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Concurrency in Real-Time Distributed Systems

Abstract This thesis is concerned with the modeling and the analysis of dis-
tributed real-time systems. In distributed systems, components can evolve in-
dependently and communicate with each other. Concurrent actions are per-
formed by different components without influencing each other. The time con-
straints in distributed real-time systems create complex dependencies between
the components and the events that occur. In the previous studies of distributed
real-time systems, the distributed aspects are often left aside. This thesis ex-
plores these aspects. Our work is based on two formalisms: time Petri nets and
networks of timed automata, and is divided into two parts.

In the first part, we highlight the differences between centralized and dis-
tributed timed systems. We compare the main formalisms and their extensions,
with a novel approach that focuses on the preservation of concurrency. In par-
ticular, we show how to translate a time Petri net into a network of timed au-
tomata with the same distributed behavior. We then study the problem of shared
clocks in networks of timed automata: when one considers the implementation
of a model on a multi-core architecture, shared clocks require communications
that are not explicitly described. We show how to avoid shared clocks while pre-
serving the distributed behavior, when this is possible.

In the second part, we focus on formalizing the dependencies between
events in partial order representations of the executions of Petri nets and time
Petri nets. Occurrence nets is one of these partial order representations, and
their structure directly provides the causality, conflict and concurrency rela-
tions between events. However, we show that, even in the untimed case, some
logical dependencies between event occurrences are not directly described by
these structural relations. After having formalized these logical dependencies,
we solve the following synthesis problem: from a formula that describes a set of
runs, build an associated occurrence net. Then we study the logical relations in
a simplified timed setting and show that time creates complex dependencies be-
tween event occurrences. These dependencies can be used to define a canonical
unfolding, for this particular timed setting.

Keywords: distributed real-time systems, concurrency, partial-orders, net-
works of timed automata, time Petri nets, timed transition systems, shared
clocks, implementation on distributed architecture, behavioral equivalence for
distributed timed systems, unfoldings, logical characterization of runs, synthe-
sis



La concurrence dans les systèmes temps-réel distribués

Résumé Cette thèse s’intéresse à la modélisation et à l’analyse des systèmes
temps-réel distribués. Un système distribué est constitué de plusieurs compo-
sants qui évoluent de manière partiellement indépendante. Lorsque des ac-
tions exécutables par différents composants sont indépendantes, elles sont dites
concurrentes. Dans ce cas, elles peuvent être exécutées dans n’importe quel
ordre, sans s’influencer. Dans les systèmes temps-réel distribués, les contraintes
de temps créent des dépendances complexes entre les composants et les événe-
ments qui ont lieu sur ces composants. Malgré l’omniprésence et l’aspect cri-
tique de ces systèmes, beaucoup de leurs propriétés restent encore à étudier.
En particulier, la nature distribuée de ces systèmes est souvent laissée de côté.
Notre travail s’appuie sur deux formalismes de modélisation : les réseaux de Pe-
tri temporels et les réseaux d’automates temporisés, et est divisé en deux parties.

Dans la première partie, nous mettons en évidence les différences entre
les systèmes temporisés centralisés et les systèmes temporisés distribués. Nous
comparons les formalismes principaux et leurs extensions, avec une approche
originale qui considère la concurrence. En particulier, nous montrons comment
transformer un réseau de Petri temporel en un réseau d’automates temporisés
qui a le même comportement distribué. Nous nous intéressons ensuite aux hor-
loges partagées dans les réseaux d’automates temporisés. Les horloges parta-
gées sont problématiques lorsque l’on envisage d’implanter ces modèles sur des
architectures distribuées. Nous montrons comment se passer des horloges par-
tagées, tout en préservant le comportement distribué, lorsque cela est possible.

Dans la seconde partie, nous nous attachons à formaliser les dépendances
entre les événements dans les représentations en ordre partiel des exécutions
des réseaux de Petri (temporels ou non). Les réseaux d’occurrence sont une de
ces représentations, et leur structure donne directement les relations de cau-
salité, conflit et concurrence entre les événements. Cependant, nous montrons
que, même dans le cas non temporisé, certaines relations logiques entre les évé-
nements ne peuvent pas être directement décrites par ces relations structurelles.
Après avoir formalisé les relations logiques en question, nous résolvons le pro-
blème de synthèse suivant : étant donnée une formule logique qui décrit un en-
semble d’exécutions, construire un réseau d’occurrence associé, quand celui-
ci existe. Nous étudions ensuite les relations logiques dans un cadre temporisé
simplifié, et montrons que le temps crée des dépendances complexes entre les
événements. Ces dépendances peuvent être utilisées pour définir des dépliages
canoniques de réseaux de Petri temporels, dans ce cadre simplifié.

Mots-clés : systèmes temps-réel distribués, concurrence, ordres partiels, ré-
seaux d’automates temporisés, réseaux de Petri temporels, systèmes de transi-
tions temporisés, horloges partagées, implantation sur architecture distribuée,
équivalence de comportement pour systèmes distribués, dépliages, caractérisa-
tion logique d’un ensemble d’exécutions, synthèse
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Chapter 1

Introduction
1.1 Real-Time Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . 15

In this chapter, we present real-time distributed systems and some problems
related to their formal modeling and analysis.

Context A real-time system is a physical system or a computer program that
monitors a physical system, where time is a critical factor, in the sense that not
only the outputs are important, but also the timing of these outputs. Hence, a
real-time program must guarantee response within strict time constraints, oth-
erwise it fails and there can be severe consequences.

Real-time systems appear in a multitude of fields, such as aeronautics and
automobile industry (ABS, aircraft control, air traffic control), networking and
telecommunication networks (mobile devices, ATMs), energy (monitors in nu-
clear power station), medicine (ECG/arrhythmia monitor), scientific computing
(weather prediction, finance), and rendering in computer graphics.

In addition, we study distributed systems, that is systems that are composed
of several components, that may be partly independent, or concurrent, but that
can also interact with one another. A good example of distributed system is a
computer network, where desktop computers and servers may behave indepen-
dently although they can communicate and influence each other. Distributed
systems also play an important role in future applications such as smart grids,
electrical grids that use distributed energy resources to optimize the production
and distribution of electricity.

Formal Methods The importance of time and deadline, and the complex in-
teractions that stem from the communication between components make real-
time distributed systems a challenge to comprehend and implement correctly.
There are a lot of examples of misbehaviors that evidence this challenge.

Since real-time distributed systems are widespread and often control criti-
cal processes whose failure can cause death, injury, or big financial losses, it is
crucial that they behave as intended, that is, as described by their specification.
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The impossibility of studying most of real-time systems manually leads to the
use of formal methods for their verification.

This is the context of this thesis. Our aim is to understand better the formal
models for distributed real-time systems, in particular by studying the complex
interactions between the components of these systems. We also argue that some
formalisms are more adapted than others, especially when we consider imple-
menting the model in a multi-core architecture that allows the parallelization of
tasks.

Organization of the Chapter In Section 1.1, we first introduce real-time dis-
tributed systems and the need for dedicated formal methods. Then, we present
formal methods, in Section 1.2, and some problems that come with the model-
ing of real-time distributed systems. In particular, we present the state space ex-
plosion problem, and the different choices of semantics (discrete or dense time
and synchronous or asynchronous components). Then, in Section 1.3 we recall
the state of the art. Lastly, we describe our contribution in Section 1.4, and the
organization of this thesis in Section 1.5.

1.1 Real-Time Distributed Systems

The number, complexity and criticity of real-time systems have increased sub-
stantially over the past few decades. That is why verifying that these systems
behave as expected is essential and requires efficient formal methods. The ver-
ification is usually done as early as possible, during the conception phase, and
before the implementation.

Nowadays, most of physical systems and softwares are distributed, for ex-
ample to take advantage of multi-core technologies, and here we consider this
a key feature. On the one hand, this distribution yields complex dependencies
between the components that need to be better formalized, studied and under-
stood. On the other hand, if correctly exploited, this distribution can be used to
improve the analysis of the systems, for example by enabling a modular analysis.

Most of physical systems have deadlines and strict time constraints as well.
These two aspects, distribution and time constraints, interact because of shared
resources and inter-component communications. That is why the relationship
between these two factors is complex. For example, two separate components
may seem independent although one component has a time constraint that de-
pends on what the other component has previously done.

Hence distributed real-time systems are complex and difficult to compre-
hend and their failure can have dramatic consequences. Below we list two of the
most well-known failures, partly caused by race conditions (for example, pairs
of accesses to the same variable by different threads).
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The Therac-25 Radiation Therapy Machine was responsible for several pa-
tient deaths in the 1980s, when it delivered excessive quantities of X-rays. One of
the various engineering issues was a problem of synchronization of the equip-
ment control task with the operator interface task, so that race conditions oc-
curred if the operator changed the setup too quickly. This was missed during
testing, since it took some practice before operators were able to work quickly
enough to trigger this failure mode [LT93].

The North America Blackout of 2003 was a widespread power outage that af-
fected an estimated 55 million people in Canada and U.S.A.. The blackout was
triggered by a local outage that went undetected due to a race condition in the
monitoring software. The bug stalled the alarm system for over an hour, so that
system operators were unaware of the malfunction. After the alarm system fail-
ure, unprocessed events queued up and the primary server failed within 30 min-
utes. Then all applications (including the stalled alarm system) were automati-
cally transferred to the backup server, which itself failed [For04]. Eventually, the
bug was so deeply embedded in the millions of lines of code of the alarm system,
it took eight weeks to several experts to find it.

These examples show that the bugs may be very subtle, and very difficult
to detect, and speak for the development of tools for simulating and verifying
real-time systems during the design phase, and before their implementation
and usage. Of course, since physical systems are usually complex and critical,
the performances (in terms of time, memory cost or accuracy) of the tools are
very important, and therefore the formal methods at the core of these tools have
to be as efficient as possible.

Concurrency and Atomicity Writing concurrent programs is much more diffi-
cult than writing sequential ones. Nevertheless, concurrent programs are very
convenient to parallelize tasks on a multi-core architecture. But the interac-
tions among the tasks, such as the access to a shared memory require special
attention. In particular, accesses (read and write operations) to a shared vari-
able must be atomic, i.e. indivisible. In programming languages such as Java or
C, this is often ensured by locks that prevent the mutual access to a shared vari-
able by several threads. The majority of errors in concurrent programs is due to
a violation of atomicity, where a code region is intended to be atomic, but the
atomicity is not enforced during execution [LPSZ08].

Principles of Model Checking Model checking [JGP99, BK08] is an automated
technique that, given a formal model of a system, and a formal specification of
a requirement, checks whether the requirement holds. This approach uses tools
called model-checkers. The system is modeled using the model specification
language of the model-checker, and the property to be checked is formalized



6 Chapter 1. Introduction

with the property specification language. Then the model checker checks the
validity of the property in the system model, and provides a counterexample if
the property is not satisfied.

In practice, model checking has been applied for example to several mod-
ules of the NASA’s Deep Space-1 spacecraft, and to the verification of the control
software for the flood control barrier of the port of Rotterdam. In both cases,
some serious design flaws have been identified.

1.2 Formal Methods

Failure of real-time systems can have catastrophic consequences, therefore it
is crucial to ensure their correctness. This is why the use of formal methods
has drastically increased during the last decades. They are mathematical pro-
cedures that consist in modeling the system into a formalism that describes an
abstraction of its behaviors, so that it becomes easier to analyze, possibly in an
automated way. Most of the time, it is not possible to take into account every
detail of the system; in particular, the environment cannot be modeled exactly.
Hence, the first step of the modeling is to chose the right level of abstraction that
will give an accurate enough description.

Even if the formalisms cannot be infinitely precise, they may describe in-
finitely many behaviors. Therefore they cannot be explicitly enumerated by a
computer, and in order to verify that there is no unintended behavior, a techni-
cal trick that is often used is to represent these behaviors by a finite number of
classes of equivalent behaviors.

Furthermore, the increasing complexity of systems is often dealt with by the
decomposition into several modules. Then each module can be analyzed sep-
arately and more easily than the whole system. But it is not easy to cope with
the effects of the recomposition of the modules into the original system as they
may interact. Also, it is not easy either to verify global properties with a modular
analysis. Lastly, the system may also interact with other uncontrollable systems,
like the environment. All in all, this makes the comprehension of such systems
hard for a human being, and emphasizes the need for formal methods.

1.2.1 Modeling Real-Time Distributed Systems

We focus on formalisms that take time into account, and allow modeling dis-
tributed systems. In this thesis, we restrict our focus to networks of timed au-
tomata and time Petri nets. These formalisms let us model several components
that may communicate, and express constraints on the logical order of events
but also on their timing. Both formalisms enable the modeling of urgency which
is a key feature without which most real-time systems cannot be modeled cor-
rectly.
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Networks of Timed Automata model each component of a distributed timed
system as a timed automaton, and provide a synchronization mechanism be-
tween the components. Time is incorporated into the model by means of real
valued variables called clocks that can be reset and tested. Networks of timed
automata (NTA) are presented in Subsection 2.3.2.

Time Petri Nets In the Petri net model, the components are less visible since it
is usually a connected graph. However, we will show how the components can
be identified. This model is very convenient to represent resources as tokens
that can be consumed or produced by transition firings. Time Petri nets (TPNs)
is one of the extensions of Petri nets with time. In this model, transitions are
equipped with firing intervals that specify the time interval within which the
transition has to fire. Time Petri nets are presented in Subsection 2.3.3.

1.2.2 Concurrency

Concurrency, Parallelism and Interleaving

In distributed systems, concurrency arises when several actions may be per-
formed simultaneously and independently by different processes running in
parallel. For instance, actions a and b are concurrent if, from a given state s,
they can be executed in any order, leading to the same new state s′. This results
in the diamond depicted below.

s

s1

a

s2

b

s′
b a

In networks of timed automata, each automaton corresponds to a process
that may behave independently from the others between synchronizations. In
the product automaton that models the whole system, this results in a diamond
denoting the interleavings, i.e. the possible orderings of concurrent actions.

Likewise, from a state of a Petri net, two transitions may be able to fire con-
currently. This means that they consume different tokens. That is why tokens
can represent the state of different processes, and explicitly model parallelism.

The State Space Explosion Problem Naive automated methods for the verifi-
cation of concurrent systems are based on the exploration of the state space of
the system, given as a transition system. The main drawback of this approach is
the well-know state space explosion problem. For instance, a distributed system
consisting of n components that can each be in m different states, may have
up to mn reachable states. Therefore, small distributed systems may generate
very large transition systems and naive methods may have huge time and space
requirements.
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That is why, in order to improve the analysis of distributed systems, some
approaches use reduction techniques, that take advantage of the fact that only
some states and some interleavings are relevant. An overview of techniques for
fighting state space explosion is presented in [Pel08].

Conflicts, Fairness, Starvation The problem of resolving conflicts between
processes in distributed systems is of practical importance. A conflict between
a set of processes must be resolved in favor of some process and against the oth-
ers. To guarantee fairness, the process selected for favorable treatment should
not always be the same, otherwise some unfavored process would be stalled for-
ever, which is called starvation. Fairness is often achieved by additional com-
munications or shared resources.

Concurrency and Communication

In a distributed system, components usually communicate either explicitly by
message passing, or implicitly by shared resources. These communications
need to be formalized, for they impact the behavior of the whole system.

Explicit Communication via Message Passing There are several communica-
tion mechanisms which use message passing. Here we consider a synchronous
communication called handshaking: processes interact by performing the same
action synchronously. During this interaction, they may also exchange informa-
tion. However, in the models we consider later, and in particular in networks
of timed automata, these communications are only synchronizations on a same
action.

Implicit Communication via Shared Variables One popular example of com-
munication with shared variables is the Fischer’s mutual exclusion protocol. It
is a concurrent programming algorithm for mutual exclusion that allows two
or more processes to share a single-use resource without conflict, using only
shared memory for communication. It is
presented, for example, in [AILS07], and
recalled on the right-hand side. Each pro-
cess has a unique identifier i (different
from 0), and can read and write the shared
variable id. Since it is a real-time algo-
rithm, it is important to optimize the value
delay, but this depends on the characteris-
tics of the processes.

repeat
<noncritical section>;

L await id = 0;
id := i ;
pause(delay);
if id 6= i then goto L;
<critical section>;
id := 0;

forever ;
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Concurrency and Time

Considering both real-time and distribution necessarily entails solving several
difficulties. First, a time semantics has to be chosen, time can be discrete and
events occur every fixed amount of time, or dense and events can occur at any
real time point. Second, the components can be synchronous (all clocks have
the same velocity) or asynchronous (there may be drifts between local clocks).

Discrete versus Dense Time In some cases, it is more relevant to consider
that time is discrete, For example, in synchronous hardware circuits, the differ-
ent components (like adders, multiplexers and inverters) are synchronized by a
global digital clock: on each clock tick, they all perform an action. In addition,
discrete time semantics is closer to the implementation semantics because an
implementation necessarily includes some hardware digital clock.

But a discrete time semantics is inadequate for many distributed systems
where the environment stimuli come at any real time point. A dense-time se-
mantics is more natural for physical systems and allows a more intuitive mod-
eling of real-time systems. With this semantics, the concrete sampling rate of
the implementation need not be considered in the modeling phase. However,
dense-time semantics excludes analysis methods based on explicit enumera-
tion of states and paths, and requires methods based on abstractions such as
the region graph construction [AD94].

Both semantics have been studied and have dedicated models, in par-
ticular sampled timed automata [AKY10, BLM+11] and discrete time Petri
nets [KPSP10, TMBK+11]. In this thesis, we consider only the dense-time se-
mantics, which is most common for networks of timed automata and time Petri
nets.

Synchronous versus Asynchronous Components One of the main difficulties
is how to render and interpret time when several components are considered.
On the one hand, the processors on which the components are executed may
have different velocities. This can be modeled by local clocks having different
speed in the different components, as in the model of distributed timed au-
tomata with independently evolving clocks [ABG+08]. On the other hand, this
divergence may be negligible with respect to the other measures, and the com-
ponents may readjust their clocks when synchronizing. This is commonly as-
sumed in the classical model of networks of timed automata model whose com-
ponents are synchronous [AD90].

In this thesis, we consider only distributed systems with synchronous com-
ponents. We observe that, with this assumption, time provides an implicit syn-
chronization between the components. This is discussed in Chapter 5.
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1.3 State of the Art

In this section, we present a brief state of the art. Further details are given in
the introductory chapters of each part (Chapter 3 for Part I, and Chapter 6 for
Part II). We present some formalisms for distributed timed systems, then some
notions and techniques for the description and the analysis of their behavior.
We also consider the problems related to the implementation of these systems.

1.3.1 Overview of Formalisms

Variants of Networks of Timed Automata

Timed Automata (TA) have been introduced in the 90’s by Alur and Dill, and have
been extensively studied since then.

There exist several variants and extensions of TA and NTA. TA with silent
transitions have been studied in [BDGP98], where it is shown that silent transi-
tions do not change the decidability of the emptiness problem, but strictly in-
crease the expressive power. Most tools also extend TA with integer variables,
like UPPAAL [BDL04] and KRONOS [BDM+98]. Updatable TA [BDFP04] is an ex-
tension of TA with updates of the form x :∼ c or x :∼ y + c, where x and y are
clocks, c ∈N, and ∼∈ {<,≤,=, 6=,≥,>}. In Chapter 3, we will consider only a sub-
class of updatable TA, where we allow copies of clocks, i.e. resets of the form
x := y where x and y are clocks. This class is not more expressive than classical
TA (any updatable TA of the class is bisimilar to a classical TA), and the empti-
ness problem remains PSPACE-complete [BDFP04].

Event-clock automata [AFH99], is a determinizable class of timed automata
obtained by restricting the use of clocks. In this restriction, clocks are either
event-recording: the value of the clock associated with symbol a always equals
the time of the last occurrence of a, or event-predicting: the value of the clock
associated with a always equals the time of the next occurrence of a relative
to the current time. This is the kind of TA obtained when a time Petri net is
translated into a sequential TA, called marking timed automaton [GRR06].

Other extensions focus more on the distributed aspect of NTA, like dis-
tributed TA [ABG+08, DL07] that are NTA where each clock belongs to one TA
and can be reset only by this TA. In [LMSP00], the authors introduce timed co-
operating automata, an extension of NTA, where the automata view the cur-
rent state of other automata and the time elapsed since their activation. Lastly,
in [LMST03], the authors propose a variant of TA with parallelism, called Con-
current Timed Automata (CTAs), where automata running in parallel can com-
pute only by sensing, at each instant, the same action from the environment.
CTAs can be mapped to equivalent TAs by using the Cartesian product. This
formalism also considers updates of the form x := c and private or public clocks.
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Timed Extensions of Petri Nets

There exist several variants of Petri nets extended with time, we present the most
well-known ones. Time Petri nets (TPNs) [Mer74] is the extension we consider
and we present in Subsection 2.3.3. In timed arc Petri nets, each token has a
clock representing its age, but a non-urgent semantics is assumed: the firing of
a transition may be delayed and a transition may be disabled because its input
tokens become too old [AN01, dFERA00]. Timed Petri nets [Ram74] associate a
firing time to each transition and a transition fires as soon as possible, contrary
to time Petri nets, where a transition fires in a time interval. Other variants are
presented and compared in [BR08].

Then, several semantics have been proposed for TPNs. In this thesis, we use
the original and most common semantics for newly enabled transitions, called
intermediate semantics [BD91]. We also use the common strong semantics for
the firing delays of transitions. This allows the modeling of urgency. The differ-
ent semantics for newly enabled transition are compared in [BCH+05a]. Lastly,
a weak firing semantics has also been considered and compared with the strong
firing semantics [BR08, RS09].

Other models like timed message sequence charts and time constrained
message sequence charts are presented in Subsection 3.1.2. In the latter, we also
present some comparisons of formalisms and translations from one formalism
into the other.

1.3.2 Describing, Comparing and Analyzing Distributed Timed
Behaviors

Some techniques, based on partial orders, have been introduced to improve the
analysis of distributed systems, and in particular to cope with the state space

explosion problem. However, there are still few such techniques for distributed
timed systems.

In distributed systems, some issues related to the knowledge and the view of
a component also arise.

Partial Order Representations

Trace Theory The theory of traces has been developed for the analysis of con-
current systems with static architecture, like safe Petri nets. Mazurkiewicz traces
consider an order between two actions only if they are related by a causality rela-
tion, this is expressed by the notion of dependency. In Subsection 2.1.3, we recall
the main notions from [DR95].

Unfoldings The unfolding of a Petri net represents its behaviors in a compact
structure. An unfolding prescribes a partial order over the set of events, and
some analysis techniques explore the unfolding of the Petri net instead of the
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whole state space and all the interleavings. Unfoldings of Petri nets and time
Petri nets are reviewed in Subsection 6.1.2.

Partial Order Techniques

There are several reduction techniques for the analysis of distributed sys-
tems. Some techniques consider the symmetries in concurrent systems com-
prised of replicated components, and take into account only one of symmetric
states [HBL+03, DM06]. There are also compositional constructions that build
the state space in steps. But, the techniques we are the most interested in are
partial order reduction techniques that consider only one of equivalent inter-
leavings.

Partial Order Reduction techniques explore the interleaving representation,
but exploit information about the concurrency of the system in order to reduce

the set of global states that need to be explored. For this, given a global state,
the techniques compute a subset of the set of transitions leaving it, the reduced

set, and only explore the transitions of this set. The literature contains differ-
ent proposals for the computation of reduced sets: stubborn sets [Val89, Val92],
ample sets [Pel96, CGMP99], and sleep sets [GW93, WG93, God96]. They are all
presented in a survey paper [Val96]. Another partial order reduction technique,
called local first search, based on a different approach, is presented in [NHZL01].

Lastly, partial order reduction techniques have been applied to timed sys-
tems [Min99, BJLY98, LNZ05].

Knowledge Representation

In distributed systems, components can infer information about the state of the
other components. If there is no (explicit or implicit) communication in the sys-
tem, then each component is “blind” and cannot view the rest of the system.
However, it is often assumed that each component knows the structure of the
other components, and their initial states, therefore, a component can guess
that at a given time, another component is in one state among a set of states
compatible with its point of view. When there are communications, each com-
ponent may update its knowledge about the other components.

These problems are common in game theory, in multi player games with
partial observation. It is crucial for a player to keep track of the knowledge about
the other players during a play of the game. In two player games, powerset con-

structions represent, for any state of player 0, the states of player 1 that player
0 considers possible. In Chapter 5, we use a similar procedure to determine
whether a timed automaton can avoid reading the clocks of another timed au-
tomaton.

Also, there are some epistemic logics to describe the knowledge of agents
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in distributed systems [HFMV95], and they have been extended to real-
time [WL04, LPW07, Dim09].

Lastly, in timed games with partial observability, some techniques of parti-
tioning states based on observation are used [BDMP03, DLLN09]. The notion
of contextual timed transition system we present in Chapter 5 resembles these
partitioning techniques.

1.3.3 Implementation Point of View

When we consider implementing distributed systems on a multi-core architec-
ture, we face several difficulties.

To start with, we want all communications in the model to be explicit, so
that we know when the components interacts, and when they have to be in-
dependent. In this setting, shared clocks, and more generally shared variables
are an issue, and have to be replaced by explicit communications, in order to
get a model that is closer to the implementation. That is why some extensions
of timed automata consider distributed timed automata, networks of timed au-
tomata with local clock (clocks can be reset only by their owner, but read by any
automaton) [ABG+08, DL07, BJLY98]. Moreover, these works also suggest to use
a local-time semantics, where the clocks of the different components may evolve
at different velocities.

Then, since computers are digital and the hardware is imprecise, some
properties that hold on the model do not hold any more on its implementa-
tion [BLM+11]. This leads to define robustness of timed automata.

More related works on shared clocks and implementability of timed au-
tomata are recalled in Subsection 3.1.2.

1.4 Contribution

In this thesis, we focus on the modeling, rather than on the verification, of dis-
tributed real-time systems. But we intend to provide some tools that simplify
the verification of such systems, by enabling modular analysis or partial order
techniques.

1.4.1 Formalisms for Modeling Distribution and Interaction

We study different formalisms, and present some extensions that we find espe-
cially suited for distributed timed systems. In this study, we focus on highlight-
ing implicit communications induced by shared resources (input tokens of syn-
chronizing transitions in time Petri nets, and shared clocks in networks of timed
automata) and representing them explicitly while preserving the concurrency,
and the individual behavior of each component.
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Translation and Preservation of Concurrency We begin by defining a transla-
tion from (a subclass of) time Peri nets to networks of timed automata. This
translation preserves the concurrency and makes some hidden communica-
tions in time Petri nets explicit. We also notice that we have to use an extension
of networks of timed automata in order to preserve the distributed behavior of
the initial time Petri net. The preservation of concurrency is formalized thanks
to the notions of timed traces and distributed timed bisimulation.

These results were published in the proceedings of the conference
TIME’10 [BCH10], and in a journal [BCH12a].

Shared Clocks The previous translation led us to consider shared resources,
and models with explicit dependencies. We focus on the problem of shared
clocks in networks of timed automata, and solve the problem of deciding, given
a network of timed automata A1 ∥ A2 with shared clocks, whether there exists
a network A′

1 ∥ A′
2 without shared clocks, and such that the individual behav-

ior of each automaton is preserved. At first, we suggest a formalization of this
problem, where we allow a more general synchronization mechanism, and we
introduce the notions of contextual timed transition system and of contextual
timed bisimulation. Then, we give a criterion that can be checked on a contex-
tual timed transition system, and that allows us to solve our decision problem.
Lastly, we show how to build a suitable network A′

1 ∥ A′
2 when such network ex-

ists.
These results are based on the results published in proceedings of the con-

ference CONCUR’12 [BC12a], whose long version is the research report [BC12b].

1.4.2 Logical Dependencies between Event Occurrences

We then focus on the analysis of logical dependencies between event occur-
rences in the unfolding of Petri nets and time Petri nets. One major observation
is that concurrent events are not always logically independent.

Untimed Setting We start by considering unfoldings of Petri nets. We extend
previous results on the binary reveals relation defined in [Haa10]. We then in-
troduce a logic that describes more general dependencies between event occur-
rences, and solve an associated synthesis problem. Here also, we aim at repre-
senting explicitly all logical dependencies.

These results were published in the proceedings of the conference
ACSD’11 [BCH11] and in a journal [BCH12b].

Timed Setting Our next step is to study logical dependencies in a simple class
of time Petri nets, and show that, even in this case, they are much more complex
than in the untimed case. Our objective is to improve the unfolding by repre-
senting only minimal dependencies. This work is not published yet.
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1.5 Organization of the Document

In Chapter 2, we recall basic notions about formalisms for distributed timed sys-
tems. To start with, we present notions for distributed untimed systems: the
synchronous product of transition systems, the Petri net model, and some par-
tial order representations. Then, we present notions for sequential timed sys-
tems: timed transition systems and timed automata. Finally, we present for-
malisms for distributed timed systems: synchronous product of timed transition
systems, networks of timed automata and time petri nets.

The rest of this manuscript presents our contribution in two parts. In Part I
we focus on formalisms for distributed timed systems as opposed to formalisms
for centralized timed systems, and study concurrency in these formalisms. In
Part II we conduct a study of the dependencies between event occurrences in
distributed systems, first in the untimed case, and second, in the timed case.

Concurrency in Timed Models

Chapter 3 is the introductory chapter of Part I. It presents the problem and the
related work and motivates the use of distributed semantics for studying dis-
tributed systems. This seems obvious, but this is not yet very used for two rea-
sons: most of the time, the distributed semantics of distributed timed systems
is not considered, and we still lack some notions for describing it. The chapter
ends with some suggestions of such notions.

In Chapter 4, we present a translation from a time Petri net into a network
of timed automata that preserve the distributed semantics. We also study the
resulting network of timed automata, and show that it reveals some hidden de-
pendencies in the time Petri net.

In Chapter 5, we focus on shared clocks in networks of timed automata. We
give a criterion that says whether a given network of two timed automata can
avoid using shared clocks, and show how to construct a network without shared
clocks and whose automata have the same individual behavior as the initial au-
tomata.

Dependencies between Event Occurrences in Distributed Systems: from
Untimed to Timed Settings

Chapter 6 is the introduction of Part II. It presents the problem and related work.
This part focuses on the unfolding of Petri nets and time Petri nets.

In Chapter 7, we study occurrence nets, that are the structure of the unfold-
ing of a Petri net. They represent the partial order semantics of the Petri net,
and describe a set of events on which we can define three structural relations:
causality, conflict and concurrency. In this structure, we notice that logical de-
pendencies between event occurrences arise. We formalize these dependencies
in a logical framework and solve a synthesis problem.



16 Chapter 1. Introduction

Lastly, in Chapter 8, we consider a simplified timed setting in which we study
the logical dependencies and incompatibilities between events. We then define
the notion of minimal enabling past and argue that it could be used in a recur-
sive algorithm that would build valid processes.

The last chapter is a conclusion that summarizes both parts, concludes on
the general contribution, and presents some perspectives.



Chapter 2

Formalisms for Distributed Timed Systems
Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Distributed Untimed Systems . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Sequential Timed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Distributed Timed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 40

This chapter presents well-known formalisms for real-time distributed sys-
tems. In this thesis, we focus on networks of timed automata and time Petri
nets. We progressively introduced them by considering first formalisms for dis-

tributed untimed systems, then formalisms for sequential timed systems, and fi-
nally formalisms for distributed and timed systems

Formalisms for Distributed Systems Transitions systems are mathematical
objects that can be used to describe the sequential behavior of an untimed pro-
cess. Several transitions systems can be synchronized into one transition sys-
tem. Then, the result of this synchronous product represents the sequential be-
havior of the distributed system formed by the different processes put in paral-
lel. Petri nets is a well-known formalism for distributed systems. Some interest-
ing classes of Petri nets enjoy nice algebraic properties that enable, in particular,
the decomposition of the Petri net into sequential processes.

Partial order representations describe executions of distributed systems
while preserving the information about the concurrent or independent events.
Therefore they are much more compact representations than the ones that con-
sider all the possible interleavings. In particular, we present unfoldings of Petri
nets as a partial order representation of the executions of Petri nets.

Formalisms for Timed Systems A prerequisite for understanding formalisms
for timed systems is the notion of timed transition system used to describe their
sequential semantics. One of the most popular formalisms for modeling se-
quential timed systems is the timed automata formalism. Timed automata have
been extensively studied since their introduction in the 90’s [AD90, AD94], and
are now a very well-accepted model for real-time systems. A timed automaton is
a finite automaton extended with (dense time) clock variables that can be tested
and reset.

Formalisms for Distributed Timed Systems In the last section, we recall some
formalisms for both distributed and timed systems. We start by presenting the
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synchronous product of timed transition systems, then we present networks of

timed automata, that are parallel compositions of timed automata. Networks of
timed automata are very convenient to model real-time distributed systems, by
representing each component as a timed automaton, and providing a synchro-
nization mechanism between the components. Lastly, we present the time Petri

net model [Mer74] that extends the Petri net model with timing constraints, and
enables the modeling of real-time distributed systems as well.

Organization of the Chapter Section 2.1 recalls formalisms for distributed sys-
tems without time, and in particular the Petri net model. Section 2.2 presents
formalisms for timed systems, and in particular timed automata. Lastly, Sec-
tion 2.3 presents networks of timed automata and time Petri nets, two for-
malisms for distributed timed systems.

Notations

N, Z, R and R≥0 natural numbers, integers, real numbers, and positive real
numbers respectively

[1..n] the set {k ∈N | 1 ≤ k ≤ n}
[a,b] the set {x ∈R | a ≤ x ≤ b}

[a,∞) the set {x ∈R | a ≤ x}
v|X the restriction of function v to the set X

tt symbol for true
Mtr transpose of matrix or vector M
→∗ reflexive transitive closure of binary relation →

Operations on Multisets A multiset M is a function from a set P to N, that
generalizes the notion of set. The union and difference operations are defined as
follows. Let M and M ′ be two multisets over P . Then, for all p ∈ P , (M∪M ′)(p) =
M(p)+M ′(p), and (M \ M ′)(p) = max(0, M(p)−M ′(p)).
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2.1 Distributed Untimed Systems

Distributed systems are systems composed of several processes that run in par-
allel. Processes can perform concurrent actions or synchronize with one an-
other. In this section, we focus on untimed distributed systems.

The notions of alphabet, word an language are basic notions for the formal
analysis of untimed systems. A word describes an execution of an untimed sys-
tem, and a language describes a set of executions.

Alphabet, Word and Language An alphabet Σ is a finite set of actions, also
called labels. A word is a finite or infinite sequence of actions. The set of fi-
nite words over Σ is denoted by Σ

∗. ε denotes the empty word of Σ∗ and is also
used to denote a silent action. We use Σε to denote Σ⊎ {ε}. Lastly, a language is
a finite or infinite set of words.

2.1.1 Synchronous Product of Transition Systems

A transition system is a tuple (S, s0,Σ,→), where S is a set of states, s0 ∈ S is the
initial state, Σ is a finite set of actions, and →⊆ S ×Σε×S is a set of arcs. When
(s, a, s′) ∈→, we write s

a
−→ s′, and if a = ε, this transition is called ε-transition. In

the following, we consider that transition systems may have ε-transitions.
A transition system represents the sequential behavior of an untimed sys-

tem. Given n transition systems T1, . . . , Tn such that each Ti represents the
behavior of a system Si , the behavior of the distributed system composed of
S1, . . . , Sn can be represented by another transition system, called synchronous

product of T1, . . . , Tn .
Below we define the synchronous product of two transition systems T1 =

(S1, s0
1,Σ1,→1) and T2 = (S2, s0

2,Σ2,→2). Since this operation is associative, this
readily gives the synchronous product of n transition systems.

The synchronous product of T1 and T2, denoted by T1 ⊗T2, is the transition
system

(

S1 ×S2, (s0
1, s0

2),Σ1 ∪Σ2,→
)

, where → is defined as:

• (s1, s2)
a
−→ (s′1, s2) iff s1

a
−→1 s′1, for any a ∈Σ1,ε \Σ2,

• (s1, s2)
a
−→ (s1, s′2) iff s2

a
−→2 s′2, for any a ∈Σ2,ε \Σ1,

• (s1, s2)
a
−→ (s′1, s′2) iff s1

a
−→1 s′1 and s2

a
−→2 s′2, for any a ∈Σ1 ∩Σ2.

That is, arcs with the same actions (different from ε) are merged. These arcs are
called synchronizations, and their label are called common actions as opposed
to the actions that appear in only one alphabet, that are called local actions.

This product gives a sequential semantics to a distributed systems, therefore,
when we want to consider the distributed semantics of a distributed system, the
synchronous product is not a suitable notion.
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We now define Petri nets, a formalism used to model distributed untimed
systems. We define their syntax and semantics and recall some of their alge-
braic properties that we will use to decompose a Petri net into sequential com-
ponents.

2.1.2 Petri Nets

Petri nets are used for modeling and validation of concurrent systems. They
have been used in many fields, like in management of manufacturing systems,
communication networks, and hardware design.

Indeed, Petri nets are a graphical formalism for the description of concur-
rency and synchronization inherent to distributed systems. A Petri net com-
prises transitions that represent computations or tasks, and places that repre-
sent resources or data. Thus, input places of a transition model input data (or re-
quired resources) and output places model output data (or produced resources).

Petri nets can also be formally analyzed to find possible problems of the sys-
tem, for example deadlocks.

Syntax and Semantics

Definition 1 (Petri Net [Pet66, HSSW68]). A Petri net (PN) is a tuple (P,T,F, M0)
where P and T are two disjoint finite sets, called set of places and set of transi-

tions respectively, F ⊆ (P ×T )∪ (T ×P ) is the set of arcs connecting places and
transitions, also called flow relation, and M0 : P →N is the initial marking.

For x ∈ P ∪T , we define the pre-set of x as •x = {y | (y, x) ∈ F } and the post-set

of x as x• = {y | (x, y) ∈ F }. Given a set X ⊆ P ∪T , we define the pre-set and the
post-set of X as •X =

⋃

x∈X
•x and X • =

⋃

x∈X x•.
Petri nets are sometimes defined with multiplicities on arcs, but we will con-

sider only non multiple arcs, as defined above. This class of Petri nets is called
ordinary Petri nets.

Graphical Representation Places are represented as circles, transitions as
boxes, and the flow relation is represented by arcs. Marked places contains to-
kens (black dots). When necessary, we give the names (labels) of transitions
inside the boxes, and the names of places beside the circles, see Fig. 2.1, 2.2
and 2.3.

Sequential Semantics A marking M of a PN is a multiset of places, i.e. a map-
ping from P to N. A marking represents a state of the PN. A place p is marked if
M(p) > 0. This is represented by M(p) tokens in p. From the initial marking, i.e.
the initial position of the tokens, the state of the PN evolves by transition firings
that consume and produce tokens.

A transition t is enabled in a marking M iff for all p ∈ •t , M(p) > 0, what
we also note •t ⊆ M . The set of transitions enabled in marking M is denoted
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t1

t2

(a) Precedence

t1 t2

(b) Choice

t1 t2

(c) Concurrency

t1

(d) Synchronization

t1

t2

(e) Fork and join

Fig. 2.1: Petri net constructs

by En(M). Firing transition t from marking M consumes the tokens in its input
places and produces tokens in its output places.

Formally, the behavior of a Petri net is defined as a transition relation on its

markings. We write M
t
−→ M ′ when firing t from marking M leads to marking M ′,

defined as follows.

Firing of a transition: M
t
−→ M ′ iff t ∈ En(M)∧M ′ = (M \ •t )∪ t•

Reachable Markings We note M → M ′ when a marking M ′ is reachable from

a marking M in one step, i.e. if M
t
−→ M ′ for some transition t . A marking M ′

is reachable from a marking M if M →∗ M ′. A marking M is reachable if it is
reachable from the initial marking M0.

Firing Sequences A firing sequence or word generated by a Petri net is a se-

quence of transitions σ = t1t2 · · · tn such that M0
t1
−→ M1 · · ·Mn−1

tn
−→ Mn . This is

also denoted by M0
σ
−→ Mn .

Petri Nets Constructs The typical structural and behavioral characteristics ex-
hibited by distributed systems, such as precedence, concurrency, choice, and
synchronization, can be modeled by Petri nets. For example, consider transi-
tions t1 and t2 in Fig. 2.1.

Precedence In Fig. 2.1(a), t2 cannot fire if t1 has not. We say that t1 precedes t2

or that t1 is a cause of t2.

Choice In Fig. 2.1(b), t1 and t2 compete for the same token, we say that they
are in conflict. Both are enabled but firing one of them disables the other,
therefore only one of them will fire at a given time. This let us model mu-

tual exclusion, an important feature in systems with shared resources (see
also Fig. 2.3), and non-deterministic choice.
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t1 p

capacity bound

c

b

t2

producer buffer consumer

Fig. 2.2: Producer-consumer example

Concurrency In Fig. 2.1(c), t1 and t2 are concurrent, firing one of them has no
influence on the other, and they can be fired in any order.

Synchronization In Fig. 2.1(d), t1 models a task waiting for resources. Here, t1

will be enabled only when each of its input places is marked. This results
in a synchronization of threads: t1 is performed by both threads before
they split again.

Fork and Join In Fig. 2.1(e), t1 creates one child thread that runs in parallel with
the primary thread, and t2 waits for the child to finish and proceeds the
execution of the primary thread. This fork-join feature is a common model
of concurrency.

But the relations can be more complex and need to be considered in terms
of firings of transitions (later called events) rather than in terms of transitions.
This will be described further in Subsection 2.1.3. For now, we just give some
insights on classical examples depicted in Fig. 2.2 and 2.3.

Classical Examples We present two classical examples that illustrate concur-
rency and conflict in Petri nets.

Producer-Consumer Consider Fig. 2.2 without the dashed items. The seman-
tics of the PN exhibits unordered firings of transitions. In particular, tran-
sitions t1 and t2 seem concurrent, both pct1t2 and pct2t1 are firing se-
quences that lead to the same marking. But because of the shared buffer in
the middle, the second firing of t2 must follow the first firing of t1. There-
fore, t1 and t2 are not concurrent although some of their firings are.

This example also shows that the number of tokens in a reachable marking
can be unbounded. Here, still without the dashed items, the producer can
loop forever, performing pt1, each time producing a token in place b. If
these tokens are not consumed, then the number of tokens in place b is
infinite. There are some mechanisms to bound the number of tokens in
a place, for example by adding a complementary place, as denoted by the
dashed items in Fig. 2.2.
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P1

V1

P2

V2

Fig. 2.3: Two processes that share a semaphore

For controlling access by multiple processes to a common resource, such
as a shared buffer, one solution is to use semaphores.

Semaphore A semaphore [Dij65] is an object that encapsulates one integer
variable (counter), and three atomic methods: init(s) (initializes the
counter with the number of available resources), P (s) (waits for the
counter to be not null and decrements it) and V (s) (increments the
counter).

Figure 2.3 is a classical example of how to model semaphores. In this ex-
ample, two processes share a common resource that must not be accessed
simultaneously. This mutual exclusion is modeled by a semaphore, i.e. a
lock that prevents the two critical sections (i.e. the sections that access the
shared resource) to overlap. Here, transition P1 and P2, that model the en-
trance in the critical sections, share a common input place, S, that models
the lock (one token in S means the lock is free). Therefore, the first firings
of P1 and P2 are in conflict, and if one of them fires, the other has to wait
for the lock to be released to be enabled again.

Known Results Below we summarize some known results of interest. An
overview of these results can be found in [EN94, Esp96].

Boundedness and k-Boundedness A Petri net is bounded if its set of reachable
markings is finite. Boundedness was proved decidable in [KM69]. The
complexity of the algorithm was later improved by [Rac78], [Lip76] and
[RY86].

Another related problem is the k-boundedness problem. A Petri net is k-

bounded iff, for any reachable marking M , for any place p, M(p) ≤ k. The
k-boundedness problem was proved to be PSPACE-complete in [JLL77].

The Reachability Problem for Petri nets consists in deciding, given a Petri net
N and a marking M , if M is reachable. This problem was shown to be
decidable in [May81] and later on, the proof was simplified in [Kos82]. The
complexity of the reachability problem has been open for many years. An
exponential space lower bound is known [Lip76], but no tight complexity
bounds are known. However some solutions exist for different classes of
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Petri nets. In particular, reachability is PSPACE-complete for 1-bounded
Petri nets [CEP95].

Liveness and Deadlock-Freedom A Petri net is live if for every reachable mark-
ing M and every transition t , there exists a marking M ′ reachable from M

that enables t . The liveness problem is recursively equivalent to the reach-
ability problem, and thus decidable [Hac72]. The computational com-
plexity of the liveness problem is open, but as for the reachability prob-
lem, there exist some solutions for different classes. In particular, the live-
ness problem is PSPACE-complete for 1-bounded Petri nets [CEP95], co-
NP-complete for free-choice (see below) nets [JLL77], and polynomial for
bounded free-choice Petri nets [ES92].

A Petri net is deadlock-free if every reachable marking enables some tran-
sition. Deadlock-freedom is reducible in polynomial time to the reach-
ability problem [CEP95]. Deadlock-freedom is PSPACE-complete for 1-
bounded Petri nets, and NP-complete for 1-bounded free-choice (see be-
low) Petri nets [CEP95].

Some Interesting Classes of Petri Nets Since in physical systems, resources
are limited, and tokens represent resources, it is reasonable to assume that PNs
that model real systems are bounded. In particular, 1-bounded PNs are a well-
studied class.

In the sequel, we shall mainly consider 1-bounded Petri nets, also called safe

Petri nets. Since with these PNs, there is never more than one token in each
place, we will consider markings as sets of places. Safe Petri nets enjoy many
interesting properties, in particular the complexity bounds of the problems de-
fined above are known [CEP95], and they have a connection to Mazurkiewicz
trace theory [DR95] that enables the use of efficient partial order verification
methods.

Some structural classes of PNs have also been particularly studied. Below,
we give three of them. These classes relate only to the structure (P,T,F ) of a Petri
net, that is called a net.

Free-Choice Nets A net is a free-choice net iff, for every two transitions t1 and
t2, •t1 ∩

•t2 6= ; implies •t1 = •t2 (see Fig. 2.4). This condition is some-
times called “extended free-choice”, because there is a stronger condition
for free-choice nets (that we will not consider). The free-choice property
ensures that for any pair of conflicting transitions, every marking enables
one of them iff it enables the other. Liveness and boundedness of free-
choice PNs can be characterized by structural properties, i.e. without in-
vestigating all reachable markings [DE95].

Well-Formed Nets A net (P,T,F ) is well-formed iff there is a marking M0 such
that (P,T,F, M0) is live and bounded (see Fig. 2.4). Well-formed nets have
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also been extensively studied, for example in [DE95]. One of the results is
that well-formed nets are strongly connected [Bes86].

S-Nets A net (P,T,F ) is an S-net if ∀t ∈ T , |•t | = |t•| = 1. Thus, an S-net can be
seen as an automaton (places are locations and transitions are edges). In
an S-net, there cannot be concurrency, but there can be conflict.

Algebraic Properties of Petri Nets

In this part, we focus on the structure (P,T,F ) of a Petri net, without considering
the initial marking, this structure is called a net. Such a net can be represented by
a matrix called incidence matrix. This matrix is a mathematical tool for identify-
ing some interesting properties of the flow relation F in terms of conservation of
tokens. In particular, S-invariants can be computed from the incidence matrix,
and some interesting associated subnets can be identified.

The Incidence Matrix of a net N = (P,T,F ) is a matrix N : (P ×T ) → {−1,0,1}
that represents the flow relation, that is the dynamics of the net, as defined be-
low.

Definition 2 (Incidence Matrix). Let N be the net (P,T,F ). The incidence matrix
N : (P ×T ) → {−1,0,1} of N is defined by

N(p, t ) =







−1 if (p, t ) ∈ F and (t , p) ∉ F

1 if (p, t ) ∉ F and (t , p) ∈ F

0 otherwise.

That is, the entry N(p, t ) is 1 if the firing of t produces one token in p, −1
if the firing of t consumes one token in p, and 0 otherwise. Therefore, N(p, t )
corresponds to the change of the marking of place p caused by the firing of tran-
sition t . Hence, if t is fired from marking M , the new marking is M ′ = M + t,
where t is the column vector of N associated with t , and markings are taken as
column vectors. More generally, if M

σ
−→ M ′ for some firing sequence σ, then

M ′ = M +N ·~σ. This equation is called marking equation. ~σ is the Parikh vector
of σ, i.e. a vector of natural numbers with index set T, where ~σ(t ) is the num-
ber of occurrences of t in σ. For example, the Parikh vector of t2t1t3t4t5t2t1 is
(2 2 1 1 1)tr , while the Parikh vector of t1 is (1 0 0 0 0)tr .

An incidence matrix is given in Fig. 2.4, together with the associated net.
Let us now define S-components and then give their algebraic characteriza-

tion as S-invariants.

S-Components can be regarded as processes of a net, in the sense that they are
concurrency-free subnets, and they result from a decomposition of the net (for
some classes of nets). We first need to define what is a P-closed subnet of a net.

A net (P ′,T ′,F ′) is a subnet of a net N = (P,T,F ) if P ′ ⊆ P , T ′ ⊆ T and
F ′ = F ∩

(

(P ′×T ′)∪ (T ′×P ′)
)

. That is, only arcs connecting a place and a transi-
tion that are in the subnet are kept.
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t1 t2 t3 t4 t5

p1 1 −1 0 0 0
p2 −1 1 0 0 0
p3 0 −1 0 0 1
p4 0 1 −1 0 0
p5 0 0 1 0 −1
p6 0 0 0 1 −1
p7 0 0 1 −1 0

Fig. 2.4: A net and its incidence matrix
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Fig. 2.5: The S-components of the well-formed free-choice net of Fig. 2.4

We say that the subnet (P ′,T ′,F ′) of N is P-closed if T ′ = •P ′∪P ′•. That is,
any transition connected to a place which is in the subnet is also in the subnet.
The subnet of N generated by a set of places P ′ is the P-closed subnet (P ′,T ′,F ′)
of N .

Definition 3 (S-Component). A P-closed subnet (P ′,T ′,F ′) of a net N = (P,T,F ),
with P ′ 6= ;, is an S-component iff it is a strongly connected S-net.

An elementary property of S-components is the conservation of the number
of tokens. That is, for any reachable marking M , if (P ′,T ′,F ′) is an S-component,
then |M ∩P ′| = |M0 ∩P ′|.

A net is S-coverable iff for any node (i.e. any place or transition) there exists
an S-component which contains this node. The node is said to be covered by
the S-component. Therefore, if we assume that any transition is connected to
a place, since S-components are P-closed, a net is S-coverable iff any place is
covered. That is why S-components will be identified to subsets of places, or
mappings P → {0,1}.

S-Invariants characterize, for example, the conservation of the number of to-
kens in a subnet. They are defined as follows.

Definition 4 (S-invariant [Lau75]). An S-invariant of a net N is an integer-
valued solution of the equation X ·N = 0.

From the definition of incidence matrix it follows that a mapping I : P → Z

is an S-invariant iff for every transition t holds
∑

p∈•t I (p) =
∑

p∈t• I (p).
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Also, it follows from the marking equation that for any reachable marking
M , and any S-invariant I , I ·M = I ·M0. Therefore, the weighted sum of tokens is
preserved.

An S-invariant I of a net is called semi-positive if I : P → N and I 6=~0. The
support of a semi-positive S-invariant I , denoted by 〈I 〉, is the set of places p

satisfying I (p) > 0. Every semi-positive S-invariant I satisfies •〈I 〉 = 〈I 〉•. A semi-
positive S-invariant I is minimal if no semi-positive S-invariant J satisfies 〈J〉(

〈I 〉.
We are now able to state the link between S-components and S-invariants:

S-components, as mappings P → {0,1}, are minimal S-invariants [DE95, Propo-
sition 5.7]. Therefore, the computation of S-invariants with values in {0,1} gives
the S-components of the net (S-invariants that generate strongly connected S-
nets directly correspond to S-components).

