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METHODES NON-PARAMETRIQUES POUR LA SYNTHESE DE
TEXTURES VOLUMIQUES A PARTIR D’'UN EXEMPLE 2D

- résumé étendu -

1. Contexte

L'efficacité des techniques de synthése d’imagesr pnodéliser et reproduire des
textures naturelles (bois, roche, gres, marbr&y) &$c.) n’est plus a démontrer. Le domaine de
la synthése de texture est particulierement dynaenayec des applications importantes dans
I'extrapolation, la compression d'images, I'inpadgfiou le mapping mais aussi dans d'autres
domaines comme la fusion et le montage vidéo odelscription de la géométrie d’'une
surface.

De nombreuses techniques de synthese de texturéséoproposées. Ces techniques,
souvent 2D, demandent a étre adaptées en vuerdedalisation de structures volumiques
telles que celles obtenues par des techniques géinea 3D, comme l'imagerie médicale,
'imagerie sismique pour l'exploration du sous-sal la tomographie en sciences des
matériaux. Dans ce dernier domaine, les texturepr@Bentent un intérét tout particulier pour
I'étude de matériaux a structure interne tridimenselle.

Dans certains cas toutefois, pour des raisons @t de praticité, ou simplement de
résolution, l'utilisation de techniques d’'imageB® n’est pas envisageable. Les structures
tridimensionnelles constitutives des matériaux sdots imageées en 2D. Dans ces conditions,
toute méthode stéréologique permettant I'extrapmiatn 3D d’'une information 2D, est
susceptible d’améliorer la compréhension de latééphysique du matériau. C’est a ce titre
gue nous nous intéressons dans ce mémoire aux aesdtide synthése de textures volumiques
a partir d'images 2D.

2. Objectif

L'objectif de cette thése est de développer dgerihmes dédiés a la synthése de
textures volumiques anisotropes a partir d’'un étith@am 2D. Outre les difficultés liées a leur
complexité calculatoire, de telles approches podeatproblemes stéréologiques d’inférence
2D/3D et ne sont envisageables que pour des taxisoeropes ou, dans le cas de textures
anisotropes — lamellaires ou filaires — sous ceeahypothéses bien définies.

Les approches ditgsar patchrelatives a la synthése de texture a partir d’usngle,
parmi les plus populaires et déja tres étudiéed, mivilégiees. Il s’agit de les étendre au cas
de textures volumiques, en particulier de textstascturées et anisotropes.

Les algorithmes développés sont appligués a la lsatién de la structure
nanometrique de matériaux carbonés. La synthédensie sur des images de microscopie
électronique. Les données 3D produites ont vocatiétre utilisées pour la simulation réaliste
de la structure moléculaire du matériau.

Au-dela de I'évaluation visuelle des textures d#t®se, une analyse quantitative est
proposeée, qui consiste a comparer les caractérestide I'image d’entrée avec celles du bloc
de sortie. Cette étude permet d’'une part d’idemties stratégies les plus pertinentes pour la
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synthese et d’autre part de les comparer de fatpective a certains algorithmes de la
littérature, qu’ils reposent sur des approchesméatagques ou non parametriques.

3. Les algorithmes mis en ceuvre

Différents algorithmes sont capables de synthétise textures parmi lesquels certains
sont connus pour leur efficacité et leur facilitatilisation. C'est le cas des approches non
paramétriques basées sur la recherche de voisifiagegWei03 [Kop07 [ChelQ ou sur la
vraisemblance de patcheBgg9g. Dans les approches 3D que nous explorons, lthéya
est effectuée voxel par voxel, le processus s’agpiusur I'échantillonnage d’'un seul modele
2D d’entrée en garantissant la cohérence seloiephgsvues de la texture 3D.

3.1 Extensions 2D/3D basées sur la recherche de voigiedfixe

Nous présentons ici trois variantes algorithmiguespirées d’approches existantes,
que nous avons adaptees, formalisées et implénsersiglen un schéma algorithmique
commun.

Le premier algorithme est une extension de ligdlyme introduit par Wei et Levoy
[Wei0Q. Cet algorithme, dont nous reprendrons par léedai structure, servira dsjuelette
aux algorithmes suivants. Il s’agit en réalité asuadaptation multi-2D de l'algorithme de
synthese a partir de sources multip%&[03 mais en utilisant strictement une seule texture
2D en tant que source de synthése.

Basée sur I'hypothese d’'un champ de Markov, lehow repose sur les propriétés de
localité et de stationnarité de la texture. Cebatyme requiert une texture échantillon en
entrée et un bloc 3D en sortie initialisé par unitbaléatoire. La synthese est réalisée
automatiguement sans aucune supervision. Le btogeesa peu modifié pour se rapprocher
statistiqguement de la texture d’entrée.

La procédure de synthése traite le bloc de sodielvpar voxel, en examinant les
voisinages 2D du voxel courant sur plusieurs vudsgonales du bloc 30F({gure 1). Cette
phase implique la recherche de la meilleure cooedance pour chacun de ces voisinages
dans la méme image d'entrée. La similitude ensevt@sinages est mesurée en utilisant la
distance euclidienne. Ainsi, pour chague voxel ai¢ies plusieurs solutions sont possibles,
une pour chaque vue orthogonale.

" blocde
sortie image d’entrée - face image d’entrée - droite image d’entrée - top

Pface ——aae

Wrace L

.
Pdroite y

Wdroite Ptop
Wtop

Figure 1 -Le principe de synthése non-paramétrique: extraire/oisinage du voxel sur chaque vue
orthogonale (face, droite, top), rechercher damsniéme image d’entrée les voisinages les plus
ressemblants, prendre les valeurs de leurs pix@atsraux f ace, Daroites Prop), €t l€S Utiliser pour
modifier le voxel v de sortie: Weracexp face+W droitexP droitet WeopxProp- EN fonction de la méthode

utilisée, le poids associé a chaque pixel peut ghan




La premiére solution proposée est d'utiliser comialeur de mise-a-jour pour le voxel
de sortie la moyenne des pixels trouvés pour chagee et de réitérer jusqu'a atteindre les
mémes voisinages apres deux itérations consécuiivesd3. Mais le fait de moyenner
conduit & une différence de dynamique entre I'nalgiet la texture synthétisée qui peut
compromettre 'ensemble du processus de synthese.

Une stratégie alternative consiste a optimisefolaction d'énergie qui mesure la
similitude entre la texture volumique et la textdfentrée. Cette optimisation repose sur une
pondération différenciée des solutions trouvées pbaque vueQwa03. La valeur du pixel
de sortie se voit ainsi affecter une moyenne paeéie ces solutions. La procédure
d’optimisation est complétée par un schéma de fration, dans le but de préserver les
statistiques globales de la texture d’entrée efagen a ce que la synthese ne porte pas
seulement sur des décisions locales. Ceci estééalli intégrant dans le procédé de synthese
un mécanisme d'ajustement d’histogramme de nivedeixgris Kop07. Toutefois, les
résultats obtenus sont toujours plus ou moins @&f$epar le flou. Par ailleurs, comme dans
I'approche précédente, ce procédé tend a répétairms configurations texturales et ne
parvient pas a reproduire la diversité observédssiaxture échantillon]rs11].

Afin de rendre la texture synthétisée la plus Bdebssible a la texture d’entrée, une
variante des algorithmes précédents integre deuxaamx mécanismes d’ajustement basés
respectivement sur I'histogramme d’indices et tbiggamme des positionsChel(Q. Le
premier a pour objectif d'augmenter le nombre ddfigorations parmi lesquelles sera choisie
la solution finale; le second est introduit pourdaen sorte que les configurations reproduites
dans l'image de sortie soient réparties équitabhensair toute la surface de la texture
d’entrée. Cet algorithme nécessite une phase dapipsage préalable dont le principe est
d’identifier, pour chaque pixel de l'image d’entré@ ensemble de pixels de configurations
locales similaires. Un des intéréts de ce schémaes réalise indirectement I'ajustement
d’histogramme de niveaux de gris en distribuanitaglement les pixels d'entrée dans le bloc
de sortie.

La complexité calculatoire des différentes vaeanalgorithmiques présentées ci-
dessus est liée linéairement a la taille de I'imdig@prentissage. Afin d’accélérer la phase de
recherche du meilleur voisinage dans I'image dé&mtrun arbre binaire de recherche est
utilisé comme structure de données pour des resjdétéype ‘point le plus proche’ efficaces.
Par ailleurs, une implémentation multi-résolutiarrpet de capturer les motifs a différentes
échelles sans alourdir la charge calculatoire.

Enfin, le choix du systéme de voisinage et, parséquent, le choix du sens de
parcours de la texture de sortie sont remis entigmesLe remplacement du parcours
lexicographique par un parcours aléatoire permety¢hétiser un pixel en s’affranchissant
de son simple passé et donc de multiplier les gardtions possibles. Toutefois, le temps de
convergence peut dans ce cas augmenter sensiblenhégdoption de parcours
tridimensionnels alternatifs tels que les parcdtastals (e.g. courbe de Hilbert) s’avére un
compromis pertinent.

3.2 Algorithme 2D/3D basé sur la vraisemblance de pates

Nous traitons ici d’'une approche, de type prolstiil qui réalise de facon explicite ce
gue les méthodes basées sur la recherche de gadira tentent d'accomplir indirectement.
Elle étend I'approche markovienne initialement m®§e par Paget et LongstaRgg9g.
S’appuyant sur les propriétés de stationnarité eelogalité de la texture, cette derniére
consiste a géneérer une texture pixel par pixeiarimisant la vraisemblance de chaque pixel
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au sens de la densité de probabilité conditiondettale (DPCL). En d’autres termes, on
affecte a chaque pixel le niveau de gris le plusb@ble connaissant son voisinage. Ce
procédé requiert la connaissance de la DPCL, fomagui modélise de fagon unique les
interactions entre pixels voisins. Cette derniésteestimée a la volée sur I'image d’entrée, de
facon non paramétrique par la technique de ferétlag?arzen.

L’approche 2D/3D que nous proposons repose soréme principe. Elle consiste a
synthétiser la texture volumique voxel par voxevant un parcours prédéfini. La valeur d’un
voxel est mise a jour de fagon & maximiser ici egasvraisemblance. Toutefois, I'image
modele étant bidimensionnelle, la densité de prdibabonditionnelle locale 3D, ne peut pas
étre estimée. La synthese 3D est alors envisadée gee approche multi-2D a l'instar des
approches présentées préecédemment. Ainsi la vaewoxel choisie doit maximiser la
vraisemblance exprimée sur chacune des vues orhtEgauxquelles appartient le voxel.
Selon la nature de la texture a synthétiser, deuxais vues peuvent étre considérées. Il reste
toutefois a trouver une stratégie permettant laimigation des vraisemblances exprimées
selon les différentes vues. Plusieurs heuristiggm# proposees, dont celle consistant a
maximiser le produit des vraisemblances. Une dernidie est proposée considérant un
systeme de voisinage 3D composé de plans orthogataaxprimant la densité de probabilité
conditionnelle DPCL 3D a I'aide de DPCL 2D, estiresbsur I'image d’entrée.

Les différentes solutions proposées reposent sostie un algorithme de relaxation
multi-échelle analogue a celui proposé par Pagdtoagstaff Pag9g. Le principe de la
synthese est de débuter, a I'échelle la plus ha#eun bloc 3D aléatoire, de densité de
probabilité marginale identique a celle de I'imatjentrée a la méme échelle. Chaque voxel
se voit attribuer une température non nulle. Sawratst modifiée au sens de la DPCL dont le
calcul est réalisé en donnant d’autant plus d’irtgpare a un voxel voisin que sa température
est basse. L'optimisation est gérée voxel par yogx&t un algorithme déterministe de type
ICM. Les schémas de décroissance des températesegodels sont gérés individuellement.
Une fois I'échelle la plus haute traitée, elle sd#mbitialisation a I'échelle inférieure. Les
voxels y sont actualisés de maniere analogue. Nwaposons plusieurs stratégies pour
I'initialisation du bloc de sortie, pour la gestidies températures et pour le changement
d’échelle, incluant un traitement spécifique desel® hérités de I'échelle supérieure.

4. Expérimentation et application

La prise en compte des méthodes présentées dgmerdegaphes précédents a conduit
a I'implantation de différentes variantes d’algonites qui permettent d’obtenir une texture
volumique a partir d’'une seule texture 2D.

Ces différentes méthodes ont été mises en ceuvrdgeynthese d'un jeu de textures
variées. Quelques résultats sont présentés daRgjlae 2 montrant la légitimité de ces
algorithmes. Une analyse comparée et une étudertgbdité ont été menées, mettant en
évidence les atouts et les faiblesses des difféseapproches. Les textures volumiques
produites sont d’'une qualité visuelle convaincantgamment en termes de dynamique. Les
propriétés de structure et de périodicité des imagamt respectées mais il semble toutefois,
d’'un point de vue structural, que certaines apm@egbroduisent parfois des textures trop
ordonnées ou, au contraire, aient des difficultéamurer la structure de I'échantillon 2D. Par
rapport aux méthodes basées sur la recherche simage fixe, les approches fondées sur la
maximisation de vraisemblance disposent de paraméupplémentaires parfois difficiles a
contrdler. Lorsqu’ils sont correctement choisiss désultats tres satisfaisants peuvent étre
obtenus, au prix toutefois d’'un co(t calculatoievé.
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Figure 2— Exemples de textures volumiques. Chaque tgpl@iprend, au-dessous I'échantillon 2D, a
gauche le résultat obtenu avec la méthode de Kagdf fKop07] et a droite le résultat obtenu avec
notre proposition consistant & maximiser le prodigs vraisemblances.

Les différentes variantes algorithmiques proposées également appliquées dans le
contexte spécifique de la synthése de texturesmiglies de matériaux carbonés. La texture
exemple (comme celles €&igure 3aou 3h) est une observation 2D unique obtenue par MET
(Microscopie Electronique en Transmission) paekhhique des franges de réseau. Quelques
exemples de textures volumiques synthétisées santiés erfFigure 3




Figure 3 -Résultats visuels: (a) (b) image type de matér@rkonés; t les blocs obtenus utilisa
les méthodes de (.1) Wei et Levoy [Wei03], (.2)fkbpl. [Kop07], (.3) Chen et Wang [Chel (.4)
notre proposition (ici avec 32 niveaux de gris seutnt)

En I'état actuel des développements, I'expérimérias soulign les limites de la
méthode basée sur le maximum de vraisemblancéegiia produire des textures simplifit
en termes de structure et dynamique par rappoéchantillon 2D. Les résultats relatifs a
autres approches sont évalués de facon objecu travers d'une étude quantitative i
permet de comparer les statistiques de niveaux rge (gtatistiques d'ordre 1) ent
I'échantillon et le bloc de sortie et également amsmparer la morphologie des mot
texturaux (orientation locale, longueur ertuosité de frangesyJrs12.
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Concernant les statistiques d’ordre 1, la companmaisous montre premierement
I'intérét de contraindre les histogrammes de nivdeugris Kop07, d’indices et de positions
[Chel( (cf. Figure 439. Ces derniers permettent en effet une convergpluserapide de la
plupart des statistiques du bloc de sortie velesee I'image d’entrée.

Concernant la morphologie, méme si les orientatitowales sont relativement
similaires Figure 4B, la détection de franges (détection de motifergés utilisant un
algorithme de suivi de courbes de niveau) nous raaqie les textures volumiques produites
par les approches de type ‘recherche de voisinagedontiennent des franges plus longues
et plus réguliéres que I'nmage d’entréegure 4c-d.

L'étude comparative a été élargie a une approchanparigue de type analyse-
synthese llay09 [Dacl1q spécifique aux textures lamellaires et préalaleleihappliquée aux
images de matériaux carbonés. Cette approche séappul’inférence 2D/3D des statistiques
d’ordre 1 et 2 par le biais d'une décompositionpgmamides 3D orientables. Malgré ses
limitations calculatoires et sensitivité a certairmscillations a haute fréquence, s'avére pour
I'instant fournir des résultats plus satisfaisants.

5. Conclusions

Plusieurs algorithmes de synthése de textures vques a partir d’'un exemple 2D
unique ont été proposeés.

Les méthodes de synthése non paramétriques —paditgzatch — ont tout d’abord été
privilégiées, en particulier un ensemble d’algorids de recherche de voisinages fixes.
S’appuyant sur un noyau algorithmique multi-échelbenmun, plusieurs approches ont été
étudiées, relatives a la maniére de combiner Idsrnmations provenant des vues
orthogonales. Afin d’optimiser I'ordre de visitesdeoxels lors de la synthese, des parcours
tridimensionnels originaux ont également été prépss

Dans un second temps, nous avons consacré nolegioéf sur I'élaboration d’'un
algorithme probabiliste, basé sur I'hypothése dalmamp de Markov. S’appuyant sur un
paradigme 2D, nous avons proposé une extensio2iDAlite visant a générer des textures
volumiques voxel par voxel. L'approche consiste aximiser la vraisemblance de chaque
voxel au sens de la densité de probabilité condigtie locale, au moyen d’'un algorithme
déterministe de type ICM. Différentes variantestgmoposées, relatives aux stratégies de
gestion simultanée des tranches orthogonales amténvoxel et aux opérations requises par
le passage d’'une échelle a la suivante.

Les méthodes ont été appliquées a un jeu de texsiracturées, de régularité et
d’anisotropie variées. Des résultats satisfaisant®£té obtenus en termes de qualité visuelle.
Toutefois les algorithmes manifestent une certaeesibilité a la taille de voisinage et
montrent parfois des difficultés a capturer la cee de I'échantillon 2D. Dans le cas des
méthodes basées sur la maximisation de la vraisend] une simplification de la structure et
une réduction de la dynamique sont parfois observBeutefois, la qualité remarquable de
certains résultats laisse entrevoir des perspactiiaméliorations. Une attention particuliere
devra dans ce cas étre portée a la complexitélatioe.

Enfin, les approches sont appliquées au cas pketicde textures anisotropes de
matériaux carbonés pour lesquelles une procédymériexentale a été proposée qui vise a une
évaluation quantitative et objective des algoriterde synthése. Cette étude a porté sur les
approches basées sur la recherche de voisinage dixeur une méthode paramétrique
d’analyse-synthése. Les résultats obtenus, en démertaines limites, montrent des résultats
convaincants et prometteurs qu’il s’agira d’améioi I'avenir, en termes de préservation de
la structure et de réduction du temps de calcul.
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Abstract

This thesis deals with the synthesis of anisotraoiimetric textures from a
single 2D observation. We present variants of n@mametric and multi-scale
algorithms. Their main specificity lies in the fabtt the 3D synthesis process relies
on the sampling of a single 2D input sample, engugdonsistency in the different
views of the 3D texture. Two types of approachesiavestigated, both multi-scale
and based on markovian hypothesis.

The first category brings together a set of athoms based on fixed-
neighbourhood search, adapted from existing alyost of texture synthesis from
multiple 2D sources. The principle is that, staytirom a random initialisation, the 3D
texture is modified, voxel by voxel, in a determsiic manner, ensuring that the grey
level local configurations on orthogonal slices taimng the voxel are similar to
configurations of the input image.

The second category points out an original prdisilei approach which aims at
reproducing in the textured volume the interactibesveen pixels learned in the input
image. The learning is done by non-parametric Pargmdowing. Optimization is
handled voxel by voxel by a deterministic ICM tyakgorithm. Several variants are
proposed regarding the strategies used for theltsineous handling of the orthogonal
slices containing the voxel.

These synthesis methods are first implementeds®t af structured textures of
varied regularity and anisotropy. A comparativedgtand a sensitivity analysis are
carried out, highlighting the strengths and the kmeases of the different algorithms.
Finally, they are applied to the simulation of volktric textures of carbon composite
materials, on nanometric scale snapshots obtaingd trnsmission electron
microscopy. The proposed experimental benchmadwallto evaluate quantitatively
and objectively the performances of the differeetimds.

Keywords: synthesis, solid texture, image processing, maod#les causal
neighbourhood, Markov Random Field, conditionallgability, composite materials
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Résumé

Ce mémoire traite de synthese de textures volursigunesotropes a partir d’'une
observation 2D unique. Nous présentons différemasantes d’algorithmes non
paramétriques et multi-échelles. Leur principalgipalarité réside dans le fait que le
processus de synthése 3D s’appuie sur I'échamélge d'une seule image 2D
d’entrée, en garantissant la cohérence selon figgatites vues de la texture 3D. Deux
catégories d’approches sont abordées, toutes delixaohelles et basées sur une
hypothése markovienne.

La premiére catégorie regroupe un ensemble dighgoes dits de recherche de
voisinages fixes, adaptés d'algorithmes existaatsyhtheses de textures volumiques
a partir de sources 2D multiples. Le principe cstesia partir d’'une initialisation
aléatoire, a modifier les voxels un par un, de fagéterministe, en s’assurant que les
configurations locales de niveaux de gris sur dasches orthogonales contenant le
voxel sont semblables a des configurations présesuiel'image d’entrée.

La deuxiéme catégorie reléve d'une approche pibist@b originale dont
I'objectif est de reproduire, sur le volume textues interactions entre pixels estimées
sur I'image d’entrée. L’estimation est réalisédalgon non paramétrique par fenétrage
de Parzen. L'optimisation est gérée voxel par vgpat un algorithme déterministe de
type ICM. Différentes variantes sont proposéesatingds aux stratégies de gestion
simultanée des tranches orthogonales contenaonkéd.v

Ces différentes méthodes sont d’abord mises emeopour la synthése d’un jeu
de textures structurées, de régularité et d’aroparvariées. Une analyse comparée et
une étude de sensibilité sont menées, mettant ider@e les atouts et faiblesses des
différentes approches. Enfin, elles sont appliquéesa simulation de textures
volumiques de matériaux composites carbonés, & pariclichés obtenus a I'échelle
nanomeétrique par microscopie électronique a trasson. Le schéma expérimental
proposé permet d’évaluer quantitativement et derfaipjective les performances des
différentes méthodes.

Mots clés: synthése, texture volumique, analyse d’image, fadhelle, voisinage
causal, champ markovien aléatoire, probabilité atindnelle, matériaux composites
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1.1 Context

The effectiveness of image synthesis techniquesnédlel and reproduce natural
textures (wood, rock, sand, marble, fabric etcgsdoot have to be anymore demonstrated.
The field of texture synthesis has been particuldginamic with notable applications in the
field of image extrapolation, image editing, imag@npression or image mapping but has
also been extended to other areas such as videpl&mon/merging and animations, or
description of the geometry of a surface.

The texture synthesis research field has ledead#velopment of humerous synthesis
techniques. These techniques, mainly two-dimengioreed to be adapted for modelling
volumetric structures like the ones obtained by iBiaging techniques, such as Magnetic
Resonance Imaging for medical purpose, seismic imgafpr underground exploration, or
tomography in materials science. In this last c8Betextures are of particular interest for the
study of the three-dimensional internal structurmaterials.

However, in some cases, for reasons of cost,ipaddity, or simply resolution issues,
using 3D imaging techniques is not feasible. Theedkldimensional structures of the
constituent materials are then imaged in 2D. Uigese conditions, any stereological method
capable of extrapolating 2D information into 30ikely to improve the understanding of the
physical reality of the material. It is in fact this context that this thesis considers the
synthesis of volumetric textures based on 2D images

1.2 Objectives

The aim of the thesis is to develop algorithms cateéid to the synthesis of volumetric
anisotropic textures from a 2D sample. Apart frohe tdifficulties relative to their
computational complexity, such approaches pose &[2Dnference problem. They are
indeed achievable for isotropic textures or, in tAgse of anisotropic textures — lamellar or
wired — only under certain clearly defined hypotbes

Approaches based on Markovian assumptions, amangntyst popular and already
well-studied, are preferred. It is about extendihgm to the case of volumetric textures,
especially anisotropic ones and focused on gresl liextures. The developed algorithms are
applied to the modelling of nanometric structurésarbonaceous materials. The synthesis is
based on grey-scaled images obtained by electramostopy. The produced 3D data is
intended to be used for realistic simulations efriolecular structure of the material.

Beyond the visual evaluation of the synthesizatutes, a quantitative benchmark for
the analysis of the synthesized textures is praphoshkich consists in comparing input image
characteristics with the ones of the output sadixture. This study allows on one hand to
identify the most relevant strategies — either peat@ic or non-parametric — for the synthesis
and secondly to compare them objectively, keepmgnind that they should be able to
reproduce as faithfully as possible the visual esatistics and morphology of the example
texture.



1.3 Thesis outline

This thesis is arranged as follows:

The first part is preparatory, introducing to tteader the notion of texture and the
texture typology while acquainting him with the Hyesis techniques. It deals with a thorough
task of classifying as clearly as possible the tsgsis algorithms highlighting the 3D
approaches.

Correlated with the previous chapter, the third #me fourth chapters are devoted to
the implementation of two types of non-paramettgoathms. Both types are based on the
assumption that textures are realisations of MafRandom Fields. The first one, presented
in chapter three, consists in synthesis algorittbased on fixed neighbourhood search,
building the output texture by direct sampling ne exemplar. Basic principles are presented
combined with proposed improvements to increase fyrehesis quality. Chapter four
considers the synthesis based on the likelihoogpaithes modelling the dependencies
between neighbouring pixels in the exemplar. Eyexgl is allocated the most probable grey-
level considering only its neighbours. This implasoriginal 3D extension — and its variants
— of an existing algorithm, formerly proposed f@ &&xture synthesis.

The fifth chapter is dedicated to the qualitaivaluation of the synthesis results. This
Is the traditional way to evaluate synthetic tegturA large number of simulated textures are
analysed, performed under different frameworks ifipeto the different versions of the
algorithms presented in chapters three and four.

The sixth chapter shows the applicability of theplemented algorithms on a
particular set of textured images — the latticage images emerging from the microscopic
observation of carbon composite materials. Theralgns were successfully applied to the
synthesis of volumetric textures of carbonaceouterni@ds starting from only a single 2D
observation obtained by HRTEM (High Resolution Brarssion Electron Microscopy). In
order to evaluate the ability of the algorithm wpmoduce a 3D texture respecting the
statistical properties of the input sample, a qtatnte study of the performance of synthesis
is conducted. This study focuses not only on theadyics of synthesized images (first order
statistics) but also on their morphological projsr{lengths and tortuosity of fringes or local
orientations).

A research study can never be fully completed¢@mlusions are drawn and future
perspectives are declared at the end of this datsmar.
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2.1 Fundamentals

2.1.1 What s a texture?

The termtexturefirst appeared in the ™ - 15" century, Latin derived, meaninto
weave If we take into account the definition from ttMerriam-Webster's Collegiat
Dictionary [Merr], a texture is defined ¢

» something composed of closely interwoven elen

» the structure formed by the threads of a f¢

» the disposition or manner of un of the particles of a body or substa
» the visual or tactile surface characteristics gnukarance of somethii

Ignoring all the metaphoric meanings, in the comrspaech, ‘texture’ is used as
synonym for ‘surface texture’

In image processingt is hard to give a precise definition becausduexis alike a
image containing repeated patter[Har92] with a certain amount of randomness and in
same time can be catalogued as image containing no explicit obje [Wei09.

Another good intepretation states that a texture can be defined asction of the
spatial variation in pixel intensitic (grey values) Con8Q. Texture is one of the thre
fundamental types of features used by humans tmgiissh regions in greyscale images;
remaning two are tone and conteHar73]. Texture can be regarded a phenomenon in
two levels Har73] [Gag83, the first concerns thalescription of primitives of which tr
image is composed and which are its charactepstiperties; the second involvthe spatial
dependences between these primitives. Thus, akph#al properties, periodic or not, o
phenomenon unfolding in the plan of the image c&fimd the textur:

In 3D computer graphics, a texture usually refe a digital image applied the
surface of a thredimensional model btexture mappingHec84, to give the model a mo!
realistic appearance.

No satisfactory and universal definition of textunas yet been given, becal
everyone tries to understands concept in terms of its center of interest.

Often, textures refer to photographs of real teedunaterials or surfaces. A variety
such textures are to be found in the -known Brodatz texture databasBro6§ for black
and white, and VisTex database for coloured tex [Visi. Five examples of Broda
textures are shown in tieg. 2.1
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Flgure 1 Someexamples of textures from Brodatz databaam Iﬁft to right, D12 D20 D68 D1
and D103 images.

s

2.1.2 Texture typology

Texture is a key component of the human visual gggron and if anyone basical
can recognise a texture, it is more difficult tasdify the texturesA texture is pretty diverse
and can exhibit numerous propertiFrom a perception point of view, xture can be



described by six different properties, nametparsenesscontrast directionality, line-
likeness, regularityand roughnessknown as the Tamura's texture featur€anp7§. If we
want finer texture discrimination, these six prajgsr are not as much as necessary [Rao90]
[Cas02.

regular

irregular

h
y

regular stochastic

Figure 2.2- A texture spectrum arranged by texture reguldtiin04].

However, the most common way to catalogue textisréy their degree of regularity
[Lin04], along a spectrum going from regular to stocleagsi in therig. 2.2 Most of the real
world textures are in-between these two extremes.

Regular textures look like somewhat regular/striedd patterns. Their distinctive
feature is that the shape and the colour/intensitgll texture elements contained in the
texture are repeating in equal intervals. An examgdl regular textures is wallpaper. Near-
regular textures can be viewed as statistical degge of regular textures along different
dimensions I[in04]. In the real-world, however, few textures areqgwely regular. Most of
the time, the textures we see in the real-worldn@ar-regular, such as cloth, windows, brick
walls, carpets etc.

Stochastic textures look like noise, like randomstgttered colour dots over the entire
image, sometimes specified by minimum and maximughiness and average colour. Many
natural scenes contain a huge number of visuatmpatigenerated by a variety of stochastic
and structural processes.

e

different scales of
observations, going from low resolution sand textimage to individual pebbles observed at high
resolution.



Many textures look like stochastic textures whéawed from a distance, fact that
takes as to distinguish two other types of text{@11] as exemplified irFig. 2.3 First, the
micro-texturesare mainly stochastic textures, typical examplewtich are images of sand,
clouds or a water surface. The second class condbmmacro-texturestexture images
composed of several small, individual objects amut hke a coherent group. The
classification into micro or macro-textures doesardy depend on the nature of the observed
objects but also on the viewing distance.

