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4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Introduction 21

Notations 23

I Basics of fluorescence and tomographic phase microscopy 25

1 Basics of microscopy 26

1.1 Modelling of the imaging system . . . . . . . . . . . . . . . . . . . . .. . . . 27

1.1.1 General law of imaging system . . . . . . . . . . . . . . . . . . . . .. 27

1.1.2 Sine condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Quality criteria defining an optical microscope . . . . . . .. . . . . . . . . . . 29

1.2.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.2 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

1.4 ‘Super-resolution’ techniques based on image treatment . . . . . . . . . . . . . 32



CONTENTS 5

1.5 The structured illumination approach . . . . . . . . . . . . . . .. . . . . . . . 33

1.5.1 Scanning microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.2 Pattern projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Basics of fluorescence microscopy 36

2.1 Fluorescence contrast mechanisms . . . . . . . . . . . . . . . . . .. . . . . . 36

2.2 Image formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

2.3 Point-spread-function modelling . . . . . . . . . . . . . . . . . .. . . . . . . 38

2.3.1 Two-dimensional PSF . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Full three-dimensional PSF . . . . . . . . . . . . . . . . . . . . . .. 40

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Tomographic Diffraction Microscopy 42

3.1 Diffraction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 42

3.2 Evaluation of the field inside the sample . . . . . . . . . . . . . .. . . . . . . 45

3.2.1 Born approximation and linear reconstruction . . . . . .. . . . . . . . 45

3.2.2 Renormalised Born approximation . . . . . . . . . . . . . . . . .. . . 46

3.3 Experimental implementation of TDM . . . . . . . . . . . . . . . . .. . . . . 47

3.3.1 Measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . .47

3.3.2 Transmission vs reflection configuration . . . . . . . . . . .. . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II Mirror and axial resolution 51

4 Mirror-assisted Tomographic Diffraction Microscopy 52

4.1 Two-dimensional scalar configuration . . . . . . . . . . . . . . .. . . . . . . 53

4.1.1 Illumination with s polarisation . . . . . . . . . . . . . . . . .. . . . 53

4.1.1.1 Modelling of the diffracted field . . . . . . . . . . . . . . . .53

4.1.1.2 Reconstruction of the sample permittivity . . . . . . .. . . . 55

4.1.2 Illumination with both p and s polarisation . . . . . . . . .. . . . . . 56

4.2 Three-dimensional vectorial configuration . . . . . . . . . .. . . . . . . . . . 58

4.2.1 Modelling the diffracted field . . . . . . . . . . . . . . . . . . . .. . 58

4.2.2 Reconstruction of the sample polarisability . . . . . . .. . . . . . . . 59

4.2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . .60

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Isotropic Single-Objective microscopy 63



6 CONTENTS

5.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 ISO microscopy: Theory and Experiment . . . . . . . . . . . . . . .. . . . . 64

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Principles of ISO focusing and simulations . . . . . . . . .. . . . . . 65

5.2.2.1 Time-Reversal focusing theory . . . . . . . . . . . . . . . . 65

5.2.2.2 Simulation of the Point Spread Function (PSF) of theISO
microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2.3 Discussion on the phase pattern . . . . . . . . . . . . . . . . 69

5.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . .70

5.2.3.1 Description of the set-up . . . . . . . . . . . . . . . . . . . 70

5.2.3.2 Global PSF of the ISO microscope . . . . . . . . . . . . . . 71

5.2.3.3 Tuning an ISO microscope, cautions and preliminarystudies 73

5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Further works and experiments . . . . . . . . . . . . . . . . . . . . . .. . . . 79

5.3.1 Radial polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.3.2 Two-photon microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

III Transverse resolution and Structured Illumination 82

6 Structured illumination in fluorescence microscopy 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

6.2 Blind-SIM reconstruction method . . . . . . . . . . . . . . . . . . .. . . . . 84

6.2.1 Principle of blind-SIM . . . . . . . . . . . . . . . . . . . . . . . . . .84

6.2.2 Description of the algorithm . . . . . . . . . . . . . . . . . . . . .. . 85

6.2.2.1 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2.2 Boundary effects . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2.3 Initial estimates . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2.4 Computational effort . . . . . . . . . . . . . . . . . . . . . . 88

6.2.3 Deconvolution of the wide-field images obtained underuniform illu-
mination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.4 Regularisation and stopping criterion . . . . . . . . . . . .. . . . . . 88

6.3 Application of blind-SIM to speckle and periodic illuminations . . . . . . . . . 89

6.3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1.1 Blind-SIM applied to random speckle patterns . . . . .. . . 90

6.3.1.2 Blind-SIM applied to distorted periodic illumination patterns 91



CONTENTS 7

6.3.1.3 Performance of blind-SIM versus noise and comparison with
other techniques . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2.1 Classical periodic SIM . . . . . . . . . . . . . . . . . . . . 98

6.3.2.2 Speckle patterns . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Improving further the resolution using Grating assisted SIM . . . . . . . . . . 102

6.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Model of intensity pattern . . . . . . . . . . . . . . . . . . . . . . .. 104

6.4.3 Filtered blind-SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Tomographic Diffraction Microscopy for highly refractin g samples 109

7.1 Modelling the diffracting field . . . . . . . . . . . . . . . . . . . . .. . . . . 110

7.1.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.2 Description of the simulation method . . . . . . . . . . . . . .. . . . 112

7.2 Description of different reconstruction methods . . . . .. . . . . . . . . . . . 112

7.2.1 General principle of the Conjugate gradient algorithm . . . . . . . . . 113

7.2.2 Specificity of the reconstruction algorithms . . . . . . .. . . . . . . . 114

7.2.2.1 The linearised Conjugate Gradient Method (CGM) . . .. . . 114

7.2.2.2 Hybrid Gradient Method (HM) . . . . . . . . . . . . . . . . 115

7.2.2.3 Contrast Source Inversion (CS) . . . . . . . . . . . . . . . . 116

7.2.3 a priori information in the expression of the unknowns . . . . . . . . . 117

7.3 Application to micro-wave data . . . . . . . . . . . . . . . . . . . . .. . . . . 118

7.3.1 Two cubes along the z direction . . . . . . . . . . . . . . . . . . . .. 119

7.3.2 Two spheres in contact . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Application to optical data . . . . . . . . . . . . . . . . . . . . . . . .. . . . 124

7.4.1 Configuration and experimental set-up . . . . . . . . . . . . .. . . . . 124

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Conclusion 128

Appendices 131

A Demonstration of the results cited in Sec. 4.1.1.2 132

B Gradient calculation 136



8 CONTENTS

B.1 Definition of a functional gradient and basic examples . .. . . . . . . . . . . . 136

B.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.2 First example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.3 Second example, functional with an auxiliary function variable . . . . . 137

B.2 Gradients for Chap. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138

B.2.1 Gradients for the blind-SIM algorithm without positivity . . . . . . . . 138

B.2.2 Gradients for the blind-SIM algorithm with positivity . . . . . . . . . . 140

B.2.3 Gradients for the filtered blind-SIM . . . . . . . . . . . . . . .. . . . 141

B.3 Gradients for Chap. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 142

B.3.1 Gradients for the Hybrid Gradient Method . . . . . . . . . . .. . . . . 142

B.3.2 Gradients for the Contrast Source Method . . . . . . . . . . .. . . . . 144

Bibliography 147



Résuḿe du travail de thèse en langue
française

Ce chapitre résume les travaux présentés dans ce mémoire. La liste des sections et sous-sections
suit la liste des parties et chapitres du mémoire. Seuls lesrésultats principaux sont présentés.
Le lecteur intéressé est invité à se référer au texte en anglais pour trouver développements et
démonstrations.

1 Contexte et cadre d’́etude

La microscopie optique est une technique essentielle pour de nombreuses disciplines des sci-
ences expérimentales. Elle permet en effet d’étudier desdétails microscopiques d’un échantil-
lon de manière non-destructive, grâce à des outils peu encombrants et relativement peu coûteux.
Malheureusement les techniques classiques de microscopieoptique sont limitées à des résolu-
tions de l’ordre du demi micron, ce qui ne suffit pas pour de nombreuses applications. L’amélio-
ration de cette résolution est donc un défi majeur de la recherche en microscopie optique. Dans
ce cadre, j’ai étudié deux types de microscopie, avec et sans marquage : La microscopie de fluo-
rescence qui permet d’imager la densité de fluorescence dans un échantillon et la microscopie
tomographique par diffraction qui permet d’obtenir des cartes quantitatives de l’indice optique.
Le point clé de ces deux approches est que l’interaction entre la lumière et l’échantillon est très
classique (pas de saturation ou de non-linéarité) et qu’elles peuvent donc être implémentées
avec des fluorophores courants et des intensités lumineuses réduites. L’objectif de la thèse est
de montrer qu’en utilisant de nouvelles configurations et des traitements numériques sophis-
tiqués, les résolutions axiale et latérale de ces techniques peuvent être fortement améliorées.

1.1 Principes de base d’un microscope optique

Un microscope optique est constitué de trois parties : d’abord un système d’éclairement qui
envoie la lumière dans la partie de l’échantillon que l’onsouhaite étudier ; ensuite un instru-
ment optique permettant de collecter la lumière qui sort del’échantillon et d’en créer une image
agrandie sur le troisième composant : un détecteur, plac´e dans le plan image de cet instru-
ment optique (FIG. 1). Pour modéliser correctement ce système, on doit se placer dans le cadre
général de l’électromagnétisme.

On montre [1, section 3.12] que le champ électrique émergeant de l’objet et obtenu au plan
focal objet peut être représenté comme une somme d’ondesplanes se propageant dans le sens
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FIGURE 1 – Schéma de principe général de la microscopie optique

desz positifs :

E(r) =

∫

k‖∈R2

E(k‖) exp(ik.r)dk‖ (1)

oùk‖ = kxx + kyy est la projection sur le plan(x, y) dek le vecteur d’onde, vérifiant‖k‖ =
k0 = 2π/λ, etE(k‖) vérifie∀k‖,E(k‖).k = 0.

Si l’axez est orienté suivant l’axe optique (l’axe de symétrie de l’instrument d’optique) et si
cet instrument optique (ordinairement constitué d’un objectif et d’un oculaire) a ses aberrations
corrigées suivant les conditions de Sine-ABBE avec son plan focal objet àz = 0, les ondes
planes telles que‖k‖‖ ≤ k0NA sont collectées par cet instrument d’optique et produisent dans
le plan image le champ [2, section 4.5] :

E(r) =

∫

k‖∈C

√

kz
k0

E(k‖) exp(ik
′.r)dk‖ (2)

oùC est le disque de centre0 et de rayonk0NA, NA est l’ouverture numérique de l’instrument

optique etk′ =
(

kx/MF, ky/MF,
√

k20 − (kx/MF)2 − (ky/MF)2
)

, pourMF le grandissement

du système optique.

Cette décomposition en ondes planes montre que les fréquences du champ supérieures à
k0NA ne sont pas collectées par le système optique. C’est cetteperte d’information qui explique
la limite de résolutionsur la mesure du champ.

Cependant, en règle générale, les microscopistes ne sont pas intéressés par le champ sortant
de l’échantillon mais plutôt par l’échantillon lui-même. Or, on peut montrer que, dans le cadre
de la microscopie de fluorescence et de la microscopie tomographique de diffraction, les me-
suresM (qui sont reliées au champ) peuvent s’exprimer sous la formeM = (OP ) ∗ h oùO,
la fonction objet, est la quantité d’intérêt de l’échantillon, P est la fonction sonde, une fonc-
tion du champ d‘éclairement qui dépend du mécanisme de contraste utilisé eth est la fonction
d’appareil qui découle du filtrage des hautes fréquences dans l’équation (2). C’est donc le pro-
duit OP qui est filtré et nonO lui-même. L’idée est donc d’utiliser des fonctions sondes P
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in-homogènes, donc contenant des hautes fréquences spatiales. La transformée de Fourier de
M s’exprime, selon le théorème de convolution commeM̃ = (0̃ ∗ P̃ )h̃, où ∗ est le produit
de convolution. Ce produit de convolution va permettre aux hautes fréquences deO de contri-
buer aux mesures, malgré le filtrage parh. Il y a principalement deux façons d’appliquer cette
approche de l’éclairement structuré :

• la microscopie par balayagela fonction sondeP est produite par un champ focalisé au
point r0 : P (r0, r) = P (r0 − r). Puis ce pointr0 est balayé à travers tout l’échantillon.
Ce principe est la base de la microscopie con-focale [3].

• la projection de motifs le principe est d’envoyer une succession de champs sondesPn in-
homogènes mais couvrant tout l’échantillon. Il n’y a doncpas besoin de balayage ce qui
accélère l’acquisition des données. Par contre les images obtenues sont in-interprétables
en-soi et de complexes algorithmes de reconstruction doivent être développés pour obtenir
des images lisibles.

L’éclairement structuré a permis d’améliorer de manière significative la résolution des mi-
croscopes optiques≪ classiques≫, i. e. utilisant une interaction linéaire entre l’échantillon et la
lumière. C’est cette approche que j’ai développée dans le cadre de la microscopie de fluores-
cence et la microscopie tomographique de diffraction dont les principes de base sont présentés
ci-dessous.

1.2 La microscopie de fluorescence

Il existe des molécules, appelés fluorophores ou marqueurs fluorescents, capables d’absorber
la lumière à une certaine longueur d’onde et de la ré-émettre ensuite à une autre longueur
d’onde. Tant que l’intensité du champ d’éclairement n’est pas trop élevée, on peut considérer
que l’on est dans le régime d’émission linéaire. Alors l’intensitéIem émise par l’échantillon est
proportionnelle àIécl, l’intensité du champ d’éclairement :Iem = σIécl, oùσ est le coefficient
d’émission du fluorophore. D’ordinaire, la distance entredeux fluorophores voisins est très
inférieure à la résolution que l’on peut obtenir. On peutdonc traiter la répartition de fluorophores
comme une fonction continueρ de densité de fluorophores définie par :ρ(r)dr =

∑L

l=1 σl, où
L est le nombre de fluorophores dans le petit volumedr et σl est le coefficient d’émission du
lefluorophore. Ceci permet d’obtenir des mesures suivant le modèle :

M = (ρIécl) ∗ h (3)

Ici, M est l’intensité du champ obtenu dans le plan focal image et la fonction sonde est l’in-
tensité du champ électrique éclairant. Dans les microscopes à fluorescence classiques,Iécl est
homogène sur l’échantillon. L’équation (2) permet d’évaluer le support spectral deh. En effet
cette intégrale peut être vue comme la transformée de Fourier d’une fonction dont le support
est la surface que parcourtk′ lorsquek ∈ C. Cette surface est la calotte de la sphère de centre
0 et de rayonk0 représentée dans la FIG. 2 (a). On peut montrer quẽh est l’auto-corrélation de
cette surface, soit le tore ayant pour section le papillon représenté dans la FIG. 2 (b). Le filtrage
parh̃ des fréquences spatiales de l’objet étant beaucoup plus sévère selonkz que selonkx etky,
on constate que la résolution axiale est nettement inférieure à la résolution latérale.
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FIGURE 2 – Schéma de coupe(kx, kz) du support de la transformée de Fourier des fonctions
E et I dans l’image d’un diffuseur ponctuel. (a) Support de la transformée de Fourier de la
répartition du champ électriqueE. a est l’angle maximal que peut collecter le système optique.
Le cercle en pointillé est la coupe(kx, kz) de la sphère de centre0 et de rayonk0, appelée
sphère d’EWALD . (b) Support de la transformée de Fourier de la répartition d’intensitéI, auto-
corrélation de (a) et fonction de transfert de la détection h̃.

1.3 Microscopie Tomographique par Diffraction

La Microscopie Tomographique par Diffraction (MTD) est uneévolution de la microscopie de
phase et de l’holographie digitale. On envoie grâce à un laser une onde plane sur un échantillon
et on détecte en amplitude et en phase le champ qu’il a diffracté. L’effet de diffraction est
dû aux variations locales de la permittivité relativeε de l’échantillon. On réalise cette mesure
successivement pour différents angles d’incidence puis on reconstruit numériquement une carte
en trois dimensions deε.

Un calcul électromagnétique permet de montrer que le champ diffractéEd(k‖) mesuré dans
le plan focal arrière est égal à, pourP = ε0χE etχ = ε− 1 :

Ed(k) = k0k×
(

k× P̃(k)

ε0

)

(4)

Ed(k) = k0k×
(

k×
∫

Ω

exp(−ik.r)χ(r)E(r)dr
)

. (5)

où χ = ε − 1, Ω est le domaine où l’échantillon est présent,P = ε0χE et le champ totalE
est la somme du champ incidentEinc et du champ diffracté par l’objet. Le champE satisfait
l’équation intégrale,

E(r) = Einc(r) +

∫

Ω

Ḡ(r, r′)k20χ(r′)E(r′)dr′ avec

Ḡ(r, r′)p = − 1

4πk20
∇× ∇×

(

exp(ik0∆r)

∆r
p

)

+
1

k20
pδ(r− r′), pour tout vecteurp (6)

Lorsque le contraste de permittivitéχ = ε− 1 est petit devant1, il est possible d’appliquer
l’approximation de Born :E ≈ Einc. Cette approximation simplifie fortement les formules
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précédentes. On peut alors prouver que pour un champ incidentEinc = E0 exp(ikinc.r), on
obtient

Ed(k,kinc) = k0χ̃(k− kinc)k× (k× E0) . (7)

Chaque point de mesure correspond donc à la valeur d’une composante spectrale deχ. Au cours
de l’acquisition, on va récolter ces composantes spectrales puis obtenir la carte de permittivité
par une simple transformée de Fourier inverse.

La résolution obtenue va dépendre de l’ensemble des points de l’espace de Fourier obtenus
aveck− kinc. Il y a deux configurations possibles :

• la configuration en transmission, où le champ incident est ´emis par un système optique
faisant face à celui utilisé pour détecter le champ diffracté. L’ensemble des fréquences
mesurables est le support deh̃ de la FIG. 2 (b). La résolution axiale est donc nettement
inférieure à la résolution latérale.

• la configuration en réflexion, où le champ est émis et collecté par le même système op-
tique. L’ensemble des fréquences mesurables est la portion kz ≥ 2k0 cos a de la sphère
de rayon2k0 centrée en0. Cet ensemble n’est pas symétrique par rapport à0. L’image
reconstruite par transformée de Fourier mélangera donc les parties réelle et imaginaire de
ε.

Aucune de ces configurations n’amène à une résolution axiale équivalente à la résolution laté-
rale.

2 Miroir et r ésolution axiale

Nous avons vu que la résolution axiale des microscopes optiques (avec ou sans marquage) n’est
jamais aussi bonne que la résolution latérale. Cela provient du fait que la détection et l’illumi-
nation ne se font que d’un seul côté de l’objet ce qui limitel’étendue spectrale dẽh selonkz.
Ce problème fondamental est particulièrement gênant pour les applications tri-dimensionnelles
qui se développent fortement actuellement. Nous proposons dans la section suivante une confi-
guration, utilisant un miroir, permettant de résoudre cette difficulté.

2.1 Microscopie tomographique par diffraction au-dessus d’un miroir

En déposant l’échantillon sur un miroir dans un Microscope Tomographique par Diffraction
(MTD) en configuration de réflexion, on s’assure que l’illumination et la détection se feront des
deux côtés à la fois. En effet, l’échantillon sera éclairé par le champ incident mais aussi par sa
réflexion sur le miroir et on captera le champ diffracté directement vers l’objectif mais aussi le
champ diffracté dans l’autre direction puis réfléchi parle miroir. De manière plus précise, sous
l’approximation de Born, chaque mesure de champ correspondà la somme de quatre compo-
santes de Fourier qui peuvent être assemblées deux par-deux en utilisant la transformée cosinus.
On note

˜̃χ(kz,k‖) =

∫

Ω

χ(r) cos(kzz) exp(−ik‖.r‖)dr, (8)
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FIGURE 3 – Résultats de simulation numérique d’expériences de microscopie tomographique
par diffraction. (a-b) parties réelle et imaginaire de la carte de permittivité reconstruite à partir
d’une expérience de MTD en configuration en transmission. (c-d) idemavec une configuration
en réflexion. (e-f)idemavec une configuration en réflexion au dessus d’un miroir. Laligne noir
indique la position du miroir. (g-h)idemavec un système optique idéal, capable d’éclairer et de
collecter la lumière dans toutes les directions autour de l’échantillon.

la transformée de Fourier suivant les axesx ety de la transformée cosinus suivant l’axez. Alors
les mesures valent [4]

Ed(k,kinc) =
(

Af− +Bf+
)

(9)

A = k0k×
(

k× E0,‖

)

(10)

B = E0,zk0k× (k× z) (11)

f+ = ˜̃χ
(

|kz + kinc,z|,k‖ − kinc,‖

)

+ ˜̃χ
(

|kz − kinc,z|,k‖ − kinc,‖

)

(12)

f− = ˜̃χ
(

|kz + kinc,z|,k‖ − kinc,‖

)

− ˜̃χ
(

|kz − kinc,z|,k‖ − kinc,‖

)

(13)

En mesurant au moins deux composantes du champ vectorielEd, il est possible d’obtenir
les valeurs dẽ̃χ

(

|kz + kinc,z|,k‖ − kinc,‖

)

et ˜̃χ
(

|kz − kinc,z|,k‖ − kinc,‖

)

. Ensemble, ces deux
composantes parcourent toute la demi-sphèrekz ≥ 0 de centre0 et de rayon2k0. En inversant
la transformée Fourier-cosinus, on obtient une carte deχ avec une résolution isotrope àλ/2.
Le miroir permet donc bien de résoudre le problème de la résolution axiale. Cette étude a été
validée par des tests numériques illustrés par la FIG. 3. Le miroir permet d’obtenir le même
résultat que celui donné par un système idéal où l’illumination et la collection se font selon
toutes les directions (comme dans un scanner).

Fort de ce succès, nous avons appliqué cette idée à la microscopie de fluorescence. Plus par-
ticulièrement, nous l’avons appliquée à la microscopiecon-focale qui souffre d’une résolution
axiale réduite car le motif d’intensité focalisé est plus étalé dans la direction axiale que dans les
directions latérales.
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FIGURE 4 – (a-b) Coupe(x, z) et (x, y) de l’image d’une bille fluorescente de 100 nm en
microscopie con-focale lorsque la focalisation est réalisée avec la technique ISO. (c-d)idemen
microscopie con-focale classique.

2.2 Microscopie de fluorescence au-dessus d’un miroir

Le problème de la résolution axiale est dû au fait qu’on focalise la lumière par le système op-
tique de manière asymétrique, avec uniquement des ondes se propageant selon lesz positifs.
Une solution, proposée par HELL et al. [5], consiste à placer en vis-à-vis deux objectifs de mi-
croscope et à focaliser de manière cohérente à travers ces deux systèmes optiques. Ce système,
nommé microscopie 4Pi, donne de bons résultats, mais il impose un montage substantiellement
plus compliqué et sensible aux vibrations qu’un microscope con-focal classique. C’est pourquoi
nous avons proposé de remplacer un des objectifs par un miroir [6, 7, 8].

Le principal problème est bien sûr de savoir comment focaliser correctement au-dessus d’un
miroir, en prenant en compte tous les effets d’interférence et de polarisation. Un outil très pra-
tique est le renversement temporel virtuel [9, 6]. Nous calculons quel est le champ créé dans le
plan focal arrière par un dipôle placé à la positionr0. La théorie du renversement temporel prédit
que si l’inverse temporel (ou le conjugué pour des ondes monochromatiques) de ce champ est
envoyé dans ce plan focal arrière, il va se focaliser exactement à la positionr0 [10]. En pratique,
nous envoyons sur le plan focal arrière une onde plane cré´ee par un laser et nous modulons le
front d’onde par un modulateur spatial de lumière. Les plussimples de ces appareils modulent
seulement la phase. Nous leur imposons donc, comme motif de phase, l’opposé de la phase du
champ calculé.

De nombreuses simulations et expériences de cette technique, appelée ISO pour≪ Isotropic
Single Objective≫ viennent soutenir cette théorie, comme le montre la FIG. 4. On obtient une
tâche focale isotrope entourée de deux lobes. Cette tâche est exactement la même que celle
obtenue en microscopie 4Pi, mais avec un montage beaucoup plus simple. La différence entre
les mesures et les simulations sont dues aux imperfections des systèmes optiques réels. Ceux-
ci atténuent plus fortement les ondes planes les plus éloignées de l’axe optique que ce que la
théorie prévoit, et cet effet n’est pas tabulé.
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3 Résolution transverse et́eclairement structuré

Nous nous intéressons maintenant à l’amélioration de larésolution latérale grâce à l’éclairement
structuré. Le point clé de cette approche repose sur l’algorithme d’inversion qui permet de re-
construire l’objet à partir des multiples images obtenuessous divers éclairements. Mon travail a
essentiellement consisté à développer des algorithmesd’inversion pour la microscopie de fluo-
rescence à éclairement structuré et la microscopie tomographique de diffraction. Leur originalité
par rapport aux techniques existantes est que ces algorithmes permettent de reconstruire à la fois
le paramètre d’intérêt de l’échantillon, la fonction objetO, ET les différents éclairements, les
fonctions sondePn. Cela permet de simplifier le montage expérimental en microscopie de fluo-
rescence et d’aborder l’imagerie d’objets fortement diffractants en microscopie tomographique
de diffraction.

3.1 Éclairement structur é en microscopie de fluorescence

En microscopie de fluorescence classique, utilisant une intensité d’illumination homogène, les
informations fréquentielles de l’objet supérieures àkc = 2k0NA sont perdues. Pour améliorer
cela il a été proposé d’utiliser la technique de l’éclairement structuré [11, 12, 13] en champ large
qui consiste à éclairer l’échantillon avec une intensité hétérogène, généralement sinusoidale et
obtenue via l’interférence de deux faisceaux collimatéscohérents. Le mélange de fréquences
entre l’éclairement et l’objet permet de mesurer des fréquences spatiales au-delà de cette limite.

Plus précisément, les mesuresMl de l’incidencel sont reliés à la densité de fluorophoresρ
et à l’intensité du champ incidentIl par

Ml = (Ilρ) ∗ h

dont la transformée de Fourier donne, par le théorème de convolution

M̃ = (ρ̃ ∗ Ĩl)h̃.

Si les intensités d’éclairementIl sont de la formeIl(r) = 1 + cos(K.r+ φl), on obtient

M̃l(k) =

[

ρ̃(k) ∗
(

δ(k) +
1

2
exp(iφl)δ(k+K) +

1

2
exp(−iφl)δ(k−K)

)]

h̃(k) (14)

=

(

ρ̃(k) +
1

2
exp(iφl)ρ̃(k+K) +

1

2
exp(−iφl)ρ̃(k−K)

)

h̃(k) (15)

= M̃0(k) + exp(iφl)M̃
+
l (k) + exp(−iφl)M̃−

l (k). (16)

M0 est l’image qu’on aurait obtenue avec un éclairement homogène. Il ne comprend donc
que les basses fréquences de l’objet. Par contre lesM±

l contiennent les fréquences de l’objet sur
les disques de rayonkc autour deK et−K. En utilisant trois mesures avec troisφl différents
(obtenus en introduisant un déphasage sur un des faisceauxformant le motif d’interférence), on
peut séparer ces trois termes et donc mesurer les fréquences deρ sur un domaine de Fourier
plus vaste qu’en microscopie de fluorescence classique.

Malheureusement, les images reconstruites par ce type de m´ethode qui nécessite une bonne
connaissance de l’intensité éclairante sont très sensibles à de petites erreurs sur la valeur deφl
ou sur la période et l’orientation de la grille de lumière.La plus petite variation expérimentale de
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FIGURE 5 – Illustration des différentes étapes d’une expérience blind-SIM. 160 champs in-
cidents d’intensité in-homogèneIl (en haut à droite) sont multipliés par la densité de fluoro-
phoreρ (en haut au centre) puis filtrés par la fonction d’instrument h. Ces données, une fois
bruitées, (à gauche) sont traitées par l’algorithme de reconstruction produisant une estimation
haute résolution deρ (en bas au centre) et 160 estimations pour les intensités des champs inci-
dentsIl (en bas à droite).

l’intensité éclairante provoque de gros artefacts nuisant à l’interprétation de l’image produite.
Cela limite fortement le champ d’application de cette technique. C’est pourquoi nous avons
proposé de reconstruire en même temps l’intensité des champs incidentsIl et la densité de
fluorophoresρ [14]. Comme nous n’imposons plus de connaissancesa priori particulières sur
l’intensité d’illumination, nous limitons les artefactscausés par une distorsion ou une variation
de l’éclairement causées par une mauvaise stabilisationdu montage ou par l’échantillon lui-
même. De plus, comme aucune forme particulière n’est imposée à ces champs incidents, nous
pouvons utiliser des intensités de speckle (tavelure), qui sont produites en plaçant un simple
papier diffusant dans le chemin du laser d’éclairement, cequi simplifie énormément le montage.
La FIG. 5 illustre ce processus.

Notre algorithme, appelé blind-SIM, reconstruit à la fois l’échantillon et les différentes in-
tensités d’illumination. Il cherche le minimum de la fonctionnelle

F (ρ, Il=1,··· ,L−1) =

L−1
∑

l=1

‖Ml − (Ilρ) ∗ h‖2 +
∥

∥

∥

∥

∥

ML −
[(

LI0 −
L−1
∑

l=1

Il

)

ρ

]

∗ h
∥

∥

∥

∥

∥

2

, (17)

grâce à un algorithme inspiré de la méthode du gradient conjugué [15][16, section 10.6]. Les
résultats de simulation, comme celle de la FIG. 5, montrent que les estimations obtenues ont
une très forte corrélation avec les fonctions à estimer.De plus lesρ obtenues comportent bien
des fréquences spatiales supérieures à celles obtenuesavec des données sans éclairement struc-
turé. Cette étude a ensuite été validée par des résultats expérimentaux. La FIG. 6 compare des
images de billes fluorescentes de 90 nm de diamètre obtenuesavec et sans éclairement structuré.
L’amélioration de résolution y est clairement visible.
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FIGURE 6 – (a) image de billes fluorescentes de 90 nm de diamètre obtenue en microscopie
de fluorescence. (b) dé-convolution de l’image (a). (c) image obtenue en traitant 24 images
d’éclairement structuré avec l’algorithme blind-SIM.

3.2 Microscopie tomographique par diffraction d’objets à fort indice

Lorsque l’échantillon observé par microscopie tomographique par diffraction est fortement dif-
fractant, on ne peut plus appliquer l’approximation de Born. La reconstruction par transformée
de Fourier citée dans la section 1.3 n’est plus applicable.Il faut en effet prendre en compte
le fait que l’échantillon modifie le champ qui le sonde. Ainsi, l’algorithme de reconstruction
devra à la fois estimer l’objet et le champ à l’intérieur de l’objet. Pour cela, des méthodes
d’optimisation itératives non-linéaires ont été proposées. Ces méthodes itératives nécessitent
en général de résoudre le problème de diffraction rigoureusement,i. e. de calculerE satisfai-
sant l’équation (6) pour chaque nouvelle estimée de la permittivité. Ces calculs numériques
peuvent être très lourds, ce qui explique que la plupart des méthodes d’inversion permettant
de retrouver des objets fortement diffractants ont été d´eveloppées pour le cas simplifié 2D sca-
laire. L’augmentation de la rapidité des ordinateurs et derécents progrès algorithmiques [17, 18]
permettent maintenant de passer à des échantillons réalistes, donc en trois dimensions. Mon tra-
vail a consisté à étendre à la troisième dimension, en prenant en compte l’aspect vectoriel des
champs électromagnétiques, un algorithme prometteur, la méthode de gradient hybride [19] et
à le comparer à une méthode de référence, l’inversion contraste source [20].

Nous avons montré sur des données expérimentales micro-ondes issues d’une base en libre
accès [21], que notre algorithme a des résultats comparables à ceux de l’inversion contraste
source, mais qu’il est beaucoup plus rapide, de plusieurs ordres de grandeur. Cette rapidité nous
a permis de l’utiliser pour des ensembles de données importants (provenant par exemple d’une
expérience comportant beaucoup de directions d’observation), comme ceux produits par des
expériences de MTD. Cet algorithme a été utilisé avec succès [22] pour traiter des mesures
expérimentales obtenues sur un microscope tomographiquede diffraction pour l’échantillon-
test présenté dans la FIG. 7.

4 Conclusion

Au cours de cette étude, nous avons étudié deux voies pouraméliorer la résolution en mi-
croscopie optique. La première voie propose de placer un miroir derrière l’échantillon, ce qui
permet d’améliorer fortement la résolution axiale. Celaa été montré pour les deux techniques
de microscopie linéaire qui nous intéresse, la microscopie de fluorescence et la microscopie to-
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FIGURE 7 – Comparaison entre la carte de permittivité quantitative obtenue avec notre algo-
rithme (a-b) et le module de la carte obtenue par la reconstruction linéaire par transformée
de Fourier (c-d). La carte de permittivité quantitative (complexe) de cette dernière reconstruc-
tion est trop éloignée du véritable échantillon. C’estpourquoi nous en avons affiché seulement
le module. (a) coupe longitudinale ày = 1 µm, (b) coupe transverse àz = 125 nm (ligne
bleue continue : géométrie réelle de l’échantillon de permittivitéε = 2). (c) coupe transverse à
z = 53 nm. (d) coupe longitudinale ày = 1 µm. Les coupes sont selon les lignes blanches en
pointillés. Les échelles de couleurs représentent la permittivité relative.

mographique par diffraction. Le succès de cette approche pour ces deux techniques nous incite
à penser qu’elle serait aussi valide pour d’autres techniques de microscopie où la résolution
axiale est un problème.

Ensuite nous avons proposé des algorithmes de reconstruction itératifs estimant en même
temps l’objet d’étude et le champ qui le sonde. Dans le cas dela microscopie de fluorescence,
cela permet d’utiliser l’éclairement structuré sans avoir à contrôler très précisément le champ
d’éclairement, ce qui simplifie drastiquement les procédés expérimentaux. Dans le cas de la
microscopie tomographique par diffraction cela permet de prendre en compte la perturbation du
champ sonde provoquée par la diffraction. Une possible extension serait de mélanger ces deux
approches et d’opérer la MTD avec des champs aléatoires oupeu contrôlés, ce qui simplifierait
là encore les procédés expérimentaux.





Introduction

Optical microscopy is an essential tool for various fields ofscience like biology, material science
and medicine. Its main interest is the possibility to observe small details of a sample without
disturbing it. Optical microscopes are also small and cheapenough to allow any laboratory to
possess one.

One of the main limitations of optical microscopy is its resolution. Research and technology
are constantly requiring systems to see smaller details. For long, improvements came mainly
from the technological conception of objective lenses. Yet, modern objectives lenses are almost
reaching the theoretical limit of resolution, called the diffraction limit, and one cannot hope
significant resolution improvements in this way. It is now necessary to invent new imaging
techniques using these objective lenses. This has been the aim of more than 30 years of research
efforts.

Promising solutions use non-linearity in the light-matterinteraction [23, 24, 25] or propose
to scan a probe in the near-field of the sample [26, 27], reaching resolutions about several tens
of nano-meters. They require, however, high power laser, special markers or a deep modific-
ation of the microscope set-up and will be out of the scope of this work. Here, we consider
only classical light-sample interactions and study both fluorescence microscopy, that images
specific chemical components of a sample thanks to a selective staining using fluorophores, and
unstained microscopy that images the intrinsic optical contrast of the sample. In this general
framework, we focus on two promising approaches, whose principles are very similar:

• Structured Illumination Fluorescence Microscopy, in which the sample is illuminated un-
der different spatially inhomogeneous incident intensities. Confocal microscopy is one
of the most famous example of structured illumination microscopy. The fluorescence
density of the sample is reconstructed numerically (or analogically) from the different
recorded data;

• Tomographic Diffraction Microscopy, in which several holograms of the object are re-
corded under different illuminations. This quite recent technique, which is an evolution
of phase contrast microscopy and digital holography, is themost complete version of
stainless microscopy as its data can be used to reproduce anymicroscopy type (dark-
field, phase-microscopy, . . . ). The post-treatments of the holograms allows a quantitative
reconstruction of the sample optical properties; its optical index and its absorption coef-
ficient, summarised in the concept of complex relative permittivity.

