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Réesune du travail de these en langue
francaise

Ce chapitre résume les travaux présentés dans ce ne&mailiste des sections et sous-sections
suit la liste des parties et chapitres du mémoire. Seulgkadtats principaux sont présentés.
Le lecteur intéressé est invité a se référer au temtarglais pour trouver développements et
démonstrations.

1 Contexte et cadre détude

La microscopie optique est une technique essentielle ppunochbreuses disciplines des sci-
ences expérimentales. Elle permet en effet d’étudiedééails microscopiques d’un échantil-
lon de maniere non-destructive, grace a des outils pearsbrants et relativement peu colteux.
Malheureusement les techniques classiques de microsoppigie sont limitées a des résolu-
tions de I'ordre du demi micron, ce qui ne suffit pas pour de In@uses applications. L'amélio-
ration de cette résolution est donc un défi majeur de laeretie en microscopie optique. Dans
ce cadre, j'ai étudié deux types de microscopie, aveaetse@rquage : La microscopie de fluo-
rescence qui permet d’imager la densité de fluorescenceudaachantillon et la microscopie
tomographique par diffraction qui permet d’obtenir desesmguantitatives de I'indice optique.
Le point clé de ces deux approches est que l'interactiom émtumiere et I'échantillon est tres
classique (pas de saturation ou de non-linéarité) etllga’@euvent donc étre implémentées
avec des fluorophores courants et des intensités lumiseédaites. L'objectif de la these est
de montrer qu’en utilisant de nouvelles configurations &t tl@itements numériques sophis-
tiqués, les résolutions axiale et latérale de ces teckas peuvent étre fortement améliorées.

1.1 Principes de base d’'un microscope optique

Un microscope optique est constitué de trois parties :ai@lin systeme d’éclairement qui
envoie la lumiéere dans la partie de I'échantillon que l&smuhaite étudier; ensuite un instru-
ment optique permettant de collecter la lumiére qui sottEddantillon et d’en créer une image
agrandie sur le troisieme composant : un détecteurepdiacis le plan image de cet instru-
ment optique (K. ). Pour modéliser correctement ce systéme, on doitsseeptans le cadre

général de I'électromagnétisme.

On montrel[1, section 3.12] que le champ électrique énaerigee I'objet et obtenu au plan
focal objet peut étre représenté comme une somme d’'quidess se propageant dans le sens
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FIGURE 1 — Schéma de principe général de la microscopie optique

des:z positifs :
E(r) = / E(k)) exp(ik.r)dk 1)
k” ERQ

ouk, = k,x + kyy est la projection sur le plafx, y) dek le vecteur d’onde, vérifianjk| =
ko = 27/ \, etE(k)) vérifie vk, E(k).k = 0.

Si l'axe z est orienté suivant I'axe optique (I'axe de symétrie destrument d’optique) et si
cet instrument optique (ordinairement constitué d’'ureobf et d’'un oculaire) a ses aberrations
corrigées suivant les conditions de Sinesk avec son plan focal objet a = 0, les ondes
planes telles qugk, || < ko NA sont collectées par cet instrument d’optique et proddidans
le plan image le champ[2, section 4.5] :

E(I‘) = /klec \/%E(k” exp(ik'.r)dkH (2)

ou( est le disque de centfeet de rayork,NA, NA est I'ouverture numérique de l'instrument
optique et’ = (k JMF, ky /MF, \/EZ — (ko /MF)2 — (I, /MF)?), pourMF le grandissement
du systeme optique.

Cette décomposition en ondes planes montre que les fiegaedu champ supérieures a
koNA ne sont pas collectées par le systeme optique. C’eststieed’'information qui explique
la limite de résolutiorsur la mesure du champ

Cependant, en regle générale, les microscopistes n@asimtéressés par le champ sortant
de I'échantillon mais plutdt par 'échantillon lui-m@&. Or, on peut montrer que, dans le cadre
de la microscopie de fluorescence et de la microscopie tapbgiue de diffraction, les me-
suresM (qui sont reliées au champ) peuvent s’exprimer sous ladavin= (OP) x h ou O,
la fonction objet, est la quantité d'intérét de I'echilon, P est la fonction sonde, une fonc-
tion du champ d‘éclairement qui dépend du mécanisme deaste utilisé et est la fonction
d’appareil qui découle du filtrage des hautes frequenaas tleéquation[(2). C’est donc le pro-
duit OP qui est filtré et norO lui-méme. L'idée est donc d'utiliser des fonctions sonde
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in-homogenes, donc contenant des hautes fréquenceslepata transformée de Fourier de
M s’exprime, selon le theoréme de convolution comide= (0 * P)h, ol * est le produit
de convolution. Ce produit de convolution va permettre aanxtés frequences de de contri-
buer aux mesures, malgré le filtrage paitl y a principalement deux fagons d’appliquer cette
approche de 'éclairement structuré :

e la microscopie par balayagda fonction sonde” est produite par un champ focalisé au
pointry : P(ro,r) = P(ro — r). Puis ce point, est balayé a travers tout I'échantillon.
Ce principe est la base de la microscopie con-focale [3].

¢ la projection de motifs le principe est d’envoyer une succession de champs sdndas
homogenes mais couvrant tout I'echantillon. Il n'y a dgas besoin de balayage ce qui
accélere I'acquisition des données. Par contre les@émaftenues sont in-interprétables
en-soi et de complexes algorithmes de reconstruction dbétee développés pour obtenir
des images lisibles.

L'éclairement structuré a permis d’améliorer de mamigignificative la résolution des mi-
croscopes optiquesclassiques, i. e. utilisant une interaction linéaire entre I'échilon et la
lumiere. C’est cette approche que j'ai développée daratire de la microscopie de fluores-
cence et la microscopie tomographique de diffraction demprincipes de base sont présentés
ci-dessous.

1.2 La microscopie de fluorescence

Il existe des molécules, appelés fluorophores ou margutwrescents, capables d’absorber
la lumieére a une certaine longueur d’'onde et de la rétgmensuite a une autre longueur
d’onde. Tant que l'intensité du champ d’éclairement hjss trop €levée, on peut considérer
gue I'on est dans le régime d’émission linéaire. Alonsténsitél.,, émise par I'échantillon est
proportionnelle &g, l'intensité du champ d’éclairement’;,, = o, OU o est le coefficient
d’émission du fluorophore. D’ordinaire, la distance erdeaix fluorophores voisins est tres
inférieure a larésolution que I'on peut obtenir. On pabaric traiter la répartition de fluorophores
comme une fonction continyede densité de fluorophores définie pafr)dr = Zle oy, ou

L est le nombre de fluorophores dans le petit volumet o, est le coefficient d’@mission du
[*fluorophore. Ceci permet d’obtenir des mesures suivant detea

M = (p[écl) * h (3)

Ici, M est l'intensité du champ obtenu dans le plan focal imaga &rction sonde est I'in-
tensité du champ électrique éclairant. Dans les miopss a fluorescence classiqugs, est
homogene sur I'échantillon. L'équationl (2) permetwdikier le support spectral de En effet
cette intégrale peut étre vue comme la transformée dedfaliune fonction dont le support
est la surface que parcolktlorsquek € C. Cette surface est la calotte de la sphére de centre
0 et de rayorik, représentée dans lad[2 (a). On peut montrer queest I'auto-corrélation de
cette surface, soit le tore ayant pour section le papillpnasenté dans la&. [2 (b). Le filtrage
parh des frequences spatiales de I'objet étant beaucoup @hdsesselort, que selork, et k,y,

on constate que la résolution axiale est nettement gdégia la résolution latérale.



12 Résumé du travail de these en langue francaise

-~

k,(1-cos a)

koNA

(@) (b)

FIGURE 2 — Schéma de coupé,, k.) du support de la transformée de Fourier des fonctions
E et I dans l'image d’'un diffuseur ponctuel. (a) Support de lasfarmée de Fourier de la
répartition du champ électriqué. a est I'angle maximal que peut collecter le systeme optique.
Le cercle en pointillé est la coupé,, k.) de la sphére de centfeet de rayonk,, appelée
sphére d’'BVALD. (b) Support de la transformée de Fourier de la répantifintensitél/, auto-
corrélation de (a) et fonction de transfert de la détectio

1.3 Microscopie Tomographique par Diffraction

La Microscopie Tomographique par Diffraction (MTD) est wwolution de la microscopie de
phase et de I'holographie digitale. On envoie grace a serlane onde plane sur un échantillon
et on détecte en amplitude et en phase le champ qu’il a diffrd effet de diffraction est
dd aux variations locales de la permittivité relativee I'eéchantillon. On réalise cette mesure
successivement pour differents angles d’'incidence pureconstruit numériquement une carte
en trois dimensions de

Un calcul électromagnétique permet de montrer que le pldiffracteE, (k) mesuré dans
le plan focal arriere est égal a, pddr=coyE ety =¢c —1:

Eq(k) = kok x (k X f;(k)> 4)
Ea(k) = kok x (k X /Qexp(—ik.r)x(r)E(r)dr) . (5)

ouy = ¢ — 1, Q est le domaine ou I'échantillon est préséAt= ¢, yE et le champ totak
est la somme du champ incideRt,. et du champ diffracté par I'objet. Le chanipsatisfait
I'équation intégrale,

E(r) = Ey(r) + / G(r,v)kix(r)E(r')dr! avec
Q
=, 1 exp(ikoAr) 1 ,
G(r,r)p = _47rkgv x V x <Tp + k—gpé(r —1'), pourtout vecteup (6)

Lorsque le contraste de permittivite= ¢ — 1 est petit devant, il est possible d’appliquer
I'approximation de Born E ~ E;,.. Cette approximation simplifie fortement les formules
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précédentes. On peut alors prouver que pour un champeintdit},. = Egexp(ikiy.r), on
obtient

Ed(k7 kinc) = ko)%(k — kinc)k X (k X Eo) . (7)

Chaque point de mesure correspond donc a la valeur d’unpasante spectrale de Au cours
de l'acquisition, on va récolter ces composantes spestialis obtenir la carte de permittivité
par une simple transformée de Fourier inverse.

La résolution obtenue va dépendre de I'ensemble desgpo@tespace de Fourier obtenus
aveck — k;,.. Il y a deux configurations possibles :

¢ la configuration en transmission, ou le champ incideneeass par un systeme optique
faisant face a celui utilisé pour détecter le champ diffe. L'ensemble des frequences
mesurables est le support Aale la Ac. 2 (b). La résolution axiale est donc nettement
inférieure a la résolution latérale.

¢ la configuration en réflexion, ou le champ est émis et ct#l@ar le méme systeme op-
tique. Lensemble des frequences mesurables est la partie> 2k, cos a de la sphere
de rayon2k, centrée erd. Cet ensemble n’est pas symétrique par rapp@rtldimage
reconstruite par transformée de Fourier mélangera dengdrties réelle et imaginaire de
E.

Aucune de ces configurations n'améne a une résolutialeaguivalente a la résolution laté-
rale.

2 Miroir et r ésolution axiale

Nous avons vu que la résolution axiale des microscopegqugsi(avec ou sans marquage) n’est
jamais aussi bonne que la résolution latérale. Cela pndwlu fait que la détection et I'illumi-
nation ne se font que d’'un seul cdté de I'objet ce qui linigeendue spectrale de selonk.,.

