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MÉTHODES NON-PARAMÉTRIQUES POUR LA SYNTHÈSE DE 
TEXTURES VOLUMIQUES A PARTIR D’UN EXEMPLE 2D 

 

- résumé étendu -
1
 

 
 

1. Contexte 
 
 L’efficacité des techniques de synthèse d’images pour modéliser et reproduire des 
textures naturelles (bois, roche, grès, marbre, tissu etc.) n’est plus à démontrer. Le domaine de 
la synthèse de texture est particulièrement dynamique avec des applications importantes dans 
l’extrapolation, la compression d'images, l’inpaiting ou le mapping mais aussi dans d'autres 
domaines comme la fusion et le montage vidéo ou la description de la géométrie d’une 
surface.  

De nombreuses techniques de synthèse de textures ont été proposées. Ces techniques, 
souvent 2D, demandent à être adaptées en vue de la modelisation de structures volumiques 
telles que celles obtenues par des techniques d’imagerie 3D, comme l’imagerie médicale, 
l’imagerie sismique pour l'exploration du sous-sol ou la tomographie en sciences des 
matériaux. Dans ce dernier domaine, les textures 3D présentent un intérêt tout particulier pour 
l’étude de matériaux à structure interne tridimensionnelle. 

Dans certains cas toutefois, pour des raisons de coût, de praticité, ou simplement de 
résolution, l’utilisation de techniques d’imagerie 3D n’est pas envisageable. Les structures 
tridimensionnelles constitutives des matériaux sont alors imagées en 2D. Dans ces conditions, 
toute méthode stéréologique permettant l’extrapolation en 3D d’une information 2D, est 
susceptible d’améliorer la compréhension de la réalité physique du matériau. C’est à ce titre 
que nous nous intéressons dans ce mémoire aux méthodes de synthèse de textures volumiques 
à partir d’images 2D. 

 
 

2. Objectif 
 

 L’objectif de cette thèse est de développer des algorithmes dédiés à la synthèse de 
textures volumiques anisotropes à partir d’un échantillon 2D. Outre les difficultés liées a leur 
complexité calculatoire, de telles approches posent des problèmes stéréologiques d’inférence 
2D/3D et ne sont envisageables que pour des textures isotropes ou, dans le cas de textures 
anisotropes – lamellaires ou filaires – sous certaines hypothèses bien définies. 

Les approches dites par patch relatives à la synthèse de texture à partir d’un exemple, 
parmi les plus populaires et déjà très étudiées, sont privilégiées. Il s’agit de les étendre au cas 
de textures volumiques, en particulier de textures structurées et anisotropes.  

Les algorithmes développés sont appliqués à la modélisation de la structure 
nanométrique de matériaux carbonés. La synthèse se fonde sur des images de microscopie 
électronique. Les données 3D produites ont vocation à être utilisées pour la simulation réaliste 
de la structure moléculaire du matériau.   

Au-delà de l'évaluation visuelle des textures de synthèse, une analyse quantitative est 
proposée, qui consiste à comparer les caractéristiques de l’image d’entrée avec celles du bloc 
de sortie. Cette étude permet d’une part d’identifier les stratégies les plus pertinentes pour la 
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synthèse et d’autre part de les comparer de façon objective à certains algorithmes de la 
littérature, qu’ils reposent sur des approches paramétriques ou non paramétriques. 

 
 

3. Les algorithmes mis en œuvre 
 

 Différents algorithmes sont capables de synthétiser des textures parmi lesquels certains 
sont connus pour leur efficacité et leur facilité d’utilisation. C’est le cas des approches non 
paramétriques basées sur la recherche de voisinages fixes [Wei03] [Kop07] [Che10] ou sur la 
vraisemblance de patches [Pag98]. Dans les approches 3D que nous explorons, la synthèse  
est effectuée voxel par voxel, le processus s’appuyant sur l’échantillonnage d’un seul modèle 
2D d’entrée en garantissant la cohérence selon plusieurs vues de la texture 3D. 
 
 

3.1 Extensions 2D/3D basées sur la recherche de voisinage fixe 
 

 Nous présentons ici trois variantes algorithmiques, inspirées d’approches existantes, 
que nous avons adaptées, formalisées et implémentées selon un schéma algorithmique 
commun. 
  Le premier algorithme est une extension de l'algorithme introduit par Wei et Levoy 
[Wei00]. Cet algorithme, dont nous reprendrons par la suite la structure, servira de squelette 
aux algorithmes suivants. Il s’agit en réalité d’une adaptation multi-2D de l'algorithme de 
synthèse à partir de sources multiples [Wei03] mais en utilisant strictement une seule texture 
2D en tant que source de synthèse.  
 Basée sur l’hypothèse d’un champ de Markov, la méthode repose sur les propriétés de 
localité et de stationnarité de la texture. Cet algorithme requiert une texture échantillon en 
entrée et un bloc 3D en sortie initialisé par un bruit aléatoire. La synthèse est réalisée 
automatiquement sans aucune supervision. Le bloc est peu à peu modifié pour se rapprocher 
statistiquement de la texture d’entrée. 

La procédure de synthèse traite le bloc de sortie voxel par voxel, en examinant les 
voisinages 2D du voxel courant sur plusieurs vues orthogonales du bloc 3D (Figure 1). Cette 
phase implique la recherche de la meilleure correspondance pour chacun de ces voisinages 
dans la même image d'entrée. La similitude entre les voisinages est mesurée en utilisant la 
distance euclidienne. Ainsi, pour chaque voxel de sortie, plusieurs solutions sont possibles, 
une pour chaque vue orthogonale. 

 

 
Figure 1 – Le principe de synthèse non-paramétrique: extraire un voisinage du voxel sur chaque vue 

orthogonale (face, droite, top),  rechercher dans la même image d’entrée les voisinages les plus 
ressemblants, prendre les valeurs de leurs pixels centraux (��ace, �droite, ��
�), et les utiliser pour  
modifier le voxel v de sortie: v=��ace×��ace+�droite×�droite+��
�×��
�. En fonction de la méthode 

utilisée, le poids associé à chaque pixel peut changer. 
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La première solution proposée est d’utiliser comme valeur de mise-à-jour pour le voxel 
de sortie la moyenne des pixels trouvés pour chaque vue, et de réitérer jusqu'à atteindre les 
mêmes voisinages après deux itérations consécutives [Wei03]. Mais le fait de moyenner 
conduit à une différence de dynamique entre l'original et la texture synthétisée qui peut 
compromettre l’ensemble du processus de synthèse.  
 Une stratégie alternative consiste à optimiser la fonction d'énergie qui mesure la 
similitude entre la texture volumique et la texture d'entrée. Cette optimisation repose sur une 
pondération différenciée des solutions trouvées pour chaque vue [Kwa05]. La valeur du pixel 
de sortie se voit ainsi affecter une moyenne pondérée de ces solutions. La procédure 
d’optimisation est complétée par un schéma de repondération, dans le but de préserver les 
statistiques globales de la texture d’entrée et de façon à ce que la synthèse ne porte pas 
seulement sur des décisions locales. Ceci est réalisé en intégrant dans le procédé de synthèse 
un mécanisme d’ajustement d’histogramme de niveaux de gris [Kop07]. Toutefois, les 
résultats obtenus sont toujours plus ou moins affectés par le flou. Par ailleurs, comme dans 
l’approche précédente, ce procédé tend à répéter certaines configurations texturales et ne 
parvient pas à reproduire la diversité observée sur la texture échantillon [Urs11].  

Afin de rendre la texture synthétisée la plus fidèle possible à la texture d’entrée, une 
variante des algorithmes précédents intègre deux nouveaux mécanismes d’ajustement basés 
respectivement sur l’histogramme d’indices et l’histogramme des positions [Che10]. Le 
premier a pour objectif d’augmenter le nombre de configurations parmi lesquelles sera choisie 
la solution finale; le second est introduit pour faire en sorte que les configurations reproduites 
dans l’image de sortie soient réparties équitablement sur toute la surface de la texture 
d’entrée. Cet algorithme nécessite une phase d’apprentissage préalable dont le principe est 
d’identifier, pour chaque pixel de l'image d’entrée, un ensemble de pixels de configurations 
locales similaires. Un des intérêts de ce schéma est qu’il réalise indirectement l’ajustement 
d’histogramme de niveaux de gris en distribuant équitablement les pixels d'entrée dans le bloc 
de sortie. 
 La complexité calculatoire des différentes variantes algorithmiques présentées ci-
dessus est liée linéairement à la taille de l’image d’apprentissage. Afin d’accélérer la phase de 
recherche du meilleur voisinage dans l’image d’entrée, un arbre binaire de recherche est 
utilisé comme structure de données pour des requêtes de type ‘point le plus proche’ efficaces. 
Par ailleurs, une implémentation multi-résolution permet de capturer les motifs à différentes 
échelles sans alourdir la charge calculatoire. 
 
 Enfin, le choix du système de voisinage et, par conséquent, le choix du sens de 
parcours de la texture de sortie sont remis en question. Le remplacement du parcours 
lexicographique par un parcours aléatoire permet de synthétiser un pixel en s’affranchissant 
de son simple passé et donc de multiplier les configurations possibles. Toutefois, le temps de 
convergence peut dans ce cas augmenter sensiblement. L’adoption de parcours 
tridimensionnels alternatifs tels que les parcours fractals (e.g. courbe de Hilbert) s’avère un 
compromis pertinent. 
 
  

3.2 Algorithme 2D/3D basé sur la vraisemblance de patches 
 
 Nous traitons ici d’une approche, de type probabiliste, qui réalise de façon explicite ce 
que les méthodes basées sur la recherche de voisinage fixe tentent d'accomplir indirectement. 
Elle étend l’approche markovienne initialement proposée par Paget et Longstaff [Pag98]. 
S’appuyant sur les propriétés de stationnarité et de localité de la texture, cette dernière 
consiste à générer une texture pixel par pixel, en maximisant la vraisemblance de chaque pixel 
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au sens de la densité de probabilité conditionnelle locale (DPCL). En d’autres termes, on 
affecte à chaque pixel le niveau de gris le plus probable connaissant son voisinage. Ce 
procédé requiert la connaissance de la DPCL, fonction qui modélise de façon unique les 
interactions entre pixels voisins. Cette dernière est estimée à la volée sur l’image d’entrée, de 
façon non paramétrique par la technique de fenêtrage de Parzen. 
 L’approche 2D/3D que nous proposons repose sur le même principe. Elle consiste à 
synthétiser la texture volumique voxel par voxel suivant un parcours prédéfini. La valeur d’un 
voxel est mise à jour de façon à maximiser ici aussi sa vraisemblance. Toutefois, l’image 
modèle étant bidimensionnelle, la densité de probabilité conditionnelle locale 3D, ne peut pas 
être estimée. La synthèse 3D est alors envisagée selon une approche multi-2D à l’instar des 
approches présentées précédemment. Ainsi la valeur de voxel choisie doit maximiser la 
vraisemblance exprimée sur chacune des vues orthogonales auxquelles appartient le voxel. 
Selon la nature de la texture à synthétiser, deux ou trois vues peuvent être considérées. Il reste 
toutefois à trouver une stratégie permettant la maximisation des vraisemblances exprimées 
selon les différentes vues. Plusieurs heuristiques sont proposées, dont celle consistant à 
maximiser le produit des vraisemblances. Une dernière voie est proposée considérant un 
système de voisinage 3D composé de plans orthogonaux et exprimant la densité de probabilité 
conditionnelle DPCL 3D à l’aide de DPCL 2D, estimables sur l’image d’entrée.  
 Les différentes solutions proposées reposent toutes sur un algorithme de relaxation 
multi-échelle analogue à celui proposé par Paget et Longstaff [Pag98]. Le principe de la 
synthèse est de débuter, à l’échelle la plus haute, par un bloc 3D aléatoire, de densité de 
probabilité marginale identique à celle de l’image d’entrée à la même échelle. Chaque voxel 
se voit attribuer une température non nulle. Sa valeur est modifiée au sens de la DPCL dont le 
calcul est réalisé en donnant d’autant plus d’importance à un voxel voisin que sa température 
est basse. L’optimisation est gérée voxel par voxel, par un algorithme déterministe de type 
ICM. Les schémas de décroissance des températures des voxels sont gérés individuellement. 
Une fois l’échelle la plus haute traitée, elle sert d’initialisation à l’échelle inférieure. Les 
voxels y sont actualisés de manière analogue. Nous proposons plusieurs stratégies pour 
l'initialisation du bloc de sortie, pour la gestion des températures et pour le changement 
d’échelle, incluant un traitement spécifique des voxels hérités de l’échelle supérieure. 
 

 
4. Expérimentation et application 

 
La prise en compte des méthodes présentées dans les paragraphes précédents a conduit 

à l’implantation de différentes variantes d’algorithmes qui permettent d’obtenir une texture 
volumique a partir d’une seule texture 2D.   

Ces différentes méthodes ont été mises en œuvre pour la synthèse d’un jeu de textures 
variées. Quelques résultats sont présentés dans la Figure 2, montrant la légitimité de ces 
algorithmes. Une analyse comparée et une étude de sensibilité ont été menées, mettant en 
évidence les atouts et les faiblesses des différentes approches. Les textures volumiques 
produites sont d’une qualité visuelle convaincante, notamment en termes de dynamique. Les 
propriétés de structure et de périodicité des images sont respectées mais il semble toutefois, 
d’un point de vue structural, que certaines approches produisent parfois des textures trop 
ordonnées ou, au contraire, aient des difficultés à capturer la structure de l'échantillon 2D. Par 
rapport aux méthodes basées sur la recherche de voisinage fixe, les approches fondées sur la 
maximisation de vraisemblance disposent de paramètres supplémentaires parfois difficiles à 
contrôler. Lorsqu’ils sont correctement choisis, des résultats très satisfaisants peuvent être 
obtenus, au prix toutefois d’un coût calculatoire élevé. 
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                                        a                                                                                  b 

           
                                        c                                                                                  d 

           
                                        e                                                                                  f         

           
                                    g                                                                           h 
Figure 2 – Exemples de textures volumiques. Chaque triplet comprend, au-dessous l’échantillon 2D, à 
gauche le résultat obtenu avec la méthode de Kopf et al. [Kop07] et à droite le résultat obtenu avec 

notre proposition consistant à maximiser le produit des vraisemblances.  
 

Les différentes variantes algorithmiques proposées sont également appliquées dans le 
contexte spécifique de la synthèse de textures volumiques de matériaux carbonés. La texture 
exemple (comme celles en Figure 3a ou 3b) est une observation 2D unique obtenue par MET 
(Microscopie Electronique en Transmission) par la technique des franges de réseau. Quelques 
exemples de textures volumiques synthétisées sont fournies en Figure 3.  



 

 

          a                          a1                               
 

           b                          b1                               
Figure 3 – Résultats visuels: (a) (b) image type de matériaux carbonés; e
les méthodes de (.1) Wei et Levoy [Wei03], (.2) Kopf et al. [Kop07], (.3) Chen et Wang [Che10],

notre proposition (ici avec 32 niveaux de gris seulement).
 
En l’état actuel des développements, l’expérimentation a souligné

méthode basée sur le maximum de vraisemblance, qui tend à produire des textures simplifiées 
en termes de structure et dynamique par rapport à l’échantillon 2D. Les résultats relatifs aux 
autres approches sont évalués de façon objective a
permet de comparer les statistiques de niveaux de gris (statistiques d’ordre 1) entre 
l’échantillon et le bloc de sortie et également de comparer la morphologie des motifs 
texturaux (orientation locale, longueur et to

 

a           

c                                      
Figure 4 – Courbes d’évaluation 
indicateurs pour la comparaison objective: (a) l

d’orientation locale, (c) longueur et (d) tortuosité de franges. 
 

 

                               a2                                a3                                

                               b2                                b3                               
Résultats visuels: (a) (b) image type de matériaux carbonés; et les blocs obtenus utilisant 

les méthodes de (.1) Wei et Levoy [Wei03], (.2) Kopf et al. [Kop07], (.3) Chen et Wang [Che10],
notre proposition (ici avec 32 niveaux de gris seulement). 

En l’état actuel des développements, l’expérimentation a souligné
méthode basée sur le maximum de vraisemblance, qui tend à produire des textures simplifiées 
en termes de structure et dynamique par rapport à l’échantillon 2D. Les résultats relatifs aux 
autres approches sont évalués de façon objective au travers d’une étude quantitative qui 
permet de comparer les statistiques de niveaux de gris (statistiques d’ordre 1) entre 
l’échantillon et le bloc de sortie et également de comparer la morphologie des motifs 
texturaux (orientation locale, longueur et tortuosité de franges) [Urs12].  

      
a                                                                               b 

 

      
c                                                                               d 

Courbes d’évaluation quantitative entre l’image d’entrée et les blocs 3D
rs pour la comparaison objective: (a) l’histogramme de niveaux de gri,

d’orientation locale, (c) longueur et (d) tortuosité de franges. 

x 

 
                                a4 

 
                               b4 

t les blocs obtenus utilisant 
les méthodes de (.1) Wei et Levoy [Wei03], (.2) Kopf et al. [Kop07], (.3) Chen et Wang [Che10], (.4) 

En l’état actuel des développements, l’expérimentation a souligné les limites de la 
méthode basée sur le maximum de vraisemblance, qui tend à produire des textures simplifiées 
en termes de structure et dynamique par rapport à l’échantillon 2D. Les résultats relatifs aux 

u travers d’une étude quantitative qui 
permet de comparer les statistiques de niveaux de gris (statistiques d’ordre 1) entre 
l’échantillon et le bloc de sortie et également de comparer la morphologie des motifs 

 

 

entre l’image d’entrée et les blocs 3D, contenant des 
’histogramme de niveaux de gri, (b) l’histogramme 

d’orientation locale, (c) longueur et (d) tortuosité de franges.  



  

 

xi 

Concernant les statistiques d’ordre 1, la comparaison nous montre premièrement 
l’intérêt de contraindre les histogrammes de niveau de gris [Kop07], d’indices et de positions 
[Che10] (cf. Figure 4a). Ces derniers permettent en effet une convergence plus rapide de la 
plupart des statistiques du bloc de sortie vers celles de l’image d’entrée.  

Concernant la morphologie, même si les orientations locales sont relativement 
similaires (Figure 4b), la détection de franges (détection de motifs allongés utilisant un 
algorithme de suivi de courbes de niveau) nous montre que les textures volumiques produites 
par les approches de type ‘recherche de voisinage fixe’ contiennent des franges plus longues 
et plus régulières que l’image d’entrée (Figure 4c-d). 

L’étude comparative a été élargie à une approche paramétrique de type analyse-
synthèse [Lay09] [Dac10] spécifique aux textures lamellaires et préalablement appliquée aux 
images de matériaux carbonés. Cette approche s’appuie sur l’inférence 2D/3D des statistiques 
d’ordre 1 et 2 par le biais d’une décomposition en pyramides 3D orientables. Malgré ses 
limitations calculatoires et sensitivité à certaines oscillations à haute fréquence, s'avère pour 
l’instant fournir des résultats plus satisfaisants. 

 
 

5. Conclusions 
 

Plusieurs algorithmes de synthèse de textures volumiques à partir d’un exemple 2D 
unique ont été proposés.  

Les méthodes de synthèse non paramétriques – dites par patch – ont tout d’abord été 
privilégiées, en particulier un ensemble d’algorithmes de recherche de voisinages fixes. 
S’appuyant sur un noyau algorithmique multi-échelle commun, plusieurs approches ont été 
étudiées, relatives à la manière de combiner les informations provenant des vues 
orthogonales. Afin d’optimiser l’ordre de visite des voxels lors de la synthèse, des parcours 
tridimensionnels originaux ont également été proposées. 

Dans un second temps, nous avons consacré notre réflexion sur l’élaboration d’un 
algorithme probabiliste, basé sur l’hypothèse d’un champ de Markov. S’appuyant sur un 
paradigme 2D, nous avons proposé une extension 2D/3D inédite visant à générer des textures 
volumiques voxel par voxel. L’approche consiste à maximiser la vraisemblance de chaque 
voxel au sens de la densité de probabilité conditionnelle locale, au moyen d’un algorithme 
déterministe de type ICM. Différentes variantes sont proposées, relatives aux stratégies de 
gestion simultanée des tranches orthogonales contenant le voxel et aux opérations requises par 
le passage d’une échelle à la suivante. 

Les méthodes ont été appliquées à un jeu de textures structurées, de régularité et 
d’anisotropie variées. Des résultats satisfaisants ont été obtenus en termes de qualité visuelle. 
Toutefois les algorithmes manifestent une certaine sensibilité à la taille de voisinage et 
montrent parfois des difficultés à capturer la structure de l’échantillon 2D. Dans le cas des 
méthodes basées sur la maximisation de la vraisemblance, une simplification de la structure et 
une réduction de la dynamique sont parfois observées. Toutefois, la qualité remarquable de 
certains résultats laisse entrevoir des perspectives d'améliorations. Une attention particulière 
devra dans ce cas être portée à la complexité calculatoire. 

Enfin, les approches sont appliquées au cas particulier de textures anisotropes de 
matériaux carbonés pour lesquelles une procédure expérimentale a été proposée qui vise à une 
évaluation quantitative et objective des algorithmes de synthèse. Cette étude a porté sur les 
approches basées sur la recherche de voisinage fixe, et sur une méthode paramétrique 
d’analyse-synthèse. Les résultats obtenus, en dépit de certaines limites, montrent des résultats 
convaincants et prometteurs qu’il s’agira d’améliorer à l’avenir, en termes de préservation de 
la structure et de réduction du temps de calcul. 
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Abstract  
 
 
 
 This thesis deals with the synthesis of anisotropic volumetric textures from a 
single 2D observation. We present variants of non parametric and multi-scale 
algorithms. Their main specificity lies in the fact that the 3D synthesis process relies 
on the sampling of a single 2D input sample, ensuring consistency in the different 
views of the 3D texture. Two types of approaches are investigated, both multi-scale 
and based on markovian hypothesis. 
 
 The first category brings together a set of algorithms based on fixed-
neighbourhood search, adapted from existing algorithms of texture synthesis from 
multiple 2D sources. The principle is that, starting from a random initialisation, the 3D 
texture is modified, voxel by voxel, in a deterministic manner, ensuring that the grey 
level local configurations on orthogonal slices containing the voxel are similar to 
configurations of the input image.    
 
 The second category points out an original probabilistic approach which aims at 
reproducing in the textured volume the interactions between pixels learned in the input 
image. The learning is done by non-parametric Parzen windowing. Optimization is 
handled voxel by voxel by a deterministic ICM type algorithm. Several variants are 
proposed regarding the strategies used for the simultaneous handling of the orthogonal 
slices containing the voxel. 
 
 These synthesis methods are first implemented on a set of structured textures of 
varied regularity and anisotropy. A comparative study and a sensitivity analysis are 
carried out, highlighting the strengths and the weaknesses of the different algorithms. 
Finally, they are applied to the simulation of volumetric textures of carbon composite 
materials, on nanometric scale snapshots obtained by transmission electron 
microscopy. The proposed experimental benchmark allows to evaluate quantitatively 
and objectively the performances of the different methods.  
 
 
Keywords: synthesis, solid texture, image processing, multi-scale, causal 
neighbourhood, Markov Random Field, conditional probability, composite materials 
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Résumé  
 
 
 
 Ce mémoire traite de synthèse de textures volumiques anisotropes à partir d’une 
observation 2D unique. Nous présentons différentes variantes d’algorithmes non 
paramétriques et multi-échelles. Leur principale particularité réside dans le fait que le 
processus de synthèse 3D s’appuie sur l’échantillonnage d’une seule image 2D 
d’entrée, en garantissant la cohérence selon les différentes vues de la texture 3D. Deux 
catégories d’approches sont abordées, toutes deux multi-échelles et basées sur une 
hypothèse markovienne.  
 
 La première catégorie regroupe un ensemble d’algorithmes dits de recherche de 
voisinages fixes, adaptés d’algorithmes existants de synthèses de textures volumiques 
à partir de sources 2D multiples. Le principe consiste, à partir d’une initialisation 
aléatoire, à modifier les voxels un par un, de façon déterministe, en s’assurant que les 
configurations locales de niveaux de gris sur des tranches orthogonales contenant le 
voxel sont semblables à des configurations présentes sur l’image d’entrée. 
 
 La deuxième catégorie relève d’une approche probabiliste originale dont 
l’objectif est de reproduire, sur le volume texturé, les interactions entre pixels estimées 
sur l’image d’entrée. L’estimation est réalisée de façon non paramétrique par fenêtrage 
de Parzen. L’optimisation est gérée voxel par voxel, par un algorithme déterministe de 
type ICM. Différentes variantes sont proposées, relatives aux stratégies de gestion 
simultanée des tranches orthogonales contenant le voxel. 
 
 Ces différentes méthodes sont d’abord mises en œuvre pour la synthèse d’un jeu 
de textures structurées, de régularité et d’anisotropie variées. Une analyse comparée et 
une étude de sensibilité sont menées, mettant en évidence les atouts et faiblesses des 
différentes approches. Enfin, elles sont appliquées à la simulation de textures 
volumiques de matériaux composites carbonés, à partir de clichés obtenus à l’échelle 
nanométrique par microscopie électronique à transmission. Le schéma expérimental 
proposé permet d’évaluer quantitativement et de façon objective les performances des 
différentes méthodes.   
 
 

Mots clés: synthèse, texture volumique, analyse d’image, multi-échelle, voisinage 
causal, champ markovien aléatoire, probabilité conditionnelle, matériaux composites 
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1.1 Context 
 
 The effectiveness of image synthesis techniques to model and reproduce natural 
textures (wood, rock, sand, marble, fabric etc.) does not have to be anymore demonstrated. 
The field of texture synthesis has been particularly dynamic with notable applications in the 
field of image extrapolation, image editing, image compression or image mapping but has 
also been extended to other areas such as video completion/merging and animations, or 
description of the geometry of a surface. 
 
 The texture synthesis research field has led to the development of numerous synthesis 
techniques. These techniques, mainly two-dimensional, need to be adapted for modelling 
volumetric structures like the ones obtained by 3D imaging techniques, such as Magnetic 
Resonance Imaging for medical purpose, seismic imaging for underground exploration, or 
tomography in materials science. In this last case, 3D textures are of particular interest for the 
study of the three-dimensional internal structure of materials. 
 
 However, in some cases, for reasons of cost, practicability, or simply resolution issues, 
using 3D imaging techniques is not feasible. The three-dimensional structures of the 
constituent materials are then imaged in 2D. Under these conditions, any stereological method 
capable of extrapolating 2D information into 3D is likely to improve the understanding of the 
physical reality of the material. It is in fact in this context that this thesis considers the 
synthesis of volumetric textures based on 2D images. 
 
  
1.2 Objectives 
 

The aim of the thesis is to develop algorithms dedicated to the synthesis of volumetric 
anisotropic textures from a 2D sample. Apart from the difficulties relative to their 
computational complexity, such approaches pose a 2D/3D inference problem. They are 
indeed achievable for isotropic textures or, in the case of anisotropic textures – lamellar or 
wired – only under certain clearly defined hypothesis.  

 
Approaches based on Markovian assumptions, among the most popular and already 

well-studied, are preferred. It is about extending them to the case of volumetric textures, 
especially anisotropic ones and focused on grey level textures.  The developed algorithms are 
applied to the modelling of nanometric structures of carbonaceous materials. The synthesis is 
based on grey-scaled images obtained by electron microscopy. The produced 3D data is 
intended to be used for realistic simulations of the molecular structure of the material. 
  
 Beyond the visual evaluation of the synthesized textures, a quantitative benchmark for 
the analysis of the synthesized textures is proposed, which consists in comparing input image 
characteristics with the ones of the output solid texture. This study allows on one hand to 
identify the most relevant strategies – either parametric or non-parametric – for the synthesis 
and secondly to compare them objectively, keeping in mind that they should be able to 
reproduce as faithfully as possible the visual aspect, statistics and morphology of the example 
texture. 
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1.3 Thesis outline 
 
This thesis is arranged as follows: 
 
 The first part is preparatory, introducing to the reader the notion of texture and the 
texture typology while acquainting him with the synthesis techniques. It deals with a thorough 
task of classifying as clearly as possible the synthesis algorithms highlighting the 3D 
approaches.  
 
 Correlated with the previous chapter, the third and the fourth chapters are devoted to 
the implementation of two types of non-parametric algorithms. Both types are based on the 
assumption that textures are realisations of Markov Random Fields. The first one, presented 
in chapter three, consists in synthesis algorithms based on fixed neighbourhood search, 
building the output texture by direct sampling in the exemplar. Basic principles are presented 
combined with proposed improvements to increase the synthesis quality. Chapter four 
considers the synthesis based on the likelihood of patches modelling the dependencies 
between neighbouring pixels in the exemplar. Every pixel is allocated the most probable grey-
level considering only its neighbours. This implies an original 3D extension – and its variants 
– of an existing algorithm, formerly proposed for 2D texture synthesis. 
  
 The fifth chapter is dedicated to the qualitative evaluation of the synthesis results. This 
is the traditional way to evaluate synthetic textures. A large number of simulated textures are 
analysed, performed under different frameworks specific to the different versions of the 
algorithms presented in chapters three and four.  
 

The sixth chapter shows the applicability of the implemented algorithms on a 
particular set of textured images – the lattice fringe images emerging from the microscopic 
observation of carbon composite materials. The algorithms were successfully applied to the 
synthesis of volumetric textures of carbonaceous materials starting from only a single 2D 
observation obtained by HRTEM (High Resolution Transmission Electron Microscopy). In 
order to evaluate the ability of the algorithm to reproduce a 3D texture respecting the 
statistical properties of the input sample, a quantitative study of the performance of synthesis 
is conducted. This study focuses not only on the dynamics of synthesized images (first order 
statistics) but also on their morphological properties (lengths and tortuosity of fringes or local 
orientations). 
 
 A research study can never be fully completed, so conclusions are drawn and future 
perspectives are declared at the end of this dissertation. 
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2.1  Fundamentals 
 
2.1.1 What is a texture? 

 
 The term texture first appeared in the 14
weave’. If we take into account the definition from the 
Dictionary [Merr], a texture is defined as:

• something composed of closely interwoven elements
• the structure formed by the threads of a fabric
• the disposition or manner of union
• the visual or tactile surface characteristics and appearance of something 

 
 Ignoring all the metaphoric meanings, in the common speech, ‘texture’ is used as a 
synonym for ‘surface texture’.  
 In image processing, it is hard to give a precise definition because texture is alike an
image containing repeated patterns 
same time can be catalogued as an 
 Another good interpretation states that a texture can be defined as a function of the 
spatial variation in pixel intensities
fundamental types of features used by humans to distinguish regions in greyscale images; the 
remaining two are tone and context [
two levels [Har73] [Gag83], the
image is composed and which are its characteristic properties; the second involves 
dependences between these primitives. Thus, all the spatial properties, periodic or not, of a 
phenomenon unfolding in the plan of the image can define the texture.
 In 3D computer graphics, a texture usually refers to
surface of a three-dimensional model by 
realistic appearance.  
 No satisfactory and universal definition of texture has yet been given, because 
everyone tries to understand th
 Often, textures refer to photographs of real textured materials or surfaces. A variety of 
such textures are to be found in the well
and white, and VisTex database for coloured textures
textures are shown in the Fig. 
  

 
Figure 2.1 – Some examples of textures from Brodatz database: from left to right, D12, D20, D68, D74 

 
 
2.1.2 Texture typology 

 
 Texture is a key component of the human visual perception and if anyone basically 
can recognise a texture, it is more difficult to classify the textures.  
and can exhibit numerous properties. 

first appeared in the 14th - 15th century, Latin derived, meaning ‘
’. If we take into account the definition from the Merriam-Webster's Collegiate 

], a texture is defined as: 
something composed of closely interwoven elements 
the structure formed by the threads of a fabric 
the disposition or manner of union of the particles of a body or substance
the visual or tactile surface characteristics and appearance of something 

Ignoring all the metaphoric meanings, in the common speech, ‘texture’ is used as a 
synonym for ‘surface texture’.   

it is hard to give a precise definition because texture is alike an
image containing repeated patterns [Har92] with a certain amount of randomness and in the 
same time can be catalogued as an image containing no explicit objects

rpretation states that a texture can be defined as a function of the 
spatial variation in pixel intensities (grey values) [Con80]. Texture is one of the three 
fundamental types of features used by humans to distinguish regions in greyscale images; the 

ining two are tone and context [Har73]. Texture can be regarded as
], the first concerns the description of primitives of which the 

image is composed and which are its characteristic properties; the second involves 
dependences between these primitives. Thus, all the spatial properties, periodic or not, of a 
phenomenon unfolding in the plan of the image can define the texture. 

In 3D computer graphics, a texture usually refers to a digital image applied to
dimensional model by texture mapping [Hec86], to give the model a more 

No satisfactory and universal definition of texture has yet been given, because 
everyone tries to understand this concept in terms of its center of interest.  

Often, textures refer to photographs of real textured materials or surfaces. A variety of 
such textures are to be found in the well-known Brodatz texture database [
and white, and VisTex database for coloured textures [Visi].  Five examples of Brodatz 

 2.1. 

  
Some examples of textures from Brodatz database: from left to right, D12, D20, D68, D74 

and D103 images. 

Texture is a key component of the human visual perception and if anyone basically 
can recognise a texture, it is more difficult to classify the textures.  A texture is pretty diverse, 
and can exhibit numerous properties. From a perception point of view, te
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century, Latin derived, meaning ‘to 
Webster's Collegiate 

of the particles of a body or substance 
the visual or tactile surface characteristics and appearance of something  

Ignoring all the metaphoric meanings, in the common speech, ‘texture’ is used as a 

it is hard to give a precise definition because texture is alike an 
] with a certain amount of randomness and in the 

image containing no explicit objects [Wei09]. 
rpretation states that a texture can be defined as a function of the 

]. Texture is one of the three 
fundamental types of features used by humans to distinguish regions in greyscale images; the 

]. Texture can be regarded as a phenomenon in 
description of primitives of which the 

image is composed and which are its characteristic properties; the second involves the spatial 
dependences between these primitives. Thus, all the spatial properties, periodic or not, of a 

a digital image applied to the 
], to give the model a more 

No satisfactory and universal definition of texture has yet been given, because 
 

Often, textures refer to photographs of real textured materials or surfaces. A variety of 
known Brodatz texture database [Bro66] for black 

].  Five examples of Brodatz 

 
Some examples of textures from Brodatz database: from left to right, D12, D20, D68, D74 

Texture is a key component of the human visual perception and if anyone basically 
A texture is pretty diverse, 

From a perception point of view, texture can be 
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described by six different properties, namely, coarseness, contrast, directionality, line-
likeness, regularity and roughness, known as the Tamura's texture features [Tam78]. If we 
want finer texture discrimination, these six properties are not as much as necessary [Rao90] 
[Cas02].   
  

 
Figure 2.2 – A texture spectrum arranged by texture regularity [Lin04]. 

 
However, the most common way to catalogue textures is by their degree of regularity 

[Lin04], along a spectrum going from regular to stochastic as in the Fig. 2.2. Most of the real 
world textures are in-between these two extremes. 
 Regular textures look like somewhat regular/structured patterns. Their distinctive 
feature is that the shape and the colour/intensity of all texture elements contained in the 
texture are repeating in equal intervals. An example of regular textures is wallpaper. Near-
regular textures can be viewed as statistical departures of regular textures along different 
dimensions [Lin04]. In the real-world, however, few textures are precisely regular. Most of 
the time, the textures we see in the real-world are near-regular, such as cloth, windows, brick 
walls, carpets etc. 
 Stochastic textures look like noise, like randomly scattered colour dots over the entire 
image, sometimes specified by minimum and maximum brightness and average colour.  Many 
natural scenes contain a huge number of visual patterns generated by a variety of stochastic 
and structural processes.  
 

 
Figure 2.3 – From micro-texture to macro-texture: from left to right, three different scales of 

observations, going from low resolution sand texture image to individual pebbles observed at high 
resolution. 
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 Many textures look like stochastic textures when viewed from a distance, fact that 
takes as to distinguish two other types of textures [Gal11] as exemplified in Fig. 2.3. First, the 
micro-textures are mainly stochastic textures, typical examples of which are images of sand, 
clouds or a water surface. The second class concerns the macro-textures, texture images 
composed of several small, individual objects and not like a coherent group. The 
classification into micro or macro-textures does not only depend on the nature of the observed 
objects but also on the viewing distance.  
 
 Unlike macro-textures, the micro-textures contain generally a pattern of which all 
local spatial parts reveal the same behaviour conferring the texture a homogenous aspect. 
Some homogeneous textures are presented in Fig.2.4.  
 

       
Figure 2.4 – Some examples of stationary Brodatz textures going from structured to stochastic. 

 
 Intuitively, a texture (or an image in general) is homogeneous if by observing it 
through different windows, the perceived region properties are similar. The homogeneity is 
translated into statistical terms by the concept of stationarity. Seeing the texture as a 
realisation of an underlying random process, its stationarity corresponds to the translation 
invariance of all the statistical properties of that process. Stationarity can be defined on a 
broader sense, only at a certain statistical order. For example, a random stationary process of 
second order has its average, variance and autocovariance invariant by translation. Because 
the stationarity allows to define, to some extent, simple structural measurements of the 
random process, recent developments focused on providing methods to evaluate the 
stationarity of a texture [Bla07]. 
 
 
2.1.3 Textures applications 

 
 The use of textures is very valuable in many applications. Quite a lot of computer 
vision tasks use textures, such as recognition, classification or segmentation as illustrated in 
Fig. 2.5.  
 Texture has been proved to be one of the significant characteristics used in identifying 
objects of interest or regions in an image [Skl78]. Using texture features, one can produce a 
classification map of the input image where each homogeneous textured region is identified 
with the texture class it belongs to [Con80]. A typical application consists in retrieving similar 
regions in remote sensing images [Wik01]. 
 Texture has been studied in the context of image understanding and analysis. Not 
surprisingly, texture finds applications in problems related to image/video editing, merging, 
and completion, setting up a new concept – video texture [Sch00], enjoying properties found 
somewhere between a photo and a video. 
 Textures improve our lives indirectly by contributing actively in the medical research 
field, namely in investigating medical images [Dun00], an important tool for diagnosis and 
pathology follow-ups. 
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                                   a                                             b                                            c 
Figure 2.5 – (a) An image consisting of five different Brodatz textured regions [Che98]: cotton canvas 
(D77), straw matting (D55), raffia (D84),herringbone weave (D17) and pressed calf leather (D24). (b) 

The goal of texture classification is to label each textured region with the proper category label. (c) 
The goal of texture segmentation is to separate the regions in the image which have different textures 

and identify the boundaries between them. 
 
 Reproducing the visual realism of the real world is a key objective for computer 
graphics. For acquiring synthetic images, textures are frequently used and above all obtained 
by texture synthesis. Synthetic textures are an alternative to the hand-drawn or scanned 
photographic textures, having the advantage that textures can be made of any size and that 
repetitions or visual seams can be avoided.   
 In 2D but lately mainly in 3D graphics, a large interest is in modelling surface details. 
Because explicit modelling with polygons or geometric primitives becomes less practical for 
finer and more complicated details, an alternative solution is to map an image, either synthetic 
or digitized, onto the object surface, technique called texture mapping [Hec86]. 
 
 
2.2  2D texture synthesis from a 2D sample: principles and algorithms  

 
 Texture synthesis has been an active research topic in computer vision both as a way 
to verify texture analysis methods, as well as in its own right. It is often the case when a given 
sample is too small for the surface of an object. Then the sample needs to be extended in 
some way - and that is where texture synthesis comes in. Simple replication of the sample 
would cause a tiled appearance, but texture synthesis will create a new texture big enough that 
will still look like the original one. 
 
2.2.1 Texture synthesis definition 

 
 More specifically, the goal of texture synthesis is to reproduce a new texture from a 
sample, obtaining a texture that looks different and is pixel-wise different from the original 
sample.  
 The synthesized texture appears as if it has been created from the same underlying 
process as the original one, both measured by the standards of human perception. The output 
texture should ideally be perceived as another part of the same large portion of a 
homogeneous material the input texture is taken from, as it is illustrated in Fig. 2.6. 
 The size of the output texture is typically selected by the user, the synthesis result 
should be perceptually similar to the input texture but also containing sufficient variations, so 
that it should not have any visible artefact (seams, blocks, misfitting edges) and it should 
contain no repetition. 
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Figure 2.6 – Example of an ideally texture synthesis process on Brodatz D84 image: given an input 
texture (left snapshot), a texture synthesis algorithm should ideally provide an output texture (right 

snapshot) perceived as being a different part of the same large piece of material. 
 

