s |= v := e)
ε−→ (c ∧ (s ; w0 = e) | s ; v := w0 |= Skip)

(C.6)

c

(c | s |= v := e)
ε−→ (c ∧ w0 = e s | v update w0 s |= Skip)

(+)

c (s ; pre Op)

(c | s |= Op)
ε−→ (c ∧ (s ; Op[w0/v ′]) | s ; v := w0 |= Skip)

v = outαs (C.7)

c Op(s , s ′)

(c | s |= Op)
ε−→ (c ∧ Op(s , s ′) | s ′ |= Skip)

(+)

C.2. TRANSITION RELATION 187

c ∧ T 6= ∅ x /∈ αs

(c | s |= var x : T • A)
ε−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)

(C.8)

c

(c | s |= var x • A)
ε−→ (c | var x w0 s |= let x • A)

(+)

c

(c | s |= let x • Skip)
ε−→ (c | s ; end x |= Skip)

(C.9)

c

(c | s |= let x • Skip)
ε−→ (c | end x s |= Skip)

(+)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l−→ (c2 | s2 |= let x • A2)

(C.10)

c

(c | s |= d !e → A)
d !w0−→ (c ∧ (s ; w0 = e) | s |= A)

(C.11)

c

(c | s |= d !e → A)
out (d w0)−−−−−→ (c ∧ w0 = e s | s |= A)

(+)

c ∧ T 6= ∅ x /∈ αs

(c | s |= d?x : T → A)
d?w0−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)

(C.12)

c

(c | s |= d?x → A)
in (d w0)−−−−−→ (c | var x w0 s |= let x • A)

(+)

c w0 ∈ T

(c | s |= d?x ∈ T → A)
in (d w0)−−−−−→ (c ∧ w0 ∈ T | var x w0 s |= let x • A)

(+)

188 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

c

(c | s |= d → A)
d−→ (c | s |= A)

(C.13)

c

(c | s |= d → A)
ev (d)−−−→ (c | s |= A)

(+)

c

(c | s |= Skip ; A)
ε−→ (c | s |= A)

(C.14)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1 ; B)
l−→ (c2 | s2 |= A2 ; B)

(C.15)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) A1 6= Skip

(c1 | s1 |= A1 ; B)
l−→ (c2 | s2 |= A2 ; B)

(+)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A2)

(C.16)

c

(c | s |= A1 2 A2)
ε−→ (c | s |= (loc c | s • A1)� (loc c | s • A2))

(C.17)

c1

(c | s |= (loc c1 | s1 • Skip)� (loc c2 | s2 • A))
ε−→ (c1 | s1 |= Skip)

(C.18)

c2

(c | s |= (loc c1 | s1 • A)� (loc c2 | s2 • Skip))
ε−→ (c2 | s2 |= Skip)

(C.19)

C.2. TRANSITION RELATION 189

(c1 | s1 |= A1)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)

�
(loc c2 | s2 • A2)

 ε−→

c | s
|= (loc c3 | s3 • A3)

�
(loc c2 | s2 • A2)

(C.20)

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)

�
(loc c2 | s2 • A2)

 ε−→

c | s
|= (loc c1 | s1 • A1)

�
(loc c3 | s3 • A3)

(C.21)

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1)� (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(C.22)

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1)� (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(C.23)

c ∧ (s ; g)

(c | s |= g & A)
ε−→ (c ∧ (s ; g) | s |= A)

(C.24)

c (g s)

(c | s |= g & A)
ε−→ (c ∧ g s | s |= A)

(+)

c

(c | s |= Skip \ cs)
ε−→ (c | s |= Skip)

(C.25)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε chan l /∈ cs

(c1 | s1 |= A1 \ cs)
l−→ (c2 | s2 |= A2 \ cs)

(C.26)

190 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε filter chan set (the (chan l)) es

(c1 | s1 |= A1 \ es)
l−→ (c2 | s2 |= A2 \ es)

(+)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs)
ε−→ (c2 | s2 |= A2 \ cs)

(C.27)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ ¬ filter chan set (the (chan l)) es

(c1 | s1 |= A1 \ es)
ε−→ (c2 | s2 |= A2 \ es)

(+)

c

(c | s |= A1 |[x1 | cs | x2]| A2)
ε−→

c | s
|= (par s | x1 • A1)

|[cs]|
(par s | x2 • A2)

 (C.28)

c
c | s
|= (par s1 | x1 • Skip)

|[cs]|
(par s2 | x2 • Skip)

 ε−→

 c | (∃ x ′2 • s1) ∧ (∃ x ′1 • s2)
|=

Skip

 (C.29)

c
c | s
|= (par s1 | x1 • Skip)

|[ns]|
(par s2 | x2 • Skip)

 ε−→

 c | StateMerge (s1, x1) (s2, x2) s
|=

Skip

 (+)

C.2. TRANSITION RELATION 191

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs

c | s
|= (par s1 | x1 • A1)

|[cs]|
(par s2 | x2 • A2)

 l−→

c3 | s
|= (par s3 | x1 • A3)

|[cs]|
(par s2 | x2 • A2)

(C.30)

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ (filter chan set (the (chan ll)) es) c3

c | s
|= (par s1 | x1 • A1)

|[es]|
(par s2 | x2 • A2)

 l−→

c3 | s
|= (par s3 | x1 • A3)

|[es]|
(par s2 | x2 • A2)

(+)

(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs

c | s
|= (par s1 | x1 • A1)

|[cs]|
(par s2 | x2 • A2)

 l−→

c3 | s
|= (par s1 | x1 • A1)

|[cs]|
(par s3 | x2 • A3)

(C.31)

(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ (filter chan set (the (chan ll)) es) c3

c | s
|= (par s1 | x1 • A1)

|[es]|
(par s2 | x2 • A2)

 l−→

c3 | s
|= (par s1 | x1 • A1)

|[es]|
(par s3 | x2 • A3)

(+)

192 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

(c | s1 |= A1)
d−→ (c3 | s3 |= A3) (c | s2 |= A2)

d−→ (c4 | s4 |= A4)
d ∈ cs c3 ∧ c4

c | s
|= (par s1 | x1 • A1)

|[cs]|
(par s2 | x2 • A2)

 d−→

c3 ∧ c4 | s
|= (par s3 | x1 • A3)

|[cs]|
(par s4 | x2 • A4)

(C.32)

(c | s1 |= A1)
evn d−−−→ (c3 | s3 |= A3) (c | s2 |= A2)

evn d−−−→ (c4 | s4 |= A4)
¬ (filter chan set d es) c3 ∧ c4

c | s
|= (par s1 | x1 • A1)

|[es]|
(par s2 | x2 • A2)

 evn d−−−→

c3 ∧ c4 | s
|= (par s3 | x1 • A3)

|[es]|
(par s4 | x2 • A4)

(+)

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)
d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 • A1)

|[cs]|
(par s2 | x2 • A2)

 d?w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

|[cs]|
(par s4 | x2 • A4)

(C.33)

(c | s1 |= A1)
in d1−−−→ (c3 | s3 |= A3) (c | s2 |= A2)

in d2−−−→ (c4 | s4 |= A4)
¬ (filter chan set d1 es) ¬ (filter chan set d2 es) c3 ∧ c4 ∧ d1 = d2

c | s
|= (par s1 | x1 • A1)

|[es]|
(par s2 | x2 • A2)

 in d2−−−→

c3 ∧ c4 ∧ d1 = d2 | s
|= (par s3 | x1 • A3)

|[es]|
(par s4 | x2 • A4)

(+)

C.2. TRANSITION RELATION 193

(c | s1 |= A1)

d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d !w2−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

d !w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d?w2−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

d !w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
d !w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 • A1)

|[cs]|
(par s2 | x2 • A2)

 d !w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

|[cs]|
(par s4 | x2 • A4)