Ce probleme fondamental est particulierement génamt les applications tri-dimensionnelles
qui se développent fortement actuellement. Nous propgodans la section suivante une confi-
guration, utilisant un miroir, permettant de résoudreecdifficulté.

2.1 Microscopie tomographique par diffraction au-dessus @in miroir

En déposant I'echantillon sur un miroir dans un Microsedpmographique par Diffraction
(MTD) en configuration de réflexion, on s’assure que l'ilination et la détection se feront des
deux cotés a la fois. En effet, 'échantillon sera @élgar le champ incident mais aussi par sa
réflexion sur le miroir et on captera le champ diffractédiement vers I'objectif mais aussi le
champ diffracté dans I'autre direction puis réflechi fgamiroir. De maniére plus précise, sous
I'approximation de Born, chaque mesure de champ correspdadsomme de quatre compo-
santes de Fourier qui peuvent étre assemblées deux paedeitilisant la transformée cosinus.
On note

):((k;z,k|):/9)g(r) cos(k;z) exp(—ik.r))dr, (8)
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FIGURE 3 — Résultats de simulation numérique d’expériences ideostopie tomographique
par diffraction. (a-b) parties réelle et imaginaire dedate de permittivité reconstruite a partir
d’'une expérience de MTD en configuration en transmissiod) (demavec une configuration

en réflexion. (e-fjdemavec une configuration en réflexion au dessus d’un miroitigree noir
indique la position du miroir. (g-hilemavec un systeme optique idéal, capable d’éclairer et de
collecter la lumiere dans toutes les directions autouratdantillon.

la transformée de Fourier suivant les axexty de la transformée cosinus suivant I'axéAlors
les mesures valerit|[4]

Ed(k7 kinc) = (Afi + Bf+) (9)
A = kok x (k x Eq)) (10)
B = E07zk30k X (k X Z) (11)
er = >:C (|kz + kinc,z‘u k|| - kinc,”) + >:C (|kz - kinc,z‘u k|| - kinc,||) (12)
fﬁ = 5& (|kz + kinc,z‘u k|| - kinc,”) - X (|kz - kinC,Z|7 k|| - kinC,H) (13)

En mesurant au moins deux composantes du champ vediyridl est possible d’obtenir

les valeurs de (|k: + Kinc,:|, k| — Kine,) €t X (|kx — Kine,:|, K — Kinc| ). Ensemble, ces deux
composantes parcourent toute la demi-spliere 0 de centred et de rayor2ky. En inversant
la transformée Fourier-cosinus, on obtient une cartg deec une résolution isotrope)i2.
Le miroir permet donc bien de résoudre le probléeme dedalvéion axiale. Cette étude a été
validée par des tests numeériques illustrés parita B. Le miroir permet d’obtenir le méme
résultat que celui donné par un systeme idéal ou thilhation et la collection se font selon
toutes les directions (comme dans un scanner).

Fort de ce succes, nous avons appliqué cette idée atasoapie de fluorescence. Plus par-
ticulierement, nous I'avons appliquée a la microscae-focale qui souffre d’'une résolution
axiale réduite car le motif d’intensité focalisé estp@ialé dans la direction axiale que dans les
directions latérales.
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(a) (b) (c) (d)

ISO (exp) ISO (simul) conf. (exp) conf. (simul)

FIGURE 4 — (a-b) Coup€z, z) et (z,y) de I'image d’une bille fluorescente de 100 nm en
microscopie con-focale lorsque la focalisation est séaiavec la technique 1SO. (cidgmen
microscopie con-focale classique.

2.2 Microscopie de fluorescence au-dessus d’'un miroir

Le probleme de la résolution axiale est di au fait qu’atafise la lumiére par le systeme op-
tique de maniere asymétrique, avec uniguement des oedgpageant selon lespositifs.
Une solution, proposée paretlL et al.[5], consiste a placer en vis-a-vis deux objectifs de mi-
croscope et a focaliser de maniere cohérente a tragsrdaux systemes optiques. Ce systeme,
nommeé microscopie 4Pi, donne de bons résultats, maipdgmun montage substantiellement
plus compliqué et sensible aux vibrations qu’'un microgoog-focal classique. C’est pourquoi
nous avons proposé de remplacer un des obijectifs par uir [idir@, [8].

Le principal probleme est bien str de savoir comment feeatorrectement au-dessus d’'un
miroir, en prenant en compte tous les effets d’'interfeeegicde polarisation. Un outil tres pra-
tique est le renversement temporel virtuel [9, 6]. Nouswalts quel est le champ créé dans le
plan focal arriere par un dip6le placé a la positigrLa théorie du renversement temporel prédit
que si I'inverse temporel (ou le conjugué pour des ondesottmmomatiques) de ce champ est
envoyé dans ce plan focal arriere, il va se focaliser exaent a la position, [10]. En pratique,
nous envoyons sur le plan focal arriere une onde plareeqgpéaf un laser et nous modulons le
front d’onde par un modulateur spatial de lumiere. Les plagles de ces appareils modulent
seulement la phase. Nous leur imposons donc, comme mottiatepl’'opposé de la phase du
champ calculé.

De nombreuses simulations et expériences de cette teshragpelée ISO pourlsotropic
Single Objective- viennent soutenir cette théorie, comme le montreita B. On obtient une
tache focale isotrope entourée de deux lobes. Cette tAshexactement la méme que celle
obtenue en microscopie 4Pi, mais avec un montage beaucosigipiple. La difféerence entre
les mesures et les simulations sont dues aux imperfectemsysteémes optiques réels. Ceux-
ci atténuent plus fortement les ondes planes les plugrédeis de I'axe optique que ce que la
théorie prévoit, et cet effet n’est pas tabulé.
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3 Resolution transverse eeclairement structuré

Nous nous intéressons maintenant a I'amélioration dedalution latérale grace a I'éclairement
structuré. Le point clé de cette approche repose surofdalgne d’inversion qui permet de re-
construire I'objet a partir des multiples images obters@ss divers éclairements. Mon travail a
essentiellement consisté a développer des algorithiregrsion pour la microscopie de fluo-
rescence a éclairement structuré et la microscopiegoaphique de diffraction. Leur originalité
par rapport aux technigues existantes est que ces algestharmettent de reconstruire a la fois
le parametre d’intérét de I'échantillon, la fonctiobjet O, ET les differents éclairements, les
fonctions sondeé’,. Cela permet de simplifier le montage expérimental en rmampie de fluo-
rescence et d’aborder 'imagerie d’objets fortement ddfants en microscopie tomographique
de diffraction.

3.1 Eclairement structuré en microscopie de fluorescence

En microscopie de fluorescence classique, utilisant ueasite d’illumination homogene, les
informations fréquentielles de I'objet supérieurels.a= 2ko,NA sont perdues. Pour améliorer
celail a été proposé d'utiliser la technique de I'é&aient structuré [11, 12, 13] en champ large
qui consiste a éclairer I'échantillon avec une inteénbiétérogene, généralement sinusoidale et
obtenue via l'interference de deux faisceaux collimai@sérents. Le mélange de fréquences
entre I'éclairement et I'objet permet de mesurer deseages spatiales au-dela de cette limite.

Plus précisément, les mesures de 'incidencel sont reliés a la densité de fluorophopes
et a l'intensité du champ incideit par

Ml = ([lp) x h
dont la transformée de Fourier donne, par le theoremedeotution

M = (p* I)h.

Si les intensités d’éclairementsont de la formd,(r) = 1 + cos(K.r + ¢;), on obtient

My(k) = {ﬁ(k) x <5(k) L explig)s + K) + %exp(—id)l)é(k - K))} hk)  (14)

2
. <ﬁ(k) + L explion e+ K) + L exp(—io) e - K)) (k) (15)
= M° (k) + exp(iy) M;" (k) + exp(—ign) M, (k). (16)

M"Y est 'image qu’on aurait obtenue avec un éclairement h@amegll ne comprend donc
que les basses frequences de I'objet. Par contri@/fesontiennent les frequences de I'objet sur
les disques de rayoh. autour deK et —K. En utilisant trois mesures avec traisdifferents
(obtenus en introduisant un déphasage sur un des faistmawant le motif d’interférence), on
peut séparer ces trois termes et donc mesurer les fréggielep sur un domaine de Fourier
plus vaste qu’en microscopie de fluorescence classique.

Malheureusement, les images reconstruites par ce typestted€ qui nécessite une bonne
connaissance de l'intensité éclairante sont tres Blssa de petites erreurs sur la valeurgde
ou sur la période et I'orientation de la grille de lumidra.plus petite variation expérimentale de
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FIGURE 5 — lllustration des difféerentes étapes d’'une expéeeblind-SIM. 160 champs in-
cidents d’intensité in-homogenk (en haut a droite) sont multipliés par la densité de fluoro
phorep (en haut au centre) puis filtrés par la fonction d’'instrutmenCes données, une fois
bruitées, (a gauche) sont traitées par 'algorithmeed®mstruction produisant une estimation
haute résolution dg (en bas au centre) et 160 estimations pour les intensitestdsmps inci-
dents/; (en bas a droite).

I'intensité éclairante provoque de gros artefacts miigd’interprétation de I'image produite.
Cela limite fortement le champ d’application de cette tegha. C’est pourquoi hous avons
proposé de reconstruire en méme temps l'intensité damph incidentd; et la densité de
fluorophores [14]. Comme nous n'imposons plus de connaissaagesori particulieres sur
I'intensité d’illumination, nous limitons les artefaatausés par une distorsion ou une variation
de I'éclairement causées par une mauvaise stabilisdtiomontage ou par I'échantillon lui-
méme. De plus, comme aucune forme particuliere n'est ggp@ ces champs incidents, nous
pouvons utiliser des intensités de speckle (tavelurd)sont produites en plagant un simple
papier diffusant dans le chemin du laser d’éclairemenguisimplifie Enormément le montage.
La FIG.Hillustre ce processus.

Notre algorithme, appelé blind-SIM, reconstruit a lasfbéechantillon et les difféerentes in-
tensités d’illumination. Il cherche le minimum de la folocinelle

L—1
(L[O — ZIl> p] * h
=1

grace a un algorithme inspiré de la méthode du gradienjugué [15][16, section 10.6]. Les
résultats de simulation, comme celle de I& H5, montrent que les estimations obtenues ont
une tres forte corrélation avec les fonctions a estiierplus lesp obtenues comportent bien
des frequences spatiales supérieures a celles obtaveedes données sans éclairement struc-
turé. Cette etude a ensuite été validée par des ats@kpérimentaux. Laig. [6 compare des
images de billes fluorescentes de 90 nm de diamétre obtameegt sans éclairement structuré.
L'amélioration de résolution y est clairement visible.

2

L—1
F(p, iz p1) = Y | My = (Lip) % B> + || My, — . (1)
=1
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FIGURE 6 — (a) image de billes fluorescentes de 90 nm de diamétrawdten microscopie
de fluorescence. (b) dé-convolution de I'image (a). (c)geabtenue en traitant 24 images
d’éclairement structuré avec I'algorithme blind-SIM.