The thesis is separated in three parts. The first one details the general concepts of optical mi-
croscopy and explains the basics of the two above microscopyapproaches. The second part
explains how one can improve the axial resolution by placinga mirror behind the sample. This
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concept is presented for tomographic diffraction microscopy and fluorescence confocal micro-
scopy in two different chapters. The third part is devoted tothe inversion methods that are
developed to reconstruct quantitatively the sample parameter of interest from the different re-
corded images for both the structured illumination fluorescence microscopy and tomographic
diffraction microscopy.



Notations

In this work, one uses bold scripts for vectorsv, over-lined bold script for tensors̄T and italic
script for scalarss.

All positions and vectors are measured in the right-hand orthonormal coordinate system
(O,x,y, z). Vectorr = (x, y, z) refers to the position in this coordinate system.0 is the null
vector. u andv being two vectors,u.v is their dot (scalar) product andu × v is their cross
(vector) product.‖u‖ is the norm ofu defined by‖u‖2 = u.u.

For each vectorv, one definesvz = v.z andv‖ = (v.x)x + (v.y)y the projection ofv on
the(x, y) plane.

R is the set of real numbers.
C is the set of complex numbers.
i is the imaginary uniti2 = −1.
z being a complex number,z∗ is its conjugate,ℜe(z) its real part,ℑm(z) its imaginary part and
|z| its absolute value.

In all this study, one assumes that light is monochromatic with wavelength in vacuum noted
λ. For each electromagnetic field, one assumes a time dependence in exp(−iωt), t being the
time of the referential andω = 2πc/λ the angular velocity, withc the light velocity in vacuum.
ElectricE and magneticB fields are given in SI units.

f being a function of spaceR3, f̃ is its Fourier transform, defined by

f̃(k) =

∫

R3

exp(−ikr)f(r)dr.

Thusf is the inverse Fourier transform of̃f obtained with the formula

f(r) =
1

8π3

∫

R3

exp(ikr)f̃(k)dk.

P(r) = Px(r)x + Py(r)y + Pz(r)z being a vectorial function of space,̃P is its Fourier
transform defined by

P̃(k) = P̃x(k)x+ P̃y(k)y + P̃z(k)z.

Ω being a sub-set ofRn, wheren is a positive integer,〈f |g〉Ω is the inner product onΩ
defined as

• givenf andg two real functions ofΩ

〈f |g〉Ω =

∫

Ω

f(r)g(r)dr.
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• givenf andg two complex functions ofΩ,

〈f |g〉Ω =

∫

Ω

f ∗(r)g(r)dr.

• givenu andv two complex vectorial functions ofΩ,

〈u|v〉Ω =

∫

Ω

u∗(r).v(r)dr.

f being a function ofΩ, ‖f‖Ω is the norm defined by‖f‖2Ω = 〈f |f〉Ω.

B being an operator transforming a function defined onΩ in a function defined onΓ, where
Ω andΓ being two sub-sets ofRn, B† is the adjoint operator ofB defined by

∀(f, g) ∈ Γ× Ω, 〈f |Bg〉Γ = 〈B†f |g〉Ω.

f andg being two functions defined onRn, f ∗ g is the convolution product off andg
defined by

(f ∗ g)(r) =
∫

Rn

f(r′)g(r− r′)dr′.



Part I

Basics of fluorescence and tomographic
phase microscopy



Chapter 1

Basics of microscopy

A microscope is a tool providing images of a sample that are sufficiently enlarged to show de-
tails that were previously too small to be visible. An optical microscope is composed of three
parts. First an illumination system that shines light through the sample. Then, an imaging sys-
tem that collects and magnifies light emerging out of the sample and casts it on an image plane.
Finally, a detector is placed on the image plane for recording this light intensity. Nowadays the
detector is often an electronic camera allowing quantitative measurement of the received field
intensity. These three parts are conceived such that the light intensity is modulated spatially
on the detector and such that this modulation, called the detected image, bears a magnified
information on the sample.

Light is an electromagnetic wave. Its propagation is described by the Maxwell equations
and classical electrodynamics. In particular, it can be proven that any electric field propagating
in the increasingz direction in an homogeneous media can be decomposed as a sum of plane
waves [1, Sec. 3.12]

E(r) =

∫

k‖∈R2

k0
kz

E(k‖) exp(ik.r)dk‖, (1.1)

wherek‖ = kxx + kyy is the projection ofk on the(x, y) plane,k is the wave vector, with the
constraint‖k‖ = k0 = 2π/λ andE(k‖) verifies∀k‖,E(k‖).k = 0. When‖k‖‖ ≥ k0, kz is a
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complex number

kz = i
√

‖k‖‖2 − k20

andE(k‖) exp(ik.r) is an evanescent plane wave.

This plane wave decomposition is particularly useful for modelling image formation in op-
tical microscopes. It is indeed natural to apply this decomposition using asz axis, the axis
of symmetry of the imaging system, called the optical axis. The imaging system can then be
modelled as a filter that collects some of these plane waves and transforms them in other plane
waves reaching the image plane.

1.1 Modelling of the imaging system

1.1.1 General law of imaging system

The first constraint on the imaging system design comes from the detector. Indeed each detector
imposes a limit on the smallest detail it can distinguish. For example, the smallest detail visible
by a bare eye has a size of some hundredths of millimetres, anda camera is limited by its pixel
size of several micrometres. In order to image smaller details, the imaging system is designed to
cast a magnified image of the object on the detector. One thus defines theMagnifying Factor
MF as the ratio between image and object sizes.

Once this magnifying factor is chosen, the imaging system has to be stigmatic. This means
that the image obtained on each point of the detector has to besharp. There is indeed a large
variety of aberrations that can blur, distort or mix the different parts of the image, and they
become more and more severe as the field of view increases. In our plane wave modelling, one
says that the imaging system is stigmatic at pointP if all plane waves that have the same phase
atP are transformed by the imaging system in plane waves that have the same phase at a point
P ′, called the conjugate ofP trough the imaging system.

There is now more than two centuries of studies on aberration. There is however a fun-
damental limit on their corrections. Maxwell has indeed shown [28][2, Sec. 4.2.1] that an
optical system cannot be stigmatic on all points of space, unless its magnifying factor is equal
toMF = ni/nd, whereni is the refraction index of the medium surrounding the sample, andnd
that of the medium surrounding the detector. In all other cases, the system can only be stigmatic
on a plane [28, 2].

1.1.2 Sine condition

The most common way to design an optical system is to have it stigmatic on a plane perpendic-
ular to the optical axis called the Object Focal Plane. This system has to produce a magnified
image on the detector plane. Thus, each pointP of the object focal plane has its conjugateP ′ on
the image focal plane. This imposes a condition, called the Sine (or the Sine-Abbe condition)
which can be described as follows: A plane wave with transverse wave vectork‖ is transformed
by the imaging system into a plane wave with transverse wave vectork′

‖ = −k‖/MF. In other
term, the polar angleθ′ of the plane wave direction obtained in the image focal domain satisfies
sin θ = MFsin θ′, whereθ is the polar angle of the plane wave direction in the object focal
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Figure 1.1: Sketch of an objective corrected under the Sine-Abbe condition. A plane wave
passing through the sample whose direction make an angleθ with the optical axis is focussed
by the objective to a point being in the back focal plane, on the plane containing the optical axis
and the direction of the plane wave, at a distanceρ = D sin θ/ sin a, wherea is the maximum
angle of the plane wave collected by the objective andD is the diameter of the exit pupil. Then,
this focussed beam becomes through the eyepiece a plane wavemaking an angleθ′ with the
optical axis, such thatsin θ = MFsin θ′.

domain ([2, Sec. 4.5] and references therein). In the plane wave decomposition modelling, the
field defined by Eq. (1.1) is transformed by the objective into

E(r) =

∫

k‖∈C

√

k0
kz

E(k‖) exp(ik
′.r)dk‖ (1.2)

whereC is thek0NA-radius disk centred in0. NA is the Numerical Aperture,NA = ni sin a,
wherea is the maximum polar angle of the plane waves collected by theobjective and efficiently
transformed by the imaging system.k′, the wave vector in the image focal domain, is defined
by

k′ =





kx
MF

,
ky
MF

,

√

k20 −
(

kx
MF

)2

−
(

ky
MF

)2


 .

The term
k0
kz

has been multiplied by

√

kz
k0

that stands for the energy conservation [29, Chap. 4].

Classically, a microscope imaging system is composed of twolenses: an objective lens with
a short focal length placed close to the sample and an eyepiece (or tube lens) with a longer focal
length. There is a specific plane between these two lenses called the Back Focal Plane of the
objective. If the objective lens is corrected with the Sine condition, it is performing a Fourier
transform between fields on its object focal plane and its back focal planes [30, section 5.2].
Indeed each plane wave going through the object focal plane and the objective is transformed
into a wave converging to a point in the back focal plane. Furthermore, each spherical wave
emitted from a point on the object focal plane of the objective is transformed into a plane wave
passing through the back focal plane. More precisely the field in the back focal plane of the
objective is [31]

Ed,bfp

(

D

k0NA
k‖

)

= C

√

k0
kz

Ed(k), (1.3)
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whereC is a constant depending on the objective andD is the diameter of the exit pupil,
the illuminated part of the back focal plane which depends onthe Numerical Aperture of the
objective.

This modelling neglects imperfections of the actual lensesthat are not perfectly stigmatic on
the whole object focal plane and that have a reduced transmission efficiency for high incident
angle. However, since there is no precise data on these imperfections, we will keep this ideal
description of the image formation process in the rest of this study.

1.2 Quality criteria defining an optical microscope

Three main criteria are usually studied to describe the quality of a microscope and evaluate its
usefulness for a defined application: Resolution, Contrastand Noise.

1.2.1 Resolution

The first interesting criterion is the resolution. It is defined as the size of the smallest detail that
can be observed by the microscope. A formal criterion is necessary for defining what means
“observed by the microscope”. Many criteria have been proposed [32] and the most common
are discussed in Sec. 1.3.

Resolution in mainly limited by what is often called the limit of diffraction. Indeed all
plane waves emerging from the sample that are either evanescent or whosek vector has a
polar angle superior toa are lost. One defines theNumerical Aperture asNA = ni sin a. In
the plane wave decomposition Eq. (1.2), all plane waves whose ‖k‖‖ is superior tok0NA are
lost. This means that the field frequencies abovek0NA cannot be retrieved. Research is still
going on for obtaining higherNA objectives while keeping good aberration correction and to
immerse the sample in higher index media (largeni). For now the highest numerical aperture
for commercialised objectives is about 1.5.

Resolution in the axial direction needs a specific attention. For long, the only way to obtain
resolution in this direction was to cut the sample in slices,this process being called sectioning.
Later were introduced several techniques allowing axial resolution of deep samples, like con-
focal microscope [3] and Apotome [33], for example. This axial selectivity was calledoptical
sectioningor depth discrimination. In this work, we will talk about theaxial resolution and
compare it to the lateral or transverse resolution (in the(x, y) plane).

1.2.2 Contrast

The contrast of an image measures the possibility to distinguish the sample from the surrounding
background. Different definitions of this criterion can be found in the literature. Here we use the

one proposed by Michelson [34], that is sufficiently generalfor our use:C =
IM − Im
IM + Im

, where

IM is the maximum intensity andIm is the minimum. Depending on the contrast techniques,
IM can be the signal intensity andIm the background intensity orvice versa. Obviously, a value
of C close to 1 describes a highly contrasted image while a value close to 0 measures a weakly
contrasted image, probably useless for interpretation. However, this criterion actually depends
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on the size and shape of the sample. A more quantitative tool is proposed in the next section.

The contrast mechanisms are the interactions between the illumination light and the sample
that produces a contrasted intensity pattern on the detector. The first contrast mechanisms used
historically were absorption and reflection. However a large part of the interesting samples
are transparent or almost transparent. They provide weaklycontrasted images when they are
illuminated by light in a classical microscope. Thus two main ways have been developed along
the years to improve the contrast.

• The first one consists in filling the sample with markers that produces a sufficient contrast
in images. One of the main advantage of marking is the possibility to select markers that
target chemically a specific component of the sample. It allows the observation of the
repartition of this specific component. Further, by using different markers with differ-
ent spectral behaviour, different chemical components canbe imaged simultaneously in
the same sample. If historical markers were absorbing colourant, the most widely used
nowadays are fluorescent markers. They have the ability to absorb light at a wavelength
and to emit at a different wavelength. By using spectral filters, it is possible to remove
the illumination field, obtaining thus a contrast equal to 1,whatever the sample. Imaging
process with fluorescent markers are described in details inChap. 2 of this thesis.

• The second one consists in modifying the set-up for getting contrast from the refraction
index variations [35, 36, 37]. This is called phase microscopy. It requires the use of
interferences and thus specific set-up for illumination anddetection of coherent light.
This approach requires that the refraction index contrast be higher than the background
fluctuations.

1.2.3 Noise

The third criterion is the noise strength. Noise deteriorates the image and prevents the obser-
vation of the finest details. The criterion ordinarily used to estimate this issue is the Signal-
to-Noise RatioSNR = 〈I〉/σb, where〈I〉 is the average signal andσb is the noise standard
deviation. There are two types of noises. First a noise that does not depend on the sample.
It has a constant statistic over the whole image. It is ordinary modelled as a white Gaussian
process since it is the sum of several sources of noise (thermal signal, electronic amplification,
data transmission between the camera and the computer, . . . ) that apply independently on each
pixel of the camera. The second one is the shot-noise. It is due to the statistical nature of light
emission by matter. For a certain intensity, the number of photons that reach a pixel camera fol-
lows a Poisson statistics. When the number of photons is larger than 10, a good approximation
of this statistic is a Gaussian statistic whose standard deviation is

√
N , whereN is the average

number of photons. It is clear from this discussion thatSNR is high for high intensity and low
for low intensity. This is an important point to keep in mind while comparing contrast tech-
niques. Indeed absorbing markers and phase contrast provide very bright images for moderate
contrast, whereas fluorescent markers have a perfect contrast but a limited brightness. Noise is
thus, in most cases, a limiting factor in fluorescence microscopy.
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1.3 Transfer function

Analysis of the resolution, contrast and noise provides a useful description of the microscope
performance. However one would prefer a general quantitative criterion. Now, when there is a
linear relation between the sample function of interestO and the image, theTransfer Function
appears to be an ideal tool. Indeed, in this case, the imageM is the convolution of the function
of interestO by a certain point-spread-functionh

M = O ∗ h.

Basically,h represents the image of a point object which is assumed to be same, whatever the
position of the object.

TheTransfer Function is the Fourier transform̃h of this convolution function. The Fourier
transform ofM andO fullfills M̃ = Õ h̃. h̃ is thus the filter applied tõO during the measurement
process.

One of the main characteristic of a Transfer Functionh̃ is its support, namely the region
of the Fourier space where it is non-null. This defines the frequencies ofO that are accessible
in the measurements. In microscopy,h̃ is usually a low-pass filter and it is null beyond a
bounded Fourier domain about the0 frequency. All the object frequency information inside
this Fourier domain is transmitted to the imageM . All the frequency information that are
outside this Fourier domain is lost. The radius of the support of the Transfer Tunction is called
the frequency cut-off.

An important interpretation of the Transfer Function is theimage contrast of sinusoidal
patterns. Actuallỹh(k) is the image contrast of a sample whose quantity of interest is 1 +
cos(k.r). This links the notion of Transfer Function with the more classical limit of resolution.
The Rayleigh criterion is obtained when the minimum intensity Im is 8/π2 of the maximum
intensityIM . This gives a contrastC ≈ 0.10. Thus the resolution corresponding to the Rayleigh
criterion is the period of the sinusoidal pattern whose image has a contrast of 0.10. The Sparrow
criterion is when the contrast reaches 0. A resolution according to the Sparrow criterion is thus
the inverse of the frequency cut-off. Actually the resolution, for each criterion, is often not the
same in every directions. One thus defines a resolution alongeach principal axis.

The Transfer Function is a lot more complete than a simple limit of resolution since it
provides a whole curve of contrast with respect to the spatial frequency. It allows for example
the definition of a resolution criterion with respect to noise. A detail becomes detectable when
its contrast is greater than the noise level. The resolutioncan then be defined as the period for
which the contrast is equal to the inverse of the SNR [38].

As will be seen later, a Transfer Function linking the density of fluorescent markers and
the intensity collected by the detector can be derived in fluorescence microscopy. Similarly, a
transfer function linking the actual sample permittivity to the reconstructed permittivity can be
obtained for Tomographic Diffraction Microscopy, under the single scattering approximation
(weakly scattering sample). On the contrary, there is no linear relationship between the sample
permittivity and the recorded image in ordinary incoherentillumination microscopy [39][2,
Sec. 10.6], or in Tomographic Diffraction Microscopy in presence of multiple scattering. In
these cases, defining a transfer function is not possible andonly ad-hoccomparison between
test samples can give a hint on the performances of the imaging systems.
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1.4 ‘Super-resolution’ techniques based on image treatment

In most modern techniques, images are produced by a computer. It is then natural to wonder
if this computer can improve images. Indeed, there is a wholerange of de-noising and decon-
volution algorithms, using the experimental Transfer Function, which can improve the contrast
or the SNR of the image. Yet, the frequency cut-off due to the bounded support of the Transfer
Function remains. To improve the resolution, it is necessary to introducea priori knowledge on
the sample.

The simplest and most commona priori information on the sample is to assume that it is
included in a box of finite size. In this case, it can be shown that the Fourier Transform of
the object function is analytic. Now, the knowledge of this analytic function on a disk with
radius the frequency cut-off is sufficient to extrapolate its value on all the Fourier space by
analytic continuation. This means that one could, in principle, obtain a perfect reconstruction
of the sample (see [30, Sec. 6.6] for a more formal demonstration and further discussion).
This property is at the basis of many super-resolution theories that were mainly discussed in
the 70’s. Unfortunately, it appeared that the presence of noise prevented almost all practical
implementations.

To explain the fundamental limit of all these numerical “superresolution” techniques, the
notion of Degree of Freedomof an image has been derived for coherent absorption micro-
scopy [40, 41] and then extended to other forms of microscopy[42, 43]. One decomposes the
linear operator that links the object quantity of interest to the recorded images using a Singular
Value Decomposition (SVD). Namely, one builds an orthogonal basis of functions in the sample
domain (sample eigenvectors) whose images through the operator form an orthogonal basis of
the image plane (image eigenvectors). With a correct normalisation, only a few of the image
eigenvectors are above the noise level. The number of detectable sample eigenvectors yields the
Degree Of Freedom of the imaging system. Whatever the numerical treatment applied to the
image, sole the detectable sample eigenvectors can be recovered.

This point of view explains why the super-oscillating fields(see for example [44]) recently
evoked to perform super-resolution imaging are likely to fail. This technique is based on the
well known observation (basically that at the basis of Toraldo rings) that a suitable combination
of propagative plane waves can generate a light spot much smaller than the diffraction limit,
provided that most of the energy is pushed out of the chosen field-of-view. An SVD analysis
between the space of the incident plane wave amplitudes and the space of the bounded observa-
tion domain shows that the tiny spot is obtained with singular eigenvectors that have very small
singular values, as most of the eigenvectors energy is pushed out of the bounded observation
domain [45]. Thus, even a very small amount of noise (such as scattering in the sample) is
sufficient to prevent its formation.

A specific attention has now to be drawn to the use of positivity a priori information. Indeed,
the values taken by the object function being often bounded,this a priori information is used
in many deconvolution algorithms (and in particular in partIII of this thesis). For example, the
density of fluorescent markers is physically positive and the relative permittivity of dielectric
media has its real part superior to 1 and its imaginary part positive. Including thisa priori
information improves clearly the visual aspect and the apparent resolution of the reconstructed
image, but may lead to artefacts or disappearance of interesting details. Sementilliet al. [46]
proposed a method to evaluate the frequency radius up to which the Fourier components of
the sample are correctly retrieved using thisa priori information. For large field-of-view and
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common noise level there is almost no amelioration of the frequency cut-off.

Last, one may consider more stringenta priori information. For example, one can assume
that the sample consists in lines or tubes or presents a high level of sparsity. In its most extreme
version, the sample can be assumed to be constituted of isolated emitters. In this case, one can
localise, detect and separate two of them even if they are a lot closer than the resolution limit [23,
47, 48]. However, whatever thea priori information information added, one cannot decompose
the sample images on a set of components larger than the Degree of Freedom [40, 49, 50]. The
key point for high-resolution imaging is thus the development of technical solutions insuring
that only few of these components contribute to each of the measurements. Promising recent
super-resolution microscopy approaches (PALM, STORM in particular) are based on this idea.

1.5 High spatial frequencies measurements: the structured
illumination approach

Since one cannot rely on bare numerical treatments for improving resolution, one has to find a
physical process to extract information on the sample high frequencies. A simple and widely
spread technique, which can be applied to any contrast mechanism, is to use spatially inhomo-
geneous illuminations [11]. NotingP the illumination or probing function, (P depends on the
chosen light-matter interaction, it corresponds to the incident field intensity in one-photon fluor-
escence microscopy and to the incident field in tomographic diffraction microscopy), andO the
sample contrast distribution (which is either the fluorescence density or the relative permittivity
respectively), the radiated signal is often proportional to the productOP . The imaging system
does not act on the sample functionO itself, but on this product, so that the recorded image is
given byM = (OP ) ∗ h.

The convolution theorem states that the Fourier transform of a product is the convolution of
the Fourier transforms,

M̃ = (Õ ∗ P̃ )h̃.
Using an inhomogeneous probingP , information on some of the high frequencies ofO are
moved inside the measurementsM . To separate the contributions ofO andP in the filtered
product, one takes several measurements with several probing fields:Mn = (OPn) ∗ h. The
sample contrast distributionO is then recovered from the many recorded images using a numer-
ical treatment.

1.5.1 Scanning microscopy

The oldest method using this structured illumination approach is scanning microscopy. The
inhomogeneous illumination is a light spot obtained by focusing a wave into the smallest pos-
sible volume. This spot is then moved all over the sample. Noting P (r0, r) = P (r0 − r), the
illumination function produced inr when focussing onr0, the field in the image space is

M(r0, r) = [O(r)P (r0 − r)] ∗ h(r). (1.4)

One can easily show that

M(r0, r0) = O(r0) ∗ (h(r0)P (r0)). (1.5)
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Equation (1.5) is the at the basis of confocal microscopy [3]. This microscopy technique
proposes to focus a laser beam, thanks to a microscope objective, on a pointr0 of the sample,
and to detect through the same objective the light radiated by the same point. This technique
exhibits an effective point-spread-functionheff = hP and an effective Transfer Functionh̃eff =
h̃ ∗ P̃ .

Further improvements can be obtained by collecting the whole light information of Eq. (1.4)
[51, 52, 53, 54, 55, 56, 57] or by diminishing the size of the probing functionP , in shaping the
incident beam [58, 5, 59, 60], using non-linear contrast mechanisms [24, 25], or near-field
evanescent waves at the surface of nano-structured substrates [9, 61, 62, 63, 48].

1.5.2 Pattern projection

In the second important implementation of the structured illumination principle, the inhomo-
geneous probing functionsPn stretch over all the sample. The sample is not scanned by a
spot but illuminated successively under many different illumination patterns. This wide-field
approach requires a complex numerical treatment of the different images to extract a correct
estimation ofO.

The most classical illumination pattern is sinusoidal [33,13, 12]:Pn(r) = 1+cos(K.r+φn),
whereK is the vector of the sinusoidal pattern andφn is a phase that has to be different for each
illumination. This pattern is usually obtained via the interference of two coherent collimated
beams.

In this case, the Fourier transform of the imagesMn = (OPn) ∗ h fullfills

M̃n(k) =

[

Õ(k) ∗
(

δ(k) +
1

2
exp(iφn)δ(k+K) +

1

2
exp(−iφn)δ(k−K)

)]

h̃(k) (1.6)

=

(

Õ(k) +
1

2
exp(iφn)Õ(k+K) +

1

2
exp(−iφn)Õ(k−K)

)

h̃(k) (1.7)

= M̃0
n(k) + exp(iφn)M̃

+
n (k) + exp(−iφn)M̃−

n (k). (1.8)

It is clear thatM̃0
n(k) = Õ(k)h̃(k) is the image that would be obtained under an homogeneous

illumination and contains only the low frequencies of the object. On the contraryM̃±
n (k) =

Õ(k±K)h̃(k) contains frequencies ofO around the±K frequency. Using three differentφn it
is possible to separate these three components and to reconstruct Õ in a Fourier domain that is
larger than the support of̃h. The resulting Transfer Function depends onh and onK. The same
process can be repeated for different orientations ofK in order to get an isotropic improvement.

1.6 Conclusion

In this introductory chapter, we explain the basics of the image formation in a microscope,
we describe the main criteria used for the analysis of the imaging system performances, in
particular the notion of Transfer Function, and we discuss several means for ameliorating the
resolution. In this framework, we insist on the concept of structured illumination as its two
main forms, the scanning microscopy and the pattern projection, are at the basis of the work
described in parts II and III. In the following two chapters,we present in more details the
principle of fluorescence microscopy and that of Tomographic Diffraction Microscopy. In both
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cases, we give the analytical expression of their Transfer Function in order to thoroughly model
the functioning and performances of the imaging system.



Chapter 2

Basics of fluorescence microscopy

2.1 Fluorescence contrast mechanisms

Fluorescence is one of the leading contrast technique for biology since it allows selective ima-
ging with a high contrast. A fluorescent marker is a molecule or a system that is able to ab-
sorb energy from an incident field at a certain wavelength andto re-emit it later on at another
wavelength. This time delay implies that this emission is totally incoherent,i.e. the phase and
direction of the emission is random and independent of the absorption. This time delay is about
several ns, short enough to be neglected in the imaging process.

Since excitation and emission occur at different wavelengths, it is possible to filter out the
excitation light which ensures a nearly perfect contrast. Moreover, it is possible to fix these
markers to specific targets and thus to image a specific chemical component of the sample.

When the excitation intensity received by the fluorescent marker is low, the emitted intensity
is proportional to the excitation intensity surrounding it[64]: Iout = σIext, whereIout is the
intensity emitted by the marker andIext is the intensity of the field at the absorption wavelength
and at the position of the marker. The coefficientσ expresses the efficiency of the marker. In
this study, we assume that the fluorescence process follows this linear regime.

Ordinary fluorescent markers are a lot smaller than the resolution reachable in optical micro-
scopy. It is generally possible to consider a collection of markers diluted in a sample as a con-
tinuous density. One defines the functionρ of the space positionr such thatρ(r)dr =

∑L
l=1 σl,

whereL is the number of markers in the small volumedr andσl is the emission coefficient of
thel-th fluorophore. However this modelling neglects three issues,

• Bleaching: The coefficientσ actually decreases with time. More precisely, its decay is
proportional to its emitted energyIout [65].

• Blinking: Besides this decay, there is a quick fluctuation ofσ versus time. This fluctuation
is useful for techniques like PALM and STORM [23] and is at thebasis of SOFI [66].
Here, we assume that the integration time is long enough to average this variation.

• Near-Field interactions: The coefficientσ of a fluorophore is actually influenced by its
surroundings [67, 68]. For example, the emission of a singlemarker close to a mirror
depends on its position with respect to the mirror.
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In the theoretical study developed in this work, these effects are neglected and they constitute
the main sources of error of the model.

2.2 Image formation

The model of image formation in fluorescence microscopy assumes the total independence and
incoherence of the light emitted by each fluorescent marker.The intensity measured by the
detector is the sum of the intensity emitted by each fluorophores.

M = (ρIext) ∗ h, (2.1)

whereh is the intensity distribution created on the detector by a single dipole emitter placed
in the centre of the coordinate system with total emitted intensity 1. The measurements are
performed on a planar detector placed at the image focal plane of the microscope. As discussed
in Sec. 1.1.2, it is the only plane were the imaging system is stigmatic. Thus, the recorded
intensity at(x, y) on the detector can be modelled as,

M(x, y) = [(ρIext) ∗ h]z=0 (2.2)

=

∫

R3

ρ(x′, y′, z′)Iext(x
′, y′, z′)h(x− x′, y − y′, 0− z′)dx′dy′dz′. (2.3)

For obtaining a three-dimensional image, it is not possibleto scan the detector through the
image space. Indeed images are aberrated for all planes but that at(z = 0). Instead, the sample
is scanned vertically through the focal plane. DefiningM(x, y, z0) the image recorded when
the sample has been drifted vertically by−z0, one gets,

M(x, y, z0) =

∫

R3

ρ(x′, y′, z′ + z0)Iext(x
′, y′, z′)h(x− x′, y − y′,−z′)dx′dy′dz′. (2.4)

This equation is the fundamental relation that describes the image formation in three-dimen-
sional fluorescence microscopy.

In the particular and widely spread case where the illumination is homogeneous over the
sample,Iext = constant, one obtains,

M(x, y, z0) = Iext

∫

R3

ρ(x′, y′, z′ + z0)h(x− x′, y − y′,−z′)dx′dy′dz′. (2.5)

Notingz′′ = z′ + z0 yields to,

M(x, y, z0) = Iext

∫

R3

ρ(x′, y′, z′′)h(x− x′, y − y′, z0 − z′′)dx′dy′dz′′. (2.6)

This result can be summarized by the compact formula,

M = Iext(ρ ∗ h), (2.7)

whereIexth is the effective point-spread-function of the wide-field fluorescence microscopy.

In structured illumination techniquesIext is spatially in-homogeneous over the sample. The
link betweenρ and the measurement depends on the variations of the illumination intensity pat-
terns with respect to the vertical scanning. In cases whereIext is invariant along thez direction,
one deduces from Eq. (2.4) that

M = (ρIext) ∗ h. (2.8)
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2.3 Point-spread-function modelling

Modelling accurately the Point-Spread Functionh (PSF) is generally not possible since the
latter depends on optical components (objective, ocular) that are not well known. Yet, one
can derive a simple approximated expression which is enoughto give useful information. By
definition, h is the intensity distribution radiated on the detector by a single dipole emitter,
placed at the crossing between the optical axis and the object focal plane, with total emitted
intensity 1. Strictly speaking, the actual PSFh depends on the orientation of the emitter. Yet,
in most cases, in the small volumedr, there are several emitters each oriented in a different
direction and they are spinning during each measurements. For this reason, one assumes that the
“model” fluorescent marker emits a perfectly spherical scalar field, this scalar field representing
the average of the radiated vectorial field components over all polarisations.

The spherical scalar field can be decomposed as a sum of plane waves emerging from the
emitter, all of them having a zero phase at the marker position P = (0, 0, 0). From ref. [2,
Sec. 13. 2] this spherical scalar field can be written under the Weyl decomposition as,

E(r) =
exp(ik0r)

4πr
=

i

8π2

∫

k‖∈R2

1

kz
exp(ik.r)dk‖, (2.9)

wherek‖ = kxx + kyy is the projection ofk on the(x, y) plane, and

kz =

{

√

k20 − ‖k‖‖2 if‖k‖‖ ≤ k0,

i
√

‖k‖‖2 − k20 if‖k‖‖ ≥ k0.
(2.10)

As explained in Sec. 1.1.2, all plane waves that are either evanescent (‖k‖‖ ≥ k0) or whose polar
angle with respect to the optical axisθ is superior to the maximum anglea are lost. The others
are collected by the objective. In the spherical coordinates basis wherekx = k0 sin θ cosφ, ky =
k0 sin θ sin φ, kz = k0 cos θ, the collected field reads,

Ecollected(r) =
i

8π2

∫

θ∈[0,a]

∫

φ∈[0,2π]

1

k0 cos θ
exp(ik.r)k20 sin θ cos θdθdφ

=
i

8π2

∫

θ∈[0,a]

∫

φ∈[0,2π]

exp(ik.r)k0 sin θdθdφ. (2.11)

2.3.1 Two-dimensional PSF

In this paragraph, one assumes that the sample thickness is small in comparison to the wave-
lengthλ. It is thus unnecessary to scan the sample vertically and themeasurements are linked to
the two-dimensional surface density of fluorophores by a two-dimensional PSF. This restrictive
model, which is appropriate for samples that have been physically sectioned in thin slices, is
interesting because it leads to an analytical formula for the PSF. It will be used throughout all
the work of Chap. 6.

One notesr′ = (x′, y′) an orthogonal coordinate system centred at the crossing between the
optical axis and the image focal plane and(x, y) = (x′/MF, y′/MF) a coordinate system that
reduces all dimensions to fit the actual dimensions of the sample.
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Figure 2.1: Sketch of the geometrical notations used for thepoint-spread-function modelling.

Under the Sine-Abbe condition, each plane wave, with wave vectork = (k0, θ, φ) radiated
by the emitter placed atP in the object focal plane is transformed into a plane wave with wave
vectork′ = (k0, θ

′, φ), such thatsin θ = MF sin θ′ at the image focal plane and a complex
amplitude dimmed by the

√
cos θ factor. All the plane waves in the image domain interfere

constructively atP ′ = (0, 0), the conjugate point ofP through the whole imaging system.
Noting a′, sin a = MF sin a′, the maximum angle of the plane waves reaching the detector
plane (Figure 2.1 illustrates the notations) the field obtained at the image focal plane reads [29,
Chap. 4],

E(x′, y′) =
i

8π2

∫

θ′∈[0,a′]

∫

φ∈[0,2π]

exp(ik′.r′)
√
cos θk0 sin θ

′dθ′dφ (2.12)

=
i

8π2

∫

θ′∈[0,a′]

∫

φ∈[0,2π]

exp [ik0 sin θ
′(x′ sinφ+ y′ cosφ)]

√
cos θk0 sin θ

′dθ′dφ.

Expressing this field in terms of the coordinate(x, y) = (x′/MF, y′/MF) and usingsin θ =

MFsin θ′ anddθ′ = cos θ/
√

MF2 − sin2 θdθ, leads to,

E(x, y) =
i

8π2

∫

θ∈[0,a]

∫

φ∈[0,2π]

exp [ik0 sin θ(x sin φ+ y cos φ)]

× k0

MF2

√
cos θ

√

1− sin2 θ/MF2
sin θ cos θdθdφ (2.13)

=
ik0

MF24π

∫

θ∈[0,a]

J0(k0r sin θ)

√
cos θ

√

1− sin2 θ/MF2
sin θ cos θdθ, (2.14)

wherer =
√

x2 + y2.

Neglecting the
√
cos θ/

√

1− sin θ2/MF2 factor, that is about1 for low numerical aperture,
one gets for the scalar fieldE and the intensity per surface unitI = |E|2 ([2, Sec. 8.5.2],

E(r) =
ik0NA

2

MF24π

J1(k0NAr)

k0NAr
(2.15)

I(r) =

(

k0NA
2

MF24π

)2(
J1(k0NAr)

k0NAr

)2

. (2.16)
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Figure 2.2: Radial cut of the Transfer Function of a fluorescent microscope imaging a 2D
sample.

The expression Eq. (2.16) is approximative but it presents the main characteristics of the
actual experimental PSF. Note that it can be seen as a Fouriertransform operating on the 2D
support function of a disk centred at0 with radiusk0NA. Thus, the detected fieldE(r) does
not contain frequencies beyondk0NA andI(r) = |E(r)|2 does not contain frequencies beyond
kc = 2k0NA. Equation (2.16) gives a resolution of0.61λ/NA for the Rayleigh criterion. The
Fourier transform of Eq. (2.16) is the Transfer Function of the imaging system and can be seen
as a low-pass filter. Its radial cut is plotted in Fig. 2.2. It decays continuously as the spatial
frequency increases and exhibits a non derivable peak at zero frequency.