Lastly, one important theorem related to S-components is given below.

Theorem 5 (S-coverability Theorem [Hac72]). Well-formed free-choice nets are

covered by S-components.

This theorem says that well-formed free-choice nets can be decomposed
into S-components, as shown in Fig. 2.5. In Chapter 4, we will use this result
to decompose a PN in components that correspond to the processes of the orig-
inal physical system.

2.1.3 Partial Order Representations

Two transition firings are concurrent if they can be performed from the same
marking M in any order, leading to the same marking M ′. This results in the
diamond depicted below. Representing and considering all interleavings has

M

M1

t1

M2

t2

M ′

t2 t1

some drawbacks: n concurrent firings would yield n! possible executions and
2n reachable states. However, more compact representations take advantage of
this independency, consider that all these interleavings are equivalent, and use
partial orders to describe equivalent executions.

Unfoldings of Petri Nets

Occurrence nets can be used to give the semantics of Petri nets by represent-
ing their executions (called processes). The unfolding of a Petri net is an occur-
rence net accompanied by a morphism relating the unfolding back to the origi-
nal net. Here, we define unfolding of 1-bounded Petri nets, as it was introduced
in [NPW81].
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An occurrence net is an acyclic (possibly infinite) net, that comprises condi-
tions (related to places of a PN) and events (related to transitions of a PN), with
some characteristics that ensure in particular that each event is firable. We first
need to introduce formally the causality, conflict and concurrency relations.

Causality, Conflict and Concurrency Given a net (P,T,F ), we denote by ≤ the
causality relation defined as: for any transitions s and t , s ≤ t iff s F∗ t , and by
< the corresponding strict relation. For any transition t , the set ⌈t⌉ = {s | s ≤ t } is
the causal past or prime configuration of t .

Two distinct transitions s and t are in direct conflict, denoted by s #d t , iff
•s ∩ •t 6= ;. Two transitions s and t are in conflict, denoted by s # t , iff ∃s′ ∈

⌈s⌉, t ′ ∈ ⌈t⌉ : s′ #d t ′. The conflict set of t is defined as #[t ] = {s | s # t }.
Lastly, two transitions s and t are concurrent, denoted by s co t , iff ¬(s # t )∧

¬(s ≤ t )∧¬(t ≤ s).
Formally, an occurrence net is defined as follows.

Definition 6 (Occurrence Net). An occurrence net (ON) is a net (B ,E ,F ) where
elements of B and E are called conditions and events, respectively, and such that:

1. ∀e ∈ E ,¬(e # e) (no self-conflict),

2. ∀e ∈ E ,¬(e < e) (≤ is a partial order, and such net is called acyclic),

3. ∀e ∈ E , |⌈e⌉| <∞ (such net is called finitary),

4. ∀b ∈ B , |•b| = 1 (no backward branching),

5. ⊥∈ E is the only ≤-minimal node (event ⊥ creates the initial conditions).

Figure 2.6(b) gives an example of ON. An ON can also be given as a tuple
(B ,E \ {⊥},F,c0), where c0 =⊥• is the set of minimal conditions.

Unfoldings A net homomorphism from a net N = (P,T,F ) to a net N ′ =

(P ′,T ′,F ′) is a map π : P ∪T → P ′∪T ′ such that π(P ) ⊆ P ′, π(T ) ⊆ T ′, and for
all t ∈ T , π|•t , the restriction of π to •t , is a bijection between •t and •π(t ), and
π|t• is a bijection between t• and π(t )•.

Let N = (P,T,F, M0) be a PN. A branching process of N is a pair (N ′,π), where
N ′ = (P ′,T ′,F ′,c0) is an ON andπ is a homomorphism from (P ′,T ′,F ′) to (P,T,F ),
such that:

1. π|c0 is a bijection between c0 and M0,

2. ∀t , t ′ ∈ T ′,
(
•t = •t ′∧π(t ) =π(t ′)

)

⇒ t = t ′

For Π1 = (N1,π1) and Π2 = (N2,π2) two branching processes, Π1 is a prefix

of Π2, written Π1 ⊑ Π2, if there exists an injective homomorphism h from N1
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Fig. 2.6: A Petri net and a prefix of its unfolding

into a prefix of N2, such that h induces a bijection between c1
0 and c2

0 and the
composition π2 ◦h coincides with π1.

By [NPW81, Theorem 23], there exists a unique (up to an isomorphism) ⊑-
maximal branching process, called the unfolding of N . By abuse of language,
we will also call unfolding of N the ON obtained by the unfolding. Although the
unfolding may be infinite, it is possible to construct a finite complete prefix of
the unfolding, such that each marking reachable in the original net corresponds
to some concurrent set of places in such a prefix [McM92].

For now on, we denote ON as tuples (B ,E ,F ) where ⊥ ∈ E . This allows sim-
pler definitions. We now define configurations and cuts that can be regarded as
runs and states of an ON.

Configuration: A configuration is a conflict-free and causally-closed set of
events. That is, ω⊆ E is a configuration iff ∀e ∈ω, (#[e]∩ω=;)∧(⌈e⌉ ⊆ω).

Cut: A cut of a configuration ω is defined as Cut(ω) =ω• \ •ω. i.e. Cut(ω) is the
set of pairwise concurrent conditions that remain marked after the firing
of ω. Also, π(Cut(ω)) corresponds to a reachable marking of the initial
PN [Eng91].

Below we summarize some applications, extensions and tools. A more com-
plete description can be found in [EH08].

Some Applications The unfolding technique can be used as an approach
for the analysis and verification of concurrent systems. It has been applied
to the analysis of distributed algorithms, communication protocols, hardware
and software systems, etc. In particular, it has been used in the analysis and
synthesis of asynchronous logic circuits modeled as signal transition graphs
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(STG) [KKY04, KKY06, KMY08]. Lastly, unfolding-based techniques are also de-
veloped for monitoring and diagnosis of discrete event systems [BFHJ03, CJ04,
FBHJ05].

Some Extensions Unfoldings were first defined for 1-bounded PNs, but they
were extended to bounded PNs [ERV02], and also to unbounded PNs [AIN00].
They were also defined for some extensions of PNs, as PNs with read arcs [VSY98,
RSB11], high-level PNs [SK04], and time Petri nets [AL00, CJ06, FS02]. Lastly,
unfoldings of NTA have also been proposed [BHR06, CCJ06]. Various tools exist
for unfolding PNs and their extensions.

Other Partial Order Representations

Mazurkiewicz Traces The theory of traces has been developed for the analysis
of concurrent systems with static architecture, like safe Petri nets. Mazurkiewicz
traces consider an order between two actions only if they are related by a causal-
ity relation, this is expressed by the notion of dependency. Below we recall the
main notions defined in [DR95].

A dependency relation D is defined over an alphabet Σ. D is finite, symmet-
ric and reflexive. Then relation ID = (Σ×Σ) \ D is the independency induced by
D . Clearly ID is symmetric and irreflexive. For example, if D = {a,b}2 ∪ {a,c}2,
then ID = {(b,c), (c,b)}. The trace equivalence for D , ≡D , uses the fact that in-
dependent letters can be commuted: if (a,b) ∈ ID , then w abw ′ ≡D wbaw ′. A
trace is an equivalence class of words, i.e a trace represents a single concurrent
behavior, and the equivalent words are the different linearizations of the trace.

Lastly, a trace over (Σ,D) is also a labeled partial order (E ,≤,λ) such that

• for all e, f ∈ E ,
(

e 6≤ f ∧ f 6≤ e
)

=⇒ (λ(e),λ( f )) ∈ ID (unordered events cor-
respond to independent actions),

• for all e, f ∈ E , e ⋖ f =⇒ (λ(e),λ( f )) ∈ D , where ⋖ is the transitive reduc-
tion of ≤,

• for all e ∈ E , the set { f | f ≤ e} is finite (each event has a finite past).

Message Sequence Charts MSC [Rec11] is a scenario-based visual language for
describing the interactions between asynchronous processes called instances.
Graphically, the instances are represented by vertical lines, and the communi-
cations by arrows from the sending instance line to the receiving instance line.
Thus, semantically, an MSC prescribes the partial order in which the commu-
nications occur: events (message sendings and receivings) are totally ordered
along each instance line, and a message sending precedes its receiving. MSCs
can be combined in high-level MSCs to describe more elaborate specifications.

There are also timed extensions of MSCs, for example timed MSCs [ZKH02],
and time-constrained MSCs [ABG07].
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2.2 Sequential Timed Systems

In this section, we introduce fundamental theoretical notions for describing and
comparing the behavior of (models of) sequential timed systems. Such behavior
can be described by timed transition systems which can then be used to compare
the behavior of two models, possibly in two different formalisms. This com-
parison is generally done by means of timed bisimulations. In particular, when
translating a model from a formalism into another formalism, timed bisimula-
tions are used to prove that the translation is correct, i.e. that the new model
has the same behavior as the original one. Timed automata is one of the most
well-know formalism for sequential timed systems.

2.2.1 Timed Transitions Systems

Describing Timed Behaviors

An execution of a real-time system can be described by a timed word, that is a
sequence of actions with time stampings. A timed language describes a set of
executions as a set of timed words.

Timed transition systems are used to describe the behavior (all possible exe-
cutions) of a model of a real-time system, regardless of the formalism in which it
is given. They are therefore used to describe the semantics of the formalisms for
timed systems, i.e. the meaning of each syntactical element of the formalism.

A timed transition system comprises a set of states and a set of transitions
between states. Each transition denotes either a time delay or an action. Thus, a
timed transition system prescribes a set of admissible timed words. However, we
will see that a timed transition system provides more information than a timed
language.

Most frequently, owing to the dense nature of time, timed transitions sys-
tems are infinite and even uncountable. That is why they are used as theoretical
entities to describe the executions of a system, but they are not used directly to
perform an analysis on these executions.

Timed Words and Timed Languages: A Description of Timed Executions A
timed word (resp. timed ε-word) w over an alphabet Σ is a finite or infinite
sequence w = (a0, t0)(a1, t1) . . . (an , tn) . . . such that for each i ≥ 0, ai ∈ Σ (resp.
ai ∈ Σε), di ∈ R≥0 and ti+1 ≥ ti (the ti ’s are absolute dates). Any timed ε-word
is associated with a timed word obtained by removing the pairs (ai , ti ) where
ai = ε. The untimed ε-word of timed ε-word w = (a0, t0)(a1, t1) . . . (an , tn) . . . is
λ(w) = a0a1 . . . an . . . and the duration of w is δ(w) = supi ti .

Lastly, a timed language over Σ is a set of timed words over Σ.

Timed Transition Systems: A Description of Timed Behaviors Below, we de-
fine timed transition systems that are a fundamental notion for the description
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and the comparison of sequential timed behaviors.

Definition 7 (Timed Transition System [AD94]). A Timed Transition System

(TTS) is a tuple (S, s0,Σ,→) where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σ is a finite set of actions disjoint from R≥0,

• →⊆ S × (Σε∪R≥0)×S is a set of arcs.

For any a ∈ Σε∪R≥0, we write s
a
−→ s′ if (s, a, s′) ∈ →, and s

a
−→ if for some s′,

s
a
−→ s′, in this last case, we say that s enables a.

A path of a timed transition system is a possibly infinite sequence of tran-

sitions ρ = s
d0
−→ s′0

a0
−→ ·· · sn

dn
−→ s′n

an
−→ ·· ·, where, for all i , di ∈ R≥0 and ai ∈ Σε. A

path is initial if it starts in s0. Thus, an initial path describes one execution of
the system. A path is maximal if it is infinite or ends in a state without outgoing
arcs. In a path, delays and actions alternate, and a finite path may end with a
delay. The duration of a path is the sum of the delays that occur along the path.

Generated Timed Language A path ρ = s
d0
−→ s′0

a0
−→ ·· · sn

dn
−→ s′n

an
−→ s′n · · · gener-

ates a timed ε-word w = (a0, t0)(a1, t1) . . . (an , tn) . . . where, for all i , ti =
∑i

k=0 dk .

We write s
ρ
−→ s′ if ρ is a path from s to s′. We also write s

w
−→ s′ if there is a path

from s to s′ that generates the timed ε-word w . If w contains pairs (ai , ti ) such
that ai = ε, these pairs have to be removed to obtain a generated timed word.

For describing the set of timed words accepted by the TTS, called the gener-

ated timed language, only initial paths are considered, because any execution
starts in the initial state. Then accepted words are the words generated by maxi-
mal initial paths.

Lastly, for a given TTS T , the timed language generated by T is denoted by
L (T ).

Properties of Timed Transition Systems Since a TTS is supposed to represent
(an abstraction of) the behavior of a physical (real) timed system, it has to sat-
isfy some conditions. In particular, the transition relation verifies the following
properties.

Time determinism: if s
d
−→ s′ and s

d
−→ s′′ for some d ∈R≥0, then s′ = s′′;

0-delay: if s
0
−→ s′, then s = s′;

Additivity: if s
d
−→ s′ and s′

d ′

−→ s′′ for some d ,d ′ ∈R≥0, then s
d+d ′

−−−→ s′′;
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Continuity: if s
d
−→ s′ for some d ∈ R≥0, then for any d ′ ∈ [0,d ], there exists s′′

such that s
d ′

−→ s′′ and s′′
d−d ′

−−−→ s′.

For example, the time-determinism property states that, if a delay d is per-
formed from a state s, and no action is performed meanwhile, then the new
state depends only on s.

Zeno Behaviors Another property we want to ensure for the realism of the
modeling, is the exclusion of Zeno behaviors. An infinite timed word whose du-
ration is finite is called Zeno. Such a word describes an infinite behavior that
takes a finite amount of time. Since this kind of behavior is not realistic, this
needs to be excluded. Therefore a valid model does not allow such behaviors,
i.e. its associated TTS (as it will be defined in Subsections 2.2.2 and 2.3.3) must
not generate Zeno words.

Comparing Timed Behaviors

There exist several notions to compare timed systems. The choice of the notion
to use depends on the desired level of comparison because some notions are
coarser than others.

Timed Language Equivalence First, two TTS T1 and T2 are timed language

equivalent if L (T1) = L (T2), that is they accept the same timed words. This
notion is interesting if we focus only on the sequences of actions that can occur.
However, it does not capture the structure of the TTS. In particular, the possible
choices at each state are not considered.

To illustrate this, we give a classical example, on untimed transition systems.
The two transition systems below are language equivalent since they both ac-
cept the words ab and ac. Here, observe that the first transition system allows
both b and c after a, whereas the second one allows only b or c depending on
which a action has been performed, therefore the choice on performing b or c

is not done at the same level. With only language equivalence, this difference is
not caught, and we are not able to distinguish the two transition systems. This
distinction is enabled by the notions of (timed) simulation and bisimulation.

a

b c

a a

b c

For example, we can consider the strong timed simulation: state s′ simulates
state s when any transition from s to some state q can be simulated from s′ by
a transition with the same label (the same action or the same amount of time)
that reaches a state q ′ that also simulates state q . When the transposed relation
is also a simulation, the relation is a bisimulation. Bisimulation is accepted as
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the finest equivalence relation among the many equivalence relations for con-
current systems [vG93]. It was extended to timed systems in [Yi90].

Timed Bisimulations Strong and weak timed bisimulations are formally de-
fined below. We use the two TTS T1 = (S1, s0

1,Σ,→1) and T2 = (S2, s0
2,Σ,→2).

Definition 8 (Strong Timed Bisimulation). Let ≈ be a binary relation over S1×S2.
We write s1 ≈ s2 for (s1, s2) ∈≈. ≈ is a strong timed bisimulation relation between
T1 and T2 if s0

1 ≈ s0
2 and s1 ≈ s2 implies that, for any a ∈Σε∪R≥0,

• if s1
a
−→1 s′1, then, for some s′2, s2

a
−→2 s′2 and s′1 ≈ s′2;

• and conversely, if s2
a
−→2 s′2, then, for some s′1, s1

a
−→1 s′1 and s′1 ≈ s′2.

Let ⇒i (for i ∈ {1,2}) be the transition relation defined as:

• s
ε
=⇒i s′ if s(

ε
−→i )∗s′,

• ∀a ∈Σ, s
a
=⇒i s′ if s(

ε
−→i )∗

a
−→i (

ε
−→i )∗s′,

• ∀d ∈R≥0, s
d
=⇒i s′ if s(

ε
−→i )∗

d0
=⇒i (

ε
−→i )∗ · · ·

dn
=⇒i (

ε
−→i )∗s′, where

∑n
k=0 dk = d .

Definition 9 (Weak Timed Bisimulation). A binary relation, ≈ over S1 × S2 is a
weak timed bisimulation relation between T1 and T2 if s0

1 ≈ s0
2 and s1 ≈ s2 implies

that, for any a ∈Σ∪R≥0,

• if s1
a
−→1 s′1, then, for some s′2, s2

a
=⇒2 s′2 and s′1 ≈ s′2;

• and conversely, if s2
a
−→2 s′2, then, for some s′1, s1

a
=⇒1 s′1 and s′1 ≈ s′2.

We write T1 ≈ T2 (resp. T1 ∼ T2) when there is a strong (resp. weak) timed
bisimulation between T1 and T2.

Relations Between Behavioral Equivalences It is possible to compare timed
systems with respect to several behavioral equivalences. Timed language equiv-
alence only considers the accepted words and completely ignores branching,
although most theories consider the latter to be meaningful.

Timed bisimulations however consider the branching structure of the TTS
and capture subtle differences. For that reason, they are generally accepted as
the finest behavioral equivalence.

The three equivalences we presented can be ordered from the finest to the
coarsest as follows. Two TTS that are strongly timed bisimilar are also weakly
timed bisimilar, and two TTS that are weakly timed bisimilar are also timed lan-
guage equivalent. Obviously, if the TTS have no ε-transitions, strong and weak
timed bisimulations are just the same, because a weak bisimulation is just a
bisimulation that abstracts ε-transitions. Lastly, as we saw on a simple exam-
ple, language equivalence does not imply bisimulation.
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An Operational Semantics for Models of Timed Systems

The aim of using operational semantics is to understand precisely the meaning
of a model and to reason about it. For this, an operational semantics gives a
formal description of the behavior of a model, and goes beyond the specificities
of its formalism. It allows proving properties regardless of the formalism, and
verifying that the model is working as expected.

Timed transition systems give the operational semantics of formalisms for
timed systems. In Subsections 2.2.2 and 2.3.3, we present two formalisms: timed
automata and time Petri nets respectively, and specify their semantics by timed
transition systems.

Finally, for real models, the associated TTS are infinite. That is why TTS can-
not be used directly to analyze and verify a model. For verification purpose,
some abstractions are needed. In particular, we will present the region automa-
ton abstraction at the end of Subsection 2.2.2.

2.2.2 Timed Automata

Timed automata are an extension of finite automata with a finite set of real-
valued variables, called clocks, that evolve synchronously with time and enable
measuring delays [AD90].

Clocks can be reset on transitions, therefore, at any instant, the value of a
clock equals the time elapsed since the last time it was reset. Transitions are
guarded by clock constraints that compare the current values of the clocks with
time constants. That is, a transition is enabled only if its associated timing con-
straint is satisfied by the current values of the clocks.

Lastly, some definitions also assume invariants in the model [HNSY94]. In-
variants are clock constraints assigned to locations that have to be satisfied
while the location is active. Hence, invariants restrict time elapsing and ensure
progress.

Syntax and Semantics

We describe first the syntax of clock constraints (guards and invariants), then
the general syntax of a timed automaton. After that, we explain how clock con-
straints are evaluated, and give the semantics of a timed automaton as an asso-
ciated TTS.

Clock Constraints Clocks are positive real-valued variables, that increase at
the same rate. The set B(X ) of clock constraints over the set of clocks X is de-
fined by the following grammar.

g ::= x ⊲⊳ k | g ∧ g | tt, where x ∈ X , k ∈N and ⊲⊳ ∈ {<,≤,=,≥,>}
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off light bright
press, {x} x ≤ 4, press

x > 4, press

press

Fig. 2.7: A timed automaton

Invariants are clock constraints of the following form.

i ::= x ≤ k | x < k | i ∧ i | tt, where x ∈ X , k ∈N

Clock constraints are used to impose enabling conditions on actions - in this
case, they are called guards - or to restrict time delays - in this case, they are
called invariants.

Definition 10 (Timed Automaton [AD94]). A timed automaton (TA) is a tuple
A = (L,ℓ0, X ,Σ,E , Inv) where

• L is a finite set of locations,

• ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• Σ is a finite set of actions,

• E ⊆ L×B(X )×Σε×2X ×L is a set of directed edges,

• and Inv : L →B(X ) assigns invariants to locations.

If (ℓ, g , a,r,ℓ′) ∈ E , we also write ℓ
g ,a,r
−−−→ ℓ′. For such an edge, ℓ is called the

source location, g is the guard, a the action or label, r the set of clocks to be reset

and ℓ′ the target location.

Graphical Representation and Example Fig. 2.7 shows an example TA, taken
from [AILS07]. Graphically, locations are represented by circles containing their
name when useful, and edges by arrows labeled by the associated guard, action
and reset. Invariants are written beside their associated location (see Fig. 2.9),
and the initial location has an incoming arrow that is not rooted in any location.

This example models a light with two brightness levels, that can be adjusted
by a switch. The lamp is initially off. When the switch is first pressed, the lamp
is lighten at the lowest level. Then, if the switch is pressed again within 4 time
units, the light becomes bright: the edge from light to false is not enabled be-
cause its guard is false, and the edge from light to bright is enabled. Other-
wise, if the switch is pressed after 4 time units, the light is switched off. Lastly, if
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the switch is pressed while the lamp is in the bright state, then the lamp is also
switched off.

The operational semantics of a TA is given by an associated TTS. A state of
the TA at a given time is defined by the current active location and the current
values of the clocks. For instance,

(

light, [x = 2]
)

is a state of the TA of Fig. 2.7.
Below, we first present clock valuations, and then give the TTS associated with a
TA.

Clock Valuations The values of the clocks of X at a given time are given by a
function v : X → R≥0, called clock valuation over X . The satisfaction of a clock
constraint γ by a clock valuation v , denoted by v |= γ, is defined inductively as
follows.

v |= x ⊲⊳ k ⇐⇒ v(x) ⊲⊳ k

v |= γ1 ∧γ2 ⇐⇒ v |= γ1 and v |= γ1

v |= tt ⇐⇒ tt

For each set of clocks r ⊆ X , the valuation v[r ] is defined by v[r ](x) = 0 if x ∈ r

and v[r ](x) = v(x) otherwise. For each d ∈R≥0, the valuation v +d is defined by
(v +d)(x) = v(x)+d for each x ∈ X .

Timed Transition System Generated by a Timed Automaton We denote by
(ℓ, v) a state of a TA, where ℓ ∈ L is the current location and v is a clock valu-
ation that maps each clock to its current value. The pair (ℓ, v) is a legal state for
the timed automaton only if v |= Inv(ℓ). The initial state is s0 = (ℓ0, v0), where ℓ0

is the initial location, and v0 maps each clock to 0.
Let A = (L,ℓ0, X ,Σ,E , Inv) be a TA. We define TTS(A), the timed transition

system generated by A as TTS(A) = (S, s0,Σ,→), where

• S = {(ℓ, v) ∈ L× (X →R≥0) | v |= Inv(ℓ)},

• →∈ S × (Σε∪R≥0)×S is defined by

Time delay step: (ℓ, v)
d
−→ (ℓ, v +d) for some d ∈R≥0, iff v +d |= Inv(ℓ),

Action step: (ℓ, v)
a
−→ (ℓ′, v ′) iff ℓ

g ,a,r
−−−→ ℓ′, v |= g , v ′ = v[r ] and v ′ |= Inv(ℓ′).

A run of a TA A is an initial path in TTS(A) where time delay steps and ac-
tion steps alternate. A timed word is accepted by A if it is accepted by TTS(A).
The timed language generated by A, L (A), is the timed language generated by
TTS(A): L (A) =L (TTS(A)).

Known Results Below, we briefly recall some important results. When no pre-
cision is given, we assume that the TA have no ε-transitions.

We first recall undecidable problems, that limit the algorithmic analysis of
TA. In fact, these undecidability results all follow from the undecidability of the
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universal problem. Then we present two decidable problems that are funda-
mental for the verification of TA. Lastly, we give results on the class of TA with
ε-transitions and on the class of TA with clock copies (a subclass of updatable
TA [BDFP00a]).

The Universality Problem is to decide whether the language of a given automa-
ton over Σ comprises all the timed words over Σ. This problem is unde-
cidable for TA with 2 clocks or more [AD94] (proof by reduction from the
recurring problem of a two-counter machine), and decidable for single
clock TA [OW04] (because timed language inclusion also is). However, this
problem is undecidable for single clock TA with ε-transitions [LW08].

Timed Language Inclusion and Equivalence are also undecidable, by reduc-
tion from the universality problem [AD94].

Complementability and Determinizability The universality problem is also
reducible to the complementability and determinizability problems, that
are therefore undecidable [Tri04]. It has also been shown that, even if a
witness is not asked, the decision problems are still undecidable [Fin06].

Complementation is used for capturing the negation of the specification
of an automaton. Determinization is important for implementability in
particular.

The Emptiness Problem is to decide whether the language accepted by a timed
automaton is empty. The set of states is infinite and thus, the classical
methods for finite-state systems cannot be applied. Nevertheless, this
problem was shown decidable and PSPACE-complete with the construc-
tion of a finite abstraction [AD94] (see region automaton below).

The Reachability Problem is to decide whether a given location ℓ is reachable,
i.e. if there exists an execution that reaches a state where the current lo-
cation is ℓ. This problem, that is equivalent to the emptiness problem, is
fundamental in verification.

Strong Timed (bi)simulation between timed automata is decidable and
EXPTIME-complete [LS00].

ε-Transitions do not change the decidability of the emptiness problem, but
strictly increase the expressive power [BDGP98] (contrary to the untimed
case). Moreover, it has been shown that the problem of deciding whether,
for a given TA with ε-transitions, there exists a TA without ε-transition that
accepts the same timed language is undecidable [BHR09]. This is however
decidable for some subclasses, for example if ε-transitions do not reset
clocks [BDGP98].
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Updatable Timed Automata are an extension of TA introduced in [BDFP00a,
BDFP00b]. In Chapter 3, we will consider only a subclass of updatable TA,
where we allow copies of clocks, i.e. resets of the form x := y where x and y

are clocks. This class is not more expressive than classical TA (any updat-
able TA of the class is bisimilar to a classical TA), and the emptiness prob-
lem remains PSPACE-complete [BDFP04]. Clock copies are also available
in the development snapshot of UPPAAL (since version 4.1.8 of February
29, 2012).

Region Automaton

Because a state of a timed automaton contains a clock valuation and clocks
may have any value in R≥0, even a simple timed automaton may generate an
uncountable set of reachable states. In order to be able to perform an algo-
rithmic analysis of a timed automaton, a finite abstraction of the state space
is needed. The idea beyond the region abstraction [AD94] is that clock valua-
tions can be partitioned into finitely many equivalence classes, such that two
valuations from the same equivalence class will induce “equivalent behaviors”.

Notations First, for any d ∈ R≥0, we define the following numbers: ⌊d⌋ is the
integral part of d and frac(d) is the fractional part of d . Then, for a given TA A,
and any clock x ofA, we define cx ∈N as the largest constant against which x is
compared in the guards and invariants of A. For example, for the TA of Fig. 2.7,
cx is 4.

Definition 11. We say that two clock valuations v, v ′ ∈ (X →R≥0) are equivalent,
and we write v ≡ v ′ iff

• for each x ∈ X , either ⌊v(x)⌋ = ⌊v(x ′)⌋, or both v(x) > cx and v ′(x) > cx ,

• for every x ∈ X such that v(x) ≤ cx , frac(v(x)) = 0 iff frac(v ′(x)) = 0,

• for every x, y ∈ X such that v(x) ≤ cx and v(y) ≤ cy , frac(v(x)) ≤ frac(v(y))
iff frac(v ′(x)) ≤ frac(v ′(y)).

[v] denotes the equivalence class of v with respect to ≡.

Definition 12 (Region). An ≡-equivalence class [v] represented by some clock
valuation v is called a region.

For example, consider a timed automata with two clocks x and y with cx = 3
and cy = 2. The regions are shown in Fig. 2.8. The gray triangle represents the
region described by 1 < x < y < 2.

The number of regions is bounded by n! ·2n ·
∏

x∈X (2cx +2), where n is the
number of clocks. Therefore there are finitely many regions, but their number is
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x
0

y

0 1 2 3

1

2 • 12 corner points,

• 30 open line segments,

• 18 open regions.

Fig. 2.8: Regions for X = {x, y}, cx = 3 and cy = 2

exponential in the number of clocks and in the constants that appear in the clock
constraints. Moreover, the equivalence relation satisfies the following property.

v ≡ v ′ =⇒

{
for any guard or invariant γ of A, v |= γ ⇐⇒ v ′ |= γ

∀d ∈R≥0,∃d ′ ∈R≥0 : v +d ≡ v ′+d ′

A region r ′ is a time-successor of a region r iff for each v ∈ r , there exists a
positive d ∈R≥0 such that v +d ∈ r ′.

Definition 13 (Region Automaton). Let A = (L,ℓ0, X ,Σ,E , Inv) be a timed au-
tomaton. The region automaton of A, denoted by R(A), is the transition system
R(A) = (S, s0,Σ,⇒), where

• S = {(ℓ, [v]) | ℓ ∈ L, v : X →R≥0} is the set of symbolic states,

• s0 = (ℓ0, [v0]) where v0 maps each clock to 0, and

• ⇒⊆ S ×Σε×S is defined as follows: (ℓ, [v])
a
=⇒ (ℓ′, [v ′]) iff for some v ′′ such

that [v ′′] is a time-successor of [v], (ℓ, v ′′)
a
−→ (ℓ′, v ′).

An example of region automaton is given in Fig. 5.8.

Theorem 14 ([AD94]). Let A be a timed automaton. A and R(A) are untimed

bisimilar.

In particular, this means that L (R(A)) = Lu(A), where Lu(A) = {σ ∈ Σ
∗ |

∃w ∈L (A) : σ=λ(w)}.

2.3 Distributed Timed Systems

We now consider the formalisms for both distributed and timed systems. In this
section, their semantics is given as sequential notions, such as timed transition
systems, product automaton or marking timed automaton. This is what is usu-
ally done, but we will later argue that, when we focus on concurrency, these no-
tions are not suitable. Indeed, with a sequential description, it is as if there were
only one component that was performing local actions.
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2.3.1 Synchronous Product of Timed Transition Systems

As for transition systems, we can define the synchronous product of two TTS.
For this definition, we use two TTS T1 = (S1, s0

1,Σ1,→1) and T2 = (S2, s0
2,Σ2,→2).

The synchronous product of T1 and T2, denoted by T1 ⊗ T2, is the TTS
(

S1 ×S2, (s0
1, s0

2),Σ1 ∪Σ2,→
)

, where → is defined as:

• (s1, s2)
a
−→ (s′1, s2) iff s1

a
−→1 s′1, for any a ∈Σ1,ε \Σ2,

• (s1, s2)
a
−→ (s1, s′2) iff s2

a
−→2 s′2, for any a ∈Σ2,ε \Σ1,

• (s1, s2)
a
−→ (s′1, s′2) iff s1

a
−→1 s′1 and s2

a
−→2 s′2, for any a ∈ (Σ1 ∩Σ2)∪R≥0.

That is, arcs with the same actions (different from ε) are merged. These arcs are
called synchronizations, and their label are called common actions as opposed
to the actions that appear in only one alphabet, that are called local actions.

2.3.2 Networks of Timed Automata

The formalism of timed automata enables the modeling of only one component.
For modeling real systems that are often distributed, it is convenient to be able
to compose several timed automata.

Networks of timed automata [AD90, AD94] is a formalism that enables the
modeling of distributed real-timed systems as a collection of TA. These TA run in
parallel but may also synchronize with each other. Here we use a synchroniza-
tion mechanism based on common actions: actions that appear in several al-
phabets are performed synchronously by all the automata whose alphabet con-
tains the action, whereas actions that appear in only one alphabet are performed
locally by the associated automaton.

Networks of timed automata have been extensively studied, and successfully
used for specification and verification of real-time systems [CY92, HNSY94].
Some dedicated tools like KRONOS [BDM+98] and UPPAAL [BDL04] have also
been developed.

Syntax and Semantics

Definition 15 (Network of Timed Automata). A network of timed automata

(NTA) is a parallel composition of n timed automata (A1 ∥ · · · ∥ An), with Ai =

(Li ,ℓ0
i

, Xi ,Σi ,Ei , Invi ).

Figure 2.9 shows an example of NTA, taken from [AILS07]. The lamp pre-
sented before is now put in parallel with a user that can press the switch. The
press action is now a common action and has to be performed simultaneously
by the two automata. In this example, at some point before 10 time units, the
user will press the button. The press action is then performed by both automata
that move to states light and U ′ respectively, and reset their clock. Then the user
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off light bright
press, {x} x ≤ 4, press

x > 4, press

press

U

y ≤ 10

U ′

y ≤ 3
press, {y}

y = 3, press, {y}

Fig. 2.9: A network of timed automata

keeps pressing the switch every 3 time units, causing the lamp to visit states
bright, then off then light, then bright, and so on.

We denote by X =
⋃

i∈[1..n] Xi the set of clocks and by Σ =
⋃

i∈[1..n]Σi the set
of actions. Clocks and actions may be shared.

Synchronizations The set of synchronizations Sync is defined as the set of
(e1, . . . ,en) ∈ (E1 ∪ {•})×·· ·× (En ∪ {•}) \ {(•, . . . ,•)} such that

• either the same label a 6= ε is attached to all the edges ei 6= •, and for all i

such that ei = •, a ∉Σi ,

• or only one component ei is different from •, and label ε is attached to this
edge.

That is, we use the symbol • when an automaton is not involved in a step of the
global system, and silent actions are performed by only one automaton. Lastly,
for any s = (e1, . . . ,en) ∈ Sync, Is = {i ∈ [1..n] | ei 6= •} denotes the indices of the
automata that are concerned by the synchronization.

Sequential Semantics as a Timed Transition System We denote by (~ℓ, v) a
state of an NTA, where ~ℓ ∈ L1 × ·· · × Ln is the vector of current locations and
v is a clock valuation over X . We note ℓi the location associated with the i th

automaton in ~ℓ. The semantics of the NTA (A1 ∥ · · · ∥ An) can be described as the
timed transition system TTS(A1 ∥ · · · ∥ An) = (S, s0,Σ,→) where

• S = {(~ℓ, v) ∈ (L1 ×·· ·×Ln)× (X →R≥0) | v |=
∧

i∈[1..n] Invi (ℓi )},

• s0 = (~ℓ0, v0) with ~ℓ0 = (ℓ0
1, . . . ,ℓ0

n), and ∀x ∈ X , v0(x) = 0,

• →∈ S × (Σε∪R≥0)×S is defined by

Time delay step: (~ℓ, v)
d
−→ (~ℓ, v +d) for some d ∈R≥0, iff

v +d |=
∧

i∈[1..n] Inv(ℓi ),
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(a) Network of timed automata
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(b) Product automaton

Fig. 2.10: Two timed automata and their product automaton

Action step: (~ℓ, v)
a
→ (~ℓ′, v ′) for some a ∈Σε, iff

∃s = (e1, . . . ,en) ∈ Sync s.t. ∀i ∈ [1..n], if ei = •, then ℓ′
i
= ℓi ,

otherwise ei = (ℓi , gi , a,ri ,ℓ′
i
),

v |=
∧

i∈Is
gi , v ′ = v[

⋃

i∈Is
ri ], and v ′ |=

∧

i∈[1..n] Invi (ℓ′
i
).

Sequential Semantics as a Product Automaton The semantics of a network
of timed automata can also be given as a big timed automaton called product

automaton. Below, we define the product of n timed automata.

Definition 16 (Product Automaton). The product automaton of timed automata
A1, . . . , An , denoted by A1 ⊗·· ·⊗ An , is the timed automaton (L,ℓ0, X ,Σ,E , Inv),
where

• L ⊆ L1 ×·· ·×Ln is the smallest set that contains ℓ0 and is closed under E ,

• ~ℓ0 = (ℓ0
1, . . . ,ℓ0

n),

• E is defined by: ~ℓ
g ,a,r
−−−→~ℓ′ iff

∃s = (e1, . . . ,en) ∈ Sync s.t. ∀i ∈ [1..n], if ei = •, then ℓ′
i
= ℓi ,

otherwise ei = (ℓi , gi , a,ri ,ℓ′
i
),

g =
∧

i∈Is
gi , and r =

⋃

i∈Is
ri ,

• ∀~ℓ ∈ L, Inv(~ℓ) =
∧

i∈[1..n] Invi (ℓi ).

Thus the set of edges is obtained by coupling the edges of the individual
automata having the same label (different from ε).

For example, Fig. 2.10(b) shows the product automaton of the two timed au-
tomata of Fig. 2.10(a).
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Tools and Case Studies

NTA are very useful for modeling distributed real-time systems. Despite the un-
countable state space, the reachability problem is decidable via the construc-
tion of a finite abstraction, called region automaton. This fundamental result
enables the use of formal methods for the verification of NTA. However, in order
to reduce the state space and be able to analyze large systems, some reduction
methods are used.

Several tools have been implemented for the verification of NTA. Among
them, UPPAAL [BDL04] uses NTA with handshake (binary) synchronizations,
augmented with integer variables. KRONOS [BDM+98] uses NTA with binary or
n-ary rendez-vous, also augmented with integer variables. Lastly, CMC [LL98]
(for “Compositional Model Checking”) focuses on avoiding the state explosion
problem and implements a compositional method.

These tools have been successfully used in various industrial case studies,
for example [BGK+96, DY00, RSV11] for UPPAAL and [MY96] for KRONOS.

2.3.3 Time Petri Nets

The Petri net model lacks the notion of time that is a critical factor in many real
systems. In order to capture timing aspects, several timed extensions have been
proposed. Time Petri nets [Mer74] is one of them. In this formalism, a firing
interval [efd(t ), lfd(t )] is associated with each transition t . If δ denotes the mo-
ment when transition t has been enabled, then t has to fire within the interval
[δ+efd(t ),δ+ lfd(t )], unless it is disabled by the firing of another transition.

There are other variants of Petri nets extended with time. In timed arc Petri
nets, each token has a clock representing its age, but a non-urgent semantics
is assumed: the firing of a transition may be delayed and a transition may be
disabled because its input tokens become too old [AN01, dFERA00]. Timed Petri
nets [Ram74] associate a firing time to each transition and a transition fires as
soon as possible, contrary to time Petri nets, where a transition fires in a time
interval. Other variants are presented and compared in [BR08].

Syntax and Semantics

Definition 17 (Time Petri Net [Mer74]). A time Petri net (TPN) is a tuple
(P,T,F, M0,efd, lfd) where (P,T,F, M0) is a Petri net and efd : T → R≥0 and lfd :
T → R≥0 ∪ {∞} associate an earliest firing delay efd(t ) and a latest firing delay

lfd(t ) with each transition t .

Several semantics have been proposed for TPNs. Here we use the original
and most common one, called intermediate semantics [BD91]. The different se-
mantics are compared in [BCH+05a].
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Newly Enabled Transitions We use the intermediate semantics: t ′ is newly en-

abled by the firing of t from marking M if it is not enabled by M\•t (intermediate
marking) and it is enabled by M ′ = (M\•t )∪ t• (reached marking). Formally, we
define the predicate ↑enabled(t ′, M , t ) as follows:

↑enabled(t ′, M , t ) ⇐⇒ (•t ′ ⊆ M ′)∧
(
•t ′ 6⊆ (M\•t )

)

Strong Semantics For the firing delays of a transition, we use the strong se-

mantics: t can fire if it is enabled and ν(t ) ≥ efd(t ), and t has to fire before ν(t )
overtakes lfd(t ).

The strong semantics, that enables to model urgency, is the most common
one. However, a weak semantics has also been considered [BR08, RS09].

With these rules, we are able to define the semantics of a TPN as a TTS.

Sequential Semantics as a Timed Transition System A state of a TPN is given
by (M ,ν) where M is a marking and ν : T → R≥0 is a valuation such that each
value ν(t ) is the elapsed time since the last time transition t was enabled. ν0 is
the initial valuation with ∀t ∈ T,ν0(t ) = 0.

The timed transition system generated by the TPN N , is defined by
TTS(N ) = (S, s0,T,→) such that:

• S = {(M ,ν) ∈N
P × (T →R≥0) | ∀t ∈ T,•t ⊆ M ⇒ ν(t ) ≤ lfd(t )},

• s0 = (M0,ν0) is the initial state,

• →∈ S × (T ∪R≥0)×S is defined by:

– discrete transition: ∀t ∈ T, (M ,ν)
t
→ (M ′,ν′) iff





(•t ⊆ M)∧efd(t ) ≤ ν(t ) ≤ lfd(t ))
M ′ = M − •t + t•

∀t ′ ∈ T,ν′(t ′) =

{
0 if ↑enabled(t ′, M , t ),
ν(t ′) otherwise.

– continuous transition: ∀d ∈ R≥0, (M ,ν)
d
→ (M ,ν′) iff (ν′ = ν+ d) ∧

(∀t ∈ T,•t ⊆ M ⇒ ν′(t ) ≤ lfd(t ))

Example Figure 2.11 shows an example of TPN. Initially, transitions a and c

are enabled, but only a is firable. If a 1 time unit delay is performed, then a

and c are firable. Assume c fires at time 1, and a fires at time 2, then b has to
fire immediately after a, because of its firing interval [0,0], and d is disabled
before being firable. However, if a fires at time 0, and no other transition fires
before time 2, then c and d reach their latest firing delay, therefore they have to
fire immediately, unless they are disabled (b can fire immediately after c, and
disable d).

Also observe that in the case when c and d both fire at time 2, the two firings
are not ordered (neither causally, nor chronologically).
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•p0

a[0,∞)

p1

d[2,2]

p4

b[0,0]

•p2

c[1,2]

p3

Fig. 2.11: A time Petri net
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Fig. 2.12: The semantics of the TPN of Fig. 2.11 as a timed automaton

Sequential Semantics as a Timed Automaton We can also define the seman-
tics of a TPN as a TA called marking TA and introduced in [GRR06]. Indeed, the
marking TA of the TPN (P,T,F, M0,efd, lfd) is the TA (L,ℓ0, X ,Σ,E , Inv) such that

• L ⊆ 2P is the set of reachable markings,

• ℓ0 = M0,

• each clock xt ∈ X is associated with one transition t ,

• Σ= T ,

• E =
{

(M , g , t ,r, M ′) | M ′ = (M\•t ) ∪ t•, g ≡ xt ≥ efd(t ),r = {xt ′ |

↑enabl ed(t ′, M , t )}
}

,

• for each reachable marking M ∈ L, Inv(M) ≡
∧

•t⊆M

(

xt ≤ lfd(t )
)

.
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A timed word is accepted by a TPN iff it is accepted by its marking TA. Figure 2.12
shows the marking TA of the TPN presented in Fig. 2.11. We note that concur-
rency is not explicit in this automaton, as it naturally gives the sequential se-
mantics of the TPN, even though we can observe a diamond (bold edges) that
shows the possible interleavings between actions a and c.

Known Results Below we summarize some known results of interest. Most of
the problems that were decidable for PNs without time are now undecidable.
Only the k-boundedness is decidable.

Whether a marking M is reachable (i.e. whether some state (M ′,ν′) such that
M ′ = M is reachable) is undecidable [JLL77] (it is shown that TPNs can simulate
deterministic input-free 2-counter machines). Hence, the reachability of a state
is also undecidable.

Because of this, boundedness and liveness are also undecidable.
However, k-boundedness is decidable by the construction of a finite abstrac-

tion called the state class graph [BD91].

Tools TPNs are becoming a well-accepted model for distributed real-time sys-
tems, and very mature tools for their simulation and verification exist.

TINA (TIme petri Net Analyzer) is a toolbox for the edition and analysis of
PNs, with possibly inhibitor arcs and read arcs, TPNs, with possibly priorities
and stopwatches [BRV04]. In particular, TINA can compute the S-invariants of a
net.

Roméo is a software for TPN analysis. It performs analysis on TPNs and on
one of their extension to scheduling. Roméo also deals with parameters and
stopwatches [GLMR05, LRST09].

CPN Tools is a tool for editing, simulating, and analyzing Colored Petri Nets.
The tool handles several variants of timed nets [JKW07].

Time Processes for Time Petri Nets

We now summarize some results about time processes for TPNs. These re-
sults give the first steps toward the unfolding of TPNs. They were introduced
in [AL97].

Causal nets are defined as conflict-free ON. That is, a causal net CN =

(B ,E ,F ) is a finitary , acyclic net, where ∀b ∈ B , |•b| = 1∧|b• ≤ 1|.
The relation between a TPN and a causal net is given by a net homomor-

phism, as for branching processes of a PN. When a causal net is associated with
a TPN in this way, it is called causal process of the TPN. However, in order to rep-
resent a run of a TPN, a causal process (CN ,π) must be equipped with a timing

function τ : E →R≥0 that gives the occurrence times of the events. A time process

of a TPN will be a causal process equipped with a timing function τ that has to
be a valid timing.
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t1[1,1]

t3[2,3]

t2 [1,2]

t4 [0,1]

(a) A time Petri net

e1τ(e1) = 1

e33 ≤ τ(e3) ≤ 4

e2 1 ≤ τ(e2) ≤ 2

⊥τ(⊥) = 0

e4

(b) A causal process (without e4), and
some constraints over the occurrence
times of its events

Fig. 2.13: In addition to the constraints given in Fig. (b), a valid timing τ has to

satisfy τ(e3) ≤ τ(e2)+1.

We first define some notions that will help us define a valid timing. If B ′ is a
set of conditions, and transition t is enabled by π(B ′), the time of enabling for t

in B ′ is defined as

toe(B ′, t ) = max({τ(•b) | b ∈ B ′∧π(b) ∈ •t }).

The set of earlier events for an event e is

Earlier(e) = {e ′ ∈ E | τ(e ′) < τ(e)}.

The authors notice that owing to dependencies between events of a TPN, the
notion of valid timing has to take into account several points. First, of course
the occurrence time of an event must be in the interval defined by its time of
enabling and its earliest and latest firing delays. These constraints are written in
the example of Fig. 2.13(b). But, the occurrence of an event also depends on the
events that could enable its conflicting events. For example, consider the TPN of
Fig. 2.13(a), and the causal process of Fig. 2.13(b). Any timing function τ of the
causal process has to satisfy τ(e1) = 1, 3 ≤ τ(e3) ≤ 4, and 1 ≤ τ(e2) ≤ 2. Moreover,
for t3 to be able to fire, the timing has to satisfy τ(e3) ≤ τ(e2)+ 1, otherwise t4

has to fire before t3 is firable. Here, the only valid timing for the given process is
τ(e2) = 2 and τ(e3) = 3.

Therefore, timing constraints add causal constraints between events (in our
example, e3 can occur only if e2 occurs late enough), that are not represented in
the partial order defined by the causal net. That is why the occurrence date of
an event e also involves the events enabled by Ce = Cut(Earlier(e)).

Finally, we are able to give the following definitions.

Definition 18 (Valid Timing, Time Process [AL97]). Let (P,T,F, M0,efd, lfd) be a
TPN, (CN ,π) its causal process, where CN = (B ,E ,G), and τ : E → R≥0 a timing



2.3. Distributed Timed Systems 49

function. τ is a valid timing of the causal process if τ(⊥) = 0 and

∀e ∈ E ,τ(e) ≥ toe(•e,π(e))+efd(π(e)) (2.1)

∀e ∈ E ,∀t ∈ En(π(Ce )),τ(e) ≤ toe(Ce , t )+ lfd(t ). (2.2)

A time process of a TPN is a triple (CN ,π,τ) where (CN ,π) is a causal process of
the TPN and τ is a valid timing of the causal process.

Intuitively, a time process represents an execution of the TPN (up to a given
time). The image by π of a timed linearization of a time process gives a timed
word accepted by the TPN. A timed linearization assigns valid time stamps to
the events and imposes a total order over them, compatible with the partial
order given by the causal net, and the chronological order given by the time
stamps. For example (e1,1)(e2,2)(e3,3) is a timed linearization of the time pro-
cess of Fig. 2.13(a).

Moreover, one implicit property of a valid timing is the temporal complete-
ness defined below. The temporal completeness ensures that all the concurrent
parts of a causal process have advanced until the same time.

Definition 19 (Temporal Completeness [AL97]). Let (P,T,F, M0,efd, lfd) be a
TPN, (CN ,π) its causal process, where CN = (B ,E ,G). Then, the causal process
(CN ,π) is temporally complete with respect to timing function τ iff

∀t ∈ En(π(Cut(E))),max{τ(e) | e ∈ E } ≤ toe(Cut(E), t )+ lfd(t ).

Final Remark We recalled the work of [AL97], where the authors define valid
timings for arbitrary causal processes. But every causal process cannot be as-
signed a valid timing.

Furthermore, contrary to the untimed case where the unfolding can be com-
puted by looking independently at the concurrent parts, this cannot be done in
the same manner in the timed case, because of the aforementioned dependen-
cies. Nevertheless, a method for computing a finite complete prefix of a TPN has
been defined in [CJ06].
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This chapter is an introduction to Part I that focuses on concurrency in timed
systems. It also introduces some notions that will be used in Chapters 4 and 5.
So far, the different formalisms we presented were described using sequential

notions such as timed words, timed languages and timed transition systems.
Yet it is obvious that formalisms such as NTA and TPN can be used to model
distributed timed systems. Here, we want to distinguish clearly between the
formalisms and notions used to describe centralized timed systems, and those
used to describe distributed timed systems. We also observe that we miss some
notions to describe the distributed semantics of NTA and TPN.

Some formalisms were introduced for the study and the modeling of dis-
tributed timed systems, with a focus on the distributed nature and the concur-

rency. Timed extensions of message sequence charts emphasize the complex
dependencies between the order imposed by the causality and the one imposed
by the timing constraints [ABG07]. Another formalism, called distributed timed
automata, considers NTA where each clock belongs to one automaton, and can
be reset by this automaton only [ABG+08]. Hence the automata are more inde-
pendent. After a formalization of independency, some works also define partial
order reduction techniques for timed systems [Min99, BJLY98, LNZ05]. Lastly,
we address the problem of implementing distributed timed systems on a dis-
tributed architecture, and in particular the problem of shared clocks.

In a second section, we present some extensions of NTA that focus on the
distribution and the interactions. Then we introduce general notions, based
on partial order, for describing the executions of distributed timed systems and
comparing their behavior.

Organization of the Chapter We first present, in Section 3.1, the problem and
the motivations of using distributed semantics to study models of distributed
timed systems. Then we recall and compare some related works. Lastly, in Sec-
tion 3.2, we present notions to describe and compare the distributed behavior
of distributed timed systems.
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3.1 Problem and Related Work

3.1.1 Problem

Distributed timed systems are timed systems with several components (or pro-
cesses) that may perform local actions or synchronize with each other. We fo-
cus on two formalisms for such systems: NTA and TPN. Usually, the semantics
of these formalisms is presented with sequential notions, such as timed words,
TTS, product automaton (for NTA), or marking TA (for TPN). Indeed, there are
only a few works on distributed semantics for timed systems.

Sequential vs Distributed Semantics

A sequential semantics describes the executions of a model as a total order over
events. Therefore, such semantics is suitable for describing models of central-

ized systems such as TA. Indeed, a TA alone is considered as a sequential com-
ponent, in the sense that it is supposed to model a single process that performs
local actions only. But a sequential semantics is unsuitable for describing mod-
els of distributed systems such as NTA and TPN, because it is not able to describe
the distribution of actions over the different processes, and the resulting partial
ordering of events.