(C.34)

(c | s1 |= A1)

in d1−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
out d2−−−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

out d1−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
in d2−−−→ (c4 | s4 |= A4)

∨
(c | s1 |= A1)

out d1−−−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)
out d2−−−→ (c4 | s4 |= A4)

¬ (filter chan set d1 es) ¬ (filter chan set d2 es) c3 ∧ c4 ∧ d1 = d2

c | s
|= (par s1 | x1 • A1)

|[es]|
(par s2 | x2 • A2)

 out d2−−−→

c3 ∧ c4 ∧ d1 = d2 | s
|= (par s3 | x1 • A3)

|[es]|
(par s4 | x2 • A4)

(+)

c

(c | s |= µ X • A, δ)
ε−→ (c | s |= A, δ ⊕ {X 7→ A})

(C.35)

c

(c | s |= X , δ)
ε−→ (c | s |= δ X , δ)

(C.36)

monotonic A

(c | s |= (µ X • A(X))) = (c | s |= A(µ X • A(X)))
(+)

194 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

C.2.2 Derived elimination rules

(c1 | s1 |= Skip)
l−→ (c2 | s2 |= A2)

[false]
···

Q

Q

(C.37)

(c1 | s1 |= v := e)
l−→ (c2 | s2 |= A2)

 c2 = (c1 ∧ w0 = e s1)
∧ s2 = v update w0 s1
∧ A2 = Skip ∧ l = ε

···

Q c1

Q

(C.38)

(c1 | s1 |= Op)
l−→ (c2 | s2 |= A2)

[
c2 = (c1 ∧ Op(s1, s

′
1)) ∧ s2 = s ′1

∧ A2 = Skip ∧ l = ε

]
···

Q c1 Op(s1, s
′
1)

Q

(C.39)

(c1 | s1 |= var x •A1)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = var x w0 s1
∧ A2 = let x •A1 ∧ l = ε

]
···

Q c1

Q

(C.40)

(c1 | s1 |= let x • Skip)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = end x s1
∧ A2 = Skip ∧ l = ε

]
···

Q c1

Q

(C.41)

(c1 | s1 |= let x •A1)
l−→ (c2 | s2 |= A2)

[
(c1 | s1 |= A1)

l−→ (c2 | s2 |= A3)
∧ A2 = let x •A3

]
···

Q A1 6= Skip

Q

(C.42)

C.2. TRANSITION RELATION 195

(c1 | s1 |= d !e → A1)
l−→ (c2 | s2 |= A2)

[
c2 = (c1 ∧ w0 = e s1) ∧ s2 = s1
∧ A2 = A1 ∧ l = out (d w0)

]
···

Q c1

Q

(C.43)

(c1 | s1 |= d?x → A1)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = (var x w0 s1) ∧

A2 = let x •A1 ∧ l = in (d w0)

]
···

Q c1

Q

(C.44)

(c1 | s1 |= d?x ∈ T → A1)
l−→ (c2 | s2 |= A2)

[
c2 = (c1 ∧ w0 ∈ T) ∧ s2 = (var x w0 s1)
∧ A2 = let x •A1 ∧ l = in (d w0)

]
···

Q c1 w0 ∈ T

Q

(C.45)

(c1 | s1 |= d → A1)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1 ∧
A2 = A1 ∧ l = ev d

]
···

Q c1

Q

(C.46)

(c1 | s1 |= Skip; A1)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1
∧ A2 = A1 ∧ l = ε

]
···

Q c1

Q

(C.47)

(c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2)

[
(c1 | s1 |= A1)

l−→ (c2 | s2 |= A3)
∧ A2 = A3; B

]
···

Q A1 6= Skip

Q

(C.48)

196 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

(c1 | s1 |= A1 uA3)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1 ∧ l = ε
∧ (A2 = A1 ∨ A2 = A3)

]
···

Q c1

Q

(C.49)

(c1 | s1 |= A1 � A3)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1 ∧ l = ε ∧

A2 = (loc c1 | s1 •A1)� (loc c1 | s1 •A3)

]
···

Q c1

Q

(C.50)

(c | s |= (loc c1 | s1 • Skip)� (loc c3 | s3 •A3))
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1 ∧
A2 = Skip ∧ l = ε

]
···

Q c1

Q

(C.51)

(c | s |= (loc c1 | s1 •A1)� (loc c3 | s3 • Skip))
l−→ (c2 | s2 |= A2)

[
c2 = c3 ∧ s2 = s3 ∧
A2 = Skip ∧ l = ε

]
···

Q c3

Q

(C.52)

c | s
|= (loc c1 | s1 •A1)

�
(loc c3 | s3 •A3)

 l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1)
ε−→ (c4 | s4 |= A4)

∧ c2 = c ∧ s2 = s ∧ l = ε ∧

A2 =

 (loc c4 | s4 •A4)
�
(loc c3 | s3 •A3)

 ∨

(c3 | s3 |= A3)

ε−→ (c4 | s4 |= A4)
∧ c2 = c ∧ s2 = s ∧ l = ε ∧

A2 =

 (loc c1 | s1 •A1)
�
(loc c4 | s4 •A4)

········
Q

Q
(C.53)

C.2. TRANSITION RELATION 197

c | s
|= (loc c1 | s1 •A1)

�
(loc c3 | s3 •A3)

 l−→ (c2 | s2 |= A2)

 (c1 | s1 |= A1)
l−→ (c4 | s4 |= A4)

∧ c2 = c4 ∧ s2 = s4 ∧ l 6= ε ∧
A2 = A4

 ∨
 (c3 | s3 |= A3)

l−→ (c4 | s4 |= A4)
∧ c2 = c4 ∧ s2 = s4 ∧ l 6= ε ∧

A2 = A4

········

Q

Q
(C.54)

(c1 | s1 |= g&A1)
l−→ (c2 | s2 |= A2)

[
c2 = (c1 ∧ g s1) ∧ s2 = s1
∧ A2 = A1 ∧ l = ε

]
···

Q c1 (g s1)

Q

(C.55)

(c1 | s1 |= Skip \ cs)
l−→ (c2 | s2 |= A2)

[
c2 = c1 ∧ s2 = s1 ∧
A2 = Skip ∧ l = ε

]
···

Q c1

Q

(C.56)

(c1 | s1 |= A1 \ cs)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1)
ll−→ (c3 | s3 |= A3) ∧

c2 = c1 ∧ s2 = s1 ∧ A2 = (A3 \ cs) ∧
(ll 6= ε ∧ filter chan set (the(chan ll)) ∧ l = ll)

∨
(ll 6= ε ∧ ¬ filter chan set (the(chan ll)) ∧ l = ε)

∨
(ll = ε ∧ l = ε)

···

Q c1 A1 6= Skip

Q

(C.57)

198 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

(c1 | s1 |= A1 |[x1 | cs | x3]|A3)
l−→ (c2 | s2 |= A2)

c2 = c1 ∧ s2 = s1 ∧ l = ε ∧

A2 =

 (par s1 | x1 •A1)
|[cs]|

(par s1 | x3 •A3)

···
Q c1

Q

(C.58)

(c | s |=

 (par s1 | x1 • Skip)
|[cs]|

(par s3 | x3 • Skip)

)
l−→ (c2 | s2 |= A2)

[
s2 = StateMerge (s1, x1) (s3, x3) s
∧ c2 = c ∧ l = ε ∧ A2 = Skip

]
···

Q c

Q

(C.59)

c | s
|=(par s1 | x1 •A1)
|[cs]|
(par s3 | x3 •A3)

 l−→ (c2 | s2 |= A2)

