
HAL Id: tel-00821906
https://theses.hal.science/tel-00821906

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards and ASIP optimized for multi-standard turbo
decoding

Rachid Al Khayat

To cite this version:
Rachid Al Khayat. Towards and ASIP optimized for multi-standard turbo decoding. Electronics.
Télécom Bretagne, Université de Bretagne-Sud, 2012. English. �NNT : �. �tel-00821906�

https://theses.hal.science/tel-00821906
https://hal.archives-ouvertes.fr

N° d’ordre : 2012telb0247

SSoouuss llee sscceeaauu ddee ll’’UUnniivveerrssiittéé eeuurrooppééeennnnee ddee BBrreettaaggnnee

Télécom Bretagne

En habilitation conjointe avec l’Université de Bretagne-Sud

Ecole Doctorale – SICMA

Vers une architecture optimisée d’ASIP pour
turbo-décodage multi-standard

Thèse de Doctorat

Mention : STIC (Sciences et Technologies de l’Information et de la Communication)

Présentée par Rachid AL KHAYAT

Département : Electronique

Laboratoire : Lab-STICC / Pôle CACS

Directeur de thèse : Michel Jézéquel

Soutenue le 16 novembre 2012

Jury :

M. Maryline Hélard, Professeure à l’INSA de Rennes (Présidente)
M. Fabrice Monteiro, Professeur à l’Université de Lorraine (Rapporteur)
M. Smail Niar, Professeur à l’Université de Valenciennes (Rapporteur)
M. Guido Masera, Professeur à Politecnico di Torino (Examinateur)
M. Philippe Coussy, Maître de conférences/HDR, à l’Université de Bretagne-Sud (Examinateur)
M. Amer Baghdadi, Maître de conférences/HDR, à Télécom Bretagne (Encadrant)
M. Michel Jézéquel, Professeur à Télécom Bretagne (Directeur)

Contents

Introduction 1

1 Turbo Codes and Turbo Decoding 5

1.1 Fundamentals of Channel Coding . 6

1.1.1 Coding Theory . 6

1.1.2 Channel Model . 6

1.1.3 Modulation . 7

1.2 Convolutional Codes . 7

1.2.1 Recursive Systematic Convolutional Codes 9

1.2.2 Trellis Representation . 10

1.3 Turbo Codes . 10

1.3.1 Concatenation of Convolutional Codes 11

1.3.2 Turbo Code Interleaver (
∏

) . 14

1.3.2.1 Almost regular permutation (ARP) 15

1.3.2.2 Quadric polynomial permutation (QPP) 16

1.3.3 Multi Standard Channel Convolutional and Turbo Coding Parameters . 16

1.4 Turbo Decoding . 16

1.4.1 Soft In Soft Out (SISO) Decoding . 17

1.4.1.1 MAP decoding algorithm 18

1.4.1.2 Log-MAP and Max-Log-MAP decoding algorithm 20

1.4.2 Parallelism in Turbo Decoding . 22

1.4.2.1 BCJR metric level parallelism 23

1.4.2.2 SISO decoder level parallelism 24

1.4.2.3 Parallelism of Turbo decoder 26

1.4.2.4 Parallelism levels comparison 26

1.4.3 Decoding Large Frames in Turbo Decoding 28

1.4.4 Software Model for Parallel Turbo Decoder 28

1.5 Summary . 29

i

ii CONTENTS

2 ASIP Design Methodologies and Initial Architecture 31

2.1 Customizable Embedded Processors . 32

2.2 ASIP Design Methodologies and Tools . 33

2.2.1 ASIP Design Approaches . 33

2.2.2 Synopsys’s ADL-based Design Tool: Processor Designer 34

2.3 Initial ASIP Architecture for Turbo Decoding 36

2.3.1 Overview of the Design Approach and the Architectural Choices 36

2.3.2 Building Blocks of the Initial ASIP 37

2.3.3 Overall Architecture of the Initial ASIP 39

2.3.4 Sample Program of the Initial ASIP 41

2.4 Summary . 44

3 Optimized ASIP for Multi-standard Turbo Decoding 45

3.1 State of the Art . 46

3.2 Proposed Decoder System Architecture . 47

3.2.1 Architecture-Level Optimization . 48

3.2.1.1 Pipeline optimization . 49

3.2.1.2 Windowing . 55

3.2.2 Algorithmic-Level Optimization . 58

3.2.3 Memory-Level Optimization . 60

3.2.3.1 Normalizing extrinsic information and memory sharing . . . 60

3.2.3.2 Bit-level extrinsic information exchange method 60

3.2.3.3 Interleaver generator . 61

3.2.3.4 Restricting the trellis support 64

3.3 Extrinsic Exchange Module . 65

3.4 ASIP Dynamic Reconfiguration . 65

3.5 System Characteristics and Performance . 67

3.6 Power Consumption Analysis for ASIC Implementation 70

3.6.1 Power Consumption Analysis Flow 70

3.6.2 Power Consumption Analysis Results 72

3.6.3 Results Comparison . 73

3.7 Summary . 75

CONTENTS iii

4 FPGA Prototype for Multi-standard Turbo Decoding 77

4.1 ASIP Design, Validation and Prototyping Flow 78

4.1.1 LISA Abstraction Level . 78

4.1.2 HDL Abstraction Level . 78

4.1.3 FPGA Implementation Level . 80

4.2 Proposed Prototyping Platform for the ASIP-based Turbo Decoder 80

4.2.1 Multi-Standard Transmitter . 81

4.2.2 Channel Module . 83

4.2.3 Multi-Standard Turbo Decoder . 84

4.2.3.1 Memory organization . 84

4.2.3.2 Interleaver module . 84

4.2.3.3 Prototyped extrinsic exchange module 86

4.2.3.4 Area of the decoder core . 87

4.2.4 Error Counter . 87

4.2.5 Scheduling and Control . 87

4.2.6 Performance Results . 88

4.3 Summary . 90

5 Towards the Support of LDPC Decoding 91

5.1 LDPC codes . 92

5.1.1 Representations of LDPC Codes . 92

5.1.2 Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) 93

5.1.3 QC-LDPC Codes Parameters in WiMAX and WiFi Standards 94

5.2 LDPC Decoding Algorithms . 94

5.2.1 Min-Sum Algorithm . 95

5.2.2 Normalized Min-Sum Algorithm . 96

5.3 Multi-ASIP Architecture Overview . 97

5.3.1 Multi-ASIP in Turbo Mode . 98

5.3.2 Multi-ASIP in LDPC Mode . 98

5.4 Computational Scheduling . 99

5.4.1 Computational Scheduling in Turbo Mode 99

5.4.2 Computational Scheduling in LDPC Mode 99

5.4.2.1 Simple example with 2-ASIP architecture 99

5.4.2.2 Proposed scheduling with 8-ASIP architecture 102

5.4.2.3 Address generation in LDPC mode 103

5.5 Memory Organization and Sharing . 103

5.5.1 Memories in Turbo Mode . 103

iv CONTENTS

5.5.2 Memories in LDPC Mode . 105

5.5.3 Combined Memory Organization . 105

5.6 ASIP Pipeline and Instruction-Set . 106

5.6.1 LDPC Decoder Pipeline Stages . 107

5.6.2 Pipeline Description in The CN-update Phase (RV) 107

5.6.3 Pipeline Description in The VN-update Phase (UV) 109

5.6.4 Sample Assembly Program in LDPC Mode 110

5.7 Synthesis Results . 111

5.8 Summary . 111

Résumé en Français 115

Glossary 125

Notations 129

Bibliography 131

List of publications 137

List of Figures

1.1 Transmission scheme using an error correcting code 6

1.2 BPSK constellation . 8

1.3 Convolutional encoder (a) 64-state single binary code (b) 64-state single binary
RSC (c) 8-state single binary code . 8

1.4 RSC encoder (a) 8-state double binary code RSC (b) 8-state single binary RSC 9

1.5 Trellis diagram of the convolutional encoder of Figure 1.3(c) 10

1.6 Turbo encoder examples . 11

1.7 Structure of rate 1/3 Turbo encoder in 3GPP LTE 12

1.8 Trellis for 3GPP (Single binary 8 states) . 13

1.9 Trellis for WiMAX/DVB-RCS (double binary 8 states) 14

1.10 Structure of rate 1/3 double binary Turbo encoder 15

1.11 Turbo decoder principal . 18

1.12 System diagram with Turbo encoder, BPSK modulator, AWGN channel and
Turbo decoder . 19

1.13 (a) Forward backward scheme (b) Butterfly scheme 24

1.14 One-level Look-ahead Transform for 3GPP-LTE Trellis (Radix-4) 25

1.15 Sub-block parallelism with message passing for metric initialization: (a) Non
circular code, (b) Circular Code . 27

1.16 Shuffled Turbo decoding . 27

1.17 Sub-block parallelism with message passing for metric initialization (a) Non
circular code (3GPP), (b) Circular Code (WiMAX) 28

1.18 Organization of the Turbo decoder’s software model 29

1.19 BER for 3GPP-LTE frame size 864 bits with different scaling factors 30

2.1 Performance-Flexibility Trade-off of Different Architecture Models 34

2.2 LISA architecture exploration flow . 36

2.3 Basic computational units of the initial ASIP (a) Adder node (b) Modulo com-
pare unit . 38

2.4 Modulo algorithm extrinsic information processing 39

v

vi LIST OF FIGURES

2.5 Forward Recursion Unit composed of 32 ANF (Adder Node Forward) and 8 4-
input Compare Unit (a) Compare Units used for state metric computation (b)
Compare Units used for extrinsic information computation 40

2.6 Overall architecture of the initial ASIP . 41

3.1 Proposed Turbo decoder system architecture 48

3.2 Pipeline reorganization (a) Initial ASIP stage EX (b) Optimized pipeline stages
(EX, MAX1,MAX2) . 50

3.3 Modified pipeline stages (EX, MAX) . 52

3.4 Architecture of the proposed recursion unit (a) Forward Recursion Unit com-
posed of 32 ANF (b) 8 4-input Compare Units used for state metric computation
and 4 8-input Compare Units used for extrinsic computation (c) Adder Node
Forward . 54

3.5 Critical path comparison: (a) Critical path for TurbASIPv2, (b) Critical path for
TurbASIPv3 . 55

3.6 TurbASIPv3 pipeline architecture . 56

3.7 Windows processing in butterfly scheme (a) Windowing in butterfly computation
scheme, (b) Window addressing in butterfly 57

3.8 Unused memory regions in fixed size windowing 58

3.9 Butterfly scheme with Radix-4 . 59

3.10 QPP Interleaver generators for even and odd addresses with step-size=2 62

3.11 ARP interleaver generator . 63

3.12 Interleaving address generator with butterfly scheme 64

3.13 Proposed architecture for the Extrinsic Exchange Module 65

3.14 Config Reg reserved bits . 66

3.15 Parameters can be changed in runtime . 67

3.16 BER performance comparison obtained from the 2-ASIP FPGA prototype and
the reference software model (fixed point) for (a) 3GPP-LTE block-size=864,
(b) WiMAX, block-size=1728 . 70

3.17 Power consumption analysis flow . 71

3.18 Power consumption related to each pipeline stage 73

4.1 Prototyping Flow: (a) LISA abstraction level, (b) HDL abstraction level, (c)
FPGA implementation level . 79

4.2 Overview of the proposed environment for multi-standard turbo decoding . . . 81

4.3 Turbo encoder with random source generator 82

4.4 Flexible convolutional encoder . 83

4.5 Input/output interface of the integrated AWGN channel emulator 83

4.6 TurbASIP and attached memories . 85

4.7 Internal data organization in input memories 85

4.8 Architecture of the prototyped Extrinsic Exchange Module 86

LIST OF FIGURES vii

4.9 Verification Module . 88

4.10 Proposed scheduling of the complete Turbo decoder platform 88

4.11 FER performance obtained from the 2-ASIP Turbo decoder FPGA prototype for
WiMAX, block-size=1920 @ 7iteration . 89

4.12 FER performance obtained from the 2-ASIP Turbo decoder FPGA prototype for
DVB-RCS, block-size=864 @ 7iteration . 89

5.1 Tanner Graph of the Hamming code (7,4). 93

5.2 Parity check matrix H for a block length of 1944 bits, code rate 1/2, IEEE
802.11n (1944, 972) LDPC code. H consists of M×N sub-matrices (M=12,
N=24 in this example) . 93

5.3 Tanner graph example showing the two-phase message passing decoding 95

5.4 Overview of the proposed Multi-ASIP architecture for LDPC/Turbo decoding . 97

5.5 NoC with binary de-Bruijn topology in Turbo mode 98

5.6 NoC with reconfigured binary de-Bruijn topology in LDPC mode 99

5.7 Forward backward schedule . 100

5.8 Hbase example with N=6 and M=2 . 100

5.9 Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T0 . . . 101

5.10 Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T1 . . . 101

5.11 Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T2 . . . 102

5.12 Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T3 . . . 102

5.13 Proposed scheduling in LDPC mode with 8 ASIPs 104

5.14 Memory banks organization in Turbo mode: (a) Extrinsic memory, (b) Input
memory . 105

5.15 LDPC mode : (a) Input memory (b) Extrinsic memory 106

5.16 Pipeline in LDPC Mode . 108

5.17 FIFO accesses in CN-update and VN-update phases 109

List of Tables

1.1 Selection of wireless communication standards and channel codes 17

1.2 Comparison of parallelism levels available in Turbo decoding 28

3.1 State of the art implementations with area normalization 47

3.2 Initial ASIP pipeline usage . 49

3.3 Pipeline usage for TurbASIPv1 . 51

3.4 Pipeline usage for TurbASIPv2 . 52

3.5 Pipeline usage for TurbASIPv3 . 53

3.6 Comparison table for added and eliminated logic for the proposed architecture . 53

3.7 Results comparison in terms of PUP , logic area, decoding speed and throughput 53

3.8 Throughput comparison between initial ASIP and TurbASIPv3 after applying
Radix-4 . 59

3.9 Symbol-to-bit conversion . 60

3.10 Bit-to-symbol conversion . 60

3.11 Parameters definition, method of calculation, and number of reserved bits . . . 66

3.12 Typical memories configuration used for one ASIP decoder component (area
with @65nm CMOS technology) . 68

3.13 TurbASIPv3 performance comparison with state of the art implementations . . 69

3.14 Power consumption, throughput and area before and after optimizations 73

3.15 TurbASIPv1 energy efficiency results and comparisons 74

4.1 FPGA synthesis results of the Transmitter Module 83

4.2 FPGA synthesis results of the AWGN channel module 84

4.3 FPGA synthesis results of the Receiver module 87

4.4 FPGA synthesis results of the Verification module 87

4.5 FPGA synthesis results of the 2-ASIP Turbo decoder platform prototype 89

5.1 LDPC code parameters in WiFi and WiMAX 94

5.2 Memory requirement in Turbo mode . 104

5.3 Memory requirement in LDPC mode . 105

ix

x LIST OF TABLES

5.4 Proposed memory organization to support both Turbo and LDPC modes 106

5.5 Results comparison of the LDPC/Turbo proposed architecture 112

Introduction

SYSTEMS -on-chips in the field of digital communications are becoming extremely diversi-
fied and complex with the continuous emerging of new digital communication systems and

standards. In this field, channel decoding is one of the most computation, communication, and
memory intensive, and thus, power-consuming component.

In fact, the severe requirements imposed in terms of throughput, transmission reliability,
and power consumption are the main reasons that make ASIC (Application Specific Integrated
Circuit) realizations in the field of digital communications more and more diversified and com-
plex. Cost, energy and high-throughput requirements of channel decoders have been extensively
investigated during the last few years and several implementations have been proposed. Some
of these implementations succeeded in achieving high throughput for specific standards thanks
to the adoption of highly dedicated architectures that work as hardware accelerators. However,
these implementations do not take into account flexibility and scalability issues. Particularly
this approach implies the allocation of multiple separated hardware accelerators to realize multi-
standard systems, which often result in poor hardware efficiency. Furthermore, it implies long
design times that are scarcely compatible with the severe time-to-market constraints and the
continuous development of new standards and applications.

Besides these severe performance requirements, emerging digital communication systems
often require multi-standard interoperability with various qualities of service and diverse com-
pulsory and/or optional techniques inside each standard. This is particularly true for channel
coding and the large variety of forward error correction techniques which are proposed today.
As an example, IEEE 802.16e (WiMAX) standard specifies the adoption of four error correct-
ing codes (convolutional, Turbo, LDPC, and block Turbo) and each of them is associated to a
large multiplicity of code rates and frame lengths. Flexibility requirement of channel decoder
becomes highly crucial.

Problems and Objectives

In this context, many recent works have been proposed targeting flexible, yet high throughput,
implementations of channel decoders. The flexibility varies from supporting different modes
of a single communication standard to the support of multi-standards multi-modes applications.
Other implementations have even increased the target flexibility to support different channel
coding techniques.

Regarding the architecture model, besides the conventional parametrized hardware models,
recent efforts have targeted the use of Application-Specific Instruction-set Processor models
(ASIP). Such an architecture model enables the designer to freely tune the flexibility/perfor-
mance trade-off as required by the considered application requirements. Related contributions
are emerging rapidly seeking to improve the resulted architecture efficiency in terms of per-
formance/area and in addition to increase the flexibility support. However, the architecture ef-
ficiency of application-specific processors is directly related to the devised instruction set and

1

2 INTRODUCTION

pipeline stages usage. Most of recently proposed works do not consider or present this key issue
explicitly.

In fact, the need of optimized solutions in terms of performance, power consumption, and
area still exist and cannot be neglected against flexibility. In common understanding, a ”blind”
approach towards flexibility results in some loss in optimality.

Hence, the main aim of this thesis work is related to unifying flexibility-oriented and
optimization-oriented approaches in the design of channel decoders. By considering mainly
the challenging turbo decoding application, the objective is to demonstrate how the architecture
efficiency of application-specific instruction-set based processors can be considerably improved.
Another objective of this work is to investigate the possibility to use the ASIP-based design ap-
proach to increase the flexibility of the turbo decoder to support LDPC decoding.

Contributions

Towards these objectives, following are a summary of the major contributions of this thesis work:

Design of Application-Specific Instruction-set Processor (ASIP) for Turbo decoder:

- Proposal and design of a multi-standard ASIP-based Turbo decoder achieving high archi-
tecture efficiency in terms of bit/cycle/iteration/mm2.

- Optimization of the dynamic reconfiguration speed of the proposed ASIP architecture sup-
porting all parameters of 3GPP-LTE/WiMAX/DVB-RCS standards.

- Design of low complexity ARP and QPP interleavers for butterfly scheme and Radix4 tech-
nique.

- Proposal and design of a complete FPGA prototype for the proposed multi-standard Turbo
decoder.

- Investigate the impact of the ASIP’s pipeline optimization on the energy efficiency.

Design a scalable and flexible high throughput multi-ASIP combined architecture for LDPC and
Turbo Decoding:

- Proposal of an efficient memory sharing for flexible LDPC/Turbo decoding.

- Proposal and design of an ASIP combined architecture for LDPC and Turbo decoding.

Thesis Breakdown

The thesis manuscript is divided into five chapters as follows:

Chapter 1 introduces the basic concepts related to convolutional Turbo codes and their de-
coding algorithms. First an overview of the fundamental concepts of channel coding and the
basics for error-correcting codes are introduced. Then, on the transmitter side, we introduce the
convolutional codes and the Recursive Systematic Convolutional (RSC) codes. Based on these
component codes, Turbo codes principle is presented in the third section with emphasis on the

INTRODUCTION 3

interleaving function and the various related parameters specified in existing wireless commu-
nication standards. Finally, the last section is dedicated to the presentation of the challenging
Turbo decoding concept at the receiver side. This includes the presentation of the reference MAP
algorithm, the Max-Log-MAP simplification, the various available parallelism techniques, and
an example of achievable error rate performance results.

Chapter 2 introduces the ASIP-based design approach and the considered Synopsys (ex.
CoWare) design tool: Processor Designer. Based on this design approach, the chapter presents
the initial ASIP architecture for Turbo decoding which constitutes the starting point of this thesis
work.

Chapter 3 is aimed to illustrate how the application of adequate algorithmic and architecture
level optimization techniques on an ASIP for turbo decoding can make it even an attractive and
efficient solution in terms of area, throughput, and power consumption. The suggested architec-
ture integrates two ASIP components supporting binary/duo-binary turbo codes and combines
several optimization techniques regarding pipeline structure, trellis compression (Radix4), and
memory organization. This chapter is organized in the following order. First of all, a brief state
of the art section is provided to summarize the available hardware implementations related to
this domain. Then, the proposed optimization techniques regarding pipeline structure, trellis
compression (Radix4), and memory organization are detailed. Furthermore, in order to improve
the speed of reconfigurability of the proposed architecture, a new organization of the instruction
program is presented. Then, the achieved Turbo decoder system performance is summarized and
the architecture efficiency is compared with state of the art related works. Finally, the impact
of the proposed pipeline optimization on energy efficiency is discussed. This last contribution
concerns a joint effort with another PhD student at the CEA-LETI: Pallavi Reddy.

Chapter 4 is dedicated to the presentation of the FPGA prototype for the proposed multi-
standard Turbo decoder. The first section presents the adopted ASIP-based LISA to FPGA
prototyping flow, while the second section details the proposed prototyping environment. This
includes: (1) the GUI (Graphical User Interface) in order to configure the platform with desired
parameters such as targeted standard, frame size, code rate, and number of iterations from a host
computer, (2) the multi-standard flexible transmitter, (3) the hardware channel emulator, (4) the
proposed multi-standard Turbo decoder, (5) the error counter, and (6) and the overall scheduling
control. The third and last section presents and compares the obtained FPGA synthesis results.

Chapter 5 presents our contribution towards increasing the flexibility of the designed Turbo
decoder to support LDPC decoding. It consists of a joint effort with another PhD student at the
Electronics department of Telecom Bretagne: Purushotham Murugappa. The main result con-
cerns the proposal and the design of a multi-ASIP architecture for channel decoding supporting
binary/duo-binary Turbo codes and LDPC codes. The proposed architecture achieves a fair com-
promise in area and throughput to support LDPC and turbo codes for an array of standards (LTE,
WiMAX, WiFi, DVB-RCS) through efficient sharing of memories and network resources. The
chapter starts with a brief introduction on LDPC codes with emphasis on the particular class
of structured quasi-cyclic LDPC codes and adopted parameters in the considered wireless stan-
dards. Then LDPC iterative decoding is introduced and the low complexity reference decoding
algorithms are presented. Subsequent sections present the proposed LDPC/Turbo decoding ar-
chitecture in a top-down approach. First presenting the functional description of the overall
architecture and the main architectural choices and design motivations. Following, the proposed
memory organization and sharing is presented. Then, the proposed scheduling, pipeline struc-
ture, and instruction set in both Turbo and LDPC decoding mode are presented. The last section
presents logic synthesis results along with future perspectives.

CHAPTER

1 Turbo Codes and Turbo
Decoding

THIS first chapter introduces the basic concepts related to convolutional Turbo codes and
their decoding algorithms. First an overview of the fundamental concepts of channel cod-

ing and the basics for error-correcting codes are introduced. Then, on the transmitter side, we
introduce the convolutional codes and the Recursive Systematic Convolutional (RSC) codes.
Based on these component codes, Turbo codes principle is presented in the third section with
emphasis on the interleaving function and the various related parameters specified in existing
wireless communication standards. Finally, the last section is dedicated to the presentation of
the challenging Turbo decoding concept at the receiver side. This includes the presentation of the
reference MAP algorithm, the Max-Log-MAP simplification, the various available parallelism
techniques, and an example of achievable error rate performance results.

5

6 CHAPTER 1. TURBO CODES AND TURBO DECODING

1.1 Fundamentals of Channel Coding

Channel codes are made up of two main type: convolutional codes and block codes. Convo-
lutional codes are used primarily for real-time error correction and can convert an entire data
stream into one single codeword. The encoded bits depend not only on the current informational
k input bits but also on past input bits. Block codes tend to be based on the finite field arithmetic
and abstract algebra. Block codes accept a block of k information bits and return a block of n
coded bits. Block codes are used primarily to correct or detect errors in data transmission. Com-
monly used block codes are Reed-Solomon codes, BCH codes, Golay codes, Hamming codes
and LDPC.

1.1.1 Coding Theory

Coding theory started with the pioneering work of C. Shannon (1948), who established the
fundamental problem of reliable transmission of information. Shannon introduced the channel
capacity CC (expressed in bits per channel use) as a measure of the maximum information that
can be reliably transmitted over a communications channel subject to additive white Gaussian
noise. If the information code rate R from the source is less than the channel capacity CC,
then it is theoretically possible to achieve reliable (error-free) transmission over the channel by
an appropriate coding [1]. Using the set of random codes, this theorem proved the existence
of a code enabling information to be transmitted with any given probability of error. However,
Shannon’s theorem does not give any idea about how to find such a code achieving the
channel capacity. The work of Shannon stimulated the coding theory community to find error
correcting codes capable of achieving the channel capacity. With such a code C, a message
d of kc information symbols is encoded through an encoder providing a codeword X of C,
composed of nc coded symbols Xi, i = 1, ..., nc (Figure 1.1). The ratio R = kc/nc denotes the
code rate. After transmission over a noisy channel, the noisy symbols Y are received by the
decoder. This later uses the properties of the code to try to recover the transmission errors by
finding the most probable transmitted codeword X̂ , or equivalently the most probable message d̂.

EncoderSource

T
ransm

ission link

Decoder Demodulator

Modulator
kc

d

Y

nckc

d̂

nc

X ∈ C

Figure 1.1: Transmission scheme using an error correcting code

1.1.2 Channel Model

The channel depicted in Figure 1.1 corresponds to the succession of three components: the mod-
ulator, the transmission link, and the demodulator. The modulator transforms the digital repre-
sentation of the codeword into an analog signal that is transmitted over the link to the receiver.

1.2. CONVOLUTIONAL CODES 7

At the receiver side, the demodulator converts the analog signal into its digital counterpart that
is fed into the decoder.

In perfect modulation, synchronization, and demodulation, we can represent the channel by
a discrete-time model. In this thesis, the channel model is represented by a binary-input additive
white Gaussian noise (AWGN) of mean 0 and variance σ2, and adopting binary shift key (BPSK)
modulation where Xi ∈ 0, 1 are mapped to modulated symbols ∈ −1, 1. The channel transition
probability can be expressed for AWGN channel as follows:

p(Yi|Xi) =

nc∏
k=1

(
1

σ
√

2π
· e−

(Yi,k−Xi,k)
2

σ2

)
= K · e

nc∑
k=1

Yi,k ·Xi,k

σ2 (1.1)

The Bit Error Rate (BER) and Frame Error Rate (FER) performance depends on the signal to
noise ratio Eb/N0, where Eb is the energy per information bit andN0 is the real power spectrum
density of the noise. The Gaussian noise variance σ of the channel is function of signal to noise
ratio and of the code rate R:

σ =

√
1

2R× Eb
N0

(1.2)

1.1.3 Modulation

The modulation process in a digital communication system maps a sequence of binary data onto
a set of corresponding signal waveforms. These waveforms may differ in either amplitude or
phase or in frequency, or some combination of two or more signal parameters.

Phase Shift Keying (PSK): In this type of modulation the phase of the carrier signal is
changed in accordance with the incoming sequence of the binary data. If the phase of a car-
rier represent m bits, then M = 2m different phases are required for all possible combinations
of m bits. If we set the value of M = 2, 4, 8 then the corresponding PSK is called BPSK, QPSK
and 8-PSK.

BPSK is the adopted modulation for the rest of this thesis . BPSK is the simplest form of
phase shift keying (PSK). It uses two phases as illustrated in Figure 1.2 and so can also be named
2-PSK. This modulation is the most robust of all the PSKs since it takes the highest level of noise
or distortion to make the demodulator reach an incorrect decision. It is, however, only able to
modulate at 1 bit/symbol.

1.2 Convolutional Codes

A convolutional code of rate R = kc
nc

is a linear function which, at every instant i, transforms an
input symbol di of kc bits into an output coded symbol Xi of nc bits (kc > nc). A code is called
systematic if a part of the output is made up of systematic bits si = di and the rest of the bits
(kc − nc) are made up of parity.

The structure of the convolutional code is constructed with shift registers (made up of ν
flip flops) and the modulo two adders (XOR). A code is characterized by a parameter called
constraint length K = ν + 1 where value of all ν represents one of the 2ν states of the encoder.
The code can also be called recursive if there is a feedback to the shift registers.

8 CHAPTER 1. TURBO CODES AND TURBO DECODING

I

Q

1

1

-1

0

Figure 1.2: BPSK constellation

+

+

+

+

+ +

++

(a)

(b)

(c)

R1 R2 R3 R4

R2 R3 R4

R1 R2 R3

R6R5

ci(1)

ci(2)

di

R6R5

ci(2) = pi

R1
di

ci(1) = di = si

di

ci(1)

ci(2)

Figure 1.3: Convolutional encoder (a) 64-state single binary code (b) 64-state single binary RSC (c) 8-state single
binary code

A convolutional code can be expressed by the generation polynomials which represents the
connections between output of the registers and the modulo two adders. Figure 1.3(a) represents
a single binary non-systematic, non-recursive, 64-state encoder whose generation polynomials
are: g1(x) = 1 + x2 + x3 + x5 + x6 and g2(x) = 1 + x + x2 + x3 + x7. These polynomi-
als can be represented by their coefficients, (1011011) and (1111001) respectively in binary or
(133; 171)8 in octal. The encoder shown in Figure 1.3(b) is a single binary Recursive Systematic
Convolutional (RSC) code whereas the one shown in Figure 1.3(c) is 8 states single binary code.

1.2. CONVOLUTIONAL CODES 9

1.2.1 Recursive Systematic Convolutional Codes

The class of Recursive Systematic Convolutional codes (RSC) is of special interest for Turbo
codes. RSC codes introduce feedback into the memory of convolutional codes. RSC code is
obtained by introducing a feedback loop in the memory (recursive) and by transmitting directly
the input of the encoder as an output (systematic). For RSC code, the input of the shift register
is a combinatory function of the input block dk and its delayed versions di−1, di−2,..., di−ν . It
is worth noting that the set of codewords generated by the RSC encoder is the same as that gen-
erated by the corresponding non-systematic encoder. However, the correspondence between the
information sequences and the codewords is different. A binary RSC code can be obtained from
a binary non-systematic non-recursive convolutional code by replacing the input of the linear
shift register by one of the outputs of the non-systematic convolutional code. The corresponding
output is replaced by the input of the encoder. This construction leads to an implementation of
a Linear Feedback Shift Register (LFSR) as represented in In Figrue (1.4-b). The polynomial
generator matrix of the RSC encoder shown in (1.4):

g1(x) =

[
1,

1 + x2 + x3

1 + x+ x3

]
(1.3)

RSC codes are used as component codes for Turbo codes, because of their infinite impulse
response: if a binary RSC encoder is fed with a single ”1” and then only with ”0”, due to
the feedback loop, the weight of the parity sequence produced is infinite. For a non recursive
encoder, only a maximum of ν ”1” bits are generated, then the ”1” comes out of the shift register.

+ ++

+

++

+

++

+

(b)

(a)

R2R1 R3

ci(1)

ci(2)

ci(3)

d1

d2

R1 R2 R3

ci(1)

ci(2)

di

Figure 1.4: RSC encoder (a) 8-state double binary code RSC (b) 8-state single binary RSC

10 CHAPTER 1. TURBO CODES AND TURBO DECODING

1.2.2 Trellis Representation

Although a convolutional code can be represented graphically in many ways but the trellis rep-
resentation [2] is the most popular one. It is the most commonly used diagram for illustrating
the decoding principle of convolutional codes. The trellis diagram for the convolutional encoder
presented in Figure 1.3(c) is represented in Figure 1.5. The x-axis represents the discrete time
k and the y-axis the 2ν states of the convolutional encoder. The induced discrete points corre-
spond to the possible successive states of the encoder. The transitions between the states are
represented by branches oriented from left to right. The trellis diagram is thus constructed by
connecting through the branches all possible evolutions from one state to another. The time evo-
lution of the encoder, for a given information sequence, is viewed on the trellis diagrams by a
succession of states connected through the branches. This connected sequence is called a path in
the trellis. A sequence of information and coded bits is associated with each path. The decoder
uses observations on the coded sequence and tries to recover the associated path in the trellis,
thus yielding the decoded information sequence.

k

0 1 2 3 4 5

0="000"

1="001"

2="010"

3="011"

6="110"

7="111"

5="101"

4="100"

0/0 0/0 0/00/0 0/0

1/1 1/1 1/1 1/1 1/1

0/0 0/0 0/0 0/0
1/1 1/1 1/1

1/1

0/1

1/0
1/0

0/1

1/0

0/1

1/11/1

1/01/0
1/0 1/0

0/00/0

Sk

Figure 1.5: Trellis diagram of the convolutional encoder of Figure 1.3(c)

1.3 Turbo Codes

It was known since a long time how to create codes with a correction power ensuring reliable
transmission for most applications. However, this knowledge could not be turned into imple-
mentation due to the prohibitive complexity of decoders which are associated to such codes.

1.3. TURBO CODES 11

Now, when a problem is too complex, the approach of ”divide and conquer” can be a good way
to simplify it. Based on this approach, the concatenation of codes has been proposed. The idea,
introduced by [3], is to build a code with a sufficient correction power from several simple codes.
This section briefly introduces the different proposed concatenation techniques of convolutional
codes.

1.3.1 Concatenation of Convolutional Codes

In the first architecture Forney concatenated the internal code to an external code as shown in
Figure 1.6(a). This is called serial concatenation convolutional codes (SCCC) where output
of outer code in input of the inner code. Subsequently, it was observed that the addition of a
function of interleaving between the two codes will increase significantly robustness of the con-
catenated codes. This interleaver plays a crucial role in the construction of the code, because it
performs a pseudo random permutation of the latter input sequence, which introduces random-
ness in the encoding scheme. Therefore what is called nowadays a serial concatenated convo-
lutional codes is more like a representation of Figure 1.6(b). With the advent of Turbo codes
[4], a new structure was introduced: the parallel concatenation convolutional codes (PCCC) of
two RSC encoders (RCS1, RCS2) presented in Figure 1.6(c). This structure is associated to
systematic encoders where the first encoder receives the source data di in natural order and at
the same time the second encoder receives the interleaved one. The input sequence di is en-
coded twice, once by each encoder. An interleaver Π is performed on the information sequence
prior to the RCS2 encoding. In other words, the two constituent RCS encoders code the same
information sequence but in a different order. Randomness for error correcting codes is a key
attribute enabling us to approach channel capacity. The output is composed of source data and
associated parities in natural and interleaved domains. In this way at one instant of time parity of
two different symbols are transmitted. They are called ”Turbo codes” in reference to their prac-
tical iterative decoding principle, by analogy with the Turbo principle of a Turbo-compressed
engine. This latter actually uses a retro-action principle by reusing the exhaust gas to improve its
efficiency. The decoding principle is based on an iterative algorithm where two component de-
coders exchange information improving the error correction efficiency of the decoder during the
iterations. At the end of the iterative process, after several iterations, both decoders converge to
the decoded codeword, which corresponds to the transmitted codewords when all transmission
errors have been corrected.

Outer
Code

Inner
Code

Outer
Code

Inner
Code

(a)

(b)

RSC1

RCS2

(c)

∏
1

di

di

ci

∏
1

di ci

s

p1

p2
ci

Figure 1.6: Turbo encoder examples

The supported types of channel coding for Turbo codes are usually Single Binary and/ Dou-
ble Binary Turbo Codes (SBTC and DBTC). We will mainly focus on the Turbo codes defined in
3GPP LTE and WiMAX in the following chapters because the proposed decoder support them.