 A very good description of texture synthesis was formulated by [DeB97]: 
”Mathematically, the goal of texture synthesis is to develop a function F, which takes a 
texture image Iinput, to a new texture sample Isynth, such that the difference between Iinput and 
Isynth is above some measure of visual difference from the original, yet is texturally similar.   
Formally,  

F(I input) = Isynth                                                         (1.1) 
subject to the constraints that  

D*(I input, Isynth) <Tmax_disc                                                 (1.2) 
and 

 V*(I input, Isynth) >Tmin_diff                                                  (1.3) 

where D* is a perceptual measure of the perceived difference of textural characteristics, and 
V* a measure of the perceived visual difference between the input and synthesized images. To 
be acceptable, the perceived difference in textural characteristics must fall below a maximum 
texture discriminability threshold Tmax_disc, and the perceived visual difference must be above 
a minimum visual difference threshold, Tmin_diff. 
 The success of a synthesis technique is measured by its ability to minimize Tmax_disc 

while maximizing Tmin_diff ”. 
 
 

2.2.2 Texture synthesis applications 
 

 In computer graphics, texture synthesis is a common technique to create generally 
large textures from small texture samples, for the use of texture mapping in surface or scene 
rendering applications, handling boundary conditions and avoiding verbatim repetitions. In 
rendering, textures can imitate the surface details of real objects, ranging from varying the 
surface’s colour, to actually deforming the surface geometry. 
 In computer vision, texture synthesis is of interest in segmentation, recognition or 
classification as in Fig. 2.5. These tasks can benefit from a texture model, which could be 
derived from a successful texture synthesis algorithm. Texture synthesis is useful also because 
it could provide an empirical way to test texture analysis, if the analysis results in some 
characteristic features that can be implemented into the synthesis algorithm. Because a 
synthesis algorithm is usually based on texture analysis, the result justifies effectiveness of the 
underlying models. Compared to texture classification and segmentation, synthesis poses a 
bigger challenge on texture analysis because it requires a more detailed texture description 
and also reproducing it is generally more difficult than discriminating them [Zho06a]. 
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 Other applications of texture synthesis comprise:  
 

� Image editing/restoration/completion [Ige97] [Efr99] [Wei00] [Bro02] [Dro03] – Over 
time or due to improper handling or maintaining,  photographs or films suffer from scratches 
or scrambled regions; more often, in pictures or movie frames there are undesirable items 
(like wires, poles, different objects, persons, animals etc.). All these kind of flaws, often 
contained within a textured region, can be replaced by texture synthesis. Texture synthesis 
can also be used as an inpaiting process for reconstructing lost or deteriorated parts or filling 
the holes in images and videos. Some examples in this direction are in Fig. 2.7. 
 

 
                         a                               b                                              c                                d 
Figure 2.7 – (a)(b) Examples of texture-replacement algorithm [Ige97]: top row - the original image, 

the bottom row – image with replacement patch by texture synthesis. (c)(d) Examples of image 
contraction (c) and image expansion (d) using self-similarity based texture warping [Bro02]. 

 
� Animation and video synthesis [Szu96] [Sch00] [Wei00] [Kwa03] [Dub11] – Computer 

generated animations contain cyclic background movements such as ocean waves, waterfall, 
steam, clouds, smoke or fire. These motions can be regarded as temporal textures with motion 
having indeterminate extent both in space and time as exemplified in Fig. 2.8. Video textures 
provide a continuous infinitely varying stream of images; they can be used in place of digital 
photos to infuse a static image with dynamic qualities and explicit action. Applications of 
video textures and their extensions include the display of dynamic scenes on web pages, the 
creation of dynamic backdrops for special effects and games, and the interactive control of 
video-based animation. 

 

 
                                 a                                                                                b  

Figure 2.8 – Temporal texture synthesis [Wei00]: (a) smoke and (b) ocean waves; in each pair, 
the spatial-temporal volume of the original motion sequence is shown on the left, and the 

corresponding synthesis result is shown on the right. 
 

� Compression [Bee96] [Sun10] – Images showing natural scenes often contain large 
textured regions, such as a grass land, a forest, or a sand beach. Alternative to common image 
compression formats like JPEG or PNG, textures can be compressed as well, using a different 
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format. By segmenting out and analysing the textured regions in a pre-processing step, they 
might be compressed and afterwards re-synthesized by a texture synthesis technique. In 
addition to image compression, texture synthesis can also be employed for synthetic scenes 
containing large amounts of textures. 
 
 
2.2.3 Texture synthesis typology 
 
 The research field of texture synthesis has lead to the development of many synthesis 
techniques over the past two decades. Obviously, the space prevents a complete listing of all 
the relevant models, but whatever the difficulties, one can roughly separate the existing 
texture synthesis methods in three major families: procedural texture synthesis, image-based 
texture synthesis and model-based texture synthesis.  
 
 
2.2.3.1 Procedural texture synthesis 

 
 Procedural texture synthesis focuses on trying to produce textures using functions or 
computer algorithms which can be evaluated at any point at a fixed computational cost, and 
thus they are ideal tools for texturing objects in virtual environments - animation movies or 
video games [Ebe02]. Different authors tried to reproduce the real-world phenomenon like 
water flow, corrosion or particles distribution in aggregate materials, using physical 
simulations based on meticulous mathematics. 
 Such procedures were studied since the early days of computer graphics. Usually they 
are based on transforming some predefined signal into a desired texture. It’s easier to set up 
functions for highly structured textures, but many of them are also useful for generating some 
types of non structured textures like noise functions (e.g. the Perlin noise [Per85] or Worley 
noise [Wor96]).  Perlin noise is still very popular today. Over the last few years several 
improved procedural noise functions have been proposed: wavelet noise [Coo05], anisotropic 
noise [Gol08] or Gabor noise [Lag09]. 
 

 
Figure 2.9 – Some examples of noises representations: from left to right, white noise, Perlin noise 

[Per85] and wavelet noise [Coo05]. 
 
 These approaches can be very fast, they can produce high-quality and continuous 
memory efficient textures [Ups89] not storing explicitly the synthesized textures.  
Unfortunately, they are specialized for a reduced number of specific textures, such as wood, 
water, marble, sea shell or animal skin; for every new texture it is required a new algorithm to 
be written and programmed. Hence, an important practical problem is to derive texture 
procedural models from sample textures [Dis97]. If the early results were limited to textures 
in 2D, most of the authors tried to extend their algorithms for synthesizing solid textures 
[Lew89] or for solid texturing on surfaces [Pea85] [Tur91]. Another direction of procedural 
methods includes the use of reaction-diffusion [Tur91] to create striped or spotted patterns.  
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2.2.3.2 Image-based texture synthesis 
 
 This category of approaches contains most of the synthesis techniques. Image based 
texture synthesis generates a new texture that resembles as much as possible the sample 
image.  
 
Image-based texture synthesis approaches involve three sub-classes as following:  

• texture synthesis by analysis  
• pixel-based texture synthesis  
• patch-based texture synthesis 

 
 Image-based approaches can synthesize a wider variety of textures, as long as sample 
textures are provided. Most of them synthesize textures by directly copying input image 
pixels or patches and stitching them together in the synthesized image. They have the 
advantage of preserving image details by keeping the pixel neighbourhood intact in the 
synthesized textures. These are local approaches in nature, with no special consideration 
given to the texture’s global structures. 
 
 
Texture synthesis by analysis is based on texture modelling by statistical constraints. A new 
texture is synthesized so that a set of statistical constraints estimated from the input image is 
imposed on the output textures, idea illustrated in Fig. 2.10.  

The first notable approach constrained the synthesis by using the histograms of filter 
responses at different scales and orientations [Hee95]. This was one of the first coloured 
textures synthesis methods, and involved an iterative approach of matching the histograms 
and expanding and reducing the pyramids. Image construction was made by using a sort of 
Laplacian and Steerable pyramids. The next in line, overcame the iterative process by 
modifying the input in a coarse-to-fine fashion, restricting the conditional distribution of filter 
output over multiple resolutions [DeB97].   

 

 
Figure 2.10 – Block diagram of the texture synthesis by analysis method and its goal: to achieve the 

same visual appearance in both the original and the synthetic textures. 
 
A substantial improvement was accomplished by extending the first order statistical 

modelling to the second order one and replacing the complete filter response update, made by 
histogram equalization, with a scheme respecting the correlations [Por00]. The optimization 
procedure becomes more complicated, but it allows a fairly sufficient description of texture 
and makes the synthesis of new textures possible.   
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Several enhancements of this method have been proposed [Pey10] [Rab10], involving 
higher-order statistics between coefficients and more sophisticated decompositions of images. 
However, these types of approaches lead to some complex formulations that are difficult to 
optimize.  
 
 
Pixel-based texture synthesis methods generate the texture one pixel at a time maintaining 
the coherence of the local texture with its vicinity. They are generally based on the theory of 
Markov Random Fields (details are to be found in Chapter 4). These are among the most 
successful techniques mainly because of their simplicity and applicability.  

To assure a reasonable computational complexity, most of the authors propose 
efficient searching algorithms combined with a multi-scale implementation capable of 
capturing patterns at different scales without increasing the computational load. 
 One of the first methods, classified as a nonparametric Markov chain synthesis 
algorithm, consisted in ordering the pixels and then synthesizing a new pixel from a 
nonparametric representation of the conditional probability function. This probability function 
was derived from samples of the input texture [Pop93], using a Gaussian mixture model.  The 
only problems were the limited size of the neighbourhood order and the causality of the 
synthesis approach. Improvements were brought by using the non-parametric Parzen-window 
density estimator and a local annealing algorithm capturing the visual characteristics of a 
texture [Pag98]. This model was capable of synthesizing complex textures ranging from the 
stochastic to the well structured ones. 

Following the above work, the texture synthesis by non-parametric sampling [Efr99] 
doesn’t require any probability density estimator, but instead simply using the nearest 
neighbour look up scheme to sample the texture, principle sketched in Fig. 2.11. 

 

 
Figure 2.11 – Overview of the texture synthesis by a non-parametric algorithm [Efr99]:  Given a 

sample texture image (left), a new image is being synthesized one pixel at a time (right). To synthesize 
a pixel, the algorithm first finds all neighbourhoods in the sample image (boxes on the left) that are 

similar to the pixel’s neighbourhood (box on the right) and then randomly chooses one neighbourhood 
and takes its centre to be the newly synthesized pixel. 

 
 Even if Efros’s algorithm was causal and non multi-scale, this was the precursor of 
one of the most versatile methods and in the same time, one of the fastest. This method, 
proposed by Wei and Levoy [Wei00], relies on texture locality (every pixel is predictable 
from the few pixels in its neighbourhood) and texture stationarity (spatial statistics invariance 
by translation). Starting from a random initialization and following a certain scanning type, 
the texture is synthesized pixel by pixel, iteratively. To do that, pixels from the exemplar are 
copied into the output texture, making sure that the output pixel neighbourhood is similar to 
the neighbourhood of the chosen input pixel. To accelerate the searching of the best 
neighbourhood in the input image, the authors proposed acceleration techniques.  
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 Because the exhaustive nearest neighbour searching is time consuming, an efficient 
solution is to reduce the number of causal neighbourhoods per pixel to be compared [Ash01]. 
These neighbourhoods are defined as the neighbourhoods in the sample texture that have been 
previously chosen for the former synthesis of pixels neighbouring the pixel of interest in the 
output texture. This algorithm works best on natural textures, such as textures of flower fields, 
pebbles, forest undergrowth, bushes and tree branches. However, it is not suited for textures 
containing a high degree of structure, when phase discontinuities occur, making the texture 
look broken. 

Combining the ideas from [Wei00] with [Ash01] and extending them to work on 
corresponding pairs of images rather than on single textures has lead to a new type of 
algorithm, capable of handling texture synthesis and texture transfer using analogies [Her01], 
efficiently combining the Euclidian distance with the nearest neighbour searching.  

Other approaches proposed to accelerate texture synthesis by using a jump map 
[Zel02], avoiding nearest neighbour comparisons as in Fig. 2.12. Each pixel in the jump map 
contains a list of pre-calculated references and probabilities for matching pixels, as an input 
texture analysis stage. A texture is synthesized in real time by copying a matching pixel, 
referred in the jump map, from the sample texture.  

 

 
Figure 2.12 – Basic principle of texture synthesis using the jump map [Zel02]: the jump map records 
the links between closely-matched neighbourhoods from the input texture (faded for clarity).On the 
right, the output image is synthesized in a scan-line order, by random walk through the jump map. 

 
Following an entirely different principle, [Ton02] introduced the k-coherence-based 

method capable of synthesizing bidirectional texture functions (functions that describe the 
appearance of a real-world surface as a texture function of lighting and viewing directions) as 
an application to texture synthesis. K-coherence supplies for each pixel a set of k nearest 
causal matches. The source pixels in the causal neighbourhood are used to define a candidate 
set from which the best matching pixel is copied. The value of k depends on the type of 
texture: for natural textures, where high frequency components are desired, a low k should be 
suitable; for the rest, a high k should be used.  If k equals 1, the method is comparable to 
[Ash01]. 
 
 
Patch-based texture synthesis appeared as an improvement to the pixel-based approaches, the 
latter methods suffering from excess computations when dealing with the structure of the 
texture. At each step, a patch of the input image is chosen among the ones which have their 
neighbourhood similar to the corresponding neighbourhood in the output texture. 
 One of the first approaches of this kind consists in selecting patches from the input 
image that agree, according to some measure, with surrounding patches in the output image 
and then reducing the edge artefacts by using minimum error cuts between the patches. This 
can be simply defined as image quilting [Efr01] and the concept is illustrated in Fig. 2.13. 
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                                                 a                                           b                                          c  
Figure 2.13 – Example of texture synthesis using the image quilting method [Efr01], i.e. square blocks 

from the input texture patched together to synthesize a new texture sample: (a) blocks are chosen 
randomly (similar to [XuG00] [Pra00]), (b) the blocks overlap and each new block is chosen so as to 
“agree” with its neighbours in the region of overlap, (c) to reduce blockiness the boundary between 

blocks is computed as a minimum cost path through the error surface at the overlap. 
 

  Patch-based texture synthesis was also performed under the form of chaos mosaics 
[XuG00] - randomly distributing patches from the input texture over the output and smoothing 
the edges between overlapping patches with simple cross-edge filtering. The drawback is that 
the synthesis produces large regions of verbatim copying. 
 To reduce the stability problems of which suffered the previous schemes, a fast 
neighbour search algorithm based on a quad-tree pyramid structure of the input texture was 
introduced. It assures an optimal sequential fitting technique, by laying down one patch after 
the other [Lia01].  
 An improved version of image quilting was done by a graph cut technique called min-
cut or max-flow [Kwa03] allowing re-evaluations of old cuts relative to new ones. It involves 
two stages: first, the search of the best patch by comparing the current patch with the 
information from the sample texture and secondly, copying an optimal portion of the patch 
determined using a graph-cup algorithm. The results have a very good visual quality even 
when applied to video texture synthesis.  
 Work was done to reduce and to guarantee the non-repeating texture patterns while 
synthesis, by improving texture lapping [Pra00] or by introducing a new concept – Wang tiles 
[Coh03]. Wang tiles generate non-repeating tiling of a limited number of tiles by assigning a 
colour to each edge of the tile and matching edges with similar colour.  
 Combining the patch-based and the pixel-based techniques led to an interesting hybrid 
algorithm highlighting the advantages of each method and restraining the drawback of both 
[Nea03]. It consists in using patches as large as possible and stitching the patches of different 
sizes using a pixel-based method.  

For more information about the example-based texture synthesis algorithms the reader 
is invited to consult [Kwa07]. 
 
 
2.2.3.3 Model-based texture synthesis 

 
Model-based texture synthesis is a complementary topic of texture analysis, 

attempting to generate synthetic textures in harmony with a certain texture model. Model 
based texture analysis methods consist in building an image model that can be used to 
describe the texture but also to synthesize it. The parameters of the model have to confine the 
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important visual characteristics of the texture. Many model based methods have been 
employed in texture analysis, including the auto-regressive models [Kas84] [Che85] [Jai89], 
Markov and Gibbs random fields [Cro83] [Gem84] [Kho87] [Siv99], Wold models [Fra93], 
fractal models [Che93], Gabor and wavelet models [Tur86] [Cla87] [Mal89] etc. In these 
methods, a texture is shaped as a probability model or as a linear combination of a set of basic 
functions. Difficulties are on choosing the appropriate model for the targeted texture and on 
estimating its parameters. 
 The autoregressive (AR) model assumes a local interaction between texture pixels 
where pixel intensity is a weighted sum of neighbouring pixel intensities. Derived from 1D 
time series models that have a past and a present [Kas84], these 2D models have to impose 
similar ordering on the 2D discrete lattice. Other AR models, such as the moving average 
model (MA) or the autoregressive moving average model (ARMA) are discussed in [Jai89]. 
Although texture synthesis is feasible using for example the non-causal AR model [Che85], 
these model-based methods show difficulties in generating natural textures [Hai91]. 
 Markov random fields (MRFs) are popular methods for modelling images [Bes74] 
[Cro83] [Gem84] [Pag89]. A MRF is a probabilistic process in which all interactions are 
local, but the global effects can still occur as propagation effects. The intensity of each texture 
pixel is entirely determined by its neighbouring intensities, deemed as a conditional 
probability. Because a conditional probability density function is not accurately estimated by 
the MRF, an equivalent maximum a posterior estimator on a Gibbs random field is used 
[Cli90] [Gem91]. Consequently, modelling the texture globally by specifying the total energy 
of the texture lattice is equivalent to model it locally by evaluating the local interactions 
between pixels in terms of conditional probabilities. 
 Wold-like model is a more recent method used to model texture images. The model 
allows the texture to be decomposed into three mutually orthogonal components [Fra93] 
[Sto98]: a random component (w.r.t. granularity), a harmonic component (w.r.t. 
repetitiveness) and a generalized evanescent component (w.r.t. directionality) [Ram00]. A 3D 
Wold decomposition was proposed recently by [Sti07], modelling a 3D homogeneous texture 
field as a unique sum of four mutually orthogonal components: a purely indeterministic part, a 
deterministic part and two evanescent components. This kind of approaches allows texture 
synthesis [Fra93] [Zha08] but with difficulties in estimating the harmonic and evanescent 
components.  
 Fractal models are accepted in computer graphics for creating realistic textured 
images. This is feasible because the fractal distance is relatively insensitive to image scaling 
but more important it shows strong correlation with the human judgement of surface 
roughness. Fractals are used to model the roughness property of a surface/texture in image 
analysis, being able to describe objects having high degree of irregularity. A number of 
methods for texture synthesis based on fractals have been proposed, based on midpoint 
displacement and Fourier filtering [Pei88]. The fractal method is able to model some natural 
textures, but because it lacks orientation selectivity, is not suitable for describing local image 
structures. 
 
 
 There are also other families of classes in which texture synthesis techniques can be 
broadly categorized, for example local region-growing methods [Pag98] [Efr99] [Wei00] vs. 
global optimization based methods [Per85] [Pea85] [Tur91] [Hee95] [Por00] or discerning 
the same referenced paper in parametric methods [Per85] [Pea85] [Tur91] [Hee95] [Por00] 
vs. nonparametric methods [Pag98] [Efr99] [Wei00].  
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2.3 Volumetric texture synthesis 
 

 Many of the above techniques were implemented for 2D synthesis, but their extension 
to the 3D environment remains unstable proving itself as a very complex and computational 
issue. 3D textures are mainly used for texturing volumetric objects trying to increase the 
realism of the 3D scenario, but they can also be observed in 3D vision when exploring for 
instance material structure or seismic data. For such applications, a volumetric synthesis 
approach by 2D/3D inference is justifiable, being sometimes the only possibility to access the 
three dimensional structure [DaC10].  
 Volumetric texture synthesis has proved very useful for texture mapping. Mapping 
represents an important instrument in modelling surface details for rendering photorealistic 
graphic scenes without explicit modelling of the surface geometry or of the material 
properties. Nevertheless, defining a distortion-free and discontinuity-free mapping is 
challenging and sometimes even impossible for some complex objects. In contrast, when 
applying a solid texture into an object, it allows carving the object out of the texture 
volumetric data block, avoiding the problems of distortion and discontinuity [Dis01]. 
Furthermore, once a solid texture is available, it can be used to texture arbitrary objects not 
only on object surface, but also throughout the entire object volume, the solid texture carrying 
information in the entire volume. One should make the distinction between the 3D solid 
texture synthesis and the on-surface 2D texture synthesis. Many works were developed in this 
direction by synthesizing a 2D texture pattern over a mesh in 3D [Wei01] [Yin01] [Tur01] 
[Ton02] [Gor03] [Zho06b] with the objective of avoiding seams and minimizing pattern 
distortion.  
 For many objects, mapping 2D images (i.e. texture maps) to the surface of synthetic 
objects is satisfactory, ‘tricking’ the human perception by not incorporating quantitatively the 
third dimension of depth. However, for objects formed from materials with inherent 3D 
structure, it can be difficult to find a 2D image mapping that adequately represents the 
material variation. Here gets involved the 3D synthesis. Full 3D texture synthesis versions can 
be easily derived for most of the existing 2D approaches and can be used in practice, provided 
that a 3D sample is available as an example. On the contrary, the synthesis of volumetric 
textures based on 2D exemplar(s) is more awkward. 
 Despite the fact that there have been numerous studies successfully performing texture 
synthesis, in terms of quality and efficiency, most of the works concentrate on 2D texture 
synthesis, while solid texture synthesis receives relatively less attention. The scarcity of 
related papers is mainly attributed to the much higher complexity involved in solid texture 
synthesis.  
 Unlike the 2D image samples, which can be captured with any camera, 3D solid 
texture image samples are more delicate and elaborated. In material science and engineering, 
exploring the 3D structure of materials is essential to understand and predict their physical 
properties and behaviour. There are different 3D imaging techniques (based on X-ray, 
ultrasounds or Magnetic Resonance Imaging) allowing to obtain 3D views of a certain 
material at different resolutions, but their use is not always appropriate because of the high 
costs it involves and for various technical reasons (e.g. the sample preparation, intricate for 
high resolutions). Alternative ways to obtain 3D images of a material are the confocal 
microscopy [Ebe01] [Lee01] (reconstructing 3D views from multiple optical sections of the 
sample) or the dissector [Ste84] [Dav97] (observing thin, parallel, contiguous slices of the 
sample). However, 3D microscopy techniques are expensive and imply rigorous sample 
preparation, while getting thin enough, perfectly parallel slices is quite laborious in practice, 
making them sometimes unusable. 
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 3D image synthesis techniques may appear as interesting alternatives in such cases. 
Specific techniques are to be considered, using at least one 2D image of the 3D material as 
input. 3D information can be obtained from one 2D image by modelling the targeted solid 
block to match the 2D sample characteristics. As well it is possible to relate measurements of 
a single 2D cross-section of the volume with the reality of that material under stereological 
considerations. 
 
One can distinguish three main directions for creating volumetric textures: 

• procedural approaches  
• run-time 2D texture synthesis on cross sections  
• exemplar-based 3D texture synthesis 

 
 

2.3.1 Procedural approaches 
 
 These are the first solid synthesis techniques ever attempted. In fact, the notion of 
solid texture was first employed in 1984 [Gar84], but the term solid texture was officially 
pioneered in 1985 by [Per85], when the reproduction of realistic textures was done by 
perturbing material-specific mathematical functions in order to create realistic, pseudo-
random patterns,  using noise functions [Lew89]. Noise functions have been largely used in 
computer graphics to reproduce solid textures containing patterns of marble, crystal, sand, 
clouds, fire or water. Lately, new attempts were made to improve the intuitive description of 
patterns [Lag09]. 
 

 
Figure 2.14 – Solid wood texture synthesis [Dis01]: on the left, the result obtained by perturbing a 
wood-grain basis function directly with the turbulence function of [Per85]; on the right, the result 

obtained by using a perturbation function corresponding to a filtered noise which preserves the visual 
aspect of the wood-grain. 

 
  Another type of procedural approach consisted in using a scripting language to define 
the internal structure of a layered volume model by specifying depth and material information 
[Cut02]. This approach is capable of producing a variety of complex models as a result of 
simulation operations applied to the layered solid models. Based on procedural methods, 
[Che04a] presented an efficient 3D texture synthesis algorithm simulating the growth of a 
material from a single 2D growable texture pattern. Texture evolution is based on the general 
principle of texture growing (i.e. 3D cube growth simulation following a random path) and 
texture turbulence (i.e. texture warping by texture perturbation).  
 Unfortunately, it remains quite difficult to analytically describe texture appearance by 
procedural methods leading to algorithms hard to control, program and optimize.  

 
 
 



 

2.3.2 Internal solid texturing from 2D cross sections
 

 It consists in synthesizing the internal structure 
few cross-sections of a real object
complete 3D volumetric representation directly [
 

                                        a                         
Figure 2.15 – (a) Example of a subdivided domain [Owa04]
to cut a bone-and-meat model (on the left) and to add interesting reference textures (on the middle)
the surface meshes. (b) Illustration of the internal structure of an object
surfaces of a real object taken by an interactive editor and place them in the local reference frame of 

 These are real-time 2D texture synthesis methods, allowing the user to interact with 
the designing system. While [
inside the volume, [Pie07] requires the user to place the cross sections onto the 3D model and 
then morphing performs the cross
interactive methods is exemplified in 
appealing even for a non-expert user, but these methods have some limitations like 
discrepancy among different cross
types applicability (morphing works well with isotropic, layered and oriented textures, but 
fails on textures containing discontinuous elements).
 Similar work in this direction was accomplished by [
for filling a solid object with spatially varying oriented textures with overlapping solid 
textures. The underlying concept is to extend the 2D texture patch
textures [Pra00] to 3D solids by replacing the 2D texture and triangular me
tetrahedral mesh and 3D texture patches. 
 
 
2.3.3 Exemplar-based 3D texture synthesis methods

 
 These are the most frequently employed and usually based on 2D exemplar(s). The 
objective is to fill up a volume with the patterns seen in the exemplar, by 
information from 2D input data.
 The intense work of 3D texture synthesis based on exemplar started in the middle of 
the 90’s with the first parametric methods attempted. It involved multi
matching operations aiming t
volume. 3D textures are successfully generated by matching the histogram of the volumetric 
data with that of the input sample at different levels of resolution [
 Work in this direction wa
decomposed using a bank of spatial filters, into a set of sub

Internal solid texturing from 2D cross sections 

It consists in synthesizing the internal structure of a 3D model from 2D snapshots of a 
sections of a real object, using 2D synthesis techniques, instead of sampling from a 

complete 3D volumetric representation directly [Owa04] [Pie07].  

a                                                                                     b 
mple of a subdivided domain [Owa04] based on user’s control, to choose where 

meat model (on the left) and to add interesting reference textures (on the middle)
the surface meshes. (b) Illustration of the internal structure of an object using a few photos of internal 
surfaces of a real object taken by an interactive editor and place them in the local reference frame of 

the 3D model [Pie07]. 
 

time 2D texture synthesis methods, allowing the user to interact with 
ng system. While [Owa04] asks the user to provide a direction to orient textures 

] requires the user to place the cross sections onto the 3D model and 
then morphing performs the cross-sections synthesis. The general principle of th
interactive methods is exemplified in Fig. 2.15. The 3D interactivity of the method is very 

expert user, but these methods have some limitations like 
discrepancy among different cross-sections, computational cost, morphing 
types applicability (morphing works well with isotropic, layered and oriented textures, but 
fails on textures containing discontinuous elements). 

Similar work in this direction was accomplished by [Tak08] who presents a method 
filling a solid object with spatially varying oriented textures with overlapping solid 

textures. The underlying concept is to extend the 2D texture patch-pasting approach of lapped 
] to 3D solids by replacing the 2D texture and triangular me

tetrahedral mesh and 3D texture patches.  

based 3D texture synthesis methods 

These are the most frequently employed and usually based on 2D exemplar(s). The 
objective is to fill up a volume with the patterns seen in the exemplar, by 
information from 2D input data. 

The intense work of 3D texture synthesis based on exemplar started in the middle of 
the 90’s with the first parametric methods attempted. It involved multi-scale statistical feature 
matching operations aiming to reproduce the global statistics of the 2D exemplar in the 
volume. 3D textures are successfully generated by matching the histogram of the volumetric 
data with that of the input sample at different levels of resolution [Hee95]. 

Work in this direction was extended following the idea that an image can be relevantly 
decomposed using a bank of spatial filters, into a set of sub-bands, each sub
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of a 3D model from 2D snapshots of a 
techniques, instead of sampling from a 

 
 

based on user’s control, to choose where 
meat model (on the left) and to add interesting reference textures (on the middle) to 

using a few photos of internal 
surfaces of a real object taken by an interactive editor and place them in the local reference frame of 

time 2D texture synthesis methods, allowing the user to interact with 
] asks the user to provide a direction to orient textures 

] requires the user to place the cross sections onto the 3D model and 
sections synthesis. The general principle of these two 

The 3D interactivity of the method is very 
expert user, but these methods have some limitations like 

sections, computational cost, morphing limitations, texture 
types applicability (morphing works well with isotropic, layered and oriented textures, but 

] who presents a method 
filling a solid object with spatially varying oriented textures with overlapping solid 

pasting approach of lapped 
] to 3D solids by replacing the 2D texture and triangular mesh with a 

These are the most frequently employed and usually based on 2D exemplar(s). The 
objective is to fill up a volume with the patterns seen in the exemplar, by inventing 3D 

The intense work of 3D texture synthesis based on exemplar started in the middle of 
scale statistical feature 

o reproduce the global statistics of the 2D exemplar in the 
volume. 3D textures are successfully generated by matching the histogram of the volumetric 

].  
s extended following the idea that an image can be relevantly 

bands, each sub-band revealing 



 

information about the presence of primitives of specific orientation and scale in the exemplar 
[Por00] [DaC10]. The global schema of this type of approach is presented in 
statistical modelling of these sub
well on homogenous and stochastic textures, but the quality of the synthetic resu
in general for structured textures.
 

Figure 2.16 – General schema of the 2D/3D synthesis/analysis extension of the parametric approach 

 The pioneering attempts to synthesize solid textures are completed 
made in order to match the spectral characteristics of the 2D exemplar [
principle of the spectral analysis methods was based on using a spectral analysis (Fast Fourier 
Transform) of the model to obtain a basis and a no
algorithm to obtain the solid texture as in [
 
 Later work combined 
views in order to synthesize anisotropic solid textures [
This method is designed to handle textures whose appearance are well captured by global 
parameters and even if only limited range of textures can be handled, it is the first approach 
capable of generating structural solid textures such as wood a
 

Figure 2.17 – Solid texture generation using [Dis98]: on the left, the general principles consists in 
starting with a white noise and then process all the slices successively and reiterate until reaching 
satisfactory visual resemblance with r

obtained using multiple example textures
 
 To overcome the restricted applicability of textures, the non
later used [Wei03] [Kop07] [Qin07

information about the presence of primitives of specific orientation and scale in the exemplar 
]. The global schema of this type of approach is presented in 

statistical modelling of these sub-bands was extended to the 2nd order. These methods work 
well on homogenous and stochastic textures, but the quality of the synthetic resu
in general for structured textures. 

General schema of the 2D/3D synthesis/analysis extension of the parametric approach 
of [Por00], developed by [DaC10]. 

 
The pioneering attempts to synthesize solid textures are completed 

made in order to match the spectral characteristics of the 2D exemplar [Gha95
of the spectral analysis methods was based on using a spectral analysis (Fast Fourier 

Transform) of the model to obtain a basis and a noise function and then use a procedural 
algorithm to obtain the solid texture as in [Per85]. 

Later work combined spectrum with histogram matching and used orthogonal 2D 
views in order to synthesize anisotropic solid textures [Dis98] as it is sketched in 
This method is designed to handle textures whose appearance are well captured by global 
parameters and even if only limited range of textures can be handled, it is the first approach 
capable of generating structural solid textures such as wood and marble. 

Solid texture generation using [Dis98]: on the left, the general principles consists in 
starting with a white noise and then process all the slices successively and reiterate until reaching 
satisfactory visual resemblance with respect to the models; on the right, an example of solid texture 

obtained using multiple example textures. 

To overcome the restricted applicability of textures, the non-parametric methods were 
Qin07] [Che10]. These are essentially based upon the assumption 
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information about the presence of primitives of specific orientation and scale in the exemplar 
]. The global schema of this type of approach is presented in Fig 2.16. The 

order. These methods work 
well on homogenous and stochastic textures, but the quality of the synthetic results degrades 

 
General schema of the 2D/3D synthesis/analysis extension of the parametric approach 

The pioneering attempts to synthesize solid textures are completed with the attempts 
Gha95] [Gha96]. The 

of the spectral analysis methods was based on using a spectral analysis (Fast Fourier 
ise function and then use a procedural 

spectrum with histogram matching and used orthogonal 2D 
] as it is sketched in Fig. 2.17. 

This method is designed to handle textures whose appearance are well captured by global 
parameters and even if only limited range of textures can be handled, it is the first approach 

 
Solid texture generation using [Dis98]: on the left, the general principles consists in 

starting with a white noise and then process all the slices successively and reiterate until reaching 
espect to the models; on the right, an example of solid texture 

parametric methods were 
]. These are essentially based upon the assumption 
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that textures are Markov Random Fields. The solid texture is generated systematically one 
voxel/patch at a time maintaining the coherence of the local texture with its vicinity. The 
global schema consists in copying pixels from the exemplar into the output texture, making 
sure that the output voxel 2D neighbourhoods – taken on up to three orthogonal 2D slices 
containing the output voxel – are similar to the neighbourhoods of selected input pixels 
[Wei03]. Improvements for producing realistic solid textures from 2D exemplars were 
brought by [Kop07] who combined global texture optimization [Kwa05] with colour 
histogram matching as [Hee95]. To upgrade even more the quality of the results, [Che10] 
proposed a high quality texture synthesis by integrating in the texture optimization two new 
kinds of matching histograms (position and index histograms). These approaches assume the 
search of the best matching neighbourhood independently in two or three directions 
corresponding to the orthogonal views of the solid texture. Consequently, a large number of 
iterations are required before the algorithm stabilizes into a satisfactory result.  

In order to take into account long term dependences observed in real textures while 
preserving a reasonable computational complexity, most authors propose multi-scale 
implementation schemes, combined with specific acceleration tricks based on efficient 
searching algorithms: tree structured vector quantization [Wei00], k-coherence tree [Ton02], 
discrete solver [Han06]) or dimensionality reduction [Lef06] (the input exemplar is 
transformed from a 3D colour space into a high-dimensional appearance space in which each 
pixel contains much more information than only colour).  

The non-parametric pixel by pixel synthesis methods are the most used, finding 
applications even in modelling real human body systems (for example for creating realistic 
3D organic tissues starting from 2D textured samples [Pri12]).  
  

 
Figure 2.18 – Aura 3D synthesis [Qin07]: on the left, the general pipeline of aura 3D sampling 

consisting in computing the aura matrices for each input sample and modify the initial white noise 
block so that the sampled final volume will have similar texture to the corresponding input sample 

when a cross section perpendicular to that view direction is cut from the volume.; on the right, some 
successful examples of synthesized textures. 

 
 [Qin07] presented a new mathematical framework, for generating solid textures by 
sampling the Grey Level Aura Matrices of the input samples constrained in multiple view 
directions.  It allows characterizing the co-occurrence probability distributions of grey levels 
at all possible displacement configurations. The algorithm and some examples are presented 
in Fig 2.18. The results are quite impressive, but when handling with colours, colour channels 
must be uncorrelated. However, as stated by [Kop07], in most textures the colour channels are 
strongly correlated, and independently synthesizing the uncorrelated channels leads to visual 
artefacts.  
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 Ultimately, solutions based on stereology techniques (the study of 3D properties of a 
material based on 2D observations) were attempted by modelling the shape and the spatial 
distribution of the particles observed on 2D images of binding materials [Dis99]  [Jag04].   

To be able to synthesize solid texture of particles, a first proposition was to operate in 
the spatial domain, consisting in three steps: first – detect and extract the particle structures 
from the texture model, second – the extracted shape is modelled using the idea of generalized 
cylinders geometric model and third – to distribute the 3D reconstructed shapes inside a 
volume [Dis99].  

 
Figure 2.19 – Overview of the solid texture synthesis of discrete particles from [Chi06]: from left to 

right, the input 2D image, the second one is the segmented image, the 3rd contains the filtered image to 
get rid of the very small particles according to the particle size histogram, the 4th depicts the synthesis 

of a single particle using a visual hull algorithm and, the final, scaling, colouring and spatial 
arranging of the particles in an iterative way until reaching a specific overall crowdedness. 

 
 The next notable approach addressed the challenges of creating 3D solid 
representations of aggregate materials; it showed how to perform an accurate estimation of 
3D particle distribution from a 2D image, so that later embedded particles of different shapes, 
sizes and colour details can be generated and arranged accordingly. This approach requires 
having models for the different particle shapes that may be present in the solid.  A more 
recent method operating in the spatial domain, stereologically independent, permits to build 
particles solely from the given exemplar [Chi06] as exemplified by Fig. 2.19.  
 
 
2.4 Conclusion 
 

This chapter was intended to compose a comprehensive survey covering most of the 
existing 2D and 3D synthesis techniques. The bibliographic work led in this field shows that 
the state-of-art of the synthesis methods is a particularly dynamic ground, given a strong idea 
about the interest of the scientific community in image synthesis. The panoply of methods and 
means of classification can be seen as a proof of the interest of the scientific community for 
developing new texture synthesis techniques (lately especially towards 3D environment) and 
in the same time for improving their controllability and interactivity. 

 
 Example-based solid texture synthesis has many advantages over the other 3D 
texturing/visualisation approaches because it can generate consistent and detailed textures 
from examples. The drawback, however, is the cost in both computation and memory, as it 
explicitly computes and stores a dense 3D array of voxels covering the entire target model. 
Pixel-by-pixel methods allow a finer control during synthesis handling one pixel at a time. 
 

Following this understanding, the next two chapters deal with the non-parametric pixel-
per-pixel synthesis based on Markov Random Field hypothesis - fixed neighbourhood search 
[Wei03] [Kop07] [Che10] and probabilistic modelling [Pag98], using a single 2D textured 
image as input data. The drawbacks of these methods are pointed out and original solutions 
are proposed accordingly, regarding implementation complexity or memory cost. 
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Chapter 3 
 

2D/3D extension based on neighbourhood search  
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3.1 Introduction  
 
 

 As presented in the previous chapter, various algorithms are capable of synthesizing 
textures and among them one that is easy-to-use, efficient and delivers convincing results with 
moderate computational cost is the algorithm of Wei and Levoy [Wei00]. It belongs to a class 
of texture synthesis algorithms characterized by the fact that they are non-parametric, build 
the output block in a pixel-by-pixel fashion and are based on fixed neighbourhood search. 
 
 The first algorithm studied in this chapter is a variant of the algorithm proposed by 
[Wei03] being itself a 3D extension of the original algorithm [Wei00], serving as the 
backbone method. This algorithm needs a texture sample and a noise input and all further 
computations are accomplished automatically.  
 
 However, to ensure higher efficiency and better quality for all possible textures, some 
amendments on the reference algorithm have to be made. Improvements are brought firstly by 
using a global optimization procedure [Kwa05] [Kop07] involving a grey-level histogram 
matching technique and by using an enhanced solving strategy. 
  
 To be able to ensure a high quality texture synthesis, the synthesis procedure is 
integrated with a preliminary analysis step that consists in creating for each input pixel a set 
of similar input pixels in term of neighbourhood metric, but more significant, it is integrated 
with two new kinds of matching histograms [Che10] and an improved solver. This is done 
with the intention of better reproducing in the output texture the diversity learned in the input 
sample. 
 
 As the new texture is synthesized pixel-by-pixel with the value of each new pixel 
determined by its local neighbourhood, a challenging topic remains the choice of the 
neighbourhood system and consequently the texture scan order. Contributions in this direction 
are brought by proposing more proficient three-dimensional scan types [Urs12].  
 
 As well, to assure a reasonable computational complexity, the implemented algorithms 
involve an efficient searching algorithm combined with a multi-resolution implementation 
capable of capturing textural patterns at different scales without increasing the computational 
load. 