Unlike macro-textures, the micro-textures contgenerally a pattern of which all
local spatial parts reveal the same behaviour conéethe texture a homogenous aspect.
Some homogeneous textures are presente)i.4.

o

o R

ture

Intuitively, a texture (or an image in general)hemogeneous if by observing it
through different windows, the perceived regionpgemies are similar. The homogeneity is
translated into statistical terms by the conceptst#tionarity. Seeing the texture as a
realisation of an underlying random process, i&i@tarity corresponds to the translation
invariance of all the statistical properties ofttipaocess. Stationarity can be defined on a
broader sense, only at a certain statistical ofg@r.example, a random stationary process of
second order has its average, variance and autoaoge invariant by translation. Because
the stationarity allows to define, to some extesinple structural measurements of the
random process, recent developments focused onidprgv methods to evaluate the
stationarity of a textureBla07.

2.1.3 Textures applications

The use of textures is very valuable in many appilbns. Quite a lot of computer
vision tasks use textures, such as recognitiossileation or segmentation as illustrated in
Fig. 2.5

Texture has been proved to be one of the significharacteristics used in identifying
objects of interest or regions in an ima&klfg. Using texture features, one can produce a
classification map of the input image where eacimdgeneous textured region is identified
with the texture class it belongs ©dn8(Q. A typical application consists in retrieving sian
regions in remote sensing imag¥gik0]].

Texture has been studied in the context of imaggerstanding and analysis. Not
surprisingly, texture finds applications in problemelated to image/video editing, merging,
and completion, setting up a new concept — vidgtute [Sch0(, enjoying properties found
somewhere between a photo and a video.

Textures improve our lives indirectly by contrilmgt actively in the medical research
field, namely in investigating medical imagd3un0(d, an important tool for diagnosis and
pathology follow-ups.



D77 D55

D24

D84 D17

A\

b c
Figure 2.5~ (a) An image consisting of five different Brodatztured regions [Che98]: cotton canvas
(D77), straw matting (D55), raffia (D84),herringbernveave (D17) and pressed calf leather (D24). (b)
The goal of texture classification is to label edektured region with the proper category labe). (c
The goal of texture segmentation is to separategbmns in the image which have different textures
and identify the boundaries between them.

Reproducing the visual realism of the real woddai key objective for computer
graphics. For acquiring synthetic images, textamesfrequently used and above all obtained
by texture synthesis. Synthetic textures are aerrddtive to the hand-drawn or scanned
photographic textures, having the advantage thdtiies can be made of any size and that
repetitions or visual seams can be avoided.

In 2D but lately mainly in 3D graphics, a largeeirest is in modelling surface details.
Because explicit modelling with polygons or geoneeprimitives becomes less practical for
finer and more complicated details, an alternativi@ition is to map an image, either synthetic
or digitized, onto the object surface, techniquéedaexture mappingHec84.

2.2 2D texture synthesis from a 2D sample: principleand algorithms

Texture synthesis has been an active researct itogomputer vision both as a way
to verify texture analysis methods, as well agsrown right. It is often the case when a given
sample is too small for the surface of an objettenT the sample needs to be extended in
some way - and that is where texture synthesis sameSimple replication of the sample
would cause a tiled appearance, but texture syistiagl create a new texture big enough that
will still look like the original one.

2.2.1 Texture synthesis definition

More specifically, the goal of texture synthesigo reproduce a new texture from a
sample, obtaining a texture that looks differerd & pixel-wise different from the original
sample.

The synthesized texture appears as if it has besated from the same underlying
process as the original one, both measured bytémelards of human perception. The output
texture should ideally be perceived as another pdrithe same large portion of a
homogeneous material the input texture is takem fias it is illustrated ikig. 2.6

The size of the output texture is typically sedelcby the user, the synthesis result
should be perceptually similar to the input textoo also containing sufficient variations, so
that it should not have any visible artefact (seabhscks, misfitting edges) and it should
contain no repetition.
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Figure 2.6 -Example of an ideally texture synthesis procesBrodatz D84 image: given an input

texture (left snapshot), a texture synthesis atborishould ideally provide an output texture (right
snapshot) perceived as being a different part efséime large piece of material.

A very good description of texture synthesis wammiulated by DeB97:
"Mathematically, the goal of texture synthesis @ develop a function F, which takes a
texture imageidpu, t0 @ new texture samplgdn such that the difference betwegp.d and
IsynthiS above some measure of visual difference frenotiginal, yet is texturally similar.
Formally,

F(linpud) = lsynth (1.1)
subject to the constraints that .
D (linput, |syntt) <Tmax_disc (1-2)
and
\f(linput, |syntt) >Tmin_diff (13)

where D is a perceptual measure of the perceived differesfctextural characteristics, and
V' a measure of the perceived visual difference beviiee input and synthesized images. To
be acceptable, the perceived difference in textahalracteristics must fall below a maximum
texture discriminability thresholdkx dise and the perceived visual difference must be above
a minimum visual difference thresholghinl i

The success of a synthesis technique is measyréd Bbility to minimize fax_disc
while maximizing din_dit”-

2.2.2 Texture synthesis applications

In computer graphics, texture synthesis is a commeghnique to create generally
large textures from small texture samples, foruke oftexture mappingn surface oiscene
rendering applications, handling boundary conditions andiding verbatim repetitions. In
rendering, textures can imitate the surface detdileeal objects, ranging from varying the
surface’s colour, to actually deforming the surfgeemetry.

In computer vision, texture synthesis is of inséran segmentationrecognition or
classificationas inFig. 2.5 These tasks can benefit from a texture modelchvisould be
derived from a successful texture synthesis algritTexture synthesis is useful also because
it could provide an empirical way to tetsxture analysisjf the analysis results in some
characteristic features that can be implemented the synthesis algorithm. Because a
synthesis algorithm is usually based on texturéyarsa the result justifies effectiveness of the
underlying models. Compared to texture classificat@nd segmentation, synthesis poses a
bigger challenge on texture analysis because iires|a more detailed texture description
and also reproducing it is generally more diffichéan discriminating thenZzho064.

11



Other applications of texture synthesis comprise:

» Image editing/restoration/completi¢gtge97 [Efr99] [WeiOQ [Bro0Z [Dro03] — Over
time or due to improper handling or maintainindjofgraphs or films suffer from scratches
or scrambled regions; more often, in pictures ovimdrames there are undesirable items
(like wires, poles, different objects, persons,naais etc.). All these kind of flaws, often
contained within a textured region, can be repldogdexture synthesis. Texture synthesis
can also be used as an inpaiting process for recatiag lost or deteriorated parts or filling
the holes in images and videos. Some examplessiditiection are ifFig. 2.7.

Figure 2.7 «a)(b) Examples of texture-replacement algorithgef7]: top row - the original image,
the bottom row — image with replacement patch kiute synthesis. (c)(d) Examples of image
contraction (c) and image expansion (d) using sifflarity based texture warping [Bro02].

» Animation and video synthe$8zu96[Sch0( [Wei0Q [Kwa03 [Dubl1]1 — Computer
generated animations contain cyclic background mmavés such as ocean waves, waterfall,
steam, clouds, smoke or fire. These motions caedrded as temporal textures with motion
having indeterminate extent both in space and émexemplified irFig. 2.8 Video textures
provide a continuous infinitely varying stream ofages; they can be used in place of digital
photos to infuse a static image with dynamic giesitand explicit action. Applications of
video textures and their extensions include thplaysof dynamic scenes on web pages, the
creation of dynamic backdrops for special effeectd games, and the interactive control of
video-based animation.

b
Figure 2.8 -Temporal texture synthesis [Wei0Q]: (a) smoke @macean waves; in each pair,
the spatial-temporal volume of the original motgeguence is shown on the left, and the
corresponding synthesis result is shown on thetrigh

» CompressionBee96 [Sunl1l(Q — Images showing natural scenes often contaigelar
textured regions, such as a grass land, a foneatsand beach. Alternative to common image
compression formats like JPEG or PNG, texturesbeacompressed as well, using a different
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format. By segmenting out and analysing the textusgions in a pre-processing step, they
might be compressed and afterwards re-synthesiyed bexture synthesis technique. In
addition to image compression, texture synthesisatao be employed for synthetic scenes
containing large amounts of textures.

2.2.3 Texture synthesis typology

The research field of texture synthesis has ledti¢ development of many synthesis
technigues over the past two decades. Obvioustysplace prevents a complete listing of all
the relevant models, but whatever the difficultiese can roughly separate the existing
texture synthesis methods in three major familecedural texture synthesisnage-based
texture synthesisndmodel-based texture synthesis

2.2.3.1 Procedural texture synthesis

Procedural texture synthesis focuses on tryingrtaluce textures using functions or
computer algorithms which can be evaluated at angtf@at a fixed computational cost, and
thus they are ideal tools for texturing objectwirtual environments - animation movies or
video gamesHbe03. Different authors tried to reproduce the reakHdghenomenon like
water flow, corrosion or particles distribution iaggregate materials, using physical
simulations based on meticulous mathematics.

Such procedures were studied since the early aflagsmputer graphics. Usually they
are based on transforming some predefined sigt@lardesired texture. It's easier to set up
functions for highly structured textures, but maryhem are also useful for generating some
types of non structured textures like noise fumgi¢e.g. the Perlin nois®¢r83 or Worley
noise Wor9q). Perlin noise is still very popular today. Ovilre last few years several
improved procedural noise functions have been megowavelet noiseCjoo03, anisotropic
noise [Gol0g or Gabor noiseljag09.

[Per85] and wavelet noise [C0005].

These approaches can be very fast, they can proldigh-quality and continuous
memory efficient textures Ups89 not storing explicitly the synthesized textures.
Unfortunately, they are specialized for a reducanhiper of specific textures, such as wood,
water, marble, sea shell or animal skin; for eveaw texture it is required a new algorithm to
be written and programmed. Hence, an importanttigedcproblem is to derive texture
procedural models from sample texturB$sp7]. If the early results were limited to textures
in 2D, most of the authors tried to extend thegoakthms for synthesizing solid textures
[Lew89 or for solid texturing on surface®¢a89 [Tur91]. Another direction of procedural
methods includes the use of reaction-diffusidarpP1l] to create striped or spotted patterns.




2.2.3.2 Image-based texture synthesis

This category of approaches contains most of yimhsesis techniques. Image based
texture synthesis generates a new texture thamides as much as possible the sample
image.

Image-based texture synthesis approaches invalge gub-classes as following:
e texture synthesis by analysis
» pixel-based texture synthesis
* patch-based texture synthesis

Image-based approaches can synthesize a widetyafitextures, as long as sample
textures are provided. Most of them synthesizeutest by directly copying input image
pixels or patches and stitching them together i@ $gnthesized image. They have the
advantage of preserving image details by keepimg ptixel neighbourhood intact in the
synthesized textures. These are local approachemture, with no special consideration
given to the texture’s global structures.

Texture synthesis by analysis is based on texture modelling by statistical caists. A new
texture is synthesized so that a set of statisteaktraints estimated from the input image is
imposed on the output textures, idea illustratefign 2.1Q

The first notable approach constrained the syrgh@giusing the histograms of filter
responses at different scales and orientatibtee93. This was one of the first coloured
textures synthesis methods, and involved an itexadpproach of matching the histograms
and expanding and reducing the pyramids. Imageticani®n was made by using a sort of
Laplacian and Steerable pyramids. The next in liomgrcame the iterative process by
modifying the input in a coarse-to-fine fashiorstrieting the conditional distribution of filter
output over multiple resolution®gB97.

SYNTHESIS BY ANALYSIS

Feature
Extraction

Original Synthetic
Texture Texture

Figure 2.10- Block diagram of the texture synthesis by analygthod and its goal: to achieve the
same visual appearance in both the original andsyr@hetic textures.

Synthesis

Visual
Comparison

Human Brain

A substantial improvement was accomplished by ahtenthe first order statistical
modelling to the second order one and replacingtimeplete filter response update, made by
histogram equalization, with a scheme respectiegctirrelations Por0(. The optimization
procedure becomes more complicated, but it alloverly sufficient description of texture
and makes the synthesis of new textures possible.
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Several enhancements of this method have been sgdeey1(Q [Rabl1(Q, involving
higher-order statistics between coefficients andensophisticated decompositions of images.
However, these types of approaches lead to som@legnformulations that are difficult to
optimize.

Pixel-based texture synthesis methods generate the texture one pixel at a tirmamtaining
the coherence of the local texture with its viginithey are generally based on the theory of
Markov Random Fields (details are to be foundCimapter 4. These are among the most
successful techniques mainly because of their sirbphlnd applicability.

To assure a reasonable computational complexitystnod the authors propose
efficient searching algorithms combined with a mastiale implementation capable of
capturing patterns at different scales withouteasing the computational load.

One of the first methods, classified as a nonpatac Markov chain synthesis
algorithm, consisted in ordering the pixels andnthsynthesizing a new pixel from a
nonparametric representation of the conditionababality function. This probability function
was derived from samples of the input texti®e93, using a Gaussian mixture model. The
only problems were the limited size of the neighbood order and the causality of the
synthesis approach. Improvements were brought img uke non-parametric Parzen-window
density estimator and a local annealing algoritrapturing the visual characteristics of a
texture Pag99g. This model was capable of synthesizing compésstures ranging from the
stochastic to the well structured ones.

Following the above work, the texture synthesisnby-parametric samplind={fr99|
doesn’'t require any probability density estimatbuyt instead simply using the nearest
neighbour look up scheme to sample the texturaciplie sketched ifig. 2.11

Figure 2.11 -Overview of the texture synthesis by a hon-pardamalgorithm [Efr99]: Given a
sample texture image (left), a new image is beymghesized one pixel at a time (right). To syntteesi
a pixel, the algorithm first finds all neighbourtamin the sample image (boxes on the left) that are
similar to the pixel's neighbourhood (box on thght) and then randomly chooses one neighbourhood
and takes its centre to be the newly synthesizedd. pi

Even if Efros’s algorithm was causal and non msdtle, this was the precursor of
one of the most versatile methods and in the same, one of the fastest. This method,
proposed by Wei and LevoyMeiOQ, relies on texture locality (every pixel is pretible
from the few pixels in its neighbourhood) and te&tatationarity (spatial statistics invariance
by translation). Starting from a random initialioat and following a certain scanning type,
the texture is synthesized pixel by pixel, iteralyv To do that, pixels from the exemplar are
copied into the output texture, making sure thatdbtput pixel neighbourhood is similar to
the neighbourhood of the chosen input pixel. Toebwate the searching of the best
neighbourhood in the input image, the authors psed@cceleration techniques.




Because the exhaustive nearest neighbour searghinge consuming, an efficient
solution is to reduce the number of causal neighimds per pixel to be comparesish01].
These neighbourhoods are defined as the neighbodshio the sample texture that have been
previously chosen for the former synthesis of mxatighbouring the pixel of interest in the
output texture. This algorithm works best on ndttestures, such as textures of flower fields,
pebbles, forest undergrowth, bushes and tree beanttowever, it is not suited for textures
containing a high degree of structure, when phaseaodtinuities occur, making the texture
look broken.

Combining the ideas fromWeiOQ with [Ash0] and extending them to work on
corresponding pairs of images rather than on sitgktures has lead to a new type of
algorithm, capable of handling texture synthesis t@xture transfer using analogig¢$ef01],
efficiently combining the Euclidian distance witietnearest neighbour searching.

Other approaches proposed to accelerate texturtesym by using a jump map
[Zel03, avoiding nearest neighbour comparisons &asign 2.12 Each pixel in the jump map
contains a list of pre-calculated references amdbadilities for matching pixels, as an input
texture analysis stage. A texture is synthesizedeal time by copying a matching pixel,
referred in the jump map, from the sample texture.

Figure 2.12 -Basic prir{ciple ofrtextLLJre synthesis using the jungp [Zel02]: the jump map records
the links between closely-matched neighbourhoaufs the input texture (faded for clarity).On the
right, the output image is synthesized in a scae-tirder, by random walk through the jump map.

Following an entirely different principle,Tpn03 introduced the k-coherence-based
method capable of synthesizing bidirectional texttunctions (functions that describe the
appearance of a real-world surface as a texturgiumof lighting and viewing directions) as
an application to texture synthesis. K-coherengepkes for each pixel a set &f nearest
causal matches. The source pixels in the causghbeurhood are used to define a candidate
set from which the best matching pixel is copietie alue ofk depends on the type of
texture: for natural textures, where high frequecasnponents are desired, a l&should be
suitable; for the rest, a highshould be used. K equals 1, the method is comparable to
[AshO1.

Patch-based texture synthesis appeared as an improvement to the pixel-based agipes, the
latter methods suffering from excess computatioherwdealing with the structure of the
texture. At each step, a patch of the input imagehosen among the ones which have their
neighbourhood similar to the corresponding neighboaod in the output texture.

One of the first approaches of this kind consistselecting patches from the input
image that agree, according to some measure, witbunding patches in the output image
and then reducing the edge artefacts by using numirarror cuts between the patches. This
can be simply defined as image quiltiigfr01] and the concept is illustrated kig. 2.13
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Figure 2.13- Example of texture synthesis using the imagéimginethod [Efr01], i.e. square blocks
from the input texture patched together to syniteeainew texture sample: (a) blocks are chosen
randomly (similar to [XuGO00] [Pra00]), (b) the bl&s overlap and each new block is chosen so as to
“agree” with its neighbours in the region of ovepla(c) to reduce blockiness the boundary between

blocks is computed as a minimum cost path throbgletror surface at the overlap.

Patch-based texture synthesis was also performddr the form of chaos mosaics
[XuGO0Q - randomly distributing patches from the inputttee over the output and smoothing
the edges between overlapping patches with simpksedge filtering. The drawback is that
the synthesis produces large regions of verbatipying.

To reduce the stability problems of which suffertb@ previous schemes, a fast
neighbour search algorithm based on a quad-treznpgrstructure of the input texture was
introduced. It assures an optimal sequential §ttechnique, by laying down one patch after
the other Lia01].

An improved version of image quilting was doneabgraph cut technique called min-
cut or max-flow Kwa03 allowing re-evaluations of old cuts relative tewones. It involves
two stages: first, the search of the best patchcdyparing the current patch with the
information from the sample texture and secondbpying an optimal portion of the patch
determined using a graph-cup algorithm. The resudige a very good visual quality even
when applied to video texture synthesis.

Work was done to reduce and to guarantee the eyeating texture patterns while
synthesis, by improving texture lappirgra0q or by introducing a new concept — Wang tiles
[Coh03. Wang tiles generate non-repeating tiling ofraited number of tiles by assigning a
colour to each edge of the tile and matching edg#ssimilar colour.

Combining the patch-based and the pixel-basedigebs led to an interesting hybrid
algorithm highlighting the advantages of each metaod restraining the drawback of both
[Nea03. It consists in using patches as large as passibdl stitching the patches of different
sizes using a pixel-based method.

For more information about the example-based texsynthesis algorithms the reader
is invited to consultkwa07.

2.2.3.3 Model-based texture synthesis

Model-based texture synthesis is a complementapic tof texture analysis,
attempting to generate synthetic textures in haymweith a certain texture model. Model
based texture analysis methods consist in buildingimage model that can be used to
describe the texture but also to synthesize it. @drameters of the model have to confine the
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important visual characteristics of the texture.nylanodel based methods have been
employed in texture analysis, including the autgressive modelsKas84 [Che8] [Jai89,
Markov and Gibbs random field€fo83 [Gem84 [Kho87 [Siv99, Wold models Fra93],
fractal models Che93, Gabor and wavelet model3yr8q [Cla87] [Mal89] etc. In these
methods, a texture is shaped as a probability mudas a linear combination of a set of basic
functions. Difficulties are on choosing the apprag model for the targeted texture and on
estimating its parameters.

The autoregressive (AR) model assumes a locataictien between texture pixels
where pixel intensity is a weighted sum of neighibay pixel intensities. Derived from 1D
time series models that have a past and a prelas84, these 2D models have to impose
similar ordering on the 2D discrete lattice. OtWd® models, such as the moving average
model (MA) or the autoregressive moving average eh@dRMA) are discussed inJai8Y.
Although texture synthesis is feasible using foaraple the non-causal AR modé&He83],
these model-based methods show difficulties in geimg natural textureddaiol].

Markov random fields (MRFs) are popular methods rfoydelling imagesBes74
[Cro83 [Gem84 [Pag89. A MRF is a probabilistic process in which alltenactions are
local, but the global effects can still occur aggagation effects. The intensity of each texture
pixel is entirely determined by its neighbouringtemmsities, deemed as a conditional
probability. Because a conditional probability dgnfunction is not accurately estimated by
the MRF, an equivalent maximum a posterior estimato a Gibbs random field is used
[Cli90] [Gem9]. Consequently, modelling the texture globallydpecifying the total energy
of the texture lattice is equivalent to model itdly by evaluating the local interactions
between pixels in terms of conditional probabittie

Wold-like model is a more recent method used tal@hdexture images. The model
allows the texture to be decomposed into three atlytwrthogonal componentd-{a93]
[Sto9§: a random component (w.r.t. granularity), a hanoo component (w.r.t.
repetitiveness) and a generalized evanescent ca@np0n.r.t. directionality) Ram0(. A 3D
Wold decomposition was proposed recently $§(J7, modelling a 3D homogeneous texture
field as a unique sum of four mutually orthogomainponents: a purely indeterministic part, a
deterministic part and two evanescent componeriis Kind of approaches allows texture
synthesis Fra93] [Zha0§ but with difficulties in estimating the harmonand evanescent
components.

Fractal models are accepted in computer graplocscrfeating realistic textured
images. This is feasible because the fractal distas relatively insensitive to image scaling
but more important it shows strong correlation witte human judgement of surface
roughness. Fractals are used to model the roughmepsrty of a surface/texture in image
analysis, being able to describe objects havindp liggree of irregularity. A number of
methods for texture synthesis based on fractale HBeen proposed, based on midpoint
displacement and Fourier filtering¢i8g. The fractal method is able to model some natural
textures, but because it lacks orientation seliggtiis not suitable for describing local image
structures.

There are also other families of classes in whétture synthesis techniques can be
broadly categorized, for examgdlecal region-growing methodd?ag9g [Efr99] [Wei0Q vs.
global optimization based methofRer8g [Pea89 [Tur9]] [Hee93 [Por0(Q or discerning
the same referenced papermarametric methodfPer89 [Pea83 [Tur9]] [Hee9] [Por0Q
vs. nonparametric method#®ag9q [Efr99 [Wei0Q.
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2.3 Volumetric texture synthesis

Many of the above techniques were implemente@ibsynthesis, but their extension
to the 3D environment remains unstable provindfits® a very complex and computational
issue. 3D textures are mainly used for texturinguwmetric objects trying to increase the
realism of the 3D scenario, but they can also eenied in 3D vision when exploring for
instance material structure or seismic data. Fah sapplications, a volumetric synthesis
approach by 2D/3D inference is justifiable, beingistimes the only possibility to access the
three dimensional structurBgC1dQ.

Volumetric texture synthesis has proved very uskfutexture mapping. Mapping
represents an important instrument in modellingasar details for rendering photorealistic
graphic scenes without explicit modelling of therface geometry or of the material
properties. Nevertheless, defining a distortiorefrand discontinuity-free mapping is
challenging and sometimes even impossible for soomplex objects. In contrast, when
applying a solid texture into an object, it allowarving the object out of the texture
volumetric data block, avoiding the problems oftalison and discontinuity Dis01].
Furthermore, once a solid texture is availableait be used to texture arbitrary objects not
only on object surface, but also throughout theembject volume, the solid texture carrying
information in the entire volume. One should make tistinction between the 3D solid
texture synthesis and the on-surface 2D texturéhsgrs. Many works were developed in this
direction by synthesizing a 2D texture pattern owenesh in 3D\\ei0] [Yin0] [Tur0]]
[Ton03 [Gor03 [ZhoO6l with the objective of avoiding seams and minimgipattern
distortion.

For many objects, mapping 2D images (i.e. texineps) to the surface of synthetic
objects is satisfactorytricking’ the human perception by not incorporating quaititiely the
third dimension of depth. However, for objects fednfrom materials with inherent 3D
structure, it can be difficult to find a 2D imageapping that adequately represents the
material variation. Here gets involved the 3D swsth. Full 3D texture synthesis versions can
be easily derived for most of the existing 2D ajgfes and can be used in practice, provided
that a 3D sample is available as an example. Orcong¢rary, the synthesis of volumetric
textures based on 2D exemplar(s) is more awkward.

Despite the fact that there have been numerodgestsuccessfully performing texture
synthesis, in terms of quality and efficiency, mostthe works concentrate on 2D texture
synthesis, while solid texture synthesis receivaatively less attention. The scarcity of
related papers is mainly attributed to the muchéigcomplexity involved in solid texture
synthesis.

Unlike the 2D image samples, which can be captuvdgd any camera, 3D solid
texture image samples are more delicate and elaobri;m material science and engineering,
exploring the 3D structure of materials is esséntiaunderstand and predict their physical
properties and behaviour. There are different 3agimg techniques (based on X-ray,
ultrasounds or Magnetic Resonance Imaging) allowimgobtain 3D views of a certain
material at different resolutions, but their usenag always appropriate because of the high
costs it involves and for various technical reas@ng. the sample preparation, intricate for
high resolutions). Alternative ways to obtain 3Dames of a material are the confocal
microscopy Ebe0] [Lee0] (reconstructing 3D views from multiple opticalctiens of the
sample) or the dissecto6te84 [Dav97 (observing thin, parallel, contiguous slices bét
sample). However, 3D microscopy techniques are resipe and imply rigorous sample
preparation, while getting thin enough, perfectiygtlel slices is quite laborious in practice,
making them sometimes unusable.




3D image synthesis techniques may appear as stitggealternatives in such cases.
Specific techniques are to be considered, usingaast one 2D image of the 3D material as
input. 3D information can be obtained from one 2@age by modelling the targeted solid
block to match the 2D sample characteristics. Al ivis possible to relate measurements of
a single 2D cross-section of the volume with thaitg of that material under stereological
considerations.

One can distinguish three main directions for engatolumetric textures:
» procedural approaches
* run-time 2D texture synthesis on cross sections
» exemplar-based 3D texture synthesis

2.3.1 Procedural approaches

These are the first solid synthesis techniques attempted. In fact, the notion of
solid texture was first employed in 198@4r84], but the term solid texture was officially
pioneered in 1985 byPer84, when the reproduction of realistic textures whme by
perturbing material-specific mathematical functioims order to create realistic, pseudo-
random patterns, using noise functiohewW}89. Noise functions have been largely used in
computer graphics to reproduce solid textures @oinii patterns of marble, crystal, sand,
clouds, fire or water. Lately, new attempts weredento improve the intuitive description of
patterns [[ag09g.

Figure 2.14 -Solid wood texture synthesis [Dis01]: on the Ifg result obtained by perturbing a
wood-grain basis function directly with the turboade function of [Per85]; on the right, the result
obtained by using a perturbation function corresgiog to a filtered noise which preserves the visual
aspect of the wood-grain.

Another type of procedural approach consistegsing a scripting language to define
the internal structure of a layered volume mode$pgcifying depth and material information
[Cut0]. This approach is capable of producing a var@tgomplex models as a result of
simulation operations applied to the layered sofiddels. Based on procedural methods,
[Che044 presented an efficient 3D texture synthesis dlgar simulating the growth of a
material from a single 2D growable texture pattdmexture evolution is based on the general
principle of texture growing (i.e. 3D cube growiimsalation following a random path) and
texture turbulence (i.e. texture warping by textoeeturbation).

Unfortunately, it remains quite difficult to antibally describe texture appearance by
procedural methods leading to algorithms hard tdrod program and optimize.
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2.3.2 Internal solid texturing from 2D cross section

It consists in synthesizing the internal struciof a 3D model from 2D snapshots ¢
few crosssections of a real obje¢, using 2D synthesigechniques, instead of sampling fror
complete 3D volumetric representation direcOwa04 [Pie07.

Figure 2.15 «(a) Exanple of a subdivided domain [Owal based on user’s control, to choose wr

to cut a bone-andneat model (on the left) and to add interestingneice textures (on the midc to

the surface meshes. (b) Illustration of the intésteucture of an obje using a few photos of intern

surfaces of a real object taken by an interactiditoe and place them in the local reference frarh
the 3D model [Pie07].

These are redime 2D texture synthesis methods, allowing ther tieanteract witk
the desigmg system. WhileOwa04 asks the user to provide a direction to oriemtuees
inside the volume Hie07 requires the user to place the cross sectiorns thiet 3D model an
then morphing performs the cr-sections synthesis. The general principle ese two
interactive methods is exemplified Fig. 2.15 The 3D interactivity of the method is ve
appealing even for a naxpert user, but these methods have some limitatidee
discrepancy among different cr-sections, computational cost, morphlimitations, texture
types applicability (morphing works well with isopic, layered and oriented textures,
fails on textures containing discontinuous elemk

Similar work in this direction was accomplished [Tak0§ who presents a meth«
for filling a solid object with spatially varying oriead textures with overlapping so
textures. The underlying concept is to extend thaeXture patc-pasting approach of lapp:
textures Pra0( to 3D solids by replacing the 2D texture and rtigalar msh with a
tetrahedral mesh and 3D texture patc

2.3.3 Exemplar-based 3D texture synthesis metho

These are the most frequently employed and usbalbed on 2D exemplar(s). T
objective is to fill up a volume with the patteresen in the exemplar, kinventing 3D
information from 2D input dat

The intense work of 3D texture synthesis basedxemelar started in the middle
the 90’s with the first parametric methods atterdpteinvolved mult-scale statistical featul
matching operations aimin reproduce the global statistics of the 2D exempiathe
volume. 3D textures are successfully generated &tgmng the histogram of the volumet
data with that of the input sample at differentelsvof resolutionHee93.

Work in this direction ws extended following the idea that an image careleyantly
decomposed using a bank of spatial filters, ingetof su-bands, each s-band revealing



information about the presence of primitives ofcfie orientation and scale in the exemg

[PorOQ [DaC1d. The global schema of this type of approach &ssented irFig 2.16 The

statistical modelling of these s-bands was extended to th& @rder. These methods wc

well on homogenous and stochastic textures, bugtiadity of the synthetic relts degrades
in general for structured textur
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Figure 2.16 -General schema of the 2D/3D synthesis/analysisisixte of the parametric approa
of [Por00], developed by [DaC10].

The pioneering attempts to synthesize solid testare completewith the attempts
made in order to match the spectral characterisfitBe 2D exemplatGha9t] [Gha94. The
principle of the spectral analysis methods was based on asspgctral analysis (Fast Foui
Transform) of the model to obtain a basis and ise function and then use a procedi
algorithm to obtain the solid texture as Per83.