12 CHAPTER 1. TURBO CODES AND TURBO DECODING

Binary Turbo Code in 3GPP LTE Standard Turbo coding scheme in 3GPP LTE standard
is a parallel concatenated convolutional code (PCCC) with two 8-state constituent encoders and
one Quadratic Permutation Polynomial (QPP) interleaver. The coding rate of the Turbo code is
1/3. The structure of the Turbo encoder is shown in Figure 1.7. As seen in the figure, a Turbo

+

+

+ +

+

+

+ +

QPP

R1 R2 R3

R2 R3R1

Pi

Si

P ′i

Π

di

Figure 1.7: Structure of rate 1/3 Turbo encoder in 3GPP LTE

encoder consists of two binary convolutional encoders connected by an interleaver. The basic
coding rate is 1/3 which means N data bits will be coded into 3N data bits. The transfer function
of the 8-state constituent code for PCCC is:

g(x) =

[
1,

1 + x+ x3

1 + x2 + x3

]
(1.4)

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when
starting to encode the input bits. Trellis termination is performed by taking the tail bits from
the shift register feedback after all information bits are encoded. Tail bits are padded after the
encoding of information bits. The function of the Interleaver is to take each incoming block of
N data bits and shuffle them in a pseudo-random manner. One of the new features in the 3GPP
LTE Turbo encoder is its quadratic permutation polynomial (QPP) internal interleaver. Figure
1.8 shows trellis representation for WiMAX and DVB-RCS, with nodes corresponding to eight
states and the transitions between the states are represented by branches oriented from left to
right with 21 branches for each state.

Double Binary Turbo Code in IEEE 802.16e WiMAX Standard The convolutional Turbo
encoder for the IEEE 802.16e standard is depicted in Figure 1.10. It uses a double binary circular
recursive systematic convolutional code. Data couples (d1, d2), other than a single bit sequence,
are fed to the circular recursive systematic convolutional encoder twice, and four parity bits

1.3. TURBO CODES 13

Input 0 Input 1

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

6="110"

7="111"

Figure 1.8: Trellis for 3GPP (Single binary 8 states)

(P1,P2) and (P ′1, P ′2) are generated in the natural order and the interleaved order, respectively.
The encoder polynomials are described in binary symbol notation as follows:

- For the feedback branch: 1 + x+ x3

- For the P parity bit: 1 + x2 + x3

- For the P ′ parity bit: 1 + x3

The tail-biting trellis termination scheme is used as opposed to inserting extra tail bits. In this
termination scheme, the start state of the trellis equals to the end state of the trellis. Therefore,
a pre-encoding operation has to be performed to determine the start state. This is not a complex
problem because the encoding process can be performed at a much higher rate. A symbol-wise

14 CHAPTER 1. TURBO CODES AND TURBO DECODING

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

6="110"

7="111"

Input 00 Input 01 Input 10 Input 11

Figure 1.9: Trellis for WiMAX/DVB-RCS (double binary 8 states)

almost regular permutation (ARP) interleaver is used in the WiMAX standard, which can enable
parallel decoding of double binary Turbo codes. Figure 1.10 shows trellis representation for
WiMAX and DVB-RCS, with nodes corresponding to eight states and the transitions between
the states are represented by branches oriented from left to right with 22 branch for each state.

1.3.2 Turbo Code Interleaver (
∏

)

Interleavers in a digital communication system are used to temporally disperse the data. The
primary interest of them in concatenated codes is to put two copies of same symbol (coming
to two encoders) at different interval of time. This enables to retrieve at least one copy of a
symbol in a situation where the other one has been destroyed by the channel. An interleaver
(
∏

) satisfying this property can be verified by studying the dispersion factor S given by the
minimum distance between two symbols in natural order and interleaved order:

S = min
i,j

(|i− j|+ |Π(i)−Π(j)|) (1.5)

1.3. TURBO CODES 15

+

ARP

+ +

+

+

+ + +

+

+

R1

Π

R2
R3

R1 R2
R3

P ′1i

P ′2i

S1i

S2i

P1i

P2i

d2i

d1i

Figure 1.10: Structure of rate 1/3 double binary Turbo encoder

The design of interleavers respecting a dispersion factor can be reasonably achieved through
the S-random algorithm proposed in [5]. However, even if this kind of interleaver can be suffi-
cient to validate the performance in the convergence zone of a code, it does not achieve a good
asymptotic performance. Therefore to improve the latter, the design of the interleaver must also
take into account the nature of component encoders. Complexity of the hardware implemen-
tation should, in addition, be taken into account. In fact, the recent wireless standards specify
performance and hardware aware interleavling laws for each supported frame length.

In following sections the interleaving functions associated to Turbo codes for different stan-
dards are described.

1.3.2.1 Almost regular permutation (ARP)

The ARP interleaver is used in double binary Turbo codes for both standards IEEE 802.16e
WiMAX and DVB-RCS. It can be described by the function

∏
(j) which provides the interleaved

address of each double-binary symbol of index j, where j = 0, 1, ...N − 1 and N is the number
of symbols in the frame.

∏
(j) = (P0 × j + P + 1) mod N (1.6)

16 CHAPTER 1. TURBO CODES AND TURBO DECODING

where

P = 0 if j mod 4 = 0

P =
N

2
+ P1 if j mod 4 = 1

P = P2 if j mod 4 = 2

P =
N

2
+ P3 if j mod 4 = 3

(1.7)

where the parameters P0, P1, P2 and P3 depend on the frame size and are specified in the corre-
sponding standard [6][7].

Another step of interleaving is specified in these standards which consists of swapping the
two bits of alternate couples, i.e (aj , bj) = (bj , aj) if j mod 2 = 0.

It is worth to note that this interleaver structure is well suited for hardware implementation
and presents a collision-free property for certain level of parallelism.

1.3.2.2 Quadric polynomial permutation (QPP)

The interleaver used in single binary Turbo code for standard 3GPP-LTE is called quadric poly-
nomial permutation (QPP) interleaver. It is given by the following expression:∏

(j) = (f1j + f2j
2) mod N (1.8)

where the parameters f1 and f2 are integers, depend on the frame size N (0 ≤ j, f1, f2 < N),
and specified in the 3GPP-LTE standard. In this standard, all the frame sizes are even numbers
and are divisible by 4 and 8. Moreover, By definition, parameter f1 is always an odd number
whereas f2 is always an even number. Through further inspection, we can mention one of the
several algebraic properties of the QPP interleaver:∏

(j) has the same even/odd parity as j as shown in 1.9 and 1.10:∏
(2× k)mod 2 = 0 (1.9)∏

(2× k + 1)mod 2 = 1 (1.10)

This property will be used later in hardware implementation in order to design an extrinsic
exchange module to avoid memory collisions. More information on the other properties of QPP
interleaver are given in [8][9].

1.3.3 Multi Standard Channel Convolutional and Turbo Coding Parameters

There is a large variety of coding options specified in existing and future digital communication
standards, besides the increasing throughput requirement. Table 1.1 presents some Convolu-
tional and Turbo Coding standards and the parameters associated to them.

1.4 Turbo Decoding

On the receiver side the objective is to remove the channel effects to retrieve the original source
data. This objective is achieved by exploiting the redundancy and diversity added to source data

1.4. TURBO DECODING 17

Standard Codes Rates States Block size Channel Throughput
IEEE-802.11 CC 1/2 - 3/4 64 1 -4095 6 - 54 Mbps

(WiFi) CC 2/3 256 .. 1944 .. 450Mbps
IEEE802.16 CC 1/2 - 7/8 64 .. 2040 .. 54 Mbps
(WiMAX) DBTC 1/2 - 3/4 8 .. 4800 .. 75 Mbps
DVB-RCS DBTC 1/3 - 6/7 8 .. 1728 .. 2 Mbps
3GPP-LTE SBTC 1/3 8 .. 6144 .. 150 Mbps

Table 1.1: Selection of wireless communication standards and channel codes

in the transmitter. In an iterative receiver there are feedback paths in addition to forward paths,
through which, constituent units can send the information to previous units iteratively. A Soft
In Soft Out (SISO) processing block of an iterative receiver, using channel information and the
information received from other units, generates soft outputs at each iteration. As for this thesis
the iterative processes for Turbo decoding will be considered.

Iterative/Turbo decoding of Turbo codes involves an exchange of information between con-
stituent component decoders. This exchange is enabled by linking the a priori soft probability
input port of one component decoder to the extrinsic soft probability output port provided by
the other component decoder (Figure 1.11). Only the extrinsic information is transmitted to the
other decoder, in order to avoid the information produced by the one decoder being fed back
to itself. This constitutes the basic principle of iterative decoding. The SISO decoders are as-
sumed to process soft values of transmitted bits at their inputs. Each SISO decoder computes
the extrinsic information related to information symbols, using the observation of the associated
systematic (S) and parity symbols (P) coming from the transmission channel and the a priori
information. Since no a priori information is available from the decoding process at the begin-
ning of the iterations they are not used. For the subsequent iterations, the extrinsic information
coming from the other decoder are used as a priori information for the current SISO decoder.
The decisions can be computed from any of the decoders. The SISO processes are executed in
a sequential fashion. The decoding process starts arbitrarily with either one decoder, DEC1 for
example. After DEC1 processing is completed, DEC2 starts processing and so on.

1.4.1 Soft In Soft Out (SISO) Decoding

Consider the system diagram of Figure 1.12 where source is encoded by convolutional parallel
concatenated Turbo encoder which outputs the source (systematic and the parity bits). These
encoded bits modulated by passing through a mapper which applies Binary Phase Shift Keying
(BPSK) modulation to produce modulated symbol X . Then additive white Gaussian noise is
added to these symbols due to passing through Gaussian channel (AWGN). The received sym-
bols Y which are corrupted due to noise form the soft input to the Turbo decoder. The Turbo
decoder as explained in previous section is composed of two component decoders DEC1 and
DEC2 responsible for the error correction.

In SISO decoding, the term ”Soft-in” refers to the fact that the incoming data may take
values other than 0 or 1, in order to indicate reliability. ”Soft-out” refers to the fact that each bit
in the decoded output also takes a value indicating reliability. Reviewing the history of decoding
algorithms, several techniques have been proposed to decode a convolutional codes such as
Viterbi algorithm, proposed by Andrew J. Viterbi [10], and Fano algorithm, proposed by Robert
Mario Fano [11]. Both algorithms have considered initially binary inputs and outputs. The

18 CHAPTER 1. TURBO CODES AND TURBO DECODING

DEC2

DEC1

A PrioriExtrinsic

A Priori Extrinsic

A Posteriori

ΠΠ

P1

S

P2

Π−1

Figure 1.11: Turbo decoder principal

Viterbi algorithm was then modified to accept the soft inputs to improve the decoding [12]. The
Soft Output Viterbi Algorithm (SOVA) [13] differs from the classical Viterbi algorithm in that
it takes the soft input and provides the soft output by weighting two concurrent paths associated
with the hard decision. The CockBahl-Jelinek-Raviv (BCJR) [14] also called MAP (Maximum
A Posteriori) or forward backward algorithm, is the optimal decoding algorithm which calculates
the probability of each symbol from the probability of all possible paths in the trellis between
initial and final states. In practice, due to its complexity, implementing the BCJR algorithm is
difficult to hardware application, but rather the algorithm is simplified so the logarithmic domain
transforms the multiplications into additions. Hence these simplified versions are named as Log-
MAP or in sub optimal form as Max-Log-MAP algorithm [15]. The comparison of the SOVA
and Max-Log-MAP algorithm in terms of performance and complexity for Turbo codes have
been addressed in [15]. The Max-Log-Map algorithm which involves two Viterbi recursions is
about twice the complex as SOVA. But, the SOVA has a degradation of 0.2-0.4 dB compared to
the Max-Log-MAP algorithm.

1.4.1.1 MAP decoding algorithm

Figure 1.12 shows a source that generate frame of symbols d, where each symbol di is composed
of n bits. This frame is encoded with an encoder having ν memory element (i.e 3) states, which
generates l bits at rate r = n

l . On the other hand the MAP decoder generates 2n a posteriori
probabilities with respect of the sequence Y received by the decoder, in other word a decision
for each possible value of symbol. i.e for double binary symbols (n = 2) we have four decisions
for each possible value of symbol di ∈ (00, 01, 10, 11). The hard decision is the corresponding
value j that maximizes the a posteriori probability. These probabilities can be expressed in
terms of joint probabilities.

Pr(di ≡ j|Y) =
p(di ≡ j, Y)

2n−1∑
k=0

p(di ≡ k, Y)

(1.11)

1.4. TURBO DECODING 19

SOURCE
Modulation

BPSK AWGN CHANNEL

DEC1

DEC2

CC1

CC2

DECODER

Parallel Concatenated
Turbo Encoder

Decoded Bits

Turbo Decoder

ΠΠ−1Π

d

Π

S

P1

P2

C X Y

L(S)

L(P1)

L(P2)

Figure 1.12: System diagram with Turbo encoder, BPSK modulator, AWGN channel and Turbo decoder

The calculation of joint probabilities can be disintegrated between past and future observations
due to the Trellis structure of the code. This disintegration utilizes the forward recursion metric
ai(s) (the probability of a state of the trellis at instant i computed from past values), backward
recursion metric bi(s) (the probability of a state of the trellis at instant i computed from future
values), and a metric ci(s′, s) (the probability of a transition between two states of the trellis).
Using these metrics the expression of 1.11 becomes:

p(di ≡ j, Y) =
∑

(s′,s)/di≡j

bi+1(s)a(s′)ci(s
′, s) (1.12)

The forward recursion metrics is calculated in following way:

ai+1(s) =
2ν−1∑
s′=0

ai(s
′)ci(s

′, s), for i = 0 ... N − 1 (1.13)

The backward recursion metrics is calculated in following way:

bi(s) =
2ν−1∑
s′=0

bi+1(s
′)ci(s

′, s), for i = 0 ... N − 1 (1.14)

The initialization value of these metrics can be defined by knowing the initial and final state of
the trellis, e.g if the encoder starts at state s0 then a0(s0) has the highest probability value 1
while other a0(s) will be 0. If the initial state is unknown then all states are initialized to same
equiprobable value.

Similarly the branch metric can be expressed in the following way:

ci(s
′, s) = p(Yi|Xi) · Pra(di = di(s

′, s)) (1.15)

where p(Yi|Xi) is represents the channel transition probability which can be expressed for a
Gaussian channel and formula for Gaussian channel already presented previously in (1.1), where
Xi is the ith transmitted symbol after modulation and Yi is the ith transmitted symbol after
adding Gaussian noise.

20 CHAPTER 1. TURBO CODES AND TURBO DECODING

The a priori probability Pra(di = di(s
′, s), to emit m-ary information corresponding to

transition from s′ to s is 0 if the transition does not exist in the trellis. Otherwise its value
depends upon the statistics of the source. For an equiprobable source Pra(di = j) = 1

2n . In
the context of the Turbo decoding, the a priori probability takes into account the input extrinsic
information.

The decoder generates the extrinsic information which can be calculated the same way the a
posteriori information is computed in (1.11) but with a modified branch metric:

Pr(di ≡ j|Y) =

∑
(s′,s)/di≡j

bi+1(s)a(s′)cexti (s′, s)

∑
(s′,s)

bi+1(s)a(s′)cexti (s′, s)
(1.16)

Hence the branch metric does not take into account the already available information of a
symbol for which extrinsic information is being generated. For parallel convolutional Turbo
codes, systematic part is removed from the branch metric computation and can be expressed as:

cexti (s′, s) = K · e

l∑
k=n+1

Yi,k ·Xi,k

σ2 (1.17)

1.4.1.2 Log-MAP and Max-Log-MAP decoding algorithm

As already mentioned earlier, the MAP algorithm is likely to be considered too complex for
implementation in real system. The Log-MAP algorithm which is introduced by [15], is the di-
rect transformation of MAP algorithm in logarithmic domain. Hence, all the metrics M of MAP
algorithm will be replaced by metrics σ2lnM . This permits to transform the semi ring sum-
product (R+,+,×, 0, 1) to semi ring (R+,max∗,+, 1, 0) where the max∗ operator is defined
as below:

max∗(x, y) = σ2ln(e
x
σ2 + e

y

σ2) = max(x, y) + σ2ln

(
1 + e−

|x−y|
σ2

)
≈ max(x, y) (1.18)

This operator can be simplified by an operator max which corresponds to Max-Log-MAP algo-
rithms. Using this approximation the branch metrics of (1.15) and (1.17) can be written as:

γi(s
′, s) = σ2ln(ci(s

′, s)) = K ′+Lai (j)+
l∑

k=1

Yi,kXi,k = γexi (s′, s)+Lai (j)+Lsysi (j) (1.19)

and

γexi (s′, s) = σ2ln(cexi (s′, s)) = K ′ +
l∑

k=n+1

Yi,k ·Xi,k (1.20)

where Lai (j) is the metric of a priori information and Lsysi (j) is the metric which corresponds to
systematic part of the data. It is interesting to note that constant K ′ is not necessary in practice
because it is removed while computing (1.13)and (1.14).

1.4. TURBO DECODING 21

In the same way the forward and backward recursion metrics can be written as:

αi+1(s) = σ2ln(ai+1(s)) =
2ν−1
max
s′=0

∗(αi(s
′) + γi(s

′, s)) for i = 0 .. N-1 (1.21)

βi(s) = σ2ln(bi(s)) =
2ν−1
max
s′=0

∗(βi(s
′) + γi(s

′, s)) for i = 0 .. N-1 (1.22)

In this case the first and last metrics are initialized in following way :

* in case state S is known, a(S) = 0 while the others are a(s 6= S) = −∞.

* in case state is unknown, all the states will have a(s) = 0.

The a posteriori (2.1) and extrinsic (2.7) informations are transformed into:

Zi(j) = σ2lnPr(di ≡ j|Y)

= max
(s′,s)/di≡j

(αi(s
′) + γi(s

′, s) + βi+1(s))−max
s′,s

∗(αi(s
′) + γi(s

′, s) + βi+1(s))
(1.23)

Zexi (j) = max
(s′,s)/di≡j

(αi(s
′) + γexi (s′, s)

+βi+1(s))−max
s′,s

∗(αi(s
′) + γexi (s′, s) + βi+1(s))

(1.24)

By simplifying the terms on the right side of the metrics, using the most probable symbol ĵ in
the following way, one will have:

max
(s′,s)

∗(αi(s
′) + γi(s

′, s) + βi+1(s)) =

n
max
j=0

∗ (max(αi(s
′) + γi(s

′, s) + βi+1(s))
) (1.25)

max
(s′,s)

∗(αi(s
′) + γi(s

′, s) + βi+1(s)) =
n

max
j=0

∗
(

max
(s′,s)/di≡j

∗(αi(s
′) + γi(s

′, s) + βi+1(s))

)
≈ n

max
j=0

(
max

(s′,s)/di≡j
∗(αi(s

′) + γi(s
′, s) + βi+1(s))

)
= max

(s′,s)/di≡ĵ

∗(αi(s
′) + γi(s

′, s) + βi+1(s))

(1.26)

and by distributivity :

max
(s′,s)/di≡j

∗(αi(s
′) + γi(s

′, s) + βi+1(s)) =

Lai (j) + Lsysi (j) + max
(s′,s)/di≡j

∗(αi(s
′) + γexi (s′, s) + βi+1(s))

(1.27)

In the context of this simplification the metrics can be written in the following way:

Li(j) = Lai (j) + Lsysi (j) + Lexi (j)− Lexi (ĵ)− Lsysi (ĵ) (1.28)

22 CHAPTER 1. TURBO CODES AND TURBO DECODING

Finally the simplified formulas that are adopted in this work are:

Zexi = Γ× (Zaposi − γinti (s′, s)) (1.29)

Zaposi = max
(s′,s)/di

(αi−1(s) + γexi (s
′
, s) + βi(s)) (1.30)

Where Γ is the scaling factor to normalize the extrinsic information to avoid overloading in
hardware implementation and its value change regarding the applied standard.

αi(s) = max
s′ ,s

(αi−1(s) + γi(s
′
, s)) (1.31)

βi(s) = max
s′ ,s

(βi+1(s) + γi+1(s
′
, s)) (1.32)

γi(s
′, s) = γinti (s′, s) + γexi (s′, s) (1.33)

γinti (s′, s) = γsysi (s′, s) + γpari (s′, s) (1.34)

ZHard.deci = sign(Zaposi) (1.35)

For double binary Turbo codes, the three Log-Likelihood Ratios (LLR) can be normalized
as defined by (1.36) where k ∈ (01, 10, 11) of the ith symbol. s′ and s are the previous and
current trellis state and d(s′, s) is the decision respectively.

Zexi (d(s, s′) = k) = Zexi (d(s, s′) = k)− Zexi (d(s, s′) = 00) (1.36)

This simplification also known as Log-MAP introduces a very low loss of performance
(0.05dB) as compared to MAP algorithm. Although sub-optimal Max-Log-MAP algorithm pro-
vides a loss of 0.1dB for double binary code [16] yet it provides many advantages. Firstly
it eliminates the logarithmic term from (1.18) which on one hand reduces the implementation
complexity (in practice this part is saved in Look Up Tables) and on the other hand reduces
the critical path and hence increases the operational frequency as compared to max operator.
Moreover, for Max-Log-MAP algorithm the knowledge of σ2 is not required.

1.4.2 Parallelism in Turbo Decoding

Exploring parallelism in iterative processes with maintaining the error rate performance is very
important to satisfy high transmission rate requirement. This section will present the available
parallelism in Turbo decoding. A comprehensive study is already presented in [17], so we will
briefly summarize it and also explain Radix-4 technique which is missing in that study.
The Max-Log-MAP algorithm that is executed in Turbo decoder can allow for different tech-
niques of parallelism, these techniques can be categorised in three levels. Each level implies
different requirements in terms of memory and logic units when targeting a hardware imple-
mentation. These levels are:

- BCJR metric level parallelism.

1.4. TURBO DECODING 23

- SISO decoder level parallelism.

- Turbo decoder level parallelism.

The first parallelism level concerns symbol elementary computations inside a SISO decoder
processing the BCJR algorithm. The second parallelism level concerns parallelism between
SISO decoders, inside the same Turbo decoder. The third parallelism level duplicates the Turbo
decoder hardware itself.

1.4.2.1 BCJR metric level parallelism

This level exploits both the parallelism of inherent structure of the trellis [18] [19], one-level
look-ahead trellis transform [20], and the parallel calculations of BCJR [18][21] [19].

Parallelism of trellis transitions: Trellis transition parallelism is the first parallelism avail-
able in Max-Log-MAP algorithm. This parallelism is computation of the metrics associated to
each transition of a trellis regarding γ, α, β, and the extrinsic information. Trellis-transition
parallelism can be obtained from trellis structure as the same operations are repeated for all
transition pairs. For Max-Log-MAP algorithm these operations are add-compare-select (ACS)
operations. The number of (ACS) operations for BCJR calculation (γ, α, β, and Extrinsic)
bounded by the number of transitions in the trellis. i.e. for double binary Turbo codes of 8 states
there are 32 transitions (8 states × 4 branch metrics per state). However in practice for (γ) cal-
culation, the degree of parallelism associated with calculating the branch metric is bounded by
the number of possible binary combinations of input and parity bits. Therefore, many transitions
could have the same probability in a trellis if they have the same binary combination. i.e. for
double binary Turbo codes of 8 states there are 16 different binary combinations of input and
parity bits.

On the other hand another advantage of this parallelism, that it implies low area overhead
because the only duplicated part is the computational units. In particular, no additional memories
are required since all the parallelized operations are executed on the same trellis section, and in
consequence on the same data.

Parallelism of BCJR computations: A second metric parallelism can be orthogonally ex-
tracted from the BCJR algorithm through a parallel execution of the three BCJR computations
(α, β , and extrinsic computation). Parallel execution of backward recursion and extrinsic com-
putations was proposed with the original Forward-Backward scheme, depicted in Figure 1.13(a).
So, in this scheme, we can notice that BCJR computation parallelism degree is equal to one in
the forward part and two in the backward part. To increase this parallelism degree, several
schemes are proposed [21]. Figure 1.13(b) shows the butterfly scheme which doubles the paral-
lelism degree of the original scheme through the parallelism between the forward and backward
recursion computations. In conclusion, BCJR metric level parallelism achieves optimal area ef-
ficiency as it does not affect memory size, which occupies most of the area in a Turbo decoder
circuit. Thus, a hardware implementation achieving high throughput should first exploit this
parallelism. However the parallelism degree is limited by the decoding algorithm and the code
structure. Thus, achieving higher parallelism degree implies exploring higher processing levels.

Parallelism of trellis compression: A third metric parallelism is associated to the parallel
execution of BCJR computations related to more than one symbol (or bit). This is achieved
by applying one-level look-ahead trellis transformation technique, called commonly as trellis
compression technique. Figure 1.14 illustrates this approach when applied to an 8 state single-
binary Turbo code. Two single-binary trellis are compressed and transformed in one double-
binary trellis enabling to decode each two consecutive bits in parallel as one double-binary

24 CHAPTER 1. TURBO CODES AND TURBO DECODING

Time
(a)

Time

Extrinsic

LLR1

Extrinsic

LLR2

LLR1

(b)

fr
am

e
si

ze
N

fr
am

e
si

ze
N

α

β

α
β

Figure 1.13: (a) Forward backward scheme (b) Butterfly scheme

symbol. This scheme is also denoted as Radix-4 technique. The modified α and β state metrics
for this Radix-4 optimization are given by (1.37) and (1.39). Higher degrees of parallelism can be
achieved at this level (Radix-8, Radix-16, etc.), however the complexity increases significantly.

αk(s) = maxs′ ,s{maxs′′ ,s′{αk−2(s
′′
) + γk−1(s

′′
, s′)}+ γk(s

′
, s)}

= maxs′′ ,s{αk−2(s
′′
) + γk(s

′′
, s)}

(1.37)

where γk(s
′′
, s) is the new branch metric for the combined two-bit symbol (uk−1, uk) connect-

ing state s
′′

and s:
γk(s

′′
, s) = γk−1(s

′′
, s
′
) + γk(s

′
, s) (1.38)

Similarly, the Radix-4 transform can be applied to the β recursion:

βk(s) = maxs′′ ,s{βk+2(s
′′
) + γk(s

′′
, s)} (1.39)

The extrinsic information for uk−1 and uk are computed as:

Zn.extk−1 = Γ× (max(Zext10 , Z
ext
11)−max(Zext00 , Z

ext
01)) (1.40)

Zn.extk = Γ× (max(Zext01 , Z
ext
11)−max(Zext00 , Z

ext
10)) (1.41)

Figure 1.14 depicts a single binary 3GPP-LTE trellis, the length of this trellis is reduced and
converted to double binary after applying Radix-4. For Turbo decoders that support both sin-
gle binary (SBTC) and double binary codes (DBTC), applying Radix-4 achieves optimal area
efficiency and reuse of resources as it does not affect the memory size nor the computational
units.

1.4.2.2 SISO decoder level parallelism

The second level of parallelism concerns the SISO decoder level. It consists of the use of multi-
ple SISO decoders, each executing the BCJR algorithm and processing a sub-block of the same
frame in one of the two interleaving orders. At this level, parallelism can be applied either on
sub-blocks and/or on component decoders.

Frame sub-blocking: In sub-block parallelism, each frame is divided into M sub-blocks
and then each sub-block is processed on a BCJR-SISO decoder using adequate initializations
as shown in Figure 1.15 Besides duplication of BCJR-SISO decoders, this parallelism imposes

1.4. TURBO DECODING 25

Input 0 Input 1

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

Input 00 Input 01 Input 11Input 10

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

0="000"

1="001"

2="010"

3="011"

4="100"

5="101"

6="110"

7="111"

S7

S”0

S”1

S”2

S”3

S”4

S”5

S”6

S”7

S0

S1

S2

S3

S4

S5

S6

S7

S”0

S”1

S”2

S”3

S”4

S”5

S”6

S”7 S ′7

S ′6

S ′5

S ′4

S ′3

S ′2

S ′1

S ′0 S0

S1

S2

S3

S4

S5

S6

Figure 1.14: One-level Look-ahead Transform for 3GPP-LTE Trellis (Radix-4)

26 CHAPTER 1. TURBO CODES AND TURBO DECODING

two other constraints. On the one hand, interleaving has to be parallelized in order to scale pro-
portionally the communication bandwidth. Due to the scramble property of interleaving, this
parallelism can induce communication conflicts except for interleavers of emerging standards
that are conflict-free for certain parallelism degrees. These conflicts force the communication
structure to implement conflict management mechanisms and imply a long and variable commu-
nication time. This issue is generally addressed by minimizing interleaving delay with specific
communication networks [22]. On the other hand, BCJR-SISO decoders have to be initialized
adequately either by acquisition or by message passing.
Acquisition method has two implications on implementation. First of all extra memory is re-
quired to store the overlapping windows when frame sub-blocking is used and secondly extra
time will be required for performing acquisition. Other method, the message passing, which ini-
tializes a sub-block with recursion metrics computed during the previous iteration in the neigh-
boring sub-blocks, needs not to store the recursion metric and time overhead is negligible. In
[23] a detailed analysis of the parallelism efficiency of these two methods is presented which
gives favor to the use of message passing technique. Figure 1.15 shows sub-blocking that apply
message passing for initialization, where Figure 1.15(b) is an example of circular Turbo codes
such as WiMAX, so in this case, first and last symbols in the frame exchange their metric values
(α, β). On the other hand Figure 1.15 (a) presents an example of non circular Turbo codes such
as 3GPP, so in this case the encoder generates additional tail bits besides the original frame.
These tail bits are used to initialize the last symbol, while the first symbol is always initialized
to zero.

Shuffled Turbo decoding: The basic idea of shuffled decoding technique [24] is to execute
all component decoders in parallel and to exchange extrinsic information as soon as it is created,
so that component decoders use more reliable a priori information. Thus the shuffled decoding
technique performs decoding (computation time) and interleaving (communication time) fully
concurrently while serial decoding implies waiting for the update of all extrinsic information
before starting the next half iteration (see Figure 1.16). Thus, by doubling the number of BCJR
SISO decoders, component-decoder parallelism halves the iteration period in comparison with
originally proposed serial Turbo decoding.

Nevertheless, to preserve error-rate performance with shuffled Turbo decoding, an overhead
of iteration between 5 and 50 percent is required depending on the BCJR computation scheme,
on the degree of sub-block parallelism, on propagation time, and on interleaving rules [23].

1.4.2.3 Parallelism of Turbo decoder

The highest level of parallelism simply duplicates whole Turbo decoders to process iterations
and/or frames in parallel. Iteration parallelism occurs in a pipelined fashion with a maximum
pipeline depth equal to the iteration number, whereas frame parallelism presents no limitation
in parallelism degree. Nevertheless, Turbo-decoder level parallelism is too area-expensive (all
memories and computation resources are duplicated) and presents no gain in frame decoding
latency.

1.4.2.4 Parallelism levels comparison

Table 1.2 summarizes the above presented parallelism techniques and presents a comparison in
terms of area efficiency and possible parallelism degrees. It is clear that the first and second
levels (BCJR metric and SISO decoder) are area efficient since they do not require complete
memory duplication which occupies most of the area in a Turbo decoder circuit. However,

1.4. TURBO DECODING 27

III

II

I

IV

FRAME

EXTRINSIC

EXTRINSIC

EXTRINSIC

EXTRINSIC

II III

IVI

EXTRINSIC

(b)

EXTRINSIC

III

II

I

IV

II

III

IV

I

FRAME

(a)

Tail Bits

EXTRINSIC

EXTRINSIC

3N
4

N − 1

N
2

3N
4 − 1

0

N
4 − 1

N
4

N
2 − 1

0

N − 1

T
8

α I

β
I

T
8

α I
I

β
II

3N
4

N − 1

N
2

3N
4 − 1

0

N
4 − 1

N
4

N
2 − 1

T
8

α I
I

β
II

0

T
8

α I

β
I

0

βII αIII

αIV

βI

βIII

αII

αI βIV

T
8

α I
V

β
IV

T
8

α I
II

β
III

00

0 0

0

βII

βIII

βIV

N + 2

βI

0

N + 2

N + 2

T
8

0

β
T
ail

β
IV

α I
V

αIII

αII

αI

T
8

α I
II

β
III

0

Figure 1.15: Sub-block parallelism with message passing for metric initialization: (a) Non circular code, (b) Circular
Code

Iteration 1 Iteration 2

D1 D2 D3 DM

DM+1 DM+2 DM+3 D2M

D1 D2 D3 DM

DM+1 DM+2 DM+3 D2M

Figure 1.16: Shuffled Turbo decoding

achievable parallelism degrees for both levels are constrained either by the decoding algorithm
and component code structure for the first level, or by the interleaving rules and the frame size

28 CHAPTER 1. TURBO CODES AND TURBO DECODING

for the second level. The third level is the most inefficient in terms of area overhead and should
be avoided if possible.

Parallelism Level
Parallelism

method
Logic

Overhead
Memory

Overhead
Area

efficiency
Parallelism

degree

BCJR metric

Trellis
transitions

ACS units are
duplicated

No overhead
The most
efficient

Limited
BCJR
computations

Trellis
compression

SISO decoder

Frame Sub-
Blocking Complete SISO

decoders are
duplicated

Only internal
memories are

duplicated
(state metrics

memories)

Intermediate High
Shuffled Turbo
decoding

Turbo decoder

Iterations
Complete

Turbo
decoders are

duplicated

All memories
are dublicated

(including channel
input and extrinsic

information memories)

The most
inefficient

Unlimited

Frames

Table 1.2: Comparison of parallelism levels available in Turbo decoding

1.4.3 Decoding Large Frames in Turbo Decoding

When is needed to decode large frames but we are short with memories. Each frame is divided
into M windows, something similar to frame sub-blocking in Section 1.4.2.2. However, instead
of processing the sub-blocks in parallels, windows will be processed serially on a BCJR-SISO
decoder using adequate initializations as shown in Figure 1.17. Similar to sub-blocking, BCJR-
SISO decoder have to be initialized adequately either by acquisition or by message passing.

FRAME

III

II

I

IV

EXTRINSIC

EXTRINSIC

EXTRINSIC

I

II

III

IV
EXTRINSIC

0

N + 2
3N
4

N − 1

N
2

3N
4 − 1

0

N
4 − 1

N
4

N
2 − 1

α I
II

β
III

0

α I

β
I

α I
I

β
II

0

αI

αII

αIII

βI

βII

βIII

β
IV

α I
V

αIV βIV

T
8

Figure 1.17: Sub-block parallelism with message passing for metric initialization (a) Non circular code (3GPP), (b)
Circular Code (WiMAX)

1.4.4 Software Model for Parallel Turbo Decoder

The modeled architecture of the parallel Turbo decoder is shown in Figure 1.18. A software
model implementing this parallel Turbo decoder was created in C++ programming language. On
the transmitter side, Single/double binary Turbo code of WiMAX/LTE standards with Radix-4

1.5. SUMMARY 29

are modeled. The channel is modeled as the channel model is represented by a binary-input ad-
ditive white Gaussian noise (AWGN). Scaling Factor Estimation for Radix-4: As mentioned
earlier in Section 1.4.1.2, Max-Log-MAP algorithms provides a loss of 0.1 for double binary
code as compared to MAP algorithm when using proper scaling factor. The decoding quality of
the Max-Log-MAP decoder is improved by using a scaling factor within the extrinsic calcula-
tion. Authors of [25] used a constant scaling factor of Γ = 0.7. In hardware implementation to
reduce complexity, the scaling factor adopted is Γ = 0.75.

IN
TERLEA

V
IN

G

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

Communication
Interconnect 2

TURBO DECODING

A−1

A−2

A−p B−p

B−2

B−1

/ D
EIN

TERLEA
V

IN
G

∏−1
1 DOMAIN

∏
1 DOMAIN

Figure 1.18: Organization of the Turbo decoder’s software model

However, extrinsic scaling factor for Max-Log-MAP algorithms when using Radix-4 tech-
nique should be re-estimated. Figure 1.19 shows floating point Bits Error Rate (BER) curve for
3GPP-LTE Turbo codes, frames size of 864 bits with code-rate R = 0.33, where decoding side
uses Radix-4 technique and 8 iteration. The software model is launched to generate BER curves
for different scaling factors Γ = 0.3, 0.4, 0.4375, 0.5, 0.7. The figure shows that for Γ = 0.4
Turbo decoding has the best BER performance, while for Γ = 0.3 and Γ = 0.5 has a degrada-
tion of between 0.25db to 0.5db respectively in BER performance compared to Γ = 0.4 at BER
of 10−4. However, for hardware implementation and in order to reduce complexity the scaling
factor adopted is Γ = 0.4375. This value gives very slight degradation comparing with Γ = 0.4
(< 0.1db at 10−4).