2.3.2 Full three-dimensional PSF

To model the actual three-dimensional PSF, one has to consider the contribution of fluorophores
that are out of the object focal plane. The intensity map on the detector depends on their axial
position. We define the 3D PSF as the 3D image created by scanning a single emitter along
the optical axis. Let’s consider an emitter placed at the axial position−z from the focal plane.
It emits a spherical field which can be decomposed as a sum of plane waves with constant
amplitude and zero phase at the emitter position, leading toa phase accumulation ofk0z cos θ
at the focal plane [31]. Using Eq. (2.13) the field generated in the image plane is [29, Chap. 4],

E(x, y, z) =
ik0

MF28π2

∫

θ∈[0,a]

∫

φ∈[0,2π]

exp [ik0 sin θ(x sin φ+ y cosφ) + ik0z cos θ]

×
√
cos θ

√

1− sin2 θ/MF2
sin θ cos θdθdφ. (2.17)

This expression can be seen as a Fourier transform operated on a finite part of 3D spatial fre-
quency space: the part of the sphere of radiusk0 centred in0, whose inclination angle with
respect to the optical axis verifiesθ ≤ a (see Fig. 2.3 (a)). Then, the intensityI(x, y, y) =
|E(x, y, z)|2 is the inverse Fourier transform of the autocorrelation of afunction defined on this
cap of sphere. Hence, the frequencies ofI are contained in the eye-shaped torus whose(x, z)
cut is represented in Fig. 2.3 (b).

Note that the(kz = 0) cut of the 3D support of the Transfer Function is exactly thatof the 2D
Transfer Function. One observes that thekz extension of the 3D support when(kx = 0, ky = 0)



2.4 Conclusion 41

Figure 2.3: Sketch of the(kx, kz) cut of the support of the Fourier Transform of the 3D PSF.
(a) Support of the Fourier Transform of the electric field repartitionE. a is the maximum angle
accessible through the objective. The dotted circle is the(kx, kz) cut of thek0-radius sphere
called the Ewald Sphere. (b) Support of the Fourier Transform of the intensity repartitionI,
autocorrelation of (a) and transfer function of the detection.

is infinitely small. This last property implies that, whatever thez position of an emitting plane,
its average light-intensity arrives unattenuated on the detector. In practical situations, this out-
of-focus contribution dramatically dims the image contrast. Moreover, the global extension
along thekz direction of the Transfer Function is much smaller than thatobtained along thekx
andky directions, see Fig. 2.3. Thus, the axial resolution is expected to be much worse than the
lateral resolution.

2.4 Conclusion

In this chapter, a model describing the three-dimensional image formation in a classical fluor-
escence microscope is derived. The expression of the Transfer Function is given in the two-
dimensional and three-dimensional configuration. This study stresses the need for sectioning
techniques for improving the axial resolution. Imaging of deep three-dimensional samples is
indeed almost impossible in a classical wide-field fluorescence microscopy.

This chapter is an introduction to the two studies we led on fluorescence microscopy. The
first one, presented in Chap. 5, proposes an improvement of confocal fluorescence microscopy
by placing a mirror behind the sample. The second one, presented in Chap. 6, is devoted to
structured illumination fluorescence microscopy.



Chapter 3

Tomographic Diffraction Microscopy

Tomographic Diffraction Microscopy (TDM) is a technique that has been described 40 years
ago [69][2, section 13.2] but that has waited until recent years to see experimental realisations in
optics. It consists in recording the field (amplitude and phase) diffracted by a sample for many
different illuminations and to reconstruct numerically the sample relative permittivity from the
stack of complex data. This method is an extension of digitalholography in which the sample
is illuminated by a collimated coherent beam (a plane wave),and an interferometric mounting
is used to record an hologram of the diffracted field. In Tomographic Diffraction Microscopy,
the angles of illumination are varied and several hologramsare recorded.

In this chapter, the relationship between the sample relative permittivity and the diffracted
field is derived in the electromagnetism framework. Then, the existence of a Transfer Function
under the Born approximation is discussed. Finally, several experimental implementations of
TDM are presented and compared.

3.1 Diffraction process

The field surrounding an object placed in vacuum and illuminated by an incident monochromatic
electromagnetic wave satisfies the Maxwell equations,

∇.D = 0, (3.1)

∇.B = 0, (3.2)

∇× B = µ0(J− iωD), (3.3)

∇× E− iωB = 0, (3.4)

whereJ is the source current that generates the incident electromagnetic wave,E is the electric
field, B is the magnetic field,µ0 is the vacuum magnetic permeability. The displacement field
D is linked toE by

D = ε0E+P, (3.5)

whereP is the polarisation vector field andε0 is the vacuum permittivity. Inserting Eqs. (3.3)
and (3.5) in∇× (3.4), one obtains

∇× (∇× E)− k20E = iωµ0J+ ω2µ0P, (3.6)
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Figure 3.1: Sketch of the general principle of Tomographic Diffraction Microscopy. The sample
contained in the volumeΩ with a space-dependent relative permittivityε(r) is illuminated suc-
cessively with plane waves with wave vectorkinc. For each incident plane wave, one measures
the diffracted field for manyk directions.

wherek0 = ω/c for c = 1/
√
ε0µ0. P models the light-matter interaction and governs the

interaction between the object and the incident wave. For a linear interaction,P = ε0χE,
whereχ is the space dependent linear susceptibility of the object.The linear susceptibility is
also called the permittivity contrast asχ = ε − 1, whereε(r) is the relative permittivity,i. e.
the square of the complex refractive index of the object.

To pursue further our analysis, we now assume that the object, described by its complex
relative permittivityε(r) and contained in the finite volumeΩ is illuminated by an incident field
Einc. Einc is the field created by the currentJ that would exist in absence of the sample,i. e.
whenP = 0. The incident field satisfies the equation,

∇× (∇× Einc)− k20Einc = iωµ0J. (3.7)

One defines the diffracted fieldEd as the difference between the total fieldE and the incident
field,Ed = E− Einc. Subtracting Eq. (3.7) from Eq. (3.6) one gets,

∇× (∇× Ed)− k20Ed = ω2µ0P, (3.8)

with P = ε0χE. This equation allows the computation of the diffracted field from the know-
ledge of the polarisation fieldP. As it is a linear equation, we can solve it using the Green’s
function technique.

The Green’s tensor̄G of Eq. (3.8) is defined such that̄G(r, r′)p is the field created atr′ by
an infinitely small dipole emitterp placed atr. Thus,Ḡ(r, r′)p is solution of

∇×
(

∇× Ḡ(r, r′)p
)

− k20Ḡ(r, r′)p = δ(r− r′)p. (3.9)

The outgoing solution for the Green’s function is [1, section 9.2]

Ḡ(r, r′)p = − 1

4πk20
∇× ∇×

(

exp(ik0∆r)

∆r
p

)

+
1

k20
pδ(r− r′), (3.10)
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where∆r = ‖r− r′‖, that can be decomposed using the Weyl decomposition in [2, Sec. 13. 2]
and assumingz ≥ z′

Ḡ(r, r′)p =
i

8π2k20

∫

k‖∈R2

1

kz
exp
(

ik.(r− r′)
)

k× (k× p) dk‖ +
1

k20
pδ(r− r′), (3.11)

with

kz =

{

√

k20 − ‖k‖‖2 if ‖k‖‖ ≤ k0,

i
√

‖k‖‖2 − k20 if ‖k‖‖ ≥ k0.
(3.12)

The solution of Eq. (3.8) can be expressed as

Ed(r) =

∫

Ω

Ḡ(r, r′)ω2µ0P(r′)dr′ (3.13)

=
iω2µ0

8π2k20

∫

Ω

∫

k‖∈R2

1

kz
exp
(

ik.(r− r′)
)

k× (k×P(r′)) dk‖dr
′ +

ω2µ0

k20
P(r)

=
iω2µ0

8π2k20

∫

k‖∈R2

1

kz
exp(ik.r)k×

(

k×
∫

Ω

exp(−ik.r′)P(r′)dr′
)

dk‖ +
ω2µ0

k20
P(r)

=
iω2µ0

8π2k20

∫

k‖∈R2

1

kz
exp(ik.r)k×

(

k× P̃(k)
)

dk‖ +
ω2µ0

k20
P(r) (3.14)

Noting that(ω2µ0)/k
2
0 = 1/ε0 ask0 = ω/c = ω/

√
ε0µ0, the expression of the diffracted field

reads

Ed(r) =
i

8π2

∫

k‖∈R2

1

kz
exp(ik.r)k×

(

k× P̃(k)

ε0

)

dk‖ +
P(r)

ε0
. (3.15)

This relation shows that the diffracted field is a sum of planewaves, each proportional to a
Fourier component ofP. As explained in Sec. 1.1.2, the plane waves such that‖k‖‖ ≤ k0NA
are collected by the microscope objective and focussed on a point of the back focal plane. More
precisely, if the field diffracted by the sample towards the objective is written as

Ed(r) =
i

8π2k0

∫

k‖∈R2

1

kz
Ed(k) exp(ik.r)dk‖, (3.16)

the diffracted field at the back focal plane of the objective reads

Ed,bfp

(

D

k0NA
k‖

)

= C
i

8π2

√

k0
kz

Ed(k), (3.17)

whereC is a constant depending on the objective andD is the diameter of the exit pupil,
the illuminated part of the back focal plane. Eq. (3.17) shows that part of the plane wave
decomposition ofEd(k) can be measured directly at the back focal plane of the objective.
Detail on how this can be done experimentally is described inSec. 3.3. Using Eqs. (3.15) and
(3.16), the plane wave amplitude of the diffracted field,Ed(k), can be expressed as the Fourier
transform of the productχE of the linear susceptibility and the total field inside the sample

Ed(k) = k0k×
(

k× P̃(k)

ε0

)

(3.18)

Ed(k) = k0k×
(

k×
∫

Ω

exp(−ik.r)χ(r)E(r)dr
)

. (3.19)
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Eq. (3.19) is the fundamental relationship of Tomographic Diffraction Microscopy explain-
ing how the measurements of the diffracted field can be used toretrieve quantitatively the shape
and nature of the sample (namely, the map ofχ). For one given illumination, the Fourier
transform ofχE is known on a cap of sphere of radiusk0 corresponding to the extremity of the
wave-vectors collected by the objective, see Fig. 2.3 (a). As expected, the far-field measurement
of the microscope filters out the diffracted field transversespatial frequencies overk0NA.

However, because of the frequency mixing betweenχ andE, the accessible spatial frequen-
cies ofχ are not limited by this fundamental limit. The accessible frequencies ofχ that can
be retrieved from the diffracted field measurement depends on the spatial frequencies ofE, the
field inside the sample and can be found beyond thek0NA domain. The field inside the sample
changing with the illumination, each novel measurement yields a different accessible Fourier
domain forχ. Hence, we see that Tomographic Diffraction Microscopy is aperfect example of
Structured Illumination Microscopy as presented in Sec. 1.5. The performance of TDM and the
ability to reconstruct easily the map ofχ depends on the fieldE probing the sample.

3.2 Evaluation of the field inside the sample

The field inside the sample is equal to the sum of the incident and diffracted fields,E = Einc +
Ed. Using Eq. (3.13), this leads to

E(r) = Einc(r) +

∫

Ω

Ḡ(r, r′)ω2µ0P(r′)dr′ (3.20)

E(r) = Einc(r) +

∫

Ω

Ḡ(r, r′)k20χ(r′)E(r′)dr′. (3.21)

This integral equation allows the computation ofE knowing the incident fieldEinc and the
sample permittivity contrastχ. We observe thatE, the field inside the sample, depends onχ,
i. e. on the sample itself. As a result, the diffracted field, whichis related to the Fourier trans-
form of χE is not linearly linked toχ. Thus, Tomographic Diffraction Microscopy and, more
generally, all unstained microscopy techniques are NOT linear imaging tools and cannot be de-
scribed by a Transfer Function. However, under certain important assumptions, Eq. (3.21) can
be simplified, leading to a linear dependence of the diffracted field with the sample parameter
of interest. Most of the microscopy theories are developed under these assumptions.

3.2.1 Born approximation and linear reconstruction

In cases whereχ ≪ 1 and the volumeΩ is small in comparison toλ3, one can apply theBorn
approximation [70]. The field diffracted by the sample is assumed to be negligible compared
to the incident field, leading toE ≈ Einc in Ω, so that Eq. (3.19) can be rewritten as

Ed(k) ≈ k0k×
(

k×
∫

Ω

exp(−ik.r)χ(r)Einc(r)dr

)

(3.22)

If the incident field is a plane waveEinc = E0 exp(ikinc.r), whereE0 is the incident vector
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amplitude, Eq. (3.22) is cast in the form

Ed(k,kinc) = k0

∫

Ω

exp(−ik.r)χ(r) exp(ikinc.r)k× (k× E0) dr (3.23)

= k0χ̃(k− kinc)k× (k× E0) , (3.24)

whereχ̃ is the Fourier Transform of the permittivity contrastχ.

Thus, under the Born approximation, each measurement is proportional to a Fourier com-
ponent ofχ. Reconstruction can be simply done using an inverse Fouriertransform. The
obtained image is thus linear in the permittivity contrast.The transfer function is equal to1 in
the volume of the Fourier space reached byk− kinc and0 everywhere else.

3.2.2 Renormalised Born approximation

If we cannot assume the Born approximation, one has to solve Eq. (3.21) to know the field
inside the sample. Solving it presents a mathematical difficulty because the tensor̄G given by
Eq. (3.10) has a non-integrable singularity. The classicalway to solve this issue is to separate
the integral appearing at the right hand side of Eq. (3.21) intwo: First the integral in a small
ball with radiusd aroundr, then the rest ofΩ. Whend tends toward0, the first part becomes a
linear tensor of the value atr, and the second a Cauchy principal value [71],

∫

Ω

Ḡ(r, r′)P(r′)dr′ = L̄P(r) + PV

∫

Ω

Ḡ(r, r′)P(r′)dr′, (3.25)

whereL̄ = −Ī/3k20 for Ī the identity tensor onC3. Of courseL̄ and the principal value change
depending on the geometry of the exclusion volume [71].

Thus Eq. (3.21) becomes:

E(r) = Einc(r)−
ε(r)− 1

3
E(r) + PV

∫

Ω

Ḡ(r, r′)[ε(r′)− 1]E(r′)k20dr
′, (3.26)

NotingElocal(r) = E(r)[ε(r) + 2]/3 andα(r) = 3[ε(r)− 1]/[ε(r) + 2] one obtains

Elocal(r) = Einc(r) + PV

∫

Ω

Ḡ(r, r′)3ε(r
′)− 1

ε(r′) + 2
Elocal(r

′)k20dr
′ (3.27)

= Einc(r) + PV

∫

Ω

Ḡ(r, r′)α(r′)Elocal(r
′)k20dr

′. (3.28)

By analogy with concepts issued from the theory of macroscopic field in dense dielectric ma-
terial [1, Sec. 4.5],α is called the bulkpolarisability andElocal the local field. Looking at
Eq. (3.28) and remembering the Born approximation, one can formulate therenormalised
Born approximation [72] byElocal(r) ≈ Einc(r). Under this approximation, one obtains again
a simple formula for the diffracted field

Ed(k,kinc) = k0α̃(k− kinc)k× (k× E0) , (3.29)

whereα̃ is the Fourier Transform ofα. An inverse Fourier transform of the measured field,
yields a map ofα from which one can deduce a map ofε. Under the renormalised Born approx-
imation, the recorded data are linearly linked to the samplepolarisability. The renormalised
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Born approximation can be applied to higher permittivity contrast than that required for the
usual Born approximation. Yet, there remain cases where none are valid (for example, the man-
ufactured nano-structured components of the micro-electronic domains). In these cases, the
field inside the sample is given by Eq. (3.28). The image formation is no more linear inα and
the reconstruction requires specific algorithms (see Chap.7).

3.3 Experimental implementation of TDM

We now turn to a rapid description of the different implementations of TDM.

3.3.1 Measurement techniques

In most existing configurations [73, 74, 75], the sample is illuminated by a collimated laser
beam, the direction of which is controlled by a tilting mirror, and a microscope objective is
used to collect the diffracted field. The incident and observation directions are limited by the
numerical apertureNA of the objective. The plane wave amplitudes of the diffracted field
Ed(k) can be measured directly on a plane conjugated to the back focal plane of the objective.
Alternatively, one measures the diffracted field on a plane conjugated with the sample one [76]
and the plane wave amplitude are recovered by a numerical Fourier transform.

The main difficulty of TDM is to record the phase and amplitudeof the diffracted field for
various illuminations. That means having in parallel with the ordinary intensity map, a phase
map of the received optical field on the detector. Many techniques can be used to measure the
phase of the field,

• One can use a classical interferometric method in which the phase is retrieved from
several interferences of the diffracted field with a reference beam whose phase is ro-
tated [77, 78].

• One can use off-axis interferometry in which the reference beam is tilted. This produces a
periodic pattern that is perturbed by the phase and amplitude modulation of the diffracted
field. From a single measurement it is possible by a treatmentin the Fourier space to
retrieve both amplitude and phase of the diffracted field [79, 80].

• One can use the Transport-of-Intensity Equation which allows, from measurements of the
diffracted intensity in two parallel planes, thus without the need of a reference beam, to
recover the phase and amplitude in one of those planes [81].

• Last, one can use quadri-wave lateral shearing interferometry in which the field map pro-
duced by a diffraction grating placed at some distance before the camera allows via a
numerical treatment in the Fourier space to recover the amplitude and the phase gradi-
ent [82, 83].

Moreover, this task requires the finding of a reference phase, via the reflected or the trans-
mitted specular values, for getting rid of the uncontrolledphase of the incident beam [73]. These
various approaches have been used for two main geometries, the transmission and the reflection
configurations [75].
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3.3.2 Transmission vs reflection configuration

In the transmission configuration, the illumination and theobservation are performed from two
different sides of the sample (using a condenser and an objective facing each other). In the
reflection configuration, one illuminates and observes the sample from the same side with the
same objective.

In the transmission configuration, assuming that the condenser and the objective have the
same maximum anglea, k andkinc are both contained in the part of the Ewald sphere where
the polar angle is inferior toa (see Fig. 2.3 (a)). Thus the volume of the Fourier space that
is accessible byk − kinc is the eye-shape torus volume shown in Fig. 3.2 (a). As seen in
Figs. 3.2 (a) and 2.3 (b) the support of Transfer Function fora transmission TDM in the same
as the one in fluorescence microscopy. However the Transfer Function in TDM is always 1
in its support, which is not the case in fluorescence microscopy. The point-spread-function,
obtained by inverse Fourier transforming the transfer function is shown in Fig. 3.2 (c). The
radial resolution is nowλ/(2NA), according to the Rayleigh criterion defined in Sec. 1.3, and
the axial one is at bestλ/(1 − cos a). Note that in TDM the Rayleigh and Sparrow criterion
give the same resolution. Indeed the transfer function is always equal to 1 (and then superior to
0.10) as long as the frequency is below the frequency cut-off.

In the reflection configuration,kinc is now reversed. It is contained in the part of the Ewald
sphere where the polar angle is superior toπ − a. Thus the volume of the Fourier space that
is accessible byk − kinc is the volume delimited by the part of the2k0-radius sphere with
polar angle inferior toa and the plane(kz = 2k0 cos a) (shown in Fig. 3.2 (b)). Figure 3.2
(b) shows that the Transfer Function of TDM in the reflection configuration is not symmetrical
about zero. Thus, its inverse Fourier transform is not real.In Fig. 3.2 (d) and (e) we plot the
real and imaginary part of the Point-Spread-Function. While the real part shows an almost
spherical shape, the imaginary part is of the same order as the real part and antisymmetric. If
the sampleα has both a real and imaginary part, their images are mixed by this convolution
function. The reflection configuration is thus limited to pure phase samples. For pure phase
samples the resolution is almost isotropic, being equal toλ/(2NA) in the lateral direction and
λ/2 in the axial one. An example of sample reconstruction can be found in Sec. 4.2.3

Note that this analysis assumes an infinitely low noise level. Indeed the Fourier components
of α are measured several times in the measurement process. For the samekmes, several pairs
(k,kinc) verify kmes = k − kinc. Noise can thus be reduced by averaging redundant measure-
ments ofα̃(kmes). However, this averaging has not the same strength on the whole support of
the transfer function [84]. Of course the precise value of this noise averaging function depends
on the chosen set of illumination directions.

3.4 Conclusion

This chapter explains the principles of Tomographic Diffraction Microscopy. Inhomogeneity in
the sample permittivity causes diffraction of the incidentfield. Measurement of the diffracted
field in the back focal plane of the objective allows the measurement of Fourier components
of χE, the product of the linear susceptibility and the field inside the sample. Usually, the
probing fieldE depends also on the sample susceptibility. Thus, in general, the recorded data
are non-linearly linked to the sample parameter of interestand requires non-linear reconstruc-



3.4 Conclusion 49

Figure 3.2: Transfer Function and Point-Spread-Function of the transmission and reflection
configuration in TDM. (a) Transfer Function for the transmission configuration. The Transfer
Function is 1 in the hatched region and 0 elsewhere. (b) Transfer Function for the reflection
configuration. (c) Point-Spread-Function for the transmission configuration. (d) and (e) real
and imaginary part of the Point-Spread-Function for the reflection configuration. In (c-e) one
assume that the maximum angle accessible trough the objective isa = 70◦, which corresponds
to a numerical aperture NA=0.95.
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tion schemes for retrieving the sample. A study on these sophisticated inversion techniques is
presented in Chap. 7.

Yet, assuming the Born approximation, or better the renormalised Born approximation, a
linear link between the diffracted field and the Fourier components ofχ can be derived. In
this case, a simple linear reconstruction of the sample permittivity map is possible and one can
derive Transfer and point-spread-functions for various configurations such as transmission and
reflection set-ups. We observe that, in transmission, the axial resolution is much worse than
the lateral one. In reflection, the axial resolution is comparable to the lateral one, but the point-
spread-function mixes the real and imaginary parts of the permittivity leading to uninterpretable
images when the samples are not pure phase objects. We show inthe next chapter how one can
improve the TDM implementation so as to obtain an isotropic resolution without mixing the
real and imaginary parts of the estimated permittivity maps. The main idea is to combine both
the transmission and reflection configurations by placing the sample on a mirror.



Part II

Mirror and axial resolution



Chapter 4

Mirror-assisted Tomographic Diffraction
Microscopy

Like most optical microscopy techniques, the axial resolution of Tomographic Diffraction Mi-
croscopy (TDM) in transmission configuration is several times poorer than the lateral one. This
comes from the fact that the illumination and observation isperformed from one side only of
the sample (through the objective and condenser). In an ideal configuration where the sample
could be observed and illuminated from all possible directions, TDM would yield (under the
Born approximation) the permittivity map of the sample withan isotropic resolutionλ/2. The
microscope asymmetry and the lack of angular coverage can bepartially compensated by ro-
tating the sample [74, 85] or by imposing the positivity of the sought dielectric contrast in the
inversion procedure [86]. Yet, these approaches are limited to certain types of samples and
the image resolution remains generally below that which would be obtained with a complete
isotropic tomography configuration where the sample is illuminated and observed from every
possible angles. Hence, the best solution is to illuminate and observe the sample from both
sides, for example by placing the sample between two opposing objectives as in a 4Pi micro-
scope set-up. Unfortunately, although 4Pi TDM is easier to implement than 4Pi fluorescence
microscopy, as it does not require any precise alignment andstabilisation of the objectives, this
approach is quite time-consuming and requires a complex set-up.

To simplify the data recording and the experimental implementation, we propose, in this
chapter, to take advantage of the versatility of the numerical reconstruction process for consid-
ering a configuration in which the sample is deposited onto a mirror [4] and introduced in a
classical TDM set-up in reflection. Thanks to the reflection on the mirror, the sample is illumin-
ated and observed from both sides, and thanks to the numerical reconstruction, the entangled
top and back views of the sample can be unravelled. This mirror approach, which is new to our
knowledge in optics, has had precursors in the mechanical [87, 88], radar [89] and acoustic [90]
waves domains, mostly in the two-dimensional simplified case.

In the first section of this chapter, we provide an analysis ofthe mirror-assisted TDM in the
two-dimensional (2D) scalar configuration. This study allows interesting insights on the inform-
ation content of the measurements and underlines the role ofpolarisation. In the second section,
the full three-dimensional (3D) model is derived and results are supported by simulations.
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Figure 4.1: Sketch of the mirror-assisted Tomographic Diffraction Microscopy. The sample
is illuminated successively by several incident plane waves with wave vectorskinc. For each
incident plane wave, the diffracted field is measured for allk directions that are accessible
through the objective.

4.1 Mirror-assisted Tomographic Diffraction Microscopy in
the two-dimensional scalar configuration

Let (O,x,y, z) be the right-handed Cartesian coordinate frame such that the mirror is on the
plane(z = 0) andz is the optical axis. The sample is placed in the half-spacez ≥ 0 over
the mirror (see Fig. 4.1). The sample is supposed to be invariant along they direction so
that its permittivity depends only on thex andz variablesε(r) = ε(x, z). Illuminations and
observations are done only in the(x, z) plane. To simplify the formulation, thex andz Cartesian
coordinates of the incident and detected wave vectors are denoted asβ andγ. Thus, the incident
and detected wave vectors reads respectivelykinc = βincx − γincz andk = βx + γz. The
mirror is assumed to be perfectly conductor, so that the reflection coefficient is equal to−1
for s-polarisation (the electric fieldE is directed along they axis) and 1 forp-polarisation (the
magnetic fieldH is directed along they axis).

4.1.1 Illumination with spolarisation

We first study thes-polarisation configuration in which the incident electrical field is perpen-
dicular to (x, z), Es

inc = E0 exp(iβincx + iγincz)y. Symmetry considerations show that the
diffracted field is alsos-polarised:Es

d = Es
d(x, z)y.

4.1.1.1 Modelling of the diffracted field

The reference field, which is the field that would exist without the sample,Es
ref is the sum of

the incident field and the field reflected by the mirror

Es
ref = Es

refy = E0 [exp(iβincx+ iγincz)− exp(iβincx− iγincz)]y. (4.1)

Following the derivation of Sec. 3, we know that the field measured in the back focal plane
of the objective is proportional toEs

d(k) the plane wave decomposition of the diffracted field
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Figure 4.2: Sketch of the 4 contributions appearing in Eq. (4.4). (1) contribution of waves
directly diffracted by the sample. (2) contribution of waves reflected by the mirror and then
diffracted by the sample. (3) contribution of waves diffracted by the sample and then reflected
by the mirror. (4) contribution of waves reflected by the mirror, diffracted by the sample and
reflected again by the mirror.

which in 2D reads [91]

Es
d(x, y) = − i

4π

∫

β∈R

1

γ
Es

d(k) exp(ik.r)dβ. (4.2)

To calculateEs
d(k), we calculateḠs

mirrorp the field radiated by a line-sourcep = pyy placed
at (x, z) in presence of the mirror. By virtue of the method of images, this field is equal to the
field radiated in free space by the line-source plus the field radiated in free-space by its image
through the mirror. The image of the line-sourcep at (x, z) is another line-sourcep′ = −pyy
placed at(x,−z). The expression of̄Gs

mirrorp is thus, ref. [91]

Ḡs
mirror(r, r

′)pyy = − i

4π

∫

β∈R

1

γ

[

exp
(

−iβ(x− x′)− iγ|z − z′|
)

− exp
(

−iβ(x− x′) + iγ(z + z′)
)]

pyydβ.

(4.3)

Using the Born approximationP ≈ χEs
ref , and inserting Eqs. (4.1) and (4.3) in Eq. (3.13), one

gets forEs
d defined in Eq. (4.2)

Es
d(k,kinc) = E0k

2
0 [χ̃(βinc − β, γinc − γ)− χ̃(βinc − β, γinc + γ)

− χ̃(βinc − β,−γinc − γ) + χ̃(βinc − β,−γinc + γ)] .
(4.4)

The first term of Eq. (4.4) represents contributions corresponding to an illumination and an
observation without any interaction with the mirror, Fig. 4.2 (1). It is thus equivalent to the
unique term of Eq. (3.24), obtained in the configuration without the mirror. The second term
of Eq. (4.4) represents contributions in which the sample isilluminated by the reflection of the
incident beam onto the mirror and the diffracted waves are directly collected by the objective,
Fig. 4.2 (2). The third one represents contributions in which the sample is directly illuminated
by the incident beam and the observation is done after reflection of the diffracted waves onto the
mirror, Fig. 4.2 (3). The last term corresponds to contributions where the sample is illuminated
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by the reflection of the incident beam and the diffracted waves are collected after reflection onto
the mirror, Fig. 4.2 (4).

We see in Equation (4.4) that each measurement depends on four Fourier components of
the linear susceptibility of the sample. To reconstruct thesample permittivity map, it is thus
necessary to separate those terms. To address this issue, Mora [87] and Huttet al. [88] used
a priori information on the sample. Nolanet al. [89] proposed a configuration where each
contribution are separated geometrically by using two perpendicular mirrors instead of one.
This cannot be done easily in optics since it would require a positioning of the corner between
the two mirrors more precise than the available stages. To simplify the problem, Natterer [90]
noticed that these four contributions can be paired by introducing ˜̃χ, the Fourier transform along
thex axis of the cosine transform along thez axis ofχ

χ̃(β, γ) + χ̃(β,−γ) =

∫

Ω

χ(x, z) exp(−iβx− iγz) + exp(−iβx+ iγz)dxdz

= 2

∫

Ω

χ(x, z) exp(−iβx) cos(|γ|z)dxdz (4.5)

= 2˜̃χ(β, |γ|). (4.6)

From the knowledge of̃̃χ(β, γ) for γ ≥ 0, it is possible to obtainχ(x, z) for z ≥ 0 by inverse
Fourier and cosine transforms. From Eqs. (4.4) and (4.6), the scattered field may be rewritten
as

Es
d(k,kinc) = 2E0k

2
0

[

˜̃χ(βinc − β, |γinc − γ|)− ˜̃χ(βinc − β, |γinc + γ|)
]

. (4.7)

To reconstructχ, it is necessary to find a procedure for separating the two Fourier components
˜̃χ appearing in the right hand side of Eq. (4.7).

4.1.1.2 Reconstruction of the sample permittivity

The problem can be stated as follows. Is it possible to infer from a set of measurements of
Es

d(k,kinc) the value of˜̃χ on a certain domain of the Fourier space? To answer this question,
one notes(A,B) the spatial frequencies of the first term of Eq. (4.7)(βinc − β, |γinc − γ|),
and(C,D) that of the second term of Eq. (4.7)(βinc − β, |γinc + γ|) that are accessible with
one measurement of the diffracted field for the illumination-observation pair(kinc,k). The
frequencies(A,B,C,D) must verify the system

βinc − β = A (4.8)

|γinc − γ| = B (4.9)

βinc − β = C (4.10)

|γinc + γ| = D (4.11)

It is possible to prove (demonstration is in Appendix A) thatthis system has a solution only if

A = C andD = |A|
√

4k2
0

A2+B2 − 1. Moreover, the frequency vector(C,D) is located inside the
k0-radius half-disks centred at(k0, 0) and(−k0, 0) of the Fourier space, which corresponds to
the zone (2) of Fig. 4.3. Zone (2) is the Fourier domain of the permittivity that is accessible in
the transmission configuration of TDM. On the other hand, thevector(A,B) is located in zone
(1) which corresponds to the2k0-radius half-disk centred at0 excluding zone (2). Zone (1) is
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Figure 4.3: Zone (1) et (2) in the Ewald Sphere. Zone (1) is accessible through the term
(A,B) = k− kinc and zone (2) through the term(C,D) = k− k′

inc, k
′
inc being the symmetric

of kinc with respect to the mirror.

the Fourier domain that is accessible in the reflection configuration1. Finally, Eq. (4.7) rewritten
as

Es
d(k,kinc) = E0

[

˜̃χ(A,B)− ˜̃χ(C,D)
]

(4.12)

shows that each measurement is proportional to the difference of a Fourier component in zone
(1) and a Fourier component in zone (2). Changing the illumination-observation pairs, within
the possibility of the objective, allows the simultaneous scan of zone (1) and zone (2), i.e. the
whole2k0-radius half-ballγ ≥ 0. Unfortunately, because of this simultaneous scanning, there is
no way to extract the value of̃̃χ at a given frequency(A,B) from the set of measurements. For
any arbitrary value of̃̃χ(A,B) in zone (1), there is a value of̃̃χ(C,D) in zone (2) that produces
Es

d(k,kinc). It appears that the data stack, obtained with only one polarisation, is not complete
enough for imaging. We have thus decided to consider also thediffracted field obtained with a
p-polarised incident field.

4.1.2 Illumination with both p and s polarisation

For thep-polarisation,i. e. with a magnetic field perpendicular to the incident planH =
H(x, z)y, the reference field reads,

E
p
ref = E0

[

exp(iβincx+ iγincz)
y × kinc

k0
+ exp(iβincx− iγincz)

y × k′
inc

k0

]

, (4.13)

wherek′
inc = βincx− γincz is the symmetric ofkinc with respect to the mirror. Note that in this

case the reflection coefficient is equal to+1. Using Ḡp
mirror in ref. [92], the method of images

1For the sake of simplicity, one assumes in this chapter that the maximum angle accessible through the objective
is a = π/2. Simulations in Sec. 4.2.3 considers a more realistic case.
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and Eq. (3.13), one obtains after some tedious but straight-forward calculations

E
p
d(k,kinc) = 2E0

[

k.kinc
˜̃χ(βinc − β, |γinc − γ|)

+ k.k′
inc

˜̃χ(βinc − β, |γinc + γ|)
] y × k

k0
. (4.14)

Of course, using the solep-polarisation measurements shows the same indetermination as using
the s-polarization measurements. On the other hand, combining both sets of measurements
allows the retrieving of̃̃χ on all the2k0-radius half-ball. Indeed, with the linear system defined
by Eqs. (4.7) and (4.14), one can separate the contribution of ˜̃χ(βinc−β, |γinc+γ|) and ˜̃χ(βinc−
β, |γinc− γ|) provided that the determinant of the system,4βincβE0k

2
0, is non-null. In this case,

one gets

˜̃χ(βinc − β, |γinc − γ|) =

Ep
d(k,kinc) +

k.k′
inc

k20
Es

d(k,kinc)

4βincβE0
(4.15)

˜̃χ(βinc − β, |γinc + γ|) =

Ep
d(k,kinc)−

k.kinc

k20
Es

d(k,kinc)

4βincβE0
. (4.16)

Noting θinc the angle between−kinc andz andθ the angle betweenk andz, one obtains the
simplified formulae

˜̃χ(βinc − β, |γinc − γ|) =
Ep

d(k,kinc)− cos(θ + θinc)E
s
d(k,kinc)

4 sin θ sin θincE0
(4.17)

˜̃χ(βinc − β, |γinc + γ|) =
Ep

d(k,kinc)− cos(θ − θinc)E
s
d(k,kinc)

4 sin θ sin θincE0
. (4.18)

During measurements, for all possible directions ofk andkinc, Eq. (4.17) fills the area of zone
(1), while Eq. (4.18) fills the area of zone (2). We thus have the value of ˜̃χ on the2k0-radius
half disk γ ≥ 0. By an inverse Fourier transform along thex axis and an inverse cosine
transform along thez axis of the measured value of˜̃χ, one obtains the polarisability mapχmes.
The resulting point-spread-functionh, which is the inverse Fourier transform of the Transfer
Function,i. e. the disk of radius2k0 [75] centred in0, is then given by

h(x, z) =
J1 (2k0r)

2λr
, (4.19)

whereJ1 is the Bessel function of the first kind and of order 1 andr =
√
x2 + z2. Actually,

the reconstructedχmes is not reallyχ convolved byh. Indeed, the cosine transform reconstructs
the even part of functions. Thus, the inverse cosine transform creates aχmes that is symmetric
about the mirror. More exactly, the reconstructedχmes is the sum of the actualχ convolved by
h plus the symmetric ofχ with respect to the mirror convolved byh.

We have seen in this section the principle of mirror-assisted tomography in a simplified 2D
scalar configuration. We have stressed the interest of usingthe two incident polarisations in
order to distinguish the different Fourier components of the susceptibility that appear in the
expression of the diffracted field. We will now apply the sametechnique to the complete three-
dimensional configuration.
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4.2 Mirror-assisted Tomographic Diffraction Microscopy in
the three-dimensional vectorial configuration

In the 3D configuration, the sample permittivity varies along the 3 directions of space. We
assume, that, in an ideal configuration, the sample can be illuminated by a plane wave with any
downward directed wave-vectorkinc and observed along any upward directionk (Fig. 4.1).