Later work combinecspectrum with histogram matching and used orthog@be
views in order to synthesize anisotropic solid ues$ Dis9§ as it is sketched iFig. 2.17
This method is designed to handle textures whogeapnce are well captured by glo
parameters and even if only limited range of teedutan be handled, it is the first appro
capable of generating structural solid texturetsascwood nd marble.
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Figure 2.17 -Solid texture generation using [Dis98]: on the |effte general principles consists

starting with a white noise and then process all ¢lices successively and reiterate until reacl

satisfactory visual resemblance wiespect to the models; on the right, an examplelaf texture
obtained using multiple example textt.

To overcome the restricted applicability of texsyréhe no-parametric methods we
later used\\Vei03 [Kop07 [Qin07] [Chel(. These are essentially based upon the assumr
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that textures are Markov Random Fields. The saidure is generated systematically one
voxel/patch at a time maintaining the coherenceheflocal texture with its vicinity. The
global schema consists in copying pixels from tkengplar into the output texture, making
sure that the output voxel 2D neighbourhoods —rntake up to three orthogonal 2D slices
containing the output voxel — are similar to theghbourhoods of selected input pixels
[Wei03. Improvements for producing realistic solid texes from 2D exemplars were
brought by Kop07 who combined global texture optimizatiolKWya0g with colour
histogram matching adHpe93. To upgrade even more the quality of the resuit$hel(Q
proposed a high quality texture synthesis by irdtigg in the texture optimization two new

kinds of matching histograms (position and indestdgrams). These approaches assume the

search of the best matching neighbourhood indepdlydéen two or three directions
corresponding to the orthogonal views of the stdxture. Consequently, a large number of
iterations are required before the algorithm sizdml into a satisfactory result.

In order to take into account long term dependemdserved in real textures while
preserving a reasonable computational complexitystmauthors propose multi-scale
implementation schemes, combined with specific lacagon tricks based on efficient
searching algorithms: tree structured vector qaatibn WeiOQ, k-coherence treelpn03,
discrete solver Han0g) or dimensionality reduction Lpf0q (the input exemplar is
transformed from a 3D colour space into a high-daisienal appearance space in which each
pixel contains much more information than only ecwm)o

The non-parametric pixel by pixel synthesis methads the most used, finding
applications even in modelling real human body esyst (for example for creating realistic
3D organic tissues starting from 2D textured sasfitei12]).
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Figure 2.18 -Aura 3D synthesis [Qin07]: on the left, the gengygdeline of aura 3D sampling
consisting in computing the aura matrices for eangut sample and modify the initial white noise
block so that the sampled final volume will hawrilsir texture to the corresponding input sample

when a cross section perpendicular to that viewction is cut from the volume.; on the right, some
successful examples of synthesized textures.

[Qin07] presented a new mathematical framework, for geimey solid textures by
sampling the Grey Level Aura Matrices of the ingamples constrained in multiple view
directions. It allows characterizing the co-oceune probability distributions of grey levels
at all possible displacement configurations. Trgoalhm and some examples are presented
in Fig 2.18 The results are quite impressive, but when hagdkith colours, colour channels
must be uncorrelated. However, as statedkmyp7], in most textures the colour channels are
strongly correlated, and independently synthesitfireguncorrelated channels leads to visual
artefacts.




Ultimately, solutions based atereology techniqueghe study of 3D properties of a
material based on 2D observations) were attempyechddelling the shape and the spatial
distribution of the particles observed on 2D imagkkinding materialspis99 [Jag04.

To be able to synthesize solid texture of particéeBrst proposition was to operate in
the spatial domain, consisting in three stepst firsletect and extract the particle structures
from the texture model, second — the extractedesimodelled using the idea of generalized
cylinders geometric model and third — to distribtibe 3D reconstructed shapes inside a
volume Pis99.
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Figure 2.19 -Overview of the solid texture synthesis of discpaticles from [Chi06]: from left to
right, the input 2D image, the second one is thigremted image, thé’®ontains the filtered image to
get rid of the very small particles according te tharticle size histogram, thé depicts the synthesis

of a single particle using a visual hull algorithend, the final, scaling, colouring and spatial
arranging of the particles in an iterative way umgaching a specific overall crowdedness.

The next notable approach addressed the -challemjesreating 3D solid
representations of aggregate materials; it shovowd o perform an accurate estimation of
3D particle distribution from a 2D image, so thatel embedded particles of different shapes,
sizes and colour details can be generated andgadaaccordingly. This approach requires
having models for the different particle shaped thay be present in the solid. A more
recent method operating in the spatial domaingstegically independent, permits to build
particles solely from the given exempl@hiog as exemplified byig. 2.19

2.4 Conclusion

This chapter was intended to compose a comprelessiwey covering most of the
existing 2D and 3D synthesis techniques. The kgindiphic work led in this field shows that
the state-of-art of the synthesis methods is aqudaitly dynamic ground, given a strong idea
about the interest of the scientific communityrmage synthesis. The panoply of methods and
means of classification can be seen as a prodieofriterest of the scientific community for
developing new texture synthesis techniques (laspecially towards 3D environment) and
in the same time for improving their controllalyiland interactivity.

Example-based solid texture synthesis has manyraages over the other 3D
texturing/visualisation approaches because it camegte consistent and detailed textures
from examples. The drawback, however, is the godtoth computation and memory, as it
explicitly computes and stores a dense 3D arrayogkls covering the entire target model.
Pixel-by-pixel methods allow a finer control durisgnthesis handling one pixel at a time.

Following this understanding, the next two chapteral with the non-parametric pixel-
per-pixel synthesis based on Markov Random Fiefabthesis - fixed neighbourhood search
[Wei03 [Kop07 [ChelQ and probabilistic modellingHag9g, using a single 2D textured
image as input data. The drawbacks of these metlwi@dpointed out and original solutions
are proposed accordingly, regarding implementatamnplexity or memory cost.
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Chapter 3

2D/3D extension based on neighbourhood search
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3.1 Introduction

As presented in the previous chapter, variousrihgns are capable of synthesizing
textures and among them one that is easy-to-usaeat and delivers convincing results with
moderate computational cost is the algorithm of e Levoy Wei0Q. It belongs to a class
of texture synthesis algorithms characterized leyfttt that they are non-parametric, build
the output block in a pixel-by-pixel fashion an@ &ased on fixed neighbourhood search.

The first algorithm studied in this chapter is aiant of the algorithm proposed by
[Wei03 being itself a 3D extension of the original algom [WeiOQ, serving as the
backbone method. This algorithm needs a texturgpkaland a noise input and all further
computations are accomplished automatically.

However, to ensure higher efficiency and bettalityifor all possible textures, some
amendments on the reference algorithm have to lge nii@provements are brought firstly by
using a global optimization procedur&wa0g [KopO7 involving a grey-level histogram
matching technique and by using an enhanced sobtrategy.

To be able to ensure a high quality texture sysithethe synthesis procedure is
integrated with a preliminary analysis step thaisists in creating for each input pixel a set
of similar input pixels in term of neighbourhood tni® but more significant, it is integrated
with two new kinds of matching histogramSHel(Q and an improved solver. This is done
with the intention of better reproducing in the muittexture the diversity learned in the input
sample.

As the new texture is synthesized pixel-by-pixethwihe value of each new pixel
determined by its local neighbourhood, a challeggiopic remains the choice of the
neighbourhood system and consequently the textae @rder. Contributions in this direction
are brought by proposing more proficient three-disienal scan typedJys12].

As well, to assure a reasonable computational teatp, the implemented algorithms
involve an efficient searching algorithm combinedhwa multi-resolution implementation
capable of capturing textural patterns at diffeisg@les without increasing the computational
load.

This chapter reassess in a unified methodical feamants of the fixed-neighbourhood
search based non-parametric synthesis algorithmmemented under a common algorithmic
benchmark, intended for the qualitative and quaini evaluation of Chapters 5 and 6.
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3.2 Non-parametric synthesis: Wei and Levoy’s algorithm

This section addresses the 2D/3D synthesis prolbgra non-parametric approach
inspired by the algorithm of Wei and LevoygiOQ. The 3D extension is in fact a multi-2D
adaptation of the algorithm of texture synthesmrfrmultiple sourcesWeiO3 using only a
single 2D image as source of synthesis.

In order to address the 3D problematic, the bpsitciples of the 2D algorithm have
to be assimilated.

3.2.1 Basic principle of the 2D synthesis

The 2D synthesis algorithm proposed Wdi0Q relies on the assumptions of a
Markov Random Field (MRF) (se&ppendixC), modelling the texture as a realization of a
local and stationary random process. As showdegrB.1these assumptions are not suitable
for the general case. This means that each pixethef texture is considered to be
characterized by a small set of neighbouring pixatal this interpretation is the same for all
the pixels within the texture.

Figure 3.1 -Markov Random Field assumptions illustrated ontli@) D57 Brodatz texture: each pixel
is related only to a small set of pixels insideniggsghbourhood (i.e. locality); different regionk o
proper size are always perceived to be similar. Gtationarity). (b) These remarks are not validhe
case of a general image, where the observed regimnsgery different, despite the fact that inside t
image one can find separated textured areas (likentall-stone or the cloth fabric).

The algorithm starts from a sample texture and raage containing a uniformly
distributed additive noise over the frequency demaihe synthesis itself consists in
modifying the output noise to look like the inpaingple. The new texture is generated in a
scan-line order, for each output pixel is beingrdeed a pixel from the input texture that
matches the best. The choice of the best matchsisdbon the neighbourhood of the current
pixel.

More explicitly, the algorithm captures the neightimod of the current pixel and
searches in the input texture the most similar megrhood. When the matching
neighbourhood is found, its corresponding pixelapied at the current position in the output
texture.

The resemblance of two neighbourhoods is baseteg&uclidian distance; that is the
sum of the squared differences of all the pixelthenneighbourhood:

disteeq {N (P), N(a)} = X [N(p) - N(q)]® (3.1)
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where i runs through the neighbourhoods, visiting analggowevery pixelp, from the
neighbourhood\(p) of the pixelp and every pixet; from the neighbourhood of the pixgl
All the above principles are schematically illusdginFig. 3.2

Neighbourhood N
of pixelp

1234"5

6|l 7819 "10

11|12 p

Figure 3.2 -Schematic representation of the 2D non-parametgorthm: starting from the input
image (top-left image), an output image is inizalil with white noise (bottom-left image) and every
output pixel, in scan-line order, is replaced wath input pixel that has the closest neighbourhaod t

the current pixel neighbourhood.

The 2D algorithm carries out the synthesis in andcee order consisted with a semi-
causal (half-square) neighbourhood in order tofosehe synthesis of a current pixel only
already synthesized pixels. This allows the synghestake place in one step. Using a non-
causal neighbourhood involves several re-iteratitmgeach a satisfying solution. More
implementation details are to be found in the o@agipaper of the 2D methodeiOQ, or in
this thesis, in the section dedicated to the 2D¢Ri2nsion.

The implementation of the basic 2D texture synthesstraightforward, following the
steps indicated ifig 3.3

Begin

Create the output image and initialize it with noise

For every output pixel

i Extract the neighbourhood

E Search in the input image the most similar neighbourhood

. Replace the output pixel with the pixel of the matched neighbourhood
End for

End

Figure 3.3 -The basic non-parametric 2D texture synthesis atlyor.
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Figure 3.4 -Example of the basic 2D texture synthesis algorittum Fig. 3.3: for each of the four
cases the synthesis framework consisted in an infage (enclosed in red) of size 2200 pixels
and using a neighbourhood of size 7 to obtain &tan-line order the 20€200pixels textures.

Some cases of textures obtained by using thisnsehare presented for simple
algorithm exemplification inFig. 3.4 reminding that more details about this 2D skedche
implementation can be found in the original pap&ei0q.

3.2.2 The 3D extension

The solid texture synthesis algorithm, like the algorithm, is based on the MRF
hypothesis, meaning that it relies on:
» texture locality- every pixel is predictable from the few pixatsits neighbourhood
* texture stationarity spatial statistics invariance by translation

These assumptions are illustratedrig. 3.2 but a more complete description of MRF
is to be found inChapter 4 Unlike most MRF based algorithms, the followin®/2D
extension of the Wei and Levoy's algorithm is coetely deterministic but no explicit
probability distribution is constructed.

The 2D/3D extension is a multi-2D adaptation af #igorithm of texture synthesis
from multiple sourcesWeiO3 but by using only a single 2D image as sourceyithesis
[Urs1q.

The goal of the volumetric synthesis algorithntdsgenerate a new texture so that
each local region within each orthogonal sectiosimsilar to another region from the input
image. For generating a texture the process takesxample texture patch and a random
noise as inputs. The noise is modified to look tikke given example texture assuring a certain
initiating randomness, but in the same time choserrder to conserve the same grey level
distributions as in the exemplar.

Qutput block i ! .
front input image side input image top input image

Mfront

A
i Mside
:

"top

Figure 3.5 —Principle4of non-parametric synthesis: extractedémeighbourhoods in the output block
(front view, side view and top view), search thst bieree neighbourhoods in the input image, and
combine their corresponding input pixel values tadify the output voxel.
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The synthesis proceeds voxel by voxel by examitiegg2D neighbourhoods of the
current voxel from multiple orthogonal views of tBB block (two or three views are good
enough, depending on the exemplar texture) as shofig. 3.5

An evident problem is that for an output voxelrth@are several possible solution
candidates. Indeed, for each view (front, sideopritiew), a pixel solutiom;, i inside {front,
side, top is obtained by comparing the neighbourhdécdf the current voxel in the view,
with all the neighbourhoods in the input image. Vhkiey, of the input pixep; with the most
similar neighbourhood is retained. All three camadgdyv;, i in {front, side top}, have then to
be combined to get a new valuavhich is finally assigned to the voxel. Severantination
strategies are proposed in the following sectidrhie chapter.

The similarity between the neighbourhoods is meskusing the Euclidian distance.
The same process is repeated for each output woxél all the values are determined.
Neighbourhoods crossing the output image borderdhandled toroidally (sesection 3.2.1
The synthesized texture can be of arbitrary sizktideable.

This type of 2D/3D texture synthesis extensiorsesidifferent enquiries, as it is
constrained by thaeighbourhood systerm in particular its size and shape, by the synghesi
scan typeand by the way ofombining informatiorfrom the orthogonal views. An important
phase in the synthesis process entailsaecelerated searclof the best match for each
orthogonal neighbourhood in the input image. Byluding a multi-resolution scheméo
capture better the texture motives at differeniesgat proves to be a well adaptable and
largely applicable synthesis method.

3.2.3 Multi-resolution implementation

To assure a good texture synthesis, the size eopléinar neighbourhood has to be
adequately chosen so that it should be able toeprestexture structures. So, a texture
containing large scale structures requires a largghbourhood, but unfortunately the
computational cost grows with the neighbourhooé.siz

In order to solve this problem, a multi-resolutiomage pyramid is used to capture the
structures only by a few pixels in lower resolutigyramid levels. The number of pyramid
levels has as much influence as the neighbourhiaed s

There are many ways to generate and use the ipaagenids (Gaussian pyramids
[Pop93, Laplacian pyramidsHur83 [Hee9], steerable pyramidsSjm93 [Hee9], feature-
based pyramid€jeB97 or the simple multi-scale images obtained by ehation). We have
chosen to use Gaussian pyramids. This consistatediein two steps: first applying a low-
pass filtering using convolution with a Gaussidtefikernel; and secondly, the filtering is
followed by a down-sampling with a 2:1 factor.

P AN Go~!
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Figure 3.6 The principle of Gaussian pyramids of exemplamitioe left, a simplified
exemplification; on the right, the steps it corsist- low-pass filtering and under-sampling opérat

Hence, to pass from one level to a superior dmepnulti resolution algorithm filters
and narrows the number of pixels to be used bystherior levels. The multi resolution is
applied evenly to the input texture and to the outpxture.



Synthesis takes place at every level of the oytgtamid based on the pyramid of the
corresponding input pyramid. The synthesis stads fthe highest level, meaning the lowest
resolution and finishes with the bottom of the pyic that is in fact the searched output
texture result. This kind of representation letshehigher resolution level to be constructed
from the already synthesized lower resolution Igvel

5
>

downsampling direction
synthesis direction

T P
Figure 3.7 -Multi-resolution illustration: on the left, four pgmids of a 2D textures, on the right, how
the multi resolution principle looks in 3D.

To pass the information from one treated levelatmext unprocessed one, the
neighbourhood used for generating a pixel contaiesingredients: the neighbourhood of the
pixel from the current level and the neighbourhaédhe corresponding pixel position from
the previous lower resolution pyramid level. Thissares that the added high frequency
details will be consistent with the already synibed low frequency structures. An example
of the multi resolution neighbourhood is given jbstow:

P11

L1l

Level L+1

Level L 4

Figure 3.8- Example of multi-resolution non-causal neighbaarth a neighbourhood at level L
consists of &x7 neighbourhood from level L and3x3 neighbourhood from level L+1.

To illustrate how multi resolution neighbourhoodteigrates in the synthesis
neighbourhood search process, we address the Badpase irFig. 3.8representing the last
two pyramidal levels, meaning that levetl is the top level. Once the top levetl is
synthesized using only its current level neighboods the synthesis starts on lelelTo
synthesize a pixel from levél having the coordinates,(y}, the synthesis considers that the
multi-resolution neighbourhood of the current pigehtains its current level neighbourhood
plus the neighbourhood of its corresponding p{x&2, y/2J** at the previous level.



3.2.4 Edge handling

Pixels on the outer edge of the texture need aiap&eatment, because thi
neighbourhood exceeds the borders of texture. There are two solutions: to discard
edges crossing the boundaries and perform the essistionly inside the output texture, ot
process properly the edges.

......

Z W Z W
Figure 3.9 -Example of 2D edge handling: a toroi image is obtained by consecutively copy
regions from the black bordered 2D exem.

Handling the edges leads us in two directions:augartial, incomplete neighbourho
that is available in the vicinity of the edgesrre likely, to treat thedges toroidally so the
the neighbourhoods reach the opposite side of @kture delivering a seamlessly tilea
output texture as exemplified in a whileFig. 3.11

The solution adopted here for synthesis is to dmnsihe textures periodically. s
involves workirg with a relative bigger ima than the one targeted at first and in the
carving out the desired output block. This is amedi by copying certain regions from 1
preliminary texture in order to obtain a continugapresentation. Tl neighbourhood use
for synthesizing the upper edge pixels has to comiaels from the bottom of the texture; t
neighbourhood of left edge pixels has to conright edge pixels and so o

Figure 3.10 The principle of 3D edge handling: as in, the same principle is applied for a :
toroidal block obtained by wrapping it by all sidegh regions each othd¢akenfrom the opposite
side of the desired output block.




These operations are illustrated Fig. 3.9 and Fig. 3.1Q showing how a tordal
texture is obtained in 2D and in 3D, assuring 3ttane that a pixel at positia(x,y, z)is the
same with the pixel at positic(x mod width, y mod height, z mod de| In 3D, the same
copying principle as in 2D is used, with the rensatkat the egions are now thr-
dimensional covering up the output blo

iR N

Figure 3.11 -Examples of synthetic tileable textures in 2D an@D; on the left the toroidal textu
obtained by synthesis and on the right the corradpu tileability of the structuss in the left.

Easier to understand the edge handling principlbyidooking at the examples
tileable textures use iRig. 3.11. Interesting configurations can be obtained bygigileable
2D or 3D textures, and mainly in computer graphilbey are very useful in term
computational cost and efficiency when one canlmgize only a small texture and tt
build bigger textures only by assembling the snnalfees

3.2.5 Computational cost andacceleration

The algorithm based on the neighbourhood searcphrafty slow, performing a
exhaustive search when comparing the neighbourttdodn output pixel going throuc
synthesis with all the possible neighbourhood$ieibput image. To overconthis problem,
acceleration is possible. The neighbourhoods arsidered to lay in a multidimensior
space. Neighbourhood matching can then be seamasarest neighbour search probler
this multidimensional space. This speeding up isebdaon the udy made by Pop93,
characterizing the neighbourhoods from a textuté wiclustering probability mod

The point is to rexrrange the input neighbourhoods in a hierarchieal that eases tf
nearest neighbour search. The-arrangement is done by th€&ree Structure Vectc
Quantization (TSVQ) technique. The nearest neighlsaarch uses the binary search
provided by TSVQ.
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3.2.5.1 Tree Structure Vector Quantization

The set of neighbourhoods are considered as a kg of points that are divided,
finally retrieving the data represented as a birtegg. This repartition diagram is based on
combining two techniques +ree-structured vector quantizatioiTSVQ) and K-means
clustering for efficient nearest point searchingyd's algorithm or Voronoi relaxation).

Loyd’s algorithm is a particulak-means algorithm witlk being 2. It is a clustering
method that aims at partitioning a set of obseovatiinto 2 clusters with minimum inner
inertia. The observations are seen as points m@mensional space, whenerepresents the
number of pixels in the neighbourhood. Loyd’s aiton is computed as follows:

* Initialize the two centroids responsible with tretgioning;

» Divide the space into two clusters: the first clnstontains the points that are the closest
to the first centroid, and the second one the poihat are the closest to the second
centroid (based on Euclidian distance);

* Replace the initial centroids with the centroid$hef two resulting groups;

* Re-divide the space repartition in accordance thighnew centroids;

* Repeat until the two groups are stabilized.

TSVQ principle is to divide the input texture nagpurhoods into hierarchical classes
that are as homogeneous and compact as possibgiiah the neighbourhoods are very
similar. This way we can find a value for the outpixel more rapidly by making our way
through hierarchical classes towards a final inpxeél having a neighbourhood similar to the
output pixel one. The recursive TSVQ implementationsists in the following steps:

» Transform the input texture into the required fomreaning a vector containing several
n-dimensional points corresponding to the neighboodhof each input pixel;

 Compute the global centroid (the average value Ibfagailable points in then-
dimensional space). Use it as the root node oharpitree;

 Initialize the root node of the binary tree; théonmation contained in the node is the
value of the global centroid;

e Call Loyd’'s algorithm using as initial centroidsettglobal centroid and a perturbed
centroid (the perturbation should be small compaoeithe global inertia). This allows to
divide the space in two homogeneous clusters;

* Initialize the left child and respectively rightilchof the binary tree using the two former
clusters;

* Re-apply the TSVQ algorithm on each of the twodthibdes.

Loyd’s algorithm is called as long as there is entiran one point in the input data
vector and as long as the standard deviation escaezkrtain threshold. The quality of the
texture increases with the lowering value of theeshold which is also an-dimensional
point. A value of (0, O ... 0) of the threshold mgdhat a homogenous repartition of pixels in
the group is envisaged. The root of the tree cpomrds to the global centroid of ait
dimensional points in the image, and the rest efrtbdes are centroids of groups of points
resulted from Lloyd partition. Besides that, eaodacontains the average of the pixels in the
corresponding group. A numeric exemplification bafound inAppendix A




3.2.5.2 Nearest-neighbour search using the binary tree

The main operation involved by the proposed namupatric synthesis algorithm
consists in searching for the most similar inpughleourhood for every in progress output
pixel. By rearranging all the input neighbourhodaat® a TSVQ representation, the required
search phase is done faster, reducing the comypleaitn N to alog,N order as represented in
Fig 3.12

l tree

o Ny

Full search - N N .

TSVQ -log N
Figure 3.12 Jree Structured Vector Quantization (TSVQ): usheyhinary tree structure for
efficient ‘nearest point’ queries reduces the ticnenplexity N to a logarithmic order Ig.

During the search inside the binary tree, one stp at any moment, but the
information in a non-terminal node contains oninteeid information, and not exact values
from the original image.

Despite the significant acceleration, the disatlvg®m of the TSVQ is that it is sub-
optimal, the path followed in the tree susceptdfl®acking away from the best solution. This
is because at each level in the tree, a set obked ignored, set that contains perhaps the
best matching neighbourhood.

The compromise made for producing faster the texitunot at all damaging, because
the output textures obtained with the TSVQ and whthfull search are very similar.

3.2.5.3 A concomitant acceleration option

Additionally to the above tricks, the acceleratioan be made by reducing the
dimensionality of the data, using a projection efghbourhood information in a different
space. This is achieved by usipdnciple component analys{®CA) [Jol8§. This speeding
up is done by applying a PCA projection to the hbamurhood vectors from the exemplar.

PCA acts by finding the eigenvalues and the eigetors of the covariance matrix of
all the n-dimensional points (pixels neighbourhqodsile the eigenvectors of the largest
eigenvalues correspond to a subspace containingnéie variations of the neighbourhoods
distribution. The compression is obtained by kegponly the number of coefficients
sufficient to preserve a certain ratio of the vacia For 90% of the variance, a 7x7 full square
neighbourhood, meaning a vector of 49 pixels, reduced in the subspace to about only 10-
15 dimensions, depending on the size and the rgshaokthe exemplar, and in the same time
by the correlation degree of the neighbourhoods.

However, this solution was not adopted here, bexdoe time gained in the research
phase is counterbalanced by the time requireddating the projections.
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3.2.6 Accelerated multi-resolution 2D/3D algorithm

The improvements brought by the multi-resolutigppr@ach and the TSVQ based
acceleration are integrated into the multi-2D esiten of the basic 2D algorithm (previously
illustrated inFig. 3.3. This leads to an iterative synthesis algorithinat follows the steps
presented ifrig. 3.13

Begin
Random initialization of the output block
Create the multi-scale representations of the exemplar and the output block
Generate the TSVQ related to the neighbourhoods of each scale of the exemplar
Starting from the highest resolution, in scale order
For every voxel in the block
i Extract three square neighbourhoods (from the front view, side view
i and top view associated to the current voxel position)
i Search the three closest neighbourhoods in the TSVQ for each of the
three found current voxel neighbourhoods
Update the value of the current voxel
End for

End

Figure 3.13 -Schema of the 2D/3D synthesis algorithm enhanctidtiaé multi-resolution approach
and the TSVQ acceleration.

Analyzing the above schema, the problematic ctsmsisinly in the way of combining
the several solutions according to each orthogered taken into consideration. In this
direction, the following sections treat the waycofnbining the available solutions in order to
obtain a better quality of the synthesis results.

3.2.6.1 Iterative search for the best solution

The first solution, proposed by\ei03, consists in minimizing the energy function
that measures the similitude between the volumeééxture and the input exemplar. This
means that for each output voxelwe have to find an input pixel so that the right term of
the error function equation is minimized:

Ew{p})=3 (v- p | +[Nw) - N(p)I?) (32)

where i runs through the input exemplar, amd() is the 2D square neighbourhood
corresponding to the input matching pixel or thdpat voxel. The energy of a voxel
neighbourhood is the Euclidian distance to theedbseighbourhood in the input exemplar.

The neighbourhood of the output voxel is treatedhsiee separate entities, three 2D
orthogonal voxel neighbourhoods.
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Figure 3.14- The 3D neighbourhood seen as three separatedetihipourhoods and the three
closest neighbourhoods from the input image foon@dch view.

Algorithmically, the direct minimization proceducé eq. 3.2is done iteratively, by
first choosing the input pixgh so that the Euclidian distance between the neigtifomds
IN(v)=N(p)|* is minimal. Three input values are found consetjfieneach of the three

orthogonal views taken into consideration (the fraew pront, the side viewpsigeand the top
view pp). The output voxeV is updated with the average of the three foundesal

V= ( pfront + pside + ptop )/3 (33)

Reiteration continues with the current values laechuse a valueof the output voxel
was computed, the novel term to be minimized imgdb bédv - p,|* +||N(v) - N(p)|*- The

iterative process stops when the energy remainsdhee after two consecutive iterations,
denoting that the same neighbourhoods are reaclited @®vo consecutive iterations.
Experiments showed that this inner process takestdbur iterations until it stabilizes itself.

The above iterative method over-increases the atetipn and in addition, the
average combination used @g. 3.3is not the best way out for the resulting textgrey
levels and indirectly fails to conserve the glosalcture of the textureUrsll. Simple
averaging leads to a loss of dynamics between tigenal and the synthesized texture. The
winning strategy is to minimize properly the enefggction. This involves an optimization
procedure that replaces the average with a bettebimation Kwa0g [Kop07 and, in the
same time, adding a colour histogram matching nrashra[Hee93 [Kop07 [Chel( in the
texture optimization procedure as explained infthlewing sections.
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3.3 Robust texture optimization

A direct thought for upgrading the scheme consistgiving weights to each of the
three found voxels and to mix them properly, tabke to update the output voxel in only one
move, dropping so the early recurrent processollbws the idea of minimizing the global
texture energy, but now using a robust energy fan¢gkop07.

This is done by replacing the squared tef(v) - N(p,)|* with|N(v) - N(p))[",
where the value af is carefully chosen so thak 2. A value 0f0.8 as indicated bywa0§
for the exponent allows the optimization to be more robust againdliers. Iteratively
reweighted least squares (IRLS}dI8( is used to minimize the energy function by an

iterative method in which a weighed least squareblpm is solved at each step. To be able
to apply IRLS, the energy function term is rewntts following:

IN(v) = N(p)|" =[IN(v) = N(p)|"* dIN(v) - N(p)|* =wIN(v) - N(p)|] (34)

/| side
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w front

Figure 3.15- The solutions found for each orthogonal neiglhoad for a current voxel, and each
one’s corresponding weight used in the equations.

Minimizing the quadratic energy function by dengiit with respect tdN(v) gives the
following robust optimization solution for the outproxel [Kop07:

_ Wfront [ pfront + Wside[ pside + Vvtop [ ptop

w + Wside + \Ntop

\Y

(35)

front

As illustrated byFig. 3.15 the output voxel is interpreted as being the hied
average of the solutions found from the neighboodsoof the orthogonal views, each
solution having in the result its proper influerinethe form of a weight that far= 0.8 is
computed as:




Wi = {min@ist[N(p), NWD}* (36)

In the synthesis progression this optimizatioreisieved as a two step process:

» the search phase extract the neighbourhood of the current voxel gach orthogonal
view taken into consideration; for each view, skate matching pixel in the exemplar
texture and compute the weight of each solutiora adistance function between the
current voxel neighbourhood and the neighbourhddbeomatching input pixel

» the optimization phaséaving the orthogonal views solutions and itsghis, it remains
to calculate the weighted average in order to altae update value for the output voxel
according teeqg. 3.5

3.4 Histogram matching

Using no more than the optimization procedures@méed in the previous section,
texture synthesis can lead to strong locally depehtesults because the synthesis relies only
on local neighbourhoods when handling the energgtfan.