1.5 Summary

In this first chapter, we presented an overview of the fundamental concept of Turbo coding and
decoding algorithms. The chapter gave a brief introduction on convolutional Turbo codes along
with the different interleaving rules specified in emerging wireless communications standards.
Then, the reference MAP algorithm and the hardware-efficient Max-Log-MAP approximation
were presented. A classification of available parallelism techniques related to these algorithms

30 CHAPTER 1. TURBO CODES AND TURBO DECODING

Figure 1.19: BER for 3GPP-LTE frame size 864 bits with different scaling factors

is provided with emphasis on the Radix-4 technique which allows for promising computation
commonalities between SBTC and DBTC modes. The windowing technique in Turbo decoding
is also highlighted, which is necessary to manage efficiently long frame sizes. Finally, simulation
results of error rate performance for SBTC and Radix-4 are presented illustrating the impact of
the scaling factor applied on exchanged extrinsic information.

CHAPTER

2 ASIP Design Methodologies
and Initial Architecture

APPLICATION Specific Instruction-set Processors (ASIPs) are increasingly used in com-
plex System on Chip (SoC) designs and for many application domains. ASIPs allow the

architecture to be tailored to a specific application and requirement in terms of flexibility and
performance. This specialization of the core provides a trade-off between the flexibility of a
general purpose processor and the performance of a fully dedicated solution.

The first section of this chapter introduces the evolution of embedded processor architectures
towards customizable instruction-set ones. This crucial efficiency-driven evolution constitutes
our main motivation behind the selection of the ASIP design approach. The second section gives
an overview on existing ASIP design flows and presents the considered Synopsys (ex. CoWare)
design tool: Processor Designer. Based on this design approach, a first effort has been carried
out in the context of a previous thesis study at the Electronic department of Telecom Bretagne to
design a high throughput flexible turbo decoder. Thus, in the third and last section of the chapter
we will present the initial ASIP architecture which constitutes the starting point of this thesis
work.

31

32 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

2.1 Customizable Embedded Processors

The complexity of a large share of the integrated circuits manufactured today is impressive
[26][27]: devices with hundreds of millions of transistors are not uncommon. Unsurprisingly,
the non-recurrent engineering costs of such high-end application-specific integrated circuits is
approaching a hundred million U.S. dollars-a cost hardly bearable by many products individu-
ally. It is mainly the need to increase the flexibility and the opportunities for modular reuse that
is pushing industry to use more and more software-programmable solutions for practically every
class of devices and applications.

On the other hand, processor architecture has evolved dramatically in the last couple of
decades [27]: from microprogrammed finite state machines, processors have transformed into
single rigid pipelines; then, they became parallel pipelines so that various instructions could
be issued at once; next, to exploit the ever-increasing pipelines, instructions started to get
reordered dynamically; and, more recently, instructions from multiple threads of executions
have been mixed into the pipelines of a single processor, executed at once. However, now
something completely different is changing in the lives of these devices: on the whole, the great
majority of the high-performance processors produced today address relatively narrow classes
of applications. This is related to one of the most fundamental trends that slowly emerged
in the last decade: to design tailor-fit processors to the very needs of the application rather
than to treat them as rigid fixed entities, which designers include as they are in their products.
The emergence of this trend has been made successful thanks to the development of new
adequate design methodologies and tools. Such tools enable designers to specify a customizable
processor, and in some cases completely design one, in weeks rather than months. Leading
companies in providing such methodologies and tools include CoWare (acquired recently
by Synopsys),Tensilica, ARC Cores, Hewlett-Packard, and STMicroelectronics. The shape
and boundaries of the architectural space covered by the tool chain differentiate the several
approaches attempted. Roughly, these approaches can be classified in three categories [27]:

Parameterizable processors are families of processors belonging to a single family and
sharing a single architectural skeleton, but in which some of the characteristics can be turned
on or off (presence of multipliers, of floating point units, of memory units, and so forth) and
others can be scaled (main datapath width, number and type of execution pipelines, number of
registers, and so forth).
Extensible processors are processors with some support for application-specific extensions.
The support comes both in terms of hardware interfaces and conventions and in terms of adapt-
ability of the tool chain. The extensions possible are often in the form of additional instructions
and corresponding functional pipelines but can also include application-specific register files or
memory interfaces.
Custom processor development tools are frameworks to support architects in the effort to de-
sign from scratch (or, more likely, from simple and/or classic templates) a completely custom
processor with its complete tool chain (compiler, simulator, and so forth). Ideally, from a single
description in a rich architectural description language (ADL), all tools and the synthesizable
description of the desired core can be generated.

In addition to the above mentioned categories which provide hardware flexibility only at de-
sign time (and software programmability at run time), it is worth to cite the family of partially
reconfigurable ASIPs (rASIP) which targets to add this hardware flexibility at run time. The
idea is to combine the programmability of ASIPs with the postfabrication hardware flexibility
of reconfigurable structures like FPGAs and CGRAs (Coarse Grained Reconfigurable Architec-

2.2. ASIP DESIGN METHODOLOGIES AND TOOLS 33

tures). Although several specific rASIP architectures have been proposed in the literature (e.g.
[28][29]) and several design methodologies are emerging recently (e.g. [30][31]), there is a lack
of commercially available well established tools. Exploring the opportunities offered by this
approach in the considered application domain constitutes, however, one of the future research
perspectives.

2.2 ASIP Design Methodologies and Tools

Several alternative solutions to ASIPs are available in order to implement the desired task, de-
pending on the requirements [32]: for functions which need lower processing power but should
be kept flexible a software implementation running on a General Purpose Processor (GPP) or a
micro-controller may be the best solution, if some additional processing power is needed, mov-
ing to a domain specific processor, like a Digital Signal Processor (DSP) optimized for signal
processing and offering some additional specialized instructions (e.g. Multiply-Accumulate,
MAC), may be beneficial. On the contrary, system modules with very high processing require-
ments are usually implemented as hardware blocks (Application Specific Integrated Circuits,
ASICs, or even physically optimized ICs), with no flexibility at all. If some flexibility is re-
quired, field programmable devices like Field Programmable Gate Arrays (FPGAs), which allow
for reconfiguration after fabrication, may be the right choice if some price in terms of perfor-
mance, area and power can be paid. ASIPs represent an intermediate solution between DSPs and
FPGAs in terms of performance and flexibility, thus becoming in many cases the best choice to
play this trade-off, as shown in Figure (2.1).
Several options are available to the ASIP designer for developing his own processor with dif-
ferent degrees of freedom, ranging from the complete specification through an Architecture De-
scription Language (ADL) to a limited post-fabrication reconfigurability achieved via software.
ASIPs are often employed as basic components of heterogeneous Multi Processor System on
Chips (MPSoCs), due to the ever increasing demand for flexibility, performance and energy ef-
ficiency, which forces designers to exploit heterogeneous computational fabrics in order to meet
these conflicting requirements. Using ASIPs as Processing Elements (PEs) in complex systems
is a viable solution in order to play this trade off.

2.2.1 ASIP Design Approaches

Typically, the development flow of ASIPs starts with the analysis of the application in order to
identify its ”hot spots” [32]. Then, an initial architecture is defined, in particular with special
custom instructions to improve the efficiency for handling those hot spots. Afterward the
applications are run on the processor in order to verify if the target specifications have been
met. If that is not the case, the whole flow is iterated to meet the design requirements for given
applications.

From this quick overview of the design flow it is clear that some tools are required for
implementing it: First, an assembler and a linker are needed in order to run the application
code on the processor, together with a compiler if a high-level programming language is used;
these tools are required both for design space exploration, when the target application has to
be tested in order to improve the architecture, and for software development after the final
architecture has been defined. Moreover, an Instruction Set Simulator (ISS) has to be provided
so that the application can be run both for profiling and for verification purposes. All these tools
directly depend on the instruction set of the processor and hence they have to be re-targeted

34 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

each time that the instruction set is modified. Almost all the available ASIP design suites
provide these tools and the capability to re-target them when needed, while some of them also
include the further ability to automate the process of profiling the application and identifying
the instructions which are most suitable for instruction-set extension.
By looking at available commercial solutions for ASIP design, it is possible to identify three
main classes based on the degree of freedom which is left to the designer [32]:

- Architecture Description Language (ADL) based solutions (e.g. Synopsys Processor De-
signer [33], Target IP Designer [34]), which can be also defined as ASIP-from-scratch since
every detail of the architecture, including for instance pipeline and memory structures, can
be accessed and specified by the designer by means of a proper language. This approach
results in the highest flexibility and efficiency, but on the other hand it requires a significant
design effort.

- Template architecture based solutions (e.g. Tensilica Xtensa [35], ARC ARChitect [36]),
which allow the designer to add custom ISE to a pre-defined and pre-verified core, thus
restricting the degree of freedom with respect to the previous approach to the instruction
set definition only.

- Software configurable processors and reconfigurable processors (e.g. Stretch [37]), with a
fixed hardware including a specific reconfigurable ISE fabric which allows the designer to
build custom instructions after the fabrication.

2.2.2 Synopsys’s ADL-based Design Tool: Processor Designer

Synopsys Processor Designer is an ASIP design environment entirely based on LISA [38]. LISA
was developed at Aachen University of Technology, Germany, with a simulator-centric view
[27]. The LISA language is aiming at the formalized description of programmable architecture,

Lo
g

FL
EX

IB
IL

IT
Y

GPP
DSP

ASIP

FPGA

ASIC

Physical
Optimized ICs Lo

g
PO

W
ER

 D
IS

SI
PA

TI
O

N

Log PERFORMANCE

103 . . . 104

10
5

..
.1

06

Figure 2.1: Performance-Flexibility Trade-off of Different Architecture Models

2.2. ASIP DESIGN METHODOLOGIES AND TOOLS 35

their peripherals and interfaces. it was developed to close the gap between purely structural
oriented languages (VHDL, Verilog) and instruction set languages for architecture exploration
and implementation purposes of a wide range of modern programmable architectures. The lan-
guage syntax provides a high flexibility to describe the instruction set of various processors such
as Single Instruction Multiple Data (SIMD), Multiple Instruction Multiple Data (MIMD) and
Very Long Instruction Word (VLIW) type architectures. Moreover, processors with complex
pipelines can be easily modeled. The language has been used to produce production quality
simulators. An important aspect of LISA is its ability to capture control path explicitly. Explicit
modeling of both data-path and control is necessary for cycle-accurate simulation.
Processor Designer’s high degree of automation greatly reduces the time for developing the
software tool suite and hardware implementation of the processor, which enables designers to
focus on architecture exploration and development. The usage of a centralized description of the
processor architecture ensures the consistency of the Instruction-Set Simulator (ISS), software
development tools (compiler, assembler, and linker etc.) and RTL (Register Transfer Level)
implementation, minimizing the verification and debug effort.

The LISA machine description provides information consisting of the following model com-
ponents [32]:

• The memory model lists the registers and memories of the system with their respective bit
widths ranges and aliasing.

• The resource model describes the available hardware resources, like registers, and the re-
source requirements of operations. Resources reproduce properties of hardware structures
which can be accessed exclusively by a given number of operations at a time.

• The instruction set model identifies valid combinations of hardware operations and admis-
sible operands. It is expressed by the assembly syntax, instruction word coding, and the
specification of legal operands and addressing modes for each instruction.

• The behavioral model abstracts the activities of hardware structures to operations changing
the state of the processor for simulation purposes. The abstraction level can range widely
between the hardware implementation level and the level of high-level language (HLL)
statements.

• The timing model specifies the activation sequence of hardware operations and units.

• The micro-architecture model allows grouping of hardware operations to functional units
and contains the exact micro-architecture implementation of structural components such as
adders, multipliers, etc.

By using these various model components to describe the architecture, it is then possible to
generate a synthesizable HDL representation and the complete software tool suite automatically.

The generation of the software development environment by Processor designer enables to
start application software development prior to silicon availability, thus eliminating a common
bottleneck in embedded system development. As it is shown in Figure (2.2), the design flow
of Processor Designer is a closed-loop of architecture exploration for the input applications. It
starts from a LISA 2.0 description, which incorporates all necessary processor-specific compo-
nents such as register files, pipelines, pins, memory and caches, and instructions, so that the
designer can fully specify the processor architecture. Through Processor Designer, the ISS and
the complete tool suite (C-compiler, assembler, linker) are automatically generated. Simulation
is then run on the architecture simulator and the performance can be analyzed to check whether

36 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

the design metrics are fulfilled. If not, architecture specifications are modified in LISA descrip-
tion until design goals are met. At the end, the final version of RTL implementation (Verilog,
VHDL and SystemC) together with software tools is automatically generated.
As previously mentioned, ASIPs are often employed as basic components of more complex sys-
tems, e.g. MPSoCs. Therefore, it is very important that their design can be embedded into the
overall system design. Processor Designer provides possibilities to generate a SystemC model
for the processor, so that it can be integrated into a virtual platform. In this way, the interac-
tion of the processor with the other components in the system can be tested. Furthermore, the
exploration as well as the software development of the platform at early design stage becomes
possible.

Figure 2.2: LISA architecture exploration flow

2.3 Initial ASIP Architecture for Turbo Decoding

A first effort has been carried out in the context of a previous thesis study at the Electronic
department of Télécom Bretagne to design a high throughput flexible turbo decoder [39][40]. In
this section we will present the initial ASIP architecture which constitutes the starting point of
this new thesis contribution

2.3.1 Overview of the Design Approach and the Architectural Choices

To address high throughput requirement, first of all, a comprehensive study was made in explor-
ing the efficient parallelism at different levels within a turbo decoder. This parallelism study is
detailed in [40] and is summarized in Section 1.4.2 of Chapter II. As the first parallelism level
(BCJR metric level) occurring inside a BCJR SISO decoder is the most area efficient, a hard-
ware implementation achieving high throughput should first exploit this parallelism. A dedicated

2.3. INITIAL ASIP ARCHITECTURE FOR TURBO DECODING 37

processing architecture with multiple functional units and adequate memory interfaces can be
suitable to efficiently perform all computations of a BCJR-SISO decoder. However, as the par-
allelism degree of this level is limited, further increase of throughput should exploit the second
parallelism level (SISO decoder level). This can be done efficiently by instantiating multiple
BCJR-SISO processing units with dedicated on-chip communication interconnect.

As the flexibility requirement is also considered, besides high throughput, the processing
units and the on-chip communication interconnect should be flexible. A trade-off between per-
formance and flexibility is thus imposed for the processing unit architecture and the ASIP design
approach is thus adopted. Regarding the on-chip communication, appropriate NoC architectures
are explored and designed.

Extracting the flexibility requirements of target standards as summarized in Table 1.1 (Page
17) was the initial step toward the ASIP design for turbo decoding. The complexity of convolu-
tional turbo codes proposed in most existing and emerging wireless communication standards is
limited to eight-state double binary or binary turbo codes. Hence, to fully exploit trellis transi-
tion parallelism for all standards, a parallelism degree of 32 is required for worst case eight states
double binary turbo codes (8 states× 4 transitions per state). Regarding BCJR computation par-
allelism, a parallelism degree of two has been adopted, i.e. two recursion units to implement the
Butterfly metric computation scheme presented in Section 1.4.2.1.

In order to present the initial ASIP architecture [26], a bottom-up approach is adopted where
the basic building blocks are explained first. Based on these building blocks the architecture of
recursion units are then presented and finally the full ASIP architecture is illustrated.

2.3.2 Building Blocks of the Initial ASIP

The flexibility parameters of this ASIP are fundamentally based on supporting single and double
binary turbo codes implementing the expressions 1.30, 1.31, 1.32 and 1.33 of max-log-MAP
algorithm. Details of the building blocks composing the initial ASIP architecture is briefly
discussed below [26]:

Gamma (γ) Metric Computation: As stated in Section 1.4.2.1 (Page 23) on parallelsim
of trellis transitions, all possible values of γ related to all transitions of the trellis can be
computed in parallel. In hardware this is achieved by the use of 24 simple adders and subtracters
per recursion unit, which process input channel LLRs and input extrinsic LLRs to generate γ
metrics.

Alpha (α), Beta (β) and Extrinsic Information (Z) Computation: The computations
related to state metrics α and β consist of: (1) the recursive addition of γ with α and β to
compute them over all sections of the trellis and (2) the selection of maximum α and β related
to the transitions associated with each state. Same case with extrinsic information where all
three metrics γ, α and β are added on each section of trellis. But for extrinsic information
generation, the maximum operation is performed on values related to those transitions which
are occurred due to the input for which the extrinsic information is being computed. In literature
this operation is often referred as Add Compare Select (ACS) operation.

The basic computational units of the initial ASIP architecture providing ACS are shown in
Figure 2.3 An Adder Node (see Figure (2.3 a)) can be used for addition operation required both
in state metric and extrinsic information computation. While computing state metrics, the adder
node can be configured for one of the input state metric (α of previous symbol or β of next

38 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

MAX(A,B)

INPUT BINPUT A

CONFIG REGISTER

0

1

1

0

or

SM/EXT

0 0121213 13

141313
14

14 013 12

S1 S2

S3

S1 S2

S3

0 1

(b)(a)

RADD REG

α/β

β/α

β + γ

α/β/z

γ

α + γ

Figure 2.3: Basic computational units of the initial ASIP (a) Adder node (b) Modulo compare unit

symbol) and associated γ using the configuration register, depending upon the trellis selected
(WiMAX, 3GPP ...etc.).

While performing the addition operation involved in extrinsic information computation, the
already stored sum (in RADD REG) of state metric and branch metric (α+γ or β+γ) is added
with the other corresponding state metric (β or α respectively). The quantization for the state
metrics and extrinsic information is based on modulo algorithm [41] and the signed values are
allowed to overflow. When overflow occurs, causing values to move from positive region to
negative region, the largest value becomes the smallest. In this situation when maximum finding
operation is performed, a simple maximum operation will lead for wrong result. To address this
issue, the architecture of specialized max operator is proposed in Figure 2.3 b, which detects
the largest value even in case of overflow situation and conforms to modulo algorithm. In fact,
the first issue is to detect this particular situation which can be done by analyzing the 2 MSBs
of the inputs. As shown in Figure 2.4, in which n bits represent the quantization of state metrics
and extrinsic information, if a value lies in the region Q-2 its two MSB’s will be ”01” whereas
in Q-3 they will be ”10”. Hence, if some of the extrinsic informations related to different
combinations of a symbol lay in Q-2 and the others in Q-3 this will identify the problematic
situation. In this case the second step is to correct the extrinsic information in a way that the
largest extrinsic information remains largest. This can be done simply by an unsigned right
shifting of all the extrinsic informations.

Forward Backward Recursion Units: As stated above, butterfly scheme of state metric
computation and extrinsic information generation is used. Hence, two hardware recursion
units, one working in forward and the other in backward direction are used. Since there are 32
transitions in the worst case of 8 state double binary code, each recursion unit is made up of 32
adder nodes. The arrangement of adder nodes in Forward recursion unit is shown in Figure 2.5.
To each state of the trellis (row-wise) corresponds to four adder nodes (column-wise) which
receive proper γ due to the four possible inputs in double binary code. Same architecture is
used for backward recursion unit. As stated above using configuration register each adder node
receives its inputs according to the trellis structure.

To perform the max operation, 24 2-input compare units are used in each recursion unit.
These 24 2-input compare units can be configured to work as 8 4-input compare units. When
computation of max operation in state metrics generation is required, 8 4-input compare units

2.3. INITIAL ASIP ARCHITECTURE FOR TURBO DECODING 39

0

Q−4

2MSBs=01

Q−1

2MSBs=112MSBs=00

Q−2 Q−3

error zone

2MSBs=10

−2n−1 + 12n−1

−2n

Figure 2.4: Modulo algorithm extrinsic information processing

are connected to the four outputs (output of 4 adder nodes in a column) of each column of the
recursion unit as shown in Figure 2.5(a). Hence, at the output of the 8 4-input max operators, 8
state metrics of double binary code are obtained. In case of extrinsic information computation,
as shown in Figure 2.5(b), the 8 4-input compare units are connected to adder nodes in rows
in such a way that 8 elements of a row are divided into 2 sets of 4 adder nodes (first set made
up of 4 adder nodes on the left of the row and the second set made up of 4 adder nodes on the
right). These 8 sets from 4 rows are connected 8 4-input compare units. The two maximum
values obtained in each row are saved back in the RADD registers of first two adder nodes of
that row. Reusing 4 2-input compare units one can find the maximum per row (between the two
candidates) which is the extrinsic information for the corresponding combination of input bits.

2.3.3 Overall Architecture of the Initial ASIP

The overall architecture of the initial ASIP [26] is composed of memory interface, internal reg-
isters, basic building blocks and a control unit as shown in Figure 2.6. Regarding memory
interface, the application program is saved in the program memory. Config Memory is used to
store the configuration of the trellis which can be loaded in the ASIP to switch between differ-
ent trellis structures. The input data to the ASIP for data decoding is provided from Input and
Extrinsic Data memories. To achieve butterfly scheme these two memories are further divided
into top and bottom banks to enable two simultaneous memory access. Cross metric memory
is used to store the state metrics while left side of butterfly scheme is in progress. These stored
metrics are used to compute the extrinsic information during right side of the butterfly scheme.
The interleaving/deinterleaving tables are stored in the interleaving memories. Once the ASIP
computes the extrinsic information, the interleaving address from these memories is read. This
address is placed as header whereas the extrinsic information is placed as payload in the packet
which is sent on the network. Finally Read/Write α, β Memories are used to store the last values
of state metrics. In the context of sub-blocking parallelism these saved state metrics are used to

40 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

ANF0

ANF8

ANF16

ANF1

ANF9

ANF17

ANF2

ANF10

ANF18

ANF26

ANF3

ANF11

ANF19

ANF27

ANF4

ANF12

ANF20

ANF28

ANF5

ANF13

ANF21

ANF29

ANF6

ANF14

ANF22

ANF30

ANF7

ANF15

ANF23

ANF31

S0 S1 S2 S3 S4 S5 S6 S7

ANF0 ANF1 ANF2 ANF3 ANF4 ANF5 ANF6 ANF7

ANF8 ANF9 ANF11 ANF12 ANF13 ANF14 ANF15ANF10

COMPARE UNITSUNITSCOMPARE

01

ANF16 ANF17 ANF18 ANF19 ANF20 ANF21 ANF22 ANF2310

COMPARE UNITSUNITSCOMPARE

ANF24 ANF25 ANF26 ANF27 ANF28 ANF29 ANF30 ANF31

COMPARE UNITSUNITSCOMPARE

11

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

00

01

10

11

S0 S1 S2 S3 S4 S5 S6 S7

00

CO
M

PA
RE

U
N

ITS

ANF24

CO
M

PA
RE

U
N

ITS

ANF25

CO
M

PA
RE

U
N

ITS

CO
M

PA
RE

U
N

ITS

CO
M

PA
RE

U
N

ITS

CO
M

PA
RE

U
N

ITS

CO
M

PA
RE

U
N

ITS

CO
M

PA
RE

U
N

ITS

COMPARE UNITSUNITSCOMPARE

4−INPUT COMPARE UNIT

IN1
IN2

IN3
IN4

(a)

(b)

Figure 2.5: Forward Recursion Unit composed of 32 ANF (Adder Node Forward) and 8 4-input Compare Unit (a)
Compare Units used for state metric computation (b) Compare Units used for extrinsic information computation

implement message passing method of metrics initialization.

Certain register banks are used for ASIP configuration and storage of different parameters
associated to the max-log-MAP algorithm. Two configuration registers are dedicated for the
configuration of the two recursion units of the ASIP. The configuration of the ASIP is down-
loaded from Config Memory into these registers. RMC registers store the state metric after max
operations whereas RC registers are used to read state metrics during the computation of the
right side of the butterfly scheme. Branch metrics γ are stored in RG registers. RADD registers
are part of the ACS units as shown in Figure 2.3.

The role of the control unit is to manage all the resources spread over seven pipelines stages.
After instruction fetch and decode pipeline stages, the third pipeline stage is dedicated to fetch
the operands from input memories. These two next stages, BM1 and BM2, are for γ computa-
tion. In execute (EXE) pipeline stage, resources of Add Compare Select (ACS) operations are
placed. The last pipeline stage is to complete the computation and the storage of the extrinsic

2.3. INITIAL ASIP ARCHITECTURE FOR TURBO DECODING 41

32

1010 1010

10101010131010101013

Control Unit

Fetch

128

16x64

BranchMetric1

EX

ST memory
Cross metric

Extrinsic
memory
40x32

memory
Config

160x16

40x32

s0p0s1p1

44

Input
memory
16x32

32

44

Program
memory

Operand fetch

Decode

BranchMetric2

Config Register

Zext
11 Zext

10 Z
ext
01 Z

ext
00

Zext00Zext01Zext
10Zext11addrjZext00Zext01Zext

10Zext11addrw−j

j

×2

×2

w − j

×2

RG Register (γ)

RMC Register (α β)

RC Register (β α)

RADD Register α β Z

32×

64×

16×

16×

2×

Figure 2.6: Overall architecture of the initial ASIP

information and hard decisions.

2.3.4 Sample Program of the Initial ASIP

To give an explanation on how the initial ASIP can be used for a decoding application, Listing
2.1 presents the piece of code written for dual binary code of WiMAX standard for the first
iteration. The text after (;) sign shows the comments.

Listing 2.1: Initial ASIP: assembly code for 8-state double binary turbo code for first iteration

1 ; l o a d i n g c o n f i g u r a t i o n i n c o n f i g . r e g i s t e r s
2 LD CONFIG 0
3 LD CONFIG 1
4 LD CONFIG 2

42 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

5 LD CONFIG 3
6 ; s e t t i n g b l o c k l e n g t h
7 SET SIZE 48
8 ; s c a l i n g o f e x t r i n s i c i n f o r m a t i o n
9 SET SF 6

10 ; un i fo rm s t a r t v a l u e s f o r a l p h a / b e t a
11 SET RMC UNIFORM, UNIFORM
12 ; z e r o ove r head loop i n s t r u c t i o n
13 ZOLB LW1 , LW1 , RW1
14 ; l e f t b u t t e r f l y a l p h a / b e t a + gamma
15 DATA LEFT WITHOUT EXT ADD M
16 ; max f o r a l p h a / b e t a
17 LW1 : MAX2 STATE METRIC NOTHING
18 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
19 DATA RIGHT WITHOUT EXT ADD M
20 ; max f o r a l p h a / b e t a
21 MAX2 STATE METRIC NOTHING
22 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
23 EXTCALC WITHOUT EXT ADD I
24 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
25 MAX2 SYSTEMATIC NOTHING
26 ; second max f o r e x t r i n s i c c o m p u t a t i o n
27 RW1 : MAX1 SYSTEMATIC EXT

The program starts with LD CONFIG instruction which configures the ASIP for the
WiMAX trellis. Using SET SIZE instruction the programmer can set the number of double
binary symbols in a block. SET SF is the command to scale the input extrinsics e.g with target
double binary application the value 6 corresponds to multiplying the input extrinsic with 0.75
before computing the branch metrics. SET RMC UNIFORM instruction sets the RMC for zero
which means all starting states are equiprobable. ZOLB is the zero overhead loop instruction.
With this single instruction, the next two lines of code executes 24 times (half of block size)
which is in fact implementing left side of butterfly decoding scheme for 24 symbols without
using the extrinsic information. The reason of not using the extrinsic information is due to
the fact that during the first shuffled iteration the extrinsic information memories hold the data
of the last iteration of the previous frame. After this, the next five instructions (from ”DATA
RIGHT..” instruction to ”MAX1 SYSTEMATIC..”) execute 24 times and implement right side
of the butterfly decoding scheme. During the execution of left butterfly, the first instruction
”DATA LEFT..” is used to compute state metrics related to all transitions. The next ”MAX2
STATE METRIC” performs compare operation to compute 8 state metrics both in forward and
backward directions. In the right part of the butterfly scheme, the first two instructions compute
the state metrics and the next three instructions compute the extrinsic information. The first
instruction to compute extrinsic is related to performing the summation of α, β and γ while the
next two instructions are used to do compare operation on the rows of recursion units in two
steps. Finally, at the end of processing of the block of 48 symbols, the ASIP initializes its state
metric registers (RMC) using message passing the for next iteration. Hence, during one itera-
tion, 2 clock cycles per 2 symbols are used in left side of butterfly decoding scheme and 5 clock
cycles per 2 symbols are used in right side of the butterfly decoding scheme.

After the first iteration the extrinsic information memories hold the right extrinsic informa-
tion hence one can which can be thus used in the computations of subsequent iterations. The

2.3. INITIAL ASIP ARCHITECTURE FOR TURBO DECODING 43

code for the next five iterations is shown in Listing 2.2 where instructions for DATA LEFT and
DATA RIGHT are used with READ EXT option in place of WITHOUT EXT option of Listing
2.1.

Listing 2.2: Initial ASIP: assembly code for 8-state double binary turbo code for iteration numbers 2-6

1 REPEAT UNTIL loop 5 t i m e s
2 ; z e r o ove r head loop i n s t r u c t i o n
3 ZOLB LW1 , LW1 , RW1
4 ; l e f t b u t t e r f l y a l p h a / b e t a +gamma
5 DATA LEFT READ EXT ADD M
6 ; max f o r a l p h a / b e t a
7 LW1 : MAX2 STATE METRIC NOTHING
8 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
9 DATA RIGHT READ EXT ADD M

10 ; max f o r a l p h a / b e t a
11 MAX2 STATE METRIC NOTHING
12 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
13 EXTCALC READ EXT ADD I
14 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
15 MAX2 SYSTEMATIC NOTHING
16 ; second max f o r e x t r i n s i c c o m p u t a t i o n
17 RW1 : MAX1 SYSTEMATIC EXT
18 l o o p :NOP

To compute the hard decision in last iteration, the assembly code is presented in Listing 2.3.

Listing 2.3: Initial ASIP: assembly code for 8-state double binary turbo code for last iteration

1 ; z e r o ove r head loop i n s t r u c t i o n
2 ZOLB LW1 , LW1 , RW1
3 ; l e f t b u t t e r f l y a l p h a / b e t a +gamma
4 DATA LEFT READ EXT ADD M
5 ; max f o r a l p h a / b e t a
6 LW1 : MAX2 STATE METRIC NOTHING
7 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
8 DATA RIGHT READ EXT ADD M
9 ; max f o r a l p h a / b e t a

10 MAX2 STATE METRIC NOTHING
11 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
12 EXTCALC READ EXT ADD I
13 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
14 MAX2 SYSTEMATIC NOTHING
15 ; second max f o r e x t r i n s i c c o m p u t a t i o n
16 RW1 : MAX1 SYSTEMATIC HARD

The hard decisions are computed by using HARD option in the last instruction of Listing
2.3 which was EXT in Listing 2.2 & 2.1. As far as the throughput is concerned, an average of
3.5 clock cycles are required to generate the extrinsic information of each double binary symbol
per iteration (or hard decision during the last iteration).

44 CHAPTER 2. ASIP DESIGN METHODOLOGIES AND INITIAL ARCHITECTURE

2.4 Summary

This second chapter has introduced the concept of ASIP-based design and the associated design
methodology and tool which are considered in this thesis work. This methodology and the tar-
get Turbo decoding application have been illustrated through the presentation of an initial ASIP
architecture which has been developed in a previous thesis study at the Electronic department
of Telecom Bretagne. In this initial architecture, the main target was to validate the effective-
ness of the newly proposed ASIP-design tools in terms of generated HDL code and flexibility
limitations. To that end, the target flexibility was set very high to investigate the support of
any convolutional code trellis. This target flexibility has led to a reduced architecture efficiency,
which was in all cases not the main target of that initial effort on the topic. Furthermore, this
initial ASIP architecture was missing several features which will be highlighted, and adequate
solutions will be proposed, in the next chapter.

CHAPTER

3 Optimized ASIP for
Multi-standard Turbo
Decoding

IN Chapter 1, the fundamental requirements of wireless communication radio platform for
Turbo codes is laid down and turbo processing is presented as a possible solution to achieve

error rate performance reaching theoretical limits. Chapter 2 has presented an initial ASIP archi-
tecture for Turbo decoding, targeting mainly flexibility without real consideration of the archi-
tecture efficiency. This third chapter is aimed to illustrate how the application of adequate algo-
rithmic and architecture level optimization techniques on an ASIP for turbo decoding can make
it even an attractive and efficient solution in terms of area, throughput, and power consumption.
The suggested architecture integrates two ASIP components supporting binary/duo-binary turbo
codes and combines several optimization techniques regarding pipeline structure, trellis com-
pression (Radix-4), and memory organization. The logic synthesis results yield an overall area
of 0.594mm2 using 65nm CMOS technology. Payload throughput of up to 164Mbps in both
double binary Turbo codes (DBTC) and single binary (SBTC) are achievable at 500MHz.

This chapter is organized in the following order. First of all, a brief state of the art section
is provided to summarize the available hardware implementations related to this domain. Then,
the proposed optimization techniques regarding pipeline structure, trellis compression (Radix-4),
and memory organization are detailed. Furthermore, in order to improve the speed of recofigura-
bility of the proposed architecture, a new organization of the instruction program is presented.
Then, the achieved Turbo decoder system performance is summarized and the architecture ef-
ficiency is compared with state of the art related works. Finally, the impact of the proposed
pipeline optimization on energy efficiency is discussed. This last contribution concerns a joint
effort with another PhD student at the CEA-LETI: Pallavi Reddy. To investigate this impact,
the power consumption analysis for ASIC target implementation has been conducted on the de-
sign before and after optimization. The result shows an interesting gain in normalized energy
efficiency of around ≈45.6% in comparison with the initial architecture.

45

46 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

3.1 State of the Art

Application-specific processors are being widely investigated these last years in System-on-Chip
design. The main reason behind this emerging trend is the increasing requirements of flexibility
and high performance in many application domains. Digital communication domain is very
representative of this trend where many flexible designs have been recently proposed for the
challenging turbo decoding application. For this application, there is a large variety of coding
options specified in existing and future digital communication standards, besides the increasing
throughput requirement.

Numerous research groups have come up with different architectures providing specific re-
configurability to support multiple standards on a single device. A majority of these works target
channel decoding and particularly turbo decoding. The supported types of channel coding for
turbo codes are usually Single Binary and/ Double Binary Turbo Codes (SBTC and DBTC).

The available implemented works can be grouped into three categories, multi-standards cus-
tomizable embedded processor, multi-standards parameterized dedicated architecture (No in-
struction set), and one-standard dedicated architectures. In order to facilitate the comparison
between these works, we will normalize the occupied areas to @65nm technology depending
on the conversion formula shown in (3.1).

A1 = A2 × (
f1
f2

)2 (3.1)

Here,
f1 - Feature size for technology normalized (65nm),
f2 - Feature size for technology used,
A1 - Normalized Area,
A2 - Occupied Area.

In this context, multi-standards customizable embedded processor (ASIP-based) implemen-
tation work found in [42], it is a flexible pipeline architecture that supports wide range of 3gpp
standards (UMTS, HSPA, EDGE, etc.) and convolutional code (CC). The presented ASIP oc-
cupies a small area of 0.5mm2 in 65nm technology however it achieves a limited throughput of
21Mbps at 300Mhz.

Another customizable embedded processor (Xtensa based) implementation work [43] pro-
posed from Tensilica. The work supports LTE and HSPA+ with maximum throughput of
150Mbps. The occupied area is 1.34mm2 in 45nm technology (2.8mm2 in 65 nm)

Besides ASIP-based solutions, other flexible implementations are proposed using a
parametrized dedicated architecture (not based on instruction-set), like the work presented in
[44]. The proposed architecture supports WiMAX and 3GPP-LTE standards and achieves a high
throughput of 100 Mbps. However, the occupied area is large: 10.7mm2 in 130nm technology
(2.675mm2 in 65nm). Another example is the work proposed in [45] which supports all WiMAX
modes, but only 18 out of 188 modes for 3GPP-LTE. However, the lack of flexibility is due to
adapting vectorizable and contention-free parallel interleaver. Their occupied area is 3.38mm2

in 90nm (1.75mm2 in 65nm), while the maximum throughput achieved is 186.1Mbps when all
the 8 MAPs run in parallel at the maximum frequency of 152Mhz. However, the throughput
vary from 24Mbps to 93Mbps for frame-sizes less than 360 bits.