Moreover, when we want to preserve concurrency, we consider that a prod-
uct automaton is not a good representation of an NTA and that a marking TA
is not a good representation of a TPN. With such representations, the structural
separation of processes, that comes from the physical separation, is lost. Hence
the actions and variables (in particular clocks) are no longer distributed over the
processes, and they all become local.

Therefore, in order to represent the behavior of NTA and TPN as models of
distributed timed systems, we need a partial order semantics which reflects the
distribution of actions over the processes. In Subsection 3.2.2, we present the
notions of timed trace and distributed timed language. These notions are use-
ful to characterize the fact that different representations of a same distributed
timed system in different formalisms are equivalent.

Comparison and Translation of Formalisms

Several formalisms to model distributed real-time systems coexist in the liter-
ature. With each formalism comes a series of dedicated simulation and verifi-
cation tools. This naturally entails a need to compare the expressiveness of the
different formalisms, and to translate models from one formalism to another
when possible.

The first formal comparisons of the expressiveness of these models focused
on the preservation of the sequential behavior of the models, using notions like
timed language equivalence or timed bisimilarity. They do not consider preser-
vation of concurrency.
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In Chapter 4, we want to compare and translate NTA and TPN while con-
sidering concurrency, i.e. the number of components and the distribution of ac-

tions over the components.

Implementability

The focus on the preservation of the number of components and the distribu-
tion of actions also finds a motivation when one considers implementing a dis-
tributed model on a distributed architecture.

Implementability of NTA NTA are widely used to model distributed real-time
systems. Quite often in the literature, the automata are allowed to share clocks,
i.e. the transitions of one automaton may be guarded by a condition on the value
of clocks reset by another automaton. This is a problem when one considers
implementing such model in a distributed architecture, since reading clocks a
priori requires communications which are not explicitly described in the model.

In Chapter 5, we focus on the following question: given an NTA A1 ∥ A2

where A2 reads some clocks reset by A1, does there exist an NTA A′
1 ∥ A′

2 with-
out shared clocks, and with the same behavior as the initial NTA? For this, we
allow the automata to exchange information during synchronizations only, in
particular by copying the value of their neighbor’s clocks. In order to formalize
this problem, we need extended notions of TTS and timed bisimulation. To this
purpose, we will define the notion of contextual timed transition system, which
represents the behavior of A2 when in parallel with A1, and the associated no-
tion of contextual timed bisimulation.

3.1.2 Related Work

Distributed Semantics for Timed Systems

In the untimed context, Mazurkiewicz traces [DR95] are defined using an inde-
pendency relation that arises naturally from the distribution of actions. How-
ever, in the presence of time such relation would have less nice properties be-
cause even actions that occur in two totally independent processes may be or-
dered by their occurrence time. These orders induced by causality and by time
stamping of events appear in [ABG07], where timed MSCs (Message Sequence
Charts) and MSCs with timing constraints are considered, and in [ABG+08]
where the authors consider distributed timed automata with independently
evolving clocks.

In [PBV11], a simple extension of TPN that eases the specification of time
dependent systems in a compositional approach is defined. Components can be
easily derived from TPN specifications, without penalty for the future analysis of
the whole system or for analysis of the individual components.

While partial order semantics are well known for untimed systems, they have
been very little studied for distributed real-time systems.
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Partial Order Reduction Techniques for Timed Systems Defining distributed
semantics for timed systems enables the use of partial order techniques that
improve their analysis. Partial order reductions were defined for both TPN
and NTA. Partial order reductions for (N)TA were proposed in [Min99, BJLY98,
LNZ05]. Some of them are detailed below.

An independency relation among the actions of a timed automaton, using
a diamond property that takes time into account is defined in [LNZ05, NQ06].
This relation enables the use of partial order reduction techniques that avoid
the combinatorial explosion in the analysis of timed automata. In [Pag96] a no-
tion of independency between transitions is defined: two transitions are inde-
pendent if they can be fired in any order and the resulting states are the same.
Then this idea is lifted to the symbolic semantics and used for the detection of
deadlocks.

Another approach, for time Petri net, is presented in [YSSC93, YS97], where
an efficient model checking algorithm for the verification of real-time systems
based on the partial order approach is presented.

Lastly, a local-time semantics for NTA is presented in [BJLY98]: local clocks
evolve independently and are resynchronized at synchronization points. Then
a method for partial order reduction in a symbolic reachability algorithm is pre-
sented.

Translations

The expressiveness of timed extensions of Petri nets and (N)TA has been com-
pared in several works [BCH+05b, BR08, BHR08, Srb08].

Several transformations have been proposed and we observe the following.
(i) The transformations mainly rely on natural structural equivalences between
the basic elements of the formalisms. For instance, a location of a TA corre-
sponds to a place of a TPN, a transition of a TPN corresponds to a tuple of syn-
chronized transitions of an NTA, and the time interval associated with a transi-
tion of a TPN becomes a pair (guard, invariant) in a TA. (ii) Beyond these natural
equivalences, there is no obvious one to one conversion in general. The natural
transformations tend to preserve concurrency. But when the transformations
become less immediate, one uses tricks that unfortunately destroy concurrency.

Therefore it is not surprising that the first works about formal comparisons
of the expressiveness of these models do not consider preservation of concur-
rency. In [CR06], a structural transformation from TPN to NTA extended with
integer variables is defined. This transformation builds a timed automaton per
transition of the TPN and preserves weak timed bisimilarity. In the other di-
rection, [BCH+08] shows that there are timed automata that are not weakly
timed bisimilar to any TPN. In [BJS09], the authors propose a translation from
bounded timed arc Petri nets to NTA, based on the decomposition of the net
in sequential components that communicate through handshake synchroniza-
tions (in the UPPAAL style). In [SY96], another timed extension of Petri nets with
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intervals on arcs is considered. In order to guarantee compositional properties,
their Petri nets are translated to timed automata enriched with an ad-hoc mech-
anism of deadlines, which hides the communications between components that
would be necessary to implement it.

Some works have also translated extensions of MSCs into (N)TA or vari-
ants of TA. In [AGMK10], the authors translate regular collections of time-
constrained MSCs into a special class of event-clock automata [AFH99] (an al-
ternative to TA), thus permitting an algorithmic solution to the model checking
problem. Lastly, in [LBD+10], a timed extension of live sequence charts (an ex-
tension of MSCs) is used in two approaches: (i) for modeling a system as a set of
live sequence charts (LSCs), and (ii) for specifying a requirement that has to be
satisfied by a system (modeled as an NTA or a set of LSCs). In order to implement
LSCs in UPPAAL, the authors propose (i) a translation of the set of LSCs into an
NTA so that each instance line is translated into one TA, and (ii) a translation of
the LSC into an observer TA.

Locality of Clocks and Implementability

Locality of Clocks The semantics of time in distributed systems has been de-
bated in the introduction. The idea of localizing clocks has already been consid-
ered in the model of distributed timed automata, and some authors [ABG+08,
DL07, BJLY98] have even suggested to use local-time semantics with indepen-
dently evolving clocks. In this thesis, we stay in the classical setting of perfect
clocks evolving at the same speed. This is a key assumption that provides an
implicit synchronization and lets us know some clock values without reading
them.

A study of shared clocks is conducted in [LMST03], where the authors inves-
tigate the power of shared clocks for an extension of TA called concurrent timed

automata (CTA). In particular, they prove that simulating shared clocks implies,
in general, an exponential growth of the CTA with diagonal free clock constraints
and constant updates.

Another extension of timed automata, timed cooperating automata is pre-
sented in [LMSP00]. In this extension, automata view the current state of other
automata and the time elapsed since their activation.

Behavioral Equivalences for Distributed Timed Systems History-preserving
bisimulations, behavioral equivalence relations for distributed untimed systems
were defined in [BDKP91, vGG01]. Nevertheless, we are not aware of behavioral
equivalences for distributed timed systems.

The notion of contextual timed bisimulation we present in Chapter 5 deals
with the knowledge of agents in distributed systems. This is also the aim of epis-
temic logics [HFMV95], which have been extended to real-time [WL04, LPW07,
Dim09]. Our notion of contextual TTS also resembles the technique of parti-
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tioning states based on observation, used in timed games with partial observ-
ability [BDMP03, DLLN09].

Robustness and Implementability of Timed Automata Other works consider
problems that come from the implementation platform. Because of the digi-
tal nature and the imprecision of the hardware, some properties that hold on
the model do not hold on its implementation [BLM+11]. This observation leads
to defining robust timed automata, as in [GHJ97]. Also, an implementable se-
mantics, called almost ASAP semantics is considered in [DDR04], where it is
observed that, with the usual semantics, some specifications cannot be imple-
mented on a hardware, no matter how fast it is. However these works do not
consider distributed systems.

3.2 Modeling Distribution and Interaction

In order to formalize preservation of concurrency in real-time models, we take
into account the distribution of actions over a set of processes. Each process
represents a component which has its own alphabet of actions. When an action
belongs to several processes, it represents a synchronization, otherwise it is a
local action.

We also consider the distribution of clocks: in some NTA, clocks may be local
i.e. clocks are reset and read by only one automaton, whereas in so-called dis-

tributed TA [ABG+08, DL07], clocks can be reset by only one automaton (their
owner) but can be read by any automaton.

3.2.1 Extensions of Networks of Timed Automata

Focusing on NTA as a formalism for distributed real-time systems imposes con-
sidering locality and distribution of actions and clocks (or other variables when
the syntax is extended).

Below we consider two extended syntaxes for NTA. These syntaxes have been
used in two works presented in Chapters 4 and 5.

Local Syntax vs Global State Syntax

We call local syntax the common syntax for NTA, but with local clocks only, i.e.
every clock can be read and reset by only one automaton. This is a restriction
of the syntax of NTA, where usually no such assumption is made. Thus, in this
local syntax, invariants are still of the form i ::= x ≤ k | x < k | i ∧ i , as defined in
Subection 2.2.2.

We also define an extended syntax that we call global state syntax (and that
will be used in Chapter 4), in which clocks can be read by any automaton, but
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reset by only one automaton, and invariants are now of the following form.

i ::= x ≤ k | x < k | i ∧ i | ℓ | i ∨ i

The two last constructors are not standard. In an invariant, “ℓ” is true if ℓ is a
current location, that is, invariants are evaluated according to the global state of
the system (current locations and valuation) and not only to the valuation. We
denote by B(X ,L) the set of such constraints over the set of clocks X and the set
of locations L. Other operators that do not extend the expressiveness of i can be
used, such as

• the negation of a location: ¬ℓi ≡
∨

ℓ∈Li \{ℓi }ℓ,

• the implication: ℓ⇒ (x ≤ k) ≡¬ℓ∨ (x ≤ k), and

• the minimum of a set of clocks: mini∈I (xi ) ≤ k ≡
∨

i∈I (xi ≤ k).

This extended syntax does not change the expressiveness w.r.t. the sequen-
tial semantics. Indeed, in the associated product automaton, clocks are local
and the states of all TA are known, therefore there is no need to read a loca-
tion ℓ in an invariant. Moreover, whatever the considered semantics, a simple
construction with ε-transitions shows that operator ∨ does not increase the ex-
pressiveness. But we will show in Chapter 4 that, if we consider the distributed

timed language (see Subsection 3.2.2), the global state syntax enhances the ex-
pressiveness of the NTA with local clocks.

Although it is not generally allowed to share active locations in timed au-
tomata, there are several variants of timed automata that can handle such
a feature. For example, NTA can be extended with shared variables as in
UPPAAL [BDL04], and a boolean variable can be associated with each location
and used to denote whether the location is enabled (active). In [LMSP00], the
authors propose another variant, Timed Cooperating Automata, a parallel com-
position of sequential automata where the edges can be guarded with timing
constraints of the form q = τ (location q is enabled for τ time units), q[τ] (loca-
tion q is enabled for at least τ time units), q{τ} (location q is disabled for at most
τ time units) or boolean combinations of these terms.

A Special Case of Updatable Timed Automata

Updatable Timed Automata (UTA) were introduced in [BDFP00a] and further
investigated in [BDFP00b, BDFP04]. Unlike standard TA that allow only resets
of clocks (sometimes denoted as x := 0 where x is a clock), UTA are constructed
with updates of the following form: x :∼ k | x :∼ y +k, where x and y are clocks,
∼ ∈ {<,≤,=, 6=,≥,>}, and k ∈N. They also allow diagonal clock constraints, that
are constraints of the form x− y ≤ k, where x and y are clocks, and k ∈N, but we
will not consider them.
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We will consider only UTA with deterministic updates (the operator ∼ is
the equality) and without diagonal constraints. For this subclass, it is shown
in [BDFP00a], that the emptiness problem is decidable, which enables the ver-
ification of such TA. Also, one of the results presented in [BDFP00b] is that any
UTA of this subclass is strongly timed bisimilar to a classical TA, i.e. to a TA with
the standard syntax presented in Subsection 2.2.2. Hence, UTA with determinis-
tic updates are as expressive as classical TA. In fact, to be more precise, with only
updates of the form x := k and x := y (the updates we will consider), the results
are the same if diagonal constraints are considered.

Although the subclass of UTA we consider is not more expressive than clas-
sical TA, it allows to represent in a concise way systems that cannot be modeled
in a natural way with classical TA. Subclasses of UTA have been implemented in
UPPAAL, with a technique presented in [BBFL03].

Lastly, we will see in Chapter 5 that when NTA are considered with a dis-
tributed semantics, networks of UTA are more expressive than classical NTA.

Two Extensions that Increase the Expressiveness of NTA with Local Clocks
The two extensions we presented were used in two studies of the distributed
semantics of NTA.

First, in Chapter 4 we show how to translate a TPN into an NTA with the
global state syntax. We also prove that we cannot preserve the distributed se-
mantics of the TPN if we restrict ourselves to the local syntax where clocks are
not shared.

Second, in Chapter 5, we show how to decide whether a distributed NTA
A1 ∥ A2, can be translated into an NTA A′

1 ∥ A′
2 without shared clocks, but with

clock copies (i.e. updates of the form x := y , where y can be a clock of a neigh-
bor automaton) on synchronizations. We then present a construction of such
A′

1 ∥ A′
2 when it exists. In this work also, we show that in general, we cannot

achieve the construction of A′
1 ∥ A′

2 if we allow only classical NTA with a local
syntax.

Below, we present timed traces, a distributed semantics for timed systems.

3.2.2 Timed Traces and Distributed Timed Bisimulations

A sequential semantics is not adapted to describe distributed systems because
the information about the distribution of actions over the different components
is lost.

We define timed traces as a partial order representation of executions of our
models for real-time distributed systems. Timed traces provide an alternative to
timed words, and take the distribution of actions into account. They generalize
timed words and represent the executions of either an NTA or a TPN on which
processes have been identified.
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Fig. 3.1: A network of timed automata and a generated timed trace (one possible

associated timed word is (d ,3)(a,3)(b,4)(c,8)(d ,11))

Timed Traces Given a distributed timed system over alphabet Σ, with its set
of processes Π= {π1, . . . ,πn}, we can describe the runs of the system as timed

traces. With this definition, each action a ∈ Σ is associated with a set of pro-
cesses, proc(a) ⊆ Π, that always perform it together and simultaneously, there-
fore it may be local or shared (synchronization). Events (action occurrences)
are partially ordered since two events on disjoint sets of processes may not be
causally ordered. The set of events is denoted by E , and for e ∈ E , λ(e) ∈Σ is the
name of the action associated with event e.

We first give some preliminary notations:

• Σi = {a ∈Σ |πi ∈ proc(a)} denotes the alphabet of process πi , and

• Ei = {e ∈ E |λ(e) ∈Σi } denotes the set of events that occur on process πi .

Definition 20 (Timed Trace, Distributed Timed Language). A timed trace over
the alphabet Σ and the finite set of processes Π = {π1, . . . ,πn} is a tuple
W = (E ,4,λ,δ,proc) where

• E is a countable set of events,

• 4 ⊆ (E × E) is a partial order over E such that, for any event e, the set
{e ′ ∈ E | e ′ 4 e} is finite, and for any i in [1..n], 4|πi

=4∩ (Ei ×Ei ) is a total

order on Ei .

• λ : E →Σ is a labeling function,

• δ : E → R≥0 assigns a date to every event such that, if e1 4 e2, then
δ(e1) ≤ δ(e2);

• proc : Σ→ 2Π is the distribution of actions that maps each action to a sub-
set of Π.

A distributed timed language is a set of timed traces.
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Observe that two unordered events ei and e j are necessarily performed by
two disjoint sets of processes, i.e. satisfy proc(λ(ei ))∩proc(λ(e j )) =;. Two un-
ordered events are called concurrent.

Graphical Representation Figure 3.1 gives a representation of a timed trace.
Each process is represented by a vertical line, and each event is represented by
either a dot or dots connected by a horizontal line, according to whether it oc-
curs on one process or on several processes. Each event e ∈ E is also labeled
by the pair (λ(e),δ(e)). Moreover, events are ordered along each process from
the top to the bottom of the line, and we can see that events on different pro-
cesses are not always ordered. For example, (a,3)4(b,4), (b,4) and (d ,3) are not
ordered, and (b,4)4(d ,11) because (c,8) takes them apart by transitivity.

Timed Linearization and Projection A timed linearization of a timed trace is a
possible execution expressed as a timed word which respects both the causal or-
der prescribed by the partial order, and the chronological order imposed by the
time stamping. For example, (d ,3)(a,3)(b,4)(c,8)(d ,11) is a timed linearization
of the timed traces of Fig. 3.1(b). For a given timed trace, there can be several
timed linearizations. In the given example, (a,3) and (d ,3) can be switched.

The projection of a timed trace W onto processπi , denoted by W|πi
is defined

as the projection of any linearization of W , w , onto Σi , denoted by w|Σi
:

• if w = ε, then w|Σi
= ε

• if w = (a,θ) ·w ′, then w|Σi
=

{

(a,θ) ·w ′
|Σi

if a ∈Σi

w ′
|Σi

otherwise

Graphically, this corresponds to taking all events, in the process line πi , from
the top to the bottom. For example, if W is the timed trace of Fig. 3.1(b), then,
W|π1 = (a,3)(b,4)(c,8).

Definition as a Timed Word and a Distribution of Actions A timed trace W

can be defined as a tuple (w,proc) where w is a timed linearization of W .

This means that, given a timed word w = (a0,d0) . . . (an ,dn) . . . accepted by
an NTA, and the distribution of actions proc over the automata, we can build an
accepted timed trace for the NTA. Namely, E = {e0, . . . ,en , . . .}, λ and δ are such
that, for each i ≥ 0, λ(ei ) = ai and δ(ei ) = di , and4 is the transitive closure of the
relation4′ defined as: for any events ei and e j , ei 4

′ e j ⇐⇒
(

i ≤ j∧proc(λ(ei ))∩
proc(λ(e j )) 6= ;

)

.

Hence, a distributed timed language can also be defined as a timed language
and a distribution of actions.
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Definition as a Juxtaposition of Timed Words The juxtaposition of n timed
words, w1 ∥ w2 ∥ · · · ∥ wn is the timed trace W , over the set of processes Π =

{π1, . . . ,πn}, such that for each i in [1..n], W|πi
= wi .

Hence, if (a,θ) appears in the timed words wi1 , . . . , wik
, then proc(a) =

{πi1 , . . . ,πik
} ⊆ Π, and there is an event e ∈ E such that λ(e) = a and δ(e) = θ.

There are as many events with this label and date as there are (a,θ) in any wi j

with j ∈ [1..k]. Lastly, 4 is the transitive closure of the union of the causal orders
imposed by the words w1, . . . , wn .

This juxtaposition is defined such that for any timed trace W over π1, . . . ,πn ,
W = W|π1 ∥ · · · ∥ W|πn

. For example, (a,3)(b,4)(c,8) ∥ (d ,3)(c,8)(d ,11) gives the
timed trace of Fig. 3.1(b).

These notions are similar to the notion of histories, for untimed concurrent
systems, introduced in [Shi85]. The main idea is to represent non-sequential
processes by a collection of individual histories of components running concur-
rently. Such collection is called global history.

Distributed Timed Bisimulation

A natural notion that follows from the definition of a timed language as a timed
word together with a distribution of actions, is the definition of a distributed
timed bisimulation. As in the sequential case, distributed timed bisimulation is
a finer behavioral equivalence than distributed timed language equivalence.

Definition 21 (Distributed Timed Bisimulation). Let S1 and S2 be two dis-
tributed timed systems over n processes and the same alphabet, S1 and S2 their
respective TTS, and proc1 and proc2 their respective distributions of actions.
Then, S1 and S2 are in distributed strong (resp. weak) timed bisimulation if

1. S1 and S2 are strongly (resp. weakly) timed bisimilar, and

2. there is a bijection bij between the processes of S1 and those of S2 such
that bij ◦proc1 = proc2 (same distribution of actions over the processes).

Distributed Timed Bisimulations and Local Clocks Assume S1 and S2 are
two networks of n timed automata with the same distribution of actions (the
i th automata of S1 and S2 have the same alphabet). If the individual timed au-
tomata are pairwise timed bisimilar (i.e the i th automata of S1 and S2 are timed
bisimilar), then S1 and S2 are distributed timed bisimilar.

The other direction does not hold because of the synchronizations that can
occur only if all the concerned components are ready to synchronize.

Distributed Timed Bisimulations and Shared Clocks When there are shared
clocks, we cannot perform a pairwise comparison of the individual timed au-
tomata. Indeed, since they read clocks of their neighbors, their behavior may
depend on the one of their neighbors.
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Therefore, if we want to pairwise compare the timed automata, this dis-
tributed timed bisimulation is not helpful because we have to somehow include
the context of the automata (i.e. their neighbors) in this comparison. That is
why we introduce the notion of contextual timed bisimulation in Chapter 5. We
present briefly this notion below.

Contextual Timed Bisimulations are used to compare two timed automata
when they are put in parallel with a same timed automaton of which they may
read the clocks. This bisimulation is based on the notion of contextual timed
transition system that represents the knowledge of an automaton about another
automaton, and the possible current state of this other automaton.

A Distributed Semantics for Distributed Timed Systems

The notion of timed trace will be particularly useful to compare systems mod-
eled by TPN or NTA, while considering the distribution of actions over the pro-
cesses, that is the concurrency.

In an NTA, it is clear that each automaton corresponds to a process. But in
a TPN, the identification of the processes is not so straightforward. In the next
chapter, we aim at identifying the processes in a TPN (in fact in the untimed un-
derlying PN), as a first step of a concurrency-preserving translation from TPN
to NTA. The decomposition of a PN in processes is based on the idea of S-
components presented in Subsection 2.1.2.
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In this chapter, we propose a translation between two popular formalisms
for the modeling of distributed real-time systems: TPN and NTA. These for-
malisms have different histories but were both designed to model distributed

real-time systems. Moreover they both handle urgency, which is a key feature
without which most real-time systems cannot be modeled correctly.

Preservation of Concurrency Here we focus on the preservation of concur-
rency. Since both TPN and NTA were designed to model distributed systems, we
consider that not only their sequential behavior as timed transition systems is
relevant, but also their distributed behavior. This implies that, if a model rep-
resents a system that involves several components, then the model should be
structured so that it is easy to identify each component, and a transformation
should preserve this structure. Our translation preserves the distribution of ac-
tions, that is we require that if the TPN represents the product of several compo-
nents (called processes), then each process should have its counterpart as one
timed automaton in the resulting NTA.

Motivation Our motivation for this is twofold: first, a transformation is much
more readable if it preserves the components and yields a model that is closer
to the real system; second, preserving the components avoids combinatorial ex-
plosion of the size of the model and makes it possible to use modular analysis
based on the components or partial order techniques, which are crucial when
one analyzes large distributed systems.

Formalization In order to formalize preservation of concurrency in the con-
text of real-time models, we use the notions of timed traces and of distributed
timed bisimulations introduced in Subsection 3.2.2. That is, we take into ac-
count the distribution of actions over a set of processes, each process represent-
ing a component which has its own alphabet of actions.
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Organization of the Chapter In Section 4.1 we recall how to identify the pro-
cesses in a Petri net, and then present the translation procedure. We propose a
translation from a 1-bounded TPN to a distributed timed bisimilar NTA. Then,
in Section 4.2, we show that this translation cannot be done without using an
extended syntax which allows, in particular, shared clocks. We also define con-
ditions under which our translation can be adapted to avoid using shared clocks.
Finally, in Section 4.3, we discuss extensions and limitations of our translation.

4.1 Translation from Time Petri Net to Network of Timed
Automata

We define a structural transformation from (a class of) TPN to NTA which pre-
serves timed traces. That is, we require that, if the TPN represents the product
of several components (called processes), then each process has its counterpart
as one timed automaton in the resulting NTA and the distribution of actions
among the components is preserved.

To this end, we first discuss how to identify processes in a TPN. The struc-
ture of each process gives a natural transformation into an automaton. Then we
focus on the timed constraints and show how to equip the automata with clocks,
guards and invariants so that the resulting NTA preserves the timed traces (and
is in strong distributed timed bisimulation with the initial TPN as well).

We show that in general this transformation is possible only if we allow the
automata to read the states of their neighbors (see global state syntax in Sub-
section 3.2.1), which we interpret as a dependency between the processes, that
was hidden in the TPN. Notice also that the decomposition of a PN into com-
ponents is not always possible. However, we believe that most PNs that model
real systems are decomposable. It is also known (see [DE95]) that well-formed
free-choice nets are decomposable in strongly connected components.

4.1.1 S-subnets as Processes for Petri Nets

Identifying processes in a TPN is not as immediate as in an NTA. But, in practice,
when a system is modeled as a TPN, the designer knows its physical structure
and builds the TPN as a composition of components that model the subsystems.
Anyway, if a TPN is given without its decomposition, these components can be
identified.

We first define S-subnets as the processes of a Petri net, and the decomposi-
tion of a Petri net into S-subnets. Then we show how we can find this decompo-
sition. We borrow the main ideas from [DE95], where the authors give a method
(introduced in [Hac72]) to decompose a live and bounded free-choice net into
such components and we adapt this method to decompose more general nets.
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Decomposition into S-Subnets

Since the notion of process involves only the structure and does not depend on
any time property, for the decomposition in processes, we consider only the
structure of a PN, i.e. the net (P,T,F ) where P is the set of places, T is the set
of transitions, and F ⊆ (P ×T )∪ (T ×P ) is the set of arcs.

We already mentioned, in Subsection 2.1.2, that S-nets (nets such that ∀t ∈

T , |•t | = |t•| = 1) can be seen as automata (places are locations and transitions
are edges). Therefore, we want to decompose a net N into S-nets that cover the
net. To do so, we introduce the notion of S-subnet.

Definition 22 (S-subnet). A P-closed subnet (P ′,T ′,F ′) of a net N = (P,T,F ), with
P ′ 6= ; is an S-subnet of N if it is an S-net.

Note that the notion of S-subnet generalizes the notion of S-component pre-
sented in [DE95] (see Definition 3) because we do not impose that the subnet is
strongly connected. However, we are looking for minimal S-subnets w.r.t. the set
inclusion of their generating places, and these S-subnets are always connected
(see Proposition 23 below).

A net N = (P,T,F ) is decomposable iff there exists a set of minimal S-subnets
{N1, . . . , Nn} with Ni = (Pi ,Ti ,Fi ), such that

⋃

i∈[1..n] Pi = P . In this case, the set
of S-subnets is called a cover of N (and

⋃

i∈[1..n] Ti = T because the S-subnets are
P-closed).

We are also looking for minimal covers, i.e. covers such that if one S-subnet
is removed, then the net is no longer covered.

First we state a proposition that relates S-invariants and S-subnets, sim-
ilarly to the proposition “S-components induce minimal S-invariants” stated
in [DE95].

Proposition 23 (Connected S-subnets induce minimal S-invariants).

1. The characteristic function of the set of places of an S-subnet is an S-

invariant.

2. The characteristic function of the set of places of a connected S-subnet is a

minimal S-invariant.

Proof. The proof from [DE95, p 96] can be adapted. Let N ′ = (P ′,T ′,F ′) be an
S-subnet, and I : P → {0,1} the characteristic function of P ′. Then, for each tran-
sition t ∈ T , |•t ∩P ′| = |t• ∩P ′| (1 if t ∈ T ′, and 0 otherwise), i.e.

∑

p∈•t I (p) =
∑

p∈t• I (p), which characterizes an S-invariant.
Now assume N ′ is connected and there exists a non-zero S-invariant I1 ⊆ I .

We prove that I1 = I , which implies that I is minimal. Let p1 and p2 be two
arbitrary places of N ′. Since N ′ is a connected S-net, there is a path from p1 to
p2 or a path from p2 to p1 in N ′. And, as in [DE95, p 96], we use this path to
show that I1(p1) = I1(p2). This means that, either for any place p ∈ P ′, I1(p) = 0
(i.e. I1 = 0), or for any place p ∈ P ′, I1(p) = 1 (i.e. I1 = I ). Since I1 is non-zero,
I1 = I .
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Below we give a necessary and sufficient condition so that a net is decom-
posable.

Proposition 24. A net (P,T,F ) is decomposable iff there exists a set of minimal

S-invariants {X1, . . . Xn} such that

• ∀i ∈ [1..n], Xi : P → {0,1}, (1)

• ∀i ∈ [1..n],∀t ∈ T,
∑

p∈•t

Xi (p) ∈ {0,1} (2)

• ∀p ∈ P,
∑

i∈[1..n]
Xi (p) ≥ 1 (the set covers the net). (3)

Proof. (⇒) Assume P is decomposable, then there exists a set of n minimal S-
subnets Ni = (Pi ,Ti ,Fi ), with i ∈ [1..n], such that

⋃

i Pi = P . Consider the char-
acteristic function of Pi , Xi : P → {0,1}. By Proposition 23, the Xi are minimal
S-invariants, and moreover, for any transition t ,

∑

p∈•t Xi (p) = |Pi ∩
•t | equals

1 if t ∈ Ti , and 0 otherwise. Lastly, since each place is in at least one subset of
places, for each place p,

∑

i∈[1..n] Xi (p) ≥ 1.
(⇐) Assume now that there exists a set of minimal S-invariants {X1, . . . , Xn}

which satisfies the three conditions of Proposition 24. We show that the n sub-
nets generated by each 〈Xi 〉 with i in [1..n], are minimal S-subnets that cover
N . We denote them by Ni = (Pi ,Ti ,Fi ), with Pi = 〈Xi 〉 and Ti =

•〈Xi 〉 = 〈Xi 〉
•.

By construction, Ni is a P-closed subnet of N . Ni is minimal because Xi is
minimal. Moreover, since for each place p, Xi (p) ∈ {0,1}, p ∈ 〈Xi 〉 implies that
Xi (p) = 1, and p ∉ 〈Xi 〉 implies that Xi (p) = 0. That is, for each transition t ,
|•t ∩ Pi | = |•t ∩ 〈Xi 〉| =

∑

p∈•t Xi (p) = 1 or 0, from (2). If t ∈ Ti = 〈Xi 〉
•, then

•t ∩ 〈Xi 〉 6= ; and we must have |•t ∩ 〈Xi 〉| = 1, i.e. |t• ∩ Pi | = 1. Hence Ni

is an S-net. Lastly, the n S-subnets cover the net because for each place p,
∑

i∈[1..n] Xi (p) ≥ 1, which implies that there exists i in [1..n] such that p ∈ 〈Xi 〉,
that is

⋃

i∈[1..n]〈Xi 〉 = P .

Thus, when the net is decomposable, there exists a set {X1, . . . Xn} of minimal
S-invariants that is a minimal cover of the net. Such a set gives a decomposition
of the net in the S-subnets generated by the minimal S-invariants. Note that
this decomposition is not unique and that a place may be shared by several S-
subnets, as shown by the examples below.

The number of tokens in an S-subnet is constant. Thus, a connected S-
subnet initially marked with one token represents an automaton where the ac-
tive location is the marked place. Such subnet is called a process. If the S-subnet
is initially marked with m tokens, then it corresponds to m processes with the
same structure but not necessarily starting in the same place, and these pro-
cesses do not synchronize with each others. To simplify, for now we only con-
sider 1-bounded PNs, but we explain how the procedure can be extended to
k-bounded PNs in Subsection 4.3.1. Lastly, notice that the conservation of the
number of tokens in each S-subnet implies that unbounded PNs are not decom-
posable.
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Decomposition Algorithm Some algorithms for the computation of minimal
S-invariants can be found in [CS89] where they are called p-semiflows. There-
fore, it is possible to compute the set X of minimal S-invariants with values in
{0,1} from a given incidence matrix N. Hence, Algorithm 1 below describes how
a net can be decomposed. We first determine the minimal S-invariants with val-
ues in {0,1}. We keep only those that generate S-nets (condition 2 of Prop. 24):
invariant X is kept if, for any transition t ,

∑

p∈•t X (p) ∈ {0,1} (1 if t is in the subnet
generated by X , and 0 otherwise). If these invariants cover the net (condition 3
of Prop. 24), then the net is decomposable, and we keep a set of S-invariants that
forms a minimal cover.

Data: incidence matrix N
Result: minimal set S of minimal S-subnets that covers the net if the net is

decomposable,
empty set otherwise

begin
S ←;;
X ← set of minimal S-invariants X : P → {0,1}, computed from N, s.t.
for any t ∈ T ,

∑

p∈•t X (p) ∈ {0,1};
if X does not cover the net then

return S;
endif
foreach X in X do

if X \ {X } covers the net then
X ← X \ {X };

endif

endfch
foreach X in X do

S ← subnet generated by X ;
S ← S∪ {S};

endfch
return S;

end

Algorithm 1: Decomposition algorithm

Decomposition Examples Below are three examples of decomposition proce-
dure. In Example 1, the net is decomposable, the decomposition is unique and
some places belong to several components. In Example 2, the net is decompos-
able, the decomposition is not unique, and places belong to only one compo-
nent. Lastly, in Example 3, the net is not decomposable.

Ex 1. The first example was given in Subsection 2.1.2, where we gave the decom-
position of the net shown in Fig. 2.4 (which is well-formed and free-choice,



70 Chapter 4. Concurrency-Preserving Translation from TPN to NTA

p2

p1

t2

t1

p4

p3

t4

t3

p6

p5

(a) A decomposable net (the differ-
ent line types denote the arcs of the
different components)

t1 t2 t3 t4

p1 −1 −1 0 0
p2 −1 −1 0 0
p3 1 0 −1 0
p4 0 1 0 −1
p5 0 1 1 0
p6 1 0 0 1

(b) Its incidence matrix

Fig. 4.1: A net which is decomposable in S-subnets and its incidence matrix

and thus decomposable in S-components). Let us apply Algorithm 1 to
this example. With the incidence matrix given in Fig. 2.4, we obtain the
following minimal S-invariants: X1 = [1 1 0 0 0 0 0], X2 = [0 0 1 1 0 1 1],
and X3 = [0 0 1 1 1 0 0]. These S-invariants all generate S-subnets, and
they cover the net, therefore the net is decomposable. They also form a
minimal cover, therefore they give a decomposition of the net. Hence the
net is decomposable in the three S-subnets generated by the sets of places
{p1, p2} (X1), {p3, p4, p6, p7} (X2), and {p3, p4, p5} (X3), see Fig. 2.5.

Ex 2. As a second example, we want to decompose the net shown in Fig. 4.1(a).
With the incidence matrix given in Fig. 4.1(b), we obtain the following
minimal S-invariants: X1 = [1 0 1 0 1 0], X2 = [1 0 0 1 0 1], X3 = [0 1 1 0 1 0]
and X4 = [0 1 0 1 0 1]. These S-invariants all generate S-subnets. The
net is covered, therefore decomposable, and there are two minimal covers
{X1, X4} and {X2, X3}, therefore two decompositions. The two components
of the decomposition given by {X1, X4} are denoted in Fig. 4.1(a) by differ-
ent line types: the arcs of the S-subnet generated by {p1, p3, p5} (X1) are
represented by dashed lines, and those of the one generated by {p2, p4, p6}
(X4) are represented by plain lines. In the second possible decomposition,
p1 and p2 are switched.

Ex 3. Consider the net of Fig. 4.2. Any S-subnet N ′ containing p2 must also con-
tain its input and output transitions t1 and t2 (an S-subnet is P-closed).

p1 t1 p2

t2

p3

Fig. 4.2: A non decomposable net
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Then it must contain an input place for t1 and an output place for t2 (an
S-subnet is an S-net), which are necessarily p1 and p3. This means that
the only candidate for being a S-subnet containing p2 is the entire net, but
it is not an S-net since t2 has two input places. This can also be seen by
computing the S-invariants from the incidence matrix: there is no non-
zero solution with values in {0,1} (but there are some with values in N, for
example [1 1 2]). Therefore, this net is not decomposable.

Size of the Decomposition

Assume net N = (P,T,F ) is decomposable in n connected S-subnets N1, . . . , Nn ,
such that Ni = (Pi ,Ti ,Fi ) is the subnet generated by Pi . The number of places
in the decomposition is equal to

∑

i∈[1..n] |Pi | and is at most |P |2 because a place
may be shared by several components and no more than |P | components are
needed to cover the net. And the number of transitions is

∑

i∈[1..n] |Ti | and is at
most |T |× |P | for the same reason. But these upper bounds are seldom reached
since generally there are fewer components and few places and transitions are
duplicated in all components.

4.1.2 Translation Procedure

A TPN can be translated in a TA which accepts the same timed words (see mark-
ing TA in Fig. 2.12). But we would like to translate it in an NTA which accepts the
same timed traces. Below, we propose a structural translation from a TPN to an
NTA, based on the decomposition in processes presented above. Therefore, this
translation deals with TPN whose untimed support is decomposable.

Moreover, in this subsection, we consider only TPN whose untimed support
is 1-bounded, in order to simplify the explanation, but the procedure can easily
be extended to TPN whose untimed support is k-bounded and still decompos-
able, as explained in Subsection 4.3.1. In Subsection 4.3.2, we will discuss an
extension to deal with bounded TPNs whose untimed support is unbounded
and therefore not decomposable.

Procedure

Our procedure translates a TPN N into an NTA and relies on a decomposition
of the untimed support of N into connected S-subnets (that may be obtained
using Algorithm 1). Therefore, our procedure is not (at least directly) applicable
if the net is not decomposable. We also require that each S-subnet is initially
marked with one token (we discuss the case when S-subnets are not marked, or
marked with more than one token in Subsection 4.3.1). In Fig. 4.3(a), we give
an example TPN, the dashed line denotes the decomposition of the untimed
support.

Each S-subnet determines a process in the time Petri net and will be trans-
lated into a timed automaton. We focus now on the treatment of time con-
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p0

a[0,∞)

p1

d[2,2]

p4

b[0,0]

p2

c[1,2]

p3

(a) A TPN and its two processes

ℓ0x1 ≤∞

ℓ1x1 ≤ 2
∧ Inv(ℓ1,b)

ℓ4

ℓ2x2 ≤ 2

ℓ3Inv(ℓ3,b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d

{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(ℓ1,b) ≡¬ℓ3 ∨x1 ≤ 0∨x2 ≤ 0
Inv(ℓ3,b) ≡¬ℓ1 ∨x1 ≤ 0∨x2 ≤ 0

(b) Resulting NTA

Fig. 4.3: Translation of the TPN of Fig. (a) into the NTA of Fig. (b)

straints in order to get a network of timed automata which has the same dis-
tributed timed language as N . This involves three steps:

1. Each S-subnet is translated into an automaton preserving its structure
(places become locations and transitions become edges). Each edge is
labeled with the name of the corresponding transition.

2. Time is added by equipping each automaton with a single clock xi . This
clock is reset on each edge, thus its value gives the time elapsed in the
current location. On each edge, if [a,b] is the firing interval of the corre-
sponding transition, we add a guard xi ≥ a, and if the transition has only
one input place, we add an invariant xi ≤ b on the source location.

3. Lastly, we have to deal with the transitions that have several input places.
Such transitions have to fire if they are enabled and their latest firing delay
is reached. On our example, see Fig. 4.3(b), we can stay in (ℓ1,ℓ3) as long as
min(v(x1), v(x2)) ≤ 0 (because min(v(x1), v(x2)) is the elapsed time since
b was enabled and lfd(b) = 0). Thus, we add Inv(ℓ1,b) ≡ ℓ3 ⇒ (x1 ≤ 0∨x2 ≤

0) ≡ ¬ℓ3 ∨ (x1 ≤ 0∨ x2 ≤ 0) and Inv(ℓ3,b) ≡ ℓ1 ⇒ (x1 ≤ 0∨ x2 ≤ 0) ≡ ¬ℓ1 ∨

(x1 ≤ 0∨ x2 ≤ 0) in the invariants of ℓ1 and ℓ3 (actually we only need to
add this “global” invariant to the invariant of one of the source locations
concerned by the synchronization).

Formally, a TPN N = (P,T,F, M0,efd, lfd) with n processes can be translated
in the NTA A1 ∥ · · · ∥ An with, for all i in [1..n], Ai = (Li ,ℓ0

i
, X ,Σi ,Ei , Invi ) where

• Li = Pi (places of the i th subnet),

• ℓ0
i

is such that {ℓ0
i

} = Pi ∩M0,

• X = {x1, . . . , xn},
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• Σi = Ti (transitions of the i th subnet),

• Ei is the set of edges (p, g , t ,r, p ′) s.t. t ∈ Ti , {p} = •t ∩Pi , {p ′} = t• ∩Pi ,
g ≡ xi ≥ efd(t ), and r = {xi },

• Invi : Pi → B(X ,P ) assigns invariants to locations s.t. ∀p ∈ Pi , Invi (p) ≡
∧

t∈p•
Inv(t ), where Inv(t ) ≡ (

∧

p ′∈•t
p ′) ⇒ min

k∈It

(xk ) ≤ lfd(t ), with It = {i ∈ [1..n] |

t ∈ Ti } the set of indices of the subnets that contain t .

That is, Invi (p) ensures that we cannot exceed the latest firing delay of an
enabled transition which is in the post-set of p. Notice that Invi (p) uses the
global state syntax presented in Subsection 3.2.1: automaton Ai can read the
clocks of the other automata, but cannot reset them and it can also read the
current location of the other automata in its invariants.

In the sequel, we first prove that this translation is correct w.r.t. the preser-
vation of the distributed timed language and we discuss the size of the resulting
NTA, then we show that the use of the extended syntax is necessary and we iden-
tify some cases when the local syntax is sufficient.

Correctness of the Translation

Proposition 25. The initial decomposable time Petri net N and the network of

timed automata S which results from the translation are in distributed timed

bisimilation.

Proof. A marking of N can be identified with a vector of current locations of S .
A place may correspond to several locations in the NTA, but in this case, if it is
active in one automaton, then it is active in all the automata where it appears.
Indeed, for any transition t , any place in t• is in a component (because the net is
covered) and t is also in this component (because the components are P-closed).
Therefore, the firing of t in N corresponds to a synchronization on t in S .

For any i in [1..n], we note pi = M ∩Pi the location of automaton Ai associ-
ated with marking M . We first show the following equivalence:

v |=
∧

1≤i≤n

Invi (pi ) ⇐⇒
(

∀t ∈ T,•t ⊆ M =⇒ ν(t ) ≤ lfd(t )
)

(4.1)

Indeed, by construction, Invi (pi ) ≡
∧

t∈pi
•

(

(
∧

p∈•t p) ⇒ min
k∈It

(xk ) ≤ lfd(t )
)

. Thus,

v |=
∧

1≤i≤n Invi (pi ) is equivalent to ∀t ∈ T s.t. (•t ∩ M 6= ;) ∧ (•t ⊆ M),
min
k∈It

(

v(xk )
)

≤ lfd(t ). Then •t∩M 6= ; can be removed, and by construction, when

t is enabled, ν(t ) = min
k∈It

(

v(xk )
)

.

Moreover the guard gi (t ) associated with the edge labeled by t in automa-
ton Ai , is built so that gi (t ) ≡ xi ≥ efd(t ), and again, when t is enabled, ν(t ) =
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min
i∈It

(

v(xi )
)

, which gives:

∀t ∈ T,•t ⊆ M =⇒

(

v |=
∧

i∈It

gi (t ) ⇐⇒ ν(t ) ≥ efd(t )

)

(4.2)

Then we define a relation R between states of S and states of N as follows:

(M , v) R (M ,ν) ⇐⇒

(

∀t ∈ T,•t ⊆ M =⇒ ν(t ) = min
i∈It

(

v(xi )
)
)

Note that R is not a bijection because the clocks of the automata do not cor-
respond to the clocks of the transitions, and a state of N may correspond to
several states of S . We want to show that R is a timed bisimulation.

We first observe that (M0, v0) R (M0,ν0) and we show that, from any corre-
spondent states, (M , v) R (M ,ν), the same executions are possible.

Delay step Assume that there exists d ∈ R≥0 such that (M , v)
d
→ (M , v + d).

Then, ∀d ′ ∈ [0,d ], v +d ′ |=
∧

1≤i≤n Invi (pi ). Equation 4.1 implies that ν+d ′ is
an admissible valuation for marking M , and (M , v +d) R (M ,ν+d).

Similarly, if there exists d ∈R≥0 such that (M ,ν)
d
→ (M ,ν+d), then, (M , v+d)

is also an admissible state for S and (M , v +d) R (M ,ν+d).

Action step Assume now that there exists an action t such that (M , v)
t
→

(M ′, v ′), and It is the set of indices of the processes that perform t . Then, there
exists e = (e1, . . . ,en) ∈ (E1 ∪ {•})×·· ·× (En ∪ {•}) s.t. ∀i ∈ [1..n],





if i ∉ It , then ei = • and pi = p ′
i

otherwise, ei = (pi , gi , t ,ri , p ′
i
) s.t.







pi ∈
•t ∧p ′

i
∈ t•,

gi ≡ xi ≥ efd(t ),
ri = {xi }

and v |=
∧

i∈It
gi , v ′ = v[

⋃

i∈It
ri ], and v ′ |=

∧

i Invi (p ′
i
).

(M , v) R (M ,ν) implies that transition t is firable from (M ,ν), because it is
enabled (•t = {pi | i ∈ It }) and its firing delays are respected (because of (4.1)
and (4.2)). This transition leads to state (M ′′,ν′) s.t. M ′′ = (M\•t )∪ t• = M ′, and

∀t ′ ∈ T,ν′(t ′) =

{
0 if ↑enabl ed(t ′, M , t ),
ν(t ′) otherwise.

By construction, ∀i ∈ [1..n], v ′(xi ) = 0 if i ∈ It , and v ′(xi ) = v(xi ) otherwise.
That is, for each transition t ′, min

i∈It ′

(

v ′(xi )
)

= 0 if It ′ ∩ It 6= ; and min
i∈It ′

(

v ′(xi )
)

=

min
i∈It ′

(

v(xi )
)

otherwise.

Then, for each enabled transition t ′, we distinguish two cases:

1. t ′ is newly enabled by the firing of t from marking M (↑enabl ed(t ′, M , t )
holds). That means that the last token to enable t ′ has been created by t ,
that is, It ′ ∩ It 6= ;. Therefore, ν′(t ′) = 0 = min

i∈It ′

(

v ′(xi )
)

.
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2. t ′ was enabled before the firing of t . That implies It ′ ∩ It 6= ; (because
there is one token by process and the tokens in •t ′ have not been moved
by the firing of t ). Therefore, ν′(t ′) = ν(t ′) = min

i∈I ′t

(

v(xi )
)

= min
i∈It ′

(

v ′(xi )
)

.

Therefore, ν′ is an admissible valuation for M ′ and (M ′, v ′) R (M ′,ν′).

Similarly, if there exists t ∈ T such that (M ,ν)
t
→ (M ′,ν′), then we can take

synchronization t : (M , v)
t
→ (M ′, v ′), such that this synchronization is shared by

the automata whose indices are in It , and for any i , v ′(xi ) = 0 if i ∈ It and v ′(xi ) =
v(xi ) otherwise. That is, for any transition t ′, min

i∈It ′

(

v ′(xi )
)

= 0 if It ∩ It ′ 6= ;, and

min
i∈It ′

(

v ′(xi )
)

= min
i∈It ′

(

v(xi )
)

otherwise. Therefore, if t ′ is enabled, min
i∈It ′

(

v ′(xi )
)

=

ν′(t ′), and (M ′, v ′) R (M ′,ν′).

We have shown that R is a timed bisimulation between the TTS of N and
S . Moreover, there is a bijection between the processes of N and those of S

and we have the same distribution of actions between the processes. Therefore,
N and S are in distributed timed bisimulation and in particular, they accept
the same distributed timed language.

Size of the Network of Timed Automata

Once the decomposition is computed, we directly have the structure of the
timed automata. Thus the NTA has at most |P |2 locations and |T | × |P | edges
(see paragraph just before Subsection 4.1.2). The number of edges is exactly
∑

t∈T |It |.

Then, the timing information is provided by as many clocks as processes,
that is at most |P | clocks. There is one clock comparison on each edge, because
the guards are of the form xi ≥ lfd(t ). Moreover, each Inv(t ) contains |It | clock
comparisons (because the min ranges over |It | clocks). Inv(t ) can be attached
only to one of the input places of t because a state is legal as long as the valuation
satisfies all the invariants of the current locations, thus, if t is enabled and one
of its input places carries Inv(t ), lfd(t ) cannot be overtaken. Therefore, if we
attach each Inv(t ) to only one of the input places of t , we have

∑

t∈T |It | clock
comparisons in the invariants. To conclude, the size of the timing information
given by the clock comparisons is proportional to the number of edges.

4.2 Know thy Neighbor!

Our translation produces a network of timed automata which accepts the same
distributed timed language (and which is timed bisimilar). But we use an ex-
tended syntax (see global state syntax in Subsection 3.2.1) in which each au-
tomaton can read the state (location and clock) of the other automata. We show
that the use of this syntax is necessary.
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(d ,2)

(a,0)

(c,2)

π1 π2

W

(c,1)

π1 π2

W ′

(d ,2)

(a,0)
(c,1)

π1 π2

W|π1 ∥ W ′
|π2

Fig. 4.4: Two accepted timed traces and one non accepted timed trace for the

TPN of Fig. 2.11

4.2.1 Need for an Extended Syntax

Proposition 26. Given a TPN N with its processes, in general, there does not exist

any NTA S using the local syntax such that N and S have the same distributed

timed language.

For example, Fig. 4.4 shows two timed traces W and W ′ representing the
beginning of two possible runs, without synchronization, for the TPN N of
Fig. 2.11. Any NTA S using the local syntax and accepting W and W ′ would
also accept the timed trace built by composing the projection of W onto π1 and
the projection of W ′ onto π2 (see Fig. 4.4). But this timed trace is not accepted
by N .

We first formalize this in a lemma stated below. Let S be a network of n TA
A1 ∥ · · · ∥ An , we denote by Rθ(S ) the set of all timed traces representing admis-
sible runs of S , without synchronization, and stopping at date θ.

Lemma 27. Let S be a network of n timed automata using the local syntax, then,

for any timed traces W1, . . . ,Wn ∈ Rθ(S ) (not necessarily different), the timed trace

defined by W1|π1 ∥ · · · ∥Wn|πn
is also in Rθ(S ).

Proof of Lemma 27. In θ, the automata have not yet synchronized, that is their
runs stopping at date θ are independent (because clocks are not shared), and
they could have performed any other admissible sequence of actions, stopping
at date θ, without synchronization.

Proof of Proposition 26. Assume that the two automata corresponding to the
two processes of the TPN N of Fig. 4.3(a) are not able to read the current lo-
cation and the clock of the other automaton. Then, for any two timed traces W

and W ′, representing two admissible runs without synchronization, stopping at
date θ, the timed trace W|π1 ∥W ′

|π2
represents also an admissible run.