O

3.2 Microscopie tomographique par diffraction d’objets a fort indice

Lorsque I'eéchantillon observé par microscopie tomobigpe par diffraction est fortement dif-
fractant, on ne peut plus appliquer I'approximation de Baanreconstruction par transformée
de Fourier citée dans la sectibnll.3 n’est plus applicdbfaut en effet prendre en compte
le fait que I'échantillon modifie le champ qui le sonde. Aji®lgorithme de reconstruction
devra a la fois estimer I'objet et le champ a lintériewr kbbjet. Pour cela, des méthodes
d’optimisation itératives non-linéaires ont été prepes. Ces méthodes itératives nécessitent
en général de résoudre le probleme de diffraction nigosementi. e. de calculerE satisfai-
sant I'équation[(6) pour chaque nouvelle estimée de lanpivite. Ces calculs numériques
peuvent étre tres lourds, ce qui explique que la plupastrdéthodes d’inversion permettant
de retrouver des objets fortement diffractants ont et@tbppées pour le cas simplifié 2D sca-
laire. L'augmentation de la rapidité des ordinateurs eedents progres algorithmiques|[L17] 18]
permettent maintenant de passer a des échantillonistesaldonc en trois dimensions. Mon tra-
vail a consisté a étendre a la troisieme dimension,rengnt en compte I'aspect vectoriel des
champs électromagnétiques, un algorithme prometi@ungthode de gradient hybride [19] et
a le comparer a une méthode de réféerence, l'inversimiraste source [20].

Nous avons montré sur des données expérimentales wncles issues d’'une base en libre
acces|([2]1], que notre algorithme a des résultats comjggrabceux de l'inversion contraste
source, mais qu'il est beaucoup plus rapide, de plusiedresde grandeur. Cette rapidité nous
a permis de I'utiliser pour des ensembles de données impsr{provenant par exemple d’'une
expérience comportant beaucoup de directions d’obsenjatomme ceux produits par des
expériences de MTD. Cet algorithme a été utilisé avercési[22] pour traiter des mesures
expérimentales obtenues sur un microscope tomograpkigwkffraction pour I'échantillon-
test présenté dans lad= [7.

4 Conclusion

Au cours de cette étude, nous avons étudié deux voies gnoétiorer la résolution en mi-
croscopie optique. La premiéere voie propose de placer woingerriere I'eéchantillon, ce qui
permet d’améliorer fortement la résolution axiale. Czleté montré pour les deux techniques
de microscopie linéaire qui nous intéresse, la micromcde fluorescence et la microscopie to-
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FIGURE 7 — Comparaison entre la carte de permittivité quantiatibtenue avec notre algo-
rithme (a-b) et le module de la carte obtenue par la recartgirulinéaire par transformée
de Fourier (c-d). La carte de permittivité quantitativer{gplexe) de cette derniere reconstruc-
tion est trop éloignée du véritable échantillon. Clestirquoi nous en avons affiché seulement
le module. (a) coupe longitudinaleia= 1 um, (b) coupe transverseza= 125 nm (ligne
bleue continue : géomeétrie réelle de I'echantillon denpittivite = = 2). (C) coupe transverse a

z = 53 nm. (d) coupe longitudinale@= 1 zm. Les coupes sont selon les lignes blanches en
pointillés. Les échelles de couleurs représententdaipivité relative.

mographique par diffraction. Le succeés de cette approoheges deux techniques nous incite
a penser gu’elle serait aussi valide pour d'autres tectasgle microscopie ou la résolution
axiale est un probleme.

Ensuite nous avons proposé des algorithmes de recornstritératifs estimant en méme
temps I'objet d’étude et le champ qui le sonde. Dans le cda decroscopie de fluorescence,
cela permet d'utiliser I'éclairement structuré sansiaaocontroler trés précisément le champ
d’éclairement, ce qui simplifie drastiquement les pré&sedxpérimentaux. Dans le cas de la
microscopie tomographique par diffraction cela permetréagre en compte la perturbation du
champ sonde provoquée par la diffraction. Une possiblensibn serait de mélanger ces deux
approches et d'opérer la MTD avec des champs aléatoirpswaontrolés, ce qui simplifierait
l& encore les procédés expérimentaux.






Introduction

Optical microscopy is an essential tool for various fieldsaé&nce like biology, material science
and medicine. Its main interest is the possibility to obsesmall details of a sample without
disturbing it. Optical microscopes are also small and clexaqugh to allow any laboratory to
pOSSess one.

One of the main limitations of optical microscopy is its riegimn. Research and technology
are constantly requiring systems to see smaller detailslofg, improvements came mainly
from the technological conception of objective lenses, eidern objectives lenses are almost
reaching the theoretical limit of resolution, called théfrdction limit, and one cannot hope
significant resolution improvements in this way. It is nowcegsary to invent new imaging
technigues using these objective lenses. This has beeimtlod mmore than 30 years of research
efforts.

Promising solutions use non-linearity in the light-matteeraction [23| 24, 25] or propose
to scan a probe in the near-field of the sample [26, 27], regat@solutions about several tens
of nano-meters. They require, however, high power las&ciapmarkers or a deep modific-
ation of the microscope set-up and will be out of the scopésfwork. Here, we consider
only classical light-sample interactions and study botbriéscence microscopy, that images
specific chemical components of a sample thanks to a sedesttining using fluorophores, and
unstained microscopy that images the intrinsic opticakiest of the sample. In this general
framework, we focus on two promising approaches, whoseiples are very similar:

e Structured lllumination Fluorescence Microscopy, in Wwhilke sample is illuminated un-
der different spatially inhomogeneous incident inteesiti Confocal microscopy is one
of the most famous example of structured illumination mscapy. The fluorescence
density of the sample is reconstructed numerically (or @giehlly) from the different
recorded data;

e Tomographic Diffraction Microscopy, in which several hgiams of the object are re-
corded under different illuminations. This quite recemht@que, which is an evolution
of phase contrast microscopy and digital holography, isniost complete version of
stainless microscopy as its data can be used to reproduceni@nyscopy type (dark-
field, phase-microscopy, . ..). The post-treatments of thegrams allows a quantitative
reconstruction of the sample optical properties; its @biicdex and its absorption coef-
ficient, summarised in the concept of complex relative peivity.

The thesis is separated in three parts. The first one ddtailgeneral concepts of optical mi-
croscopy and explains the basics of the two above microsappyoaches. The second part
explains how one can improve the axial resolution by pla@mgirror behind the sample. This
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concept is presented for tomographic diffraction micrggcand fluorescence confocal micro-
scopy in two different chapters. The third part is devotedhi® inversion methods that are
developed to reconstruct quantitatively the sample pae@nod interest from the different re-
corded images for both the structured illumination fluoee®e microscopy and tomographic
diffraction microscopy.



Notations

In this work, one uses bold scripts for vectersover-lined bold script for tensofE and italic
script for scalars.

All positions and vectors are measured in the right-handomwrmal coordinate system
(O,x,y,z). Vectorr = (x,y, z) refers to the position in this coordinate systenis the null
vector. u andv being two vectorsu.v is their dot (scalar) product anal x v is their cross
(vector) product]|ul| is the norm ofu defined byj|u||* = u.u.

For each vectoy, one defines, = v.z andv| = (v.x)x + (v.y)y the projection ofv on
the (z,y) plane.

R is the set of real numbers.

C is the set of complex numbers.

i is the imaginary unit> = —1.

z being a complex numbet; is its conjugateRe( z) its real part3m(z) its imaginary part and
|z| its absolute value.

In all this study, one assumes that light is monochromatib wavelength in vacuum noted
A. For each electromagnetic field, one assumes a time depemdesxp(—iwt), t being the
time of the referential an@d = 27¢/\ the angular velocity, witl the light velocity in vacuum.
ElectricE and magneti® fields are given in Sl units.

f being a function of spad®?, f is its Fourier transform, defined by
fk) = / exp(—ikr) f(r)dr.
R3

Thusf is the inverse Fourier transform gfobtained with the formula

1

~ 8

f(r) /RS exp(ikr) f(k)dk.

P(r) = P,(r)x + P,(r)y + P.(r)z being a vectorial function of spac®, is its Fourier
transform defined by

P(k) = P,(k)x + P,(k)y + P.(k)z.

(2 being a sub-set dR™, wheren is a positive integer{f|g)q is the inner product of
defined as

e given f andg two real functions of?

<f|g>Q:/Qf(I')g(I‘)dr.
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e given f andg two complex functions of?,

umﬂzéﬂ@mmw

e givenu andv two complex vectorial functions @2,
(ulv)g = / u*(r).v(r)dr.
Q

f being a function of, || f||q is the norm defined by (|2, = (f]f)a-

B being an operator transforming a function definedxn a function defined ofr, where
() andI" being two sub-sets d&", B' is the adjoint operator df defined by

V(f,9) €T x Q,(f|1Bg)r = (B flg)a-

f andg being two functions defined oR", f * ¢ is the convolution product of andg

defined by
(Fro)w = [ f)te=1)
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Chapter 1

Basics of microscopy

A microscope is a tool providing images of a sample that affecgntly enlarged to show de-
tails that were previously too small to be visible. An opticacroscope is composed of three
parts. First an illumination system that shines light tlgiothe sample. Then, an imaging sys-
tem that collects and magnifies light emerging out of the damapd casts it on an image plane.
Finally, a detector is placed on the image plane for recgrthis light intensity. Nowadays the
detector is often an electronic camera allowing quantgatheasurement of the received field
intensity. These three parts are conceived such that theihgensity is modulated spatially

on the detector and such that this modulation, called thected image, bears a magnified
information on the sample.

Image

Object Focal Plane Imaging system Focal Plane
AX
Magnified
| emitted emitted
o | field field _
lllumination 5
field 1 2
| i i o™
Sample |! Optical Axis 6 7
(@]

Light is an electromagnetic wave. Its propagation is desctiby the Maxwell equations
and classical electrodynamics. In particular, it can be@ndhat any electric field propagating

in the increasing direction in an homogeneous media can be decomposed as & plan®
waves|[1, Sec. 3.12]

k
E(r) = /k . k—ZE(kH) exp(ik.r)dk, (1.1)

wherek = k,x + k,y is the projection ok on the(z, y) plane k is the wave vector, with the
constraint|k|| = ky = 2r/X andE(k)) verifiesvk, E(k;).k = 0. When| k|| > ko, k. is a
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complex number

k. =iy /&y |I> — k3

andE(k)) exp(ik.r) is an evanescent plane wave.

This plane wave decomposition is particularly useful fordeiding image formation in op-
tical microscopes. It is indeed natural to apply this decositpn using a% axis, the axis
of symmetry of the imaging system, called the optical axiee Tmaging system can then be
modelled as a filter that collects some of these plane wawgansforms them in other plane
waves reaching the image plane.

1.1 Modelling of the imaging system

1.1.1 General law of imaging system

The first constraint on the imaging system design comes fredétector. Indeed each detector
imposes a limit on the smallest detail it can distinguish. &@mple, the smallest detail visible
by a bare eye has a size of some hundredths of millimetresa aathera is limited by its pixel
size of several micrometres. In order to image smaller detae imaging system is designed to
cast a magnified image of the object on the detector. One #firsed theMagnifying Factor
MEF as the ratio between image and object sizes.