((filter chan set (the(chan l)) cs) ∨ l = ε) ∧ c2 = c4 ∧ s2 = s ∧(c | s1 |= A1)

l−→ (c4 | s4 |= A4) ∧ A2 = ((par s4 | x1 •A4) |[cs]| (par s3 | x3 •A3))
∨

(c | s3 |= A3)
l−→ (c4 | s4 |= A4) ∧ A2 = ((par s1 | x1 •A1) |[cs]| (par s4 | x3 •A4))

········
Q c4

Q
(C.60)

c | s
|=(par s1 | x1 •A1)
|[cs]|
(par s3 | x3 •A3)

 l−→ (c2 | s2 |= A2)

¬ (filter chan set d cs) ∧ l = evn d
∧ c2 = (c4 ∧ c5) ∧ s2 = s ∧

(c | s1 |= A1)
l−→ (c4 | s4 |= A4) ∧

(c | s3 |= A3)
l−→ (c5 | s5 |= A5)

∧ A2 =

 (par s4 | x1 •A4)
|[cs]|

(par s5 | x3 •A5)

···

Q c4 ∧ c5

Q

(C.61)

C.2. TRANSITION RELATION 199

c | s
|=(par s1 | x1 •A1)
|[cs]|
(par s3 | x3 •A3)

 l−→ (c2 | s2 |= A2)

¬ (filter chan set d1 cs)
¬ (filter chan set d2 cs)
∧ c2 = (c4 ∧ c5 ∧ d1 = d2)
∧ l = in d1 ∧ s2 = s ∧

(c | s1 |= A1)
in d1−→ (c4 | s4 |= A4) ∧

(c | s3 |= A3)
in d2−→ (c5 | s5 |= A5)

∧ A2 =

 (par s4 | x1 •A4)
|[cs]|

(par s5 | x3 •A5)

···

Q c4 ∧ c5 ∧ d1 = d2

Q

(C.62)

c | s
|=(par s1 | x1 •A1)
|[cs]|
(par s3 | x3 •A3)

 l−→ (c2 | s2 |= A2)

¬ (filter chan set d1 cs)
¬ (filter chan set d2 cs)
∧ c2 = (c4 ∧ c5 ∧ d1 = d2)
∧ l = out d1 ∧ s2 = s ∧

(c | s1 |= A1)
ev1−→ (c4 | s4 |= A4) ∧

(c | s3 |= A3)
ev2−→ (c5 | s5 |= A5) ∧(ev1 = in d1 ∧ ev2 = out d2) ∨

(ev1 = out d1 ∧ ev2 = in d2) ∨
(ev1 = out d1 ∧ ev2 = out d2)

∧ A2 =

 (par s4 | x1 •A4)
|[cs]|

(par s5 | x3 •A5)

····

Q c4 ∧ c5 ∧ d1 = d2

Q

(C.63)

C.2.3 Other derived rules

{t | ∃ c2 s2 A2 l • (c1 | s1 |= Skip)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

= {}
(C.64)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= v := e)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
w0 ∈ {e s} • {t | c1 ∧ P t (c1 ∧ w0 = e s1) (v update w0 s1) Skip ε}

(C.65)

200 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

{t | ∃ c2 s2 A2 l • (c1 | s1 |= Op)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
s ′ ∈ {s ′′ | Op(s1, s

′′)} • {t | c1 ∧ P t (c1 ∧ Op(s1, s
′)) s ′ Skip ε}

(C.66)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= var x • A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
w0 • {t | c1 ∧ P t c1 (var x w0 s1) (let x • A) ε}

(C.67)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= let x • Skip)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ P t c1 (end x s1) Skip ε}

(C.68)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= let x • A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 (let x • A2) l}

(C.69)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= d !e → A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
w0 ∈ {e s1} • {t | c1 ∧ P t (c1 ∧ w0 = e s1) s1 A1 (out (d w0))}

(C.70)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= d?e → A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
w0 • {t | c1 ∧ P t c1 (var x w0 s1) (let x • A1) (in (d w0))}

(C.71)

C.2. TRANSITION RELATION 201

{t | ∃ c2 s2 A2 l • (c1 | s1 |= d?e∈T → A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=⋃
w0 ∈ T • {t | c1 ∧ P t (c1 ∧ w0 ∈ T) (var x w0 s1) (let x • A1) (in (d w0))}

(C.72)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= d → A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ P t c1 s1 A1 (ev d)}

(C.73)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 (A2; B) l}
∪

{t | A1 = Skip ∧ c1 ∧ P t c1 s1 B ε}
(C.74)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1 u A3)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ P t c1 s1 A1 ε} ∪ {t | c1 ∧ P t c1 s1 A3 ε}

(C.75)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1�A3)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ P t c1 s1 ((loc c1 | s1 • A1)� (loc c1 | s1 • A3)) ε}

(C.76)

202 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

{t
|∃

c 2
s 2

A
2

l
•

(c
|s
|=

(l
o
c

c 1
|s

1
•

A
1
)
�

(l
o
c

c 3
|s

3
•

A
3
))

l −→
(c

2
|s

2
|=

A
2
)
∧

P
t

c 2
s 2

A
2

l}
=

{t
|A

1
=

S
ki

p
∧

c 1
∧

P
t

c 1
s 1

S
ki

p
ε}

∪
{t
|A

3
=

S
ki

p
∧

c 3
∧

P
t

c 3
s 3

S
ki

p
ε}

∪
{t
|∃

c 2
s 2

A
2
•

(c
1
|s

1
|=

A
1
)

ε −→
(c

2
|s

2
|=

A
2
)
∧

P
t

c
s

((
lo
c

c 2
|s

2
•

A
2
)
�

(l
o
c

c 3
|s

3
•

A
3
))
ε}

∪
{t
|∃

c 2
s 2

A
2
•

(c
3
|s

3
|=

A
3
)

ε −→
(c

2
|s

2
|=

A
2
)
∧

P
t

c
s

((
lo
c

c 1
|s

1
•

A
1
)
�

(l
o
c

c 2
|s

2
•

A
2
))
ε}

∪
{t
|∃

c 2
s 2

A
2

l
•

(c
1
|s

1
|=

A
1
)

l −→
(c

2
|s

2
|=

A
2
)
∧

l
6=
ε
∧

P
t

c 2
s 2

A
2

l}
∪

{t
|∃

c 2
s 2

A
2

l
•

(c
3
|s

3
|=

A
3
)

l −→
(c

2
|s

2
|=

A
2
)
∧

l
6=
ε
∧

P
t

c 2
s 2

A
2

l}

(C.77)

C.2. TRANSITION RELATION 203

{t
|∃

c 2
s 2

A
2

l
•

(c
|s
|=

(p
ar

s 1
|x

1
•

A
1
)
|[c

s
]|(

pa
r

s 3
|x

3
•

A
3
))

l −→
(c

2
|s

2
|=

A
2
)
∧

P
t

c 2
s 2

A
2

l}
=

{t
|A

1
=

S
ki

p
∧

A
3

=
S

ki
p
∧

c
∧

P
t

c
(S

ta
te

M
er

ge
(s

1
,x

1
)