If we choose, as in Fig. 4.4, W = (w,proc) and W ′ = (w ′,proc), with w =

(a,0)(d ,2)(c,2), w ′ = (c,1) and proc =
{

(a, {π1}), (b, {π1,π2}), (c, {π2}), (d , {π1})
}
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(with θ = 2), then W|π1 ∥W ′
|π2

=
(

(a,0)(c,1)(d ,2),proc
)

(see Fig. 4.4) should rep-
resent an admissible run for S and N . Which is false because b must be per-
formed immediately after c has been. Therefore, the local syntax (see Subsec-
tion 3.2.1) must be extended.

4.2.2 TPN with Good Decompositional Properties

Proposition 26 states that in general any NTA S , having the same distributed
timed language as a given TPN N , uses the global state syntax defined in Sub-
section 3.2.1, i.e. the automata of S have to read information about the state
of the others. This creates a dependency between the automata, which is not
as strong as in the case of a synchronization on a common action, since it is
asymmetric: only one automaton reads. Still, we are interested in identifying
the cases where the automata do not need to read information about the state
of their neighbors, which we regard as a good decompositional property.

We did not find an algorithm that decides in general if TPN N has this prop-
erty and we do not know if it is decidable. However, we present a simple suffi-
cient condition, which can be detected by reachability analysis on the marking
TA of N . We show how our construction can be easily adapted in this case, to
avoid reading information about other automata.

A Class of TPN with Good Decompositional Properties Below, we present a
class of TPN that can be decomposed in NTA with the local syntax.

Proposition 28. Let N be a 1-bounded TPN which is decomposable, and such

that for any transition t , there exists a place p in •t which is always the last place

to be marked among •t when t becomes enabled, then there exists an NTA S with

the local syntax and with the same distributed timed language as N .

Proof. We use the same translation as before and choose to add Inv(t ) only in
Invi (p) (this can be done, as explained in the third step of the translation). By
construction, Inv(t ) ≡

(

(
∧

p ′∈•t p ′) ⇒ min
k∈It

(xk ) ≤ lfd(t )
)

. In this case, (
∧

p ′∈•t p ′) is

always true in Invi (p) – because if p is marked, then all places in •t are marked
– and min

k∈It

(v(xk )) = v(xi ) = ν(t ). Therefore, for any i in [1..n] and for any place p

in Pi , Invi (p) can be expressed with the local syntax.

This property can be expressed in CTL [CE81] and checked on the marking
TA: for any transition t and for any place p ∈ •t we check whether the formula
AG(p ∈ M ⇔ •t ⊆ M) is satisfied (the formula has to hold for at least one place of
•t ).

For example, consider the TPN of Fig. 4.5(a). Without studying the timing
constraints, the translation gives the NTA of Fig. 4.5(b), where the invariants of
locations ℓ1 and ℓ3 read the state of the other automaton. But when we look
at the timing constraints, we can see that location ℓ1 is always activated before
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p0

a [0,4]

p1

b[0,3]

p2

c[5,∞)

p3

(a) Initial TPN

ℓ0 x1 ≤ 4

ℓ1

ℓ2

ℓ3

a
{x1}

b
{x1}

x2 ≥ 5
c
{x2}

b
{x2}

¬ℓ3 ∨ x1 ≤ 3
∨x2 ≤ 3

¬ℓ1 ∨ x1 ≤ 3
∨x2 ≤ 3

(b) Result of the procedure of
Subsection 4.1.2

ℓ0 x1 ≤ 4

ℓ1

ℓ2

ℓ3

x2 ≤ 3

a
{x1}

b
{x1}

x2 ≥ 5
c
{x2}

b
{x2}

(c) Result of the translation
when observing that b is always
enabled as soon as p3 is marked

Fig. 4.5: A TPN that can be translated in an NTA with the local syntax

location ℓ3, i.e. ℓ3 ⇒ ℓ1, that is b is enabled as soon as ℓ3 is marked. Therefore,
the invariant associated with b can be placed on ℓ3 only and simplified. Indeed,
there is no need to read ℓ1 since we know it is marked and no need to read x1

since min(x1, x2) = x2. Eventually, we get the NTA of Fig. 4.5(c).

More Complex Examples We believe that the class of TPN with good decom-
positional properties that we described above captures most of the practical
cases in which one can avoid reading information about other components. The
idea is that most often, when there is a variable delay before several components
synchronize on a common action, this delay is due to one of the components
(which may typically be waiting for some input), while the other components
are simply waiting; then the invariant that triggers the synchronization can be
associated to the component that is responsible for the delay, and it will not
need to read any information about the state of the others: it can assume that
the others are ready to synchronize.

On the other hand, if the delay is really due to several components, then it is
very likely that none of the components have enough information locally to be
able to trigger the synchronization without reading information about the state
of the others. This observation is not always verified: we now show an exam-
ple of that, but we are convinced that this scenario is not very likely to occur in
practice.

Consider the example depicted in Fig. 4.6(a), where α and β are parameters
for the values of the constants. This TPN can be decomposed into two compo-
nents (see the very similar example of Fig. 4.1(a)). These two components will
be translated into two automata A1 (plain lines in the figure), with clock x1, and
A2 (dashed lines), with clock x2. Here, after the occurrence of t ′, either a occurs
or b occurs.

For the first example, we assume that α = β. Then, regardless of whether
a or b occurs, t will be enabled α time units after the firing of t ′. Therefore
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t ′[0,∞)

a

[0,0]

b

[0,0]

t1

[β,β]

t2

[α,α]

p1

p2

t [0,0]

(a) Initial TPN

x1 ≤ 0

x2 ≤ 0

x1 ≤α

x2 ≤α

p1

x′ ≤α

p2

t ′, {x1, x′}

a, {x1}

b, {x1}

x1 ≥α, t1

t

t ′, {x2} a, {x2}

b, {x2} x2 ≥α, t2

t

(b) α=β. NTA with the local syntax but one more clock

x1 ≤ 0

x2 ≤ 0

x1 ≤β

x2 ≤α

p1

x1 ≤α

p2

x2 ≤β

t ′, {x1}

a, {x1}

b, {x1}

x1 ≥β, t1, {x1}

t

t ′, {x2} a, {x2}

b, {x2} x2 ≥α, t2, {x2}

t

(c) α 6=β. NTA with the local syntax

Fig. 4.6: A TPN that can be translated in an NTA with the local syntax. The arcs

of the two components are drawn differently
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a clock x ′ can be added in one of the automata, reset when t ′ fires, and used
in the invariant of one of the input locations of t as the condition x ′ ≤ α (see
Fig. 4.6(b)).

Now, let us assume that α 6= β. If a occurs, then p2 is marked immediately,
and p1 is marked β time units later. In this case, p1 must be disabled immedi-
ately and p2 must be disabled after β time units. If b occurs, then p1 is marked
immediately, and p2 is marked α time units later. In this case, p2 must be dis-
abled immediately and p1 must be disabled after α time units. Therefore, in
order to respect the latest firing delay of t , when t is enabled, it suffices to attach
x2 ≤β to p2 and x1 ≤α to p1 (see Fig. 4.6(c)).

4.3 Discussion and Extensions

4.3.1 Dealing with Safe TPNs whose Untimed Support is
Decomposable and k-Bounded

The translation procedure was given for TPNs whose untimed support is a de-
composable PN such that each S-subnet is initially marked with one token, but
we argued that decomposable PNs whose S-subnets are not marked or marked
with more than one token can also been handled. Here, we use this observa-
tion to translate safe TPNs whose untimed support is decomposable and such
that the S-subnets may not be marked or be marked with more than one token.
Below, we describe the procedure on an example.

Consider a net such that an S-subnet is initially marked with more than one
token. The untimed support of the safe TPN of Fig. 4.7(a) is decomposable into
the two S-subnets generated by {p1, p2, p3, p4} and {p5, p6}. Since one S-subnet
is initially marked with two tokens, it corresponds to two processes π1 and π2

with the same structure. Moreover, since a transition needs only one token in
each of its input places to be enabled, π1 and π2 need not know the state of each
other. That is, each one of them will model the course of one token in the net.

In Fig. 4.7(b), we labeled differently the actions in the first two automata,
to denote that they do not synchronize with each other. And since the third
process synchronizes on t2, the edge labeled by t2 in the associated automaton
is duplicated to denote the two possible synchronizations with t2,1 and t2,2.

Notice that this approach also applies to Petri nets such that an S-subnet Ni

is not marked initially (and hence will never be marked). There is no process
corresponding to Ni and there will be no corresponding TA. Moreover, for any
other S-subnet N j that shares a transition with Ni , this transition will never fire.
This is ensured by the fact that edges are duplicated in as many versions as pos-
sible synchronizations: since there is no possible synchronization, there will be
no edge denoting this transition in the TA associated with N j .



4.3. Discussion and Extensions 81

p1

t1

[10,10]

p2 p5

p6

t5 [0,∞)t2 [1,1]
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(a) Initial TPN with two S-subnets but three processes
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x1 ≤ 1

x1 ≥ 10, t1,1

{x1}

x1 ≥ 1
t2,1

{x1}

x1 ≥ 10, t3,1

{x1}

x1 ≥ 1
t4,1

{x1}

ℓ1,2

x2 ≤ 10

ℓ2,2

x2 ≤ 1

ℓ3,2

x2 ≤ 10

ℓ4,2

x2 ≤ 1

x2 ≥ 10, t1,2

{x2}

x2 ≥ 1
t2,2

{x2}

x2 ≥ 10, t3,2

{x2}

x2 ≥ 1
t4,2

{x2}

ℓ5

∨
(

(¬ℓ2,1 ∨x1 ≤ 1)∧ (¬ℓ2,2 ∨x2 ≤ 1)
)

ℓ6

x3 ≤ 1

x3 ≥ 1

t2,2

{x3}

x3 ≥ 1
t2,1

{x3}

t5

{x3}

(b) Resulting NTA where two automata have the same structure but different initial
locations

Fig. 4.7: A safe TPN whose support is a decomposable PN such that one S-

subnet is initially marked with 2 tokens, and its translation into an NTA
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4.3.2 Dealing with Safe TPNs whose Untimed Support is Unbounded

The conservation of the weighted sum of the tokens in an S-invariant (for any
reachable marking M , and any S-invariant I , I · M = I · M0, see [DE95]) shows
that unbounded PNs are not decomposable. Moreover, not all 1-bounded PNs
are decomposable, although we think that, most models of real systems are.

However, our method can be adapted to some temporally 1-bounded TPNs
whose untimed support is unbounded. The idea is to modify the underlying
unbounded net so that it becomes decomposable and to adapt the timing in-
formation in the NTA to preserve the semantics of the original TPN N . We use
complementary places: for a place p, the complementary place p̄, is built such
that •p̄ = p• \ •p, p̄• = •p \ p•, and p̄ is marked iff p is not. For a place p, let the
predicate NC(p) denote that p is not covered by any S-subnet, i.e.

NC(p) ⇐⇒
(

∀X : P → {0,1}, X ·N = 0 =⇒ X (p) = 0
)

.

For the TPN of Fig. 4.8(a), this predicate holds for place ps only.
Then, we can transform the untimed unbounded PN Nuntimed = (P,T,F, M0)

into a bounded PN N
′

untimed
= (P ′,T,F ′, M ′

0) where

• P ′ = P ∪ {p̄ | NC(p)}, i.e. for each place p that is not covered by any S-
subnet, a complementary place p̄ is added,

• F ′ = F ∪ {(p̄, t ) | NC(p)∧ (t , p) ∈ F }∪ {(t , p̄) | NC(p)∧ (p, t ) ∈ F },

• M ′
0 = M0 ∪ {p̄ | NC(p)∧p ∉ M0}.

For example, consider the 1-bounded TPN N of Fig. 4.8(a) without the
dashed items (taken from [LR06]). Its untimed support is unbounded, but the
timing constraints prevent there being more that one token in ps . Even though
the net is not decomposable without modification, in the structure of the net,
we can identify three parts: the S-subnets generated by {p1, p2}, and {p3, p4} and
the subnet generated by {ps} which is not a valid component, because it is not an
S-net. Therefore, we add a complementary place to ps to make the untimed PN
1-bounded, by restricting the number of tokens in place ps to 1. With this new
place, V has to wait for the occurrence of P before occurring again. That is, the
boundedness that was ensured by the timing constraints in N , is now ensured
in the untimed PN N

′
untimed

by the complementary places. Notice also that the
following proposition holds.

Proposition 29. A timed run of N from which the occurrence dates are removed

is a run of N
′

untimed
.

Proof. We define a relation R which associates a (valid) state (M ,ν) of N with a
state M ′ of N

′
untimed

, and show that R is a simulation. Namely,

(M ,ν) R M ′ ⇐⇒ M ′ = M ⊎ {p̄ | NC(p)∧p ∉ M }.
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t1 [1,2]

p1 p2

V [4,5]

p̄s ps

P [3,4]

p3p4
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(a) A temporally 1-bounded
TPN (without p̄s )

p1

x1 ≤ 5

p2 x1 ≤ 2

p̄s ps x2 ≤ 4

p4x3 ≤ 1 p3

x1 ≥ 4,V , {x1}

x1 ≥ 1, t1, {x1}

x2 ≥ 3,P

V , {x2}

(x3 ≥ 3),P, {x3}

(x3 ≥ 0), t2, ({x3})

(b) Resulting NTA where information
between parenthesis can be removed

Fig. 4.8: Translation of a structurally unbounded TPN

First, (M0,ν0) R M ′
0 holds. Second, assume that t is firable from state (M ,ν)

which is R-related to state M ′. Then t is also enabled in M ′ = M ∪ {p̄ | NC(p)∧
p ∉ M }. Indeed, in N

′
untimed

, if there is a complementary place p̄ in the input
places of t , then in N , p ∈ t• \•t , and since the TPN N is 1-bounded, p ∉ M and
p̄ ∈ M ′. We denote by •′t (resp. t•′) the pre-set (resp. post-set) of t in N

′
untimed

.
By definition of N

′
untimed

, p̄ ∈ •′t ⇐⇒ p ∈ t• \ •t and p̄ ∈ t•′ ⇐⇒ p ∈ •t \ t•.
When t fires in N , it leads to state (M1,ν1) such that M1 = (M \ •t )∪ t• (re-

gardless of ν1). And when t fires in N
′

untimed
, it leads to marking M ′

1 defines as
follows.

M ′
1 = (M ′ \ •′t )∪ t•′

=
(

(M ⊎ {p̄ | NC(p)∧p ∉ M }) \ (•t ⊎ {p̄ | NC(p)∧p ∈ t• \ •t })
)

∪ (t•⊎ {p̄ | NC(p)∧p ∈ •t \ t•})

Since {p̄ | NC(p)} is disjoint from M , •t and t•, this can be simplified in

M ′
1 =

(

(M \ •t )∪ t•
)

⊎ {p̄ | NC(p)∧p ∈
(

M \ (t• \ •t )
)

∪ (•t \ t•)}

and lastly, since
(

M \ (t• \ •t )
)

∪ (•t \ t•) = (M ∪ •t ) \ t• = (M \ •t )∪ t• = M1,

M ′
1 = M1 ⊎ {p̄ | NC(p)∧p ∉ M1}

Therefore (M1,ν1) R M ′
1.

But if the timing delays of N are added to N
′

untimed
, both TPNs will not

have the same timed semantics. For instance, on our example, the timed word
(V ,4)(t1,5)(P,7)(t2,8)(V ,9) is no longer accepted. However, the transformation
is only used to find a decomposition of the net and now our translation can be
adapted.
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x ≤ 4
x ≥ 1, a x ≥ 4, b

Fig. 4.9: A TA that cannot be translated in a time S-net with one token

Proposition 30. Let N be a 1-bounded TPN whose untimed support is un-

bounded. If the net N
′

untimed
defined above is decomposable, then there exists an

NTA with the same distributed timed language as N .

Proof. If N
′

untimed
is decomposable, we choose a decomposition such that each

{p, p̄} forms a component. Then we adapt the translation: each component cor-
responds to an automaton and the timing information is added in the same way
as in Subsection 4.1.2, but without considering the new places because the time
spent in these places is not relevant for the semantics of the TPN. That is, for
each new place p̄, there is no clock reset in the ingoing edges of p̄, no guard on
the outgoing edges of p̄, no invariant on p̄, and p̄ appears in no invariant. In
this way, we get an NTA with the same distributed timed language as the initial
TPN.

In the context of our example, this results in the NTA of Fig. 4.8(b). We de-
cide to attach Inv(P ) to ps , and since we notice that, in N , if ps is marked,
then p3 is also marked (i.e., in the NTA min(x2, x3) = x2), we simplify this invari-
ant, Inv(P ) ≡ (ps ∧p3) ⇒ min(x2, x3) ≤ 4 in Inv(P ) ≡ ps ⇒ x2 ≤ 4, and therefore
Inv(ps) ≡ Inv(P )∧ps ≡ x2 ≤ 4.

4.3.3 Reverse Translation

Let us now consider the reverse translation, i.e. a translation from an NTA to a
TPN. There exist translations, for example in [BCH+08], from a TA into a weakly
timed bisimilar TPN, but we want to preserve the distributed timed language,
that is, when we translate an NTA into a TPN, we want to preserve the mapping
between the processes. This implies that we should be able to translate each
automaton in a TPN which is an S-net with one token and then compose the
obtained nets.

A time S-net with one token is less expressive than a TA with one clock be-
cause it can be translated in a TA with one clock which accepts the same timed
language. Thus, it is less expressive than a TA with two clocks, according to
[HKWT95]. We can even strengthen this by proving that some TA with one clock
cannot be translated in finite time S-net with one token (see Prop. 31). There-
fore, only a very small class of TA can be translated.

Proposition 31. Time S-nets with one token are strictly less expressive than TA

with one clock.
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Proof. Assume that the TA A of Fig. 4.9 can be translated in a finite time S-net
with one token which accepts the same timed language, called N . Then, in N ,
finitely many states can be reached after having fired an a. We denote these
states by si = ({pi },0) with i ∈ [1..n]. The clocks of the enabled transitions have
been reset.

Now, assume that we can reach si by firing a at some date θ1. Then, the only
possible continuation from si is to delay during d1 = 4−θ1 and fire b. That is,
(a,θ1) is the only possible way to reach si (otherwise, we would have another
possible continuation from si ).

Therefore, each state si can only be reached by executing a at one date θi ,
and from each si only one continuation is possible. This implies that N has a
finite number of admissible runs whereas A has infinitely many. Thus, A cannot
be translated in a time S-net with one token.

If we impose for example that each TA has one clock which is reset on each
edge, that the invariant are of the form x ≤ n and that the guards are of the form
x ≥ m, then the TA can be translated into time S-nets, but even in this simple
case, the composition of these components into a TPN with the same semantics
as the initial NTA is not always possible. And in general, the composition of
TPNs is not easy and significantly increases the complexity of components, as
presented in [PBV11].

4.3.4 Conclusion and Outlook

Usability in Practice Although our translation only works for TPNs whose un-
timed support is bounded, and does not always give a model in the UPPAAL

style (with handshake synchronizations), it generally produces networks with
fewer automata than the translation proposed in [CR06], because their transla-
tion produces n +1 automata for an initial net with n transitions. We also think
that our translation gives an NTA which is more readable, since the components
are clearly identified, and their structure is close to the original model.

Regarding the number of clocks, we also generally have fewer clocks because
we have one clock by process instead of one clock by transition. But as men-
tioned in [CR06], UPPAAL only considers the active clocks during the verifica-
tion. In our case, in a given state, all clocks are active and with the translation
of [CR06], the number of active clocks is equal to the number of enabled tran-
sitions in the corresponding marking ([CR06, Theorem 3]). Therefore, we can
have fewer active clocks if there are some conflicts.

Lastly, we have shown an extension of the translation procedure to deal with
some bounded TPNs whose support cannot be decomposed. Once we get the
structure of the automata, the method that assigns the time constraints can be
applied with only some minor modifications.



86 Chapter 4. Concurrency-Preserving Translation from TPN to NTA

Towards Identification of Concurrency in Timed Systems This work is a start-
ing point for a more advanced study of concurrency in timed systems. Indeed,
concurrency in timed systems involves both causality and the time stamping
of events. Transitions that appear as concurrent in an untimed model may not
remain independent when time constraints are added. First, time constraints
may easily force a temporal ordering between them. But, even worse, the oc-
currence of a transition may have consequences on apparently concurrent tran-
sitions due to time constraints: this is what happens in our TPN of Fig. 4.3(a)
where firing c after delay 1 from marking {p1, p2} prevents d from firing (because
it forces b to fire earlier). In our translation, the necessity to allow the automata
to read the states of their neighbors highlights these complex dependencies be-
tween different processes.

Avoiding Shared Variables

We showed that, in general, we have to allow shared variables in the resulting
network of timed automata. Indeed, shared locations can be represented as
shared boolean variables that code whether the location is active. However, we
consider shared variables as implicit communications that need to be made ex-
plicit, in order to implement the model in a distributed architecture. Now, we
want to decide, given a network of two timed automata, whether there exists
another network of two timed automata, without shared clocks, and such that
each individual component has the same behavior as the associated component
in the original network. This is the objective of the next chapter.
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Timed automata [AD94] are one of the most famous formal models for real-
time systems. Networks of Timed Automata are a natural generalization to
model real-time distributed systems. In this formalism, each automaton has
a set of clocks that constrain its real-time behavior. But quite often in the liter-
ature, the automata are allowed to share clocks, which provides a special way
of making the behavior of one automaton depend on what the others do. Actu-
ally shared clocks are relatively well accepted and can be a convenient feature
for modeling systems. Moreover, since NTA are almost always given a sequen-
tial semantics, shared clocks can be handled very easily even by tools: once the
NTA is transformed into a single timed automaton by the classical product con-
struction, the notion of distribution is lost and the notion of shared clock itself
becomes meaningless. Nevertheless, implementing a model with shared clocks
in a multi-core architecture is not straightforward since reading clocks a priori
requires communications which are not explicitly described in the model.

Here we are concerned with the expressive power of shared clocks accord-
ing to the distributed nature of the system. We are aware of only one previous
study about this aspect, presented in [LPW07]. Our purpose is to identify NTA
where sharing clocks could be avoided, i.e. NTA which syntactically use shared
clocks, but whose semantics could be achieved by another NTA without shared
clocks. To simplify, we look at NTA made of two automata A1 and A2 where only
A2 reads clocks reset by A1. The first step is to formalize which aspect of the se-
mantics we want to preserve in this setting. Then the idea is essentially to detect
cases where A2 can avoid reading a clock because its value does not depend on
the actions that are local to A1 and thus unobservable to A2. To generalize this
idea we have to compute the knowledge of A2 about the state of A1. We show
that this knowledge is maximized if we allow A1 to communicate its state to A2

each time they synchronize on a common action.

In order to formalize our problem we need an appropriate notion of be-
havioral equivalence between two NTA. We explain why classical comparisons
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A1

x ≤ 2

A2
x ≥ 1, a, {x} x ≤ 2∧ y ≤ 3,b

Fig. 5.1: A2 could avoid reading clock x which belongs to A1.

based on the sequential semantics, like timed bisimulation, are not sufficient
here. We need a notion that takes the distributed nature of the system into ac-
count. That is, a component cannot observe the moves and the state of the other
and must choose its local actions according to its partial knowledge of the state
of the system. We formalize this idea by the notion of contextual timed transi-
tion systems (contextual TTS).

Then we express the problem of avoiding shared clocks in terms of contex-
tual TTS and we give a characterization of the NTA for which shared clocks can
be avoided. Finally we effectively construct an NTA without shared clocks with
the same behavior as the initial one, when this is possible. A possible interest is
to allow a designer to use shared clocks as a high-level feature in a model of a
protocol, and rely on our transformation to make it implementable.

Organization of the Chapter This chapter is organized as follows. Section 5.1
presents the problem of avoiding shared clocks on examples and raises the prob-
lem of comparing NTA component by component. For this, the notion of con-
textual TTS is developed in Section 5.2. The problem of avoiding shared clocks
is formalized and characterized in terms of contextual TTS. Section 5.3 presents
our construction. Then, Section 5.4 discusses some extensions.

5.1 Need for Shared Clocks: Problem Setting

In this chapter, we always assume that the TA we deal with are non-Zeno, i.e. they
are such that for every infinite timed word w generated by a run, time diverges
(i.e. δ(w) =∞). This is a common assumption for TA.

We are interested in detecting the cases where it is possible to avoid sharing
clocks, so that the model can be implemented using no other synchronization
than those explicitly described by common actions.

To start with, let us focus on the case of a network of two TA, A1 ∥ A2, such
that A1 does not read the clocks reset by A2, and A2 may read the clocks reset by
A1. We want to know whether A2 really needs to read these clocks, or if another
NTA A′

1 ∥ A′
2 could achieve the same behavior as A1 ∥ A2 without using shared

clocks.
A first remark is that our problem makes sense only if we insist on the dis-

tributed nature of the system, made of two separate components. On the other
hand, if the composition operator is simply used as a convenient syntax for de-
scribing a system that is actually implemented on a single sequential compo-
nent, then a simple product automaton would perfectly describe the system and
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e
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Fig. 5.2: A2 reads x which belongs to A1 and A′
2 does not.

every clock becomes local.
So, let us consider the example of Fig. 5.1, made of two TA, supposed to de-

scribe two separate components. Remark that A2 reads clock x which is reset by
A1. But a simple analysis shows that this reading could be avoided: because of
the condition on its clock y , A2 can only take transition b before time 3; but x

cannot reach value 2 before time 3, since it must be reset between time 1 and 2.
Thus, forgetting the condition on x in A2 would not change the behavior of the
system.

5.1.1 Transmitting Information during Synchronizations

Consider now the example of Fig. 5.2. Here also A2 reads clock x which is reset
by A1, and here also this reading could be avoided. The idea is that A1 could
transmit the value of x when synchronizing, and afterwards, any reading of x

in A2 can be replaced by the reading of a new clock x ′ dedicated to storing the
value of x which is copied on the synchronization. Therefore A2 can be replaced
by A′

2 pictured in Fig. 5.2, while preserving the behavior of the NTA, but also the
behavior of A2 w.r.t. A1.

We claim that we cannot avoid reading x without this copy of clock. Indeed,
after the synchronization, the maximal delay in the current location depends on
the exact value of x, and even if we find a mechanism to allow A′

2 to move to
different locations according to the value of x at synchronization time, infinitely
many locations would be required (for example, if s occurs at time 2, x may have
any value in (1,2]).

Coding Transmission of Information In order to model the transmission of
information during synchronizations, we allow A′

1 and A′
2 to use a larger syn-

chronization alphabet than A1 and A2. This allows A′
1 to transmit discrete infor-

mation like its current location, to A′
2.

But we saw that A′
1 also needs to transmit the exact value of its clocks. For
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Fig. 5.3: A2 needs to read the clocks of A1 and TTS(A1 ∥ A2) ∼ TTS(A1 ∥ A′
2).

this we allow an automaton to copy its neighbor’s clocks into local clocks dur-
ing synchronizations. This is denoted as updates of the form x ′ := x in A′

2
(see Fig. 5.2). This is a special case of updatable timed automata, defined in
[BDFP04], and recalled in Subsection 3.2.1. Moreover, as shown in [BDFP04],
the class we consider, with diagonal-free constraints and updates with equality
(they allow other operators) is not more expressive than classical TA for the se-
quential semantics (any updatable TA of the class is bisimilar to a classical TA),
and the emptiness problem is PSPACE-complete.

Semantics TTS(A1 ∥ A2) can be defined as previously, with the difference that

the synchronizations are now defined by: ((ℓ1,ℓ2), v)
a
−→ ((ℓ′1,ℓ′2), v ′) iff ℓ1

g1,a,r1
−−−−→1

ℓ′1, ℓ2
g2,a,r2,u
−−−−−−→2 ℓ′2 where u is a partial function from X2 to X1, v |= g1 ∧ g2,

v ′ = (v[r1 ∪ r2])[u], and v ′ |= Inv(ℓ′1)∧ Inv(ℓ′2). The valuation v[u] is defined by
v[u](x) = v(u(x)) if u(x) is defined, and v[u](x) = v(x) otherwise.

Here, we choose to apply the reset r1 ∪ r2 before the update u, because we
are interested in sharing the state reached in A1 after the synchronization, and
r1 may reset some clocks in C1 ⊆ X1.

5.1.2 Towards a Formalization of the Problem

We want to know whether A2 really needs to read the clocks reset by A1, or if
another NTA A′

1 ∥ A′
2 could achieve the same behavior as A1 ∥ A2 without us-

ing shared clocks. It remains to formalize what we mean by “having the same
behavior” in this context.

First, we impose that the locality of actions is preserved, i.e. A′
1 uses the same

set of local actions as A1, and similarly for A′
2 and A2. For the synchronizations,

we have explained earlier why we allow A′
1 and A′

2 to use a larger synchroniza-
tion alphabet than A1 and A2. The correspondence between both alphabets will
be done by a mapping ψ (this point will be refined later).

Now we have to ensure that the behavior is preserved. The first idea that
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comes in mind is to impose bisimulation between ψ(TTS(A′
1 ∥ A′

2)) (i.e. TTS(A′
1 ∥

A′
2) with synchronization actions relabeled by ψ) and TTS(A1 ∥ A2). But this is

not sufficient, as illustrated by the example of Fig. 5.3 (where ψ is the identity).
Intuitively A2 needs to read x when in q1 (and similarly in q2) at time 2, because
this reading determines whether it will perform a or b, and the value of x cannot
be inferred from its local state given by q1 and the value of y . Anyway TTS(A1 ∥

A′
2) is bisimilar to TTS(A1 ∥ A2), and A′

2 does not read x. For the bisimulation
relation R, it is sufficient to impose (p1, q1) R (p1,r1) and (p2, q1) R (p2,r2).

What we see here is that, if we focus on the point of view of A2 and A′
2, these

two automata do not behave the same. As a matter of fact, when A2 fires one
edge labeled by c, it has not read x yet, and there is still a possibility to fire a or
b, whereas when A′

2 fires one edge labeled by c, there is no more choice after-
wards. Therefore we need a relation between A′

2 and A2, and in the general case,
a relation between A′

1 and A1 also.

5.2 Contextual Timed Transition Systems

As we are interested in representing a partial view of one of the components, we
need to introduce another notion, that we call contextual timed transition sys-

tem. This resembles the powerset construction used in game theory to capture
the knowledge of an agent about another agent [Rei84].

Notations S= Σ1 ∩Σ2 denotes the set of common actions. Q1 denotes the set
of states of TTS(A1). When s = ((ℓ1,ℓ2), v) is a state of TTS(A1 ∥ A2), we also
write s = (s1, s2), where s1 = (ℓ1, v|X1 ) is in Q1, and s2 = (ℓ2, v|X2\X1 ), where v|X is
v restricted to X . TW0(Σ) denotes the set of finite timed ε-words of duration 0
over Σ, i.e. TW0(Σ) = {w | δ(w) = 0∧λ(w) ∈ Σ

∗
ε }. Lastly, Paths(Σ,d) denotes the

set of finite paths of duration d over Σε.

Definition 32 (UR(s)). Let TTS(A1) = (Q1, s0,Σ1,→1) and s ∈Q1. The set of states
of A1 reachable from s by local actions in 0 delay (and therefore not observable
by A2) is denoted by UR(s) = {s′ ∈Q1 | ∃w ∈ TW0(Σ1 \Σ2) : s

w
−→1 s′}.

5.2.1 Contextual TTS

Contextual States

The states of this contextual TTS are called contextual states. They can be re-
garded as possibly infinite sets of states of TTS(A1 ∥ A2) for which A2 is in the
same location and has the same valuation over X2 \ X1. A2 may not be able to
distinguish between some states (s1, s2) and (s′1, s2). In TTSA1 (A2), these states
are grouped into the same contextual state. Since we are interested in the case
where X2∩X1 6= ;, it may happen that A2 is able to perform a local action or de-
lay from (s1, s2) and not from (s′1, s2), even if these states are grouped in a same
contextual state.
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Definition 33 (Contextual TTS). Let TTS(A1 ∥ A2) = (Q, q0,Σ1 ∪Σ2,⇒). Then, the
TTS of A2 in the context of A1, denoted by TTSA1 (A2), is the TTS (S, s0, (Σ2 \S)∪
(S×Q1),→), where

• S = {(S1, s2) | ∀s1 ∈ S1, (s1, s2) ∈Q},

• s0 = (S0
1, s0

2), s.t. (s0
1, s0

2) = q0 and S0
1 = UR(s0

1),

• → is defined by

– Local action: for any a ∈ Σ2,ε \ S, (S1, s2)
a
−→ (S′

1, s′2) iff ∃s1 ∈ S1 :

(s1, s2)
a
=⇒ (s1, s′2), and S′

1 = {s1 ∈ S1 | (s1, s2)
a
=⇒ (s1, s′2)}

– Synchronization: for any (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1
−−→ (UR(s′1), s′2) iff

∃s1 ∈ S1 : (s1, s2)
a
=⇒ (s′1, s′2)

– Local delay: for any d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s′2) iff ∃s1 ∈ S1,ρ ∈

Paths(Σ1 \ Σ2,d) : (s1, s2)
ρ
=⇒ (s′1, s′2), and S′

1 = {s′1 | ∃s1 ∈ S1,ρ ∈

Paths(Σ1 \Σ2,d) : (s1, s2)
ρ
=⇒ (s′1, s′2)}

For example, consider A1 and A2 of Fig. 5.3. The initial state is
(

{(p0,0)}, (q0,0)
)

. From this contextual state, it is possible to delay 2 time units
and reach the contextual state

(

{(p1,2), (p2,1)}, (q0,2)
)

. Indeed, during this de-
lay, A1 has to perform either e and reset x, or d . Now, from this contextual state,
we can take an edge labeled by c, and reach

(

{(p1,2), (p2,1)}, (q1,2)
)

. Lastly, from
this new state, a can be fired, because it is enabled by ((p2,1), (q1,2)) in the TTS
of the NTA, and the reached contextual state is

(

{(p2,1)}, (q3,2)
)

.

Unrestricted Contextual TTS

We say that there is no restriction in TTSA1 (A2) if whenever a local step is pos-
sible from a reachable contextual state, then it is possible from all the states
(s1, s2) that are grouped into this contextual state. In the example above, there
is a restriction in TTSA1 (A2) because we have seen that a is enabled only by
((p2,1), (q1,2)), and not by all states merged in

(

{(p1,2), (p2,1)}, (q1,2)
)

. Formally,
we use the predicate noRestrictionA1 (A2) defined as follows.

Definition 34 (noRestrictionA1 (A2)). The predicate noRestrictionA1 (A2) holds iff
for any reachable state (S1, s2) of TTSA1 (A2), both

• ∀a ∈Σ2,ε \S, (S1, s2)
a
−→ (S′

1, s′2) ⇐⇒ ∀s1 ∈ S1, (s1, s2)
a
=⇒ (s1, s′2), and

• ∀d ∈R≥0, (S1, s2)
d
−→⇐⇒ ∀s1 ∈ S1,∃ρ ∈ Paths(Σ1 \Σ2,d) : (s1, s2)

ρ
=⇒

Remark 35. If A2 does not read X1, then noRestrictionA1 (A2).



5.2. Contextual Timed Transition Systems 93

A1 A2
x < 1, a

a
x ≥ 1,b, {x}

Fig. 5.4: TTSQ1 (A1)⊗TTSA1 (A2) ≈ TTSQ1 (A1 ∥ A2), although there is a restriction

in TTSA1 (A2)

Sharing of Information on the Synchronizations Later we assume that during
a synchronization, A1 is allowed to transmit all its state to A2, that is why, in
TTSA1 (A2), we distinguish the states reached after a synchronization according
to the state reached in A1. We also label the synchronization edges by a pair
(a, s1) ∈S×Q1 where a is the action and s1 the state reached in A1.

For the sequel, let TTSQ1 (A1) (resp. TTSQ1 (A1 ∥ A2)) denote TTS(A1) (resp.
TTS(A1 ∥ A2)) where the synchronization edges are labeled by (a, s1), where a ∈

S is the action, and s1 is the state reached in A1.
First remark the following.

Remark 36. Let A1 ∥ A2 be such that X1 ∩ X2 = ;. Then TTS(A1)⊗TTS(A2) is
isomorphic to TTS(A1 ∥ A2). This is not true in general when X1 ∩ X2 6= ;. For
example, in Fig. 5.2, taking b at time 0.5 and e at time 1 is possible in TTS(A1)⊗
TTS(A2) but not in TTS(A1 ∥ A2), since b resets x which is tested by e.

We can now state a nice property of unrestricted contextual TTS that is sim-
ilar to the distributivity of TTS over the composition when considering TA with
disjoint sets of clocks (as stated in the above remark). We say that a TA is deter-

ministic if it has no ε-transition and for any location ℓ and action a, there is at
most one edge labeled by a from ℓ.

Lemma 37. If there is no restriction in TTSA1 (A2), then TTSQ1 (A1)⊗TTSA1 (A2) ≈
TTSQ1 (A1 ∥ A2). Moreover, when A2 is deterministic, this condition becomes nec-

essary.

The example of Fig. 5.4 shows that the reciprocal does not hold when A2

is not deterministic. In order to prove Lemma 37, we first present two propo-
sitions. The first one relates the reachable states of TTSA1 (A2) with those of
TTSQ1 (A1)⊗TTSA1 (A2).

Proposition 38.

1. For any reachable state (S1, s2) of TTSA1 (A2),

s1 ∈ S1 =⇒ (s1, (S1, s2)) is a reachable state of TTSQ1 (A1)⊗TTSA1 (A2)

2. noRestrictionA1 (A2) iff

for any reachable state (S1, s2) of TTSA1 (A2),
s1 ∈ S1 ⇐⇒ (s1, (S1, s2)) is a reachable state of TTSQ1 (A1)⊗TTSA1 (A2)
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Proof. (1) For any reachable state (S1, s2), let us denote by P (S1, s2) the fact
that for any s1 ∈ S1, (s1, (S1, s2)) is reachable in TTSQ1 (A1)⊗TTSA1 (A2). We give
a recursive proof. First, the initial state (S0

1, s0
2) satisfies P (S0

1, s0
2) because for

any s1 ∈ S0
1 = UR(s0

1), ∃w ∈ TW0(Σ1 \Σ2) : s0
1

w
−→1 s1 and hence (s0

1, (S0
1, s0

2))
w
−→

(s1, (S0
1, s0

2)). Then, assume some reachable state (S1, s2) of TTSA1 (A2) satisfies
P (S1, s2) and show that any state (S′

1, s′2) reachable in one step from (S1, s2) also
satisfies P (S′

1, s′2). There can be three kinds of steps from (S1, s2) in TTSA1 (A2).

1. If for some a ∈ Σ2,ε \ S, (S1, s2)
a
−→ (S′

1, s′2), then for any s′1 ∈ S′
1 ⊆ S1,

(s′1, (S1, s2))
a
−→ (s′1, (S′

1, s′2)), i.e. P (S′
1, s′2) holds.

2. If for some (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1
−−→ (S′

1, s′2), then S′
1 = UR(s′1), and

for some s1 ∈ S1, (s1, (S1, s2))
a,s′1
−−→ (s′1, (S′

1, s′2)). By the same reasoning as

for (S0
1, s0

2), for any s′′1 ∈ S′
1 = UR(s′1), ∃w ∈ TW0(Σ1 \Σ2) : (s′1, (S′

1, s′2))
w
−→

(s′′1 , (S′
1, s′2)). Hence P (S′

1, s′2) holds.

3. If for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s′2), then ∃d1 ≤ d : (S1, s2)
d1
−→ (S1

1, s1
2)∧

∃s1
1 ∈ S1

1, s1 ∈ S1 : (s1, s2)
d1
=⇒ (s1

1, s1
2), that is (s1

1, (S1
1, s1

2)) is reachable, and by

time-determinism, (S1
1, s1

2)
d−d1
−−−→ (S′

1, s′2).

For the third case, take d1 small enough (but strictly positive) so that S1
1 = {s′1 |

∃s1 ∈ S1 : (s1, s2)
d1
=⇒ (s1

1, s1
2)∧ s′1 ∈ UR(s1

1)}. That is, after some local actions that
take no time, A1 is able to perform a delay d1 during which no local action is
enabled (such d1 exists because of the non-zenoness assumption). With such
d1, any state s′1 ∈ S1

1 is such that s′1 ∈ UR(s1
1) for some s1

1 so that (s1
1, (S1

1, s1
2)) is

reachable. Therefore, ∃w ∈ TW0(Σ1 \Σ2) : (s1
1, (S1

1, s1
2))

w
−→ (s′1, (S1

1, s1
2)) and hence

P (S1
1, s1

2) holds.
Since A1 is not Zeno, any delay in TTSA1 (A2) can be cut into a finite number

of such smaller global delays. Hence, for any (S1, s2) that satisfies P (S1, s2), for

any d ∈R≥0 such that (S1, s2)
d
−→ (S′

1, s′2), P (S′
1, s′2) holds.

(2, ⇒) (1) already gives that ∀s1 ∈ S1, (s1, (S1, s2)) is a reachable state. So
it remains to prove that, when noRestrictionA1 (A2), if (s1, (S1, s2)) is a reachable
state, then s1 ∈ S1. We say that a reachable state s = (s1, (S1, s2)) satisfies P (s) iff
s1 ∈ S1.

Assume noRestrictionA1 (A2) and s = (s1, (S1, s2) is a reachable state that sat-
isfies P (s). Then, any state s′ reachable in one step from s by some local action
or delay a ∈ (Σ1,ε ∪Σ2,ε) \S∪R≥0 or by some synchronization (a, s′1) ∈ S×Q1

matches one of the following cases.

• if a ∈ Σ1,ε \Σ2 is a local action in A1, then s′ = (s′1, (S1, s2)) such that s′1 ∈

UR(s1) ⊆ S1 (by construction, s1 ∈ S1 =⇒ UR(s1) ⊆ S1),

• if a ∈Σ2,ε \Σ1 is a local action in A2, then s′ = (s1, (S1, s′2)),
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• if a ∈ R≥0, then s′ = (s′1, (S′
1, s′2)), where s′1 such that (s1, s2)

a
=⇒ (s′1, s′2) is in

S′
1 = {q ′

1 | ∃q1 ∈ S1,ρ ∈ Paths(Σ1 \Σ2, a) : (q1, s2)
ρ
=⇒ (q ′

1, s′2)},

• if (a, s′1) ∈ (S×Q1), then s′ = (s′1, (UR(s′1), s′2)).

Therefore, any state s′ reached in one step from s also satisfies P (s′), and recur-
sively, since the initial state s0 = (s0

1, (UR(s0
1), s0

2)) satisfies P (s0), any reachable
state s of TTSQ1 (A1)⊗TTSA1 (A2) satisfies P (s).

(2, ⇐) By contradiction, assume there is a restriction in state (S1, s2) for local
delay or action a ∈ (Σ2,ε \Σ1)∪R≥0 i.e. a is possible from some state (s′1, s2) but
not from another state (s1, s2) such that s′1, s1 ∈ S1. Then, after performing a

from (s1, (S1, s2)), that is reachable according to Proposition 38, we reach state
(s1, (S′

1, s′2)) such that s1 ∉ S′
1.

Proposition 39. If noRestrictionA1 (A2) then, for any timed ε-word w over (Σ2 \

S)∪ (S×Q1), there exists at most one S1 such that, for some s2, (S0
1, s0

2)
w
−→ (S1, s2)

in TTSA1 (A2) (i.e. S1 is uniquely determined by w, whatever the structure of A2).

Proof. Assume noRestrictionA1 (A2), we show that, for any (S1
1, s1

2) reachable in
TTSA1 (A2), for any local action, synchronization, or delay in (Σ2,ε\S)∪(S×Q1)∪
R≥0, there is at most one S1 such that, for some s2, (S1, s2) is a successor of (S1

1, s1
2)

by this action.
Indeed, by construction, and since there is no restriction,

• any successor of (S1
1, s1

2) by a local action is of the form (S1
1, s′2),

• any successor of (S1
1, s1

2) by a synchronization (a, s′1) is of the form
(UR(s′1), s′2),

• any successor of (S1
1, s1

2) by a delay d is of the form (S1, s′2) with S1 = {s′1 |

∃ρ ∈ Paths(Σ1 \Σ2,d), s1 ∈ S1
1 : s1

ρ
−→1 s′1}.

Therefore, for any possible action or delay, S1 does not depend on the state of
A2, and is uniquely determined by this action or delay.

Since (S0
1, s0

2) is unique, for any timed ε-word w over (Σ2 \S)∪(S×Q1), either
w does not describe a valid path in TTSA1 (A2), or there exists a unique S1 such

that for some s2, (S0
1, s0

2)
w
−→ (S1, s2) in TTSA1 (A2).

We can now prove Lemma 37.

Proof of Lemma 37. Assume noRestrictionA1 (A2), and define relation R as

(s1, (S1, s2)) R (s′1, s′2)
def

⇐⇒ s1 = s′1 ∧ s2 = s′2, for any reachable states (s1, (S1, s2))
of TTSQ1 (A1)⊗TTSA1 (A2) and (s′1, s′2) of TTSQ1 (A1 ∥ A2). By Proposition 38, since
(s1, (S1, s2)) is reachable, s1 ∈ S1. We show that R is a strong timed bisimulation.

First, the initial states are R-related: (s0
1, (S0

1, s0
2)) R (s0

1, s0
2). Then, if

(s1, (S1, s2)) R (s′1, s′2), four kinds of steps are possible:
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• if for some a ∈ Σ1,ε \Σ2, (s1, (S1, s2))
a
−→ (s′1, (S1, s2)), then (s1, s2)

a
=⇒ (s′1, s2)

and (s′1, (S1, s2)) R (s′1, s2), and conversely.

• if for some a ∈ Σ2,ε \ Σ1, (s1, (S1, s2))
a
−→ (s1, (S1, s′2)), then, ∀s11 ∈

S1, (s11, s2)
a
=⇒ (s11, s′2) (because noRestrictionA1 (A2)), and in particular,

(s1, s2)
a
=⇒ (s1, s′2) and (s1, (S1, s′2)) R (s1, s′2), and conversely.

• if for some (a, s′1) ∈ S×Q1, (s1, (S1, s2))
a,s′1
−−→ (s′1, (S′

1, s′2)), then (s1, s2)
a,s′1
==⇒

(s′1, s′2) and (s′1, (S′
1, s′2)) R (s′1, s′2), and conversely.

• if for some d ∈ R≥0, (s1, (S1, s2))
d
−→ (s′1, (S′

1, s′2)), then (s1, s2)
d
=⇒ (s′1, s′2) (be-

cause noRestrictionA1 (A2)), and (s′1, (S′
1, s′2)) R (s′1, s′2), and conversely.

Now assume A2 is deterministic. Let relation R be a strong timed bisimula-
tion between TTSQ1 (A1)⊗TTSA1 (A2) and TTSQ1 (A1 ∥ A2).

By contradiction, assume there is a restriction in TTSA1 (A2). Then there is a
reachable state (S1, s2) of TTSA1 (A2), and a local delay or action a ∈ (Σ2 \Σ1)∪
R≥0 such that, for some s1, s′1 ∈ S1, (s1, s2) enables a in TTSQ1 (A1 ∥ A2), whereas
(s′1, s2) does not.

By definition of a bisimulation, there also exist two states (p1, (P1, p2)) and
(p ′

1, (P ′
1, p ′

2) such that (p1, (P1, p2)) R (s1, s2) and (p ′
1, (P ′

1, p ′
2)) R (s′1, s2). That is,

in particular, (p ′
1, (P ′

1, p ′
2)) does not enable a. Moreover, these states can be cho-

sen so that they are reached by the same timed word over (Σ2 \S)∪(S×Q1), and
since A2 is deterministic, p2 = p ′

2 = s2.
Now, we can assume that (S1, s2) is chosen so that it is the first state with a

restriction along an initial path. Then, the paths to (P1, s2) and (P ′
1, s2) generate

the same timed word over (Σ2 \S)∪(S×Q1), and by Proposition 39, P1 = P ′
1 = S1.

Therefore, we have shown the existence of a state (p ′
1, (S1, s2)) in TTSQ1 (A1)⊗

TTSA1 (A2) that does not enable a, which means that (S1, s2) does not enable a

in TTSA1 (A2). This contradicts the fact that there exists s1 ∈ S1 such that (s1, s2)
enables a.

We are now in condition to formalize our problem.

5.2.2 Need for Shared Clocks Revisited

We have argued in Section 5.1.2 that the existence of a NTA A′
1 ∥ A′

2 without
shared clocks and such that ψ(TTSQ ′

1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1 ∥ A2) is not suffi-

cient to capture the idea that A2 does not need to read the clocks of A1. We are
now equipped to define the relations we want to impose on the separate compo-
nents, namely ψ(TTSQ ′

1
(A′

1)) ∼ TTSQ1 (A1) and ψ(TTSA′
1
(A′

2)) ∼ TTSA1 (A2). And
since we have seen the importance of labeling the synchronization actions in
contextual TTS by labels in S×Q1 rather than in S, the correspondence between
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A1

x ≤ 1

A2

y ≤ 2

A′
2

y ≤ 2
x = 1,d

x = 1,e, {x}

y = 2∧x = 2, a

y = 2∧x = 1,b

y = 2, a

y = 2,b

Fig. 5.5: A2 needs to read the clocks of A1 and TTSA1 (A2) ∼ TTSA1 (A′
2).

the synchronization labels of A′
1 ∥ A′

2 with those of A1 ∥ A2 is now done by a map-
ping ψ : S′×Q ′

1 →S×Q1.
This settles the problem of the example of Fig. 5.3 where TTSA1 (A′

2) 6∼

TTSA1 (A2) (here A′
1 = A1), but as shown in Fig. 5.5, a problem remains. In this

example, we can see that A2 needs to read clock x of A1 to know whether it has to
perform a or b at time 2, and yet TTSA1 (A2) ∼ TTSA1 (A′

2) (here also A′
1 = A1). The

intuition to understand this is that the contextual TTS merge too many states for
the two systems to remain differentiable. However we remark that here, the first
condition that we have required in Section 5.1, namely the global bisimulation
between ψ(TTS(A′

1 ∥ A′
2)) and TTS(A1 ∥ A2), does not hold.

Formalization

Now we show that the conjunction of global and local bisimulations actually
gives the good definition.

Definition 40 (Need for shared clocks). Given A1 ∥ A2 such that A1 does not read
the clocks of A2, A2 does not need to read the clocks of A1 iff there exists an NTA
A′

1 ∥ A′
2 without shared clocks (but with clock copies during synchronizations),

using the same sets of local actions and a synchronization alphabet S′ related to
the original one by a mapping ψ : S′×Q ′

1 →S×Q1, and such that

1. ψ(TTSQ ′
1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1 ∥ A2) and

2. ψ(TTSQ ′
1
(A′

1)) ∼ TTSQ1 (A1) and

3. ψ(TTSA′
1
(A′

2)) ∼ TTSA1 (A2).

Notice that this does not mean that the clock constraints that read X1 can
simply be removed from A2 (see Fig. 5.2).

Lemma 41. When noRestrictionA1 (A2) holds, any NTA A′
1 ∥ A′

2 without shared

clocks and that satisfies items 2 and 3 of Definition 40 also satisfies item 1.

Proof. When noRestrictionA1 (A2) holds, then by Lemma 37, TTSQ1 (A1) ⊗
TTSA1 (A2) ≈ TTSQ1 (A1 ∥ A2). So for any NTA A′

1 ∥ A′
2 satisfying items 2 and 3

of Definition 40, we have ψ(TTSQ ′
1
(A′

1))⊗ψ(TTSA′
1
(A′

2)) ∼ TTSQ1 (A1 ∥ A2). It re-
mains to show that ψ(TTSQ ′

1
(A′

1 ∥ A′
2)) ≈ψ(TTSQ ′

1
(A′

1))⊗ψ(TTSA′
1
(A′

2)). Remark
that applying ψ to the labels before doing the product allows more synchroniza-
tions than applying ψ on the TTS of the system since ψ may merge different
labels. We show that, in our case, the two resulting TTS are bisimilar anyway.