 
This chapter reassess in a unified methodical form variants of the fixed-neighbourhood 

search based non-parametric synthesis algorithms, implemented under a common algorithmic 
benchmark, intended for the qualitative and quantitative evaluation of Chapters 5 and 6.  
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3.2 Non-parametric synthesis: Wei and Levoy’s algorithm 
 

 This section addresses the 2D/3D synthesis problem by a non-parametric approach 
inspired by the algorithm of Wei and Levoy [Wei00]. The 3D extension is in fact a multi-2D 
adaptation of the algorithm of texture synthesis from multiple sources [Wei03] using only a 
single 2D image as source of synthesis. 
 In order to address the 3D problematic, the basic principles of the 2D algorithm have 
to be assimilated. 

 
 

3.2.1 Basic principle of the 2D synthesis 
 
 The 2D synthesis algorithm proposed in [Wei00] relies on the assumptions of a 
Markov Random Field (MRF) (see Appendix C), modelling the texture as a realization of a 
local and stationary random process. As showed in Fig 3.1 these assumptions are not suitable 
for the general case. This means that each pixel of the texture is considered to be 
characterized by a small set of neighbouring pixels, and this interpretation is the same for all 
the pixels within the texture. 
  

 
a                                                                        b 

Figure 3.1 – Markov Random Field assumptions illustrated on (a) the D57 Brodatz texture: each pixel 
is related only to a small set of pixels inside its neighbourhood (i.e. locality); different regions of 

proper size are always perceived to be similar (i.e. stationarity). (b) These remarks are not valid in the 
case of a general image, where the observed regions are very different, despite the fact that inside the 

image one can find separated textured areas (like the wall-stone or the cloth fabric). 
 

The algorithm starts from a sample texture and an image containing a uniformly 
distributed additive noise over the frequency domain. The synthesis itself consists in 
modifying the output noise to look like the input sample. The new texture is generated in a 
scan-line order, for each output pixel is being searched a pixel from the input texture that 
matches the best. The choice of the best match is based on the neighbourhood of the current 
pixel.  

More explicitly, the algorithm captures the neighbourhood of the current pixel and 
searches in the input texture the most similar neighbourhood. When the matching 
neighbourhood is found, its corresponding pixel is copied at the current position in the output 
texture. 

The resemblance of two neighbourhoods is based on the Euclidian distance; that is the 
sum of the squared differences of all the pixels in the neighbourhood: 
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where i runs through the neighbourhoods, visiting analogously every pixel pi from the 
neighbourhood N(p) of the pixel p and every pixel qi from the neighbourhood of the pixel q. 
All the above principles are schematically illustrated in Fig. 3.2. 

 

 
Figure 3.2 – Schematic representation of the 2D non-parametric algorithm: starting from the input 
image (top-left image), an output image is initialized with white noise (bottom-left image) and every 
output pixel, in scan-line order, is replaced with an input pixel that has the closest neighbourhood to 

the current pixel neighbourhood. 
 

The 2D algorithm carries out the synthesis in a scan-line order consisted with a semi-
causal (half-square) neighbourhood in order to use for the synthesis of a current pixel only 
already synthesized pixels. This allows the synthesis to take place in one step. Using a non-
causal neighbourhood involves several re-iterations to reach a satisfying solution. More 
implementation details are to be found in the original paper of the 2D method [Wei00], or in 
this thesis, in the section dedicated to the 2D/3D extension. 

 
The implementation of the basic 2D texture synthesis is straightforward, following the 

steps indicated in Fig 3.3.  
 

 
Figure 3.3 – The basic non-parametric 2D texture synthesis algorithm.  

 
 
 



 

 

30 

 
Figure 3.4 – Example of the basic 2D texture synthesis algorithm from Fig. 3.3: for each of the four 
cases the synthesis framework consisted in an input image (enclosed in red) of size 100×100 pixels 

and using a neighbourhood of size 7 to obtain in a scan-line order the 200×200pixels textures. 
 

 Some cases of textures obtained by using this scheme are presented for simple 
algorithm exemplification in Fig. 3.4, reminding that more details about this 2D sketched 
implementation can be found in the original paper [Wei00].  
 
 
3.2.2 The 3D extension   
 
 The solid texture synthesis algorithm, like the 2D algorithm, is based on the MRF 
hypothesis, meaning that it relies on: 

• texture locality - every pixel is predictable from the few pixels in its neighbourhood   
• texture stationarity - spatial statistics invariance by translation 

 
 These assumptions are illustrated in Fig. 3.2, but a more complete description of MRF 
is to be found in Chapter 4. Unlike most MRF based algorithms, the following 2D/3D 
extension of the Wei and Levoy’s algorithm is completely deterministic but no explicit 
probability distribution is constructed. 
 The 2D/3D extension is a multi-2D adaptation of the algorithm of texture synthesis 
from multiple sources [Wei03] but by using only a single 2D image as source of synthesis 
[Urs10].  
 The goal of the volumetric synthesis algorithm is to generate a new texture so that 
each local region within each orthogonal section is similar to another region from the input 
image. For generating a texture the process takes an example texture patch and a random 
noise as inputs. The noise is modified to look like the given example texture assuring a certain 
initiating randomness, but in the same time chosen in order to conserve the same grey level 
distributions as in the exemplar. 
 

 
Figure 3.5 – Principle of non-parametric synthesis: extract three neighbourhoods in the output block 
(front view, side view and top view), search the best three neighbourhoods in the input image, and 

combine their corresponding input pixel values to modify the output voxel. 
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 The synthesis proceeds voxel by voxel by examining the 2D neighbourhoods of the 
current voxel from multiple orthogonal views of the 3D block (two or three views are good 
enough, depending on the exemplar texture) as shown in Fig. 3.5. 
 An evident problem is that for an output voxel there are several possible solution 
candidates. Indeed, for each view (front, side or top view), a pixel solution pi, i inside {front, 
side, top} is obtained by comparing the neighbourhood Ni of the current voxel in the view, 
with all the neighbourhoods in the input image. The value vi of the input pixel pi with the most 
similar neighbourhood is retained. All three candidates vi, i in { front, side, top}, have then to 
be combined to get a new value v which is finally assigned to the voxel. Several combination 
strategies are proposed in the following sections of this chapter. 
 The similarity between the neighbourhoods is measured using the Euclidian distance. 
The same process is repeated for each output voxel until all the values are determined. 
Neighbourhoods crossing the output image borders are handled toroidally (see section 3.2.4). 
The synthesized texture can be of arbitrary size and tileable. 
 This type of 2D/3D texture synthesis extension raises different enquiries, as it is 
constrained by the neighbourhood system – in particular its size and shape, by the synthesis 
scan type and by the way of combining information from the orthogonal views. An important 
phase in the synthesis process entails an accelerated search of the best match for each 
orthogonal neighbourhood in the input image. By including a multi-resolution scheme to 
capture better the texture motives at different scales, it proves to be a well adaptable and 
largely applicable synthesis method. 
 
 
3.2.3 Multi-resolution implementation 
 
 To assure a good texture synthesis, the size of the planar neighbourhood has to be 
adequately chosen so that it should be able to preserve texture structures. So, a texture 
containing large scale structures requires a large neighbourhood, but unfortunately the 
computational cost grows with the neighbourhood size.  
 In order to solve this problem, a multi-resolution image pyramid is used to capture the 
structures only by a few pixels in lower resolution pyramid levels. The number of pyramid 
levels has as much influence as the neighbourhood size. 
 There are many ways to generate and use the image pyramids (Gaussian pyramids 
[Pop93], Laplacian pyramids [Bur83] [Hee95], steerable pyramids [Sim92] [Hee95], feature-
based pyramids [DeB97] or the simple multi-scale images obtained by decimation). We have 
chosen to use Gaussian pyramids. This consists essentially in two steps: first applying a low-
pass filtering using convolution with a Gaussian filter kernel; and secondly, the filtering is 
followed by a down-sampling with a 2:1 factor. 

 

 
Figure 3.6 – The principle of Gaussian pyramids of exemplar I: on the left, a simplified 

exemplification; on the right, the steps it consists in - low-pass filtering and under-sampling operation. 
 
 Hence, to pass from one level to a superior one, the multi resolution algorithm filters 
and narrows the number of pixels to be used by the superior levels. The multi resolution is 
applied evenly to the input texture and to the output texture. 
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 Synthesis takes place at every level of the output pyramid based on the pyramid of the 
corresponding input pyramid. The synthesis starts from the highest level, meaning the lowest 
resolution and finishes with the bottom of the pyramid that is in fact the searched output 
texture result. This kind of representation lets each higher resolution level to be constructed 
from the already synthesized lower resolution levels.  
 

 
Figure 3.7 – Multi-resolution illustration: on the left, four pyramids of a 2D textures, on the right, how 

the multi resolution principle looks in 3D. 
 

 To pass the information from one treated level to a next unprocessed one, the 
neighbourhood used for generating a pixel contains two ingredients: the neighbourhood of the 
pixel from the current level and the neighbourhood of the corresponding pixel position from 
the previous lower resolution pyramid level. This assures that the added high frequency 
details will be consistent with the already synthesized low frequency structures. An example 
of the multi resolution neighbourhood is given just below: 
 

 
Figure 3.8 – Example of multi-resolution non-causal neighbourhood: a neighbourhood at level L 

consists of a 7×7 neighbourhood from level L and a 3×3 neighbourhood from level L+1. 
 
 To illustrate how multi resolution neighbourhood integrates in the synthesis 
neighbourhood search process, we address the simplified case in Fig. 3.8 representing the last 
two pyramidal levels, meaning that level L+1 is the top level. Once the top level L+1 is 
synthesized using only its current level neighbourhoods the synthesis starts on level L. To 
synthesize a pixel from level L, having the coordinates (x, y)L, the synthesis considers that the 
multi-resolution neighbourhood of the current pixel contains its current level neighbourhood 
plus the neighbourhood of its corresponding pixel (x/2, y/2)L+1 at the previous level. 



 

3.2.4 Edge handling 
 
 Pixels on the outer edge of the texture need a special treatment, because their 
neighbourhood exceeds the borders of the 
edges crossing the boundaries and perform the synthesis only inside the output texture, or to 
process properly the edges.  
  

Figure 3.9 – Example of 2D edge handling: a toroidal
regions from the black bordered 2D exemplar

 Handling the edges leads us in two directions: use a partial, incomplete neighbourhood 
that is available in the vicinity of the edges or, more likely, to treat the e
the neighbourhoods reach the opposite side of the texture delivering a seamlessly tileable 
output texture as exemplified in a while in 
 The solution adopted here for synthesis is to consider the textures periodically. Thi
involves working with a relative bigger image
carving out the desired output block. This is obtained by copying certain regions from the 
preliminary texture in order to obtain a continuous representation. The
for synthesizing the upper edge pixels has to contain pixels from the bottom of the texture; the 
neighbourhood of left edge pixels has to contain 
 

Figure 3.10 – The principle of 3D edge handling: as in 2D
toroidal block obtained by wrapping it by all sides with regions each other 

Pixels on the outer edge of the texture need a special treatment, because their 
neighbourhood exceeds the borders of the texture. There are two solutions: to discard the 
edges crossing the boundaries and perform the synthesis only inside the output texture, or to 

  
Example of 2D edge handling: a toroidal image is obtained by consecutively copying 

regions from the black bordered 2D exemplar. 
 

Handling the edges leads us in two directions: use a partial, incomplete neighbourhood 
that is available in the vicinity of the edges or, more likely, to treat the edges toroidally so that 
the neighbourhoods reach the opposite side of the texture delivering a seamlessly tileable 
output texture as exemplified in a while in Fig. 3.11. 

The solution adopted here for synthesis is to consider the textures periodically. Thi
g with a relative bigger image than the one targeted at first and in the end 

carving out the desired output block. This is obtained by copying certain regions from the 
preliminary texture in order to obtain a continuous representation. The neighbourhood used 
for synthesizing the upper edge pixels has to contain pixels from the bottom of the texture; the 
neighbourhood of left edge pixels has to contain right edge pixels and so on. 

The principle of 3D edge handling: as in 2D, the same principle is applied for a 3D 
toroidal block obtained by wrapping it by all sides with regions each other taken 

side of the desired output block. 
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Pixels on the outer edge of the texture need a special treatment, because their 
texture. There are two solutions: to discard the 

edges crossing the boundaries and perform the synthesis only inside the output texture, or to 

 
image is obtained by consecutively copying 

Handling the edges leads us in two directions: use a partial, incomplete neighbourhood 
dges toroidally so that 

the neighbourhoods reach the opposite side of the texture delivering a seamlessly tileable 

The solution adopted here for synthesis is to consider the textures periodically. This 
than the one targeted at first and in the end 

carving out the desired output block. This is obtained by copying certain regions from the 
neighbourhood used 

for synthesizing the upper edge pixels has to contain pixels from the bottom of the texture; the 
edge pixels and so on.  

 
, the same principle is applied for a 3D 

taken from the opposite 



 

 These operations are illustrated in 
texture is obtained in 2D and in 3D, assuring at any time that a pixel at position 
same with the pixel at position 
copying principle as in 2D is used, with the remarks that the r
dimensional covering up the output block. 
 

Figure 3.11 – Examples of synthetic tileable textures in 2D and in 3D; on the left the toroidal texture 
obtained by synthesis and on the right the corresponding tileability of the structure

  
 Easier to understand the edge handling principle is by looking at the examples of 
tileable textures use in Fig. 3.11
2D or 3D textures, and mainly in computer graphics they are very useful in term of 
computational cost and efficiency when one can synthesize only a small texture and then 
build bigger textures only by assembling the smaller ones.
 
 
3.2.5 Computational cost and 

 
 The algorithm based on the neighbourhood search is pretty slow, performing an 
exhaustive search when comparing the neighbourhood of an output pixel going through 
synthesis with all the possible neighbourhoods in the input image. To overcome 
acceleration is possible. The neighbourhoods are considered to lay in a multidimensional 
space.  Neighbourhood matching can then be seen as a nearest neighbour search problem in 
this multidimensional space. This speeding up is based on the st
characterizing the neighbourhoods from a texture with a clustering probability model.
 The point is to re-arrange the input neighbourhoods in a hierarchical way that eases the 
nearest neighbour search. The re
Quantization (TSVQ) technique. The nearest neighbour search uses the binary search tree 
provided by TSVQ.  
 

These operations are illustrated in Fig. 3.9 and Fig. 3.10, showing how a toroi
texture is obtained in 2D and in 3D, assuring at any time that a pixel at position 
same with the pixel at position (x mod width, y mod height, z mod depth).
copying principle as in 2D is used, with the remarks that the regions are now three
dimensional covering up the output block.  

Examples of synthetic tileable textures in 2D and in 3D; on the left the toroidal texture 
obtained by synthesis and on the right the corresponding tileability of the structure

Easier to understand the edge handling principle is by looking at the examples of 
Fig. 3.11. Interesting configurations can be obtained by using tileable

2D or 3D textures, and mainly in computer graphics they are very useful in term of 
computational cost and efficiency when one can synthesize only a small texture and then 
build bigger textures only by assembling the smaller ones. 

Computational cost and acceleration 

The algorithm based on the neighbourhood search is pretty slow, performing an 
exhaustive search when comparing the neighbourhood of an output pixel going through 
synthesis with all the possible neighbourhoods in the input image. To overcome 
acceleration is possible. The neighbourhoods are considered to lay in a multidimensional 
space.  Neighbourhood matching can then be seen as a nearest neighbour search problem in 
this multidimensional space. This speeding up is based on the study made by [
characterizing the neighbourhoods from a texture with a clustering probability model.

arrange the input neighbourhoods in a hierarchical way that eases the 
nearest neighbour search. The re-arrangement is done by the Tree Structure Vector 
Quantization (TSVQ) technique. The nearest neighbour search uses the binary search tree 
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, showing how a toroidal 
texture is obtained in 2D and in 3D, assuring at any time that a pixel at position (x,y, z) is the 

(x mod width, y mod height, z mod depth). In 3D, the same 
egions are now three-

 
Examples of synthetic tileable textures in 2D and in 3D; on the left the toroidal texture 

obtained by synthesis and on the right the corresponding tileability of the structures in the left.   

Easier to understand the edge handling principle is by looking at the examples of 
. Interesting configurations can be obtained by using tileable 

2D or 3D textures, and mainly in computer graphics they are very useful in term of 
computational cost and efficiency when one can synthesize only a small texture and then 

The algorithm based on the neighbourhood search is pretty slow, performing an 
exhaustive search when comparing the neighbourhood of an output pixel going through 
synthesis with all the possible neighbourhoods in the input image. To overcome this problem, 
acceleration is possible. The neighbourhoods are considered to lay in a multidimensional 
space.  Neighbourhood matching can then be seen as a nearest neighbour search problem in 

udy made by [Pop93], 
characterizing the neighbourhoods from a texture with a clustering probability model. 

arrange the input neighbourhoods in a hierarchical way that eases the 
Tree Structure Vector 

Quantization (TSVQ) technique. The nearest neighbour search uses the binary search tree 
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3.2.5.1  Tree Structure Vector Quantization 
 

 The set of neighbourhoods are considered as a large set of points that are divided, 
finally retrieving the data represented as a binary tree. This repartition diagram is based on 
combining two techniques – tree-structured vector quantization (TSVQ) and K-means 
clustering for efficient nearest point searching (Loyd’s algorithm or Voronoi relaxation). 
 
 Loyd’s algorithm is a particular k-means algorithm with k being 2. It is a clustering 
method that aims at partitioning a set of observations into 2 clusters with minimum inner 
inertia. The observations are seen as points in an n-dimensional space, where n represents the 
number of pixels in the neighbourhood. Loyd’s algorithm is computed as follows: 

• Initialize the two centroids responsible with the partitioning;  
• Divide the space into two clusters: the first cluster contains the points that are the closest 

to the first centroid, and the second one the points that are the closest to the second 
centroid (based on Euclidian distance); 

• Replace the initial centroids with the centroids of the two resulting groups; 
• Re-divide the space repartition in accordance with the new centroids; 

• Repeat until the two groups are stabilized. 
 

 TSVQ principle is to divide the input texture neighbourhoods into hierarchical classes 
that are as homogeneous and compact as possible, in which the neighbourhoods are very 
similar. This way we can find a value for the output pixel more rapidly by making our way 
through hierarchical classes towards a final input pixel having a neighbourhood similar to the 
output pixel one. The recursive TSVQ implementation consists in the following steps:   

• Transform the input texture into the required form, meaning a vector containing several 
n-dimensional points corresponding to the neighbourhood of each input pixel; 

• Compute the global centroid (the average value of all available points in the n-
dimensional space). Use it as the root node of a binary tree; 

• Initialize the root node of the binary tree; the information contained in the node is the 
value of the global centroid; 

• Call Loyd’s algorithm using as initial centroids the global centroid and a perturbed 
centroid (the perturbation should be small compared to the global inertia). This allows to 
divide the space in two homogeneous clusters; 

• Initialize the left child and respectively right child of the binary tree using the two former 
clusters; 

• Re-apply the TSVQ algorithm on each of the two child nodes. 
 

 Loyd’s algorithm is called as long as there is more than one point in the input data 
vector and as long as the standard deviation exceeds a certain threshold. The quality of the 
texture increases with the lowering value of the threshold which is also an n-dimensional 
point. A value of (0, 0 ... 0) of the threshold means that a homogenous repartition of pixels in 
the group is envisaged. The root of the tree corresponds to the global centroid of all n-
dimensional points in the image, and the rest of the nodes are centroids of groups of points 
resulted from Lloyd partition. Besides that, each node contains the average of the pixels in the 
corresponding group. A numeric exemplification can be found in Appendix A. 
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3.2.5.2  Nearest-neighbour search using the binary tree  
 

 The main operation involved by the proposed non-parametric synthesis algorithm 
consists in searching for the most similar input neighbourhood for every in progress output 
pixel. By rearranging all the input neighbourhoods into a TSVQ representation, the required 
search phase is done faster, reducing the complexity from N to a log2N order as represented in 
Fig 3.12.  
 

 
Figure 3.12 – Tree Structured Vector Quantization (TSVQ): using the binary tree structure for 
efficient ‘nearest point’ queries reduces the time complexity N to a logarithmic order log2N. 

 
 During the search inside the binary tree, one can stop at any moment, but the 
information in a non-terminal node contains only centroid information, and not exact values 
from the original image. 
 Despite the significant acceleration, the disadvantage of the TSVQ is that it is sub-
optimal, the path followed in the tree susceptible of backing away from the best solution. This 
is because at each level in the tree, a set of vectors is ignored, set that contains perhaps the 
best matching neighbourhood.  
 The compromise made for producing faster the texture is not at all damaging, because 
the output textures obtained with the TSVQ and with the full search are very similar.   

 
 

3.2.5.3  A concomitant acceleration option  
 
 Additionally to the above tricks, the acceleration can be made by reducing the 
dimensionality of the data, using a projection of neighbourhood information in a different 
space. This is achieved by using principle component analysis (PCA) [Jol86]. This speeding 
up is done by applying a PCA projection to the neighbourhood vectors from the exemplar.   
 PCA acts by finding the eigenvalues and the eigenvectors of the covariance matrix of 
all the n-dimensional points (pixels neighbourhoods) while the eigenvectors of the largest 
eigenvalues correspond to a subspace containing the main variations of the neighbourhoods 
distribution. The compression is obtained by keeping only the number of coefficients 
sufficient to preserve a certain ratio of the variance. For 90% of the variance, a 7x7 full square 
neighbourhood, meaning a vector of 49 pixels, it is reduced in the subspace to about only 10-
15 dimensions, depending on the size and the richness of the exemplar, and in the same time 
by the correlation degree of the neighbourhoods.  
 
 However, this solution was not adopted here, because the time gained in the research 
phase is counterbalanced by the time required for treating the projections. 
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3.2.6 Accelerated multi-resolution 2D/3D algorithm 
 
 The improvements brought by the multi-resolution approach and the TSVQ based 
acceleration are integrated into the multi-2D extension of the basic 2D algorithm (previously 
illustrated in Fig. 3.3). This leads to an iterative synthesis algorithm, that follows the steps 
presented in Fig. 3.13. 
 

 
Figure 3.13 – Schema of the 2D/3D synthesis algorithm enhanced with the multi-resolution approach 

and the TSVQ acceleration. 
 
 Analyzing the above schema, the problematic consists mainly in the way of combining 
the several solutions according to each orthogonal view taken into consideration. In this 
direction, the following sections treat the way of combining the available solutions in order to 
obtain a better quality of the synthesis results. 
 
 
3.2.6.1  Iterative search for the best solution 
 
 The first solution, proposed by [Wei03], consists in minimizing the energy function 
that measures the similitude between the volumetric texture and the input exemplar. This 
means that for each output voxel v, we have to find an input pixel pi so that the right term of 
the error function equation is minimized: 
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where i i runs through the input exemplar, and N() is the 2D square neighbourhood 
corresponding to the input matching pixel or the output voxel. The energy of a voxel 
neighbourhood is the Euclidian distance to the closest neighbourhood in the input exemplar. 
 The neighbourhood of the output voxel is treated as three separate entities, three 2D 
orthogonal voxel neighbourhoods. 
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Figure 3.14 – The 3D neighbourhood seen as three separated 2D neighbourhoods and the three 

closest neighbourhoods from the input image found for each view. 
 
 Algorithmically, the direct minimization procedure of eq. 3.2 is done iteratively, by 
first choosing the input pixel pi so that the Euclidian distance between the neighbourhoods

2
)()( ipNvN −  is minimal. Three input values are found consequent for each of the three 

orthogonal views taken into consideration (the front view pfront, the side view pside and the top 
view ptop). The output voxel v is updated with the average of the three found values:  
 

)3.3(3)( topsidefront pppv ++=  

 
 Reiteration continues with the current values and because a value v of the output voxel 
was computed, the novel term to be minimized is going to be 22

)()( ii pNvNpv −+− . The 

iterative process stops when the energy remains the same after two consecutive iterations, 
denoting that the same neighbourhoods are reached after two consecutive iterations. 
Experiments showed that this inner process takes about four iterations until it stabilizes itself. 
  
 The above iterative method over-increases the computation and in addition, the 
average combination used in eq. 3.3 is not the best way out for the resulting texture grey 
levels and indirectly fails to conserve the global structure of the texture [Urs11]. Simple 
averaging leads to a loss of dynamics between the original and the synthesized texture. The 
winning strategy is to minimize properly the energy function. This involves an optimization 
procedure that replaces the average with a better combination [Kwa05] [Kop07] and, in the 
same time, adding a colour histogram matching mechanism [Hee95] [Kop07] [Che10] in the 
texture optimization procedure as explained in the following sections. 
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3.3 Robust texture optimization 
 
 A direct thought for upgrading the scheme consists in giving weights to each of the 
three found voxels and to mix them properly, to be able to update the output voxel in only one 
move, dropping so the early recurrent process. It follows the idea of minimizing the global 
texture energy, but now using a robust energy function [Kop07].  
 This is done by replacing the squared term 2

)()( ipNvN −  with r

ipNvN )()( − , 

where the value of r is carefully chosen so that r < 2. A value of 0.8 as indicated by [Kwa05] 
for the exponent r allows the optimization to be more robust against outliers.  Iteratively 
reweighted least squares (IRLS) [Col80] is used to minimize the energy function by an 
iterative method in which a weighed least squares problem is solved at each step. To be able 
to apply IRLS, the energy function term is rewritten as following:  
 

)4.3()()()()()()()()(
222
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Figure 3.15 – The solutions found for each orthogonal neighbourhood for a current voxel, and each 

one’s corresponding weight used in the equations. 
 

 Minimizing the quadratic energy function by deriving it with respect to N(v) gives the 
following robust optimization solution for the output voxel [Kop07]: 
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 As illustrated by Fig. 3.15, the output voxel is interpreted as being the weighted 
average of the solutions found from the neighbourhoods of the orthogonal views, each 
solution having in the result its proper influence in the form of a weight that for r = 0.8 is 
computed as: 
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In the synthesis progression this optimization is retrieved as a two step process: 

 

• the search phase:  extract the neighbourhood of the current voxel for each orthogonal 
view taken into consideration; for each view, search the matching pixel in the exemplar 
texture and compute the weight of each solution as a distance function between the 
current voxel neighbourhood and the neighbourhood of the matching input pixel 
 

• the  optimization phase: having the orthogonal views solutions and its weights, it remains 
to calculate the weighted average in order to obtain the update value for the output voxel 
according to eq. 3.5 

 
 
3.4 Histogram matching 

 
 Using  no more than the optimization procedure presented in the previous section, 
texture synthesis can lead to strong locally dependent results because the synthesis relies only 
on local neighbourhoods when handling the energy function.  
 To ease the synthesis dependence on local decisions, a re-weighted scheme is required 
with the purpose of preserving texture global statistics. This is done by incorporating in the 
synthesis process a global histogram matching technique.  
 
 
3.4.1 Grey level histograms 
 
 The grey-level histogram matching [Kop07] works by adjusting the weight of each 
voxel engaged in the weighted average that could bring differences between the grey-level 
histogram of the 3D result and the grey-level histogram of the 2D exemplar. Mathematically, 
this is expressed as following: 
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 The re-weighting scheme can be seen as a correctional procedure by avoiding bad 
pixels contribution to the synthesized value: if the histogram value ������(�) in the current 
slice of a certain grey-level � is very far from the histogram value ������(�) of the 
corresponding grey-level � in the exemplar, the weight of the voxel is reduced in order to 
decrease the difference between the two histograms; if the difference between the histograms 
is very small, the weights remain roughly the same,  the weighted average  influence is of no 
consequence leaving the synthesis as before.  
 Histogram adjusting is done automatically, but in order to be up to-date with the 
growing output texture, histogram must be updated at the same time with the voxel revising, 
assuring the convergence of the synthesis algorithm.  
 The quality of the results delivered with this technique exceeds that of many other 
methods. Despite this, computing the results by using the weighted average may produce 
blurry results if the variance of the exemplar voxels is too large [Kop07] and like most of the 
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non-parametric methods, the results are affected more or less by blurring, missing textural 
patterns or mismatched input/output histograms.  
 

 
Figure 3.16 – The influence of the histogram adjustment mechanism: from left to right, an input image 
of sedimentary rock with the corresponding grey-level histogram, a synthetic block obtained by using 
the iterative search for the best solution with its corresponding histogram, and on the right a block 

obtained by using the synthesis enhanced with histogram matching showing a grey levels distribution 
similar to the one of input texture. 

 
 
3.4.2 Index histogram and position histogram 

 
 To improve the just above mentioned drawbacks, a new modus operandi for texture 
optimization approaches is proposed allowing a high quality texture synthesis [Che10]. It 
consists in using two new kinds of histograms – position histogram and index histograms and 
in updating the output voxel using the discrete solver as [Han06].  
 This approach requires a prior synthesis part, when for every pixel in the exemplar a 
number of k best matches are retrieved in the exemplar, idea inspired from the natural texture 
synthesis algorithm [Ash01]. The discrimination is made by using the neighbourhood search 
based on the Euclidian distance. The outcome is a set of candidates, a k-coherence similarity-
cluster for each input pixel. Once these items being constructed, the synthesis process can 
start. 
  

 
Figure 3.17 – Example of a set of seven candidates; in a pre-processing step, for every input pixel the 

candidates set is built, the closest k neighbourhoods in term of grey-level L2 norm; each pixel is 
considered to belong to his own set.  

 
 Unlike the causal k-coherence search in the context of synthesizing a texture using 
pixels already processed for synthesis [Ash01] [Ton02], a simplified version is used with the 
purpose of having a larger number of possible candidates for a voxel being synthesized. So to 
assure a large diversity, means to use a sufficient large number of candidates. The 
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inconvenience is that with the growth of k, the computation cost increases as well. An 
example of a set of seven possible candidates is shown in Fig. 3.17. 
 However, once the set of candidates is build, the synthesis proceeds as in the previous 
section.  The solid texture is supposed to be similar to the exemplar on arbitrary slices through 
the volume, so for a voxel inside the volume, the algorithm provides a solution for each slice, 
for each orthogonal view. When a solution is found, instead of taking it directly in the 
weighted average, it is confronted with its set of candidates and implicitly with the number of 
times it was chosen during synthesis. Here intervenes the index histogram. Index histogram 
counts the frequency of the voxels candidates in the volume texture. During the search phase, 
the choice of pixels is modulated according to their index histogram frequency. The influence 
of an index histogram bin is reflected as a weight factor that will assure that only the best 
candidate from a set is used further on. 
 More specifically, when searching the matching solution of the current voxel v in the 
TSVQ tree of the input, a pixel p from the exemplar is retrieved. In the pre-processing phase 
the pixel p has established a set of k candidates. The best solution, in term of uniform 
distribution, to be used further on, is taken out from the set of candidates being the one that 
has the most similar neighbourhood to the neighbourhood of current voxel v in term of the 
weighted Euclidian distance: 
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)9.3(0,])(,0max[1, kipHw iindexiindex K=−+= φ
 

 

where ϕ is the histogram value when all the indices completely equiprobably distribute in the 
exemplar. Having all the candidates uniformly distributed means having a well preserved 
texture. Once a candidate was chosen, its bin is increased with one in the index histogram. 
 

 
 

 
Figure 3.18 – Two examples of index and position histogram adjustment usage: each of the two lines 
contains, from left to right, first the input image and the output block, and next the position histogram 

map, the index histogram map and the input image affected by the position histogram usage. The 
areas in red represent the input image pixels that are not retrieved in the output block (the pixels that 

are never used in the synthesis process). 
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 In the optimization phase, instead of colour histogram adjustment, the position 
histogram is used to constrain the weights computed as [Kop07]. The position histogram 
records the number of occurrences in the solid texture of the corresponding pixel in the 2D 
exemplar. When a solution for each orthogonal representation is found, for each one a weight 
is computed and then adjusted by using the position histogram: 
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where θ is the histogram value when all the pixels from the exemplar completely evenly 
appear in the result. The weights are adjusted to get a histogram as uniform as possible. Once 
the position histogram matching is achieved, the colour histogram matching is also achieved. 
 
 Until this point, for a voxel v, the solutions corresponding to each slice, filtered from 
the set of candidates (pfront, pside and ptop)  and their corresponding position histogram 
corrected weights (wposition_front, wposition_side and wposition_top) are known. Next, a prospective 
update value v* is computed as a weighted average: 
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 The value used for updating the current voxel v is chosen according to the discrete 
solver, by selecting the pixel the most similar to the prospective value: 
 

)12.3(),,min( *** vpvpvpv topsidefront −−−=
 

 
 When the update value is found, its bin is increased with one in the position histogram. 
The blurring problem is avoided, since for each voxel, the grey level value comes directly 
from the input exemplar. More results and comments are to be found in the chapter dedicated 
to the experimental results. 
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3.4.3 Optimized texture synthesis algorithm 
 
 The global schema of the texture synthesis integrating the index histogram and the 
position histogram alongside the discrete solver takes the following description: 
 

 
Figure 3.19 – Schema of the 2D/3D synthesis algorithm integrated with the set of candidates, the two 

new kinds of histogram (index and position) and the discrete solver. 
 

 
3.5 Neighbourhood systems and scan type 

 
 Whatever the synthesis method, a problematic issue is the choice of the 
neighbourhood system. The size and the shape of the neighbourhoods are very important 
because the set of local neighbourhoods is used as the primary model for textures, directly 
influencing the quality of the synthesized results.  
 The size of the neighbourhood is a factor that specifies how stochastic the user 
perceives this texture [Efr99]: if the texture is presumed to be mainly regular at high spatial 
frequencies and mainly stochastic at low spatial frequencies, the neighbourhood size should 
be on the scale of the biggest regular texture pattern, otherwise the structure may be lost. 
 The choice of a causal neighbourhood makes the synthesis of a pixel totally dependent 
on previous pixels and leads in the case of regular/lamellar/structured textures to a higher 
degree of regularity of the synthesized results [Urs12]. The choice of a non-causal 
neighbourhood can partly overcome this determinism. A direct corollary is the choice of an 
adequate scan type. 
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Figure 3.20 – Neighbourhood system: on the left, two examples of L-shaped causal neighbourhood 

adapted to the lexicographical path; on the right, one example of square non-causal neighbourhood 
used with a random walk.  The straight yellow arrows indicate the output pixels visiting order during 
synthesis and the curved black arrows indicate the neighbourhood search in the input image and the 

choice of the best candidate used to update the voxel in the output texture. 
 
 Replacing the lexicographical scan type with a completely random walk allows the 
synthesis of a pixel by freeing itself from its past and so multiplying the possible 
configurations. However, the convergence time can become prohibitive in this case.  
 Contribution in this direction consists in reconciling the deterministic part and the 
randomness character by proposing an alternative scan type, namely the use of space filling 
curves [Sag94] [Che04] extended to three dimensions, like the Morton code (a.k.a. Z-curve or 
Lebesgue curve) and the fractal curves (e.g. Hilbert curve). 
 More information about the space filling curves is to be found in Appendix B. 
 

                            
 

                    
              a                                        b                                          c                                        d   

Figure 3.21 – Illustration of different scanning types for 4x4 2D images and 4x4x4 3D blocks, in 2D 
(the top column) and their corresponding extensions to 3D (the bottom column): from left to right, a – 

lexicographic path, b - random walk, c - Z-curve and d - Hilbert curve.  
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3.6 Implemented algorithms   
 
The above considerations show the multitude of possibilities, still letting space for other 

reflections. There are different factors to be taken into consideration when dealing with this 
type of approaches. So, a general benchmark has to be defined in order to set the limits of all 
the implementations, based on the illustrated algorithmic facts. 

 
 
3.6.1  Usage and common implementation details 

 
Before passing to the evaluation, the algorithms designation has to be specified. It 

consists in stipulating the algorithms usage and the key factors specific for every employed 
algorithm. 

 
The first developed algorithm follows the format from Fig. 3.13. To be exact it 

corresponds to the non-parametric 2D/3D synthesis algorithm of Wei and Levoy [Wei03] 
treated as a multi-resolution implementation and accelerating the neighbourhood search by 
clustering the input pixels neighbourhoods in a TSVQ form. The main specificity of this 
approach is that the value of an output voxel is obtained by combining the three solutions 
from each orthogonal view as in eq. 3.3, that is the average operation of the available 
solutions and repeating the same procedure until reaching a stable result. This approach is 
going to represent the reference method which is going to be subsequently enhanced. This is 
going to be named NP_WL. 

 
The second algorithm employed, uses the backbone of the NP_WL method, but 

modifications emerge in the way of combining the solutions from the orthogonal views. A 
robust optimization solution for the output voxel is employed, where each pixel participating 
in the weighted average of eq. 3.5 is chosen in order to assure a global grey-level histogram 
matching between the exemplar and the targeted output block. Because it is a mixture of the 
earlier NP_WL algorithm and the optimization proposed by Kopf et al. [Kop07], the notation 
conferred to this non-parametric version is NP_K. 

 
The third handled tag, NP_CW, corresponds to the same NP_WL multi-resolution, 

TSVQ accelerated backbone algorithm, enhanced with two new kinds of matching histograms 
(index and position histograms) as in section 3.4.2 in order to obtain a higher quality of the 
synthesis results as intended by Chen and Wang [Che10]. These particular histogram 
adjustments manage to assure on the output the same grey-levels as the exemplar, and seek to 
control the uniform distribution of the input pixels in the synthesis result. This closing non-
parametric algorithm respects the synthesis steps suggested in Fig. 3.19. 

 
The common influential factors for all versions are the size of the input exemplar, the 

size of the output block, the size and the shape of the pixels neighbourhood, the number of 
scales and the pixels visiting order, while for NP_CW the size of the set of candidates is also 
taken into consideration.  
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3.7 Conclusion 
 

This chapter aimed at providing a comprehensive deployment of the fixed-
neighbourhood non-parametric implemented algorithms. Contributory work was lead in 
creating a common algorithmic benchmark easing the experimental study pursued in chapters 
5 and 6.  

 
It points out the specificities and drawbacks of each of the above versions proposing 

solutions to improve the 2D/3D extension of the texture synthesis algorithm.  
 
It starts with introducing the synthesis concepts in the 2D environment and then 

showing possible 3D extensions. Multi-scale and acceleration tricks are proposed together 
with our original diagram for visiting the pixels during synthesis. 

 
The main issue, the way of combining the available orthogonal solutions, is sorted out 

by implementing mainly three strategies (average, weighted average, discrete solver) to 
improve the quality of the results. Following this plan, notations are given to the developed 
algorithms - NP_WL, NP_K and NP_CW. 

 
An inventory of the implemented algorithms which are going through our study are 

listed in the table below, showing next to each variant the way of combining the information 
from the orthogonal views in order to obtain the update value for the output voxel. 

 

Synthesis method Strategy for output voxel 

NP_WL 
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Table 3.1 – Listing the neighbourhood-search based methods and the way of combining the 
information from the orthogonal views to get the output value. 

 
However, the possibilities don’t close down here, numerous intersections between the 

approaches remaining feasible (i.e. the NP_WL algorithm integrated with a grey-level 
histogram matching and a discrete solver, or NP_CW without the discrete solver or NP_K 
with an input set of candidates etc.).   
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4.1  Introduction 
 

This chapter deals with a new type of approach, doing explicitly what the methods 
from Chapter 3 tried to accomplish indirectly. More precisely, the previous methods 
(NP_WL, NP_K and NP_CW) copy pixels from the input exemplar directly/indirectly in the 
output block, trying to reach a structural similarity. They are based on strict neighbourhood 
search and intensity histogram matching; additionally, extra matching histograms are 
proposed in order to distribute uniformly the input pixels in the target texture.  

The next method sticks to the idea of having the input/output configurations 
identically distributed, the statistical decisions being based on the conditioned neighbourhood 
concept. It is based on a more advanced non-parametric Markov Random Field synthesis 
principle (NP-MRF) than the previously developed methods. To reach a high likelihood 
quality, the synthesis should be able to distribute the input pixels and neighbourhood 
configurations in the output texture while preserving the characteristics of the input texture.  

A technique that enables 2D synthesis of textures visually indistinguishable from their 
models, is the multi-scale NP-MRF texture modelling method proposed in [Pag98]. This 
method mathematically captures the visual characteristics of a texture into a unique statistical 
model of that texture [Bes86] that describes the interactions between pixel values [Hai91]. 
Such an assertion has been proved by using this model to synthesize the texture and by 
judging the similarity between the synthetic texture and the input texture. At each position in 
the output texture, the algorithm provides the most probable grey level to be in that position 
considering the grey levels in neighbouring positions. 

 The following sections deal first with some indispensable MRF theory and 
terminology used to describe the non-parametric synthesis process, and continue with the 
relevant three-dimensional operating method extending the 2D approach method used by 
[Pag98]. The synthesis uses a multi-scale relaxation algorithm, integrating the concept of 
pixel temperature that serves as degree of confidence relative to a pixel value. 
 