(s
2
,x

2
)

s)
S

ki
p
ε}

∪
{t
|∃

c 2
s 2

A
2

l
•

(c
|s

1
|=

A
1
)

l −→
(c

2
|s

2
|=

A
2
)
∧

c 2
∧

(l
=
ε
∨

fi
lt

er
ch

an
se

t
(t

he
(c

ha
n

l)
)

cs
)
∧

P
t

c 2
s

((
pa
r

s 2
|x

1
•

A
2
)
|[c

s
]|(

pa
r

s 3
|x

3
•

A
3
))

l}
∪

{t
|∃

c 2
s 2

A
2

l
•

(c
|s

3
|=

A
3
)

l −→
(c

2
|s

2
|=

A
2
)
∧

c 2
∧

(l
=
ε
∨

fi
lt

er
ch

an
se

t
(t

he
(c

ha
n

l)
)

cs
)
∧

P
t

c 2
s

((
pa
r

s 1
|x

1
•

A
1
)
|[c

s
]|(

pa
r

s 2
|x

3
•

A
2
))

l}
∪

{t
|∃

c 2
s 2

A
2

d
•

(c
|s

3
|=

A
3
)
ev
n

d
−→

(c
2
|s

2
|=

A
2
)
∧

(c
|s

3
|=

A
3
)
ev
n

d
−→

(c
4
|s

4
|=

A
4
)
∧

(c
2
∧

c 4
)

∧
¬

fi
lt

er
ch

an
se

t
d

cs
∧

P
t

(c
2
∧

c 4
)

s
((
pa
r

s 2
|x

1
•

A
2
)
|[c

s
]|(

pa
r

s 4
|x

3
•

A
4
))

(e
vn

d
)}

∪
{t
|∃

c 2
s 2

A
2

d 1
d 2
•

(c
|s

3
|=

A
3
)
in

d
1

−→
(c

2
|s

2
|=

A
2
)
∧

(c
|s

3
|=

A
3
)
in

d
2

−→
(c

4
|s

4
|=

A
4
)

∧
(c

2
∧

c 4
∧

d 1
=

d 2
)
∧
¬

fi
lt

er
ch

an
se

t
d 1

cs
∧
¬

fi
lt

er
ch

an
se

t
d 2

cs
∧

P
t

(c
2
∧

c 4
∧

d 1
=

d 2
)

s
((
pa
r

s 2
|x

1
•

A
2
)
|[c

s
]|(

pa
r

s 4
|x

3
•

A
4
))

(i
n

d 1
)}

∪
{t
|∃

c 2
s 2

A
2

d 1
d 2

ev
1

ev
2
•

(c
|s

3
|=

A
3
)

ev
1
−→

(c
2
|s

2
|=

A
2
)
∧

(c
|s

3
|=

A
3
)

ev
2
−→

(c
4
|s

4
|=

A
4
)

∧
((

ev
1

=
in

d 1
∧

ev
2

=
ou

t
d

2)
∨

(e
v 1

=
ou

t
d 1
∧

ev
2

=
in

d
2)
∨

(e
v 1

=
ou

t
d 1
∧

ev
2

=
ou

t
d

2)
)

∧
(c

2
∧

c 4
∧

d 1
=

d 2
)
∧
¬

fi
lt

er
ch

an
se

t
d 1

cs
∧
¬

fi
lt

er
ch

an
se

t
d 2

cs
∧

P
t

(c
2
∧

c 4
∧

d 1
=

d 2
)

s
((
pa
r

s 2
|x

1
•

A
2
)
|[c

s
]|(

pa
r

s 4
|x

3
•

A
4
))

(o
u

t
d 1

)}

(C.78)

204 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

{t |∃ c2 s2 A2 l • (c1 | s1 |= A1 |[x1 |cs |x3]|A3)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ P t c1 s1 ((par s1 | x1 • A1) |[cs]| (par s1 | x3 • A3)) ε}

(C.79)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= g &A1)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | c1 ∧ (g s1) ∧ P t (c1 ∧ (g s1)) s1 A1 ε}

(C.80)

{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1 \ cs)
l−→ (c2 | s2 |= A2) ∧ P t c2 s2 A2 l}

=
{t | A1 = Skip ∧ c1 ∧ P t c1 s1 Skip ε}

∪
{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1)

l−→ (c2 | s2 |= A2) ∧
l 6= ε ∧ filter chan set (the(chan l)) cs ∧ P t c2 s2 (A2 \ cs) l}

∪
{t | ∃ c2 s2 A2 l • (c1 | s1 |= A1)

l−→ (c2 | s2 |= A2) ∧
(l = ε ∨ ¬ filter chan set (the(chan l)) cs) ∧ P t c2 s2 (A2 \ cs) ε}

(C.81)

C.3 Trace composition relation

C.3.1 Introduction rules

(c | s |= A)
[]

=⇒ (c | s |= A)
(C.82)

(c1 | s1 |= A1)
ε−→ (c2 | s2 |= A2) (c2 | s2 |= A2)

st
=⇒ (c3 | s3 |= A3)

(c1 | s1 |= A1)
st

=⇒ (c3 | s3 |= A3)
(C.83)

(c1 | s1 |= A1)
e−→ (c2 | s2 |= A2) (c2 | s2 |= A2)

st
=⇒ (c3 | s3 |= A3) e 6= ε

(c1 | s1 |= A1)
e#st
=⇒ (c3 | s3 |= A3)

(C.84)

C.3. TRACE COMPOSITION RELATION 205

C.3.2 Derived elimination rule

(c
1
|s

1
|=

A
1
)

st
=
⇒

(c
3
|s

3
|=

A
3
)[c 1

=
c 3
∧

s 1
=

s 3
∧

A
1

=
A

3
∧

st
=

[]

]
· · · Q

[(c
1
|s

1
|=

A
1
)

ε −→
(c

2
|s

2
|=

A
2
)

(c
2
|s

2
|=

A
2
)

st
=
⇒

(c
3
|s

3
|=

A
3
)

]
· · · · · · · · · · Q

 (c
1
|s

1
|=

A
1
)

e −→
(c

2
|s

2
|=

A
2
)

(c
2
|s

2
|=

A
2
)

st
1

=
⇒

(c
3
|s

3
|=

A
3
)

e
6=
ε
∧

st
=

e
#

st
1

· · · · · · · · · · · · · · · · · Q

Q

(C.85)

206 APPENDIX C. CIRCUS OPERATIONAL SEMANTICS

C.3.3 Other derived rule

{t
|∃

c 2
s 2

A
2
•

(c
1
|s

1
|=

A
1
)

tr =
⇒

(c
2
|s

2
|=

A
2
)
∧

P
t

(c
2
|s

2
|=

A
2
)

tr
}

=
 {t

|t
r

=
[]
∧

P
t

(c
1
|s

1
|=

A
1
)

[]
}
∪

{ t
|∃

c 2
s 2

A
2

c 3
s 3

A
3
•

(c
1
|s

1
|=

A
1
)

ε −→
(c

2
|s

2
|=

A
2
)
∧

(c
2
|s

2
|=

A
2
)

tr =
⇒

(c
3
|s

3
|=

A
3
)
∧

P
t

(c
3
|s

3
|=

A
3
)

tr

} ∪
 t

|∃
c 2

s 2
A

2
c 3

s 3
A

3
e

tr
1
•

(c
1
|s

1
|=

A
1
)

e −→
(c

2
|s

2
|=

A
2
)
∧

(c
2
|s

2
|=

A
2
)

tr
1

=
⇒

(c
3
|s

3
|=

A
3
)
∧

e
6=
ε
∧

tr
=

e
#

tr
1
∧

P
t

(c
3
|s

3
|=

A
3
)

(e
#

tr
1
)

(C.86)

A
p

p
e

n
d

i
x

D
Refinement laws

P �S Q P ′ �S Q ′

P ; P ′ �S Q ; Q ′
SeqI

(D.1)

P �S Q g1 'S g2

g1&P �S g2&Q
GrdI

(D.2)

P �S Q x ∼S y
var x • P �S var y •Q

VarI
(D.3)

P �S Q x ∼S y

c?x → P �S c?y → Q
InpI

(D.4)

P �S Q P ′ �S Q ′

P u P ′ �S Q uQ ′
NdetI

(D.5)

P �S Q x ∼S y

c!x → P �S c!y → Q
OutI

(D.6)

[X �S Y]
....