98 Chapter 5. Avoiding Shared Clocks in NTA

For this, let R1 be a bisimulation relation between ψ(TTSQ ′
1
(A′

1)) and
TTSQ1 (A1), and R2 be a bisimulation relation between ψ(TTSA′

1
(A′

2)) and
TTSA1 (A2). We will build inductively a bisimulation R between ψ(TTSQ ′

1
(A′

1 ∥

A′
2)) and ψ(TTSQ ′

1
(A′

1))⊗ψ(TTSA′
1
(A′

2)) such that for any (q1, q2) and (r1,r2) such
that (q1, q2) R (r1,r2), there exists a state s1 of TTSQ1 (A1) and a state s2 of
TTSA1 (A2) such that q1 R1 s1 and r1 R1 s1 and q2 R2 s2 and r2 R2 s2. The induc-
tive definition of R is as follows. The initial states (which are the same in both
sides) are in relation; R is preserved by delays; R is preserved by playing local
actions. The key is the treatment of synchronizations: when (q1, q2) R (r1,r2)

and q1
a1
−→ q ′

1 in TTSQ1 (A1) and q2
a2
−→ q ′

2 in TTSA1 (A2) with ψ(a1) = ψ(a2) = a,
then the existence of the s1 and s2 mentioned earlier ensures that there ex-
ists a state (r ′

1,r ′
2) in ψ(TTSQ ′

1
(A′

1 ∥ A′
2)) such that (r1,r2)

a
−→ (r ′

1,r ′
2), and we set

(q ′
1, q ′

2) R (r ′
1,r ′

2) for any such (r ′
1,r ′

2).

A Criterion to Decide the Need for Shared Clocks

We are now ready to give a criterion to decide whether shared clocks are neces-
sary.

Theorem 42. When noRestrictionA1 (A2) holds, A2 does not need to read the clocks

of A1. When A2 is deterministic, this condition becomes necessary.

Proof of Theorem 42, necessary condition when A2 is deterministic. Like in the
proof of Lemma 41, we show that for any NTA A′

1 ∥ A′
2 satisfying items 2 and 3 of

Definition 40, ψ(TTSQ ′
1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1)⊗TTSA1 (A2). But, by Lemma 37,

when A2 is deterministic and TTSA1 (A2) has restrictions, TTSQ1 (A1)⊗TTSA1 (A2)
is not timed bisimilar to TTSQ1 (A1 ∥ A2) (not even weakly timed bisimilar since
there are no ε-transitions). Hence any NTA A′

1 ∥ A′
2 satisfying items 2 and 3 of

Definition 40, does not satisfy item 1.

We remark from the proof that when there is a restriction in TTSA1 (A2), even
infinite A′

1 and A′
2 would not help. Next section will be devoted to the construc-

tive proof of the direct part of this theorem.
The counterexample in Fig. 5.4 also works here to argue that the conditions

of Lemma 41 and Theorem 42 are not necessary when A2 is not deterministic.
Indeed A′

2 with only one unguarded edge labeled by a and A′
1 = A1 satisfy the

three items of Definition 40 but there is a restriction in TTSA1 (A2).

5.3 Constructing a Network of Timed Automata without
Shared Clocks

This section is dedicated to proving Theorem 42 by constructing suitable A′
1 and

A′
2. To simplify, we assume that in A2, the guards on the synchronizations do

not read X1.
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5.3.1 Construction

First, our A′
1 is obtained from A1 by replacing all the labels a ∈ S on the syn-

chronization edges of A1 by (a,ℓ1) ∈ S×L1, where ℓ1 is the output location of
the edge. Therefore the synchronization alphabet between A′

1 and A′
2 will be

S
′ =S×L1, which allows A′

1 to transmit its location after each synchronization.
Then, the idea is to build A′

2 as a product A1,2 ⊗ A2,mod, where A2,mod plays
the role of A2 and A1,2 acts as a local copy of A′

1, from which A2,mod reads clocks
instead of reading those of A′

1. For this, as long as the automata do not syn-
chronize, A1,2 will evolve, simulating a run of A′

1 that is compatible with what
A′

2 knows about A′
1. And, as soon as A′

1 synchronizes with A′
2, A′

2 updates A1,2 to
the actual state of A′

1. If the clocks of A1,2 always give the same truth value to the
guards and invariants of A2,mod than the actual value of the clocks of A′

1, then
our construction behaves like A1 ∥ A2. To check that this is the case, we equip
A′

2 with an error location, /, and edges that lead to it if there is a contradiction
between the values of the clocks of A′

1 and the values of the clocks of A1,2. The
guards of these edges are the only cases where A′

2 reads clocks of A′
1. Therefore, if

/ is not reachable, they can be removed so that A′
2 does not read the clocks of A′

1.
More precisely, a contradiction happens when A2,mod is in a given location and
the guard of an outgoing edge is true according to A1,2 and false according to A′

1,
or vice versa, or when the invariant of the current location is false according to
A′

1 (whereas it is true according to A1,2, since A2,mod reads the clocks of A1,2).
Namely, Smod = A′

1 ∥ (A1,2 ⊗ A2,mod) where A1,2 and A2,mod are defined as
follows. A1,2 = (L1,ℓ0

1, X ′
1,S′,E ′

1, Inv′1), where

• each clock x ′ ∈ X ′
1 is associated with a clock c(x ′) = x ∈ X1 (c is a bijection

from X ′
1 to X1). For any clock constraint γ, γ′ denotes the clock constraint

where any clock x of X1 is substituted by x ′ of X ′
1.

• ∀ℓ ∈ L1, Inv′1(ℓ) = Inv1(ℓ)′

• E ′
1 = {ℓ1

g ′,εa ,r ′

−−−−−→ ℓ2 | ∃a ∈Σ1,ε \Σ2 : ℓ1
g ,a,c(r ′)
−−−−−→ ℓ2 ∈ E1}

∪ {ℓ
tt,(a,ℓ2),c
−−−−−−→ ℓ2 | ℓ ∈ L1 ∧a ∈S∧∃ℓ1

g ,a,r
−−−→ ℓ2 ∈ E1}

where c denotes the assignment of any clock x ′ ∈ X ′
1 with the value of its

associated clock c(x ′) = x ∈ X1 (written x ′ := x in Fig. 5.6).

A2,mod = (L2 ∪ {/},ℓ0
2, X2 ∪X ′

1 ∪X1, (Σ2 \Σ1)∪S
′,E ′

2, Inv′2), where

• ∀ℓ ∈ L2, Inv′2(ℓ) = Inv2(ℓ)′ and Inv′2(/) = tt,

• E ′
2 = {ℓ1

g ′,a,r
−−−−→ ℓ2 | ℓ1

g ,a,r
−−−→ ℓ2 ∈ E2 ∧a ∉S}

∪ {ℓ1
g ,(a,ℓ),r
−−−−−−→ ℓ2 | ℓ1

g ,a,r
−−−→ ℓ2 ∈ E2 ∧a ∈S∧ℓ ∈ L1}

∪ {ℓ
¬Inv2(ℓ),ε,;
−−−−−−−−→/ | ℓ ∈ L2}

∪ {ℓ
g ′∧¬g ,ε,;
−−−−−−−→/ | ℓ

g ,a,r
−−−→ ℓ′ ∈ E2 ∧a ∉S}

∪ {ℓ
¬g ′∧g ,ε,;
−−−−−−−→/ | ℓ

g ,a,r
−−−→ ℓ′ ∈ E2 ∧a ∉S}.
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x′ ≤ 3

x′ ≤ 3

A1,2

ℓs

x′ ≤ 4 /

A2,mod

x′ ≥ 1
εa

x′ = 3
εc

x′ < 1
εb

{x′}

y ≥ 2
(s,ℓs )

x′ ≥ 1
e

{y}

¬(x ≤ 4)

x′ ≥ 1∧x < 1

x′ < 1∧x ≥ 1
(s,ℓs )
x′ := x

(s,ℓs )

x′ := x

(s,ℓs ), x′ := x

Fig. 5.6: A1,2 and A2,mod for the example of Fig. 5.2

For the example of Fig. 5.2, A1,2 and A2,mod are pictured in Fig. 5.6.
We now prove the correspondence between a state of Smod and two states

of TTS(A1 ∥ A2) that are merged into the same state of TTSA1 (A2). This is
stated in the following proposition. A state of Smod is denoted as (s1, s1,2, s2) =
(

(ℓ1, v|X1 ), (ℓ1,2, v|X ′
1
), (ℓ2, v|X2\X1 )

)

. For a given state of A1,2, s1,2 = (ℓ1,2, v|X ′
1
), we

denote by s′1,2 the state (ℓ1,2, v ′), where v ′ : X1 →R≥0 is defined as: for any x ∈ X1,
v ′(x) = v(x ′) (i.e. s′1,2 is a state of A1). Reciprocally, for a given state of A1,
s′1,2 = (ℓ1,2, v ′), s1,2 denotes the state (ℓ1,2, v), where v : X ′

1 → R≥0 is defined as:
for any x ′ ∈ X ′

1, v(x ′) = v ′(x).

Proposition 43. Let (s1, s1,2, s2) be a state of Smod. If along one path that leads to

(s1, s1,2, s2) no edge leading to / is enabled, then there exists S1 such that (S1, s2)
is a reachable state of TTSA1 (A2) and s1 and s′1,2 are both in S1.

Conversely, let (S1, s2) be a reachable state of TTSA1 (A2), and s1 and s′1,2 be

some states in S1. Then (s1, s1,2, s2) is a state of Smod.

Proof. Let (s1, s1,2, s2) be a reachable state of Smod, such that there is a path ρ

from the initial state (s0
1, s0

1,2, s0
2) to (s1, s1,2, s2) that does not enable any edges

leading to / (except maybe from (s1, s1,2, s2)). We give a recursive proof. First,
for the initial state (s0

1, s0
1,2, s0

2) of Smod, s0
1 and s0′

1,2 are both in S0
1 such that (S0

1, s0
2)

is the initial state of TTSA1 (A2). Now, assume this is true for some (p1, p1,2, p2)
visited along ρ. That is, there exists P1 such that (P1, p2) is reachable and
p1, p ′

1,2 ∈ P1. Then, the next state s′ visited along ρ is reached after one of the
following steps:

• local action in A′
1: s′ = (q1, p1,2, p2) such that q1 ∈ UR(p1) ⊆ P1,

• local action in A1,2: s′ = (p1, q1,2, p2) such that q ′
1,2 ∈ UR(p ′

1,2) ⊆ P1,

• local action in A2: s′ = (p1, p1,2, q2) such that there exists S′
1 such that

(S′
1, q2) is reachable from (P1, q2) by the same action, and, since no edge

leading to / is enabled, both (p1, p2) and (p ′
1,2, p2) enable this step in

TTS(A1 ∥ A2). Therefore, p1, p ′
1,2 ∈ S′

1.
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• synchronization: s′ = (q1, q1,2, q2) such that there exists S′
1 = UR(q1) such

that (S′
1, q2) is reachable from (P1, q2) by the same action, and q1 = q ′

1,2 ∈

S′
1.

By recursion, (s1, s1,2, s2) also satisfies the property, that is, there exists S1 such
that (S1, s2) is reachable and s1, s′1,2 ∈ S1.

Conversely, let denote by P (S1, s2) the fact that for any reachable state (S1, s2)
of TTSA1 (A2), for any states s1, s′1,2 ∈ S1, (s1, s1,2, s2) is a reachable state of Smod.

First, for any s1, s′1,2 ∈ S0
1 = UR(s0

1), (s1, s1,2, s0
2) is a reachable state, because by

construction, A1,2 can only mimic (as long as there is no synchronization) one
possible behavior of A1 to reach s1,2 from s0

1, therefore P (S0
1, s0

2) holds. Assume
that for some reachable state (S1, s2) P (S1, s2) holds. Then any state reachable in
one step from (S1, s2) is reached by one of the following steps.

• If for some a ∈ Σ2,ε \ S, (S1, s2)
a
−→ (S′

1, s′2), then for any s1, s′1,2 ∈ S′
1 ⊆ S1,

(s1, s′1,2, s2)
a
−→ (s1, s′1,2, s′2), i.e. P (S′

1, s′2) holds.

• If for some (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1
−−→ (S′

1, s′2), then S′
1 = UR(s′1), and for

any s1, s′1,2 ∈ S′
1, (s1, s1,2, s′2) can be reached from some (p1, p1,2, s2) such

that p1, p ′
1,2 ∈ S1. Indeed, in Smod, synchronization ((a,ℓ′1), s′1) resets A1,2

in the same state as A1 and then A1 performs some local actions while A1,2

also performs some local actions mimicking one possible behavior of A1

(that is why s′1,2 ∈ S′
1). Hence P (S′

1, s′2) holds.

• If for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s′2), then we use the same reasoning as
for a synchronization. Since A1,2 is built so that it mimics any possible
behavior of A1 between synchronizations, any state s′1,2 ∈ S′

1 reachable by
A1 during this delay corresponds to a state s1,2 reachable by A1,2. Hence
P (S′

1, s′2) also holds.

By recursion, P (S1, s2) holds for any reachable state (S1, s2).

Lastly, the following lemma will be used to prove the direct part of Theo-
rem 42.

Lemma 44. / is reachable in Smod iff there is a restriction in TTSA1 (A2).

Proof. Assume / is not reachable in Smod. From Proposition 43, we know that
for any state (S1, s2) of TTSA1 (A2), for any s1, s′1,2 in S1, there is a corresponding
state s =

(

(ℓ1, v|X1 ), (ℓ1,2, v|X ′
1
), (ℓ2, v|X2\X1 )

)

= (s1, s1,2, s2) of Smod. Moreover, for
any such s, if there is an outgoing edge towards / from ℓ2, then this edge is
never enabled. That is, for any time constraint γ read in ℓ2 in the original system
S (invariant of ℓ2 or guard of an outgoing edge with a local action), v|X2∪X1 |=

γ ⇐⇒ v|(X2\X1)∪X ′
1
|= γ′. Hence for any enabled step from (S1, s2), s1 and s′1,2 are

in the same restriction. Therefore, noRestrictionA1 (A2).
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Assume / is reachable in Smod. From Proposition 43, we know that for any
state s =

(

(ℓ1, v|X1 ), (ℓ1,2, v|X ′
1
), (ℓ2, v|X2\X1 )

)

= (s1, s1,2, s2) of Smod, reached after a
path that does not enable edges leading to / (except maybe from this last state),
there is a corresponding state (S1, s2) of TTSA1 (A2) such that s1 and s′1,2 are both
in S1. If / can be reached, then consider a path that reaches / and such that no
edge leading to / was enabled before along the path. The last state s of Smod

visited before / is such that for some time constraint γ evaluated at s from ℓ2,
v|X2∪X1 |= γ and v|(X2\X1)∪X ′

1
6|= γ′ (or conversely). Therefore, a local action or local

delay is possible from (s1, s2) and not from (s′1,2, s2). Hence (S1, s2) is a state with
a restriction.

We now give a first simple case for which Theorem 42 can be proved eas-
ily. We say that A1 has no urgent synchronization if for any location, when the
invariant reaches its limit, a local action is enabled. Under this assumption, we
can show that A′

2 = A1,2⊗A′
2,mod

, where A′
2,mod

is A2,mod without location / (that
is never reached according to Lemma 44) and its ingoing edges, is suitable. In-
deed, we can show that A′

2 does not read X1 and is such that ψ(TTSA′
1
(A′

2)) ∼
TTSA1 (A2), where for any ((a,ℓ1), s1) ∈S

′×Q ′
1, ψ(((a,ℓ1), s1)) = (a, s1). Obviously,

item 2 of Definition 40 holds, and Lemma 41 says that item 1 also holds.
When A1 has urgent synchronizations, this construction allows one to check

the absence of restriction in TTSA1 (A2), but it does not give directly a suitable
A′

2. We define the construction of A′
2 for the general case in Subsection 5.3.3.

Proof of Theorem 42, direct part, when no urgent synchronization in A1.

Assume noRestrictionA1 (A2). We consider A′
2 = A1,2 ⊗ A′

2,mod
where A′

2,mod

is A2,mod without / (that is never reached according to Lemma 44) and
its ingoing edges. Therefore, A′

2,mod
does not read X1 and neither does

A′
2 = A1,2 ⊗ A′

2,mod
. Below we show that A′

2 is a suitable candidate because
ψ(TTSA′

1
(A′

2)) ∼ TTSA1 (A2) (ψ(TTSQ ′
1
(A′

1)) ∼ TTSQ1 (A1) obviously holds).
Let R be the relation such that for any reachable state (S1, s2) of TTSA1 (A2),

and any reachable state (S′
1, s′2) of ψ(TTSA′

1
(A′

2)),

(S1, s2) R (S′
1, s′2)

def

⇐⇒







s2 = (ℓ2, v2) and s′2 = ((ℓ1,2,ℓ2), v ′
2) s.t.

∀x ∈ X2 \ X1, v2(x) = v ′
2(x)

S1 = S′
1

i.e. A2 and A′
2,mod

are both in ℓ2 and their local clocks have the same value,
and A1 and A′

1 are in indistinguishable states (states merged in a same contex-
tual state S1). Obviously, the initial states, (S0

1, s0
2) and (S0

1, s0′
2 ), are R-related.

Since there is no marked state in TTSA1 (A2) (resp. in TTSA′
1
(A′

2)), for any state
s = (S1, s2) (resp. s′ = (S′

1, s′2)) of this TTS, all time constraints read by automaton
2 in ℓ2 (invariant of ℓ2 and guards of the outgoing edges) have the same truth
value for all the states (s1, s2) such that s1 ∈ S1 (resp. s1 ∈ S′

1). In the sequel, we
say that valuation V of s (resp. V ′ of s′) satisfies constraint g , when the valua-
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tions of all states (s1, s2) in s (resp. in s′) satisfy g . Assume now that for some
reachable states (S1, s2) and (S′

1, s′2), (S1, s2) R (S′
1, s′2).

Local Action If a ∈Σ2,ε \Σ1 is enabled from (S1, s2), then, there is an associated

edge in A2, ℓ2
g ,a,r
−−−→ p2 such that guard g is satisfied by V . Let g ′ be the guard on

the corresponding outgoing edge (ℓ1,2,ℓ2)
g ′,a,r
−−−−→ (ℓ1,2, p2) in A′

2. g uses clocks
in X2, and by construction, g ′ has the same form but with clocks in (X2 \ X1)⊎
X ′

1. (S1, s2) R (S′
1, s′2) says that v2 and v ′

2 coincide on X2 \ X1, and since / is
never reached in Smod, V satisfies the constraints of g on X1 iff V ′ satisfies the
constraints of g ′ on X ′

1. That is, V |= g ⇐⇒ V ′ |= g ′. Therefore A′
2 can also

perform a from (S1, s′2) and the states reached in both systems are R-related:
(S1, q2) R (S1, q ′

2), because q2 = (p2, v2[r ]) and q ′
2 = ((ℓ1,2, p2), v ′

2[r ]). This also
holds reciprocally.

Synchronization Assume for some (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1
−−→ (S′

1, q2). That

is, there is an edge ℓ2
g2,a,r2
−−−−→ p2 in A2 such that v2 |= g2 and q2 = (p2, v2[r2])

and, for some (ℓ1, v1) ∈ S1, an edge ℓ1
g1,a,r1
−−−−→ p1 in A1 such that v1 |= g1 and

s′1 = (p1, v1[r1]) ∈ S′
1. Hence, synchronization ((a, p1), s′1) is also enabled from

state (S1, s′2) because A2,mod is in the same location as A2, and has the same clock
values over X2 \ X1, and A′

1 is also in some state of S1, therefore, there is also the
same state (ℓ1, v1) ∈ S1 which enables (a, p1). We do not consider A1,2 because
it is always ready to synchronize. Moreover, the state reached in ψ(TTSA′

1
(A′

2))
after this synchronization is (S′

1, q ′
2) such that (S′

1, q2) R (S′
1, q ′

2), because q2 =

(p2, v2[r2]) and q ′
2 =

(

(p1,2, p2), (v ′
2[r2])[c]

)

where c denotes the copy of the clocks
of X1 into their associated clocks of X ′

1 and therefore c modifies only clocks that
we do not consider in relation R, and r2 ⊆C2 ⊆ (X2 \ X1) resets the same clocks
in both systems. And reciprocally.

Local Delay Assume for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, q2). Then,
V +d |= Inv2(ℓ2), and since / is never reached in Smod, V +d |= Inv2(ℓ2) ⇐⇒

V ′+d |= Inv′2(ℓ2). That is, the same delay is enabled from (S1, s′2) while A1,2 may

perform some local steps: (S1, s′2)(
g0,ε,r0
−−−−→)

∗ d0
−→ (

gn ,ε,rn
−−−−→)

∗
. . .

dn
−→ (S′′

1 , q ′
2), where

∑n
i=0 di = d , gi is a guard over X ′

1 and ri is a reset included in X ′
1. This works

because we assumed that A1 has no urgent synchronization (and so does A′
1).

Therefore, A1,2 cannot force a synchronization.
Reciprocally, if we can perform a delay d from (S1, s′2), then V ′ + d |=

Inv′2(ℓ2)∧ Inv′1(ℓ1,2). And since V +d |= Inv2(ℓ2) ⇐⇒ V ′+d |= Inv′2(ℓ2), we can
perform the same delay from (S1, s2).

Moreover, we reach equivalent states in both systems. Indeed, A2 and A′
2,mod

stay in the same location, the clocks in X2 \ X1 increase their value by d , and the
set of states of A1 and A′

1 becomes S′
1 = S′′

1 = {s′1 | ∃s1 ∈ S1,ρ ∈ Paths(Σ1 \Σ2,d) :
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(s1, s2)
ρ
=⇒ (s′1, q2)}.

Therefore, R is a weak timed bisimulation and ψ(TTSA′
1
(A′

2)) ∼ TTSA1 (A2).
Lastly, by Lemma 41, ψ(TTSQ ′

1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1 ∥ A2) also, and A2 does not

need to read X1.

In the example of Fig. 5.2, / is not reachable in Smod (see Fig. 5.6), therefore
A2 does not need to read X1. For an example where / is reachable, consider the

same example with an additional edge
tt, f ,{x}
−−−−→ from the end location of A1 to a

new location. Location / can now be reached in Smod, for example consider a
run where s is performed at time 2 leading to a state where v(x) = 2 and v(x ′) = 2,
and then A1 immediately performs f and resets x, leading to a state where the
valuation v ′ is such that v ′(x) = 0 and v ′(x ′) = 2, and satisfies guard x ′ ≥ 1∧x < 1
in Smod. Therefore, with this additional edge in A1, A2 needs to read X1. Indeed,
without this edge, A2 knows that A1 cannot modify x after the synchronization,
but with this edge, A2 does not know whether A1 has performed f and reset x,
while this may change the truth value of its guard x ≥ 1.

5.3.2 Complexity

PSPACE-hardness The reachability problem for timed automata is known to
be PSPACE-complete [AD90]. We will reduce this problem to our problem of
deciding whether A2 needs to read the clocks of A1. Consider a timed automa-
ton A over alphabet Σ, with some location ℓ. Build the timed automaton A2 as

A augmented with two new locations ℓ′ and ℓ′′ and two edges, ℓ
tt,ε,;
−−−→ ℓ′ and

ℓ′
x=1,a,;
−−−−−→ ℓ′′, where x is a fresh clock, and a is some action in Σ. Let A1 be the

one of Fig. 5.4 with an action b ∉Σ. Then, ℓ is reachable in A iff A2 needs to read
x which belongs to A1. Therefore the problem of deciding whether A2 needs to
read the clocks of A1 is also PSPACE-hard.

PSPACE-membership Moreover, we can show that when A2 is deterministic,
our problem is in PSPACE. Indeed, by Theorem 42 and Lemma 44, / is not
reachable iff noRestrictionA1 (A2) iff A2 does not need to read the clocks of A1.
Since the size of the modified system on which we check the reachability of / is
polynomial in the size of the original system, our problem is in PSPACE.

5.3.3 Dealing with Urgent Synchronizations

If we use exactly the same construction as before and allow urgent synchroniza-
tions, the following problem may occur. Remind that A1,2 simulates a possible
run of A′

1 while A′
1 plays its actual run. There is no reason why the two runs

should coincide. Thus it may happen that the run simulated by A1,2 reaches a
state where the invariant expires and only a synchronization is possible. Then
A′

2 is expecting a synchronization with A′
1, but it is possible that the actual A′

1
has not reached a state that enables this synchronization. Intuitively, A′

2 should
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then realize that the simulated run cannot be the actual one and try another run
compatible with the absence of synchronization.

In fact, between two synchronizations, A1,2, the local copy of A1, can be con-
structed to simulate only one fixed run of A1, instead of being able to simulate
all its runs. If this run is well chosen, then the situation described above never
happens, and we can use a construction similar to the one above, on which we
can prove that if / is not reachable, then any run of A1 is compatible with the
fixed run of A1,2, and A2 can avoid reading the clocks of A1.

Therefore, the idea of the construction is to force A1,2 to simulate one of the
runs of A1 (from the state reached after the last synchronization) that has max-
imal duration before it synchronizes again with A2,mod (or never synchronizes
again if possible). There may not be any such run if some time constraints are
strict inequalities, but the idea can be adapted even to this case. This choice of
a run of A1 is as valid as the others, and it prevents the system from having to
deal with the subtle situation that we described above. Below, we describe the
construction of A1,2 in two cases:

1. There is always a run with maximal duration between two synchroniza-
tions

2. It may happen that, between two synchronizations, there is no run with
maximal duration because of some strict time constraints.

Case 1: There is always a Run with Maximal Duration between two
Synchronizations

Consider automaton A1 in Fig. 5.7. We can see that, for the urgent synchroniza-
tion to happen as late as possible, A1,2 has to fire b at time 1, so that it can then
wait 3 time units before synchronizing, although it is still able to synchronize at
any time (we add the same dashed edges as in Fig. 5.6). This can be generalized
for any A1. The idea is essentially to force A1,2 to follow the appropriate finite or
ultimately periodic path in the region automaton [AD94] of A1 (see end of Sub-
section 2.2.2 for a brief summary on the region automaton). The construction is
described below and illustrated by Fig. 5.8 and 5.9.

A1,2 is now built over the region automaton [AD94] of A1. Transitions la-
beled by some a ∈S are treated separately like in the original construction. The
problem now is to constrain A1,2 to take one of the most time consuming runs
between two synchronizations.

The first step is to build the region automaton of A1, and remove the syn-
chronizations. Then, from the initial state, and from each state after a synchro-
nization, we want to compute the most time consuming path. Let s be one of
these states. If one of the paths from s has a loop, then there is an infinite run
from s with local actions, and since we consider non-Zeno TA, time diverges and
this run is valid. If no path from s contains a loop, then the paths from s are fi-
nite and there is a finite number of such paths. It is possible to compute, for each



106 Chapter 5. Avoiding Shared Clocks in NTA

ℓ0x ≤ 3

ℓ1x ≤ 3
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ℓ2

x ≤ 4
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x ≥ 1
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x ≥ 2
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x ≤ 1
b
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y ≥ 2
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x ≥ 1
e
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Fig. 5.7: A1 has an urgent synchronization.

ℓ0
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ℓ1
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ℓ1

x = 1
ℓ1

1 < x < 2
ℓ1

x = 2
ℓ1

2 < x < 3
ℓ1
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ℓ2
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2 < x < 3
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ℓ2
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a a a a a
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Fig. 5.8: Region automaton of A1 of Fig. 5.7. For readability, some of the edges

labeled by s are not represented.

q0 z ≤ 1

q1

q2 q3 q4

z = 1

εb , {x′, z}

x = 2

(s,ℓ2), x′ := x

2< x < 3
(s,ℓ2 ), x ′ := x

x = 3,(s,ℓ2), x ′ := x

x = 2,(s,ℓ2), x′ := x

2 < x < 3

(s,ℓ2), x′ := x

x = 3,(s,ℓ2), x′ := x

Fig. 5.9: A1,2 associated with A1 of Fig. 5.7. Dashed lines denote synchronization

edges that are not represented (similar to those represented from q1

and q2). A2,mod is the same as the one of Fig. 5.6.
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path, the supremum of the duration of the path: just sum the maximal delays in
each locations so that the path is possible (including the time spent in the last
location). Then we choose the path with maximal duration (the duration may
be infinite if the last location has no invariant). If for each action in the path, it
is possible to ensure a firing time that makes the run the most time consuming,
then we impose these firing times using a fresh clock and the appropriate guards
and invariants. By assumption, this is what happens in the case we are dealing
with. To summarize, the algorithm to keep only paths with maximal duration is
given below.

Data: timed automaton A1

Result: region automaton of A1 without the synchronizations and with
only one path of maximal duration between two synchronizations

begin
R(A1) ← (S, s0,Σ1,ε \S,→) region automaton of A1 without the
synchronizations;
Init ← {s ∈ S | s is a source state};
foreach s in Init do

if There is no marked path from s then
if There is a path from s with a loop then

mark edges of this path until a state s′ ∈ S with an outgoing
edge that is already marked is met;

else
compute one path with maximal duration from s by
summing the maximal delays in each state;
mark edges of this path until a state s′ ∈ S with an outgoing
edge that is already marked is met;

endif

endif

endfch
remove all unmarked edges from R(A1);
return R(A1);

end

Algorithm 2: Keeping only paths with maximal duration between two syn-
chronizations

Lastly, for each synchronizing edge in A1, and each corresponding output
state in the region automaton, we add synchronizing edges from all locations,
to the location associated with this output state. These edges are labeled by
“γ(R), (a,ℓ1),c”, where γ(R) is the constraint that describes the region R asso-
ciated with the target state, a is the synchronization label in A1, ℓ1 is the output
location of the synchronization in A1, and c is the copy of clock values. It is im-
portant to keep the different states of the region automaton that can be reached
after a synchronization, for the paths with maximal duration before the next syn-
chronization have to be computed and enforced also from these states (there
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could be other synchronization edges in A1). That is why, when it synchronizes,
A1,2 has to read the region of the current valuation of A′

1 to move towards the
corresponding state.

Finally, for our example automaton A1 in Fig. 5.7, we get the region automa-
ton of Fig. 5.8. After the synchronizations are removed, 6 final states can be
reached from the initial state, with 6 possible paths. For each one of them, we
compute the most time consuming one (we sum the maximal delays in each
location, so that the path is possible and we add the maximal delay in the last
location). All paths with action a have maximal duration of 3, and the path with
action b has maximal duration of 4, when b is performed at time 1.

Therefore, we impose the firing of a silent action associated with b at time
1 in A1,2, with adequate timing constraints, using a new clock, z, as in Fig. 5.9.
Then we add the synchronizations as explained before, although here it is not
necessary to keep the three states after the synchronization, since there are no
other synchronization after. Below, we give the formal definition of A1,2.

Definition of A1,2 Assume (S, s0,E) is a structure that stores the region au-
tomaton of A1, without the synchronization edges, and with only the edges that
are in the most time consuming paths computed as explained earlier. That is,
S (resp. s0) is the set of states (resp. the initial state) of the region automa-

ton of A1, and E ⊆ S × (N×E1)× S stores edges in the form s
d ,e
−−→ s′ where d is

the delay that has to be performed in ℓ(s), the location associated with state
s, before performing edge e labeled by some action in Σ1,ε \S. Note that, by
Algorithm 2, for each state s, there is at most one such edge in E). Then,
A1,2 = (S, s0, X1 ∪C ′

1 ∪ {z},S′,E ′
1, Inv′1) where

• C ′
1 is the set of clocks associated with C1 as previously, and clocks in X1

will be read on the synchronizations only,

• E ′
1 = {s

z=d ,ε,r ′∪{z}
−−−−−−−−→ s′ | ∃s

d ,e
−−→ s′ ∈ E : e = (ℓ(s)

g ,a,c(r ′)
−−−−−→ ℓ(s′))}

∪ {s
γ,(a,ℓ2),c
−−−−−−→ s′ | s ∈ S ∧γ≡ γ(R(s′))∧a ∈S∧∃ℓ1

g ,a,r
−−−→ ℓ2 ∈ E1}

where γ(R(s′)) is the clock constraint that describes the region of state s′,
and c still denotes the assignment of any clock x ′ ∈C ′

1 with the value of its
associated clock c(x ′) = x ∈C1 (written x ′ := x).

• ∀s ∈ S, Inv′1(s) ≡ z ≤ d if ∃s
d ,e
−−→ s′ ∈ E , and Inv′1(s) ≡ tt otherwise.

We can now prove the direct way of Theorem 42 in this setting where A1 may
have urgent synchronizations, and the most time consuming runs between two
synchronizations exist. First, let us recall some notations. Smod = A′

1 ∥ (A1,2 ⊗

A2,mod), with the same A′
1 and A2,mod as before, A′

2 = A1,2 ⊗ A′
2,mod

where A′
2,mod

denotes A2,mod without location /, and ψ is such that for any ((a,ℓ1), s1) ∈S
′×

Q ′
1, ψ(((a,ℓ1), s1)) = (a, s1).
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Proof of Theorem 42, when most time consuming runs before synchronization exist.

We show that when noRestrictionA1 (A2) holds, A2 does not need to read the
clocks of A1, because then, the constructed A′

1 ∥ A′
2 satisfies satisfy Definition 40,

i.e. has no shared clocks and

1. ψ(TTSQ ′
1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1 ∥ A2) and

2. ψ(TTSQ ′
1
(A′

1)) ∼ TTSQ1 (A1) (this still holds because A′
1 has not changed)

3. ψ(TTSA′
1
(A′

2)) ∼ TTSA1 (A2).

First, we can prove that / is reachable in Smod iff there is a restriction in
TTSA1 (A2), as we proved Lemma 44. Indeed, what works when A1,2 simulates
any run of A1 also works when A1,2 simulates a fixed run of A1.

Then, we can prove that, if / is not reachable (i.e. if there is no restriction in
TTSA1 (A2)), then ψ(TTSA′

1
(A′

2)) ∼ TTSA1 (A2). We use the same relation R as in
the previous proof in 5.3.1, that is, R is the relation such that for any reachable
state (S1, s2) of TTSA1 (A2), and any reachable state (S′

1, s′2) of ψ(TTSA′
1
(A′

2)),

(S1, s2) R (S′
1, s′2)

def

⇐⇒







s2 = (ℓ2, v2) and s′2 = ((ℓ1,2,ℓ2), v ′
2) s.t.

∀x ∈ X2 \ X1, v2(x) = v ′
2(x)

S1 = S′
1

The proof of this bisimulation follows the same steps as the proof in 5.3.1, except
now we know that A1,2 cannot force a synchronization by construction, and not
by assuming that there is not urgent synchronization in A1.

Then, by Lemma 41, ψ(TTSQ ′
1
(A′

1 ∥ A′
2)) ∼ TTSQ1 (A1 ∥ A2) also.

Case 2: There is not always a Run with Maximal Duration between two
Synchronizations

Now, we show how to adapt the previous construction when there are strict time
constraints and there is no path with maximal duration before an urgent syn-
chronization. For example, consider automaton A1 of Fig. 5.10 that has an ur-
gent synchronization and such that there is no path with maximal duration be-
fore this synchronization is taken: as previously, b has to be performed as late as
possible, but because of the strict inequality x < 1 on the edge labeled by b, it is
not possible to enforce this.

Here also, the construction of the region automaton and the computation
of the paths with maximal duration is useful. But, if suitable firing times do not
exist, then the idea is to follow one of the paths that reach the last region. In our
example, the supremum of the duration of the path with b is 4, and is greater
than the supremum of any other paths (the paths with a have a maximal dura-
tion of 3). Therefore, b has to be performed while x is in the region defined by
0 < x < 1, which is the region that ensures that the last region is reached. We
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Fig. 5.10: A1 has an urgent synchronization and there is no path with maximal

duration before this synchronization.

enforce that A1,2 performs the actions in the regions met along the computed
path, with adequate timing constraints using a fresh clock.

Now, when A1,2 reaches a state where it has to synchronize, if A′
1 is not ready

to synchronize (i.e. A′
1 is not in the location before the synchronization), then

this means that A′
1 took a more time consuming path (and not necessarily the

same actions). Then A2,mod can stop using the values of the clocks of A1,2 to eval-
uate the truth value of its time constraints, and simply take their truth value ac-
cording to the last region that makes the invariant of the urgent synchronization
true (i.e. the region of its current valuation), since it would still be in this region
if it had been more time consuming. Note that, if / is not reachable, this means
that, if A1,2 had performed a more time consuming run (for example the actual
run followed by A′

1), then A2,mod would have been able to perform the same run.
Therefore, “stopping” the clocks in their current region has no side effects.

In the construction, this results in new synchronization edges, performed
by A1,2 and A2,mod, when A1,2 has not been time consuming enough (i.e. when
the invariant is about to expire). In our example, the synchronization labeled
by final_regionα, guarded by x ′ = 3, notifies A2,mod that A1,2 has reached the
maximal region that satisfies the invariant x ′ ≤ 3 (if the invariant was x ′ < 3,
then the guard would be 2 < x ′ < 3). Observe that these synchronizations will
become local actions of A′

2 when the product will be done. Lastly, after each
synchronization of this kind, A2,mod enters a duplicated version of itself, where
the truth value of the guards is evaluated according to the last region of the path
computed in the region automaton, see Fig. 5.11. This duplicated version can
still reach location /, and the constraints on the edges leading to / are also
evaluated according to the last region.

If a synchronization happens when A2,mod is in one of its duplicated ver-
sions,then A2,mod can go back to its initial version, as depicted in Fig. 5.11. We
now give the formal definition of A1,2 and A2,mod.
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Fig. 5.11: A1,2 and A2,mod for the NTA of Fig. 5.10. Dashed lines denote synchro-

nization edges that are not represented (similar to those represented

from q1 and q2).

Definition of A1,2 and A2,mod Assume (S, s0,E) is a structure that stores the
region automaton of A′

1, without the synchronization edges, and with only
the edges that are in the most time consuming paths in the following form:

E ⊆ S×(N×N×E1)×S and for each edge s
dm ,dM ,e
−−−−−→ s′, dm and dM are the minimal

and maximal delays to perform in ℓ(s) before taking this edge. If dm = dM , then
the edge must be performed after a delay of dm time units.

Let us first define some notations. S
′
urg ⊆ S

′ denotes the set of urgent syn-
chronizations in A′

1, and for each state s ∈ S such that ℓ(s) is a location before
some urgent synchronization a ∈ S

′
urg , γ(a) = max(Inv1(ℓ(s))′ denotes the con-

straint in B(X ′
1) associated with the maximal region that makes Inv1(ℓ(s))′ true

(like x ′ = 3 is the maximal region that makes invariant x ′ ≤ 3 true in Fig. 5.11).
Then A1,2 = (L1,2, s0, X ′

1 ∪X1 ∪ {z},Σ1,2,E ′
1, Inv′1), where

• L1,2 = S ∪ {sa | a ∈S
′
urg } , s.t. sa is the location reached after performing

final_regiona ,

• X ′
1 is in bijection with X1 as previously, and clocks in X1 will be read on the

synchronizations only,

• Σ1,2 =S
′∪ {final_regiona | a ∈S

′
urg },

• E ′
1 = {s

z=dm ,ε,r ′∪{z}
−−−−−−−−−→ s′ | ∃s

dm ,dm ,e
−−−−−→ s′ ∈ E : e = (ℓ(s)

g ,a,c(r ′)
−−−−−→ ℓ(s′))}

∪ {s
z>dm ,ε,r ′∪{z}
−−−−−−−−−→ s′ | ∃s

dm ,dM ,e
−−−−−→ s′ ∈ E : dm 6= dM ∧e = (ℓ(s)

g ,a,c(r ′)
−−−−−→ ℓ(s′))}

∪ {s
γ,(a,ℓ2),c
−−−−−−→ s′ | s ∈ S ∧γ≡ γ(R(s′))∧a ∈S∧∃ℓ1

g ,a,r
−−−→ ℓ2 ∈ E1}

∪ {s
γ(a),final_regiona
−−−−−−−−−−−−→ sa | a ∈S

′
urg }
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where γ(R(s′)) is the clock constraint that describes the region of state s′,
and c denotes the assignment of any clock x ′ ∈ C ′

1 with the value of its
associated clock c(x ′) = x ∈C1.

• ∀s ∈ S, Inv′1(s) ≡ z ≤ dm if ∃s
dm ,dm ,e
−−−−−→ s′ ∈ E ,

Inv′1(s) ≡ z < dM if ∃s
dm ,dM ,e
−−−−−→ s′ ∈ E and dm 6= dM ,

Inv′1(s) = Inv1(ℓ(s))′ if ℓ(s) is before an urgent synchronization,
and Inv′1(s) ≡ tt otherwise.

A2,mod is now defined as follows: A2,mod = (L2,mod,ℓ0
2, X2 ∪ X ′

1 ∪ X1,
Σ2,mod,E ′

2, Inv′2), where

• L2,mod = L2 ∪ {/}∪ {ℓa | ℓ ∈ L2 ∧a ∈S
′
urg } , s.t. ℓa is the duplicated version

of ℓ, that A2,mod reaches when it synchronizes on final_regiona with A1,2,

• Σ2,mod = (Σ2 \Σ1)∪S
′∪ {final_regiona | a ∈S

′
urg },

• E ′
2 = {ℓ

g ′,b,r
−−−−→ ℓ′ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓa
g ′∧γ(a),b,r
−−−−−−−−→ ℓ′a | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓ
g ,(b,ℓ1),r
−−−−−−→ ℓ′ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∈S∧ℓ1 ∈ L1}

∪ {ℓa
g ,(b,ℓ1),r
−−−−−−→ ℓ′ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∈S∧ℓ1 ∈ L1}

∪ {ℓ
¬Inv2(ℓ),ε,;
−−−−−−−−→/ | ℓ ∈ L′

2}

∪ {ℓ
g ′∧¬g ,ε,;
−−−−−−−→/ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓa
(g ′∧γ(a))∧¬g ,ε,;
−−−−−−−−−−−−→/ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓ
¬g ′∧g ,ε,;
−−−−−−−→/ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓa
¬(g ′∧γ(a))∧g ,ε,;
−−−−−−−−−−−−→/ | ℓ

g ,b,r
−−−→ ℓ′ ∈ E2 ∧b ∉S}

∪ {ℓ
final_regiona
−−−−−−−−−→ ℓa | ℓ ∈ L2 ∧a ∈S

′
urg } ,

• ∀ℓ ∈ L2, Inv′2(ℓ) = Inv2(ℓ)′,
∀ℓa ∈ L′

2, Inv′2(ℓa) is Inv2(ℓ)′ evaluated with the clock values given by γ(a),
and Inv′2(/) ≡ tt.

Gray boxes denote the new locations, edges and invariants yielded by the new
communications between A1,2 and A2,mod, that drive A2,mod into duplicated ver-
sions of itself.

Then, we can prove a proposition similar to Proposition 43 with this con-
struction that handles the general case. That is, we will prove the correspon-
dence between a state of Smod and two states of TTS(A1 ∥ A2) that are merged
into the same state of TTSA1 (A2). A state of Smod is denoted as (s1, s1,2, s2) =
(

(ℓ1, v|X1 ), (ℓ1,2, v|X ′
1
), (ℓ2, v|X2\X1 )

)

. For a given state of A1,2, s1,2 = (ℓ1,2, v|X ′
1
),

we denote by s′1,2 the state (ℓ′1,2, v ′), where if ℓ1,2 ∈ L1, then ℓ′1,2 = ℓ1,2 and
v ′ : X1 → R≥0 is defined as: for any x ∈ X1, v ′(x) = v(x ′), otherwise, ℓ1,2 = ℓa for
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some a ∈S
′
urg , and then ℓ′1,2 = ℓ such that ℓ is the location before final_regiona

in A1,2, and v ′ is some valuation that satisfies γ(a), and such that for any x ∈ X1

that is not constrained by γ(a), v ′(x) = v(x ′). Reciprocally, for a given state of A1,
s′1,2 = (ℓ1,2, v ′), s1,2 denotes the state (ℓ1,2, v), where v : X ′

1 → R≥0 is defined as:
for any x ′ ∈ X ′

1, v(x ′) = v ′(x).

Proposition 43 bis (general case). Let (s1, s1,2, s2) be a state of Smod. If along one

path that leads to (s1, s1,2, s2) no edge leading to / is enabled, then there exists S1

such that (S1, s2) is a reachable state of TTSA1 (A2) and s1 and s′1,2 are both in S1.

Conversely, let (S1, s2) be a reachable state of TTSA1 (A2), and s1 and s′1,2 be

some states in S1. Then (s1, s1,2, s2) is a state of Smod.

The proof is again by recursion, in the same line as the original proof of
Proposition 43. We use this proposition to prove Lemma 44 that we recall be-
low, also with a similar proof as the original one.

Lemma 44 (reminder). / is reachable in Smod iff there is a restriction in

TTSA1 (A2).

Lastly, this lemma is used to prove the direct part of Theorem 42 in the gen-
eral case. Below, we recall Theorem 42, and prove its direct way (the other way
was proven just after its enunciation).

Theorem 42 (reminder). When noRestrictionA1 (A2) holds, A2 does not need to

read the clocks of A1. When A2 is deterministic, this condition becomes necessary.

Proof. As above, we can prove that, if there is no restriction in TTSA1 (A2) (i.e.
if / is not reachable), then ψ(TTSA′

1
(A′

2)) ∼ TTSA1 (A2), where we consider that
all actions final_regiona for some a ∈ S

′
urg are unobservable. Let R be the re-

lation defined as follows: for any reachable state (S1, s2) of TTSA1 (A2), and any
reachable state (S′

1, s′2) of ψ(TTSA′
1
(A′

2)),

(S1, s2) R (S′
1, s′2)

def

⇐⇒







s2 = (ℓ2, v2) and s′2 = ((ℓ1,2,ℓ′2), v ′
2) s.t.

ℓ2 = ℓ′2 or ℓ′2 is one of the duplicated versions of ℓ2

∀x ∈ X2 \ X1, v2(x) = v ′
2(x)

S1 = S′
1

Then, we can prove that R is a bisimulation.

5.4 Discussion and Extensions

We have shown that in a distributed framework, when locality of actions and
synchronizations matter, NTA with shared clocks cannot be easily transformed
into NTA without shared clocks. The fact that the transformation is possible can
be characterized using the notion of contextual TTS which represents the knowl-
edge of one automaton about the other. Checking whether the transformation
is possible is PSPACE-complete.
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A first point to notice is that, contrary to what happens when one considers
the sequential semantics, NTA with shared clocks are strictly more expressive
if we take distribution into account. This somehow justifies why shared clocks
were introduced: they are actually more than syntactic sugar.

Another interesting point that we want to recall here, is the use of transmit-
ting information during synchronizations. It is noticeable that infinitely pre-
cise information is required in general. This advocates the interest of updatable
(N)TA used in an appropriate way, and more generally gives a flavor of a class of
NTA closer to implementation.

Perspectives Our first perspective is to generalize our result to the symmetrical
case where A1 also reads clocks from A2. Then of course we can tackle general
NTA with more than two automata.

Notice that the set UR(s1) used in the definition of contextual TTS is always
put in parallel with a state s2. Therefore, it can be extended to URs2 (s1) that
represents the set of states that A1 can immediately reach from s1 while A2 is in
s2. This means that the TTS of A2 in the context of A1 can still be defined when
A1 also reads clocks from A2. However, we do not know whether Theorem 42 is
still true with this definition of contextual TTS, because most of the intermediate
lemmas and propositions to prove this theorem use TTS(A1) that is not defined
when A1 reads clocks from A2.

Another line of research is to focus on transmission of information. The
goal would be to minimize the information transmitted during synchroniza-
tions, and see for example where the limits of finite information lay. Even when
infinitely precise information is required to achieve the exact semantics of the
NTA, it would be interesting to study how this semantics can be approximated
using finitely precise information.

Finally, when shared clocks are necessary, one can discuss how to minimize
them, or how to implement the model on a distributed architecture and how to
handle shared clocks with as few communications as possible.
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Partial order representations of runs of Petri nets provide an alternative to
sequential semantics by exhibiting the concurrency that naturally arises from
the Petri net dynamics. Occurrence nets are the data structure for the partial or-
der semantics referred to as unfoldings [NPW81, Eng91]. They are nets in which
all transitions, called events, are executable and the causality relation induced
by the arcs is acyclic. Conflict between two events is explicitly represented by a
common place, called condition, in their causal past. Lastly, two events that are
neither causally related nor in conflict are concurrent.

These structural relations between events induce logical dependencies be-
tween event occurrences: the occurrence of an event e in a run implies that all
its causal predecessors also occur, and that no event in conflict with e occurs.
But these structural relations do not express all the logical dependencies be-
tween event occurrences in maximal runs: in particular, the occurrence of e in
any maximal run may imply the occurrence of another event that is not a causal
predecessor of e, in that run. The reveals relation has been introduced to express
this dependency between two events [Haa10]. It expresses dependencies such
as “if event e occurs, then event f has occurred or will necessarily occur”.

Furthermore, other more complex relations may exist between the events
of a TPN. Indeed, when time is added, the dependencies between events may
depend on the time at which the events occur. For example, it is possible that
for event e to occur, another concurrent event f must have occurred in a given
time interval, and if f occurs outside this time interval, then e cannot occur.

Such dependencies have been described in previous works about TPN un-
foldings [CJ06, Tra09]. However, they have never been studied deeply and a bet-
ter understanding of these relations could help improving the unfolding of TPN,
in particular by providing a canonical structure.

In Chapter 7, we generalize the reveals relation to express more general de-
pendencies, involving more than two events, and we introduce a logic to express
them as Boolean formulas. We then present a synthesis procedure from a for-
mula. Lastly, in Chapter 8, we lift these relations to a timed setting, and discuss
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how to use them for TPN unfolding.

Organization of the Chapter In this chapter, we start by presenting, in Sec-
tion 6.1, the problem and related work. In Section 6.2 we present the reveals
relation introduced in [Haa10], and discuss different semantics. In Section 6.3
we define logical independency as opposed to concurrency which we consider
as a structural independency. We also present the converse well-foundedness of
the reveals relation over the set of facets. Lastly, we define tight nets as an ex-
plicit representation of the logical dependencies between the events of a finite
occurrence net.

6.1 Problem and Related Work

In the structure of an unfolding, concurrency, causality and conflict are explic-
itly represented. Other binary relations, that describe the logical dependencies
between event occurrences, are not represented in the structure of the unfold-
ing. For example, the reveals relation expresses dependencies such as “if event
e occurs, then event f has occurred or will necessarily occur”.

In this part, we intend to study the dependencies between the events of a
TPN, in order to define compact and canonical unfoldings of TPN.

Unfoldings were first defined for 1-bounded ordinary Petri nets, and were
then extended to other classes of Petri nets, in particular to time Petri nets, and
also to networks of timed automata.

6.1.1 Logical Characterization of Runs

Motivation

Several works have highlighted dependencies between event occurrences. First,
in untimed systems, when considering occurrence nets, some dependencies are
not described by the structural relations, and some concurrent events may not
be independent. Second, when time is added, even more complex dependen-
cies between event occurrences exist. That is why, in particular, unfolding a TPN
is much more difficult than unfolding a PN.

Improving the unfolding of TPN, in order to get a more compact structure is
one of the motivation for studying and formalizing the complex dependencies
created by time.

Another motivation for studying implicit dependencies is to make them ex-
plicit in what we called tight nets. A tight net has the same set of runs as the
initial ON and can be viewed as a pre-computation for a further analysis of the
dependencies.
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Related Work

Conflict Detection in STG Signal transition graphs (STG) are used to model
asynchronous logic circuits, they are Petri nets whose transitions are interpreted
as rising and falling edges of signals. In [KKY04], the authors build configuration

constraints by considering the causal closure and the conflict-freeness of the
configurations (or general runs). These constraints are then used for checking
some properties that ensure the implementability of the STG as a logic circuit.