 
4.2  Non-parametric Markov Random Field model  

 
 Markov Random Fields (MRFs) have been studied extensively for solving image 
analysis problems at all levels. Their foundations have been well established from the 80’s 
mentioning the remarkable works of [Bes74] [Bes86] [Gem84] [Cli90] [Gem91] [LiS01]. 
Some of the most important applications include image restoration and segmentation, edge 
detection, texture analysis and also texture synthesis. All these are possible thanks to the MRF 
ability to model the local dependencies of image pixels. 

 
 

4.2.1  General Markov Random Field model: concept and theory 
 
 The MRF principle can be seen as a sites-and-labels concept [LiS01], meaning that the 
solution to a problem is a set of labels assigned to a set of sites. A label is an event that may 
happen to a site and the labelling operation is to assign a label to each of the sites.  
 Translating this into MRF image modelling, one retrieves the concept that an image 

with discrete grey levels, of size hw×  corresponds to a lattice { }hwsssS ×= ,...,, 21  (i.e. set of 

sites), so that each pixel in the image is a site s on the related lattice and its grey level is a 
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value �� (i.e. label) contained in the finite state space Λ = {0, 1, 2,…, L-1}, where L is the 

number of grey levels in the image.  

 The labelling, also called a configuration in the random fields terminology, 
corresponds in fact to the image itself, being seen as a mapping function from S to Λ: 
 

)1.4()(,: xsfSf =Λ→  

  
 To develop the MRF theory, the spatial dependencies between sites (image pixels) 
have to be defined. This is done by choosing the neighbourhood system. The neighbourhood 
system is the set of all neighbourhoods { }SjisSNN s ∈=⊂= ),(,  where sN  represents the 

neighbourhood of s; for example, the neighbouring sites can be defined as those sites r,
SNr s ⊂∈ : 

{ } )2.4()()(0:),( 22 ordjyixSyxrNs ≤−+−<∈==  

 
where ord is the order of the neighbourhood. Some examples of different order 
neighbourhood systems as used by [Gem84] [Pag98] are presented in Fig. 4.1. The eight 
order neighbourhood is the five full-square non-causal neighbourhood used in chapter 3.  
 

 
Figure 4.1 – Examples of different order neighbourhood systems: from left to right, the first (ord=1), 
second order and the eight order neighbourhoods. The red dots are the site s=(i,j) while the blue dots 

are the neighbouring sites r=(x,y) SNs ⊂∈ .  

 
The neighbourhood system has mainly two properties: 

- a site is not neighbouring itself : SsNs s ∈∀∉ ,  

- the neighbouring relation is symmetrical : sr NrNs ∈⇔∈  

 
 Having introduced the notations, the main property of a MRF can straight away be 
stated:  the random variable sX  describing the intensity value at any site s on a lattice 

 S = {s = (i,j) : 0 ≤ i< w , 0 ≤ j < h} can take any value sx  from Λ, but the probability that 

ss xX =  depends only on the values rx  at sites r neighbouring s.  

 
 The locality and the stationarity properties of a texture, as they were presented in 
Chapter 3 - Fig. 3.1, are nothing but direct consequences of the markovianity condition, 
assumption stating that a pixel value is conditioned entirely only by its neighbouring pixels 
[Bes74] [Gem84]:  
 

)3.4(,),(),()( sssrsrrss xSsNrxxPsrxXxXPsLCPDF Λ∈∈∈=≠===
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This conditional probability is termed as local conditional probability density function 

(LCPDF). MRFs can be specified in terms of their conditional probabilities ),( srs NrxxP ∈
and, inversely, MRFs can be of help in deducing the joint probability distribution П from the 
associated local conditional probabilities. The joint distribution defines the probability for a 
particular labelling realisation. A valid joint distribution is in fact uniquely defined by its 
LCPDF, by applying the “Hammersley-Clifford theorem” [ Cli90] or “Markov-Gibbs 
equivalence theorem” [Gem84] establishing the equivalence between the local property 
(markovianity) and the global property (Gibbs distribution of a Gibbs Random Field). More 
details about this are to be found in Appendix C. 
 Consequently the LCPDF is capable to capture the visual characteristics of an image, 
so that it is able to uniquely describe that image. 
 
 
4.2.2  Local Conditional Probability Density Function 
 

 The non-parametric MRF model is based on estimating the LCPDF from a multi-
dimensional histogram of the neighbourhood over a homogeneous – i.e. stationary – textured 
image [Pag98].  Each dimension of the histogram represents a site from the neighbourhood 
system considered in LCPDF definition, the statistical order of the model being equal to the 
number of dimensions. A complete description of how the multi-dimensional histogram is 
computed from a homogenous texture disposing of a neighbourhood system is found in the 
original article [Pag98]. 
 

 
                                   a                                                                                    b 

Figure 4.2 – Multidimensional histogram and Parzen-window estimator [Sil86]: (a) a one 
neighbourhood system and its 2-dimensional histogram; (b) illustration of how a histogram data point 

is spread into the shape of a Gaussian surface.     
 
 Yet, to illustrate the procedure, a simple case of a 2-dimensional histogram obtained 
for a one neighbourhood system { }{ }1−== sNN s  is presented in Fig. 4.2a. The frequency 

F(g0,g1) counts the number of occurrences of the set of grey levels {g0, g1}in the image y. The 
label g0 represents the value of pixel ys, while label g1 is the value of the neighbouring pixel ys-

1. To build the histogram, the value of F() is incremented for each site s by scan-line visiting 
the image Y. In the above minimal case, the frequency is reduced mathematically to compute

)()(),( 11010 gygyggF s
Ss

s −⋅−= −
∈
∑ δδ , where δ  is the Kronecker delta function. 

 The LCPDF is obtained by performing density estimation on the multi-dimensional 
histogram. A common non-parametric estimator, that spreads each sample data into a smooth 
multidimensional histogram over a larger area, is the Parzen-window density estimator 
[Sil86]. Its principle is to associate each point in the histogram with, for example, a standard 
multi-dimensional Gaussian density as described by Fig 4.2b. 
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 Let ],,[ pqpp NqyyColz ∈=  be a column vector of size d, containing the pixel value 

py  and all the values within neighbourhood pN  in the input sample Y while 

],,[ srs NrxxColz ∈=  refers to a given configuration in the output texture X on which the 

Parzen-window estimator is to be applied. As demonstrated by [Pag98], the nonparametric 
MRF model gets to be uniquely defined by the nonparametric estimation of the LCPDF: 
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where f̂  corresponds to the Parzen-window density estimated frequency: 
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n is the number of possible neighbourhoods pN  in Y, i.e. the number of sites ySp ∈  for 

which yp SN ⊂ .  

The shape of the smoothing is defined by the kernel function K, chosen to be the 
standard multi-dimensional Gaussian density function: 
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where T(.) indicates the matrix transpose. 
 
Finally, the size of K is modified by the window parameter h in equation 4.5. The 

value of h has to be properly chosen in order to obtain a good estimation. If h is too small, the 
smoothing character of the Parzen-Window is too small, not general enough to represent 
texture details, so the results will be noisy. If h is too large, the estimator is over-smoothed 
and the results are out-of-focus or blurred. Silverman [Sil86] provides an optimal value for the 
window parameter assuring that the estimation is close to the true density function: 
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where 2σ is the marginal variance of the sample texture. 
 

Exploiting the LCPDF estimator in eq.4.4, one can say that a value sx  of a pixel at 

site s depends only on the values rx at sites neighbouring s. Mathematically speaking: 
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4.2.3  Texture synthesis via relaxation  
  

Texture synthesis happens by benefiting of the NP-MRF texture model via the LCPDF 
estimation.  

The synthesis of a texture from a MRF model is based upon a stochastic or a 
deterministic relaxation algorithm [Gem84] guided by the LCPDF.  

More often used and fairly more known are the stochastic relaxation algorithms like the 
Metropolis algorithm [Met53] and the Gibbs sampler [Gem84] (these algorithms are presented 
in the Appendix D). The principle behind this relaxation is that the synthesis starts with an 
image and iteratively updates pixels in the image with respect to the LCPDF, obtaining a 
sequence of images { })(),...,1(),0( nxxx  in order to reach the joint distribution of )(nx , so that

( ))())0()((lim nxxnxP
n

Π=
∞→

 [Pag98]. 

[Bes86] introduced a deterministic relaxation algorithm, called the Iterated Conditional 
Modes, suggesting that it returns the mode of the LCPDF. The ICM algorithm is presented in 
Fig. 4.3. The ICM algorithm generates a sequence of images, in order to find an equilibrium 
state at a local maximum, usually somewhere close to the initial image. The synthetic image 
will suffer from no changes after reaching the equilibrium at a local maximum of Π when all 
the pixels are affected with the mode of their corresponding LCPDFs. 

 

 
Figure 4.3 – The steps of the Iterated Conditional Modes algorithm. 

 
In practice, as explained in the two next paragraphs, texture synthesis is performed 

using a multi-scale synthesis algorithm which incorporates a pixel temperature function used 
for the first time in [Pag98].  

 
 

4.2.4  Multi-scale implementation 
 
The multi-scale implementation aims both at capturing the textural patterns at different 

scales (i.e. the local interactions between pixel values) and at speeding up the relaxation 
process. It indeed helps the ICM algorithm converge to an image closer to the global 
maximum of the joint distribution [Bou91]. Having an image at a local maximum of the 
LCPDF is enough to obtain a satisfactory synthetic texture, similar to the sample texture.  
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                                       a                                                                                            b 

Figure 4.4 – (a) example of a 3-scale grid; (b) illustration of an intermediary scale showing the 
2:1 decimation and the pixels coming from the upper scale (black- filled circles). 

 
 The same multi-scale grid representation as used by [Bes86] is employed. It consists in 
obtaining the lower resolutions, or the higher grid levels l > 0, from the image at level l=0  by 
using pixel decimation, as illustrated in Fig. 4.4. High frequency texture artefacts are 
important at high resolutions, while lower resolutions synthesis behaves better on low 
frequency features. This corresponds actually to the image pyramids in the multi-resolution 
schema used for the non-parametric algorithms in Chapter 3, the difference being that the 
Gaussian pyramids were used, while here only simple 2:1 decimation is used.  

The synthesis (i.e. relaxation) starts at the highest level l=L and continues from one 
level to another until l=0 ; once a level l was synthesized (i.e. relaxed or reached a maximum), 
to pass to the next level l+1 , all the pixels from the smaller level l are copied in their 
corresponding positions at the higher level l+1 and then the synthesis carries on at the 
upgraded level.  
 
 
4.2.5  Pixel temperature function  
 

The original 2D synthesis process [Pag98] incorporated the pixel temperature function 
to serve as a degree of confidence relative to the pixel value. The pixel confidence is 
associated with the probability that grey-level sx  represents the correct pixel value for the site 

s. Each pixel is given a certain temperature st , between 0 and 1, where 0 means complete 

confidence. The synthesis starts at a high global temperature (i.e. no confidence) and the 
process is considered to be finished when equilibrium is reached – temperature 0 for all 
pixels. The iterative cooling down schema is controlled by the pixel temperature function. 
The pixel temperature is used more as an indicator, not having the same role as in a classic 
annealing schedule [Gem84].   
 Mathematically, full pixel confidence happens when sx  is sampled from a LCPDF at 

equilibrium, or when the LCPDF is completely conditional on its neighbouring pixel values. 
Once a pixel at a site s was relaxed on one occasion, the confidence associated to its value sx

is updated by relying only on the temperature of the neighbouring pixelsrt , sNr ∈ as follows: 
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 ξ  is used to control the rate of the cooling schedule, that is the rate at which a pixel is 
cooled based on his neighbours temperatures. At high temperatures the synthesized textures 
are not spatially correlated, but as the temperatures decrease, the correlations induced by the 
LCPDF become stronger and the cooling rate should be slowed down to capture correctly the 
image characteristics (i.e. spatial correlations). 
 
 In the MRF model, the pixel temperature function is used to condition the LCPDF: if 

0=st  the LCPDF should be strong, while for 1=st  it should be weaker. To ensure this, the 

handling of pixel temperature is integrated in the form of )( pzz − while estimating the 

LCPDF as follows: 
)10.4(]),1()(,[)( srrrpsp NrtyxyxColzz ∈−⋅−−=−
 

 
Pixel temperature management is a major component of the multi-scale process, first 

by determining the length of the relaxation process and secondly by reducing the number of 
pixels to be relaxed. This means that before the relaxation algorithm starts at level l, those 
pixels which were relaxed at the previous level, l+1 , are copied on level l, according to the 
grid representation, and are given the temperature0=st  (i.e. complete confidence) being 

considered as already relaxed sites having correct values. The other pixels have their pixel 
temperatures initialized to 1=st , i.e. no confidence; after what a pixel is relaxed, it has its 

temperature reduced according to eq.4.9 until gaining complete confidence. 
 

 
4.2.6  2D texture synthesis algorithm 
 

After exposing all the concepts and the synthesis components, Fig.4.5 draws the basic 
steps to follow in order to compose the 2D texture synthesis. As the previous non-parametric 
methods presented in Chapter 3, this one is based on a 2D example also.  

At the beginning of synthesis, the input texture and the desired output texture 
(initialised with noise) have to be defined as two sets of sites on a lattice. The neighbourhood 
system and the number of scales have also to be chosen, decimating the lattices in a multi-grid 
form as represented in Fig. 4.4. Every site corresponds to a pixel from the texture and every 
site is initialized with a temperature of 1 (no confidence) while the global temperature (i.e. 
sum of all temperatures) of each scale is computed. A certain scale is considered to be 
synthesized when the global temperature reaches 0, meaning that all the pixels gained full 
confidence. 

The synthesis starts at the highest grid level and proceeds by randomly choosing sites 
from the lattice. If the temperature of a site is positive the best realization of that site is 
questioned. The decision is made by finding the value, within the available configuration, that 
maximizes the LCPDF of that site given by eq. 4.8, and using ICM relaxation. After a site is 
treated, its temperature is updated as indicated in eq. 4.9. If the temperature of a site is null, it 
means that the corresponding pixel has a correct value and no LCPDF estimation is 
computed, the synthesis process is simply ignoring it.  Once the lattice is fully scanned, the 
global temperature is recomputed. 
 If the global temperature at a given scale reaches zero, the next lower scale is 
synthesized (if the highest resolution isn’t yet reached). Passing the information from one 
scale to another one consists in copying the pixels from the poorest scale onto the 
corresponding sites on the richest scale as illustrated in Fig 4.4b. The updated sites have full 
confidence. At the beginning of a brute scale, at each four pixels displayed in a square shape, 
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three are noised unreliable pixels that will be later on processed; one has full confidence and 
will influence its neighbours by means of their LCPDF. 
 

 
Figure 4.5 – 2D texture synthesis algorithm based on the NP-MRF model. 

 
 

 Some examples of 2D textures synthesized with the NP-MRF model via LCPDF 
estimated with Parzen-windowing, using the ICM relaxation, pixel temperature and multi-
scale representation are presented in Fig. 4.6. 

 

 
Figure 4.6 – Illustration of the NP-MRF based 2D texture synthesis algorithm from Fig. 4.5: for each 

of the four cases the synthesis framework consisted in an input image (enclosed in red) of size 
100×100 pixels and using 3 scales and a 7×7 full-square neighbourhood to obtain the 200×200 pixels 

textures. To reduce the computation time, the input textures were reduced to only 32 grey-levels. 
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4.3 3D extension of the NP-MRF synthesis algorithm  
 

4.3.1 General considerations 
 

 As already mentioned, the 3D algorithm is a single-image-based synthesis algorithm, 
so to start the synthesis the process requires a texture image defined as a lattice S, where 
every pixel is a site on the lattice.  
 
 To be able to perform a visually correct synthesis, the input image is required to have 
a relative good resolution, so that if we decrease its resolution, the important textural patterns 
should be retrieved at the different scales. The decreasing of the resolution grid is done by 
simple decimation as in 2D. 
  
 The process starts with choosing the number of grid levels and the size of the full-
square neighbourhood. The output block dimensions are chosen and it is filled up with noise – 
actually random pixels from the exemplar, to preserve the dynamics and help the synthesis 
reach a maximum faster. Next, the sample and the output 3D block are decomposed at 
different scales and defined as lattice systems. 3D decimation is described by Fig. 4.7. From a 
set of eight voxels (in a 2×2×2 3D configuration) only one is being projected on the next 
higher level grid. 
 

 
                                                         a                                                                b 

Figure 4.7 – Example of multi-scale decimation in 3D: (a) the concept of conserving only one voxel 
from each set of eight; (2) two snapshots, taken inside the synthesis process, showing two adjacent 3D 

scales (a 323 block and a 643 block).  
 

The multi-scale relaxation algorithm is employed similarly to the 2D case. Idem for 
the pixels temperature used to control the synthesis as a kind of local annealing process. Sites 
are now in 3D configurations and they are scanned in a random order, searching for each site 
to maximize its LCPDF using an ICM relaxation.  

 
 

4.3.2  2D/3D generic algorithm 
 

With the help of the above considerations and the 2D credentials, the synthesis process 
for a 3D texture can be essentially described as follows:   
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Figure 4.8 – Algorithm: volumetric texture synthesis using MRF model showing the required data for 

the input and the steps to follow. 
 
 

4.3.3  Updating the voxel value: why a full-3D process is not relevant ? 
 
As in the case of the non-parametric extension to three-dimensions addressed in 

Chapter 3, the difficulties encountered at this point put forward the same question: how to 
infer 3D information when only 2D information is available?  

The problematic issue is to find a good strategy capable of working out the LCPDF of 
a site on the 3D grid by means of information available on the 2D lattice of the input sample. 
 The ideal solution would be to figure out the full-3D LCPDF associated to a site s in 
3D, and subsequently to retrieve its associated grey level *

sλ  so that the LCPDF is completely 

conditional on its full-3D neighbouring pixel values. 
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where D
sN 3  defines a 3D neighbourhood of the current site s. An example could be the second 

order neighbourhood presented in Fig. 4.9a and defined by: 
 

{ } )12.4(2)()()(0:),,( 2223
),,( ≤−+−+−<∈=== kzjyixSzyxrN D

kjis  

 
However, except in trivial cases, it is not possible to estimate the conditional 

probability of such configurations to assess the 3D interactions inside the 3D neighbourhood. 
This observation led us to propose heuristic approaches in order to overcome this problem. 

 
 

4.3.4  Heuristic approaches 
 
The 2D/3D extension infers the output block to be treated in a multi-2D form being 

seen as an arrangement of manifold 2D sheets. It implies a multi-2D/2D synthesis that comes 
down to crumbling the 3D neighbourhood into orthogonal 2D neighbourhoods.  

 
 

4.3.4.1  Breaking down the 3D neighbourhood  
 
The outcome of breaking down the 3D neighbourhood into orthogonal 2D 

neighbourhoods is that the unknown full-3D LCPDF estimation is reduced to a compound of 
computable 2D estimations. 

The simplification of the 3D lattice neighbourhood ( D
sN 3 ) of a site into three 

orthogonal 2D neighbourhoods – front neighbourhood ( FsN ), right neighbourhood ( RsN ) and 

top neighbourhood (TsN ) related to the central site, is shown in Fig. 4.9.   

 

 
                   a                                       b                                        c                                        d 

Figure 4.9 – Breaking down a second order 3D neighbourhood -DsN 3  in (a), into three 2D 

neighbourhoods corresponding to the orthogonal views: (b) front FsN , (c) right RsN  and (d) top TsN .  

 
This kind of conceptualization shows the need for the heuristics to attain for voxel vs 

the maximum likelihood (ML) grey levelsλ . It gives the opportunity to formulate several 

heuristics as proposed in the following two sections.   
 
 

4.3.4.2  Heuristic 1: NP_ML_H1  
 

According to the 3D neighbourhood breaking scheme in Fig. 4.9, one can find a 
suitable grey level for a voxelsv  at site s as a combination of the most probable grey levels 

found separately for each of its orthogonal views, as a 2D/2D search problem.  
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The result consists in several grey levels and several LCPDFs, one pair for each view – 

)ˆ,( frontfront Pλ , )ˆ,( rightright Pλ  and )ˆ,( toptop Pλ , retrieved through separate ICMs: 
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 This solution reminds us of the Chapter 3, where the update value for a voxel was 
computed as a combination of the solutions found for each orthogonal view. Similarly, the 
grey level chosen as update value can be found by combining the grey levels proposed by 
each orthogonal view using as strategy: 

- choosing the one with the lowest/highest associated LCPDF - NP_ML_H1a/b, 
- the average as Wei and Levoy [Wei03] - NP_ML_H1c, 
- the weighted mean as Kopf et al. [Kop07], 

while the nearest neighbour search is replaced by the maximum likelihood search. 
 
Algorithmically this can be presented as in Fig. 4.10: 
 

 
Figure 4.10 – Principle of NP_ML_H1 heuristic. 

 
 
4.3.4.3  Heuristic 2: NP_ML_H2  
 

In order to avoid performing several ICMs and to avoid dealing with several solutions 
for each orthogonal view, a second heuristic is proposed. The plan consists in finding a 
unique grey level *

sλ  which maximizes a function of the 2D estimations associated to the 

orthogonal views: 
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where the function f can be defined as: 
 

)15.4(),,min(),,( toprightfronttoprightfront LCPDFLCPDFLCPDFLCPDFLCPDFLCPDFf =  

or 
)16.4(),,max(),,( toprightfronttoprightfront LCPDFLCPDFLCPDFLCPDFLCPDFLCPDFf =  

or   
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)17.4(),,(),,( toprightfronttoprightfront LCPDFLCPDFLCPDFproductLCPDFLCPDFLCPDFf =  

  
 Depending on the function f used for ICM relaxation as sketched in Fig. 4.11, these 
heuristics are tagged as follows:

 
- NP_ ML_H2a for the expression of  f  from eq. 4.14 that maximizes the smallest of the 

three likelihoods in order to maximize all of them  
- NP_ ML_H2b for  f  as in eq. 4.15 that maximizes the biggest likelihood, favouring 

one of the three views if it shows a good likelihood   
- NP_ ML_H2c for an  f  defined as in eq. 4.16  to maximize the product searching for a 

compromise for all the three views 
 

 
Figure 4.11 – Principle of NP_ML_H2 heuristic. 

 
 

4.3.5  Implementation details 
 
 The synthesis plan follows the steps from Fig 4.8 and uses a heuristic from the ones 
proposed above to perform the ML estimation, but some annotations have to be mentioned.  
 
 
4.3.5.1  Initialisation of the output block 

 
 The initialisation strategy for the output block consists in using pixels picked 
randomly (white noise) from the input exemplar in order to keep the same global distribution 
of grey levels.  
 But to accelerate the synthesis process by speeding up the relaxation and help it 
maintain the global structure of the exemplar the output block is initialised with chunks from 
the input image copied as patches on the orthogonal 2D slices of the block into a random or 
deterministic way.  
 An example showing the simple insertions of the input image at different depths of the 
3D block is in Fig. 4.12. 
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Figure 4.12 – Output block initialization following a simple strategy: the targeted block is initialized 
with noise and at certain depths the same image used as synthesis sample is inserted as a slice within 
the block; this will be the initial state of the output block that will be used further on in the synthesis 

process.  
 

   
4.3.5.2 Scales handling 
 

Concerning the voxels grey levels, the operation consisting in going from a low scale 
toward higher scale, is done by decimation as in Fig. 4.7a. The contrary operation, top to 
down scale direction, is done systematically after each synthesized scale either copying each 
high scale pixel value into one of eight lower scale pixels (1/8 up-sampling scheme) either by 
copying each high scale pixel value into eight lower scale pixels (8/8 up-sampling scheme). 
This is illustrated in Fig. 4.13. 

 

 
Figure 4.13 – Going down to a lower scale: the top scale values are used to initialize the lower scale 

by updating only one voxel in eight (1/8), or by updating the same voxel over all the eight (8/8). 
  

There are two ways to deal with the temperature of the voxels obtained from a higher scale: 
 The temperatures of the voxels from a high scale can be copied to the next lower scale 
as a 1/8 update only after that the high scale was synthesized. This means that the high scale 
voxels have full confidence (i.e. 0=st ) and they are propagated onto the next lower scale 

keeping themselves the same temperatures. These voxels are used as fixed voxels for every 
level. This allows a faster synthesis, but not necessary a better one. If an erroneous voxel is to 
take place at a higher level (at low resolution) the error will propagate until the final level, in 
the synthesized texture.  
 The second and preferred solution consists in using the pixels from a higher scale to 
initialise the next lower scale, but to reconsider them during the synthesis. It denotes the fact 
that the grey value of a voxel from a previous level is changeable but its temperature remains 
fixed.  
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Making a zoom in the algorithm at the position where the sites are enquired, gives us 
the extended form in Fig. 4.14. 

 

 
Figure 4.14 – Texture synthesis algorithm enhanced with the synthesis of voxels from the sites 

having even coordinates (i.e. the voxels inherited from the higher scale).   

 
 This re-synthesizing phase for the voxels having even coordinates increases the 
computational cost but it improves the results as shown in Fig 4.15.  The effect of this phase 
is not visible on the 2D synthesized results as much as it is on the 3D results, because the 
update from one scale to another in 2D means to update only one pixel in four, while for the 
3D case it involves copying one voxels in eight. Even if the inverse-decimation operation 
involves copying the same pixel over all the four or the voxel over the eight, it doesn’t resolve 
the error propagation issue. 

                 

 
                       a                                                b                                                       c 

Figure 4.15 – Example of two volumetric synthetic blocks obtained from (a) - a 2D image, by 
applying the multi-scale relaxation MRF synthesis method using the heuristic NP_ML_H2c: the 

block in (c) is obtained by re-synthesizing the even voxels updated from the upper scale as 
suggested in Fig. 4.14, visually improving the result from (b) that was obtained without 

reconsidering the even voxels. 
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4.4 Conclusion 
 

This chapter offers a brief survey of the MRF theory introducing the necessary 
concepts to describe the LCPDF and its non-parametric estimation. Next, based on the 2D 
algorithm [Pag98], an original 3D extension is proposed, relying mainly on giving a new 
description to the LCPDF of a site in 3D and using more adequately the voxel temperature 
function. 

 
Therefore, using our heuristic propositions from section 4.3 several versions of the 

2D/3D synthesis algorithm can be examined. A list of the relevant algorithms that are going to 
be evaluated in the next chapter is presented in the table below: 
 

Heuristic tag Heuristic decision to find the best sλ  

NP_ML_H1a ( ))max(arg),max(arg),max(argmin toprightfront LCPDFLCPDFLCPDF  

NP_ML_H1b ( ))max(arg),max(arg),max(argmax toprightfront LCPDFLCPDFLCPDF  

NP_ML_H1c ( ))max(arg),max(arg),max(arg toprightfront LCPDFLCPDFLCPDFmean
 

NP_ML_H2a { }),,min(maxarg toprightfront LCPDFLCPDFLCPDF  

NP_ML_H2b { }),,max(maxarg toprightfront LCPDFLCPDFLCPDF  

NP_ML_H2c { }),,(maxarg toprightfront LCPDFLCPDFLCPDFproduct  

Table 4.1 – Proposed heuristics for finding the grey level for the output voxel. 
 
Besides the heuristic itself, the way of initialising the output block (noise or input 

image patches), the scales update strategy (1/8 up-sampling or 8/8 up-sampling) and the 
handling of the even pixels (reiterating them or not), there are other factors that contribute to 
the quality of the results. These are, as in the case of the non-parametric algorithm based on 
the neighbourhood search, the neighbourhood system (size, shape), the scan type and the 
number of scales. 

  
Unlike the methods in Chapter 3, for which the user decides the number of iterations, 

here the iterative process is in the form of the cooling schedule, the temperature cooling rate 
being determined by the factorξ  in eq. 4.9.  However, the synthesis process can be stopped 
after a given number of iterations or it can be imposed to stop when the global temperature 
doesn’t change significantly.  

From a computational point of view, letting the algorithm to follow its course through 
all the cooling steps proves to have poor performances. The solution for accelerating the 
algorithm in this situation consists in parallelising the algorithm; it means to simultaneously 
relax a set of i.i.d. (i.e. independent and identically distributed) sites.  
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5.1 Objective and methodology 
 
 This chapter deals with putting into practice the non-parametric synthesis algorithms 
presented in the previous two chapters. The fixed-neighbourhood search based approaches 
(NP_WL, NP_K and NP_CW) and the maximum-likelihood based synthesis methods 
(NP_ML_H1a/b/c and NP_ML_H2a/b/c) are applied to the volumetric texture synthesis 
starting from a single 2D texture, focusing mainly on various Brodatz textures [Bro66]. 

  
 The goal is to analyze the capacity of the non-parametric algorithms to synthesize 

different types of textures, to show the potential of these methods in various domains. More 
or less, the synthesized results should resemble the source textures conserving the dynamics 
and the structure.  

  
 In terms of synthesis quality, a critical point consists in taking into account the size of 

the texture patterns in determining the number of synthesis levels and the neighbourhood size. 
The scanning order and the output texture initialization strategy are also key factors that help 
the algorithms to converge towards a reasonable solution.  Other more specific factors are for 
NP_CW the number of candidates, or for maximum-likelihood approaches, the temperature 
decreasing scheme, the synthesis ending criteria, the up-sampling procedure or the way of 
handling pixels inherited from the previous scale. By testing the influence of these factors on 
the synthesis results, one can identify the pertinent strategy for obtaining a good quality of the 
results. 

 
 In addition, comparing the results gives the opportunity of finding the representative 

approach for the fixed-neighbourhood search based synthesis algorithms, and the 
representative of the maximum-likelihood based methods. For practicability, ‘electing’ the 
representative in each category is performed on a restrained number of textures to show the 
advantages and disadvantages of the synthesis algorithms. In the end, the approaches for the 
two cases are compared on a larger base of textures. 

 
 The textures of interest are the grey-level images presented in Fig. 5.1. As can be seen 

from these examples, we focus on structured textures – irregular to regular– with properties of 
anisotropy and periodicity in one or two directions. Care is taken to ensure that the 
extrapolation of the texture in 3D makes sense in terms of anisotropy. In other words, the 
existence of a real 3D structure, giving rise to a 2D section similar to the example, has to be 
possible. As a corollary, the algorithms have to be parameterized so that the synthesis of such 
3D structures is possible. For example, an anisotropic 2D texture like the one in Fig. 5.1.r 
cannot be observed on three orthogonal 2D views of a same volumetric texture. However, it 
could be observed on two orthogonal views, front view and side view for instance. The same 
is true for the other lamellar textures 5.1q, s or t, but also – which is less obvious – for most of 
the remaining bi-directional textures. A direct consequence is that the synthesis of meaningful 
3D textures from a single sample has to be performed for many of these examples by 
constraining only two orthogonal views of the solid output block. This is how the algorithms 
have been parameterized. 

 
 The case of isotropic textures is also considered in this evaluation, though to a lesser 
extent. Examples are textures 5.1k or 5.1n. Meaningful 3D textures can be synthesized from 
such 2D samples by constraining either two or three orthogonal 2D views. Even if some 
experiments have been conducted by constraining three views, no thorough analysis has been 



 

carried out so far. The results showed for isotropic textures 
synthesized by constraining two views only. 
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Figure 5.1 – 2D textures used as synthesis examples for the non
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

carried out so far. The results showed for isotropic textures will thus refer to textures 
synthesized by constraining two views only.  

a                      b                      c                     d                      e                      f          

i                      j                      k                      l                      m                      n 

o                      p                      q                     r                      s                      t                      u 
2D textures used as synthesis examples for the non-parametric algorithms

 

70 

will thus refer to textures 

 
a                      b                      c                     d                      e                      f                      g  

 
i                      j                      k                      l                      m                      n  

 
t                      u  

parametric algorithms. 



 

 

71 

5.2  Fixed-neighbourhood search based synthesis results 
  
 This section deals with the comparison of the results obtained by applying the non-
parametric synthesis algorithms based on fixed-neighbourhood search described in Chapter 3. 
These algorithms (NP_WL, NP_K and NP_CW) are applied on the 2D sample textures from 
Fig. 5.1.  
 To begin with, some results are showed using the common framework parameters for 
which satisfying results are obtained allowing an honest visual comparison, with the aim of 
finding the approach that provides the best results. By varying the different algorithmic 
parameters, their influence on the synthetic solid textures is analyzed. 
 
 
5.2.1  Comparing the approaches 
 
 This study focuses on showing in parallel the synthetic blocks using the synthesis 
algorithms differentiated principally by the way of combining the information from the 
orthogonal views in order to obtain the update value for the output voxel, as listed below: 
 

Synthesis method Strategy for output voxel 

NP_WL repeat  2)( sidefront ppv +=  

NP_K 
sidefront

sidesidefrontfront

ww

pwpw
v

+
⋅+⋅

=  

NP_CW 

),min( ** vpvpv sidefront −−=  

 

sidepositionfrontposition

sidesidepositionfrontfrontposition

ww

pwpw
v

__

__*

+
⋅+⋅

=  

Table 5.1 – Recap of the strategies involved by the non-parametric synthesis algorithms based on 
fixed-neighbourhood search, used for combining the information from two orthogonal views in order 

to obtain the update value for the output voxel. 
 

 Each of these strategies (specific for each method) is studied under a common generic 
support sufficient to produce satisfying results but – more important – to be able to compare 
the synthesis results for each strategy. This framework consists in using a neighbourhood 
system composed of a full-square neighbourhood of size 7×7, computed on three Gaussian 
pyramids, synthesizing the voxels following a random path, output block initialized with 
white noise and parts from the input sample. In addition, particular only to NP_CW, a set of 
15 candidates is used for each pixel from the 2D sample texture. The printed results are the 
ones obtained after the 10th iteration of the synthesis process. 
 The input images used as source of synthesis are the 64×64 textures from Fig. 5.1, 
while the output blocks are of size 64×64×64 pixels.  The 2D samples used for synthesis are 
reduced to 32 grey-levels. This relative small size for the output blocks  and the reduced grey-
levels were chosen in order to be able to compare the results with the ones obtained with the 
maximum-likelihood based synthesis algorithms (to be seen further on in this chapter), which 
are proved to be more time consuming, and to assure a large number of synthetic textures for 
comparison. 
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Figure 5.2 – Volumetric results using the non
neighbourhood search: each row shows from left to right the results obtained by synthesizing the 

1stcolumn texture, using NP_WL (2
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Volumetric results using the non-parametric algorithms based on a full
neighbourhood search: each row shows from left to right the results obtained by synthesizing the 

column texture, using NP_WL (2nd column), NP_K (3rd column) and NP_CW (4
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Figure 5.3 – Volumetric results using the non
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 Fig. 5.2 shows some results using the common framework on a 7×7 neighbourhood. 
Even at this early step of the comparison study, one can make a distinction between the 
quality of the results for NP_WL (which is not capable of capturing the structure of the 
sample texture) and the other ones. Concerning NP_K and NP_CW even with a relative small 
neighbourhood, they can provide promising results. 
 
 Then the neighbourhood size is extended to 11×11, results being showed in Fig. 5.3. 
Under these circumstances even the NP_WL acts well presenting relative good results if we 
ignore the solid texture in Fig. 5.3d1.This one is explained by the incapacity of the NP_WL 
algorithm to resemble the input sample because the average operation involved by the 
iterative searching process for the best neighbourhood, and for being based only on local 
decisions. 
 
 As for the methods based on histogram adjustment techniques trying to incorporate the 
global information, the results are similar, only with a comment on the result using NP_CW 
in Fig.5.3e3. The result in cause is unwanted because of the erroneous pixels that appear in 
the final result. This is caused by the algorithm attempt to distribute completely and uniformly 
the input pixels in the output block. It means that the algorithm considers a pixel to be a good 
solution for an output voxel based on the uniformity criterion even if it is not exactly the best 
one from a neighbourhood distance point of view.  But for a simple case as the regular texture 
in Fig. 5.3e, the algorithm fails. This algorithm is indicated for more complex textures and 
preferably less structured ones, when more diversity is wanted in the output texture. 
 
 The NP_K approach satisfies most of the textures in term of synthesis quality, 
capturing well the input sample structure. The weighted average and the grey-level histogram 
matching technique work well together. The results don’t show lots of defects and per 
ensemble it provides the most satisfying results. It works also in the cases for which the other 
two approaches failed. Consequently, only NP_K approach is going to be used for further 
considerations, to analyse the influence of the typical parameters on the quality of the 
synthesis results. 
 
 
5.2.2 Parameters influence 
 
 Just by analyzing the framework of the results in Fig.5.2 and Fig. 5.3 it’s obvious that 
the algorithms are very sensitive to the neighbourhood system, when determining the 
number of synthesis levels and the neighbourhood size correlated to the scanning type. 
 The neighbourhood size plays an important role in the synthesis process being a 
central factor in capturing the input image structure. The neighbourhood has to be bigger than 
the largest pattern of the sample to be able to capture its structure. 
 To capture better the textural patterns, multi-resolution  is used. A multi-resolution 
image pyramid confines the structure at different resolutions, by fewer pixels in the high 
levels (i.e. low resolution). The influence of the image pyramids is associated to the 
neighbourhood size. The results obtained by using image pyramids and a small 
neighbourhood are similar to using no pyramid but a bigger neighbourhood. 
 Fig. 5.4 shows the influence of the neighbourhood system on the synthesis results by 
varying the neighbourhood size. Higher the neighbourhood order, better are the results. 
 

 



 

 

75 

 
          a                            b                                  c                                 d                                 e 
Figure 5.4 – Neighbourhood size influence on the volumetric results using NP_K: from left to right, (a) 
the input image and next the solid textures obtained for a full-square neighbourhood of size (b) 5×5, 

(c) 7×7, (d) 9×9 and (e) 11×11 pixels. 
 

 The result blocks showed in Fig. 5.2 and 5.3 represent the 10th iteration of the 
synthesis process that starts from an initial random noise state. This noise is modified to look 
like the sample texture. The synthesis is stopped automatically after ten iterations, although 
after approximately six iterations the produced results are satisfactory. An example showing 
the evolution of the output texture during the iterative process is in Fig. 5.5. The output 
texture succeeds after several iterations to be alike the input texture.  
 

 
          a                             b                                 c                                 d                                  e 
Figure 5.5 – Texture evolution during synthesis iterations: the output block, starting from (b) random 

noise, is iteratively modified to resemble (a) the 2D sample; (c) is the block obtained after the 2nd 
iteration, (d) shows the 6th iterations while (e) contains the 10th iteration. 

 
 A known characteristic of these algorithms based on best-neighbourhood-match 
searching is that they are sub-optimal, being deterministic algorithms and leading to synthesis 
results that suffer from repetitive patterns and from more ordered features than the sample 
[Che10] [Urs12]. Hence this makes the algorithms be very vulnerable to the neighbourhood 
system and the number of iterations. Iterating much more tends to produce repetitive, over 
regular structures, whereas using very large neighbourhoods has the same orderliness effect. 
A compromise has to be made in order to use a sufficiently large neighbourhood to capture 
the essential features but also to iterate enough to assure the convergence. 
 
 A similar question is raised for the scanning type, which is the visiting order of the 
voxels during synthesis. Replacing the lexicographical scan type (deterministic scan-line 
order) with a completely random walk allows the synthesis of a pixel by freeing itself from its 
past and so multiplying the possible configurations. However, the convergence time can 
become prohibitive in this case. Attempts were made to reconcile the deterministic part and 
the randomness character by using alternative scan types – namely the use of space filling 
curves (Z-curve and Hilbert curve) (see Appendix B) and by using a mixed initialisation for 
the output block – white noise and patches from the input image. Fig. 5.6 shows some results 
obtained by using different scanning types, namely the ones suggested in Fig. 3.21.  
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          a                           b                                 c                                  d                                 e 
 

 
           e                           f                                  g                                  h                                 i 
Figure 5.6 – Texture synthesis by varying the scanning type: each row shows the 2D sample in (a) and 
the 10th iteration of the synthetic solid textures obtained with NP_K and the common framework using 
(b) lexicographical scan, (c) random walk, (d) 3D extended Z-curve and (e) three-dimensional Hilbert 

curve. 
 