Once this magnifying factor is chosen, the imaging systestbde stigmatic. This means
that the image obtained on each point of the detector has shég. There is indeed a large
variety of aberrations that can blur, distort or mix the elifint parts of the image, and they
become more and more severe as the field of view increasear piane wave modelling, one
says that the imaging system is stigmatic at péint all plane waves that have the same phase
at P are transformed by the imaging system in plane waves tha&t th@&/same phase at a point
P’, called the conjugate a@? trough the imaging system.

There is now more than two centuries of studies on aberrafidrere is however a fun-
damental limit on their corrections. Maxwell has indeedveihd28][2, Sec. 4.2.1] that an
optical system cannot be stigmatic on all points of spackgssrits magnifying factor is equal
to MF = n;/n4, Wheren; is the refraction index of the medium surrounding the sagrgidn,
that of the medium surrounding the detector. In all otheesathe system can only be stigmatic
on a planel[28, 2].

1.1.2 Sine condition

The most common way to design an optical system is to havigihatic on a plane perpendic-
ular to the optical axis called the Object Focal Plane. Tistesn has to produce a magnified
image on the detector plane. Thus, each pBiof the object focal plane has its conjugéteon
the image focal plane. This imposes a condition, called the ®r the Sine-Abbe condition)
which can be described as follows: A plane wave with trarsverave vectok is transformed
by the imaging system into a plane wave with transverse WQVH)th = —k;/MF. In other
term, the polar anglé of the plane wave direction obtained in the image focal dorsatisfies
sinf = MFsin#’, wheref is the polar angle of the plane wave direction in the objectafo
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Object Focal Back Focal
plane plane

Image Focal
Plane

Objecti .
Jective Eyepiece

Figure 1.1: Sketch of an objective corrected under the Biolge condition. A plane wave
passing through the sample whose direction make an @nglth the optical axis is focussed
by the objective to a point being in the back focal plane, @ylane containing the optical axis
and the direction of the plane wave, at a distapee D sin 6/ sin a, wherea is the maximum
angle of the plane wave collected by the objective And the diameter of the exit pupil. Then,
this focussed beam becomes through the eyepiece a planenveieg an anglé’ with the
optical axis, such thain 6 = MF sin ¢'.

domain ([2, Sec. 4.5] and references therein). In the plaaeswlecomposition modelling, the
field defined by EqL(1]1) is transformed by the objective into

K o
E(I‘) = /kl e \/;ZE(I{” exp(zk .I‘)dkH (12)

where(C is the koNA-radius disk centred if. NA is the Numerical AperturéyA = n;sina,
wherea is the maximum polar angle of the plane waves collected bgbiective and efficiently
transformed by the imaging systeik', the wave vector in the image focal domain, is defined

by
k' = ko ﬁ k2 — ko 2_ ﬁ i
MFEF’ MF’\/ ™° MF MF

k - [k, .
The termk—O has been multiplied b o that stands for the energy conservation [29, Chap. 4].
0

z

Classically, a microscope imaging system is composed ofénges: an objective lens with
a short focal length placed close to the sample and an eyef@etube lens) with a longer focal
length. There is a specific plane between these two lenskesl ¢tak Back Focal Plane of the
objective. If the objective lens is corrected with the Sioadition, it is performing a Fourier
transform between fields on its object focal plane and itk bacal planes([30, section 5.2].
Indeed each plane wave going through the object focal pladete objective is transformed
into a wave converging to a point in the back focal plane. lamnore, each spherical wave
emitted from a point on the object focal plane of the objexis/transformed into a plane wave
passing through the back focal plane. More precisely thd fiethe back focal plane of the

objective is[[31]
D k
Ban (o ) = Oy 1Bl (13)
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whereC' is a constant depending on the objective dnds the diameter of the exit pupil,
the illuminated part of the back focal plane which dependshenNumerical Aperture of the
objective.

This modelling neglects imperfections of the actual lensasare not perfectly stigmatic on
the whole object focal plane and that have a reduced trasgmisgfficiency for high incident
angle. However, since there is no precise data on these fieegiens, we will keep this ideal
description of the image formation process in the rest af shudy.

1.2 Quality criteria defining an optical microscope

Three main criteria are usually studied to describe theityuafl a microscope and evaluate its
usefulness for a defined application: Resolution, ContradtNoise.

1.2.1 Resolution

The first interesting criterion is the resolution. It is definas the size of the smallest detail that
can be observed by the microscope. A formal criterion is s&mg for defining what means
“observed by the microscope”. Many criteria have been psedd32] and the most common
are discussed in Seéc. 1.3.

Resolution in mainly limited by what is often called the Itnoif diffraction. Indeed all
plane waves emerging from the sample that are either evamesc whosek vector has a
polar angle superior to are lost. One defines tidumerical Aperture asNA = n;sina. In
the plane wave decomposition Ef. (1.2), all plane waves @/fikg]| is superior tokoNA are
lost. This means that the field frequencies abky€A cannot be retrieved. Research is still
going on for obtaining higheNA objectives while keeping good aberration correction and to
immerse the sample in higher index media (langle For now the highest numerical aperture
for commercialised objectives is about 1.5.

Resolution in the axial direction needs a specific attenti@r long, the only way to obtain
resolution in this direction was to cut the sample in sli¢kess, process being called sectioning.
Later were introduced several techniques allowing axisbligion of deep samples, like con-
focal microscope [3] and Apotome [33], for example. Thisahselectivity was calledptical
sectioningor depth discrimination. In this work, we will talk about th&ial resolution and
compare it to the lateral or transverse resolution (in(the) plane).

1.2.2 Contrast

The contrast of an image measures the possibility to digisinghe sample from the surrounding

background. Different definitions of this criterion can beifid in the literature. Here we use the
: : - Iy — 1,

one proposed by Michelson [34], that is sufficiently genérabur use:C' = M where

I+ I,
I, is the maximum intensity and,, is the minimum. Depending on the contrast techniques,

I can be the signal intensity arg the background intensity @ice versa Obviously, a value
of C close to 1 describes a highly contrasted image while @evelbse to 0 measures a weakly
contrasted image, probably useless for interpretationveyer, this criterion actually depends
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on the size and shape of the sample. A more quantitativeggubiposed in the next section.

The contrast mechanisms are the interactions betweeriuhenhtion light and the sample
that produces a contrasted intensity pattern on the detddie first contrast mechanisms used
historically were absorption and reflection. However adapgrt of the interesting samples
are transparent or almost transparent. They provide weadyrasted images when they are
illuminated by light in a classical microscope. Thus two magays have been developed along
the years to improve the contrast.

e The first one consists in filling the sample with markers thatlpces a sufficient contrast
in images. One of the main advantage of marking is the pdegitai select markers that
target chemically a specific component of the sample. lwallthe observation of the
repartition of this specific component. Further, by usinfedent markers with differ-
ent spectral behaviour, different chemical componentsbeaimaged simultaneously in
the same sample. If historical markers were absorbing catduthe most widely used
nowadays are fluorescent markers. They have the abilitysorbbdight at a wavelength
and to emit at a different wavelength. By using spectralrélté is possible to remove
the illumination field, obtaining thus a contrast equal tavhatever the sample. Imaging
process with fluorescent markers are described in deta@&ap[2 of this thesis.

e The second one consists in modifying the set-up for gettorgrast from the refraction
index variations([35, 36, 37]. This is called phase micrgscolt requires the use of
interferences and thus specific set-up for illumination detection of coherent light.
This approach requires that the refraction index contradtigher than the background
fluctuations.

1.2.3 Noise

The third criterion is the noise strength. Noise detergsahe image and prevents the obser-
vation of the finest details. The criterion ordinarily usedestimate this issue is the Signal-
to-Noise RatioSNR = (I)/o3,, where(I) is the average signal ang is the noise standard
deviation. There are two types of noises. First a noise thasdot depend on the sample.
It has a constant statistic over the whole image. It is omgimaodelled as a white Gaussian
process since it is the sum of several sources of noise (#ieiignal, electronic amplification,
data transmission between the camera and the computgthat apply independently on each
pixel of the camera. The second one is the shot-noise. Itagalthe statistical nature of light
emission by matter. For a certain intensity, the number ofqins that reach a pixel camera fol-
lows a Poisson statistics. When the number of photons isildhgn 10, a good approximation
of this statistic is a Gaussian statistic whose standarihtien is+/N, whereN is the average
number of photons. It is clear from this discussion thi&R is high for high intensity and low
for low intensity. This is an important point to keep in mindhite comparing contrast tech-
niques. Indeed absorbing markers and phase contrast prestg bright images for moderate
contrast, whereas fluorescent markers have a perfect sbhtrea limited brightness. Noise is
thus, in most cases, a limiting factor in fluorescence mawpy.
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1.3 Transfer function

Analysis of the resolution, contrast and noise providesedulislescription of the microscope
performance. However one would prefer a general quanttatiterion. Now, when there is a
linear relation between the sample function of intefg@sind the image, th&ansfer Function
appears to be an ideal tool. Indeed, in this case, the imAggethe convolution of the function
of interestO by a certain point-spread-functién

M = O * h.

Basically,h represents the image of a point object which is assumed tarbe,svhatever the
position of the object.

TheTransfer Function is t[le Fqu~rie~r transform of this convolu~tion function. The Fourier
transform ofM andO fullfills M = O h. his thus the filter applied t® during the measurement
process.

One of the main characteristic of a Transfer Functiois its support, namely the region
of the Fourier space where it is non-null. This defines thgUemcies ol that are accessible
in the measurements. In microscopyjs usually a low-pass filter and it is null beyond a
bounded Fourier domain about tbefrequency. All the object frequency information inside
this Fourier domain is transmitted to the image All the frequency information that are
outside this Fourier domain is lost. The radius of the suppfthe Transfer Tunction is called
the frequency cut-off.

An important interpretation of the Transfer Function is theage contrast of sinusoidal
patterns. Actuallyfz(k) is the image contrast of a sample whose quantity of intesebti
cos(k.r). This links the notion of Transfer Function with the moressi@al limit of resolution.
The Rayleigh criterion is obtained when the minimum intgngj, is 8/7* of the maximum
intensity/,,. This gives a contrast ~ 0.10. Thus the resolution corresponding to the Rayleigh
criterion is the period of the sinusoidal pattern whose ielag@s a contrast of 0.10. The Sparrow
criterion is when the contrast reaches 0. A resolution atingrto the Sparrow criterion is thus
the inverse of the frequency cut-off. Actually the resautifor each criterion, is often not the
same in every directions. One thus defines a resolution aaaly principal axis.

The Transfer Function is a lot more complete than a simplé lohresolution since it
provides a whole curve of contrast with respect to the spiagiguency. It allows for example
the definition of a resolution criterion with respect to moi#\ detail becomes detectable when
its contrast is greater than the noise level. The resolwamthen be defined as the period for
which the contrast is equal to the inverse of the SNR [38].