P X �S Q Y mono P mono Q

µX • P X �S µY •Q Y
MuI

(D.7)

207

208 APPENDIX D. REFINEMENT LAWS

P �S Q P ′ �S Q ′

P�P ′ �S Q�Q ′
DetI

(D.8)

[Pre sc1 (S A)]
....

Pre sc2 A

[Pre sc1 (S A) sc2 (A,A′)]
....

sc1 (S A, S A′)

schema sc1 �S schema sc2
SchI

(D.9)

P �S Q
a → P �S a → Q

SyncI
(D.10)

P �S Q P ′ �S Q ′ ns1 ∼S ns ′1 ns2 ∼S ns ′2
PJns1 | cs | ns2KP ′ �S QJns ′1 | cs | ns ′2KQ ′

ParI
(D.11)

Skip �S Skip
SkipI

(D.12)

the relations “x ∼S y” and “g1 'S g2” record the fact that the variable x (repectively
the guard g1) is refined by the variable y (repectively by the guard g2) w.r.t the
simulation function S .

Bibliography

[AA92] N. Amla and P. Ammann. Using z specifications in category parti-
tion testing. In Computer Assurance, 1992. COMPASS ’92. ’Systems
Integrity, Software Safety and Process Security: Building the System
Right.’, Proceedings of the Seventh Annual Conference on, pages 3 –10,
jun 1992. 19

[ABK+02] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-
Brückner, Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki.
Casl: the common algebraic specification language. Theor. Comput.
Sci., 286(2):153–196, September 2002. 21

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996. 20

[AO94] P. Ammann and J. Offutt. Using formal methods to derive test frames
in category-partition testing. In Computer Assurance, 1994. COMPASS
’94 Safety, Reliability, Fault Tolerance, Concurrency and Real Time,
Security. Proceedings of the Ninth Annual Conference on, pages 69 –79,
jun-1 jul 1994. 19

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specifi-
cation language lotos. Computer Networks, 14:25–59, 1987. 26, 27

[BBC+10] Thomas Ball, Sebastian Burckhardt, Katherine E. Coons, Madanlal
Musuvathi, and Shaz Qadeer. Preemption sealing for efficient concur-
rency testing. In Proceedings of the 16th international conference on
Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’10, pages 420–434, Berlin, Heidelberg, 2010. Springer-Verlag.
57

[BBN11] Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic
proof and disproof in isabelle/hol. In Cesare Tinelli and Viorica Sofronie-
Stokkermans, editors, Frontiers of Combining Systems, volume 6989 of

209

210 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 12–27. Springer Berlin / Hei-
delberg, 2011. 32

[BCFG86] L Bougé, N Choquet, L Fribourg, and M C Gaudel. Test sets generation
from algebraic specifications using logic programming. J. Syst. Softw.,
6(4):343–360, November 1986. 21

[BCM00] Simon Burton, John Clark, and John Mcdermid. Testing, proof and au-
tomation: An integrated approach. In In Proc. 1st International Work-
shop of Automated Program Analysis, Testing and Verification, 2000.
32

[BGG+92] Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon, John Har-
rison, John Herbert, and John Van Tassel. Experience with embed-
ding hardware description languages in hol. In Proceedings of the IFIP
TC10/WG 10.2 International Conference on Theorem Provers in Cir-
cuit Design: Theory, Practice and Experience, pages 129–156, Amster-
dam, The Netherlands, The Netherlands, 1992. North-Holland Publish-
ing Co. 63

[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software testing
based on formal specifications: a theory and a tool. Softw. Eng. J.,
6(6):387–405, November 1991. 14, 15, 21

[BH04] Kirill Bogdanov and Mike Holcombe. Refinement in statechart testing.
Softw. Test., Verif. Reliab., 14(3):189–211, 2004. 27

[Bri88] Ed Brinksma. A theory for the derivation of tests. In S. Aggarwal
and K. Sabnani, editors, Protocol Specification, Testing, and Verification
VIII, volume 3582 of Lecture Notes in Computer Science, pages 63–74,
North-Holland, 1988. Springer. 24

[BRW03] Achim D. Brucker, Frank Rittinger, and Burkhart Wolff. Hol-z 2.0: A
proof environment for z-specifications. Journal of Universal Computer
Science, 9(2):152–172, February 2003. 55, 63, 66, 68

[BT01] Ed Brinksma and Jan Tretmans. Testing transition systems: An anno-
tated bibliography. In Franck Cassez, Claude Jard, Brigitte Rozoy, and
Mark Ryan, editors, Modeling and Verification of Parallel Processes,
volume 2067 of Lecture Notes in Computer Science, pages 187–195.
Springer Berlin / Heidelberg, 2001. 24

[BW07] Achim D. Brucker and Burkhart Wolff. Test-sequence generation with
hol-testgen with an application to firewall testing. In Proceedings of the

BIBLIOGRAPHY 211

1st international conference on Tests and proofs, TAP’07, pages 149–
168, Berlin, Heidelberg, 2007. Springer-Verlag. 135

[BW08] Achim D. Brucker and Burkhart Wolff. An extensible encoding of object-
oriented data models in hol with an application to imp++. Journal of
Automated Reasoning (JAR), 41(3–4):219–249, 2008. Serge Autexier,
Heiko Mantel, Stephan Merz, and Tobias Nipkow (eds). 66

[BW12] Achim Brucker and Burkhart Wolff. On theorem prover-based testing.
Formal Aspects of Computing, pages 1–39, 2012. 10.1007/s00165-012-
0222-y. 22, 32, 56, 96, 135, 155

[CG07] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in csp.
In Michael Butler, Michael G. Hinchey, and Maŕıa M. Larrondo-Petrie,
editors, ICFEM, volume 4789 of Lecture Notes in Computer Science,
pages 151–170. Springer, 2007. 22, 49

[CG10] Ana Cavalcanti and Marie-Claude Gaudel. Specification coverage for
testing in circus. In Proceedings of the Third international conference
on Unifying theories of programming, UTP’10, pages 1–45, Berlin, Hei-
delberg, 2010. Springer-Verlag. 116

[CG11] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in
circus. Acta Inf., 48(2):97–147, April 2011. 43, 47, 49, 98, 99, 101, 105,
108, 109, 116, 123, 127, 129, 132, 134, 140

[Cho78] T. S. Chow. Testing software design modeled by finite-state machines.
IEEE Trans. Softw. Eng., 4(3):178–187, May 1978. 14, 23

[Chu40] Alonzo Church. A formulation of the simple theory of types. The Journal
of Symbolic Logic, 5(2):pp. 56–68, 1940. 51

[CM09] Maximiliano Cristiá and Pablo Rodŕıguez Monetti. Implementing and
applying the stocks-carrington framework for model-based testing. In
Proceedings of the 11th International Conference on Formal Engineering
Methods: Formal Methods and Software Engineering, ICFEM ’09, pages
167–185, Berlin, Heidelberg, 2009. Springer-Verlag. 20

[Coq] Coq web-site. http://coq.inria.fr/. 50

[CS94] David A. Carrington and Phil Stocks. A tale of two paradigms: Formal
methods and software testing. In Z User Workshop’94, pages 51–68,
1994. 17, 20

http://coq.inria.fr/

212 BIBLIOGRAPHY

[CSW03] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A refinement
strategy for circus. Formal Aspects of Computing, 15:146–181, 2003. 90

[CW06] A. L. C. Cavalcanti and J. C. P. Woodcock. A tutorial introduction
to csp in unifying theories of programming. In Refinement Techniques
in Software Engineering, volume 3167 of Lecture Notes in Computer
Science, pages 220 – 268. Springer-Verlag, 2006. 71, 72