On the other hand, several one-standard dedicated architectures exist. In this category we
can cite the dedicated architectures presented in [46], and [47] which support only SBTC mode

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 47

(3GPP-LTE). In [46] a maximum throughput of 150Mbps is achieved at the cost of a large area
of 2.1mm2 in 65nm. The proposed work in [47] presented a very high throughput of maximum
1.28Gbps at 400Mhz to support LTE-advanced with occupied area of 8.3mm2 in 65nm tech-
nology. The high throughput achieved is by maintaining 64 Radix2 MAPs decoder working
in parallel, benefiting from adopting a contention-free, (QPP) parallel interleaver. However, to
support double binary decoding will force to adopt Radix-4 as well, which will be at higher cost
for area and critical path as explained in [47].

The related detailed features for all above mentioned work is tabulated in Table 3.1.

Standard
compliant

Architecture Tech
(nm)

Core
area
(mm2)

Normalized
Core area
@90nm
(mm2)

Throughput
(Mbps)

Fclk

(MHz)

[44] WiMAX,
LTE

Eight
Radix-4
SISOs

130 10.7 5.35 100 @8iter 250

[45] WiMAX,
LTE(18
modes)

Eight
Radix-4
SISOs

90 3.38 3.38 93-186
@6iter

152

[42] 3gpp, CC ASIP 65 0.5 1 21 @6iter 300
[43] LTE,

HSPA+
Xtensa 45 1.34 2.8 150 @8iter 385

[47] LTE 64 Radix2
MAPs

65 8.3 16 1280 @6iter 400

[46] LTE Four MAPs 65 2.1 4.2 150 @6.5iter 300
[48] LTE Eight

Radix-4
SISOs

90 2.1 2.1 130 @8iter 275

Table 3.1: State of the art implementations with area normalization

3.2 Proposed Decoder System Architecture

The proposed ASIP architecture considers the base design presented in [40]. In this design, the
Turbo decoder system architecture consists of 2 ASIPs interconnected as shown in Figure 3.1.
It exploits the various parallelism levels available in turbo decoding including shuffled decoding
[40] where the two ASIPs operate in a 1× 1 mode. In this mode, one ASIP (ASIP0) processes
the data in natural order while the other one (ASIP1) processes it in interleaved order. The
generated extrinsic information messages are exchanged between the two ASIP decoder compo-
nents via an Extrinsic Exchange Module. Furthermore, the system control and configuration are
managed by a (Global Controller & Input Interface Module and a Configuration Module).

Supporting the target standards as summarized in Table 1.1, and competing with other ar-
chitectures in 3.1, illustrate the need of high throughput turbo decoder architecture with small
area. The ASIP payload throughput for double binary mode is ∼= 49.5Mbps@6 iterations, and
∼= 24.75Mbps@6iter for single binary mode. Its logic occupies 0.21mm2@90nm, i.e. in order
to support 3GPP-LTE standard, throughput should be up-to 150 Mbps, so we need at least a
platform 6 × 6 of the initial ASIPs working in parallel, and a NOC to exchange extrinsic values
without conflict. This is a heavy area cost and not competing. Another issue is that the ini-
tial ASIP does not support windowing so it cannot process frames bigger than 128 bits unless
working in parallel. Also knowing 3GPP code is terminated with tail bits, they are used for

48 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

Figure 3.1: Proposed Turbo decoder system architecture

calculating initial β values before starting decoding, which is not supported in the initial ASIP,
so it does not support 3GPP.

For all the mentioned issues, the goal of this section is to illustrate how the application of
adequate algorithmic and architecture level optimization techniques on an ASIP for Turbo de-
coding can achieve an attractive and efficient solution in terms of area and throughput. The
demonstrated results target channel decoding and particularly turbo decoding. The proposed ar-
chitecture integrates two ASIP components supporting binary/duo-binary turbo codes and com-
bines several optimization techniques regarding:

- Architectural optimization: included optimization of the pipeline structure and applying
sliding window technique.

- Algorithmic optimization: included trellis compression technique by applying Radix-4
algorithm.

- Memory reduction: included techniques to minimize the memory requirements.

3.2.1 Architecture-Level Optimization

In this subsection different architectural optimizations are applied to the initial ASIP to increase
its throughput and optimize its performance. As mentioned earlier the optimizations include
modifying the pipeline structure and applying sliding window technique to decode large frames.

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 49

instruction
pipeline stages

Usage
FE DEC OPF BM1 BM2 EX ST

DATA LEFT X X X X X X - 6/7
MAX2 X X - - - X - 3/7

DATA RIGHT X X X X X X - 6/7
EXTCALC X X - - - X - 3/7

MAX1 X X - - - X X 4/7

Table 3.2: Initial ASIP pipeline usage

3.2.1.1 Pipeline optimization

The initial ASIP pipeline stages as shown in Figure 2.6, consists of 7 stages (FE, DEC, OF,
BM1, BM2, EX, ST). To calculate the pipeline percentage usage, we should find the usage
average of each instruction per cycle. Considering back the assembly code in Listing 2.2 which
illustrates the decoding process using the butterfly scheme. The next two lines after ZOLB
execute 24 times (half of frame size) which implement left side of butterfly decoding scheme for
24 symbols. After this, the next five instruction (from ”DATA RIGHT..” instruction to ”MAX1
SYSTEMATIC..”) execute 24 times which implement right side of butterfly.

From Table 3.2 we find the initial ASIP pipeline usage percentage PUP =
6
7
+ 3

7
+ 6

7
+ 3

7
+ 3

7
+ 3

7
+ 4

7
7

∼= 57%. This mean the initial ASIP stay idle for 43%. The architecture
optimization is applied by re-arranging the initial ASIP pipeline. The purpose behind this re-
arranging is to increase the percentage PUP , this can happen by decreasing the instruction set
used in the iterative-loop to generate extrinsic information and hard decision. In this way less
clock cycle are needed to generate hard decision so in consequence having higher throughput.
Re-arranging the initial ASIP pipeline is done over three versions. For the rest of this thesis
the proposed ASIPs in each version will be named as follow: TurbASIPv1, TurbASIPv2, and
TurbASIPv3.

Pipeline Optimization Version 1:
As shown in Table 3.2, instructions (”MAX1..”, ”MAX2..”, ”EXTCALC..”) have low pipeline
usage. This is because all these operations are taking place in (EXstage). So 7 clock cycles in
total are required to generate extrinsic information for two symbols. The proposed optimization
in this version is by merging the instructions [(”DATA LEFT..”, ”MAX2..”),(”DATA RIGHT..”,
”MAX2..”),(”EXTCALC..”, ”MAX2..”, ”MAX1..”)] in one instruction for each group between
the parenthesis, so in this case only one instruction is enough to calculate the state metrics and
find the maximum values (1.31) & (1.32). In similar way, one instruction will be needed to find
maximum A posteriori information (1.30). This can be happened by re-arranging the initial ASIP
pipeline and modifying the EX pipeline stage to place the recursion units and max operators in
series.

In fact, finding maximum A posteriori information is done in three cascaded levels of 2-input
compare units (searching the max out of 8 metric values). Thus, placing them in series with
recursion units in one pipeline stage will increase the critical path (i.e. reduce the maximum
clock frequency). To break the critical path, two new pipeline stages (MAX1, MAX2) are added
after EX pipeline stage to distribute the compare units as shown in Figure 3.2.

To perform the max operation, 28 2-input compare units are used in each recursion unit.
Where 24 2-input compare units, located in MAX1 pipeline stage, and are configured to work
as 8 4-input compare units. When computation of max operation in state metrics generation is
required, 8 4-input compare units are connected to the four outputs of each column of recursion

50 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

EXTCALC

DATA LEFT

DATA RIGHT

MAX2

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

MAX1

2−input
Compare

Unit
2−input
Compare

Unit
2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

DATA LEFT
DATA RIGHT

EXTCALC

MAX1EX MAX2

EX

(b)(a)

α

γ

β

α′

×16

×32

×64α

γ

β

α′

×16

×8

×32

Figure 3.2: Pipeline reorganization (a) Initial ASIP stage EX (b) Optimized pipeline stages (EX, MAX1,MAX2)

unit (selected by ”COLUMN” parameter of ”DATA..” instruction). In case of extrinsic informa-
tion computation, the 8 4-input compare units are connected to adder nodes in rows (selected
by ”LINE” parameter of ”EXTCALC..” instruction) . Hence, with 8 4-input compare units user
has two biggest candidates per row at the output of 4-input compare units. In contrary to what is
explained in 2.3.2, the two largest values in a row are saved in an additional registers EXT, and
also additional 4 2-input compare units are added in MAX2 pipeline stage, which can find the
maximum between these two candidates which is the extrinsic information for each combination
of input bits. In Total 8 2-input compare units and 16 EXT registers are added.
During the decoding process in left butterfly, ACS units (Add, Compare, Select) do the state met-
ric calculations, which take place in EX pipeline stage and then finding the state metrics maxi-
mum values in the next clock cycle in MAX1 pipeline stage using instruction ”DATA LEFT..”.
Calculate the state metrics requires two clock cycles so calculating next state metric would be
possible after two clock cycles so NOP instruction is put in the left butterfly iteration to com-
pensate one clock cycle as shown in Listing 3.1. During the right butterfly iteration besides
finding the state metrics values, ACS units do addition and find maximum A posteriori informa-
tion (1.30) in (MAX1 & MAX2) pipeline states in two clock cycles using instructions (”DATA
LEFT..”, ”EXTCALC..”). So in total, 4 clock cycles are required to generate extrinsic informa-
tion for two symbols. Important thing to note that critical path in this optimization remained

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 51

instruction
pipeline stages

Usage
PFE FE DEC OPF BM1 BM2 EX MAX1 MAX1 ST

NOP X X X - - - - - - - 3/10
DATA LEFT X X X X X X X X - - 8/10

DATA RIGHT X X X X X X X X - - 8/10
EXTCALC X X X - - - X X X X 7/10

Table 3.3: Pipeline usage for TurbASIPv1

the same because as shown Figure 3.2 comparators and logic operators in EX stage of the initial
ASIP only redistributed to pipeline stages (EX, MAX1, MAX2).

Listing 3.1: TurbASIPv1 for Assembly Code

1 ZOLB RW1 , CW1 , LW1
2 NOP
3 RW1 : DATA LEFT ADD M COLUMN
4 ; save l a s t b e t a l o a d a l p h a i n i t
5 DATA RIGHT ADD M COLUMN
6 LW1 : EXTCALC ADD I LINE EXT

From Table 3.3 we find, ASIP PUP =
8
10

+ 8
10

+ 7
10

+ 3
10

4 = 65%. This mean ASIP stay now
idle for 35%.

Pipeline Optimization Version 2:
As explained in V.1 optimization instruction NOP is placed in left butterfly iteration because

state metric values are calculated in two stages (EX, MAX1) and two clock cycles is required.
Giving away NOP instruction would be good approach because it increases the throughput by
25%. This can be done by merging the two stages EX, MAX in one stage. Comparing between
the two figures (Figure 3.2 and Figure 3.3). Critical path in V.1 is in EX stage, it should be the
sum of critical paths (EX ⊕ MAX1) stages of TurbASIPv1 . We avoided increasing the critical
path and in consequence decreasing the throughput by choosing Synopsys design constraints for
clock frequency = 500Mhz. However, this choice maintained the critical path as in TurbASIPv1.
On the other hand, it implies a slight increase in the occupied logic area of ∼= 0.02 mm2. As a
result 25% increase for throughput with an increase of 3% of the total area of the whole decoder,
which can be considered as a good trade-off.

An assembly code example for the proposed TurbASIPv2 is as shown in Listing 3.2. In Left-
Butterfly ASIP calculate state metrics and saves them in cross metric memory to use them again
in Right-Butterfly, but instruction ”DATA LEFT..” writes state metrics value to cross-metric
memory in (EX) stage while ”DATA RIGHT..” instruction reads the values back in previous
stage (BranchMetric2), so when starting right-butterfly loop ”DATA RIGHT..” instruction in
first loop will read the same value that ”DATA RIGHT..” is writing. To avoid this conflict in
cross-metric memory, NOP instruction is placed @4 and executed one time for 1 clock cycle
delay.

52 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

EX MAX

×64

×32

×16

×8

α

γ

β

α′

Figure 3.3: Modified pipeline stages (EX, MAX)

instruction
pipeline stages

Usage
PFE FE DEC OPF BM1 BM2 EX MAX ST

DATA LEFT X X X X X X X - - 7/9
DATA RIGHT X X X X X X X - - 7/9

EXTCALC X X X - - - X X X 6/9

Table 3.4: Pipeline usage for TurbASIPv2

Listing 3.2: TurbASIPv2 Assembly Code

1 ZOLB RW1 , CW1 , LW1
2 RW1 : DATA LEFT ADD M COLUMN
3 ; save l a s t b e t a l o a d a l p h a i n i t
4 CW1 : NOP
5 DATA RIGHT ADD M COLUMN
6 LW1 : EXTCALC ADD I LINE EXT

From Table 3.4 we find, ASIP PUP =
8
9
+ 8

9
+ 6

9
3

∼= 74%. This mean ASIP stay now idle for
26%.

Pipeline Optimization Version 3:
Reaching toward optimal design to achieve efficient architecture and power is related directly
to number of decoded bits per cycle as will be explained and formulated in the section of
(System Characteristics and Performance). One way to increase the decoded bits per cycle
is to increase the pipeline usage percentage PUP . Analyzing the pipeline stages usage for
TurbASIPv2 optimization in Table 3.4. The table indicates the average Pipeline Usage Percent-

age: PUP =
7
9
+ 7

9
+ 6

9
3

∼= 74%. This sub-optimal usage is caused by the idle state of instructions
”DATA LEFT” and ”DATA RIGHT” in pipeline stages (MAX, ST) and instruction ”EXTCALC”

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 53

instruction
pipeline stages

Usage
PFE FE DEC OPF BM1 BM2 EX ST

MetExtCALC LEFT X X X X X X X - 7/8
MetExtCALC RIGHT X X X X X X X X 8/8

Table 3.5: Pipeline usage for TurbASIPv3

in (BM1, BM2, EX). A proposed method to increase the PUP value is by merging the two
instructions (DATA ..., EXTCALC ...), so in right-butterfly both (state metric, extrinsic infor-
mation) calculations are processed in the same cycle. However the challenge in this proposal is
to keep the same balance of the functional units (Adders, Registers, Multiplexers) to avoid in-
creasing the complexity, and also to maintain the same critical path. In fact, the proposed merge
causes to duplicate part of the functional units. On the other part, it allows to remove several
registers and multiplexers which were used for buffering and functional units sharing. Figure 3.4
illustrates the architecture of the proposed recursion unit. In this architecture, each one of the
32 Adder Node Functional units (ANF) integrates 2 adders (instead of one) to compute the two
additions (α+γ or β+γ) then (α+β+γ) in the same clock cycle. On the other hand, per ANF,
the following logic has been removed: 2 10-bit registers used to buffer α + γ or β + γ (RADD
Reg. and RC Reg.) and 2 multiplexers used to share the single adder. Furthermore, additional
8 comparators (each of 4 inputs) have been added instead of sharing the existing ones. This
allowed removing the corresponding multiplexers besides 4 10-bit registers (EXT Reg.).

The summary of the removed and added logic for the two recursion units of the ASIP is
presented in Table 3.6 which shows that the level of complexity is almost remained the same.
Synthesis results of the overall ASIP logic present a slight increase of 0.004mm2 in CMOS
65nm technology.

Logic removed Logic added
Logic Data width (bits) # Logic Data width (bits) #
RADD Reg 10 64 Adder 10 64
RC Reg 10 16 Adder 10 48
EXT Reg 10 8 MUX 10 48
MUX 10 152 - - -

Table 3.6: Comparison table for added and eliminated logic for the proposed architecture

Table 3.7 summaries and compares the results in terms of pipeline usage PUP , logic area,
throughput, and decoding speed. It is worth noting that the memory area remains identical with
the proposed optimization, and thus not considered in this table.

Figure 3.5 compares the critical path for the proposed optimization architecture TurbASIPv3
with previous optimization TurbASIPv2, which is in the EX pipeline stage. The compare

PUP logic area mm2

@65nm
Decoding speed
Bits/clk/iter

Throughput Mbps

Initial ASIP 57 % 0.083 49.5 @6iter
TurbASIPv1 65 % 0.082 86.6 @6iter
TurbASIPv2 74 % 0.084 1.33 115.5 @6iter
TurbASIPv3 94 % 0.0845 2 164 @6iter

Table 3.7: Results comparison in terms of PUP , logic area, decoding speed and throughput

54 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

���

���
ANF27 ANF29

ANF17 ANF18 ANF19 ANF20 ANF21

2−input
Compare

Unit
2−input

Compare
Unit

2−input
Compare

Unit

2−input
Compare

Unit
2−input

Compare
Unit

2−input
Compare

Unit

2−input
Compare

Unit

2−input
Compare

Unit

4−input
CO

M
PA

RE
U

N
ITS 4−

in
pu

t C
O

M
PA

RE
 U

N
IT

4−input
CO

M
PA

RE
U

N
ITS 4−

in
pu

t C
O

M
PA

RE
 U

N
IT

4−input
CO

M
PA

RE
U

N
ITS 4−

in
pu

t C
O

M
PA

RE
 U

N
IT

4−input
CO

M
PA

RE
U

N
ITS 4−

in
pu

t C
O

M
PA

RE
 U

N
IT

4−input
CO

M
PA

RE
U

N
ITS

4−input
CO

M
PA

RE
U

N
ITS

2−input
Compare

Unit

4−input
CO

M
PA

RE
U

N
ITS

RMC Reg

RMC Reg

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������

00

10

01

11

ANF0

ANF13ANF12ANF11ANF10ANF9ANF8

ANF16

ANF24 ANF25

(b)

(a)

8−input

8−input

8−input

8−input

COMPARE

COMPARE

COMPARE

COMPARE

UNIT

UNIT

UNIT

UNIT

ANF1 ANF2 ANF3 ANF4 ANF5 ANF7ANF6

ANF15

ANF23

ANF31ANF30

4−
in

pu
t C

O
M

PA
RE

 U
N

IT

ANF22

ANF14

S0 S1 S2 S3 S4 S5 S6 S7

(c)

or

IN2 IN3IN1IN0 IN4 IN5 IN7IN6IN3IN2IN1IN0

4−
in

pu
t C

O
M

PA
RE

 U
N

IT

ANF26

4−INPUT COMPARE UNIT

2−input
Compare

Unit

4−
in

pu
t C

O
M

PA
RE

 U
N

IT

ANF28

EXT Reg

8−INPUT COMPARE UNIT

Find The Max Extrinsic
Find The Max State Metric

RG
 R

eg

α+ γ

α+ β + γ

β + γ

α/β

γ

Bufferedβ/α

Figure 3.4: Architecture of the proposed recursion unit (a) Forward Recursion Unit composed of 32 ANF (b) 8 4-
input Compare Units used for state metric computation and 4 8-input Compare Units used for extrinsic computation

(c) Adder Node Forward

units are equivalent to the combination of 1 (adder) and 1 (multiplexer). The critical path for
TurbASIPv2 integrates 6 multiplexers + 3 adders while that in TurbASIPv3 integrates 4 multi-
plexers + 5 adders. This illustrates how the proposed optimization does not impact the ASIP
maximum clock frequency.

Figure 3.6 depicts the pipeline details organization in 8 stages for the proposed TurbASIPv3.
The numbers in brackets indicate the equations (referred in section 1.4.1.2) mapping on the
corresponding pipeline stage. The extrinsic information format, at the output of the ASIP, is also
depicted in the same figure for the two modes SBTC and DBTC.

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 55

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

(b)

M
U

X

or MUX to share
Compare UnitsCompare Units

MUX to share

(a)

EX
T Reg

RG
 Reg

RG
 Reg

EX
T Reg

EX Pipeline Stage

MAX 1st level MAX 2nd level MAX 3rd levelγ + α γ + α + βselecting γ

selecting γ MAX 2nd levelγ or β

α + γ + β

α + γ
MAX 1st level

Figure 3.5: Critical path comparison: (a) Critical path for TurbASIPv2, (b) Critical path for TurbASIPv3

3.2.1.2 Windowing

Another proposed Architectural optimization concerns the implementation of windowing to pro-
cess large block-size. This is achieved by dividing the frame into N windows, where the window
maximum size supported is 128 bits. Figure 3.7 shows the windows processing in butterfly
scheme, i.e. ASIP calculates the α values (forward recursion) and β (backward recursion) si-
multaneously, and when it reaches half of the processed window (left-butterfly) and start the
other half (right-butterfly), ASIP can calculate the extrinsic information on the fly along with
α and β calculations. State initializations (α int(wi(n)) across windows are done by message
passing where (α int(wi(n)) is used in next window wn+1 of the same iteration (i), while state
initializations β int(wi(n))) are stored to be transfered across windows in next iteration (i+1).We
firstly proposed to store them in array of registers internally in the ASIP. Each register (Rn) in
this array is coordinated with one window (wn) and holds the beta values for the last symbol of
this window to be used in next iteration as initial value in the previous window (wi−1). Since
the maximum window size is 128 bits, 48 windows are needed to cover all LTE block-sizes, so
48×80 array of registers is added. But this internal array of register is replaced by single port
memory because of the area cost. The obtained area is ≈ 0.07mm2 (synthesized using Synop-
sys tools and 65nm CMOS technology), comparing with similar size for single port memory of
size 0.0054mm2 (see Table 3.12)

Since ASIP apply butterfly scheme and calculate forward and backward state values simul-
taneously, it should reads window’s symbols from two edges at the same time. That is why
there are two indexes one points to the beginning of the window (WaddrA) and increment to read
next symbol. The other index (WaddrB) points to the end of the window and decrement to read
previous symbol. Supporting addressing for windowing was developed in two steps:

• Fixed size windowing:
This approach proposed two index registers with fixed bit width for (WaddrA,WaddrB),
besides a counter (Wi) that increment each time ASIP process new window. The physical
address AddrM to read symbol values from Input memory equal the concatenation of
both values (index, counter) AddrM = Wi + WaddrA or AddrM = Wi + WaddrB . The
drawback for this solution is that when the ASIP processes less than 128 bits (maximum

56 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

8 8

1536

8

0
1313 8 8 813 8 1344

SBTC

0
88138881360 8

DBTC

Control Unit

Operand fetch

BranchMetric1

Input
memory
1536x8

32x16

Decode

Fetch

Prefetch

BranchMetric2

Cross metric
memory

s0p0s1p1

444 4

1536

48x80
memory

memory

32x160

128

EX

Ex
tri

ns
ic

 in
fo

rm
at

io
n

config Reg
87

Program

Even Odd
1536x8

Extrinsic memory

1536x16

InterStack memory
Extrinsic Exchange

Windowing

rd/wr

@

@

@

rd

rd

rd

@

rd/wr

rd

@

rd

wr

32x12

Odd
Even

Tail RMC B β tail

Zext
01Zext

10Zext
11

ZextjZextj+1addrj+1

j + 1 j

addrw−j

w − j − 1

addrw−j−1

w − j

Zextw−j−1 addrjZextw−j

w − j j

Zext01Zext
10addrjZext

10Zext11addrw−j Zext11Zext01

2041um2

593um2

3205um2

1533um2

5939um2

RMC Register (α β)16×
RG Register (γ)32×
EXT Register Z (1.35)

(1.33)

(1.34)

(1.31)
(1.32)

(1.30)1×

8×

Register File = 12069um2

×2

6413um2

45047um2

×2

(1.40) (1.41)

11732um2

(1.29)

Figure 3.6: TurbASIPv3 pipeline architecture

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 57

Time

Extrinsic

Extrinsic

Extrinsic

right B−Fleft B−F

Top
Memory

Memory
Bottom

(a)

(b)

w
(N
−

1)

fr
am

e
si

ze
N

w
0

w
1

β int(w1)

β int(w0)

β int(w2)

α int(w0)

β

α

α int(w(N − 2))

w/2

w/2
β

α

α

β

WaddrA

WaddrB

α

β

Figure 3.7: Windows processing in butterfly scheme (a) Windowing in butterfly computation scheme, (b) Window
addressing in butterfly

window size) in this case parts of the channel and extrinsic memories will be unused as
illustrated in Figure 3.8. Each unused part corresponds to the difference between the actual
window size and the maximum window size.

• Flexible Window Size :
To overcome the above described issue, additional two 16 bits indexes are found (addr A),
(addr B). These two indexes can address the whole channel and extrinsic memories. Index
addr A will increase every time new symbol is decoded, while addr B decrement each
time new symbol is decoded, and when ASIP process new window (addr B = addr A+
(w/2) − 1) where w is the window size. While (WaddrA,WaddrB) are used to address
Cross metric memory.

An assembly code example for decoding WiMAX of block size 1920 symbol is shown in List-
ing 3.3. To decode such a frame, 30 windows are need (WN = 1920

64). SET WINDOW ID
Instruction sets the window id register counter to zero, which represents Wi. Two nested loops
”REPEAT UNTIL..” is utilized. The upper loop is for iterations and the inner loop is for win-
dows. Every time new window start decoded, corresponding initial values β from previous iter-

58 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

Input memory

Window1

Window2

Window3

W
in

do
w

 M
ax

im
um

 S
iz

e

W
in

do
w

 A
ct

ua
l S

iz
eGap

Gap

Gap

Figure 3.8: Unused memory regions in fixed size windowing

ation are read from Windowing memory with instruction (W LD BETA). Every time a window
is decoded, β values of last symbol is written to Windowing memory, and window id register
counter is incremented by one with instruction (EXC WINDOW). When new iteration is started
window id register counter is set to zero again.

Listing 3.3: Processing windowing

1 SET WINDOW ID 0
2 REPEAT UNTIL l o o p 4 TIMES
3 PUSH
4 REPEAT UNTIL l o o p 1 29 TIMES
5 ZOLB RW2 , CW2 , LW2
6 W LD BETA
7 RW2 : DATA LEFT READ EXT ADD M COLUMN
8 CW2 : NOP
9 DATA RIGHT READ EXT ADD M COLUMN

10 LW2 : EXTCALC READ EXT ADD I LINE EXT
11 EXC WINDOW
12 l o o p 1 : NOP
13 POP
14 SET WINDOW ID 0
15 l o o p : NOP

3.2.2 Algorithmic-Level Optimization

In the initial ASIP, SBTC throughput equals half of DBTC throughput because the decoded
symbol is composed of 1bit in SBTC while it is 2 bits in the DBTC mode. Trellis compression
is applied to overcome this bottleneck as explained in Section 1.4.2.1. This makes the decoding

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 59

Throughput Mbps (SBTC)
Initial ASIP 24.75@6iter
TurbASIPv3 164@6iter

Table 3.8: Throughput comparison between initial ASIP and TurbASIPv3 after applying Radix-4

calculation for SBTC similar to DBTC as presented in (1.37), (1.39) and (1.38) so no additional
ACS units are added. The only extra calculation is to separate the extrinsic information to the
corresponding symbol as presented in (1.40) and (1.41) and the cost for its hardware imple-
mentation is negligible. Figure 3.9 depicts butterfly scheme with Radix-4, where the numbers
indicate the equations (referred in Section 1.4.2.1). In this case four bits (single binary symbols)
are decoded each time.

LLR1

LLR4
LLR3

LLR2

Time

Extrinsic

fr
am

e
si

ze
N

(1.41)

(1.40)

(1.41)

(1.40)

α

β

Figure 3.9: Butterfly scheme with Radix-4

As summarized in 1.3.1, 3gpp encoder terminates the trellis by taking the tail bits from
the shift register feedback after all information bits are encoded. Tail bits are padded after the
encoding of information bits. In the decoder side to calculate β initial value, the tail bits should
be decoded before decoding the frame. A special (tail bit) memory is obtained to save the tail
bits, as shown in Figure 3.6.

An assembly code example for processing tail bit is as shown in Listing 3.4. The first two
instructions ”DATA LEFT..” with parameter ”TAILREAD” reads tail bits from (tail bit) memory
and calculate initial β to be saved it in a special register Tail RMC B, then to be used every
iteration.

Listing 3.4: Processing Tail bits

1 SET CONF 3gpp
2 ; Reading T a i l b i t t o c a l c u l a t e i n i t i a l b e t a v a l u e s
3 DATA LEFT WITHOUT EXT ADD M COLUMN TAILREAD
4 DATA LEFT WITHOUT EXT ADD M COLUMN TAILREAD
5 ZOLB RW0 , CW0 , LW0
6 RW0 : DATA LEFT WITHOUT EXT ADD M COLUMN
7 CW0 : NOP
8 DATA RIGHT WITHOUT EXT ADD M COLUMN
9 LW0 : EXTCALC WITHOUT EXT ADD I LINE EXT

Table 3.8 shows throughput comparison after applying Radix-4 on TurbASIPv3. The
throughput is increased more than 6.5 times of the initial ASIP original throughput.

60 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

3.2.3 Memory-Level Optimization

Memory reduction is key for an efficient ASIP implementation, since around 65% of TurbASIP
area is occupid by memories. The goal is thus to share and optimize as much RAM as possible
for both SBTC and DBTC functionalities. Different memory structure optimization levels are
studied and some are implemented:

3.2.3.1 Normalizing extrinsic information and memory sharing

Concern the normalization of the extrinsic information as presented in (1.36). In an m-ary turbo
code where a symbol is represented in m bits, the number of possible symbol-level extrinsic
information values is 2m − 1 [49]. Since the value of m is two for double-binary turbo codes,
three symbol-level extrinsic information values are defined. This normalization reduces the
extrinsic memory by 25% because (Zextk (d(s, s′) = 00)) is not stored. For BPSK channel with
quantization of 4 bits, extrinsic information can be quantized in 8 bits.

It is efficient to organize the input and extrinsic memories to be fully shared between SBTC
and DBTC. Input memories contain the channel LLRs Λn and they are quantized to 4 bits each.
The proposed sharing is to have the channel LLRs values systematics (Sn0 , Sn1) and parties
(Pn0, Pn1) in DBTC mode for same symbol to be stored in the same memory word. However
in SBTC mode, each memory word stores the LLRs values (Sn0 , S

n+1
0 , Pn0 , P

n+1
0) for two con-

secutive bits (single binary symbols). The same approach is proposed for extrinsic memories. As
normalized extrinsic values are quantized to 8 bits, in DBTC mode, values γn.ext01 , γn.ext10 , γn.ext11

related to same symbol are stored in the same memory word. While in SBTC mode, each mem-
ory word stores the extrinsic values γn.ext1 , γn+1.ext

1 for two consecutive bits. In this way the
memory resources in two turbo code modes (SBTC/DBTC) are efficiently shared.

3.2.3.2 Bit-level extrinsic information exchange method

Study in [50] proposed two conversions: symbol-to-bit conversion and bit-to-symbol conversion
of extrinsic information. With simple conversions, the number of values to be exchanged can be
reduced from the number of possible symbols, 2m − 1, to the number of bits in a symbol, m,
without inducing any modifications to conventional symbol-based double-binary SISO decoders.
Therefore, the proposed method can reduce the size of extrinsic information memory in double
binary decoding by around 30% regardless of quantization. Table 3.9 and 3.10 demonstate the
conversion equations from symbol-to-bit and bit-to-symbol respectivly, where the input symbol
uk consists of pair of two bits, A and B.

ZA = max(Zext10 , Z
ext
11)−max(0, Zext01)

ZB = max(Zext01 , Z
ext
11)−max(0, Zext10)

Table 3.9: Symbol-to-bit conversion

(A > 0, B > 0) (A > 0, B < 0) (A < 0, B > 0) (A < 0, B < 0)
Zext(01) = max(ZA, ZB)− ZA 0 ZB ZB

Zext(10) = max(ZA, ZB)− ZB ZA 0 ZA

Zext(11) = max(ZA, ZB) ZA + ZB ZA + ZB 0

Table 3.10: Bit-to-symbol conversion

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 61

To study the Bit-Level Extrinsic conversion technique, it was simulated in fix point soft-
model and the BER performance for WiMAX, code rate 1/3, for frame size 1728 bits, was com-
pared with the conventional method (Symbol-level extrinsic information exchange). This lead
to a significant degradation of the signal-to-noise ratio, around 0.3 db, which will require addi-
tional iteration to enhance the performance but this will decrease the throughput and therefore
this method is not implemented.

3.2.3.3 Interleaver generator

Previous design was utilizing interleaver memory table in order to fetch interleaving address for
each extrinsic information value. The draw-back of this method is the high area occupation due
to the need of storing long address table for big frames such as LTE of block-size 6144 bits. So
to eliminate the interleaver memories in the proposed architecture, interleaver address generator
is utilized instead. To generate interleaving address for SBTC (LTE) and DBTC (WiMAX,
DVB-RCS), two different interleaver generators are required, QPP interleaver generator to
support LTE and ARP interleaver generator to support WiMAX and DVB-RCS.

QPP Interleaver Generator: The modulo operation in (1.8 is difficult to implement in hard-
ware if the operands are not known in advance. However, a low complexity hardware implemen-
tation is proposed in [47]. The QPP interleaving addresses are usually generated in a consecutive
order (with step size of d). Since the proposed work adapts Radix-4 technique and two extrinsic
information are generated and should be addressed simultaneously, two interleaving addresses
for two consecutive orders should be generated. To achieve this task, two QPP generators are
proposed, one for odd interleaving addresses and the other for even interleaving addresses. The
step size of every generator d = 2. The QPP interleaving address can be computed in a recursive
manner. The interleaving is computed as follow:∏

(j) = (f1 × j + f2 × j2)%N

In the following cycles as j increment by 2,
∏

(j + 2) is computed recursively as follows:∏
(j + 2) = (f1 × (j + 2) + f2 × (j2 + 2))%N (3.2)

or we can represent
∏

(j + 2): ∏
(j + 2) =

∏
(j) + g(j) (3.3)

where g(j) = (8f2j + 4f2 + 2f1) mod N , we note that g(j) can also computed recursively.

g(j + 2) = (g(j) + 8f2)%N (3.4)

The even QPP generator starts with initial value g(0) and the odd starts with initial value g(1).
The initial values g(0) and g(1) are the seeds and should be pre-computed:

g(0) = (4f2 + 2f1)%N (3.5)

g(1) = (12f2 + 2f1)%N (3.6)

62 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

D

D

D0
1

D

init

MSB

0
1

MSB

0

1

init

MSB

0
1

MSB

0

1

Even addresses

Odd addresses

init

init

0
1

0
1

1
0

∏
(1)

N

∏
(2× j + 1)

∏
(0)

N

∏
(2× j)

g(1)

g(0)

(8f2)%N

(8f2)%N

Figure 3.10: QPP Interleaver generators for even and odd addresses with step-size=2

Figure 3.10 depicts the hardware architecture for the two QPP generators, where even generator
starts with j = 0 and the odd generator starts with j = 1, then both of them are incremented by
2 every clock cycle.

ARP Interleaver Generator: The ARP interleaving addresses can also be computed recur-
sively. In this regard, we propose a different formulation of the mathematical expressions in
order to optimize the underlined hardware architecture. The basic formula of ARP interleaving
is given in (3.7) for index j.

∏
(j) = (P0 × j + Pj + 1)%N (3.7)

where

3.2. PROPOSED DECODER SYSTEM ARCHITECTURE 63

P = 0 if j%4 = 0

P =
N

2
+ P1 if j%4 = 1

P = P2 if j%4 = 2

P =
N

2
+ P3 if j%4 = 3

(3.8)

For index j + 1, the above equation can be written as follows:

∏
(j + 1) = (P0 × (j + 1) + Pj+1 + 1)%N =

= (P0 × (j + 1) + Pj − Pj + Pj+1 + 1)%N
(3.9)

This expression leads to the following recursive equation:∏
(j + 1) =

∏
(j) + Seed (3.10)

where Seed = (Pj+1 − Pj + P0)%N . Using the formula in (3.8), there are four cases for Init
as follows:

Seed0 = (P0 −N/2− P3)%N if (j + 1)%4 = 0

Seed1 = (P0 +N/2 + P1)%N if (j + 1)%4 = 1

Seed2 = (P0 + P2 −N/2− P1)%N if (j + 1)%4 = 2

Seed3 = (P0 + P3 +N/2− P2)%N if (j + 1)%4 = 3

(3.11)

Using this formulation, the proposed ARP interleaving generator is illustrated in Figure
3.11. This architecture presents lower complexity that the one proposed in [51] (use of two
adders rather than four).

init

MSB

0
1

0
1

D

11

10

00

01

Addr[0:1]

(P0 −N/2− P3)%N

(N/2 + P1 + P0)%N

(P2 −N/2− P1 + P0)%N

(N/2 + P3 − P2 + P0)%N

∏
(j)

∏
(0)

N

Figure 3.11: ARP interleaver generator

64 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

Interleaving address generator with butterfly scheme: Since the proposed turbo decoder
uses butterfly scheme, the interleaving addresses are required in the right-butterfly when sending
the extrinsic information in both backward and forward directions.