As will be seen later, a Transfer Function linking the densit fluorescent markers and
the intensity collected by the detector can be derived irrésicence microscopy. Similarly, a
transfer function linking the actual sample permittivioythe reconstructed permittivity can be
obtained for Tomographic Diffraction Microscopy, undee thingle scattering approximation
(weakly scattering sample). On the contrary, there is neglimelationship between the sample
permittivity and the recorded image in ordinary incohendiotnination microscopy[[39][2,
Sec. 10.6], or in Tomographic Diffraction Microscopy in pesce of multiple scattering. In
these cases, defining a transfer function is not possibleoalydad-hoccomparison between
test samples can give a hint on the performances of the igagstems.
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1.4 ‘Super-resolution’ techniques based on image treatmen

In most modern techniques, images are produced by a compuieithen natural to wonder
if this computer can improve images. Indeed, there is a wraolge of de-noising and decon-
volution algorithms, using the experimental Transfer Fiam; which can improve the contrast
or the SNR of the image. Yet, the frequency cut-off due to thenled support of the Transfer
Function remains. To improve the resolution, it is necgsgaintroducea priori knowledge on
the sample.

The simplest and most commanpriori information on the sample is to assume that it is
included in a box of finite size. In this case, it can be showat the Fourier Transform of
the object function is analytic. Now, the knowledge of thimgkytic function on a disk with
radius the frequency cut-off is sufficient to extrapolatevalue on all the Fourier space by
analytic continuation. This means that one could, in pplgiobtain a perfect reconstruction
of the sample (see [30, Sec. 6.6] for a more formal demoistraind further discussion).
This property is at the basis of many super-resolution fkedhat were mainly discussed in
the 70’s. Unfortunately, it appeared that the presence ©enorevented almost all practical
implementations.

To explain the fundamental limit of all these numerical “stgsolution” techniques, the
notion of Degree of Freedomof an image has been derived for coherent absorption micro-
scopy [40[ 41] and then extended to other forms of micros§égy43]. One decomposes the
linear operator that links the object quantity of interesthte recorded images using a Singular
Value Decomposition (SVD). Namely, one builds an orthodbaais of functions in the sample
domain (sample eigenvectors) whose images through thatmpdorm an orthogonal basis of
the image plane (image eigenvectors). With a correct nasatadn, only a few of the image
eigenvectors are above the noise level. The number of délectample eigenvectors yields the
Degree Of Freedom of the imaging system. Whatever the noaldreatment applied to the
image, sole the detectable sample eigenvectors can beerecbv

This point of view explains why the super-oscillating fie({dee for example [44]) recently
evoked to perform super-resolution imaging are likely tib fahis technique is based on the
well known observation (basically that at the basis of Tdoaings) that a suitable combination
of propagative plane waves can generate a light spot muchesrttaan the diffraction limit,
provided that most of the energy is pushed out of the choskhdfeview. An SVD analysis
between the space of the incident plane wave amplitudesharsptce of the bounded observa-
tion domain shows that the tiny spot is obtained with singeigenvectors that have very small
singular values, as most of the eigenvectors energy is pusiieof the bounded observation
domain [45]. Thus, even a very small amount of noise (suctcatiesing in the sample) is
sufficient to prevent its formation.

A specific attention has now to be drawn to the use of positavfriori information. Indeed,
the values taken by the object function being often bounttesla priori information is used
in many deconvolution algorithms (and in particular in gérof this thesis). For example, the
density of fluorescent markers is physically positive areridative permittivity of dielectric
media has its real part superior to 1 and its imaginary pasttipe. Including thisa priori
information improves clearly the visual aspect and the eggaesolution of the reconstructed
image, but may lead to artefacts or disappearance of inilegedetails. Sementillet al. [46]
proposed a method to evaluate the frequency radius up tohvth& Fourier components of
the sample are correctly retrieved using thipriori information. For large field-of-view and
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common noise level there is almost no amelioration of thgueacy cut-off.

Last, one may consider more stringanpriori information. For example, one can assume
that the sample consists in lines or tubes or presents aéwghdf sparsity. In its most extreme
version, the sample can be assumed to be constituted ofada@anitters. In this case, one can
localise, detect and separate two of them even if they arecéoleer than the resolution limit[23,
47,48]. However, whatever trgepriori information information added, one cannot decompose
the sample images on a set of components larger than the ®©ebiFfeeedom [40, 49, 50]. The
key point for high-resolution imaging is thus the developinef technical solutions insuring
that only few of these components contribute to each of thesomements. Promising recent
super-resolution microscopy approaches (PALM, STORM mi@aar) are based on this idea.

1.5 High spatial frequencies measurements: the structured
illumination approach

Since one cannot rely on bare numerical treatments for iipgaesolution, one has to find a
physical process to extract information on the sample highuencies. A simple and widely
spread technique, which can be applied to any contrast meshais to use spatially inhomo-
geneous illuminations [11]. Noting the illumination or probing function,K{ depends on the
chosen light-matter interaction, it corresponds to thaiet field intensity in one-photon fluor-
escence microscopy and to the incident field in tomograpHradtion microscopy), and the
sample contrast distribution (which is either the fluoreseedensity or the relative permittivity
respectively), the radiated signal is often proportionahie productD P. The imaging system
does not act on the sample functionitself, but on this product, so that the recorded image is
given by M = (OP) x h.

The convolution theorem states that the Fourier transfdrajpsoduct is the convolution of
the Fourier transforms,

M = (O« P)h.

Using an inhomogeneous probidgy information on some of the high frequencies(@fare
moved inside the measurements To separate the contributions 6fand P in the filtered
product, one takes several measurements with severalngréieids: M,, = (OP,) = h. The
sample contrast distributian is then recovered from the many recorded images using a rumer
ical treatment.

1.5.1 Scanning microscopy

The oldest method using this structured illumination applois scanning microscopy. The
inhomogeneous illumination is a light spot obtained by &g a wave into the smallest pos-
sible volume. This spot is then moved all over the sampleinda®(ry,r) = P(ro — r), the
illumination function produced im when focussing om, the field in the image space is

M(rg,r) = [O(r)P(rog —r)] * h(r). (1.4)
One can easily show that

M (ro, ro) = O(ro) * (h(ro)P(ro)). (1.5)
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Equation [(1.b) is the at the basis of confocal microscopy [3jis microscopy technique
proposes to focus a laser beam, thanks to a microscope igbjemt a pointr, of the sample,
and to detect through the same objective the light radiayetthd same point. This technique
exhibits an effective point-spread-functibn: = 2P and an effective Transfer Functidps =
hx P.

Further improvements can be obtained by collecting the vhigiht information of Eq.[(14)
[51,/52,53/ 54, 55, 56, 57] or by diminishing the size of thelgang functionP, in shaping the
incident beam([[58, /5, 59, 60], using non-linear contrast masms|[[24] 25], or near-field
evanescent waves at the surface of nano-structured sig#ss9a61, 62, 63, 48].

1.5.2 Pattern projection

In the second important implementation of the structurkanination principle, the inhomo-
geneous probing functionB, stretch over all the sample. The sample is not scanned by a
spot but illuminated successively under many differeninilination patterns. This wide-field
approach requires a complex numerical treatment of theréift images to extract a correct
estimation ofO.

The most classical illumination pattern is sinusoidal [B3/12]: P, (r) = 14cos(K.r+¢,,),
whereK is the vector of the sinusoidal pattern afdis a phase that has to be different for each
illumination. This pattern is usually obtained via the nmféeence of two coherent collimated
beams.

In this case, the Fourier transform of the imagés = (OP,) = h fullfills
M, (k) = [O(k) * (5(k) + % exp(ign)d(k + K) + % exp(—ign, )8 (k — K))] h(k) (1.6)

_ <O(k) + 5 explion)Ofk + K) + 3 exp(—id ) Ok - K)) (k) (1.7)
= M;(k) + exp(ign) My, (k) + exp(—id,) M, (k). (1.8)

Itis clear thatM?(k) = O(k)A(k) is the image that would be obtained under an homogeneous
illumination and contains only the low frequencies of thgegh On the contrary/:* (k) =

O(k + K)A(k) contains frequencies 6 around thetK frequency. Using three different, it

is possible to separate these three components and to remidsin a Fourier domain that is
larger than the support &f The resulting Transfer Function dependsicend onK. The same

process can be repeated for different orientatiors of order to get an isotropic improvement.

1.6 Conclusion

In this introductory chapter, we explain the basics of thagen formation in a microscope,
we describe the main criteria used for the analysis of thegintgasystem performances, in
particular the notion of Transfer Function, and we disces&gal means for ameliorating the
resolution. In this framework, we insist on the concept oficured illumination as its two

main forms, the scanning microscopy and the pattern piojecare at the basis of the work
described in parts Il and Ill. In the following two chapterge present in more details the
principle of fluorescence microscopy and that of Tomographifraction Microscopy. In both
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cases, we give the analytical expression of their Transfacton in order to thoroughly model
the functioning and performances of the imaging system.



Chapter 2

Basics of fluorescence microscopy

2.1 Fluorescence contrast mechanisms

Fluorescence is one of the leading contrast technique @odpy since it allows selective ima-
ging with a high contrast. A fluorescent marker is a molecula gystem that is able to ab-
sorb energy from an incident field at a certain wavelengthtand-emit it later on at another
wavelength. This time delay implies that this emission taltp incoherentj.e. the phase and
direction of the emission is random and independent of tBergition. This time delay is about
several ns, short enough to be neglected in the imaging gsoce

Since excitation and emission occur at different wavelesgt is possible to filter out the
excitation light which ensures a nearly perfect contrasbrédver, it is possible to fix these
markers to specific targets and thus to image a specific caéoamponent of the sample.

When the excitation intensity received by the fluorescenkeras low, the emitted intensity
is proportional to the excitation intensity surroundindged]: 1,.. = ol.«, Wherel, is the
intensity emitted by the marker arigd; is the intensity of the field at the absorption wavelength
and at the position of the marker. The coefficiergxpresses the efficiency of the marker. In
this study, we assume that the fluorescence process follosvértear regime.

Ordinary fluorescent markers are a lot smaller than theuésalreachable in optical micro-
scopy. It is generally possible to consider a collection afkers diluted in a sample as a con-
tinuous density. One defines the functjoof the space position such thafp(r)dr = Zle o1,
whereL is the number of markers in the small volurheando; is the emission coefficient of
thel-th fluorophore. However this modelling neglects threeassu

e Bleaching: The coefficient actually decreases with time. More precisely, its decay is
proportional to its emitted enerdy,,; [65].

¢ Blinking: Besides this decay, there is a quick fluctuation @ersus time. This fluctuation
is useful for techniques like PALM and STORM [23] and is at Hasis of SOFI[66].
Here, we assume that the integration time is long enoughexage this variation.

e Near-Field interactions: The coefficiemtof a fluorophore is actually influenced by its
surroundings/[67, 68]. For example, the emission of a singhkeker close to a mirror
depends on its position with respect to the mirror.
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In the theoretical study developed in this work, these ¢dface neglected and they constitute
the main sources of error of the model.