4.2.1 Modelling the diffracted field

We first establish the expression of the field diffracted along any directionk by a sample de-
posited on a mirror and illuminated by a plane wave along any directionkinc. It is recalled that,
for an incident fieldEinc(r) = E0 exp(ikinc.r), the reference field existing above the mirror
without the sample reads

Eref(r) = (E0,‖ + E0,zz) exp(ikinc,‖.r‖ + kinc,zz) + (−E0,‖ + E0,zz) exp(ikinc,‖.r‖ − kinc,zz)
(4.20)

whereE0,‖ is the projection ofE0 on the mirror plane. Moreover, the field diffracted by a
dipole placed above the mirror is equal, by virtue of the method of images, to the field radiated
in free space by the dipole plus the field radiated by its imagethrough the mirror. If the mirror
is perfectly conducting, the image of the dipolep = p‖ + pzz placed at(r‖, z) is the dipole
p′ = −p‖ + pzz placed at(r‖,−z). Then, using Eq. (3.11) the field radiated by a dipole placed
above a mirror can be written as, forz andz′ positive,

Ḡmirror(r, r
′)p =

i

8π2k20

∫

k‖∈R2

1

kz

[

exp
(

−ik‖.(r‖ − r′‖)− kz|z − z′|
)

k×
(

k× (p‖ + pzz)
)

+ exp
(

−ik‖.(r‖ − r′‖)− kz(z + z′)
)

k×
(

k× (−p‖ + pzz)
)]

dk‖

+
1

k20
pδ(r− r′).

(4.21)

Inserting Eqs (4.20) and (4.21) in Eq. (3.13), one gets the expression ofEd(k) defined by
Eq. (3.16), under the renormalised Born approximation (P ≈ αEref)

Ed(k,kinc) = k0

∫

Ω

exp[−i(k‖ − kinc,‖).r‖] cos[|kinc,z − kz|z]α(r)k×
(

k× (E0,‖ + E0,zz)
)

+ exp[−i(k‖ − kinc,‖).r‖] cos[|kinc,z + kz|z]α(r)k×
(

k× (−E0,‖ + E0,zz)
)

dr. (4.22)

Following the approach developed in the 2D case, we define˜̃α as the Fourier transform in
thex andy directions of the cosine transform along thez direction ofα,

˜̃α(kz,k‖) =

∫

Ω

α(r) cos(kzz) exp(−ik‖.r‖)dr. (4.23)

Then, introducingA = k0k×
(

k× E0,‖

)

andB = E0,zk0k× (k× z), one obtains,

Ed(k,kinc) =
(

Af− +Bf+
)

(4.24)

f+ = ˜̃α
(

k‖ − kinc,‖, |kz + kinc,z|,
)

+ ˜̃α
(

k‖ − kinc‖, |kz − kinc,z|
)

(4.25)

f− = ˜̃α
(

k‖ − kinc,‖, |kz + kinc,z|
)

− ˜̃α
(

k‖ − kinc,‖, |kz − kinc,z|
)

, (4.26)
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which gives the expression of the diffracted field with respect to the sample polarisability (under
the renormalised Born approximation).

4.2.2 Reconstruction of the sample polarisability

We observe from Eq. (4.24) that the diffracted field depends on two values of̃̃α, taken at two
different spatial frequencies. Yet, these two terms can be easily separated if the vectorial diffrac-
ted field (i. e. thes andp components) is measured (provided thatA andB are not collinear).
Alternatively, the two terms can be separated if one measures only one component ofEd for
two different incident polarisationsE0, as in the previous section.

Once ˜̃α is retrieved,αmes is reconstructed by an inverse Fourier transform along thex and
y axis and an inverse cosine transform along thez axis. If measurements were possible along
all possible angles, one would get the value of˜̃α in the2k0-radius half ballkz ≥ 0. The point
spread function of this imaging system,h, is the Fourier Transform of the support function of a
ball of radius2k0 centred in0 [75],

h(r) =
1

2π2r3
[sin(2k0r)− 2k0r cos(2k0r)] =

J 3

2

(2k0r)

(λr/2)
3

2

. (4.27)

More precisely, the reconstructed polarisability,αmes, is the sum of the actualα convolved by
h and plus the symmetric ofα with respect to the mirror convolved byh [75]. For example, the
reconstructed image of a point-object placed at(0, 0, z0) above the mirror is

hmirror(r‖, z) = h
(
√

‖r‖‖2 + (z − z0)2
)

+ h
(
√

‖r‖‖2 + (z + z0)2
)

. (4.28)

The influence of the symmetric object on the reconstructed polarisability is usually not an issue,
as one knows that there is no sample below the mirror. Actually, if the object is placed about one
λ away from the mirror, the mirror image does not modify the reconstruction. In this case, the
resolution is isotropic with a resolution ofλ/2 according to the Rayleigh criterion. For objects
closer to the mirror, the influence of the image trough the mirror is noticeable and enlarges the
resolution.

We have seen that by measuring two components of the diffracted field for any(k,kinc)
observation-illumination pairs, or measuring one component of Ed for two incident polarisa-
tions, one can analogically extract˜̃α and retrieve the sample polarisability. Practically, obtain-
ing this set of data requires two successive recording of thediffracted field for each incident
direction and may not be very convenient. Now, we will show inthe following that, contrary to
the 2D configuration, it is also possible to retrieveα from the measure of only one component
of Ed for only one incident polarisation.

In the three-dimensional configuration, there are several illumination-observation pairs pin-
pointing on the same spatial frequencies for˜̃α. This redundancy stems from the skew-rays for
which k, kinc andz are not coplanar. It permits to build a linear combination ofEd for ex-
tracting ˜̃α at a given vector frequency. More precisely, introducing(A,B,C) and(D,E, F ) the
polarisability vector frequencies that appear inEd for a given(kinc,k), one gets

(A,B,C) = (kx − kinc,x, ky − kinc,y, |kz − kinc,z|) (4.29)

(D,E, F ) = (kx − kinc,x, ky − kinc,y, |kz + kinc,z|). (4.30)
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This system has a solution if and only ifA = D,B = E, (D,E, F ) is in the zone (2) of Fig. 4.3
(assuming cylindrical symmetry around thez axis) and(A,B,C) belong to the whole2k0 half-
ball radius [73]. There is, however, no defined link betweenC andF . Indeed for every point
(A,B,C) of zone (2), it is possible (with a reasoning similar to that of Appendix A), to find a
pair(k,kinc) such that(D,E, F ) = (A,B, F ) with F being any value of[0,

√
2k0 −A2 − B2].

In particular, for anyν = Ax + By andC such that(ν, C) belong to the half-ball of radius
2k0, one can find an observation-pair(k,kinc) such thatF = 0

k =
1

2
ν ±

√

k20 −
‖ν‖2 + C2

4
ν⊥ +

1

2
Cz (4.31)

kinc =
1

2
ν ∓

√

k20 −
‖ν‖2 + C2

4
ν⊥ − 1

2
Cz (4.32)

ν⊥ =
z× ν

|ν| (4.33)

These two solutions correspond to the inversion of the role of the incident and diffraction
directions. The Reciprocity Theorem [93] states indeed that Ed(k,kinc) = Ed(kinc,k) for
all k andkinc. Measurements obtained with these specific illumination-observation pairs are
proportional to˜̃α(ν, 0) − ˜̃α(ν, C). Inverse cosine-Fourier transforming this set of data, yields
the sameαmes map plus a Dirac contribution atz = 0 plane that can be discarded.

This procedure shows that there is enough information for reconstructingαmes in a set of
data consisting of only one incident polarization and one component of the diffracted field.
However, the proposed solution, seems impractical as it requires to select the proper illumination-
observation pair for each vector frequency(ν, C) of ˜̃α. Usually the set of measurement never
contains exactly the proper pair(k,kinc). This is why we preferred to used the iterative inversion
algorithm described in the next section.

4.2.3 Numerical experiments

To show the interest of the mirror-assisted TDM concept, we performed numerical simulations
of the experiment and developed an iterative inversion procedure to reconstructαmes. The
calculations were done thanks to a Fortran code provided by Patrick C. Chaumet [72].

We consider a sample consisting in a non-absorbing dielectric sphere with relative permit-
tivity ε = 1.01 containing two absorbing spherical inclusions with permittivity ε = 1.01+0.02i
separated vertically by0.6λ centre-to-centre (see Fig. 4.4). The far-field diffracted by the
sample placed in free-space or on a mirror is calculated rigorously with the Coupled Dipole
Method (cf. Sec. 7.1) and corrupted with noise (5%) [72]. The incident (respectively dif-
fracted) waves are sent (respectively detected) in a cone with half-angle70◦ corresponding to
NA = 0.95. We use 64 incident plane waves and 121 observation directions regularly spaced
within the incident and observation cones. All the incidentplane waves ares-polarised and
only one component of the diffracted field is measured (whichsimplifies greatly the experi-
mental set-up).

We study four different TDM configurations: the transmission case where incident and ob-
servation cones are opposite; the reflection case, where theincident and observation directions
are done from the same side; the ideal 4Pi case, where incidences and observations fill both
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Figure 4.4: Sketch of the test sample used to compare the different TDM configurations. The
2λ-diameter sphere has a relative permittivityε = 1.01 and contains two absorbing inclusions
with relative permittivityε = 1.01 + 0.02i. These permittivity values are low enough for the
renormalised Born approximation to be valid.

cones above and under the sample; the mirror assisted case, where the illumination and obser-
vation are done from the same side and the sample is placed in the vicinity of a mirror.

To retrieve the permittivity map from the diffracted far-field, an inversion procedure based
on the linearised conjugate gradient algorithm described in Sec. 7.2.2.1 is used. Under the
renormalised Born approximation, the field inside the sample is assumed to be equal to the
reference field,i. e. the field that would exist without the sample. This approximation permits
to diminish dramatically the computational burden.

Results are presented in Fig. 4.5. The transmission configuration gives a correct image of
the sphere but does not resolve the two inclusions. The map obtained from the reflection config-
uration is impossible to interpret because the real and imaginary parts of the sample permittivity
are mixed (see Sec. 3.3 and Figs. 3.2 (d) and (e)). The mirror-assisted and the complete config-
uration give comparable images. The sphere is well reconstructed and the two small inclusions
are resolved. This illustrates clearly the interest of the mirror-assisted TDM. The mirror config-
uration brings about a resolution equivalent to the ideal 4Pi one, with a set-up no more complex
than that used for the reflection configuration. The resolution is almost isotropic, being equal to
λ/(2NA) in the lateral direction andλ/2 in the axial one.

4.3 Conclusion

In this chapter we have shown the interest of placing the sample in the vicinity of a mirror
for improving the axial resolution of Tomographic Diffraction Microscopy. We have observed
that, in the specific two-dimensional scalar configuration where the sample is invariant along
one axis and the illumination and observation are performedwithin one plane, it is necessary
to measure sequentially the diffracted field for two different polarisations of the illumination
field for reconstructing properly the sample permittivity.In the vectorial three-dimensional
configuration, the measurement of one component of the diffracted field for one incident po-
larisation for illumination-observation pairs scanning the objective accessible cone is sufficient
for retrieving the sample permittivity map. One obtains thesame resolution as an ideal set-up
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Figure 4.5: Reconstructed permittivity maps obtained for different configurations of TDM. The
sample is described in Fig. 4.4. The maximum angle defined by the objective numerical aper-
ture is70◦. (a) and (b) real and imaginary part of the permittivity map reconstructed from a
transmission TDM experiment. (c) and (d) real and imaginarypart of the permittivity map
reconstructed from a reflection TDM experiment. (e) and (f) real and imaginary part of the per-
mittivity map reconstructed from a mirror-assisted TDM experiment. The black line indicates
the mirror position. (g) and (h) real and imaginary part of the permittivity map reconstructed
from an ideal TDM experiment where illumination and observation are performed from both
sides of the sample.

where the sample is illuminated and observed from all possible directions (as can be done with
two opposing objectives). The improvement brought about bythe mirror and the simplicity of
its practical implementation suggests that it could also beuseful for other types of microscopy
techniques. Indeed there is also a lack of axial resolution in confocal microscopy as in all types
of technique that requires focussing of a laser beam. In the following chapter, we propose to
use a mirror in a confocal microscopy set-up for improving the axial resolution.



Chapter 5

Isotropic Single-Objective microscopy: a
mirror-assisted confocal fluorescence
microscopy

5.1 Principle

In this chapter, we adapt the mirror approach to confocal microscopy in order to ameliorate
the axial resolution [6]. Indeed, similarly to TomographicDiffraction Microscopy, the axial
resolution of confocal microscopes is several times largerthan the transverse one because of
the asymmetry of the illumination and observation (see Sec.2.3.2). To address this problem, it
has been proposed by Hellet al. [5] to create a quasi-isotropic illumination spot by sending the
laser beam trough two opposing objectives. The interference between the counter-propagative
beams allows the reduction of the spot size along the opticalaxis. However this approach
requires a long-arm interferometric set-up that is difficult to tune and stabilise. We propose here
to replace one of the objective by a mirror.

Focusing a laser beam before or after a mirror, by itself, cannot bring any improvement of
the spot geometry simply because the incident and the reflected fields do not participate together
to the spot formation. It is also necessary to shape the incident beam so that both incident and
reflected fields converge toward the same point. Electromagnetic time reversal theory recently
provides a proper framework for this goal [9, 6, 94]. The theory states that by sending in time
reversed order (or with phase conjugation), the field radiated by a point source in an arbitrary
environment, one forms an optimal light spot at the source location [10]. Hence, to focus light
into an isotropic spot before the mirror, one needs to shape the beam reaching the back focal
plane of the objective so that it resembles the conjugated ofthe field radiated by a dipole placed
at the focussing position. Our approach consists in first simulating, at the back focal plane of
the objective, the field radiated by an emitter placed atz0 above the mirror. Then, we use a
Spatial Light Modulator (SLM) to impose the required phase variation on the collimated laser
beam reaching the back focal plane. This phase has to be the opposite of the simulated field
phase (phase conjugation). With this proper wave-front thebeam focus at the desired position
with an optimal isotropic shape.

The next section gives all the theoretical and practical details on the mirror-assisted ISO
fluorescence microscopy. The text corresponds essentiallyto the article by E. Le Moal, E.
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Mudry, P. C. Chaumet, P. Ferrand, and A. Sentenac,Isotropic single-objective microscopy:
theory and experiment, J. Opt. Soc. Am. A28, 1586–1594 (2011) [7]. Additional work on
radial polarisation and two-photon microscopy is also presented at the end of the chapter.

5.2 Isotropic Single Objective (ISO) microscopy: Theory and
Experiment1

5.2.1 Introduction

Sharp focusing of light beams is the keystone of numerous applications in crucial technological
fields including far-field optical microscopy [95], opticalwriting and reading for high-density
data storage [96, 97], and trapping and manipulation of nano-particles [98, 99, 100]. Objective
lenses of high numerical aperture with high-order aberration corrections have been developed
to reduce the dimensions of the focal spot down to the diffraction limit. Still, optical focus-
ing systems based on a single-lens geometry cannot focus light into ideally spherical volumes
because the illumination comes only from one side of the focal point. As a result, the focal
spot is elongated along the lens optical axis, with an axial dimension about threefold larger
than the transverse ones, at best. Such a pronounced anisotropy constitutes a serious draw-
back for any three-dimensional (3D) application in the above-mentioned fields of technology.
This fundamental issue has motivated the study of many different approaches, among which
are notably the use of pupil filters to control the amplitude and/or the phase distribution of the
input field [58, 101, 102, 103, 104, 60] and (or together with)the use of peculiar polarisation
modes [59, 105, 106]. These approaches allow to engineer, toa certain extent, the spatial field
distribution at the focus; however, they bring about only modest improvement concerning the
axial dimension of the focal spot [107].

In the specific field of 3D fluorescence imaging in biology, theresolution issue has been
addressed through sophisticated approaches resorting on non-linear excitation processes and
optical focusing systems based on a multiple-lens geometry[108, 109]. In 4Pi microscopy, the
sample is sandwiched between two opposing lenses having thesame optical axes and front focal
planes. Focusing light through both lenses in a coherent way, yields an interference pattern that
exhibits a quasi-spherical intensity peak surrounded by some side lobes [5, 110, 111]. The
4Pi focusing (and detection) scheme has brought about a spectacular improvement in the axial
resolution of 3D fluorescence imaging but it requires a careful alignment of the lenses and turns
out to be quite sensitive to mechanical drifts.

In this work, we demonstrate that light can be focused into a quasi-spherical spot thanks to
one microscope objective lens, a mirror and a specially shaped incident beam [6]. In a naive
view, the ISO focusing set-up is equivalent to the 4Pi set-upin which the role of the second lens
is played by the image of the first one in a mirror.

We first detail the concept of ISO microscopy and describe thenumerical technique that
permits to simulate with the least possible approximationsthe point spread function of a realistic

1This section was originally published in E. Le Moal, E. Mudry, P. C. Chaumet, P. Ferrand, and A. Sentenac,
Isotropic single-objective microscopy: theory and experiment, J. Opt. Soc. Am. A28, 1586–1594 (2011) [7].
Theory and simulations were made by Patrick C. Chaumet, AnneSentenac and myself with the advices of Pr.
Colin Sheppard; Experiments were made by Eric le-Moal and Patrick Ferrand with the advices of Pr. Rainer
Heintzmann.
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Figure 5.1: Illustration of the ISO focusing concept, basedon the time reversal theory. (a)
The incident field is made of a sum of plane waves propagating alongu with complex vector
amplitudeei(u). (b) the field radiated by a dipole placed atz0z before the mirror can be decom-
posed as a sum of plane waves propagating along−u with complex vector amplitudeep(−u).
To focus at pointz0z, the time reversal focusing theory states thatei(u) should ideally be equal
to the conjugate ofep(−u).

ISO fluorescence microscope. Then, we show how an ISO fluorescence microscope can be built
out of a conventional confocal microscope and display experimental point-spread-functions. We
point out the main features that can hamper the performancesof the microscope and give some
hints to overcome them.

5.2.2 Principles of ISO focusing and simulations

5.2.2.1 Time-Reversal focusing theory

To focus light into a spherical spot, the illumination should ideally reach the focal point from
every possible direction. To approach this spherical illumination with a single objective lens,
we place a mirror nearby the focal plane and engineer the incident wave front so that part of the
incident and mirror-reflected fields converge towards the focal point.

Hereafter, the sample space (after the objective lens) is described by a Cartesian set of
coordinates(x, y, z) with the origin placed at the focal point of the lens and thez axis cor-
responding to its optical axis. In this part, for simplicity, the mirror plane is set at thez = 0
plane which corresponds to the focal plane. To describe the incident beam, it is convenient
to introduce the polar and azimuthal angles (θ, φ) associated to the unit vectorsu defined by
u = cos θz + sin θ cosφx + sin θ sinφy, uφ = z × u anduθ = u × uφ. The incident field on
the mirror is cast as a sum of monochromatic plane waves [see Fig. 5.1(a)], propagating in the
u direction with complex amplitude vectore(u),

Einc(r) =

∫

φ∈[0,2π]

∫

θ∈[−θmax,θmax]

sin θei(u) exp(ik0u · r)dθdφ (5.1)

wherek0 = 2π/λ is the wave number in the sample space, andθmax is the maximum angle
that can be reached in the sample space with the chosen numerical aperture of the objective.
Because of the transverse nature of the plane waves,ei(u), can be decomposed on the (uθ,uφ)
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basis. Assuming the mirror to be perfectly conducting, the reflected beam reads,

Erefl(r) =

∫

φ∈[0,2π]

∫

θ∈[−θmax,θmax]

sin θer(u)e
ik0[u−2(u·z)z]·rdθdφ (5.2)

with er(u) = −ei(u) + 2[ei(u) · z]z.

The shaping of the incident beam is performed following the time reversal focusing theory
depicted in Ref. [10] and illustrated in Fig. 5.1. To focus light at the pointr0 = z0z, ei(u)
should ideally be equal to the complex conjugate ofep(−u), the complex amplitude vector of
the plane wave emitted in the−u direction by a dipole-sourcep placed atr0. The radiation of
the dipole in front of the mirror is equivalent to that of two dipoles in free space, symmetrically
positioned with respect to the mirror plane atz0 and−z0, with samez-component and opposite
(x, y) components. As a result, one finds forp parallel to the mirror,

eideali (u) ∝ sin(z0k0 cos θ)[p− (p · u)p], (5.3)

and the same expression withsin(z0k0 cos θ) replaced bycos(z0k0 cos θ) for a dipole normal to
the mirror. Note that the incident beamEinc defined by Eq. (5.1) withei given by Eq. (5.3) fo-
cuses at two points along the optical axis, atz0 and−z0.The shape of the two spots is elongated
along the optical axis in the same way as that of the standard spot obtained by focusing a plane
wave through one objective lens. The quasi-isotropic spot is obtained through the interference
between the incident and the mirror-reflected beams.

More precisely, ifθmax = π/2, the time-reversal theory states that the total field,Etot(r, r0) =
Einc(r, r0) + Erefl(r, r0) with ei satisfying Eq. (5.3) is proportional to the imaginary part of the
electric field radiated by the dipole placed atr0 before the mirror [10]. Now, because of the
rapid decay of the reflected field (namely the field emitted by the image dipole), the field radi-
ated by the dipole before the mirror is quite similar to the field radiated by the same dipole in
free-space. Its intensity distribution has a quasi-spherical shape with radius at half-maximum
aboutλ/2. Hence, the time-reversal beam shaping appears as a very efficient way for obtaining
an isotropic light spot that can be moved with respect to the mirror, without distortion, just by
changingz0 in Eq. (5.3).

5.2.2.2 Simulation of the Point Spread Function (PSF) of theISO microscope

Considering a realistic objective lens,θmax is inevitably smaller thanπ/2. Moreover, it is gen-
erally difficult to shape simultaneously the phase, amplitude and polarisation of the incident
waves to obtain a field satisfying Eq. (5.3). Hence, to investigate the achievable performances
of the ISO focusing and imaging concept, we have performed simulations of the illumination
and global PSF of the ISO microscope accounting for these constraints.

In our experimental configuration, a Spatial Light Modulator (SLM) that only modifies the
phase of the field is placed at (or conjugated to) the rear focal plane of a microscope objective
lens. The first difficulty is to relate the field leaving the SLMplane to the plane waves that
illuminate the mirror.

To indicate points and vectors in the(x, y) SLM plane, we introduce the cylindrical set of
coordinates (ρ, ψ) associated to the local basis

uρ = cosψx+ sinψy

uψ = − sinψx + cosψy.
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Under Abbe’s sine condition, a point (ρ, ψ) of the rear focal plane (where the SLM is placed)
corresponds to a plane wave propagating in the sample space along theu direction defined by
the polar and azimuthal angles (θ, φ) which satisfy,φ equal toψ and

sin θ = (sin θmax)ρ/R, (5.4)

whereR is the radius of the aperture at the rear side of the objectivelens. More precisely,
provided that we can neglect the various reflections on the optical components, the electric
field E(ρ, ψ) collinear touφ [uρ ] leaving the SLM plane at point(ρ, ψ) is transformed into
a plane wave propagating alongu that is polarised alonguψ [−uθ] with a damped modulus
E(ρ, ψ)

√
cos θ, where

√
cos θ is the so-called aplanatic factor. Hence, the complex amplitude

vectors of the incident plane waves in the sample space that are generated by any fieldE(ρ, ψ)
leaving the SLM reads,

ei(u) =
√
cos θ

(

[E(ρ, ψ) · uφ]uψ − [E(ρ, ψ) · uρ]uθ
)

. (5.5)

Eq. (5.5) gives the field in an aberration-free system satisfying the sine condition. Other
apodisation factors could be used (to account, for example,for the Fresnel transmission coef-
ficients of the lens), but they were shown to have a limited impact on the size of the point
spread function [112]. The field leaving the SLME(ρ, ψ), can be written asE(ρ, ψ) =
E0(ρ, ψ) exp[if(ρ, ψ)], whereE0(ρ, ψ) is the incident field on the SLM andf(ρ, ψ) is the phase
modulation applied by the SLM. In our set-up, the SLM is illuminated by a collimated beam
that is linearly polarised along thex axis which corresponds to the working axis of the SLM.
Hence,E0 is a constant. The pattern displayed on the SLM is given by thephase of Eq. (5.3)

f(ρ, ψ) =
π

2
sign[sin(z0k0 cos θ)], (5.6)

whereθ is related toρ through Eq. (5.4). Introducing Eq. (5.6) into Eq. (5.5) and comparing
the latter to Eq. (5.3) withp = x, one observes that the phase ofei coincides with that obtained
for eideali . On the other hand, the modulus and polarisation differ, especially for largeθ and for
propagation directions outside the(x, z) or (y, z) planes, but the consequences on the focusing
are negligible [113].

Once the complex vector amplitudes of the plane waves forming the incident beam are well
defined, we calculate the reflected beam with Eq. (5.2). The total field

Etot(r, r0) = Einc(r, r0) + Erefl(r, r0)

depends on the chosen focal pointr0 via the phase pattern displayed on the SLM, Eq. (5.6). Yet,
we have checked numerically that, except whenr0 is close to the mirror (typically for distances
smaller than half the wavelength), the spot shape does not vary whenr0 is changed. In other
words, the illumination PSF,PSFill(r−r0) ∝ |Etot(r, r0)|2 can be assumed to be homogeneous
within the sample space.

Now, to perform a complete modelling of the experiment, one needs to simulate the image of
a point-like fluorescent source placed atr in the sample space. In our set-up, we use a confocal
detection scheme. The fluorescence light is modified by the SLM and polarised along thex axis
in the same way as the incident light before being sent, through a pinhole, onto a detector. We
assume that the intensity recorded by the detector is proportional to

∫

S
|E(v).x|2dv whereS is

the pinhole transmission area andE(v) is the field radiated at pointv by the fluorescent dipole
pfluo placed atr in the sample space for a given focal pointr0 set on the SLM.
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The calculation ofE(v) · x is easily done by invoking the reciprocity theorem [93]. We
consider a virtual monochromatic dipolepvirtual, oriented along thex axis, placed at the centre
of the pinhole and radiating at the same wavelength as the fluorescent dipole,λ′, which is
slightly different from the wavelength of the illuminationλ. It generates a plane wave normal
to the SLM plane, and creates, in the sample space, the fieldEλ′

tot(r, r0). If pvirtual is shifted by
v in the pinhole plane, it creates the fieldEλ′

tot(r, r0+v) in the sample space (for simplicity, we
overlook the magnification factors between the pinhole and the sample space). The reciprocity
theorem states thatE(v).pvirtual = pfluo.E

λ′

tot(r, r0 + v). Now, the fluorescent dipole amplitude
is proportional to the field at pointr created by the incident laser fieldEλ

tot(r, r0). Finally, the
intensity recorded by the detector can be written as,

I(r, r0) ∝ PSFλill(r− r0)PSF
λ′

det(r− r0), (5.7)

wherePSFλ
′

det(r − r0) =
∫

S
PSFλ

′

ill(r − r0 − v)dv. We note thatI(r, r0) depends solely on
r− r0. We then introduce the global PSF of the microscope,PSF(r− r0) ∝ I(r, r0) which, in
the ideal case of a point detector and a perfectly coherent fluorescent source emitting at the same
wavelength as the excitation light is equal toPSF2

ill. This ideal configuration is equivalent to a
4Pi microscope of type C with a point detector [114]. Unfortunately, the fluorophore emits at
a longer wavelength than the excitation wavelength and, more important, the coherence length
of the emitted light is about3 µm which is generally smaller than the distance between the
fluorescent source and the mirror. As a result, the fluorescent light directly emitted towards
the objective lens does not interfere with the emitted lightthat is reflected by the mirror before
being collected. In this case,

|Eλ′

tot(r, r0)|2 = |Eλ′

inc(r, r0)|2 + |Eλ′

refl(r, r0)|2

and the detection PSF is very similar to that of a conventional confocal microscope. This con-
figuration corresponds to a 4Pi A type microscope [114]. Notethat by placing a filter (with
typically a10 nm bandpass) in front of the pinhole, one could increase the coherence length of
the fluorescence light so that the direct and reflected beams interfere. In this case, the detec-
tion PSF would be similar to the illumination PSF and the configuration would correspond to a
4Pi-C microscope.

Figure 5.2 shows the global PSF of the ISO microscope, calculated for a quasi-ideal object-
ive with sin θmax = 0.99 and a more realistic one withsin θmax = 0.80. In these calculations, we
use the parameters of the experimental set-up: wavelengthλ = 491 nm and pinhole diameter in
the focal plane1.22λ. Light is focused in vacuum and the objective lens is assumedto be ideally
un-aberrated. The validity of our numerical technique was checked by comparing its results for
a standard confocal microscope to the semi-analytical expressions given in [29, Chapter 6]. The
SLM is modelled as a1000 × 1000 pixel array, with a constant phase value on each pixel. To
account for possible errors stemming from the SLM pixellation, the propagation directions of
the plane waves forming the incident beam are not discretised in the Cartesian SLM basis but
in the spherical basis(θ, φ), 500 inθ and 180 inφ. The SLM pattern is tuned to focus light
at z0 = 20λ from the mirror and the incident polarisation is collinear to thex axis. The fact
that the emission wavelength differs from the excitation one is not taken into account for these
simulations.

The global PSF obtained forNA = 0.99 is quasi-isotropic with diameter aboutλ/3. For
NA = 0.8, the central peak of the PSF is also quasi-isotropic but it isplagued by side lobes
of higher relative intensity (60% to 80% of the main lobe) than that observed forNA = 0.99
(about20%).
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Figure 5.2: Global PSF of an ISO microscope, simulated for two different objectives in air:
(a) and (c) ideal objective withNA = sin θmax = 0.99. (b) and (d) realistic objective,NA =
sin θmax = 0.80. These images corresponds to slices taken (a,b) in the transverse and (c,d) axial
planes.

Remarkably, we observe that, along the optical axis, the global PSFtot of the ISO micro-
scope is perfectly fitted by the globalPSFtot of the conventional confocal microscope (with
same numerical aperture) timescos2[βk0(z − z0)]. The parameterβ depends on the numerical
aperture of the objective (0.70 forNA = 0.99 and 1.02 forNA = 0.80), see Fig. 5.3. This beha-
viour is easily understood if one approximates the ISO spot by the interference of two counter
propagative Gaussian beams with superimposed waists. The parameterβ indicates that, along
the optical axis, the phase of the field forming the beams doesnot vary alongz ask0z. Indeed,
there exists a phase delay, known as the Gouy phase (which depends on the beam waist and
thus on the numerical aperture of the objective), that modifies the period of the interference
pattern. This property gives an interesting self-consistent way to verify that the ISO microscope
is correctly tuned as it relates the ISO point spread function to the standard confocal one ob-
tained with the same objective. In the following we will use this approach rather than a direct
comparison between theory and experiment to assess the accuracy of our mounting. Indeed, we
noticed that comparing theoretical results to experimental ones was particularly difficult as the
claimed numerical aperture and apodisation functions of the objective were not that observed
experimentally [115].

5.2.2.3 Discussion on the phase pattern

In the absence of the mirror, the incident beam described in Eqs. (5.1) and (5.3) focuses at two
points, located atz0 and−z0 along the optical axis. Therefore, an alternative approachto time
reversal focusing could consist in splitting the SLM in two and displaying two Fresnel lenses
focusing at different points. The phase pattern of each Fresnel lens is then,f(ρ, ψ) = k0z0 cos θ
for the first one, andf(ρ, ψ) = −k0z0 cos θ−π for the second one. The−π added to this second
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Figure 5.3: Axial profiles taken from the PSF of a ISO microscope (solid line) and a conven-
tional confocal microscope (dashed line), simulated for different NA in vacuum. (a)NA = 0.99.
(b)NA = 0.80. For comparison purpose, the PSF of the conventional confocal microscope has
been plotted after modulation bycos2[βk0(z − z0)] (circle markers). The observed asymmetry
stems from the phase mask discretisation induced by the SLM.

formula is necessary to obtain the right phase match betweenthese two focuses. The advantage
of the Fresnel lens mask is that it can generate spots that areas close to each other as possible
whereas the time-reversal mask becomes very approximate when z0 decreases below a given
value. In fact, asz0 tends to0, the number of sign changes in the functionsin(z0k0n cos θ) tends
to0 too and, therefore, the phase modulation becomes increasingly less efficient to substitute for
an ideal amplitude modulation in the time-reversal approach. The disadvantage of the Fresnel
lens mask is that it requires to split the SLM in two areas so that only part of theu directions
focus atz0 (−z0).

In Fig. 5.4 we give an example of the phase masks that are displayed on the SLM following
the time reversal technique or the Fresnel lens approach with different templates for splitting
the SLM. All three masks shown in Fig. 5.4 were designed for focusing light atz0 = 1 µm (with
λ = 491 nm). The simulations of the global PSF obtained with these different masks were very
similar (not shown).

We now turn to the experimental measurement of the global PSFof the ISO microscope. In
our experimental set-up, we have used both the time-reversal and Fresnel lenses techniques for
engineering the incident beam.

5.2.3 Experimental results

5.2.3.1 Description of the set-up

The experimental configuration of the microscope exhibits the same features as that presented
in the theoretical and numerical section. Basically, the ISO microscope consists in a conven-
tional home-built confocal microscope that has been modified to allow the wave front shaping
of the incident and detected light, see Fig. 5.5. More precisely, a phase-only SLM (Pluto-
VIS, Holoeye) functioning in reflection was introduced between a dichroic mirror (z488/633,
Chroma) and a water immersion objective lens (Plan Apo VC60×, NA = 1.2, Nikon). The
SLM plane was optically conjugated to the rear focal plane ofthe lens using a telescope. Hence,
each pixel of the SLM corresponded to one direction in the observation region as assumed in
the first section. Excitation was supplied by a continuous wave 491 nm laser. The fluorescence



5.2 ISO microscopy: Theory and Experiment 71

Figure 5.4: Examples of phase masks for ISO focusing. For symmetry reasons, only the top
right quarter of the masks are shown (bottom left corner is the centre of symmetry). Mask
designs are based on (a,d) the principle of time reversal focusing and (b,c,e,f) combinations of
Fresnel phase plates following (b,e) a checker board of50 × 50 pixel2-wide squares and (c,f)
a pie chart of 16 slices. These masks were generated for two different configurations in which
the mirror is placed (a-c) in the genuine focal plane of the objective lens and (d-f) atd = 6 µm
above it. In the latter case, the termk0d cos θ has been added to all the phase patterns given in
the text.

light collected in epi-geometry was ”de-scanned” by the SLM, in order to keep the optical con-
jugation between the pinhole and the probed region. It was spectrally filtered (FF01-525/39-25,
Semrock; centre wavelength:525 nm; band width:39 nm at 90% transmittance,45 nm at
50% transmittance, corresponding to a coherence length of about 3 µm in vacuum) and spa-
tially filtered with a 30µm pinhole (i.e. 1 Airy diameter) placed in front of a photon counter
(PD1C0C, Micro Photon Devices). Both excitation and fluorescence lights were horizontally
polarised (along thex axis) so as to be parallel to the working axis of the SLM. Typical excita-
tion power and acquisition dwell time were 10µW and 1 ms/pixel, respectively.

The sample consisted in a suspension of isolated 100 nm spheres (Fluospheres Yellow/green,
Invitrogen) in a1%wt agarose gel film (typical thickness of 5 to 10µm) and was sandwiched
between a Ag coated mirror and a conventional 150µm cover slip. The mirror, was placed a
few microns away from the focal plane of the microscope objective lens on a nano-positioning
stage (NanoLP100, Mad City Labs). In our configuration, axial scanning was performed by
changing the SLM pattern while transverse scanning was doneby translating the mirror in the
(x, y) plane with the stage.