Having address generators in both directions will incurs significant area and control over-
heads due to the discontinuity of generating addresses (generating addresses only in right but-
terfly of every sub-block). This discontinuity multiplies the number of required initial values
(Seed values). To avoid this issue, we propose to use only interleaving address generators in
forward direction, so they generate address continuously in both left and right butterfly. In this
case, the interleaving addresses generated in left butterfly can be used later for backward direc-
tion of the right butterfly. To that end, those addresses are buffered in small size stack memories
(InterStack) of size 12×32. Fig. 3.12 illustrates the proposed interleaving address generation
and stack memories in butterfly scheme. It is worth to note that in LTE there is a need for two
stack memories (InterStack1, InterStack2) for even and odd addresses respectively because of
using RAdix-4 which decode two bits simultaneously. As for WiMAX and DVB-RCS only
InterStack1 is used.

As a conclusion a conventional interleaving memory of size 6144×13 ∼= 80Kbits is replaced
by 2× 12× 32 = 768bits and additional very low complexity logic for address generators.

Forward direction

Backward direction

InterStack MEMs

ra31

ra0

ra30

ra1

wa1
wa0

wa31

ra30
ra31

Left Butterfly Right Butterfly

ra1
ra0

From InterStack MEMs
Addresses Fetched

Generated addresses stored
in InterStack MEMs

Read dirctly from
The Generated addresses

12

31

0

Even

Odd

wa30
wa31

wa0
wa1

Time

31

0

Su
b

Fr
am

e

α

β

Figure 3.12: Interleaving address generator with butterfly scheme

3.2.3.4 Restricting the trellis support

The main goal from restricting the trellis support to the most used standards (WiMAX, DVB-
RCS, 3gpp), rather than leave it open to all different possibilities is to reduce the complexity of
multiplexing logic in the recursion units, and also to eliminate the Config memories which store
the trellis definitions.

3.3. EXTRINSIC EXCHANGE MODULE 65

3.3 Extrinsic Exchange Module

In SBTC, Radix-4 with butterfly scheme imply the generation of four extrinsic information ev-
ery clock cycle in right butterfly. These four extrinsic information should update the extrinsic
memories of the other component decoder. One of QPP features is that the generated interleaved
address

∏
(j) used in LTE has the same even/odd parity as j. For that reason, extrinsic memo-

ries are split to four banks (TOP1, TOP2, BOT1, BOT2). Figure 3.13 explains the functionality
of the Extrinsic Exchange Module to manage parallel memory access conflicts. If LLRs of odd
addresses 1 and 3 are not in conflict then they are sent to memories TOP1 and BOT1 accord-
ingly. Otherwise, LLR with address 3 is stored in the FIFO2. Similarly, LLRs of even addresses
are handled. Since no extrinsic information is generated during left butterfly of next processed
window, the Extrinsic Exchange Module is free to update the remaining LLRs from the FIFOs.

Similar technique is used in DBTC turbo decoding, but only one FIFO is used since just two
extrinsic information are generated every cycle in right butterfly.

IF
3 Conflict 1

Fr
am

e
Si

ze
 N

4

3

2

1

T

Odd

Even

Extrinsic Exchange Module

TOP2

TOP1

BOT2

BOT1

Extrinsic
Memory

3

4

No

FIFO2

yes

3

yes
4

No

FIFO1

IF
4 Conflict 2β

α

Figure 3.13: Proposed architecture for the Extrinsic Exchange Module

3.4 ASIP Dynamic Reconfiguration

The proposed turbo decoder supports multi-standards (DVB-RCS, LTE, WiMAX) with wide
range of block-sizes. In order to speed up the reconfigurability of the proposed architecture, we
propose to unify SBTC and DBTC instruction program. To achieve that, all necessary parame-
ters are placed in special register (Config Reg) of 87 bits. Figure 3.14 details the reserved bits
for the needed parameters, and Table 3.11 explains how each parameter can be calculated where
FS stands for Frame size in symbols.

The complete unified assembly code is shown in Listing 3.5. LOAD CONFIG instruction
reads from Config Reg register to define the standard’s mode, number of iterations, extrinsic
scaling factor, window size, and last window size. The window maximum size supported is 128
bits, so any frame bigger than 128 bits is divided to windows of size 128 bits except for the last
window which will be the remaining. ZOLB is the zero overhead loop instruction, instruction
at @12 ”MetExtCALC LEFT..” executes W1 times (half of window size) to compute the state

66 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

Parameter Description Formula Size in Bits
NoI N# of Iterations Given by the user 4
S Standard (LTE/WiMAX/DVB-RCS) S =

{
1 if(LTE)
0 otherwise

1

I intra-symbol permutations I =

{
1 if(DVB)
0 otherwise

1

SF Scaling factor SF =

{
0.4375 if(LTE)
0.75 otherwise

4

W1 Window Size−1∗ W1 =

{
31 if(FS ≥ 64)

(FS/2)− 1 otherwise
5

W2 Last Window Size−1∗ W2 =

{
31 if(FS%64 = 0)

(FS−floor(FS
64

)·64)
2

− 1 otherwise
5

NoW N# of Windows Ceiling(FS
64

) 6
NoWL N# of Windows−1∗ NoW − 1 6

* The −1 is required because of the REPEAT & WIN REPEAT instructions that execute for ”the given value +1” times

Table 3.11: Parameters definition, method of calculation, and number of reserved bits

metrics in left butterfly. The instruction at @14 ”MetExtCALC RIGHT..” executes W1 times
to compute the state metrics and extrinsic information in right butterfly. The only exception is
when decoding the last window, ZOLB will iterate W2 times.

144 1 5 6

31 0

5 6

1111111111

3242435354646576 7586

NoWNoI W1 SF S W2NoWLI

Seed1Seed2Seed3 Seed0
∏

(0)

Figure 3.14: Config Reg reserved bits

Listing 3.5: unified assembly program (3gpp/WiMAX/DVB-RCS)

1 ; Read from c o n f i g R e g i s t e r
2 LOAD CONFIG
3 s e t w i n d o w i d 0
4 ; T a i l b i t d e c o d i n g
5 MetExtCALC LEFT NO EXT T a i l R e a d
6 MetExtCALC LEFT NO EXT T a i l R e a d
7 ; decode f i r s t i t e r a t i o n w i t h o u t e x t r i n s i c
8 WIN REPEAT UNTIL l o o p 0
9 ZOLB RW0 , CW0 , LW0

10 W LD BETA
11 RW0 : MetExtCALC LEFT NO EXT
12 CW0 : NOP
13 LW0 : MetExtCALC RIGHT NO EXT EXT
14 EXC WINDOW
15 NOP
16 l o o p 0 : NOP
17 SET WINDOW ID 0
18 ; decode n e x t i t e r a t i o n s wi th e x t r i n s i c
19 REPEAT UNTIL l o o p 1
20 NOP
21 WIN REPEAT UNTIL l o o p 2
22 ZOLB RW2 , CW2 , LW2
23 W LD BETA

3.5. SYSTEM CHARACTERISTICS AND PERFORMANCE 67

24 RW2 : MetExtCALC LEFT READ EXT
25 CW2 : NOP
26 LW2 : MetExtCALC RIGHT READ EXT EXT
27 EXC WINDOW
28 NOP
29 l o o p 2 : NOP
30 l o o p 1 : SET WINDOW ID 0
31 ; decode ha rd d e c i s i o n
32 WIN REPEAT UNTIL l o o p 3
33 ZOLB RW4 , CW4 , LW4
34 W LD BETA
35 RW4 : MetExtCALC LEFT READ EXT
36 CW4 : NOP
37 LW4 : MetExtCALC LEFT READ EXT HARD
38 EXC WINDOW
39 NOP
40 l o o p 3 : ST DEC

Figure 3.15, copied image of the configuration software interface, so the user can change the
parameters at runtime, which immediately will write to Config Reg register on FPGA.

Figure 3.15: Parameters can be changed in runtime

In addition, the rest of the Config Reg register is divided to 5 parts (11bits each) to store
the initial seed values for interleaver generators depending on the decoding standard, besides the
initial interleaving address (

∏
(0)).

3.5 System Characteristics and Performance

The ASIP was modeled in LISA language using Synopsys (ex. CoWare) Processor Designer
tool. Generated VHDL code was validated and synthesized using Synopsys tools and 65nm
CMOS technology. Obtained results demonstrate a logic area of 0.0845 mm2 per ASIP with
maximum clock frequency of Fclk=500MHz. Table 3.12 lists the required memories for each

68 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

ASIP. Thus, the proposed turbo decoder architecture with 2 ASIPs occupies a logic area of
0.208 mm2 with total memory area of 0.436 mm2. Memories were modeled using low power
ST library @65nm CMOS technology. With these results, the turbo decoder throughput can be
computed through the (5.12). An average Ninstr = 3 instructions per iteration are needed to
generate the extrinsic information for Nsym = 2 symbols in DBTC mode, where a symbol is
composed of Bitssym = 2 bits. In SBTC mode, same number of instructions is required for
Nsym = 4 symbols, where symbol is composed of Bitssym = 1 bit. Considering Niter = 6
iterations, the maximum throughput achieved is 164Mbps in both modes.

Throughput =
Nsym ∗Bitssym ∗ Fclk

Ninstr ∗Niter
(3.12)

Memory sizes are dimensioned to support the maximum block size of the target standards
(Table 1.1). This corresponds to the frame size of 6144 bits of 3GPP-LTE standard which
results in a memory depth of 6144

(Nsym=2)×(Nmb=2) = 1536 words (for both input and extrinsic
memories). Where Nsym is number of symbols per memory word and Nmb is number of
memory blocks (Nmb = 2 as butterfly scheme is adopted). Table 3.12 presents the utilized
memories in TurbASIPv3. It has two single port input memories to store channel values LLR of
size 16×1536 and 4 dual port extrinsic memories to save a priori information. Two banks odd
7×1536 and two even 14×1536. Each ASIP is further equipped with two 80×32 cross-metric
memory which implement buffers to store β and α in left butterfly calculation phase and
re-utilized in right butterfly phase. It also equipped with 48×80 Windowing memory to store β
of last symbol of each window to be used later in next iteration to apply message passing for
initialization.

Memory name # depth Width Type
Program memory 1 32 16 SP
Input memory 2 1536 16 SP
Extrinsic memory odd 2 1536 8 DP
Extrinsic memory even 2 1536 16 DP
Cross-metric memory 2 32 80 SP
Windowing memory 1 48 80 SP
Interleaving Stack memory 2 32 12 SP

Total Area = 0.218 mm2

Table 3.12: Typical memories configuration used for one ASIP decoder component (area with @65nm CMOS
technology)

Figure 3.16 presents the BER comparison curves between software model (fix point) and
FPGA for WiMAX block-size ”1728”, and 3gpp-LTE block-size ”864”.

Table 5.5 compares the obtained results of proposed work architecture with other related
works.In order to facilitate the comparison between these works, we will normalize the occupied
areas to @65nm technology. The Architecture Efficiency (AE), in bit/cycle/iteration/mm2, is
defined by the following expression:

AE =
T × I
NA× F

(3.13)

where,

3.5. SYSTEM CHARACTERISTICS AND PERFORMANCE 69

AE - Architecture Efficiency
F - Operational frequency,
NA - Normalized Area,
T - Throughput,
I - Number of turbo decoding iterations.

TurbASIPv3 [43] [44] [42] [45] [46] [47]
Standard com-
pliant

WiMAX,
DVB-RCS,
LTE

LTE,
HSPA+

WiMAX,
LTE

3GPP,
LTE

WiMax,
LTE

LTE LTE

Tech (nm) 65 45 130 65 90 65 65
Core area (mm2) 0.594 1.34 10.7 0.5 3.38 2.1 8.3
Normalized
Core area
@65nm (mm2)

0.594 2.8 2.675 0.5 1.75 2.1 8.3

Throughput
(Mbps)

164 @6iter 150
@8itr

187
@8iter

21
@6iter

186
@6iter

150
@6.5iter

1280
@6iter

Parallel MAPs 2 8 8 1 8 1 64
Normalized
hardware
efficiency
(Mbps/mm2)

264 54 70 42 106 71 154

Decoding speed
(bit/cycle/iter.)

2 3.12 6 0.42 7.3 3.25 19.2

Fclk (MHz) 500 385 250 300 152 300 400
AE∗ 3.31 1.11 2.24 0.84 4.2 1.56 2.31
∗ in bit/cycle/iteration/mm2

Table 3.13: TurbASIPv3 performance comparison with state of the art implementations

Table 5.5 illustrates how the proposed implementation outperforms state of the art in terms
of architecture efficiency with considering the flexibility. The presented ASIP in [42] supports
wide range of 3gpp standards and convolutional code (CC). Although they reserved 6bits for
channel input quantization, still the occupied area 0.5mm2 is big when it is compared to the
achieved throughput of 21Mbps. Thus, a low architecture efficiency of 0.84 is obtained. The
other instruction-set pipeline processor (Xtensa) from Tensilica [43] supports single binary turbo
code for all block-sizes (LTE, HSPA+). They achieve high throughput of 150Mbps but the
occupied area of 1.34mm2 at 45nm (or 2.8mm2 at 65nm) is big. Thus, the obtained architecture
efficiency, which is equal to 1.11, is low.

The parameterized dedicated architecture in [45] gives a good architecture efficiency result
of 4.2. However, the design flexibility efficiency is low. They adapt vectorizable and contention-
free parallel interleaver, so they support only 18 modes out of the 188 specified in LTE. Moreover
the maximum throughput achieved is only for 9 modes otherwise for frame-sizes less than 360
bits has throughput less than 93Mbps. The parameterized architecture of [44] supports both
turbo modes (DBTC and SBTC) and achieves a high throughput of 187Mbps. However, the oc-
cupied area is more than 4 times compared to our implementation and it achieves an architecture
efficiency of 2.24.

Similarly the LTE-dedicated architecture proposed in [46] achieves high throughput of
150Mbps but at a high cost of almost 3 times the occupied area with architecture efficiency
of 1.56.

70 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

Figure 3.16: BER performance comparison obtained from the 2-ASIP FPGA prototype and the reference software
model (fixed point) for (a) 3GPP-LTE block-size=864, (b) WiMAX, block-size=1728

Finally the proposed work in [47] achieves a very high throughput of ∼ 7.5 times the pro-
posed work with an area occupation of ∼ 13 times the proposed work. The high throughput
achieved by maintaining 64 Radix2 MAPs decoder working in parallel, benefiting from adopt-
ing a contention-free, (QPP) parallel interleaver. However in order to support WiMAX standard
for [47], it should adapt Radix-4 that will be at high cost for area and critical path as described
in its work.

3.6 Power Consumption Analysis for ASIC Implementation

In order to discover the impact for the pipeline optimization over energy efficiency, the power
consumption analysis in ASIC implementation has been made. It is applied on the design before
and after optimization. The power results then compared in order to study the enhancement over
the energy efficiency. Intial ASIP and TurbASIPv1 are considered for case study.

3.6.1 Power Consumption Analysis Flow

The power analysis is done on the case studies keeping the hierarchy levels as defined in the
generated RTL model, in order to observe power consumption in each blocks at each level of
hierarchy. As shown in Figure 3.17, the first step is the functional RTL model. This is then syn-
thesized with Synopsys topographic design compiler, using low power technologies (65nm 1V
25Â˚). As the interconnect parasitics have a major effect on path delays, the accurate estimates
of resistance and capacitance are necessary to calculate path delays. Hence design compiler
used, is in topographical mode. In this mode, design compiler leverages the physical implemen-
tation solution to derive the ”virtual layout” of the design so that the tool can accurately predict
and use real net capacitances instead of wire-load model-based statistical net approximations. In
addition, the capacitances are updated as synthesis progresses. That is, it considers the variation
of net capacitances in the design by adjusting placement-derived net delays based on an updated

3.6. POWER CONSUMPTION ANALYSIS FOR ASIC IMPLEMENTATION 71

”virtual layout” at multiple points during synthesis. The accurate prediction of net capacitances
drives design compiler to generate the gate level netlist. The netlist and sdf (standard delay
format) file is then used for the post-synthesis simulations, in Modelsim. The post synthesis
simulations generate the .vcd (Value Change Dump) file. The .vcd file is used to capture the
signal activities during simulations.

BEH/RTL Design

Synthesis (Synopsys)

SDF Generation

Nominal Delay Gate
Simulation (modelsim)

VCD File

Power Calculations
(Prime Power)

Power Analysis Report

Power Reduction Techniques
Techniques & design

Changes

Physical Design

SDF File

Gate Netlist File

Figure 3.17: Power consumption analysis flow

For the power analysis, Prime-Power (Synopsys) tool is used. This tool uses a statistic and
probability estimation algorithm to calculate the average power and construct the average cycle
power waveform. For accurate analysis of power with respect to time, statistical activity based
power analysis at the gate level is done. The .vcd, sdf files and the netlist are given as input
for the power analysis tool. Using these input files this tool builds a detailed power profile of
the design based on the circuit connectivity, the switching activity, the net capacitance and the
cell-level power behavior data in the library. It then calculates the power behavior for a circuit
at the cell level and reports the power consumption at the block level at all hierarchies.

72 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

3.6.2 Power Consumption Analysis Results

The summary of power analysis with three levels of hierarchy is shown in Table 3.14. Results
confirm the dominant impact of memories on power consumption for turbo decoding, besides
detailing the significant pipeline stages part.

Figure 3.18 shows the power consumption of pipeline stages for both ASIPs (Initial ASIP,
TurbASIPv1), where the consumption for all stages except EXE, MAX1 and MAX2 are almost
the same for both versions. While power consumed by EXE is reduced 5% in TurbASIPv1.
While MAX1 and MAX2 stages are added to the TurbASIPv1 architecture and not exist in
the intial ASIP, so their consumption to power is kept to zero. MAX1 stage in TurbASIPv1
is showing considerable power consumption, while MAX2 is consuming negligible amount of
power. The increase of power consumption is due to adding these two stages.

Note: As mentioned in earlier in Section 3.2, Initial ASIP does not support windowing. All
memories’s sizes are considered to fit 128 bits block-size. To have fair comparison, memories
for TurbASIPv1 are considered with similar size to the intial ASIP.

In Table 3.14, the second column is showing the power consumed at the different levels
of hierarchy by different blocks for both ASIPs. It can be clearly seen that the impact of the
optimization on power consumption is only on the pipeline and register file, while the internal
memories ConfigA and ConfigB has been removed in TurbASIPv1 so their power consumption
are zero, and there is no impact on power consumption of external memories. After this opti-
mization, even though the overall power consumption is slightly decreased by 5.5%, at the same
time the throughput has been improved by 77%. In order to have fair comparision with respect
to throughput and power consumption, energy effeciency can be calculated as in 3.14:

EE =
P

T × I
(3.14)

Here,
EE - Energy Efficiency (nJ/bit/iteration),
P - Power,
T - Throughput,
I - Number of iteration,

The EE indicates how much energy a decoder chip consumes to process a hard bit at iteration.
Eventually there is improvement in the energy per decoded bit by 45%.

3.6. POWER CONSUMPTION ANALYSIS FOR ASIC IMPLEMENTATION 73

Power (mw)
Section (hierarchy) Initial ASIP TurbASIPv1

external memory

input data
Top 2.79 2.79

Bottom 2.79 2.79

extrinsic
Top 16.5 16.5

Bottom 16.5 16.5

Interleaving
Top 2.78 2.78

Bottom 2.78 2.78

Alpha
Read 2.89 2.89
Write 2.89 2.89

Beta
Read 2.89 2.89
Write 2.89 2.89

Section (Total) 55.7 55.7

ASIP

Internal memory

program 3.43 3.43
ConfigA 13.0 0
ConfigB 13.0 0

Cross Metric 13.0 13.0
Total 42.43 16.43

Register File 13.7 25.5
Pipline 34.23 43.6
Total 90.13 85.53

Total Power (mW) 145.83 141.23
Throughput (Mbps)@6itr 45 80

Energy per bit (nJ/bit/iteration) 0.49 0.27
Area (mm2) 0.22 0.23

Table 3.14: Power consumption, throughput and area before and after optimizations

Figure 3.18: Power consumption related to each pipeline stage

3.6.3 Results Comparison

The Turbo decoder system architecture in our case study consists of 2 ASIPs interconnected. It
adapts shuffled decoding where the two ASIPs operate in a 1×1 mode. One ASIP processes the

74 CHAPTER 3. OPTIMIZED ASIP FOR MULTI-STANDARD TURBO DECODING

received frames in natural domain and the other in interleaved domain. As the power analysis
results presented earlier are for single ASIP, hence for the comparison which will be conducted
in this subsection, the power and area are taken into account for two ASIPs.

Table 3.15 is comparing the results of the proposed architecture with relevant existing imple-
mentations. We have considered the results of the initial ASIP, TurbASIPv1. Comparisons are
provided with the reconfigurable ASIP supporting Turbo and Viterbi decoding presented in [52]
and with a unified instruction set programmable architecture proposed in [53]. It is necessary
to compare energy efficiency results for each work after normalization. Because of each of the
implementations is using different technology and clock frequency. If the fabrication technology
changes, the voltage applied also varies. Along with it the silicon surface changes causing the
variance in capacitance. Power is directly proportional to frequency, capacitance and voltage.
With all these reasons there is change in power consumption and area occupied by the same
design implemented in different technologies.

Ref Algorithm Area
(mm2)

Power
(mW)

Tech
(nm)

Clock
(MHz)

Throughput
(Mbps)

Energy
Efficiency
(nJ/Bit/iter)

The intial
ASIP [40]

Turbo (Max-
Log MAP)

0.43 292 65 500 45 @6-iter 1.09

[53] Turbo (LTE) 0.23 230 45 333 100 @6-iter 1.01
[52] CC, Turbo 0.42 100 65 400 34 @5-iter 0.59
TurbASIPv1 Turbo (Max-

Log MAP)
0.46 282.5 65 500 80 @6-iter 0.58

Table 3.15: TurbASIPv1 energy efficiency results and comparisons

The Normalized Energy Efficiency (NEE) gives energy per decoded bit. Calculating NEE
is similar to the formula (3.14) given earlier. However due to comparing implementations in
different technologies, we have to multiply it by a factor as shown in formula (3.15):

NEE = (P/(T × I))×NEF (3.15)

Here,
NEE - Normalized Energy Efficiency,
P - Power,
T - Throughput,
I - Number of iterations,
NEF - Normalized Energy Factor [54]

Normalized Energy Factor (NEF) can be calculated as shown in the formula 3.16:

NEF = (
Vdd1
Vdd2

)2 × (
f1
f2

)2 (3.16)

Here,
f1 - Feature size of the target technology for normalization (65nm),
f2 - Feature size of the used technology,
Vdd1 - Supply Voltage of the target technology for normalization (0.9 V in 65nm),
Vdd2 - Supply Voltage of the used technology.

3.7. SUMMARY 75

To scale the results from 45nm to 65nm technology, the normalized energy factor (NEF)
is 2.64=(0.9 V / 0.8 V)2×(65 nm / 45nm)2. Also throughput is of great importance, as the
energy is calculated for each bit. The initial ASIP is having highest power consumption, and
hence the NEE is highest 1.09 (nJ/Bit/iter). Similar result is achieved in [53] with an NEE =
1.01(nJ/Bit/iter). On the other hand it can be noticed that TurbASIPv1 and the work in [52]
present the best energy efficiency with NEE = 0.58 and 0.59 (nJ/Bit/iter) respectively.

3.7 Summary

In this chapter we have presented the proposed optimized ASIP-based flexible Turbo decoder
supporting all communication modes of 3GPP-LTE, WiMAX and DVB-RCS standards. This
main contribution allows further to illustrate how the architecture efficiency of instruction-set
based processors can be considerably improved by minimizing the pipeline idle time. Three lev-
els of optimization techniques (Architecture, Algorithmic, and Memory) has been proposed and
integrated. Furthermore, the chapter has presented low complexity interleaver design supporting
QPP and ARP interleaving in butterfly scheme together with an efficient parallel memory ac-
cess management. Results show that the ASIP pipeline usage percentage have been maximized
to reach 94%, achieving a throughput of 164Mbps with 0.594mm2 @65nm CMOS technology
and an architecture efficiency of 3.31 bit/cycle/iteration/mm2. Furthermore, the impact of the
proposed optimization techniques on power consumption is illustrated. The overall gain in nor-
malized energy efficiency is around ≈45.6% compared to the initial architecture. The achieved
architecture efficiency and energy efficiency, considering the supported flexibility, compare fa-
vorably with related state of the art implementations

CHAPTER

4 FPGA Prototype for
Multi-standard Turbo
Decoding

ON board validation is a crucial step to fully validate and demonstrate the effectiveness of
any proposed novel hardware architecture. Two additional benefits can be mentioned in

this context: valuable feedback to the architecture design particularly regarding system-level
interfacing of the Turbo decoder, and the obtained hardware prototype can be used as a rapid
simulation environment for digital communication application; e.g. to explore various system
parameter associations.

It is, however, a complex task in the context of ASIP-based implementations and flexible
channel decoders as a fully flexible environment should be designed. Hence, this chapter is
dedicated to the presentation of the FPGA prototype for the proposed multi-standard Turbo
decoder. The first section presents the adopted ASIP-based LISA to FPGA prototyping flow,
while the second section details the proposed prototyping environment. This includes: (1) the
GUI (Graphical User Interface) in order to configure the platform with desired parameters such
as targeted standard, frame size, code rate, and number of iterations from a host computer, (2) the
multi-standard flexible transmitter, (3) the hardware channel emulator, (4) the proposed multi-
standard Turbo decoder, (5) the error counter, and (6) and the overall scheduling control. The
third and last section presents and compares the obtained FPGA synthesis results.

77

78 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

4.1 ASIP Design, Validation and Prototyping Flow

While selecting ASIP as the implementation approach [26], an ASIP design flow integrating
hardware generation and corresponding software development tools (assembler, linker, debug-
ger, etc.) is mandatory. In our work we have used Processor Designer framework from Synopsys
(ex. Coware Inc.) which enables the designer to describe the ASIP at LISA [38] abstraction level
and automates the generation of RTL model along with software development tools. ASIP de-
sign, validation and prototyping flow has been divided into 3 levels of abstraction as shown in
Figure (4.1) and detailed in the following subsections.

4.1.1 LISA Abstraction Level

The first step toward the Application Specific Instruction-set Processor (ASIP) implementation
is to employs centralized Architecture Description Language (ADL) processor models, from
which software tools, such as C compiler, assembler, linker, and instruction-set simulator, can
be automatically generated and the application program writing assembly file (.asm file) to be
executed on the ASIP. To simulate the input data memories, their contents are generated from
the software reference model and written in a special sections (.section) in the assembly file as
defined in the linker command file. Processor Designer framework generates assembler, linker,
processor debugger and simulator tools. Assembler and linker process the application program
(.asm file) to generate the executable file (.out file) which is used in Processor Debugger to verify
both the ASIP model and the application program. Once the ASIP is verified, a special utility
”lvcdgen” is used to generate reference Value Change Dump VCD files from a LISA simulation.
The utility can load any shared object of a model, load an application, and run the simulation.
During simulation, a VCD file for all global resources of the model is written (global register
resources and all pipeline registers, as well as input and output pins). The generated VCD file
can be used at lower abstraction levels for verification purpose. In addition, include files for
HDL simulators can be generated. These include files can then directly be used to create VCD
files in an HDL simulation. The complete flow is shown in Fig (4.1.a).

4.1.2 HDL Abstraction Level

Processor Designer framework provides the Processor Generator tool which manipulate the gen-
erated structure of the RTL model by grouping operations into functional units. Each functional
unit in the LISA model represents an entity or a module in the HDL (VHDL/Verilog) model.
Each operation inside a functional unit is mapped to a single process inside this entity or mod-
ule. By default, Processor Generator creates a single functional unit in each pipeline stage and
assigns all operations in that pipeline stage. The efficiency of the generated HDL depends upon
the LISA modeling and the configuration options of Processor Generator. Modeling in LISA
which use C compiler and require high-level architecture information, so it is highly recom-
mended that LISA modeling should be as close as possible to HDL e.g if in one pipeline stage
we want resource sharing, that resource should be declared once. Otherwise, due to inability to
detect sharing, resources will be duplicated in HDL. Other issue is the use of high level opera-
tors of LISA which may not be produced by the Processor Generator e.g modulo two operations
(”variable % 2” in LISA) should be rather implemented by the LSB manipuation of the con-
sidered variable. For memory interface generation, different Memory Interface Definition Files
(MIDF) are provided which define the number of ports and latencies. Once memory layout file
and executable application program file is available, ”exe2bin” utility inputs them to generate

4.1. ASIP DESIGN, VALIDATION AND PROTOTYPING FLOW 79

exe file

HDL SIMULATION
MEMORY MODELS

LISA
 V

CD
 FILE

.dum
p FILES

RTL V
CD

 FILE
.dum

p FILES

PLACE
&

ROUTE

VERIFICATION

FILE
MEMORY LAYOUT

.ASM FILE
(memory content)

mmap2coeGENERATOR
CORE

lvcdgen

lvcdcmp

VERIFICATION

OBJECT

DYNAMIC SIMULATOR

SYNTHESIS

VERIFICATION

PROCESSOR
DEBUGGER

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

LISA
 FILES

A
SSEM

BLER

LIN
K

ER
&

PRO
CESSO

R
G

EN
ERA

TO
R

MEMORY CONTENT
.mmap FILES

H
D

L G
EN

ERA
TIO

N
O

PTIO
N

USER CONSTRAINT
.ucf FILE

LINKER COMMAND
FILE

NOT OK

FPGA
VIRTEX5
XILINIX

HDL
SIMULATOR

LISA LEVEL
VERIFIED SYSTEM

exe2txt

& ASSEMBLER, LINKER

PROCESSOR DEBUGGER

NOT OK

DESIGNER
PROCESSOR

NOT OK

HDL BEHAVIORAL LEVEL

VERIFIED SYSTEM

HDL SYNTHESIS LEVEL
VERIFIED SYSTEM

HDL MODEL OF

ASIP

(c) FPGA IMPLEMENTATION LEVEL

(b) HDL ABSTRACTION LEVEL

(a) LISA ABSTRACTION LEVEL

Figure 4.1: Prototyping Flow: (a) LISA abstraction level, (b) HDL abstraction level, (c) FPGA implementation level

the contents of memories in separate .mmap files. With these three inputs (VHDL model, mem-
ory model and .mmap files), the VHDL model can be simulated behaviorally using an HDL
simulator, e.g ModelSim by Mentor Graphics. To run HDL simulation, LISATEK Processor
Generator produces ready-to-use Makefile which can be executed to see either the waveforms
or to generate VCD file. To verify the generated ASIP HDL model, the VCD file generated
through HDL model and the one generated through LISA model (in previous subsection) can be

80 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

compared using ”lvcdcmp” utility, where ”lcvdcmd” is a utility used to compare two VCD files
with each other.

4.1.3 FPGA Implementation Level

At this level, the only missing elements are the synthesizable memory models. Depending upon
the target FPGA device and the synthesis tool, the declaration of the memory models for simula-
tion can be replaced by equivalent declaration of synthesizable memories. The obtained model
containing the ASIP and its memories can be used for synthesis, placement and routing to verify
timing and area performances.

However, for a full validation of the ASIP features and the different supported parameters,
a complete system environment is required. The following section will present the proposed
complete system prototyping platform.

4.2 Proposed Prototyping Platform for the ASIP-based Turbo De-
coder

On board validation is a crucial step to validate the ASIP approach feasibility. It is, however, a
complex task in the context of flexible channel decoders as a fully flexible environment should
be designed.

On the host computer side, the proposed environment integrates a GUI (Graphical User
Interface) in order to configure the platform with desired parameters such as targeted standard,
frame size, code rate, and number of iterations from a host computer. This GUI also displays
results such as BER (Bit Error Rate) and FER (Frame Error Rate) performance curves, besides
the achieved throughput on FPGA.

On the FPGA board side, several modules are required: a source of data, a flexible turbo
encoder, a channel model, the turbo decoder architecture which includes 2 TurbASIPs, and an
error counter. For data source, a pseudo random generator based on a 32 bit LFSR (Linear
Feedback Shift Register) is used. The turbo encoder implements both modes of encoding of
SBTC and DBTC specified in the supported standards, and can be reconfigured dynamically.
The channel model emulates an AWGN (Additive White Gaussian Noise) model. The decoder
is made up of two TurbASIPs working in shuffled mode, an interleaving address generator, an
input interface (to fill the input LLR memories), and an extrinsic exchange module to manage
the exchanges of extrinsic information considering the interleaving rules and all the memories
of the ASIPs (input, extrinsic, interleaving, cross metric and program memories).

This choice of having emmitter, channel, decoder, error counter on the FPGA and using the
GUI only for configuration and monitoring enbales high throughput.... the platform can then be
used as a rapid simulation environement in the research in turbo decoding.... etc....

The FPGA board used for this platform prototype is the DN9000k10pci board from the
DiniGroup company which integrates 6 Xilinx Virtex 5 XC5VLX330. Only one Virtex 5 has
been used for the proposed prototype.

Figure 4.2 gives an overview of the complete proposed and designed environment for multi-
standard turbo decoding. The following subsections describe the different components of the
proposed platform.

4.2. PROPOSED PROTOTYPING PLATFORM FOR THE ASIP-BASED TURBO DECODER 81

Figure 4.2: Overview of the proposed environment for multi-standard turbo decoding

4.2.1 Multi-Standard Transmitter

The transmitter consists of a data source and a flexible turbo encoder. The data source is em-
ulated by a pseudo random generator based on a 32 bits LFSR architecture. The LFSR can
produce 2 bits at each clock cycle, and thus, it is appropriate for binary and double binary
modes.

The flexible turbo encoder is presented in Figure 4.3. This encoder supports single and

82 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

double binary trellis, without duplicating the hardware resources. It also supports all frame size
for 3GPP-LTE, WiMAX and DVB-RCS standards. For that, the convolutional encoder and the
interleaver are flexible.

The convolutional encoder is presented in Figure (4.4). The proposed architecture is fully
configurable, with dynamically parameterizable connections enabling all possibilities regarding
parity and recursion equations. So the encoder can execute in two modes, either as an SBTC
encoder (Figure 1.7, Chapter I) or as a DBTC encoder (Figure 1.10, Chapter I).

The data coming from the source are stored in a dual read port RAM memory. One read port
for the natural domain convolutional encoder, the other for the interleaved one. When the source
completes the generation of the whole frame of data, the memory is read to supply at the same
time the natural and interleaved encoders.

The natural read address is generated by a simple counter. On the other hand, the interleaved
address is generated on the fly recursively using a flexible interleaving address generator. For
SBTC (3GPP-LTE), QPP (Quadratic Polynomial Permutation) interleaving address generator
based on the work presented in Chapter 3 (see Subsection 3.2.3.3, Page (61)) has been designed.
Similarly, for DBTC (WiMAX and DVB-RCS), an ARP (Almost Regular Permutation) inter-
leaving address generator.

For SBTC mode, only the outputs S1i, P1i, P ′1i and S′1i are used. S′1i is used to transmit
the interleaved systematic during tail bit termination. S′1i and S′2i are not sent to the decoder
to be decoded, but are used by the verification module in order to compute BER/FER for the
interleaved domain.