Reveals Relation The reveals relation was introduced in [Haa10] to express log-
ical dependencies between two events. Knowledge of reveals facilitates in par-
ticular the analysis of partially observable systems, in the context of diagnosis,
testing, or verification: an event b revealed by a need not be observable if a is,
the occurrence of b can be inferred.

The reveals relation was recalled in Subsection 6.2.1. In [Haa10], an equiva-
lent definition for the reveals relation was given.

e ⊲ f ⇐⇒ #[ f ] ⊆ #[e]

This definition was proved equivalent to Definition 45, where only maximal runs
are considered. This corresponds to a setting where weak fairness [Vog95] is
assumed, i.e. any enabled event has to occur or to be disabled. Later, we will
consider different semantics, and show that the two definitions are no longer
equivalent.

Release Relation In [Tra09], a conflict relation called direct conflict is defined.
Since we already defined a different direct conflict relation in Subsection 2.1.3,
we will call it minimal conflict. This relation, conf is defined as follows.

e1 conf e2 ⇐⇒







•e1 ∩
•e2 6= ;

∀e < e1,¬(e # e2)
∀e < e2,¬(e # e1)

That is, e1 and e2 are in conflict, and the conditions in •e1 ∪
•e2 are pairwise

concurrent.
Notice that two events are in conflict iff two of their ancestors are in minimal

conflict. Since these minimal conflicts are the root of all conflicts, it is enough to
solve these minimal choices, in order to solve all choices. Then, a second rela-
tion, called release relation (“relation de libération” in the manuscript in French)
is defined.

(e1,e,e2) ∈lib ⇐⇒

{
e1 co e2

e1 conf e ∧e conf e2

When there exists e such that (e1,e,e2) ∈lib, then e1 lib e2. This relation repre-
sents additional dependencies between two events: when e1 occurs it releases
the conflict between e2 and e (and symmetrically), as shown in Fig. 6.1.
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e1 e e2

Fig. 6.1: e1 releases the conflict between e2 and e.

This release relation is then used for defining time branching processes i.e
branching processes equipped with a timing function that assigns a valid time
to a conflict-free set of events that forms a process, and an infinite time to other
events. When computing the time of an event, two cases are distinguished, de-
pending on whether the minimal conflicts have been released or not.

Comparison of the Relations e1 lib e2 does not mean that if e1 occurs, then
e2 necessarily occurs. For example, another event in conflict with e2 could oc-
cur. For e1 to reveal e2, all the minimal conflicts in the past of e2 (the root of all
conflicts with e2) have to be released by some event in the past of e1. Then the
inclusion #[e2] ⊆ #[e1] holds. Hence, the link between the release relation and
the reveals relation can be expressed as follows.

(

∀ f2 ∈ ⌈e2⌉,∀e conf f2,∃ f1 ∈ ⌈e1⌉ : ( f1,e, f2) ∈lib
)

⇐⇒ e1 ⊲ e2

Lastly, notice that the conflict relation plays a role in all these implicit depen-
dencies.

6.1.2 Unfoldings of TPN

Motivation

The analysis methods based on the construction of the state space (for instance
TTS or state class graphs) use the sequential semantics of the time Petri net.
Therefore, all interleavings are represented, and the concurrency is lost.

In order to preserve the concurrency prescribed by the (time) Petri net, other
methods are needed. Unfoldings are one of these methods for they preserve the
partial order of events and thus the concurrency.

Related Work

Unfoldings of Petri Nets The representation of all runs of a Petri net as an
unfolding [NPW81, Eng91] allows one to avoid the state space explosion due
to interleavings when exploring the runs of a Petri net. Unfoldings are infi-
nite in general, but can be represented efficiently by a finite complete pre-
fix [McM92, ERV02], for instance to check LTL formulas [Kho03].

Unfoldings have first been defined for ordinary 1-bounded nets. They have
been extended to high-level (or colored) nets [KK03, Kho03, SK04]. Symbolic un-
foldings for high-level nets were also defined in [EHP+02, CJ04, CF10], and their
interest for the diagnosis of distributed systems has been argued. Unfoldings of
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petri nets with read arcs have also been defined and applied to their verification
in [VSY98, RSB11, RS12].

Unfoldings of Time Petri Nets Because time creates additional causality rela-
tions between events, time processes are not sufficient to build the unfolding
of a TPN by looking independently at the concurrent parts, like in the untimed
case. Hence building time processes implies to look at the global state of the
net. Nevertheless, a constructive method of a complete finite prefix of a TPN
has been introduced in [CJ06].

In this work, the authors defined local firing conditions that say whether a
transition t can be fired at a given date θ, according to a partial marking L. In
practice, in order to compute the firing time of a transition, one has to consider
the tokens that it consumes, but also the tokens that can enable a conflicting
transition. Time processes are then extended with read arcs that add causality
relations between conditions and events. Lastly, the symbolic unfolding is de-
fined by replacing the fixed timing functions by symbolic firing times described
by inequalities.

A more compact unfolding has been defined in [Tra09], where it is noticed
that, with the previous method, some events are duplicated many times. They
limit the duplications of events to some situations where a conflict corresponds
to a degree of indeterminism in the past of events.

Unfoldings have also been defined for other classes of TPN, like parametric
stopwatch Petri nets [TGJ+10].

Lastly, unfoldings of NTA have also been defined in [BHR06, CCJ06].

6.2 Several Semantics for the Reveals Relation

Maximal and General Runs Below we call run of an ON a configuration, and
maximal run a maximal configuration. We write Ωgen for the set of all runs and
Ωmax for the set of maximal runs.

Structural vs Logical Relations The structure of an occurrence net defines
three relations over its events: causality, concurrency and conflict.

But these structural relations do not express all the logical dependencies be-
tween the occurrence of events in maximal runs. A central fact is that concur-
rency is not always a logical independency: it is possible that the occurrence of
an event implies the occurrence of another one, which is structurally concur-
rent. This happens with events a and c in Fig. 6.2(a): we have to observe that a

is in conflict with b and that any maximal run contains either b or c. Therefore,
if a occurs in a maximal run, then b does not occur and eventually c necessarily
occurs. Yet c and a are concurrent.

Another case is illustrated by events a and d in the same figure: because a is
a causal predecessor of d , the occurrence of d implies the occurrence of a; but in
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any maximal run, the occurrence of a also implies the occurrence of d because
d is the only possible continuation to a and nothing can prevent it. Then a and
d are actually made logically equivalent by the maximal progress assumption.

6.2.1 Reveals Relation and Facets Abstraction

Reveals Relation The reveals relation expresses dependencies between events
such as “if e occurs, then f has already occurred or will occur eventually” in the
sense that any run that contains e also contains f .

Definition 45 (Reveals relation [Haa10]). We say that event e reveals event f ,
and write e ⊲ f , iff ∀ω ∈Ωmax, (e ∈ω =⇒ f ∈ω).

Note that ⊲ is transitive.

Link with the Structural Relations The structural dependencies are some-
what connected with the logical ones. Below we describe some connections.
First, since runs are causally closed, the following property is trivial.

Property 46. For any events e and f , f ≤ e =⇒ e ⊲ f .

Property 47 (#-inheritance under⊲). The conflict relation is inherited under the
reveals relation: for any events a,b,c, a # b and c ⊲ b together imply a # c.

Proof. Assume a run contains a and c. Then, because c ⊲ b, it also contains b,
which contradicts a # b.

Facets Abstraction

Definition 48 (Facet[Haa10]). Let ∼ be an equivalence relation defined as:

∀e, f ∈ E ,e ∼ f
def

⇐⇒ (e ⊲ f )∧ ( f ⊲ e), then a facet of an ON is an equivalence
class of ∼.

For example, in Fig. 6.2(a), the ON has five facets: {⊥}, {a,c,d , g }, {b,e, f },{h}
and {k}. If ψ is a facet, then for any run ω and for any event e such that e ∈ ψ,
e ∈ω iff ψ⊆ω. In this sense, facets can be seen as atomic sets of events.

The causality relation, ≤, and the conflict relation, #, naturally extend to the
set of facets as follows: ∀ψ1,ψ2 ∈Ψ,

ψ1 ≤ψ2
def

⇐⇒ ∃e1 ∈ψ1,e2 ∈ψ2 : e1 ≤ e2

ψ1 # ψ2
def

⇐⇒ ∃e1 ∈ψ1,e2 ∈ψ2 : e1 # e2

The set of facets equipped with ≤ and # is an event structure [Haa10].
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(a) An occurrence net. Squared
events are in the same facet.
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(b) The corresponding re-
duced ON.

Fig. 6.2: An ON and its reduction through the facet abstraction

Reduced Occurrence Nets For any facet and for any run, either all events in
the facet are in the run or no event in the facet is in the run. Therefore, facets
can be seen as events. In the sequel, we consider reduced ONs [Haa10], i.e. ONs
reduced by contracting the facets into events.

For example, in Fig. 6.2(a), the reduced ON is obtained by contracting, for
each facet, the squared events into an event. With the maximal semantics, this
gives the reduced ON of Fig. 6.2(b). From now on, runs are thus considered as
conflict-free and causally closed sets of facets.

Definition 49 (Reduced occurrence net). A reduced ON is an ON (B ,Ψ,F ) such
that ∀ψ1,ψ2 ∈Ψ,ψ1 ∼ψ2 ⇐⇒ ψ1 =ψ2 (i.e. such that ⊲ is antisymmetric).

Several choices of Ω

An important line of research is to go beyond the maximal semantics considered
here. In [Haa10], ⊲ was defined over maximal runs only. But it can easily be
defined on an arbitrary set of runs Ω: just replace Ωmax by Ω in Definition 45.
Then the reveals relation depends on the set of runs Ω that we consider. Two
natural choices are the set of maximal runs Ωmax and the set of all runs Ωgen.

Other sets of runs could also be considered, like runs of time Petri nets. But
this extension is not trivial since time creates complex dependencies between
events. For example, it may happen that the occurrence of an event f depends
on the occurrence date of an apparently unrelated event e, because if e happens
early enough, it triggers an event in conflict with f .

In Chapter 8, we extend the reveals relation to the runs of a deterministic
timed ON, i.e. an ON such that the date of an event is uniquely determined: if
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Fig. 6.3: An occurrence net

e occurs, it occurs at time τe . We explain how these ON describe the runs of a
subclass of time Petri nets (also called deterministic), and we discuss how to lift
the reveals relation to the runs of (unfoldings of) general TPN.

Below, we compare the maximal and general semantics. Then we discuss
about the timed semantics.

6.2.2 Maximal and General Semantics

We study two untimed semantics: the maximal semantics and the general se-
mantics. The maximal semantics assumes maximal progress (or weak fairness
[Vog95]), whereas the general semantics makes no such assumption, i.e. an exe-
cution may stop at any time.

Maximal Semantics

The maximal semantics is the one which inspired the definition of the reveals
relation in [Haa10]. Indeed this setting generates rich dependencies between
events. The first interesting point with the maximal semantics is a nice charac-
terization of the reveals relation based on the conflict relation. This characteri-
zation was actually used as the definition of the reveals relation in [Haa10].

Lemma 50 (Reveals relation: alternative definition for Ωmax [Haa10]). For any

events e and f , (e ⊲ f in Ωmax) ⇐⇒ #[ f ] ⊆ #[e].

Notice that, with the general semantics, the two definitions are not equiva-
lent. For example, in Fig. 6.3, d ⊲ a holds for general runs and therefore also for
maximal runs, but a ⊲ d and d ⊲ c hold for maximal runs only.

Moreover, the following lemma highlights the importance of the conflict re-
lation in the definition of maximal runs.

Lemma 51. A set of events ω is a maximal run iff ∀a ∈ E , a ∈ω ⇐⇒ #[a]∩ω=;.
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⊥

a[0,1] b [1,1] c [1,1]

d[2,2] e [3,4]

Fig. 6.4: An occurrence net constrained by time delay intervals

Proof. If ω is a run and there exists a ∈ E \ω that is not in conflict with any event
of ω, then ω∪⌈a⌉ is also a run and ω is not maximal. Conversely, a set of events ω
which satisfies the equivalence for any event a is conflict-free and ⊆-maximal,
and since the conflict is inherited under the causality, ω must also be causally
closed.

General Gemantics

The general semantics allows a lot of possible runs (including the empty set).
Moreover, in this setting where we do not assume maximal progress, the reveals
relation coincides exactly with the structural causality. Indeed, first by Prop-
erty 46, we know that for any events e and f , if f ≤ e, then e ⊲ f , and second,
when there is no progress assumption, ⌈e⌉ is a valid run, and consequently e

does not reveal any event outside ⌈e⌉.

6.2.3 Timed Semantics

Beyond the two natural setups presented above, we see many relevant situa-
tions where more specific sets of executions have to be considered. One ex-
ample comes from the modeling of real-time systems. Consider the occur-
rence net depicted in Fig. 6.4 and assume that its behavior is constrained by the
time constraints given by the intervals, which are interpreted like in time Petri
nets [Mer74] with dense time. We observe that, because of urgency, the occur-
rence of b forces the occurrence of d two time units later, i.e. b ⊲ d in the time
semantics. As a consequence e reveals a. This also makes b and e incompatible,
although they are not in conflict in the sense of untimed occurrence nets.

More complex dependencies exist and are described and analyzed in Chap-
ter 8, where we focus on the dependencies in the unfoldings of a simple class of
TPN.

6.3 Tight Occurrence Nets

In this section, we focus on the maximal semantics and we study the logical de-
pendencies over facets. We first discuss the difference between concurrency and
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logical independency, then show that we have to restrict ourselves to finite re-
duced ON, and then present tight nets. Tight nets are ON where the logical de-
pendencies are explicitly represented as causalities, therefore in these ON, con-
currency and logical independency coincide.

First, since the reduction of an ON by the facet abstraction yields an ON,
the concurrency relation, co, and the reveals relation, ⊲, naturally extend to the
set of facets as well as the causality and conflict relations (recalled in Subsec-
tion 6.2.1). For any facets ψ1 and ψ2,

ψ1 co ψ2
def

⇐⇒ ¬(ψ1 # ψ2)∧¬(ψ1 ≤ψ2)∧¬(ψ2 ≤ψ1)
⇐⇒ ψ1 6=ψ2 ∧∀e1 ∈ψ1,e2 ∈ψ2 : e1 co e2

ψ1 ⊲ψ2
def

⇐⇒ ∃e1 ∈ψ1,e2 ∈ψ2 : e1 ⊲ e2

6.3.1 Concurrency vs Logical Independency

Two facets may be causally ordered (≤), in conflict (#) or concurrent (co). The
conflict relation exactly coincides with the fact that two facets never occur in
the same execution. Moreover the causal ordering induces a reveals relation as
stated in Property 46. But two concurrent facets are not necessarily logically in-
dependent in maximal runs. Hence causality and reveals together give a finer
partition of the possible dependencies between two facets that are not in con-
flict. They can be either:

• causally related (and therefore also related by ⊲),

• concurrent but related by ⊲, or

• logically independent (and hence concurrent).

Formally, we define the independency relation among facets, denoted by ind, as
the complement of the conflict and reveals relations:

ψ1 ind ψ2
def

⇐⇒ ¬(ψ1 # ψ2)∧¬(ψ2 ⊲ψ1)∧¬(ψ1 ⊲ψ2)
⇐⇒ ψ1 co ψ2 ∧¬(ψ2 ⊲ψ1)∧¬(ψ1 ⊲ψ2)

That is, two facets are independent if they are neither in conflict nor related
by the reveals relation. For example, in Fig. 6.5, facets b and c are concurrent
but not independent because c reveals b, and facets a and b are independent.
Therefore, if a is in a run, this gives no information on the presence (or absence)
of b in the run.

6.3.2 Well-foundedness of the Inverse Reveals Relation

Lemma 52. In any reduced ON N = (B ,Ψ,F ) where there is no infinite set of pair-

wise concurrent events (in particular in the reduced unfolding of any safe Petri

net), the reveals relation, ⊲, is converse well-founded on Ψ, i.e. there is no infi-

nite chain of distinct facets ψ1 ⊲ψ2 ⊲ . . .
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a′ a

bb′

ψ⊥

c

Fig. 6.5: a ind b, ¬(b ind c) and ¬(b ind a′)

Proof. In the proof, we use the alternative characterization of well-foundedness:
⊲ is converse well-founded on Ψ iff every nonempty subset S of Ψ has a ⊲-
maximal facet, i.e. a facet ψ such that for any facet ψ′ ∈ S, ψ′ 6=ψ⇒¬(ψ⊲ψ′).

Assume first that the set S ⊆Ψ is conflict-free, and consider the set S′ of the
facets of S that have no strict causal predecessor in S. Because causality is well-
founded, S′ is not empty. Moreover, by definition, the facets of S′ are pairwise
concurrent. Thus, by hypothesis, S′ is finite. Therefore there must be a facet ψ
that is ⊲-maximal in S′. It remains to show that ψ is also ⊲-maximal in S. Let ψ′

be a facet of S such that ψ⊲ψ′. By construction of S′ there exists a facet ψ′′ in S′

such that ψ′′ ≤ψ′. By Property 46, this implies that ψ′
⊲ψ′′, and by transitivity

of ⊲, we get ψ⊲ψ′′. Since ψ is ⊲-maximal in S′, ψ′′ must equal ψ. Then we have
ψ⊲ψ′

⊲ψ, which implies that ψ equals ψ′ by construction of the facets.

If S ⊆ Ψ is not conflict-free, then for any facet χ ∈ S, the subset of S, Sχ =

{χ′ ∈ S | χ ⊲ χ′} is conflict-free and hence has a ⊲-maximal facet ψ. Moreover,
by construction of Sχ, ψ does not reveal any facet in S, therefore, ψ is also ⊲-
maximal in S.

We do not know if this lemma still holds without the hypothesis that there is
no infinite set of pairwise concurrent events.

Anyway, Lemma 52 does not imply that any facet reveals only finitely many
other facets. As a counterexample, consider the reduced ON of Fig. 6.6: facet ψ3,
associated with transition t3, reveals all the facets ψ1,i , i ∈ N

∗, associated with
transition t1.

Remark 53. For any finite reduced ON (B ,Ψ,F ), the triple (Ψ,⊲−1,#) is an event

structure because:

1. ⊲
−1 is a partial order on Ψ,

2. For all x ∈Ψ, {y ∈Ψ | x ⊲ y} is finite,

3. # ⊆ Ψ×Ψ is an irreflexive and symmetric relation, and for all x, y, z ∈ Ψ,
x # y and z ⊲ y together imply x # z (Property 47).
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t2

• •

t1 t3

ψ⊥

ψ2,1ψ1,1 ψ3

ψ1,2

ψ1,3

ψ2,2

ψ2,3

Fig. 6.6: A Petri net and its unfolding (which is already a reduced ON)

6.3.3 Tight (Occurrence) Nets

A tight (occurrence) net is a reduced ON in which all binary logical dependencies
among facets (given by the reveals relation) are represented as causalities.

Definition 54 (Tight net). A tight net is an ON (B ,E ,F ) such that ∀e, f ∈ E , e ⊲

f ⇐⇒ f ≤ e.

Tight nets constitute a natural and canonical class of occurrence nets, of in-
terest in their own right as representations of logical dependencies (as opposed
to temporal ones). Moreover, all nets obtained as the output of the synthesis
procedure defined in Section 7.2 are tight.

Proposition 55. Every tight net is a reduced ON.

Proof. If two events e and f of a tight net are in the same facet, then we have
e ⊲ f ∧ f ⊲ e, which is equivalent to f ≤ e ∧ e ≤ f because the net is tight. This
implies e = f by antisymmetry of ≤.

Remark 56. In a tight net, ind is equivalent to co, and therefore the observation
of the independency relation is easier than in a general reduced ON.

Remark 57. If we consider the set of general runs, then, since any ON is reduced,
and for any events e and f , e ⊲ f ⇐⇒ f ≤ e, any ON is tight.

We will show in Section 7.3.1 that it is possible to transform any finite re-
duced ON in a canonical tight net which accepts the same set of maximal runs
Ωmax. This canonical tight net gives an efficient representation of the reveals
relation. The example of Fig. 6.6, shows that the assumption of finiteness is nec-
essary.
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6.3.4 Facets as Labeled Partial Orders

When the ON corresponds to the unfolding of a safe PN (P,T,F, M0), and π is the
homomorphism that relates the ON to the PN, it can be interesting to study the
shape of facets in terms of partial orders labeled by transitions and places, To
do so, we associate with each facet ψ the corresponding labeled partial order
lpo(ψ). We show that the set of labeled partial orders corresponding to facets of
the unfolding of a safe Petri net, is finite.

Lemma 58. Let Π = (O,π), with O = (B ,E ,G), be the unfolding of the safe PN

N = (P,T,F, M0), Or = (Br ,Ψ,Gr ) the reduced ON associated with O, Then the im-

age of Ψ by lpo is finite.

Proof. First, we show that any cut C of Or enables finitely many facets: any facet
enabled by C has at least one event that consumes only conditions of C . But
there are finitely many such events, and each event belongs to a single facet.
Thus C enables finitely many facets.

Now we need some definitions from [ERV02]. For a given cut (maximal set
of pairwise concurrent conditions) C of a branching process Π = (O,π), ⇑C =

(O′,π′) is the part of Π “lying after” C : O′ is the unique subnet of O whose set
of nodes is {x | x ∉ ⌈C⌉∧∀y ∈ ⌈C⌉,¬(x # y)} where ⌈C⌉ =

⋃

b∈C {y ∈ B ∪E | y < b}
(< is now defined on B ∪E and not only on E), and π′ is the restriction of π to
the nodes of O′. According to Proposition 4.3 in [ERV02], if Π is the unfolding of
(P,T,F, M0), then ⇑C is the unfolding of (P,T,F,π(C )) (up to isomorphism).

We associate with each set of conditions B ′ = {b1, . . . ,bm} ⊆ B the multiset of
places m(B ′) = {π(b1), . . . ,π(bm)}. In fact, we will consider only co-sets or cuts,
therefore m(B ′) will be a subset of a marking or a marking, i.e. a set of places and
not a multiset places: m(B ′) =π(B ′) ⊆ P .

Furthermore, for any cuts of Or , C1 and C2, such that π(C1) = π(C2) = M ,
⇑C1 and ⇑C2 are isomorphic (they are isomorphic to the unfolding of (P,T,F, M))
and thus {m(ψ) | •ψ ⊆ C1} = {m(ψ) | •ψ ⊆ C2}, i.e. the images by m of the
sets of facets enabled by C1 and C2 are the same. This image is a finite set of
multisets of T characterized by M . Hence, any reachable marking M ⊆ P is
mapped with a finite set of multisets of T : TM = {m(ψ) | π(•ψ) ⊆ M }. Therefore
{m(ψ) |ψ ∈Ψ} =

⋃

M∈R(N ){m(ψ) |ψ ∈Ψ∧π(•ψ) ⊆ M } =
⋃

M∈R(N ), where R(N ) is
the set of reachable markings of N , is finite since it is a finite union of finite
sets.

Towards a Logical Characterization of Runs of Occurrence Nets

Some logical dependencies such as “if a and b occur then c occurs” cannot be
expressed by the binary reveals relation. In the next chapter, starting from this
observation, we define an extended reveals relation. We also introduce a logic
that allows us to describe sets of runs, and solve the following synthesis problem:
given a logical formula ϕ, is there an ON whose set of runs is described by ϕ?
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The structure of an occurrence net induces three relations over its events,
causality, conflict and concurrency [NPW81]. The causality and conflict relations
induce logical dependencies between event occurrences: the occurrence of an
event e in a run implies that all its causal predecessors also occur, and that no
event in conflict with e ever occurs.

We mentioned in Subsection 6.2.1, that, when only maximal runs are con-
sidered, the structural relations do not express all the logical dependencies be-
tween event occurrences. Moreover, we also observe that, in this context, con-
currency is not a logical independency: it is possible that the occurrence of an
event implies the occurrence of another one, which is structurally concurrent.
This happens for concurrent events a and c in Fig. 6.3. The reveals relation be-
tween events was introduced in [Haa10] to express these implicit dependencies
between two events. The equivalence classes of events that mutually reveal each
other are called facets; contracting facets into single events creates a reduced oc-
currence net whose set of maximal executions is in bijection with that of the
initial occurrence net.

While the focus in [Haa10] was on the binary reveals relation, in this chap-
ter, we embed the relation in a more general logical framework. Starting from
the observation that the reveals relation corresponds to logical implication be-
tween the occurrence of events, we consider general boolean formulas where
the atoms express the occurrence of events. The resulting logic, which we call
ERL, captures dependencies in occurrence nets. We then show how to build a
logical formula that describes all logical dependencies between the occurrence
of events. Then we ask which formulas are satisfied by all the runs of an occur-
rence net. An important result is that the logical dependencies between events,
with the maximal progress assumption, are not only binary: there are logical de-
pendencies that cannot be deduced from binary dependencies. This leads us to
define an extended reveals relation.

Lastly, we solve the synthesis problem that arises: given an ERL formula over
events (or facets), does this formula describe the set of possible runs of an oc-
currence net? We propose a method for synthesizing an occurrence net from
an ERL formula. As a corollary, this allows us to identify a canonical occurrence
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net to represent the equivalence class of all occurrence nets that have the same
logical dependencies between events.

Organization of the Chapter First, Section 7.1 introduces the ERL logic, ca-
pable of capturing general logical dependencies between events. ERL formulas
can be interpreted with respect to a set of acceptable runs of an occurrence net.
Section 7.2 explains how to build an ERL formula that describes the dependen-
cies between the events of a given occurrence net, and then solves the problem
of synthesis of tight occurrence nets from ERL formulas. Section 7.3 presents a
few extensions. In particular it shows that, while synthesizing an occurrence net
from an ERL formula, the causality in the net can be freely chosen provided it
is compatible with the reveals relation induced by the formula; it also discusses
synthesis under non-maximal semantics.

7.1 A Logic for Occurrence Nets

We introduce a logic, called ERL for Event Reveal Logic, that describes the prop-
erties of the runs of an ON by giving relations between event occurrences. Events
are used as boolean variables: e stands for the presence of event e in a run.

We have seen that the causality relation does not explain all the dependen-
cies between events of the type “if a occurs in a maximal run, then eventually
b also occurs”. The reveal relation was introduced to capture all these binary
dependencies. But they are still not sufficient to describe more complex logical
dependencies between events. Consider the ON of Fig. 6.5: causality gives only
the dependencies a < c and a < b′, plus the trivial ones involving ψ⊥. With the
reveals relation we get c ⊲ b and a′

⊲ b. They express that in any maximal run the
occurrence of c implies the occurrence of b and the occurrence of a′ implies the
occurrence of b. But is it true that any set of events (containing ψ⊥) that satis-
fies these constraints, is a maximal run? The answer is no: for instance {ψ⊥, a,b}
satisfies these constraints, but is not a valid maximal run, since c is enabled and
does not occur. Actually, all the maximal runs of this ON satisfy the following
constraint: if a and b occur, then c also occurs.

Our logic is designed so that it allows us to express this kind of complex de-
pendencies between event occurrences, and to define an appropriate extended

reveals relation.

7.1.1 Syntax and Semantics

As any propositional logic, the alphabet consists of a set of variables E (including
⊥), the constants tt and ff, and the logival connectives ∧ and ¬.

Well-formed formulas are called ERL formulas and defined inductively with
the following BNF grammar:

ϕ ::= tt | ff | e | ¬ϕ |ϕ∧ϕ, where e ∈ E
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The semantics is given for a set of events γ ⊆ E and an ERL formula ϕ. We
write γ |=ϕ when γ satisfies ϕ, defined as follows:

• for any event e ∈ E , γ |= e iff e ∈ γ,

• the logical connectives ¬ and ∧ have the usual semantics.

Since we are interested in properties of sets of runs, we look at the satisfac-
tion of ERL formulas by sets of sets of events: for any ERL formula ϕ and for any
set of sets of events Γ,

Γ |=ϕ iff ∀γ ∈ Γ,γ |=ϕ

i.e. the formula is satisfied by all sets of events. Notice that, Γ 6|=ϕ iff ∃γ ∈ Γ : γ 6|=

ϕ (which is different from Γ |= ¬ϕ).

We define the set �ϕ� as �ϕ�
def
= {γ ⊆ E | γ |= ϕ}. We write ϕ ≡ ϕ′ when �ϕ� =

�ϕ′�.

Extended Reveals Relation

Any well-formed formula can be brought into a conjunctive normal form:

∧

i∈I

(bi ,1 ∨bi ,2 ∨·· ·∨bi ,ni
∨¬ai ,1 ∨¬ai ,2 ∨·· ·∨¬ai ,mi

)

iff
∧

i∈I

(

(ai ,1 ∧ai ,2 ∧·· ·∧ai ,mi
) → (bi ,1 ∨bi ,2 ∨·· ·∨bi ,ni

)
)

iff
∧

i∈I

(
∧

a∈Ai

a →
∨

b∈Bi

b),

where Ai = {ai ,1, . . . , ai ,mi
} and Bi = {bi ,1, . . . ,bi ,ni

}. And since for any set of runs
Ω,

Ω |=
∧

i∈I

(
∧

a∈Ai

a →
∨

b∈Bi

b)

iff ∀i ∈ I ,Ω |=
∧

a∈Ai

a →
∨

b∈Bi

b

iff ∀i ∈ I ,∀ω ∈Ω, Ai ⊆ω⇒ Bi ∩ω 6= ;,

we can focus on formulas of the form
∧

a∈A a →
∨

b∈B b, where A and B are two
sets of events and that are satisfied by a set of runs Ω iff whenever all events in
A occur in a run ω ∈Ω, then at least one event in B occurs in ω. This leads us to
define the extended reveals relation.

Definition 59 (Extended reveals relation). Let Ω ⊆ 2E be a set of runs, and A,B

two sets of events, A reveals B written A _ B , iff ∀ω ∈Ω, A ⊆ω⇒ B ∩ω 6= ;

In this notation, Ω becomes implicit. Notice that ¬(A _ B) means Ω 6|=
∧

a∈A a →
∨

b∈B b i.e. ∃ω ∈Ω : A ⊆ω∧B ∩ω=;.
Notice that the binary reveals relations a ⊲ b correspond to the extended

reveals relations between singletons {a} _ {b}.



134 Chapter 7. Synthesis of Tight Occurrence Nets

Proposition 60. In the maximal semantics and the general semantics, conflicts

can be expressed using this extended reveals relation: {a,b} _; ⇐⇒ a # b.

This equivalence comes directly from the definition of runs. We should how-
ever consider it as a strong property of these two semantics and notice that
only one direction would hold, for instance, in the timed semantics evoked in
Subsection 6.2.3: in the example of Fig. 6.4, events b and e are incompatible
({b,e} _;), although they are not in conflict in the sense of untimed occurrence
nets (¬(b # e)).

Remark 61. The extended reveals relation is not transitive: in general A _

B ∧B _ C does not imply A _ C . Indeed, the extended reveals relation is inter-
preted as a conjunction of events in the left part and as a disjunction of events
in the right part.

7.1.2 Minimal and Immediate Constraints

Expressions of the form A _ B are called constraints. We notice that some con-
straints can be deduced from others by monotonicity and by inheritance, which
leads us to define minimal constraints.

Monotonicity Properties

First, the extended reveals relation has the following monotonicity properties:

Left Monotonicity Property. ∀A,B ,C ∈ 2E , A _ C ∧ A ⊆ B ⇒ B _ C .
Indeed, A ⊆ B ⇔Ω |=

∧

b∈B b →
∧

a∈A a, and → is transitive.

Right Monotonicity Property. ∀A,B ,C ∈ 2E , A _ C ∧C ⊆ B ⇒ A _ B .
Indeed, C ⊆ B ⇔Ω |=

∨

c∈C c →
∨

b∈B b, and → is transitive.

Therefore, we begin by considering the constraints A _ B where the sets A

and B are minimal.

Definition 62 (Minimal reveals relation). We define the minimal reveals rela-

tion, _m , as: ∀A,B ∈ 2E ,

A _m B
def

⇐⇒ (A 6= B)∧ (A _ B)∧ (ØB ′ (B : A _ B ′)∧ (ØA′ ( A : A′
_ B)

i.e. if one event is removed from the left part or the right part, the reveals relation
is lost.

For example, in Fig. 6.5, {a,b} _m {c} because none of the following con-
straints holds: {a} _ {c}, {b} _ {c}, ;_ {c} and {a,b} _;.

Intuitively the minimal reveals provides a more precise description than the
extended reveals. Indeed, if A _m B , we know that for each b ∈ B , there is a run
that contains A and b and no other event in B (otherwise A _ B \ {b}). Similarly,
for each a ∈ A, there is a run that contains A \ {a} and no event of B (otherwise
A \ {a} _ B).
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c c ′ d d ′ee′

ψ⊥

ba

(a) {c,d} _ {b} is an immediate
constraint and {a,d} _ {b} is not.

ψ⊥

bb′ a a′

cc ′ d

(b) {a} _ {c,d} is an immediate
constraint and {a} _ {b,d} is not.

Fig. 7.1: Immediate constraints

Deduction Through a Singleton

Moreover, the following properties also hold:

Left Inheritance Property. ∀A,B ∈ 2E , (A∪ {d} _ B)∧ (d ′
⊲ d) ⇒ A∪ {d ′} _ B

Right Inheritance Property. ∀A,B ∈ 2E , (A _ B ∪ {d})∧ (d ⊲ d ′) ⇒ A _ B ∪ {d ′}

We can now identify the extended reveals relations that are minimal w.r.t. de-
duction through a singleton.

Definition 63 (Immediate reveals relation). We define the immediate reveals re-

lation, _i , as: ∀A,B ∈ 2E ,

A _i B
def

⇐⇒







A _m B

∧ ∀a ∈ A,Øa′ ∈ E \ {A∪B} : (a ⊲ a′∧ Aa′/a _ B)
∧ ∀b ∈ B ,Øb′ ∈ E \ {A∪B} : (b′

⊲ b ∧ A _ Bb′/b)

where Aa′/a denotes A∪ {a′} \ {a}.

For example, in Fig. 7.1(a), {a,d} _m {b} is not an immediate constraint be-
cause a ⊲ c and {c,d} _ {b}. And in Fig. 7.1(b) {a} _m {b,d} is not an immediate
constraint because c ⊲ b and {a} _ {c,d}.

When ⊲ is antisymmetric, the conjunction of all immediate constraints im-
plied by some formula ϕ, is equivalent to ϕ (by definition of the immediate con-
straints).

7.1.3 Properties of the Extended Reveals Relation

When we consider the maximal or the general semantics, a set of events that
never occur together necessarily contains two events in conflict.

Lemma 64. If we consider Ωgen or Ωmax, for any set of events A, A _m ;⇒ |A| =

2.
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Proof. The reveals relation A _ ; implies that there exists no general run ω ∈

Ωgen such that A ⊆ ω: in the general semantics, this holds simply by definition
of the reveals relation; in the maximal semantics, the definition says that there
exists no maximal run ω ∈Ωmax such that A ⊆ω, which implies that there exists
no general run ω ∈Ωgen such that A ⊆ω.

Then in particular ⌈A⌉ is not a general run. Since it is causally closed, the
reason why it is not a general run, is that it contains two events a and b that are
in conflict. Since a and b are in ⌈A⌉, there exist events a′ and b′ in A such that
a ∈ ⌈a′⌉ and b ∈ ⌈b′⌉. By inheritance of the conflict along the causality, a′ is in
conflict with b′, which implies {a′,b′} _ ;. And since {a′,b′} ⊆ A and A _m ;,
we must have A = {a′,b′}. Finally, the absence of self-conflicts in occurrence
nets guarantees that a′ and b′ are distinct.

Remark 65. As well as Prop. 60, the previous lemma should be considered as
an important property of the maximal and general semantics, and would not
hold, for instance, in the timed semantics (see Subsection 6.2.3) nor for contex-
tual occurrence nets [BCM01, BP96, Win98, Vog02], used for unfoldings of nets
with read arcs, where weak causality may cause non binary conflicts. Non bi-
nary conflicts have also arisen from symbolic unfoldings of colored Petri nets
[EHP+02, CJ04, CF10].

When we consider the set of general runs, Ωgen, we have already noticed that
the binary reveals relation is given by the causality: ∀a,b ∈ E , {a} _ {b} ⇐⇒ b ≤

a. Furthermore, we have:

Proposition 66 (Decomposition of reveals relation in the general semantics).
With the general semantics, for any sets of events A and B,

A _ B ⇐⇒ (∃a ∈ A, b ∈ B : b ≤ a)∨ (∃a, a′ ∈ A : a # a′) .

Proof. (⇐) If there exist a, a′ ∈ A such that a # a′, then, no run contains A and
for any set of events C , A _ C . And if there exist a ∈ A and b ∈ B such that b ≤ a,
then a ⊲ b and by the monotonicity properties of _, A _ B .
(⇒) Assume A _ B and A is conflict-free. Denote by ⌈A⌉ the causal past of A i.e.
the set ⌈A⌉ =∪a∈A⌈a⌉. Since we make no progress assumption, ⌈A⌉ is a valid run.
By definition of the extended reveals relation, ∀ω ∈Ωgen, A ⊆ω⇒ω∩B 6= ;, and
in particular, for ω = ⌈A⌉, this implies that ⌈A⌉∩B 6= ; i.e. that there exist b ∈ B

and a ∈ A such that b ≤ a.

Therefore, with general runs, non binary constraints can be decomposed as
disjunctions of binary ones, in contrast to the case for Ωmax.

Binary Immediate Constraints

Two kinds of binary immediate constraints will be particularly useful in the se-
quel.
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First, we define the immediate conflict relation, #i , as a special case of the

immediate reveals relation: for all events a and b, a #i b
def

⇐⇒ {a,b} _i ;. For
example, in Fig. 7.1(b), a′ and c are in conflict but not in immediate conflict
because a′ # a and c ⊲ a. For any formula ϕ describing the runs of an ON, we
have #i ⊆ #d .

Second, we define the immediate reveals relation, ⊲i , as: a ⊲i b
def

⇐⇒ {a} _i

{b}. For example, in Fig. 7.1(b), b ⊲i ψ⊥ and ¬(c ⊲i ψ⊥).

Remark 67. When ⊲ is antisymmetric, the reveals relation is the transitive and
reflexive closure of the immediate reveals relation and the conflict relation can
be deduced by ⊲-inheritance from the immediate conflict relation. Therefore,
the conflict relation can be deduced from the immediate reveals relation and
the immediate conflict relation: # = (⊲−1

i
)∗◦ #i ◦⊲

∗
i

. That is, (a,b) ∈# ⇐⇒ ∃c,d :
(a,d) ∈⊲∗

i
∧(d ,c) ∈#i ∧(c,b) ∈ (⊲−1

i
)∗.

7.2 A Synthesis Problem

In Section 7.1 we have introduced ERL logic to describe logical dependencies
between events of an occurrence net. Now two synthesis problems arise natu-
rally.

We first show how to build the ERL formula Φ
N which describes the set of

maximal runs of a finite ON N , i.e. such that ΩN
max = �ΦN � . Then we present

a procedure to answer whether there exists a tight net N such that its set of
maximal runs is described by a given ERL formula ϕ.

This synthesis procedure allows us to understand the power of the logical
properties expressed via reveals-relations or, equivalently, ERL formulas. They
also allow - see below - to identify the canonical shape of occurrence nets with
respect to these properties. Note that we restrict our attention in this section
to finite occurrence nets, i.e. over a fixed finite set of individuals interpreted
as events. Naturally, one would hope to obtain synthesis procedures for oc-
currence nets of arbitrary size, imposing only regularity properties; the set of
events would then be structured by an adequate equivalence relation of finite
index. However, the technical difficulties posed by this general endeavor have
not been resolved; note in particular the fact, highlighted by Fig. 6.6, that a facet
(here ψ3) may reveal infinitely many others, which means that the procedure
below would fail to produce event ψ3.

Even so, the capability of synthesizing occurrence nets with a given finite
set of facets from ERL formulas has potential even in practical terms. In fact,
suppose you take any finite occurrence net O obtained by synthesis from ϕ, and
convert it into a safe Petri net by adding,

• for every maximal run ω of O , a transition tω whose pre-set is formed by
the maximal conditions of ω,



138 Chapter 7. Synthesis of Tight Occurrence Nets

• an extra place p whose post-set is {⊥} and whose pre-transitions are the
tω,

• and a token on p and no tokens elsewhere.

Then the resulting net N is a workflow net whose behaviors are concatenations
of ωs, i.e. such that the properties satisfied at each workflow round are given by
ϕ.

7.2.1 From Occurrence Nets to ERL Formulas

For a given finite ON N , we start by building Φ
N
g en , a formula such that [[ΦN

g en]] =

Ω
N
g en , from the characterization of general runs. Then we build Φ

N , a formula

such that �ΦN � = Ω
N
max , by adding terms corresponding to the progress as-

sumption to Φ
N
g en . The construction of ΦN

g en is similar to [KKY04], where the
authors build what they call “configuration constraints” also by considering the
causal closure and the conflict-freeness of the configurations (or general runs).

By definition, a set of events is a general run iff it is closed under causality
and conflict-free. That is, for a given finite ON N = (B ,E ,F ), we can build the
formula Φ

N
g en as follows:

Φ
N

g en =
∧

a,b∈E ,a<b

(b → a)

︸ ︷︷ ︸

causal closure

∧
∧

a,b∈E ,a#b

(¬a ∨¬b)

︸ ︷︷ ︸

conflict-freeness

Therefore, for a given finite ON N , ΦN can be built as follows:

Φ
N =

∧

a,b∈E ,a<b

(b → a) (causal closure)

∧
∧

a,b∈E ,a#b

(¬a ∨¬b) (conflict-freeness)

∧
∧

a∈E

(

(
∧

b∈E ,b⋖a

b

︸ ︷︷ ︸

a enabled

) → (a ∨
∨

c∈E ,c#d a

c)
)

(progress assumption)

The new part is implied by the maximality and stands for “for any event a, if
a is enabled, then a or an event in direct conflict with a has to fire”.

Since < is the transitive closure of the direct causality ⋖, the first part can be
rewritten using only ⋖, and since # is inherited through <, in the second part,
we can consider only the direct conflict #d , and eventually:

Φ
N ≡

∧

a,b∈E ,a⋖b

(b → a)∧
∧

a,b∈E ,a#d b

(¬a ∨¬b)∧
∧

a∈E

(

(
∧

b∈E ,b⋖a

b) → (a ∨
∨

c∈E ,c#d a

c)
)

Notice that, since ⊥ has no conflict and no causal predecessor, the third part
with a =⊥ gives tt →⊤ which can be reduced in ⊥, i.e. ⊥ is always true (and so
is ψ⊥ when we consider reduced ONs).
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For example, in Fig. 7.1(b):

Φ
N ≡ (c ′ → b)∧ (c → b)∧ (c → a)∧ (d → a)

∧ (ā′∨ ā)∧ (b̄′∨ b̄)∧ (c̄ ′∨ c̄)∧ (c̄ ∨ d̄)
∧ψ⊥∧ ((a ∧b) → (c ∨ c ′∨d))
∧ (a → (c ∨d))∧ (b → (c ′∨ c))
∧ (ψ⊥ → (b′∨b))∧ (ψ⊥ → (a′∨a)),

where ā stands for ¬a.
We have deliberately omitted terms of the form a →ψ⊥ that are redundant

since ψ⊥ must be true.

Complexity

The formula is built as a conjunction of terms. First, identifying the causalities
and the conflicts requires looking at each pair of events {a,b} ⊆ E . Therefore,
this gives O(n2) terms with two events, where n = |E |. Second, there are n terms
that describe the progress assumption (one for each event), and these terms are
of size O(n). Therefore, the size of the formula is O(n2).

7.2.2 From ERL formulas to Tight Nets: a Synthesis Procedure

The synthesis problem for PNs has been widely studied. It consists in answering
whether, given a behavior, there exists a PN with this behavior. The behavior can
be specified as a transition system [Ber93, DR96, BCD02, CCK+08] or a language,
be it (i) a sequential language: in [Dar98], the behavior is bounded by two regular
languages; or (ii) a finite partial language (finite set of labeled partial orders):
[BDLM08]. Most of the time, the synthesis procedure is based on the notion of
region [ER89, BD98].

In this paper, we propose another approach and we solve the following syn-
thesis problem: given an ERL formula ϕ, is there a tight net N whose behavior
is the one specified by ϕ, i.e. such that the set of maximal runs of N , ΩN

max , is
equivalent to �ϕ�?

In the sequel, we give a procedure to build a net, CN(ϕ), from an ERL for-
mula ϕ. First, a set of binary immediate constraints is extracted from ϕ, then,
CN(ϕ), is built from these constraints. If CN(ϕ) is a reduced ON, then Φ

CN(ϕ) is
computed and compared with ϕ. As in the other synthesis procedures, places
are used to restrict the behavior of the net and denote dependencies between
occurrences of transitions.

Extracting the Immediate Constraints

The set of maximal runs is given by the conflict relation which can be de-
duced from the immediate reveals relation and the immediate conflict relation
(Lemma 51 and Remark 67). Therefore, if there exists a reduced ON N such that
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Ω
max
N

= �ϕ�, then the binary immediate constraints, i.e. expressions of the form
a ⊲i b and a #i b, are enough to describe Ω

max
N

(and thus also to describe ϕ).
That is why we focus on binary immediate constraints.

Our problem is to decide whether binary constraints of the form a ⊲ b (re-
spectively {a,b} _ ;) are satisfied by ϕ. This amounts to deciding whether
ϕ → (a → b) (respectively ϕ → (¬a ∨¬b)) is a tautology. This problem is co-
NP-complete and can be solved quite efficiently in practice by SAT-solvers.

Building a Canonical Tight Net

We denote by Ψ(ϕ) the set of variables that appear in ϕ which is supposed to be
“reduced”, i.e. such that for any distinct variables a,b ∈Ψ(ϕ), �ϕ� 6|= a ↔ b. Each
binary immediate constraint extracted fromϕ is represented by a condition con-
nected to the facets that appear in the constraint. The net CN(ϕ) is defined as
follows.

Definition 68 (CN(ϕ)). Let ϕ be an ERL formula. CN(ϕ) = (B ,Ψ,F ) is the finite
net such that Ψ=Ψ(ϕ), B = B1 ∪B2 and F = F1 ∪F2, where:

• B1 =
{

{ψ,ψ′} |ψ #i ψ
′
}

,

• F1 =
{

({ψ,ψ′},ψ) ∈ B1 ×Ψ
}

∪
{

(ψ⊥, {ψ,ψ′}) ∈Ψ×B1
}

.

That is, for each constraint of the form ψ #i ψ
′, one condition b is created and

connected to ψ⊥, ψ and ψ′ such that •b = {ψ⊥} and b• = {ψ,ψ′}.

• B2 =
{

(ψ,ψ′) ∈ (Ψ\ {ψ⊥})2 |ψ′
⊲i ψ

}

,

• F2 =
{(

(ψ,ψ′),ψ′
)

∈ B2 ×Ψ
}

∪
{(

ψ, (ψ,ψ′)
)

∈Ψ×B2
}

.

That is, for each constraint of the form ψ′
⊲i ψ, one condition b is created and

connected to ψ and ψ′ such that •b = {ψ} and b• = {ψ′}. Notice that constraints
of the form ψ⊲i ψ⊥ are not considered because, if ϕ describes the maximal runs
of a reduced ON, they are already represented by B1 and F1. Indeed, in this case,
ψ 6=ψ⊥, hence #[ψ] 6= ;, and since ψ reveals only ψ⊥ and #[ψ⊥] =;, there exists
ψ′ s.t. ψ #i ψ

′.

Remark 69. In fact, the set of runs described by ϕ, i.e. �ϕ� is more relevant than
ϕ itself, because for two formulas, ϕ1 and ϕ2, ϕ1 ≡ ϕ2 ⇐⇒ CN(ϕ1) = CN(ϕ2).
Therefore, we could also define CN(Ω) for a given Ω⊆ 2Ψ.

Lemma 70. Let N be a finite reduced ON, then CN(ΦN ) is a tight net and

Φ
CN(ΦN ) ≡Φ

N .

Proof. First, we show that CN(ΦN ) is a tight net. We call C the net CN(ΦN ). We
first show that C is an ON, then that it is reduced, and lastly that it is a tight net.
N and C have the same conflict relation, because they have the same reveals
relation and the same immediate conflict relation (Remark 67). Moreover C is
built so that ∀a,b ∈Ψ, a ≤C b ⇐⇒ b ⊲ a. Therefore, C is an ON because:
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• There is no self-conflict in C , because there is no self-conflict in N .

• ≤C is equivalent to ⊲
−1 therefore it is a partial order.

• ∀ψ ∈Ψ, {ψ′ |ψ′ ≤C ψ} is finite because Ψ is finite.

• There is no backward branching by construction.

• ψ⊥ ∈Ψ is the only minimal node by construction.

Since Φ
N is associated with the reduced ON N , it is such that, for any dis-

tinct variables v1, v2 ∈Ψ,�ΦN � 6|= v1 ↔ v2. Therefore, C is also reduced. Lastly,
by construction, C is a tight net.

Second, we show that Φ
CN(ΦN ) ≡ Φ

N . By Lemma 51, the set of maximal
runs can be defined from the conflict relation only. N and CN(ΦN ) have the
same conflict relation. Therefore, N and CN(ΦN ) have the same set of runs
and equivalent associated ERL formulas.

Notice that N and CN(ΦN ) may not accept the same general runs because
the facets that are concurrent but related by the reveals relation in N , become
causally ordered in CN(ΦN ).

From Lemma 70, we can derive the following theorem.

Theorem 71. Let ϕ be an ERL formula such that for any distinct variables a,b ∈

Ψ(ϕ), �ϕ� 6|= a ↔ b. There exists a reduced ON N such that ΦN ≡ϕ iff CN(ϕ) is a

reduced ON and Φ
CN(ϕ) ≡ϕ.

Proof. (⇒) If there exists a reduced ON N such that ΦN ≡ϕ, then, by Lemma 70
CN(ϕ) is a candidate.
(⇐) CN(ϕ) is an example of suitable reduced ON.

Example 4 illustrates that the net CN(ϕ), obtained by the synthesis from an
arbitrary formula ϕ, may not be a reduced ON. When CN(ϕ) is a reduced ON, it
is called the canonical tight net associated with ϕ (or with N when φ is defined
as the formula Φ

N associated with some reduced occurrence net N ).

Examples

We extract a set of binary immediate constraints fromϕ and build the net CN(ϕ).

Ex 1. Consider the following formula:

ϕ= ψ⊥∧ (a → b)∧ (b′ → a′)
∧ (ā ∨ ā′)∧ (b̄ ∨ b̄′)
∧ (a ∨a′)∧ (b ∨b′)

The set of runs described by ϕ is �ϕ� =
{

{ψ⊥, a,b}, {ψ⊥, a′,b}, {ψ⊥, a′,b′}
}

.
The binary immediate constraints are: a ⊲i b, b′

⊲i a′, b ⊲i ψ⊥, a′
⊲i ψ⊥,
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a #i a′ and b #i b′, and the net synthesized from these constraints is given
in Fig. 7.2(a). This net is a reduced ON and its set of maximal runs is indeed
�ϕ�.

Ex 2. Consider the following formula:

ϕ=ψ⊥∧ (ā ∨ b̄)

The set of runs described by ϕ is �ϕ� =
{

{ψ⊥}, {ψ⊥, a}, {ψ⊥,b}
}

. The binary
immediate constraints are: a ⊲i ψ⊥, b ⊲i ψ⊥ and a #i b, and the ON N

synthesized from these constraints is given in Fig. 7.2(b). N is a reduced
ON but ΩN

max =
{

{ψ⊥, a}, {ψ⊥,b}
}

6= �ϕ�. Therefore, there is no reduced ON
N such that ϕ ≡ Φ

N . We can see that the maximality constraint a ∨b is
not respected by ϕ.