To ease the synthesis dependence on local degjisior-weighted scheme is required
with the purpose of preserving texture global stas. This is done by incorporating in the
synthesis process a global histogram matching tqealn

3.4.1 Grey level histograms

The grey-level histogram matchind<op07 works by adjusting the weight of each
voxel engaged in the weighted average that coulpkdifferences between the grey-level
histogram of the 3D result and the grey-level lgstin of the 2D exemplar. Mathematically,
this is expressed as following:

. w

e 1+ maXp, Hslice(v) - Hinput( p)] (37)

The re-weighting scheme can be seen as a comattmwocedure by avoiding bad
pixels contribution to the synthesized value: i thistogram valuéiy;..(v) in the current
slice of a certain grey-leveb is very far from the histogram valud;,,.(p) of the
corresponding grey-level in the exemplar, the weight of the voxel is redlae order to
decrease the difference between the two histogrdnige difference between the histograms
is very small, the weights remain roughly the sarties weighted average influence is of no
consequence leaving the synthesis as before.

Histogram adjusting is done automatically, butonder to be up to-date with the
growing output texture, histogram must be updatetieasame time with the voxel revising,
assuring the convergence of the synthesis algorithm

The quality of the results delivered with thishemue exceeds that of many other
methods. Despite this, computing the results bygushe weighted average may produce
blurry results if the variance of the exemplar exs too large Kop07 and like most of the
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non-parametric methods, the results are affecteck rap less by blurring, missing textural
patterns or mismatched input/output histograms.

T T N .

Figure 3.16 -The influence of the histogram adjustment mecharfiem left to right, an input image
of sedimentary rock with the corresponding greeldistogram, a synthetic block obtained by using
the iterative search for the best solution withctsresponding histogram, and on the right a block
obtained by using the synthesis enhanced withdraito matching showing a grey levels distribution

similar to the one of input texture.

3.4.2 Index histogram and position histogram

To improve the just above mentioned drawbacksewa modus operandior texture
optimization approaches is proposed allowing a hjghlity texture synthesiChelQ. It
consists in using two new kinds of histogramsosition histogranandindex histogramand
in updating the output voxel using ttiscrete solveas Han04g.

This approach requires a prior synthesis part,nafboe every pixel in the exemplar a
number ofk best matches are retrieved in the exemplar, wigaired from the natural texture
synthesis algorithmAsh0]. The discrimination is made by using the neighthood search
based on the Euclidian distance. The outcome & afandidates, lkcoherence similarity-
cluster for each input pixel. Once these items dpa@ianstructed, the synthesis process can
start.

Figure 3.17 -Example of a set of seven candidates; in a pre-fasiog step, for every input pixel the
candidates set is built, the closest k neighboudsdn term of grey-level L2 norm; each pixel is
considered to belong to his own set.

Unlike the causal k-coherence search in the corgésynthesizing a texture using
pixels already processed for synthegistj0] [Ton03, a simplified version is used with the
purpose of having a larger number of possible catds for a voxel being synthesized. So to
assure a large diversity, means to use a sufficiarde number of candidates. The



inconvenience is that with the growth kf the computation cost increases as well. An
example of a set of seven possible candidatesisrsinFig. 3.17

However, once the set of candidates is buildsimthesis proceeds as in the previous
section. The solid texture is supposed to be amhil the exemplar on arbitrary slices through
the volume, so for a voxel inside the volume, tlge@thm provides a solution for each slice,
for each orthogonal view. When a solution is fountstead of taking it directly in the
weighted average, it is confronted with its setafididates and implicitly with the number of
times it was chosen during synthesis. Here intesgaheindex histogram. Index histogram
counts the frequency of the voxels candidatesenvtilume texture. During the search phase,
the choice of pixels is modulated according tortivedex histogram frequency. The influence
of an index histogram bin is reflected as a weigltor that will assure that only the best
candidate from a set is used further on.

More specifically, when searching the matchingisoh of the current voxet in the
TSVQ tree of the input, a pix@l from the exemplar is retrieved. In the pre-proresphase
the pixel p has established a set kfcandidates. The best solution, in term of uniform
distribution, to be used further on, is taken agotf the set of candidates being the one that
has the most similar neighbourhood to the neighttmaat of current voxeV in term of the
weighted Euclidian distance:

dISt = \Nindex,i [diSteucIid (N ( pi )1 N (V)) (38)

index
Vvindex,i = 1+ maX[O! H index( pi ) - ¢] ’ I = O .. k (39)

whereg is the histogram value when all the indices congyetquiprobably distribute in the
exemplar. Having all the candidates uniformly dlmtred means having a well preserved
texture. Once a candidate was chosen, its bircreased with one in the index histogram.

Figure 3.18 Two examples of index and position histogram adjast usage: each of the two lines
contains, from left to right, first the input imagad the output block, and next the position histog
map, the index histogram map and the input imafgeegfd by the position histogram usage. The
areas in red represent the input image pixels #ratnot retrieved in the output block (the pixélatt
are never used in the synthesis process).
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In the optimization phase, instead of colour lgsamn adjustment, theosition
histogram is used to constrain the weights computed k(7. The position histogram
records the number of occurrences in the solidutexof the corresponding pixel in the 2D
exemplar. When a solution for each orthogonal sgr&ation is found, for each one a weight
is computed and then adjusted by using the podiigtogram:

w
Woosition —
position 1+ maxp, H position(v) a H]

(310

where # is the histogram value when all the pixels from themplar completely evenly
appear in the result. The weights are adjustectt@dpistogram as uniform as possible. Once
the position histogram matching is achieved, tHewrchistogram matching is also achieved.

Until this point, for a voxel, the solutions corresponding to each slice, Bliefrom
the set of candidate9rbn:, Psice aNd Prog) and their corresponding position histogram
corrected weightSWosition_froni Wposition_side@Nd Wposition_top @re known. Next, a prospective
update valug’ is computed as a weighted average:

V* o Wposition_ front [ Piont + WPOSition_Side [ Psice * Wposition_top : ptop (31])

W +WwW +WwW

position_ front position_side position_top
The value used for updating the current voxé$ chosen according to tltkscrete
solver, by selecting the pixel the most similar to thegprective value:

V= min(|p o = V|| Pade = V|| Pp = V') (312)

When the update value is found, its bin is inceeasith one in the position histogram.
The blurring problem is avoided, since for eachelpthe grey level value comes directly
from the input exemplar. More results and commangsto be found in the chapter dedicated
to the experimental results.




3.4.3 Optimized texture synthesis algorithm

The global schema of the texture synthesis integyahe index histogram and the
position histogram alongside the discrete solvieedahe following description:

Begin
Random initialization of the output block
Create the multi-scale representations of the exemplar and the output block
Generate de TSVQ related to the neighbourhoods of each scale of the exemplar
Built the set of candidates for each pixel of each scale of the exemplar
Starting from the highest resolution, in scale order
For every voxel in the block (according to a scan type)
Extract three square neighbourhoods (from the front view, side view
and top view associated to the current voxel position)
Search the three closest neighbourhoods in the TSVQ for each of the
three found current voxel neighbourhoods

Choose the best candidate (—index histogram)

i Adjust the weight (-—position histogram)
End for

i For each found neighbourhood (central pixel)
: Update the value of the current voxel (- discrete solver)

End

Figure 3.19 -Schema of the 2D/3D synthesis algorithm integrati¢d the set of candidates, the two
new kinds of histogram (index and position) anddiserete solver.

3.5 Neighbourhood systems and scan type

Whatever the synthesis method, a problematic issuethe choice of the
neighbourhood system. The size and the shape ohelghbourhoods are very important
because the set of local neighbourhoods is usdbeaprimary model for textures, directly
influencing the quality of the synthesized results.

The size of the neighbourhood is a factor thatcifps how stochastic the user
perceives this textureefr99]: if the texture is presumed to be mainly regitahigh spatial
frequencies and mainly stochastic at low spatidjdencies, the neighbourhood size should
be on the scale of the biggest regular texturepatbtherwise the structure may be lost.

The choice of a causal neighbourhood makes ththeasis of a pixel totally dependent
on previous pixels and leads in the case of refiahaellar/structured textures to a higher
degree of regularity of the synthesized resultdslZ. The choice of a non-causal
neighbourhood can partly overcome this determini&ndirect corollary is the choice of an
adequate scan type.



adapted to the lexicographical path; on the rigime example of square non-causal neighbourhood

used with a random walk. The straight yellow arsdndicate the output pixels visiting order during

synthesis and the curved black arrows indicatensighbourhood search in the input image and the
choice of the best candidate used to update thel Wwoxhe output texture.

Replacing the lexicographical scan type with a gletely random walk allows the
synthesis of a pixel by freeing itself from its pasnd so multiplying the possible
configurations. However, the convergence time aole prohibitive in this case.

Contribution in this direction consists in recdmg the deterministic part and the
randomness character by proposing an alternatie gpe, namely the use of space filling
curves Bag94 [Che04 extended to three dimensions, like the Mortonec(alk.a. Z-curve or
Lebesgue curve) and the fractal curves (e.g. Hillawe).

More information about the space filling curvesase found irAppendix B

Figure 3.21lllustration of different scanning types fox442D images andxx4 3D blocks, in 2D
(the top column) and their corresponding extensior@D (the bottom column): from left to right, a —
lexicographic path, b - random walk, ¢ - Z-curvala@h- Hilbert curve.



3.6 Implemented algorithms

The above considerations show the multitude ofipoies, still letting space for other
reflections. There are different factors to be tak@o consideration when dealing with this
type of approaches. So, a general benchmark Hhae defined in order to set the limits of all
the implementations, based on the illustrated &lgoic facts.

3.6.1 Usage and common implementation details

Before passing to the evaluation, the algorithmsigieation has to be specified. It
consists in stipulating the algorithms usage amrdkidy factors specific for every employed
algorithm.

The first developed algorithm follows the formabrr Fig. 3.13 To be exact it
corresponds to the non-parametric 2D/3D synthdgisrithm of Wei and Levoy \ei03
treated as a multi-resolution implementation ancekrating the neighbourhood search by
clustering the input pixels neighbourhoods in a T%rm. The main specificity of this
approach is that the value of an output voxel &ioled by combining the three solutions
from each orthogonal view as ieqg. 3.3 that is the average operation of the available
solutions and repeating the same procedure uradhiag a stable result. This approach is
going to represent the reference method which iisggm be subsequently enhanced. This is
going to be nameNP_WL

The second algorithm employed, uses the backbonéhefNP_WL method, but
modifications emerge in the way of combining théugsons from the orthogonal views. A
robust optimization solution for the output voxglamployed, where each pixel participating
in the weighted average ef]. 3.5is chosen in order to assure a global grey-lev&bgram
matching between the exemplar and the targetedibbtpck. Because it is a mixture of the
earlierNP_WLalgorithm and the optimization proposed by KopalefKop07, the notation
conferred to this non-parametric versioiNiB_K

The third handled tagNP_CW corresponds to the sanP_WL multi-resolution,
TSVQ accelerated backbone algorithm, enhancedtwidhew kinds of matching histograms
(index and position histograms) assection 3.4.4n order to obtain a higher quality of the
synthesis results as intended by Chen and W&twel(Q. These particular histogram
adjustments manage to assure on the output the gr@ydevels as the exemplar, and seek to
control the uniform distribution of the input pisein the synthesis result. This closing non-
parametric algorithm respects the synthesis stagpgested irFig. 3.19

The common influential factors for all versions #ne size of the input exemplar, the
size of the output block, the size and the shapdefpixels neighbourhood, the number of
scales and the pixels visiting order, while [P_CWthe size of the set of candidates is also
taken into consideration.
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3.7 Conclusion

This chapter aimed at providing a comprehensive logepent of the fixed-
neighbourhood non-parametric implemented algorith@entributory work was lead in
creating a common algorithmic benchmark easingeiperimental study pursued ¢hapters
5 and®6.

It points out the specificities and drawbacks afheaf the above versions proposing
solutions to improve the 2D/3D extension of thauex synthesis algorithm.

It starts with introducing the synthesis concepisthe 2D environment and then
showing possible 3D extensions. Multi-scale andekecation tricks are proposed together
with our original diagram for visiting the pixelsigng synthesis.

The main issue, the way of combining the availaistbogonal solutions, is sorted out
by implementing mainly three strategies (averageigited average, discrete solver) to
improve the quality of the results. Following tlpkan, notations are given to the developed
algorithms - NP_WL, NP_K and NP_CW

An inventory of the implemented algorithms whicle ajoing through our study are
listed in the table below, showing next to eachardrthe way of combining the information
from the orthogonal views in order to obtain thelage value for the output voxel.

Synthesis method Strategy for output voxel

NP_WI- V= ( pfront + pside + ptop )/3

- Wfrom [ pfront + Wside[ pside + Vvtop [ ptop

Wfront + Wside + \Ntop

NP_K v

V= mln(‘ pfront -V pside -V ptop -V ‘)

NP_CW
- * Wposition7 front [ pfront + Wpositionfside [ pside + Wpositionftop [ ptop

W +w +w

Vv

position_ front position_ side position_top

Table 3.1 -Listing the neighbourhood-search based methodgtamdvay of combining the
information from the orthogonal views to get thépo value.

However, the possibilities don’'t close down heremerous intersections between the
approaches remaining feasible (i.e. tN®_ WL algorithm integrated with a grey-level
histogram matching and a discrete solverN& CWwithout the discrete solver dP_K
with an input set of candidates etc.).
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Chapter 4

2D/3D extension based on the likelihood of
neighbourhoods
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4.1 Introduction

This chapter deals with a new type of approachngl@xplicitly what the methods
from Chapter 3tried to accomplish indirectly. More precisely,etlprevious methods
(NP_WL, NP_K and NP_CW) copy pixels from the inpaemplar directly/indirectly in the
output block, trying to reach a structural simiariThey are based on strict neighbourhood
search and intensity histogram matching; additignag¢xtra matching histograms are
proposed in order to distribute uniformly the inpikels in the target texture.

The next method sticks to the idea of having thpuflfoutput configurations
identically distributed, the statistical decisidmeing based on the conditioned neighbourhood
concept. It is based on a more advanced non-patanMarkov Random Field synthesis
principle (NP-MRF) than the previously developedtimes. To reach a high likelihood
quality, the synthesis should be able to distribtite input pixels and neighbourhood
configurations in the output texture while presegvihe characteristics of the input texture.

A technique that enables 2D synthesis of textuigsally indistinguishable from their
models, is the multi-scale NP-MRF texture modellmgthod proposed inPpg9§. This
method mathematically captures the visual charatites of a texture into a unique statistical
model of that textureHes86 that describes the interactions between pixelieslHaiol].
Such an assertion has been proved by using thielnmodsynthesize the texture and by
judging the similarity between the synthetic tegtand the input texture. At each position in
the output texture, the algorithm provides the npyebable grey level to be in that position
considering the grey levels in neighbouring posgio

The following sections deal first with some indiggable MRF theory and
terminology used to describe the non-parametridh®gis process, and continue with the
relevant three-dimensional operating method extendhe 2D approach method used by
[Pag9g. The synthesis uses a multi-scale relaxation rélgo, integrating the concept of
pixel temperature that serves as degree of cordaleglative to a pixel value.

4.2 Non-parametric Markov Random Field model

Markov Random Fields (MRFs) have been studied nsxtely for solving image
analysis problems at all levels. Their foundatiblase been well established from the 80’s
mentioning the remarkable works dBds74 [Bes86 [Gem84 [CIli90] [Gem9] [LiSO0].
Some of the most important applications includegenaestoration and segmentation, edge
detection, texture analysis and also texture sgigh@all these are possible thanks to the MRF
ability to model the local dependencies of image|si.

4.2.1 General Markov Random Field model: concept and thery

The MRF principle can be seen as a sites-anddatmgiceptl[iS0], meaning that the
solution to a problem is a set of labels assigied $et of sites. A label is an event that may
happen to a site and the labelling operation astgn a label to each of the sites.

Translating this into MRF image modelling, onerieates the concept that an image

with discrete grey levels, of sizexh corresponds to a IatticS={Sl,SZ,...,wah} (i.e. set of

sites), so that each pixel in the image is a sib@ the related lattice and its grey level is a
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value x; (i.e. label) contained in the finite state space {0, 1, 2,..., L-}, wherelL is the
number of grey levels in the image.

The labelling, also called a configuration in tmandom fields terminology,
corresponds in fact to the image itself, being seea mapping function from S A0

f:S- A, f(s)=x 4.1

To develop the MRF theory, the spatial dependsnbetween sites (image pixels)
have to be defined. This is done by choosing thghbeurhood system. The neighbourhood

system is the set of all neighbourhodtds={NS 0S,s=(,]) DS} where N, represents the
neighbourhood of; for example, the neighbouring sites can be ddfiae those sites,
rON,0S:

N, ={r = (x y)0S:0<(x=i)? +(y~- j)? < ord} (4.2)

where ord is the order of the neighbourhood. Some examplésditierent order
neighbourhood systems as used @ein84 [Pag9g are presented ifrig. 4.1 The eight
order neighbourhood is the five full-square nonszumeighbourhood used ¢hapter 3

Figure 4.1- Examples of different order neighbourhood systérom left to right, the first (ord=1),
second order and the eight order neighbourhoods. rEld dots are the site s=(i,j) while the blue dots

are the neighbouring sites r=(x,Jjy N, [J S.

The neighbourhood system has mainly two properties:
- a site is not neighbouring itseliSLIN,Is1S

- the neighbouring relation is symmetrica$l]N, < r LJN,

Having introduced the notations, the main propeiftya MRF can straight away be
stated: the random variablX describing the intensity value at any site s ofatéice

S={s=(,):0<i<w, 0<j < h} can take any value, from 4, but the probability that
X, =X, depends only on the valugs at sites r neighbouring s.

The locality and the stationarity properties ofeature, as they were presented in
Chapter 3 - Fig. 3.1 are nothing but direct consequences of rterkovianity condition,
assumption stating that a pixel value is condittbeatirely only by its neighbouring pixels
[Bes74 [Gem84:

LCPDF(s) =P(X, =x|X, =x.,r #5) =P(x|x.,r ON,) sOS,x, OA, 43
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This conditional probability is termed &xcal conditional probability density function
(LCPDF). MRFs can be specified in terms of theinditonal probabilitiesP()g|X,,r [IN,)

and, inversely, MRFs can be of help in deducingjdiv@ probability distributionI from the
associated local conditional probabilities. Thenjadistribution defines the probability for a
particular labelling realisation. A valid joint difbution is in fact uniquely defined by its
LCPDF, by applying the “Hammersley-Clifford theoremiCIli90] or “Markov-Gibbs
equivalence theorem”’Gem84 establishing the equivalence between the localpgnty
(markovianity) and the global property (Gibbs disition of a Gibbs Random Field). More
details about this are to be foundAppendix C

Consequently the LCPDF is capable to capture il characteristics of an image,
so that it is able to uniquely describe that image.

4.2.2 Local Conditional Probability Density Function

The non-parametric MRF model is based on estimatiegLCPDF from a multi-
dimensional histogram of the neighbourhood oveomdgeneous — i.e. stationary — textured
image Pag9§. Each dimension of the histogram representseafsam the neighbourhood
system considered in LCPDF definition, the statédtorder of the model being equal to the
number of dimensions. A complete description of hbe multi-dimensional histogram is
computed from a homogenous texture disposing afighbourhood system is found in the
original article Pag9§.

F(g0.84)

F(g0.84)

Figure 4.2 -Multidimensional histogram and Parzen-window estongSil86]: (a) a one
neighbourhood system and its 2-dimensional histogi@®) illustration of how a histogram data point
is spread into the shape of a Gaussian surface.

Yet, to illustrate the procedure, a simple casa @fdimensional histogram obtained
for a one neighbourhood systédn:{NS :{S—]}} is presented ifrig. 4.2a The frequency

F(go,01) counts the number of occurrences of the set of lgneats {go, ai}in the imagey. The
labelgo represents the value of pixg] while labelg; is the value of the neighbouring pixel

1. To build the histogram, the value f) is incremented for each sidyy scan-line visiting
the imageY. In the above minimal case, the frequency is redunathematically to compute

F(9,,0,) = Z (Y, — 9,) O(y., — 9,), whered is the Kronecker delta function.
$1S

The LCPDF is obtained by performing density estiomaon the multi-dimensional
histogram. A common non-parametric estimator, sfpaeads each sample data into a smooth
multidimensional histogram over a larger area, hie Parzen-window density estimator
[Sil8§. Its principle is to associate each point in lgtogram with, for example, a standard
multi-dimensional Gaussian density as describeBigy.2h




Let z, =Col[y,,y,,q0N_] be a column vector of siz& containing the pixel value
y, and all the values within neighbourhoo®l , in the input sample Y while

z=Colx,,x,rON,] refers to a given configuration in tlitput texture Xon which the

Parzen-window estimator is to be applied. As derrated by Pag9g, the nonparametric
MRF model gets to be uniquely defined by the noapeatric estimation of the LCPDF:

(44)

LCPDF(s) = P(x|x,r ON,) = Z(? : Cgi([)ﬁ)ﬁ),(rr rDé\ld)D

wheref corresponds to the Parzen-window density estinfagegiency:

> K{%(z— zp)} (45)

1S, N,08,

n is the number of possible neighbourhodds in Y, i.e. the number of sitep U S, for
which N, U S, .

The shape of the smoothing is defined by the kefmettion K, chosen to be the
standard multi-dimensional Gaussian density fumctio

K(2) = expe z' [3) (4.6)

(2 ﬂ)d/z

where (.)" indicates the matrix transpose.

Finally, the size oK is modified by the window paramethrin equation 4.5. The
value ofh has to be properly chosen in order to obtain algstimation. Ih is too small, the
smoothing character of the Parzen-Window is toollsmat general enough to represent
texture details, so the results will be noisyhlis too large, the estimator is over-smoothed
and the results are out-of-focus or blurred. Sitveen [Sil86 provides an optimal value for the
window parameter assuring that the estimationasecto the true density function:

4 Y(d+4)
Nopt =0 ———< 4.7)
n(2d +1)

whereo?is the marginal variance of the sample texture.

Exploiting the LCPDF estimator iag.4.4 one can say that a valug of a pixel at
sites depends only on the valuesat sites neighbouring Mathematically speaking:

3 ;{th(z -2,) (zxs—zpﬂ

ISy, NS,

1 o
Y Y e n(n-7) (2]

ADOA @S N Os,

(4.8)

|3(xs|x,,r ON,) =



4.2.3 Texture synthesis via relaxation

Texture synthesis happens by benefiting of the N®FMexture model via the LCPDF
estimation.

The synthesis of a texture from a MRF model is Baspon a stochastic or a
deterministic relaxation algorithnGem84 guided by the LCPDF.

More often used and fairly more known are the sasth relaxation algorithms like the
Metropolis algorithm Met53 and the Gibbs sampleGgm84 (these algorithms are presented
in the Appendix D. The principle behind this relaxation is that #athesis starts with an
image and iteratively updates pixels in the imagth wespect to the LCPDF, obtaining a

sequence of image[s<(0),x(1),...,x(n)} in order to reach the joint distribution &n), so that
lim P (x(n)x(0)) = M (x(n)) [Pag9q.

[Bes86 introduced a deterministic relaxation algorithealled the Iterated Conditional
Modes, suggesting that it returns the mode of t6@DF. The ICM algorithm is presented in
Fig. 4.3 The ICM algorithm generates a sequence of imagesder to find an equilibrium
state at a local maximum, usually somewhere clogbd initial image. The synthetic image
will suffer from no changes after reaching the &guum at a local maximum of1 when all
the pixels are affected with the mode of their esponding LCPDFs.

— set up a random visiting order of the sites {a, € 5,k =12....}
so thats e S, 4, = s infinitely often
— choose randomly x(0)

—for k =1to xdo

— get /’L‘i =argmax P(4, ‘xr (k=D,reN,)

Ag €A

— image x(k)is obtained from the previous image x(k —1) such that
#

90 :{ " roa

X, (k— 1) otherwise

Figure 4.3 -The steps of the Iterated Conditional Modes aldponit

In practice, as explained in the two next paragsapéxture synthesis is performed
using a multi-scale synthesis algorithm which ipavates a pixel temperature function used
for the first time in Pag9g.

4.2.4 Multi-scale implementation

The multi-scale implementation aims both at capwithe textural patterns at different
scales (i.e. the local interactions between pixales) and at speeding up the relaxation
process. It indeed helps the ICM algorithm convetgean image closer to the global
maximum of the joint distributionBou9]. Having an image at a local maximum of the
LCPDF is enough to obtain a satisfactory syntheti¢ture, similar to the sample texture.




deci.mat?on o . . 7|.7 | + [ # [ +
direction| | 3 | o . o l l
o g L | [

! o iel o Led o1 I=1 -9 @ 9 O
decreasing VI S O O - [ [
resolution| | & e e e e —O- | —( | ) — | —)—

e o s & o : _._ ._+.__ _+__ +_

| LA Lo L Lk
increasing | | "'.".'-.1-.'7-?-1'.2‘. =0 | | |

gridleve | oS R e
a b

Figure 4.4 «{a) example of a 3-scale grid; (b) illustrationari intermediary scale showing the
2:1 decimation and the pixels coming from the umoate (black- filled circles).

The same multi-scale grid representation as uggBédxs86 is employed. It consists in
obtaining the lower resolutions, or the higher deidels| > 0, from the image at levét0 by
using pixel decimation, as illustrated Fig. 4.4 High frequency texture artefacts are
important at high resolutions, while lower resatas synthesis behaves better on low
frequency features. This corresponds actually éoittage pyramids in the multi-resolution
schema used for the non-parametric algorithm€hapter 3 the difference being that the
Gaussian pyramids were used, while here only siddl@lecimation is used.

The synthesis (i.e. relaxation) starts at the hsghevell=L and continues from one
level to another unti=0; once a level was synthesized (i.e. relaxed or reached a maxjmum
to pass to the next levétl, all the pixels from the smaller levélare copied in their
corresponding positions at the higher lel®l and then the synthesis carries on at the
upgraded level.

4.2.5 Pixel temperature function

The original 2D synthesis proce$3ag9g incorporated the pixel temperature function
to serve as a degree of confidence relative topiltel value. The pixel confidence is

associated with the probability that grey-level represents the correct pixel value for the site

s. Each pixel is given a certain temperatdye between 0 and 1, where 0 means complete

confidence. The synthesis starts at a high globalperature (i.e. no confidence) and the
process is considered to be finished when equilibris reached — temperature O for all
pixels. The iterative cooling down schema is cdigtbby the pixel temperature function.

The pixel temperature is used more as an indicatwrhaving the same role as in a classic
annealing schedul&em84.

Mathematically, full pixel confidence happens whenis sampled from a LCPDF at
equilibrium, or when the LCPDF is completely corahal on its neighbouring pixel values.
Once a pixel at a siewas relaxed on one occasion, the confidence adeddio its valuex,

is updated by relying only on the temperature efrieighbouring pixels, r L N as follows:
E+2L

t,=max0,— =t £<0 (49)
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¢ is used to control the rate of the cooling schediliat is the rate at which a pixel is

cooled based on his neighbours temperatures. At teigmperatures the synthesized textures
are not spatially correlated, but as the tempegatdecrease, the correlations induced by the
LCPDF become stronger and the cooling rate shoglgldwved down to capture correctly the
image characteristics (i.e. spatial correlations).

In the MRF model, the pixel temperature functisrused to condition the LCPDF: if
t, =0 the LCPDF should be strong, while fty=1 it should be weaker. To ensure this, the
handling of pixel temperature is integrated in floem of (z-z,)while estimating the

LCPDF as follows:
(z-2,) =CollX, = ¥,. (% = ¥,)[A-t,),r ON,] (410)

Pixel temperature management is a major comporfeieomulti-scale process, first
by determining the length of the relaxation procasd secondly by reducing the number of
pixels to be relaxed. This means that before thexation algorithm starts at levil those
pixels which were relaxed at the previous leVel,, are copied on levd| according to the

grid representation, and are given the temperft&#® (i.e. complete confidence) being
considered as already relaxed sites having couwaoes. The other pixels have their pixel
temperatures initialized tb, =1, i.e. no confidence; after what a pixel is relaxiechas its
temperature reduced accordingetp4.9until gaining complete confidence.

4.2.6 2D texture synthesis algorithm

After exposing all the concepts and the synthesisponentsfig.4.5 draws the basic
steps to follow in order to compose the 2D texsymethesis. As the previous non-parametric
methods presented @hapter 3 this one is based on a 2D example also.

At the beginning of synthesis, the input textured ahe desired output texture
(initialised with noise) have to be defined as tsabs of sites on a lattice. The neighbourhood
system and the number of scales have also to erhdecimating the lattices in a multi-grid
form as represented kig. 4.4 Every site corresponds to a pixel from the textand every
site is initialized with a temperature of 1 (no fidance) while the global temperature (i.e.
sum of all temperatures) of each scale is computedertain scale is considered to be
synthesized when the global temperature reachese@ning that all the pixels gained full
confidence.

The synthesis starts at the highest grid level@odeeds by randomly choosing sites
from the lattice. If the temperature of a site @sifive the best realization of that site is
questioned. The decision is made by finding theealvithin the available configuration, that
maximizes the LCPDF of that site given &g. 4.8 and using ICM relaxation. After a site is
treated, its temperature is updated as indicated,.i.9 If the temperature of a site is null, it
means that the corresponding pixel has a corretevand no LCPDF estimation is
computed, the synthesis process is simply ignatingdnce the lattice is fully scanned, the
global temperature is recomputed.

If the global temperature at a given scale reaces, the next lower scale is
synthesized (if the highest resolution isn’t yeaateed). Passing the information from one
scale to another one consists in copying the piXedsn the poorest scale onto the
corresponding sites on the richest scale as ilitexirinFig 4.4h The updated sites have full
confidence. At the beginning of a brute scale,aahefour pixels displayed in a square shape,
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three are noised unreliable pixels that will bedain processed; one has full confidence and
will influence its neighbours by means of their LQP

Input
Y <> 2D sample texture wy xh, <> size of sample texture Y

X <> 2D output texture w, xh,<> size of targeted texture X
n_size, level <= neighbourhood system and number of scales

Y <= multi-scale representation Y*"¢ < set of sites s*"* on the lattice 5**¢
X < initialized with noise <= multi-scale representation X/=*¢

initialize all pixels temperatures 7 =1 Vvse s

for every scale (starting from the highest grid)

if global temperature Zr‘: >0

for every site s in the output lattice

i if temperature 7 =0

i | find 2 =arg max P(4.|x,,r eN,)
: i xs _ ,ﬂ_: AEN

update 7,

end for
update global temperature

end if
update upper scale

Figure 4.5 2D texture synthesis algorithm based on the NP-M®Hel.