 The results in Fig. 5.6 are relatively little sensitive to the scanning type. However 
some remarks have to be made.  
 The lexicographical scan based result (Fig.5.6b) shows some undesired features 
because if an error pixel is to take place, it is likely to propagate from one neighbourhood to 
another retrieving it in the final result. It adds up the repetition of patches whether if they are 
good or bad. Additionally the lexicographical scan tendency is to regularize the texture. These 
aspects are better retrieved on the first row images in Fig. 5.6 for which the sample is less 
regular. The left view of the 3D texture block in Fig.5.6b shows the failure of the algorithm to 
preserve the structure while its right view is quasi-periodic. As for the other results, they are 
less regular (as the 2D example).  
 The random scan assures diversity, makes the repetitive structures disappear but shows 
difficulties in converging.  
 The 3D space filling curves used as synthesis path produce satisfying results, not 
regularizing them too much and in the same time not randomizing them too much, in terms of 
structure. However the result obtained with the Z-curve path in Fig. 5.6c seems to be too 
regular also. The Hilbert-curve based result is less regular, more alike the initial texture, even 
if certain patterns don’t correspond with the sample.  
 
 Apart from these conventional characteristics related to the neighbourhood systems, 
which have been more or less noted by the original paper authors, a parameter specific only to 
NP_CW has to be at least referred to – the set of candidates. The use of the set of candidates 
in the context of the position and index histogram matching and the discrete solver described 
in section 3.4.2, seeks to make sure that all the pixels are copied equiprobably from the 2D 
sample.   

Fig. 5.7 illustrates how the synthesis results are affected by the size of the set of 
candidates, showing alongside the corresponding histogram position map. Larger the set, as 
better are the results and as uniform is the histogram position map. However these are 
accomplished with an increased computational cost. 
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                            a                                  b                                  c                                 d    
Figure 5.7 – Influence of the set of candidates on the synthesis results: from left to right, the blocks are 

obtained by using NP_CW with 1, 5, 15 and 25 candidates. On top of each block is represented the 
position histogram map. In red are the areas containing input pixels that are not retrieved in the 

result. For the others, the whiter the pixels, the more they are used in the output texture. 
 
 
 The synthetic results obtained with the neighbourhood search based non-parametric 
approaches have a satisfactory visual quality, showing the algorithms capacity to produce 
volumetric textures similar to the 2D samples in terms of dynamics and structure. Good 
results are obtained by choosing properly the synthesis process parameters.  
 Being emblematic for the non-parametric synthesis based on fixed-neighbourhood 
search, NP_K is going to be used as comparative method to the maximum-likelihood based 
approach in section 5.4. 
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5.3 Maximum-likelihood based synthesis results 
 
 This section is dedicated to the results obtained by applying the synthesis algorithms 
based on the maximum-likelihood estimation (NP_ML_H1a/b/c and NP_ML_H2a/b/c) 
described in Chapter 4, on 2D sample textures.  
 Firstly, some results are showed using the parameters for which eye-friendly results 
are obtained, and next the choice of these parameters is motivated by analyzing their influence 
on the synthetic solid textures. 
 
 
5.3.1 Comparing the heuristics 
 
 The several heuristics proposed in Chapter 4 are analyzed in the context of 
synthesizing the textures from Fig. 5.1. 
 To remind these heuristics and to have them at hand in this study, here is their brief 
description: 
 

Heuristic tag Heuristic decision to find the best sλ  

NP_ML_H1a ( ))max(arg),max(argmin rightfront LCPDFLCPDF  

NP_ML_H1b ( ))max(arg),max(argmax rightfront LCPDFLCPDF  

NP_ML_H1c 
2

)max(arg)max(arg rightfront LCPDFLCPDF +
 

NP_ML_H2a { }),min(maxarg rightfront LCPDFLCPDF  

NP_ML_H2b { }),max(maxarg rightfront LCPDFLCPDF  

NP_ML_H2c { }rightfront LCPDFLCPDF ∗maxarg  

Table 5.2 – Recap the heuristics involved by the non-parametric synthesis algorithms based on 
maximum-likelihood criterion, used for finding the most probable grey level for the output voxel by 

analyzing only two orthogonal views.  
 
 To show the ability capacity of the proposed algorithms to synthesize various textures, 
the first results are obtained by using a generic framework that experimentally proved itself to 
produce satisfying results: a neighbourhood system composed of a full-square neighbourhood 
of size 7×7, computed on 3 scales, synthesizing the voxels in a random way, 8/8 up-sampling 
strategy, output block initialized with white noise and random parts bits from the input sample 
and re-synthesizing the even pixels inherited from a higher scale (as suggested in section 
4.3.5.2).  
 To assure a reasonable computational time and to maintain a satisfying quality of the 
results, the temperatures of pixels is decreased with a factor -3 (i.e. - in /0. 4.9) and stopping 
the synthesis process after reaching a 95% decrease of the global temperature. The results are 
showed analogously for each employed heuristic. The input images are of size 64×64 pixels 
and the synthesized blocks 64×64×64 pixels.  
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 Fig. 5.8 shows some results obtained by using the maximum-likelihood heuristics 
proposed in Chapter 4 on the basis of a 7×7 full-square neighbourhood. 
 More precisely, the second row (Fig 5.8a1-d1) presents the solid textures obtained by 
applying the NP_ML_H1a heuristic, meaning that the update value for an output voxel is 
found by choosing the grey level that corresponds to the smallest from the two LCPDF 
computed separately for the two orthogonal views taken into consideration (front view and 
right view). The idea is to choose the smallest LCPDF in order to be valid for each of the two 
views. It works well except the result in Fig. 5.8c1 for which the algorithm doesn’t captures at 
all the structure of the texture from Fig. 5.8c. This heuristic performs well, but not strong 
enough to capture the interactions between the pixels, a possible solution being to increase the 
neighbourhood size. 
 Using the NP_ML_H1c heuristic (3rd row in Fig. 5.8), the update voxel value is 
computed as the average of the two grey levels, each one of them maximizing the LCPDF of 
his corresponding view. As in the case of the neighbourhood-search based approaches the 
averaging operation is not the winning strategy: the voxels are faced with grey-levels that 
don’t exist in the 2D sample, disrupting the image-based synthesis process. Undesired 
artefacts are seen on almost all the results, providing broken textures (as is the case of textures 
in Fig. 5.8a2–d2). 
 The last two rows of Fig. 5.8 contain the results obtained by using for the update voxel 
value the grey-level that maximizes a function of the 2D estimations of the two orthogonal 
views. The heuristic used in Fig. 5.8a3–d3 is NP_ML_H2a maximizing the smallest of the 
two likelihoods in order to maximize both of them. The results are promising in term of 
structure conservation, but undesired artefacts still come into sight (visible on the solid 
textures in Fig. 5.8a3 and c3). The function of the LCPDF estimation is not able to capture 
the pixels correlations under the employed framework, unsuitable for characterizing all the 
orthogonal views.   
 It looks like the NP_ML_H2c heuristics (the last row in Fig. 5.8) runs better, being 
able to capture the visual characteristics of the input texture by maximizing the product 
function of the LCPDFs of each view. This product based heuristic is stronger (in terms of 
capturing pixel interactions) than all the other ones even at a relative small neighbourhood 
size.  Using this heuristic as a decisional measure for the output voxel grey value, the 
synthesis provides more than satisfying results. The synthetic solid textures (Fig. 5.8a4-d4) 
are smooth almost artefact–free textures (except some small structure defects), looking very 
similar to the sample textures (Fig. 5.8a-d) giving the impression that they were produced by 
the same process.  
 
 Separately from the above analysis, are treated the other two remaining heuristics. 
NP_ML_H1b is the one based on choosing the update value as the one that corresponds to the 
biggest LCPDF computed individually for each of the two orthogonal views. Results using 
this heuristic are showed in Fig. 5.9. NP_ML_H2b maximizes the biggest likelihood function, 
favouring only one of two views; results based on this decisional heuristic are in Fig. 5.10.  
The reason why they are compared in this place is that their corresponding results are similar, 
but not in a good way.  Using the common framework with 7×7 neighbourhood proved to be 
insufficient for them providing catastrophic results (second row of Fig 5.9 and Fig. 5.10). So 
a larger neighbourhood, an 11×11 one, was used. In this context the structure of the sample 
texture is captured but only for an orthogonal view (third row of Fig 5.9 and Fig. 5.10). These 
heuristics are incapable of convincing all the orthogonal views to follow the sample 
characteristics. 
 



 

                     

Figure 5.9 – Volumetric results corresponding to the NP_ML_H1b heuristic: from left to right, each 
column shows from top to bottom, the sample texture (1

neighbourhood (2nd row) and the output block computed with an

 

                     

Figure 5.10 – Volumetric results corresponding to the NP_ML_H2b heuristic: from left to 
column shows from top to bottom, the sample texture (1

neighbourhood (2nd row) and the output block computed with an 
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the most convincing ones. The above remark justifies the choice of using NP_ML_H2
the next operations as being representative for the maximum

                                          
 

                
 

                
Volumetric results corresponding to the NP_ML_H1b heuristic: from left to right, each 

column shows from top to bottom, the sample texture (1st row), the output block computed with a 
row) and the output block computed with an 11×11 neighbourhood (3

 

                                         
 

                
 

                
Volumetric results corresponding to the NP_ML_H2b heuristic: from left to 

column shows from top to bottom, the sample texture (1st row), the output block computed with a 
row) and the output block computed with an 11×11 neighbourhood (3

To conclude this section, it seems that the results based on NP_ML_H2c heuristic are 
the most convincing ones. The above remark justifies the choice of using NP_ML_H2
the next operations as being representative for the maximum-likelihood based approaches. 
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Volumetric results corresponding to the NP_ML_H1b heuristic: from left to right, each 

row), the output block computed with a 7×7 
neighbourhood (3rd row). 

 

 

 
Volumetric results corresponding to the NP_ML_H2b heuristic: from left to right, each 

row), the output block computed with a 7×7 
neighbourhood (3rd row). 

NP_ML_H2c heuristic are 
the most convincing ones. The above remark justifies the choice of using NP_ML_H2c for 

likelihood based approaches.  
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5.3.2 Temperature decreasing schema 
 
 The developed algorithms based on the maximum-likelihood estimation integrate, in 
the synthesis/relaxation process, a pixel temperature function as a degree of confidence for a 
pixel grey-value.  It is the main factor that influences the duration of the relaxation process, 
determining the ‘annealing’, that is the control of the cooling rate. The process starts at high 
temperatures, and iteratively it is relaxed with the decreasing of the temperature. Two aspects 
drew our attention – the speed of the temperature dropping-off and the relaxation 
duration . 
 
 The pace of the cooling schedule is determined by the parameter - as described in eq. 
4.9. A small value assures a good convergence but implies long relaxation sequences while a 
higher value allows a faster process but not necessarily with satisfying results. A pixel 
temperature is cooled-down based on its neighbours’ temperatures. A fast decrease of 
temperature is not capable of capturing the spatial correlations between neighbours. The 
cooling rate influences directly the number of iterations by reducing faster the global 
temperature. 
 
 Strongly related to the cooling rate is the time taken by the relaxation process. The 
initial scheme consisted in starting from a high global temperature and decreasing it, 
successively after handling each voxel, until reaching zero when all pixels achieve complete 
confidence. But an adequate amount of confidence attained without reaching the zero level 
can produce satisfying results, suggesting that a very small, but positive value of a pixel 
temperature could be enough. This implies that the relaxation process can be stopped at an 
earlier time, after accomplishing a certain percentage from the initial global temperature. 

 

             
                                a                                                b                                                c  

 

             
                             d                                                e                                                 f 
Figure 5.11 – Results obtained for different temperature decreasing strategies: the first row shows the 

results obtained by accomplishing 100% of the relaxation process, but by decreasing the pixel 
temperature with (a) -=-1, (b) -=-3 and (c) -=-5; the second row shows in the same order for the 

values of  - the results obtained by stopping the synthesis process after reaching 95% from the initial 
global temperature. 

 



 

 In order to obtain satisfactory results with a reasonable computational cost, a 
compromise has to be made regarding the rate of the cooling schedule and the relaxation time. 
Some results obtained with different values for 
its course or by stopping it after reaching 95% from the initial global temperature at each 
scale, are presented in Fig. 5.11
5.11f shows a few undesired error pixels, because of the too fast decreasing schema (
and of the too early stopped relaxation process (95%). 
  

                                          a                                                                                b
Figure 5.12 – Plots showing how the global temperature is dropping off with the parameter 
and -5 when allowing the algorithm follow its course until reaching zero temperature (plot in a) and 

when fulfilling only 95% of the initial global temperature (plot in b)

 The influence of these factors is analyzed in the plots from 
presented solid results, the impact of 
global temperature; a more important 
temperature level in fewer iterations than when using a b
process at 95% from the initial global temperature, reduces the number of iterations, from 20 
to 7 in the case of -=-1. For -
-=-5 from 16 to 5. Fig. 5.13
another until reaching the final state presented in 
by the relaxation process on the final pyramidal level, until reaching a stable state (deemed at 
95% of the global temperature).
 

Figure 5.13 – Time evolution of the solid texture at the last pyramidal level: first four iterations 
showing the temperature decrease involved by the relaxation process plotted in Fig. 5.12b in the case 

 
 The above section analyzed the effect of the two key factors in pixel temperature 
decreasing schema, on the 3D synthesis results. It shows that reducing the number of 
iterations and accelerating the decrease of temperature can still produce satisfactory 
with the pair of parameters -=

In order to obtain satisfactory results with a reasonable computational cost, a 
e made regarding the rate of the cooling schedule and the relaxation time. 

Some results obtained with different values for - while leaving the relaxation process follow 
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Fig. 5.11. The results are  visually very similar, only the block in 
sired error pixels, because of the too fast decreasing schema (

and of the too early stopped relaxation process (95%).  
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Plots showing how the global temperature is dropping off with the parameter 
5 when allowing the algorithm follow its course until reaching zero temperature (plot in a) and 

when fulfilling only 95% of the initial global temperature (plot in b)
 

The influence of these factors is analyzed in the plots from Fig. 5.1
presented solid results, the impact of - is reflected in a more accelerated decrease of the 
global temperature; a more important - (a smaller value) allows reaching a same global 
temperature level in fewer iterations than when using a bigger -. Stopping the synthesis 
process at 95% from the initial global temperature, reduces the number of iterations, from 20 

-=-3 the number of iterations is reduced from 18 to 6, while for 
Fig. 5.13 shows the evolution of a solid texture from an iteration to 

another until reaching the final state presented in Fig. 5.11b. It shows the iterations involved 
by the relaxation process on the final pyramidal level, until reaching a stable state (deemed at 

of the global temperature). 

Time evolution of the solid texture at the last pyramidal level: first four iterations 
showing the temperature decrease involved by the relaxation process plotted in Fig. 5.12b in the case 

of NP_ML_H2c_-3_95%.  

The above section analyzed the effect of the two key factors in pixel temperature 
decreasing schema, on the 3D synthesis results. It shows that reducing the number of 
iterations and accelerating the decrease of temperature can still produce satisfactory 

=-3  and 95% of the global temperature stop criterion. To be able 
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In order to obtain satisfactory results with a reasonable computational cost, a 
e made regarding the rate of the cooling schedule and the relaxation time.  

while leaving the relaxation process follow 
its course or by stopping it after reaching 95% from the initial global temperature at each 

very similar, only the block in Fig. 
sired error pixels, because of the too fast decreasing schema (-=-5) 

 

Plots showing how the global temperature is dropping off with the parameter - at -1, -3 
5 when allowing the algorithm follow its course until reaching zero temperature (plot in a) and 

when fulfilling only 95% of the initial global temperature (plot in b).  
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The above section analyzed the effect of the two key factors in pixel temperature 
decreasing schema, on the 3D synthesis results. It shows that reducing the number of 
iterations and accelerating the decrease of temperature can still produce satisfactory results 
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to produce a large number of results, this will be the synthesis strategy used further on in this 
chapter under the emblematic heuristic – NP_ML_H2c. 
 
 
5.3.3 Common parameters influence 
 
 The maximum-likelihood based synthesis process is sensitive to the neighbourhood 
size as well as the neighbourhood-search based approaches. The neighbourhood size has to be 
indeed large enough to capture the biggest pattern of the input texture, in order to assure a 
result similar in structure to the sample capturing the spatial interactions between 
neighbouring pixels.  
 This is correlated to the resolution of the sample texture - a higher resolution (meaning 
more well defined inner patterns) of an image requires a higher neighbourhood size. The 
question of the number of pyramidal levels is also related to this issue, each level being in 
fact representations of the same image at different resolutions. 
 Some examples illustrating how the results can be improved by using a bigger 
neighbourhood are showed in Fig. 5.14. A larger neighbourhood captures better the input 
structure giving a higher quality to the solid textures making it more similar to the sample. 
 

 
                             a                                          b                                                  c 
Figure 5.14 – The influence of the neighbourhood size: each of the two rows shows, from left to right, 
in (a) the sample texture, in (b) the output block obtained with a 7×7 neighbourhood and (c) contains 
the improved results obtained by using a 9×9 neighbourhood. The other parameters were the same:3 
pyramidal levels, 8/8 up-sampling strategy, -= -3 and stop at 95% of the process, reiterating the even 

pixels and initializing the output block with input image patches. 
 
 Other two parameters to be taken into considerations are the up-sampling strategy 
and the initialisation strategy. The pass of information from one synthesized level to the next 
untreated one consists in copying each treated level pixel into one or eight of the eight next 
level pixels (named 1/8 or 8/8 upsampling strategy in Chapter 4.3.5.2). The purpose is to 
assure faster and better convergence by using for synthesis only already treated pixels. With 
the same ambitions for the convergence and additionnaly to help the synthesis capture better 
the input image patterns, an alternative strategy to the random initialisation of the output 
block is proposed. It consists in integrating in the orthogonal slices of the output block, filled 
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initialy with white noise, patches from the input image. For simplicity, the variant that 
consists in initializing with input image patches is named as +in , while the simple random 
noise initialization is named as –in.  
  

 
           a                           b                                 c                                d                                 e 
Figure 5.15 – The trace of the up-sampling (1/8 or 8/8) and the initialisation strategy (+in, -in) on the 
synthesis results: each of the two rows shows, from left to right, (a) the input sample, (b) the results 

obtained with 8/8 up-sampling and +in, (c) 8/8 up-sampling and –in, (d) 1/8 up-sampling and +in and 
the last column (e)1/8 up-sampling and –in; all the other parameters were fixed.  

 
 Some examples affected by the variation of the upscaling and the initialization strategy 
are shown in Fig. 5.15. The deduction is that apparently the synthethic solid textures show no 
major differences when using a certain up-sampling schema and a certain initialisation 
strategy.  
 

             
                                 a                                       b                                             c                 
Figure 5.16 – The trace of the up-sampling strategy on a synthesis result: the block in (b) is obtained 
by using 8/8 up-sampling, while the volumetric result in (c) is obtained with 1/8 up-sampling strategy 

capable of capturing the structure and the pattern of the sample texture in (a); all the other 
parameters were fixed. 

 
 But the assumption relative to the triviality of the upsampling schema is rapidly 
demolished by the result presented in Fig. 5.16. In some case the 8/8 up-sampling schema is 
not capable of assuring a required degree of diversity, reproducing from one level to another 
the same grey levels obtained at the lowest resolution level. If the lowest resolution level is 
inappropiate (i.e. structure misplaced, uniform grey-levels ) the synthesis process captures the 
mode of distribution and propagates it through all the scales. To assure disparities while 
passing from one scale to another, a 1/8 up-sampling strategy is used, paying attention to the 
information from the already synthesized scale and to a certain randomness induced by the 
random pixels issued from the initialisation strategy. Fig. 5.17, as Fig. 5.16, shows how the 
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1/8 up-sampling improves the quality of the results but in addition it proves again the 
vulnerability of the maximum-likelihood based process faced to the neighbourhood system, 
that needs a bigger neighbourhood to capture the sample structure and to reproduce it in the 
synthetic results.  
 

 
          a                                  b                                              c                                               d    

Figure 5.17 – The mutual influence of the neighbourhood size and the up-sampling strategy on 
synthesizing the 2D sample in (a): the result in (b) is obtained using a 9×9  neighbourhood and a 8/8 

up-sampling, the result in (c) is obtained by using a 9×9 neighbourhood size but with a 1/8 up-
sampling and the result in (d) is obtained with a 11×11 neighbourhood corroborated with 1/8 up-
sampling strategy; above each block are represented two 2D cuts from the 3D block illustrating the 

synthesis success rate. 
 
 Of particular interest is questioning if the temperature of a pixel from an already 
synthesized scale has to be or not processed in order to initialize the next scale (according to 
the upsampling strategy). As illustrated in Fig. 4.14 from Chapter 4,  the solution adopted 
here is to re-synthesize the voxels having even coordinates, i.e. the voxels inherited from the 
higher scale. Using a 8/8 upsampling and not resynthesizing the even pixels it is not capable 
of eliminating the errorneous pixels, while with re-synthesis the results are smoother. This 
even pixels revisiting operation is highly important in producing high quality results. Its 
effects are evidently positive, results being shown in Fig 4.15 and in Fig. 5.18. Without 
synthesizing the inherited pixels (as proposed in [Pag98]), errorneous pixels appear at 
different scales and propagate untill the final level. 
 

 
                              a                                         b                                                  c 

Figure 5.18 – Example of two volumetric synthetic blocks obtained from (a) - a 2D image, by 
applying the multi-scale relaxation MRF synthesis method using the heuristic NP_ML_H2c : the 
block in (c) is obtained by re-synthesizing the even voxels updated from the upper scale, visually 

improving the result from (b) that was obtained without reconsidering the even voxels. 
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5.4  Fixed-neighbourhood search vs. likelihood maximisation 
 
 This section is aimed to be a qualitative comparative operation showing in parallel the 
results obtained with the neighbourhood-search based synthesis approaches and results of the 
maximum-likelihood based methods.  
 To ease the comparative study only two representative approaches, one for each class, 
are used. These are NP_K and NP_ML_H2c, as it was reasoned in the previous sections of 
this chapter. 
 Before starting the effective study, a first remark has to be noted on the already shown 
results – it appears that NP_ML_H2c provides better results than NP_K at a same relatively 
small neighbourhood size. NP_ML_H2c is capable of providing satisfying results using a 7×7 
neighbourhood as illustrated in Fig. 5.8. With the same neighbourhood size and using the 
same 2D samples as source of synthesis, NP_K is not capable to produce solid textures 
similar in structure to the 2D samples, as illustrated in Fig. 5.3. But these were particular 
examples, so a larger experimentation basis is required to be able to draw conclusions. 
 To assure a common framework a suitable 9×9 neighbourhood size is used, three 
pyramidal levels, random scanning, +in  initialisation. For NP_ML_H2c an 1/8 up-sampling 
and even pixels revisiting strategy are adopted. Because the deterministic relaxation algorithm 
involved by the maximum-likelihood based synthesis is computationally very expensive, 
performing LCPDF estimations for every grey-level available in the input image, the 2D 
sample textures are of 32 grey-levels. 
 Synthesis results using the previous framework are shown in Fig. 5.19 and Fig. 5.20 
placing jointly the NP_K 3D texture and the NP_ML_H2c 3D texture.  
 

        
                                       a                                                                                    b 

 

        
                                       c                                                                                    d 
Figure 5.19 – Volumetric results: each of the four triplets contains in the middle the 2D sample, on the 
left the 3D texture obtained using NP_K approach on a 9×9  neighbourhood and on the right the 3D 

block obtained using NP_ML_H2c heuristic using the same neighbourhood size.       
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                                       a                                                                                    b 

 

        
                                       c                                                                                    d 

 

        
                                       e                                                                                     f 

 

        
                                       g                                                                                    h 

Figure 5.20 – Volumetric results: each of the eight triplets contains in the middle the 2D sample, on 
the left the 3D texture obtained using NP_K  on a 9×9  neighbourhood and on the right the 3D block 

obtained using NP_ML_H2c heuristic using the same neighbourhood size.       
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 For the textures shown in Fig. 5.19, the NP_ML_H2c results seem to be better than the 
ones obtained with the NP_K approach mostly in terms of structure preservation. The textures 
in Fig. 5.19a and 5.19b obtained with NP_K capture deficiently the structure of the sample 
while the NP_K block in 5.19c is more regular than the sample texture. The last case, the 
texture in Fig. 5.19d, shows the NP_K difficulties in sustaining the structure. Fig. 5.20 carries 
on the results illustration testifying overall the promising quality of the results both for NP_K 
and NP_ML_H2c. It seems that NP_ML_H2c produces a better result than NP_K for the case 
in Fig. 5.20e but this is annulled by the results in Fig. 5.20b where NP_ML_H2c is inferior, 
making simpler the 3D texture.   

 

        
                                       a                                                                                    b 

 

        
                                       c                                                                                    d 

Figure 5.21 – Volumetric results: each of the four quintuples contains in the centre the 2D sample, 
above the sample two NP_K results obtained, from left to right, with an 9×9 and an 11×11 

neighbourhood and below the 2D sample the two NP_ML_H2c results obtained by using, from left to 
right, an 9×9 and an 11×11 neighbourhood size.       
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 It’s not always that NP_ML_H2c behaves better. The results in Fig. 5.21a and 5.21b 
prove exactly the opposite; even if NP_K needs a bigger neighbourhood to provide 
satisfactory results, it behaves better than NP_ML_H2c. A bigger neighbourhood is required 
likewise by NP_ML_H2c for the synthesis in Fig. 5.21c, being the only one capable of 
capturing the sample pattern. The results in Fig. 5.21d are terrible for both of the approaches, 
incapable of preserving in the synthetic result the sample structure. 
 In a similar way, the number of grey-levels is questioned. Its influence on two 
synthetic textures is shown in Fig. 5.22. In this case the assumptions according to which the 
synthesis simplifies the textures, reducing the number of grey levels is once again confirmed, 
even if the synthesis takes place by using numerous grey-levels and not only the reduced 32 
levels. Comparing the result in Fig. 5.22a with the one in Fig. 5.21c and the result in Fig. 
5.22b with the one in Fig.5.20b, one can conclude that no improvement is brought in term of 
texture structure by using a larger diversity of grey-levels in the synthesis process. As well, a 
direct remark pops out by comparing the sample texture grey-level histogram with the 
synthetic block histogram – the synthesis process reduces the number of grey-levels 
maintaining only the most present (i.e. the most probable) grey-levels of the 2D sample, as a 
reminiscent effect of the deterministic ICM relaxation algorithm.   

 

 
                                                    a                                                                                         b  

Figure 5.22 – Volumetric results obtained by applying the synthesis algorithm on sample textures 
having all their original grey-levels. 

 
The comparative study underlines the idea that the employed synthesis approaches can 

hardly be differentiated being unable to conclude precisely which one is the best, while 
showing that satisfactory results can be achieved by tuning properly the synthesis parameters. 
In fact, one approach is better than the other in function of the viewer/user/application centre 
of interest. The maximum likelihood based approaches comes up with extra parameters 
emerged from the pixel temperature function that sometimes prove to be difficult to control 
but, when properly tuned, can provide outstanding results. 

 
From a computational cost point of view, the NP_ML_H2c approach needs long 

relaxation steps, searching for every output voxel the most probable grey level, each time (i.e. 
for each grey-level) a conditional probability being estimated. With the increase of the 
neighbourhood size and the number of available grey-levels, the deterministic relaxation 
duration increases as well, becoming an overwhelming process. If one searches for a fast way 
to generate textures, the fixed-neighbourhood search based approaches are of interest. For 
example, using a machine operating at 2.7 GHz to generate a 64×64×64 block from a 64×64 
texture containing 32 grey-levels, using a 9×9 neighbourhood, 3 scales, pixel temperature 
decreasing with a -3 factor, stopping the synthesis process at 95% of the global temperature 
and re-considering for synthesis the inherited pixels, the time required by the NP_ML_H2c 
relaxation has an order of almost 24 hours, while 10 iterations of the NP_K based results are 
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obtained in only a few minutes. A future perspective development involves the algorithm 
acceleration, attainable by algorithm parallelisation.  
 
 
5.5 About 2D/3D inference  
 
 Beside the algorithmic investigation and the results interpretation, our reflexion 
questions the truthfulness of the generated 3D texture given a 2D sample. The volumetric 
texture should indeed exhibit a plausible structure in accordance with the reality and each of 
its 2D slices should be consistent with the 2D sample. This can be simply stated as the 2D-3D 
inference objective.  
 The human visual system, based on prior experience, has nearly no difficulty in 
making possible a robust inference from insufficient data. In practice, people can figure out 
the most probable 3D structure among numerous possible structures given only a single 2D 
image. By contrast, the 3D inferring is quite challenging for computer vision systems. 
 Concerning the texture synthesis algorithms, generating a 3D volume from a 2D image 
is an under-constrained problem, with multiple solutions, not all of them equally possible. 
Consequently, the algorithms must be adapted to the input image structure to be able to 
‘invent’ (i.e. infer) detailed 3D structure from a single 2D image and to create qualitatively 
accurate and visually pleasing results.  
 Depending on the 2D texture configuration (e.g. asymmetry, homogeneity, granularity 
etc.), the synthesis has to be constrained by two or three orthogonal views of the solid block. 
Ideally, one should dispose of samples for each view but, as it is not always the case, the 
synthesis becomes more awkward. Each slice of the 3D block corresponds to one 2D image 
that should resemble the sample and in the same time it should allow a certain 3D block’s 
visual plausibility.   
  

 
                         a                            b                                    c                                    d 

 
                         e                             f                                    g                                    h 
 

Figure 5.23 – Results obtained with NP_K approach using a 11×11 neighbourhood: for each row 
going from left to right, the input image (a,e), the result obtained by constraining only the front view 

(b,f), the block obtained by constraining two orthogonal views – front and right (c,g) and the one 
obtained by constraining three orthogonal views (d,h). The results in b and f contain independent 
slices insufficient for creating a coherent 3D lamellar texture, while constraining three views we 
cannot reproduce the same texture on the three views. A plausible 3D structure is provided by 

constraining two orthogonal views with the same input sample. 
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 Constraining only a single view of the block, the slices become independent one from 
each other, leading to discrepancies between slices while the 3D block looks like a coarse, 
discontinuous representation. Disposing generally of only a single sample as source of 
synthesis, the same image is used to constrain the orthogonal views of the block, coercing the 
front view, side view or top view to match the sample. 
 The number of constrained orthogonal views depends on the sample texture structure. 
For example, for the anisotropic textures in Fig. 5.1p-t showing a lamellar organization, it is 
not possible to constrain three orthogonal views in the synthesis process by a unique 2D 
sample, as it does not provide enough accurate information to reproduce a plausible volume. 
To illustrate this point, we can try to synthesize such a texture constraining three views, but 
the results have no reasonable representation, the algorithm ‘guessing’ a wrong 3D structure, 
incompatible with the sample in terms of anisotropy. The results in Fig. 5.23 show that even 
if for two directions of view (front view and top view) the texture seems convincing slice by 
slice, the algorithm fails in the other direction. The textures observed on the 3rd direction (side 
view) don’t resemble at all the 2D sample, being in fact a compromise for the missing sample 
for that view. To be in accordance with the other two directions, the 3rd direction slices take a 
diagonal or checkerboard irrelevant arrangement. For these textures it makes sense to 
constrain only two orthogonal views as already shown in this chapter, knowing that their 
underlying process consisted in layers stacked one above the other. 

Even when not disposing of the texture for the 3rd view, and using a same texture as 
constraint for two views, the synthesis process does a good job, indirectly inferring the 2D 
textural information at the 3D level.  The textures in Fig.5.1a-n are susceptible to constraining 
two and three views, obtaining in both cases satisfying volumetric results in terms of 
resemblance between slices and the sample, while preserving a coherent 3D context. For the 
result in Fig. 5.24 obtained by constraining two orthogonal views, the perceived patterns have 
an elongated tubular, cylinder shape. Instead, when using the same sample as constraint for 
three views, the patterns are bubble or cube shaped. Slicing the block in frontal, lateral and 
from atop, the obtained 2D textures look similar to the sample, the same remark being valid 
when slicing frontally and laterally the block obtained by constraining only 2 views. 

 

  
Figure 5.24 – 3D results obtained with NP_K by constraining 2 views (the block above the centre 

sample) and by constraining 3 views (the block below the sample). 
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  For textures containing macro-structures inside, the inference problem requires a 
more intricate analysis based on stereological observations [Jag04] [Chi06]. For this kind of 
particle based textures, it is advisable to use another type of approach. Precisely, it requires 
the identification and reconstruction of 3D particles, the distribution of patterns inside the 3D 
block and finally the placement and packing refinement (as sketched in the ending of Chapter 
2). But the inference is once again questionable, because the processes are based on 2D 
texture, and the neighbour information usually employed by these approaches is insufficient 
to reproduce the sample arrangement in the volume [Chi06]. 
 
 Depending on the texture consistency and the user’s demand, 3D information can be 
inferred from 2D observations, constraining two, three or even more views (if appropriate 
samples are available) leaving the inference discussion open for future considerations.  
 
 
5.6 Conclusion 
 
 This chapter was meant to make a comparison of the texture synthesis techniques 
described in the previous two chapters. 
 
 On one hand it consisted in comparing the fixed-neighbourhood search based 
approaches described in Chapter 3 and showing the influence of different parameters on the 
quality of the synthesis results using the representative approach of this class – NP_K. The 
results obtained using the NP_K approach are convincing for most of the textures, capturing 
relatively well the sample structure. 
 
 On the other hand, the visual comparison is conducted on the maximum-likelihood 
based approaches, consisting mainly in analyzing the decisional heuristic on the synthesis 
results. Similarly the emblematic heuristic is chosen – namely NP_ML_H2c – and the 
influence of the algorithmic parameters is studied. Choosing properly the algorithmic 
parameters, satisfying results are achieved but with an obvious disadvantage in terms of 
computational cost, compared to NP_K. 
 
 In the end, the two representatives are subject to a concurrent process that puts face to 
face the synthetic solid textures obtained with the representative approaches, showing the 
synthesis potential on various textures. The algorithms provide satisfying results in most of 
the cases, but there are situations when mixed results appear, varying the satisfying results 
with the undesired ones. So a clear discrimination of the methods in terms of synthesis quality 
does not seem to be possible. The choice of a relevant synthesis strategy can hardly be made 
without considering both the computational requirements and the texture of interest. 
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6.1  Motivation 
 
 If texture has been the object of 
many areas. It can play an important role
control, medical imaging, satellite imagery, 
also material structures understanding
 In this section, we focus on snapshots of textures that appear on the images of 
pyrocarbon material obtained by using the lattice fringe technique in High Resolution 
Transmission Electron Microscopy (
 A specific attention is paid to the synthesis of anisotropic textures from a single 2D 
exemplar, especially laminar textures, 
given direction. Two image samples of such pyrocarbon textures are presented in 
 

                   

Figure 6.1 – Samples of lattice fringe images of pyrocarbons, of size 128

 
 Though already studied by 2D HRTEM imaging 
[Rou02] [Ger03] [DaC04] [Ley09
many technical reasons related to sample preparation and HRTEM technology. Indeed, the 3D 
imaging techniques enumerated in 
A direct 3D observation of the atomic structure at nanometric scale is just impossible. The 
observation is done therefore in 2D, by HRTEM, by the lattice fringe technique. However, 
considering the assumed structure of such carbonaceous material, more specifically its 
volumetric homogeneity and anisotropy, it is possible to relate observations made in 2D by 
HRTEM imaging with the tri
allow to consider 2D/3D texture synthesis algorithms as a possible way to investigate these 
3D structures virtually [Ley09
 
 This chapter introduces the concepts of composite materials to better understand their 
textural and structural characteristics, start
the laminar arrangements of plane layers. 

Synthetic volumetric textures are produced by using the algorithms described in 
Chapter 3 and Chapter 4, and are compared quantitatively to the original 2D textures
of dynamics and morphological properties.  
identify the most relevant strategies
the other hand, to compare them 
[Ley09] [DaC10].  
 
 
 
 

the object of so many studies, it is certainly due to its
an important role in sectors as varied as artificial vision
, satellite imagery, multimedia indexing, seismic data exploration but 

material structures understanding.  
, we focus on snapshots of textures that appear on the images of 

material obtained by using the lattice fringe technique in High Resolution 
Transmission Electron Microscopy (HRTEM.).   

specific attention is paid to the synthesis of anisotropic textures from a single 2D 
exemplar, especially laminar textures, i.e. textures made of anisotropic sheets stacked along a 

Two image samples of such pyrocarbon textures are presented in 

                    
a                                                       b               

Samples of lattice fringe images of pyrocarbons, of size 128×128 pixels. Resolution is
about 0.05 nm/pixel. 

Though already studied by 2D HRTEM imaging [Ger97] [Ala98
Ley09], such carbon structures cannot be investigated in 3D for 

many technical reasons related to sample preparation and HRTEM technology. Indeed, the 3D 
imaging techniques enumerated in section 2.3 are not suitable for the carbonaceous materials.  
A direct 3D observation of the atomic structure at nanometric scale is just impossible. The 
observation is done therefore in 2D, by HRTEM, by the lattice fringe technique. However, 

structure of such carbonaceous material, more specifically its 
volumetric homogeneity and anisotropy, it is possible to relate observations made in 2D by 
HRTEM imaging with the tri-dimensional reality of the material. As well, such properties 

ider 2D/3D texture synthesis algorithms as a possible way to investigate these 
] [DaC10].  

This chapter introduces the concepts of composite materials to better understand their 
textural and structural characteristics, starting from the atomic scale representation towards 
the laminar arrangements of plane layers.  

Synthetic volumetric textures are produced by using the algorithms described in 
, and are compared quantitatively to the original 2D textures

of dynamics and morphological properties.  This comparative study allows,
most relevant strategies for the synthesis of this kind of HRTEM textures 

them objectively to a previously proposed parametric approach 
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due to its presence in 
artificial vision for quality 

indexing, seismic data exploration but 

, we focus on snapshots of textures that appear on the images of 
material obtained by using the lattice fringe technique in High Resolution 

specific attention is paid to the synthesis of anisotropic textures from a single 2D 
tures made of anisotropic sheets stacked along a 

Two image samples of such pyrocarbon textures are presented in Fig. 6.1.  

 

128 pixels. Resolution is 

Ala98] [Shi00] [Obe02] 
, such carbon structures cannot be investigated in 3D for 

many technical reasons related to sample preparation and HRTEM technology. Indeed, the 3D 
are not suitable for the carbonaceous materials.  

A direct 3D observation of the atomic structure at nanometric scale is just impossible. The 
observation is done therefore in 2D, by HRTEM, by the lattice fringe technique. However, 

structure of such carbonaceous material, more specifically its 
volumetric homogeneity and anisotropy, it is possible to relate observations made in 2D by 

dimensional reality of the material. As well, such properties 
ider 2D/3D texture synthesis algorithms as a possible way to investigate these 

This chapter introduces the concepts of composite materials to better understand their 
ing from the atomic scale representation towards 

Synthetic volumetric textures are produced by using the algorithms described in 
, and are compared quantitatively to the original 2D textures in terms 

This comparative study allows, on one hand, to 
of this kind of HRTEM textures and, on 

roposed parametric approach 
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6.2  Composite materials 
 
6.2.1  Material description 
 
 A composite material, by definition, is made up from several elements that confer 
special properties to the whole. We distinguish the reinforcement that supports the charges 
(generally a fiber one) and the matrix that ensures their distribution, the cohesion of the 
material and the protection of the reinforcement against the environment.  

 
Our interest is based on carbon-matrix composites commonly referred to as carbon-

carbon composites (C/C), obtained by graphitising and densifying the original carbon 
reinforcement. The C/C composites are distinguishable thanks to their lightness, high 
resistance to ablation, absence of deformation and thermal shocks, while the mechanical 
resistance and the friction coefficient grow with the increase of temperature. All of these 
made the C/C materials the perfect candidates for high performance breaking systems and 
rocket nozzles. These are homo-composite materials, meaning that the matrix and the 
reinforcement have the same composition – Carbon.  The reinforcement contains carbon 
fibers, while recovered by a pyrocarbon matrix. Carbon fibers can be assembled in pre-forms 
which are habitually densified by chemical vapour infiltration (CVI) to obtain a composite. 
The properties of the fibers and the matrix are modulated in correlation to the aimed 
application. 

 
 

6.2.2  Pyrocarbons 
 

 Carbon exists under different allotropic forms, and most known being amorphous 
carbon, graphite, diamond, carbon nanotubes and carbon fullerenes as illustrated in Fig. 6.2. 
At the origin of the composite carbon polymorphism stays the capability of the electronic 
structure of the carbon to establish primarily three types of hybridizations (sp1, sp2 and sp3). 
Carbon can be found in various molecular configurations, but an intermediary structure 
between amorphous carbon and graphite shows interesting variable organization rate. Here 
can be found the turbostratic carbon, the constituent of the C/C fiber and matrix.   
 