2.2 Image formation

The model of image formation in fluorescence microscopyrassithe total independence and
incoherence of the light emitted by each fluorescent markée intensity measured by the
detector is the sum of the intensity emitted by each fluorogdo

M = (p]ext) * h7 (21)

whereh is the intensity distribution created on the detector byrglsi dipole emitter placed
in the centre of the coordinate system with total emitteénsity 1. The measurements are
performed on a planar detector placed at the image focaémétine microscope. As discussed
in Sec.[1.1P, it is the only plane were the imaging systemiggratic. Thus, the recorded
intensity at(z, y) on the detector can be modelled as,

M(z,y) = [(plext) * hl._g (2.2)
= / p([[’l, yla Z,)]ext(xla ylv Z/)h(fl' - xlv Y= yla 0— z')dx'dy'dz'. (23)
R3

For obtaining a three-dimensional image, it is not posdiblecan the detector through the
image space. Indeed images are aberrated for all planesatwatt> = 0). Instead, the sample
is scanned vertically through the focal plane. Definiidz, vy, z,) the image recorded when
the sample has been drifted vertically by,, one gets,

M(SE, Y, Zo) = / p(xlu ylu Z/ + zO)[ext<'r/7 y/7 Z/)h(ilf - ZC/, Yy — y/7 —Z/)dSC/dy/dZ/. (24)
R3

This equation is the fundamental relation that describesrtrage formation in three-dimen-
sional fluorescence microscopy.

In the particular and widely spread case where the illunonas homogeneous over the
sample,/..; = constant, one obtains,

M(z,y, z0) = Loxt /3 o2’y 2+ 20)h(x — o'y — o, —2")da'dy'd7. (2.5)
R
Noting z” = 2’ + 2, yields to,
M(z,y,20) = Iox /3 p(2' g, 2 h(x — 2y — o, 29 — 2")da’dy’d2". (2.6)
R
This result can be summarized by the compact formula,
M= ext(p * h)v (2.7)

wherel..h is the effective point-spread-function of the wide-fielcflescence microscopy.

In structured illumination techniquds,; is spatially in-homogeneous over the sample. The
link betweenp and the measurement depends on the variations of the ilatrmmintensity pat-
terns with respect to the vertical scanning. In cases wheres invariant along the direction,
one deduces from Ed. (2.4) that

M = (ply) * h. (2.8)
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2.3 Point-spread-function modelling

Modelling accurately the Point-Spread Functibr{PSF) is generally not possible since the
latter depends on optical components (objective, oculka) &re not well known. Yet, one
can derive a simple approximated expression which is entwugive useful information. By
definition, & is the intensity distribution radiated on the detector byirgle dipole emitter,
placed at the crossing between the optical axis and the tolgjeal plane, with total emitted
intensity 1. Strictly speaking, the actual P&Eepends on the orientation of the emitter. Yet,
in most cases, in the small volunde, there are several emitters each oriented in a different
direction and they are spinning during each measuremeotshis reason, one assumes that the
“model” fluorescent marker emits a perfectly sphericalactéld, this scalar field representing
the average of the radiated vectorial field components divpokrisations.

The spherical scalar field can be decomposed as a sum of pkareswmerging from the
emitter, all of them having a zero phase at the marker posiio= (0,0,0). From ref. [2,
Sec. 13. 2] this spherical scalar field can be written undektkyl decomposition as,

B SRlhr) i /

4rr T 8n2

1
— exp(ik.r)dky, (2.9)

HERQ ]{]Z

wherek; = k,x + k,y is the projection ok on the(z, y) plane, and

2k l]2  if||ky]| <
kZ:{W [P ity | < o, 2.10)

VIIE =R itk > ko.

As explained in Se€. 1.1.2, all plane waves that are eittarescent|(k; || > ko) or whose polar
angle with respect to the optical a¥iss superior to the maximum angieare lost. The others
are collected by the objective. In the spherical coordmbsesis wheré, = & sin 6 cos ¢, k, =
ko sin @ sin ¢, k. = kg cos 6, the collected field reads,

1 1
Eco ecte = 5 5 k. kQ in 0 fded
et () 8 /ee[o,a] /¢e[o,2ﬂ] ko 00896Xp(2 r)hy sin 6 cos b

- = / / exp(ik.r)ko sin #d4de. (2.11)
8 0€[0,a] < ¢€[0,27]

2.3.1 Two-dimensional PSF

In this paragraph, one assumes that the sample thicknesslsis comparison to the wave-
length\. Itis thus unnecessary to scan the sample vertically anchdasurements are linked to
the two-dimensional surface density of fluorophores by advmeensional PSF. This restrictive
model, which is appropriate for samples that have been palgisectioned in thin slices, is
interesting because it leads to an analytical formula ferRBF. It will be used throughout all
the work of Chap.16.

One notes’ = (2, y’) an orthogonal coordinate system centred at the crossimgebatthe
optical axis and the image focal plane andy) = («//MF,y'/MF) a coordinate system that
reduces all dimensions to fit the actual dimensions of thepgam
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Figure 2.1: Sketch of the geometrical notations used fopthet-spread-function modelling.

Under the Sine-Abbe condition, each plane wave, with wawetovd = (ko, 6, ¢) radiated
by the emitter placed & in the object focal plane is transformed into a plane wavé wive
vectork! = (ko, ¢, ¢), such thakind = MFsin6 at the image focal plane and a complex
amplitude dimmed by the/cos @ factor. All the plane waves in the image domain interfere
constructively atP’ = (0,0), the conjugate point of’ through the whole imaging system.
Noting ¢/, sina = MFsind/, the maximum angle of the plane waves reaching the detector
plane (Figuré 211 illustrates the notations) the field atatdiat the image focal plane reads|[29,
Chap. 4],

B y) = é / / exp(ik’.r")V cos Okg sin #'d0’ do (2.12)
T Jorelo,a’] J pe[0,27]
= = 2 / / exp [iko sin @' (2’ sin ¢ + y' cos ¢)] Vcos Okg sin 0'd6' d¢.
8 0’€[0,a’] J ¢€[0,2n]

Expressing this field in terms of the coordindtey) = («'/MF,y'/MF) and usingsin =
MF sin ¢ andd®’ = cos 6/+/ MF? — sin? 6d#, leads to,

E(z,y) = LQ/ / exp [iko sin @(x sin ¢ + y cos ¢)]
87 0€[0,a] Joe0,27]

k Vcos 0
0 °s sin 6 cos fdfdo (2.13)
MF* /1 — sin? § /MF?
" -
S — 20 / Jo(korsin ) o8 sinfcos0df,  (2.14)
MEF“47 Jocfo,q /1 —sin? §/MF?

wherer = \/z? + y2.

Neglecting the/cos 6/+/1 — sin §2/MF? factor, that is about for low numerical aperture,
one gets for the scalar field and the intensity per surface uidit= |E|? ([2, Sec. 8.5.2],

ik?oNAz Jl(k’QNAT’)
MF?47  koNAr

1) = (kONA2)2 (Jl(koNAr)){ (2.16)

(2.15)

MF2%47 koNAr
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Figure 2.2: Radial cut of the Transfer Function of a fluorescaicroscope imaging a 2D
sample.

The expression EqL_(2.116) is approximative but it presdmsntain characteristics of the
actual experimental PSF. Note that it can be seen as a Fowamsform operating on the 2D
support function of a disk centred @twith radiusk,NA. Thus, the detected fiel#(r) does
not contain frequencies beyoigINA and/(r) = |E(r)|? does not contain frequencies beyond
k. = 2koNA. Equation[(2.16) gives a resolution @61\ /NA for the Rayleigh criterion. The
Fourier transform of EqL(2.16) is the Transfer Functionhaf imaging system and can be seen
as a low-pass filter. Its radial cut is plotted in Hig.12.2. dcedys continuously as the spatial
frequency increases and exhibits a non derivable peak afiazuency.

2.3.2 Full three-dimensional PSF

To model the actual three-dimensional PSF, one has to canrtbiel contribution of fluorophores
that are out of the object focal plane. The intensity map endiétector depends on their axial
position. We define the 3D PSF as the 3D image created by sgaansingle emitter along
the optical axis. Let’s consider an emitter placed at thalgasition—z from the focal plane.
It emits a spherical field which can be decomposed as a sumaokphaves with constant
amplitude and zero phase at the emitter position, leadirgpibase accumulation &fz cos 6

at the focal plane [31]. Using Eq.(2]13) the field generatetthé image plane is [29, Chap. 4],
M];];%’TFQ /96[0,a] /¢e[0,27r] exp [tko sin §(z sin ¢ + y cos @) + tkoz cos 0]

v/ cos 0
V/1 —sin? §/MF?

E(z,y,z) =

sin 6 cos 8dOd . (2.17)

This expression can be seen as a Fourier transform openatadinite part of 3D spatial fre-
quency space: the part of the sphere of radiusentred in0, whose inclination angle with
respect to the optical axis verifi#s< a (see FigL 2.3 (a)). Then, the intensityz, y,y) =
|E(z,y, z)|* is the inverse Fourier transform of the autocorrelation fafrection defined on this
cap of sphere. Hence, the frequencied afre contained in the eye-shaped torus whase)
cut is represented in Fig. 2.3 (b).

Note that thék, = 0) cut of the 3D support of the Transfer Function is exactly tighe 2D
Transfer Function. One observes that th@xtension of the 3D support whéh, = 0, k, = 0)
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Figure 2.3: Sketch of thék,, k.) cut of the support of the Fourier Transform of the 3D PSF.
(a) Support of the Fourier Transform of the electric fieldagpion £. a is the maximum angle
accessible through the objective. The dotted circle is(thek,) cut of thek,-radius sphere
called the Ewald Sphere. (b) Support of the Fourier Tramsfof the intensity repartitior,
autocorrelation of (a) and transfer function of the detetti

is infinitely small. This last property implies that, whagethez position of an emitting plane,
its average light-intensity arrives unattenuated on thieader. In practical situations, this out-
of-focus contribution dramatically dims the image contrasloreover, the global extension
along thek, direction of the Transfer Function is much smaller than tdidained along thé,
andk, directions, see Fi§. 2.3. Thus, the axial resolution is etgueto be much worse than the
lateral resolution.

2.4 Conclusion

In this chapter, a model describing the three-dimensianabie formation in a classical fluor-
escence microscope is derived. The expression of the EraRshction is given in the two-
dimensional and three-dimensional configuration. Thigl\sstresses the need for sectioning
techniques for improving the axial resolution. Imaging ekd three-dimensional samples is
indeed almost impossible in a classical wide-field fluoreseamicroscopy.

This chapter is an introduction to the two studies we led oorflscence microscopy. The
first one, presented in Chdp. 5, proposes an improvemennédcal fluorescence microscopy
by placing a mirror behind the sample. The second one, piedém Chapl[ B, is devoted to
structured illumination fluorescence microscopy.



Chapter 3

Tomographic Diffraction Microscopy

Tomographic Diffraction Microscopy (TDM) is a techniqueatthas been described 40 years
ago [69][2, section 13.2] but that has waited until receratrg¢o see experimental realisations in
optics. It consists in recording the field (amplitude andsghaliffracted by a sample for many
different illuminations and to reconstruct numericallyg ttample relative permittivity from the
stack of complex data. This method is an extension of digiwédgraphy in which the sample
is illuminated by a collimated coherent beam (a plane waae,an interferometric mounting
is used to record an hologram of the diffracted field. In Torapgic Diffraction Microscopy,
the angles of illumination are varied and several holograrasecorded.

In this chapter, the relationship between the sample vela@rmittivity and the diffracted
field is derived in the electromagnetism framework. Thea,dkistence of a Transfer Function
under the Born approximation is discussed. Finally, séweqaerimental implementations of
TDM are presented and compared.