The trellis of double binary trellis does not need tail bit termination since the convolutional
encoders are circular. A first encoding with the encoder state equals to 0 is done in order to get
the final state of the encoder. With this final state, using a Look-Up-Table defined in [7], the
circular state to initialize the encoder for a second encoding of the same data is found. For this
second encoding phase, the states at the beginning and at the end are identical.

13
BlockSize

CLK

Reset

Start

END_CODING

DATA_VALID

2

Single/Double Turbo Encoder
Enable

Enable

NAT ADR GEN

Write_E

2

2

Data

FSM Controller
@R/W

Enable

@R

INT ADR GEN (QPP)

INT ADR GEN (ARP)

4.4

4.4

2×8192

Natural Flexible
Convolutionnal

Encoder

Interleaved Flexible
Convolutionnal

Encoder

Dual Port
RAM

Pseudo
Random

Generator

XS1

XS2

XP1

XP2

XS ′1

XS ′2

XP ′1

XP ′2

Figure 4.3: Turbo encoder with random source generator

The FPGA synthesis results of this multi-standard transmitter are shown in Table 4.1.

4.2. PROPOSED PROTOTYPING PLATFORM FOR THE ASIP-BASED TURBO DECODER 83

R1 R2 R3

Configurable XOR Matrix

Configurable Connections

P1i

P2i

S2i

S1i

d1i

d2i

Configurable XOR Matrix

Figure 4.4: Flexible convolutional encoder

FPGA Synthesis Results (Xilinx Virtex5 xc5vlx330)
Slice Registers 140 out of 207,360 (< 1%)

Slice LUTs 970 out of 207,360 (< 1%)
DSP48Es 0 out of 192
Frequency 119.490MHz

Table 4.1: FPGA synthesis results of the Transmitter Module

4.2.2 Channel Module

The AWGN channel model is considered. To emulate the AWGN channel, a hardware model
based on Wallace method was available at the Electronics Department of Telecom Bretagne
which is used in this prototype. Figure 4.5 presents the input/output interface of the integrated
AWGN channel emulator. The power of noise is represented in 17 bits. The formula to compute

4
4
4

AWGN CHANNEL

Reset
CLK

Start

17
4
4
4

EMULATOR

DATA_VALID

σ2w

XP2

XP1

XS2

XS1

XP ′1
XP ′2

YS2
YP1
YP2
YP ′1
YP ′2

YS1

Figure 4.5: Input/output interface of the integrated AWGN channel emulator

the value to apply at the input σ2 port of the channel module for a target SNR is as follow:

σ =

√
10
−SNR

10

2× log2(m)×R
× 216 (4.1)

i.e. for code rate R = 1/3, number of symbols in the modulation m=2 (BPSK), and targeting
an SNR of 0.25dB, the binary value of σ2 to apply at the channel module input port is σ2 =

84 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

10011000010100011. The synthesis results of this channel emulator are tabulated in Table 4.2.

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 2577 out of 207,360 1%

Slice LUTs 3629 out of 207,360 1%
DSP48Es 30 out of 192 15%
Frequency 188.918MHz

Table 4.2: FPGA synthesis results of the AWGN channel module

4.2.3 Multi-Standard Turbo Decoder

The multi-standard turbo decoder is built around two TurbASIP which can be configured to
execute in shuffled or serial modes. One ASIP processes the input frame in the natural order
while the other processes it in the interleaved order. In shuffled mode, the two ASIPs execute
simultaneously and the extrinsic information are updated in real time (as soon as generated).

In the following are presented the different modules developed in order to build this flexible
turbo decoder.

4.2.3.1 Memory organization

Figure (4.6) recalls the memory organization of TurbASIP. TurbASIP has three input memory
ports, one for upper halves of processed windows (Top), one for lower halves (Bottom), and one
for Tail bit termination.

In order to simplify filling the systematic and parity LLRs, those memories have been split
in four distinct memory banks. In fact, the input LLRs which should be stored in one memory
word may not arrive at the same time (because of memory sharing between SBTC and DBTC,
besides interleaving). However, the output of the four memory banks are concatenated and read
by the ASIP as one single word. For the same reason, each Top and Bottom extrinsic memory is
split in two banks. However, the cross metric memories do not need to be split.

All the memories in the turbo decoder are synchronous on read and write accesses. They are
mapped on Xilinx dedicated block RAMs, allowing better timing and area occupation.

4.2.3.2 Interleaver module

The interleaving module is in charge of generating interleaving addresses. Those interleaving
addresses are used by the input interface module to store natural systematic LLRs coming from
the channel to the input memories of the interleaved domain.

The interleaving module is made of two main components. The first one generates the in-
terleaving addresses according to the selected standard. However, the generated addresses from
the interleaving module or from the TurbASIP interleaving generator are in absolute format, i.e.
taking values in the range of the frame size. Hence, they do not correspond directly to loca-
tions in the multiple banks of top/bottom memories. Figure 4.7 illustrates this issue due to the
adoption of windowing technique in butterfly scheme.

Thus, the second component of the interleaving module transforms the global addresses
into local addresses that identify a location in those memories: which memory is targeted (Top

4.2. PROPOSED PROTOTYPING PLATFORM FOR THE ASIP-BASED TURBO DECODER 85

Figure 4.6: TurbASIP and attached memories

Figure 4.7: Internal data organization in input memories

or Bottom), and at which physical/local address. In fact, the window size of TurbASIP is 64
symbols, so 32 symbols are stored in the Bottom memories and 32 in the Top ones. The frame
size may not be dividable by 64, in this case, the last window is less than 64 and starts at the
address N − (N mod 64), where N refers to the frame size in couples of bits. The LLRs of this
last window are equally distributed between top and bottom memories ((N mod 64)/2 LLRs in
each).

To determine in which memory (Top or Bottom) the LLR should go, the bit in the fifth
position from LSB of the global address is used (25 = 32). When this bit is 0, the data should
go to the Bottom memory, else to the Top one. There is an exception for the upper part of the
last window: when the global address is above the limit N − (N mod 64) + (N mod 64)/2,
the data is automatically written in the Top memory. This last window limit is computed before
interleaving address generation.

86 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

To determine the physical address, this fifth bit is removed, and the MSB part of the address
above this fifth bit is right shifted of one position. There is the same exception for the address as
for the memory selection. The physical address for the last window is computed a bit differently.
Before removing the fifth bit, (N mod 64)/2 is removed from the global address.

The following example illustrates the above proposed address conversion scheme. Assuming
N=240 and a global address GA equals to 182(10) = 10110110. The starting address of the last
window is N −N mod 64 = 192. So the corresponding LLR is not in the last window. GA(5)
= 1, so the data goes to the Top memory. If the fifth bit is removed, and the upper part is right
shifted, the resulting physical address is 10(2) concatenated with 10110(2) so it is 1010110(2)
= 86. So in this example, the LLR corresponding to the global address 182 with a block size
equals to 240 will be stored in the Top memory at the address 86.

4.2.3.3 Prototyped extrinsic exchange module

This module is in charge of extrinsic message transfer from a TurbASIP of one domain to the
extrinsic memory from the other domain according to the interleaving rules.

TurbASIP builds a 128 bits word containing the extrinsic messages and their respective inter-
leaving addresses. These interleaving addresses are not the global addresses but the local ones:
containing one bit to determine Top or Bottom memory destination and the physical address.
Because of the Radix-4 compression method applied in SBTC mode, extrinsic Top and Bottom
memories are each split in odd and even memories. So the extrinsic exchange module is able
to route extrinsic messages toward four distinct memories. Its architecture, illustrated in Figure
4.8, should avoid address conflicts.

Figure 4.8: Architecture of the prototyped Extrinsic Exchange Module

In DBTC mode, the word contains two extrinsic messages corresponding to two different
symbols (Butterfly scheme). Every two clock cycles, a word is generated. Hence, during the
first clock cycle one message is routed to the appropriate memory, the other is buffered. During
the second clock cycle, the buffered message is routed (time multiplexing).

In SBTC mode, every two clock cycles, the ASIP generates a word containing four extrinsic
messages (Butterfly scheme and Radix-4). Similar to DBTC mode, two messages are buffered
while the two others are routed. One symbol in Radix-4 compression is composed of two con-
secutive bits, thus two consecutive addresses. The interleaving rules of the 3GPP-LTE are such
that an even address in a domain will correspond to an odd address in the other domain. So

4.2. PROPOSED PROTOTYPING PLATFORM FOR THE ASIP-BASED TURBO DECODER 87

by choosing to route simultaneously two messages of the same Radix-4 symbol, no addressing
conflict occurs.

4.2.3.4 Area of the decoder core

The FPGA and ASIC synthesis results of 2-ASIPs and Extrinsic Exchange Module are shown
in Table 4.3.

ASIC Synthesis Results (Synopsis Design Compiler)
Technology ST 65nm
Conditions Worst Case (0.90V; 105oC)

Area 0.0845mm2 (53.3 K Gate)
Frequency 500 MHz

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 14,580 out of 207,360 7%

Slice LUTs 17,558 out of 207,360 8%
DSP48Es 0 out of 192
Frequency 96.379MHz

Table 4.3: FPGA synthesis results of the Receiver module

4.2.4 Error Counter

The verification module is used to compute and store the number of transmitted data source bit-
s/frames, and the number of erroneous bits/frames at the output of the turbo decoder (in natural
and interleaved domains). Those values are used to compute BER and FER which are read by
the external host computer. Figure (4.9) presents an overview of the proposed architecture of the
verification module, while the synthesis results are presented in Table 4.4.

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 34,924 out of 207,360 17%

Slice LUTs 14,468 out of 207,360 7%
DSP48Es 0 out of 192
Frequency 188.918MHz

Table 4.4: FPGA synthesis results of the Verification module

4.2.5 Scheduling and Control

Figure 4.10 illustrates the proposed scheduling of the different platform tasks from clock syn-
chronization to error counting. The clock synchronization, configuration, last window limit
computation and interleaving memory filling occur only once at the beginning.

During the clock synchronization, the whole platform is in reset state. This synchroniza-
tion is done by a DCM of the FPGA (Digital Clock Management). The DCM is in charge of
generating the platform clock from two external differential clocks from an oscillator.

The last window limit computation is done following the expression given in Subsection
4.2.3.2.

88 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

Figure 4.9: Verification Module

Then follow the encoding, the addition of white Gaussian noise, and the decoder input mem-
ories filling. Depending on the configuration, the decoding will be in serial mode or shuffled
mode. When all the iterations are performed and the hard decisions are produced, the error
counter provides the accumulated number of erroneous bits together with the number of pro-
cessed frames to the GUI. The GUI performs BER/FER computations and displays the error
performance curves.

Figure 4.10: Proposed scheduling of the complete Turbo decoder platform

The main controller of the platform is integrated in the turbo decoder module. This controller
is implemented by a mealy finite state machine. The different states correspond to the different
tasks presented in figure (4.10).

4.2.6 Performance Results

The complete FPGA synthesis results of the turbo decoding system is presented in Table 4.5.
The acquired Frame Error Rate performance for WiMAX 240-Byte source data and DVB-RCS
108-Byte source transmitted at r = 0.33 and modulated on BPSK are shown in Figure 4.11
and Figure 4.12 respectively. They have been verified that they match the performance of the
reference software model.

4.2. PROPOSED PROTOTYPING PLATFORM FOR THE ASIP-BASED TURBO DECODER 89

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 53,276 out of 207,360 25%

Slice LUTs 37,477 out of 207,360 21%
DSP48Es 30 out of 192 15%
Frequency 63.041MHz

Table 4.5: FPGA synthesis results of the 2-ASIP Turbo decoder platform prototype

Figure 4.11: FER performance obtained from the 2-ASIP Turbo decoder FPGA prototype for WiMAX, block-
size=1920 @ 7iteration

Figure 4.12: FER performance obtained from the 2-ASIP Turbo decoder FPGA prototype for DVB-RCS, block-
size=864 @ 7iteration

90 CHAPTER 4. FPGA PROTOTYPE FOR MULTI-STANDARD TURBO DECODING

4.3 Summary

In this chapter, we have presented the proposed and designed FPGA prototyping environment
in order to fully validate the 2-ASIP multi-standard Turbo decoder described in the previous
chapter. The proposed prototype consists of a complete flexible environment integration a
GUI, a multi-standard flexible transmitter, a hardware channel emulator and the proposed multi-
standard Turbo decoder. It consists of one of the first available and fully functional FPGA
prototypes using the ASIP approach and efficiently exploiting the available parallelism levels in
multi-standard Turbo decoding. Furthermore, the proposed environment integrates an efficient
and high-speed error rate performance evaluation allowing for on-the-fly BER/FER curves dis-
play on the host computer. This flexible and high-throughput FPGA prototype can be further
used as a fast simulation environment allowing fast performance evaluation of various combina-
tions of supported parameters.

CHAPTER

5 Towards the Support of LDPC
Decoding

BESIDES turbo codes, wireless digital communication standards specify a large variety of
channel coding techniques and parameters. Some of them are mandatory, others are op-

tional, where each one is suitable for specific application/communication mode. In this context,
LDPC codes are often proposed in these standards (e.g. WiMAX, WiFi, DVB-S2/T2) due to
their high error correction performance and simplicity of their iterative decoding. Mainly, the
class of structured quasi-cyclic LDPC codes (QC-LDPC) is adopted as it presents very interest-
ing implementation properties in terms of parallelism, interconnection, memory and scalability.

This chapter presents our contribution towards increasing the flexibility of the designed
Turbo decoder to support LDPC decoding. It consists of a joint effort with another PhD stu-
dent at the Electronics department of Telecom Bretagne: Purushotham Murugappa.

The main result concerns the proposal and the design of a multi-ASIP architecture for chan-
nel decoding supporting binary/duo-binary turbo codes and LDPC codes. The proposed archi-
tecture achieves a fair compromise in area and throughput to support LDPC and turbo codes for
an array of standards (LTE, WiMAX, WiFi, DVB-RCS) through efficient sharing of memories
and network resources. The Min-Sum algorithm The chapter starts with a brief introduction on
LDPC codes with emphasis on the particular class of structured quasi-cyclic LDPC codes and
adopted parameters in the considered wireless standards. Then LDPC iterative decoding is intro-
duced and the low complexity reference decoding algorithms are presented. Subsequent sections
present the proposed LDPC/Turbo decoding architecture in a top-down approach. First present-
ing the functional description of the overall architecture and the main architectural choices and
design motivations. Following, the proposed memory organization and sharing is presented.
Then, the proposed scheduling, pipeline structure, and instruction set in both Turbo and LDPC
decoding mode are presented. The last section presents logic synthesis results along with future
perspectives.

91

92 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

5.1 LDPC codes

Low-density parity-check (LDPC) codes is a class of linear block codes. Linear block codes
have the property of linearity, and they are applied to the source bits in blocks, hence the name
linear block codes. The LDPC name comes from the characteristic of their parity-check matrix
which contains only a few 1’s in comparison to the amount of 0’s. Their main advantage is that
they provide a performance which is very close to the capacity for a lot of different channels and
linear time complex algorithms for decoding. Furthermore are they suited for implementations
that make heavy use of parallelism. They were first introduced by Gallager in his PhD thesis
in 1960 [55], but they were ignored until 1998. They were rediscovered by MacKay(1999)
and Richardson/Urbanke(1998) as an alternative to the capacity achieving codes namely Turbo
Codes. Its applied in many applications such as Digital Video Broadcasting Standard (DVB-S2),
satellite transmission of digital television WLAN, WiMAX, WiFi ...etc.

5.1.1 Representations of LDPC Codes

Basically there are two different possibilities to represent LDPC codes:

1. Matrix Representation A binary LDPC code is represented by a sparse parity check matrix
H with dimensions M × N such that each element hmn is either 0 or 1. N is the length of the
codeword, and M is the number of parity bits. Each matrix row H(i,(1 ≤ j ≤ N)) introduces
one parity check constraint on the input data vector x ={x1, x2, ... , xN}:

Hi.x
T = 0 (5.1)

In the following example for Hamming (7,4) code, which is another class of linear block codes
and has similar parity check matrix H structure to LDPC. It encodes a codeword of 4 data bits
into 7 bits by adding three parity bits. A generator matrix G is a basis for generating all its
possible codewords.

C(linear code) =
∣∣ 1 0 1 1

∣∣
G =

∣∣∣∣∣∣∣∣
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

∣∣∣∣∣∣∣∣
CT (Codeword) = C ·G

CT =
∣∣ 1 0 1 1 0 1 0

∣∣

H =

∣∣∣∣∣∣
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

∣∣∣∣∣∣
H.CT = 0

2. Graphical Representation The complete H matrix can best be described by a Tanner graph
[56], a graphical representation of associations between code bits and parity checks. Each row of

5.1. LDPC CODES 93

H corresponds to a check node (CN), while each column corresponds to a variable node (VN) in
the graph. An edge eji on the Tanner Graph connects a VNj with CNi only if the corresponding
element hij is a 1 in H. If the number of edges entering in a node is same for all nodes of the
graph, the LDPC code is called regular, being otherwise irregular in case of variable node degree.
Generally, irregular LDPC codes yield better decoding performance compared to regular ones.
Figure 5.1 illustrates the H matrix for Hamming code (7,4).

VN2

CN1

VN4

CN0 CN2

VN3 VN1 VN5 VN0 VN6

Figure 5.1: Tanner Graph of the Hamming code (7,4).

5.1.2 Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)

Quasi-Cyclic LDPC (QC-LDPC) codes are a special class of LDPC codes with a structured
H matrix composed of circulant Permutation matrices . A circulant permutation matrix is an
identity matrix whose rows are cyclically shifted (to the right)s. The row and column weights of
a circulant are the same. QC-LDPC can be generated by the expansion of a Z×Z permutation
matrix. Z is also sometimes referred to as expansion factor of the LDPC check matrix. As an
example, Figure 5.2 shows the parity check matrix for the (1944, 972) 802.11n LDPC code with
sub-matrix size Z=81. In this matrix representation, each square box with a label Ix represents an
81×81 permutation matrices with a shifted value of x, and each empty box represents an 81×81
zero matrix . This structure of the code, implies that the check nodes of a row are connected to

I57 I50 I11 I50 I79 I0 I0

I3 I28 I0 I55 I7 I0 I0

I30 I24 I37 I56 I14 I0 I0

I62 I53 I53 I3 I35 I0 I0

I40 I20 I66 I22 I28 I0 I0

I0 I8 I42 I50 I8 I0 I0

I69 I79 I79 I56 I52 I0 I0 I0

I65 I38 I57 I72 I27 I0 I0

I64 I14 I52 I30 I32 I0 I0

I45 I70 I0 I77 I9 I0 I0

I2 I56 I57 I35 I12 I0 I0

I24 I61 I60 I27 I51 I16 I1 I0

Figure 5.2: Parity check matrix H for a block length of 1944 bits, code rate 1/2, IEEE 802.11n (1944, 972) LDPC
code. H consists of M×N sub-matrices (M=12, N=24 in this example)

unique variable nodes. This simplicity makes QC-LDPC codes attractive for implementation.
It reduces the memory requirement based on block matrices with the circulant architecture.

94 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

They can be efficiently encoded using simple feedback-shift registers with complexity linearly
proportional to the number of parity bits for serial encoding, and to the code length for parallel
encoding [57].

5.1.3 QC-LDPC Codes Parameters in WiMAX and WiFi Standards

Low-density parity-check (LDPC) codes have been adapted in new standards such as in the IEEE
802.11n (WiFi) and 802.16e (Mobile WiMAX) standards. These standardized LDPC codes are
based on structured irregular QC-LDPC codes which exhibit great levels of scalability, support-
ing multiple code structures of various code rates and code lengths. As a result, a decoder for
these applications must be very flexible and reconfigurable. In WiMAX specification, 19 expan-
sion factors which represent permutation matrix sizes are defined ranging from 24 to 96 with an
increment of 4. On the other hand, In WiFi specification, only 3 expansion factors are defined
ranging from 27 to 81. Table 5.1 summarizes the LDPC code parameters for these two standards.

Parameter
WiMAX WiFi

min max # min max
Block Lengths 19 576 2304 3 648 1944
Submatrix sizes 19 24 96 3 27 81

Code Rates 4 1/2 5/6 4 1/2 5/6
CN degrees 7 6 20 9 7 22
VN degrees 4 2 6 8 2 12

Edges 90 1824 8448 8 2376 7128

Table 5.1: LDPC code parameters in WiFi and WiMAX

The main differences between these two standards can be summarized as follow:

- Maximum check node degree is 20 in WiMAX and 22 in WiFi.

- Maximum variable node degree is 6 in WiMAX and 12 in WiFi.

- Maximum submatrix size is 96 in WiMAX and 81 in WiFi.

- Maximum number of edges is 8448 in WiMAX and 7128 in WiFi.

- Maximum required channel throughput is up to 100Mbps for the WiMAX, and 450Mbps
for WiFi.

5.2 LDPC Decoding Algorithms

Several algorithms are proposed for LDPC decoding and most of them are derived from the well-
known belief propagation (BP) algorithm [55]. The principle consists of exchanging iteratively
messages (probabilities, or beliefs) along the edges of the Tanner graph. The message (λinm)
which is passed from a variable node (V N) n to a check node (CN) m is the probability that
V Nn has a certain value (0 or 1). It depends on the channel value (∆n) of that variable node
n and all the messages from connected check nodes to V Nn except m. Similarly, the message
from CNm to V Nn (Γimn) depends on all messages received from connected V Ns except the
one being updated (as shown in Figure 5.3). These two phases are often called as check node

5.2. LDPC DECODING ALGORITHMS 95

update and variable node update, respectively. This algorithm is also referred to as two-phase
message passing (TPMP). When all variable nodes and check nodes have been updated, one
iteration is said to be complete. Iterations are executed until all parity-check equations (equation
5.1) or another stopping criterion are satisfied or the maximum number of iterations is reached.

VN2

CN1

VN4

CN0 CN2

VN3 VN1 VN5 VN0 VN6

0

λi
nm

i
mn

1 2 3 4 5 6

Figure 5.3: Tanner graph example showing the two-phase message passing decoding

5.2.1 Min-Sum Algorithm

The above decoding algorithm is usually described in the log domain using log-likelihood-ratios
(LLR) to reduce the computational implementation complexity. The Min-Sum algorithm [58]
is the hardware efficient implementation of the TPMP decoding using LLRs. It proposes an
approximation to simplify the calculations of updated messages. In this section we present
the computations implied by this algorithm with a slightly modified formulation adapted to the
hardware architecture which will be presented in subsequent sections.

Every decoding iteration consists of M sub-iterations corresponding to the M-check node
groups in the Hbase. Each sub-iteration i consists of two phases:

1. CN-update: all the V N nodes send extrinsic messages given by equation (5.2) to their
corresponding CNs in the check node group. These messages contain the sum of the
extrinsic messages sent by the other CNs to the V N and the channel value. Here, we
denote M(n)\m to be the set of the all check nodes connected to the variable node n
except the check node m.

λinm = ∆i−1
n +

∑
m′∈M(n)\m

Γi−1m′n, Γ0
mn = 0 (5.2)

2. VN-update: when a CN receives all the messages, it sends a message to each connected
variable node. We denote N(m) to be the set of the all variable nodes connected to the
check node m, and N(m)\n to be the same set except the variable node n. Then the check
node to variable node message is given as in equation (5.3). The sign of the message is the

96 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

product of the signs of the messages received from all V Ns, as given in equation (5.3).

sgnm =
∏

n∈N(m)

sgn(λinm)

minn′m = min
n′∈N(m)\n

(|λin′m|)
(5.3)

It can be observed that the magnitudes of the messages leaving a check node have only
two values: either the overall minimum (min0) of the received messages |λinm| or the
second overall minimum (min1). In fact, min1 is sent to the variable node who sent
min0. Calculations at the check node thus result in tracking the two running minimums,
min0 and min1, the index of the connected variable node providing min0 (ind), and the
overall sign (sgn). These four informations are grouped and denoted as Running Vector
(RV):

RV (m) = [min0,min1, ind, sgn]m (5.4)

The extrinsic information (Γmn) is derived at the variable node as

Γimn = sgn(λinm)× sgnm × (min0 or min1) (5.5)

Thus, the overall estimation (a posteriori LLR) of the decoded bit can be computed as:

λin = ∆n +
∑

m∈M(n)

Γimn (5.6)

It can also be written in the following form:

λin = λinm + Γimn (5.7)

The sign of λin indicates the hard decision on the decoded bit.

Using this last equation, we can rewrite equation(5.2) as:

λinm = λin − Γi−1mn (5.8)

The above steps are repeated for all check node groups to complete one iteration.

5.2.2 Normalized Min-Sum Algorithm

Min-Sum algorithm can induce a loss of about 0.2dB compared to the original BP version
[59].The error rate performance of the Min-Sum algorithm can be improved by employing a
CN-update that uses an extrinsic scaling factor α. The normalization factors can be obtained
by simulation, typically 0 < α < 1. Normally, for hardware implementation, the value of
α = 0.875 is used as it gives a good trade-off between complexity and BER performance.
Hence, equation (5.5) becomes:

Γimn = α× sgn(λinm)× sgnm × (min0 or min1) (5.9)

5.3. MULTI-ASIP ARCHITECTURE OVERVIEW 97

5.3 Multi-ASIP Architecture Overview

Figure 5.4 shows an overview of the proposed multi-ASIP architecture for LDPC/Turbo decod-
ing. It consists of 8 ASIPs interconnected via a de-Bruijn Network-on-Chip (NoC) [22][60]
grouped into two component decoders for Turbo mode. Each ASIP can process three CNs in
parallel, a total of 8 ASIPs are required to process one complete sub-matrix in parallel for the
minimum sub-matrix size Z = 24 (Table 5.1). This number of ASIPs is just enough in turbo
mode to work in 4×4 mode to achieve the targeted 150Mbps throughput.

Within each component decoder the ASIPs are also connected by two 8-bit bus (named here
to be α−β bus) for the exchange of sub-block boundary state metrics. In LDPC decoding mode
each ASIP can process three check nodes in parallel.

COMPONENT DECODER 0 COMPONENT DECODER 1

CV

CV

CV

Ext
Mem

NI

NI

Ext
Mem

NI

NI

Ext
Mem

NI

NI

NI

Ext
Mem

NI

CV

Ext
Mem

NI

NI

CV

CV

CV

Ext
Mem

NI

NI

Ext
Mem

NI

NI

Ext
Mem

NI

NI

Debruijn−NOC

Init MetricsM

Init MetricsM

Init MetricsM

Init MetricsM

CV0

1

2

3
4

5

6

7
ASIP−7

ASIP−6

ASIP−5

ASIP−4

Init MetricsM

Init MetricsM

Init MetricsM

Init MetricsM

ASIP−0

ASIP−1

ASIP−2

ASIP−3

×3

×3

×3

×3 ×3

×3

×3

×3

×3

×3

×3×3

×3

×3

×3

×3

α-β busα-β bus

Figure 5.4: Overview of the proposed Multi-ASIP architecture for LDPC/Turbo decoding

Each ASIP has 3 memory banks of size 24×256 used to store the input channel LLR values
(CV memories). There are also another 3 banks of size 30×256 used for storing extrinsic in-
formation. Each ASIP is further equipped with two 80×32 memories to store state metrics β in
Turbo mode and λinm in LDPC mode (not shown in Figure 5.4).

98 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

5.3.1 Multi-ASIP in Turbo Mode

In Turbo decoding mode, the ASIPs are configured to operate in a 4×4 shuffled decoding (see
Subsection 1.4.2.2 in Page 26), with four ASIPs (0-3) processing the data in natural order while
the other four ASIPs (4-7) are processing it in interleaved order. The generated extrinsic infor-
mation is exchanged via the NoC (de-Bruijn). The choice of de-Bruijin network was proposed
by another Ph.D. student [22]. It was proved to be less complexity than other networks such
as Butterfly and Benes networks. Moreover, this network is easier to be reconfigured as a uni-
directional interconnect Ring network, which is used in LDPC mode (Presented in the next
subsection).

The proposed architecture for each ASIP is based on the TurbASIPv1 architecture (see Sub-
section 3.2.1.1 in Page 49). Since the base system architecture integrates 8 ASIPs, and the
maximum target throughput is 150Mbps (LTE), the internal parallelism degree of the ASIP can
be reduced. Hence, one recursion unit is used (rather than 2 in the base ASIP architecture) which
decreases the logic complexity and still meeting the target throughput. Furthermore, Backward-
Forward scheme is used rather than the butterfly scheme for BCJR metrics computation.

The NoC in the Turbo mode is configured in binary de-Bruijn topology as shown in Figure
5.5 and the α−β buses are configured to form 2 networks in Ring topology. There are two kinds
of messages that are exchanged between the ASIPs.

0

1

2

4

7

3 5

6

Figure 5.5: NoC with binary de-Bruijn topology in Turbo mode

• Extrinsic LLR information: Extrinsic LLRs of the processed symbols are exchanged be-
tween the two component decoders through the binary de-Bruijn NoC. Packet header car-
ries the interleaved address (for ASIPs processing symbols in natural order) or deinter-
leaved address (for ASIPs processing symbols in interleaved order).

• State metric information: State metrics α and β at sub-block boundaries are exchanged at
the end of each iteration between neighboring ASIPs in a circular scheme via the α − β
Ring network. This implements the message passing initialization method by initializing
sub-blocks with the recursion metrics computed during the last iteration in the neighboring
sub-blocks (ASIPs).

5.3.2 Multi-ASIP in LDPC Mode

In the LDPC mode, the binary de-Bruijn NoC is reconfigured to form unidirectional interconnect
Ring network of 46 bits wide as shown in Figure 5.6. Each variable node message (λinm) and

5.4. COMPUTATIONAL SCHEDULING 99

extrinsic check node message (Γimn) are quantized to 7 and 5 bits respectively. The input frame
is partitioned into 8 sub-blocks corresponding to the 8 ASIPs and written into 3 banks. Each
banks store channel LLRs of size Z.

0

1

2

4

7

3 5

6

Figure 5.6: NoC with reconfigured binary de-Bruijn topology in LDPC mode

5.4 Computational Scheduling

5.4.1 Computational Scheduling in Turbo Mode

Figure 5.7 illustrates the adopted windowing technique and Backward-Forward BCJR compu-
tations scheduling in Turbo mode. The ASIPs calculate first state metrics β in the backward
recursion, followed by state metrics α and extrinsic generation in forward recursion. Sub-block
boundaries state metrics initializations (α int(wi(n−1)), β int(wi(n−1))) are done by message
passing via the two 10-bits α− βbuses connecting the ASIPs.

5.4.2 Computational Scheduling in LDPC Mode

In LDPC mode, each ASIP operates as a variable node and check node processing engine. An
ASIP processes 3 check nodes and its associated edges from the 3 consecutive variable node
groups. As an example, ASIP0 processes all the check nodes (3 at a time) that are associated
with VNG[0..2], while ASIP1 processes those associated with VNG[3..5], etc. In other words,
an ASIP in this mode can process three CNs present in the same group and its corresponding
variable nodes present in three different variable node groups. In order to explain the proposed
scheduling, we first give a simplified example using 2-ASIP architecture then we present the
scheduling for the 8-ASIP configuration.

5.4.2.1 Simple example with 2-ASIP architecture

Let us consider the example of an LDPC check matrix with 36 variable nodes and 12 check
nodes represented with the Hbase permutation matrix of Figure 5.8. Figure 5.9 shows the check
nodes and variable nodes mapping for a 2 ASIP decoding architecture (ASIP0, ASIP1) and the
edges processed at the time t=T0. The example Hbase matrix has 2 check node groups (CNGs)
and 6 variable node groups (VNGs). The proposed scheduling for LDPC decoding is illustrated
as follows:

100 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

su
bf

ra
m

e1
A

SI
P0

w
0

 w
1

time

A
SI

P4
su

bf
ra

m
e4

w
(N

−1
)

w
(N

)

β int(w1)

β recursion

α recursion

α int(w1)

α int(wN)

β int(wN)

α int(w2)

α int(w0)

Figure 5.7: Forward backward schedule

0 1 3 4 1 2

4 1 0 1 4 1

Figure 5.8: Hbase example with N=6 and M=2

t = T0 : ASIP0 reads the LLR values associated with the check nodes m=(0,1,2).
These LLRs correspond to λn and Γmn values related to the 9 variable nodes
n=[(0,1,2),(7,8,9),(15,16,17)]. These variable nodes belong to 3 variable node groups
VNG[0,1,2]. Note that memories banks should be organized in a way to enable simul-
taneous access to all these values.

Similarly, ASIP1 handles the check nodes m=(3,4,5) and the associated variable nodes
n=[(19,20,21),(27,28,29), (34,35,30)] of the VNG[3,4,5] (figure 5.9).

Each ASIP calculates variable to check node messages λnm according to (5.8). Addition-
ally, it processes equation (5.3) and produces 3 sets of messages (corresponding to the three
check nodes) that we denote by RV (m)ASIPxT0 , where x = [0, 1]. The RV (m)ASIPxT0 set of
messages carries the following informations:

1. The 2 least minimums (min0, min1). .

2. The ASIP ID and the channel memory bank number to locate the index (ind) corre-
sponding to the least minimum.

3. sgnm which is the XOR of the sign of the 3 λinm messages calculated for the check
node m.

5.4. COMPUTATIONAL SCHEDULING 101

These messages are sent to the next ASIP through the de-Bruijn NOC.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

RV(m)T0
ASIP0

RV(m)T0
ASIP1

ASIP0

ASIP1

Figure 5.9: Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T0

t = T1 : ASIP0 reads the LLR values associated with the check nodes m=(3,4,5).
These LLRs correspond to λn and Γmn values related to the 9 variable nodes
n=[(3,4,5),(10,11,6),(12,13,14)].

Similarly, ASIP1 handles the check nodes m=(0,1,2) and the associated variable nodes
n=[(18,22,23),(24,25,26), (31,32,33)] of the VNG[0,1,2] (figure 5.10). Both ASIPs gener-
ate RV (m)ASIPxT1 messages as in the previous step except that the new messages take into
account the RV (m)ASIPxT0 messages received from the other ASIP.

This completes the CN-update phase, withRV (m)ASIP1
T1 containing the final (min0, min1)

information associated with check nodes m=(0,1,2).

Similarly, RV (m)ASIP0
T1 contains the final (min0, min1) information associated to check

nodes m=(3,4,5). We represent these final messages to be the Update Vector (UV)
UV (m)ASIPx that is circulated again to the next ASIP as shown in Figure 5.10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

RV(m)T1
ASIP1

RV(m)T1
ASIP0 ASIP0

ASIP1

Figure 5.10: Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T1

t = T2 ASIP0 calculates the final a posteriori LLRs λin using the UV (m)ASIP1 messages and
the λinm messages related to n=[(0,1,2),(7,8,9),(15,16,17)] and m=(0,1,2) according to
equation 5.7.

Extrinsic messages Γimn are generated according to equation 5.9 and stored in the extrinsic
memory banks of the ASIP.

102 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

Similarly, ASIP1 calculates LLRs λin using UV (m)ASIP0 message, where
n=[(19,20,21),(27,28,29), (34,35,30)] and m=(3,4,5). Both ASIPs forward the
UV (m)ASIPx message to the next ASIP (Figure 5.11).

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

ASIP0

ASIP1

UV(m)
ASIP0

UV(m)ASIP1

Figure 5.11: Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T2

t = T3 Similar to the previous step at t = T2, ASIP0 calculates aposteriori LLRs λin using
UV (m) where n=[(19,20,21),(27,28,29),(34,35,30)] and m=(0,1,2) and ASIP1 calculates
λin for n=[(0,1,2),(7,8,9),(15,16,17)] using UV (m) where m=(3,4,5) as shwon in Figure
5.12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CN0 1 1 1 1 1 1

CN1 1 1 1 1 1 1

CN2 1 1 1 1 1 1

CN3 1 1 1 1 1 1

CN4 1 1 1 1 1 1

CN5 1 1 1 1 1 1

CN6 1 1 1 1 1 1

CN7 1 1 1 1 1 1

CN8 1 1 1 1 1 1

CN9 1 1 1 1 1 1

CN10 1 1 1 1 1 1

CN11 1 1 1 1 1 1

Variable
nodes

C
N

G
0

C

N
G

1

C
h

eck
n

o
d

es

UV(m)
ASIP1

UV(m)ASIP0 ASIP0

ASIP0

Figure 5.12: Proposed computational scheduling in LDPC mode with 2 ASIPs at t=T3

The above 4 time steps completes one sub-iteration carried over a Check node group (CNG0)
with 2 ASIPs. The first two time steps correspond to the CN-update phase (RV), while the last
two time steps correspond to the VN-update phase (UV). Thus according to the proposed com-
putational scheduling, we complete one sub-iteration in 4 time steps (2 ASIPs x (1RV+1UV))
where each ASIP processes 3 check nodes associated with 3 VNGs simultaneously.