Ex 3. Consider the following formula:

ϕ= (ψ⊥∧a ∧b ∧ c̄ ∧ ā′∧ b̄′∧ c ′)
∨ (ψ⊥∧a ∧ b̄ ∧ c ∧ ā′∧b′∧ c̄ ′)
∨ (ψ⊥∧ ā ∧b ∧ c ∧a′∧ b̄′∧ c̄ ′)
∨ (ψ⊥∧ ā ∧ b̄ ∧ c̄ ∧a′∧b′∧ c ′)

The set of runs described by ϕ is �ϕ� =
{

{ψ⊥, a,b,c ′}, {ψ⊥, a,b′,c},
{ψ⊥, a′,b,c}

}

. The binary immediate constraints are: a #i a′, b #i b′,
c #i c ′ and for each ψ ∈ Ψ \ {ψ⊥}, ψ ⊲i ψ⊥. The ON N synthesized
from these constraints is given in Fig. 7.2(c). N is a reduced ON but
Ω

N
max =

{

{ψ⊥, a,b,c}, {ψ⊥, a′,b,c}, {ψ⊥, a,b′,c}, {ψ⊥, a,b,c ′}, {ψ⊥, a′,b′,c ′},
{ψ⊥, a,b′,c ′}, {ψ⊥, a′,b,c ′}, {ψ⊥, a′,b′,c}

}

6= �ϕ�. Therefore, there is no re-
duced ON N such that ϕ≡Φ

N .

Notice that this example illustrates an immediate conflict between a, b

and c: {a,b}, {a,c}, and {b,c} can occur in a run, but {a,b,c} cannot, which
is not possible in general ONs (see Lemma 64).

Ex 4. Consider the following formula:

ϕ= ψ⊥∧ (a → c)∧ (b′ → c)∧ (b′ → a′)
∧ (ā ∨ ā′)∧ (b̄ ∨ b̄′)
∧ (a ∨a′)∧ (b ∨b′)∧ (c → (a ∨b′))

The set of runs described by ϕ is �ϕ� =
{

{ψ⊥, a,b,c}, {ψ⊥, a′,b′,c},
{ψ⊥, a′,b}

}

. The binary immediate constraints are: a ⊲i b, a ⊲i c, b′
⊲i a′,

b′
⊲i c, b ⊲i ψ⊥, a′

⊲i ψ⊥, c ⊲i ψ⊥, a #i a′ and b #i b′, and the net synthe-
sized from these constraints is given in Fig. 7.2(d). We can see that this net
is not an ON because there are two minimal events, c and ψ⊥. Therefore,
there is no reduced ON N such that ϕ≡Φ

N .
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ψ⊥

a′

b′

b

a

(a) Φ
CN(ϕ) ≡ϕ

ψ⊥

a b

(b) Φ
CN(ϕ) 6≡ϕ

ψ⊥

b b′a a′ c c ′

(c) Φ
CN(ϕ) 6≡ϕ

c

ψ⊥

a′

b′

b

a

(d) CN(ϕ) is not an ON

Fig. 7.2: (a): There is a reduced ON N such that ϕ≡Φ
N . (b) to (d): There is no

reduced ON N such that ϕ≡Φ
N .

Complexity

Identifying the immediate constraints requires looking at each pair of facets
{a,b} ⊆Ψ(ϕ), and for each pair, deciding whether the formula ϕ→ (a → b) (re-
spectively ϕ→ (¬a ∨¬b)) is a tautology is co-NP-complete.

Once the immediate constraints are computed, the number of places and
arcs in CN(ϕ) is linear in the number of constraints, and therefore at most
quadratic in the number of events. The events are simply the variables that ap-
pear in the formula. The quadratic bound is reached for a formula of the type
(ψ1 ∨·· ·∨ψn) → (ψ′

1 ∧·· ·∧ψ′
n) which implies ψi →ψ′

j
for all i , j .

7.3 Going Further

7.3.1 Tightening a Reduced ON

A simple corollary of our synthesis procedures is the following.

Corollary 72. Given any finite reduced ON N , it is always possible to build a
tight net N

′ such that ΩN
max =Ω

N
′

max .

Proof. We can compute Φ
N as in Subsection 7.2.1, and build the tight net N

′ =

CN(ΦN ) as in Subsection 7.2.2.

The example of Fig. 6.6, shows that the corollary does not hold in general if
we drop the assumption of finiteness.

Ex 1. The initial reduced ON, N1, is depicted in Fig. 7.3(a). The set of maximal
runs is ΩN1

max =
{

{ψ⊥, a,b,c}, {ψ⊥, a,b′}, {ψ⊥, a′,b}
}

and the binary immedi-
ate constraints are a ⊲i ψ⊥, b ⊲i ψ⊥, c ⊲i a, c ⊲i b, a′

⊲i b, b′
⊲i a, a #i a′

and b #i b′. The canonical tight net obtained by the synthesis from these
constraints is represented in Fig. 7.3(b).
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a′ a

bb′

ψ⊥

c

(a) Reduced ON N1

c

b

a′

a

b′

ψ⊥

(b) Canonical tight net
associated with N1

a a′ c b′ b

ψ⊥

(c) Reduced ON N2

c

aa′ b b′

ψ⊥

(d) Canonical tight net as-
sociated with N2

Fig. 7.3: Examples of reduced ONs with their associated canonical tight net.

Ex 2. Fig. 7.3(c) and 7.3(d) give another example of a reduced ON and its
associated canonical tight net. The set of maximal runs is Ω

N2
max =

{

{ψ⊥, a,b,c}, {ψ⊥, a,b′}, {ψ⊥, a′,b}, {ψ⊥, a′,b′}
}

and the binary immediate
constraints are a ⊲i ψ⊥, b ⊲i ψ⊥, c ⊲i a, c ⊲i b, a #i a′ and b #i b′.

It is a fact that the modifications brought about by (reduction and) tight-
ening are often counter-intuitive and are unconventional net surgeries. At the
same time, we believe that the “right” interpretation of these structural modifi-
cations should not be sought in the usual form of temporal properties. Rather,
the reveals relations show logical dependencies that can be used for inference
properties of the type “if a is known, then b must be the case”. Thus the re-
sulting net is in fact drastically changed, to better reflect which deductions are
possible e.g. from a partial observation of behaviors.

7.3.2 Characterization of Adequate Formulae

There can be two reasons why an ERL formula ϕ does not describe the set of
maximal runs of any ON: either the formula allows non-maximal runs, or it ex-
presses non-binary minimal conflicts, while all minimal conflicts are binary in
occurrence nets under the maximal semantics (see Lemma 64).

It is possible to characterize directly the formulas ϕ (or equivalently the sets
Γ of sets of events) such that �ϕ� (respectively Γ) is the set of maximal runs of an
ON.
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Theorem 73 (Direct characterization of adequate Γ). Let E be a finite set whose

elements are called events, and Γ⊆ 2E such that any event occurs at least once in

Γ, and one event denoted ⊥ occurs in all the sets of Γ. Then, there exists an ON N

such that ΩN
max = Γ, iff

Γ= {γ⊆ E | ∀a ∈ E , a ∈ γ ⇐⇒ #[a]∩γ=;}

where the # relation over E is defined as:

a # b
def

⇐⇒ Øγ ∈ Γ : {a,b} ⊆ γ .

Proof. By Prop. 60, any ON N satisfying Ω
N
max = Γ, has # as its conflict relation.

Then by Lemma 51 Γ is its set of maximal runs.
Now, when Γ = {γ ⊆ E | ∀a ∈ E , a ∈ γ ⇐⇒ #[a]∩γ = ;}, we can define an

occurrence net N = (B ,E ,F ) whose set of events is E , whose set of conditions is
B

def
= {{e,e ′} | e # e ′} and whose flow relation F is defined such that ⊥• = B and for

every e ∈ E \ {⊥}, •e = {{e,e ′} | e # e ′} and e• = ;. N trivially satisfies the condi-
tions for being an occurrence net. Moreover, its set of maximal runs coincides
with Γ, by immediate application of Lemma 51.

Remark 74. Let Γ be a set of sets of events satisfying the condition of Theo-
rem 73. The occurrence nets N such that ΩN

max = Γ are reduced iff for all dis-
tinct events a,b ∈ E , Γ 6|= a ↔ b, or equivalently #[a] 6= #[b]. Indeed, combining
the definition of facets and Lemma 50, we get that two events a and b are in the
same facet iff #[a] = #[b].

7.3.3 Untightened Synthesis

As well as runs are given as unordered sets of events, the syntax of ERL logic does
not consider the structural causality between events. Therefore, the synthesis
problem that we solve in Section 7.2 mentions only the logical dependencies
between events and not the structural ones. This means that the causalities be-
tween events in the synthesized net, which represent the logical dependencies
given by the formula, may come from causalities in the original net or from more
complex dependencies involving the maximal progress assumption.

Indeed, we decided to represent the logical dependencies as causalities, and
that is the reason why we get a tight net. However, we observed in Lemma 51
that the conflict relation gives enough information to define the maximal runs.
That is, preserving the conflict relation is preserving the set of maximal runs.
Hence, given a set of maximal runs, it is always possible to solve the synthesis
problem by building a net with no causality (but the ones required by ⊥) and
only conflicts, like the ones used in the proof of Theorem 73. Fig. 7.3(c) shows an
example of such ON. However, with this construction, the reveals relations in the
resulting net are all hidden in the conflict relation, whereas our net CN(ϕ) makes
explicit all the binary reveals relations as causalities, which lets us represent as
little direct conflicts as possible, i.e. only the immediate conflict.
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Between these two choices of representation there is a range of other possi-
ble choices which differ by the chosen causality relation (and therefore also by
the conflict relation). The point is now to characterize the acceptable choices
for the direct causality relation to impose in the net. To answer this question, we
introduce a synthesis where a relation ¹ is given, together with a formula ϕ. The
synthesis problem is now: given an ERL formula ϕ on a set E of events (contain-
ing ⊥) and a partial order relation ¹ on E , is there an ON N whose behavior is
the one specified by ϕ, and such that the causality in N matches ¹?

In order to solve this synthesis problem, we adapt the construction CN(ϕ) of
Def. 68 in order to represent only the causalities described by ¹: for each pair
of events (e,e ′) in the transitive reduction ≺i of ¹, a condition b is created and
connected to e and e ′ (•b = {e} and b• = {e ′}). Then, we want to represent as few
direct conflicts as possible w.r.t. this imposed causality, and in order to adapt
our construction, we define the direct conflict of our synthesized net, similarly
to the immediate conflict, but with ¹ instead of ⊲.

a #d b
def

⇐⇒ a # b ∧Øc : (c ≺ a ∧ c # b)∨ (c ≺ b ∧ c # a)

where ≺ denotes the reflexive reduction of ¹.
Notice also that the general conflict relation can be defined with this direct

conflict and the relation ¹, as: # = ¹◦ #d ◦¹−1. Therefore, the construction of
Subsection 7.2.2 can be adapted by replacing #i by #d and ⊲i by ≺−1

i
.

Definition 75 (CN(ϕ,¹)). Let ϕ be an ERL formula over a set E of events (con-
taining ⊥) and ¹ a partial order relation over E . CN(ϕ,¹) = (B ,E ,F ) is the finite
net where E is the set of events, B = B1 ∪B2 and F = F1 ∪F2, with:

• B1 =
{

{e,e ′} | e #d e ′
}

,

• F1 =
{

({e,e ′},e) ∈ B1 ×E
}

∪
{

(⊥, {e,e ′}) ∈ E ×B1
}

.

• B2 =≺i ,

• F2 =
{(

(e,e ′),e ′
)

∈ B2 ×E
}

∪
{(

e, (e,e ′)
)

∈ E ×B2
}

.

Then, Lemma 70 and Theorem 71 can be strengthened to:

Lemma 76. Let N be a finite ON, and ¹ a partial order relation on E such that

⊥ is the only minimal event w.r.t. ¹ and ¹ is a subrelation of the reverse of the

reveals relation of N . Then CN(ΦN ,¹) is an ON and Φ
CN(ΦN ,¹) ≡ Φ

N and the

causality in N matches ¹.

Proof. The proof follows the steps of the proof of Lemma 70.

Now comes the main result of this section, which states that, while synthe-
sizing an ON N from an ERL formulaϕ, the causality in N (denoted≤N ) can be
freely chosen provided it is compatible with the reveals relation induced by ϕ.
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Theorem 77. Letϕ be an adequate formula (i.e. a formula that describes the set of

maximal runs of some ON). There exists an ON N such that ΦN ≡ϕ and ≤N =¹

for any partial order relation ¹ on E, provided ⊥ is the only minimal event w.r.t.

¹, and ¹ is a subrelation of the reverse reveals relation induced by ϕ.

Proof. The existence of N trivially implies the required conditions on ¹. The
other direction is ensured by Lemma 76.

As previously mentioned, there are two special cases of such synthesis:

• ¹=⊲
−1, then #d = #i and the resulting net is a tight net.

• ¹ relates simply ⊥ to any event; then #d = # and the resulting net has no
causality but the one linking any event to ⊥.

Remark 78. For a given set of runs (or ERL formula), less causality implies more
direct conflict in the synthesized net: ¹1 ⊆¹2 ⇒ #d2 ⊆ #d1.

Ex 1. Consider again the reduced ON N1, depicted in Fig. 7.3(a). Its associ-
ated canonical tight net was built in Example 1. Define now ¹ such that
≺ relates a to c and ψ⊥ to every facet (except ψ⊥). Our goal is to build
CN(ΦN1 ,¹). The direct conflicts w.r.t. ¹ are: a #d a′, b #d b′, c #d b′ and
a′ #d b′. The reduced ON N

′
1 obtained by the synthesis from these con-

straints is represented in Fig. 7.4(a).

If we define now another ¹ that relates simply ψ⊥ to the other facets, then
the direct conflicts are the same as above plus c #d b′ (actually every con-
flict becomes direct). And the ON N

′′
1 obtained by the synthesis from

these constraints is represented in Fig. 7.4(b).

Ex 2. Consider now the reduced ON N2, depicted in Fig. 7.3(c). N2 is already
the result of the synthesis with no causality (except causality from ψ⊥ to
every other facet).

Define now ¹ such that ≺ also relates a to c. Then the direct conflicts
w.r.t. ¹ are a #d a′, b #d b′ and c #d b′. The reduced ON obtained by the
synthesis from these constraints is represented in Fig. 7.4(c).

Synthesis in the General Semantics

We have seen in Subsection 7.2.1 that the set of general runs of an occurrence
net can be expressed as the following ERL.

Φ
N

g en =
∧

a,b∈E ,a<b

(b → a)

︸ ︷︷ ︸

causal closure

∧
∧

a,b∈E ,a#b

(¬a ∨¬b)

︸ ︷︷ ︸

conflict-freeness

Now we show that the problem of synthesizing an occurrence net from an
ERL formula can also be solved for the general semantics. More surprisingly,
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ψ⊥

b′a′ ba

c

(a) Reduced ON N
′

1 (a ≺i c)

ψ⊥

b′a′ bac

(b) Reduced ON N
′′

1

ψ⊥

b′a′ ba

c

(c) Reduced ON N
′

2 (a ≺i c)

Fig. 7.4: Examples of synthesis parameterized by a causality relation ¹. Accord-

ing to Def. 75, additional conditions and arcs should connect ψ⊥ to

other facets in order to code causality. They are omitted here since this

causality is already induced by the conditions used to code the conflicts.

the procedure for solving it is exactly the same as in Subsection 7.2.2 and Theo-
rem 71 can be adapted.

Theorem 79. Let ϕ be an ERL formula such that for any distinct variables a,b ∈

Ψ(ϕ), �ϕ� 6|= a ↔ b. There exists a finite reduced ON N such that ΦN
g en ≡ ϕ iff

CN(ϕ) is a reduced ON and Φ
CN(ϕ)
g en ≡ϕ.

Proof. The steps described in 7.2.2 and 7.2.2, can be repeated. Then we prove

that if N is a finite reduced ON, then CN(ΦN
g en) is a tight net and Φ

CN(ΦN
g en )

g en ≡

Φ
N
g en , as in the proof of Lemma 70, except that, in order to prove that N and

CN(ΦN
g en) have equivalent formulas (i.e. the same set of general runs), we use

the fact that they have the same conflict an causality relations.

With the general semantics, the set of runs cannot be described with the
conflict relation only. But since a net CN(ΦN ), built from the formula associated
with ON N has the same causality and conflict relations as N , they accept the
same set of general runs. Notice also that we have no longer the choice on the
causality relation.

Remark 80. In the construction, the immediate conflicts are represented by a
condition connected to ψ⊥. This results in a large set of initial conditions. It is
possible to improve the construction by representing each immediate conflict
ψ #i ψ′ by a condition connected to any facet ψ1 such that ψ ⊲ ψ1 and ψ′

⊲

ψ1. One possible choice would be to consider the ⊲-successors of ψ and ψ′,
defined as ⊲[ψ,ψ′] = {ψ1 ∈ Ψ | ψ ⊲ ψ1 ∧ψ′

⊲ ψ1}, create one condition b1 for
each ⊲-minimal facet, ψ1, in ⊲[ψ,ψ′], and connect b1 to ψ1, ψ and ψ′. This
would define B1 and F1. Then, any constraint of the form ψ′

⊲i ψ would be
represented as previously by B2 and F2, except that, in B2, we need to consider
only non-redundant conditions. Indeed, if there exists b ∈ B1 such that (ψ,b) ∈
F1 ∧ (b,ψ′) ∈ F1, then ψ′

⊲i ψ is already represented and can be ignored in B2.
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7.3.4 Conclusion

We have shown how the structural and binary reveals-relation from [Haa10] gen-
eralizes into a relational framework for the description of logical dependencies
- as opposed to temporal ones - between occurrences of sets of events in occur-
rence nets. For expressing these properties, a new logic, ERL, has been intro-
duced and studied. In particular, we have solved the problem of synthesis for
finite occurrence nets from ERL formulas. The extension to general occurrence
nets is a future task, which is not trivial; see Fig. 6.6 and the discussion at the
beginning of Section 7.2.

Even if ERL is a logic adapted for partial order semantics, it differs in its aim
and structure from the other logics that have been proposed in the literature (for
temporal logics for traces and event structures, see e.g. [GK10, Pen95]). First,
ERL is not, strictly speaking, a temporal logic, since the notions of before, af-

ter, future, until etc. are of no particular relevance here; in fact, the progression
of time is encapsulated in the underlying structure over which one chooses to
interpret ERL formulas, and in the choice of admissible runs in that structure:
maximal runs, any runs, runs satisfying additional context or timing constraints,
etc. In the light of Subsection 7.3.3, causal ordering can be viewed as a refine-
ment of the logical dependencies captured by the ERL formulas.

Thus far, we have intended and used the ERL logic as a means for coding
and manipulating structure (of occurrence nets) and knowledge (observing A

reveals B , i.e. gives knowledge about B ’s occurrence). The results here open
some new roads towards efficient verification of system properties, as well as
towards enforcing such properties through behavior control, or directly through
synthesis of systems from logical specifications.

Towards the Timed Setting

So far, we have considered only Petri nets without timing constraints. We now
want to extend this study of the logical dependencies between occurrences of
events to a timed setting. In the next chapter, we consider a simple timed setting,
where we focus on TPN whose firing intervals of transitions are punctual. Even
in this setting, the dependencies are much more complex that in the untimed
setting. We intend to use these dependencies to define a canonical and minimal
unfolding technique for TPN.
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In Subsection 2.3.3, we recalled timed processes introduced in [AL97] on an
example that is drawn again in Fig. 8.1(a). We showed that there can be complex
dependencies between event occurrences. For example, event e3 can occur only
if event e2 occurs late enough (at time 2), because if e2 occurs too early (in the
time interval [1,2)), then event e4 in conflict with e3 will fire.

One way to represent these relations in an unfolding of the TPN of Fig. 8.1(a)
is to duplicate events according to their different firing intervals and add new
conditions and arcs to represents the causalities added by time. For example, in
Fig. 8.1(b), e2 and e4 are duplicated, and the fact that e3 can only occur if e2 oc-
curs at time 2 is represented as a new condition in the post-set of the version of
e2 that occurs at time 2 and in the pre-set of e3. In [CJ06], these additional causal
relations are represented by read arcs, and the processes are called extended pro-

cesses. The dependencies between events in TPN unfoldings are mentioned in
several works [AL97, CJ06, Tra09], but there is not yet a unified framework for
their study and their representation.

In this chapter, we study the dependencies in a simplified timed setting,
where we consider TPN whose time intervals are punctual. Therefore an event
can occur only at a given time, and the time constraints of the unfolding are eas-
ier to compute. The unfolding of such TPN is an ON whose events have a fixed
occurrence time. But, even in this setting, there are still complex dependencies
between event occurrences, and the construction of valid time processes still re-
quires some analysis. Indeed, some causal processes of the untimed ON do not
correspond to a (prefix of) a process of the ON with dated events. This means
that the prefixes of these causal processes may be extended in invalid processes
if no special attention is paid.

In particular, we observe that for an event e to occur, the causal past of e is
not always sufficient (see Fig. 8.2). Indeed, there may be some events in minimal
conflict with e (like e ′ in Fig. 8.2) that become enabled and have to fire before
e can fire. These events that can prevent e from firing when it is enabled are
called preventing events. Therefore, we are interested in defining for an event
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t1[1,1]

t3[2,3]

t2 [1,2]

t4 [0,1]

(a) A time Petri net

e1τ(e1) = 1

e3τ(e3) = 3

e2τ(e2) = 2 e′2 1 ≤ τ(e′2) < 2

⊥τ(⊥) = 0

e4

0 ≤ τ(e4)−τ(e2) ≤ 1

e′4 0 ≤ τ(e′4)−τ(e′2) ≤ 1

(b) Its unfolding

Fig. 8.1: An unfolding of the TPN of Fig. (a): events are duplicated, and new arcs

represent the dependency “e2 at time 2 is a cause of e3 at time 3”.

e, the configurations that can be extended by e, i.e. the configurations whose
final conditions enable e and such that for any extension of these configurations,
it is possible to avoid the events that prevent e. These configurations contain
the causal past of e and some other events with their causal past, that we call
enabling pasts of e.

Organization of the Chapter We first give preliminary definitions, and present
some properties of processes and pre-processes. Then we give alternative char-
acterizations of processes and pre-processes, define the notion of enabling past,
and relate it with the extended reveals relation. Lastly, we argue that the notion
of minimal enabling past is a suitable notion for the definition of an algorithm
that builds valid processes, since, in some sense, this notion is the counterpart
of the notion of causal past in the untimed setting.

8.1 Preliminary Definitions

Let us first give the notations we will use, and present our motivation.

Notations For a given configuration ω of an ON ON = (B ,E ,F ), Cut(ω) =ω•\•ω
is the set of final conditions of ω, En(Cut(ω)) is the set of events enabled by the
final conditions of ω, and En(ω) = {e | ••e ⊆ω} is the set of events enabled along
ω (for any ω, ⊥∈ En(ω)). For an event e, ⌈e⌉ is the causal past of e, [e] = ⌈e⌉\{e} is

the strict causal past of e, and conf (e)
def
= {e ′ ∈ E | e ′ conf e}. For a set of events F ,

conf (F ) = ∪e∈F conf (e). For a causal net CN = (BCN ,ECN ,FCN ) that is a prefix of
ON , and a function f whose domain is E (resp. B∪E), fCN denotes the restriction
of f to ECN (resp. BCN ∪ECN ).
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ee′

[e]

Fig. 8.2: [e] is not sufficient to know whether e can occur, because e ′ may have

to fire before e becomes firable.

8.1.1 Motivation

Consider Fig. 8.2 and assume the events of configuration [e] have been assigned
some firing times given by function τ. Then e is enabled at time te = max{τ( f ) |
f ∈ ••e} and has to fire between te + efd(e) and te + lfd(e), or to be disabled.
However, assume now that [e] can be extended with events assigned with time
stamps, so that there exists an event e ′ such that e ′ conf e, that is now enabled
by the final conditions, and such that max{τ( f ) | f ∈ ••e ′}+ lfd(e ′) < te + efd(e).
Then, from this configuration, e has no chance to fire unless an event can dis-
able e ′. Therefore, in order to extend ([e],τ) with e and its occurrence time, we
have to be sure that those events e ′ that can prevent e from firing can be avoided.

This observation leads us to define preventing events, disabling events, and
releasing events, and shows the differences that exist between the untimed set-
ting and the timed setting.

Untimed vs Timed Setting

• In the untimed setting, any configuration can be extended into a valid
process. That is not true when timing constraints are considered: there
are some configurations that are not included in any process. The notion
of pre-process as been defined in [CJ06] to describe the configurations in-
cluded in some process.

• In the untimed setting, any configuration that contains the causal past
of an event e, and does not disable e can be extended by e. That is, the
causal past of an event is the minimal configuration that ensures that e

can fire. That is not true when time is considered. In this chapter, we will
define enabling pasts as the notion associated with the causal pasts in the
untimed setting.

8.1.2 Simplified Setting: Punctual Time Petri Nets

To simplify, we consider TPNs with punctual time intervals. This simplifies the
unfolding and the computation of the valid timings, but still, defining a valid
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process (see Subsection 2.3.3, Definition 18) requires some analysis because of
dependencies and incompatibilities that time creates between events.

Punctual Time Petri Nets

A punctual time Petri net is a tuple (P,T,F, M0,d) where (P,T,F, M0) is a Petri net,
and d : T →R≥0 assigns a firing delay to each transition.

A time branching process associated with the punctual TPN N is a tuple
(ON ,π,τ), where (ON ,π) is a branching process of N , τ : E → R≥0 associates an
occurrence time with each event, and such that

1. for any event e of ON , there exists a causal process (CN ,πCN ), where CN

is a prefix of ON that contains e, and such that (CN ,πCN ,τCN ) is a time
process of N .

2. for any time process (CN ,πCN ,τCN ) of N such that max(τCN ) ≤ max(τ), CN

is a prefix of ON .

The first condition means that any event e is firable in some execution. The sec-
ond condition means that the time branching process represents all the possible
executions that stop at time max(τ) or before.

This structure resembles time branching processes of [Tra09], except that it
is not supposed to represent one valid execution, but a set of executions, and
there is no event e such that τ(e) =∞.

Lastly, for a configuration ω, we define τ(ω)
def
= max{τ(e) | e ∈ω}.

Disabling and Preventing Events As previously mentioned, the minimal con-
flicts play an important role in computing the time constraints of valid pro-
cesses. In our setting, we distinguish two kinds of minimal conflict according
to the occurrence times of events. Below we formally define disabling and pre-

venting events.

Definition 81. For any event e, we define the following sets:

• Dis(e)
def
= {e ′ | e ′ conf e ∧τ(e ′) ≤ τ(e)} is the set of events that can disable e.

• Pre(e)
def
= {e ′ | e ′ conf e ∧τ(e ′) < τ(e)} is the set of events that can disable e

and that e cannot disable.

For example, in Fig. 8.3, Dis(e1) = {g1}, Pre(e) = {e ′} and Pre( f ) = {e3}.
The set Dis(e) represents the set of events that need to be considered to know

whether event e can occur when it is enabled. In fact, any event e ′ such that
τ(e ′) > τ(e)∧ e ′ conf e need not be considered because e ′ cannot disable e and
therefore has no influence on e. If e does not occur in ω and e ′ occurs, then this
means that another conflict with e has occurred (either e is never enabled or it
is disabled by another direct conflict which is in Dis(e)).
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⊥ 0

g1 0 e1 0 g2 0 e2 0 h 0

e3 1 g3 0 h1 2 h2 2

e′ 1 e 2 f 3

Some configurations:
ω1 = {⊥,e1, g2, g3,e,h,h1, f }
ω2 = {⊥,e1, g2, g3,e,h,h1,e3}
ω3 = {⊥,e1, g2, g3,e′,h,h1,e3}
ω4 = {⊥, g1, g2, g3,h,e}

Fig. 8.3: Not every configuration is a pre-process (ω1 and ω2 are not).

Since for any events e and e ′, e conf e ′ ⇐⇒ e ∈ Dis(e ′)∨ e ′ ∈ Pre(e), the set
Pre(e) has a "parallel" meaning. It represents the set of events on which e has no
influence. Hence, if e ′ ∈ Pre(e) and e and e ′ are enabled, then e has no chance to
fire unless another event e ′′, that can disable e ′ occurs (i.e. e ′′ ∈ Dis(e ′)), but the
occurrence of e ′′ will be known before τ(e).

Later we show that, although the knowledge of [e] may not be sufficient to
deduce whether e is able to fire, we can always come to such a deduction with
the knowledge of [e] and some events that occur strictly earlier than e. This result
is stated in Lemma 100. Let us now define processes and pre-processes of a time
branching process.

Processes and Pre-Processes

Causal processes represent the executions of untimed branching processes. The
executions of time branching processes are represented by time processes. Here,
we do not need to consider the occurrence times, since they are fixed. To sim-
plify the notations, we also omit conditions and arcs, and define processes as
configurations associated with time processes. That is, processes are configura-
tions satisfying additional properties that we formalize in the definition below,
which is an adaptation of the definition of time processes of [AL97].

Definition 82 (Process, Pre-Process). Let ω ⊆ E be a configuration of a time
branching process, then ω is a process iff it satisfies the following condition:

∀e ∈ En(ω),e ∉ω =⇒ ω∩Dis(e) 6= ;∨τ(e) ≥ τ(ω)

A pre-process is a configuration included in a process.

This means that, any event e enabled in a process ω and that has not fired
was either disabled before its firing time by the firing of a minimal conflict (i.e.
by an event in Dis(e)), or has not yet overtaken its firing time.

We observe that some configurations (i.e. some processes of the untimed
branching process) are not pre-processes of the time branching process. This
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means that the pre-processes that are included in these configurations may be
extended in invalid processes if no special attention is paid. For example, the
configuration ω1 of Fig. 8.3 is not a process because e3 was enabled and should
have fired before f . A “consistent” pre-process that contains f has to contain g1

to ensure that e3 will not fire.

Temporal Completeness An intrinsic property of time processes, the temporal

completeness, was recalled in Subsection 2.3.3. Below, we give a simplified defi-
nition in our setting, and recall that processes are temporally complete, i.e. that
for any process ω, events that are not in ω are in conflict with ω or have an occur-
rence time greater than or equal to τ(ω) (the time until which ω has progressed).
Hence any event e which is not in conflict with ω and whose occurrence time is
less than τ(ω) is necessarily in ω (see Lemma 87 below).

Definition 83 (Temporal Completeness). Let ω be a configuration. ω is tem-

porally complete iff for any event e ∈ En(Cut(ω)), τ(e) ≥ τ(ω). We write
TempComp(ω) when ω is temporally complete.

We also define the temporal completeness of a process ω until a given time
θ ≥ τ(ω): ω is (temporally) complete until θ if we can delay in the final configu-
ration of ω until time θ.

Definition 84 (Temporal Completeness until θ). A process ω is temporally com-
plete until time θ such that θ ≥ τ(ω) iff ∀e ∈ En(Cut(ω)),τ(e) ≥ θ.

Next Events For a configuration ω, we now consider the events that are en-
abled by the final conditions of ω and that should fire if ω was temporally com-

plete. We define the following set: Next(ω)
def
= {e | e ∈ En(Cut(ω))∧τ(e) < τ(ω)}.

Remark 85. Notice that Next(ω) =; iff ω is temporally complete.

Lemma 86 ([AL97]). Any process is temporally complete.

Lemma 87 (Temporal Completeness).

1. Let ω be a configuration, then TempComp(ω) is equivalent to

∀e ∈ E , (ω∩#[e] =;∧τ(e) < τ(ω)) =⇒ e ∈ω

2. For any process ω,

∀e ∈ E , (ω∩#[[e]] =;∧ω∩Dis(e) =;∧τ(e) < τ(ω)) =⇒ e ∈ω

Proof. (1) Assume that for some event e, ω∩ #[e] = ;∧ τ(e) < τ(ω) ∧ e ∉ ω.
Then, since ω∩ #[e] = ; and e ∉ ω, there exists an event f ∈ ⌈e⌉ such that
f ∈ En(Cut(ω)). Moreover f is such that τ( f ) ≤ τ(e) < τ(ω), which means that
TempComp(ω) does not hold.

In the other direction, for any f ∈ En(Cut(ω)), both ω∩#[ f ] = ; and f ∉ ω.
Assume the right part of the equivalence holds, then τ( f ) ≥ τ(ω). This implies
TempComp(ω).
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f2 e′ e

gf1

τ( f2) ≤ τ(e′) < τ(e)

τ( f1) ≤ τ(g )

Fig. 8.4: Any process that contains e also contains f1 or f2.

(2) First, we prove that for any processω, ∀e ∈ E , ω∩#[[e]] =;∧τ(e) < τ(ω) ⇒
e ∈ En(ω). Assume there exists e ∈ E such that

ω∩#[[e]] =;∧τ(e) < τ(ω)∧e ∉ En(ω) (H(e))

Then, since e ∉ En(ω), there exists e ′ ∈ ••e such that e ′ ∉ω. From the definition of
a process, we have e ′ ∉ω⇒

(

e ′ ∉ En(ω)
)

∨
(

ω∩Dis(e ′) 6= ;
)

∨
(

τ(e ′) ≥ τ(ω)
)

. Since
τ(e ′) ≤ τ(e) < τ(ω), and Dis(e ′) ⊆ #[[e]], this can be simplified in e ′ ∉ ω ⇒ e ′ ∉

En(ω), thus, e ′ is such that ω∩#[[e ′]] =;∧τ(e ′) < τ(ω)∧e ′ ∉ En(ω), i.e. e ′ satisfies
H(e ′). That is, if e satisfies H(e), then ∃e ′ ∈ ••e s.t. e ′ satisfies H(e ′). By recursion,
we finally get that if e satisfies H(e), then ⊥ satisfies H(⊥), which it does not
because ⊥∈ En(ω). Therefore, ∀e ∈ E , ω∩#[[e]] =;∧τ(e) < τ(ω) ⇒ e ∈ En(ω).

Hence, ω∩ #[[e]] = ;∧ω∩Dis(e) = ;∧τ(e) < τ(ω) implies e ∈ En(ω)∧ω∩

Dis(e) =;∧τ(e) < τ(ω), which implies e ∈ω by definition of a process.

Remark 88. Similarly, if ω is a process that is temporally complete until time
θ, then ∀e ∈ E , (ω∩ #[[e]] = ;∧ω∩Dis(e) = ;∧ τ(e) < θ) ⇒ e ∈ ω. The proof
is similar to the proof of Lemma 87. This means that ∀e ∈ En(ω), e ∉ ω implies
ω∩Dis(e) 6= ; or τ(e) ≥ θ. That is, for any event e enabled in ω, if e has not
occurred, then either e was disabled, or the occurrence time of e is greater than
the time θ until which ω has progressed.

Releasing Events Another property of processes is that, for any event e that oc-
curs, the preventing events of e are disabled. Indeed, if one event in Pre(e) is not
disabled, then it will be enabled before e, and will fire. We distinguish two ways
of disabling a preventing event e ′: either a minimal conflict with an event g in
the strict causal past of e ′ occurred and e ′ was never enabled (we will prove that
we can consider that this minimal conflict is in Dis(g )) or e ′ was enabled, but
an event in Dis(e ′) occurred. These two cases are depicted in Fig. 8.4. Releasing
events will have a special interest as stated in Theorem 91 below. After this theo-
rem, we also argue that these events also ensure that a configuration is in some
sense a “consistent” pre-process.
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Definition 89 (Releasing Events). For any events e and e ′ such that e ′ ∈ Pre(e),
the set of events that release e from e ′ is defined as follows.

Rel(e,e ′)
def
=

{

f ∈ E |
(

∃g ∈ [e ′] : f ∈ Dis(g )
)

∨ f ∈ Dis(e ′)
}

=
{

f ∈ E | ∃g ∈ ⌈e ′⌉ : f ∈ Dis(g )
}

For a configuration ω, we also define the following predicates:

Release(ω,e)
def

⇐⇒ ∀e ′ ∈ Pre(e),ω∩Rel(e,e ′) 6= ;

Release(ω)
def

⇐⇒ ∀e ∈ω,Release(ω,e)

Therefore, Release(ω,e) means that for any event e ′ ∈ Pre(e), configuration
ω contains an event that releases e from e ′. For example, in Fig. 8.4, Rel(e,e ′) =
{ f1, f2}, and a configuration ω satisfies Release(ω,e) iff it contains f1 or f2.

8.2 Study of Dependencies between Events

In this section, thanks to the notions we defined above, we study the dependen-
cies between events in the unfolding of punctual TPNs. We first give alternative
definitions of a process, and show that the releasing events are particularly in-
teresting because they ensure that a configuration is valid (i.e. is a pre-process).
We then define enabling pasts of an event e as pre-processes that ensure that
a configuration can be extended by event e, and study their properties. Lastly,
we relate enabling past and the extended reveals relation defined over the set of
processes of a punctual TPN.

8.2.1 Characterization of Processes and Pre-processes

First, let us highlight the interest of disabling events and show that the other
minimal conflicts can be ignored.

Lemma 90 (Disabling Events). For any process ω, for any events e ∈ ω and e ′ ∈

Pre(e), there exists an event e ′′ ≤ e ′ such that ω∩Dis(e ′′) 6= ;.

Proof. By contradiction, assume that there exists e ′ ∈ Pre(e) such that for any
e ′′ ≤ e ′, ω∩Dis(e ′′) =;. Since e ′ ∉ω and τ(e ′) < τ(ω), by temporal completeness
there exists e ′′ ≤ e ′ such that for some f ∈ ω, f conf e ′′. Moreover, by assump-
tion, f ∉ Dis(e ′′), i.e. e ′′ ∈ Pre( f ).

By definition of a process, for any f ∈ ω and e ′′ ∈ Pre( f ), e ′′ ∉ ω (conflict-
freeness). But any such e ′′ is such that τ(e ′′) < τ(ω), and since TempComp(ω)
(by Lemma 86), ω∩#[[e ′′]] 6= ;∨ω∩Dis(e ′′) 6= ; (by Lemma 87.2). By assump-
tion, ω∩Dis(e ′′) = ;, therefore there exists e ′′′ < e ′′ such that for some f ′ ∈ ω,
f ′ conf e ′′′ and e ′′′ ∈ Pre( f ′) (again because by assumption, ω∩Dis(e ′′′) = ;).
Let us denote by P (e ′′) the following property: ∃e ′′′ < e ′′, f ′ ∈ ω : e ′′′ ∈ Pre( f ′).
Using again the definition of a process and the first assumption, we get that e ′′′

also satisfies P (e ′′′). By recursion, we finally arrive at a direct successor of ⊥ and
see that the property cannot be satisfied since ⊥ has no conflict.
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We are now ready to give alternative definitions of a process.

Theorem 91 (Process, alternative definitions). Let ω be a configuration, then the

following statements are equivalent:

1. ω is a process

2. TempComp(ω)∧Release(ω)

3. TempComp(ω)∧
(

∀e ∈ω, ∀e ′ ∈ Pre(e), e ′ ∉ En(ω)∨ω∩Dis(e ′) 6= ;
)

4. TempComp(ω) and ω is a pre-process

Proof. 1 ⇒ 2 is direct from Lemma 86 and Lemma 90, and 1 ⇒ 4 is direct from
Lemma 86. Below, we first show that 2 ⇒ 3 ⇒ 1, then that 4 ⇒ 1.

(2 ⇒ 3) Release(ω) implies that ∀e ∈ ω,∀e ′ ∈ Pre(e),ω∩ conf ([e ′]) 6= ;∨ω∩

Dis(e ′) 6= ;. For any e ′, ω∩ conf ([e ′]) 6= ; implies e ′ ∉ En(ω).
(3 ⇒ 1) By Lemma 87.1, the temporal completeness is equivalent to ∀e,e ∉

ω⇒ω∩#[e] 6= ;∨τ(e) ≥ τ(ω). Thus, ∀e ∈ En(ω),e ∉ω⇒ conf (e)∩ω 6= ;∨τ(e) ≥
τ(ω). That is, for any e such that e ∈ En(ω)∧ e ∉ ω∧τ(e) < τ(ω), conf (e)∩ω is
not empty, and it remains to show that ω∩Dis(e) is not empty either. If Dis(e)∩
ω= conf (e)∩ω, then it is not empty, and otherwise, ∃e1 ∈ (conf (e)∩ω) \ Dis(e),
i.e. e ∈ Pre(e1) and we can use the second term of the conjunction of item 3 by
considering e1 instead of e: ∀e1 ∈ω,∀e ∈ Pre(e1),e ∈ En(ω) ⇒ω∩Dis(e) 6= ;.

(4 ⇒ 1) Assume ω is a temporally complete pre-process. Then, for any e ∈

En(ω) \ω, ω∩ conf (e) 6= ;∨ τ(e) ≥ τ(ω) (temporal completeness). We want to
show that ω is a process, i.e. that for any e ∈ En(ω) \ω, ω∩Dis(e) 6= ;∨τ(e) ≥
τ(ω). If ω∩Dis(e) = ω∩ conf (e) then we have finished. Otherwise, there exists
e1 in ω∩ (conf (e) \ Dis(e)) (i.e. e ∈ Pre(e1)). Therefore, any process ρ such that
ω⊆ ρ contains e1 and satisfies item 3, i.e. ρ∩Dis(e) 6= ;. For any e ′ ∈ ρ∩Dis(e),
ρ∩#[e ′] = ; because ρ is conflict-free, and hence ω∩#[e ′] = ; also. That is, e ′

satisfies ω∩#[e ′] = ; and τ(e ′) ≤ τ(e) < τ(e1) ≤ τ(ω), and, since ω is temporally
complete, e ′ is also in ω. Hence, ω∩Dis(e) 6= ; and ω is a process.

For example, configuration ω1 of Fig. 8.3 is temporally complete but is not
a process because e ∈ ω1, and there is no event in ω1 that releases e from e ′ ∈

Pre(e).

Sufficient Condition for a Configuration to be a Pre-process

We show below in Lemma 93 that Release(ω) ensures that a configuration ω is a
pre-process. Moreover Release(ω) is a local property that can be checked easily
on a configuration, contrary to the non local conditions given in [CJ06]. With
this condition, it is easy to build valid pre-processes by extending configura-
tions. We first prove the following proposition that will help us prove Lemma 93.

Proposition 92. Let ω be a configuration such that Release(ω). Then, for any

event e, ω∩#[e] 6= ;⇒∃g ≤ e : ω∩Dis(g ) 6= ;
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⊥ 0

e1 0 e3 0

e2 0

e′ 0e 1

Fig. 8.5: {⊥,e,e1} is a configuration but is not a pre-process (no process contains

both e and e1).

Proof. By contradiction, assume that for some e, ω∩#[e] 6= ; and ∀g ≤ e : ω∩

Dis(g ) = ;. Then, ∃g ≤ e, f ∈ ω : g ∈ Pre( f ). But since Release(ω, f ), ∃g1 ≤ g :
ω∩Dis(g1) 6= ;, which contradicts the assumption (because g1 ≤ e also).

Lemma 93. Let ω be a configuration. If Release(ω), then ω is a pre-process.

Proof. Let us denote by t0 the time min{τ(g ) | g ∈ Next(ω)}. First, we show that
for any event f such that f ∈ Next(ω) and τ( f ) = t0, Release(ω, f ) holds. Indeed,
∀ f ′ ∈ Pre( f ), f ′ ∉ En(Cut(ω)) (otherwise f ′ ∈ Next(ω) and τ( f ) 6= t0) hence ω∩

#[ f ′] 6= ; (otherwise, ∃ f ′′ ∈ [ f ′] : f ′′ ∈ En(Cut(ω)) and f would not be such that
τ( f ) = t0). By Proposition 92, ∀ f ′ ∈ Pre( f ),∃ f ′′ ≤ f ′ : ω∩Dis( f ′′) 6= ;. Therefore
Release(ω, f ) holds, and so does Release(ω∪ { f }).

If ω is a process, then ω is a pre-process. Assume ω is not a process, then
ω is not temporally complete, i.e. the set Next(ω) is not empty (see Remark 85).
Moreover, for any e ∈ Next(ω), ω∩#[e] =;. We build a process containing ω by
adding events to ω: while TempComp(ω) does not hold , take f ∈ Next(ω) such
that τ( f ) = t0 (then Release(ω∪ { f }) holds) and add it to ω.

The other direction of the above lemma is not true. For instance, for any
event e, ⌈e⌉ is a pre-process and it may not satisfy Release(⌈e⌉) (see Fig. 8.5).
However, for a pre-process ω, Release(ω) is an interesting property because it
ensures a kind of “consistency” of the pre-process: for any event e in ω, ω con-
tains a sufficient information to know that e can fire. When Release(ω) does not
hold, this consistency may not be ensured, for example, in Fig. 8.5 ⌈e⌉ does not
satisfies Release(⌈e⌉), e3 ∉ ⌈e⌉ and e needs e3 to be able to fire.

8.2.2 Enabling Pasts

Contrary to what happens when untimed ON are considered, here [e] alone does
not always ensure that e is actually able to occur. Indeed, when the final condi-
tions of a pre-process ω enable e, this does not mean that ω∪{e} is a pre-process
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⊥ 0

g1 0 e1 0 e2 0 g2 0

e′ 1 e 2e′′ 1

g3 0e3 0

Fig. 8.6: ⊆-minimal enabling pasts of e: {⊥, g1}, {⊥, g2} and {⊥, g3}.

(see again {⊥,e,e1} in Fig. 8.5). That is why we want to identify the information
that ω has to contain, besides [e], so that ω∪ {e} is a pre-process. Below, we for-
mally define the notion of enabling past of e, which is a sufficient information
which ensures that e can occur: if a pre-process ω, whose final conditions en-
able e, contains an enabling past of e, then ω∪ {e} is a pre-process. Therefore,
this notion is the counterpart of the notion of causal past in the untimed case.

Definition 94 (Enabling Past). A pre-process E is an enabling past of an event e

iff for any pre-process ω, E ⊆ω∧e ∈ En(Cut(ω)) =⇒ ω∪ {e} is a pre-process.

For example, in Fig. 8.3, the ⊆-minimal enabling pasts of f are ⌈g1⌉ and ⌈e⌉,
and those of e are ⌈g1⌉ and ⌈ f ⌉. However, for any events, e and e ′ ∈ Pre(e), ob-
serve that an enabling past of e need not disable e ′ if it ensures the enabling of
a disabling event of e ′. For example, in Fig. 8.6, {⊥, g3} is an enabling past of e

because in any pre-process that enables both e and e ′, if g3 occurs then e ′′ is also
enabled and can disable e ′.

Remark 95. From the definition, we readily obtain the following properties of
enabling pasts.

1. For any event e such that Pre(e) = ;, any pre-process (in particular ;) is
an enabling past of e.

2. For any pre-process E , E ∪ [e] is an enabling past of e iff E is an enabling
past of e.

3. If E is an enabling past of e, then any pre-process E ′ such that E ⊆ E ′ is an
enabling past of e.

4. Any process that contains e also contains an enabling past of e.

With the example of in Fig. 8.3, we see that even a ⊆-minimal enabling past
of e may reach a time greater than the occurrence time of e: ⌈ f ⌉ is a ⊆-minimal
enabling past of e, and τ( f ) > τ(e). We consider that these enabling pasts are
not satisfactory, and we observe that, by item 4 of Remark 95 above, a process
that contains e always contains an enabling past of e, i.e. always contains an
enabling past E of e such that τ(E) ≤ τ(e) (the process may stop at time τ(e)).
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Moreover, we will strengthen this result and show that a process that contains
e always contains an enabling past E of e such that τ(E) < τ(e) (see Lemma 100
below).

First, let us extend item 4 of Remark 95 with the following lemma.

Lemma 96 (Enabling Process). For any event e, any process π which is complete

until τ(e) and such that π∩#[e] =; is an enabling past of e.

Proof. First, we show that any process π which is complete until τ(e) and such
that e ∈ En(Cut(π)) is an enabling past of e. Pre(e)∩π=; (otherwise e would not
be enabled by the final conditions of π), that is for any e ′ ∈ Pre(e), e ′ ∉ En(π) or
π∩Dis(e ′) 6= ; (see Remark 88). Hence, π∪{e} is also a process (it satisfies item 3
of Theorem 91) and π is an enabling past of e.

Second, if π is complete until τ(e) and such that π∩ #[e] = ;, then for any
pre-process ω, π⊆ω∧ e ∈ En(Cut(ω)) implies that there exists a process π′ such
that π⊆ π′ ⊆ω and e ∈ En(Cut(π′)), hence, π′ is an enabling past of e (as proved
above) and ω∪ {e} is a pre-process. Thus π is also an enabling past of e.

Proposition 97 (Enabling Past, sufficient condition). Let E be a pre-process and e

an event. If for any pre-process ω, E ⊆ω =⇒ ω∩Pre(e) =;, then E is an enabling

past of e. In particular, if Release(E ,e) then E is an enabling past of e.

Proof. Let pre-process E be such that for any pre-processω, E ⊆ω⇒ω∩Pre(e) =
;. Then, for any pre-process ω such that E ⊆ω∧e ∈ En(Cut(ω)), for any process
ρ such that ω⊆ ρ, either (i ) e ∈ ρ or (i i ) e ∈ En(Cut(ρ)) or (i i i ) ∃ f ∈ ρ : f conf e.
Below we study these three cases.

(i ) ω∪ {e} ⊆ ρ is a pre-process.

(i i ) Since E ⊆ ρ, no event in Pre(e) can occur in ρ or any extension of ρ. Thus
there exists a processρ′ such thatρ ⊆ ρ′, e ∈ En(Cut(ρ′)) andρ′ is complete
until τ(e). Then, since ρ′∩#[e] =;, by Lemma 96, ρ′ is an enabling past of
e. Hence, ρ′∪ {e} is a pre-process and so is ω∪ {e} ⊆ ρ′∪ {e}.

(i i i ) Since E ⊆ ρ, f ∉ Pre(e), i.e. τ( f ) ≥ τ(e). Therefore, τ(ω) ≥ τ(e) and
by Lemma 87, ∀e ′ ∈ Pre(e), since τ(e ′) < τ(e) ≤ τ(ρ), ρ ∩ #[[e ′]] 6= ; or
ρ∩Dis(e ′) 6= ;. Hence Release(ρ,e). Thus ρ′ = ρ \ ⌊conf (e)⌋ (ρ without the
causal future of the minimal conflicts with e) also satisfies Release(ρ′,e),
and ρ′∪ {e} satisfies Release(ρ′∪ {e}) and is, by Lemma 93, a pre-process.
Therefore, ω∪ {e} ⊆ ρ′∪ {e} is also a pre-process.

Therefore E is an enabling past of e.
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These conditions are sufficient but not necessary. For instance, consider
Fig. 8.6, where E = {⊥, g3} is an enabling past of e and {⊥, g3,e1,e2,e ′} is a pro-
cess, therefore there exists a pre-process which contains E , [e] and e ′ ∈ Pre(e).
Indeed, the point of an enabling past is not to make all events in Pre(e) impos-
sible, but to make them avoidable. In the example of Fig. 8.6, if e1, e2 and e3

occur, then e ′ cannot be avoided, therefore, an enabling past of e has to make
impossible at least one of these events.

Minimal Enabling Pasts

Since enabling pasts are preserved by addition of events (Remark 95.3), there
can be many enabling pasts for a given event e (even infinitely many if the un-
folding is infinite). Therefore, in order to consider only relevant enabling pasts,
we need a notion of minimality. We observe that the minimality by inclusion is
not appropriate. Indeed, if we consider event e, in Fig. 8.3, we see that ⌈g1⌉ and
⌈ f ⌉ are ⊆-minimal enabling pasts of e. But, in any process, if f occurs, g1 also
occurs and furthermore, τ(⌈g1⌉) < τ(⌈ f ⌉). Therefore, we prefer ⌈g1⌉ to ⌈ f ⌉ and
we consider ⌈ f ⌉ as non minimal.