 
Figure 6.2 – Five relatively well-known allotropes of carbon: from left to right, diamond, graphite, 

fullerenes, amorphous carbon, and carbon nanotubes. 
 
 

6.2.2.1  From carbon to pyrocarbons 
 
 The two most familiar crystalline forms of carbon are graphite and diamond. The two 
structures differ in the state of hybridization of carbon atoms (sp2 for graphite 
and sp3 for diamond).  



 

 

99 

A graphene structure is a monolayer of sp2-bonded carbon atoms that are densely 
packed in a 2D honeycomb lattice and is a basic building block for graphitic materials of all 
other dimensionalities and fairly represented in Fig. 6.3. These atomic layers are also called 
aromatic layers, constantly offering new inroads into low-dimensional physics that has never 
ceased to surprise and continues to provide a fertile ground for applications [Gei07]. 

 

 
Figure 6.3 – Illustration of one graphitic layer and its aromatic cycles. 

 
Graphite is a stack of graphene planes 3.35 Å apart, themselves compounds of carbon 

atoms assembled in hexagon configuration. Each carbon atom is bound to three of its 
neighbours in the same plane. The inter-atomic distance is 1.42 Å. Bonds between carbon 
atoms in the same plane are strong, while those between plans (like the Van Der Waals 
bonds) are weaker. These lamellar structures are responsible of the anisotropy of the 
electrical, thermal and mechanical properties of the graphite. This allows in the same time 
various degree of organization. 

Turbostratic carbon is composed of ‘elementary bricks’ (Basic Structural Units - 
BSU), i.e. organized areas formed by graphene plans which exhibit faults, deficiencies or 
dislocations [Pie93]. The BSU, also known as the coherent domain, is a representation model 
of the smallest carbon entity used to describe, build and explain the aromatic carbon texture 
evolution. The layers within the turbostratic carbon are graphitic layers or paralleled piled 
graphenes disordered by rotation [Bou93] [Pie93]. 

 

 
Figure 6.4 – Turbostratic carbon structure (half-bottom part) vs. graphite structure (half-top part): on 

left, the simplified graphene planes representation with the reticular distance (3.35Å for graphite, 
3.4Å for turbostratic carbon); on the right – the corresponding structural representation of a graphite 

and a pyrocarbon. 
 

   As shown in Fig. 6.5, it is possible to evolve the structure of a turbostratic carbon 
towards that of graphite, completely or partially, if the orientation of crystallites allows it 
[Obe89]. This process is called graphitization and it is obtained by treating thermally the 
carbon. The degree of graphitization is directly related to the distance between the planes of 
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graphene; the higher the degree of graphitization, the closer is the reticular distance to its 
theoretical value [Mar89].  

 
 

 
Figure 6.5 – Illustrating the carbon structure evolution with the temperature (on the left) and the 

crystallites alignment during graphitization stages (on the right) [Obe89]. 
 
The transformation of carbon structures as presented in Fig. 6.5 takes place in several 

stages:  
• the 1st  stage corresponds to the raw carbon (amorphous predisposition) in the form of 

isolated coherent domains; 
• the 2nd stage consists in the growth of the coherent domains in columns (between 800ºC 

and 1500ºC); at this stage the turbostratic carbon can be retrieved in the form of 
deposited pyrocarbon; 

• the 3rd stage carries on the graphitisation, being the phase when the graphene layers 
interconnect forming crystallites (between 1500ºC and 2000ºC); starting from this stage 
the thermally treated pyrocarbons can be found; 

• the 4th stage consists in the proper graphitisation; beginning from around 2000ºC-
2200ºC a graphite structure is formed; this is the final stage, because above 2800ºC-
3000ºC no supplementary structural modification is observed. 

 

 

6.2.3  Pyrolitic carbon 
 
 Pyrocarbon (PyC) or pyrolitic carbon is a solid form of carbon formed by thermal 
cracking of a liquid or gaseous precursor having the structure of a turbostratic carbon [Sav93]. 
Similar to the graphite, it is made up of a stack of graphene plans where carbon atoms have 
sp2 hybridization. What differentiates pyrocarbon from graphite is that the different graphene 
plans are stacked in an isotropic way.   
 
 The pyrocarbon matrix of the C/C composites can be obtained by liquid or gaseous 
way. The gaseous way or chemical vapor infiltration (CVI) allows obtaining superior final 
properties and better reproducibility. Even if it is longer and costlier, it is the privileged 
approach. We talk about the form of the carbon which deposits on hot surfaces above 900°C 
by cracking of hydrocarbon [Bou06].  



 

Figure 6.6 – High resolution TEM mode of the different pyrocarbons [Bou02
poor anisotropy and wide distribution of layer diameters (

6.8); (b) regenerative laminar, good anisotropy and wide layer diameter distribution; rough laminar, 
high anisotropy and small layer 

 Pyrocarbon and other turbostratic carbons differ in that the layers are disordered, 
resulting in wrinkles or distortions within layers. This gives pyrocarbon improved durability 
compared to graphite.  

 According to the pyrocarbon
classes:  

• isotropic laminar (PyC ISO
• smooth laminar (PyC LL) 
• rough laminar (PyC LR) 
  
 Between these classes, transition stages appear, leading to other pyrocarbon forms, the 

regenerated laminar (Pyc LRe) 
 

Figure 6.7 – Examples of Pyrocarbon applications: from left to right, Messier
breaking system [Mess], Snecma Vinci motor [Snec], graphitic heart

 
Pyrocarbon applications (see Fig. 6.7

• the use of C/C composite materials for aircrafts breaking discs,
or atmospheric re-entry corps

High resolution TEM mode of the different pyrocarbons [Bou02]: (a) smooth laminar, 
poor anisotropy and wide distribution of layer diameters (L2 is the mean value as presented in Fig. 

6.8); (b) regenerative laminar, good anisotropy and wide layer diameter distribution; rough laminar, 
high anisotropy and small layer diameter. 

 
Pyrocarbon and other turbostratic carbons differ in that the layers are disordered, 

resulting in wrinkles or distortions within layers. This gives pyrocarbon improved durability 

According to the pyrocarbon degree of anisotropy, one can distinguish several types of 

(PyC ISO) – which shows random orientation of graphene plans
LL) – the organization of the graphene plans still show 

LR) – the graphene planes are perfectly parallel to the fibers surface 

Between these classes, transition stages appear, leading to other pyrocarbon forms, the 
regenerated laminar (Pyc LRe) – very anisotropic, the granular pyrocarbon (PyC G) etc. 

Examples of Pyrocarbon applications: from left to right, Messier
breaking system [Mess], Snecma Vinci motor [Snec], graphitic heart valve and inter

prostheses [Bou06].  

Fig. 6.7) are of great interest in mainly three directions:
the use of C/C composite materials for aircrafts breaking discs,  rocket engines nozzle 

entry corps; 
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]: (a) smooth laminar, 

is the mean value as presented in Fig. 
6.8); (b) regenerative laminar, good anisotropy and wide layer diameter distribution; rough laminar, 

Pyrocarbon and other turbostratic carbons differ in that the layers are disordered, 
resulting in wrinkles or distortions within layers. This gives pyrocarbon improved durability 

degree of anisotropy, one can distinguish several types of 

graphene plans 
the organization of the graphene plans still show defects 

parallel to the fibers surface   

Between these classes, transition stages appear, leading to other pyrocarbon forms, the 
very anisotropic, the granular pyrocarbon (PyC G) etc.  

 
Examples of Pyrocarbon applications: from left to right, Messier-Buggati-Dowty 

inter-phalangeal joint 

great interest in mainly three directions: 
rocket engines nozzle 
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• in the medicine field – used in fabricating coatings heart valves or small bone 
prostheses thanks to the pyrocarbon biocompatible character; 

• for the next generation of nuclear reactors, pyrocarbon acting as a confinement barrier.  
 
 
6.2.3.1  Structural and textural parameters of turbostratic carbon 

 
 The turbostratic carbon exhibits locally in his structure ordered 3D entities, consisting 

of stacked graphene layers, parallel and equidistant to each other, of finite dimensions and 
disoriented with respect to each other. These entities are characterized by structural 
parameters (short range order) and textural parameters (long range order) [Bou93]: 

• d002 : the average distance between two successive layers of graphene, also named as the 
reticular distance 

• La , the coherence width: the average diameter of the stacked graphene layers (of the 
coherent domain) 

• Lc , the coherence length: the average height of the stacked graphene layers 
• L1: the measured diameter of the flat portion of one graphene layer 
• L2: the measured diameter of one graphene layer 
• N: the number of stacked graphene layers 
• β: the torsion angle along the layers 

 

 
Figure 6.8 – Schema of stacked layers, showing the structural and textural parameters. 

 
 
6.2.4  HRTEM images of interest for synthesis 

 
The images, of which textures are used, are snapshots resulting from the observation 

in High Resolution Transmission Electron Microscopy (HRTEM) of pyrolytic deposits 
obtained during phases of densification and heat treatment of C/C composites.  

 
Nowadays HRTEM combines recent instrumental developments with innovative 

strategies of imaging and image processing. It has become a truly ‘quantitative’ technique that 
enables one to retrieve the atomistic structure of materials with high and well-known 
reliability. Some considerations about the principle of image simulation using TEM are 
shown in appendix E. 
   



 

Figure 6.9 – Example of carbon fiber and pyrolitic deposit and the textural HRTEM snapshot

 HRTEM technology provides 
relative to the initial sample. Digitizing those, leads to the texture images used as synthesis 
exemplars. Fig. 6.9 shows an image of 256
magnification and a 2000 dpi digitizing, reaching to a final resolution of 0.35 
 Other samples of lattice fringe images of dense pre
Fig. 6.10, being cuts of 128×
These are anisotropic textures composed of elongated structural elements showing low 
undulation. 
 

          
                                a                                    
 

           
                         d                                     

Figure 6.10 – Samples of lattice fringe images of dense pre
b, c) and their filtered versions (d, e, f). Sample sizes are 128

 
 The raw samples in Fig. 6.10a
low frequency artefacts. Neither high frequency nor low frequency components provide 
useful information about the atomic structure of the observed material. A good compromise 
for analyzing them consists in using their filtered versions (in 
radial and directional band-pass filter in the frequency domain [
 
 
 

Example of carbon fiber and pyrolitic deposit and the textural HRTEM snapshot
reproduced from [DaC01]). 

 
HRTEM technology provides representations of 105 to 106 magnification order 

relative to the initial sample. Digitizing those, leads to the texture images used as synthesis 
shows an image of 256×256 pixels, obtained by a 450000 order of 

magnification and a 2000 dpi digitizing, reaching to a final resolution of 0.35 
Other samples of lattice fringe images of dense pre-graphitic carbons are presented in 

×128 pixels from the bigger samples available in 
These are anisotropic textures composed of elongated structural elements showing low 

                    
a                                               b                                                

                     
d                                                e                                                f                           

Samples of lattice fringe images of dense pre-graphitic carbons: raw HRTEM images (a, 
b, c) and their filtered versions (d, e, f). Sample sizes are 128×128 pixels. 

Fig. 6.10a-c show locally periodic patterns together with high and 
either high frequency nor low frequency components provide 

useful information about the atomic structure of the observed material. A good compromise 
s in using their filtered versions (in Fig. 6.10d
pass filter in the frequency domain [DaC04].  
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Example of carbon fiber and pyrolitic deposit and the textural HRTEM snapshot (image 

magnification order 
relative to the initial sample. Digitizing those, leads to the texture images used as synthesis 

256 pixels, obtained by a 450000 order of 
magnification and a 2000 dpi digitizing, reaching to a final resolution of 0.35 Å per pixel.  

graphitic carbons are presented in 
pixels from the bigger samples available in appendix F. 

These are anisotropic textures composed of elongated structural elements showing low 

 
    c          

 
  f                            

graphitic carbons: raw HRTEM images (a, 
128 pixels.  

show locally periodic patterns together with high and 
either high frequency nor low frequency components provide 

useful information about the atomic structure of the observed material. A good compromise 
Fig. 6.10d-f ) by applying a 
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6.2.5  The need for 3D texture synthesis  
 
 The above images obtained by TEM observation of pyrocarbon deposits show 
interference fringes which reproduce in projection the atomic layers (the aromatic layers). The 
degree of organization of these layers reflects the material graphitisation stage.  
 The study of the spatial organization of these fringes plays an important role in 
characterizing the properties of the composite materials. Despite the fact that they have been 
investigated in 2D [Shi00] [Obe02] [Rou02] [DaC04] [Ley09], no three-dimensional imaging 
technique appears to be appropriate at such high resolutions.  
 Nevertheless, the three-dimensional structure can be accessed by inferring it from the 
2D sample using 2D/3D image synthesis [Ley09] [DaC10]. Further on, the synthetic 3D 
images serve as virtual material that can be used for atomistic reconstruction. Atomistic 
reconstruction methods are entrenched tools for linking experimental characterization data to 
the atomic scale structure of matter [Ley09]. Most of the existing methods are not suitable for 
anisotropic systems, as it is the case of the nanotextures of dense graphene based carbons in 
Fig. 6.10, guessing the initial atomic structure. 
 

 
Figure 6.11 – The 2D/3D texture synthesis step inside the IGAR method.  

 
 A recent method, called Image-Guided Atomistic Reconstruction (IGAR), capable of 
generating the atomistic models for anisotropic nanotextures was developed by [Ley09] 
compelled by a 3D synthetic texture. Using an image-constrained simulated annealing, the 3D 
atomistic structure is simulated by exploiting the external potential of the 3D textures to bring 
the atoms to settle preferentially at specific positions (i.e. the black areas inside the 3D 
texture).  
 Supplementary, a simulated HRTEM texture can be obtained from the atomistic 
structure, and it can be compared with the experimental texture in order to validate the 
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atomistic model [Far12]. A schematic illustration of this process is showed in Fig. 6.11 
pointing out the texture synthesis step it involves.  

The published works concerning the IGAR method are based on a parametric 
synthesis algorithm showing the synthesis method potential and also its limits [DaC10]. One 
objective of this chapter (and implicitly of this thesis) is to evaluate other types of approaches, 
and this time non-parametric ones. 
 
 
 

6.3  Volumetric HRTEM texture synthesis 
 
 Texture synthesis is a major step in the atomistic reconstruction of HRTEM data, but 
the volumetric texture synthesis procedure starting from a 2D HRTEM sample is however 
delicate. Therefore some statements have to be made before presenting the algorithms 
implementation and the benchmark used for comparing the 3D results.  
 
 
6.3.1  Orthotropic properties  
 
 The nearly periodic directional structure observed in HRTEM images is typical of 3D 
laminar arrangements. The dense graphene based carbons show plane mono-atomic layers of 
graphene stacked together along the direction of orthotropy i.e. the vertical direction of the 
textures from Fig. 6.10. These materials have an orthotropic structure, meaning that the 
properties of the material are the same on all the directions orthogonal to the direction of 
orthotropy.  
 The observed 2D HRTEM images of such a material have the same aspect whatever 
the viewing angle as long as it is orthogonal to the orthotropy direction as exemplified in Fig. 
6.12. Thanks to these properties of symmetry that are verified by the dense graphene based 
carbons, its 3D statistical properties can be deduced from the ones observed in the 2D 
HRTEM samples [DaC10].  
  

 
Figure 6.12 – Properties of symmetry: two orthogonal slices of the same block (for the front view and 

the right view) show the same statistical properties.  
 

 So it is possible to relate measurements made on a single 2D cross-section of the 
volume with the 3D properties of the material using stereological considerations (i.e. 
orthotropy) [Urs10] and accessing the three-dimensional structure by inferring it from 2D 
using 2D/3D texture synthesis. 
 
  Consequently, in the followings of this chapter, the synthesis is made by constraining 
only two orthogonal views of the volume (the front and the side view, since no sample is 



 

 

106 

available for the 3rd view) with a single 2D HRTEM sample as the ones in Fig. 6.10. The 
principle behind the texture synthesis process is illustrated in Fig. 6.13.  
 

 
Figure 6.13 – The texture synthesis process: starting from a random initialization, the synthesis is 

performed voxel per voxel by examining the 2D voxel neighbourhoods extracted from two orthogonal 
views of the 3D block (front and side); the value of the output voxel is updated with the best candidate 
from the input image after a fixed-neighbourhood search, or with the most probable grey-value from 

the input image to be in that position conditioned by its neighbours (in function of the chosen 
methodology). 

 
 
6.3.2  Results evaluation methodology  
  

In the particular case of  HRTEM textures, beyond the visual interpretation (as in the 
case of textures used in computer graphics), a quantitative study matters a lot, finding itself 
very useful in describing and understanding the internal arrangement of the observed layers. 
For this reason an experimental evaluation is carried on, that allows to identify the relevant 
strategy for the volumetric synthesis and also to compare objectively various algorithms from 
the literature. 

This quantitative study evaluates the results taking into account, on one hand, the grey 
level dynamics (first order statistics) and, on the other hand, the morphological properties like 
the lengths, the order of tortuosity and the local orientations of the elongated patterns (fringes) 
present in the texture.  

Properly stated, it aims at evaluating the algorithms capacity to reproduce the 
orthotropic layered structure of pyrolytic carbons, respecting the HRTEM observations.  

 
Grey level dynamics study means at the outset to compute the 1st order statistics*1as 

the mean, the average deviation, the standard deviation, the variance, the skewness or the  
kurtosis of the grey level pixels, in the exemplar and in the output block.  

There’s no need to mention additional information about these statistics, perhaps only 
some brief remarks on the skewness (the 3rd standardized moment) and the kurtosis (the 4th 
moment). These two are descriptors of the shape of a probability distribution: the skewness 
measures the degree of asymmetry while the kurtosis is a measure of peakedness or degree of 
flattening.   

Next, the Kullback-Leibler divergence is computed as a dissymmetry measure of the 
difference between the probability distribution of the exemplar grey level and the output 3D 
block grey level.  

It is not a ‘distance’ in the mathematical sense of the term, but in the literature one can 
find commonly the symmetrical version of the Kullback-Leibler divergence between two 

                                                 
* The 1st order statistics estimate properties of individual pixel values, ignoring the spatial interaction between 
image pixels, whereas 2nd and higher order statistics estimate properties of two or more pixel values occurring at 
specific locations relative to each other [Sri08].  



 

 

107 

distributions, that can be interpreted as a distance, and that we have used in the quantitative 
analysis in the following form: 
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where P and Q correspond to the probability distribution of the bins in the grey levels 
histogram of the input exemplar and the output block while i runs through all the bins in the 
histogram, mentioning that the output block computation is seen as a multi-2D analysis. 
  
 Although at the end of the synthesis process, the user can freely intervene to change 
certain statistics in order to match them exactly to the exemplar (like the mean or the 
variance) I choose not to interfere, leaving the algorithm to follow its natural course, with its 
advantages and disadvantages to draw attention to. That’s why, in addition to the grey level 
dynamics comparison, a morphological study is conducted, study that’s immune to the above 
potential grey level basic corrections. 
 
 Concerning the structural properties  of the 3D blocks, the study is oriented towards 
the comparison of the local orientations of the volumetric block (analysed as a multi-2D block 
representation) relative to the input sample, based on a structure tensor estimated on a 7×7 
neighbourhood inspired from [DiZ86] [Big91]. The analysis of the shape of the local tensor 
heads to a local orientation.  
 
 For an image I, the structure of the tensor is given by: 
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where the subscripts indicates spatial derivatives and the bar  ͞    indicates the convolution with 
a Gaussian filter. In practice, the tensor calculation is based on the image gradient, the 
gradient magnitude of the image intensity at each point being approximated by convolving the 
image with the Sobel convolution kernel.   
 
 Eigenvalue analysis of the tensor leads to two eigenvalues defined by: 
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 The direction of the eigenvectors related to1λ indicates the prominent local 
orientation: 
 

)5.6(
2

arctan
2

1
22 













−

⋅
⋅=

yx

xy

II

I
θ

 
 

The corresponding confidence, computed as )/()( 2121 λλλλ +− , associated to the local 
orientation describes the total local derivative energy. Fig. 6.14 illustrates the image 
orientation field alongside the image confidence and its associated orientation histogram. 



 

    
                 a                                       

Figure 6.14 – Texture orientation: (a) the HRTEM sample from Fig.6.11d; (b) the orientation field 
map and the colour bar giving th

orientation histogram computed from the orientation field and (d) the corresponding confidence map
 
  
 The comparison of the 
curves and describing the elongated patterns contained within the texture. We address the 
orientation and pattern length measurement techniques as described by [
to extract textural features (fringes) and compute their lengths and tortuosity. It
relevant description of the shape of the patterns within the texture.
 

The procedure consists first in filtering the raw HRTEM samples as regards spatial 
frequency and direction [DaC04
can perceive promptly the graphene layers organization. Pattern analysis proceeds with 
tracking the level curves, by successively finding the sets of seeds (i.e. sets of linked 
interpolated pixels) that have matching grey values. 

 

 
                  a                                  b                                  c                                           d 

Figure 6.15 – Illustration of the level
sample: (a) a lattice fringe image, (b) the associated confidence map, (c) level curves extraction and 

(d) shows the distribution of the 
 
Once the fringes are extracted, they can be classified as a function of their lengths (that 

is the L2 parameter of the graphene layers) by counting the frequency of appearance of the 
fringe lengths, and in function of their degree of tortuosity (that is the 
graphene layers).  

Consequently, tortuosity classes are built in order to com
tortuosity values. An example showing the level
presented in Fig. 6.15. 

 
Curves that ‘continue’ outside the image are neglected. This should not be a problem 

if the image is large enough to 
texture samples, because the algorithm already provides tileable textures, borderline fringes 
can be detected by considering the circular image as it is illustrated in 

 

    
                                       b                                         c                                          d

Texture orientation: (a) the HRTEM sample from Fig.6.11d; (b) the orientation field 
map and the colour bar giving the correspondence between colours and orientations; (c) the 

orientation histogram computed from the orientation field and (d) the corresponding confidence map

The comparison of the morphological properties consists in tracking the texture level 
and describing the elongated patterns contained within the texture. We address the 

orientation and pattern length measurement techniques as described by [DaC00
to extract textural features (fringes) and compute their lengths and tortuosity. It
relevant description of the shape of the patterns within the texture. 

The procedure consists first in filtering the raw HRTEM samples as regards spatial 
DaC04] in order to obtain the lattice fringe images upon which one 

can perceive promptly the graphene layers organization. Pattern analysis proceeds with 
tracking the level curves, by successively finding the sets of seeds (i.e. sets of linked 
interpolated pixels) that have matching grey values.  

  
a                                  b                                  c                                           d 

Illustration of the level-curve tracking algorithm applied on a HRTEM pyrocarbon 
ge image, (b) the associated confidence map, (c) level curves extraction and 

(d) shows the distribution of the L2 and τ parameter values in the HRTEM image

Once the fringes are extracted, they can be classified as a function of their lengths (that 
parameter of the graphene layers) by counting the frequency of appearance of the 

fringe lengths, and in function of their degree of tortuosity (that is the τ

Consequently, tortuosity classes are built in order to compare the distribution of the 
tortuosity values. An example showing the level-curve tracking algorithm outcomes is 

Curves that ‘continue’ outside the image are neglected. This should not be a problem 
if the image is large enough to track a sufficient number of fringes. For smaller synthetic 
texture samples, because the algorithm already provides tileable textures, borderline fringes 
can be detected by considering the circular image as it is illustrated in Fig. 6.16
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c                                          d 

Texture orientation: (a) the HRTEM sample from Fig.6.11d; (b) the orientation field 
e correspondence between colours and orientations; (c) the 

orientation histogram computed from the orientation field and (d) the corresponding confidence map. 

consists in tracking the texture level 
and describing the elongated patterns contained within the texture. We address the 

DaC00] and [Ray10] 
to extract textural features (fringes) and compute their lengths and tortuosity. It allows a 

The procedure consists first in filtering the raw HRTEM samples as regards spatial 
] in order to obtain the lattice fringe images upon which one 

can perceive promptly the graphene layers organization. Pattern analysis proceeds with 
tracking the level curves, by successively finding the sets of seeds (i.e. sets of linked 

 
a                                  b                                  c                                           d  

curve tracking algorithm applied on a HRTEM pyrocarbon 
ge image, (b) the associated confidence map, (c) level curves extraction and 

parameter values in the HRTEM image. 

Once the fringes are extracted, they can be classified as a function of their lengths (that 
parameter of the graphene layers) by counting the frequency of appearance of the 

fringe lengths, and in function of their degree of tortuosity (that is the τ parameter of the 

pare the distribution of the 
curve tracking algorithm outcomes is 

Curves that ‘continue’ outside the image are neglected. This should not be a problem 
track a sufficient number of fringes. For smaller synthetic 

texture samples, because the algorithm already provides tileable textures, borderline fringes 
Fig. 6.16. 
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Figure 6.16 – Example of the level-curve tracking algorithm employ, in the case of a circular lattice 
fringe image: from left to right, the seamless tileable texture obtained by using the sample in Fig 6.21a 

and the level curve extraction with a proper zoom on the area of interest 
 
To recapitulate, the measured characteristics involved by the evaluation methodology 

are as following: 
- for  grey-level dynamics: grey-level histograms and 1st order statistics (standard 

deviation, skewness and kurtosis); 
- for the structural properties: local orientations and the fringes lengths and 

tortuosity.  
 
 

6.3.3  Fixed-neighbourhood search based synthesis results  
 
 Adapting the algorithms described in Chapter 3 to using only two orthogonal views, 
synthetic volumetric textures are produced. The results are shown in Fig.6.17 for the raw 
HRTEM images and in Fig. 6.18 for the filtered HRTEM samples. 
 

Fig. 6.17 and Fig. 6.18 contain some volumetric results obtained from a single 
HRTEM texture using non-parametric approaches. Figures 6.17d-f and 6.18d-f show the 
volumetric textures using NP_WL algorithm, while figures 6.17g-i and 6.18g-i show the 
results obtained using NP_K, i.e. the backbone of NP_WL but optimized by using the 
weighted average and the colour histogram matching technique.  On the 4th row in figures 
6.17 and 6.18 are represented the 3D blocks obtained by using NP_CW, i.e. using the discrete 
solver plus the index histogram and the position histogram matching technique.  

 
The experimentation framework for the mentioned results consists in using 5 

pyramidal levels, full-square non-causal neighbourhoods of size 7×7 pixels, Hilbert curve 
scan type and, for NP_CW, a set of 15 candidates for each pixel. The input exemplar is of size 
128×128 pixels, while the results are of size 128×128×128 pixels.  

 
The provided results represent the 3D block obtained after 10 iterations. We have 

observed that, generally, iterating much more does not yield better results since a high number 
of iterations creates repetitions of patterns.  

 
 
 



 

                         
                        a                                         

 

          
                         d                                                       
 

          
                        g                                                       
 

              
                          j                                            
Figure 6.17 – Volumetric results: from top to bottom, the 1
textures; the 2nd row (d, e, f) represents the 3D views of the solid textures obtained after 1
from the samples in the 1st row using NP_WL approach; the 3

obtained by applying the NP_K method and finally the 4
obtained with the NP_CW proposed method in C

comparison of the fixed-neighbourhood search based methods for each raw sample, by scanning each 
column from top to bottom (input sample, NP_

                                                   
a                                                       b                                                       c

                   
                                                       e                                                      f

                     
                                                       h                                                        

                      
j                                                        k                                                        l

Volumetric results: from top to bottom, the 1st row (a, b, c) shows the 2D raw HRTEM 
row (d, e, f) represents the 3D views of the solid textures obtained after 1

row using NP_WL approach; the 3rd row (g, h, i) contains the 3D textures 
obtained by applying the NP_K method and finally the 4th row (j, k, l) corresponds to the results 
obtained with the NP_CW proposed method in Chapter 3. This illustration allows a direct visual 

neighbourhood search based methods for each raw sample, by scanning each 
op to bottom (input sample, NP_WL result, NP_K result and NP_CW result)
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b                                                       c 

   
e                                                      f 

 
           i 

 
k                                                        l 

row (a, b, c) shows the 2D raw HRTEM 
row (d, e, f) represents the 3D views of the solid textures obtained after 10 iterations 

row (g, h, i) contains the 3D textures 
row (j, k, l) corresponds to the results 

hapter 3. This illustration allows a direct visual 
neighbourhood search based methods for each raw sample, by scanning each 

result, NP_K result and NP_CW result). 



 

                   
                        a                                                       b                                                       c

           
                       d                                                         e                                                         f
 

            
                       g                                                
 

            
                        j                                                         k                                                         l

Figure 6.18 – Volumetric results: from top to bottom, the 1
HRTEM textures; the 2nd row (d, e, f) represents the 3D views of the solid textures obtained after 10 

iterations from the samples in the 1
textures obtained by applying the NP_K method and finally the 4
results obtained with the NP_CW proposed method in Chapter 3. This illustration allows a direct 
visual comparison of the fixed

scanning each column from top to bottom (input sample, NP_W

                                                   
a                                                       b                                                       c

 

                      
d                                                         e                                                         f

                        
g                                                         h                                                         i

                       
j                                                         k                                                         l

umetric results: from top to bottom, the 1st row (a, b, c) shows the 2D filtered 
row (d, e, f) represents the 3D views of the solid textures obtained after 10 

iterations from the samples in the 1st row using NP_WL approach; the 3rd row (g, h, i) contains the 3D 
textures obtained by applying the NP_K method and finally the 4th row (j, k, l) corresponds to the 
results obtained with the NP_CW proposed method in Chapter 3. This illustration allows a direct 
visual comparison of the fixed-neighbourhood search based methods for each filtered sample, by 

scanning each column from top to bottom (input sample, NP_WL result, NP_K result, NP_CW result)
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a                                                       b                                                       c 

                           
d                                                         e                                                         f 

               
h                                                         i 

 
j                                                         k                                                         l 

row (a, b, c) shows the 2D filtered 
row (d, e, f) represents the 3D views of the solid textures obtained after 10 

row (g, h, i) contains the 3D 
row (j, k, l) corresponds to the 

results obtained with the NP_CW proposed method in Chapter 3. This illustration allows a direct 
neighbourhood search based methods for each filtered sample, by 

result, NP_K result, NP_CW result). 



 

With a reasonable computational cost (a few minutes per synthesized block) the non
parametric approaches provide results of a fairly satisfactory visual quality. For the 
volumetric textures from Fig. 6.17f
able to preserve contrast (because of the averaging operation used when combining the t
orthogonal views). This is not the case for NP_K and NP_CW thanks to its weight 
optimization and its histogram adjustment process. However, some results exhibit several 
visual disadvantages such as blurring, missing or repeating input textural patterns 
6.17f,i,l and Fig. 6.18f), while in a few cases NP_CW fails in preserving the dynamics (
6.17k-l).   

Globally, after comparing visually the results, one can say that the synthesis behaves 
better on the filtered images than on the raw HRTE

But the visual interpretation of the synthesis results remains subjective, distinguishing 
more or less a bad or a good result. Here intervenes the 
in section 6.3.2. Different indicators of this objective stud

 

Figure 6.19 – Different indicators of the objective comparison of the 3D textures obtained by 
synthesizing the HRTEM texture in Fig. 6.10a:  grey level histograms and 1

standard deviation, kurtosis and skewness. The procedure consist in comparing input image statistics 
with the ones obtained after a multi
divergence between the histograms of the

 
From the first hint of the eye on the 

histogram adjustments bring significant improvements compared to the backbone method, as 
demonstrated quantitatively by the grey level comparison in 
However, in the case of dynamics comparison in 
improved with the index and position histogram is not capable of preserving the grey levels, 
by contrary, it diverts the statistics from the target

And as expected, the visual conclusions are reinforced quantitatively by the grey level 
histogram comparison, generally 
significant improvements brought by the histogram matching techniques. 
indicators reveal mostly the 3D textures tendency towards the same statistics observed on the 
HRTEM exemplars. 

With a reasonable computational cost (a few minutes per synthesized block) the non
c approaches provide results of a fairly satisfactory visual quality. For the 

Fig. 6.17f and Fig. 6.18f the version of NP_WL’s algorithm is not 
able to preserve contrast (because of the averaging operation used when combining the t
orthogonal views). This is not the case for NP_K and NP_CW thanks to its weight 
optimization and its histogram adjustment process. However, some results exhibit several 
visual disadvantages such as blurring, missing or repeating input textural patterns 

), while in a few cases NP_CW fails in preserving the dynamics (

Globally, after comparing visually the results, one can say that the synthesis behaves 
better on the filtered images than on the raw HRTEM samples. 

But the visual interpretation of the synthesis results remains subjective, distinguishing 
more or less a bad or a good result. Here intervenes the quantitative comparison

. Different indicators of this objective study are shown in Fig. 6.19

         
 

         
Different indicators of the objective comparison of the 3D textures obtained by 

synthesizing the HRTEM texture in Fig. 6.10a:  grey level histograms and 1st 
standard deviation, kurtosis and skewness. The procedure consist in comparing input image statistics 

with the ones obtained after a multi-2D solid block analysis and by computing Kullback
divergence between the histograms of the exemplar and the output block all along 10 iterations

From the first hint of the eye on the dynamics of the results, it’s obvious that the 
histogram adjustments bring significant improvements compared to the backbone method, as 

ly by the grey level comparison in Fig. 6.19 and from 
However, in the case of dynamics comparison in Fig 6.20a, the non-parametric algorithm 
improved with the index and position histogram is not capable of preserving the grey levels, 

y, it diverts the statistics from the target.  
And as expected, the visual conclusions are reinforced quantitatively by the grey level 

histogram comparison, generally strengthening the visual assumptions relative to the 
significant improvements brought by the histogram matching techniques. 
indicators reveal mostly the 3D textures tendency towards the same statistics observed on the 
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With a reasonable computational cost (a few minutes per synthesized block) the non-
c approaches provide results of a fairly satisfactory visual quality. For the 

the version of NP_WL’s algorithm is not 
able to preserve contrast (because of the averaging operation used when combining the two 
orthogonal views). This is not the case for NP_K and NP_CW thanks to its weight 
optimization and its histogram adjustment process. However, some results exhibit several 
visual disadvantages such as blurring, missing or repeating input textural patterns (like in Fig. 

), while in a few cases NP_CW fails in preserving the dynamics (Fig. 

Globally, after comparing visually the results, one can say that the synthesis behaves 

But the visual interpretation of the synthesis results remains subjective, distinguishing 
quantitative comparison as described 

Fig. 6.19. 

 

 
Different indicators of the objective comparison of the 3D textures obtained by 

 order statistics - 
standard deviation, kurtosis and skewness. The procedure consist in comparing input image statistics 

2D solid block analysis and by computing Kullback-Leibler 
exemplar and the output block all along 10 iterations. 

of the results, it’s obvious that the 
histogram adjustments bring significant improvements compared to the backbone method, as 

and from Fig. 6.20b. 
parametric algorithm 

improved with the index and position histogram is not capable of preserving the grey levels, 

And as expected, the visual conclusions are reinforced quantitatively by the grey level 
strengthening the visual assumptions relative to the 

significant improvements brought by the histogram matching techniques. The quantitative 
indicators reveal mostly the 3D textures tendency towards the same statistics observed on the 



 

                                 a                                                                                  b 
Figure 6.20 – Different indicators of the objective comparison 

synthesizing the raw HRTEM texture in Fig. 6.10c (a 
sample in Fig. 6.10f (b - the 2nd column plots):  from top to bottom, grey level histograms and 1

statistics - standard deviation, kurtosis and skewness. The procedure consists in comparing input 
image statistics with the ones obtained after a multi

Kullback-Leibler divergence between the histograms of the exemplar and the out
 

Another important remark is that in general the approaches take more or less time to 
reach the statistics of the input image. If the approaches involving histogram adjustments take 
less than NP_WL, approximately five iterations, the basic method takes almo
number of iterations to reach the same statistics, above all because of the averaging operation 
when combining the two orthogonal views. 

Experimentally, we have observed that usually, iterating much more does not yield 
better results, since a high number of iterations creates repetitions of patterns and produces 
more regular textures than those of the input image. 

           
         

           
          

            
 

            
a                                                                                  b  

Different indicators of the objective comparison of the 3D textures obtained by 
synthesizing the raw HRTEM texture in Fig. 6.10c (a - the 1st column plots) and its equivalent filtered 

column plots):  from top to bottom, grey level histograms and 1
andard deviation, kurtosis and skewness. The procedure consists in comparing input 

image statistics with the ones obtained after a multi-2D solid blocks analysis or by computing 
Leibler divergence between the histograms of the exemplar and the out

Another important remark is that in general the approaches take more or less time to 
reach the statistics of the input image. If the approaches involving histogram adjustments take 
less than NP_WL, approximately five iterations, the basic method takes almo
number of iterations to reach the same statistics, above all because of the averaging operation 
when combining the two orthogonal views.  

Experimentally, we have observed that usually, iterating much more does not yield 
high number of iterations creates repetitions of patterns and produces 

more regular textures than those of the input image.  

 

113 

 

 

 

 

of the 3D textures obtained by 
column plots) and its equivalent filtered 

column plots):  from top to bottom, grey level histograms and 1st order 
andard deviation, kurtosis and skewness. The procedure consists in comparing input 

2D solid blocks analysis or by computing 
Leibler divergence between the histograms of the exemplar and the output block. 

Another important remark is that in general the approaches take more or less time to 
reach the statistics of the input image. If the approaches involving histogram adjustments take 
less than NP_WL, approximately five iterations, the basic method takes almost double in 
number of iterations to reach the same statistics, above all because of the averaging operation 

Experimentally, we have observed that usually, iterating much more does not yield 
high number of iterations creates repetitions of patterns and produces 



 

 As presented in Fig. 6.10
version of these images.  Filtered images were used
because their parametric synthesis algorithm showed difficulties in handling raw images. The 
filtering consisted in using two filters, a radial and a directional band
frequency domain [DaC04]. As show
relatively well with both images, though in some cases (for example the NP_CW approach) 
the filtered image results are better than the results obtained with the raw image.

Algorithms comparison based on the 
6.21 confirms the previously stated convergence. However, in some cases, the impression is 
that the proposed algorithms tend to produce textures more regular than that of the 
Iterating more doesn’t resolve the reproduction of patterns. It’s mostly the result of the 
insubstantial average of NP_WL algorithm and its local deterministic character. 

 

                                        a                   
Figure 6.21 – Spatial structure variation indicators: the Kullback 

orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 
the sample in Fig.

 
 The morphological properties
and the τ parameter of the input lattice fringe image and the synthesized texture block 
obtained after ten iterations, being analysed as frontal multi
results from Fig. 6.22 show that the produced tex
input image (plot 6.22a) and in the same time they are more regular (
phenomenon may be related to the deterministic character of the algorithms, based on local 
decisions, which tends to produ
images on input and synthesizing bigger blocks on output should impose a sufficient number 
of fringes capable of describing better the morphology.

 

                                         a                                                                                b
Figure 6.22 – Plots of the morphological structure indicators: (a) the distribution of fringe lengths in 

the input HRTEM image from Fig. 6.10a and in the multi
6.16d,g,j; (b) the distribution of the tortuosity values corresp

output blocks used in a. Fringes were retrieved by managing  front and side slices in the 3D textures
  

Fig. 6.10, we dispose of the raw HRTEM images, and a filtered 
version of these images.  Filtered images were used by [DaC10] to ease image synthesis, 
because their parametric synthesis algorithm showed difficulties in handling raw images. The 
filtering consisted in using two filters, a radial and a directional band

]. As shown in the Fig. 6.20, the non-parametric methods behave 
relatively well with both images, though in some cases (for example the NP_CW approach) 
the filtered image results are better than the results obtained with the raw image.

Algorithms comparison based on the local orientation histograms as shown in 
confirms the previously stated convergence. However, in some cases, the impression is 

that the proposed algorithms tend to produce textures more regular than that of the 
Iterating more doesn’t resolve the reproduction of patterns. It’s mostly the result of the 
insubstantial average of NP_WL algorithm and its local deterministic character. 

          
a                                                                                  b 

Spatial structure variation indicators: the Kullback - Leibler divergence between the 
orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 

the sample in Fig. 6.10c (plot a) and on the sample in Fig. 6.10f (plot b)

morphological properties comparison was done by comparing the L
 parameter of the input lattice fringe image and the synthesized texture block 

obtained after ten iterations, being analysed as frontal multi-2D lattice fringe images.  The 
show that the produced textures contain overall longer fringes than the 

) and in the same time they are more regular (
phenomenon may be related to the deterministic character of the algorithms, based on local 
decisions, which tends to produce these very regular or repetitive textures. Using larger 
images on input and synthesizing bigger blocks on output should impose a sufficient number 
of fringes capable of describing better the morphology. 

       
a                                                                                b 

Plots of the morphological structure indicators: (a) the distribution of fringe lengths in 
the input HRTEM image from Fig. 6.10a and in the multi -2D synthesized volumetric textures from Fig. 