5.4.2.2 Proposed scheduling with 8-ASIP architecture

LDPC check matrices specified in WiFi and WiMAX standards contain 24 VNGs. Processing
all the VNGs simultaneously requires 8 ASIPs. Thus, with the proposed scheduling, these 8
ASIPs will be able to process 24 (8x3) check nodes simultaneously. Now, if the CNG contains
24 check nodes (Z=24), a sub-iteration is completed in 16 time steps (2 phases x 8 ASIPs).

5.5. MEMORY ORGANIZATION AND SHARING 103

However, the sub-matrix size Z can have different values: Z=24, 28, 32, ... 96 for WiMAX
and Z=27,54 or 81 for WiFi. So, for the case of Z is greater than 24, the check nodes inside
a CNG are divided into sub-groups and the above schedule is applied sub-group by sub-group.
Figure 5.13 illustrates the proposed scheduling applied over a WiFi LDPC check matrix with
Z=27. Here the check nodes are divided into two sub-groups, one contains 24 check nodes and
the second contains 3 check nodes. Thus, one sub-iteration is completed in 32 time steps: 2
sub-groups x 8 ASIPs x (1RV+1UV). However, due to the sub-matrix structure (rotated permu-
tation property), the second sub-group of check nodes does not have any common VNs with
the previous sub-group. Therefore, the VN-update phase of the first sub-group can take place
along with the CN-update of the second subgroup, thus completing the sub-iteration in 24 time
steps: 8 ASIPs x (1RV+1RVUV+1UV). This scheduling based on sub-groups of check nodes
enables to handle efficiently all specified matrix-size Z in the WiFi and WiMAX standards. For
any sub-matrix size Z, a sub-iteration is completed in Tsub−iteration time steps, given as:

Tsub−iteration = 8ASIPs × (1RV + (dZ/(3CNs × 8ASIPs)e − 1)RV UV + 1UV) (5.10)

5.4.2.3 Address generation in LDPC mode

Each ASIP has access to 3 memory banks holding channel LLR values of the size of one
sub-matrix. The check nodes are processed based on the start address given by an internal
LDPC address generator. If the number of the ASIPs NA = 8, the address pattern to be
generated is given by the following pseudo-code:

for(subgroup = 0; subgroup < d(Z/(3 ∗NA))e; subgroup+ +){
for(timestep = 0; timestep < 8; timestep+ +)
address = mod(Ix,y + subgroup ∗ (3 ∗NA) + 3 ∗ (timestep), Z)

}
Where Ix,y is the shift value for the permutation matrix at location (x, y) and subgroup is the
current processed sub-group of check nodes composed of 8×3=24 CNs (e.g. for Z = 96, 96
check nodes are processed in 4 sub-groups).

5.5 Memory Organization and Sharing

One of the main features of the proposed architecture concerns the memory sharing between
LDPC and Turbo mode. The memory is organized in a way to provide enough bandwidth to
support efficiently both Turbo and LDPC modes. Since the memory access and storage patterns
are quite different for both modes they are first explained hereafter individually. The interleaver
memories are avoided by proposing adequate address generators.

5.5.1 Memories in Turbo Mode

The memory requirement in Turbo mode to support LTE, WiMAX and DVB-RCS standards is
summarized in Table 5.2.

The extrinsic memory is organized in 3 banks with the extrinsic LLR information for each
symbol being stored as shown in Figure 5.14(a) for double binary mode (DBTC). Similarly, the
input memory is organized in 3 banks to support 12 windows per ASIP. The systematic (Sx) and
parity (Px) input soft values are stored as shown in Figure 5.14(b).

104 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

State=1,iteration=0

ASIP0

ASIP1

ASIP7

22−24 19−21 4−6 1 −3

ASIP6

sub matrices submatrix
boundary,Z=27

ASIP0

ASIP7 ASIP6
Rv from

ASIP1

ASIP1

ASIP7

ASIP2

ASIP0

Ch
ec

kn
od

es

sub matrices

Ch
ec

kn
od

es

1

6
5
4
3
2

19
20
21
22
23
24
25
26
27
28

324

28
27
26
25
24
23
22
21
20
19

324

6
5
4
3
2
1

State=2,iteration=1

Rv from

Rv from

Rv from

 22−24 4−6 1 −3

Figure 5.13: Proposed scheduling in LDPC mode with 8 ASIPs

Memory width (bits) depth
Input memory (4×4)=16 (6144)/(4×2)=768

Ext memory (odd) 8 (6144)/(4×2×3)=768
Ext memory (even) (2×8)=16 (6144)/(4×2×3)=768

Windowing memory 80 12
Cross metric memory 10×8=80 64

Table 5.2: Memory requirement in Turbo mode

The cross metric memory stores the state metrics β values generated during the backward
recursion. These values are required to generate the extrinsic information during the forward
recursion.

5.5. MEMORY ORGANIZATION AND SHARING 105

3

16

25
6

(b)
3

14
25

6
8

(a)

S0 S1 P0 P1Zext
10 Zext

11Zext
01

Figure 5.14: Memory banks organization in Turbo mode: (a) Extrinsic memory, (b) Input memory

5.5.2 Memories in LDPC Mode

In LDPC mode, and targeting the support of WiFi and WiMAX, the memories should be dimen-
sioned to allow the maximum frame size of 2304 (Table 5.1). The input frame is partitioned
into 8 sub-blocks corresponding to the 8 ASIPs and each sub-block is divided further to 3 banks
of size equal to the sub-matrix size Z, with each memory bank is mapped to one variable node
group as shown in Figure 5.15(a). Each location of the CV memory holds two λin messages. As
7 bits are used for the quantization of λin, hence the CV memory width is 14 bits. Furthermore,
as the maximum value of Z = 96 (for WiMAX mode), hence the CV memory depth is equal to

2304
8(ASIPs)×2(Values per memory location)×3(Banks) = 48.

Similarly, there are 3 Extrinsic memory (Ext) banks per ASIP that store Γimn values. Since
the VN degree is at most 12 (for WiFi standard), there can be at most 12 check node messages
Γimn for each VN. These messages are stored in extrinsic memory in 4 groups each at an offset
of 48 (see Figure 5.15(b)).

Furthermore, two intermediate FIFOs are required to store the update address locations (used
during the VN-update phase) and the intermediate value (λinm) that is used to add to the update
message received respectively. The depth is twice the time required for the VN-update phase to
start with theCN-update phase of the check nodes (i.e. 32).

The memory requirements in LDPC mode are summarized in Table 5.3.

Memory Number of memories width(bits) depth
Input memory 3 7×2=14 48
Ext memory 3 (5×3)×2=30 (12×96)/(3×2)=192

Intermediate FIFO 2 80 32

Table 5.3: Memory requirement in LDPC mode

5.5.3 Combined Memory Organization

The extrinsic and input memories for both modes are shared. The Cross metric memory is parti-
tioned into 2 blocks. In the LDPC mode, the block0 is shared and used to store the intermediate

106 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

16

3

(a) (b)

25
6

3

30

Group0
m=0,1,2

Group1
m=3,4,5

Group2
m=6,7,8

Group3
m=9,10,11

Γm,n=95 Γm,n=94

λn=3

Γm,n=95 Γm,n=94

Γm,n=0Γm,n=1

Γm,n=95 Γm,n=94

Γm,n=0Γm,n=1

Γm,n=95 Γm,n=94

Γm,n=0Γm,n=1

Γm,n=2Γm,n=3

Γm,n=0Γm,n=1
λn=0λn=1

λn=2

Figure 5.15: LDPC mode : (a) Input memory (b) Extrinsic memory

values λinm, whereas block2 is reused to store the read extrinsic values and the update addresses
for input memory. The combined memory organization is as shown in Table 5.4. Depth and
width of each shared memory are dimensioned to support the maximum requirement in LDPC
and Turbo modes.

Memory Number of memories width (bits) depth
Input memory 3 16 256
Ext memory 3 30 256

Intermediate FIFO or
1 80 32

Cross metric memory (block0)
Address + Ext mem FIFO or

1 80 32
Cross metric memory (blockk2)

Table 5.4: Proposed memory organization to support both Turbo and LDPC modes

5.6 ASIP Pipeline and Instruction-Set

The proposed ASIP architecture integrates two different pipelines stages, one for LDPC decod-
ing and the other for Turbo decoding. This architectural choice has been made based on the
following three main reasons: (1) LDPC decoding based on normalized Min-Sum algorithm

5.6. ASIP PIPELINE AND INSTRUCTION-SET 107

requires low complex arithmetic and logic resources, (2) no real/explicit computation common-
alities between the two considered algorithms for LDPC decoding and Turbo decoding, and (3)
memory and communication requirements account for the major complexity part of the con-
sidered two iterative decoders (and more particularly for LDPC). Hence, the proposed ASIP
architecture presents and efficient sharing of memory and communication resources while it
integrates two different computational resources for both supported algorithms.

Pipeline stages and the instruction set proposed for Turbo mode are derived from the
TurbASIPv1 presented in Subsection 3.2.1.1. Hence, this section focuses on the presentation
of the proposed ASIP pipeline structure and instruction set dedicated for LDPC mode.

5.6.1 LDPC Decoder Pipeline Stages

The proposed ASIP architecture is organized to realize the LDPC decoding in 8 pipeline stages:
Prefetch, Fetch, Decode, Operand Fetch, CVnExtRead, TwoMinBnk3, ReadNoc, Up-
dateNoc. Figure 5.17 presents the proposed pipeline structure in LDPC mode and how the
normalized Min-Sum algorithm computations (referenced by the corresponding equations from
Subsection 5.2.1) are mapped on the different pipeline stages.

The hardware resources of these pipeline stages have been devised in a way to support the
simultaneous execution of both VN-update phase (UV) and CN-update phase (RV).

5.6.2 Pipeline Description in The CN-update Phase (RV)

The behavior of the proposed pipeline stages in the CN-update phase (RV) is described below.

Decode Stage:
Address generation (Subsection 5.4.2.3) for Input and Extrinsic memories is performed in this
pipeline stage. These addresses are used in the next stage Operand Fetch to read current channel
λn and extrinsic Γmn values.

Operand Fetch Stage:
In order to read the next three consequent λn and Γmn values from Input and Extrinsic memory
banks, two clock cycles are required. These two clock cycles are taking place in Operand Fetch
and CVnExtRead stages. The read values in this stage are buffered to internal registers.

CVnExtRead Stage:
In this stage, the next remaining consequent values (either one or two values) for both channel
∆ and extrinsic information Γ are read from corresponding memories. However, the values read
in the previous stage (Operand Fetch) are transferred to different registers to avoid data conflict
with other instructions during the pipeline execution. Then, these values (Γmn and λn) are used
to compute the intermediate values λnm. This computation is done by subtracting extrinsic
values Γmn from channel values λn (Equation (5.2)).

TwoMinBnk3 Stage:
The intermediate values computed in the previous stage are stored in the intermediate FIFO to
be used in the VN-update phase to compute the updated channel values. The three intermediate
values of corresponding check node are also used to find the two least minimums (min0 and
min1) and to buffer them into registers to be used in the next pipeline stage.

108 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

7 7

CVaddr
and

40

40

16

4242

16x128

15 15

group0

m=0,1,2

group1
m=3,4,5

group2
m=6,7,8

group3
m=9,10,11

48

48

48

48

0 64

FIFO

CVnExtRead

Operand fetch

Decode

Fetch

Prefetch

Program
memory

ReadNoc

TwoMinBnk3

NOCout NOCinRVector / UVector

24x256

2x

30x256

3x

3x

0

10

80x32 UpdateNoc

min0 min1ASIPid3x

1 2 2 4 4

indsgn

λn=94

Γm,n=0Γm,n=1

Γm,n=3
Γm,n=2

Γm,n=95

Γm,n=3 Γm,n=2

Γm,n=94

Γm,n=94Γm,n=95

Γm,n=1 Γm,n=0

Γm,n=3 Γm,n=2

Γm,n=95 Γm,n=94

Γm,n=95 Γm,n=94

Γm,n=1

Γm,n=2

Γm,n=0

Γm,n=3

Extrinsic memory

Γm,n=1 Γm,n=0

λnm

CVmemory

(5.3)

λn=3

λn=1 λn=0

λn=2

(5.8)

(5.7)

λn=95

Figure 5.16: Pipeline in LDPC Mode

ReadNoc Stage:
In this stage, the ASIP reads the messages sent by the adjacent ASIP which correspond to the
running least minimums for the processed CNs (RV (m)ASIPx). As in the previous stage, the
considered ASIP continues finding the two least minimums by comparing the four available
values: 2 received via the NoC and 2 computed in the previous pipeline stage.

UpdateNoc Stage:
In this stage, the updated two least minimums found in the previous stage are used to update
the RV (m)ASIPx message which is sent to the other adjacent ASIP. Thus the complete RV
includeing the reading and updating of RV (m)ASIPx message from previous ASIP take 2 clock
cycles. (i.e. 1 time step = 2 clock cycles)

5.6. ASIP PIPELINE AND INSTRUCTION-SET 109

5.6.3 Pipeline Description in The VN-update Phase (UV)

The behavior of the proposed pipeline stages in the VN-update phase (UV) is described below.

CVnExtRead Stage:
Read request to intermediate FIFO is done. This stage executes a read request to the interme-
diate FIFO to fetch the intermediate values, extrinsic values, and the update addresses for Input
memory, that are stored earlier in the CN-update phase.

TwoMinBnk3 Stage:
The intermediate values, extrinsic values, and the update addresses for Input memory are read
from the intermediate FIFO However, the related intermediate values are stored in two rows in
the FIFO, so another read request is done to read the remaining values.

ReadNOC Stage:
The remaining intermediate values extrinsic values, and the update addresses are read from the
FIFO for Input memory. The message RV (m)ASIPx (x= previous ASIPID) which has been
received via the NoC from the adjacent ASIP is read.

UpdateNOC Stage:
The new a posteriori channel values λn are computed by adding the corresponding intermediate
value with the corresponding extrinsic value (Equation (5.7)). Then, Extrinsic and Input
memories are updated with the calculated values. Finally, the message RV (m)ASIPx is
forwarded again to the other adjacent ASIP via the NoC.

Figure 5.17 presents the functionality of the intermediate FIFO during the two phases (CN-
update and VN-update).

Reg

Reg

Reg

Reg

Intermediate

FIFO

Updated CV

Running vector Update vector

From NOCFrom Extinsic
Memory

From CV
Memory

1st Cycle

2nd Cycle

1st Cycle

2nd Cycle

1st Cycle

2nd Cycle

1st Cycle

2nd Cycle

λnm λn

RV (m)

RV (m)

Γmn

Γmn

λn

λn

λnm

Figure 5.17: FIFO accesses in CN-update and VN-update phases

110 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

5.6.4 Sample Assembly Program in LDPC Mode

Listing 5.1 illustrates the proposed instruction set through an assembly code example for LDPC
decoding with sub-matrix size Z = 27. The ASIP is first initialized with the number of the
processed check nodes, sub-matrix size and three block columns of offset values from Hbase

(Lines 1..22). As the channel data is stored in couples, two clock cycles are needed to Read-
/Write the channel data associated with three check nodes. A read operation to Input (CV)
and Extrinsic (EXT) memories is accomplished by RunVec and RunVec1 instructions (Lines
29..30). The write operation is accomplished by UpdateVec and UpdateVec1 instructions. Run-
Vec1 also generates the RV (m)ASIPx message to the next ASIP. Similarly, UpdateVec for-
wards the UV (m)ASIPx to the next ASIP. RunVecWithUpt reads the CV and EXT memories
for check nodes 24..27, writes locations associated with check nodes 1..3 and then forwards this
UV (m)ASIPx packet to the next ASIP. RunVecWithUpt1 does the second phase read from the
CV and EXT memories and also computes RV (m)ASIPx message before forwarding it to the
next ASIP. LDPCAddrGenInit instruction initiates the next address (see Subsection 5.4.2.3) to
read or write from CV and EXT memories.

Listing 5.1: LDPC assembly code

1 ; 8 ASIPs each p r o c e s s i n g 3 CN =24 a t a t ime
2 LDPCsize PSize , 2 4
3 ; s u b m a t r i x s i z e
4 LDPCZsize Zs ize , 2 7
5 ; rows , N u m Z e r o s T r i p l e t s
6 LDPCAddrRegInit1 1 ,7
7 ; SubRows= f l o o r (PS ize / Z s i z e)
8 ; num of ASIPs and RowRem=mod (Zs ize , 3)
9 LDPCAddrRegInit2 1 ,8 ,1

10 ; s e t ASIP ID
11 LDPCASIPid 0
12 ; w r i t i n g t h e H m a t r i x o f f s e t column 1
13 LDPCAddrConfig1 0 ,17
14 LDPCAddrConfig1 1 ,3
15 :
16 ; column 2
17 LDPCAddrConfig2 0 ,13
18 LDPCAddrConfig2 1 ,13
19 :
20 ; column 3
21 LDPCAddrConfig3 0 ,8
22 LDPCAddrConfig3 1 ,8
23 :
24 Repea t u n t i l ITER f o r 20 t i m e s
25 PUSH
26 Repea t u n t i l LOOP0 f o r 8 t i m e s
27 ; l o a d and i n i t i a l i z e t h e a d d r e s s g e n e r a t o r
28 LDPCAddrGenInit
29 RunVec
30 RunVec1
31 LOOP0 : Repea t u n t i l LOOP1 f o r 8 t i m e s

5.7. SYNTHESIS RESULTS 111

32 LDPCAddrGenInit
33 RunVecWithUpt
34 RunVecWithUpt1
35 LOOP1 : Repea t u n t i l LOOP2 f o r 8 t i m e s
36 LDPCAddrGenInit
37 UpdateVec
38 UpdateVec1
39 LOOP2 : POP
40 ; c e i l (Z s i z e / 2) = 1 4
41 ITER : Repea t u n t i l DEC f o r 14 t i m e s
42 NOP
43 H a r d D e c i s i o n
44 DEC : NOP

5.7 Synthesis Results

The proposed ASIP was modeled in LISA language using Synopsys Processor Designer tool.
Logic synthesis using 90nm CMOS technology results in an area of 0.155mm2 per ASIP
with maximum clock frequency of Fclk = 520MHz. The de-Bruijn NoC of size 8 has an
area of 0.16mm2. Thus, the proposed LDPC/Turbo decoder architecture with 8 ASIPs and
interconnecting de-Bruijn network is 1.4mm2 with total memory area of 1.2 mm2. The
acheived throughput for LDPC mode is given by the expression (5.11). The best throughput
achieved is 312Mbps for WiMAX code rate (Crate) = 5/6, Z = 96, Mb = 4, Nb = 24 and
Niter = 10 iterations. The architecture has NA = 8 ASIPs each processing CNA = 3 check
nodes per ClkCN = 2 clocks. Using 5.10 the throughput is given as:

Throughput =
Z ∗Nb ∗ Crate ∗ Fclk

latency per sub-iteration in time steps ∗ ClkCN ∗Mb ∗Niter
(5.11)

Similarly, (5.12) gives the expression of the achieved throughput for Turbo mode. An average
Ninstr = 4 instructions are needed to process 1 symbol which is composed of Bitssym = 2
bits. Considering Niter = 6 iterations, the maximum throughput achieved is 173Mbps.

Bitssym ∗ Fclk ∗ (NA/2)

Ninstr ∗Niter
(5.12)

Table 5.5 compares the obtained results with other related works. The achieved throughput is
comparable to [63] in LDPC WiFi mode while the proposed multi-ASIP architecture achieves
75Mbps more in LDPC WiMAX mode. In Turbo mode, the acheived throughput is more than
5 times that achieved by [63] at the cost of twice the occupied area (after technology normaliza-
tion). The architecture presented in [64] occupies 28% more area compared to ours and does
not achieve the throughput requirement of LTE. On the other hand, the architecture proposed in
[61] achieves higher throughput in LDPC and SBTC modes at the cost of 20% more area and
does not support DBTC.

5.8 Summary

In order to meet flexibility and performance constraints of current and future digital commu-
nication applications, multiple ASIPs combined with dedicated communication and memory

112 CHAPTER 5. TOWARDS THE SUPPORT OF LDPC DECODING

Core Throughput in Mbps Fclk
area
mm2

nm LDPC
WiMAX

LDPC
WiFi

DBTC
WiMAX,
DVB-RCS

SBTC
(LTE)

in
MHz

Proposed
8-ASIPs

2.6 90 312 263 173@6iter 173
@6iter

520

[61] 3.2 90 600 600 - 450
@6iter

500

[62] - 90 70 70 54 14 -
[63] 0.62 65 27.7-

237.8
34.5-
257

18.6-37.2
@5iter

18.6
@5iter

400

[64] 0.9 45 70 100 70 18 150

Table 5.5: Results comparison of the LDPC/Turbo proposed architecture

architectures are required. In this chapter we consider the design of an innovative universal
channel decoder architecture model by unifying flexibility-oriented and optimization-oriented
approaches. Toward this objective, we have proposed and designed a flexible and scalable mul-
tiprocessor platform based on a novel ASIP architecture for high throughput Turbo/LDPC de-
coding. A new scheduling for LDPC decoding has been proposed to enable scalability in mul-
tiprocessing and efficient partial parallelism. Major gains in area were obtained by avoiding the
need to have interleaving memories for shuffled Turbo decoding schedule and efficient memory
and communication resource sharing between Turbo and LDPC modes. The proposed platform
supports Turbo and LDPC codes of most emerging wireless communication standards (WiFi,
WiMAX, LTE, and DVB-RCS). This contribution has been developed jointly with another PhD
student at the Electronics department of Telecom Bretagne: Purushotham Murugappa. In his
thesis, between other contributions, complete FPGA prototyping and ASIC integration of this
Turbo/LDPC multi-standard decoder have been developed.

Conclusions and
Perspectives

IN this work, we have investigated the possibility to unify flexibility-oriented and
optimization-oriented approaches in the design of multi-standard channel decoders. ASIP

architecture model has been considered and an optimized ASIP-based Turbo decoder achieving
high architecture efficiency in terms of bit/cycle/iteration/mm2 has been proposed and designed.
Obtained results demonstrate how the architecture efficiency of instruction-set based processors
can be considerably improved by maximizing the hardware resources utilization and minimizing
the pipeline idle time for the different supported applications/modes. The proposed optimiza-
tions further improve the reconfiguration speed and the power consumption considerably. A
complete FPGA prototype for the proposed multi-standard Turbo decoder was designed. Fi-
nally, a scalable and flexible high throughput multi-ASIP combined architecture for LDPC and
Turbo decoding was proposed.

In the presented manuscript we firstly presented an overview of the fundamental concept of
Turbo coding and decoding algorithms. A brief introduction has been given on convolutional
Turbo codes along with the different interleaving rules specified in emerging wireless commu-
nications standards. Then, the reference MAP algorithm and the hardware-efficient Max-Log-
MAP approximation were presented. A classification of available parallelism techniques related
to these algorithms is provided with emphasis on the Radix-4 technique which allows for promis-
ing computation commonalities between SBTC and DBTC modes. Finally, simulation results of
error rate performance for SBTC and Radix-4 are presented illustrating the impact of the scaling
factor applied on exchanged extrinsic information.

The concept of ASIP-based design and the associated design methodology and tool which
are considered in this thesis work have been then presented. This methodology and the target
Turbo decoding application have been illustrated through the presentation of an initial ASIP ar-
chitecture which has been developed in a previous thesis study at the Electronic department of
Telecom Bretagne. In this initial architecture, the main target was to validate the effectiveness
of the newly proposed ASIP-design tools in terms of generated HDL code and flexibility lim-
itations. To that end, the target flexibility was set very high to investigate the support of any
convolutional code trellis. This target flexibility has led to a reduced architecture efficiency,
which was in all cases not the main target of that initial effort on the topic.

The first proposed architecture consists of an optimized ASIP-based flexible Turbo decoder
supporting all communication modes of 3GPP-LTE, WiMAX and DVB-RCS standards. This
main contribution allows further to illustrate how the architecture efficiency of instruction-set
based processors can be considerably improved by minimizing the pipeline idle time. Three lev-
els of optimization techniques (Architecture, Algorithmic, and Memory) has been proposed and
integrated. The proposed ASIP integrates a low complexity interleaver design supporting QPP
and ARP interleaving in butterfly scheme together with an efficient parallel memory access man-
agement. Results show that the ASIP pipeline usage percentage have been maximized to reach
94%, achieving a throughput of 164Mbps with 0.594mm2 @65nm CMOS technology and an
architecture efficiency of 3.31 bit/cycle/iteration/mm2. Furthermore, the impact of the proposed
optimization techniques on power consumption is illustrated. The overall gain in normalized en-

113

114 CONCLUSIONS AND PERSPECTIVES

ergy efficiency is around≈45.6% compared to the initial architecture. The achieved architecture
efficiency and energy efficiency, considering the supported flexibility, compare favorably with
related state of the art implementations

The proposed optimized multi-standard 2-ASIP Turbo decoder has been in addition val-
idated by means of a complete flexible FPGA prototype using a logic emulation board
(DN9000K10PCI) integrating Xilinx Virtex 5 devices. The proposed prototype consists of a
complete flexible environment integration a GUI, a multi-standard flexible transmitter, a hard-
ware channel emulator and the proposed multi-standard Turbo decoder. It consists of one of
the first available and fully functional FPGA prototypes using the ASIP approach and efficiently
exploiting the available parallelism levels in multi-standard Turbo decoding. Furthermore, the
proposed environment integrates an efficient and high-speed error rate performance evaluation
allowing for on-the-fly BER/FER curves display on the host computer. This flexible and high-
throughput FPGA prototype can be further used as a fast simulation environment allowing fast
performance evaluation of various combinations of supported parameters.

Beyond the support of multi-standard Turbo decoding, a flexible Turbo/LDPC channel de-
coder presents a real added value in the seek to support the large variety of channel coding
techniques specified in emerging wireless communication standards. Toward this objective, we
have proposed and designed a flexible and scalable multiprocessor platform based on a novel
ASIP architecture for high throughput Turbo/LDPC decoding. A new scheduling for LDPC
decoding has been proposed to enable scalability in multiprocessing and efficient partial paral-
lelism. Major gains in area were obtained by avoiding the need to have interleaving memories
for shuffled Turbo decoding schedule and efficient memory and communication resource sharing
between Turbo and LDPC modes. The proposed platform supports Turbo and LDPC codes of
most emerging wireless communication standards (WiFi, WiMAX, LTE, and DVB-RCS). This
contribution has been developed jointly with another PhD student at the Electronics department
of Telecom Bretagne: Purushotham Murugappa. In his thesis, between other contributions, com-
plete FPGA prototyping and ASIC integration of this Turbo/LDPC multi-standard decoder have
been developed.

Perspectives

Regarding work perspectives, several ideas can be investigated:

• Increasing the flexibility to support other interleaving rules (such as that of HSPA+ for
SBTC), other standards (such as DVB-S2/T2 for LDPC), and other coding techniques (such
as non-binary LDPC codes).

• Exploring other architecture-level technique such as the use of dynamic reconfiguration
concept associated with the ASIP design approach. Having a dynamically reconfigurable
fabric attached to the ASIP pipeline can enable better resource sharing and usage over
different algorithm variants and parameters.

• Exploring other emerging target technologies such as the 3D integration which can enable
further improvements in energy, reconfiguration speed, and architecture efficiency.

Résumé en Français

Les systèmes sur puces dans le domaine des communications numériques deviennent
extrêmement diversifiés et complexes avec la constante émergence de nouveaux standards et
de nouvelles applications. Dans ce domaine, le turbo-décodeur est l’un des composants les
plus exigeants en termes de calcul, de communication et de mémoire, donc de consommation
d’énergie.

En effet, les exigences croissantes imposées en termes de débit, de fiabilité des transmissions
et de consommation d’énergie sont les principales raisons qui font que les réalisations ASIC
(Application-Specific Integrated Circuit) dans le domaine des communications numériques de-
viennent de plus en plus diversifiées et complexes. Le décodage de canal a été largement con-
sidéré au cours des dernières années et plusieurs implémentations ont été proposées. Certaines
de ces implémentations ont réussi à atteindre un débit élevé pour des standards ou paramètres
spécifiques grâce à des architectures entièrement dédiées. Cependant, ces implémentations ne
considèrent pas les problèmes liés aux besoins de flexibilité et d’extensibilité. En effet, une
telle approche implique l’intégration de plusieurs accélérateurs matériels dédiés pour réaliser
des systèmes multi-standards, qui correspond souvent à une mauvaise efficacité matérielle. De
plus, cette approche implique des temps de conception longs qui ne sont guère compatibles avec
les contraintes de temps de mise sur le marché et le développement continu de nouvelles normes
et applications.

Outre les exigences de performances croissantes, les nouveaux systèmes de communica-
tions numériques imposent une interopérabilité multi-standard avec le support de différentes
qualités de service et diverses techniques obligatoires et/ou optionnelles à l’intérieur de chaque
standard. Cela est particulièrement vrai pour le codage de canal où une grande variété de tech-
niques de correction d’erreurs sont proposées aujourd’hui. À titre d’exemple, la norme IEEE
802.16e (WiMAX) spécifie l’adoption de quatre codes correcteurs d’erreurs (codes convolutifs,
turbocodes, codes LDPC, et codes en blocs) et chaque code est associé à de multiple paramètres
en termes de rendements de codage et de longueurs de trame. Ainsi, la nouvelle exigence de
flexibilité de l’implémentation du décodeur de canal devient particulièrement cruciale.

115

116 RÉSUMÉ EN FRANÇAIS

Problèmes et objectifs de la thèse

Dans ce contexte, de nombreux travaux ont été proposés récemment visant des implémentations
de décodeurs de canal flexibles. La flexibilité varie du support de plusieurs modes d’un
même standard de communication au support d’applications multi-standards. D’autres
implémentations ont même visé une flexibilité plus large pour supporter différentes techniques
de codage de canal.

En ce qui concerne le modèle d’architecture, outre le modèle classique d’architecture
paramétrée, des efforts récents ont exploré l’utilisation de modèles de processeurs à jeu
d’instructions dédié à l’application (ASIP : Application-Specific Instruction-set Processor).
Un tel modèle d’architecture permet au concepteur d’affiner librement le compromis de flex-
ibilité/performance tel que requis par les exigences des applications envisagées. De nombreuses
contributions émergent actuellement dans ce contexte, cherchant à améliorer l’efficacité archi-
tecturale en termes de performance/surface en plus d’accroı̂tre la flexibilité supportée. Cepen-
dant, l’efficacité architecturale des processeurs dédiés à l’application est directement liée au jeu
d’instructions défini ainsi qu’au taux d’utilisation des étages de pipeline. La plupart des travaux
proposés récemment ne considèrent pas ces aspects explicitement.

En effet, des solutions optimales en termes de performance, de consommation d’énergie
et de surface sont encore à inventer et ne doivent pas être négligées au profit de la flexibilité.
Communément, une approche ”aveugle” de la flexibilité conduit à des pertes en optimalité.

Par conséquent, ce travail de thèse s’inscrit dans l’objectif principal d’unifier l’approche
orientée sur la flexibilité et celle orientée sur l’optimalité dans la conception de décodeurs de
canal. En considérant principalement l’application de turbo-décodage, l’objectif est de montrer
comment l’efficacité architecturale des processeurs à jeu d’instructions dédié à l’application
peut être considérablement améliorée. Un autre objectif de ce travail est d’étudier la possibilité
d’utiliser l’approche de conception basée sur le concept ASIP pour accroı̂tre la flexibilité du
turbo-décodeur pour supporter le décodage des codes LDPC.

Contributions

Pour atteindre les objectifs cités ci-dessus, plusieurs contributions ont été proposées dans le
cadre de ce travail de thèse :

Conception d’un turbo-décodeur multi-standard basé sur le concept ASIP :

- Proposition et conception d’un turbo-décodeur multi-standard basé sur le concept ASIP
assurant une efficacité architecturale élevée en bit/cycle/iteration/mm2.

- Optimisation de la vitesse de reconfiguration dynamique de l’ASIP proposé supportant tous
les paramètres spécifiés dans les normes 3GPP-LTE/WiMAX/DVB-RCS.

RÉSUMÉ EN FRANÇAIS 117

- Conception d’entrelaceurs ARP (Almost Regular Permutation) et QPP (Quadric Polyno-
mial Permutation) de faible complexité pour le schéma de décodage de type papillon avec
la technique de compression de treillis de type Radix-4.

- Proposition et mise en œuvre d’un prototype FPGA de système de communication complet
intégrant le turbo-décodeur multi-standard proposé.

- Analyse de l’impact des optimisations des étages de pipeline de l’ASIP proposé sur la
consommation énergétique.

Conception d’une architecture multi-ASIP flexible et extensible supportant le décodage des tur-
bocodes et des codes LDPC :

- Proposition d’un partage efficace des bancs de mémoires pour le décodage flexible LDPC/-
Turbocodes.

- Proposition et conception d’une architecture d’ASIP supportant le décodage des turbocodes
et des codes LDPC.

Structure du manuscrit

Le manuscrit de thèse est organisé en cinq chapitres, il détaille les majeures contributions citées
ci-dessus.

Chapitre 1

Le premier chapitre présente les concepts de base liés aux turbocodes convolutifs et à leurs
algorithmes de décodage. Les notions de base sont présentées concernant la capacité d’un canal
de transmission bruité, les opérations de codage mises en œuvre pour assurer une réception
sans erreurs de données émises, ainsi que les nombreux paramètres spécifiés dans les standards
de communication sans fil (Table 1). Le codage convolutif et les codes convolutifs récursifs
systématiques sont introduits, ces derniers étant éléments constitutifs des classes de turbocodes
considérés dans le reste du manuscrit. Les différentes règles d’entrelacement spécifiées dans les
normes de communication sans fil émergents sont aussi introduites. Ensuite, l’algorithme de
référence pour le turbo-décodage, MAP (Maximum A Posteriori), et la version simplifiée pour
une implémentation matérielle efficace Max-Log-MAP ont été présentés. Une classification des
techniques de parallélisme relatives à cet algorithme est fourni en mettant l’accent sur la tech-
nique de compression de treillis (Radix-4) qui permet d’unifier les calculs relatifs au décodage
des turbocodes simple-binaires (SBTC : Single Binary Turbo Codes) et des turbocodes double-
binaires (DBTC : Double Binary Turbo Codes). La technique de fenêtrage (windowing) est
également mise en évidence pour l’efficacité qu’elle apporte pour gérer le décodage de trames
de longue taille. Enfin, un exemple de résultats de simulation de performance de taux d’erreurs

118 RÉSUMÉ EN FRANÇAIS

binaires est présenté (mode SBTC avec Radix-4) pour illustrer l’effet du facteur d’échelle ap-
pliqué sur l’information extrinsèque échangée dans le processus itératif de turbo-décodage.