Definition 98 (Minimal Enabling Past). Let E be a ⊆-minimal enabling past of
an event e. E is a minimal enabling past of e iff there exists a process ω which
contains E and e and does not contain another enabling past of e, E ′ such that
τ(E ′) < τ(E).

For example, in Fig. 8.3, ⌈ f ⌉ is a ⊆-minimal enabling past of e but it is not
a minimal enabling past of e. Indeed, in any process that contains f and e, g1

also occurs and ⌈g1⌉ is an enabling past of e such that τ(⌈g1⌉) < τ(⌈ f ⌉). In this
example, ⌈g1⌉ is the only minimal enabling past of e.

Observe that, an enabling past of e may not contain a minimal enabling past
of e. However, by definition, we directly have the following proposition.

Proposition 99. For any event e, any process ω which contains e also contains a

minimal enabling past of e.

Lastly, we can state the following proposition.

Lemma 100. For any event e and any minimal enabling past E of e, τ(E) < τ(e).

Proof. Consider any process ω that contains e. By Lemma 90 ,for any event e ′

in Pre(e), there exists fe ′ ∈ ω∩Dis(e ′′), for some e ′′ ≤ e ′. Hence, for any such
fe ′ , τ( fe ′) ≤ τ(e ′′) ≤ τ(e ′) < τ(e). Then, E =

⋃

e ′∈Pre(e)⌈ fe ′⌉ is an enabling past of e

(Proposition 97), and is such that τ(E) < τ(e). Moreover, any minimal enabling
past is included in some such enabling past.

Furthermore, if the common assumption of non-zenoness is made, the fol-
lowing proposition holds.
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Proposition 101. For any event e, any minimal enabling past of e is finite.

We can now relate this notion of enabling past with the reveals relation that
we define on the set of processes of a punctual TPN. Indeed, with the interesting
sets of events and predicates we have defined above, we understand better the
relations between events in time branching processes, i.e. the relations between
events in the processes of punctual TPN.

8.2.3 Reveals Relation in Punctual Time Petri Nets

We defined and studied the reveals relation and the extended reveals relation
in Chapter 7, in an untimed setting. Time implies new dependencies not vis-
ible in the structure of the occurrence net. Independent (concurrent and not
⊲-related) events in the untimed branching process may be logically dependent
or incompatible in the time branching process. Indeed, a process of the untimed
branching process may not be a process of the time branching process, because
some events that are not in structural conflict are no longer compatible when
timing constraints are added.

This is what we observe for example in Fig. 8.5, where e and e1 would be
independent without timing constraints, and are incompatible with time con-
straints: if e1 occurs, e2 and e ′ also occur, and e ′ disables e.

First, we define ⊲ and _ as previously in Definitions 45 and 59, but over the
set of time processes Ωtime.

Definition 102 (Reveals and Extended Reveals Relations).

• For any events a and b, a ⊲ b iff for any process ω ∈Ωtime, a ∈ω =⇒ b ∈ω.

• For any sets of events A and B , A _ B iff for any process ω ∈ Ωtime,
A ⊆ω =⇒ B ∩ω 6= ;.

As a special case of this definition, A _ ; means that there is no process ω

that contains A.
Since this definition is similar to the definition over the runs of an occur-

rence net, the “logical” properties of the reveals and the extended reveals still
hold. For example, ⊲ is still reflexive and transitive, and the left and right inher-
itance properties of _ (see Subsection 7.1.2) are still true. However, the struc-
tural properties that are linked with the conflict relation no longer hold. When
time is added, some events that are not in structural conflict become incompat-
ible, therefore, the structural conflict is no longer the only source of incompati-
bility between events.

In particular, the inheritance of the conflict relation under the reveals rela-
tion (Property 47) does not hold in this case. For example, in Fig. 8.5, e3 # e1 and
e ⊲ e3 but ¬(e # e1). However, e and e1 never occur together in a run, we say that
they are logically incompatible. Observe that this incompatibility is not a bi-
nary relation since it may happen that a set of events can never occur although
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the events of this set are not pairwise incompatible, like the set {e,e1,e2,e3} in
Fig. 8.6. That is why Lemma 64 – which states that A _m ; implies |A| = 2 – is
no longer true in this case either.

Incompatible Events

Definition 103 (Set of events incompatible with e). A set of events E is incom-
patible with an event e iff E 6_; and E ∪ {e} _;.

When E is incompatible with e, we write E ∈ Inc(e).

E 6_ ; means that the events in E can happen together, and E ∪ {e} _ ;

means that for any process ω, E 6⊆ω∨e ∉ω. For example, in Fig. 8.6, {e1,e2,e3} is
incompatible with e.

The set of events E is incompatible with an event e when it makes the oc-
currence of e impossible. This comes either from a structural conflict with e

(E ∩#[e] 6= ;), or from the “unavoidability” of an event e ′ ∈ Pre(e) Therefore, the
following holds.

E ∈ Inc(e) ⇐⇒ E ∩#[e] 6= ;∨E ∪ [e] _ Pre(e)

Theorem 104. Let E be a pre-process such that e ∈ En(Cut(E)). Then, E is an

enabling past of e iff for any set of events F , (F ∈ Inc(e)∧F ∩#[e] =;) =⇒ E∪F _

;.

Proof. (⇒) By contradiction, assume E is an enabling past of e and there exists a
set of events F such that F ∈ Inc(e)∧F ∩#[e] =; and E ∪F 6_;. This means that
there exists a process which contains E∪F , therefore ω= E∪⌈F ⌉ is a pre-process,
and since e is not compatible with F , e ∉ω. Moreover, ω does not contain events
in structural conflict with e because F and E are not in structural conflict with e,
therefore ω is also such that e ∈ En(Cut(ω)). That is, there exists a pre-process ω
such that E ⊆ω∧ e ∈ En(Cut(ω)) and yet ω∪ {e} is not a pre-process (because ω

contains F which is not compatible with e), which contradicts the definition of
enabling past.

(⇐) Assume that for any set of events F , (F ∪ {e} _ ;∧F ∩#[e] = ;) ⇒ E ∪

F _;. Then, for any pre-process ω such that E ⊆ω∧ e ∈ En(Cut(ω)), since E is
incompatible with any set which is incompatible with e, ω is compatible with e

and ω∪ {e} is a pre-process.

That is, E is an enabling past of e if its occurrence prevents the occurrence
of the sets of events logically incompatible with e (those that are in structural
conflict with e are already made incompatible by the fact that e ∈ En(Cut(ω))).
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8.3 Conclusion and Perspectives

The processes of classical Petri nets can be constructed recursively by adding
events to a configuration, when they are enabled by the final conditions of that
configuration. That is, in order to be extended by event e, a configuration need
only contain the causal past of e, and no event in minimal conflict with e. This is
not true when we consider TPNs. Even in this simplified setting where we focus
on punctual TPNs, we have seen how timing constraints create complex depen-
dencies between event occurrences. Building valid processes can no longer be
done by looking at the causal pasts, as in the untimed case, and some configu-
rations may not be included in any process.

To address this problem, we have introduced the notion of enabling past: a
pre-process whose final conditions enable event e and that contains an enabling
past of e can safely be extended by e. We observed that there can be infinitely
many enabling pasts for a given event, because enabling pasts are preserved by
addition of events, and that even ⊆-minimal enabling pasts may reach a time
greater than the occurrence time of e. Obviously, we consider that a relevant en-
abling past of e should not overcome the occurrence time of e. That is captured
by the notion of minimal enabling past that we consider as satisfactory because

• any minimal enabling past E of e is such that τ(E) < τ(e), and

• any process that contains e also contains a minimal enabling past of e.

Another observation is that there can be several minimal enabling pasts for a
given event, and these enabling pasts are not necessarily incompatible. For ex-
ample, in Fig. 8.6, in order to occur, e needs either [g1] or [g2] or [g3], and they
can occur all together.

Also, the sets of releasing events of an event e are particularly useful for
determining whether a pre-process can be extended by e, because only some
events that must have occurred strictly before e have to be considered. More-
over, this gives a local condition in the sense that it can be checked by looking
only at the causal predecessors of each preventing event of e.

What is left to be done now, is to define an algorithm to build the processes of
a time branching process. Here, we would like to use the notion of enabling past
in this way: an event e is added to pre-process ω only if ω contains an enabling
past of e. This would be automatically satisfied if the temporal completeness is
ensured (Lemma 96), that is if the events are added chronologically. However,
we want to be able to add an event as early as possible, and to represent the de-
pendency between this minimal enabling past and the event. But contrary to
releasing events, the events of a minimal enabling past may not be local (see g3

in Fig.8.6). So, releasing events may be a good notion for representing canoni-
cal dependencies, although they do not always correspond to minimal enabling
past. Besides, they also always occur strictly before e.
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In addition, we have defined the reveals relation and the extended reveals re-
lation over the set of processes of a time branching process (this was straightfor-
ward). We have discussed the properties that change in this setting, and linked
these relations with the notion of enabling past. For a given event e, sets of
events incompatible with e have been defined. This incompatibility does only
originate from the structural conflict relation, as in the untimed case, and is no
longer a binary relation. This is also a first step in a more advanced study of the
reveals relation in general TPNs.

In the long term, it is desirable to extend these preliminary results to general
TPN, and to define a canonical unfolding of TPN.
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Conclusion

Summary

Our works all lie within the scope of modeling and analyzing real-time dis-
tributed systems.

We introduced several missing notions for the formalization of our prob-
lems. The introduced notions can now be reused to formalize other
concurrency-related problems. We first formalized a distributed timed bisim-
ulation that we used to show that it is possible to translate a time Petri net into
a network of timed automata that has the same distributed behavior. In this
translation, we observed that we have to extend the classical syntax of network
of timed automata so that the components can read the state of their neighbors.
This represents communications that are hidden in the original time Petri net.
This observation led us to consider communications via shared variables in net-
works of timed automata, and more precisely the problem of shared clocks.

Then we considered the implementation of networks of timed automata on
multi-core architectures (i.e. the different automata may be implemented on
different processors). In this context, shared clocks are problematic because
their implementation requires communications that are not explicitly described
in the model. We showed how to avoid shared clocks in network of timed au-
tomata when this is possible. For this, we allowed an extended synchronization
mechanism such that the automata can transmit their state (current location
and current valuation) to their neighbors when they synchronize. This study
also required the introduction of new formal notions to prove that the transfor-
mation of the network does not change its distributed behavior. We considered
networks of two timed automata and formalized the preservation of the local
behavior of an automaton in the context of another one.

In the second part, we studied the logical dependencies between event oc-
currences in occurrence nets. To start with, we considered the untimed setting,
and investigated the reveals relation. We then introduced a general framework
for the description of more general logical dependencies between event occur-
rences, and solved a synthesis problem.

Lastly, we considered a simple class of time Petri nets whose time intervals
are punctual, with the objective of studying the dependencies between events
in this timed setting. Even with this simple class, the dependencies are much
more complex than with untimed Petri nets, and this makes it difficult to build
valid processes. We addressed this problem by defining enabling pasts: when a
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pre-process contains an enabling past of an event e and enables e, it can safely
be extended by e. We also studied the reveals relation and the extended reveals
relation in this setting, and linked the extended reveals relation to the notion of
enabling past. This required the definition of logical incompatibility, as opposed
to the conflict relation which we regard as a structural incompatibility.

This thesis studied real-time distributed systems. Our contribution has three
main aspects that are summarized below.

Formalization of Behavioral Equivalences for Distributed Timed Systems

• Formalization of distributed timed behavior, and its preservation from
one model into the other, with the notions of timed traces, distributed
timed language, and distributed timed bisimulation (Chapter 3),

• Formalization of the behavior of one TA in the context of another TA, and
behavior comparison, with the notions of contextual timed transition sys-
tem and contextual timed bisimulation (Chapter 5).

Concurrency and Interactions in Different Formalisms

• Translation from TPN to NTA that preserves concurrency, i.e. the dis-
tributed behavior (Chapter 4),

• From a given NTA, construction of an equivalent NTA without shared
clocks, but with clock copies and transmission of information on the syn-
chronizations when possible (Chapter 5).

Logical Dependencies between Events

• Deeper study of the reveals relation defined in [Haa10] (Chapter 6),

• Definition of a logical independency between events, as opposed to the
concurrency relation in occurrence nets (Chapter 6),

• Definition of tight occurrence nets as a structural representation of the
logical (binary) dependencies between events of occurrence nets (Chap-
ter 6),

• Formalization of general logical dependencies between events as logical
formulas, and synthesis of an occurrence net from a logical formula that
describes its set of runs (Chapter 7),

• Clarification of the dependencies between events in punctual TPNs, with
the objective of defining a canonical unfolding (Chapter 8).
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General Conclusion and Perspectives

Our work opens the road towards a more advanced study of concurrency in dis-
tributed timed systems. We have seen that concurrency in timed systems in-
volves the structural causality but also the timing constraints that add complex
dependencies between the processes and between apparently unrelated events.
The dependencies between the components of distributed timed systems can
be made more explicit in the models thanks to the constructions we have pre-
sented. Furthermore, the dependencies between events can be exploited to im-
prove the analysis of these systems.

Even though some communications are explicitly represented in the two for-
malisms we studied, time Petri nets and networks of timed automata, some de-
pendencies are not directly apparent in these formalisms. This entails the need
to make them explicit in order to gain a better understanding of them, and to im-
plement the models correctly on multi-core architectures. A natural extension
of the work presented in Chapter 5 is to consider the symmetric case, where the
first automaton may also read some clocks that are reset by the second automa-
ton. As mentioned earlier, we think that this extension is feasible by redefining
contextual timed transition systems in this case. Other long-term extensions of
this work are the consideration of networks of more than two timed automata,
and the limitation of the precision of the information transmitted during the
synchronizations.

We think that time Petri nets and networks of timed automata are most ap-
propriate formalisms for the modeling of distributed timed systems, and their
distributed semantics should be considered for several reasons. These models
represent distributed systems and therefore they should be studied as such. For
example, it is possible that, for some property, it is relevant to consider only
some of the components, and not the whole system. Also, the classical behav-
ioral comparisons, based on the sequential semantics, like timed bisimulations
are not sufficient to formalize some problems, like the preservation of the dis-
tributed behavior from one model to another model, or the preservation of the
local behavior of an automaton in the context of another automaton. Lastly,
looking at the local behavior of the components independently could also be
used for defining modular and efficient analysis of distributed timed systems.

The logical framework we defined in Chapter 7, with the introduction of the
ERL logic, is intended to be used as a tool for manipulating structure of occur-
rence nets and knowledge. This can have applications in the diagnosis of dis-
crete event systems where some events cannot be observed, but their occur-
rence can be inferred from the observation of the occurrence of other events.
This is also a starting point towards efficient verification of system properties, as
well as towards enforcing such properties through behavior control, or directly
through synthesis of systems from logical specifications.

Lastly, the work about enabling pasts in the unfoldings of punctual time Petri
nets, presented in Chapter 8, is a preliminary work that is intended to be used
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in the definition of a canonical unfolding of punctual time Petri nets, and in the
longer term of general time Petri nets.
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[DL07] Cătălin Dima and Ruggero Lanotte. Distributed time-
asynchronous automata. In ICTAC, pages 185–200. Springer-Verlag,
2007.

[DLLN09] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen.
Timed testing under partial observability. In ICST, pages 61–70.
IEEE Computer Society, 2009.

[DM06] Alastair F. Donaldson and Alice Miller. A computational group the-
oretic symmetry reduction package for the spin model checker. In
Michael Johnson and Varmo Vene, editors, Algebraic Methodology

and Software Technology, volume 4019 of LNCS, pages 374–380.
Springer, 2006.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces.
World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1995.

[DR96] Jörg Desel and Wolfgang Reisig. The synthesis problem of Petri
nets. Acta Informatica, 33:297–315, 1996.

[DY00] Alexandre David and Wang Yi. Modelling and analysis of a com-
mercial field bus protocol. In Proceedings of the 12th Euromicro

Conference on Real Time Systems, pages 165–172. IEEE Computer
Society, 2000.

[EH08] Javier Esparza and Keijo Heljanko. Unfoldings: a partial-order ap-

proach to model checking. Springer-Verlag New York Inc, 2008.

[EHP+02] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, and R. Heckel. High-
level net processes. In Formal and Natural Computing, volume
2300 of LNCS, pages 191–219. Springer, 2002.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri
nets - a survey. Elektronische Informationsverarbeitung und Kyber-

netik, 30(3):143–160, 1994.

[Eng91] Joost Engelfriet. Branching processes of Petri nets. Acta Informat-

ica, 28(6):575–591, 1991.

[ER89] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-
structures. parts I and II. Acta Informatica, 27(4):315–368, 1989.

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in System De-

sign, 20(3):285–310, 2002.



182 Bibliography

[ES92] Javier Esparza and Manuel Silva. A polynomial-time algorithm to
decide liveness of bounded free choice nets. Theor. Comput. Sci.,
102(1):185–205, August 1992.

[Esp96] Javier Esparza. Decidability and complexity of Petri net problems
- an introduction. In Wolfgang Reisig and Grzegorz Rozenberg, ed-
itors, Petri Nets, volume 1491 of LNCS, pages 374–428. Springer,
1996.

[FBHJ05] Éric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Dis-
tributed monitoring of concurrent and asynchronous systems*.
Discrete Event Dynamic Systems, 15(1):33–84, 2005.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In
Eugene Asarin and Patricia Bouyer, editors, Proceedings of the

4th International Conference on Formal Modelling and Analysis of

Timed Systems, volume 4202 of LNCS, pages 187–199, France, 2006.
Springer.

[For04] U.S.-Canada Power System Outage Task Force. Final report on the
august 14, 2003 blackout in the united states and canada: Causes
and recommendations. Technical report, April 2004.

[FS02] Hans Fleischhack and Christian Stehno. Computing a finite prefix
of a time Petri net. In Javier Esparza and Charles Lakos, editors,
Applications and Theory of Petri Nets, volume 2360 of LNCS, pages
163–181. Springer, 2002.

[GHJ97] Vineet Gupta, Thomas Henzinger, and Radha Jagadeesan. Robust
timed automata. In Oded Maler, editor, Hybrid and Real-Time Sys-

tems, volume 1201 of LNCS, pages 331–345. Springer Berlin / Hei-
delberg, 1997. 10.1007/BFb0014736.

[GK10] Paul Gastin and Dietrich Kuske. Uniform satisfiability problem for
local temporal logics over Mazurkiewicz traces. Information and

Computation, 208(7):797–816, 2010.

[GLMR05] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H.
Roux. Romeo: A tool for analyzing time Petri nets. In Kousha
Etessami and Sriram K. Rajamani, editors, International Conference

on Computer Aided Verification (CAV), volume 3576 of LNCS, pages
418–423. Springer, 2005.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of

Concurrent Systems - An Approach to the State-Explosion Problem,
volume 1032 of LNCS. Springer, 1996.



Bibliography 183

[GRR06] Guillaume Gardey, Olivier H. Roux, and Olivier F. Roux. State space
computation and analysis of time Petri nets. Theory and Practice of

Logic Programming, 6(3):301–320, 2006.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the ef-
ficient verification of deadlock freedom and safety properties. For-

mal Methods in System Design, 2(2):149–164, 1993.

[Haa10] Stefan Haar. Types of asynchronous diagnosability and the reveals-
relation in occurrence nets. IEEE Transactions on Automatic Con-

trol, 55(10):2310–2320, 2010.

[Hac72] M. Hack. Analysis of production schemata by Petri nets. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, USA,
1972.

[HBL+03] Martijn Hendriks, Gerd Behrmann, Kim Guldstrand Larsen, Peter
Niebert, and Frits W. Vaandrager. Adding symmetry reduction to
uppaal. In Kim Guldstrand Larsen and Peter Niebert, editors, FOR-

MATS, volume 2791 of LNCS, pages 46–59. Springer, 2003.

[HFMV95] Joseph Y. Halpern, Ronald Fagin, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[HKWT95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi.
The expressive power of clocks. In International Colloquium on

Automata, Languages and Programming (ICALP), pages 417–428,
1995.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Informa-

tion and Computation, 111(2):193–244, 1994.

[HSSW68] A.W. Holt, H. Saint, R. Shapiro, and S. Warshall. Final Report of the

Information Systems Theory Project. Technical Report RADC–TR–
68–305, Rome Air Development Center, Griffiss Air Force Base, New
York, 1968.

[JGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model

Checking. The MIT Press, 1999.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured
petri nets and cpn tools for modelling and validation of concur-
rent systems. International Journal on Software Tools for Technol-

ogy Transfer (STTT), 9(3-4):213–254, 2007.

[JLL77] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Com-
plexity of some problems in petri nets. Theoretical Computer Sci-

ence, 4(3):277 – 299, 1977.



184 Bibliography

[Kho03] Victor Khomenko. Model Checking Based on Prefixes of Petri Net

Unfoldings. PhD thesis, School of Computing Science, University
of Newcastle upon Tyne, 2003.

[KK03] Victor Khomenko and Maciej Koutny. Branching processes of high-
level petri nets. In Hubert Garavel and John Hatcliff, editors, TACAS,
volume 2619 of LNCS, pages 458–472. Springer, 2003.

[KKY04] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting
state encoding conflicts in STG unfoldings using SAT. Fundam. Inf.,
62(2):221–241, 2004.

[KKY06] Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Logic
synthesis for asynchronous circuits based on STG unfoldings and
incremental SAT. Fundam. Inform., 70(1-2):49–73, 2006.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel program
schemata. Journal of Computer and System Sciences, 3(2):147 – 195,
1969.

[KMY08] Victor Khomenko, Agnes Madalinski, and Alexandre Yakovlev. Res-
olution of encoding conflicts by signal insertion and concurrency
reduction based on STG unfoldings. Fundam. Inform., 86(3):299–
323, 2008.

[Kos82] S. Rao Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proceedings of the fourteenth annual ACM symposium on

Theory of computing, STOC ’82, pages 267–281, New York, NY, USA,
1982. ACM.

[KPSP10] Michal Knapik, Wojciech Penczek, Maciej Szreter, and Agata Pól-
rola. Bounded parametric verification for distributed time petri
nets with discrete-time semantics. Fundam. Inform., 101(1-2):9–
27, 2010.

[Lau75] K. Lautenbach. Liveness in Petri nets. Technical report,
Gesellschaft für Mathematik und Datenverarbeitung, Bonn, Ger-
many, July 1975.

[Lip76] R. J. Lipton. The reachability problem requires exponential space.
62, New Haven, Connecticut: Yale University, Department of Com-
puter Science, Research, 1976.

[LL98] François Laroussinie and Kim Guldstrand Larsen. Cmc: A tool for
compositional model-checking of real-time systems. In Stanislaw
Budkowski, Ana R. Cavalli, and Elie Najm, editors, FORTE, volume
135 of IFIP Conference Proceedings, pages 439–456. Kluwer, 1998.



Bibliography 185

[LMSP00] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Adriano Peron.
Timed cooperating automata. Fundamenta Informaticae, 43(1-
4):153–173, 2000.

[LMST03] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Simone Tini.
Concurrency in timed automata. Theor. Comput. Sci., 309(1-3):503–
527, 2003.

[LNZ05] Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order
semantics approach to the clock explosion problem of timed au-
tomata. Theoretical Computer Science, 345(1):27–59, 2005.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: a comprehensive study on real world concurrency
bug characteristics. SIGPLAN Not., 43(3):329–339, March 2008.

[LPW07] Alessio Lomuscio, Wojciech Penczek, and Bozena Wozna. Bounded
model checking for knowledge and real time. Artif. Intell., 171(16-
17):1011–1038, 2007.

[LR06] Didier Lime and Olivier H. Roux. Model checking of time Petri nets
using the state class timed automaton. Journal of Discrete Event

Dynamic Systems (jDEDS), 16(2):179–205, April 2006.

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for petri nets with
stopwatches. In Stefan Kowalewski and Anna Philippou, editors,
TACAS, volume 5505 of LNCS, pages 54–57. Springer, 2009.

[LS00] François Laroussinie and Philippe Schnoebelen. The state-
explosion problem from trace to bisimulation equivalence. In Jerzy
Tiuryn, editor, Proceedings of the 3rd International Conference on

Foundations of Software Science and Computation Structures (FoS-

SaCS 2000), volume 1784 of LNCS, pages 192–207, Berlin, Germany,
March 2000. Springer.

[LT93] Nancy G. Leveson and Clark S. Turner. An investigation of the
therac-25 accidents. 26(7):18–41, 1993.

[LW08] Slawomir Lasota and Igor Walukiewicz. Alternating timed au-
tomata. ACM Trans. Comput. Logic, 9(2):10:1–10:27, April 2008.

[May81] Ernst Mayr. Persistence of vector replacement systems is decidable.
Acta Informatica, 15:309–318, 1981.

[McM92] Kenneth L. McMillan. Using unfoldings to avoid the state explo-
sion problem in the verification of asynchronous circuits. In CAV,
volume 663 of LNCS, pages 164–177. Springer, 1992.



186 Bibliography

[Mer74] Philip Meir Merlin. A study of the recoverability of computing sys-

tems. PhD thesis, University of California, Irvine, 1974.

[Min99] Marius Minea. Partial order reduction for model checking of timed
automata. In CONCUR, volume 1664 of LNCS, pages 431–446.
Springer, 1999.

[MY96] Oded Maler and Sergio Yovine. Hardware timing verification using
KRONOS. In In Proc. 7th Israeli Conference on Computer Systems and

Software Engineering, pages 12–13. IEEE Press, 1996.

[NHZL01] Peter Niebert, Michaela Huhn, Sarah Zennou, and Denis Lugiez.
Local first search - a new paradigm for partial order reductions.
In Kim Guldstrand Larsen and Mogens Nielsen, editors, CONCUR,
volume 2154 of LNCS, pages 396–410. Springer, 2001.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets,
event structures and domains, part I. Theoretical Computer Science,
13:85–108, 1981.

[NQ06] Peter Niebert and Hongyang Qu. Adding invariants to event zone
automata. In International Conference on Formal Modelling and

Analysis of Timed Systems (FORMATS), volume 4202 of LNCS, pages
290–305. Springer, 2006.

[OW04] Joël Ouaknine and James Worrell. On the language inclusion prob-
lem for timed automata: Closing a decidability gap. In LICS, pages
54–63. IEEE Computer Society, 2004.

[Pag96] Florence Pagani. Partial orders and verification of real-time sys-
tems. In Bengt Jonsson and Joachim Parrow, editors, Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, volume 1135 of
LNCS, pages 327–346. Springer, 1996.

[PBV11] Florent Peres, Bernard Berthomieu, and François Vernadat. On the
composition of time petri nets. Discrete Event Dynamic Systems,
21(3):395–424, 2011.

[Pel96] Doron Peled. Combining partial order reductions with on-the-fly
model-checking. Formal Methods in System Design, 8(1):39–64,
1996.

[Pel08] Radek Pelánek. Fighting state space explosion: Review and eval-
uation. In Darren D. Cofer and Alessandro Fantechi, editors, For-

mal Methods for Industrial Critical Systems, volume 5596 of LNCS,
pages 37–52. Springer, 2008.



Bibliography 187

[Pen95] Wojciech Penczek. Branching time and partial order in temporal
logics. In Time and Logic: A Computational Approach, pages 179–
228. UCL Press, 1995.

[Pet66] Carl Adam Petri. Communication with automata. PhD thesis, Uni-
versität Hamburg, 1966. Originally published in German: Kommu-
nikation mit Automaten, 1962.

[Rac78] Charles Rackoff. The covering and boundedness problems for vec-
tor addition systems. Theoretical Computer Science, 6(2):223 – 231,
1978.

[Ram74] Chander Ramchandani. Analysis of Asynchronous Concurrent Sys-

tems by Timed Petri Nets. PhD thesis, MIT, Dept. Electrical Engi-
neering, Cambridge, 1974.

[Rec11] ITU-T Recommendation. Z.120: Message sequence chart. Techni-
cal report, ITU-T, Geneva, 2011.

[Rei84] John Reif. The complexity of two-player games of incomplete in-
formation. Jour. Computer and Systems Sciences, 29:274–301, 1984.

[RS09] Pierre-Alain Reynier and Arnaud Sangnier. Weak time Petri nets
strike back! In Proceedings of the 20th International Conference

on Concurrency Theory (CONCUR’09), volume 5710 of LNCS, pages
557–571. Springer, 2009.

[RS12] César Rodríguez and Stefan Schwoon. Verification of petri nets with
read arcs. In Maciej Koutny and Irek Ulidowski, editors, CONCUR,
volume 7454 of LNCS, pages 471–485. Springer, 2012.

[RSB11] César Rodríguez, Stefan Schwoon, and Paolo Baldan. Efficient con-
textual unfolding. In Joost-Pieter Katoen and Barbara König, ed-
itors, CONCUR, volume 6901 of LNCS, pages 342–357. Springer,
2011.
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Résumé substantiel en français

1 Introduction

Contexte. Dans les dernières décennies, le nombre et la complexité des sys-
tèmes informatiques ont considérablement augmenté. Certains de ces systèmes
contrôlent des processus critiques dont la défaillance peut causer d’importants
coûts humains et/ou financiers. C’est pourquoi il est crucial de prescrire tout
comportement inattendu. Pour cela des méthodes formelles qui permettent de
modéliser et de vérifier ces systèmes sont développées. Ce sont des méthodes
algorithmiques qui permettent de vérifier que le (modèle du) système ne peut
pas se trouver dans un état jugé mauvais.

Nous nous intéressons ici aux systèmes temps-réel distribués c’est à dire des
systèmes qui ont deux caractéristiques importantes :

– L’aspect temps-réel suppose que le système a des contraintes de temps
fortes, dans le sens où non seulement les sorties qu’il produit sont impor-
tantes, mais aussi les dates auxquelles ces sorties sont produites.

– L’aspect distribué suppose que le système est constitué de plusieurs com-
posants qui communiquent entre eux et qui sont en partie indépendants.

La combinaison de ces deux aspects est source de problèmes qui n’apparaissent
pas lorsque seulement un des deux aspects est considéré. Les systèmes temps-
réel ont beaucoup été étudiés, surtout depuis les années 90, avec l’introduction
du formalisme des automates temporisés ; tout comme les systèmes distribués
non temporisés qui bénéficient d’une théorie très complète avec entre autres les
algèbres de processus, la théorie des traces, et les réseaux de Petri. Cependant,
l’aspect distribué et l’aspect temporisé sont encore rarement étudiés conjoin-
tement, malgré l’existence de formalismes spécialement appropriés comme les
réseaux de Petri temporels (depuis 1974) et les réseaux d’automates temporisés
(depuis 1994). En particulier, ces deux formalismes n’ont pas été comparés en
terme de comportement distribué.

Notre objectif est de comprendre les interactions entre le temps et la distri-
bution. Nous considérons surtout la modélisation des systèmes temps-réels dis-
tribués, mais nous fournissons des outils qui permettront une vérification plus
efficace.

Contributions. Dans la première partie, nous nous intéressons à la formali-
sation du comportement distribué des modèles de systèmes temps-réel distri-
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bués. Cela nous permet de comparer par exemple deux modèles qui utilisent des
formalismes différents. Nous définissons une traduction d’un réseau de Petri
vers un réseau d’automates temporisés qui préserve le comportement distribué.
Nous étudions aussi différentes extensions du formalisme des réseaux d’auto-
mates temporisés, et montrons que certaines sont plus expressives lorsque le
comportement distribué est considéré, alors qu’elles ne le sont pas lorsque l’on
considère le comportement séquentiel. Enfin, nous considérons le problème lié
aux horloges partagées dans l’implémentation des réseaux d’automates tempo-
risés.

Dans la deuxième partie, nous étudions les dépendances entre événements
dans les dépliages de réseaux de Petri. Nous considérons d’abord le cadre non
temporisé, puis un cadre temporisé simplifié, qui nous permet déjà de montrer
que l’introduction du temps rend les dépendances beaucoup plus complexes.

2 Formalismes de modélisation

2.1 Systèmes distribués

Produit synchrone de systèmes de transitions. Un système de transitions (éti-
queté) est un tuple S, s0,Σ,→, où S est l’ensemble d’états, s0 est l’état initial, Σ
est l’alphabet (ou ensemble d’étiquettes), et →⊆ (S ×Σ×S) est une relation de
transition. Quand (s, a, s′) ∈→, nous écrivons s

a
−→ s′.

Le produit synchrone des deux systèmes de transitions T1 = (S1, s0
1,Σ1,→1)

et T2 = (S2, s0
2,Σ2,→2), que l’on note T1 ⊗ T2, est le système de transitions

(

S1 ×S2, (s0
1, s0

2),Σ1 ∪Σ2,→
)

, où → est défini comme :

– (s1, s2)
a
−→ (s′1, s2) ssi s1

a
−→1 s′1, pour tout a ∈Σ1 \Σ2,

– (s1, s2)
a
−→ (s1, s′2) ssi s2

a
−→2 s′2, pour tout a ∈Σ2 \Σ1,

– (s1, s2)
a
−→ (s′1, s′2) ssi s1

a
−→1 s′1 et s2

a
−→2 s′2, pour tout a ∈Σ1 ∩Σ2.

Ainsi un système de transitions représente l’ensemble des actions que peut
exécuter un système, et les changements d’état que les actions peuvent pro-
duire. Le produit de deux systèmes de transitions représente le comportement
de deux systèmes mis en parallèle, comme un seul système séquentiel. Puisque
l’opération de produit est associative, il est possible de définir le produit de n

systèmes de transitions, avec la définition donnée pour deux systèmes de tran-
sitions.

Réseaux de Petri. Les réseaux de Petri nets sont utilisés pour modéliser les sys-
tèmes concurrents. Ils ont été utilisés dans de nombreux domaines, comme les
réseaux de communication, la gestion des systèmes de production industriels
ou la conception de matériel informatique.
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Un réseau de Petri est un tuple (P,T,F, M0), où P et T sont deux ensembles
disjoints appelés ensemble de places et ensembles de transitions respective-
ment, F ⊆ (P ×T )∪ (T ×P ) est l’ensemble des arcs qui connectent les places
et les transitions, et M0 : P →N est le marquage initial.

Un marquage M : P →N représente un état du réseau de Petri, et est graphi-
quement représenté par M(p) jetons dans chaque place p. Une transition peut
être exécutée si ses places d’entrée sont marquées (i.e. contiennent un jeton), ce
faisant, elle consomme un jeton dans chacune de ces places d’entrée et crée un
jeton dans chacune de ses places de sortie. La figure ci-dessous représente un
exemple classique de producteur/consommateur, avec un tampon de capacité
bornée à 3.

t1 p

capacité bornée

c

b

t2

producteur tampon consommateur

Les réseaux de Petri bénéficient également de propriétés algébriques, qui
permettent, entre autre, d’identifier les différents composants du réseau grâce à
de calculs matriciels. Dans notre exemple, un tel calcul montrerait que le réseau
a trois composants, comme représenté par les lignes en pointillés.

2.2 Systèmes temporisés séquentiels

Systèmes de transitions temporisés. Les systèmes de transitions temporisés
(TTS) sont une notion fondamentale pour la description et la comparaison des
comportements des systèmes temporisés séquentiels. Quel que soit le forma-
lisme de modélisation utilisé, le comportement du (modèle du) système peut
être décrit avec un TTS.

Un système de transitions temporisé (étiqueté) est un tuple S, s0,Σ,→, où S

est l’ensemble d’états, s0 est l’état initial, Σ est l’alphabet (ou ensemble d’éti-
quettes), et →⊆ (S × (Σ∪R≥0)× S) est une relation de transition. Il représente
donc les changements d’états induits par l’exécution d’une action ou le passage
du temps.

La notion de bisimulation permet de comparer deux TTS.

Automates temporisés. Les automates temporisés (TA) ont été introduits dans
les années 90. Ils sont depuis beaucoup étudiés et implantés dans des outils
qui permettent leur utilisation en pratique. Ce sont des automates finis étendus
avec la notion d’horloges. Ces horloges peuvent être remises à zéro lorsqu’une
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action est exécutée, et leur valeur peut être testée pour savoir si une action est
exécutable.

L’ensemble B(X ) des contraintes d’horloge sur l’ensemble d’horloges X est
définit par la grammaire suivante.

g ::= x ⊲⊳ k | g ∧ g | tt, où x ∈ X ,k ∈N and ⊲⊳∈ {<,≤,=,≥,>}

Un invariant est une contrainte d’horloge qui obéit à la grammaire suivante.

i ::= x ≤ k | x < k | i ∧ i | tt, où x ∈ X ,k ∈N

Formellement, un TA est un tuple (L,ℓ0, X ,Σ,E , Inv), où L est l’ensemble fini
des localités, ℓ0 est la localité initiale, X est l’ensemble d’horloges, Σ est l’al-
phabet ou ensemble d’actions, E ⊆ L ×B(X )×Σ×2X ×L est l’ensemble d’arcs
étiquetés par une garde, une action et un ensemble d’horloges à remettre à 0, et
Inv : L → B(X ) associe un invariant à chaque localité. L’invariant doit être vrai
tant que la localité est active.

Par exemple, la figure ci-dessous montre un TA qui modélise une lampe. x

est une horloge, les cercles représentent les localités de l’automate et press est
une action. Ici, après une pression sur le bouton, la lampe s’allume, et elle de-
vient plus lumineuse si le bouton est pressé une deuxième fois avant 4 unités de
temps. Sinon elle s’éteint à la prochaine pression.

off light bright
press, {x} x ≤ 4, press

x > 4, press

press

L’état courant d’un automate est représenté par (ℓ, v) où ℓ est la localité cou-
rante et v : X → R≥0 est la valuation courante, c’est-a-dire une fonction qui as-
socie à chaque horloge sa valeur courante.

Le comportement de l’automate peut être décrit grâce à un système de tran-
sitions temporisé.

2.3 Systèmes temporisés distribués

Produit synchrone de systèmes de transitions temporisés. Comme pour les
systèmes de transitions non temporisés, il est possible de faire le produit de plu-
sieurs systèmes de transitions temporisés pour obtenir un nouveau système de
transitions temporisé qui représente le comportement séquentiel des différents
systèmes mis en parallèle.

Le produit regroupe les arcs avec les mêmes actions en un seul arc appelé
synchronisation.
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Réseaux d’automates temporisés. Un réseau d’automate temporisés (NTA)
est un ensemble de TA mis en parallèle, (A1 ∥ · · · ∥ An), où chaque Ai =

(Li ,ℓi
0, Xi ,Σi ,Ei , Invi ) est un automate.

La sémantique d’un NTA peut être définie comme un nouvel automate, ap-
pelé automate produit et noté A1⊗·· ·⊗An . Pour le construire, on utilise la même
idée que précédemment, c’est-à-dire que les actions communes sont exécutées
simultanément par tous les automates où l’action apparaît. La figure ci-dessous
montre un réseau d’automates temporisés et l’automate produit.

ℓ0

ℓ1x ≤ 4

ℓ2 y ≤ 3

ℓ3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 3
dc

{y}

(a) Réseau d’automates temporisés

ℓ0,ℓ2y ≤ 3

ℓ1,ℓ2

x ≤ 4∧ y ≤ 3

ℓ0,ℓ3

ℓ1,ℓ3x ≤ 4

x
≥

3,a
, {x

} y
=

3,d

y
=

3,d

b, {x}

x
≥

3,a
, {x

}

x = 4
c
{y}

b, {x}

(b) Automate produit

La sémantique du NTA peut aussi être décrite directement par un TTS.

Réseaux de Petri temporels. Les réseaux de Petri ont été étendus avec la no-
tion de temps de plusieurs façons. L’extension que nous considérons s’appelle
réseau de Petri temporel, et date de 1974.

Un réseau de Petri temporel (TPN) est un réseau de Petri dans lequel chaque
transition est associé à un intervalle de temps qui définit les délais minimum et
maximum de tir après sa sensibilisation. Sa sémantique peut être décrite par
un système de transitions temporisé et aussi par un automate temporisé appelé
automate des marquages.

2.4 Systèmes temporisés distribués vs systèmes temporisés
séquentiels

Comme nous l’avons vu, la sémantique des formalismes pour la modélisation
des systèmes temporisés distribués est en général décrite par des notions sé-
quentielles, ce que nous ne trouvons pas satisfaisant. C’est pourquoi nous in-
troduisons de nouvelles notions pour décrire la sémantique distribuée de ces
formalismes.

Nous définissons d’abord les traces temporisées comme des « mots distri-
bués ». Étant donné un système temporisé distribué sur un alphabet Σ, et son
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ensemble de processusΠ= {π1, . . . ,πn}, chaque action a ∈Σ est associée à un en-
semble de processus proc(a) ⊆Π, qui exécutent toujours cette action ensemble
et simultanément. Donc chaque action est soit locale, si elle n’appartient qu’a
un seul processus, soit partagée par plusieurs processus.

Les événements (occurrences des actions) sont partiellement ordonnés,
puisque deux actions qui ont des ensemble de processus disjoints peuvent être
exécutées sans ordre. On note Ei les événements qui ont lieu sur le processus πi .

Formellement, une trace temporisée sur l’alphabet Σ et l’ensemble de pro-
cessus Π= {π1, . . . ,πn} est un tuple W = (E ,4,λ,δ,proc) où

– E est un ensemble dénombrable d’événements,

– 4⊆ (E ×E) est un ordre partiel sur E tel que pour tout événement e, l’en-
semble e ′ ∈ E | e ′ 4 e est fini, et pour tout i ∈ [1..n], 4 ∩(Ei × Ei ) est un
ordre total sur Ei .

– λ : E →σ est une fonction d’étiquetage,

– δ : E → R≥0 assigne une date à chaque événement de façon à ce que, si
e1 4 e2, alors δ(e1) ≤ δ(e2),

– proc : Σ→ 2Π est la distribution des actions qui associe chaque action à un
sous-ensemble de Π.

Bisimulation Temporisée Distribuée. Nous définissons aussi la notion de bi-
simulation temporisée distribuée pour comparer deux systèmes temporisés dis-
tribués, avec un même alphabet et un même nombre de processus.

Bisimulation Contextuelle. La bisimulation contextuelle permet de comparer
le comportement de deux automates dans le contexte d’un autre même auto-
mate.

3 Traduction de réseau de Petri vers réseau d’automates
temporisés avec préservation de la concurrence

Procédure. La première étape consiste à décomposer le réseau de Petri en
composants. Cela se fait grâce à une méthode algébrique qui représente la struc-
ture du réseau de Petri comme une matrice. Chaque composant donne directe-
ment la structure d’un automate. Il reste donc à ajouter les informations tem-
porelles. Pour cela, nous rajoutons une horloge par automate. Cette horloge est
remise à zéro sur chaque arc. Les gardes proviennent directement des délais mi-
nimum de tir. L’étape la plus difficile est la traduction des délais maximum de
tir en invariants. Dans l’exemple ci-dessous, nous voyons que l’on peut attendre
dans ℓ1 tant que x1 est inférieur à 2 (x1 est la date de sensibilisation de d) et, si ℓ3
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est aussi active, tant que le minimum de x1 et x2 (date de date de sensibilisation
de b) est inférieur à 0.

p0

a[0,∞)

p1

d[2,2]

p4

b[0,0]

p2

c[1,2]

p3

(a) Un réseau de Petri temporel et ses
deux composants

ℓ0x1 ≤∞

ℓ1x1 ≤ 2
∧ Inv(ℓ1,b)

ℓ4

ℓ2x2 ≤ 2

ℓ3Inv(ℓ3,b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d

{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(ℓ1,b) ≡¬ℓ3 ∨x1 ≤ 0∨x2 ≤ 0
Inv(ℓ3,b) ≡¬ℓ1 ∨x1 ≤ 0∨x2 ≤ 0

(b) Le réseau d’automates temporisés associé

Connais ton voisin ! La traduction des délais maximums de tirs en invariants
nécessite de lire la localité courante de l’automate voisin et son horloge dans les
invariants. Nous montrons qu’en général il n’est pas possible de se passer de ces
lectures, ce que nous interprétons comme la mise en évidence de dépendances
non explicites dans le réseau de Petri temporel initial.

Cette observation nous a aussi conduits à nous intéresser de plus près au
problème des horloges partagées dans les réseaux d’automates temporisés.

4 Éviter les horloges partagées dans les réseaux
d’automates temporisés

Les horloges partagées sont problématiques lorsque l’on envisage d’implanter
un modèle sur une architecture distribuée car elles nécessitent des communi-
cations qui ne sont pas explicitement décrites dans le modèle.

Dans cette partie, nous considérons des réseaux de deux automates tem-
porisés A1 ∥ A2, tels que A1 ne lit pas les horloges remises à zéro par A2, et A2

peut lire des horloges remises à zéro par A1 mais pas les remettre à zéro, comme
sur l’exemple de la figure ci-dessous. Nous nous demandons si il existe un au-
tomate A′

2 qui ne lit pas les horloges de A1, et qui a le même comportement
que A2. Nous autorisons A′

2 à recopier la valeur des horloges de A1 lorsqu’il se
synchronise avec celui-ci.

Après avoir formalisé cette équivalence de comportement grâce à la notion
de bisimulation contextuelle, nous donnons un critère qui permet de décider
si un tel A′

2 existe, et nous montrons comment le construire. Nous décrivons
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x ≤ 3

x ≤ 3

A1

ℓs

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e
{y}

d’abord un cas simple, où il n’y a pas de synchronisation urgente dans A1, puis
nous passons au cas général.

L’idée générale de la construction, est de remplacer A2 par un produit de
deux automates A1,2 qui est une copie locale de A1, et A2,mod , qui a la même
structure que A2 mais lit les horloges de A1,2 au lieu de lire celles de A1. À chaque
synchronisation, A1,2 est remis dans le même état que A1 (grâce aux copies
d’horloges que nous autorisons). La figure ci-dessous donne A1,2 et A2,mod pour
l’exemple de la figure précédente (cas simple où il n’y a pas de synchronisation
urgente dans A1).

x′ ≤ 3

x′ ≤ 3

A1,2

ℓs

x′ ≤ 4

A2,mod

x′ ≥ 1
εa

x′ = 3
εc

x′ < 1
εb

{x′}

y ≥ 2
s

x′ ≥ 1
e

{y}

s
x′ := x

s

x′ := x

s, x′ := x

5 Dépendances logiques entre événements

Nous nous intéressons ensuite aux dépendances entre événements dans les ré-
seaux d’occurrence, qui sont la structure obtenue lorsque l’on déplie un réseau
de Petri.

Certaines relations proviennent directement de la structure du réseau d’oc-
currence :

Causalité Deux événements sont causalement reliés lorsqu’il existe un chemin
de l’un à l’autre. Formellement, e est une cause de f ssi e →∗ f , où → est
la relation qui décrit les arcs du réseau. Dans ce cas, on écrit e ≤ f . Toute
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exécution qui contient un événement e contient aussi toutes les causes de
e, que l’on appelle le passé causal de e.

Conflit Deux événements sont en conflit si ils partagent une même condition
en entrée. Puisque la condition ne peut être consommée que par un seul
des deux événements, ces deux événements n’auront jamais tous les deux
lieu dans une même exécution. Lorsque deux événements e et f sont en
conflit, on écrit e # f .

Concurrence Enfin, deux événements sont concurrents si ils ne sont ni causa-
lement reliés, ni en conflit. Lorsque deux événements e et f sont concur-
rent, on écrit e co f .

Par exemple, dans la figure (a) ci-dessous, b ≤ k, b # a, and a co c.

⊥

1 2

a

3

d

7

b

4 5

e

8

f

9

c

6

g

10

h k

11 12

(a) Un réseaux d’occurrence

ψ⊥

1 2

acd g

7

be f

8 9 10

h k

11 12

(b) Le réseau d’occurrence
réduit associé

Nous remarquons que la relation de concurrence ainsi définie n’est pas une
relation d’indépendance, car deux événements concurrents peuvent s’influen-
cer par conflits interposés. Par exemple, dans la figure ci-dessus, si c a lieu, b

ne peut pas avoir lieu (car il est en conflit avec c) et donc a a aussi lieu, car au-
cun conflit avec a ne peut avoir lieu. En effet, on suppose que les exécutions
sont maximales, c’est-à-dire qu’elles progressent tant que des événements sont
sensibilisés (toutes leurs conditions d’entrée sont disponibles). Cette observa-
tion a conduit à la définition d’une relation de révélation, comme suit : e révèle
f , noté e ⊲ f , si toute exécution qui contient e contient aussi f . Les réseaux
d’occurrence réduits sont la structure obtenue lorsque l’on regroupe les événe-
ments qui se révèlent mutuellement. Un exemple de réseau d’occurrence réduit
est donné dans la figure (b) ci-dessus.

Enfin, nous définissons les réseaux d’occurrence « tendus », comme les ré-
seaux d’occurrence pour lesquels la relation de causalité et la relation de révéla-
tion inversée sont confondues. Dans ces réseaux, toutes les relations logiques
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sont donc explicitement représentées par des arcs de causalité. Une consé-
quence directe est que maintenant, la concurrence est une relation d’indépen-
dance logique. Un réseau d’occurrence tendu est forcément un réseau d’occur-
rence réduit.

6 Synthèse de réseaux d’occurrence « tendus »

Nous définissons une logique propositionnelle qui permet de décrire les dépen-
dances logiques entre événements. Cela nous conduit à définir la relation de
révélation étendue.

Une formule de cette logique peut être utilisée pour décrire l’ensemble des
exécutions (générales ou maximales) d’un réseau d’occurrence fini. Réciproque-
ment, nous montrons comment synthétiser, depuis une formule logique, un ré-
seau d’occurrence dont l’ensemble d’exécutions est décrit par cette formule lo-
gique (quand un tel réseau existe).

7 Dépendances logiques entre événements dans les
systèmes temporisés

Enfin, nous nous intéressons aux dépendances entre événements dans un cadre
temporisé simplifié. Même dans ce cadre-là, où nous considérons des inter-
valles de tirs ponctuels, le temps crée des dépendances complexes entre les évé-
nements. Par exemple, il se peut que deux événements e et f , apparemment
indépendants, soient incompatibles car f sensibilise un événement e ′ en conflit
avec e, qui doit tirer strictement avant e. Dans cette situation, toute configura-
tion n’est pas valide dans le sens ou certaines configurations ne sont pas incluses
dans des processus (exécutions).

C’est pourquoi nous définissons la notion de passé « habilitant » d’un évé-
nement e. Cette configuration contient le passé de e et des événements qui as-
surent que e pourra tirer si il est sensibilisé. Nous expliquons que cette notion
nous permet de construire des configurations valides (appelées pré-processus),
et donnons des critères suffisants pour vérifier qu’une configuration contient
bien un passé habilitant d’un événement e donné. Enfin, nous montrons que
cette notion pourrait être utilisée pour définir un dépliage canonique pour la
sous-classe de réseaux de Petri temporels que nous considérons, et à long terme
un dépliage canonique pour les réseaux de Petri temporels généraux.

8 Conclusion

Notre travail ouvre la voie vers une étude plus avancée de la concurrence dans
les systèmes distribués temps-réel. Nous avons montré que la concurrence dans
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les systèmes temporisés fait intervenir à la fois la causalité structurelle du mo-
dèle et les contraintes de temps qui créent des dépendances entre des évé-
nements apparemment indépendants. Les dépendances entre les composants
peuvent être explicitées dans les modèles, grâces aux constructions que nous
avons présentées. De plus, les dépendances entre événements peuvent être ex-
ploitées pour améliorer l’analyse de ces systèmes.

Nous avons aussi vu que les équivalences de comportement habituellement
utilisées, basées sur la sémantique séquentielle, ne sont pas adaptées pour trai-
ter des problèmes qui considèrent la distribution du système. Nous nous inté-
ressons à la sémantique distribuée des modèles, ce qui nous conduit à consi-
dérer aussi la connaissance d’un composant, c’est-à-dire, ce que ce composant
voit du reste du système, et ce qu’il peut en déduire.
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