[DF93] Jeremy Dick and Alain Faivre. Automating the generation and sequenc-
ing of test cases from model-based specifications. In Proceedings of the
First International Symposium of Formal Methods Europe on Industrial-
Strength Formal Methods, FME ’93, pages 268–284, London, UK, UK,
1993. Springer-Verlag. 18, 19

[DGM93] P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic specifications in
software testing : a case study on the software of an automatic subway.
Journal of Systems and Software, 21(3):229–244, 1993. 21

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
39

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag. 56

[dNH83] R. de Nicola and M. Hennessy. Testing equivalences for processes. In
Josep Diaz, editor, Automata, Languages and Programming, volume 154
of Lecture Notes in Computer Science, pages 548–560. Springer Berlin
/ Heidelberg, 1983. 10.1007/BFb0036936. 13, 22

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic specifi-
cation language with two levels of semantics. Technical Report 83-01,
Technische Universität Berlin, 1983. 21

[FGW10] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff.
Unifying Theories in Isabelle/HOL. In Unifying Theories of Program-
ming (UTP2010), number 6445 in Lecture Notes in Computer Science,
pages 188–206. Springer-Verlag, Heidelberg, November 2010. 20 pages.
62

[FGW11] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Is-
abelle/Circus : a process specification and verification environment.

BIBLIOGRAPHY 213

Technical Report 1547, LRI, Université Paris-Sud XI, November 2011.
62

[FGW12] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Is-
abelle/Circus : A process specification and verification environment. In
Rajeev Joshi, Peter Müller, and Andreas Podelski, editors, Verified Soft-
ware: Theories, Tools, Experiments, volume 7152 of Lecture Notes in
Computer Science, pages 243–260. Springer Berlin / Heidelberg, 2012.
62

[Fis96] C. Fischer. Combining csp and z. Technical report, University of Old-
enburg, 1996. 27

[Fis97] Clemens Fischer. Csp-oz: a combination of object-z and csp. In Proceed-
ings of the IFIP TC6 WG6.1 international workshop on Formal methods
for open object-based distributed systems, FMOODS ’97, pages 423–438,
London, UK, UK, 1997. Chapman & Hall, Ltd. 27

[For05] Formal. Formal systems (europe) ltd. failures-divergence refinement:
Fdr2 user manual. available at http://www.fsel.com/fdr2 manual.html,
June 2005. 22

[FTW06] L. Frantzen, J. Tretmans, and T. A. C. Willemse. A symbolic framework
for model-based testing. In Proceedings of the First combined interna-
tional conference on Formal Approaches to Software Testing and Run-
time Verification, FATES’06/RV’06, pages 40–54, Berlin, Heidelberg,
2006. Springer-Verlag. 25

[FWG12] Abderrahmane Feliachi, Burkhart Wolff, and Marie-Claude Gaudel.
Isabelle/circus. Archive of Formal Proofs, May 2012. http://afp.
sourceforge.net/entries/Circus.shtml, Formal proof development. 86

[Gal96] A. Galloway. Integrated formal Methods with Richer Methodological Pro-
files for the Development of Multi-Perspective Systems. PhD thesis,
School of Computing and Mathematics, 1996. 27

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Proceedings of
the 6th International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, TAPSOFT ’95, pages 82–96, London,
UK, UK, 1995. Springer-Verlag. 14, 15

[Gau01] Marie-Claude Gaudel. Testing from formal specifications, a generic ap-
proach. In Dirk Craeynest and Alfred Strohmeier, editors, Reliable Soft-
wareTechnologies - Ada-Europe 2001, volume 2043 of Lecture Notes in
Computer Science, pages 35–48. Springer Berlin / Heidelberg, 2001. 22

http://www.fsel.com/fdr2_manual.html
http://afp.sourceforge.net/entries/Circus.shtml
http://afp.sourceforge.net/entries/Circus.shtml

214 BIBLIOGRAPHY

[Gau10] Marie-Claude Gaudel. Software testing based on formal specification. In
Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcook,
editors, Testing Techniques in Software Engineering, volume 6153 of
Lecture Notes in Computer Science, pages 215–242. Springer Berlin /
Heidelberg, 2010. 15, 17

[Gau11] Marie-Claude Gaudel. Checking models, proving programs, and testing
systems. In Martin Gogolla and Burkhart Wolff, editors, TAP 2011
proceedings, volume 6706 of Lecture Notes in Computer Science, pages
1–13. Springer, 2011. 13

[GJ98] M.-C. Gaudel and P. R. James. Testing algebraic data types and pro-
cesses: a unifying theory. Formal Aspects of Computing, 10(5-6):436–
451, 1998. 15

[GJK99] R. Groz, T. Jéron, and A. Kerbrat. Automated test generation from SDL
specifications. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors,
SDL’99 The Next Millenium, 9th SDL Forum, Montréal, Québec, pages
135–152. Elsevier, June 1999. 26

[GLG08] Marie-Claude Gaudel and Pascale Le Gall. Formal methods and test-
ing. chapter Testing data types implementations from algebraic speci-
fications, pages 209–239. Springer-Verlag, Berlin, Heidelberg, 2008. 21,
56, 134

[GLMS11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
Cadp 2010: A toolbox for the construction and analysis of distributed
processes. In Parosh Abdulla and K. Leino, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 6605 of
Lecture Notes in Computer Science, pages 372–387. Springer Berlin /
Heidelberg, 2011. 26

[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction,
implementation, specification, and testing. ACM Trans. Program. Lang.
Syst., 3(3):211–223, July 1981. 21

[GR98] Roland Groz and Nathalie Risser. Eight years of experience in test gen-
eration from fdts using tveda. In Proceedings of the IFIP TC6 WG6.1
Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE X) and
Protocol Specification, Testing and Verification (PSTV XVII), FORTE
X / PSTV XVII ’97, pages 465–480, London, UK, UK, 1998. Chapman
& Hall, Ltd. 27

BIBLIOGRAPHY 215

[GS97] A. J. Galloway and W. J. Stoddart. An operational semantics for zccs. In
Proceedings of the 1st International Conference on Formal Engineering
Methods, ICFEM ’97, pages 272–, Washington, DC, USA, 1997. IEEE
Computer Society. 27

[GT79] J.A. Goguen and J.J. Tardo. An introduction to obj: A language forwrit-
ing and testing formal algebraic program specifications. In Proceedings
of the Conference on Specificationsof Reliable Software, pages 170–189,
Boston, MA, 1979. 21

[Hal88] P.A.V. Hall. Towards testing with respect to formal specification. In
Software Engineering, 1988 Software Engineering 88., Second IEE/BCS
Conference:, pages 159 –163, jul 1988. 19

[HBB+09] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons,
Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal
specifications to support testing. ACM Comput. Surv., 41(2):9:1–9:76,
February 2009. 17

[HBH08] Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors.
Formal Methods and Testing, An Outcome of the FORTEST Network,
Revised Selected Papers, volume 4949 of Lecture Notes in Computer
Science. Springer, 2008. 57

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In
Proceedings of the 1964 Proceedings of the Fifth Annual Symposium on
Switching Circuit Theory and Logical Design, SWCT ’64, pages 95–110,
Washington, DC, USA, 1964. IEEE Computer Society. 23

[HG96] David Harel and Eran Gery. Executable object modeling with state-
charts. In Proceedings of the 18th international conference on Software
engineering, ICSE ’96, pages 246–257, Washington, DC, USA, 1996.
IEEE Computer Society. 27

[HH98] C.A.R. Hoare and J. He. Unifying theories of programming, volume 14.
Prentice Hall, 1998. 36, 40, 62

[Hie97] Robert M. Hierons. Testing from a z specification. Softw. Test., Verif.
Reliab., 7(1):19–33, 1997. 20