Standard Codes Rendement Nb. d’états Taille de trame Débit
IEEE-802.11 CC 1/2 - 3/4 64 1 -4095 6 - 54 Mbps

(WiFi) CC 2/3 256 .. 1944 .. 450Mbps
IEEE802.16 CC 1/2 - 7/8 64 .. 2040 .. 54 Mbps
(WiMAX) DBTC 1/2 - 3/4 8 .. 4800 .. 75 Mbps
DVB-RCS DBTC 1/3 - 6/7 8 .. 1728 .. 2 Mbps
3GPP-LTE SBTC 1/3 8 .. 6144 .. 150 Mbps

Table 1: Exemples de standards de communication sans fil : différents paramètres liés aux codes convolutifs et aux
turbocodes sont spécifiés

Chapitre 2

Le deuxième chapitre introduit la conception de systèmes basés sur le modèle ASIP, en la
positionnant comme approche architecturale intermédiaire entre celles à disposition des con-
cepteurs. Les méthodologies et outils de développement sont également brièvement présentés.
Le chapitre se termine par la description d’une architecture ASIP développée précédemment au
sein du département Électronique de Télécom Bretagne et servant, dans les chapitres suivants,
de point de départ aux travaux développés dans le cadre de cette thèse. En effet, dans cette ar-
chitecture initiale l’objectif principal était de valider l’efficacité des outils récemment proposés
pour la conception d’ASIP en termes de code HDL généré et de contraintes sur la flexibilité
atteignable par cette approche. À cette fin, un degré très élevé de flexibilité a été considéré pour
évaluer le support de tout type de treillis de code convolutif. Ce degré de flexibilité a conduit
à une efficacité architecturale réduite, qui n’était dans tous les cas pas l’objectif principal de
cet effort initial sur le sujet. En outre, cette architecture initiale d’ASIP pour le turbo-décodage
manquait plusieurs fonctionnalités qui sont mises en évidence, et des solutions adéquates sont
proposées dans le troisième chapitre de ce manuscrit de thèse.

Chapitre 3

Le troisième chapitre présente la majeure contribution de cette thèse concernant la proposition,
sur la base d’une approche ASIP, d’une architecture optimisée pour le turbo-décodage capable
de concilier les objectifs évoqués précédemment. Le chapitre illustre comment l’application de
techniques d’optimisation adéquates à trois niveaux (algorithme, architecture et mémoire) sur
un ASIP pour un turbo-décodage multi-standard peut le rendre une solution encore attrayante et
efficace en termes de surface, de débit et de consommation énergétique. L’architecture proposée
intègre 2 TurbASIP supportant le décodage des turbocodes simple- et double-binaires et combi-
nant plusieurs techniques d’optimisation concernant la structure de pipeline, la compression de
treillis (Radix-4) et l’organisation de la mémoire. La Figure 1 donne un aperçu de l’architecture
proposée.

RÉSUMÉ EN FRANÇAIS 119

8 8

1536

8

0
1313 8 8 813 8 1344

SBTC

0
88138881360 8

DBTC

Control Unit

Operand fetch

BranchMetric1

Input
memory
1536x8

32x16

Decode

Fetch

Prefetch

BranchMetric2

Cross metric
memory

s0p0s1p1

444 4

1536

48x80
memory

memory

32x160

128

EX

Ex
tri

ns
ic

 in
fo

rm
at

io
n

config Reg
87

Program

Even Odd
1536x8

Extrinsic memory

1536x16

InterStack memory
Extrinsic Exchange

Windowing

rd/wr

@

@

@

rd

rd

rd

@

rd/wr

rd

@

rd

wr

32x12

Odd
Even

Tail RMC B β tail

Zext
01Zext

10Zext
11

ZextjZextj+1addrj+1

j + 1 j

addrw−j

w − j − 1

addrw−j−1

w − j

Zextw−j−1 addrjZextw−j

w − j j

Zext01Zext
10addrjZext

10Zext11addrw−j Zext11Zext01

2041um2

593um2

3205um2

1533um2

5939um2

RMC Register (α β)16×
RG Register (γ)32×
EXT Register Z (1.35)

(1.33)

(1.34)

(1.31)
(1.32)

(1.30)1×

8×

Register File = 12069um2

×2

6413um2

45047um2

×2

(1.40) (1.41)

11732um2

(1.29)

Figure 1: Aperçu de l’architecture proposée de l’ASIP de turbo-décodage multi-standard

Le chapitre commence par un bref état de l’art pour résumer les réalisations matérielles
disponibles relatives à ce domaine. Ensuite, les techniques d’optimisation proposées concernant
la structure de pipeline, la compression du treillis (Radix-4) et l’organisation de la mémoire
sont détaillées. Le chapitre présente aussi la conception d’entrelaceurs ARP et QPP de faible
complexité pour le schéma de décodage de type papillon avec une gestion efficace des accès
parallèles aux bancs mémoires. En outre, afin d’améliorer la vitesse de reconfiguration de
l’architecture proposée, une nouvelle organisation du programme d’instruction est présentée.

120 RÉSUMÉ EN FRANÇAIS

Ensuite, la performance obtenue du système de turbo-décodeur multi-standard est évaluée et
l’efficacité architecturale est comparée avec les travaux correspondants dans l’état de l’art. En-
fin, l’impact de l’optimisation proposée du pipeline sur l’efficacité énergétique est analysé et dis-
cuté. Cette dernière contribution constitue un effort conjoint avec une doctorante du CEA-LETI
: Pallavi Reddy. Pour étudier cet impact, une analyse détaillée de la consommation d’énergie de
l’ASIP pour une cible CMOS 65nm a été effectuée avant et après l’application des techniques
d’optimisations proposées. Les résultats montrent un gain important en efficacité énergétique
normalisée de l’ordre de ≈45.6% par rapport à l’architecture initiale.

Les résultats de la synthèse logique sur une cible technologique CMOS 65nm donnent
une surface totale de 0.594 mm2. Le débit de décodage, pour une fréquence de fonction-
nement de 500 MHz, atteint 164 Mbps dans les deux modes SBTC (3GPP-LTE) et DBTC
(WiMAX et DVB-RCS). Les résultats montrent que le taux d’utilisation des étages de pipeline
de l’ASIP proposé a été maximisé pour atteindre 94% avec une efficacité architecturale de 3.31
bit/cycle/iteration/mm2. Considérant les performances obtenues en termes d’efficacité archi-
tecturale, d’efficacité énergétique, et de degré de flexibilité, l’architecture proposée se compare
favorablement par rapport aux implémentations existantes dans ce domaine (Table 2).

TurbASIPv3 [43] [44] [42] [45] [46] [47]
Standards sup-
portés

WiMAX,
DVB-RCS,
LTE

LTE,
HSPA+

WiMAX,
LTE

3GPP,
LTE

WiMax,
LTE

LTE LTE

Tech. (nm) 65 45 130 65 90 65 65
Surface (mm2) 0.594 1.34 10.7 0.5 3.38 2.1 8.3
Surface nor-
malisée @65nm
(mm2)

0.594 2.8 2.675 0.5 1.75 2.1 8.3

Débit (Mbps) 164 @6iter 150
@8itr

187
@8iter

21
@6iter

186
@6iter

150
@6.5iter

1280
@6iter

Nb. de MAP 2 8 8 1 8 1 64
Fclk (MHz) 500 385 250 300 152 300 400
Efficacité
architecturale∗

3.31 1.11 2.24 0.84 4.2 1.56 2.31

∗ en bit/cycle/iteration/mm2

Table 2: Résultats de synthèse de la dernière version du TurbASIP proposée et comparaison avec les implémentations
existantes

Chapitre 4

Le quatrième chapitre décrit l’environnement de prototypage basé sur une plateforme FPGA,
qui a été développé afin de tester et de valider les concepts et l’architecture proposés au chapitre
précédent. En effet, la validation sur plateforme matérielle est une étape cruciale pour démontrer
la faisabilité et l’efficacité de toute nouvelle architecture matérielle proposée. Deux avantages
supplémentaires peuvent être mentionnés dans ce contexte: (a) retours précieux pour l’étape
de conception d’architecture, en particulier en ce qui concerne les aspects liés à l’interface au
niveau système de turbo-décodeur et (b) le prototype de matériel obtenu peut être utilisé comme
un environnement de simulation rapide pour des applications de communications numériques,

RÉSUMÉ EN FRANÇAIS 121

par exemple pour explorer diverses associations de paramètres du système.

Figure 2: Aperçu de l’environnement de prototypage FPGA du turbo-décodeur multi-standard proposé

Cependant, le prototypage matériel constitue une tâche complexe surtout dans le contexte
d’implémentations flexibles de décodeurs de canal puisqu’un environnement totalement flexi-
ble devrait être conçu. Ainsi, ce chapitre est consacré à la présentation du prototype FPGA du
turbo-décodeur multi-standard proposé. La première partie du chapitre présente le flot de con-
ception adopté de processeurs dédiés à l’application de type ASIP. Le flot complet, à partir de la
description en langage LISA (Language for Instruction Set Architecture) jusqu’au prototypage
FPGA, est illustré. La deuxième partie du chapitre détaille l’environnement de prototypage pro-
posé, basé la plateforme DN9000K10PCI de chez DiniGroup et qui intègre 6 circuits FPGA de
type Xilinx Virtex 5 LX330. Cet environnement, illustré dans la Figure 2, inclus les éléments

122 RÉSUMÉ EN FRANÇAIS

suivants :

- Une interface graphique (GUI : Graphical User Interface) qui s’exécute sur un ordinateur
hôte pour configurer la plateforme avec les paramètres désirés en termes de standard cible,
de taille de trame, de rendement de codage et de nombre d’itérations. Cette interface permet
aussi de tracer, en temps réel, les courbes de taux d’erreurs binaires et d’afficher l’évaluation
du débit de décodage atteint.

- Une implémentation matérielle d’une chaine de transmission flexible multi-standard.

- Un émulateur matériel de canal à bruit Gaussien additif (AWGN : Additif White Gaussian
Noise).

- Le turbo-décodeur multi-standard proposé (décrit dans le troisième chapitre).

- Un module matériel pour évaluer les taux d’erreurs binaires.

- Un contrôleur global de l’ordonnancement des traitements sur la plateforme de communi-
cation.

La troisième et dernière partie du chapitre présente et compare les résultats de synthèse
obtenus pour cible Xilinx FPGA Virtex 5 LX330.

Chapitre 5

Le cinquième chapitre est consacré à la présentation de la dernière contribution de cette thèse
concernant l’augmentation de la flexibilité du turbo-décodeur afin de pouvoir également décoder
une autre famille de codes correcteurs d’erreurs, celles des codes LDPC. Il s’agit d’une contri-
bution conjointe avec un autre doctorant au département Electronique de Télécom Bretagne: M.
Purushotham Murugappa.

En effet, outre les turbocodes, les normes de communication sans fil numériques spécifient
une grande variété de techniques de codage de canal associées à de nombreux paramètres. Cer-
tains d’entre eux sont obligatoires, d’autres optionnels, où chacun est adapté à un mode de
communication spécifique. Dans ce contexte, les codes LDPC sont souvent proposés dans ces
normes (par exemple dans les standards WiMAX, WiFi, DVB-S2/T2) en raison de leur haute
performance de correction d’erreur et de la simplicité de leur principe de décodage itératif. Prin-
cipalement, la classe de codes LDPC structurés quasi-cycliques (QC-LDPC) est adoptée comme
elle présente des propriétés de mise en œuvre très intéressantes en termes de parallélisme,
d’interconnexion, de mémoire et d’extensibilité.

Le résultat principal obtenu dans cette thèse dans le cadre de cette activité concerne la
proposition et la conception d’une architecture multi-ASIP flexible et extensible, supportant
le décodage des turbocodes (SBTC et DBTC) ainsi que le décodage des codes QC-LDPC.
L’architecture proposée, qui supporte les paramètres spécifiés dans les standards LTE, WiMAX,

RÉSUMÉ EN FRANÇAIS 123

WiFi et DVB-RCS, réalise un bon compromis entre surface et débit de décodage grâce à un
partage efficace des mémoires et des réseaux de communications utilisés. Le chapitre com-
mence par une brève introduction sur les codes LDPC en mettant l’accent sur la catégorie de
codes QC-LDPC et les paramètres associés dans les normes sans fil considérées. L’algorithme
de référence pour le décodage des codes LDPC et la version simplifiée pour une implémentation
matérielle efficace (Normalized Min-Sum algorithm) sont ensuite présentés. Puis, la démarche
conceptuelle est introduite par une approche descendante, en partant des objectifs fonctionnels
(support du décodage QC-LDPC et turbo-codes), avec une argumentation des différents choix
architecturaux, d’organisation de la mémoire, d’ordonnancement des opérations et de la struc-
turation du pipeline. Le chapitre se termine par la présentation et discussion des résultats de
synthèse logique.

Conclusions et perspectives
Dans ce travail de thèse nous avons exploré la possibilité d’unifier l’approche orientée sur
la flexibilité et celle orientée sur l’optimalité dans la conception de décodeurs de canal
multi-standards. Un modèle d’architecture basé sur le concept ASIP a été considéré pour la
conception d’un turbo-décodeur multi-standard assurant une efficacité architecturale élevée en
bit/cycle/iteration/mm2. Les résultats obtenus montrent comment l’efficacité architecturale des
processeurs à jeu d’instructions dédié à l’application peut être considérablement améliorée en
optimisant l’utilisation des ressources matérielles et en minimisant le temps d’inactivité des
étages du pipeline pour les différents modes de décodage supportés. De plus, les optimisations
proposées améliorent considérablement la vitesse de reconfiguration et la consommation
d’énergie. Un prototype FPGA de système de communication complet intégrant le turbo-
décodeur multi-standard proposé a été mise en œuvre. Enfin, une première contribution a été
proposée vers la conception d’une architecture multi-ASIP flexible et extensible supportant le
décodage des turbocodes et des codes LDPC.

En ce qui concerne les perspectives de travail, plusieurs idées peuvent être étudiées :

• Augmentation de la flexibilité pour supporter d’autres règles d’entrelacement (comme celle
du standard HSPA+), d’autres normes (comme DVB-S2/T2) et d’autres techniques de
codage correcteur d’erreurs (tels que les codes LDPC non-binaires).

• Exploration d’autres possibilités d’optimisations au niveau du modèle d’architecture
comme l’utilisation du concept de reconfiguration dynamique associée à l’approche ASIP.
Avoir une structure reconfigurable dynamiquement attaché au pipeline de l’ASIP peut per-
mettre un meilleur partage des ressources pour les différentes variantes algorithmiques et
les divers paramètres à supporter.

• Exploration d’autres technologies cibles émergentes telles que l’intégration 3D qui peut
permettre de nouvelles améliorations en termes de consommation d’énergie, de vitesse de
reconfiguration et d’efficacité architecturale.

Glossary

3GPP 3rd Generation Partnership Project

ACS Addition Comparaison Selection
ADL Architectural Description Language
AE Area Efficiency
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
ARP Almost Regular Permutation
AWGN Additive White Gaussian Noise

BCJR Bahl-Cock-Jelinek-Raviv
BER Bit Error Rate
BP Belief propagation
BPSK Binary Phase Shift Keying

CAD Computer Aided Design
CC Convolutional Codes
CN Check Node
CNG Check Node Group
CMOS Complementary Metal Oxide Semi-Conductor
CRSC Circular Recursive Systematic Convolutional

DBTC Double Binary Turbo Codes
DVB-RCS Digital Video Broadcasting Return Channel Satellite
DVB-T Digital Video Broadcasting Terrestrial
DSP Digital Signal Processor

ECC Error Control Coding
EE Energy Efficiency
EU Euclidean Unit

FER Frame Error Rate
FEC Forward Error Correction
FIFO First In First Out
FPGA Field Programmable Gate Array
FS Flooding Schedule
FSK Frequency Shift Keying

125

126 GLOSSARY

FSM Finite State Machine

GSM Global System for Mobile Communications
GPS Global Positioning System
GUI Graphical User Interface

HDL Hardware Description Language
HSS Horizontal Shuffle Scheduling

ISS Instruction Set Simulator

LDPC Low-Density Parity-Check
LLR Log Likelihood Ratio
LTE Log Term Evolution
LUT Look Up Table

MAP Maximum A Posteriori
MIDF Memory Interface Definition Files

NI Network Interface
NEE Normalized Energy Efficiency
NEF Normalized Energy Factor
NMS Normalized Min-Sum algorithm
NoC Network on Chip

PCCC Parallel Concatenated Convolutional Codes
PSK Phase Shift Keying

QC Quasi-Cycle
QPP Quadratic Permutation Polynomial

RAM Random Access Memory
RTL Register Transfer Level

SBTC Single Binary Turbo Codes
SCCC Serial Concatenated Convolutional Codes
SIMD Single Instruction Multiple Data
SISO Soft In Soft Out
SNR Signal to Noise Ratio
SoC System on Chip
SOVA Soft Output Viterbi Algorithm

TPMP Two-Phase Message Passing

UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus

VCD Value Change Dump

GLOSSARY 127

VHDL VHSIC hardware description language
VLIW Very Long Instruction Word
VN Variable Node
VNG Variable Node Group
VSS Vertical Shuffle Scheduling

WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network

ZOL Zero Overhead Loop

Notations

Channel Coding:
Xi Coded symbol of index i
Yi Modulated symbol of index i
Eb Energy per information bit
N0 Real power spectrum density of the noise
R Code rate
σ Gaussian noise noise variance
p(Yi|Xi) The channel transition probability

Turbo Decoding:
Π(i) Interleaved order of index i
N Frame size in symbols (1 symbol = 1 bit in SBTC and 1 symbol = 2 bits in DBTC)

di Information symbol
a Decoder forward recursion metrics in log-MAP algorithm
b Decoder backward recursion metrics in log-MAP algorithm
c Decoder branch metrics in log-MAP algorithm
α Decoder forward recursion metrics in Max-log-MAP algorithm
β Decoder backward recursion metrics in Max-log-MAP algorithm
γ Decoder branch metrics in Max-log-MAP algorithm
Zext Turbo decoder extrinsic information
Zapos Turbo decoder a posteriori information
ZHard.dec Turbo decoder hard decision
Γ Extrinsic scaling factor

LDPC Decoding:
M Number of check nodes
N Number of variable nodes
m Check node m
n Variable node n
Z Permutation matrix size
H Parity check matrix
λnm Variable node message
Γmn Check node message
λn a posteriori LLR
∆n Channel value for variable node n
min0m Overall minimum of the received |λnm|
min1m Second minimum of the received |λnm|

129

130 NOTATIONS

indm The index of the connected VNm providing min0
sgnm Product of the signs of the received λnm
RV (m) Running Vector group [min0,min1, ind, sgn]m

Others:
F Operational frequency
P Power
T Turbo decoder throughput
I Number of iteration
f technology Feature size
Vdd Supply Voltage
NA Normalized Area
NEF Normalized Energy Factor
NEE Normalized Energy Efficiency
EE Energy Efficiency
AE Architecture Efficiency

Bibliography

[1] “3GPP Technical Specification Group,Multiplexing and channel coding (FDD),” Tech.
Rep., Avril 1999.

[2] S.Lin and D. Costello, Error Control Coding. Englewood Cliffs, NJ:Prentice Hall, 1982.

[3] G. J. Forney, ”Performance of concatenated codes”, Key papers in the development of
coding theory, E. Berlekamp, Ed. IEEE Press, 1974.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: Turbo-codes. 1,” In Proc. IEEE International Conference on Communica-
tions, ICC’93., vol. 2, pp. 1064–1070, 1993.

[5] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random and non-
random permutations,” The Telecommunications and Data Acquisition Report, Tech. Rep.
pp. 56-65., 1995.

[6] C. Douillard, M. Jezequel, C. Berrou, J. Tousch, N. Pham, and N. Brengarth, “The Turbo
Code Standard for DVB-RCS,” in Proc. of the International Symposium on Turbo Codes
and Related Topics, Brest, France. ELEC - Dépt. Electronique (Institut Télécom-Télécom
Bretagne), 2000, pp. 535 –538.

[7] 802.16 IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface
for Fixed Broadband Wireless Access Systems, Std., 2004.

[8] O. Takeshita and J. Daniel, “New deterministic interleaver designs for turbo codes,” vol. 46,
no. 6, pp. 1988–2006, 2000.

[9] O. Takeshita, “On maximum contention-free interleavers and permutation polynomials
over integer rings,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1249
–1253, Mar. 2006.

[10] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260–269,
April 1967.

[11] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transactions on Infor-
mation Theory, vol. 9, no. 2, pp. 64–74, 1963.

[12] J. Forney, G.D., “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–
278, 1973.

131

132 BIBLIOGRAPHY

[13] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its appli-
cations,” in Proc. of the IEEE Global Telecommunications Conf., and Exhibition. Commu-
nications Technology for the 1990s and Beyond. (GLOBECOM), 1989, pp. 1680–1686.

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for mini-
mizing symbol error rate (Corresp.),” IEEE Transactions on Information Theory, vol. 20,
no. 2, pp. 284–287, 1974.

[15] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain,” in Proc. of the International Conference
on Communications, (ICC). Seattle, Gateway to Globalization, vol. 2, 1995, pp. 1009–
1013 vol.2.

[16] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m+1) constituent convolutional
codes,” IEEE Transactions on Communications,, vol. 53, no. 10, pp. 1630 – 1638, oct.
2005.

[17] O. Muller, A. Baghdadi, and M. Jézéquel, “Exploring Parallel Processing Levels for Con-
volutional Turbo Decoding, booktitle = ICTTA’06, International Conference on Informa-
tion and Communication Technologies, from Theory to Applications, Damascus,” vol. 2,
2006, pp. 2353–2358.

[18] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architectures for turbo
codes,” vol. 7, no. 3, pp. 369–379, 1999.

[19] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the MAP algorithm,”
vol. 51, no. 2, pp. 175–185, 2003.

[20] Y. Zhang and K. Parhi, “High-Throughput Radix-4 logMAP Turbo Decoder Architecture,”
in Proc. of the Fortieth Asilomar Conf. Signals, Systems and Computers (ACSSC), 2006,
pp. 1711–1715.

[21] ——, “Parallel Turbo decoding,” in Proc. of the Int. Symp. Circuits and Systems (ISCAS),
vol. 2, 2004.

[22] H. Moussa, “Architecture de Réseaux sur Puce Pour Décodeur Canal Multiprocesseurs,”
Ph.D. dissertation, ELEC - Dept. Electronique, TELECOM Bretagne, 2009.

[23] O. Muller, “Architectures multiprocesseurs monopuces génériques pour turbo-
communications haut-débit,” Ph.D. dissertation, ELEC - Dept. Electronique, TELECOM
Bretagne, 2007.

[24] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on Commu-
nications, vol. 53, no. 2, pp. 209 – 213, feb. 2005.

[25] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” Electronics Letters,
vol. 36, no. 23, pp. 1937 –1939, nov 2000.

[26] A. R. Jafri, “Architectures multi-ASIP pour turbo récepteur flexible,” Ph.D. dissertation,
Dépt. Electronique (Institut Mines-Télécom), Université de Bretagne Sud (UBS), Lab-
STICC, Université Européenne de Bretagne (UEB), 2011.

[27] P. Ienne and R. Leupers, Customizable Embedded Processors: Design Technologies and
Applications, ser. Series in Systems on Silicon. Massachusetts: Morgan Kaufmann, jul
2006.

BIBLIOGRAPHY 133

[28] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte, “The
molen polymorphic processor,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1363
– 1375, nov. 2004.

[29] X. Chen, A. Minwegen, Y. Hassan, D. Kammler, S. Li, T. Kempf, A. Chattopadhyay, and
G. Ascheid, “FLEXDET: Flexible, Efficient Multi-Mode MIMO Detection Using Recon-
figurable ASIP,” in Proc. of the IEEE 20th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), may 2012, pp. 69 –76.

[30] K. Karuri, A. Chattopadhyay, X. Chen, D. Kammler, L. Hao, R. Leupers, H. Meyr, and
G. Ascheid, “A Design Flow for Architecture Exploration and Implementation of Partially
Reconfigurable Processors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 10, pp. 1281 –1294, oct. 2008.

[31] A. La Rosa, L. Lavagno, and C. Passerone, “Software development for high-performance,
reconfigurable, embedded multimedia systems,” IEEE Design Test of Computers, vol. 22,
no. 1, pp. 28 – 38, jan.-feb. 2005.

[32] D. NOGUET, A. Baghdadi, C. Moy, and G. Masera, “Report on the state for the
art on hardware architectures for flexible radio and intensive signal processing, Tech.
Rep. 216715 NEWCOM++ DC.1. [Online]. Available: http://www.newcom-project.eu:
8080/Plone/public-deliverables/research/DR.C.1 final.pdf

[33] “Coware processor designer homepage.” [Online]. Available: http://www.synopsys.com/
Systems/BlockDesign/ProcessorDev/Pages/default.aspx

[34] “Target ip designer homepage.” [Online]. Available: http://www.retarget.com/products/
ipdesigner.php

[35] “Tensilica xtensa 7 homepage.” [Online]. Available: http://www.tensilica.com/products/
x7 processor generator.htm

[36] “Arc configurable cores homepage.” [Online]. Available: http://www.synopsys.com/IP/
ProcessorIP/ARCProcessors/

[37] “Stretch software-configurable processors homepage.” [Online]. Available: http:
//www.stretchinc.com/technology/

[38] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr, “A methodol-
ogy for the design of application specific instruction set processors (ASIP) using the ma-
chine description language LISA,” in Proc. of the IEEE/ACM Int. Conf. Computer Aided
Design (ICCAD), 2001, pp. 625–630.

[39] O. Muller, A. Baghdadi, and M. Jezequel, “ASIP-Based Multiprocessor SoC Design for
Simple and Double Binary Turbo Decoding,” in Proc. of the ACM/IEEE Design, Automa-
tion and Test in Europe DATE’06, vol. 1, 2006, pp. 1–6.

[40] ——, “From Parallelism Levels to a Multi-ASIP Architecture for Turbo Decoding,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 1, pp. 92–102,
2009.

[41] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” vol. 37, no. 11, pp.
1220–1222, 1989.

http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf
http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.retarget.com/products/ipdesigner.php
http://www.retarget.com/products/ipdesigner.php
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/
http://www.synopsys.com/IP/ProcessorIP/ARCProcessors/
http://www.stretchinc.com/technology/
http://www.stretchinc.com/technology/

134 BIBLIOGRAPHY

[42] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-ASIP architecture for standard
compliant trellis decoding,” in Proc. of the International SoC Design Conference (ISOCC),
nov. 2011, pp. 349–352.

[43] Tensilica, “Multi standard turbo decoder - hardware performance, software flexibility,”
August 2011.

[44] J.-H. Kim and I.-C. Park, “A Unified Parallel Radix-4 Turbo Decoder for Mobile WiMAX
and 3GPP-LTE,” In Proc. IEEE Custom Integrated Circuits Conference, CICC’09., pp.
487–490, 2009.

[45] C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “A 0.16nJ/bit/iteration 3.38mm2 turbo
decoder chip for WiMAX/LTE standards,” in Proc. of the International Symposium on
Integrated Circuits (ISIC), dec. 2011, pp. 168–171.

[46] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150 Mbit/s 3GPP LTE Turbo Code
Decoder,” In Proc. Design, Automation and Test in Europe Conference & Exhibition,
DATE’10, pp. 1420–1425, 2010.

[47] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a highly-parallel 3GPP
LTE/LTE-advance turbo decoder,” Integration, the VLSI journal, vol. 44, no. 4, pp. 305–
315, 2011.

[48] C. Cheng-Chi, Wong. Hsie-Chia, “Reconfigurable Turbo Decoder With Parallel Architec-
ture for 3GPP LTE System,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 57, no. 7, pp. 566–570, 2010.

[49] Y. Gao and M. Soleymani, “Triple-binary circular recursive systematic convolutional turbo
codes,” in Proc. of the International Symposium on Wireless Personal Multimedia Commu-
nications., vol. 3, oct. 2002, pp. 951–955 vol.3.

[50] J.-H. Kim and I.-C. Park, “Bit-Level Extrinsic Information Exchange Method for Double-
Binary Turbo Codes,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 56, no. 1, pp. 81 –85, jan. 2009.

[51] ——, “Double-Binary Circular Turbo Decoding Based on Border Metric Encoding,” IEEE
Transactions on Circuits and Systems II, Express Briefs, vol. 55, no. 1, pp. 79 –83, jan.
2008.

[52] T. Vogt and N. Wehn, “A Reconfigurable ASIP for Convolutional and Turbo Decoding in
an SDR Environment,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 10, pp. 1309 –1320, oct. 2008.

[53] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan, L. Van der Perre, and
F. Catthoor, “A unified instruction set programmable architecture for multi-standard ad-
vanced forward error correction,” in Proc. of the IEEE Workshop on Signal Processing
Systems (SiPS), oct. 2008, pp. 31–36.

[54] C.-H. Lin, C.-Y. Chen, T.-H. Tsai, and A.-Y. Wu, “Low-Power Memory-Reduced Trace-
back MAP Decoding for Double-Binary Convolutional Turbo Decoder,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 1005 –1016, may 2009.

[55] R. Gallager, Low-Density Parity-Check Codes. Cambridge, MIT Press, 1963.

BIBLIOGRAPHY 135

[56] R. Tanner, “A recursive approach to low complexity codes,” Information Theory, IEEE
Transactions on, vol. 27, no. 5, pp. 533 – 547, sep 1981.

[57] S. Lin, L. Chen, J. Xu, and I. Djurdjevic, “Near shannon limit quasi-cyclic low-
density parity-check codes,” in Proc. of the IEEE Global Telecommunications Conference,
GLOBECOM ’03., vol. 4, dec. 2003, pp. 2030 –2035 vol.4.

[58] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-Complexity
Decoding of LDPC Codes,” IEEE Transactions on Communications, vol. 53, no. 8, pp.
1288 – 1299, Aug. 2005.

[59] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Hu, “Reduced-Complexity De-
coding of LDPC Codes,” vol. 53, no. 7, 2005.

[60] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn interconnection network for
a flexible LDPC/turbo decoder,” in Proc. of the IEEE Int. Symp. on Circuits and Systems,
ISCAS’08, 2008, pp. 97–100.

[61] Y. Sun and J. Cavallaro, “A Flexible LDPC/Turbo Decoder Architecture,” Journal of
Signal Processing Systems, pp. 1–16, 2010. [Online]. Available: http://dx.doi.org/10.1007/
s11265-010-0477-6

[62] A. Niktash, H. Parizi, A. Kamalizad, and N. Bagherzadeh, “RECFEC: A Reconfigurable
FEC Processor for Viterbi, Turbo, Reed-Solomon and LDPC Coding,” in Proc. of the IEEE
Wireless Communications and Networking Conference, (WCNC)., 31 2008-april 3 2008,
pp. 605 –610.

[63] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for convolutional,
turbo, and LDPC code decoding,” in Proc. of the International Symposium on Turbo Codes
and Related Topics, sep. 2008, pp. 84–89.

[64] G. Gentile, M. Rovini, and L. Fanucci, “A multi-standard flexible turbo/LDPC decoder
via ASIC design,” in Proc. of the International Symposium on Turbo Codes and Iterative
Information Processing (ISTC), sept. 2010, pp. 294–298.

http://dx.doi.org/10.1007/s11265-010-0477-6
http://dx.doi.org/10.1007/s11265-010-0477-6

List of publications

Journals

[1] R. Al-Khayat, A. Baghdadi, M. Jézéquel. ”ASIP Design and Architecture Efficiency for
Multi-standard Turbo Decoding”, under preparation.

International Conferences

[2] R. Al-Khayat, A. Baghdadi, M. Jézéquel. ”Architecture Efficiency of Application
Specific Processor: a 170Mbit/s 0.644mm2 Multi-standard Turbo Decoder ”. SoC 2012 :
International Symposium on System on Chip, Tampere, Finland, 11-12 Oct. 2012.

[3] R. Al-Khayat, R. Murugappa, A. Baghdadi, M. Jézéquel. “Area and throughput optimized
ASIP for multi-standard turbo decoding”. RSP 2011 : 22nd International Symposium on
Rapid System Prototyping, Karlsruhe, Germany, 24-27 May 2011.

[4] R. Murugappa, R. Al-Khayat, A. Baghdadi, M. Jézéquel. “A flexible high throughput
multi-ASIP architecture for LDPC and turbo decoding”. DATE 2011 : Conference on
Design, Automation and Test in Europe, Grenoble, France, 14-18 March 2011.

[5] P. Reddy, F. Clermidy, R. Al-Khayat, A. Baghdadi, M. Jézéquel. “Power consumption
analysis and energy efficient optimization for turbo decoder implementation”. SoC 2010 :
International Symposium on System on Chip, Tampere, Finland, 29-30 Sept. 2010.

National Conferences

[6] P. Murugappa, P. Reddy, R. Alkhayat, J-N. Bazin, A. Baghdadi, F. Clermidy, M. Jézéquel
“A Flexible Multi-ASIP SoC for Turbo/LDPC Decoder ”. System In Package (SOC-SIP)
2012 : Colloque national du groupe de recherches System On Chip, Paris, France, 13-15
june 2012.

[7] P. Reddy, F. Clermidy, R. Al-Khayat, A. Baghdadi, M. Jézéquel. “TurbASIP power
consumption analysis and optimization”. System In Package (SOC-SIP) 2010 : Colloque
national du groupe de recherches System On Chip, Paris, France, 09-11 june 2010.

137

	Introduction
	Turbo Codes and Turbo Decoding
	Fundamentals of Channel Coding
	Coding Theory
	Channel Model
	Modulation

	Convolutional Codes
	Recursive Systematic Convolutional Codes
	Trellis Representation

	Turbo Codes
	Concatenation of Convolutional Codes
	Turbo Code Interleaver ()
	Almost regular permutation (ARP)
	Quadric polynomial permutation (QPP)

	Multi Standard Channel Convolutional and Turbo Coding Parameters

	Turbo Decoding
	Soft In Soft Out (SISO) Decoding
	MAP decoding algorithm
	Log-MAP and Max-Log-MAP decoding algorithm

	Parallelism in Turbo Decoding
	BCJR metric level parallelism
	SISO decoder level parallelism
	Parallelism of Turbo decoder
	Parallelism levels comparison

	Decoding Large Frames in Turbo Decoding
	Software Model for Parallel Turbo Decoder

	Summary

	ASIP Design Methodologies and Initial Architecture
	Customizable Embedded Processors
	ASIP Design Methodologies and Tools
	ASIP Design Approaches
	Synopsys's ADL-based Design Tool: Processor Designer

	Initial ASIP Architecture for Turbo Decoding
	Overview of the Design Approach and the Architectural Choices
	Building Blocks of the Initial ASIP
	Overall Architecture of the Initial ASIP
	Sample Program of the Initial ASIP

	Summary

	Optimized ASIP for Multi-standard Turbo Decoding
	State of the Art
	Proposed Decoder System Architecture
	Architecture-Level Optimization
	Pipeline optimization
	Windowing

	Algorithmic-Level Optimization
	Memory-Level Optimization
	Normalizing extrinsic information and memory sharing
	Bit-level extrinsic information exchange method
	Interleaver generator
	Restricting the trellis support

	Extrinsic Exchange Module
	ASIP Dynamic Reconfiguration
	System Characteristics and Performance
	Power Consumption Analysis for ASIC Implementation
	Power Consumption Analysis Flow
	Power Consumption Analysis Results
	Results Comparison

	Summary

	FPGA Prototype for Multi-standard Turbo Decoding
	ASIP Design, Validation and Prototyping Flow
	LISA Abstraction Level
	HDL Abstraction Level
	FPGA Implementation Level

	Proposed Prototyping Platform for the ASIP-based Turbo Decoder
	Multi-Standard Transmitter
	Channel Module
	Multi-Standard Turbo Decoder
	Memory organization
	Interleaver module
	Prototyped extrinsic exchange module
	Area of the decoder core

	Error Counter
	Scheduling and Control
	Performance Results

	Summary

	Towards the Support of LDPC Decoding
	LDPC codes
	Representations of LDPC Codes
	Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)
	QC-LDPC Codes Parameters in WiMAX and WiFi Standards

	LDPC Decoding Algorithms
	Min-Sum Algorithm
	Normalized Min-Sum Algorithm

	Multi-ASIP Architecture Overview
	Multi-ASIP in Turbo Mode
	Multi-ASIP in LDPC Mode

	Computational Scheduling
	Computational Scheduling in Turbo Mode
	Computational Scheduling in LDPC Mode
	Simple example with 2-ASIP architecture
	Proposed scheduling with 8-ASIP architecture
	Address generation in LDPC mode

	Memory Organization and Sharing
	Memories in Turbo Mode
	Memories in LDPC Mode
	Combined Memory Organization

	ASIP Pipeline and Instruction-Set
	LDPC Decoder Pipeline Stages
	Pipeline Description in The CN-update Phase (RV)
	Pipeline Description in The VN-update Phase (UV)
	Sample Assembly Program in LDPC Mode

	Synthesis Results
	Summary

	Résumé en Français
	Glossary
	Notations
	Bibliography
	List of publications