3.1 Diffraction process

The field surrounding an object placed in vacuum and illuteidé&y an incident monochromatic
electromagnetic wave satisfies the Maxwell equations,

V.D =0, (3.1)
V.B =0, (3.2)
V x B = 1p(J — iwD), (3.3)
V x E— iwB =0, (3.4)

wherelJ is the source current that generates the incident elecgoetie wavek is the electric
field, B is the magnetic fieldy, is the vacuum magnetic permeability. The displacement field
D is linked toE by

D = ¢E + P, (3.5)

whereP is the polarisation vector field ang is the vacuum permittivity. Inserting Eq$.(B.3)
and [3.5) inV x (3.4), one obtains

V x (V x E) = k2B = iwpod + wuoP, (3.6)
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Figure 3.1: Sketch of the general principle of Tomographftréction Microscopy. The sample
contained in the volum@ with a space-dependent relative permittivity) is illuminated suc-
cessively with plane waves with wave vectgf.. For each incident plane wave, one measures
the diffracted field for mank directions.

< ¥

wherek, = w/cfor ¢ = 1/,/gop10. P models the light-matter interaction and governs the
interaction between the object and the incident wave. Fameat interactionP = ¢oyE,
wherey is the space dependent linear susceptibility of the objébe linear susceptibility is
also called the permittivity contrast gs= ¢ — 1, wheree(r) is the relative permittivityj. e.

the square of the complex refractive index of the object.

To pursue further our analysis, we now assume that the olgjestribed by its complex
relative permittivity=(r) and contained in the finite volunfeis illuminated by an incident field
E;... E;. is the field created by the currefitthat would exist in absence of the sampleg.
whenP = 0. The incident field satisfies the equation,

V x (V X Einc) — kgEinc = inQJ. (37)

One defines the diffracted fiel, as the difference between the total fi#ldand the incident
field, E, = E — E;,.. Subtracting EqL(317) from EJ.(3.6) one gets,

V x (V x Eq) — keEq = w? 1P, (3.8)

with P = ¢oxE. This equation allows the computation of the diffracteddfizbm the know-
ledge of the polarisation fiell?. As it is a linear equation, we can solve it using the Green’s
function technique.

The Green’s tensf of Eq. (3.8) is defined such thg(r, r’')p is the field created at by
an infinitely small dipole emittep placed at. Thus,G(r,r’)p is solution of

V x (V x G(r, r’)p) — k3G (r,)p = 6(r — r')p. (3.9)

The outgoing solution for the Green'’s functionlis [1, sect@?2]

exp(ikoAr) ) 1
— . P

= 1
(S ! 310

g(r,r')p = —Fk%v x V X (
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whereAr = ||r — r’||, that can be decomposed using the Weyl decomposition ire2, 3. 2]
and assuming > 2/

_ , 7 1 , 1 /
G(r,r)p= S /kleRz T exp(ik.(r — r') )k x (k x p) dk + k—gpé(r -r'), (3.11)

with

k2 —k|I? if ||| < k&
@:{Vo‘ﬂm if [k | < ko, 3.12)

TP =/ if [yl > k.

The solution of Eq.[(3]8) can be expressed as

= / G(r,r)w? P (x')dr’ (3.13)
Q
iw? o w1

- 8m2k2 / /k|eR2 k—exp (ik.(r — "))k x (k x P(r')) dkjdr’ + W P(r)

iw? o . w2 1o
= 3252 /ke]R2 k—exp(zk r)k x (k X /Qexp(—zk.r’)P(r')dr') dk + E P(r)

iw? g 1 ~ w? Lo
= — k.r)k k x P(k))dk P 3.14
e [ remtinion (kx P i + Z50P (314)

Noting that(w?ug)/ki = 1/eq asky = w/c = w/\/2op0, the expression of the diffracted field
reads 3
i 1 P(k) P(r)
Eq(r) = —exp(tk.r)k x | k x —= | dkj + —=. 3.15
0= g3 [ ol ( %> o+ (3.15)
This relation shows that the diffracted field is a sum of plerages, each proportional to a
Fourier component dP. As explained in Se¢. 1.1.2, the plane waves such|thgf < ko NA

are collected by the microscope objective and focussed omagf the back focal plane. More
precisely, if the field diffracted by the sample towards thgeotive is written as

1 1
Eq(r) = —— —Eq(k) exp(ik.r)dky, 3.16
0= Gy [ Pt ek (3.16)
the diffracted field at the back focal plane of the objecteads
D i ko
Ed,bfp (k’ NAk”) C@ k—zEd(k), (317)

whereC' is a constant depending on the objective dnds the diameter of the exit pupil,
the illuminated part of the back focal plane. EQ. (3.17) shdhat part of the plane wave
decomposition offf4(k) can be measured directly at the back focal plane of the dbgect
Detail on how this can be done experimentally is describeBeio[3.8. Using Eqd._(3.115) and
(3.16), the plane wave amplitude of the diffracted fidd(k), can be expressed as the Fourier
transform of the productE of the linear susceptibility and the total field inside thenpte

Eq(k) = kok X (k X 15(1‘)) (3.18)

€o

Eq(k) = kok x (k x /Q exp(—ik.r)x(r)E(r)dr) . (3.19)
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Eq. (3.19) is the fundamental relationship of Tomographfér&éxtion Microscopy explain-
ing how the measurements of the diffracted field can be usexdrieve quantitatively the shape
and nature of the sample (hamely, the mapy®f For one given illumination, the Fourier
transform ofyE is known on a cap of sphere of radikiscorresponding to the extremity of the
wave-vectors collected by the objective, see[Fig. 2.3 (a)expected, the far-field measurement
of the microscope filters out the diffracted field transvessatial frequencies ovépNA.

However, because of the frequency mixing betwgemdE, the accessible spatial frequen-
cies of y are not limited by this fundamental limit. The accessibkgjfrencies o that can
be retrieved from the diffracted field measurement dependb@spatial frequencies &f, the
field inside the sample and can be found beyondidA domain. The field inside the sample
changing with the illumination, each novel measurementgia different accessible Fourier
domain fory. Hence, we see that Tomographic Diffraction Microscopy piedect example of
Structured lllumination Microscopy as presented in §€8. The performance of TDM and the
ability to reconstruct easily the map gfdepends on the fielH probing the sample.

3.2 Evaluation of the field inside the sample

The field inside the sample is equal to the sum of the incidedtdffracted fieldskE = E;,.. +
Eq4. Using Eq.[(3.1B), this leads to

E(r) = Ejp(r) + /Qg(r, ' )w? P (r')dr’! (3.20)

E(r) = Eio(r) + /Q G(r, v )kix(x)E(r')dr’. (3.21)

This integral equation allows the computationlofknowing the incident fieldE;,. and the
sample permittivity contrast. We observe thak, the field inside the sample, depends)gn

I. e. on the sample itself. As a result, the diffracted field, whihelated to the Fourier trans-
form of yE is not linearly linked toy. Thus, Tomographic Diffraction Microscopy and, more
generally, all unstained microscopy techniques are NQFalimmaging tools and cannot be de-
scribed by a Transfer Function. However, under certain iamb assumptions, Ed. (3]21) can
be simplified, leading to a linear dependence of the dif@dditeld with the sample parameter
of interest. Most of the microscopy theories are develop®teuthese assumptions.

3.2.1 Born approximation and linear reconstruction

In cases wherg < 1 and the volumeé is small in comparison ta3, one can apply thBorn
approximation [70]. The field diffracted by the sample is assumed to be gdaé compared
to the incident field, leading tB ~ E;,. in 2, so that Eq.[{(3.19) can be rewritten as

Eq(k) = kok x <k X /Q exp(—ik.r)x(r)Einc(r)dr) (3.22)

If the incident field is a plane wau,,. = Eq exp(iki,..r), whereEy is the incident vector
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amplitude, Eq.[{(3.22) is cast in the form

Ea(k.kinc) = ko / exp(—ik.r)x(r) exp(ikinc.r)k X (k X Eg) dr (3.23)
Q
= kox(k — kine)k x (k x Ey), (3.24)

wherey is the Fourier Transform of the permittivity contrast

Thus, under the Born approximation, each measurement pogronal to a Fourier com-
ponent ofy. Reconstruction can be simply done using an inverse Fotmaesform. The
obtained image is thus linear in the permittivity contra&te transfer function is equal toin
the volume of the Fourier space reachedby k;,. and0 everywhere else.

3.2.2 Renormalised Born approximation

If we cannot assume the Born approximation, one has to savdE21) to know the field
inside the sample. Solving it presents a mathematical diffibecause the tensgrgiven by
Eqg. (3.10) has a non-integrable singularity. The classi@al to solve this issue is to separate
the integral appearing at the right hand side of Eqg. (3.2X1)vim First the integral in a small
ball with radiusd aroundr, then the rest of). Whend tends toward), the first part becomes a
linear tensor of the value at and the second a Cauchy principal valug [71],

/ G(r,r)P(r')dr' = LP(r) + PV/ G(r,r)P(r')dr’, (3.25)
Q Q

whereL = —1/3k2 for I the identity tensor oft®. Of coursel. and the principal value change
depending on the geometry of the exclusion volumeé [71].

Thus Eq.[(3.21) becomes:
g(r)—1

E(r) = Eiy(r) — E(r) + PV/QQ(I', r')[e(r)) — 1]E(r))kadr, (3.26)

Noting Ejpca(r) = E(r)[e(r) + 2]/3 anda(r) = 3[e(r) — 1]/[e(r) + 2] one obtains

_ N —1
Epca(r) = Einc(r)+PV/g(r,r')S%Elom(r’)kédr’ (3.27)
0
= Einc(r)+PV/g(r,r')a(r/)Elocal(r/)k(Q]dr/. (3.28)
0

By analogy with concepts issued from the theory of macrosciogd in dense dielectric ma-
terial [1, Sec. 4.5]q is called the bulkpolarisability and E,..; the local field. Looking at
Eqg. (3.28) and remembering the Born approximation, one camulate therenormalised
Born approximation [72] by Ej.c.i(r) =~ E;,.(r). Under this approximation, one obtains again
a simple formula for the diffracted field

Ed(k, kinc) = k?o&(k — kinc)k X (k X Eo) s (329)

wherea is the Fourier Transform of. An inverse Fourier transform of the measured field,
yields a map ot from which one can deduce a map=ofUnder the renormalised Born approx-
imation, the recorded data are linearly linked to the sarpplarisability. The renormalised
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Born approximation can be applied to higher permittivityhwast than that required for the
usual Born approximation. Yet, there remain cases where amavalid (for example, the man-
ufactured nano-structured components of the micro-eeitrdomains). In these cases, the
field inside the sample is given by EQ. (3.28). The image fdianas no more linear inv and
the reconstruction requires specific algorithms (see Chap.

3.3 Experimental implementation of TDM

We now turn to a rapid description of the different implenaioins of TDM.

3.3.1 Measurement techniques

In most existing configurations [73, [74,175], the sample ligminated by a collimated laser
beam, the direction of which is controlled by a tilting mmr@and a microscope objective is
used to collect the diffracted field. The incident and obagown directions are limited by the
numerical apertur&VA of the objective. The plane wave amplitudes of the diffrddield
Eq(k) can be measured directly on a plane conjugated to the baakgtame of the objective.
Alternatively, one measures the diffracted field on a plamgugated with the sample orie [76]
and the plane wave amplitude are recovered by a numericaldfotansform.