Some examples of 2D textures synthesized withNReMRF model via LCPDF
estimated with Parzen-windowing, using the ICM xalgon, pixel temperature and multi-
scale representation are presenteldign 4.6

g. 4.5: for each
of the four cases the synthesis framework consistad input image (enclosed in red) of size
100x100 pixels and using 3 scales and»& Tull-square neighbourhood to obtain the 2000 pixels

textures. To reduce the computation time, the itgttires were reduced to only 32 grey-levels.



4.3 3D extension of the NP-MRF synthesis algorithm

4.3.1 General considerations

As already mentioned, the 3D algorithm is a singlage-based synthesis algorithm,
so to start the synthesis the process requirestaréeimage defined as a lattice S, where
every pixel is a site on the lattice.

To be able to perform a visually correct synthet$is input image is required to have
a relative good resolution, so that if we decraeseesolution, the important textural patterns
should be retrieved at the different scales. Theredesing of the resolution grid is done by
simple decimation as in 2D.

The process starts with choosing the number af igvels and the size of the full-
square neighbourhood. The output block dimensiomslaosen and it is filled up with noise —
actually random pixels from the exemplar, to presehe dynamics and help the synthesis
reach a maximum faster. Next, the sample and thpubBD block are decomposed at
different scales and defined as lattice systemsd@&®mation is described yg. 4.7. From a
set of eight voxels (in ax2x2 3D configuration) only one is being projected the next
higher level grid.

increasing
grid level

decreasing
resolution

a
Figure 4.7 -Example of multi-scale decimation in 3D: (a) thecept of conserving only one voxel
from each set of eight; (2) two snapshots, taksiléthe synthesis process, showing two adjacent 3D
scales (a 32block and a 64block).

The multi-scale relaxation algorithm is employenhigarly to the 2D case. Idem for
the pixels temperature used to control the synshesia kind of local annealing process. Sites
are now in 3D configurations and they are scannealriandom order, searching for each site
to maximize its LCPDF using an ICM relaxation.

4.3.2 2D/3D generic algorithm

With the help of the above considerations and iher2dentials, the synthesis process
for a 3D texture can be essentially described bawe:




Input

Begin

End

Y < 2D sample texture wy xh, < size of sample texture Y
X <= 3D output texture wy x hy, xd, < size of synthetic block X

n_size, level <= neighbourhood system and number of scales

Y <> multi-scale representation Y¢ < set of sites s¢ on the lattice S&v¢
X <= initialized with noise
X <> 3D multi-scale representation x 7 <> multi 2D lattice system S5
initialize all pixels temperatures ¢, =1 Vses2
for every scale (starting from the highest grid)
if global temperature >z, >0
s
for every site s in the output lattice
if temperature 7. =0

find A <= best possible 1€ A
X =4

. update 7. from the 3D neighbouring sites
| end if
end for

update global temperature

end if
update upper-3D scale

end for

Figure 4.8 -Algorithm: volumetric texture synthesis using MR&del showing the required data for

the input and the steps to follow.

4.3.3 Updating the voxel value: why a full-3D process igot relevant ?

As in the case of the non-parametric extensionhteetdimensions addressed in
Chapter 3 the difficulties encountered at this point putward the same question: how to

infer 3D information when only 2D information isailable?

The problematic issue is to find a good strategyabée of working out the LCPDF of
a site on the 3D grid by means of information ata#é on the 2D lattice of the input sample.
The ideal solution would be to figure out the f8lD LCPDF associated to a sigen

3D, and subsequently to retrieve its associatey Igreel A_ so that the LCPDF is completely

conditional on its full-3D neighbouring pixel vakie

A, =argmaXLCPDE; (A,)} = argma>{l5(/1S
AOA AOA

x,.r ONZ)} (419
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where NZ° defines a 3D neighbourhood of the current sitén example could be the second
order neighbourhood presentedrig. 4.9aand defined by:

NS o =l = ¥ 0S:0<(x=0)? +(y- () +(z-k)*<2} (412

However, except in trivial cases, it is not possilib estimate the conditional
probability of such configurations to assess their@Bractions inside the 3D neighbourhood.
This observation led us to propose heuristic apgres.in order to overcome this problem.

4.3.4 Heuristic approaches

The 2D/3D extension infers the output block to teated in a multi-2D form being
seen as an arrangement of manifold 2D sheetspliama multi-2D/2D synthesis that comes
down to crumbling the 3D neighbourhood into orthegl®?D neighbourhoods.

4.3.4.1 Breaking down the 3D neighbourhood

The outcome of breaking down the 3D neighbourhoatb iorthogonal 2D
neighbourhoods is that the unknown full-3D LCPDEneation is reduced to a compound of
computable 2D estimations.

The simplification of the 3D lattice neighbourhodd®®) of a site into three

orthogonal 2D neighbourhoods — front neighbourhlg, ), right neighbourhoodl.) and
top neighbourhoodl\;,) related to the central site, is showrfFig. 4.9

iD * o o .ol -

N; - - .O - - - |.
T T e T s » " - < * -

.: - :o = - L - + ' l + - - L
- LT L L * | 1§ e @ e

= - - NF,S = - - NR,S | L NT.S
- . - @

a b c d

Figure 4.9 -Breaking down a second order 3D neighbourhobid® in (a), into three 2D
neighbourhoods corresponding to the orthogonal sigiw) frontN g, (c) right Nk, and (d) topN.

This kind of conceptualization shows the need Ifar heuristics to attain for voxel
the maximum likelihood (ML) grey levdl. It gives the opportunity to formulate several
heuristics as proposed in the following taections.

4.3.4.2 Heuristic 1: NP_ML_H1

According to the 3D neighbourhood breaking schemé&ig. 4.9 one can find a
suitable grey level for a voxel at sites as a combination of the most probable grey levels
found separately for each of its orthogonal vieassa 2D/2D search problem.
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The result consists in several grey levels andre¢l€PDFs, one pair for each view
(Atronts Prront) » (Aiignes Pignt) @nd (A, P,) » retrieved through separate ICMs:

top

A;iew = argma){é/iew(Aview‘ Xr a O Nview_s)} (413

vie!

This solution reminds us of theh@pter 3 where the update value for a voxel was
computed as a combination of the solutions fourrdeich orthogonal view. Similarly, the
grey level chosen as update value can be foundobpining the grey levels proposed by
each orthogonal view using as strategy:
- choosing the one with the lowest/highest associa@®@DF -NP_ML_Hla/h
- the average as Wei and LeviW¢i03 - NP_ML_Hl1g
- the weighted mean as Kopfat [Kop07,

while the nearest neighbour search is replacetidynaximum likelihood search.

Algorithmically this can be presented adHg. 4.1Q

for every site s
find 4;,, = argmax P(A |x,.7 € Ng,)

AeA
find 4, =argmax P(A|x,,7 € Ng.)
AN
find 4, = argmax P(A, x,.re Ng,)
Al

select combination strategy using weights —»w, ,w

, W,
Ayight 7 Faop

update value x, =4, xw, + A xw,  + A, W,

end for

Figure 4.10 Principle of NP_ML_H1 heuristic.

4.3.4.3 Heuristic 2: NP_ML_H2

In order to avoid performing several ICMs and toidwlealing with several solutions
for each orthogonal view, a second heuristic isppsed. The plan consists in finding a

unique grey leveld, which maximizes a function of the 2D estimatiossaxiated to the
orthogonal views:

X, = argmax{ f (LCPDF,,,,(A,), LCPDF, (1.), LCPDR,, (A,))} =
A0A
X FON)} (414

Xr:r DNFS):lf)right(/‘ Xr'r DNRs)’QOD(A

right top

= argma){f (Isfront (/1 front
ASOA
where the functiofican be defined as:

LCPDF,

right ?

LCPDF,

top

LCPDF,,,,,LCPDF,

f (LCPDF, ) = min(LCPDF, o) (415

ront ? ront?

or
LCPDF,

top

LCPDF,

f (LCPDF,,, LCPDF,,, ) = max(LCPDF, - LCPDFR,))  (416)

ront ? ront ?

or
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f (LCPDF,,, LCPDF,;

right

LCPDF,

top

) = produc({LCPDF,,,,LCPDF,

right ?

LCPDF,,) (417)

ront? ront ?
Depending on the functiohused for ICM relaxation as sketchedHigy. 4.11, these
heuristics are tagged as follows:
- NP_ ML_H2afor the expression of from eq. 4.14that maximizes the smallest of the
three likelihoods in order to maximize all of them
- NP_ ML_H2bfor f as ineq. 4.15that maximizes the biggest likelihood, favouring
one of the three views if it shows a good likelidoo
- NP_ ML_H2cfor an f defined as ireq. 4.16 to maximize the product searching for a
compromise for all the three views

for every site s

[,=0

forevery Ae A

. getl,,, =LCPDF(A,Ny,)
gEt ]righr = LCPDF(A, NRS)

get 1, = LCPDF(A,Ny,)
compute = f(l, .1 ...l )

fromt> “right = “top

if 1>1,
E x =4
! I, =1
end if

end for

end for
Figure 4.11 Principle of NP_ML_H2 heuristic.

4.3.5 Implementation details

The synthesis plan follows the steps fréig 4.8 and uses a heuristic from the ones
proposed above to perform the ML estimation, bmies@annotations have to be mentioned.

4.3.5.1 Initialisation of the output block

The initialisation strategy for the output bloclonsists in using pixels picked
randomly (white noise) from the input exemplar der to keep the same global distribution
of grey levels.

But to accelerate the synthesis process by spgaginthe relaxation and help it
maintain the global structure of the exemplar thgot block is initialised with chunks from
the input image copied as patches on the orthogzibadlices of the block into a random or
deterministic way.

An example showing the simple insertions of thmiinmage at different depths of the
3D block is inFig. 4.12




B : !
v

Figure 4.12 -Output block initialization following a simple steqyy: the targeted block is initialized
with noise and at certain depths the same image aseynthesis sample is inserted as a slice within
the block; this will be the initial state of thetput block that will be used further on in the $\adis

process.

4.3.5.2Scales handling

Concerning the voxels grey levels, the operatiams=ting in going from a low scale
toward higher scale, is done by decimation a&igm 4.7a The contrary operation, top to
down scale direction, is done systematically afi@ch synthesized scale either copying each
high scale pixel value into one of eight lower scgaixels (1/8 up-sampling scheme) either by
copying each high scale pixel value into eight loweale pixels (8/8 up-sampling scheme).
This is illustrated irFig. 4.13

o ®

Figure 4.13 -Going down to a lower scale: the top scale valuesused to initialize the lower scale
by updating only one voxel in eight (1/8), or bylating the same voxel over all the eight (8/8).

LS/S

There are two ways to deal with the temperatuth®fvoxels obtained from a higher scale:
The temperatures of the voxels from a high scafele copied to the next lower scale
as a 1/8 update only after that the high scale syathesized. This means that the high scale

voxels have full confidence (i.d, =0) and they are propagated onto the next lower scale

keeping themselves the same temperatures. Thesdsvare used as fixed voxels for every
level. This allows a faster synthesis, but not ssagy a better one. If an erroneous voxel is to
take place at a higher level (at low resolutior® ¢nror will propagate until the final level, in
the synthesized texture.

The second and preferred solution consists ingugie pixels from a higher scale to
initialise the next lower scale, but to reconsittesm during the synthesis. It denotes the fact
that the grey value of a voxel from a previous lesehangeable but its temperature remains
fixed.
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Making a zoom in the algorithm at the position wehtre sites are enquired, gives us
the extended form iRkig. 4.14

for every site s at the position (xs,ys,zs) in the output lattice
if temperature 7, #0

find A =argmax{LCPDF,,(x,,4,)}
F ) Aeh

'
1

1

! P
b X s
1

'

1

update 7 from the 3D neighbouring sites
end if

update global temperature

if (Xs,Ys,zs) % 2 = 0 (even voxels inherited from the higher scale)

find A, =argmax{LCPDF,,(x,, )}
j’* /A____ eh

1
]
1
1
|}
1 5

end if
end for

X, =

Figure 4.14 Texture synthesis algorithm enhanced with thehggns of voxels from the sites
having even coordinates (i.e. the voxels inheffitech the higher scale).

This re-synthesizing phase for the voxels havingnecoordinates increases the
computational cost but it improves the resultstass inFig 4.15 The effect of this phase
is not visible on the 2D synthesized results astmag it is on the 3D results, because the
update from one scale to another in 2D means tatepshly one pixel in four, while for the
3D case it involves copying one voxels in eighteivf the inverse-decimation operation
involves copying the same pixel over all the fouthe voxel over the eight, it doesn’t resolve
the error propagation issue.

b c

Figure 4.15 -Example of two volumetric synthetic blocks obtaifteth (a) - a 2D image, by
applying the multi-scale relaxation MRF synthes&thod using the heuristic NP_ML_H2c: the
block in (c) is obtained by re-synthesizing thenewexels updated from the upper scale as
suggested in Fig. 4.14, visually improving the teBom (b) that was obtained without
reconsidering the even voxels.




4.4 Conclusion

This chapter offers a brief survey of the MRF tlyeantroducing the necessary
concepts to describe the LCPDF and its non-par&nestimation. Next, based on the 2D
algorithm [Pag9g, an original 3D extension is proposed, relyingimhaon giving a new
description to the LCPDF of a site in 3D and usingre adequately the voxel temperature

function.

Therefore, using our heuristic propositions freection 4.3several versions of the
2D/3D synthesis algorithm can be examined. A lighe relevant algorithms that are going to

be evaluated in the next chapter is presenteckitatble below:

Heuristic tag Heuristic decision to find the best /A,

NP_ML_H1a min (arg max(LCPDF ), argmax(LCPDF, ),arg max(LCPDFtop))
NP_ML_H1b max(arg max(LCPDF ., ),argmax(LCPDF ., ),arg max(LCPDFtop))
NP_ML_H1c mear{arg max(LCPDF, ),argmax(LCPDF . ),arg max(LCPDFtop))
NP_ML_H2a argmax{min(LCPDF ., LCPDF ., LCPDF,,)}
NP_ML_H2b argmax{max(LCPDF,,,LCPDF,,, LCPDF,,)}
NP_ML_H2c argmax{ product(LCPDF ,, LCPDF., LCPDF )}

Table 4.1 Proposed heuristics for finding the grey levelttoe output voxel.

Besides the heuristic itself, the way of initialigithe output block (noise or input
image patches), the scales update strategy (1/ammpling or 8/8 up-sampling) and the
handling of the even pixels (reiterating them ot)nthere are other factors that contribute to
the quality of the results. These are, as in tlse @ the non-parametric algorithm based on
the neighbourhood search, the neighbourhood sy¢sera, shape), the scan type and the

number of scales.

Unlike the methods iChapter 3 for which the user decides the number of iteretjo
here the iterative process is in the form of theliog schedule, the temperature cooling rate

being determined by the facibrin eq. 4.9 However, the synthesis process can be stopped

after a given number of iterations or it can be asgdl to stop when the global temperature

doesn’t change significantly.

From a computational point of view, letting theaithm to follow its course through
all the cooling steps proves to have poor perfomaan The solution for accelerating the
algorithm in this situation consists in parallgligithe algorithm; it means to simultaneously

relax a set of i.i.d. (i.e. independent and idexiycdistributed) sites.
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Chapter 5

Volumetric texture synthesis results
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5.1 Objective and methodology

This chapter deals with putting into practice tlmm-parametric synthesis algorithms
presented in the previous two chapters. The fix@dhbourhood search based approaches
(NP_WL, NP_K and NP_CW) and the maximum-likelihobdsed synthesis methods
(NP_ML_H1la/b/c and NP_ML_HZ2a/b/c) are applied te@ tholumetric texture synthesis
starting from a single 2D texture, focusing maiafyvarious Brodatz textureBijo66|.

The goal is to analyze the capacity of the norajpatric algorithms to synthesize
different types of textures, to show the potentiathese methods in various domains. More
or less, the synthesized results should resemblesdhbrce textures conserving the dynamics
and the structure.

In terms of synthesis quality, a critical pointheststs in taking into account the size of
the texture patterns in determining the numberyofisesis levels and the neighbourhood size.
The scanning order and the output texture iniion strategy are also key factors that help
the algorithms to converge towards a reasonablgignl Other more specific factors are for
NP_CW the number of candidates, or for maximumiliked approaches, the temperature
decreasing scheme, the synthesis ending critdreaup-sampling procedure or the way of
handling pixels inherited from the previous scélg.testing the influence of these factors on
the synthesis results, one can identify the partisgategy for obtaining a good quality of the
results.

In addition, comparing the results gives the opputy of finding the representative
approach for the fixed-neighbourhood search basgdthasis algorithms, and the
representative of the maximume-likelihood based w@sh For practicability, ‘electing’ the
representative in each category is performed ossttained number of textures to show the
advantages and disadvantages of the synthesigthigsr In the end, the approaches for the
two cases are compared on a larger base of textures

The textures of interest are the grey-level imggesented iifrig. 5.1 As can be seen
from these examples, we focus on structured textdiieregular to regular— with properties of
anisotropy and periodicity in one or two directiorfSare is taken to ensure that the
extrapolation of the texture in 3D makes senseeims of anisotropy. In other words, the
existence of a real 3D structure, giving rise @Dasection similar to the example, has to be
possible. As a corollary, the algorithms have tgppammeterized so that the synthesis of such
3D structures is possible. For example, an anipatraD texture like the one iRig. 5.1.r
cannot be observed on three orthogonal 2D views sdme volumetric texture. However, it
could be observed on two orthogonal views, froetwand side view for instance. The same
is true for the other lamellar texturgd g, sort, but also — which is less obvious — for most of
the remaining bi-directional textures. A direct sequence is that the synthesis of meaningful
3D textures from a single sample has to be perfdrioe many of these examples by
constraining only two orthogonal views of the sadigtput block. This is how the algorithms
have been parameterized.

The case of isotropic textures is also considérdtiis evaluation, though to a lesser
extent. Examples are texturgslk or 5.1n Meaningful 3D textures can be synthesized from
such 2D samples by constraining either two or ttoghogonal 2D views. Even if some
experiments have been conducted by constrainireg thiews, no thorough analysis has been




carried out so far. The results showed for isotrofxtureswill thus refer to texture
synthesized by constraining two views or

Y

e -1+ |

Sl

b c

Figure 5.1 -2D textures used as synthesis examples for th-parametric algorithm.
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5.2 Fixed-neighbourhood search based synthesis udts

This section deals with the comparison of the ltespbtained by applying the non-
parametric synthesis algorithms based on fixedhimigrhood search describedGhapter 3
These algorithms (NP_WL, NP_K and NP_CW) are apptie the 2D sample textures from
Fig. 5.1

To begin with, some results are showed using tmencon framework parameters for
which satisfying results are obtained allowing amést visual comparison, with the aim of
finding the approach that provides the best resiis varying the different algorithmic
parameters, their influence on the synthetic sebdures is analyzed.

5.2.1 Comparing the approaches

This study focuses on showing in parallel the lsgtit blocks using the synthesis
algorithms differentiated principally by the way obmbining the information from the
orthogonal views in order to obtain the update @dbr the output voxel, as listed below:

Synthesis method Strategy for output voxel

NP_WL repeat v = ( pfront + pside )/2

v= Wfrom [ pfront + Wside [ pside

NP_K
Wfrom + Wside
V= mln(‘ pfront -V ’ pside -V ‘)
NP—CW V* _ Wposition_from [ pfrom + Wposition_side [ pside
W +W

position__ front position__side

Table 5.1 -Recap of the strategies involved by the non-panacngtnthesis algorithms based on
fixed-neighbourhood search, used for combiningrif@amation from two orthogonal views in order
to obtain the update value for the output voxel.

Each of these strategies (specific for each métisostudied under a common generic
support sufficient to produce satisfying result$ bumore important — to be able to compare
the synthesis results for each strategy. This framnle consists in using a neighbourhood
system composed of a full-square neighbourhoodzef x7, computed on three Gaussian
pyramids, synthesizing the voxels following a ramdpath, output block initialized with
white noise and parts from the input sample. Initaaig particular only to NP_CW, a set of
15 candidates is used for each pixel from the 2Dpda texture. The printed results are the
ones obtained after the l@eration of the synthesis process.

The input images used as source of synthesishar&4x64 textures frorkig. 5.1,
while the output blocks are of size @#x64 pixels. The 2D samples used for synthesis are
reduced to 32 grey-levels. This relative small $arehe output blocks and the reduced grey-
levels were chosen in order to be able to comgeredsults with the ones obtained with the
maximume-likelihood based synthesis algorithms @csben further on in this chapter), which

are proved to be more time consuming, and to asslasge number of synthetic textures for
comparison.
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Figure 5.2 -Volumetric results using the n-parametric algorithms based on a +square”/x7
neighbourhood search: each row shows from leftgbtrthe results obtained by synthesizing
1%column texture, using NP_WL™ column), NP_K (8 column) and NP_CW " column).



Figure 5.3 Volumetric results using the n-parametric algorithms based on a -square77x11
neighbourhood search: each row shorom left to right the results obtained by synthiegjzhe '
column texture, using NP_WL"™ column), NP_K (8 column) and NP_CW " column).
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Fig. 5.2shows some results using the common framework @x7aeighbourhood.
Even at this early step of the comparison study oan make a distinction between the
quality of the results for NP_WL (which is not capa of capturing the structure of the
sample texture) and the other ones. Concerning NdhcdKNP_CW even with a relative small
neighbourhood, they can provide promising results.

Then the neighbourhood size is extended1ol], results being showed fig. 5.3
Under these circumstances even the NP_WL actspeedlenting relative good results if we
ignore the solid texture iRig. 5.3d1This one is explained by the incapacity of the WR._
algorithm to resemble the input sample becauseatlerage operation involved by the
iterative searching process for the best neighlmmdhand for being based only on local
decisions.

As for the methods based on histogram adjustneehiniques trying to incorporate the
global information, the results are similar, onlithva comment on the result using NP_CW
in Fig.5.3e3 The result in cause is unwanted because of ttemewus pixels that appear in
the final result. This is caused by the algorithterapt to distribute completely and uniformly
the input pixels in the output block. It means ttet algorithm considers a pixel to be a good
solution for an output voxel based on the unifoynaititerion even if it is not exactly the best
one from a neighbourhood distance point of viewat #r a simple case as the regular texture
in Fig. 5.3e the algorithm fails. This algorithm is indicatémr more complex textures and
preferably less structured ones, when more diweisivanted in the output texture.

The NP_K approach satisfies most of the texturederm of synthesis quality,
capturing well the input sample structure. The \Wwiad average and the grey-level histogram
matching technique work well together. The resdtn’'t show lots of defects and per
ensemble it provides the most satisfying resultaiorks also in the cases for which the other
two approaches failed. Consequently, only NP_K aagh is going to be used for further
considerations, to analyse the influence of thdactlpparameters on the quality of the
synthesis results.

5.2.2 Parameters influence

Just by analyzing the framework of the resultim5.2 andFig. 5.3it’s obvious that
the algorithms are very sensitive to theighbourhood system when determining the
number of synthesis levels and the neighbourhamel®rrelated to the scanning type.

The neighbourhood sizeplays an important role in the synthesis procesaga
central factor in capturing the input image struetd’ he neighbourhood has to be bigger than
the largest pattern of the sample to be able ttucajits structure.

To capture better the textural pattermsjlti-resolution is used. A multi-resolution
image pyramid confines the structure at differezgotutions, by fewer pixels in the high
levels (i.e. low resolution). The influence of tlmage pyramids is associated to the
neighbourhood size. The results obtained by usingage pyramids and a small
neighbourhood are similar to using no pyramid boigger neighbourhood.

Fig. 5.4 shows the influence of the neighbourhood systenthersynthesis results by
varying the neighbourhood size. Higher the neighbood order, better are the results.
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a b
Figure 5.4 Neighbourhood size influence on the volumetricltesising NP_K: from left to right, (a)
the input image and next the solid textures obthiioe a full-square neighbourhood of size x5,
(c) 7x7, (d) 9x9and (e)11x11 pixels.

The result blocks showed iRig. 5.2 and 5.3 represent the 1Diteration of the
synthesis process that starts from an initial ramdoise state. This noise is modified to look
like the sample texture. The synthesis is stoppgdnaatically after ten iterations, although
after approximately six iterations the producediltssare satisfactory. An example showing
the evolution of the output texture during tiberative processis in Fig. 5.5 The output
texture succeeds after several iterations to e #tie input texture.

Figure 5.5 Texture evolution during synthesis iterations: tlput block, starting from (b) random
noise, is iteratively modified to resemble (a) 2esample; (c) is the block obtained after thg 2
iteration, (d) shows the"Giterations while (e) contains the "L@eration.

A known characteristic of these algorithms based best-neighbourhood-match
searching is that they are sub-optimal, being datestic algorithms and leading to synthesis
results that suffer from repetitive patterns amahfrmore ordered features than the sample
[Chel( [Urs1d. Hence this makes the algorithms be very vulnerab the neighbourhood
system and the number of iterations. Iterating moncre tends to produce repetitive, over
regular structures, whereas using very large negtitoods has the same orderliness effect.
A compromise has to be made in order to use acseiifly large neighbourhood to capture
the essential features but also to iterate enougisgure the convergence.

A similar question is raised for tleganning type which is the visiting order of the
voxels during synthesis. Replacing the lexicogreghiscan type (deterministic scan-line
order) with a completely random walk allows thetbgsis of a pixel by freeing itself from its
past and so multiplying the possible configuratioA®wever, the convergence time can
become prohibitive in this case. Attempts were m@adesconcile the deterministic part and
the randomness character by using alternative gqes — namely the use of space filling
curves (Z-curve and Hilbert curve) (sAppendix B and by using a mixed initialisation for
the output block — white noise and patches fromiripat imageFig. 5.6 shows some results
obtained by using different scanning types, narttedyones suggestedHhig. 3.21.




Figure 5.6 -Texture synthesis by varying the scanning typeh eaw shows the 2D sample in (a) and

the 10 iteration of the synthetic solid textures obtaiméth NP_K and the common framework using

(b) lexicographical scan, (c) random walk, (d) 3kended Z-curve and (e) three-dimensional Hilbert
curve.

The results inFig. 5.6 are relatively little sensitive to the scanning éyplowever
some remarks have to be made.

The lexicographical scan based reswig(5.6) shows some undesired features
because if an error pixel is to take place, iiksly to propagate from one neighbourhood to
another retrieving it in the final result. It adags the repetition of patches whether if they are
good or bad. Additionally the lexicographical s¢andency is to regularize the texture. These
aspects are better retrieved on the first row imagd-ig. 5.6 for which the sample is less
regular. The left view of the 3D texture blockrig.5.6bshows the failure of the algorithm to
preserve the structure while its right view is gyseiodic. As for the other results, they are
less regular (as the 2D example).

The random scan assures diversity, makes theitrepettructures disappear but shows
difficulties in converging.

The 3D space filling curves used as synthesis patldluce satisfying results, not
regularizing them too much and in the same timeraodomizing them too much, in terms of
structure. However the result obtained with theufre path inFig. 5.6c seems to be too
regular also. The Hilbert-curve based result is legjular, more alike the initial texture, even
if certain patterns don’t correspond with the sampl

Apart from these conventional characteristicsteglao the neighbourhood systems,
which have been more or less noted by the origiapkr authors, a parameter specific only to
NP_CW has to be at least referred to —sbeof candidatesThe use of the set of candidates
in the context of the position and index histognaiaiching and the discrete solver described
in section 3.4.2seeks to make sure that all the pixels are copigdprobably from the 2D
sample.

Fig. 5.7 illustrates how the synthesis results are affettgdhe size of the set of
candidates, showing alongside the correspondingdrsm position map. Larger the set, as
better are the results and as uniform is the hiatogposition map. However these are
accomplished with an increased computational cost.
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Figure 5.7 4nfluence of the set of candidates on the synthiesidts: from left to right, the blocks are
obtained by using NP_CW with 1, 5, 15 and 25 caatdi&l On top of each block is represented the
position histogram map. In red are the areas camtay input pixels that are not retrieved in the
result. For the others, the whiter the pixels, there they are used in the output texture.

The synthetic results obtained with the neighboadhsearch based non-parametric
approaches have a satisfactory visual quality, stgpwhe algorithms capacity to produce
volumetric textures similar to the 2D samples img of dynamics and structure. Good
results are obtained by choosing properly the ®gishprocess parameters.

Being emblematic for the non-parametric synthdmsed on fixed-neighbourhood
search, NP_K is going to be used as comparativhodab the maximum-likelihood based
approach irsection 5.4
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5.3 Maximum-likelihood based synthesis results

This section is dedicated to the results obtaimga@pplying the synthesis algorithms
based on the maximum-likelihood estimation (NP_MlaH/c and NP_ML_H2a/b/c)
described irChapter 4,0n 2D sample textures.

Firstly, some results are showed using the pammsidéor which eye-friendly results
are obtained, and next the choice of these parasistenotivated by analyzing their influence
on the synthetic solid textures.

5.3.1 Comparing the heuristics

The several heuristics proposed @hapter 4 are analyzed in the context of
synthesizing the textures frolig. 5.1

To remind these heuristics and to have them adl vanhis study, here is their brief
description:

Heuristic tag Heuristic decision to find the best A,
NP_ML_H1a min(argmax(_CPDF,,,),argmax(_CPDF))
NP_ML_H1b max(argmax(I_CPDFfmm),argmaxq_CPDFrigm))
+ -
NP_ML_Hic argmax(CPDF, ) +argnax( CPDE,,,)
2
NP_ML_H2a argmaxmin(LCPDF,,,, LCPDF, )}
NP_ML_H2b argmaxmax(_CPDF,,, LCPDF,,)}
NP_ML_H2c argmaxLCPDF,,, CLCPDF,,}

Table 5.2 -Recap the heuristics involved by the non-paramsegmthesis algorithms based on
maximum-likelihood criterion, used for finding t®st probable grey level for the output voxel by
analyzing only two orthogonal views.