5.2.3.2 Global PSF of the ISO microscope

To estimate the global PSF of the ISO microscope, we measuredthree-dimensional images
of isolated beads in the sample and assumed that the latter were small enough to be con-
sidered point-like sources. Although a more precise assessment of the PSF would require
3D-deconvolution of the image by the bead volume, we found bynumerical simulations that
the actual bead size (100 nm) only slightly affects the fringe contrast. Different patterns were
displayed on the SLM to engineer the wave front. The best results were obtained for the time-
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Figure 5.5: Schematic of the microscope set-up. Captions: avalanche photo-diode (APD); half-
wave plate (HWP); phase-only spatial light modulator (SLM); rear focal plane (rfp). Lenses are
achromatic doublets. See details in text.
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reversal mask [see Fig. 5.6 (a)] and the Fresnel mask with a 16slices pie-chart template [see
Fig. 5.6 (b)]. We observed that the performance of the checker board templates decreased with
the square size (from50 × 50 pixel2 to 1 × 1 pixel2). The influence of the templates on the
experimental image, which is not retrieved with the simulations, points out the practical limits
of the SLM and, in particular, its failure to generate important phase changes at high spatial
frequency, see Sec. 5.2.3.3 for more details.

To check the performance of the ISO set-up, we compared the image of a bead obtained in
the ISO configuration to that of a bead measured in the conventional confocal geometry (i.e.
without the mirror and the SLM), see Fig. 5.6 (a). Similarly to the simulated PSF shown in the
first section, we observed that the experimental ISO PSF is close to the experimental PSF of the
conventional confocal microscope, modulated bycos2[βk0(z − z0)]. We thus obtain a quasi-
isotropic central peak, flanked by high side lobes that reflect the less than perfect focusing
achievement of the conventional confocal microscope.

We then checked the homogeneity of the global PSF, by studying the images of beads loc-
ated at various distances from the mirror, Fig. 5.7. We observed that, as expected, the profiles
exhibit the same features whatever the distance of the bead to the mirror and the positions of
the fringes change with the location of the beads.

These experimental results suggest that we have achieved the finest ISO point spread func-
tion possible with such a confocal microscope. It is worth noting that even for experiments
requiring 15 to 20 minute-long measurements, we observed nodrift of the set-up; namely the
ISO PSF was preserved all along. We now describe the preliminary studies that were necessary
to tune properly the ISO set-up and obtain these results.

5.2.3.3 Tuning an ISO microscope, cautions and preliminarystudies

Basically, the ISO set-up requires to check three importantsteps, the confocal detection, the
engineering of the wave front and the mirror positioning.

Confocal detection We have seen in the first section that ISO microscopy requiresthat both
incident excitation light and collected fluorescence lightbe treated by the SLM; otherwise, it
would not be compatible with a confocal detection scheme. Now, fluorescence light has a
slightly longer wavelength than that of the excitation light, for which the phase masks were
designed. Due to this chromaticism issue, we expect the optimal position of the pinhole to
slightly change when going through the phase mask series. Therefore, we evaluated the detec-
tion efficiency of the microscope for each of the phase masks,by focusing light in a droplet
of fluorescent dye solution (Rhodamine 6G,10−6 mol L−1), as schematised in Fig. 5.8. The
position of the pinhole was optimised while focusing light 6µm before the focal plane. We
observed that the detection efficiency decays slowly as the focus is moved away by displaying
different masks on the SLM. Loss of efficiency is observed down to about20% at the extremes.
Unsurprisingly, we found that the decay depends on the size of the pinhole; larger pinholes yield
smaller losses. A pinhole of diameter 30µm, (i.e. one Airy diameter), appeared to be a fair
trade-off between the optical sectioning and a relatively constant efficiency of detection over a
sufficiently wide scanning range along the optical axis.
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Figure 5.6: Profile intensity along thez axis of the images of isolated 100 nm fluorescent
beads, measured by ISO microscopy. Vertical and horizontalslices of these images are shown
in insets. Phase mask designs were based on (a) time reversaland (b) combinations of Fresnel
phase plates with respect to a pie chart of 16 slices, see Fig.5.4. Note that the image of the bead
was recorded by transverse scanning with the nano-positioning stage and axial scanning of the
sample with the SLM.
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Figure 5.7: Intensity profiles taken along the axial direction of 3D images of 100 nm fluorescent
beads, measured by ISO microscopy using time-reversal phase masks. Bead-to-mirror distances
are estimated, on the basis of the position of the brightest fringe in the interference patterns, to
2.1µm (−), 2.5µm (...) and 4.3µm (- -).
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Figure 5.8: Relative variation of the fluorescent signal as afunction of the phase masks dis-
played on the SLM, measured by focusing light in a droplet of fluorescent dye solution (Rhod-
amine 6G). Fresnel-lens phase masks were used to focus lightin a single spot 0 to 12µm before
the genuine focal plane of the objective lens. Spatial filtering at detection was performed with
pinholes of diameter 30µm (−) and 50µm (- -). These curves reveal the dependence of the
detection sensitivity on the SLM display.

Engineering the wave front of the incident beam In a naive view, ISO focusing consists in
forming two spots along the optical axis, one at the focal position and the other at its virtual
image behind the mirror. Hence, at least one of them forms outof the genuine focal plane of
the objective lens. Now, for achieving an interference pattern of optimal contrast, the two spots
should have a similar field distribution and be accurately positioned. Hence, it is necessary to
check that focusing out of the focal plane does not deteriorate the spots. We tested the ability
of our water-immersion microscope objective to focus lightup to 12µm before its focal plane
by displaying a Fresnel lens with varying focal length on theSLM. This was done by recording
images of beads scattered in an agarose gel film deposited on astandard glass slide. Axial slices
of these images are shown in Figs. 5.9 (a-b). Spot radii at1/e2 [see Fig. 5.9] were then evaluated
by fitting axial and transverse profiles taken from the image with a Gaussian function. Axial and
transverse widths were found almost constant (to within 0.03µm), which indicates that focusing
out of the focal plane by wave front shaping with simple Fresnel phase masks introduces only
negligible aberrations, within 12µm (at least) before the focal plane of the objective.

We decided to place the mirror atd = 6 µm before the genuine focal plane of the objective
in order to minimise the influence of the incident light that is unaffected by the SLM which
then focuses behind the mirror. The phase masks were then designed to generate two spots at
equidistant locations with respect to a plane that lays atd = 6 µm before the genuine focal
plane, see Fig. 5.4, and their axial range was limited to 6µm above and below this plane to
remain within the checked aberration-free domain. Hence, in all the experiments, the samples
were axially scanned over a layer of 6µm before the mirror only.

The phase mask building required also some cautions. In order to apply the time reversal
formulae or to arrange a combination of Fresnel lenses in a mask, one needs to associate the
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Figure 5.9: Spot radii at1/e2, evaluated by fitting (with a Gaussian curve) axial and transverse
profiles taken from fluorescence images of a 100 nm bead, measured while controlling the actual
plane where light focuses using the SLM. Insert: Axial slices of two of these images, measured
while focusing (a) in the genuine focal plane of the lens and (b) in a plane located12 µm before
it.

pixels of the SLM [defined by their coordinates (ρ, ψ)] to the propagation directionsu after
the objective lens. The main difficulty is to determine the radiusR of the pupil image on
the SLM as introduced in Eq. (5.4). First, an approximate value ofR can be calculated from
the specifications of the objective lens (numerical aperture and radius of the pupil) and the
magnification ratio brought by the telescope between the SLMand the objective lens. Then,
this value ofR can be refined through a simple calibration method that consists in measuring
the 3D image of a fluorescent bead (in absence of the mirror) while displaying on the SLM
a phase mask for ISO focusing. In that case axial scanning is performed with the stage. The
phase mask is designed to generate a spot at a given distancez0 to the mirror and yields two
spots separated by2z0 along the optical axis in the absence of the mirror. The imagereveal the
positions of the two spots and the radiusR is optimised until the distance between the two spots
actually corresponded to two times the targetedz0. Figures 5.10 (b-c) show vertical slices in
an axial plane of the bead image, measured with phase masks designed with the time-reversal
approach forz0 = 1 and 2µm. After calibration, the image reveals pairs of spots that are
separated by2z0 =2 and 4µm along the optical axis, as expected.

Placing the mirror Once the two twin spots are created, we axially scan the mirror through
focus and measure the detected signal strength. This technique permits one to localise the two
spots with accuracy. The mirror is then placed at equidistance of the spots with the stage. A
slight tilt of the mirror, if any, can be very accurately corrected by translating the centre of the
phase mask on the SLM. Namely, its translation by one pixel ineither thex or y directions
(i.e. by 8 µm) equates in first approximation to a tilt correction by about 0.1◦ . The accurate
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Figure 5.10: Fluorescence images (axial slices) of a 100 nm bead, measured with time-reversal
phase masks that yield pairs of spots separated by (a) 0, (b) 2and (c) 4µm along the optical
axis in the absence of the mirror.

positioning of the mirror is crucial as it governs the overlapping of the spots.

To investigate the sensitivity of the ISO PSF to possible mispositioning or drifts of the
mirror, we measured the image of a bead for different positions of the mirror. As shown in
Fig. 5.11, the alteration of the PSF is obvious for shifts of 0.10µm or larger. Thus, mechanical
drifts above100 nm are expected to deteriorate significantly the PSF. Now, wefound that,
although we did not used any additional stabilising system,15 to 20-minutes long measurements
could be conducted without seeing any deterioration of the PSF. Hence, we believe that the
stability of the mirror position within100 nm over the experiment time is not an issue.

Correction and calibration of the spatial light modulator The technology of our SLM (li-
quid crystals on silicon chip) has the disadvantage that it makes displays of relatively poor
surface flatness, which may degrade the incident wave front and alter the ability of the micro-
scope to focus light. Therefore we did a complete diagnosis of these aberrations by analysing
the reflection of coherent light by the SLM using a wave front sensor (SID-4 HR, Phasics)
mounted on the microscope at the position of the rear focal plane of the objective lens. We
found that the curvature of the SLM mainly introduced defocus and astigmatism, as well as
spherical aberrations to a lower extent. We compensated fordefocus and astigmatism by finely
adjusting the axial and lateral positions of the lenses in the set-up. This was achieved while
keeping all optical planes conjugated and it allowed us to reach wave front RMS flatness lower
than 0.1 times the wavelength of light. The remaining spherical aberrations were minimised by
finely adjusting the objective correction collar while monitoring the aspect of the focal spot on
a reflective interface of the sample. As an alternative to compensate for the SLM curvature, we
also exploited the wave front analysis to calculate a ”correction map” that can be added to any
phase mask on the SLM. However, the first option (i.e. handling the ”physical” lenses of the
set-up) has the advantage over the second one that the confocal microscope can still be operated
in conventional mode (i.e. without wave front shaping) simply by switching off the SLM.

We configured the SLM to have a linear relationship between the signal sent to its driving
unit and the phase shift actually experienced by the reflected light. For this purpose, we meas-
ured the phase characteristic of the SLM in an interferometric set-up. Then we inverted it to
obtain a new data look-up table for the driving unit, in orderto have a linear phase response
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Figure 5.11: Three intensity profiles, taken in the axial direction from fluorescence images of
a single 100 nm bead, for different positions of the mirror. In the middle and bottom profiles,
the mirror position differs by 0.10µm and 0.21µm from that of the top profile, respectively.
Top and bottom profiles are fitted with envelope curves (dashed line) corresponding to (top)
a Gaussian function of radius 0.65µm at 1/e2 and (bottom) a sum of two identical Gaussian
functions of same radius 0.65µm but of different centres.

within a well-defined0 − 2π phase range at the wavelength of our excitation source (491 nm).
We also modified the addressing scheme of the SLM. This addressing is digital, which means
that the phase levels are created by pulse width modulation.Due to low addressing rate and
limited viscosity of the LC molecules, the actual phase levels exhibit a certain flicker that is
reminiscent from the addressing sequences. Nevertheless,the flicker can be reduced by short-
ening the pulse sequences and addressing them more often within one frame. Therefore we
switched from the default configuration, designed for 1216 different phase levels, to a custom
one with 192 phase levels. This naturally reduces the numberof distinguishable phase levels
that can be created, which might not suit all applications.

5.2.4 Conclusion

We have presented in this section the simulations and the experimental implementation of a
novel epifluorescence confocal microscopy technique, called ISO microscopy (for Isotropic
Single Objective), in which the sample is laid on a mirror andscanned by a quasi-isotropic
spot that is formed through the interference of the direct and mirror-reflected field of a spe-
cially shaped illumination beam. We have shown theoretically and experimentally that the
point spread function of this system is similar to that of a 4Pi-A microscope. It displays a quasi-
isotropic spot of diameter aboutλ/2 surrounded by high side lobes. Reducing the side-lobes is
the key point for further improvements of the technique. It should be obtained by using a micro-
scope objective with an acceptance solid-angle about65◦ [116]. The development of an 4Pi-C
equivalent ISO scheme could also be a solution. We have also investigated in the following
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section the interest of radial polarisation and two photonsillumination.

5.3 Further works and experiments

Reducing the side-lobes is the key point for further improvements of the technique. To this aim,
we have investigated the interest of radial polarisation and two photons illumination.

5.3.1 Radial polarisation

In a standard confocal microscope, the spot size can be ameliorated by illuminating the back
focal plane of an objective by a radially polarised beam [59]. Now, the radially polarised beam
at the back focal plane corresponds to the field radiated by a dipole oriented along the optical
axis. It is thus natural to think that using this polarisation could further improve ISO microscopy,
particularly in reducing the side lobes. We have thus calculated the field radiated by a dipole
oriented perpendicularly to the mirror, see section 5.2.2.1. One obtains,

eideali (u) ∝ cos(z0k0 cos θ)[p− (p · u)p], (5.8)

We have simulated the field intensity obtained before the mirror when focusing a radially polar-
ized beam with its wave-front shaped accordingly to the phase of Eq. (5.8). All the numerical
parameters are the same as that in Sec. 5.2.2.2. The results are plotted in Fig. 5.12. We observe
that the PSF obtained with the radial polarisation has smaller vertical side lobes but higher
transverse side lobes than the PSF obtained with linear polarisation. It is thus unclear which is
the best for imaging.

5.3.2 Two-photon microscopy

We also applied ISO microscopy concepts to two-photon fluorescence microscopy [8]. Some
fluorescent markers can absorb photons presenting a wavelength twice larger than their absorp-
tion wavelength [29, Chap. 2]. The absorbed energy is then proportional to the square of the
intensity at the fluorophore positionIout = σ2phI

2
ext. While largely less efficient than the usual

fluorescence, this process has many applications in microscopy [29, Chap. 2]. Indeed, as the
total intensity emitted by a fluorescent marker is proportional to the square of the incident in-
tensity one can expect focusing deeper in diffusive tissue and obtaining a better axial resolution.
Generally, in scanning two-photon microscopy, light is focussed into the sample but the detec-
tion is performed on a large detector, without a confocal set-up. We checked the performance of
the ISO-scheme in this specific configuration. Figure 5.13 shows images of fluorescent beads
illuminated with a pulsed laser source (Nd-YVO4, Amplitude) emitting 6 ps pulses at 1064 nm
with a repetition rate of 34.5 MHz. A SLM compatible with infra-red light (X8267-15, Hama-
matsu) was used to shape the beam wave-front. Light emitted by the sample was collected in
epi-configuration and detected without spatial filtering byan avalanche photo-diode. We ob-
served a significant reduction of the side-lobes as comparedto one photon fluorescence set-up,
even though the latter was coupled to a confocal detection scheme. Further improvement of the
ISO-two-photons fluorescence microscope would be to use also a confocal scheme. As the illu-
mination and observation wavelengths are very different, asecond SLM would be necessary to
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Figure 5.12: Comparison of ISO PSF for linear and radial polarisation. (a) and (b)(z = 0) and
(x = 0) cut of simulated ISO PSF with a field in the back focal plane polarised along direction
x (see Fig. 5.2). (c) and (d)(z = 0) and(x = 0) cut of simulated ISO PSF with a field in the
back focal plane polarised radially.

Figure 5.13: Axial(y, z) and (x, z), and transverse(x, y) cuts taken from three-dimensional
fluorescence images of 200 nm beads, experimentally measured by two-photon fluorescence
ISO microscopy and standard two-photon fluorescence microscopy. Both techniques are based
on non-confocal detection. Fluorescence signal is displayed with a linear grey-level scale.
(Courtesy E. Le Moal)
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process the light emitted by the markers. Indeed, the masks defined by Eq. (5.3) are inherently
wavelength dependent.

5.4 Conclusion

We have presented in this section the simulations and the experimental implementation of a
novel epi-fluorescence confocal microscopy technique, called ISO microscopy (for Isotropic
Single Objective) in which the sample is laid on a mirror and scanned by a quasi-isotropic
spot that is formed through the interference of the direct and mirror-reflected field of a spe-
cially shaped illumination beam. We have shown theoretically and experimentally that the
point spread function of this system is similar to that of a 4Pi-A microscope. It displays a quasi-
isotropic spot of diameter aboutλ/2 surrounded by high side lobes. Reducing the side-lobes is
the key point for further improvements of the technique. We have investigated the interest of ra-
dial polarization and two photons illumination for this purpose Additional improvements could
be obtained by using a microscope objective with an acceptance solid-angle about65◦ [116]
and by developing a 4Pi-C equivalent ISO scheme.

This chapter concludes my work devoted to the amelioration of the axial resolution via the
use of a mirror. In the following chapters, I consider the amelioration of the lateral resolution
via structured illumination and the development of reconstruction algorithms.



Part III

Transverse resolution and Structured
Illumination



Chapter 6

Structured illumination in fluorescence
microscopy1

6.1 Introduction

In classical wide-field fluorescence microscopy, the samplefluorescence is excited by a uniform
light intensity and the emitted fluorescence is detected at the image plane of a microscope
objective. In the linear regime, the recorded intensityM can be modelled as the convolution of
the fluorescence density of the sampleρ with the microscope detection point-spread-function
h. The image resolution is limited by the spectral band pass ofh whose cut-off is fixed by
νmax = 2NA/λem whereλem is the emitted wavelength andNA is the numerical aperture of the
microscope objective. To improve the frequency content of the image, a widely spread solution
consists in illuminating the sample with a non-uniform light pattern. In this case, the recorded
intensity reads, as seen in Chap. 2,

M = (Iρ) ∗ h, (6.1)

where∗ stands for the convolution product andI is the spatially varying illumination intensity.

Now, if the illumination largest spatial frequency allowedby the excitation band-pass isνi,
the convolution theorem shows thatM depends on the spatial frequencies ofρ up to νmax +
νi. Thus, the recorded intensity map contains sample information that is beyond the detection
band-pass. Many imaging approaches exhibiting a resolution better than that of classical wide-
field microscopy, like Structured Illumination fluorescence Microscopy (SIM) with periodic
excitation patterns [12, 13, 11], near-field hot spots [48, 117], translating speckles [118, 119]
and even confocal or related microscopies with focused excitation spots [56, 57], rest on this
principle.

However, although these approaches exhibit resolutions upto two-fold better than that of the
wide-field microscope [120, 121], they are still seldom usedin the microscopy community. The
main reason is that they all rely on reconstruction algorithms that require a precise knowledge of
the illumination patterns, small errors on the latter yielding artefacts in the final high resolution

1Most of the text of this section was originally published in E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le
Moal, C. Nicoletti, M. Allain and A. Sentenac, Nature Photonics, 6 312–315 (May 2012), and its supplementary
material [14]. Theory and simulations were made by Kamal Belkebir, Marc Allain, Anne Sentenac and myself; ex-
periments and data pre-treatments were led by Jules Girard and Eric Le Moal; samples were prepared by Cendrine
Nicoletti and Julien Savatier.
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image. This important constraint can be met only if the illumination distortion induced by
the sample or the objective aberrations is negligible and ifthe set-ups are carefully calibrated
and stabilised to control the illumination. It limits the application domain to weakly scattering
samples and make the experimental implementation very technical. Hence, a major step forward
to extend the potential of Structured Illumination Microscopy techniques is to develop a method,
hereafter named blind-SIM, that is able to retrieve the sample fluorescence density withouta
priori information on the illumination patterns.

The first section of this chapter describes the principle of blind-SIM algorithm. The second
section presents simulations and experiments of the blind-SIM algorithm applied to classical
periodic structured illumination and to speckle illumination data. The third and last section
presents our attempts to modify the blind-SIM algorithm fortreating measurements with high
frequency illumination patterns produced in the near-fieldof a periodic nano-structure.

6.2 Blind-SIM reconstruction method

6.2.1 Principle of blind-SIM

We consider an experimental configuration in which a two-dimensional fluorescent sample is
successively illuminated byL different light patternsIl=1,...,L. The fluorescence densityρ is
linked to theL imagesMl=1,...,L through

Ml = (Ilρ) ∗ h. (6.2)

Given theL images, we seek to reconstruct both the fluorescence densityand theL incident
intensities,i. e. L + 1 unknowns. The system is thus highly under-determined. To avoid
this problem, we introduce the constraint that the sum of allthe incident intensities be roughly
homogeneous over the sample plane. This condition assumes that the sample is uniformly
illuminated on average. It reads

L
∑

l=1

Il ≈ LI0, (6.3)

whereI0 is constant over the sample plane. We use this constraint forreducing the number of
unknowns. The last intensityIL is assumed to be equal to

IL = LI0 −
L−1
∑

l=1

Il, (6.4)

so that theLth equation of (6.2) can be expressed as

ML =

[(

LI0 −
L−1
∑

l=1

Il

)

ρ

]

∗ h, (6.5)

whereIL is now absent.

The fluorescence density and theL − 1 first illuminations are then jointly estimated in an
iterative way so as to minimise the cost functional,

F (ρ, Il=1,...,L−1) =

L−1
∑

l=1

‖Ml − (Ilρ) ∗ h‖2 +
∥

∥

∥

∥

∥

ML −
[(

LI0 −
L−1
∑

l=1

Il

)

ρ

]

∗ h
∥

∥

∥

∥

∥

2

,
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where‖.‖ is an euclidean norm over the image space. As the illumination functionsIl are jointly
estimated, one need no more assumption on their value than the approximate homogeneity of
their sum. Note that with this approach, the residual inhomogeneity of the illumination average
will be transferred to the reconstructed fluorescence density.

There are various means for finding the minimum of a functional. We have chosen an
approach based on a non-linear conjugate gradient algorithm.

6.2.2 Description of the algorithm

The aim of blind-SIM algorithm is to determine the density offluorophoresρ and theL illu-
minations{Il} from the knowledge of the measured intensitiesMl. One notesΩ the sub-set of
R2 whereρ and{Il} are reconstructed andΓ the sub-set ofR2 whereMl is measured.

For a given density of fluorophoresρ and excitationsIl, one defines the residual errorrl on
Eq. (6.2) as follows

rl =Ml − (ρIl) ∗ h. (6.6)

The basic idea of the blind-SIM minimisation is to build up two sequences related to the density
of fluorophores and illuminations{ρn} and{Il,n}, respectively, so as to minimise

F
(

ρ, (Il)l=1,...,L−1

)

=W
L
∑

l=1

||rl||2Γ

=W
L−1
∑

l=1

||Ml − (ρIl) ∗ h||2Γ +W

∥

∥

∥

∥

∥

ML −
[

ρ

(

LI0 −
L−1
∑

l=1

Il

)]

∗ h
∥

∥

∥

∥

∥

2

Γ

,

(6.7)

whereW is the normalisation factor

W =
1

∑L
l=1 ‖Ml‖2Γ

. (6.8)

SubscriptsΩ andΓ are included in the norm|| · || and later in the inner product〈·|·〉 to
indicate the domain of integration.

The minimisation of Eq. (6.7) provides a maximum likelihoodestimation under the assump-
tion that the residual (6.6) is an uncorrelated Gaussian noise and, as such, does not account
properly for the Poisson nature of the data. Its main advantage is that it does not require to
tune any noise-related parameter. Thus, it can be used readily on any experiment. Of course, in
cases where the noise has been thoroughly analysed, it may beworth deriving specially adapted
algorithms [122, 123].

Series{ρn} and{Il,n} are updated at each iteration according to the following recursive
relations

ρn = ρn−1 + αndn;ρ,

Il,n = Il,n−1 + βl,ndl,n;I, (6.9)
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wheredn;ρ anddl,n;I are updating directions with respect to the density of fluorophoresρ and
illuminations{Il}, respectively. Scalar coefficientsαn andβl,n are weights that are chosen at
each iteration step such that they minimise

f
(

αn, (βl,n)l=1,...,L−1

)

= F (ρn−1 + αndn;ρ, (Il,n−1 + βl,ndl,n;I)l=1,...,L−1).

This choice forαn andβl,n ensures thatF
(

ρn, (Il,n)
)

is reduced at every step. Calculation of
the functionf leads to a polynomial of variablesαn andβl,n for which the minimum is obtained
thanks to a Conjugate Gradient method [16, p 413][15].

The updating directionsdn;ρ and dl,n;I are based on the gradient of the cost functional
F(ρ, Il): gρ is the gradient of the cost functionalF(ρ, Il) with respect toρ assuming that the
intensitiesIl do not change within the domainΩ; while gl,I is the gradient ofF(ρ, Il) with
respect to thel-th intensity,Il, assuming that the density of fluorophores, and theL − 1 other
intensities do not change inside the domainΩ. The derivation of these gradients is reported in
the Appendix B and their expressions read as

gn,ρ = −2W
L
∑

l=1

Il,n−1rl,n−1 ∗ h, (6.10)

gl,n,I = −2Wρ
(

(rl,n−1 − rL,n−1) ∗ h
)

. (6.11)

Using gradients as updating direction being generally inefficient, one prefers to use a conjuga-
tion algorithm [15]. We choose the Polak-Ribière conjugate gradient formula [124], known as
one of the most efficient ones

dn;ρ = gn;ρ + γn;ρdn−1;ρ

with γn;ρ =
〈gn;ρ|gn;ρ − gn−1;ρ〉Ω

||gn−1;ρ||2Ω
, (6.12)

dn,l;I = gl,n;I + γn,Idl,n−1;I

with γn;I =
〈gl,n;I|gl,n;I − gl,n−1;I〉Ω

||gl,n−1;I||2Ω
. (6.13)

6.2.2.1 Positivity

In many cases, the use ofa priori information ameliorates the stability of solution with respect
to noise. In our problem, the sought density of fluorophoresρ and intensitiesIl are both real
and positive. To incorporate this information in the reconstruction algorithm,ρ and theL − 1
first illuminations{Il} are written as the square of auxiliary functionsξ and{il} such that

Il = i2l ,

ρ = ξ2. (6.14)

The cost functional to be minimised depends now on these auxiliary functions as,

F (ξ, (il)l=1,...,L−1) = W

L−1
∑

l=1

∥

∥Ml −
(

ξ2i2l
)

∗ h
∥

∥

2

Γ
+W

∥

∥ML −
[

ξ2IL
]

∗ h
∥

∥

2

Γ
, (6.15)

with IL = LI0 −
∑L−1

l=1 i
2
l . As previously, one can define the derivatives of this functional with

respect toξ and il and perform a minimisation through a gradient type algorithm. The final
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estimated values forρ andIl are then the square of the final estimates ofξ andil. In this case,
the iterative scheme remains unchanged although the updating directionsdρ anddl,I reported in
Eqs. (6.9) to (6.12) are rewritten with respect toξ andil instead ofρ andIl, respectively

dn;ξ = gn;ξ + γn;ξdn−1;ξ

with γn;ξ =
〈gn;ξ|gn;ξ − gn−1;ξ〉Ω

||gn−1;ξ||2Ω
,

dn,l;i = gl,n;i + γn,idl,n−1;i

with γn;i =
〈gl,n;i|gl,n;i − gl,n−1;i〉Ω

||gl,n−1;i||2Ω
, (6.16)

wheregξ andgi denote the gradients of the cost functionalF with respect toξ andi, respectively

gn,ξ = −4W

L−1
∑

l=1

i2l,n−1ξn−1(rl,n−1 ∗ h)− 2WIL,n−1ξn−1(rL,n−1 ∗ h)

gl,n,i = −4Wξ2n−1il,n−1

(

(rl,n−1 − rL,n−1) ∗ h
)

. (6.17)

6.2.2.2 Boundary effects

An important issue of the reconstruction procedure is the boundary effects. Indeed, the image
on the camera of each emitting fluorophore is as large as the point spread function. Thus,
fluorophores that are outsideΓ and close to the borders may contribute to the measurements.
In the same way, images of fluorophores insideΓ and close to the borders may be truncated.
Neglecting these effects leads to strong artefacts that hinders the image interpretation.

To circumvent these boundary effects, we apply a commonly used method in astronomy
[125, 126]. The domainΩ in which the fluorescence density and incident intensities are sought
is taken larger than the image areaΓ. As seen in Fig. 6.1, one adds on the four sides ofΓ
a large edge of width equal to that of the point spread function h. During the reconstruction
procedure, the fluorescence densityρn and the incident intensitiesIl,n can vary freely onΩ but
the measurementsMl and the residual errorsrl,n are only evaluated onΓ.

Figure 6.1: Schematic of the interlocking ofΩ, the domain of reconstruction aroundΓ, the
domain of measurement.

Generally, the reconstructed density and illuminations over these edges are false (as there
is no measurement to constrain them), but they constitute the proper boundary condition for
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obtaining a good evaluation ofIl andρ in the subset ofΩ that corresponds toΓ. All the re-
constructed density and illuminations presented in the main part of the paper are obtained with
these additional edges. This technique is very efficient to remove the boundary effects except at
the very borders of the image.

6.2.2.3 Initial estimates

The initial estimate of the auxiliary function corresponding to the fluorescence density,ξ0, is
taken constant equal to 1. For the periodic SIM data, the initial estimates of theL auxiliary
functions corresponding to the illumination patternsil,0 are homogeneous overΩ and equal to√
I0. In the speckle case, better initial estimates of the illumination patterns are obtained by

keepingξ0 constant, (imposingdn;ξ = 0) during the first 10 iterations.

6.2.2.4 Computational effort

The dominant operation in the blind-SIM algorithm is the convolution product,∗h. This opera-
tion, which has to be done several times for each illumination is made using Fast Fourier Trans-
forms (FFT). Thus, at each iterationn, the computational effort is inO(LN log(N)), whereN
is the number of pixels inΩ andL is the number of illuminations. Typical computation times
are presented together with the experimental results.

6.2.3 Deconvolution of the wide-field images obtained underuniform il-
lumination

It is well known that the positivitya priori information included in any inversion algorithm
permits the recovery of sample high spatial frequencies that are not accessible with the imaging
procedure (and not always present in the sample) [46, 47]. Hence, it is necessary to check
that the resolution amelioration that we observed in the reconstructed fluorescence maps comes
from the physical process of combining different structured illuminations and not only from
the inversion procedure. We thus adapted our algorithm in order to estimate the fluorescence
density from one single image of the same sample obtained under uniform illumination. The
fluorescence densityξ2 is estimated by minimising the functional,

F (ξ) = W‖M − (I0ξ
2) ∗ h‖2Γ, (6.18)

whereM is the image obtained with the uniform illuminationI0, with a conjugate gradient tech-
nique. Our approach amounts to deconvolving the image with apositivity constraint. We then
compared the reconstructed fluorescence map obtained from the single image with uniform il-
lumination to the one obtained by processing theL SIM images. As the two experiments should
exhibit the same signal to noise ratio to provide a fair comparison, the single image with uni-
form illumination is always generated by summing theL images of the structured illumination
experiment.

6.2.4 Regularisation and stopping criterion

As it stands, both blind-SIM and deconvolution algorithms are not well regularised. They con-
verge towards meaningless images in which the noise is amplified. To circumvent this often
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encountered issue, a Tikhonov [127] or a Total variation regularisation term is usually added
to the cost functional. The weight of the additional regularised term is optimised by forming
many reconstructions of the same sample with different parameters and eventually choosing the
”most appropriate” one (for instance, by the mean of the L-Curve [128], GCV [129], or even ’by
eye’). To bypass this rather long procedure (that must be repeated as soon as the experimental
conditions are modified), we have chosen an algorithm-dependent regularisation which consists
in stopping the reconstruction before convergence.

Indeed, the specificity of gradient-type algorithms is thatthe spatial frequency content of
the reconstructions increases with the iteration number. At the beginning of the iterative pro-
cess, the introduced spatial frequencies stem from meaningful information contained in the
data. Then, after a certain number of iterations, they correspond essentially to high-frequency
noise. Early-stopping of the iterative process is known as asimple (but efficient) regularisation
technique [130, Chap. 5] that basically acts as a Tikhonov regularisation. Furthermore, because
the iteration number controls the regularity of the solution, the practitioner can choose ”by eye”
the solution with the best trade-off between resolution andnoise amplification. The stopping
point depends essentially on the signal-to-noise ratio andon the theoretically accessible spa-
tial frequencies of the imaging system. Practically, appearance of noise-induced features in the
reconstruction is easily seen, being independent for each pixel.

As we are using the same gradient-type algorithm in the blind-SIM and the deconvolution
methods, this algorithm-dependent regularisation procedure acts in a similar way for all our
data processes. We stopped the iterations at the appearanceof some pixel-size structures (for
the synthetic data) or for a given level of background noise (for the experimental data). Using
this criterion, inversions were stopped at different iteration steps depending on the experiments.

6.3 Application of blind-SIM to simulated and experimental
data obtained with speckle and periodic illuminations

In this section, blind-SIM algorithm is applied to data setsobtained with different illumination
patters, classical periodic ones or random speckle ones. Periodic sinusoidal patterns belong
to the classical illumination schemes used in SIM fluorescence microscopy [12, 13, 121]. It
is usually obtained via the interference of two coherent collimated beams (stemming from a
diffraction grating for example) onto the sample. Several images of the sample are recorded for
different positions and rotations of the pattern.

Speckle patterns have also been used in SIM fluorescence microscopy [118, 119], but clas-
sical reconstruction techniques require their measurement before imaging the sample. With
blind-SIM is it now possible to use random speckle patterns.They are produced when random
phases are applied to different points of a coherent beam. They can be obtained easily by mov-
ing a diffusive paper through the laser beam before the objective. In the following, we show the
performances of blind-SIM on simulated and experimental data and we discuss the limits of the
algorithm.
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6.3.1 Synthetic data

To analyse the resolution gain brought about by blind-SIM, we considered a flat two-dimen-
sional fluorescent sample whose fluorescence density is given by

ρ(r, θ) ∝ [1 + cos(40θ)] (6.19)

where(r, θ) are the polar coordinates ofr in the sample plane. This radial sample is particularly
convenient for studying the resolution of imaging techniques. Indeed, its radial features dwindle
as one moves closer to the image centre and there is always a limit radius under which they are
not recovered.

The sample is placed at the object focal plane of a microscopeobjective of numerical aper-
tureNA = 1.49. It is imaged with the detection point-spread-function

h(r, θ) =
(

J1(NAk0r)/k0r
)2

k20/π, (6.20)

whereJ1 is the first order Bessel function of the first kind andk0 is the wave-number in vacuum.
This equation is the normalised version of Eq. (2.16) calculated in Chap. 2. In the various sim-
ulated experiments, the same sample is illuminated by different illumination patterns, classical
periodic patterns, distorted periodic patterns and randomspeckle patterns. In all cases, the
excitation wavelength is assumed to be equal to the observation wavelength.

The synthetic images are obtained following Eq. (6.2) and corrupted with Poisson noise and
an additional Gaussian noise corresponding to the read noise. The image pixel size isλ/20.
Except said otherwise, the photon budget,i. e. the total amount of photons detected by one
pixel for all the measurements is 20,000 on average. The Gaussian noise standard deviation
corresponds to 7 photons per pixel and per measurement. We first investigate the performances
of the blind-SIM algorithm on data obtained with random speckle illuminations then we point
out the interest of blind-SIM for classical periodic SIM (especially if the patterns are distor-
ted), last we analyse quantitatively the resolution gain for different patterns illuminations and
different levels of noise.

6.3.1.1 Blind-SIM applied to random speckle patterns

Since blind-SIM does not assume any particular shape for theillumination pattern, we are free
to use any inhomogeneous patterns and in particular random highly contrasted patterns such
as speckles. Speckles are interesting for structured illumination microscopy because they bare
high spatial frequencies and their statistical average intensity is homogeneous [131, Chap. 3]
(provided enough illuminations are taken) as required by the blind-SIM algorithm. Moreover,
from a practical point of view, they are easy to form and theirstatistical properties are very
robust.