6.16d,g,j; (b) the distribution of the tortuosity values corresponding to the same input image and 
output blocks used in a. Fringes were retrieved by managing  front and side slices in the 3D textures
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, we dispose of the raw HRTEM images, and a filtered 
] to ease image synthesis, 

because their parametric synthesis algorithm showed difficulties in handling raw images. The 
filtering consisted in using two filters, a radial and a directional band-pass filter in the 

parametric methods behave 
relatively well with both images, though in some cases (for example the NP_CW approach) 
the filtered image results are better than the results obtained with the raw image. 

histograms as shown in Fig. 
confirms the previously stated convergence. However, in some cases, the impression is 

that the proposed algorithms tend to produce textures more regular than that of the exemplar. 
Iterating more doesn’t resolve the reproduction of patterns. It’s mostly the result of the 
insubstantial average of NP_WL algorithm and its local deterministic character.  

 

divergence between the 
orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 

6.10f (plot b). 

mparing the L2 parameter 
 parameter of the input lattice fringe image and the synthesized texture block 

2D lattice fringe images.  The 
tures contain overall longer fringes than the 

) and in the same time they are more regular (plot 6.22b).  This 
phenomenon may be related to the deterministic character of the algorithms, based on local 

ce these very regular or repetitive textures. Using larger 
images on input and synthesizing bigger blocks on output should impose a sufficient number 

 

Plots of the morphological structure indicators: (a) the distribution of fringe lengths in 
2D synthesized volumetric textures from Fig. 

onding to the same input image and 
output blocks used in a. Fringes were retrieved by managing  front and side slices in the 3D textures. 
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Fig. 6.23 shows the synthetic texture evolution in time, iterationally speaking, starting 
from an initial noise status and modifying it during synthesis until reaching a satisfactory 
status. Moreover, even if during the optimisation phase, the synthesis is constrained only by 
the grey level histogram, after a while, besides the dynamics, the inner structures show 
orientations similar to the preliminary 2D texture.  
  

 
Figure 6.23 – Texture evolution in time, using the backbone approach and only the grey level 

histogram matching: from top to bottom, the exemplar and the evolution of the initial noise, modified 
during the synthesis until reaching in a few iterations a satisfactory result from the point of view of the 
grey levels and the orientations. From left to right, the texture representation, the corresponding grey 

level histogram, the local orientations map and the orientation histogram 



 

 Analyzing the comparative anisotropic texture results obtained by using the 
neighbourhood-search based algorithms, one can deduce that the most satisfactory method is 
NP_K, as it was already concluded in 
comparaisons in this chapter NP_K is going to be used as the representant of the non
parametric pyrocarbon texture synthesis methods based on fixed

 
 

6.3.4  Maximum-likelihood based synthesis results 
 
 Going over the study from 
considerations, the algorithms described in 
views and implemented under the framework that proved to bring in the most satisfying 
results. The framework used to synthesize HRTEM samples consists in: a neighbourhood 
system composed of a 9×9 neighbourhood, three decimation scales, 1/8 up
visiting the voxels in a random way and re
lower resolution scale. The heuristic used in making the decision for an output voxel is 
NP_ML_H2c.  
 
 The inconvenient of the likelihood maximisation based synthesis approach is that the 
pixel temperature function incorporated with the deterministic IC
difficult to forecast and, above all, leads to a time overwhelming process. Next, although the 
computational time was reduced by decreasing the temperature of a pixel with a 
stopping the synthesis after reaching 95% 
remains cumbersome for synthesizing big textures. Hence the input HRTEM samples used as 
source for synthesis are the 64
are of 64×64×64 pixels size, as it illustrated in 
 

              

                    a                                    
Figure 6.24 – Volumetric results obtained by using NP_ML_H2c approach on the lattice fringe 
samples of pre-graphitic carbons represented on top of each 3D synthetic texture. The HRTEM 

samples are cut out from the images in Fig. 6.10. Sample sizes are 64

 
The results produced so far by the NP_ML_H2c algorithm using the above framework 

parameters are unsuccessful, only the result in 
resemblance between the sample and the s
capable of replicating the sample structure. They seem to reproduce in the synthetic block 
only the most representative grey

Analyzing the comparative anisotropic texture results obtained by using the 
search based algorithms, one can deduce that the most satisfactory method is 

NP_K, as it was already concluded in Chapter 5 for a large variety of textures. For any further 
comparaisons in this chapter NP_K is going to be used as the representant of the non
parametric pyrocarbon texture synthesis methods based on fixed-neighbourhood search.

likelihood based synthesis results  

Going over the study from section 5.3 corroborated with the orthotropic 
considerations, the algorithms described in Chapter 4 are adapted to exploit two orthogonal 
views and implemented under the framework that proved to bring in the most satisfying 

s. The framework used to synthesize HRTEM samples consists in: a neighbourhood 
neighbourhood, three decimation scales, 1/8 up

visiting the voxels in a random way and re-synthesizing the even pixels inherited from
lower resolution scale. The heuristic used in making the decision for an output voxel is 

The inconvenient of the likelihood maximisation based synthesis approach is that the 
pixel temperature function incorporated with the deterministic ICM relaxation algorithm is 
difficult to forecast and, above all, leads to a time overwhelming process. Next, although the 
computational time was reduced by decreasing the temperature of a pixel with a 
stopping the synthesis after reaching 95% from the initial global temperature, the synthesis 
remains cumbersome for synthesizing big textures. Hence the input HRTEM samples used as 
source for synthesis are the 64×64 textures reduced to 32 grey-levels while the targeted blocks 

s size, as it illustrated in Fig. 6.24.  

                            
 

a                                       b                                       c                                       d
Volumetric results obtained by using NP_ML_H2c approach on the lattice fringe 
graphitic carbons represented on top of each 3D synthetic texture. The HRTEM 

samples are cut out from the images in Fig. 6.10. Sample sizes are 64×64 pixels and th
distribution contains 32 level.   

The results produced so far by the NP_ML_H2c algorithm using the above framework 
parameters are unsuccessful, only the result in Fig. 6.24a gives a brief impression of 
resemblance between the sample and the synthesis results. The results in Fig. 5.24b
capable of replicating the sample structure. They seem to reproduce in the synthetic block 
only the most representative grey-levels of the 2D sample, giving the impression that the 
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Analyzing the comparative anisotropic texture results obtained by using the 
search based algorithms, one can deduce that the most satisfactory method is 

of textures. For any further 
comparaisons in this chapter NP_K is going to be used as the representant of the non-

neighbourhood search. 

corroborated with the orthotropic 
are adapted to exploit two orthogonal 

views and implemented under the framework that proved to bring in the most satisfying 
s. The framework used to synthesize HRTEM samples consists in: a neighbourhood 

neighbourhood, three decimation scales, 1/8 up-sampling strategy, 
synthesizing the even pixels inherited from a 

lower resolution scale. The heuristic used in making the decision for an output voxel is 

The inconvenient of the likelihood maximisation based synthesis approach is that the 
M relaxation algorithm is 

difficult to forecast and, above all, leads to a time overwhelming process. Next, although the 
computational time was reduced by decreasing the temperature of a pixel with a -3 factor and 

from the initial global temperature, the synthesis 
remains cumbersome for synthesizing big textures. Hence the input HRTEM samples used as 

levels while the targeted blocks 

 

 
b                                       c                                       d 

Volumetric results obtained by using NP_ML_H2c approach on the lattice fringe 
graphitic carbons represented on top of each 3D synthetic texture. The HRTEM 

64 pixels and the grey-level 

The results produced so far by the NP_ML_H2c algorithm using the above framework 
gives a brief impression of 

Fig. 5.24b-d are not 
capable of replicating the sample structure. They seem to reproduce in the synthetic block 

levels of the 2D sample, giving the impression that the 
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synthesis behaves as a filtering operation, simplifying the texture. This opinion is sustained by 
the results presented in Fig. 6.25, showing the volumetric textures at the first and the last 
iteration of the final scale, obtained using the same framework but on bigger textures. The 
samples are the textures in Fig. 6.10a,b,d,e reduced to 32 grey-levels, and the 3D textures are 
results of the NP_ML_H2c algorithm of 128×128×128 size. The synthesis results are either 
too simplified in terms of structure and dynamics, either containing only the representative 
modes (i.e. grey-values), estimated during ICM relaxation. 
 

 
                          a                                              b                                                     c 

Figure 6.25 – Volumetric results using as source for NP_ML_H2c synthesis the 128×128 samples 
from column (a), containing 32 grey-levels: the two columns show, from left to right, the 3D 

128×128×128 texture obtained at the first iteration (b) and at the last iteration(c) of the final scale 
(experimentally, using a decreasing cooling rate of factor -3 and accomplishing 95% of the global 

temperature, the end result is achieved after four iterations). 
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This inconsistency of the results may be explained by the scarcity of grey-levels, more 
accentuated at the smallest scale and the presence of relatively homogenous large areas of a 
same grey-value in the sample, that are not capable to provide enough diversity to be captured 
by the neighbourhood.  

But using a bigger neighbourhood will increase even more the computation cost and as 
suggested by the results in Fig. 5.21 and Fig. 6.26a,b it wouldn’t guaranty the structure 
preservation.  

Correspondingly, using numerous grey-levels (i.e. all the grey-levels available in the 
2D sample) still seems to be inadequate to help the synthesis capture the pattern, as it was 
shown in Fig. 5.22 and Fig. 6.26c, showing that it is not necessarily the number of grey-
values that poses problems.  

 

 
                        a                                           b                                                                  c 
Figure 6.26 – The influence of the neighbourhood size and the number of grey-levels on the synthesis 

results: from left to right, the first two result correspond to the synthesis of the HRTEM sample (64×64 
and 32 grey-levels) from above the two blocks, in (a) using a 9×9 neighbourhood and in (b) a 11×11 
neighbourhood; the result in (c) is obtained by using the full-square 9×9 neighbourhood but applied 
on the original HRTEM sample containing all the grey-levels; all the other parameters were fixed. 

Next to each texture, the corresponding grey-level histogram is shown.    
 

The deterministic pixel-temperature based process requires more precision in tuning 
its parameters, or to dispose of a sample texture of which structure is well represented on all 
the required resolutions. 

Despite the fact that the maximum-likelihood based synthesis approaches showed their 
potential, but also its limits, at this current stage of implementation the volumetric textures 
corresponding to the HRTEM samples are un-exploitable in terms of the comparison study, 
relative to the fixed-neighbourhood search based techniques. However, suitable results are 
expected to be obtained by accelerating the algorithm (providing a parallelised synthesis 
process) and by ameliorating the relaxation scheme (by better using the pixel temperature 
function or by using a stochastic relaxation algorithm). 

 
 

6.3.5  Parametric vs. non-parametric 3D texture synthesis methods 
 

 A real advantage of the comparison benchmark is that it is suitable to comparing 
different algorithms from the literature. In the case of the HRTEM textures used as synthesis 
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samples, it’s highly interesting to dispose of several synthesis methods from which to choose 
the best one and integrated it inside the IGAR method.  
 This thesis deals with a class of non-parametric approaches, so a high interest is to be 
able to compare them with a different kind of synthesis approaches. Here the opponent 
approach is the parametric one, based on a synthesis-by-analysis procedure, presented in 
[DaC10] and used as a first step of the IGAR method for atomistic simulations [Ley09].  
 As shown in section 6.3.3 the non-parametric approaches based on fixed-
neighbourhood search provide satisfactory results, with notable performances setting apart the 
NP_K approach.  
 The remarks in section 6.3.4 together with the experimentation in Chapter 5 underline 
the limits of the non-parametric approaches based on likelihood maximisation, yielding the 
results inappropriate for the evaluation methodology proposed in section 6.3.2. 
 In consequence the further study involves only the NP_K non-parametric approach 
and the following parametric approach.     
 
 
6.3.5.1  A parametric texture synthesis approach 
 
 The parametric approach taken into consideration is the 2D/3D synthesis/analysis 
extension of the parametric method proposed in 2D by Portilla and Simoncelli [Por00]. The 
2D/3D extension of the pyramidal scheme of [Por00] was developed by [DaC10] and it is 
schematically presented in Chapter 2 in Fig. 2.16. It is based on the idea that an image can be 
relevantly analysed through a bank of spatial filters, with specific orientations and scales.  
  
The 2D/3D synthesis algorithm proceeds in three steps: 
 

- 2D analysis step: it consists in decomposing the HRTEM image sample into a set of 
multi-resolution sub-bands using steerable pyramid decomposition; a set of reference 
2D spatial statistics is produced; 
 

- 2D-3D statistical inference: 3D reference statistics are inferred from the 2D ones using 
specific anisotropy assumptions; 
 

- 3D image synthesis: the 3D target statistics are imposed on the sub-bands of a random 
3D data block. 

 
 More details about this approach and its implementation can be found in the original 
paper [DaC10].   
 
 The 3D synthesis method is applied on the raw and filtered samples from Fig. 6.10. 
The synthesis framework consists in decomposing the steerable pyramids with 3 levels and 4 
orientations and the chosen target statistics being the mean, the variance, the skewness, the 
kurtosis and the autocorrelation coefficients (computed on 7×7 neighbourhoods). The 
128×128×128 results are provided in Fig. 6.27 for the raw samples and in Fig. 6.28 for the 
filtered versions.  For simplicity and to be in accordance with the other notations, this 
parametric approach will be tagged in as P_D&G. 
 



 

                         
                        a                                                    
 

      
                            d                                                      e                                       

Figure 6.27 – Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the raw 2D samples in the first row

The solid results obtained by synthesizing the raw HRTEM textures provide r
convincing results (Fig. 6.27d
6.27f) due to the way the autocorrelation coefficients are estimated on the sample images, 
assuming periodicity of the 3D block. As for the results obtained 
they seem to be free from circularity artefacts. 
are alike the samples in the sense of straight/distorted patterns. These results are susceptible to 
some high frequency oscillation
look as disordered as 6.28e. 

 

                          
                        a                                                        
 

      
                           d                                                       e             

Figure 6.28 – Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the filtered 2D samples in the first row

 

                                                   
                                                       b                                                    

            
d                                                      e                                                       

Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the raw 2D samples in the first row

 
The solid results obtained by synthesizing the raw HRTEM textures provide r

Fig. 6.27d), but some artefacts are found (the blocks from 
) due to the way the autocorrelation coefficients are estimated on the sample images, 

assuming periodicity of the 3D block. As for the results obtained with the filtered textures, 
they seem to be free from circularity artefacts. The solid textures in Fig. 6.28d
are alike the samples in the sense of straight/distorted patterns. These results are susceptible to 
some high frequency oscillations [DaC10] making for example the results in 

                                                   
                                                        b                                                       c

             
d                                                       e                                                       

Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the filtered 2D samples in the first row
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b                                                        c 

   
                f 

Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the raw 2D samples in the first row. 

The solid results obtained by synthesizing the raw HRTEM textures provide relatively 
), but some artefacts are found (the blocks from 6.27e and 

) due to the way the autocorrelation coefficients are estimated on the sample images, 
with the filtered textures, 
Fig. 6.28d and Fig. 6.28e 

are alike the samples in the sense of straight/distorted patterns. These results are susceptible to 
] making for example the results in Fig. 6.28f to 

 
b                                                       c 

                           
                                          f 

Parametric 3D synthesis results: the second row represents the 3D views of the solid 
textures synthesized from the filtered 2D samples in the first row.  



 

6.3.5.2  Results comparison  
 

 The comparison study is carried out between the results obtained with NP_K from 
Fig. 6.17 and 6.18 and the results obtained with P_D&G from 
source of synthesis the HRTEM samples in 
comparative pairs are the following:

- 6.17g with 6.27d for the raw HRTEM sample in 
- 6.17h with 6.27e for the raw HRTEM sample in 
- 6.18g with 6.28d for the filtered sample in 
- 6.18h with 6.28e for the filtered sample in 

 
The comparison is performed using the same methodology described in 

with the mention that the 10th 
needs more iterations to provide a satisfactory result. For P_D&G it is not necessarily the 
case, because it shows stable results early on (even from the 2
significantly during eventual extra iterations. 

 

Figure 6.29 – Indicators of the dynamics comparative study that concerns the couples C1 to C4, the 
colour markers

 
Fig. 6.29 compares the results in terms of grey

first order statistics of the NP_K results with the ones 
All along these results, the parametric method provides 3D synthetic textures 
samples in terms of grey-level histogram, and statistics very similar to the ones of the 
corresponding 2D samples. An exception occurs for the case of the C1 evaluation, showing 
that for using the raw HRTEM sample in 
closer to the sample, in terms of grey
sample characteristics but even after 10 iterations there still remains a relative gap between 
them. However, this gap is not very significa
the grey levels distribution seeming to be evenly for the input sample, NP_K volumetric 
results and P_D&G solid texture. 

 

 

The comparison study is carried out between the results obtained with NP_K from 
and the results obtained with P_D&G from Fig. 6.27

source of synthesis the HRTEM samples in Fig. 6.10a, b, d and e. More precisely the 
parative pairs are the following: 

for the raw HRTEM sample in 6.10a (couple tagged as 
for the raw HRTEM sample in 6.10b (couple tagged as 
for the filtered sample in 6.10d (couple tagged as C3
for the filtered sample in 6.10e (couple tagged as C4

The comparison is performed using the same methodology described in 
 iteration of the synthesis process is used, mostly because NP_K 

iterations to provide a satisfactory result. For P_D&G it is not necessarily the 
case, because it shows stable results early on (even from the 2nd iteration) and not varying 
significantly during eventual extra iterations.  

 

of the dynamics comparative study that concerns the couples C1 to C4, the 
colour markers labelling the synthesis methods. 

Fig. 6.29 compares the results in terms of grey-level dynamics, comparing punctually 
first order statistics of the NP_K results with the ones of the results obtained with P_D
All along these results, the parametric method provides 3D synthetic textures 

level histogram, and statistics very similar to the ones of the 
corresponding 2D samples. An exception occurs for the case of the C1 evaluation, showing 
that for using the raw HRTEM sample in Fig. 6.10a, NP_K behaves better than P_D&G being 
closer to the sample, in terms of grey-level histogram. NP_K results tend towards the 2D 
sample characteristics but even after 10 iterations there still remains a relative gap between 
them. However, this gap is not very significant, results being qualitatively similar, generally 
the grey levels distribution seeming to be evenly for the input sample, NP_K volumetric 
results and P_D&G solid texture.  
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The comparison study is carried out between the results obtained with NP_K from 
Fig. 6.27 and 6.28 using as 

. More precisely the 

(couple tagged as C1) 
(couple tagged as C2) 

C3) 
C4) 

The comparison is performed using the same methodology described in section 6.3.2 
iteration of the synthesis process is used, mostly because NP_K 

iterations to provide a satisfactory result. For P_D&G it is not necessarily the 
iteration) and not varying 

 

 
of the dynamics comparative study that concerns the couples C1 to C4, the 

level dynamics, comparing punctually 
of the results obtained with P_D&G. 

All along these results, the parametric method provides 3D synthetic textures closer to the 2D 
level histogram, and statistics very similar to the ones of the 

corresponding 2D samples. An exception occurs for the case of the C1 evaluation, showing 
es better than P_D&G being 

level histogram. NP_K results tend towards the 2D 
sample characteristics but even after 10 iterations there still remains a relative gap between 

nt, results being qualitatively similar, generally 
the grey levels distribution seeming to be evenly for the input sample, NP_K volumetric 



 

Figure 6.30 - Spatial structure variation indicators: the Kullback 
orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 

the comparative pairs described as C1

The comparative study is further on performed in order to check if the structural 
properties of the sample are retrieved in the volumetric textures. First, the local orientation 
maps are computed and orientation histograms are generated. A particular measure (i.e. 
Kullback-Leibler divergence) is employed between the orientation histogram of th
exemplar and the orientation histogram of the parametric synthesis result, and respectively the 
non-parametric synthesis texture. This is illustrated by the plots in 
volumetric textures obtained with the parametric appro
orientations of the exemplar patterns.      

 

                                         a                                                                                b
Figure 6.31 – Morphological structure indicators:  th
tortuosity values in the input HRTEM image from Fig. 6.11a and in the multi

volumetric textures of the couple C1 (Fig. 
were retrieved by managing 

The morphological properties comparison is interested in describing the elongated 
patterns contained within the texture evaluating the L
input lattice fringe image and the texture synthesized with the NP_K algorithm and the 
P_D&G algorithm. Fig. 6.31 
contain similar fringes with the input imag
The P_D&G result patterns are shorter and less regular (as the 2D sample) than the patterns 
present in the NP_K result.  
 Drawing the line of the comparison study between the non
on fixed-neighbourhood search and the parametric synthesis
one is more capable to produce volumetric textures with anisotropy properties similar to the 
2D sample texture. 
 

 

Spatial structure variation indicators: the Kullback - Leibler divergence between the 
orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 

the comparative pairs described as C1-C4. 
 

The comparative study is further on performed in order to check if the structural 
ies of the sample are retrieved in the volumetric textures. First, the local orientation 

maps are computed and orientation histograms are generated. A particular measure (i.e. 
Leibler divergence) is employed between the orientation histogram of th

exemplar and the orientation histogram of the parametric synthesis result, and respectively the 
parametric synthesis texture. This is illustrated by the plots in Fig. 6.30

volumetric textures obtained with the parametric approach preserve better the local 
orientations of the exemplar patterns.       

a                                                                                b 
Morphological structure indicators:  the distribution of the fringe lengths and the 

tortuosity values in the input HRTEM image from Fig. 6.11a and in the multi
volumetric textures of the couple C1 (Fig. 6.17g for NP_K and Fig. 6.27d for P_D

were retrieved by managing  front and side slices in the 3D textures
 

The morphological properties comparison is interested in describing the elongated 
patterns contained within the texture evaluating the L2 parameter and the τ
input lattice fringe image and the texture synthesized with the NP_K algorithm and the 

 confirms that the parametric algorithm produces textures that 
contain similar fringes with the input image both in terms of length and degree of tortuosity. 
The P_D&G result patterns are shorter and less regular (as the 2D sample) than the patterns 

Drawing the line of the comparison study between the non-parametric algorithm base
neighbourhood search and the parametric synthesis-by-analysis algorithm, the latter 

one is more capable to produce volumetric textures with anisotropy properties similar to the 
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divergence between the 

orientation histograms of the exemplar and the output blocks obtained by applying the algorithms on 

The comparative study is further on performed in order to check if the structural 
ies of the sample are retrieved in the volumetric textures. First, the local orientation 

maps are computed and orientation histograms are generated. A particular measure (i.e. 
Leibler divergence) is employed between the orientation histogram of the HRTEM 

exemplar and the orientation histogram of the parametric synthesis result, and respectively the 
Fig. 6.30, showing that the 

ach preserve better the local 

 

e distribution of the fringe lengths and the 
tortuosity values in the input HRTEM image from Fig. 6.11a and in the multi-2D synthesized 

for NP_K and Fig. 6.27d for P_D&G); fringes 
front and side slices in the 3D textures. 

The morphological properties comparison is interested in describing the elongated 
parameter and the τ parameter of the 

input lattice fringe image and the texture synthesized with the NP_K algorithm and the 
confirms that the parametric algorithm produces textures that 

e both in terms of length and degree of tortuosity. 
The P_D&G result patterns are shorter and less regular (as the 2D sample) than the patterns 

parametric algorithm based 
analysis algorithm, the latter 

one is more capable to produce volumetric textures with anisotropy properties similar to the 
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6.4  Conclusion  
 
 This applicative chapter introduced some necessary concepts of the composite 
materials of which HRTEM images were used for 2D/3D synthesis in a complex atomistic 
reconstruction scenario.  
 
 Afterward the algorithms described in the previous chapters are evaluated regarding to 
their capacity to reproduce 3D textures respecting the structures observed on the HRTEM 
images. A comparative study was developed in order to identify the most relevant non-
parametric synthesis approaches for this particular HRTEM textures and to compare a 
representative non-parametric approach with a parametric algorithm from the literature. The 
non-parametric algorithms based on likelihood maximization are not suitable, in their present 
form, for this particular type of textures. However, this work leaves the perspective for a 
future improvement in terms of quality and computational requirements. 
 
 The quality of the results obtained with the non-parametric neighbourhood search 
based algorithm and predominantly with the parametric one is highly encouraging, the solid 
textures showing both statistical properties (anisotropy, contrast, etc.) and structural features 
(pattern lengths and disorientations) roughly similar to those observed in the original samples 
highlighted by the quantitative comparison between synthetic data slices and reference 
HRTEM samples. But in the current state of development, the parametric method, in spite of 
its drawbacks, seems to provide the most satisfying results. 
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7.1  Synopsis of the work  
 
 This section aims at summing up the results presented in this manuscript and at 
proposing overall conclusions derived from this thesis in a clear-cut form avoiding to restate 
the closing remarks of each chapter. 
 
 The main objective of this work was to investigate different strategies for volumetric 
texture synthesis starting from a 2D texture. The non-parametric synthesis methods have been 
privileged, setting off with the fixed-neighbourhood search based algorithms. The proposed 
approaches are assessed under a common multi-scale accelerated algorithmic benchmark, 
differentiating the way of combining the orthogonal views information. To make use of the 
already synthesized data and to assure certain randomness, we have proposed an original 
diagram for visiting the voxels during synthesis. Apart from its theoretical reasoning, only 
minor contributions in synthesis quality are noticed.  
 

Next we have focused much of our attention on developing a probabilistic non-
parametric algorithm based on a Markov Random Field conceptualisation. We have proposed 
a genuine 2D/3D extension intending to generate volumetric textures voxel by voxel by 
maximizing the likelihood of every voxel estimated in terms of a local conditional probability 
density function (LCPDF). Based on the 2D paradigm, our original 3D extension relies on 
giving a new description to the LCPDF of a site in 3D. Full-3D LCPDF estimation is almost 
unattainable leaving the occasion to formulate heuristics based on 2D concepts, thus deciding 
for each output voxel the most probable grey-level. Notable remarks are made on how to use 
better the voxel temperature function involved by the synthesis deterministic relaxation 
process. As well, we propose different strategies for the output block initialisation and for the 
scales handling policy – advising a specific treatment for the voxels inherited from a higher 
scale and two up-sampling strategies. 

 
All these procedures have been materialized on a set of significantly different textures, 

identifying the strengths and the weaknesses of the synthesis algorithms. Moreover we have 
analyzed for two foremost methods, a fixed-neighbourhood search based one and a 
likelihood-maximization one, their sensitivity to different algorithmic parameters, tracing the 
best strategies for texture synthesis. The synthesis results are convincing in terms of visual 
quality, manifesting occasionally difficulties in capturing the sample structure. The maximum 
likelihood based approaches that comes up with extra parameters, concerning the pixel 
temperature function, sometimes proves to be difficult to control but is also capable of 
producing outstanding results when tuned properly. 

 
 Finally, we have applied the non-parametric algorithms to the synthesis of laminar 
anisotropic HRTEM images of dense carbons, the volumetric synthesis being the only real 
solution to access the 3D structure of such carbonaceous materials at nanometric scale. 
Results interpretation was accompanied by an original experimental procedure marking a 
quantitative and objective evaluation, investigating grey-level dynamics and morphological 
properties. The experimentation benchmark stressed the limits of our current implementation 
of the maximum-likelihood based approach that simplifies in terms of structure and dynamics 
the synthetic results relative to the 2D samples. The quantitative comparative study was 
broadened with a 2D/3D extension of a parametric synthesis-by-analysis approach, which 
proved to provide the most satisfying results. 
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7.1  Future prospects  
 
 The obtained results are convincing and looking very promising to be improved in the 
future.  The future prospective targets are of three kinds: on first hand, enhancements in terms 
of preserving the sample structure and dynamics, on the second hand, to reduce the 
computational cost, and thirdly, to extend the synthesis algorithms to all kinds of textures, 
especially isotropic textures. 
 
 For the non-parametric fixed-neighbourhood search based algorithms immediate 
developments can be made regarding the investigation of other measures than the L2 norm 
(Euclidian distance); it is of interest to be able to inject during the synthesis process 
operations allowing to adjust better the dynamics and the statistical properties, remaining non-
parametric. An interesting track to follow consists in inferring in the synthesis process not 
only the grey-level data but also morphological information such as local orientations for 
instance. To find for an output voxel the best grey-value, the judging criterion can be based on 
the closest neighbourhood search but taking account of the local orientation. This should 
assure a better preservation of the sample structure in the volumetric texture and would be 
appropriate to address the case of non-stationary isotropic textures (textures that show 
changes in orientation at large scale). 
 Additionally, it is always possible to propose different strategies to combine the 
information from the orthogonal views, hence to quantify the quality of the synthesized 
images.  
 
 The non-parametric maximum-likelihood based approach offers more opportunities. 
First of all, handling the pixel temperature function involved in the relaxation algorithm 
reveals to be tricky for the three-dimensional synthesis process. Adjusting more accurately the 
algorithmic parameters can lead to better results. In any case the cooling schedule and the 
deterministic algorithm need a more intricate analysis. Stochastic relaxation schemes such as 
the Metropolis algorithm, the Gibbs sampler or the simulated annealing algorithm could also 
be investigated. 
 In the same idea, a full-3D estimation of the local conditional probability density 
function could be of help; if this is not possible, other heuristics are as well welcomed. The 
goal is that by using the Markov Random Field probabilistic model, the algorithm can capture 
the visual characteristics of an image, providing a statistical model capable to describe the 
visual interactions between adjacent voxels. 
 
 The computational complexity is not to be neglected, being known that the non-
parametric voxel-by-voxel methods are time and memory consuming, involving exhaustive 
operations. For the neighbourhood search based algorithm, acceleration is attained by using 
the binary tree clustering, but the maximum-likelihood based approach is computationally 
very expensive. Accelerating it can be achieved by multithreading/multitasking programming 
and by relaxing simultaneously a set of i.i.d. (i.e. independent and identically distributed) sites 
from the targeted block lattice grid. 
 
 Concerning the applicative part, the means to generate extensively HRTEM textures 
are strongly correlated to the previous remarks, while constantly providing volumetric 
textures for the atomistic simulations. To deliver textures of more important sizes, the time 
calculation is crucial. In addition, some materials showing locally anisotropic structure but 
non-stationary could be examined by means of the non-parametric synthesis methods.  
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Appendix A   
 

TSVQ numeric exemplification 
 
 
 
 The acceleration tricks used by the synthesis techniques proposed in Chapter 3 are 
based on re-arranging the input neighbourhoods into a binary tree to ease the nearest 
neighbour search. This is done by using the Tree Structure Vector Quantization (TSVQ) 
technique described in section 3.2.5. The root of the tree contains the global centroid of all n-
dimensional points and the rest of the nodes are centroids of portioned groups of points.  
 The next three figures show some numeric examples of the TSVQ technique applied 
on three images of size 6×6 pixels and using a 3×3 neighbourhood. According to the 
synthesis algorithm, the pixels used in the binary tree are only the pixels that have a valid 
neighbourhood. The area in red of size 4×4 is the only one taken into consideration by the 
TSVQ. For simplicity in showing the binary tree, the nodes contain only the pixel value (i.e. 
the average of the pixels in the corresponding group) and not all the neighbourhood data 
information. The first example in Fig. A.1 shows the binary tree obtained on an image 
containing only two grey-levels, presenting only two distinctive neighbourhoods. Fig. A.2 
contains an image of 16 grey-levels, one for each valid pixel. 
 

 
Figure A.1 – TSVQ exemplification on a 6x6 binary checkerboard image showing the final two nodes 

and their corresponding neighbourhoods.  
 

 
Figure A.2 – TSVQ exemplification on a 6x6 image containing 16 grey-levels. 
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Appendix B   
 

Space filling curves 
 
 
 
B1. Introduction   
 

 The interest in space filling curves started early from 1890 with the work of Giuseppe 
Peano [Pea90] and David Hilbert [Hil91]. A space-filling curve is used to map discrete 
positions from a multi-dimensional grid into a one-dimensional grid, by visiting points only 
once and without crossing the path [Pea90]. The first implementation consisted in a geometric 
representation capable of traversing a 2� × 2� space [Hil91].  
 Since then, many developments were made, so that space filling curve representation 
found applications in image pixel allocations, VLSI component layouts, magnetic resonance 
imaging (MRI) etc. In the same time many mathematical formulations were made. So, one 
can retrieve the Peano curve, the Hilbert curve, the Z-curve (Lebesgue curve) or the fractal 
curves (Cantor, von Koch, Sierpinski or Mandelbrot) and its many different variants [Sag94].  
 
B2. Lexicographical scanning and the random walk   
 

 In this work I was interested in proposing alternative ways to the traditional 
lexicographic scanning (scan-line order) and the random-walk in the purpose of 3D texture 
synthesis. These two kinds of points visiting order are presented just below: 
 

 
Figure B.1 – Illustration of the scan-line order: the group on the left shows the 2D case on three 
square configurations containing 2×2 points, 4×4 points and 8×8 points; the group on the right 

shows the scan-line path on three cubes of different sizes containing  23, 43 and 83points. 
 

 
Figure B.2 – Illustration of the random-walk: the group on the left shows  realizations of  random 
paths in the 2D case on three square configurations containing 2×2 points, 4×4 points and 8×8 
points; the group on the right shows realizations of random paths on three cubes of different sizes 

containing  23, 43 and 83points. 



 

 

134 

 These are the simplest to implement, but not exactly the most satisfying ones in the 
interest of 3D texture synthesis. The lexicographic path tends to produce textures more 
regular than the synthesis exemplar, while the random walk can lead to prohibitive 
convergence costs, in the context of using non-causal full-square neighbourhoods. 
  
 Intermediary solutions consist in maintaining the best out of the two – keep a certain 
randomness in order to assure diversity and in the same time use partially the information 
from a previously synthesized voxel. To acquire these two types of points visiting orders are 
proposed, in order to traverse once the points and without crossing the path – the Z-curve and 
the Hilbert curve. 

 
B3. Z-curve  
 

 The Z-curve or Lebesgue curve is one of the simplest filling curve algorithms, sorting 
the points in a Z-shape order. A sequence of Z-curves is obtained by starting with a basic Z-
shape and the rest of the curves are generated sequentially one from another using the same 
principle.  
 
 This is better illustrated in Fig B.3, where three iterations of the Z-curve are presented 
in 2D and 3D. It’s easier to understand the principle in 2D: first the basic shape containing 
four points is constructed; next make four copies of the same shape and connect the last point 
of one shape to the first point of the next one and so on; the new obtained bigger realization is 
recopied, the process is repeated, generating in the end a non-self-intersecting plane-filling 
curve.  Off course, one can use another way to connect the initial four points and to obtain 
other configurations.  
 
 The three-dimensional Z-curve is obtained similarly, starting with eight points 
connected as two parallel 2D basic z-shape configurations.  
 

 
Figure B.3 – Illustration of the Z space filling curve: the group on the left shows the 2D space case on 

three square configurations containing 2×2 points, 4×4 points and 8×8 points; it shows the basic 
four points z-shape and the basic shape repetitions in order to obtain o bigger Z-shape; similar to the 
2D case, the group on the right shows the Z-order path on three cubes of different sizes containing 8, 

64 and 512 points. 
  
 The Z-value of a point in multi-dimensions is obtained by simply interleaving its 
binary coordinates, the resulting Z-values being connected recursively in their numerical 
order. A representation of these binary operations is showed in Fig. B.4.  
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Figure B.4 – The binary coordinates interleaving schema for obtaining the points of a two-

dimensional Z-curve representation. 
 
 
B4. Hilbert curve  
 

 The Hilbert curve resembles in principle with the Z-curve. The differences appear in 
the fact that the way of connecting the 4 initial pixels in the 2D case respects another 
arrangement, while the update from a phase to another is not done by direct copying but by 
copying and rotating the basic 4 points-shape. The same connection between a last point and a 
next shape initial point is done.   
 The 2×2 (H1), the 4×4 (H2) and the 8×8 (H3) 2D Hilbert space-filling curves are 
shown in Fig. B.5. H2 is a curve connecting four copies of H1 in different orientations. 
 

 
Figure B.5 – Illustration of the Hilbert space filling curve: the group on the left shows the 2D case on 
three square configurations containing 2×2 points, 4×4 points and 8×8 points; the connexions are as 
in the case of the 2D Z-curve but the initial basic shape is different; the group on the right shows the 
Hilbert curve in a three-dimensional space exemplified on three cubes of different sizes containing 

23, 43 and 83points. 
 



 

 

136 

 However, the analytical form of the Hilbert curve is more intricate. The 3D extension 
follows the 2D principle but increases the complexity. Several algorithms have been proposed 
to build a Hilbert-curve, the best implementations being based on using bitwise operations or 
by using recursive procedures of rewriting systems (like the L-systems). The latter one can be 
explained by considering a plotter whose pen can move in several directions (up, down, right, 
left and even other intricate guidelines for the 3D case). 
 For my case, I choose to implement the Hilbert space filling curve using the algebraic 
operations proposed by [Che04]. These operations include tensor matrix product (for building 
a bigger matrix from two small matrices), direct sum and three permutations – stride 
permutation, vector reversal and Gray permutation. The objective is to draw a curve on a 
2� × 2� × 2� cube and to visit all the points without crossing the curve so that any two 
connected points have the Hamming distance equal to 1. Typically, a 2� × 2� × 2� Hilbert 
space-filling curve is recursively constructed from eight congruent  2�78 × 2�78 × 2�78 sub-
cubes connected in different orientations. Five orientations obtained by coordinate 
transformations, indexed from I to V, and the corresponding sub-cubes are presented below in 
Fig. B.6. The sub-cubes are connected in the order of the 2 × 2 × 2 Gray permutation: it maps 
the index sequence (0, 1, 2, 3, 4, 5, 6, 7) to (0, 1, 3, 2, 6, 7, 5, 4).  
 

 
Figure B.6 – Sub-cube types of the 3-D Hilbert space-filling curve and their coordinate 

transformations as suggested by [Che04]. 
  
 To summarize, building a 3-D Hilbert space filling curves is done by following the 
steps: block allocation, gray permutation, coordinate transformation and recursive 
construction. The reader can retrieve the iterative and the recursive algebraic operations 
involved by these steps in the original paper of [Che04b]. 
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Appendix C   
 

MRFs theory 
 
 
 
 The following concise theoretical form deals with the concept of Markov Random 
Fields and its equivalence with Gibbs Random Fields complementing the notional aspects in 
Chapter 4. It represents a condensed adaptation from [LiS01].  

 
C1. Markov Random Fields 
 

 A family #=:#8, #;… #<= is a random field if # is a family of random variables 
defined on the set of sites S, a particular case being when each variable #� takes a value from a 
finite set of labels L. The sites-and-labels concept is applicable.  #� = �� means the event for 
which the random variable  #�  takes the value �� and the set of labels �=:�8, �;… �<= 
corresponds to the configuration of  # such that :#8 = �8, #; = �8… #< = �8= or simply 
# = � is a joint event.  !(#� = ��) or simply !(��) represents the probability that a random 
variable #�  takes a value ��. The joint distribution stands for  !(# = �). 
 
 A random field # is considered to be a Markov Random Field (MRF) on the set of 
sites S with respect to the neighbouring system > (i.e. the set of all neighbourhoods >�)  if 
and only if it satisfies the conditions of positivity -  !(�) > 0 and markovianity - !@��A�B , C ≠
EFG = !@��A�HI

FG, where �HI represents the set of labels at the sites neighbouring i. The 
markovianity property describes the local characteristics of the random field, describing the 
local interactions between labels (i.e. LCPDF - local conditional probability density function). 

 
C2. Gibbs Random Fields 
 

 A random field # is considered to be a Gibbs Random Field (GRF) on the set of sites S 
with respect to the neighbouring system > if and only if its configurations respect a Gibbs 
distribution:  

!(�) = 1
J /78

KL(M)                                                          (N. 1) 

where  

J = O /78
KL(M)

M
                                                           (N. 2) 

is a normalizing constant, T is a constant called the temperature and P(�) is the energy 
function [Gem84].  
 
 To complete the definition, the notion of clique c intervenes [Gem84] [Pag98], 
defining a complete subgraph of (S, N) or more exactly a subset of sites in S that are all 
neighbours to one other.  
 Every site is a single-site clique; a pair of neighbouring sites defines a pair-site clique; 
and so on. The collection of all cliques is denoted C.  
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 The energy can be formulated as the sum of all clique potentials P�(�) over all 
possible cliques c: 

P(�) = O P�(�)
�∈C

                                                           (N. 3) 

 The value of P�(�) depends on the local configuration on the clique c so that !(�) is 
capable of describing the probability of reaching a specific configuration depending on the 
global measurements of local potentials.  