To show the ability capacity of the proposed atons to synthesize various textures,
the first results are obtained by using a geneaméwork that experimentally proved itself to
produce satisfying results: a neighbourhood systemposed of a full-square neighbourhood
of size 7x7, computed on 3 scales, synthesizingdels in a random way, 8/8 up-sampling
strategy, output block initialized with white noiaed random parts bits from the input sample
and re-synthesizing the even pixels inherited frarhigher scale (as suggestedsgction
4.3.5.9.

To assure a reasonable computational time andatntan a satisfying quality of the
results, the temperatures of pixels is decreas#d aviactor -3 (i.e in eq. 4.9) and stopping
the synthesis process after reaching a 95% decoédle global temperature. The results are
showed analogously for each employed heuristic. ilpat images are of size 64x64 pixels
and the synthesized blocks @464 pixels.



Figure 5.8 -Volumetric results using tiproposed heuristics: each column shows from tdgpttom
the results obtained by synthesizing t row texture, using NP_ML_H1a heuristic (tt" row),
using NP_ML_H1c heuristic (th€® row), using NP_ML_H2a heuristic (th¢" row) and
NP_ML_H2c heuristic (the"5row).
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Fig. 5.8 shows some results obtained by using the maxinmkefiHood heuristics
proposed irChapter 4on the basis of a 7x7 full-square neighbourhood.

More precisely, the second rowig 5.8al1-d) presents the solid textures obtained by
applying the NP_ML_H1a heuristic, meaning that tipglate value for an output voxel is
found by choosing the grey level that corresporaighe smallest from the two LCPDF
computed separately for the two orthogonal vievkenainto consideration (front view and
right view). The idea is to choose the smallest DERn order to be valid for each of the two
views. It works well except the resultkig. 5.8c1for which the algorithm doesn’t captures at
all the structure of the texture froRig. 5.8¢ This heuristic performs well, but not strong
enough to capture the interactions between thdgiagyossible solution being to increase the
neighbourhood size.

Using the NP_ML_H1c heuristic 63row in Fig. 5.8, the update voxel value is
computed as the average of the two grey leveld) eae of them maximizing the LCPDF of
his corresponding view. As in the case of the neaginhood-search based approaches the
averaging operation is not the winning strategg toxels are faced with grey-levels that
don’'t exist in the 2D sample, disrupting the im&gesed synthesis process. Undesired
artefacts are seen on almost all the results, giruyibroken textures (as is the case of textures
in Fig. 5.8a2—-d

The last two rows dfig. 5.8contain the results obtained by using for the tpaaxel
value the grey-level that maximizes a functionlod 2D estimations of the two orthogonal
views. The heuristic used iRig. 5.8a3-d3is NP_ML_H2a maximizing the smallest of the
two likelihoods in order to maximize both of theifhe results are promising in term of
structure conservation, but undesired artefacts ®ime into sight (visible on the solid
textures inFig. 5.8a3andc3). The function of the LCPDF estimation is not atdecapture
the pixels correlations under the employed fram&wansuitable for characterizing all the
orthogonal views.

It looks like the NP_ML_H2c heuristics (the lasinrin Fig. 5.8 runs better, being
able to capture the visual characteristics of thgui texture by maximizing the product
function of the LCPDFs of each view. This produaséd heuristic is stronger (in terms of
capturing pixel interactions) than all the otheesreven at a relative small neighbourhood
size. Using this heuristic as a decisional meagarethe output voxel grey value, the
synthesis provides more than satisfying result® 3ynthetic solid texturesig. 5.8a4-d3
are smooth almost artefact—free textures (excapesemall structure defects), looking very
similar to the sample textureBig. 5.8a-g giving the impression that they were produced by
the same process.

Separately from the above analysis, are treatedother two remaining heuristics.
NP_ML_H1b is the one based on choosing the upddtes\as the one that corresponds to the
biggest LCPDF computed individually for each of the orthogonal views. Results using
this heuristic are showed Kig. 5.9.NP_ML_H2b maximizes the biggest likelihood function
favouring only one of two views; results based lois decisional heuristic are Fig. 5.1Q
The reason why they are compared in this pladeaistheir corresponding results are similar,
but not in a good way. Using the common framewaitk 7x7 neighbourhood proved to be
insufficient for them providing catastrophic resuisecond row offig 5.9 andFig. 5.10. So
a larger neighbourhood, an 11x11 one, was usethidncontext the structure of the sample
texture is captured but only for an orthogonal vighird row ofFig 5.9andFig. 5.10. These
heuristics are incapable of convincing all the oginal views to follow the sample
characteristics.
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Figure 5.9 -Volumetric results corresponding to the NP_ML_H&#imstic: from left to right, eac
column shows from top to bottom, the sample teX* row), the output block computed witl7 x 7

neighbourhood (¥ row) and the output block computed witt /7 =71 neighbourhood ( row).

\ ERaRIRY

W N
Figure 5.10 -Volumetric results corresponding to the NP_ML_H2istic: from left tcright, each
column shows from top to bottom, the sample teXi®* row), the output block computed witt7 x 7

neighbourhood (¥ row) and the output block computed with/ = /1 neighbourhood ( row).

To conclude this sectioit seems that the results based\dd_ML_H2c heuristic ar
the most convincing ones. The above remark justifiee choice of using NP_ML_Ic for
the next operations as being representative fomidwamun-likelihood based approache
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5.3.2 Temperature decreasing schema

The developed algorithms based on the maximuntitided estimation integrate, in
the synthesis/relaxation process, a pixel temperdtinction as a degree of confidence for a
pixel grey-value. It is the main factor that irdhces the duration of the relaxation process,
determining the ‘annealing’, that is the controltieé cooling rate. The process starts at high
temperatures, and iteratively it is relaxed with tlecreasing of the temperature. Two aspects
drew our attention — the speed of themperature dropping-off and therelaxation
duration.

The pace of the cooling schedule is determinethbyparamete§ as described ing.
4.9. A small value assures a good convergence buiamfing relaxation sequences while a
higher value allows a faster process but not necidgswith satisfying results. A pixel
temperature is cooled-down based on its neighbotansiperatures. A fast decrease of
temperature is not capable of capturing the spataielations between neighbours. The
cooling rate influences directly the number of ateons by reducing faster the global
temperature.

Strongly related to the cooling rate is the tirakeh by the relaxation process. The
initial scheme consisted in starting from a higlobgll temperature and decreasing it,
successively after handling each voxel, until réaglzero when all pixels achieve complete
confidence. But an adequate amount of confidenz@nat without reaching the zero level
can produce satisfying results, suggesting thaery gmall, but positive value of a pixel
temperature could be enough. This implies thatréh@xation process can be stopped at an
earlier time, after accomplishing a certain peragatfrom the initial global temperature.

e

Figure 5.11 -Results obtained for different temperature decragstrategies: the first row shows the
results obtained by accomplishing 100% of the ratiax process, but by decreasing the pixel
temperature with (&) =-1, (b) ¢ =-3and (c)é =-5: the second row shows in the same order for the
values of¢ the results obtained by stopping the synthesisge® after reaching 95% from the initial
global temperature.
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In order to obtain satisfactory results with a oemble computational cost,
compromise has toebmade regarding the rate of the cooling schechdélze relaxation time
Some results obtained with different values¢ while leaving the relaxation process folle
its course or by stopping it after reaching 95%mfrthe initial global temperature at ee
scale, are presented kiig. 5.11. The results are visuallyery similar, only the block iFig.
5.11fshows a few undgred error pixels, because of the too fast deargaschemaé =-5)
and of the too early stopped relaxation proces%o}9

global temperature decreasing global temperature decreasing

\
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a
Figure 5.12 Plots showing how the global temperature is drogmif with the paramete at -1, -3
and 5 when allowing the algorithm follow its courseilrgaching zero temperature (plot in a) a
when fulfilling only 95% of the initial global teragture (plot in b.

The influence of these factors is analyzed in tloéspirom Fig. 5.12. For the above
presented solid results, the impacté is reflected in a more accelerated decrease o
global temperature; a more importeé (a smaller value) allows reaching a same gl
temperature level in fewer iterations than whemaisa liggeré. Stopping the synthes
process at 95% from the initial global temperatueeluces the number of iterations, from
to 7 in the case df=-1. For&=-3 the number of iterations is reduced from 18 to Bilevfor
&=-5 from 16 to 5.Fig. 5.1 stows the evolution of a solid texture from an itematto
another until reaching the final state presenteFig. 5.11b It shows the iterations involve
by the relaxation process on the final pyramidagleuntil reaching a stable state (deeme
95%of the global temperatur:

Figure 5.13 Time evolution of the solid texture at the lastgmgidal level: first four iteration:
showing the temperature decrease involved by tlhaaaton process plotted in Fig. 5.12b in the ¢
of NP_ML_H2c_-3 95%.

The above section analyzed the effect of the twp faetors in pixel temperatu
decreasing schema, on the 3D synthesis resultshdws that reducing the number
iterations and accelerating the decrease of temyeraan still produce satisfactoresults
with the pair of parameteés=-3 and 95% of the global temperature stop criterianb@& able
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to produce a large number of results, this wilkle synthesis strategy used further on in this
chapter under the emblematic heuristdP_ML_H2c

5.3.3 Common parameters influence

The maximum-likelihood based synthesis proces®iisitve to theneighbourhood
sizeas well as the neighbourhood-search based appmathe neighbourhood size has to be
indeed large enough to capture the biggest pattethe input texture, in order to assure a
result similar in structure to the sample capturitige spatial interactions between
neighbouring pixels.

This is correlated to the resolution of the samel¢ure - a higher resolution (meaning
more well defined inner patterns) of an image rexpuia higher neighbourhood size. The
guestion of thenumber of pyramidal levelsis also related to this issue, each level being in
fact representations of the same image at diffeesalutions.

Some examples illustrating how the results canirbproved by using a bigger
neighbourhood are showed kig. 5.14 A larger neighbourhood captures better the input
structure giving a higher quality to the solid tees making it more similar to the sample.

Ll

-

Figure 5.14 The influence of the neighbourhood size: eacheftwo rows shows, from left to right,

in (a) the sample texture, in (b) the output blobkained with a 7x7 neighbourhood and (c) contains

the improved results obtained by using a 9x9 nedgimbood. The other parameters were the same:3

pyramidal levels, 8/8 up-sampling strate§y,-3 and stop at 95% of the process, reiterating thene
pixels and initializing the output block with ingatage patches.

Other two parameters to be taken into consideratare theup-sampling strategy
and thanitialisation strategy. The pass of information from one synthesizedllgvéhe next
untreated one consists in copying each treated f@xel into one or eight of the eight next
level pixels (named 1/8 or 8/8 upsampling strateg¥hapter 4.3.5.2 The purpose is to
assure faster and better convergence by usingyfahesis only already treated pixels. With
the same ambitions for the convergence and addgigrio help the synthesis capture better
the input image patterns, an alternative strategyhe random initialisation of the output
block is proposed. It consists in integrating ie trthogonal slices of the output block, filled
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initialy with white noise, patches from the inpuhage. For simplicity, the variant that
consists in initializing with input image patchesnamed asin, while the simple random
noise initialization is named a$n.

e n + A
YD

iy s

a
Figure 5.15 The trace of the up-sampling (1/8 or 8/8) and thgalisation strategy (+in, -in) on the
synthesis results: each of the two rows shows, fefinto right, (a) the input sample, (b) the rdsul
obtained with 8/8 up-sampling and +in, (c) 8/8 wp¥pling and —in, (d) 1/8 up-sampling and +in and
the last column (e)1/8 up-sampling and —in; all tleer parameters were fixed.

Some examples affected by the variation of thealpsy and the initialization strategy
are shown irFig. 5.15 The deduction is that apparently the synthetbiici gextures show no
major differences when using a certain up-sampbobema and a certain initialisation
strategy.

Figure 5.16 The trace of the up-sampling strategy on a synshesiult: the block in (b) is obtained
by using 8/8 up-sampling, while the volumetric tesu(c) is obtained with 1/8 up-sampling strategy
capable of capturing the structure and the pattefthe sample texture in (a); all the other

parameters were fixed.

But the assumption relative to the triviality dfet upsampling schema is rapidly
demolished by the result presented=ig. 5.16 In some case the 8/8 up-sampling schema is
not capable of assuring a required degree of diyereproducing from one level to another
the same grey levels obtained at the lowest rasallgvel. If the lowest resolution level is
inappropiate (i.e. structure misplaced, uniformygesels ) the synthesis process captures the
mode of distribution and propagates it throughth# scales. To assure disparities while
passing from one scale to another, a 1/8 up-sampliategy is used, paying attention to the
information from the already synthesized scale #nd certain randomness induced by the
random pixels issued from the initialisation stggte-ig. 5.17,asFig. 5.16,shows how the




1/8 up-sampling improves the quality of the resddtg in addition it proves again the
vulnerability of the maximum-likelihood based preseaced to the neighbourhood system,
that needs a bigger neighbourhood to capture tmplsastructure and to reproduce it in the
synthetic results.

a b
Figure 5.17 The mutual influence of the neighbourhood sizethadip-sampling strategy on
synthesizing the 2D sample in (a): the result higlobtained using a 9x9 neighbourhood and a 8/8
up-sampling, the result in (c) is obtained by usan@x9 neighbourhood size but with a 1/8 up-
sampling and the result in (d) is obtained witll & 77 neighbourhood corroborated with 1/8 up-
sampling strategy; above each block are represetwted2D cuts from the 3D block illustrating the
synthesis success rate.

Of particular interest is questioning if the temgiare of a pixel from an already
synthesized scale has to be or not processed ér trdnitialize the next scale (according to
the upsampling strategy). As illustratedkig. 4.14 from Chapter 4 the solution adopted
here is to re-synthesize the voxels having evemdioates, i.e. the voxels inherited from the
higher scale. Using a 8/8 upsampling and not ré&giting the even pixels it is not capable
of eliminating the errorneous pixels, while with-ggnthesis the results are smoother. This
even pixels revisiting operation is highly impoitan producing high quality results. Its
effects are evidently positive, results being shawrkig 4.15 and in Fig. 5.18. Without
synthesizing the inherited pixels (as proposed RagPg), errorneous pixels appear at
different scales and propagate untill the finaklev

a b c
Figure 5.18 -Example of two volumetric synthetic blocks obtaifieth (a) - a 2D image, by
applying the multi-scale relaxation MRF synthesethod using the heuristic NP_ML_H2c : the
block in (c) is obtained by re-synthesizing thenexaxels updated from the upper scale, visually
improving the result from (b) that was obtainednwiit reconsidering the even voxels.
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5.4 Fixed-neighbourhood search vs. likelihood maniisation

This section is aimed to be a qualitative compagatperation showing in parallel the
results obtained with the neighbourhood-searchdagethesis approaches and results of the
maximume-likelihood based methods.

To ease the comparative study only two represgatapproaches, one for each class,
are used. These are NP_K and NP_ML_H2c, as it easoned in the previous sections of
this chapter.

Before starting the effective study, a first reknhas to be noted on the already shown
results — it appears that NP_ML_H2c provides bettsults than NP_K at a same relatively
small neighbourhood size. NP_ML_H2c is capablerof/jling satisfying results using a 7x7
neighbourhood as illustrated Fig. 5.8 With the same neighbourhood size and using the
same 2D samples as source of synthesis, NP_K icapmble to produce solid textures
similar in structure to the 2D samples, as illustain Fig. 5.3 But these were particular
examples, so a larger experimentation basis isnedjto be able to draw conclusions.

To assure a common framework a suitabi® neighbourhood size is used, three
pyramidal levels, random scanningn initialisation. For NP_ML_H2c an 1/8 up-sampling
and even pixels revisiting strategy are adoptedaBse the deterministic relaxation algorithm
involved by the maximum-likelihood based syntheisiscomputationally very expensive,
performing LCPDF estimations for every grey-levehidable in the input image, the 2D
sample textures are of 32 grey-levels.

Synthesis results using the previous frameworksamvn inFig. 5.19andFig. 5.20
placing jointly the NP_K 3D texture and the NP_MIL2d43D texture.

Figure 5.19 -Volumetric results: each of the four triplets cantain the middle the 2D sample, on the
left the 3D texture obtained using NP_K approacta@x9 neighbourhood and on the right the 3D
block obtained using NP_ML_H2c heuristic usinggheme neighbourhood size.
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Figure 5.20 -Volumetric results: each of the eight triplets @ns in the middle the 2D sample, on
the left the 3D texture obtained using NP_K o8 Seighbourhood and on the right the 3D block
obtained using NP_ML_H2c heuristic using the sagighbourhood size.
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For the textures shown kig. 5.19 the NP_ML_H2c results seem to be better than the
ones obtained with the NP_K approach mostly in seofnstructure preservation. The textures
in Fig. 5.19aand5.19bobtained with NP_K capture deficiently the struetof the sample
while the NP_K block in5.19cis more regular than the sample texture. Thedasg, the
texture inFig. 5.19d shows the NP_K difficulties in sustaining theusture.Fig. 5.20carries
on the results illustration testifying overall theomising quality of the results both for NP_K
and NP_ML_H2c. It seems that NP_ML_H2c producesttebresult than NP_K for the case
in Fig. 5.20ebut this is annulled by the resultskig. 5.20bwhere NP_ML_H2c is inferior,
making simpler the 3D texture.

b

} -
K
s

d
Figure 5.21 Volumetric results: each of the four quintuplestedms in the centre the 2D sample,
above the sample two NP_K results obtained, frétdeight, with an 9x9 and ard 7x 77
neighbourhood and below the 2D sample the two NP_H2c results obtained by using, from left to
right, an 9x9 and an? 7x 71 neighbourhood size.
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It's not always that NP_ML_H2c behaves better. Tésgults inFig. 5.21aand5.21b
prove exactly the opposite; even if NP_K needs ggdr neighbourhood to provide
satisfactory results, it behaves better than NP_INRc. A bigger neighbourhood is required
likewise by NP_ML_H2c for the synthesis Fig. 5.21¢ being the only one capable of
capturing the sample pattern. The resultign 5.21dare terrible for both of the approaches,
incapable of preserving in the synthetic resultdhmple structure.

In a similar way, the number of grey-levels is sfisned. Its influence on two
synthetic textures is shown kig. 5.22 In this case the assumptions according to wheh t
synthesis simplifies the textures, reducing the lpemof grey levels is once again confirmed,
even if the synthesis takes place by using numegoess-levels and not only the reduced 32
levels. Comparing the result Fig. 5.22awith the one inFig. 5.21cand the result irrig.
5.22bwith the one irFig.5.20h one can conclude that no improvement is brouglérim of
texture structure by using a larger diversity afygtevels in the synthesis process. As well, a
direct remark pops out by comparing the sampleutexigrey-level histogram with the
synthetic block histogram — the synthesis procesduges the number of grey-levels
maintaining only the most present (i.e. the mosbpble) grey-levels of the 2D sample, as a
reminiscent effect of the deterministic ICM relaratalgorithm.

i -1

Figure 5.22 -Volumetric results obtained by applying the synthakyorithm on sample textures
having all their original grey-levels.

b

The comparative study underlines the idea thaethployed synthesis approaches can
hardly be differentiated being unable to concludecisely which one is the best, while
showing that satisfactory results can be achieyetihing properly the synthesis parameters.
In fact, one approach is better than the otheunttion of the viewer/user/application centre
of interest. The maximum likelihood based approachemes up with extra parameters
emerged from the pixel temperature function thametimes prove to be difficult to control
but, when properly tuned, can provide outstandesylts.

From a computational cost point of view, the NP_MRc approach needs long
relaxation steps, searching for every output vaixelmost probable grey level, each time (i.e.
for each grey-level) a conditional probability bgimestimated. With the increase of the
neighbourhood size and the number of available -gesls, the deterministic relaxation
duration increases as well, becoming an overwhegmmocess. If one searches for a fast way
to generate textures, the fixed-neighbourhood kebased approaches are of interest. For
example, using a machine operating at 2.7 GHz heigeée a 64x64%x64 block from a 64x64
texture containing 32 grey-levels, using a 9x9 hieaurhood, 3 scales, pixel temperature
decreasing with a -3 factor, stopping the synthpeigess at 95% of the global temperature
and re-considering for synthesis the inherited Igixthe time required by the NP_ML_H2c
relaxation has an order of almost 24 hours, whiletdrations of the NP_K based results are



obtained in only a few minutes. A future perspeetdevelopment involves the algorithm
acceleration, attainable by algorithm parallelsati

5.5 About 2D/3D inference

Beside the algorithmic investigation and the rssuhterpretation, our reflexion
questions the truthfulness of the generated 3Dutexgiven a 2D sample. The volumetric
texture should indeed exhibit a plausible structaoraccordance with the reality and each of
its 2D slices should be consistent with the 2D danifhis can be simply stated as the 2D-3D
inference objective.

The human visual system, based on prior experjehas nearly no difficulty in
making possible a robust inference from insuffitidata. In practice, people can figure out
the most probable 3D structure among numerous lgessiructures given only a single 2D
image. By contrast, the 3D inferring is quite caafjing for computer vision systems.

Concerning the texture synthesis algorithms, geimey a 3D volume from a 2D image
IS an under-constrained problem, with multiple sohs, not all of them equally possible.
Consequently, the algorithms must be adapted toirtpet image structure to be able to
‘invent’ (i.e. infer) detailed 3D structure fromsangle 2D image and to create qualitatively
accurate and visually pleasing results.

Depending on the 2D texture configuration (e.gnasetry, homogeneity, granularity
etc.), the synthesis has to be constrained by twhree orthogonal views of the solid block.
Ideally, one should dispose of samples for eackv\bat, as it is not always the case, the
synthesis becomes more awkward. Each slice of Ehel8ck corresponds to one 2D image
that should resemble the sample and in the sane itishould allow a certain 3D block’s
visual plausibility.

Figure 5.23 Results obtained with NP_K approach usingzx 77 neighbourhood: for each row
going from left to right, the input image (a,e)e ttesult obtained by constraining only the fromwi
(b,f), the block obtained by constraining two ogboal views — front and right (c,g) and the one
obtained by constraining three orthogonal view&)dThe results in b and f contain independent
slices insufficient for creating a coherent 3D ldiauetexture, while constraining three views we
cannot reproduce the same texture on the threesvi@wplausible 3D structure is provided by
constraining two orthogonal views with the sameutrgample.
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Constraining only a single view of the block, #iliees become independent one from
each other, leading to discrepancies between shitele the 3D block looks like a coarse,
discontinuous representation. Disposing generaflyomy a single sample as source of
synthesis, the same image is used to constraiarthegonal views of the block, coercing the
front view, side view or top view to match the saenp

The number of constrained orthogonal views dependhe sample texture structure.
For example, for the anisotropic texturedrig. 5.1p-tshowing a lamellar organization, it is
not possible to constrain three orthogonal viewshi& synthesis process by a unique 2D
sample, as it does not provide enough accuratenvaion to reproduce a plausible volume.
To illustrate this point, we can try to synthesszeeh a texture constraining three views, but
the results have no reasonable representatioralgoeithm ‘guessing’ a wrong 3D structure,
incompatible with the sample in terms of anisotroplye results irFig. 5.23show that even
if for two directions of view (front view and todew) the texture seems convincing slice by
slice, the algorithm fails in the other directidthe textures observed on th8 @irection (side
view) don’t resemble at all the 2D sample, beindgpitt a compromise for the missing sample
for that view. To be in accordance with the othven tlirections, the "8 direction slices take a
diagonal or checkerboard irrelevant arrangement. these textures it makes sense to
constrain only two orthogonal views as already gthow this chapter, knowing that their
underlying process consisted in layers stackedaboege the other.

Even when not disposing of the texture for tifevBew, and using a same texture as
constraint for two views, the synthesis processsdogood job, indirectly inferring the 2D
textural information at the 3D level. The textune&ig.5.1a-nare susceptible to constraining
two and three views, obtaining in both cases gaigf volumetric results in terms of
resemblance between slices and the sample, wiakepring a coherent 3D context. For the
result inFig. 5.24o0btained by constraining two orthogonal views, fileeceived patterns have
an elongated tubular, cylinder shape. Instead, wisémg the same sample as constraint for
three views, the patterns are bubble or cube sh&laihg the block in frontal, lateral and
from atop, the obtained 2D textures look similatite sample, the same remark being valid
when slicing frontally and laterally the block oiotad by constraining only 2 views.

sample) and by constraining 3 views (the blockwdle sample).
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For textures containing macro-structures insithe, inference problem requires a
more intricate analysis based on stereological mbsens Pag04 [ChiOg. For this kind of
particle based textures, it is advisable to usahemdype of approach. Precisely, it requires
the identification and reconstruction of 3D pa#glthe distribution of patterns inside the 3D
block and finally the placement and packing refieatnas sketched in the endingQliapter
2). But the inference is once again questionableabse the processes are based on 2D
texture, and the neighbour information usually esyptl by these approaches is insufficient
to reproduce the sample arrangement in the vol@heéf.

Depending on the texture consistency and the sisksmand, 3D information can be
inferred from 2D observations, constraining twaethor even more views (if appropriate
samples are available) leaving the inference dgonpen for future considerations.

5.6 Conclusion

This chapter was meant to make a comparison ofekire synthesis techniques
described in the previous two chapters.

On one hand it consisted in comparing the fixeidimeourhood search based
approaches described @hapter 3and showing the influence of different parameterghe
quality of the synthesis results using the repriegee approach of this class — NP_K. The
results obtained using the NP_K approach are cemgnfor most of the textures, capturing
relatively well the sample structure.

On the other hand, the visual comparison is catediuon the maximum-likelihood
based approaches, consisting mainly in analyziregdicisional heuristic on the synthesis
results. Similarly the emblematic heuristic is dms- namely NP_ML H2c — and the
influence of the algorithmic parameters is studi€hoosing properly the algorithmic
parameters, satisfying results are achieved but ait obvious disadvantage in terms of
computational cost, compared to NP_K.

In the end, the two representatives are subjeatdoncurrent process that puts face to
face the synthetic solid textures obtained with tepresentative approaches, showing the
synthesis potential on various textures. The allgors provide satisfying results in most of
the cases, but there are situations when mixedtseappear, varying the satisfying results
with the undesired ones. So a clear discriminatiiothe methods in terms of synthesis quality
does not seem to be possible. The choice of aaetesynthesis strategy can hardly be made
without considering both the computational requieats and the texture of interest.




94



Chapter 6

Application to anisotropic textures of carbonaceous
materials
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6.1 Motivation

If texture has beethe object oiso many studies, it is certaintipe to it: presence in
many areas. It can plagn important rol in sectors as varied astificial vision for quality
control, medical imagingsatellite imagerymultimediaindexing, seismic data exploration |
alsomaterial structures understandi.

In this section we focus on snapshots of textures that appeathenimages o
pyrocarbon material obtained by using the lattice fringe tegbe in High Resolutiol
Transmission Electron MicroscopHRTEM).

A specific attention is paid to the synthesis of aimpic textures from a single 2
exemplar, especially laminar texturi.e. texures made of anisotropic sheets stacked alc
given directionTwo image samples of such pyrocarbon textures rsepted itFig. 6.1

Figure 6.1- Samples of lattice fringe images of pyrocarbonsizg# 12 x128 pixels. Resolution
about 0.05 nm/pixel.

Though already studied by 2D HRTEM imagi[Ger97 [Ala9€] [Shi0O]Q [Obe02
[Rou02 [Ger03 [DaC04 [Ley0q], such carbon structures cannot be investigate2Dirior
many technical reasons related to sample preparatid HRTEM technology. Indeed, the
imaging techniques enumeratecsection2.3 are not suitable for the carbonaceous mater
A direct 3D observation of the atomic structurenabhometric scale is just impossible. 1
observation is done therefore in 2D, by HRTEM, bg tattice fringe technique. Howev:
considering the assumestructure of such carbonaceous material, more fpabr its
volumetric homogeneity and anisotropy, it is polesio relate observations made in 2D
HRTEM imaging with the t-dimensional reality of the material. As well, sugtoperties
allow to congder 2D/3D texture synthesis algorithms as a pdéssiay to investigate the:
3D structures virtuallylley09 [DaC1(Q.

This chapter introduces the concepts of composénals to better understand th
textural and structural characteristics, ing from the atomic scale representation towi
the laminar arrangements of plane lay

Synthetic volumetric textures are produced by uding algorithms described
Chapter 3andChapter 4 and are compared quantitatively to the origirfalt@xture: in terms
of dynamics and morphological propertieThis comparative study allov on one hand, to
identify themost relevant strategi for the synthesisf this kind of HRTEM textureand, on
the other hand, to compatieem objectively to a previously rpposed parametric approa
[Ley09 [DaC1q.
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6.2 Composite materials

6.2.1 Material description

A composite material, by definition, is made upnfr several elements that confer
special properties to the whole. We distinguish rinaeforcement that supports the charges
(generally a fiber one) and the matrix that ensuhesr distribution, the cohesion of the
material and the protection of the reinforcemeriagt the environment.

Our interest is based on carbon-matrix compositeanconly referred to as carbon-
carbon composites (C/C), obtained by graphitisimgl alensifying the original carbon
reinforcement. The C/C composites are distinguihahanks to their lightness, high
resistance to ablation, absence of deformation thednal shocks, while the mechanical
resistance and the friction coefficient grow witietincrease of temperature. All of these
made the C/C materials the perfect candidates ifgir performance breaking systems and
rocket nozzles. These are homo-composite matemaianing that the matrix and the
reinforcement have the same composition — Carb®he reinforcement contains carbon
fibers, while recovered by a pyrocarbon matrix.l&ar fibers can be assembled in pre-forms
which are habitually densified by chemical vapauiiltration (CVI) to obtain a composite.
The properties of the fibers and the matrix are whetdd in correlation to the aimed
application.

6.2.2 Pyrocarbons

Carbon exists under different allotropic formsdamost known being amorphous
carbon, graphite, diamond, carbon nanotubes armbedullerenes as illustrated Fg. 6.2
At the origin of the composite carbon polymorphistays the capability of the electronic
structure of the carbon to establish primarily éhtgpes of hybridizations (Spspf and sp).
Carbon can be found in various molecular configaret, but an intermediary structure
between amorphous carbon and graphite shows ititeyegriable organization rate. Here
can be found the turbostratic carbon, the constitaéthe C/C fiber and matrix.

Figure 6.2 —Five relatively well-known allotropes of carbonoifn left to right, diamond, graphite,
fullerenes, amorphous carbon, and carbon nanotubes.