In this first simulated experiment, 160 different fully developed speckles are used. They
are calculated as a sum of plane waves with equal amplitudes and random phases uniformly
distributed in[0, 2π] whose wave-vector transverse projections are taken on a disk of radius
NAeffk0. Fig. 6.2 illustrates the image formation process and the reconstruction. We observe
that the blind-SIM estimations of the fluorescence density and of the first speckle patterns are
in good agreement with the actual values.
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Figure 6.2: Illustration of the different steps of a simulated speckle blind-SIM experiment. 160
different speckle patterns withNAeff = NA (upper right panel) are multiplied by the sample
fluorophore density pattern (upper centre) and convolved bythe microscope detection point
spread function. The data are corrupted by Poisson and electronic noise to yield 160 low resol-
ution images (left panel). The reconstruction algorithm estimates simultaneously the image of
the fluorescence density (lower centre panel) and the 160 speckle patterns (lower right panel).
The side of each square image is10λ.

To verify that the frequency mixing between the illumination and the object is at the core
of the blind-SIM resolution improvement, we considered a numerical experiment in which
the same sample is illuminated by speckles with different spectra. In Fig. 6.3 (d,e,f) the re-
constructed fluorescence densities obtained fromL = 160 speckle images are displayed for
NAeff = 0.5NA, NAeff = NA andNAeff = 1.5NA, respectively and compared to the true
fluorescence density of the sample, the wide-field image of the sample and the deconvolution of
the wide-field image, Fig. 6.3 (a,b,c), respectively. As expected, the resolution of the blind-SIM
images is always better than that of the deconvolved image and clearly improves with increasing
NAeff .

We now point out the interest of blind-SIM even for classicalperiodic SIM experiments.

6.3.1.2 Blind-SIM applied to distorted periodic illumination patterns

One drawback of the usual SIM reconstruction methods, such as the one described in Sec. 1.5.2,
is its sensitivity to pattern distortion. Indeed, most of these algorithms assume that the pattern
is a perfectly sinusoidal. Small variations on the contrastor on the position of the grid along the
image yields strong artefacts [132, 133]. Now, unfortunately, patterns distortions are frequently
present in experimental implementations due to the objective aberrations or to refraction inside
the sample. In this case, it is interesting to compare the blind-SIM reconstruction results to that
obtained with a classical inversion scheme.

I have thus simulated a SIM experiment in which the periodic illuminations are strongly
distorted. The sample is illuminated by a periodic light grid with periodd ≈ λ/(1.4NA) which
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Figure 6.3: Numerical study of the resolution of the reconstructed sample using speckle blind-
SIM versus the excitation pattern spectrum. (a) Fluorescence density of the object. (b) Image
of the object obtained with a uniform illumination and an oilobjective microscopeNA = 1.49.
(c) Deconvolution of the wide-field image shown in (b). (d) Fluorescence density reconstructed
by blind-SIM fromL = 160 images obtained with speckle illuminations. The random speckles
are generated with an effective numerical aperture that is half that of the detectionNAeff =
0.5NA. (e) Same as (d) butNAeff = NA. (f) Same as (d) butNAeff = 1.5NA. The black
bar corresponds to the incident and emitted wavelengthλ. The colour scale represents the
normalised fluorophore density. For a fair comparison, the experiments have the same photon
budget and the deconvolution procedure includes the same regularisation terms as blind-SIM.

is translated byn(d/4), n = 0, 1, 2, 3 and rotated bym(2π/3),m = 0, 1, 2. For each simulated
image, the periodic illumination pattern is distorted witha different aberration.

Blind-SIM is compared to a reconstruction algorithm assuming that the illumination is si-
nusoidal and perfectly known. In this last case, the inversion method is similar to blind-SIM
except that the{Il} are fixed to perfectly periodic patterns and the iterative search is performed
only on the fluorescence density [134]. The perfectly periodic patterns are chosen such that
they match the distorted patterns in the centre of the sample.

The results of this simulated experiment are displayed in Figure 6.4. We observe that blind-
SIM is able to retrieve accurately the distorted periodic illuminations and reconstruct the sample
without any visible artefacts. On the contrary the classical reconstruction method yields a
sample image that contains strong artefacts (the converging rays of the radial sample are mis-
placed), especially far from the sample centre, where the distortion is the most important. This
study demonstrates the robustness of blind-SIM against pattern distortions. Indeed, the illumin-
ation patterns being estimated correctly by the algorithm,one can obtain high resolution images
without artefacts.

6.3.1.3 Performance of blind-SIM versus noise and comparison with other techniques

In this paragraph, we analyse the resolution gain achieved by blind-SIM versus the photon
budget of the experiment. We study three different excitation patterns, the standard homogen-
eous illumination, the speckle illumination and the periodic (non distorted) illumination. For the
speckle configuration,80 images are simulated with different speckle patterns generated with
NAeff = NA. For the periodic configuration,9 images are simulated using a periodic light grid
with periodd ≈ λ/(1.4NA) which is translated byn(d/3), n = 0, 1, 2 and rotated bym(2π/3),
m = 0, 1, 2. The one-shot homogeneous illumination, the 9-shot periodic illuminations and the
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Figure 6.4: Reconstructed fluor-
escence density of the ’star-like’
sample and reconstructed illu-
mination patterns given by blind-
SIM for a distorted periodic SIM
experiment. (a) is the actual
fluorophore density of the ’star-
like’ sample. (b) is the fluoro-
phore density reconstructed us-
ing blind-SIM. (c) is the fluoro-
phore density reconstructed us-
ing an inversion method assum-
ing the illumination as periodic
and known [134].
The first column of 6 images
below the (a,b,c) figures cor-
responds to 6 of the 12 simu-
lated measurements; the second
column shows the actual il-
lumination patterns that were
used to create the simulated
measurements; the third column
shows the reconstructed illumin-
ation patterns using blind-SIM.
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80-shot speckle illuminations are simulated with the same total amount of detected photons per
pixel (on average).

The reconstructed images obtained under periodic and speckle illumination using blind-
SIM (Periodic blind-SIM and Speckle blind-SIM) are compared to the wide-field image (Wide-
Field), its deconvolution (Deconvolution) obtained with the non-linear algorithm described in
Sec. 6.2.3, and the reconstruction of the periodic SIM data obtained by assuming that the ex-
citation patterns are perfectly known (Periodic SIM). In this last case, the inversion process is
similar to blind-SIM except that the{Il} are fixed to their actual values and the iterative search
is performed only on the fluorescence density [134]. The factthat all the reconstruction proced-
ures include the same regularisation technique permits a fair comparison between the different
imaging techniques and allows one to focus on the role of the (known or unknown) excitation
patterns.

We consider a realistic experiment in which the total photonbudget detected on average on
one Nyquist pixel (i. e. with sizeλ/(4NA) ≈ λ/6) is about10, 000 and the read noise stand-
ard deviation corresponds to6 photons per Nyquist pixel and per measurement. In this case,
the photon noise is dominant and reaches1% which is typical of most structured illumination
experiments. We plot in Fig. 6.5 the Wide-field, Deconvolution, Speckle blind-SIM, Periodic
blind SIM and periodic-SIM images together with one exampleof the speckle data. We observe
that Periodic SIM, Speckle blind-SIM and Periodic blind-SIM allow a better reconstruction of
the radial periodic pattern than the Deconvolution or Wide-field. The reconstructed pattern is
more contrasted in the periodic SIM image than in the periodic and speckle blind-SIM images
but the limit radius under which the modulation disappears is roughly the same for the three
techniques.

To support this assertion quantitatively, we analysed specifically the values of the recon-
structed fluorescence density along centred circles of various radius. The sample fluorescence
density taken on a circle of radiusR readsfR(s) ∝ 1+cos

(

2πs/L(R)
)

wheres is the arc-length
along the circle andL(R) = 2πR/40 is the period of the pattern, which decreases asR tends to
zero. To estimate the ability of the reconstruction procedures to retrieve this oscillating pattern
as a function ofR, we calculated the modulation contrastC(R) = 2f̃R

(

1/L(R)
)

/f̃R(0) where
f̃R is the one-dimensional Fourier transform offR(s). For the actual sinusoidal fluorescence
density of the sample,C(R) = [max(fR)−min(fR)]/[max(fR) + min(fR)] = 1 whateverR.

We display in Fig. 6.6 the modulation contrasts obtained forthe Wide-field, Deconvolution,
Periodic blind-SIM, Speckle blind-SIM and periodic SIM images as a function of the period,
L(R). This plot shows that the deconvolution procedure permits to increase significantly the
modulation contrast for periods bigger than the Rayleigh criterion L0 = 0.6λ/NA ≈ 0.4λ
(namely it corrects the triangular low-pass detection filter), but marginally enhances the mod-
ulation contrast for periods smaller thanL0. On the other hand, speckle blind-SIM, periodic
blind-SIM and periodic SIM recover the sample periodic pattern down to periods aboutL0/2.
To mimic the Rayleigh criterion, we defined the resolution ofthe reconstructed image as the
period for which the contrast is about 0.10 [38],i. e. the modulation is still ’eye-visible’. With
this definition, the resolution of the blind-SIM techniquesis similar to that of periodic-SIM.
Yet, the modulation contrast being better enhanced by periodic SIM than by blind-SIM, the
periodic-SIM image remain visually more satisfactory thanthe blind-SIM images, see Fig. 6.5.

We perform the same analysis on many other simulated data with total photon budget de-
tected on one Nyquist pixel ranging from40, 000 to 600 (on average), see Fig. 6.7. Except for
the 600 photon-budget experiment for which the read noise has a one photon standard devi-
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Figure 6.5: Reconstructed fluorescence density of the ’star-like’ sample using various imaging
techniques. Simulated data are obtained with a total photonbudget detected on average on
one Nyquist pixel of10, 000 and 6 electrons read-noise per Nyquist pixel per measurement.
(a) Wide-Field. (b) Deconvolution of (a). (c) Speckle blind-SIM. (d) Periodic blind-SIM. (e)
Periodic-SIM (with known illumination patterns). (f) One example of the 80 measurements
used for the Speckle blind-SIM reconstruction in (c). The black bars are5λ-long. The colour
scale represents the normalised density of fluorophores (normalised intensity for (f)).
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Figure 6.6: Contrast of the recovered fluorescence periodicdensity as a function of the period
extracted from the images displayed in Fig. 6.5. Thick solidline: Wide-Field. Thin solid line:
Deconvolution. Dotted line: Speckle blind-SIM. Dash-dotted line: Periodic blind-SIM. Dashed
line: Periodic SIM (with known illumination patterns).

ation (which corresponded roughly to that of an Electron Multiplying Charge Coupled Device
camera), we introduce a standard read noise of 6 photons per pixel and per measurement for
modelling the camera performance. These values encompass awide variety of experiments
from the imaging of isolated fluorophores to that of continuous samples with high fluorescence
density such as those presented in Sec. 6.3.2. In all these examples, the modulation contrast
curves with respect toL(R) obtained by the blind-SIM techniques resemble that depicted in
Fig. 6.6. They are below the periodic-SIM curve, but remain above 0.1 for periods close to
L0/2, even with very noisy data, see Table 6.1. Actually, increasing the signal-to-noise ratio
permits essentially to ameliorate the modulation contrastfor the intermediary periods, between
L0 andL0/2 as seen in Fig. 6.7.

This analysis demonstrates the ability of blind-SIM to recover sample high spatial frequen-
cies beyond the detection cut-off even with noisy data and points out the interest of speckle illu-
mination. Note that the granular aspect of the speckle blind-SIM image stems from the residual
inhomogeneity of the average illumination, which is performed over 80 different speckles only,
and could be reduced by taking more images. Moreover, we believe that there is still room for
algorithmic improvements for enhancing the modulation contrast of the intermediary periods.

6.3.2 Experimental data

Blind-SIM was then validated on experimental images stemming from a wide-field microscope
tuned for structured illumination experiments. The data were obtained using a home-built Struc-
tured Illumination Microscope with a high numerical aperture objective (NA=1.45, 100X, CFI
Plan Apochromat, Nikon) in the Epi-illumination mode. The illumination was performed with a
laser beam (He-Ne, 633 nm). The fluorescence light was separated from the laser reflection with
a dichroic mirror and a filter, and finally imaged on an EMCCD camera (Andor iXon 897) with
pixel size about 100 nm (after magnification) correspondingroughly to the Nyquist criterion,
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Figure 6.7: Reconstructed fluorescence density of the ’star-like’ sample using different imaging
techniques for various levels of photon noise. The first row corresponds to the reconstructions
obtained with Wide-Field, the second row corresponds to theWide-Field image deconvolu-
tion, the third row to Speckle blind-SIM using 80 speckle images, the fourth row to Periodic
Blind-SIM using 9 periodic SIM images and the fifth row to periodic SIM (with known illu-
mination patterns) using the same 9 periodic SIM images. Thefirst, second and third columns
correspond to data corrupted with 6 electrons read-noise per Nyquist pixel and per measure-
ment and simulated with a total average number of photons perNyquist pixel of 40,000, 10,000
and 2,500 respectively. The fourth column corresponds to data corrupted with 1 electron read-
noise per Nyquist pixel and per measurement and simulated with a total average number of 600
photons per Nyquist pixel. See text for details. Whatever the level of noise, blind-SIM is always
better than Deconvolution and its resolution is close to that of periodic SIM though with less
contrasted periodic patterns. The granular aspect of Speckle blind-SIM is due to the residual
inhomogeneity of the average illumination which is performed over 80 speckles only. The side
of each square image is10λ. The colour scale is the same as Fig. 6.5.
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40,000 10,000 2,500 600
Wide-Field 0.43 0.43 0.43 0.43

Deconvolution 0.33 0.35 0.36 0.36
Speckle blind-SIM 0.22 0.23 0.26 0.32
Periodic blind-SIM 0.23 0.23 0.25 0.29

Periodic SIM 0.21 0.22 0.24 0.29

Table 6.1: Resolution inλ unit of the reconstructed fluorescence density of the ’star-like’ sample
obtained with different imaging techniques versus the total amount of photons detected on aver-
age on one Nyquist pixel. The Rayleigh criterion isL0 = 0.6λ/NA ≈ 0.4λ. With our definition,
blind-SIM resolution is comparable to classical periodic-SIM except at very low signal to noise
ratio. Yet, periodic-SIM yields images which are visually more satisfying than blind-SIM, as
seen in Fig. 6.7, because the contrast of the periodic patterns are better enhanced.

λ/(4NA). Before using the reconstruction procedure, the image pixel was reduced by a factor
of two by interpolating the measurements using zero paddingin the Fourier space. Provided
that the Nyquist criterion is satisfied initially, this procedure does not create artefacts [135,
pp. 59–79].

The unavoidable small experimental drift was corrected by registration of the images with
sub-pixel accuracy [136]. For each experiment, we estimated accurately the detection point-
spread-function by averaging the fluorescence density of registrated isolated fluorophores. Note
that we did not correct for the photo-bleaching effect or theintensity fluctuations since they can
be included in the intensity reconstruction.

6.3.2.1 Classical periodic SIM

Blind-SIM was first validated on experimental images of a beads sample illuminated by peri-
odic excitation patterns. The sample consisted of 90 nm diameter fluorescent beads (Spherotech,
SPHERO, Sky Blue) spread on a cover-slip and then immersed inglycerol. The sinusoidal light
patterns (with period about 230 nm) were formed on the sampleby imaging a glass transmis-
sion grating (holographic, 80 lines/mm) placed in a secondary image plane of the microscope.
The orientation and position of the light pattern were modified by translating and rotating the
transmission grating. Sole the±1 grating diffracted orders were used, the others being blocked
with a diaphragm and a central stop. The grating was translated eight times for three different
orientations (0, 60 and 120◦), yielding a total of 24 recorded images. The translation step, cor-
responding to a quarter of the pattern period, was calibrated through the analysis of the laser
reflection on the cover-slip surface. For ensuring the same photon budget, the wide-field image
was obtained by summing the 24 structured illumination measurements.

An example of the recorded images and the blind-SIM reconstructed fluorescence density
are displayed in Fig. (6.8). We observe that, although the excitation peaks are not visible on
the Fourier transform of the raw images, Fig. 6.8 (a,b), blind-SIM retrieves accurately the light
patterns, Fig. 6.8 (c,d). In this experiment where the measured width of the detection point-
spread-function is about 360 nm, the resolution of the blind-SIM image, Fig. 6.8 (g) is as good
as that given by an up-to-date SIM algorithm assuming the periodicity of the light pattern and
reaches 160 nm. It is much better than that of the deconvolvedwide-field image, Fig. 6.8 (f)
which is about 250 nm.
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Figure 6.8: Experimental periodical SIM data processed by blind-SIM. Fluorescent beads with
diameter 90 nm are illuminated by 24 different standing waves with periodd ≈ 230 nm through
an oil objective withNA = 1.45 at λexc = 633 nm. (a) One of the 24 recorded images. (b)
Absolute value of the Fourier Transform of (a) (after subtracting the mean). The peaks of the
light grid are not visible. (c) Blind-SIM reconstructed excitation pattern of the image displayed
in (a). The pattern is reconstructed only where the reconstructed fluorescence density is non-
zero. (d) Absolute value of the Fourier Transform of (c) (after subtracting the mean). The peaks
of the light grid are clearly visible among noisy-like features which indicate the support of the
pattern reconstruction. (e) Zoom of the sample image obtained under wide-field illumination.
(f) Deconvolution of (e), closely located beads are unresolved. (g) Blind-SIM reconstructed
fluorescent density obtained from the 24 structured illumination measurements, closely located
beads are now well resolved. The white and black bars indicate 1µm. The grey scale represents
the normalised fluorescent density. About 10000 photons perbead are detected during the
measurement process.
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6.3.2.2 Speckle patterns

Last, blind-SIM was applied to the experimental microscopeimages of a biological sample
illuminated by 150 different speckles. The speckles were obtained by moving a diffuser through
the laser path prior the microscope objective. The sample was an ultra thin (80 nm) slice of
rabbit jejunum with glycoproteins marked with Cy5 fluorescent dye. The wide-field image of
the sample, the deconvolution of the wide-field image and theblind-SIM density of fluorescence
are shown in Fig. 6.9 (a,b,c) respectively.

The set-up is the same as that described in the previous section except that the transmission
grating was replaced by a diffuser (a grained sheet protector). Its position did not matter, as
long as the back focal plane of the objective was filled with scattered light and as the diffuser
was not directly imaged on the sample. 150 different speckleilluminations were obtained by
translating the diffuser between each image recording. Forensuring the same photon budget,
the wide-field image was obtained by summing the 150 speckle images.

The sample consisted in an ultra-thin (80 nm) Epon-embeddedsections of rabbit jejunum
deposited on a cover-slip, whose glycoproteins were markedwith Cy5 fluorescent dye. More
precisely, the tissue was fixed by immersion in 2,5% glutaraldehyde in phosphate buffer at pH
7,4 (PBS) 1H followed by 2% osmium tetroxide in PBS 1H. The specimens were dehydrated
by passage through a graded series of ethanol (70, 90, 100%) and embedded in Epon 812.
Ultra-thin sections (80 nm) were obtained with a microtome,and finally labelled with Cl 3.3
monoclonal antibody (1/100) and Cy5-conjugated goat anti mouse (1/200, Bethyl laboratories
corporation).

We observe a significant improvement of the resolution achieved by blind-SIM. Note that
taking the standard variation of the speckle images (as in the Dynamic Speckle Illumination ap-
proach [137]), while useful for removing out of focus fluorescence, did not yield any resolution
improvement.

6.3.3 Discussion

In conclusion, we have developed a method (blind-SIM) that circumvents the major issue of
the control anda priori knowledge of the excitation patterns in microscopy using non-uniform
illumination. Using blind-SIM, images with a resolution about twice better than that of wide-
field microscopy can be obtained by simply illuminating samples with random light speckles.
Moreover the algorithm can process measurements with poorly controlled or even distorted
periodic SIM illuminations. However, this technique is still in its infancy and there is still a lot
of work to do.

First the mathematical proof of convergence is an open question. Preliminary studies tend
to show that the implicit regularisation (see Sec. 6.2.4) plays a large role in the reconstruction
success.

For now, this method has been developed for imaging thin two-dimensional samples only.
It would be interesting to extend it to three-dimensional objects. The algorithm itself can be
straight-forwardly extended to the third dimension. However, it requires measurements defined
by the same model

Ml = (Ilρ) ∗ h,
with h, the three-dimensional PSF, andIl and ρ three-dimensional illumination and fluoro-
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Figure 6.9: Experimental speckle data processed by blind-SIM. The sample is an ultra-thin (80
nm) Epon-embedded section of rabbit jejunum with glycoproteins marked with Cy5 fluorescent
dye. It is illuminated by 150 uncontrolled different speckles through an oil objective (NA =
1.45) at λexc = 633 nm. (a) Wide-field image of the sample. (b) Deconvolution of the wide-
field image shown in (a).(c) Blind-SIM fluorescence density obtained from the 150 speckle
images. (d) Image of a similar sample, using a transmission electronic microscope. The white
bar indicates 3µm. The grey scale is the normalised fluorophore density. The total number
of photons per pixel, averaged over the marked micro-villi region, is about 20000. Note that
the wavy lines observed in the centre of (a-c) are not an artefact. Similar lines made of dark
points are visible on the TEM image, (d). They are due to the fact that the microtome cuts the
micro-villi at an angle.
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phore density fields. This means that one has to measure a three-dimensional image ofIlρ
without modification ofIl which can be difficult experimentally. Another solution would be
to use illumination patternsIl that are vertically invariant like, for example, speckle Bessel
beams [138, 139, 140], but the axial resolution would not be improved. Nonetheless, we be-
lieve that a suitable algorithm modification could lead to better solutions [141].

Finally, we have observed that sole the frequencies ofIl that are below the detection cut-off
contributes to the improved resolution. If the sample is illuminated by a periodic pattern with
a period smaller than the diffraction limit, blind-SIM is not able to retrieve the pattern, except
in areas where the sample bares only low frequency information. As a consequence, these high
frequencies illumination pattern do not ameliorate the image resolution. This hinders the use
of blind-SIM for super-resolution configurations in which the sample is illuminated by sub-
diffraction light patterns or in which the fluorescence mechanism is saturated [142, 143, 24, 25,
144, 117, 134]. Yet, we believe that modifications of this algorithm could solve this issue. Our
attempts for breaking this limitation are presented in the next section.

6.4 Improving further the resolution using Grating assisted
SIM

6.4.1 Principle

Grating-assisted SIM is based on the Total Internal Reflection Fluorescence Microscopy
(TIRFM) [145]. In TIRFM, the sample is deposited on a substrate with a high index of refraction
ni. The sample is illuminated via the substrate by a collimatedbeam impinging at an angle high
enough to obtain total internal reflection. The excitation field is thus evanescent and decays
exponentially as one moves away from the substrate surface.As only a thin slice (one hundred
of nanometres) of the sample is illuminated, one obtains a natural sectioning in the direction
perpendicular to the substrate surface. TIRFM is popular inbiology laboratories because of this
sectioning property.

To combine this advantage with a high lateral resolution, SIM-TIRFM [13, 12, 146] has also
been developed. In this case, two beams instead of one are sent towards the substrate interface.
The interferences create a light pattern that is sinusoidalin the (x, y) plane and exponentially
decaying in the axial,z, direction (see Fig. 6.10 (a)). In this configuration, one can model the
sample as a flat two-dimensional object (as only a thin slice fluoresces) and the intensity pattern
as

Il = 1 + cos(K.r‖ + φl),

whereK = 2kinc,‖ is a vector of the(x, y) plane. The SIM-TIRFM principle is similar to that
of SIM as described in Sec. 1.5.2. Assuming that the observation is done via the substrate, one
recorded image

Ml = (ρIl) ∗ h
depends on the spatial frequencies ofρ contained in the union of the threekc = k0NA-radius
circles centred on0, K and−K. Using several (at least three) illuminations with different φn
we can separate these three terms [13]. Repeating the same process by rotation ofK in diverse
directions of the plane, one can retrieve the frequencies ofρ in the circle of radiuskc+ ‖K‖, as
seen in Fig. 6.10 (b) and thus improve the lateral resolutionof the image.
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Figure 6.10: (a) Sketch of a SIM-TIRFM experiment. Two planewaves are sent via the substrate
with optical indexni towards the sample. (b) Union of thekc radius circle in which the Fourier
components ofρ are measured in SIM-TIRFM. (c) Sketch of a GA-SIM experiment. A plane
wave is shaded on a resonant grating with periodd, creating a sinusoidal intensity pattern with
periodd. nwg is the optical index of the core of the wave guide. (d) Union ofthekc radius circle
in which the Fourier components ofρ are measured in GA-SIM.

However in SIM-TIRFM, the maximum possible norm ofK is obtained when the two illu-
mination beams are parallel to the substrate interface. In this case,

‖K‖ = 2k0ni sin a = 2k0NA = kc,

wherea is the maximum angle reachable with the lens used for projecting the beams. The cut-
off of this technique is then limited to2kc. To improve further the resolution, one has to find a
way to create a sinusoidal pattern with a higher frequency.

One possible solution is the Grating Assisted SIM (GA-SIM) [117, 134]. This approach
uses the fact that the light intensity existing at the surface of a grating is periodic with the
grating frequency. If the grating is manufactured with a sub-100 nm period, the light intensity
just above it will exhibit a sub-100 nm period whatever the illumination wavelength. Of course,
as one moves away from the grating, one will retrieve a diffraction limited intensity pattern.
The near-field intensity pattern is not diffraction limitedbecause it is created by the interference
of all the diffracted orders which contain high frequency evanescent waves. The problem is
that, in general, the high frequency evanescent orders havea very low amplitude and are thus
negligible in the sum. The near-field intensity pattern is then only weakly modulated.

To address this issue, it has been proposed [117] to use resonant gratings as substrate for the
TIRFM experiment. A resonant grating is schematically a sub-diffraction periodically struc-
tured wave guide [147] (See Fig. 6.10 (c)). The period and illumination angle are chosen such
that one order of the grating has the same wave-vector as a guided mode (at the excitation
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wavelength). When the temporal and spatial frequencies of the electromagnetic field matches
that of a mode of the structure, there is a resonance phenomenon. The amplitude of the cor-
responding grating order is then greatly enhanced. Througha correct optimisation [134][148,
Chap IV], the field above the sample can then be approximated by the sum of the specularly
transmitted wave and the resonant diffracted wave [117]. The resulting illumination pattern ex-
hibits a lateral sinusoidal patternIl = 1 + cos(K.r + φl), where‖K‖ = 2π/d, d is the grating
period, andφl is a phase depending on the grating geometry and the illumination direction. Us-
ing silicon structured wave-guides that support guided modes with high spatial frequency [134],
it is possible to obtain‖K‖ ≈ 3k0NA. If the grating has a triangular mesh, one can define6
possible resonant directions and thus expect the measurement of ρ̃ on a(5/2)kc-radius circle
(See Fig. 6.10 (d)).

Another possibility proposed in ref. [134] is to illuminatethe grating with a standing wave
pattern formed by the interference of two plane waves, as in aclassical SIM experiment. In
this case, the intensity pattern is the sum of four periodic patterns [148, Sec IV.2]: the grid with
wave-vectorK stemming from the interference between the transmitted anddiffracted waves
for each of incident plane wave; the grid produced by the two transmitted waves (with wave-
vector2kinc,‖); the grid produced by the transmitted wave of one of the incident plane wave
with the diffracted wave of the other incident plane wave (wave-vectorK − 2kinc,‖) and the
grid produced by interferences between both diffracted waves (wave-vector2K− 2kinc,‖). This
configuration, hereafter called the Moiré configuration has two main advantages. First, the third
grid has its wave-vector norm about half ofkc. It is thus visible is the measurement, allowing
verification of the correct behaviour of the resonant grating [148, Sec IV.4.2]. Then, the wave
vector of the fourth grid has for norm‖2K− 2kinc,‖‖ ≈ 4k0NA, allowing measurement of̃ρ on
a3kc-radius circle.

The grating-assisted SIM seems to be a promising technique for sub-diffraction resolution
surface imaging. However, it suffers from a strong drawback. In its present state, the recon-
struction algorithm [134] requires the precise knowledge of the illumination patterns. Now,
experimentally, these patterns are always slightly modified by small errors in calibration, aber-
rations of the objectives or fabrication misprints. Moreover the precise position of the grating
cannot be seen since its period is under the microscope resolution. The smallest error on this
grating position leads to strong artefacts that hinders allimage interpretation.

As noted in the previous section the blind-SIM algorithm does not work for illumination
frequencies that are beyond the detection cut-off. In the following, two research avenues aiming
at solving this issue are presented.

6.4.2 Model of intensity pattern

In blind-SIM, the onlya priori information on the illumination patterns is the homogeneity
of their sum

∑L

l=1 Il ≈ LI0. In grating-assisted SIM, we have a lot of information on the
intensity behaviour which stems from the sum of two (or four in the Moiré configuration) plane
waves. Thus, we can try to build a simple parametric model forthe illumination patterns as is
done in many classical SIM reconstruction algorithms. The idea is to expressIl as functions
of a defined series of parameters(r0, A0, A1, θ) wherer0 is the grating position,A0 is the
transmission coefficient of the grating,A1 is the amplitude of the enhanced diffracted order and
θ is the angular misplacement of the grating. We keep the positivity a priori for the density
function ρ which is written as the square of an auxiliary functionξ. Then we implement an
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optimization algorithm whereξ and the parameter series are jointly estimated so as to minimise
the functional

F (ξ, r0, A0, A1, θ) = W

L
∑

l=1

‖Ml − (ξ2Il(r0, A0, A1, θ)) ∗ h‖2.. (6.21)

Unfortunately, numerical experiments showed that this algorithm was strongly sensitive to
the initial guess forr0. As the latter is generally unknown, this algorithm can not be used to
process experimental data.

To improve the parametric approach, and inspired by the reconstruction techniques available
in classical SIM [54, 132, 133], I proposed to change the functional in order to introduce the
autocorrelation of̃ρ atK. Indeed, defining

CK(ρ) =

∣

∣
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we observe that C is weak for the actualρtrue and high forρ estimated from wrong parameters.
Thus,C is a good indicator of the accuracy of the estimated parameters. Using Parseval’s
theorem one shows that

CK(ξ) =
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The new functional is then defined as,

F (ξ, r0, A0, A1, θ) = W

L
∑

l=1

∥

∥Ml − (ξ2Il(r0, A0, A1, θ)) ∗ h
∥

∥

2
+ νCK(ξ), (6.24)

whereν is a parameter that has to be optimised. Joint optimisation with Eq. (6.24) gives good
results with simulated data but failed with experimental ones. My opinion is that there is not
enough parameters to fit properly the illumination patternsand the experimental variations.
Moreover this approach requires to change the pattern modelfor each modification of the illu-
mination series, involving substantial changes in the algorithm. For example switching from the
one beam grating-assisted SIM to the Moiré grating-assisted SIM requires a deep modification
of the reconstruction program.

This is why another approach is proposed in the following section. While imposing less
constraints on the illumination pattern, it is easily tunedfor diverse illumination series and less
sensitive to experimental variations.

6.4.3 Filtered blind-SIM

To take into account all the possible experimental variations, we assume that̃Il is no more a
simple collection of dirac-like peaks, as in theory, but that it can take non-zero values over
small areas about the peaks location. One thus definesS, the support of̃Il, as a sub-set of the
two-dimensional Fourier space. For example, one can defineS as a series of small disks around
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the theoretical positions of the different pattern frequencies. Then one notes̃S the set of real
functions with value inΩ whose Fourier transform has its support included inS. The principle
of the filtered blind-SIM is to find the minimum of the functional Eq. (6.7), forIl belonging to
S̃.

More precisely, the filtered blind-SIM algorithm consists in jointly estimatingρ andIl so as
to minimize the functional

F (ρ, (Il)l=1,...,L−1) =W

L−1
∑

l=1

‖Ml − (ρIl) ∗ h‖2 +W

∥

∥

∥

∥

∥

ML −
[

ρ

(

LI0 −
L−1
∑

l=1

Il

)]

∗ h
∥

∥

∥

∥

∥

2

,

(6.25)
for ρ ∈ Ω and∀l ∈ [1, L − 1], Il ∈ S̃. In other words, we minimise the same functional,
but in a different space. As̃S is a sub-space ofΩ, gradient-like algorithms are still efficient.
The functional is minimised using the blind-SIM algorithm described in Sec. 6.2. The only
modification are the gradientsgl,n;I that are now (see Appendix B)

gl,n;I = −2W
[

ρ
(

(rl,n−1 − rL,n−1) ∗ h
)]

∗ f, (6.26)

wheref is the function whose Fourier transform is 1 inS and 0 elsewhere. Practically, one
filters all frequencies ofgl,n;I that are out ofS so thatgl,n;I ∈ S̃. The initial guessIl,0 is taken
equal toI0, as constant functions are members ofS̃. The series ofIl,n remains thus iñS.

Note that this approach does not allows the use of the positivity constraint forIl. Indeed
finding the frequency content of the auxiliary functionsil knowing the frequency content of
i2l = Il is a difficult task. In most cases there is no simple solutions. One solution is the
use of the field amplitudeEl as auxiliary function, withIl = |El|2. Its frequency content is
indeed easily evaluated. However all the phase informationof El is lost in the fluorescence
process. Admittedly, algorithms like the Fienup one [149] can recover the phase of a complex
function from measurements of its modulus. However, they assume that there is no contribution
of fluorophores out of the field of view and this assumption cannot be made with most of the
experimental samples.

Numerical experiments have shown that this approach leads to correct reconstructions for
classical periodic SIM, even when the norm ofK is larger than the detection cut-offkc. The
Fourier support ofIl, S, is, in this case, the union of thek0/2-radius disks centred in0 and in
the six possible positions ofK and−K. We thus believe that this algorithm could be useful for
treating experimental data obtained with saturated structured illumination microscopy, where
highK are obtained using non-linearity in the emission coefficient σ [142, 143, 144].

Filtered blind-SIM has then be tested on simulated grating Moiré data. In this case,S is
composed of small disks around each of the expected intensity frequencies for the three direc-
tions of illumination. We first considered the grating with period170 nm that was designed in
ref. [134]. We observe in Fig. (6.11) that the reconstructedfluorophore density and illumination
patterns are close to the actual ones. The remaining difference is due to the inhomogeneity
of the sum of illumination patterns. A further treatment is thus necessary to obtain a suitable
image. For example, one could evaluate the residual inhomogeneity from the reconstructedρ
and rerun the algorithm using this information. We were unfortunately unable to reconstruct
high frequency images from experimental data. We believe that the intensity at the surface of
the manufactured 170 nm grating is too weak for a proper excitation of the fluorescence. The
signal-to-noise ratio is then too small for measuring high-frequencies ofρ.
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Figure 6.11: Example of numerical Moiré GA-SIM with a grating with period 170 nm. The
star-like fluorescence density of the sample (a) is multiplied by 24 Moiré illumination patterns
(I1 shown in (e)). The product is convolved with the point-spread-functionh and corrupted
with noise (M1 shown in (c)). Then, the filtered blind-SIM reconstructs a fluorophore density
estimate (b) and 24 illumination pattern estimates (estimate of I1 shown in (d)). The colour
scale represents the normalised fluorophore density (respectively normalised intensity).

Figure 6.12: Example of numerical Moiré GA-SIM with the 210nm grating. A star-like density
of fluorophores (a) is multiplied to 24 Moiré illumination patterns (I1 shown in (e)). Their
products are convolved with the point-spread-functionh and corrupted with noise (M1 shown
in (c)). Then the filtered blind-SIM reconstructs a fluorophore density estimate (b) and 24
illumination pattern estimates (estimate ofI1 shown in (d)). The colour scale represents the
normalised fluorophore density (respectively normalised intensity). Artefacts appearing in the
centre of (b) demonstrate that filtered blind-SIM is not efficient for all possible nano-structure
for GA-SIM.