[Hie02] R. M. Hierons. Comparing test sets and criteria in the presence of
test hypotheses and fault domains. ACM Trans. Softw. Eng. Methodol.,
11(4):427–448, October 2002. 14, 15

216 BIBLIOGRAPHY

[Hie09] Robert M. Hierons. Verdict functions in testing with a fault domain or
test hypotheses. ACM Trans. Softw. Eng. Methodol., 18(4):14:1–14:19,
July 2009. 14

[HNS97] Steffen Helke, Thomas Neustupny, and Thomas Santen. Automating
test case generation from z specifications with isabelle. In Proceed-
ings of the 10th International Conference of Z Users on The Z Formal
Specification Notation, ZUM ’97, pages 52–71, London, UK, UK, 1997.
Springer-Verlag. 20, 28, 32

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985. 22

[HOL] Hol web-site. http://hol.sourceforge.net/. 50

[HSS01] Robert M. Hierons, Sadegh Sadeghipour, and Harbhajan Singh. Testing
a system specified using statecharts and z. Information & Software
Technology, 43(2):137–149, 2001. 27

[IT99] ITU-T. Recommendation z.100-specification and description language
(sdl), 1999. 26

[JD07] Éric Jaeger and Catherine Dubois. Why would you trust b? In Pro-
ceedings of the 14th international conference on Logic for programming,
artificial intelligence and reasoning, LPAR’07, pages 288–302, Berlin,
Heidelberg, 2007. Springer-Verlag. 63

[JJ04] C. Jard and T. Jéron. TGV: theory, principles and algorithms, a tool for
the automatic synthesis of conformance test cases for non-deterministic
reactive systems. Software Tools for Technology Transfer (STTT), 6,
October 2004. 24, 25, 27, 57

[Jon86] Clifford B. Jones. Systematic software development using VDM. Prentice
Hall International Series in Computer Science. Prentice Hall, 1986. 18

[Kin76] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976. 31

[LB03] Michael Leuschel and Michael J. Butler. Prob: A model checker for b.
In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME,
volume 2805 of Lecture Notes in Computer Science, pages 855–874.
Springer, 2003. 27

[LC06] Yu Lei and Richard H. Carver. Reachability testing of concurrent pro-
grams. IEEE Trans. Softw. Eng., 32(6):382–403, June 2006. 57

http://hol.sourceforge.net/

BIBLIOGRAPHY 217

[LG02] Grégory Lestiennes and Marie-Claude Gaudel. Testing processes from
formal specifications with inputs, outputs and data types. In Proceedings
of the 13th International Symposium on Software Reliability Engineer-
ing, ISSRE ’02, pages 3–, Washington, DC, USA, 2002. IEEE Computer
Society. 15, 24, 25

[lot89] Iso 8807:1989 information processing systems – open systems intercon-
nection – lotos – a formal description technique based on the temporal
ordering of observational behaviour, 1989. 26, 27

[LPU02] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated bound-
ary testing from z and b. In Proceedings of the International Symposium
of Formal Methods Europe on Formal Methods - Getting IT Right, FME
’02, pages 21–40, London, UK, UK, 2002. Springer-Verlag. 20

[LY94] D. Lee and M. Yannakakis. Testing finite-state machines: State identi-
fication and verification. IEEE Trans. Comput., 43(3):306–320, March
1994. 14, 23

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090 –1123,
aug 1996. 14, 17, 23

[MA00] Bruno Marre and Agnes Arnould. Test sequences generation from lus-
tre descriptions: Gatel. In Proceedings of the 15th IEEE international
conference on Automated software engineering, ASE ’00, pages 229–,
Washington, DC, USA, 2000. IEEE Computer Society. 15

[Mac00] Patŕıcia D. L. Machado. Testing from structured algebraic specifica-
tions. In Teodor Rus, editor, AMAST, volume 1816 of Lecture Notes in
Computer Science, pages 529–544. Springer, 2000. 21

[MD98] Brendan Mahony and Jin Song Dong. Blending object-z and timed csp:
an introduction to tcoz. In Proceedings of the 20th international con-
ference on Software engineering, ICSE ’98, pages 95–104, Washington,
DC, USA, 1998. IEEE Computer Society. 27

[Mer95] Stephan Merz. Mechanizing TLA in Isabelle. In Robert Rodošek, editor,
Workshop on Verification in New Orientations, pages 54–74, Maribor,
July 1995. Univ. of Maribor. 63

[Moo56] Edward F. Moore. Gedanken experiments on sequential machines. In
Automata Studies, pages 129–153. Princeton U., 1956. 23

218 BIBLIOGRAPHY

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002. 50

[NSM08] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided test
generation from csp models. In Proceedings of the 5th international
colloquium on Theoretical Aspects of Computing, pages 258–273, Berlin,
Heidelberg, 2008. Springer-Verlag. 22

[OCW06] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying theories
in proofpower-z. In Steve Dunne and Bill Stoddart, editors, Unifying
Theories of Programming, volume 4010 of Lecture Notes in Computer
Science, pages 123–140. Springer Berlin / Heidelberg, 2006. 62, 63

[OCW07] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A denotational
semantics for Circus. Electron. Notes Theor. Comput. Sci., 187:107–123,
2007. 36, 43, 62, 75, 86

[Oli06] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs
using Circus. PhD thesis, Department of Computer Science - University
of York, UK, 2006. YCST-2006-02. 37, 47

[ON99] David von Oheimb and Tobias Nipkow. Machine-checking the java spec-
ification: Proving type-safety. In Formal Syntax and Semantics of Java,
pages 119–156, London, UK, UK, 1999. Springer-Verlag. 63

[Pau89] L. C. Paulson. The foundation of a generic theorem prover. J. Autom.
Reason., 5(3):363–397, September 1989. 51

[PBB98] Cécile Péraire, Stéphane Barbey, and Didier Buchs. Test selection for
object-oriented software based on formal specifications. In Proceedings
of the IFIP TC2/WG2.2,2.3 International Conference on Programming
Concepts and Methods, PROCOMET ’98, pages 385–403, London, UK,
UK, 1998. Chapman & Hall, Ltd. 15

[Pel96] Jan Peleska. Test automation for safety-critical systems: Industrial ap-
plication and future developments. In Marie-Claude Gaudel and James
Woodcock, editors, FME’96: Industrial Benefit and Advances in For-
mal Methods, volume 1051 of Lecture Notes in Computer Science, pages
39–59. Springer Berlin / Heidelberg, 1996. 22

[Pet01] Alexandre Petrenko. Modeling and verification of parallel processes.
chapter Fault model-driven test derivation from finite state models: an-
notated bibliography, pages 196–205. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001. 17

BIBLIOGRAPHY 219

[Pha94] Marc Phalippou. Relations d’implantation et hypothèses de test sur des
automates à entrées et sorties. PhD thesis, Universite de Bordeaux I,
1994. 15

[PP] Proofpower web-site. http://www.lemma-one.com/ProofPower/index/
index.html. 50, 62

[PVS] Pvs web-site. http://pvs.csl.sri.com/. 50

[RHB97] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and
Practice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1997. 22, 36, 39

[Rog06] Markus Roggenbach. Csp-casl: a new integration of process algebra and
algebraic specification. Theor. Comput. Sci., 354(1):42–71, March 2006.
27

[SAA02] Gwen Salaün, Michel Allemand, and Christian Attiogbé. Specification
of an access control system with a formalism combining ccs and casl. In
Proceedings of the 16th International Parallel and Distributed Processing
Symposium, IPDPS ’02, pages 303–, Washington, DC, USA, 2002. IEEE
Computer Society. 27