6.2.2.1 From carbon to pyrocarbons
The two most familiar crystalline forms of carbare graphite and diamond. The two

structures differ in the state of hybridization @lrbon atoms ($p for graphite
and sp for diamond).
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A graphene structure is a monolayer of-spnded carbon atoms that are densely
packed in a 2D honeycomb lattice and is a basildimgi block for graphitic materials of all
other dimensionalities and fairly representedrig. 6.3 These atomic layers are also called
aromatic layers, constantly offering new inroad® ilow-dimensional physics that has never
ceased to surprise and continues to provide defgmound for applicationggei07.

28iA T4 A
Figure 6.3 -llustration of one graphitic layer and its aromaitycles.

Graphite is a stack of graphene planes 3.35 A apmmselves compounds of carbon
atoms assembled in hexagon configuration. Eachooadiom is bound to three of its
neighbours in the same plane. The inter-atomicadés is 1.42 A. Bonds between carbon
atoms in the same plane are strong, while thosedeet plans (like the Van Der Waals
bonds) are weaker. These lamellar structures asponsible of the anisotropy of the
electrical, thermal and mechanical properties ef gnaphite. This allows in the same time
various degree of organization.

Turbostratic carbon is composed @leémentary bricks(Basic Structural Units -
BSU), i.e. organized areas formed by graphene phamnish exhibit faults, deficiencies or
dislocations Pie93. The BSU, also known as the coherent domain,repaesentation model
of the smallest carbon entity used to describddband explain the aromatic carbon texture
evolution. The layers within the turbostratic carbare graphitic layers or paralleled piled
graphenes disordered by rotati®o[193 [Pie93.
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Figure 6.4 —Turbostratic carbon structure (half-bottom pars). \graphite structure (half-top part): on
left, the simplified graphene planes representatidth the reticular distance (3.35A for graphite,
3.4A for turbostratic carbon); on the right — thercesponding structural representation of a graghit
and a pyrocarbon.

As shown inFig. 6.5 it is possible to evolve the structure of a ttibatic carbon
towards that of graphite, completely or partialifythe orientation of crystallites allows it
[Obe89. This process is called graphitization and itolstained by treating thermally the
carbon. The degree of graphitization is directlated to the distance between the planes of




graphene; the higher the degree of graphitizatibe,closer is the reticular distance to its
theoretical valueNlar89].
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Figure 6.5- lllustrating the carbon structure evolution withe temperature (on the left) and the
crystallites alignment during graphitization stages the right) [Obe89].

The transformation of carbon structures as predantEig. 6.5takes place in several
stages:

« the T' stage corresponds to the raw carbon (amorphadisposition) in the form of
isolated coherent domains;

« the 2 stage consists in the growth of the coherent dosniai columns (between 800°C
and 1500°C); at this stage the turbostratic carbam be retrieved in the form of
deposited pyrocarbon;

« the 39 stage carries on the graphitisation, being thesghahen the graphene layers
interconnect forming crystallites (between 1500#@ a2000°C); starting from this stage
the thermally treated pyrocarbons can be found;

« the 4" stage consists in the proper graphitisation; begimn from around 2000°C-
2200°C a graphite structure is formed; this is fthal stage, because above 2800°C-
3000°C no supplementary structural modificatioolhserved.

6.2.3 Pyrolitic carbon

Pyrocarbon (PyC) or pyrolitic carbon is a solidnfioof carbon formed by thermal
cracking of a liquid or gaseous precursor havireggdinucture of a turbostratic carb@al93.
Similar to the graphite, it is made up of a statligm@mphene plans where carbon atoms have
sp? hybridization. What differentiates pyrocarbon frgmaphite is that the different graphene
plans are stacked in an isotropic way.

The pyrocarbon matrix of the C/C composites carol@ined by liquid or gaseous
way. The gaseous way or chemical vapor infiltrat{@VI) allows obtaining superior final
properties and better reproducibility. Even if st longer and costlier, it is the privileged
approach. We talk about the form of the carbon wiiieposits on hot surfaces above 900°C
by cracking of hydrocarborBpu0g.
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Figure 6.6 -High resolution TEM mode of the different pyrocarb¢BouQ:]: (a) smooth laminar
poor anisotropy and wide distribution of layer diet@rs L, is the mean value as presented in |
6.8); (b) regenerative laminar, good anisotropy amde layer diameter distribution; rough lamin:
high anisotropy and small laydiameter.
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Pyrocarbon and other turbostratic carbons diffethat the layers are disorder:
resulting in wrinkles or distortions within layerhis gives pyrocarbon improved durabil
compared to graphite.

According to the pyrocarbi degree of anisotropy, one can distinguish sevgpas of
classes:

* isotropic laminaPyC ISC) — which shows random orientationgrphene pla
» smooth laminar (PyCL) —the organization of the graphene plans still sldefects
* rough laminar (Py@R) — the graphene planes are perfeptlyallel to the fibers surfac

Between these classes, transition stages appadindeto other pyrocarbon forms, t
regenerated laminar (Pyc LR—very anisotropic, the granular pyrocarbon (PyC 18)

Figure 6.7- Examples of Pyrocarbon applications: from left ight, Messie-Buggati-Dowty
breaking system [Mess], Snecma Vinci motor [Srggelphitic hear valve andnter-phalangeal joint
prostheses [Bou06].

Pyrocarbon applications (s€g. 6.7) are ofgreat interest in mainly three directic

« the use of C/C composite materials for aircraftsaking disc¢ rocket engines nozz
or atmospheric rentry corp;
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* in the medicine field — used in fabricating coasinpeart valves or small bone
prostheses thanks to the pyrocarbon biocompatitdeacter;

» for the next generation of nuclear reactors, pyrioma acting as a confinement barrier.

6.2.3.1 Structural and textural parameters of turlostratic carbon

The turbostratic carbon exhibits locally in hisusture ordered 3D entities, consisting
of stacked graphene layers, parallel and equidigtaeach other, of finite dimensions and
disoriented with respect to each other. These iestiare characterized by structural
parameters (short range order) and textural pass@bong range orderBpu93:

* dooz: the average distance between two successiveslajgraphene, also named as the
reticular distance
* L,,the coherence width: the average diameter of theketl graphene layers (of the
coherent domain)
* L, the coherence length: the average height oftdeked graphene layers
» Lj: the measured diameter of the flat portion of graphene layer
» L, the measured diameter of one graphene layer
N: the number of stacked graphene layers
B: the torsion angle along the layers

Figure 6.8- Schema of stacked layers, showing the structumdltextural parameters.

6.2.4 HRTEM images of interest for synthesis

The images, of which textures are used, are sné&psésulting from the observation
in High Resolution Transmission Electron MicroscoyRTEM) of pyrolytic deposits
obtained during phases of densification and heatrnent of C/C composites.

Nowadays HRTEM combines recent instrumental develyps with innovative
strategies of imaging and image processing. ltle@eme a truly ‘quantitative’ technique that
enables one to retrieve the atomistic structurematerials with high and well-known
reliability. Some considerations about the pringigf image simulation using TEM are
shown inappendix E
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Carbon fiber 256 ~ 256 px < 74 - 74 A
Figure 6.9- Example of carbon fiber and pyrolitic deposit ahd textural HRTEM snapst (image
reproduced from [DaC01]).

HRTEM technology providesrepresentations of 20to 10 magnification orde
relative to the initial sample. Digitizing thosealds to the texture images used as synt
exemplars.Fig. 6.9 shows an image of 2x256 pixels, obtained by a 450000 order
magnification and a 2000 dpi digitizing, reachiogatfinal resolution of 0.3A per pixel.

Other samples of lattice fringe images of dens~graphitic carbons are presentec
Fig. 6.1Q being cuts of 128128 pixels from the bigger samples availableappendix F
These are anisotropic textures composed of elodgsteictural elements showing I

undulation.
b
e

Figure 6.10- Samples of lattice fringe images of dense-graphitic carbons: raw HRTEM images |
b, ¢) and their filtered versions (d, e, f). Sangifes are 12x128 pixels

I

The raw samples iRig. 6.10¢c show locally periodic patterns together with higid.
low frequency artefacts. éither high frequency nor low frequency componentsvide
useful information about the atomic structure of tbserved material. A good comprorr
for analyzing them conssstin using their filtered versions (Fig. 6.10¢f ) by applying a
radial and directional banplass filter in the frequency domaDaC04.

10¢



6.2.5 The need for 3D texture synthesis

The above images obtained by TEM observation afogarbon deposits show
interference fringes which reproduce in projectiloa atomic layers (the aromatic layers). The
degree of organization of these layers reflectstheerial graphitisation stage.

The study of the spatial organization of thesages plays an important role in
characterizing the properties of the composite rnase Despite the fact that they have been
investigated in 2D$hi0Q [Obe02 [Rou02 [DaC04 [Ley09, no three-dimensional imaging
technique appears to be appropriate at such hgghutgons.

Nevertheless, the three-dimensional structurebeaaccessed by inferring it from the
2D sample using 2D/3D image synthedi®)yj09 [DaC1(d. Further on, the synthetic 3D
images serve as virtual material that can be usedatomistic reconstruction. Atomistic
reconstruction methods are entrenched tools f&mgexperimental characterization data to
the atomic scale structure of matteey09. Most of the existing methods are not suitable fo
anisotropic systems, as it is the case of the eahates of dense graphene based carbons in
Fig. 6.1Q guessing the initial atomic structure.

Experimental Image
(Magnification : 430K
Digitization 1200dpi)

.
Synthesis
algorithmn

| Image-constrained
simulated annealing

Image simulation
andvalidation

SimulatedImage

VAtomic structire

Figure 6.11 -The 2D/3D texture synthesis step inside the IGARade

A recent method, called Image-Guided Atomistic étestruction (IGAR), capable of
generating the atomistic models for anisotropic atextures was developed biey09
compelled by a 3D synthetic texture. Using an imegastrained simulated annealing, the 3D
atomistic structure is simulated by exploiting theernal potential of the 3D textures to bring
the atoms to settle preferentially at specific poss (i.e. the black areas inside the 3D
texture).

Supplementary, a simulated HRTEM texture can bwiobd from the atomistic
structure, and it can be compared with the experatetexture in order to validate the
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atomistic model Farl2]. A schematic illustration of this process is sleowin Fig. 6.11
pointing out the texture synthesis step it involves

The published works concerning the IGAR method based on a parametric
synthesis algorithm showing the synthesis methddmial and also its limitsaC1d. One
objective of this chapter (and implicitly of thisesis) is to evaluate other types of approaches,
and this time non-parametric ones.

6.3 Volumetric HRTEM texture synthesis

Texture synthesis is a major step in the atomrsonstruction of HRTEM data, but
the volumetric texture synthesis procedure starfiogn a 2D HRTEM sample is however
delicate. Therefore some statements have to be rbattge presenting the algorithms
implementation and the benchmark used for compahe@®D results.

6.3.1 Orthotropic properties

The nearly periodic directional structure obserireHRTEM images is typical of 3D
laminar arrangements. The dense graphene baseshsashow plane mono-atomic layers of
graphene stacked together along the direction thiotwopy i.e. the vertical direction of the
textures fromFig. 6.1Q These materials have an orthotropic structureammg that the
properties of the material are the same on alldibections orthogonal to the direction of
orthotropy.

The observed 2D HRTEM images of such a materiaé the same aspect whatever
the viewing angle as long as it is orthogonal ® anthotropy direction as exemplified Fig.
6.12 Thanks to these properties of symmetry that ardied by the dense graphene based
carbons, its 3D statistical properties can be dedutom the ones observed in the 2D
HRTEM samplesDaC1d.

Figure 6.12 Properties of symmetry: two orthogonal slices ef same block (for the front view and
the right view) show the same statistical propeattie

So it is possible to relate measurements made simgde 2D cross-section of the
volume with the 3D properties of the material usisigreological considerations (i.e.
orthotropy) Urs1( and accessing the three-dimensional structurénfgrring it from 2D
using 2D/3D texture synthesis.

Consequently, in the followings of this chaptée synthesis is made by constraining
only two orthogonal views of the volume (the frartd the side view, since no sample is
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available for the 8 view) with a single 2D HRTEM sample as the onesig 6.1Q The
principle behind the texture synthesis proceskustrated inFig. 6.13

Figure 6.13 -The texture synthesis process: starting from a oamdhitialization, the synthesis is
performed voxel per voxel by examining the 2D voggjhbourhoods extracted from two orthogonal
views of the 3D block (front and side); the valfighe output voxel is updated with the best cartdida
from the input image after a fixed-neighbourhooarsk, or with the most probable grey-value from

the input image to be in that position conditiofmdts neighbours (in function of the chosen
methodology).

6.3.2 Results evaluation methodology

In the particular case of HRTEM textures, beyamel visual interpretation (as in the
case of textures used in computer graphics), atative study matters a lot, finding itself
very useful in describing and understanding therirdl arrangement of the observed layers.
For this reason an experimental evaluation is edran, that allows to identify the relevant
strategy for the volumetric synthesis and alsodimgare objectively various algorithms from
the literature.

This quantitative study evaluates the results takito account, on one hand, the grey
level dynamics (first order statistics) and, on dfteer hand, the morphological properties like
the lengths, the order of tortuosity and the lar#&ntations of the elongated patterns (fringes)
present in the texture.

Properly stated, it aims at evaluating the algarghcapacity to reproduce the
orthotropic layered structure of pyrolytic carborespecting the HRTEM observations.

Grey level dynamicsstudy means at the outset to compute thertler statisticsas
the mean, the average deviation, the standard ti@vjighe variance, the skewness or the
kurtosis of the grey level pixels, in the exemad in the output block.

There’s no need to mention additional informatibow these statistics, perhaps only
some brief remarks on the skewness (tHestindardized moment) and the kurtosis (tHe 4
moment). These two are descriptors of the shape mbbability distribution: the skewness
measures the degree of asymmetry while the kuriesigneasure of peakedness or degree of
flattening.

Next, the Kullback-Leibler divergence is computedaadissymmetry measure of the
difference between the probability distributiontbé exemplar grey level and the output 3D
block grey level.

It is not a ‘distance’ in the mathematical senséhefterm, but in the literature one can
find commonly the symmetrical version of the Kultka eibler divergence between two

" The T' order statistics estimate properties of individpixiel values, ignoring the spatial interactionvibetn
image pixels, whereas®2and higher order statistics estimate propertigsvofor more pixel values occurring at
specific locations relative to each oth8ripg].
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distributions, that can be interpreted as a diganaod that we have used in the quantitative
analysis in the following form:
)+ ayog e 6

D sym(P”Q) z p(l)log o(i)

where P and Q correspond to the probablllty distribution of thens in the grey levels
histogram of the input exemplar and the output blabile i runs through all the bins in the
histogram, mentioning that the output block compatais seen as a multi-2D analysis.

ID()

Although at the end of the synthesis processutieg can freely intervene to change
certain statistics in order to match them exactlythe exemplar (like the mean or the
variance) | choose not to interfere, leaving trgoathm to follow its natural course, with its
advantages and disadvantages to draw attentiobhtd!s why, in addition to the grey level
dynamics comparison, a morphological study is cetetl study that’s immune to the above
potential grey level basic corrections.

Concerning thestructural properties of the 3D blocks, the study is oriented towards
the comparison of the local orientations of theumoétric block (analysed as a multi-2D block
representation) relative to the input sample, basea@ structure tensor estimated onx@ 7
neighbourhood inspired fronD[Z86] [Big91]. The analysis of the shape of the local tensor
heads to a local orientation.

For an image I, the structure of the tensor iegily:

I, ) (120,
(E m)(E T -
Iylx Iyly Ixy Iy

where the subscripts indicates spatial derivataresthe bar~ indicates the convolution with
a Gaussian filter. In practice, the tensor caldotatis based on the image gradient, the
gradient magnitude of the image intensity at eawhtgeing approximated by convolving the
image with the Sobel convolution kernel.

Eigenvalue analysis of the tensor leads to twereiglues defined by:

/1_— R 2)+4El_xy2j 63
Ay =ZIZ+12- \/r )+4[|_Xy2j (64)

The direction of the eigenvectors relatedAtmdicates the prominent local
orientation:

1 20,,
6 == [arctap—=- (6.5)
2 12-12

The corresponding confidence, compute@las A,)/(A, +A,), associated to the local

orientation describes the total local derivativeergy. Fig. 6.14 illustrates the image
orientation field alongside the image confidence & associated orientation histogram.
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a
Figure 6.14- Texture orientation: (a) the HRTEM sample from 6i@1d; (b) the orientation fiel
map and the colour bar givinge correspondence between colours and orientati@she
orientation histogram computed from the orientatii@hd and (d) the corresponding confidence .

The comparison of thmorphological properties consists in tracking the texture le
curvesand describing the elongated patterns containedirwithe texture. We address 1
orientation and pattern length measurement teclesigqs described bDaCO0(] and [Ray1Q
to extract textural features (fringes) and compthieir lengths and tortuosity. allows a
relevant description of the shape of the patterntisinvthe texture

The procedure consists first in filtering the ralRFEM samples as regards spa
frequency and directiorDaCO04] in order to obtain the lattice fringe images upamch one
can perceive promptly the graphene layers orgdoizatPattern analysis proceeds w
tracking the level curves, by successively findithg sets of seeds (i.e. sets of linl
interpolated pixels) that have matching grey val

0.08

0.05 | fringes lenghts ———————
004 1
002 {

ol

g

01

008 fringes tortuosity
0.06
004+
002

N

Vv &- o & &> D LT, R e . S P
" £ £ o S AP U )
RS R LR R ARSI GRS AR RPN

a b c
Figure 6.15- lllustration of the leve-curve tracking algorithm applied on a HRTEM pyraoan
sample: (a) a lattice frige image, (b) the associated confidence map, Ye) trirves extraction ar
(d) shows the distribution of tiL, andt parameter values in the HRTEM im..

wh

N

Once the fringes are extracted, they can be cladsaf a function of their lengths (it
is theL, parameter of the graphene layers) by counting ithguency of appearance of 1
fringe lengths, and in function of their degreetoituosity (that is the parameter of th
graphene layers).

Consequently, tortuosity classes are built in otdeconpare the distribution of tr
tortuosity values. An example showing the l-curve tracking algorithm outcomes
presented ifrig. 6.15

Curves that ‘continue’ outside the image are negtecThis should not be a proble
if the image is large enough track a sufficient number of fringes. For smallgnthetic
texture samples, because the algorithm alreadyiges\ileable textures, borderline fring
can be detected by considering the circular imageia illustrated irFig. 6.1¢.
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Figure 6.16 -Example of the level-curve tracking algorithm empla the case of a circular lattice
fringe image: from left to right, the seamlessatiike texture obtained by using the sample in F&1 8.
and the level curve extraction with a proper zoantte area of interest

To recapitulate, the measured characteristics weebby the evaluation methodology
are as following:
- for grey-level dynamics: grey-level histograms dfitorder statistics (standard
deviation, skewness and kurtosis);
- for the structural properties: local orientationsdathe fringes lengths and
tortuosity.

6.3.3 Fixed-neighbourhood search based synthesesults

Adapting the algorithms described @hapter 3to using only two orthogonal views,
synthetic volumetric textures are produced. Thelltesare shown irFig.6.17 for the raw
HRTEM images and ifig. 6.18for the filtered HRTEM samples.

Fig. 6.17 and Fig. 6.18 contain some volumetric results obtained from rglsi
HRTEM texture using non-parametric approaches. reg6.17d-f and 6.18d-f show the
volumetric textures using NP_WL algorithm, whilgdres6.17g-i and 6.18g-i show the
results obtained using NP_K, i.e. the backbone &f WL but optimized by using the
weighted average and the colour histogram matctéognique. On the™row in figures
6.17and6.18are represented the 3D blocks obtained by usingd\I®, i.e. using the discrete
solver plus the index histogram and the positi@tdgram matching technique.

The experimentation framework for the mentionedultss consists in using 5
pyramidal levels, full-square non-causal neighboods of size 7x7 pixels, Hilbert curve
scan type and, for NP_CW, a set of 15 candidatesdoh pixel. The input exemplar is of size
128x128 pixels, while the results are of size 1ZBx1128 pixels.

The provided results represent the 3D block obthiaiter 10 iterations. We have
observed that, generally, iterating much more ametg/ield better results since a high number
of iterations creates repetitions of patterns.




j k I
Figure 6.17- Volumetric results: from top to bottom, th* row (a, b, c) shows the 2D raw HRTE
textures; the %' row (d, e, f) represents the 3D views of the smlidures obtained aftel0 iterations
from the samples in thé'dow using NP_WL approach; th¢® row (g, h, i) contains the 3D textur
obtained by applying the NP_K method and final/4" row (j, k, I) corresponds to the resu
obtained with the NP_CW proposed methodhapter 3. This illustration allows a direct vistL
comparison of the fixedeighbourhood search based methods for each rawlsaimy scanning eac
column fromap to bottom (input sample, NWL result, NP_K result and NP_CW res.
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Figure 6.18- Volumetric results: from top to bottom, th® row (a, b, c) shows the 2D filter:
HRTEM textures; the"2row (d, e, f) represents the 3D views of the slidures obtained after 1
iterations from the samples in th*row using NP_WL approach; th&3ow (g, h, i) contains the 3
textures obtained by applying the NP_K method avadly the 2" row (j, k, 1) corresponds to tt
results obtained with the NP_CW proposed methdghiapter 3. This illustration allows a dire
visual comparison of the fix-neighbourhood search based methods for each filteaenple, b
scanning each column from top to bottom (input dapipP_WW result, NP_K result, NP_CW resu.
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With a reasonable computational cost (a few minptassynthesized block) the r-
parametic approaches provide results of a fairly satisfactwisual quality. For thi
volumetric textures fronfrig. 6.17fandFig. 6.18fthe version of NP_WL's algorithm is n
able to preserve contrast (because of the averagatation used when combining thwo
orthogonal views). This is not the case for NP_kd adP_CW thanks to its weig
optimization and its histogram adjustment procé$swever, some results exhibit seve
visual disadvantages such as blurring, missingpeating input textural patter(like in Fig.
6.17f,i,landFig. 6.18), while in a few cases NP_CW fails in preservihg tdynamicsFig.
6.17k-).

Globally, after comparing visually the results, aran say that the synthesis behe
better on the filtered images than on the raw HM samples.

But the visual interpretation of the synthesis hsstemains subjective, distinguishi
more or less a bad or a good result. Here intes/émequantitative comparisc as described
in section 6.3.2Different indicators of this objective sty are shown irFig. 6.1¢.
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Figure 6.19- Different indicators of the objective comparisortted 3D textures obtained
synthesizing the HRTEM texture in Fig. 6.10a: desfl histograms anc™ order statistics -
standard deviation, kurtosis and skewness. Thegolre consist in comparing input image statis
with the ones obtained after a m-2D solid block analysis and by computing Kullk-Leibler
divergence between the histograms o exemplar and the output block all along 10 iterat.

From the first hint of the eye on ttdynamicsof the results, it's obvious that tl
histogram adjustments bring significant improversesimpared to the backbone methoc
demonstrated quantitatiyeby the grey level comparison Fig. 6.19and fromFig. 6.20b
However, in the case of dynamics comparisorFig 6.203 the nonparametric algorithr
improved with the index and position histogram @¢ capable of preserving the grey lev:
by contray, it diverts the statistics from the tar.

And as expected, the visual conclusions are reiefbguantitatively by the grey lev
histogram comparison, generalistrengthening the visual assumptions relative te
significant improvements brought by the histograratehing techniquesThe quantitative
indicators reveal mostly the 3D textures tendeeyards the same statistics observed or
HRTEM exemplars.
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Figure 6.20- Different indicators of the objective comparicof the 3D textures obtained

synthesizing the raw HRTEM texture in Fig. 6.10- the £'column plots) and its equivalent filter
sample in Fig. 6.10f (b - thé“xolumn plots): from top to bottom, grey level digams and * order
statistics - sindard deviation, kurtosis and skewness. The prgeecbnsists in comparing inp

image statistics with the ones obtained after &ti-2D solid blocks analysis or by computi
Kullback-eibler divergence between the histograms of tleengkar and the oput block.

Another important remark is that in general therapphes take more or less time
reach the statistics of the input image. If therapphes involving histogram adjustments t
less than NP_WL, approximately five iterations, thesic method takes alist double in
number of iterations to reach the same statistiosye all because of the averaging opere
when combining the two orthogonal viev

Experimentally, we have observed that usuallyatieg much more does not yie
better results, since llgh number of iterations creates repetitions dfgsas and produce

more regular textures than those of the input im
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As presented irFig. 6.1(, we dispose of the raw HRTEM images, and a fitte
version of these images. Filtered images were by [DaCl1(Q to ease image synthes
because their parametric synthesis algorithm shadifidulties in handling raw images. Tl
filtering consisted in using two filters, a radiahd a directional bar-pass filter in the
frequency domain)aC04. As shovn in theFig. 6.2Q the nonparametric methods beha
relatively well with both images, though in somees (for example the NP_CW appros
the filtered image results are better than theltesbtained with the raw imag

Algorithms comparison based on tlocal orientationhistograms as shown iFig.
6.21 confirms the previously stated convergence. Howewvesome cases, the impressiol
that the proposed algorithms tend to produce testurore regular than that of texemplar.
Iterating more doesn’t resolve the reproductionpafterns. It's mostly the result of t
insubstantial average of NP_W.L algorithm and italaleterministic characte

s orientation histograms orientation histograms
g g1b ¢
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Figure 6.21 Spatial structure variation indicators: the Kullba- Leiblerdivergence between tl
orientation histograms of the exemplar and the aulpocks obtained by applying the algorithms
the sample in Fit6.10c (plot a) and on the sample in Fag10f (plot b.

The morphological propertie comparison was done bymparing the |, parameter
and thet parameter of the input lattice fringe image and #ynthesized texture blo
obtained after ten iterations, being analysed astdét mult-2D lattice fringe images. Tt
results fromFig. 6.22show that the produced tures contain overall longer fringes than
input image glot 6.223 and in the same time they are more reguplot 6.22h). This
phenomenon may be related to the deterministicachar of the algorithms, based on lo
decisions, which tends to prcce these very regular or repetitive textures. Udarger
images on input and synthesizing bigger blocks aipwt should impose a sufficient numt
of fringes capable of describing better the morpbg.

i fringes lengths fringes tortuosity
wiz = A ——input image 01 ——input image
——NP_K
0.1 V‘. NP_CW 008 ,‘ . ——NP_K
0.08 | - .‘ﬂ ——NP_CW
- \ NP_WL 0.06 \

Frequency
j=1
E
Frequency

i - L A E n“ A NP_WL
Z“-"’l dL“ }:\ 0 [7 ¥ .
5 BN h— : i o\ 0.02 L R -

e e I T B B e R e I ]

5
[

o
[=}

5
(=]
=

> a5

S
~N -

0125

classes classes

a
Figure 6.22- Plots of the morphological structure indicators) ¢ae distribution of fringe lengths
the input HRTEM image from Fig. 6.10a and in thdti-2D synthesized volumetric textures from |
6.16d,9,j; (b) the distribution of the tortuositglues corresonding to the same input image ¢
output blocks used in a. Fringes were retrievednayaging front and side slices in the 3D text.
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Fig. 6.23shows the synthetic texture evolution in timesatenally speaking, starting
from an initial noise status and modifying it durisynthesis until reaching a satisfactory
status. Moreover, even if during the optimisatidrage, the synthesis is constrained only by
the grey level histogram, after a while, besides ttynamics, the inner structures show
orientations similar to the preliminary 2D texture.

21> sample

Figure 6.23- Texture evolution in time, using the backbone agpincand only the grey level
histogram matching: from top to bottom, the exematal the evolution of the initial noise, modified
during the synthesis until reaching in a few it@yat a satisfactory result from the point of vieite
grey levels and the orientations. From left to tighe texture representation, the correspondirgygr
level histogram, the local orientations map and dhientation histogram
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Analyzing the comparative anisotropic texture resubbtained by using tf
neighbourhoodearch based algorithms, one can deduce that teesatsfactory method
NP_K, as it was already concludecChapter 5for a large varietpf textures. For any furthe
comparaisons in this chapter NP_K is going to beduas the representant of the -
parametric pyrocarbon texture synthesis methodsdoas fixe-neighbourhood sear

6.3.4 Maximumiikelihood based synthesis result

Going over the study fromsection 5.3 corroborated with the orthotrog
considerations, the algorithms describeChapter 4are adapted to exploit two orthogo!
views and implemented under the framework that @doto bring in the most satisfyir
resuls. The framework used to synthesize HRTEM sampbessists in: a neighbourhoc
system composed of%9 neighbourhood, three decimation scales, 1-sampling strategy,
visiting the voxels in a random way anc-synthesizing the even pixels inherited fi a
lower resolution scale. The heuristic used in mgkihe decision for an output voxel
NP_ML_H2c.

The inconvenient of the likelihood maximisation éadsynthesis approach is that

pixel temperature function incorporated with theedeinistic ICM relaxation algorithm i:
difficult to forecast and, above all, leads toradioverwhelming process. Next, although
computational time was reduced by decreasing tig@deature of a pixel with -3 factor and
stopping the synthesis after reaching 9from the initial global temperature, the synthe
remains cumbersome for synthesizing big texturesndd the input HRTEM samples usec
source for synthesis are thex64 textures reduced to 32 grieyels while the targeted bloc
are of 6464 x64 pixels size, as it illustrated Fig. 6.24

b
Figure 6.24 Volumetric results obtained by using NP_ML_H2c apggh on the lattice fring
samples of pregraphitic carbons represented on top of each 30tmtic texture. The HRTE

samples are cut out from the images in Fig. 6.8 8e sizes are (x64 pixels and te grey-level

distribution contains 32 level.

The results produced so far by the NP_ML_H2c atgoriusing the above framewc
parameters are unsuccessful, only the resulFig. 6.24a gives a brief impression
resemblance between the sample and ynthesis results. The resultskig. 5.24t-d are not
capable of replicating the sample structure. Thesns to reproduce in the synthetic bl
only the most representative g-levels of the 2D sample, giving the impression ttest
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synthesis behaves as a filtering operation, siyipltifthe texture. This opinion is sustained by
the results presented Fig. 6.25 showing the volumetric textures at the first dahd last
iteration of the final scale, obtained using theneadramework but on bigger textures. The
samples are the textureshkig. 6.10a,b,d,eeduced to 32 grey-levels, and the 3D textures are
results of the NP_ML_H2c algorithm a8x128x128 size. The synthesis results are either
too simplified in terms of structure and dynamiegher containing only the representative
modes (i.e. grey-values), estimated during ICMxati@n.