Then, we considered a grating with period210 nm, as described in ref. [148, Sec. IV.1.3],
which provides a higher intensity at the grating surface (thanks to a better excitation of the
guided mode). Surprisingly, in this case, the filtered blind-SIM algorithm did not provide satis-
factory reconstructions, see Fig. (6.12). We observed thatsole the spatial frequencies that can
be measured with a homogeneous illumination are well reconstructed but all high-frequency
are false. We tried different Fourier supports and even defined a differentSl for each illumina-
tion without any positive outcome. A theoretical understanding of the convergence of the joint
estimation is needed for explaining why filtered blind-SIM treats successfully data for certain
illumination sets and not for others. Nonetheless, we believe that a suitable algorithm modific-
ation could lead to better results.
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6.5 Conclusion

This chapter presents my work on algorithm development for image reconstruction in structured
illumination fluorescence microscopy. The originality of the blind-SIM algorithm is to jointly
estimate the object function and the probing illumination patterns. This algorithm is applied
to simulated and experimental data. It is shown that blind-SIM retrieves correctly both the
fluorophores density and the illumination patterns, provided that the illumination frequencies
are contained in the detection transfer function. This algorithm can be used for classical SIM
experiment using periodic light patterns, and, as there is no assumption on the illumination
patterns except the homogeneity of their sum, using random speckle pattern. Thus blind-SIM
is a promising solution for simplifying deeply experimental set-ups for SIM microscopy.

To address the challenge of sub-diffraction resolution with ’beyond the cut-off’ illumination
patterns, a modification of the blind-SIM algorithm has alsobeen proposed. The filtered blind-
SIM algorithm seems to be a promising solution although a theoretical understanding of its
limits and an experimental demonstration are still missing.

Last, it is worth noting that the idea of jointly estimating object and probing functions is
commonly used in micro-wave imaging and its optical counterpart, non-linear Tomographic
Diffraction Microscopy. Indeed, when the permittivity contrast is high, the field inside the
sample is modified by the sample itself. In this case, one needs to update the probing field
together with the permittivity contrast. Blind-SIM is actually directly inspired by the algorithms
developed for non-linear electromagnetic imaging. In the following chapter, I will present an
algorithmic improvement adapted to Tomographic Diffraction Microscopy data which is quite
related to blind-SIM.



Chapter 7

Tomographic Diffraction Microscopy for
highly refracting samples

As explained in Chap. 3, Tomographic Diffraction Tomography (TDM) is an optical stainless
microscopy technique aiming at reconstructing a three-dimensional map of the sample permit-
tivity. The sample, defined by its relative permittivityε is illuminated successively by several
incident plane wavesEinc,l. For each illumination, the diffracted fieldEd,l is measured in amp-
litude and phase along different directions of observation. The aim of TDM is to retrieve a
quantitative three-dimensional map of the sample permittivity from the diffracted field meas-
urements. In Chaps. 3 and 4 we have presented a linear reconstruction technique based on the
Born (or renormalised Born) approximation which assumes that the field inside the sample is
not modified by the sample itself. This assumption is valid when the permittivity contrast of
the sample with respect to the background medium is weak. When the permittivity contrast
is high, this approximation is no more valid and the linear reconstruction techniques do not
lead to satisfying images of the sample permittivity. In this case, one cannot neglect the modi-
fication induced by the sample on the probing field. As the relation between the sample and
the reconstructed image is no more linear, one cannot define atransfer function and the very
notion of resolution becomes problematic. Indeed, it can beshown that, in the multiple scat-
tering regime, all the Fourier components of the sample permittivity contribute to the far-field
measurements [150]. Hence, it is theoretically possible toretrieve information onε that are far
beyond the diffraction limit. Examples of such super-resolved reconstructed permittivity maps
have already been obtained in the simplified two-dimensional scalar configuration [151, 152].

The inverse problem in the multiple scattering regime is non-linear and ill-posed in the
sense of Hadamard. Hadamard defines a well-posed inverse problem as respecting three condi-
tions [153]

• Solutions exist for all possible set of data.

• There is only one solution for each set of data.

• The solution is continuous with respect to the data.

The inverse problems studied in this chapter and in the previous one fail to respect the last
condition, requiring a technique of regularisation (see Sec. 6.2.4). However non-linear TDM
also fails to respect the second condition. Two different permittivity maps can indeed have the
same diffracted field for all illuminations [154, Annexe G].



110 7 Tomographic Diffraction Microscopy for highly refracting samples

Most of the non-linear inversion algorithms are iterative.Starting from an initial guess of
the permittivity map, they improve at each iteration the estimation of the permittivity map by
comparing the measured fields to the field that would be obtained with the estimate. These
algorithms often use an accurate and efficient numerical tool for simulating the diffracted field
from the permittivity map estimates. The non-linear inversion methods require generally a lot of
computation resources, which explains that most of the existing algorithms for electromagnetic
imaging were developed for two-dimensional samples. Thanks to the increasing computer per-
formances and algorithmic improvements, it is now possibleto consider more realistic samples.
This chapter presents my work on the adaptation of a non-linear reconstruction algorithm to the
vectorial three-dimensional configuration.

The first section introduces the model used for simulating the diffracted field and presents its
numerical implementation. The second section describes the reconstruction algorithm. In the
third section the algorithm is applied to experimental data, obtained with a microwave imager.
The fourth section presents the results obtained from optical experimental data provided by a
Tomographic Diffraction Microscope.

7.1 Modelling the diffracting field

The basics of electromagnetic modelling have been presented in Chap. 3. Here, we recall its
main results and write them in a more convenient way for introduction the inverse problem.

7.1.1 Analytical models

As there is a large variety of possible imaging configurations, we use symbolic notations for
stating the problem. The sample is assumed to be contained inthe finite volumeΩ and the
measurements are taken on the surfaceΓ. The fieldEl inside the sample is the solution onΩ of
the linear equation (See Chap. 3)

El = Einc,l + ĀχEl, (7.1)

whereĀ is a linear tensor operator andχ = ε − εb, for εb the permittivity of the medium
surrounding the sample. The diffracted field measured onΓ is given by,

Ed,l = B̄χEl, (7.2)

whereB̄ is a linear tensor operator.

The integral operators̄A andB̄ depend on the studied configuration. Using the Green’s
function theory,Ā can be expressed as

ĀV =

∫

Ω

Ḡ(r, r′)V(r′)k20dr
′, (7.3)

for any vector fieldV, Ḡ is the Green’s tensor that depends on the surrounding of the sample.

We now introduce the three configurations that have been usedfor this work. The first
one is the classical configuration for TDM (as in Chap. 3), thesample is assumed to be in
free space and its diffracted field is collected by a microscope objective; the second one is a
TDM configuration with a reflecting substrate (as in Chap. 4).The last one is a free-space
configuration with measurement in the Fresnel-zone, as in done in most microwave imaging
set-ups. They are sketched in Fig. 7.1 and described hereafter.
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Figure 7.1: Sketch of the three configurations appearing in this chapter

Free-space Tomographic Diffraction Microscopy The sample is in free space, and the de-
tection is done by a microscope objective. This configuration corresponds to that described in
Chap. 3. Demonstrations therein shows that

Ḡ(r, r′)p = − 1

4πk20
∇× ∇×

(

exp(ik0∆r)

∆r
p

)

+
1

k20
pδ(r− r′), (7.4)

for any vectorp, with ∆r = ‖r− r′‖.

Γ is the set ofk directions such thatk‖ ≤ k0NA andB̄ is defined by

B̄V(k) = k0k×
(

k× Ṽ(k)
)

, (7.5)

for any vector fieldV.

Tomographic Diffraction Microscopy with a planar substrat e The sample is deposited on
a planar substrate with a relative permittivityε1 and the detection is done by a microscope ob-
jective. This configuration corresponds to a generalisation of the mirror-assisted TDM studied
in Chap. 4. One can prove that [72],

Ḡ(r, r′)p =
i

8π2k20

∫

k‖∈R2

1

kz

[

exp
(

−ik‖.(r‖ − r′‖)− kz|z − z′|
)

k×
(

k× (p‖ + pzz)
)

+ r̄(k) exp
(

−ik‖.(r‖ − r′‖)− kz(z + z′)
)

k×
(

k× (−p‖ + pzz)
)]

dk‖

+
1

k20
pδ(r− r′), (7.6)

wherer̄(k) is the Fresnel reflection tensor defined by

r̄(k)E0 =

√

ε1k20 − |k‖|2 −
√

k20 − |k‖|2
√

ε1k20 − |k‖|2 +
√

k20 − |k‖|2
Es +

√

ε1k20 − |k‖|2 − ε1
√

k20 − |k‖|2
√

ε1k20 − |k‖|2 + ε1
√

k20 − |k‖|2
Ep, (7.7)
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with Es = (E0.us)us andEp = (E0.up)up, for us = z× k/k0 andup = z× us. B̄ is defined
by

B̄V(k) = k0k×
(

k× Ṽ(k)
)

+ k0r̄(k)k×
(

k× Ṽ(k′)
)

, (7.8)

with k′ = k‖ − kzz.

Imaging in the Fresnel-zone The sample is in free space and the detection is performed on a
surfaceΓ surrounding the sample. In this case,Ḡ is given by Eq. (7.4) and̄B by

B̄V(r) =

∫

Ω

Ḡ(r, r′)V(r′)k20dr
′. (7.9)

7.1.2 Description of the simulation method

To compute numericallyEd,l, from a givenχ(r), the first step is to solve Eq. (7.1). One discret-
isesΩ in I subunitsΩi arranged on a cubic lattice and one assumes the fieldsEinc,l andEl and
the permittivity contrastχ to be constant over each subunit. Equation (7.1)

El(r) = Einc,l(r) + ĀχEl

= Einc,l(r) +

∫

Ω

Ḡ(r, r′)χ(r′)El(r
′)k20dr

′

can be rewritten under this approximation as [155]

El(ri) ≈ Einc
l (ri) +

I
∑

j=1

Ḡ(ri, rj)χ(rj)El(rj)k
2
0d

3, (7.10)

whered is the edge length of the lattice,ri is the centre ofΩi and

Ḡ(ri, rj) =
1

d3

∫

Ωj

Ḡ(ri, r′)dr′ (7.11)

is the propagator between the subuniti and the subunitj. This method converges ifd≪ λ [156].

Usually an additional approximation is made. The Green function Ḡ is also assumed to
be constant over each subunit, leading toḠ(ri, rj) ≈ Ḡ(ri, rj). As long as the permittiv-
ity contrast is not too high, this discretisation allows a correct computation of the field inside
the sample [156]. For strongly diffracting samples, however, a better approximation is neces-
sary [157, 158, 156].

Equation (7.10) is a linear system. It is solved numericallythanks to a bi-conjugate type
method [159, 160], that is proved to have the best convergence for electromagnetic fields [18].
Then, the diffracted fieldsEd,l are obtained using Eq. (7.2) and the fieldEl previously calcu-
lated.

7.2 Description of different reconstruction methods

This section introduces three reconstruction algorithms that can be found in the literature (for
two-dimensional configurations essentially). First, the linearised Conjugate Gradient method
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(CGM), a linearised inversion algorithm that has the advantage of speed but is unstable for
highly refracting samples [161, 72]. Then the Hybrid gradient Method (HM), proposed as
Modified2 Gradient Method in ref. [19], combining advantages of speedand stability. Finally
the Contrast Source Inversion (CSI) [20] known as one of the most stable one, used as reference
for stability [162, 163]. All these techniques are iterative and inspired by the Conjugate Gradient
algorithm. That is why a general presentation of this algorithm is expounded in the following
subsection.

7.2.1 General principle of the Conjugate gradient algorithm

The Conjugate Gradient [15] is an iterative algorithm for finding the minimum of a functional
F (χ). Starting from an initial guessχ0, one builds a series(χn)n=1,...,∞ converging towards
the minimum of a functionalF . More precisely, one chooses for eachn a χn+1 such that
F (χn+1) ≤ F (χn). If χn+1 is properly chosen, this series converges to the minimum ofF .
The gradient algorithm (or Steepest Descent algorithm) is away to choose an updateχn+1 from
χn. The first step is to computegn;χ the gradient ofF at the pointχn. The gradient ofF is
the direction whereF varies the most. A formal definition and calculation rules ofa functional
gradient can be found in Appendix B. Then, the updateχn+1 is defined as,

χn+1 = χn + βngn;χ, (7.12)

whereβn minimises
f(βn) = F (χn + βngn;χ). (7.13)

This is a crucial step. One indeed searches for the minimum ofF on the line passing through
χn with vectorgn;χ. This insures thatF (χn+1) ≤ F (χn). The value ofβn has to be computed
at each iteration. In some cases there is an analytical formula, but most of the timeβn has to be
estimated iteratively [16, part 10.5].

This method insures thatF (χn+1) ≤ F (χn) and, ifF is convex, it converges towards the
minimum [16, part 10.6]. However, the convergence is very slow. One need a really high num-
ber of iterations for obtaining a good estimate of the minimum. To accelerate this convergence,
one can use the Conjugate Gradient algorithm [15]. The main idea is to modifyχn+1 so that it
depends ongn;χ, but also on all(gi;χ)i=1,...,n−1. More precisely, one defines the update as

χn+1 = χn + βndn;χ (7.14)

with
dn;χ = gn;χ + γndn−1;χ. (7.15)

One callsdn;χ the descent direction. The line minimisation is performed along the line parallel
to it f(βn) = F (χn + βndn;χ). The conjugation factorγn is chosen following to the Polak-
Ribière conjugation suggestion [124] (which is known as one of the most efficient),

γn =
〈gn;χ|gn;χ − gn−1;χ〉

‖gn−1;χ‖2
. (7.16)

Two points still need to be specified before running the algorithm. The first one is the initial
guessχ0. It has to be easy to compute and as close as possible to the minimum. A good initial
guess reduces indeed the number of iterations. The second one is the stopping criterion. For our
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Figure 7.2: Flow-chart of the conjugate gradient algorithm.

ill-posed problems, this stopping criterion is used as a regularisation technique. As discussed in
Sec. 6.2.4, one registersχn for a set of iterationsn and the practitioner chooses the one that has
the best trade-off between resolution and noise. A flow-chart summarising the successive steps
of this algorithm is plotted in Fig. 7.2.

7.2.2 Specificity of the reconstruction algorithms

We now describe the three different reconstructions methods that were studied in this work.
They are all iterative and they all rely on the gradient conjugate algorithm. They essentially
differ by the functional they minimise and by the minimisation strategy. Yet, in all cases, the
functionals are built in such a way that the measured fields are compared to the fields that would
be produced by the estimatesχ andEl.

7.2.2.1 The linearised Conjugate Gradient Method (CGM)

In the linearised conjugate gradient method (CGM) [161, 72], fieldsEl,n are assumed constant
during each minimisation stepn. The functional that we minimise depends only on the variable
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χ but changes for each iteration

Fn(χ) = WΓ

L
∑

l=1

‖Ed,l − B̄χEl,n‖2Γ, (7.17)

whereWΓ is the normalisation factor

WΓ =
1

∑L
l=1 ‖Ed,l‖2Γ

.

χn+1 is computed fromχn using the conjugate gradient descent direction

χn+1 = χn + βndn;χ,

wheredn;χ is the conjugate descent direction computed from the gradient gn;χ and the previous
descent directions.βn is the complex value minimising

f(βn) = F (χn + βndn;χ).

Onceχn+1 is computed,El,n+1 is obtained solving the near-field equation (7.1)

El,n+1 = Einc,l + Āχn+1El,n+1.

As long as the permittivity contrast is not too high, this algorithm converges to an acceptable
reconstruction in less than a hundred of iteration. However, since the minimisation ofF at each
iteration is not ensured, it becomes unstable for high permittivity samples.

7.2.2.2 Hybrid Gradient Method (HM)

The Hybrid gradient Method (HM) is an hybrid between the linearised Conjugate Gradient
Method and the Modified Gradient Method. This method is quiteoriginal and, before this
thesis, it had been developed only for two-dimensional scalar configurations.

The Modified Gradient Method The Modified gradient Method [164, 165] proposes the
minimisation of a functional built from both Eqs. (7.2) and (7.1)

Fn(χ, (El)l=1,...,L) = WΓ

L
∑

l=1

‖Ed,l − B̄χEl‖2Γ +WΩ

L
∑

l=1

‖El −Einc,l − ĀχEl‖2Ω, (7.18)

whereWΩ is the normalisation factor

WΩ =
1

∑L

l=1 ‖Einc,l‖2Γ
.

Then, the L+1 variables(χ, (El)l=1,...,L) are jointly updated so as to minimiseF using the
gradient conjugate algorithm. This algorithm insures the minimisation ofF at each iteration. It
is thus far more stable that the CGM method. However it requires a large number of iterations,
implying a long computation time.
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Hybridisation The Linearised Conjugate Gradient is time efficient but fails to reconstruct
highly diffracting samples. On the contrary, Modified Gradient Method is time consuming but
succeeds in reconstructing (to a certain extent) highly diffracted samples. The Hybrid gradient
Method [19, 166] is a combination of both approaches. It consists in minimising the Modified
Gradient functional Eq. (7.18). One computes the gradient of F along all its variablegn;χ and
gl,n;E, which, through the Polak-Ribiére conjugation, leads to two descent directionsdn;χ and
vl,n. Then, following the Linearised Conjugate Gradient approach, another descent direction
wl,n is introduced, based on the solution of the near-field equation Eq. (7.1). We definewl,n =
E′

l,n − El,n whereE′
l,n is the solution of

E′
l,n = Einc,l + ĀχnE

′
l,n.

The estimate(χn, (El,n)l=1,...,L) is then updated using the iteration relation,

χn+1 = χn + βndn;χ (7.19)

El,n+1 = El,n + αvl,nvl,n + αwl,nwl,n (7.20)

The crucial point is the choice of the parametersαvl,n andαwl,n. It is clear that if∀l, αvl,n = 0
andαwl,n = 1, one obtains the same update as in the linearised Conjugate Gradient Method.
Conversely, if∀l, αwl,n = 0, we are using a variant of the Modified Gradient Method. The
Hybrid gradient Method proposes the use of(βn, (α

v
l,n)l=1,...,L, (α

w
l,n)l=1,...,L) that minimises

f
(

βn, (α
v
l,n)l=1,...,L, (α

w
l,n)l=1,...,L

)

= F
(

χn + βndn;χ, (El,n + αvl,nvl,n + αwl,nwl,n)l=1,...,L

)

.

(7.21)
This way, one chooses for each incidencel the best compromise between the two descent dir-
ections for the electric fieldEl,n.

7.2.2.3 Contrast Source Inversion (CS)

The Contrast Source Inversion [20] (CSI) is a modification ofthe Modified Gradient Method.
It rewrites Eqs. (7.1) and (7.2) in terms of the source density Pl = χEl [167]

Ed
l = B̄Pl (7.22)

Pl = χEinc,l + χĀPl. (7.23)

This leads to the functional

Fn

(

χ, (Pl)l=1,...,L

)

= WΓ

L
∑

l=1

‖Ed,l − B̄Pl‖2Γ +W ′
Ω

L
∑

l=1

‖Pl −Einc,l − χĀPl‖2Ω, (7.24)

where

W ′
Ω =

1
∑L

l=1 ‖χnEinc,l‖2Γ
Diverse iterative schemes have been proposed to find the minimum of this functional. Our
proposal is to use the iterative relations

χn+1 = χn + βndn;χ (7.25)

Pl,n+1 = Pl,n + αl,ndl,n;P (7.26)
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with dn;χ anddl,n;P the descent directions according to the gradient conjugatemethod, and
(βn, (αl,n)l=1,...,L) minimising

f
(

βn, (αl,n)l=1,...,L

)

= F
(

χn + βndn;χ, (Pl,n + αl,ndl,n;P)l=1,...,L

)

. (7.27)

The Contrast Source Inversion is known as one of the most stable inversion method [162,
163]. We use it as a reference for testing the stability of theHM method. However it requires a
very large number of iterations, leading to computation time too long for practical use.

7.2.3 a priori information in the expression of the unknowns

Physical considerations impose constraints on the values of the permittivity ε. Indeed, since
its imaginary part is proportional to the absorption coefficient, it cannot be negative for usual
materials. Moreover for dielectric materials, the real part of the relative permittivity is always
superior to 1. Adding this information can help the resolution of the inverse problem [46].
Algorithms that use positivity constraints are indeed morerobust to noise [168]. Our way to
impose this constraint is the expression of the complexχ in term of two real auxiliary functions
ξ andη [169]

χ = 1 + ξ2 + iη2 − εb. (7.28)

The positivity constraint is used in the HM algorithm. As said in refs. [46, 170] this constraint
modifies the resulting image. For comparison purpose we havealso developed a linearised
Conjugate Gradient Method under positivity constraint (PCGM).

One of the main differences between the scalar two-dimensional and the vectorial three-
dimensional configurations is that the three-dimensional near-field propagator̄G presents a sin-
gularity (See for example Eq. (3.10)). As seen in Sec. 3.2.2,this leads to an alternative de-
scription of the scattering problem in terms of local field and sample polarisabilityα (instead of
macroscopic field and permittivity contrast). In this case,Eq. (7.1) is replaced by

Elocal,l(r) = Einc,l(r) + PV

∫

Ω

Ḡ(r, r′)α(r′)Elocal,l(r
′)k20dr

′, (7.29)

with Elocal,l(r) = El(r)[ε(r) + 2]/3 and

α(r) = 3
ε(r)− 1

ε(r) + 2
.

The second term of the right-hand part of this equation is generally lower than the second term
of the right-hand part of Eq. (7.1). This is the reason why therenormalised Born approximation
is usually better than the Born approximation and why the formulation inα reduces the com-
putation time of the near-field equation [155]. This modification acts as a pre-conditioner that
eases the inversion of Eq. (7.1).

It is thus tempting to use the description with the local fieldand polarisabilityα for re-
constructing the sample. In this case, the polarisability can be seen as an auxiliary variable
describingε. Note that the positivity constraint can also be imposed to the polarisability. In-
deed one can easily verifies that,

{

ℜe(χ) ≥ 0

ℑm(χ) ≥ 0
⇒

{

ℜe(α) ≥ 0

ℑm(α) ≥ 0
(7.30)
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One can thus impose the positivity toα with the same type of auxiliary functions as that used
for ε. Note however that Eq. (7.30) is an implication and not an equivalence. Reconstruc-
tions with positivity imposed onα can lead to reconstructedε with strong negative values. We
implemented the formulation in terms of local field and sample polarisability in HM, but, un-
fortunately did not observe any marked improvement, neither on the reconstruction quality nor
in the computation time, for the examples studied. Hence, because of the interest of imposing
the positivity onε, the formulation in terms ofε seems then preferable.

7.3 Application to micro-wave data1

To investigate the performances of the different inversionmethods sketched in the previous
section, we applied them to experimental data stemming fromthe microwave imaging set-up
described in the special section [171, 172]. In this imager,the targets are illuminated by an
electromagnetic wave which can be assimilated to a plane wave. The scattered field is measured
at 81 points on a sphere enclosing the targets (Imaging in theFresnel-zone) with regular angular
steps and with 36 incident directions taken in the(x, y) plane by rotating regularly over[2π] the
emitting antenna about thez axis. The background medium is homogeneous,εb = 1.

With this illumination and detection configuration, a single scattering analysis estimates the
resolution of the reconstruction asλ/4 in the transverse(x, y) plane andλ/1.8 in the(x, z) and
(y, z) planes. We considered two different targets, which are described in Fig. 7.3, and several
incident frequencies from 3 GHz to 8 GHz.

Prior to presenting the reconstructions obtained with the four different inversion methods
described in the first section, it is important to discuss their convergence behaviour and the
stopping criterion. First, it is important to stress that the convergence of the three methods is
not ensured mathematically. Yet, because of the minimisation process, the cost functional of
CSI and HM are forced to decay at each iteration. Under some conditions, the CSI functional
has even been shown to exhibit only one local minimum [173]. On the other hand, the decay of
the cost functions of CGM and PCGM is not automatic as the total field insideΩ is estimated
through a direct calculation, without minimising the cost-functional.

We observed that, in all the considered examples, the cost functions of CSI, CGM and
PCGM had a similar behaviour. After a certain number of iterations, they would decay slowly
and continuously without visible changes on the reconstructions. The HM cost function, on
the contrary, would rapidly reach a constant value which depended on the accuracy with which
the scalar coefficientsbn, avl,n andawl,n were optimized. We decided to stop the iterations of
CGM, CSI and PCGM when the reconstruction did not evolve significantly any more, while we
stopped the HM iteration when the cost function reached the plateau. Note that, the cost func-
tions of these methods being normalised differently, we cannot use their values as a stopping
criterion.

1Most of the text of this section was originally published in E. Mudry, P. C. Chaumet, K. Belkebir and A.
Sentenac,Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative method, Inverse
Problems,28, 065007 (2012) [21]. My main contribution was the codes of the inversion algorithms.
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Figure 7.3: (a) Sketch of the experimental set-up. The illumination is done on the(x, y) plane
with ϕi from 0◦ to 350◦ step 10◦. The polarisation of the incident field is along thez direction.
The receiver position angles variesϕr from 20◦ to 340◦ step 40◦ andθr from -60◦ to 60◦ step
15◦. (b-c) the two different targets under study. (b) two dielectric cubes of relative permittivity
ε = 2.4 and sidea = 2.5 cm located at(a/2, a/2, a/2) and(a/2, a/2, 5a/2). (c) Two spheres
in contact with relative permittivityε = 2.6 and radiusr = 2.5 cm. The centres of the spheres
are located at(−r, 0, 0) and(r, 0, 0).

7.3.1 Two cubes along thez direction

The first considered target is made of two small cubes placed along thez axis, as shown in
Fig. 7.3 (b). This simple object permits to test and validatethe Hybrid Method and to compare
its performances to that of CGM, PCGM and CSI in terms of convergence and computation
time.

At low frequency: 4 GHz We first inverted the data obtained at4 GHz. At this frequency, the
inter-distance between the cubes centres is about two thirdof the wavelength, which is above
the single scattering resolution limit in thez direction. As expected, both CGM, PCGM, CSI
and HM are able to resolve the two cubes, Fig. 7.4. Unsurprisingly, the results obtained with
PCGM and HM using the permittivity positivitya priori information are better than that given
by CGM and CSI without thisa priori information. With these data with a high signal-to-noise
ratio, it appears that PGCM is better than HM.

At high frequency: 8 GHz We now study the data obtained at 8 GHz which exhibits a lower
signal-to-noise ratio than those obtained at 4 GHz [172, 170]. As expected, all four methods
retrieve accurately the two cubes. PGCM and HM are once againslightly better than CGM
and CSI. In this case, however, PGCM is not as good as HM as it reconstructs small ghosts
objects outside the targets and exhibits high permittivitypeaks whereas the HM reconstructed
background is perfectly equal to one and its reconstructed permittivity close to the actual value.
We have observed on many examples that, with data presentinga high signal-to-noise ratio,
PGCM was the most efficient technique for retrieving the object smallest details but that, on the
other hand, it was the least robust to noise.

Computation time The computation is carried on a single Intel Xeon processor with 3.2 GHz
clock speed. For the two cubes target, we give in Tab. 7.1, thenumber of iterations, the compu-
tation time per iteration and the total computation time necessary to obtain the reconstructions
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Figure 7.4: Reconstructed permittivity of the first target (two cubes along thez axis) presented
in Fig. 7.3 obtained with the different inversion methods from data obtained at 4 GHz. The
first column corresponds to CGM reconstruction; the second to PCGM, the third to CSI and the
fourth to HM. The first line represents the relative permittivity in the plane(y, z) atx = 0; The
second line represents the relative permittivity in the plane(x, z) atx = 0 and the third line the
relative permittivity versusz for x = y = 0.
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Figure 7.5: Same as in Fig. 7.4 but at 8 GHz.

plotted in Figs. (7.4) and (7.5). We observe that CSI is much slower than all the other ap-
proaches. Indeed, although its iteration computation timeis the smallest, as one does not need
to solve any forward problem, the number of iterations required for converged result is huge. On
the other hand, CGM, PCGM and HM have a relatively long computation time for each itera-
tion, but this issue is largely compensated by the small number of iterations required for getting
a converged result. Actually, solving the forward problem,which used to be very time consum-
ing, is now performed surprisingly fast thanks to the recentalgorithmic progress [17, 18]. The
CGM iteration is faster than PCGM and HM because it does not require to optimise iteratively
the scalar coefficientsβn.

Note that for CGM, PCGM and HM the iteration computation timeincreases with the illu-

Frequency Method Iteration number Time by iteration (min) Total time (min)
4 GHz HM 28 6.35 178
4 GHz PCGM 25 3.2 80
4 GHz CGM 200 0.91 182
4 GHz CSI 3000 0.72 2146
8 GHz HM 13 8.46 110
8 GHz PCGM 25 7.68 192
8 GHz CGM 200 1.2 240
8 GHz CSI 3000 0.83 2493

Table 7.1: Time of computation necessary to get the final image and number of iterations needed
for the four methods presented in this section.
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Figure 7.6: Behaviour of the cost functional for the four different methods at 4 GHz and 8 GHz.
(a) CGM. (b) PCGM. (c) HM. (d) CSI.

mination frequency. Indeed, the time required to solve the direct problem depends directly on
the object size with respect to the illumination wavelength. At 8 GHz, convergence of PCGM
takes more iterations than at 4 GHz because of the lesser signal-to-noise ratio. At this frequency,
HM is the fastest method.

The behaviour of the residual error versus the iteration is plotted for each method and for
both frequencies in Fig. 7.6. We observe that, except for thePCGM which is most sensitive to
noise, the high frequency data yields a better residue than the low frequency data. These curves
are emblematic of the cost function behaviour of these methods. The HM residue reaches
quickly a constant value plateau while the three other methods decrease monotonically and
slowly after a few iterations. We recall that one cannot compare the value of the residues as
each method has its own normalisation.

We now turn to another target which is more difficult to invertas it is larger than the
wavelength of illumination or have a complex structure. It permits to investigate the perform-
ances of the techniques in terms of reconstruction accuracyand robustness to noise.

7.3.2 Two spheres in contact

At low frequency: 5 GHz In this section we study two spheres in contact. This configuration
is particularly difficult as the contact is punctual and the two spheres form an object larger
than the wavelength of illumination for the frequency of 5 GHz. The CGM and PCGM fail to
converge and the reconstructions presented in Fig. 7.7 correspond to those obtained for the best
residue,i. e. the 43-th iteration and 2-th iteration, respectively. Thisexample points out the
main problem of the CGM and PCGM in which the cost function is not forced to decrease.

On the other hand, the CSI method, third line of Fig. 7.7, converges and it retrieves the shape
of the two spheres. Yet, the reconstructed relative permittivity is too high, especially close to
the contact point. Similarly, HM gives a map of permittivitywhich roughly fits the actual shape
of the spheres while the permittivity at the contact point isnot overestimated.

We have observed that if the frequency is increased up to 6 GHz, HM fails to find the object
and sole the CSI gives a meaningful result. For frequencies above 7 GHz all methods fail.

Frequency hopping To ameliorate the reconstruction, one can use the data obtained at dif-
ferent frequencies and perform a frequency hopping procedure. At each frequency, the object
initial estimate introduced in the inversion algorithm is given by the reconstruction obtained
at the preceding (lower) frequency. Figure 7.8 presents theresults obtained using frequency
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Figure 7.7: Reconstructed permittivity map of the second target (two spheres in contact) depic-
ted in Fig. 7.3 (c) obtained with the four inversion methods from data obtained at 5 GHz. First
line CGM; second line PCGM; third line CSI; Fourth line HM. First and second column: cut
of the relative permittivity versusx for y = z = 0 and fory = 0 andz = a/2, respectively.
Third and fourth column map of relative permittivity in the(x, y) plane forz = 0 andz = a/2,
respectively.
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Figure 7.8: Same as Fig. 7.7 but the reconstruction is obtained with HMviaa frequency hopping
procedure applied to the data measured at 3-4-5-6-7-8 GHz. (a) Relative permittivity versusx
for y = z = 0 and (b) fory = 0 andz = a/2. (c) Map of relative permittivity in(x, y) plane
for (c) z = 0 and (d)z = a/2.

hopping HM for the sequence 3-4-5-6-7-8 GHz. We considered only HM because CGM and
PCGM failed to converge at 5 GHz and because CSI was much too long. It took 22 hours for
HM to reconstruct the spheres and we had estimated the CSI time to 9 days.

We observe in Figure 7.8 that HM combined with frequency hopping gives an accurate
reconstruction of the two spheres. With the good initial estimates, the convergence issue for
frequencies above 6 GHz has disappeared. This example stresses the interest (in particular with
respect to computation time) and the robustness of HM. Note that at 8 GHz the object size is
about three wavelengths.

These two examples illustrate the results of our proposed reconstruction algorithms. This
study shows that the Hybrid Gradient Method (HM) has a stability comparable to other recon-
struction algorithms but that it is far quicker. This is why one can consider to apply it to optical
TDM measurements, where the data-sets are huge because of the many observation directions
that are obtained with the microscope objective and the camera.

7.4 Application to optical data2

7.4.1 Configuration and experimental set-up

Our TDM set-up is based on a reflection microscope, as seen in Fig. 7.9, in which the camera has
been replaced by a wave-front sensor. A collimated laser beam (He-Ne 633 nm), controlled by a
mirror mounted on step motors (Newport NSA12), illuminatesthe sample through an objective
with NA = 0.95 (Zeiss Epiplan-Apochromat 50×) under various angles of incidence. The
back-scattered field is imaged with a 290×magnification on a high-resolution wave-front sensor
(Phasics SID4-HR, 400×300 pixels) based on quadri-wave lateral shearing interferometry [83].
No reference path is needed and both the phase and intensity of the imaged field are retrieved
with a single shot measurement.

To demonstrate the potential of our set-up for reconstructing the permittivity map of three-
dimensional samples, we consider a test object made of four resin cylinders (ε = 2) deposited
on a reflective silicon substrateε1 = 15.07 + 0.18i. This geometry corresponds to the second

2Images and parts of the text of this section was originally published in Y. Ruanet al. Tomographic diffractive
microscopy with a wavefront sensor, Optics Letters,37, 1631-1633 (2012) [22]. My main contribution was the
code of the inversion algorithm.



7.4 Application to optical data 125

Figure 7.9: Schematic of the TDM set-up. M, rotative mirror.BE, beam expander. D, dia-
phragm. BS, beam-splitter. OL, objective lens. L1, tube lens. L2, L3, relay lenses (f ′ = 3.5
and 20 cm). WS, wave-front sensor.

configuration defined in Sec. 7.1. Note that Chapter 4 suggests that this configuration can have
an improved axial resolution. The cylinders have a diameterclose to 1µm, a height of 120 nm,
and their axes are placed at the corners of a square with 2µm side.

A phase reference is measured on the bare substrate for each incidence prior to imaging
the sample with a pixel size of 105 nm, and a single shot measurement is performed. This
reference further diminishes speckle noise. We have used 6 incidences in the plane(x, z) with
the electric field orthogonal to the plane of incidence (s polarisation), and 6 incidences in the
plane(y, z) with the electric field parallel to the plane of incidence (p polarisation), with polar
angles varying in the [−30, 30] degrees range. The data have been restricted to about 2,000
scattering angles centred on the specular reflection on the substrate.

7.4.2 Results

Figure 7.10 shows the relative permittivity map reconstructed from the measured diffracted
fields. (a-b) is obtained with the Hybrid gradient Method with positivity constraint. Moreover,
the absorption of the resin being negligible, the permittivity is assumed positive (η = 0 in
Eq. (7.28)). Fig. (7.10) (c-d) is obtained with a linear inversion technique under the renorm-
alised Born approximation (code provided by Laurent Milord) and assuming that the sample
is placed in vacuum. A vertical phase variation renders uninterpretable the real and imaginary
parts of the reconstruction, so we decided to plot the modulus of the permittivity map. This
implies that these images cannot be interpreted as a measureof permittivity. Figure 7.10 (a) and
(d) show a longitudinal cut(y, z) in the middle of two of the cylinders, and (b) and (c) show a
transverse cut(x, y) at the height where the reconstructed permittivity reachesa maximum,i.
e. z = 125 nm for the non-linear inversion andz = 53 nm for the linear inversion.

We observe that, with the non-linear reconstruction, the transverse and axial dimensions
of the resin cylinders have been correctly retrieved. The convergence of the iterative process
was obtained after four iterations with a computational time of about 3 hours. The maximum
reconstructed permittivity is smaller than the actual valueε = 2.