[SC96] Phil Stocks and David Carrington. A framework for specification-based
testing. IEEE Trans. Softw. Eng., 22(11):777–793, November 1996. 20

[Sch99a] Steve Schneider. Abstraction and testing. In Proceedings of the Wold
Congress on Formal Methods in the Development of Computing Systems-
Volume I - Volume I, FM ’99, pages 738–757, London, UK, UK, 1999.
Springer-Verlag. 22

[Sch99b] Steve Schneider. Concurrent and Real Time Systems: The CSP Ap-
proach. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1999. 22

[Sch01] Steve Schneider. The B-Method: An Introduction. Cornerstones of Com-
puting. Palgrave Macmillan, oct 2001. 20

[SCS97] Harbhajan Singh, Mirko Conrad, and Sadegh Sadeghipour. Test case
design based on z and the classification-tree method. In Proceedings
of the 1st International Conference on Formal Engineering Methods,
ICFEM ’97, pages 81–, Washington, DC, USA, 1997. IEEE Computer
Society. 20

http://www.lemma-one.com/ProofPower/index/index.html
http://www.lemma-one.com/ProofPower/index/index.html
http://pvs.csl.sri.com/

220 BIBLIOGRAPHY

[Sie97] J. Peleska M. Siegel. Test automation of safety-critical reactive systems.
South African Computer Journal, 1997. 22

[Sig00] M. Sighireanu. LOTOS NT User’s Manual (Version 2.1). INRIA projet
VASY, November 2000. 26

[Spi88] J. M. Spivey. Understanding Z: a specification language and its formal
semantics. Cambridge University Press, New York, NY, USA, 1988. 18

[Spi92] J. Michael Spivey. Z Notation - a reference manual (2. ed.). Prentice
Hall International Series in Computer Science. Prentice Hall, 1992. 18,
37

[ST05] Steve Schneider and Helen Treharne. Csp theorems for communicating
b machines. Formal Asp. Comput., 17(4):390–422, 2005. 27

[SW09] Norbert Schirmer and Makarius Wenzel. State spaces — the locale way.
Electron. Notes Theor. Comput. Sci., 254:161–179, October 2009. 64

[SWC02] Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement
in circus. In Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods - Getting IT Right, FME ’02, pages
451–470, London, UK, UK, 2002. Springer-Verlag. 45, 90

[SWS] Symbolic web service testing. http://swst.lri.fr/. 170

[TB03] G J Tretmans and H Brinksma. TorX: Automated Model-Based Testing,
pages 31–43. 2003. 25

[Tre96] Jan Tretmans. Conformance testing with labelled transition systems:
implementation relations and test generation. Comput. Netw. ISDN
Syst., 29(1):49–79, December 1996. 24

[TS91] Piyu Tripathy and Behcet Sarikaya. Test generation from lotos specifi-
cations. IEEE Trans. Comput., 40(4):543–552, April 1991. 26

[TW97] Haykal Tej and Burkhart Wolff. A corrected failure divergence model for
csp in isabelle/hol. In Proceedings of the 4th International Symposium
of Formal Methods Europe on Industrial Applications and Strengthened
Foundations of Formal Methods, FME ’97, pages 318–337, London, UK,
UK, 1997. Springer-Verlag. 56, 63

[vABM97] Lionel van Aertryck, Marc Benveniste, and Daniel Le Métayer. Casting:
A formally based software test generation method. In Proceedings of the
1st International Conference on Formal Engineering Methods, ICFEM

http://swst.lri.fr/

BIBLIOGRAPHY 221

’97, pages 101–, Washington, DC, USA, 1997. IEEE Computer Society.
20

[VDM] Vdm portal web-site. http://www.vdmportal.org/. 18

[vdSU95] Hans van der Schoot and Hasan Ural. Dataflow oriented test selection
for lotos. Comput. Netw. ISDN Syst., 27(7):1111–1136, May 1995. 26

[VPK04] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input
generation with java pathfinder. SIGSOFT Softw. Eng. Notes, 29(4):97–
107, July 2004. 31

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In Proceed-
ings of the 2nd International Conference of B and Z Users on Formal
Specification and Development in Z and B, ZB ’02, pages 184–203, Lon-
don, UK, UK, 2002. Springer-Verlag. 36, 43

[WCGF07] Jim Woodcock, Ana Cavalcanti, Marie-Claude Gaudel, and Leo Freitas.
Operational Semantics for Circus. Formal Aspects of Computing, 2007.
43, 100, 103, 121, 169

[WD96] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and
proof. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996. 18

[ZC09a] Frank Zeyda and Ana Cavalcanti. Encoding Circus programs
in ProofPowerZ. In Unifying Theories of Programming, Sec-
ond International Symposium, UTP 2008, Trinity College, Dublin,
Ireland, September 8-10, 2008, Revised Selected Papers, volume
5713 of Lecture Notes in Computer Science. Springer-Verlag, 2009.
http://www.cs.york.ac.uk/circus/publications/docs/zc09b.pdf. 75

[ZC09b] Frank Zeyda and Ana Cavalcanti. Mechanical reasoning about families
of utp theories. Electron. Notes Theor. Comput. Sci., 240:239–257, July
2009. 62

[ZC10] Frank Zeyda and Ana Cavalcanti. Encoding circus programs in
proofpower-z. In Proceedings of the 2nd international conference on
Unifying theories of programming, UTP’08, pages 218–237, Berlin, Hei-
delberg, 2010. Springer-Verlag. 62

http://www.vdmportal.org/

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations
	Proposal and Contributions
	Outline

	Formal Methods and Testing
	Introduction
	Formal Testing
	Background on testing theories
	Test generation from formal specifications
	Oracle and verdict

	Verification and Testing
	Conclusions

	Context
	Introduction
	The Circus Language
	Syntax
	Semantics
	Refinement and testing

	Isabelle/HOL
	Isabelle, HOL and Isabelle/HOL
	Advanced constructs in Isabelle/HOL
	HOL-Z, HOL-CSP and HOL-TestGen

	General Considerations
	Conclusions

	Isabelle/Circus
	Introduction
	Representing UTP in HOL
	Predicates and relations
	Designs theory
	Reactive processes
	CSP processes
	Proofs

	Circus Denotational Semantics
	Circus variables
	Synchronization infrastructure
	Actions and processes

	Using Isabelle/Circus
	Writing specifications
	Relational and functional refinement in Circus
	Refinement proofs

	Conclusions

	Semantics Based Testing
	Introduction
	Theorem Prover-based test-generation
	Circus Operational Semantics
	Symbolic execution: deep vs. shallow embedding
	Constraints
	Actions
	Labels
	State
	Operational semantics rules
	Representing the introduction rules
	Derived rules

	Symbolic test-generation with CirTA
	cstraces generation
	test-generation for traces refinement
	test-generation for deadlocks reduction

	Test Selection Hypotheses
	Test Instantiations
	Example
	Generating cstraces
	test-generation
	Test instantiation and presentation

	Conclusions

	Case Study
	Introduction
	Remote Monitoring System
	Abstract Queue Specification
	Testing the Queue Implementation
	Test generation
	Test execution
	Test results

	Conclusions

	Conclusions and Future Work
	Circus syntax
	Full syntax
	Short syntax
	Isabelle/Circus syntax

	Circus denotational semantics
	UTP
	Observational variables
	Healthiness conditions

	Circus denotational semantics
	CSP actions
	Action invocations, parametrized actions and renaming
	Commands
	Schema expressions
	Circus processes

	Circus operational semantics
	Generic actions theorems
	Transition relation
	Introduction rules
	Derived elimination rules
	Other derived rules

	Trace composition relation
	Introduction rules
	Derived elimination rule
	Other derived rule

	Refinement laws
	Bibliography