1
W

Figure 6.25 -Volumetric results using as source for NP_ML_H2ulsgsis the 128x128 samples
from column (@), containing 32 grey-levels: the matumns show, from left to right, the 3D
128x128x128 texture obtained at the first iteratify) and at the last iteration(c) of the final seal
(experimentally, using a decreasing cooling ratéaotor -3 and accomplishing 95% of the global

temperature, the end result is achieved after faarations).

a




This inconsistency of the results may be explaimgthe scarcity of grey-levels, more
accentuated at the smallest scale and the preséme&atively homogenous large areas of a
same grey-value in the sample, that are not capalgeovide enough diversity to be captured
by the neighbourhood.

But using a bigger neighbourhood will increase eweme the computation cost and as
suggested by the results Fig. 5.21 and Fig. 6.26a,bit wouldn't guaranty the structure
preservation.

Correspondingly, using numerous grey-levels (ilethe grey-levels available in the
2D sample) still seems to be inadequate to helpsyimthesis capture the pattern, as it was
shown inFig. 5.22 and Fig. 6.26¢,showing that it is not necessarily the number aygr
values that poses problems.

=il

- -

c

Figure 6.26 The influence of the neighbourhood size and thebeuwf grey-levels on the synthesis
results: from left to right, the first two resulbrcespond to the synthesis of the HRTEM samplegé4
and 32 grey-levels) from above the two blocksajruging a 99 neighbourhood and in (b) a ¥11
neighbourhood; the result in (c) is obtained byngsthe full-square £ neighbourhood but applied
on the original HRTEM sample containing all thegtevels; all the other parameters were fixed.
Next to each texture, the corresponding grey-laigbgram is shown.

The deterministic pixel-temperature based procegsires more precision in tuning
its parameters, or to dispose of a sample texturehah structure is well represented on all
the required resolutions.

Despite the fact that the maximume-likelihood basgathesis approaches showed their
potential, but also its limits, at this currentgdaof implementation the volumetric textures
corresponding to the HRTEM samples are un-expl@tab terms of the comparison study,
relative to the fixed-neighbourhood search basetinigues. However, suitable results are
expected to be obtained by accelerating the algari{providing a parallelised synthesis
process) and by ameliorating the relaxation schémgebetter using the pixel temperature
function or by using a stochastic relaxation alton).

6.3.5 Parametric vs. non-parametric 3D texture sythesis methods

A real advantage of the comparison benchmark as ithis suitable to comparing
different algorithms from the literature. In theseaof the HRTEM textures used as synthesis
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samples, it's highly interesting to dispose of sal/eynthesis methods from which to choose
the best one and integrated it inside the IGAR wogkth

This thesis deals with a class of non-paramepfr@aches, so a high interest is to be
able to compare them with a different kind of swsis approaches. Here the opponent
approach is the parametric one, based on a systhgsnalysis procedure, presented in
[DaC1Qq and used as a first step of the IGAR method foméstic simulationslfey09.

As shown in section 6.3.3the non-parametric approaches based on fixed-
neighbourhood search provide satisfactory reswith, notable performances setting apart the
NP_K approach.

The remarks irsection 6.3.4ogether with the experimentation @hapter 5underline
the limits of the non-parametric approaches basetikelihood maximisation, yielding the
results inappropriate for the evaluation methodylpposed irsection 6.3.2

In consequence the further study involves only e K non-parametric approach
and the following parametric approach.

6.3.5.1 A parametric texture synthesis approach

The parametric approach taken into considerationhe 2D/3D synthesis/analysis
extension of the parametric method proposed in g[Pdrtilla and SimoncelliFor0(. The
2D/3D extension of the pyramidal scheme Bb{0( was developed byfJaC1qd and it is
schematically presented @hapter 2in Fig. 2.16.1t is based on the idea that an image can be
relevantly analysed through a bank of spatialrltevith specific orientations and scales.

The 2D/3D synthesis algorithm proceeds in threpsste

- 2D analysis stepit consists in decomposing the HRTEM image saniple a set of
multi-resolution sub-bands using steerable pyradedomposition; a set of reference
2D spatial statistics is produced;

- 2D-3D statistical inference3D reference statistics are inferred from thedtigs using
specific anisotropy assumptions;

- 3D image synthesishe 3D target statistics are imposed on the suub of a random
3D data block.

More details about this approach and its implewa#n can be found in the original
paper paC1dQ.

The 3D synthesis method is applied on the rawfdtaled samples fronfrig. 6.1Q
The synthesis framework consists in decomposingtberable pyramids with 3 levels and 4
orientations and the chosen target statistics b#siagmean, the variance, the skewness, the
kurtosis and the autocorrelation coefficients (cated on 7x7 neighbourhoods). The
128x128x128 results are providedHig. 6.27 for the raw samples and kig. 6.28for the
filtered versions. For simplicity and to be in amtance with the other notations, this
parametric approach will be tagged in as P_D&G.




b c
e f
Figure 6.27 -Parametric 3D synthesis results: the second rowesgnts the 3D views of the sc
textures synthesized from the raw 2D samples ifirdtaow.

The solid results obtained by synthesizing the FRWEM textures provideelatively
convincing resultsKig. 6.27¢), but some artefacts are found (the blocks fi6.27e and
6.27) due to the way the autocorrelation coefficients astimated on the sample imag
assuming periodicity of the 3D block. As for thesukts obtainecwith the filtered textures
they seem to be free from circularity artefaThe solid textures ifig. 6.28c andFig. 6.28e
are alike the samples in the sense of straightidést patterns. These results are susceptit

some high frequency oscillatis [DaC1( making for example the results Fig. 6.28fto
look as disordered &s28e

Figure 6.28 -Parametric 3D synthesis results: the second roweasgnts the 3D views of the sc
textures synthesized from the filtered 2D sampieisé first rov.
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6.3.5.2 Results comparison

The comparison study is carried out between theltesbtained with NP_K fror

Fig. 6.17and6.18 and the results obtained with P_D&G frcFig. 6.27 and 6.28 using as
source of synthesis the HRTEM samplesFig. 6.10a, b, dand e More precisely thi
conparative pairs are the followir

- 6.17gwith 6.27dfor the raw HRTEM sample i6.10a(couple tagged ¢C1)
6.17hwith 6.27¢efor the raw HRTEM sample i6.10b(couple tagged eC2)
6.18gwith 6.28dfor the filtered sample i6.10d(couple tagged as3)
6.18hwith 6.28efor the filtered sample i6.10e(couple tagged &54)

The comparison is performed using the same metbggialescribed itsection 6.3.2
with the mention that the 1(teration of the synthesis process is used, mastbause NP_|
needs moreterations to provide a satisfactory result. FODRG it is not necessarily th
case, because it shows stable results early om (@om the :“d_iteration) and not varyin
significantly during eventual extra iteratiol
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Figure 6.29 4ndicatorsof the dynamics comparative study that concernstiples C1 to C4, tt
colour marker labelling the synthesis methods.

Fig. 6.29 compares the results in terms of -level dynamics, comparing punctua
first order statistics of the NP_K results with theesof the results obtained with P&G.
All along these results, the parametric method iples/ 3D synthetic texturecloser to the 2D
samples in terms of grdgvel histogram, and statistics very similar to thiees of the
corresponding 2D samples. An exception occursterdase of the C1 evaluation, show
that for using the raw HRTEM sampleFig. 6.10a NP_K behaes better than P_D&G beir
closer to the sample, in terms of c-level histogram. NP_K results tend towards the
sample characteristics but even after 10 iteratibese still remains a relative gap betw:
them. However, this gap is not very signint, results being qualitatively similar, genere
the grey levels distribution seeming to be evemy the input sample, NP_K volumet
results and P_D&G solid textur
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Figure 6.30 Spatial structure variation indicators: the Kullda- Leiblerdivergence between tl
orientation histograms of the exemplar and the aulpocks obtained by applying the algorithms
the comparative pairs described as-C4.

The comparative study is further on performed ideorto check if the structur
propertes of the sample are retrieved in the volumetitures. First, the local orientati
maps are computed and orientation histograms amergeed. A particular measure (i
Kullback-Leibler divergence) is employed between the ortamahistogram of te HRTEM
exemplar and the orientation histogram of the patamsynthesis result, and respectively
nonparametric synthesis texture. This is illustratgdh®e plots inFig. 6.3(, showing that the
volumetric textures obtained with the parametricoraach preserve better the lot
orientations of the exemplar patterns.

fringes lengths fringes tortuosity

0.1 | —s—inputimage —=—inputimage

—+—NP_K

Frequency

classes

Figure 6.31 -Morphological structure indicators: e distribution of the fringe lengths and 1
tortuosity values in the input HRTEM image from.Fdl1a and in the mu-2D synthesized
volumetric textures of the couple C1 (F6.17gfor NP_K and Fig. 6.27d for P_&G); fringes
were retrieved by managir front and side slices in the 3D textL.

The morphological properties comparison is int@@sin describing the elongat
patterns contained within the texture evaluating It, parameter and the parameter of th
input lattice fringe image and the texture synthediwith the NP_K algorithm and tl
P_D&G algorithm.Fig. 6.31confirms that the parametric algorithm producesuess tha
contain similar fringes with the input ime both in terms of length and degree of tortuo:
The P_D&G result patterns are shorter and lesslaegas the 2D sample) than the patte
present in the NP_K result.

Drawing the line of the comparison study betweenrtbr-parametric algorithm bad
on fixedneighbourhood search and the parametric syn-by-analysis algorithm, the latt
one is more capable to produce volumetric textwigéls anisotropy properties similar to t
2D sample texture.
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6.4 Conclusion

This applicative chapter introduced some necessamycepts of the composite
materials of which HRTEM images were used for 2Dfhthesis in a complex atomistic
reconstruction scenario.

Afterward the algorithms described in the previchapters are evaluated regarding to
their capacity to reproduce 3D textures respectimg structures observed on the HRTEM
images. A comparative study was developed in otderdentify the most relevant non-
parametric synthesis approaches for this partictlRTEM textures and to compare a
representative non-parametric approach with a petréenalgorithm from the literature. The
non-parametric algorithms based on likelihood maxation are not suitable, in their present
form, for this particular type of textures. Howeyvéhnis work leaves the perspective for a
future improvement in terms of quality and compiotadl requirements.

The quality of the results obtained with the namgmetric neighbourhood search
based algorithm and predominantly with the paraimeine is highly encouraging, the solid
textures showing both statistical properties (amnggry, contrast, etc.) and structural features
(pattern lengths and disorientations) roughly samib those observed in the original samples
highlighted by the quantitative comparison betwesmthetic data slices and reference
HRTEM samples. But in the current state of develepinthe parametric method, in spite of
its drawbacks, seems to provide the most satisfyesglts.
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Chapter 7

Conclusions
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7.1 Synopsis of the work

This section aims at summing up the results ptedem this manuscript and at
proposing overall conclusions derived from thisstken a clear-cut form avoiding to restate
the closing remarks of each chapter.

The main objective of this work was to investigditferent strategies for volumetric
texture synthesis starting from a 2D texture. The-parametric synthesis methods have been
privileged, setting off with the fixed-neighbourttbgearch based algorithms. The proposed
approaches are assessed under a common multi-soadéerated algorithmic benchmark,
differentiating the way of combining the orthogownaws information. To make use of the
already synthesized data and to assure certairomamess, we have proposed an original
diagram for visiting the voxels during synthesigpa#t from its theoretical reasoning, only
minor contributions in synthesis quality are natice

Next we have focused much of our attention on dmgiefy a probabilistic non-
parametric algorithm based on a Markov Random Fieliteptualisation. We have proposed
a genuine 2D/3D extension intending to generateinaetric textures voxel by voxel by
maximizing the likelihood of every voxel estimatederms of docal conditional probability
density functionLCPDF) Based on the 2D paradigm, our original 3D extensalies on
giving a new description to the LCPDF of a site8D. Full-3D LCPDF estimation is almost
unattainable leaving the occasion to formulate isdas based on 2D concepts, thus deciding
for each output voxel the most probable grey-leMgltable remarks are made on how to use
better the voxel temperature function involved Ime tsynthesis deterministic relaxation
process. As well, we propose different strategiegtie output block initialisation and for the
scales handling policy — advising a specific treaitrfor the voxels inherited from a higher
scale and two up-sampling strategies.

All these procedures have been materialized on af sggnificantly different textures,
identifying the strengths and the weaknesses oby¢hesis algorithms. Moreover we have
analyzed for two foremost methods, a fixed-neighthoad search based one and a
likelihood-maximization one, their sensitivity taffdrent algorithmic parameters, tracing the
best strategies for texture synthesis. The syrthesiults are convincing in terms of visual
quality, manifesting occasionally difficulties imgturing the sample structure. The maximum
likelihood based approaches that comes up withaegairameters, concerning the pixel
temperature function, sometimes proves to be diffito control but is also capable of
producing outstanding results when tuned properly.

Finally, we have applied the non-parametric athons to the synthesis of laminar
anisotropic HRTEM images of dense carbons, themettic synthesis being the only real
solution to access the 3D structure of such cammmas materials at nanometric scale.
Results interpretation was accompanied by an aigaxperimental procedure marking a
quantitative and objective evaluation, investigatgrey-level dynamics and morphological
properties. The experimentation benchmark stregsedimits of our current implementation
of the maximume-likelihood based approach that sifieglin terms of structure and dynamics
the synthetic results relative to the 2D sampldse fuantitative comparative study was
broadened with a 2D/3D extension of a parametrigh®sis-by-analysis approach, which
proved to provide the most satisfying results.




7.1 Future prospects

The obtained results are convincing and lookingy y@omising to be improved in the
future. The future prospective targets are ofdhdi@ds: on first hand, enhancements in terms
of preserving the sample structure and dynamics,th@n second hand, to reduce the
computational cost, and thirdly, to extend the Bgsis algorithms to all kinds of textures,
especially isotropic textures.

For the non-parametric fixed-neighbourhood seabelsed algorithms immediate
developments can be made regarding the investigaticther measures than the L2 norm
(Euclidian distance); it is of interest to be altte inject during the synthesis process
operations allowing to adjust better the dynamius the statistical properties, remaining non-
parametric. An interesting track to follow consigtsinferring in the synthesis process not
only the grey-level data but also morphologicalomifation such as local orientations for
instance. To find for an output voxel the best gvalue, the judging criterion can be based on
the closest neighbourhood search but taking accofitihe local orientation. This should
assure a better preservation of the sample stei@tuthe volumetric texture and would be
appropriate to address the case of non-statiorsoiropic textures (textures that show
changes in orientation at large scale).

Additionally, it is always possible to propose feient strategies to combine the
information from the orthogonal views, hence to mjifg the quality of the synthesized
images.

The non-parametric maximume-likelihood based apgiioaffers more opportunities.
First of all, handling the pixel temperature fupatiinvolved in the relaxation algorithm
reveals to be tricky for the three-dimensional bgsts process. Adjusting more accurately the
algorithmic parameters can lead to better resuitsany case the cooling schedule and the
deterministic algorithm need a more intricate asialyStochastic relaxation schemes such as
the Metropolis algorithm, the Gibbs sampler or siraulated annealinglgorithm could also
be investigated.

In the same idea, a full-3D estimation of the locanditional probability density
function could be of help; if this is not possibtgher heuristics are as well welcomed. The
goal is that by using the Markov Random Field pholigtic model, the algorithm can capture
the visual characteristics of an image, providingtatistical model capable to describe the
visual interactions between adjacent voxels.

The computational complexity is not to be negldctbeing known that the non-
parametric voxel-by-voxel methods are time and mgnoonsuming, involving exhaustive
operations. For the neighbourhood search basedithlyg acceleration is attained by using
the binary tree clustering, but the maximum-likebld based approach is computationally
very expensive. Accelerating it can be achievedniojtithreading/multitasking programming
and by relaxing simultaneously a set of i.i.d..(inelependent and identically distributed) sites
from the targeted block lattice grid.

Concerning the applicative part, the means to ggéaextensively HRTEM textures
are strongly correlated to the previous remarksjlewbonstantly providing volumetric
textures for the atomistic simulations. To delivextures of more important sizes, the time
calculation is crucial. In addition, some materialowing locally anisotropic structure but
non-stationary could be examined by means of tlmepavametric synthesis methods.
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Appendix A

TSVQ numeric exemplification

The acceleration tricks used by the synthesisnigcles proposed i€hapter 3are
based on re-arranging the input neighbourhoods @tbinary tree to ease the nearest
neighbour search. This is done by using the Treacire Vector Quantization (TSVQ)
technique described section 3.2.5The root of the tree contains the global centajidll n-
dimensional points and the rest of the nodes areaids of portioned groups of points.

The next three figures show some numeric exangflése TSVQ technique applied
on three images of sizéx6 pixels and using 8x3 neighbourhood. According to the
synthesis algorithm, the pixels used in the birtagg are only the pixels that have a valid
neighbourhood. The area in red of siize4 is the only one taken into consideration by the
TSVQ. For simplicity in showing the binary treegthodes contain only the pixel value (i.e.
the average of the pixels in the corresponding grand not all the neighbourhood data
information. The first example irig. A.1 shows the binary tree obtained on an image
containing only two grey-levels, presenting onlyotdistinctive neighbourhoodsig. A.2
contains an image of 16 grey-levels, one for eadiu pixel.

Figure A.1 -TSVQ exemplification on a 6x6 binary checkerboardge showing the final two nodes
and their corresponding neighbourhoods.

-163.‘42-------

=)
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Figure A.2 -TSVQ exemplification on a 6x6 image containing reydevels.
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Appendix B

Space filling curves

B1. Introduction

The interest in space filling curves started eéndyn 1890 with the work of Giuseppe
Peano Pea9(Q and David Hilbert Hil91]. A space-filling curve is used to map discrete
positions from a multi-dimensional grid into a otieaensional grid, by visiting points only
once and without crossing the paBep9(. The first implementation consisted in a geonuetri
representation capable of traversingf'ax 2™ space HHil91].

Since then, many developments were made, so plaaedilling curve representation
found applications in image pixel allocations, VL&Imponent layouts, magnetic resonance
imaging (MRI) etc. In the same time many mathenahtiormulations were made. So, one
can retrieve the Peano curve, the Hilbert curve,4kcurve (Lebesgue curve) or the fractal
curves (Cantor, von Koch, Sierpinski or Mandelbeot)l its many different variantS§g94.

B2. Lexicographical scanning and the random walk

In this work | was interested in proposing altéiven ways to the traditional
lexicographic scanning (scan-line order) and thedoan-walk in the purpose of 3D texture
synthesis. These two kinds of points visiting oraer presented just below:

Figure B.1 llustration of the scan-line order: the group dretleft shows the 2D case on three
square configurations containingx 2 points,4x+4 points and$x & points; the group on the right
shows the scan-line path on three cubes of diftesigas containingz®, 4° and &points.

- . '
== |

Y <

Figure B.2 llustration of the random-walk: the group on tledtlshows realizations of random
paths in the 2D case on three square configuratmrgaining2x 2 points,4x+4 points andsx &
points; the group on the right shows realizatiofisamdom paths on three cubes of different sizes

containing 2%, 4% and &points.
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These are the simplest to implement, but not éxalce most satisfying ones in the
interest of 3D texture synthesis. The lexicograpp#th tends to produce textures more
regular than the synthesis exemplar, while the osamdwalk can lead to prohibitive
convergence costs, in the context of using nonaldui-square neighbourhoods.

Intermediary solutions consist in maintaining trest out of the two — keep a certain
randomness in order to assure diversity and instmae time use partially the information
from a previously synthesized voxel. To acquireséhwo types of points visiting orders are
proposed, in order to traverse once the pointsvatitbut crossing the path — the Z-curve and
the Hilbert curve.

B3. Z-curve

The Z-curve or Lebesgue curve is one of the sistgling curve algorithms, sorting
the points in &-shape order. A sequence of Z-curves is obtainestdnying with a basic Z-
shape and the rest of the curves are generate@rgegly one from another using the same
principle.

This is better illustrated iRig B.3 where three iterations of the Z-curve are presknt
in 2D and 3D. It's easier to understand the prilecip 2D: first the basic shape containing
four points is constructed; next make four copiethe same shape and connect the last point
of one shape to the first point of the next one sman; the new obtained bigger realization is
recopied, the process is repeated, generatingeiretid a non-self-intersecting plane-filling
curve. Off course, one can use another way to exdntie initial four points and to obtain
other configurations.

The three-dimensional Z-curve is obtained simyjlarstarting with eight points
connected as two parallel 2D basic z-shape cordtgurs.

Figure B.3 llustration of the Z space filling curve: the gm@on the left shows the 2D space case on
three square configurations containid® 2 points,4x+4 points and$x & points; it shows the basic
four points z-shape and the basic shape repetitiosder to obtain o bigger Z-shape; similar teth
2D case, the group on the right shows the Z-or@eh pn three cubes of different sizes containing 8,
64 and 512 points.

The Z-value of a point in multi-dimensions is db&d by simply interleaving its

binary coordinates, the resulting Z-values beingnexted recursively in their numerical
order. A representation of these binary operatisshowed irFig. B.4
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Figure B.4 -The binary coordinates interleaving schema for obigy the points of a two-
dimensional Z-curve representation.

B4. Hilbert curve

The Hilbert curve resembles in principle with theurve. The differences appear in
the fact that the way of connecting the 4 initiakgbs in the 2D case respects another
arrangement, while the update from a phase to andghnot done by direct copying but by
copying and rotating the basic 4 points-shape.sHme connection between a last point and a
next shape initial point is done.

The 2x2 (H1), the4x4 (H2) and the8x8 (H3) 2D Hilbert space-filling curves are
shown inFig. B.5 H2 is a curve connecting four copieshHbt in different orientations.

Figure B.5 Hllustration of the Hilbert space filling curve: ¢hgroup on the left shows the 2D case on
three square configurations containidy 2 points,4.x4 points and&x & points; the connexions are as
in the case of the 2D Z-curve but the initial basdiape is different; the group on the right sholes t
Hilbert curve in a three-dimensional space exengalibn three cubes of different sizes containing
23, 4% and &points.
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However, the analytical form of the Hilbert cungemore intricate. The 3D extension
follows the 2D principle but increases the comphex$everal algorithms have been proposed
to build a Hilbert-curve, the best implementatidaesng based on using bitwise operations or
by using recursive procedures of rewriting systélike the L-systems). The latter one can be
explained by considering a plotter whose pen cawenio several directions (up, down, right,
left and even other intricate guidelines for the &i3e).

For my case, | choose to implement the Hilberteddling curve using the algebraic
operations proposed bZhe04. These operations include tensor matrix prodiotfuilding
a bigger matrix from two small matrices), directmswand three permutations — stride
permutation, vector reversal and Gray permutatidme objective is to draw a curve on a
2" x 2™ x 2™ cube and to visit all the points without crossihg curve so that any two
connected points have the Hamming distance equal foypically, a2™ x 2™ x 2™ Hilbert
space-filling curve is recursively constructed freight congruent2™~1 x 21 x 2"~1 syp-
cubes connected in different orientations. Fiveemrtions obtained by coordinate
transformations, indexed from | to V, and the cep@nding sub-cubes are presented below in
Fig. B.6 The sub-cubes are connected in the order at th@ x 2 Gray permutation: it maps
the index sequend®, 1, 2,3,4,5,6,7) t0(0,1,3,2,6,7,5,4).

Type | Sub-cube # | Coordinate transformation
I 0 (Lo, K)=I(K; L,.J)

II 1,2 (I,J.K)= (J.K,I)
T 3,4 (I,ILK=1(1,—J —-K)
IV 5.6 (I,JK)= (-J. K, 1)
v 7 (I,JK)=(-K,-I,J) |

h K

. == - I - J“.K,_ " T | : . . . | ~—~
Type I J Type 11 - Type ITT 'Typc Iv Type V

Figure B.6 -Sub-cube types of the 3-D Hilbert space-fillingweuand their coordinate
transformations as suggested by [Che04].

To summarize, building a 3-D Hilbert space filliegrves is done by following the
steps: block allocation, gray permutation, coortinaransformation and recursive
construction. The reader can retrieve the iteratimel the recursive algebraic operations
involved by these steps in the original paperGlig045p.
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Appendix C

MRFstheory

The following concise theoretical form deals witle concept of Markov Random
Fields and its equivalence with Gibbs Random Fielnmplementing the notional aspects in
Chapter 4 It represents a condensed adaptation frioJ7].

C1. Markov Random Fields

A family F={F,,F,... E,} is a random field ifF is a family of random variables
defined on the set of sit& a particular case being when each varigbkakes a value from a
finite set of labeld.. The sites-and-labels concept is applicabfe= f; means the event for
which the random variableF; takes the valug; and the set of labelg={f,,f5... fm}
corresponds to the configuration of such that{F, = f;,F, = f;... E, = fi} or simply
F = f is a joint event. P(F; = f;) or simply P(f;) represents the probability that a random
variableF; takes a valug;. The joint distribution stands foP(F = f).

A random fieldF is considered to be a Markov Random Field (MRF)tlom set of
sites S with respect to the neighbouring systdim(i.e. the set of all neighbourhoodg) if
and only if it satisfies the conditions pésitivity- P(f) > 0 andmarkovianity- P(fi|f]-,j #*
i) = P(filfn,), where fy, represents the set of labels at the sites neightwi. The

markovianity property describes the local charasties of the random field, describing the
local interactions between labels (i.e. LCPO&cal conditional probability density functign

C2. Gibbs Random Fields

A random fieldF is considered to be a Gibbs Random Field (GRRherset of site$
with respect to the neighbouring systémif and only if its configurations respect a Gibbs
distribution:

1 1
P(f) = Ee‘f”(” (c.1)
where

1
Z = Z e V") (c.2)
f

is a normalizing constanf is a constant called the temperature &Hgf) is the energy
function [Gem84.

To complete the definition, the notion of cliqueintervenes Gem84 [Pag9q,
defining a complete subgraph d§ (N) or more exactly a subset of sitesSrthat are all
neighbours to one other.

Every site is a single-site clique; a pair of mdiguring sites defines a pair-site clique;
and so on. The collection of all cliques is denated




The energy can be formulated as the sum of atjuelipotentialsU.(f) over all
possible cliques:

UOEDYAG (.3)

ceC
The value ofU.(f) depends on the local configuration on the cliqe® thatP(f) is

capable of describing the probability of reachingpecific configuration depending on the
global measurements of local potentials.

C3. Markov-Gibbs Equivalence

An MRF is characterized by its local property (n@rianity), whereas a GRF is
characterized by its global property (Gibbs disttidn).

The Hammersley-Clifford theorenCl[i90] [Gem9] establishes the equivalence of
these two types of properties. The theorem statgsfor a given neighbourhood systéina
random fieldF is an MRF orSwith respect tdN if and only ifF is a GRF orSwith respect to
N.

The MRF-Gibbs distribution equivalence theorem git@m to the joint probability
of a MRF by expressing it in terms of clique poiainfunctions:

1
P(fi'fj,j € Ni) = ZeZCEGi Uc(f) (c.4)
l

whereZ; is a local normalizing constaf} = ’,Z;lP(/lk|fj,j € Ni) over the finite state space
L = {44, ..., A4,n} and the exponential sum is over the set of thal ldique ¢;={c € &i € c}.

Complete demonstrations are found in the MRF dgddt papers, indicated here as
bibliography Bes74 [Gem84 [CIi90] [Gem9l.
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Appendix D

Stochastic relaxation algorithms

The non-parametric synthesis algorithm based emthximum-likelihood estimation
described inChapter 4uses as relaxation algorithm the ICM deterministie proposed by
[GEM84. But more known and globally more utilized ane stochastic algorithms. It is the
case of the Metropolis algorithm describedFig. D.1 and the case of the Gibbs sampler
algorithm presented iRig. D.2

— set up a random visiting order of the sites {q, ¢ S,k=1.2....}

so thats € 5,4, =5 infinitely often
— choose randomly x(0)

—>fork =1tow do

—» choose randomly 7, €A

_ P(A4, |x,(k-1),reN,)
—»get p=miml, - -

"P(A, (k-Dfx,(k-1.reN, )

—> choose randomly ¢ [0 -1)

—» image x(k) is obtained from the previous image x(k —1) such that

A, ifs=a, and p=q
x. (k)= -
; x (k-1) otherwise

—» end for

Figure D.1 -The steps involved by the Metropolis algorithm.

— set up a random visiting order of the sites {a, = 5,k =1.2,...}

so thats e 5.4, =5 infinitely often
— choose randomly x(0)

—afork =1tow do

—> choose 7, = A from the distribution P2,

x,(k-1.renN,)

— image x(k)is obtained from the previous image x(k - 1) such that
A fs=a,
=] ow Teoa
: x,(k-1) otherwise
— end for

Figure D.2 —The steps involved by the Gibbs Sampler.
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Appendix E

TEM imaging

The principle of the transmission electron microscopeamn optical analogue to t
conventional light microscope (LM) as illustratecFig. E.1

An illumination source in the form of an electriedm is focused on the specimen |
pyrocarbonsample) by the condenser electromagnetic lens. rékalting image of th
specimen is modified through the objective and pha&ector lens. The electron image
transformed into a visible representation on arigoent screen, and saved into the coer
as a black-and-white image.

Areas that scatter few electrons (elec-lucent areas) appear as bright areas ir
image whilst areas that scatter more electronsbgord electrons (electr-dense areas)
appear as dark aredsor TEM, the specimen s to be transparent for the electron beam
thin enough to get an image due to the transmisaiwhthe scattering of the electron be
through it.
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Figure E.1 -Schematic representation of transmission electrimascope and its analogy to t
conventional light microscope.

Mathematically, the diffraction of electrons by alid corresponds to the Fouri
Transform of the specimen atomic configuration, omdtically accomplished by tt
electromagnetic lens. The resulted electrons givihé mage the atomic arrangement of
specimen and by using the network fringe technigibe greatest intimacy (scale
angstroms) of the specimen concerning the oriemtatihe spacing and the length of
reticular layers is achieved.

A detailed descrifion of the TEM techniques exceeds the purposéisfwork, bul
the interested reader is kindly encouraged to g[Des93 and [Ncenj.
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Appendix F

Some large snapshots of HRTEM samples

This appendix contains 3 pairs of large HRTEM ingggeom which smaller patchu

are being taken and used as source of synthe
pages, starting with the present one

bottom the filtered version

Chapter 6 Each of the following thre

contains itmages:

[l
.

on top the raw versiond on

The following images af size1024x1024 pixels

1

Figure F.1
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