On the contrary, the linear reconstruction technique provides a far less accurate reconstruc-
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Figure 7.10: Comparison of the permittivity map retrieved with the iterative inversion algorithm
(a-b) and the modulus of the 3D inverse Fourier transform of the data set (c-d). (a) longitudinal
cut aty = 1 µm, (b) transverse cut atz = 125 nm (plain blue line: actual geometry of the
sample). (c) transverse cut atz = 53 nm, (d) longitudinal cut aty = 1 µm. Cuts are along
dashed lines.

tion, especially along thez axis. Indeed, the presence of the reflective surface is interpreted as
a mirror object symmetrically placed along this axis. The lateral resolution is also lower, partly
due to the absence of the positivity constraint and partly due to the assumption of single scat-
tering. Moreover, reconstruction shows speckle patterns in the background due to noise in the
measurements and errors on the positioning of the measured frequencies in the Fourier space.
Indeed linear reconstruction implies usually several hundred of measurements [76]. Despite
its lack of accuracy, linear inversion appears to be quite helpful in particular for estimating the
initial size ofΩ in our inversion algorithm.

This experimental result demonstrates the interest of our reconstruction technique for TDM.
It can be used for various configurations and is stable for highly refracting samples. It allows
the use ofa priori constraints, like the positivity of the permittivity and the restriction of the
reconstruction volumeΩ. It is also more robust to noise than linear reconstructionsand requires
less incidences.

7.5 Conclusion

When the permittivity contrast is not small in comparison to1, reconstructions of permittivity
maps from TDM data necessitate non-linear inversion techniques that account for multiple scat-
tering. This chapter presents the different algorithms that have been developed in the team to
address this issue. They are all based on a rigorous modelling of the diffraction process.

These algorithms have been applied to data issued from the Fresnel data base, a base of
micro-wave tomographic data. This study shows that the Contrast Source Inversion algorithm
is the most stable for highly refracting samples, but that its computation time is prohibitive.
Conversely, the Hybrid Method is slightly less stable but far quicker, allowing reconstructions
from measurements taken at several wavelength.

The Hybrid Method has then been applied successfully to TDM experimental data where
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the dielectric sample is deposited on a highly reflecting dioptre. This demonstrates the validity
of this approach for permittivity map reconstruction in complex configurations. It also shows
that a correct permittivity map can be obtained with a limited number of incidences. Further
experiments are in progress for imaging more complex samples and studying the limit of resol-
ution.

We believe that this work underlines the interest of the Hybrid Method in non-linear tomo-
graphy. A possible extent would be to build a hybrid from the Contrast Source Inversion as the
resulting method could be more stable for the highest diffracting samples. Another perspective
is to build an algorithm inspired from the previous chapter that estimates jointly the permittivity
mapε and the incident fieldsEinc,l.



Conclusion

This Ph. D. thesis was devoted to the amelioration of the resolution of stainless and fluores-
cence microscopies using spatially inhomogeneous illuminations. More precisely, we studied
Tomographic Diffraction Microscopy (TDM), in which the sample varying permittivity diffracts
the field of tilted incident plane waves, and structured illumination fluorescence microscopy, in
which the sample fluorescence is excited by non-inhomogeneous light intensities.

We demonstrated numerically and experimentally that, in both cases, the axial resolution can
be made equivalent to the transverse resolution just by placing the sample on a mirror. The mir-
ror allows a quasi-isotropic observation and illuminationof the sample in a much simpler way
than the classical 4Pi configuration using two facing objectives. On the other hand, it requires a
technique to separate the reflected waves of those reaching directly the objective. In TDM, we
derived a specific numerical inversion scheme for treating the stack of holograms. We showed
that, under the Born approximation, one could get a one-to-one correspondence between the
object spatial frequencies within a ball of radius4π/λ and the data. In confocal fluorescence
microscopy, we developed a specific phase-shaping of the incident beam so that it focuses into
a quasi-isotropic spot before the mirror. We believe that our approach may be useful in many
microscopy configurations, like classical incoherent illumination microscopy or in techniques
using non-linear light-matter interactions, such as high harmonic generation, STimulated Emis-
sion Depletion (STED) or even STochastic Optical Reconstruction Microscopy (STORM) and
Photo-Activated fluorescence Light Microscopy (PALM), butalso for three-dimensional pat-
terning and reading.

The improved resolution obtained when the illumination is spatially inhomogeneous stems
from the frequency mixing between the object and the probingfield. The super-resolved map
of the sample is numerically reconstructed from the many images obtained under different il-
luminations. Most of the reconstruction algorithms assumethat the probing field is perfectly
known. In this work, we developed inversion methods that reconstruct both the sample and the
probing fields with the least possiblea priori information on the latter. We used iterative tech-
niques that minimise a functional over all possible sample and probe functions, measuring the
distance between the actual measurements and a model. In structured illumination fluorescence
microscopy, our reconstruction method (named blind-SIM) allows the use of uncontrolled or
even random illumination patterns. It permits a dramatic simplification of the experimental im-
plementation. In TDM, our reconstruction method permits tohandle highly contrasted samples
in which the internal field departs significantly from the incident field because of multiple scat-
tering. Interesting perspectives opened by our algorithmsare, among others, the combination of
TDM with random illuminations, the adaptation to non-linear wave-matter interaction such as
saturated fluorescence [142] or the development of sub-diffraction surface imaging using high
frequency near-field patterns [174, 117, 175]. This last point has been initiated for grating-
assisted fluorescence imaging and requires additional workfor being totally operational.
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In conclusion, I think that combining an accurate image-formation model to sophisticated
reconstruction procedures is a promising path for improving the performances of microscopes
while simplifying the experimental set-ups. With the increasing computing and algorithmic
performances, this approach will certainly gain in popularity and, hopefully, attract researchers
from the Inverse Problem and Signal Processing community.
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Appendix A

Demonstration of the results cited in
Sec. 4.1.1.2

Et l’unique cordeau des trompettes marines
Guillaume Appolinaire

The goal of this appendix is to prove results cited in Sec. 4.1.1.2.

This starts with the system

βinc − β = A (A.1)

|γinc − γ| = B (A.2)

βinc − β = C (A.3)

|γinc + γ| = D (A.4)

There are bounds on the values thatβ, βinc, γ andγinc can take. Since the wavelength does
not vary and since the considered plane waves are not evanescent, we have

β2 + γ2 = k20 (A.5)

β2
inc + γ2inc = k20. (A.6)

With the chosen sign convention (see Fig. 4.1), this means that

γ =
√

k20 − β2 (A.7)

γinc = −
√

k20 − β2
inc. (A.8)

From Eqs. (A.1) and (A.3), one finds immediatelyA = C . From Eqs. (A.2) and (A.4), one
hasB ≥ 0 andD ≥ 0
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Inserting Eqs. (A.7) and (A.8) in Eq. (A.2) one gets successively
√

k20 − β2 +
√

k20 − β2
inc = ±B

√

k20 − β2
inc = ±B −

√

k20 − β2

k20 − β2
inc =

(

±B −
√

k20 − β2

)2

k20 − β2
inc = B2 + k20 − β2 ∓ 2B

√

k20 − β2

±2B
√

k20 − β2 = B2 + β2
inc − β2 (A.9)

Equation (A.1) leads toβ2
inc = (A + β)2 = β2 + A2 + 2Aβ. Inserting this equality in

Eq. (A.9), one obtains successively

±2B
√

k20 − β2 = A2 +B2 + 2Aβ

4B2(k20 − β2) = (A2 +B2 + 2Aβ)2

4B2(k20 − β2) = (A2 +B2)2 + 4A(A2 +B2)β + 4A2β2

That means thatβ is a root of the second-degree equation

4β2(A2 +B2)− 4βA(A2 +B2) + (A2 +B2)2 − 4B2k20 = 0, (A.10)

Its discriminant is

∆ = 16A2(A2 +B2)2 − 16(A2 +B2)[(A2 +B2)2 − 4B2k20]

= 16A2(A2 +B2)2 − 16(A2 +B2)(A2 +B2)2 + 64(A2 +B2)B2k20
= −16B2(A2 +B2)2 + 64(A2 +B2)B2k20
= 16B2(A2 +B2)[4k20 − (A2 +B2)]

Equation (A.10) has a solution if and only if∆ ≥ 0 that is equivalent to

4k20 ≥ A2 +B2 (A.11)

that defines the2k0-radiusz ≥ 0 half-ball.

Solutions of Eq. (A.10) are

β = −1

2
A± 1

2
B

√

4k20
A2 +B2

− 1. (A.12)

Using Eq. (A.1), we have immediately

βinc =
1

2
A± 1

2
B

√

4k20
A2 +B2

− 1. (A.13)

The previous reasoning proves that the system composed of Eqs. (A.1) and (A.2) implies
Eqs. (A.12) and (A.13). One need now to check that Eqs. (A.12)and (A.13) are solutions of
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Eqs. (A.1) and (A.2). They are obviously solutions of Eq. (A.1). To prove that they are solutions
of Eq. (A.2), one need to calculateγ andγinc.

Equation (A.7) leads to

γ =
√

k20 − β2 (A.14)

=

√

√

√

√

√k20 −



−1

2
A± 1

2
B

√

4k20
A2 +B2

− 1





2

(A.15)

=

√

√

√

√

k20 −
A2

4
− B2

4

(

4k20
A2 +B2

− 1

)

∓ AB

2

√

4k20
A2 +B2

− 1 (A.16)

=

√

√

√

√

(A2 +B2)k20
A2 +B2

− A2

4
− B2k20
A2 +B2

+
B2

4
∓ AB

2

√

4k20
A2 +B2

− 1 (A.17)

=

√

√

√

√

B2

4
− A2

4
+

A2k20
A2 +B2

∓ AB

2

√

4k20
A2 +B2

− 1 (A.18)

=

√

√

√

√

B2

4
+
A2

4

(

4k20
A2 +B2

− 1

)

∓ AB

2

√

4k20
A2 +B2

− 1 (A.19)

=

√

√

√
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√




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2
B ∓ 1

2
|A|
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4k20
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− 1
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(A.20)
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− 1
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. (A.21)

In the same way, Eq. (A.8) leads to

γinc = −

∣

∣

∣

∣

∣

∣

1

2
B ± 1

2
|A|

√

4k20
A2 +B2

− 1

∣

∣

∣

∣

∣

∣

. (A.22)

One gets Eq. (A.2),|γinc − γ| = B only if the formulae in the absolute values ofγ andγinc
have the same sign. That means

|A|

√

4k20
A2 +B2

− 1 ≤ B (A.23)

A2

(

4k20
A2 +B2

− 1

)

≤ B2 (A.24)

A2 4k20
A2 +B2

≤ A2 +B2 (A.25)

4A2k20 ≤ (A2 +B2)2 (A.26)

2k0|A| ≤ A2 +B2 (A.27)
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Equation2k0|A| = A2 +B2 describes the twok0-radius circles centred in(k0, 0) and(−k0, 0).
This and Eq. (A.11) proves that(A,B) has to be in zone (1) of Fig. 4.1.

If 2k0|A| ≤ A2 +B2, we get

γ =
1

2
B ∓ 1

2
|A|

√

4k20
A2 +B2

− 1 (A.28)

γinc = −1

2
B ∓ 1

2
|A|

√

4k20
A2 +B2

− 1, (A.29)

that verifies Eq. (A.2).

Equation (A.4) leads then to

D = |A|

√

4k20
A2 +B2

− 1. (A.30)

This implies that

D2 = A2

(

4k20
A2 +B2

− 1

)

(A.31)

A2 +D2 = A2 4k20
A2 +B2

. (A.32)

From Eq. (A.27),

1

A2 +B2
≤ 1

2k0|A|
(A.33)

4k20A
2

A2 +B2
≤ 4k20A

2

2k0|A|
, multiplying by4k20A

2 (A.34)

4k20A
2

A2 +B2
≤ 2k0|A| (A.35)

A2 +D2 ≤ 2k0|A|, using Eq. (A.32). (A.36)

This proves that(A,D) is in twok0-radius circles centred in(k0, 0) and(−k0, 0), that means
in zone (2) of Fig. 4.1.

Summarising, we haveC = A,D = |A|
√

4k20
A2 +B2

− 1,

(A,B) is in zone (1) (B ≥ 0 and2k0|A| ≤ A2 +B2 ≤ 4k20)
and(C,D) is in zone (2) (D ≥ 0 andC2 +D2 ≤ 2k0|A|).
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Gradient calculation

Berg̀ereô tour Eiffel le troupeau des ponts bêle ce matin
Guillaume Appolinaire

B.1 Definition of a functional gradient and basic examples

This section gives the mathematical definition of a functional gradient. Deriving an example it
expounds calculation rules for least-square functionals.

B.1.1 Definition

To define the gradient of a functional, one need first to define the directional derivative.F is a
functional of the variablex, a function defined of the setΩ. For any functionu of Ω, DxF (u)
the directional derivative ofF along the directionu is defined as

DxF (u) = lim
t→0

F (x+ tu)− F (x)

t
. (B.1)

Thengx the gradient ofF is defined as

gx = argmax
u

(DxF (u)|‖u‖ = 1), (B.2)

thus the direction were the directional derivative is the highest.

According to this definition, gradients are normalised suchas‖gx‖ = 1. However, since
in gradient type algorithms their value is always multiplied by a constant that is optimised, we
most of time neglects it in the following.

B.1.2 First example

As a first example, we detail here the calculation of the gradient of the functional Eq. (6.18)
defined in Sec. 6.2.3

F (ρ) =W‖M − (ρI0) ∗ h‖2Γ. (B.3)
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F (ρ+ tu) is written

F (ρ+ tu) = W‖M − [(ρ+ tu)I0] ∗ h‖2Γ
= W‖M − (ρI0) ∗ h− t(uI0) ∗ h‖2Γ. (B.4)

For the sake of simplicity, one notes

P0 =M − (ρI0) ∗ h. (B.5)

F (ρ+ tu) is then

F (ρ+ tu) = W‖P0 − t(uI0) ∗ h‖2Γ
= W 〈P0 − t(uI0) ∗ h|P0 − t(uI0) ∗ h〉Γ
= W‖P0‖2Γ − 2tW 〈P0|(uI0) ∗ h〉Γ + t2W‖(uI0) ∗ h‖2Γ
= F (ρ)− 2tW 〈P0|(uI0) ∗ h〉Γ +O(t2) (B.6)

Finally,

DρF (u) = lim
t→0

F (ρ+ tu)− F (ρ)

t
(B.7)

= −2W 〈P0|(uI0) ∗ h〉Γ (B.8)

Assumingh as even:∀x ∈ Ω, h(−x) = h(x), one has successively

〈P0|(uI0) ∗ h〉Γ = 〈P0 ∗ h|uI0〉Ω (B.9)

= 〈I0(P0 ∗ h)|u〉Ω (B.10)

that leads to

DρF (u) = −2W 〈I0(P0 ∗ h)|u〉Ω (B.11)

= 〈−2WI0(P0 ∗ h)|u〉Ω (B.12)

To find the gradientgρ = argmaxu(DρF (u)|‖u‖ = 1), one uses a theorem that states that
u = a

‖a‖
maximises(〈a|u〉|‖u‖ = 1). Thus from Eq. (B.12), one gets

gρ =
−2WI0(P0 ∗ h)
‖2WI0(P0 ∗ h)‖Ω

. (B.13)

The normalisation factor does not matter in the Conjugate Gradient algorithm. We finally
have

gρ = −2WI0(P0 ∗ h) (B.14)

B.1.3 Second example, functional with an auxiliary function variable

In Sec. 6.2.3 the functional Eq. (6.18) is modified for imposing the positivity ofρ. This is done
in optimising an auxiliary functionξ such thatρ = ξ2. The new functional is

F (ξ) = W‖M − (ξ2I0) ∗ h‖2Γ.
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Of course,gξ can be derived using the reasoning of the previous section. However, one can
avoid these tedious calculations using the chain rule

gξ =
∂ρ

∂ξ
gρ. (B.15)

Using this relation and the definition ofρ(ξ) we find

gξ = 2ξgρ (B.16)

and with Eq. (B.14) one finally gets

gξ = −4WξI0(P0 ∗ h). (B.17)

B.2 Gradients for Chap. 6

We gives here some details for the derivation of the gradients used in Chap 6.

B.2.1 Gradients for the blind-SIM algorithm without positi vity

The gradients for the blind-SIM algorithm described in Sec.6.2 derives from the functional
Eq. (6.7)

F (ρ, (Il)l=1,...,L−1) =W

L−1
∑

l=1

‖Ml − (ρIl) ∗ h‖2Γ +W

∥

∥

∥

∥

∥

ML −
[

ρ

(

LI0 −
L−1
∑

l=1

Il

)]

∗ h
∥

∥

∥

∥

∥

2

Γ

.

gρ is the gradient ofF when theIl are assumed constant. It is by definition

gρ = argmax
u

(DρF (u)|‖u‖ = 1) for (B.18)

DρF (u) = lim
t→0

F (ρ+ tu, (Il)l=1,...,L)− F (ρ, (Il)l=1,...,L)

t
. (B.19)

For the sake of simplicity, one notes

IL = LI0 −
L−1
∑

l=1

Il (B.20)

and, forl = 1, . . . , L,
P0,l =Ml − (ρIl) ∗ h, (B.21)

called thel-th residue.

F (ρ+ tu, (Il)l=1,...,L) is written

F (ρ+ tu, (Il)l=1,...,L) = W
L
∑

l=1

‖Ml − [(ρ+ tu)Il] ∗ h‖2Γ

= W

L
∑

l=1

‖Ml − (ρIl) ∗ h− t(uIl) ∗ h‖2Γ. (B.22)
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F (ρ+ tu) is then

F (ρ+ tu, (Il)l=1,...,L) =W

L
∑

l=1

‖P0,l − t(uIl) ∗ h‖2Γ

=W
L
∑

l=1

(

‖P0,l‖2Γ − 2t〈P0,l|(uIl) ∗ h〉Γ + t2‖(uIl) ∗ h‖2Γ
)

(B.23)

= F (ρ)− 2tW

L
∑

l=1

〈P0,l|(uIl) ∗ h〉Γ +O(t2) (B.24)

Finally,

DρF (u) = −2W
L
∑

l=1

〈P0,l|(uIl) ∗ h〉Γ (B.25)

Assumingh as even:∀x ∈ Ω, h(−x) = h(x), one has successively

DρF (u) = −2W
L
∑

l=1

〈P0,l ∗ h|uIl〉Ω

= −2W

L
∑

l=1

〈Il(P0,l ∗ h)|u〉Ω

=

〈

−2W
L
∑

l=1

Il(P0,l ∗ h)
∣

∣

∣

∣

∣

u

〉

Ω

(B.26)

Using the theorem of maximality cited in the previous section, one finally has

gρ = −2W

L
∑

l=1

Il(P0,l ∗ h) (B.27)

gl;I is the gradient ofF whenρ and the(L − 2) otherIm are assumed constant. It is by
definition

gl;I = argmax
u

(Dl;IF (u)|‖u‖ = 1) for (B.28)

Dl;IF (u) = lim
t→0

F (ρ, Il + tu, (Im)m=1,...,L−1,m6=l)− F (ρ, (Im)m=1,...,L−1)

t
. (B.29)
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ExpandingF (ρ, Il + tu, (Im)m=1,...,L−1,m6=l), one gets

F (ρ, Il + tu, (Im)m=1,...,L−1,m6=l) =W

L−1
∑

m=1,m6=l

‖P0,m‖2Γ +W‖Ml − (ρ(Il + tu)) ∗ h‖2Γ

+W

∥

∥

∥

∥

∥

ML −
[

ρ

(

LI0 −
L−1
∑

m=1,m6=l

Im − (Il + tu)

)]

∗ h
∥

∥

∥

∥

∥

2

Γ

=W

L−1
∑

m=1,m6=l

‖P0,m‖2Γ +W‖P0,l − t(ρu) ∗ h‖2Γ

+W‖ML − [ρ (IL − tu)] ∗ h‖2Γ

=W

L−1
∑

m=1,m6=l

‖P0,m‖2Γ +W‖P0,l − t(ρu) ∗ h‖2Γ

+W‖P0,L + t(ρu) ∗ h‖2Γ

=W

L
∑

m=1

‖P0,m‖2Γ − 2tW 〈P0,l|(ρu) ∗ h〉Γ

+ 2tW 〈P0,L|(ρu) ∗ h〉Γ +O(t2)

= F (ρ, (Il)l=1,...,L−1)− 2tW 〈P0,l − P0,L|(ρu) ∗ h〉Γ +O(t2).

This leads to

Dl;IF (u) = −2W 〈P0,l − P0,L|(ρu) ∗ h〉Γ
= −2W 〈(P0,l − P0,L) ∗ h|ρu〉Ω
= 〈−2Wρ[(P0,l − P0,L) ∗ h]|u〉Ω (B.30)

that implies

gl;I = −2Wρ[(P0,l − P0,L) ∗ h]. (B.31)

B.2.2 Gradients for the blind-SIM algorithm with positivit y

In Sec. 6.2.2.1 the functional is modified to impose a positivity constraint using the auxiliary
functionsil andξ defined by Eq. (6.14)

Il = i2l ,

ρ = ξ2.

The new functional is given by Eq. (6.15)

F (ξ, (il)l=1,...,L−1) = W

L−1
∑

l=1

‖Ml − (ξ2i2l ) ∗ h‖2Γ +W

∥

∥

∥

∥

∥

ML −
[

ξ2

(

LI0 −
L−1
∑

l=1

i2l

)]

∗ h
∥

∥

∥

∥

∥

2

Γ

.
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The gradients can be immediately derived from the previous section using the chain rule

gξ = −4W

L
∑

l=1

ξi2l (P0,l ∗ h) (B.32)

gil = −4Wξ2il[(P0,l − P0,L) ∗ h]. (B.33)

B.2.3 Gradients for the filtered blind-SIM

In Sec. 6.4.3 an algorithm is described, minimising the functional Eq. (6.7)

F (ρ, (Il)l=1,...,L−1) =W
L−1
∑

l=1

‖Ml − (ρIl) ∗ h‖2Γ +W

∥

∥

∥

∥

∥

ML −
[

ρ

(

LI0 −
L−1
∑

l=1

Il

)]

∗ h
∥

∥

∥

∥

∥

2

Γ

for ρ ∈ Ω andIl ∈ S̃, S̃ being the set of real functions with value inΩ whose Fourier transform
has its support included inS, a sub-set ofR2.

This functional is the same as the one of Sec. B.2.1. The only modification is the set in which
Il are estimated. This does not modify the calculations leading to gρ in Eq. (B.27). However,
this changes the gradientsgl;I . As the functional is unchanged, Eq. (B.30) still holds

Dl;IF (u) = 〈−2Wρ[(P0,l − P0,L) ∗ h]|u〉Ω.

gl;I is the direction that minimisesDl;IF (u) inside S̃. Formally it is defined, notingv =
−2Wρ[(P0,l − P0,L) ∗ h], by

gl;I = argmax
u

(Dl;IF (u)|‖u‖Ω = 1, u ∈ S̃)

= argmax
u

(〈v|u〉Ω|‖u‖Ω = 1, u ∈ S̃). (B.34)

The condition of membership of̃S hinders the use of the maximality theorem. One has to find
an expression ofDl;IF (u) that includes this condition.

Definingf the function whose Fourier transform verifies

f̃(k)

{

1 if k ∈ S
0 otherwise,

(B.35)

one has∀u ∈ S̃, f̃ ũ = ũ thus∀u ∈ S̃, u ∗ f = u and∀u ∈ Ω, f ∗ u ∈ S̃. Then, assumingf as
even, sinceu ∈ S̃,

Dl;IF (u) = 〈v|u ∗ f〉Ω (B.36)

= 〈v ∗ f |u〉Ω. (B.37)

v ∗ f
‖v ∗ f‖ maximises(〈v ∗ f |u〉)|‖u‖ = 1) andv ∗ f ∈ S̃, thus

v ∗ f
‖v ∗ f‖ = argmax

u
(Dl;IF (u)|‖u‖Ω = 1, u ∈ S̃).

This proves that

gl;I = −2W
(

ρ[(P0,l − P0,L) ∗ h]
)

∗ f. (B.38)
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B.3 Gradients for Chap. 7

We give here some details for the derivation of the gradientsused in Chap 7. The calculation
techniques expounded in the previous section still applies. One need, however, to keep in mind
that now the variables are complex numbers and the fieldsEl and the sourcesPl are vectorial
functions of space.

B.3.1 Gradients for the Hybrid Gradient Method

The gradients used in the Hybrid Gradient Method described in Sec. 7.2.2.2 derives from the
functional Eq. (7.18)

Fn(χ, (El)l=1,...,L) =WΓ

L
∑

l=1

‖Ed,l − B̄χEl‖2Γ +WΩ

L
∑

l=1

‖El − Einc,l − ĀχEl‖2Ω.

gχ is the gradient ofF when theEl are constant. It is by definition

gχ = argmax
u

(DχF (u)|‖u‖ = 1) for (B.39)

DχF (u) = lim
t→0

F (χ+ tu, (El)l=1,...,L)− F (χ, (El)l=1,...,L)

t
. (B.40)

Expansion ofF (χ+ tu, (El)l=1,...,L) gives

F (χ+tu, (El)l=1,...,L) =WΓ

L
∑

l=1

‖Ed,l−B̄(χ+tu)El‖2Γ+WΩ

L
∑

l=1

‖El−Einc,l−Ā(χ+tu)El‖2Ω.

For the sake of simplicity, one notes

P0,l = Ed,l − B̄χEl (B.41)

Q0,l = El −Einc,l − ĀχEl (B.42)

called thel-th residues.

F (χ+ tu, (El)l=1,...,L) can then be written

F (χ+ tu, (El)l=1,...,L) =WΓ

L
∑

l=1

‖P0,l − tB̄uEl‖2Γ +WΩ

L
∑

l=1

‖Q0,l − tĀuEl‖2Ω

= F (χ, (El)l=1,...,L) +
L
∑

l=1

[−2tWΓℜe〈P0,l|B̄uEl〉Γ

− 2tWΩℜe〈Q0,l|ĀuEl〉Ω] +O(t2).

Thus the functional derivativeDχF (u) is

DχF (u) = −2

L
∑

l=1

(

WΓℜe〈P0,l|B̄uEl〉Γ +WΩℜe〈Q0,l|ĀuEl〉Ω
)

.
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B̄† andĀ† being the adjoint of respectivelȳB andĀ, this becomes

DχF (u) = −2

L
∑

l=1

(

WΓℜe〈B̄†P0,l|uEl〉Ω +WΩℜe〈Ā†Q0,l|uEl〉Ω
)

.

u is scalar whenEl is vectorial. A specific care is needed at this step. Indeed

〈B̄†P0,l|uEl〉Ω =

∫

Ω

(

B̄†P0,l

)∗
.(uEl)dr

=

∫

Ω

(

E∗
l .B̄

†P0,l

)∗
udr

= 〈E∗
l .B̄

†P0,l|u〉Ω.

This leads to

DχF (u) = −2
L
∑

l=1

(

WΓℜe〈E∗
l .B̄

†P0,l|u〉Ω +WΩℜe〈E∗
l .Ā

†Q0,l|u〉Ω
)

DχF (u) = ℜe
〈

−2

L
∑

l=1

(WΓE
∗
l .B̄

†P0,l +WΩE
∗
l .Ā

†Q0,l)

∣

∣

∣

∣

∣

u

〉

Ω

.

We finally have

gχ = −2
L
∑

l=1

(WΓE
∗
l .B̄

†P0,l +WΩE
∗
l .Ā

†Q0,l). (B.43)

The positivity constraint is imposed by using two real auxiliary functions such that, from
Eq. (7.28)

χ(ξ, η) = 1 + ξ2 + iη2 − εb

Gradients along these auxiliary functions can be found using the chain rule

gξ = ℜe
(

gχ
∂χ

∂ξ

)

(B.44)

gη = ℜe
(

gχ
∂χ

∂η

)

(B.45)

This leads to

gξ = −4ξℜe
(

L
∑

l=1

(WΓE
∗
l .B̄

†P0,l +WΩE
∗
l .Ā

†Q0,l)

)

(B.46)

gη = 4ηℑm
(

L
∑

l=1

(WΓE
∗
l .B̄

†P0,l +WΩE
∗
l .Ā

†Q0,l)

)

. (B.47)

gl;E is the gradient ofF assumingχ and theL− 1 other fields(Em)m=1,...,L,m6=l as fixed. It
is equal to

gl;E = argmax
u

(Dl;EF (u)|‖u‖ = 1) for (B.48)

Dl;EF (u) = lim
t→0

F (ρ,El + tu, (Em)m=1,...,L,m6=l)− F (ρ, (Em)m=1,...,L)

t
. (B.49)
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Expansion ofF (ρ,El + tu, (Em)m=1,...,L,m6=l) gives

F (ρ,El + tu, (Em)m=1,...,L,m6=l) = WΓ

L
∑

m=1,m6=l

‖P0,m‖2Γ +WΩ

L
∑

m=1,m6=l

‖Q0,m‖2Ω

+ WΓ‖Ed,l − B̄χ(El + tu)‖2Γ
+ WΩ‖(El + tu)− Einc,l − Āχ(El + tu)‖2Ω

= WΓ

L
∑

m=1,m6=l

‖P0,m‖2Γ +WΩ

L
∑

m=1,m6=l

‖Q0,m‖2Ω

+ WΓ‖P0,l − tB̄χu‖2Γ +WΩ‖Q0,l + t(u− Āχu)‖2Ω
= F (ρ, (Em)m=1,...,L)− 2tWΓℜe〈P0,l|B̄χu〉Γ
+ 2tWΩℜe〈Q0,l|u− Āχu〉Ω.

Thus the descent directions are successively

Dl,EF (u) = −2WΓℜe〈P0,l|B̄χu〉Γ + 2WΩℜe〈Q0,l|u− Āχu〉Ω
= −2WΓℜe〈χ∗B̄†P0,l|u〉Ω + 2WΩℜe〈Q0,l|u〉Ω − 2WΩℜe〈χ∗Ā†Q0,l|u〉Ω
= ℜe〈−2WΓχ

∗B̄†P0,l + 2WΩ

(

Q0,l − χ∗Ā†Q0,l

)

|u〉Ω.

We finally have

gl;E = −2WΓχ
∗B̄†P0,l + 2WΩ

(

Q0,l − χ∗Ā†Q0,l

)

. (B.50)

B.3.2 Gradients for the Contrast Source Method

The gradients used in the Hybrid Gradient Method described in Sec. 7.2.2.3 derives from the
functional Eq. (7.24)

F (χ, (Pl)l=1,...,L) =WΓ

L
∑

l=1

‖Ed,l − B̄Pl‖2Γ +W ′
Ω

L
∑

l=1

‖Pl − χEinc,l − χĀPl‖2Ω.

This functional is composed on two terms. The first one does not depend onχ and has thus
no influence ongχ.

The residues are redefined as

P0,l = Ed,l − B̄Pl (B.51)

Q0,l = Pl − χEinc,l − χĀPl. (B.52)

Derivation ofgχ starts with the expansion of

F (χ+ tu, (Pl)l=1,...,L) = WΓ

L
∑

l=1

‖P0,l‖2Γ +W ′
Ω

L
∑

l=1

‖Pl − (χ+ tu)Einc,l − (χ+ tu)ĀPl‖2Ω

= WΓ

L
∑

l=1

‖P0,l‖2Γ +W ′
Ω

L
∑

l=1

‖Q0,l − tu(Einc,l + ĀPl)‖2Ω

= F (χ, (Pl)l=1,...,L)− 2tW ′
Ωℜe〈Q0,l|u(Einc,l + ĀPl)〉Ω.
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This leads to the direction derivative

DχF (u) = −2W ′
Ωℜe〈Q0,l|u(Einc,l + ĀPl)〉Ω

= −2W ′
Ωℜe〈(Einc,l + ĀPl)

∗.Q0,l|u〉Ω

that leads to the gradient

gχ = −2W ′
Ω(Einc,l + ĀPl)

∗.Q0,l. (B.53)

gl;P is the gradient ofF assumingχ and theL− 1 other fields(Pm)m=1,...,L,m6=l as fixed. It
is equal to

gl;P = argmax
u

(Dl;PF (u)|‖u‖ = 1) for (B.54)

Dl;PF (u) = lim
t→0

F (ρ,Pl + tu, (Pm)m=1,...,L,m6=l)− F (ρ, (Pm)m=1,...,L)

t
. (B.55)

For obtaining the gradient along the source functionsgl;P, one need to expand

F (ρ,Pl + tu, (Pm)m=1,...,L,m6=l) = WΓ

L
∑

m=1,m6=l

‖P0,m‖2Γ +W ′
Ω

L
∑

m=1,m6=l

‖Q0,m‖2Ω

+WΓ‖Ed,l − B̄(Pl + tu)‖2Γ
+W ′

Ω‖(Pl + tu)− χEinc,l − χĀ(Pl + tu)‖2Ω

= WΓ

L
∑

m=1,m6=l

‖P0,m‖2Γ +W ′
Ω

L
∑

m=1,m6=l

‖Q0,m‖2Ω

+WΓ‖P0,l − tB̄u‖2Γ +W ′
Ω‖Q0,l + tu− tχĀu‖2Ω

= F (χ, (Pm)m=1,...,L)− 2tWΓℜe〈P0,l|B̄u〉Γ
+ 2tW ′

Ωℜe〈Q0,l|u− χĀu〉Ω.

The directional derivatives are thus

Dl;PF (u) = −2WΓℜe〈P0,l|B̄u〉Γ + 2W ′
Ωℜe〈Q0,l|u〉Ω − 2W ′

Ωℜe〈Q0,l|χĀu〉Ω
= −2WΓℜe〈B̄†P0,l|u〉Ω + 2W ′

Ωℜe〈Q0,l|u〉Ω − 2W ′
Ωℜe〈Ā†(χ∗Q0,l)|u〉Ω

that leads to the gradients

gl;P = −2WΓB̄
†P0,l + 2W ′

Ω

(

Q0,l − Ā†(χ∗Q0,l)
)

. (B.56)
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Abstract

Various fields of experimental science are constantly requiring smaller resolu-
tion for optical microscopy. In this thesis are presented several works for im-
proving resolution in fluorescence microscopy and in Tomographic Diffraction
Microscopy (TDM), an emerging phase microscopy technique.In the first part
it is shown that one can improve the axial resolution in depositing the sample
on a mirror. In confocal fluorescence microscopy, this is done by shaping the il-
lumination beam with a Spatial Light Modulator. In TDM this is done by adapt-
ing the reconstruction method. Then algorithms are proposed for reconstruct-
ing high-resolution images from structured illumination measurements with un-
known illumination fields, both in fluorescence imaging (blind-SIM algorithm)
and in TDM. This allows a dramatical simplification of the experimental set-ups
in fluorescence structured illumination and the image reconstruction of high op-
tical index samples in TDM.

keyword: optical microscopy, resolution, fluorescence, phase microscopy, structured illu-
mination, inverse problems.

Résuḿe

La microscopie optique est une technique essentielle pour de nombreuses dis-
ciplines des sciences expérimentales qui ńecessitent des résolutions sans cesse
plus petites. Dans ce travail de thèse sont pŕesent́es plusieurs travaux pour l’aḿe-
lioration de la ŕesolution en microscopie de fluorescence et en microscopie
tomographique par diffraction (MTD), une récente technique de microscopie
de phase. Dans un premier temps, il est montré que d́eposer l’́echantillon sur
un miroir permet d’augmenter la résolution axiale en MTD et en microscopie
confocale de fluorescence. En microscopie confocale, il faut pour cela mettre
en forme le faisceau incident grâce à un modulateur spatial de lumière. En
MTD, il suffit d’adapter le programme de reconstruction. La deuxìeme partie
présente des algorithmes pour reconstruire des images haute résolutionà partir
de mesures eńeclairement structuré avec de champs d’illumination inconnus,
à la fois en microscopie de fluorescence (algorithme blind-SIM) et en MTD.
En microscopie de fluorescence, ces algorithmes permettentde simplifier dras-
tiquement les montages expérimentaux produisant l’éclairement structuré et en
MTD, d’obtenir des images d’échantillons̀a fort indice.

mots-cĺes :microscopie optique, résolution, fluorescence, microscopie de phase, éclairement
structuré, problèmes inverses.
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