 
C3. Markov-Gibbs Equivalence 
 

 An MRF is characterized by its local property (markovianity), whereas a GRF is 
characterized by its global property (Gibbs distribution).  
 The Hammersley-Clifford theorem [Cli90] [Gem91] establishes the equivalence of 
these two types of properties. The theorem states that for a given neighbourhood system N, a 
random field F is an MRF on S with respect to N if and only if F is a GRF on S with respect to 
N. 
 The MRF-Gibbs distribution equivalence theorem gives form to the joint probability 
of a MRF by expressing it in terms of clique potential functions: 
 

!@��A�B , C ∈ >� FG = 1
J�

/∑ LS(M)S∈CI                                                   (N. 4) 

 
where J� is a local normalizing constant J� = ∑ !@TUA�B , C ∈ >� FG<UV8  over the finite state space 
� = :T8, … , T<= and the exponential sum is over the set of the local clique  C�=:N ∈ C, E ∈ N=. 
 
 
 Complete demonstrations are found in the MRF dedicated papers, indicated here as 
bibliography [Bes74] [Gem84] [Cli90] [Gem91]. 
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Appendix D   
 

Stochastic relaxation algorithms 
 
 
 
 The non-parametric synthesis algorithm based on the maximum-likelihood estimation 
described in Chapter 4 uses as relaxation algorithm the ICM deterministic one proposed by 
[GEM84].  But more known and globally more utilized are the stochastic algorithms. It is the 
case of the Metropolis algorithm described in Fig. D.1 and the case of the Gibbs sampler 
algorithm presented in Fig. D.2. 
 
 

 
Figure D.1 – The steps involved by the Metropolis algorithm. 

 
 

 
Figure D.2 – The steps involved by the Gibbs Sampler. 

 
 



 

 

140 

 
  



 

Appendix E   
 

TEM imaging 
 
 
 
 The principle of the transmission electron microscope is an optical analogue to the 
conventional light microscope (LM) as illustrated in 
 An illumination source in the form of an electric beam is focused on the specimen (the 
pyrocarbon sample) by the condenser electromagnetic lens. The resulting image of the 
specimen is modified through the objective and the projector lens. The electron image is 
transformed into a visible representation on a fluorescent screen, and saved into the comput
as a black-and-white image.  
 Areas that scatter few electrons (electron
image whilst areas that scatter more electrons or absorb electrons (electron
appear as dark areas. For TEM, the specimen ha
thin enough to get an image due to the transmission and the scattering of the electron beam 
through it. 

 

Figure E.1 – Schematic representation of transmission electron microscope and its analogy to the 

  
Mathematically, the diffraction of electrons by a solid corresponds to the Fourier 

Transform of the specimen atomic configuration, automatically accomplished by the 
electromagnetic lens. The resulted electrons give to the i
specimen and by using the network fringe technique the greatest intimacy (scale of 
angstroms) of the specimen concerning the orientation, the spacing and the length of the 
reticular layers is achieved.  

A detailed description of the TEM techniques exceeds the purpose of this work, but 
the interested reader is kindly encouraged to go over 
 
 

principle of the transmission electron microscope is an optical analogue to the 
conventional light microscope (LM) as illustrated in Fig. E.1.  

An illumination source in the form of an electric beam is focused on the specimen (the 
sample) by the condenser electromagnetic lens. The resulting image of the 

specimen is modified through the objective and the projector lens. The electron image is 
transformed into a visible representation on a fluorescent screen, and saved into the comput

Areas that scatter few electrons (electron-lucent areas) appear as bright areas in the 
image whilst areas that scatter more electrons or absorb electrons (electron

For TEM, the specimen has to be transparent for the electron beam, i.e. 
thin enough to get an image due to the transmission and the scattering of the electron beam 

Schematic representation of transmission electron microscope and its analogy to the 
conventional light microscope. 

Mathematically, the diffraction of electrons by a solid corresponds to the Fourier 
Transform of the specimen atomic configuration, automatically accomplished by the 
electromagnetic lens. The resulted electrons give to the image the atomic arrangement of the 
specimen and by using the network fringe technique the greatest intimacy (scale of 
angstroms) of the specimen concerning the orientation, the spacing and the length of the 

tion of the TEM techniques exceeds the purpose of this work, but 
the interested reader is kindly encouraged to go over [Des93] and [Ncem].  
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An illumination source in the form of an electric beam is focused on the specimen (the 
sample) by the condenser electromagnetic lens. The resulting image of the 

specimen is modified through the objective and the projector lens. The electron image is 
transformed into a visible representation on a fluorescent screen, and saved into the computer 

lucent areas) appear as bright areas in the 
image whilst areas that scatter more electrons or absorb electrons (electron-dense areas) 
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Appendix F   
 

Some large snapshots of HRTEM samples
 
 
 
 This appendix contains 3 pairs of large HRTEM images, from which smaller patches 
are being taken and used as source of synthesis in 
pages, starting with the present one, contains two images: on top the raw version an
bottom the filtered version. The following images are of size 
 

Some large snapshots of HRTEM samples 

This appendix contains 3 pairs of large HRTEM images, from which smaller patches 
are being taken and used as source of synthesis in Chapter 6.  Each of the following three 
pages, starting with the present one, contains two images: on top the raw version an
bottom the filtered version. The following images are of size 1024×1024 pixels.

 
 

 
Figure F.1 
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This appendix contains 3 pairs of large HRTEM images, from which smaller patches 
.  Each of the following three 

pages, starting with the present one, contains two images: on top the raw version and on 
pixels. 

 

 



 

 
 

 
Figure F.2 
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Figure F.3 

 

145 

 

 



 

 

146 

 



 

 

147 

Bibliography 
 
 
 
[Ala98]     O. Alata. Caractérisation de textures par coefficients de réflexion 2D. 

Application en classification et segmentation. Thèse N°1823, Université 
Bordeaux 1, 1998. 
 

[Ash01] 
 

M. Ashikhmin. Synthesizing natural textures. In SI3D: Proceedings of the 2001 
symposium on Interactive 3D graphics, pp. 217-226, New York, NY, USA, ACM 
Press, 2001. 
 

[Bee96]     A. C. Beers, M. Agrawala and N. Chaddha. Rendering from compressed textures. 
Proceedings of SIGGRAPH, pp. 373–378, August 1996. 
 

[Bes74]     J. E. Besag. Spatial interaction and the statistical analysis of lattice systems. In 
Journal of the Royal Statistical Society, series B, vol. 36, pp. 192-326, 1974. 
 

[Bes86]     J. E. Besag. On the statistical analysis of dirty pictures. Journal of The Royal 
Statistical Society, vol. B-48, pp. 259-302, 1986. 
 

[Big91]     
 

J. Bigun, G. Granlund and J. Wiklund. Multidimensional orientation estimation 
with applications to texture analysis and optical flow. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 13(8): 775-789, 1991. 
 

[Bla07]     
 

R. Blanc. Apport  des  statistiques  spatiales  à  l'élaboration  de  critères 
d'homogénéité et à l'inférence en analyse de textures. Application à la 
caractérisation de matériaux. Thèse N°3377, Université Bordeaux 1, 2007. 
 

[Bou91]     
 

C. Bouman and B Liu. Multiple resolution segmentation of textured images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 13 -2, pp. 99-
113, 1991. 
 

[Bou93]    
 

X. Bourrat, A. Oberlin and R. Bachelard. Carbon, vol 31, issue 2, pp. 287-302, 
1993. 
 

[Bou02]    
 

X. Bourrat, A. Fillion , R. Naslain, G. Chollon and M. Brendle. Regenerative 
laminar pyrocarbon, Carbon, vol 40, issue 15, pp 2931-2945, 2002. 
 

[Bou06]    
 

X. Bourrat, J. -M. Vallerot, F. Langlais and G. Vignoles. La croissance des 
pyrocarbones. Composites thermo-structuraux, l’actualité chimique n° 295-296, 
mars-avril 2006. 
 

[Bro66]     
 

P. Brodatz. A Photographic Album for Artists and Designers. Dover, New York, 
1966. 
 

[Bro02] S. Brooks and N. Dodgson. Self-similarity based texture editing.  Proceedings of 
ACM SIGGRAPH, Volume 21(3), pp. 653-656, July 2002. 



 

 

148 

[Bur83]     
 

P. J. Burt and E. H. Adelson. A Multiresolution Spline With Application to Image 
Mosaics. ACM Transactions on Graphics, 2(4), pp.217-236, 1983. 
 

[Cas02]     
 

V. Castelli and L. D. Bergman. Image Databases: Search and Retrieval of Digital 
Imagery. Wiley, New York, 2002. 
 

[Che85]   
 

R. Chellappa and R. L. Kashyap. Texture synthesis using 2-D noncausal 
autoregressive models. IEEE Transactions on Acoustics, Speech, and 
SignalProcessing, vol. ASSP 33, no. 1, pp. 194-203, 1985. 
 

[Che93]    
 

R. Chellappa, R. Kashyap and B. Manjunath. Model based texture segmentation 
and classification. Handbook of Pattern Recognition and Computer Vision, 
World Scientifc Publishing, pp. 277–310, 1993. 
 

[Che98]    
 

H. Chen, L. F. Pau and P.S.P Wang. The Handbook of Pattern Recognition and 
Computer Vision (2nd Edition), chapter 2.1, pp. 207-248, World Scientific 
Publishing Co., 1998. 
 

[Che04a]   
 

Y. Chen and H.-S. IP. Texture evolution: 3D texture synthesis from single 2D 
growable texture pattern, the Visual Computer, Vol. 20, No. 10, pp. 650-664, 
Dec. 2004. 
 

[Che04b]  
 

C. -S. Chen, S. -Y. Lin, and C. -H. Huang. Algebraic formulation and program 
generation of three-dimensional Hilbert space-filling curves. In Proceedings of 
the International Conference on Imaging Science, Systems, and Technology, pp. 
254–260, 2004. 
 

[Che10]    
 

J. Chen and B. Wang.  High quality solid texture synthesis using position and   
index histogram matching. The Visual Computer, vol.26, pp. 253-262, 2010. 
 

[Chi06]      
 

J. W. Chiou and C. K. Yang. A New Algorithm for Solid Texture Synthesis. 
Lecture Notes in Computer Science 4292/2006 (Advances in Visual Computing), 
pp. 780-789, 2006. 
 

[Cla87]     
 

M. Clark, A. C. Bovik and W. S. Geisler. Texture segmentation using Gabor 
modulation/demodulation. Pattern Recognition Letters, vol. 6, no. 4, pp. 261-267, 
1987. 
 

[Cli90]      
 

P. Clifford. Markov Random Fields in Statistics. in Disorder in Physical Systems: 
A Volume in Honour of John M. Hammersley, eds. G. Grimmett and D. Welsh, 
Oxford University Press, pp.19–32, UK, 1990. 
 

[Coh03]     
 

M. F. Cohen, J. Shade, S. Hiller and O. Deussen. Wang tiles for image and 
texture generation. ACM Transactions on Graphics 22, 3, pp.287–294, 2003. 
 

[Col80]    
 

D. Coleman, P. Holland, N. Kaden, V. Klema and S. C. Peters. A system of 
subroutines for iteratively reweighted least squares computations. ACM Trans. 
Math. Software, 6, 3, pp.327–336, 1980. 
 
 



 

 

149 

[Con80]     
 

R. W. Conners and C. Harlow. A Theoretical Comparison of Texture Algorithms. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, 2(3), pp. 204-222, 
1980. 
 

[Coo05]    
 

R. L. Cook and T. DeRose. Wavelet noise. In SIGGRAPH, pp. 803– 811, New 
York, NY, USA, 2005. 
 

[Cro83]     
 

G. Cross and A. Jain. Markov Random Field Texture Models.  IEEE Transactions 
on Pattern Analysis and Machine Intelligence, PAMI-5, pp. 25-39, 1983. 
 

[Cut02]    
 

B. Cutler, J. Dorsey, L. McMillan, M. Muller and R. Jagnow. A procedural 
approach to authoring solid models. ACM Trans. Graph. 21, 3, pp. 302– 311, 
2002. 
 

[DaC01]    
 

J. -P. Da Costa. Analyse statistique de textures directionnelles. Application a la 
caracterisation de materiaux composites. Thèse N°2463, Univ. Bordeaux 1, 
2001. 
 

[DaC04]   
 

J. -P. Da Costa, C. Germain, P. Baylou and M. Cataldi. An  image  analysis 
approach for the structural characterization of pyrocarbons. Proceedings of 
Composite Testing, University Press, Bristol, UK, 2004. 
 

[DaC10]   
 

J. -P. Da Costa and C. Germain.  Synthesis of solid textures based on a 2D 
example: application to the synthesis of 3D carbon structures observed by 
transmission electronic microscopy. Proc. of SPIE, vol. 7538, Image Processing: 
Machine Vision Applications III, pp.10, 2010. 
 

[Dav97]    
 

N. Davidson, A. Clarke and G. Archetypal. Large-area, high-resolution image 
analysis of composite materials. Journal of Microscopy 185, 233-242, 1997. 
 

[Deb97] J. S. DeBonet. Multiresolution sampling procedure for analysis and synthesis of 
texture images. In SIGGRAPH: Proceedings of the 24th annual conference on 
Computer graphics and interactive techniques. ACM Press/Addison-Wesley 
Publishing Co., pp. 361– 368, 1997. 
 

[Des93]    
 

J. -F. Despres. Les interphases de carbone pyrolytique dans les composites 
carbone/carbure de silicium, thèse n°180, Université de Pau et de Pays de 
l’Adour, 9 septembre 1993. 
 

[Dis97]      
 

J. Dischler and D. Ghazanfarpour. A procedural description of geometric textures 
by spectral and spatial analysis of profiles. Computer Graphics Forum, 16:129–
139, 1997. 
 

[Dis98]       
 

J. Dischler, D. Ghazanfarpour and R. Freydier. Anisotropic solid texture synthesis 
using orthogonal 2D views. Computer Graphics Forum 17, 3 (Proc. 
Eurographics), pp. 87–96, 1998. 
 

[Dis99]    
 

J. Dischler and D. Ghazanfarpour. Interactive Image - Based Modeling of    
Macrostructured Textures. In Computers & Graphics 19, pp. 66–74, 1999. 
 



 

 

150 

[Dis01]     
 

J. Dischler and D. Ghazanfarpour. A survey of 3D texturing. In Computers & 
Graphics, Vol. 25, issue 1, pp.135-151, 2001. 
 

[DiZ86]     
 

S. Di Zenzo. A note on the gradient of a multi-image, Computer Vision, Graphics, 
and Image Processing, 33(1), 116, 1986. 
 

[Dro03]   
 

I. Drori, D. Cohen-Or and H. Yeshurun. Fragment-based image completion.  
In ACM Transactions on Graphics, SIGGRAPH, volume 22, i.3, pp. 303-312, 
2003. 
 

[Dub11]   
 

S. Dubois, R. Peteri and M. Menard. Textures dynamiques: etat de l’art, 
modelisation, applications. 23ème colloque GRETSI, Bordeaux, France, 2011. 
 

[Dun00]     
 

J. S. Duncan and N. Ayache. Medical image analysis: Progress over two decades 
and the challenges ahead. IEEE Trans on PAMI. Vol 22, pp.85–106, 2000. 
 

[Ebe01]     
 

C. Eberhardt and A. Clarke. Fiber-orientation measurements in short-glass-fibre 
composites. part 1. automated, high-angular-resolution measurement by confocal 
microscopy. Composites Science and Technology 61, 1389-1400, 2001. 
 

[Ebe02]      
 

D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin and S. Worley. Texturing and 
Modeling: A Procedural Approach. Morgan Kaufmann Publishers Inc., San 
Francisco, CA, USA, 2002. 
 

[Efr99]     
 

A. Efros and T. Leung. Texture synthesis by non-parametric sampling.  In the 
International Conference on Computer Vision, volume 2, pp. 1033–1038, Sep 
1999. 
 

[Efr01]       
 

A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In 
SIGGRAPH: Proceedings of the 28th annual conference on Computer graphics 
and interactive techniques, pp. 341-346, New York, NY, USA, ACM Press, 2001. 
 

[Far12]     
 

B. Farbos, J. -M. Leyssale, J. -P. Da Costa, G. Vignoles. Atomistic models of 
pyrolytic carbons obtained with the IGAR method. Carbon 2012 Conference, 
Cracow, Poland, S. Blazewicz & E. Frackowiak eds., ref. 382, 2012. 
 

[Fra93]       
 

J. M. Francos, A. Z. Meiri and B. Porat. A Unified Texture Model Based on a 2-D 
Wold-Like Decomposition. IEEE Trans. Signal Processing, vol. 41, pp. 2665-
2678, 1993. 
 

[Gag83]     
 

A. Gagalowicz. Vers un modele de textures. These, Universite Paris 6, 1983. 
 

[Gal11]     
 

B. Galerne, Y. Gousseau and J.-M. Morel. Random Phase Textures: Theory and 
Synthesis. IEEE Trans. on Image Processing, vol. 20, pp: 257 - 267, 2011. 
 

[Gar84]     
 

G. Gardner. Simulation of Natural Scene Using Textured Quadric Surfaces. In: 
SIGGRAPH, 11–20, 1984. 
 

[Gei07]     
 

A. K. Geim and K.S. Novoselov. The rise of graphene. In Nature materials, 
Nature publishing group, vol 6, march 2007. 



 

 

151 

 
[Gem84]   
 

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the 
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 6, no. 6, pp. 721-741, 1984. 
 

[Gem91]   
 

D. Geman. Random fields and inverse problems in imaging. In Lecture Notes in 
Mathematics, vol. 1427, pp. 113-193. Springer-Verlag, 1991. 
 

[Ger92]     
 

A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer 
Academic Publishers, 1992. 
 

[Ger97]      
 

C. Germain. Contribution à la Caractérisation Multi-échelle de l’Anisotropie des 
Images Texturées. Thèse N°1808, Université Bordeaux I, 1997. 
 

[Ger03]     
 

C. Germain, J. -P. Da Costa, O. Lavialle and P. Baylou. Multiscale estimation of 
vector field anisotropy. Application to texture characterization.  
In Signal Processing, vol. 83, pp. 1487-1503, 2003. 
 

[Gha95]     
 

D. Ghazanfarpour and J.-M. Dischler. Spectral analysis for automatic 3-D texture 
generation. Computers and Graphics 19, 3, pp. 413–422, 1995. 
 

[Gha96]     D. Ghazanfarpour and J.-M. Dischler. Generation of 3D texture using multiple 
2D models analysis. Computer Graphics Forum 15, 3 (Proc. Eurographics), pp. 
311–323, 1996. 
 

[Gol08]      
 

A. Goldberg, M. Zwicker and F. Durand. Anisotropic noise. SIGGRAPH, pp. 1–8, 
New York, NY, USA, 2008. 
 

[Gor03]   
 

G. Gorla, V. Interrante, and G. Sapiro. Texture Synthesis for 3D Shape 
Representation.  IEEE Transactions on Visualization and Computer Graphics 
Volume 9 Issue 4, pp.512-524, October 2003. 
 

[Hai91]      
 

M. Haindl. Texture synthesis. CWI Quarterly, vol.4, pp. 305-331, 1991. 
 

[Han06]    
 

J. Han, K. Zhou, L. -Y. Wei, M. Gong, H. Bao, X. Zhang and B. Guo.  Fast 
example - based surface texture synthesis via discrete optimization. Visual 
Computer 22(9), pp.918–925, 2006. 
 

[Har73]     
 

R. M. Haralick, K. Shanmugam, and I. H. Dinstein. Textural Features for Image 
Classification. IEEE Transactions on Systems, Man and Cybernetics, vol. 3, pp. 
610-621, 1973. 
 

[Har92]     
 

R. M. Haralick and L.G. Shapiro. Computer and Robot Vision. Vol I, Addison 
Wesley, 1992. 
 

[Hec86]    
 

P. Heckbert, Survey of Texture Mapping, Pixar, IEEE Computer Graphics and 
Applications, Nov. 1986. 
 

[Hee95]    
 

D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In 
SIGGRAPH , pp. 229–238, New York, NY, USA, 1995. 



 

 

152 

[Her01]    
 

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless and D.H. Salesin. Image 
analogies. Proceedings of the 28th annual conference on Computer graphics and 
interactive techniques, pp. 327-340, New York, NY, USA, ACM Press, 2001. 
 

[Hil91] D. Hilbert. PX Y/Z die stetige abbildung einer linie auf Fl[Xchenst\X ck. In 
Mathematische Annalen, 38:459–460, 1891. 
 

[Ige97]    
 

H. Igehy and L. Pereira. Image replacement through texture synthesis. In  
International Conference on Image Processing, vol 3, pp. 186–189, Oct 1997. 
 

[Jag04]    
 

R. Jagnow, J. Dorsey and H. Rushmeier. Stereological Techniques for Solid 
Textures. In: SIGGRAPH ’2004, pp.329–335, 2004. 
 

[Jol86]       
 

I. T. Jollife. Principal Component Analysis. Springer-Verlag, New York, 1986. 
 

[Kho87]    
 

A. Khotanzad and R. Kashyap. Feature Selection for Texture Recognition Based 
on Image Synthesis. IEEE Transactions on Systems, Man, and Cybernetics, 17, 
pp. 1087-1095, 1987. 
 

[Kop07]     
 

J. Kopf, C.W. Fu, D. Cohen-Or, O. Deussenn, D. Lischinski and T.T. Wong. 
Solid Texture Synthesis from 2D Exemplars. ACM SIGGRAPH, TOG, vol. 26, 
issue 3, 2007. 
 

[Kwa03]    
 

V. Kwatra, A. Schödl, I. A. Essa, G. Turk and A. F. Bobick.  Graphcut textures: 
Image and video synthesis using graph cuts.  In ACM Transactions on Graphics, 
SIGGRAPH, volume 22(3), pp. 277-286, July 2003. 
 

[Kwa05]    
 

V. Kwatra, I. Essa, A. Bobick and N. Kwatra. Texture optimization for example-
based synthesis. ACM Transactions on Graphics 24, 3 (Proc. SIGGRAPH), 
pp.795–802, 2005. 
 

[Kwa07]    
 

V. Kwatra, S. Lefebvre, G. Turk and L.-Y.Wei. Example-Based Texture 
Synthesis. In Course Notes for SIGGRAPH 2007. 
 

[Lag09]     A. Lagae, S. Lefebvre, G. Drettakis and P. Dutre. Procedural noise using sparse 
Gabor convolution. In SIGGRAPH, 28(3), August 2009. 
 

[Lee01]    
 

K. S. Lee, S. W. Lee, J. Youn, T. Kang and K. Chung. Confocal microscopy 
measurement of the fiber orientation in short fiber reinforced plastics. Fibers and 
Polymers 2, 41-50, 2001. 
 

[Lef06]    
 

S. Lefebvre and H. Hoppe. Appearance - space texture synthesis. In ACM 
Transactions on Graphics, 25(3), pp.541-548, 2006. 
 

[Lew89]   
 

J. -P. Lewis. Algorithms for Solid Noise Synthesis. In Computer Graphics 
(SIGGRAPH Proceedings), volume 23, pp. 263–270, July 1989. 
 

[Ley09]      
 

J. -M. Leyssale, J. -P. Da Costa, C. Germain, P. Weisbecker and G. Vignoles. An 
image-guided atomistic reconstruction of pyrolytic carbons. Applied Physics 
Letters, vol. 95, 2009. 



 

 

153 

[Lia01]      
 

L. Liang, C. Liu, Y. Q. Xu, B. Guo and H. Shum. Real-time texture synthesis by 
patch-based sampling. ACM Transactions on Graphics 20, 3, pp.127– 150, 2001. 
 

[Lin04]      
 

W. -C. Lin, J. H. Hays, C. Wu, V. Kwatra and Y. Liu. A comparison study of four 
texture synthesis algorithms on regular and near-regular textures. Technical 
report, Carnegie Mellon University, 2004. 
 

[LiS01]      S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer Verlag, 
Tokyo, second edition, 2001. 
 

[Mal89]     
 

S. Mallat. Multifrequency Channel Decomposition of Images and Wavelet 
Models. IEEE Trans. Acoustic, Speech and Signal Processing, 37,12, pp. 2091-
2110, 1989. 
 

[Mar89]     
 

H. Marsh, Introduction to carbon science. Butterworths, pp 321, 1989. 
 

[Merr]        
 

Merriam-Webster's Collegiate Online Dictionary - www.merriam-webster.com 
 

[Mess]      
 

Messier – Buggati – Dowty breaking system from http://materiaux-energetiques. 
com/activites/wheels-and-brakes/carbon-brake/ 
 

[Met53]    
 

N. Metropolis, A.W.  Rosenbluth, M.N. Rosenbluth, A.H.  Teller and E. Teller. 
Equations of state calculations by fast computing machines. Journal of Chemical 
Physics, vol. 21, pp. 1087-1091, 1953. 
 

[Ncem]      
 

The National Center for Electron Microscopy, NCEM HRTEM Image Simulation 
Software, http://ncem.lbl.gov/frames/source/software.htm 
 

[Nea03]     
 

A. Nealen and M. Alexa. Hybrid texture synthesis. In EGRW: Proceedings of the 
14th Eurographics workshop on Rendering, pp. 97-105, Airela-Ville, 
Switzerland, Eurographics Association, 2003. 
 

[Nen97]    
 

S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high 
dimensions.IEEE Transactions on Pattern Analysis and Machine Intelligence, 
19:989–1003, 1997. 
 

[Obe89]    
 

A. Oberlin. High-resolution TEM studies of carbonization and graphitization, 
Chemistry and Physics of Carbon, Ed. Peter A. Thrower. Thrower & M. Dekker, 
New York, 22, pp. 1-143, 1989. 
 

[Obe02]     
 

A. Oberlin. Pyrocarbons. Carbon, 40, pp:7-24, 2002. 
 

[Owa04]   
 

S. Owada, F. Nielsen, M. Okabe, and T. Igarashi. Volumetric illustration : 
designing 3d models with internal textures. ACM Trans. Graph. 23, 3, pp.322–
328, 2004. 
 

[Pag98]    
 

R. Paget and I. Longstaff. Texture synthesis via a noncausal nonparametric 
multiscale Markov random field. In IEEE Transactions on Image Processing 7, 6, 
pp. 925–931, 1998. 
 



 

 

154 

[Pea90]     
 

G. Peano. Sur une courbe qui remplit toute une aire plane. In Mathematische 
Annalen, 36:157-160, 1890. 
 

[Pea85]    
 

D. R. Peachey. Solid Texturing of Complex Surfaces. Computer Graphics 
(SIGGRAPH Proceedings), 19(3), July 1985. 
 

[Pei88]      
 

H. Peitgen and D. Saupe. The Science of Fractal Images. Springer-Verlag, New 
York, 1988. 
 

[Per85]      
 

K. Perlin. An Image Synthesizer. Computer Graphics (SIGGRAPH  Proceedings), 
volume 19, pp. 287–296, July 1985. 
 

[Pey10]     
 

G. Peyré. Texture synthesis with grouplets. Transactions on Pattern Analysis and 
Machine Intelligence, 4(32), pp.733–746, 2010. 
 

[Pie93]      
 

H. Pierson. Handbook of carbon, graphite, diamond and fullerenes, p.48, Noyes 
Publications, 1993. 
 

[Pie07]       
 

N. Pietroni, M. Otaduy, B. Bickel, F. Ganovelli and M. Gross. Texturing internal 
surfaces from a few cross sections. Computer Graphics Forum 26, 3, pp.637–644, 
2007. 
 

[Pop93]    
 

K. Popat and R. W. Picard. Novel cluster-based probability model for texture 
synthesis, classification, and compression. In Proceedings SPIE visual 
Communications and Image Processing, Boston, 1993. 
 

[Por96]      
 

J. Portilla, R. Navarro and O. Nestares. Texture synthesis - by - analysis method 
based on a multiscale early-vision model. Opt. Eng. 35(8) pp. 2403–2417, August 
1996. 
 

[Por00]      
 

J. Portilla and P. Simoncelli. A parametric texture model based on joint statistics  
of complex wavelet coefficients. International Journal of Computer Vision 40, 1, 
pp. 49–70, 2000. 
 

[Pra00]    
 

E. Praun, A. Finkelstein and H. Hoppe. Lapped textures. In SIGGRAPH : 
Proceedings of the 27th annual conference on Computer graphics and interactive 
techniques. ACM Press/Addison-Wesley Publishing Co., pp. 465–470, 2000. 
 

[Pri12]      
 

J. C. Prieto, C. Revol-Muller, F. Peyrin, P. Camelitti and C. Odet, 3D Texture 
synthesis for modeling realistic organic tissues, VISAPP 2012. International 
Conference on Computer Vision Theory and Applications, 24-26, pp.60-65, 
Rome, Italy, February 2012. 
 

[Qin07]     
 

X. Qin and Y. -H. Yang.  Aura 3D textures. IEEE Transactions on Visualization 
and Computer Graphics, Volume 13 Issue 2, pp. 379-389, 2007. 
 

[Rab10]    
 

J. Rabin, G. Peyre, J. Delon and M. Bernot. Wasserstein barycenter and its 
application to texture mixing. Technical report, 2010. 
 
 



 

 

155 

[Ram00]   
 

C. Ramananjarasoa, O. Alata and M. Najim. 2-D Wold Decomposition: New 
Parameter Estimation Approach to Evanescent Field Spectral Supports. Signal 
Processing X EUSIPCO, Vol. 2, pp.913–916, Tampere, Finlande, 2000. 
 

[Rao90]     
 

A. R. Rao. A taxonomy for texture description and identification. Springer-
Verlag, NY, USA, 1990, ISBN: 0-387-97302-8. 
 

[Ray10]     
 

P. I. Raynal, M. Monthioux, J. -P. Da Costa and O. Dugne. Multi-scale 
quantitative analysis of carbon structure and texture: III. Lattice fringe imaging 
analysis. Carbon 2010 Conference, Clemson, SC, M. Thies ed. ref. 627, 11-16 
July 2010. 
 

[Rou02]     
 

J. -N. Rouzaud and C. Clinard. Quantitative high resolution transmission electron 
microscopy: a promising tool for carbon materials characterization. Fuel 
Processing Technology, 77-78, pp. 229-235, 2002. 
 

[Sag94]      
 

H. Sagan. Space Filling Curves, Springer-Verlag, New York ,1994. 
 

[Sav93]      
 

G. Savage. Carbon-carbon composites. Eds. Chapman & Hall, London, 1993. 
 

[Sch00]     
 

A. Schodl, R. Szeliski, D. H. Salesin and I. Essa. Video textures. In Computer 
Graphics, ACM SIGGRAPH Proceedings, pp. 489-498, New Orleans, July 2000. 
 

[Shi00]       
 

H. Shim, R. Hurt and N. Yang. A methodology for analysis of 002 lf fringe 
images and its application to combustion-derived carbons. Carbon 38, pp29-45, 
2000. 
 

[Sil86]        
 

B.W. Silverman. Density estimation for statistics and data analysis. Chapman 
and Hall, London, 1986. 
 

[Sim92]     
 

P. Simoncelli, W. T. Freeman, E. Adelson  and D. Heeger. Shiftable Multi-Scale 
Transforms. IEEE Transactions on Information Theory, Special Issue on 
Wavelets 38, pp.587–607, 1992. 
 

[Siv99]      
 

K. Sivakumar. Morphologically constrained GRFs:application to texture 
synthesis and analysis. IEEE Trans. PAMI 21-2, pp. 148–153, 1999. 
 

[Skl78]     
 

J. Sklansky. Image Segmentation and Feature Extraction, IEEE Transactions on 
Systems, Man, and Cybernetics, SMC-8, pp. 237-247, 1978. 
 

[Snec]      
 

Snecma Vinci motor from http://www.safran-group.com/site-safran/aerospatial/ 
propulsion-aeronautique-et/moteurs-spatiaux/vinci-r-231/ 
 

[Ste84]     
 

D. Sterio.  The unbiased estimation of number and sizes of arbitrary particles   
using the dissector. Journal of Microscopy 134, 127-136, 1984. 
 

[Sri08]      
 

G. N. Srinivasan and G. Shobha.  Statistical  Texture  Analysis.  Proceedings  of 
World Academy of Science, Engineering and Technology, vol. 36, 2008. 
 
 



 

 

156 

[Sti07]       
 

Y. Stitou, F. Turcu, Y. Berthoumieu and M. Najim. Three-Dimensional Textured 
Image Blocks Model Based on Wold Decomposition. IEEE Transactions on 
Signal Processing, vol. 55, issue 7, pp. 3247-3261, 2007. 
 

[Sto98]       
 

R. Stoica, J. Zerubia and J. Francos. The Two-Dimensional Wold- Decomposition 
for Segmentation and Indexing in Image Libraries. Proceedings of ICASSP, 
Seattle, 1998. 
 

[Sun10]   W. Sun, Y. Lu, F. Wu, S. Li and J. Tardif. High-Dynamic-Range Texture 
Compression for Rendering Systems of Different Capacities. IEEE Transactions 
on Visualization and Computer Graphics, vol. 16, no. 1, pp. 57-69, Jan.-Feb. 
2010. 
 

[Szu96]    
 

M. Szummer and R.W. Picard. Temporal texture modeling. In International 
Conference on Image Processing, volume 3, pp. 823–826, Sep 1996. 
 

[Tak08]     
 

K. Takayama, M. Okabe, T. Ijiri and T. Igarashi. Lapped solid textures: filling a 
model with anisotropic textures. Proceedings of ACM SIGGRAPH, Volume 27, 
Issue 3, 2008. 
 

[Tam78]    
 

H. Tamural, S Mori and T Yamawaki. Textural features corresponding to visual 
perception. IEEE Transations on Systems, Man and Cybernetics, Vol. 8, No. 6, 
pp. 460-473, 1978. 
 

[Ton02]    
 

X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo and H. Shum. Synthesis of bi-
directional texture functions on arbitrary surfaces. In SIGGRAPH: Proceedings 
of the 29th annual conference on Computer graphics and interactive techniques. 
ACM Press, pp.665–672, 2002. 
 

[Tur86]      
 

M. R. Turner. Texture discrimination by Gabor functions. Biological Cybernetics, 
vol. 55, no. 2-3, pp. 71-82, 1986. 
 

[Tur91]      
 

G. Turk. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. In 
Computer Graphics (SIGGRAPH Proceedings), vol. 25, pp. 289–298, July 1991. 
 

[Tur01]     
 

G. Turk, Texture Synthesis on Surfaces, Proc. ACM SIGGRAPH 2001, pp. 347-
354, 2001. 
 

[Ups89]      
 

S. Upstill. The RenderMan Companion. Addison Westley, 1989. 
 

[Urs10]     
 

R. Urs, J. -P. Da Costa, J. -M. Leyssale, G. Vignoles and C. Germain. A non- 
parametric approach for 3D texture synthesis. 3D-IMS 2010 – 2nd Conference on 
3D-Imaging of Materials and Systems 2010, Carcans-Maubuisson, France, D. 
Bernard ed., Sept 2010. 
 

[Urs11]      
 

R. Urs, J. -P. Da Costa, J. -M. Leyssale, G. Vignoles et C. Germain. Algorithmes 
non paramétriques pour la synthèse de textures volumiques à partir d’un exemple 
2D. XXIIIe Colloque GRETSI – Traitement du Signal et des Images, Bordeaux, 
Septembre 2011. 
 



 

 

157 

[Urs12]     
 

R. Urs, J. -P. Da Costa, J. -M. Leyssale, G. Vignoles and C. Germain. Non-
parametric synthesis of laminar volumetric textures from a 2D sample. In 
Proceedings of British Machine Vision Conference, pp.54.1-54.11, 2012. 
 

[Visi]    
 

Vision Texture online database http://vismod.media.mit.edu/vismod/imagery/ 
VisionTexture 
 

[Wei00]    
 

L. -Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector 
quantization. In SIGGRAPH, 27th International Conference on Computer 
Graphics and Interactive Techniques, pp. 479-488, 2000. 
 

[Wei01]    
 

L. -Y. Wei and M. Levoy. Texture Synthesis over Arbitrary Manifold Surfaces, 
Proceedings of ACM SIGGRAPH, pp. 355-360, 2001. 
 

[Wei03]     
 

L. -Y. Wei and M. Levoy. Texture synthesis from multiple sources. Proceedings 
of ACM SIGGRAPH Sketches & Applications, New York, 2003. 
 

[Wei09]     
 

L. -Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in example 
based texture synthesis. In Eurographics, EGSTAR. Eurographics Association, 
2009. 
 

[Wor96]    
 

S. Worley: A cellular texture basis function. In SIGGRAPH : Proceedings of the 
23rd annual conference on Computer graphics and interactive techniques. ACM 
Press, pp. 291–294, 1996. 
 

[Wik01]    
 

K. Wikantika, A. Harto and R. Tateishi. The use of spectral and textural features 
from Landsat TM image for land cover classification in mountainous area. 
Proceedings of the IECL Japan workshop, Tokyo, 2001. 
 

[XuG00]    
 

Y. Q. Xu, B. Guo and H. Shum. Chaos mosaic: Fast and memory efficient texture 
synthesis. In Tech. Rep. MSRTR-2000-32, Microsoft Research, 2000. 
 

[Yin01]      
 

L. Ying, A. Hertzmann, H. Biermann and D. Zorin. Texture and  Shape Synthesis 
on surfaces, Proc. 12th Eurographics Workshop Rendering, June 2001. 
 

[Zha08]     
 

Y. Zhang, Z. Sun and W. Li. Texture synthesis based on Directional Empirical 
Mode Decomposition. Computers & Graphics, Vol. 32 – 2, pp. 175–186, 2008. 
 

[Zho06a]   
 

D. Zhou. Texture Analysis and Synthesis Using a Generic Markov-Gibbs Image 
Model. Computer Science - University of Auckland, Master’s thesis, 2006. 
 

[Zho06b]   
 

K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo and H.-Y. Shum. 
Mesh quilting for geometric texture synthesis. Proceedings of ACM Transactions 
on Graphics SIGGRAPH, Volume 25 Issue 3, pp.690 – 697, July 2006. 
 

[Zel02]     
 

S. Zelinka and M. Garland. Towards real - time texture synthesis with the jump 
map. In EGRW: Proceedings of the 13th Eurographics workshop on Rendering, 
Eurographics Association, pp.99–104, 2002. 
 

 



 

 

158 

 
 
 
 

 
  



 

 

159 

List of contributed work 
 
 
 
 
 
List of publications  
 
 
 
[Urs10]     
 

R. Urs, J.-P. Da Costa, J. -M. Leyssale, G. Vignoles and C. Germain. A non-
parametric approach for 3D texture synthesis. 3D-IMS 2010 – 2nd Conference on 
3D-Imaging of Materials and Systems 2010, Carcans-Maubuisson, France, D. 
Bernard ed., Sept 2010. 
 

[Urs11]      
 

R. Urs, J. -P. Da Costa, J. -M. Leyssale, G. Vignoles et C. Germain. Algorithmes 
non paramétriques pour la synthèse de textures volumiques à partir d’un exemple 
2D. XXIIIe Colloque GRETSI – Traitement du Signal et des Images, Bordeaux, 
Septembre 2011. 
 

[Urs12]     
 

R. Urs, J. -P. Da Costa, J. -M. Leyssale, G. Vignoles and C. Germain. Non-
parametric synthesis of laminar volumetric textures from a 2D sample. In 
Proceedings of British Machine Vision Conference, pp.54.1-54.11, 2012, 
http://dx.doi.org/10.5244/C.26.54. 

 

 
 
 
 
List of contributed talks 
 
 
 
R. Urs. Synthèse de textures volumiques par inférence 2D/3D. Contributed talk for Journée 

sur la texture 3D at Maison des Sciences de l'Ingénieur (MSI), Rochelle University, 
July 2010.  

 
R. Urs. 2D/3D synthesis of HRTEM-like snapshots of dense carbons. Contributed talk on 

Imaging & Image Analysis at Carbon 2012 satellite workshop “Order/Disorder in 
Bulk Carbon Materials: structure/texture, quantification, imaging, modelling, 
structure-property relationships” in June 15-16, 2012, at Cracow AGH (Poland), 
under the PyroMaN project - http://www.pyroman.cnrs.fr/pyroman/fr/.  

 