The main difficulty of TDM is to record the phase and amplitudi¢he diffracted field for
various illuminations. That means having in parallel wille brdinary intensity map, a phase
map of the received optical field on the detector. Many tegpives can be used to measure the
phase of the field,

e One can use a classical interferometric method in which these is retrieved from
several interferences of the diffracted field with a refeeebeam whose phase is ro-
tated [77] 78].

e One can use off-axis interferometry in which the referereanbis tilted. This produces a
periodic pattern that is perturbed by the phase and amplituadulation of the diffracted
field. From a single measurement it is possible by a treatmmetite Fourier space to
retrieve both amplitude and phase of the diffracted field 80).

e One can use the Transport-of-Intensity Equation whichnad|drom measurements of the
diffracted intensity in two parallel planes, thus witholé theed of a reference beam, to
recover the phase and amplitude in one of those planées [81].

e Last, one can use quadri-wave lateral shearing interfeirgrirewhich the field map pro-
duced by a diffraction grating placed at some distance bettoe camera allows via a
numerical treatment in the Fourier space to recover the itudpl and the phase gradi-
ent [82/83].

Moreover, this task requires the finding of a reference phaaehe reflected or the trans-
mitted specular values, for getting rid of the uncontrofedse of the incident beam [73]. These
various approaches have been used for two main geomelretsansmission and the reflection
configurations/[75].
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3.3.2 Transmission vs reflection configuration

In the transmission configuration, the illumination and @bservation are performed from two
different sides of the sample (using a condenser and antolgdacing each other). In the
reflection configuration, one illuminates and observes #mepde from the same side with the
same objective.

In the transmission configuration, assuming that the cosefeand the objective have the
same maximum angle, k andk;,. are both contained in the part of the Ewald sphere where
the polar angle is inferior ta (see FigL23 (a)). Thus the volume of the Fourier space that
is accessible bk — k;,. is the eye-shape torus volume shown in Eigl] 3.2 (a). As seen in
Figs.[3.2 (a) an@ 213 (b) the support of Transfer Functioraftransmission TDM in the same
as the one in fluorescence microscopy. However the Transiection in TDM is always 1
in its support, which is not the case in fluorescence micq@gcd he point-spread-function,
obtained by inverse Fourier transforming the transfer fioncis shown in Fig[ 32 (c). The
radial resolution is now/(2NA), according to the Rayleigh criterion defined in Secl 1.3, and
the axial one is at best/(1 — cosa). Note that in TDM the Rayleigh and Sparrow criterion
give the same resolution. Indeed the transfer functionnsygs equal to 1 (and then superior to
0.10) as long as the frequency is below the frequency cut-off

In the reflection configuratiork;,. is now reversed. It is contained in the part of the Ewald
sphere where the polar angle is superiofrte a. Thus the volume of the Fourier space that
is accessible bk — k;,. is the volume delimited by the part of ti#,-radius sphere with
polar angle inferior tax and the planék, = 2k cosa) (shown in Figl3.2 (b)). Figure3.2
(b) shows that the Transfer Function of TDM in the reflectionfiguration is not symmetrical
about zero. Thus, its inverse Fourier transform is not reaFig.[3.2 (d) and (e) we plot the
real and imaginary part of the Point-Spread-Function. WLhtle real part shows an almost
spherical shape, the imaginary part is of the same ordereaeth part and antisymmetric. If
the samplex has both a real and imaginary part, their images are mixedhisycbnvolution
function. The reflection configuration is thus limited to @yhase samples. For pure phase
samples the resolution is almost isotropic, being equal/t@NA) in the lateral direction and
A/2 in the axial one. An example of sample reconstruction carobed in Sed. 4.2]13

Note that this analysis assumes an infinitely low noise ldweleed the Fourier components
of o are measured several times in the measurement proces$eFsanek,, ., several pairs
(k, kine) verify kyes = k — k.. Noise can thus be reduced by averaging redundant measure-
ments ofa(k,,.s). However, this averaging has not the same strength on théewshpport of
the transfer functiori [84]. Of course the precise value & tivise averaging function depends
on the chosen set of illumination directions.

3.4 Conclusion

This chapter explains the principles of Tomographic Ddtran Microscopy. Inhomogeneity in
the sample permittivity causes diffraction of the incidéeld. Measurement of the diffracted
field in the back focal plane of the objective allows the measient of Fourier components
of YE, the product of the linear susceptibility and the field iestde sample. Usually, the
probing fieldE depends also on the sample susceptibility. Thus, in gerteatecorded data
are non-linearly linked to the sample parameter of intemastrequires non-linear reconstruc-
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Figure 3.2: Transfer Function and Point-Spread-Functibthe transmission and reflection
configuration in TDM. (a) Transfer Function for the transsiis configuration. The Transfer
Function is 1 in the hatched region and 0 elsewhere. (b) TeaRainction for the reflection
configuration. (c) Point-Spread-Function for the transmois configuration. (d) and (e) real
and imaginary part of the Point-Spread-Function for thesotitbtn configuration. In (c-e) one
assume that the maximum angle accessible trough the olgesti = 70°, which corresponds
to a numerical aperture NA=0.95.
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tion schemes for retrieving the sample. A study on theseistgdited inversion techniques is
presented in Chap] 7.

Yet, assuming the Born approximation, or better the renbsed Born approximation, a
linear link between the diffracted field and the Fourier comgnts ofy can be derived. In
this case, a simple linear reconstruction of the sample iparity map is possible and one can
derive Transfer and point-spread-functions for variousfigarations such as transmission and
reflection set-ups. We observe that, in transmission, tied eesolution is much worse than
the lateral one. In reflection, the axial resolution is corapke to the lateral one, but the point-
spread-function mixes the real and imaginary parts of thepevity leading to uninterpretable
images when the samples are not pure phase objects. We skimswiaxt chapter how one can
improve the TDM implementation so as to obtain an isotropsofution without mixing the
real and imaginary parts of the estimated permittivity magse main idea is to combine both
the transmission and reflection configurations by placiegsgimple on a mirror.
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Mirror and axial resolution



Chapter 4

Mirror-assisted Tomographic Diffraction
Microscopy

Like most optical microscopy techniques, the axial resotubf Tomographic Diffraction Mi-
croscopy (TDM) in transmission configuration is severaktapoorer than the lateral one. This
comes from the fact that the illumination and observatiopegormed from one side only of
the sample (through the objective and condenser). In ah cdediguration where the sample
could be observed and illuminated from all possible dimetdj TDM would yield (under the
Born approximation) the permittivity map of the sample wathisotropic resolution /2. The
microscope asymmetry and the lack of angular coverage caafially compensated by ro-
tating the sample [74, 85] or by imposing the positivity oé ttought dielectric contrast in the
inversion procedure [86]. Yet, these approaches are lihtiecertain types of samples and
the image resolution remains generally below that whichld/dne obtained with a complete
isotropic tomography configuration where the sample isrlhated and observed from every
possible angles. Hence, the best solution is to illuminate @bserve the sample from both
sides, for example by placing the sample between two opgadjectives as in a 4Pi micro-
scope set-up. Unfortunately, although 4Pi TDM is easientplement than 4Pi fluorescence
microscopy, as it does not require any precise alignmenstailisation of the objectives, this
approach is quite time-consuming and requires a complexset

To simplify the data recording and the experimental impletagon, we propose, in this
chapter, to take advantage of the versatility of the numaérgconstruction process for consid-
ering a configuration in which the sample is deposited ontareom[4] and introduced in a
classical TDM set-up in reflection. Thanks to the reflectiariiee mirror, the sample is illumin-
ated and observed from both sides, and thanks to the nuhexaamstruction, the entangled
top and back views of the sample can be unravelled. This mapproach, which is new to our
knowledge in optics, has had precursors in the mechani€a8fj, radar[[89] and acoustic [90]
waves domains, mostly in the two-dimensional simplifiedcecas

In the first section of this chapter, we provide an analysihiefmirror-assisted TDM in the
two-dimensional (2D) scalar configuration. This studywHlonteresting insights on the inform-
ation content of the measurements and underlines the rpl@afisation. In the second section,
the full three-dimensional (3D) model is derived and resate supported by simulations.
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Figure 4.1: Sketch of the mirror-assisted TomographicrBdffion Microscopy. The sample
is illuminated successively by several incident plane wawvéh wave vectork;,.. For each
incident plane wave, the diffracted field is measured forkadlirections that are accessible
through the objective.

4.1 Mirror-assisted Tomographic Diffraction Microscopy in
the two-dimensional scalar configuration

Let (O, x,y,z) be the right-handed Cartesian coordinate frame such teantfror is on the
plane(z = 0) andz is the optical axis. The sample is placed in the half-space 0 over
the mirror (see Fig_4l1). The sample is supposed to be amaelong they direction so
that its permittivity depends only on theand z variabless(r) = ¢(z, z). llluminations and
observations are done only in the z) plane. To simplify the formulation, theandz Cartesian
coordinates of the incident and detected wave vectors ai@elé as? andy. Thus, the incident
and detected wave vectors reads respectikgly = SincX — Yz andk = x + vz. The
mirror is assumed to be perfectly conductor, so that theatafie coefficient is equal te-1
for s-polarisation (the electric fielt is directed along thg axis) and 1 fop-polarisation (the
magnetic fieldH is directed along thg axis).

4.1.1 lllumination with s polarisation

We first study thes-polarisation configuration in which the incident elecfifield is perpen-
dicular to (z, z), Ef.. = Epexp(ifineT + ivinez)y. Symmetry considerations show that the

mc

diffracted field is alsa-polarised’E} = E5(x, 2)y.

4.1.1.1 Modelling of the diffracted field

The reference field, which is the field that would exist withthe sampleEs,; is the sum of
the incident field and the field reflected by the mirror

El; = Ery = Eo [exp(ifine® + 1incz) — €XP(ifinc® — 1Yinc2)] ¥- (4.1)

Following the derivation of Setl 3, we know that the field meed in the back focal plane
of the objective is proportional t&5(k) the plane wave decomposition of the diffracted field
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Figure 4.2: Sketch of the 4 contributions appearing in Eqd)(4 (1) contribution of waves
directly diffracted by the sample. (2) contribution of waveflected by the mirror and then
diffracted by the sample. (3) contribution of waves diftextby the sample and then reflected
by the mirror. (4) contribution of waves reflected by the miydiffracted by the sample and
reflected again by the mirror.

which in 2D reads [91]

i L B3 (k) exp(ik.r)dg. (4.2)

Ecsl<x7y) = _E 5 R
S

To calculateEs (k), we calculategs ;  p the field radiated by a line-sourge= p,y placed
at(z, z) in presence of the mirror. By virtue of the method of imagks tield is equal to the
field radiated in free space by the line-source plus the fediihted in free-space by its image
through the mirror. The image of the line-sougsat (z, z) is another line-sourcp’ = —p,y
placed afx, —z). The expression of® . p is thus, ref.[[91]

_ 1 1

grsnirror I',I'/py:—— — |eXP —ZﬁlC—I‘/ —Z"}/Z—Z/

)y = =g | 5 le(=iBe =) = irlz = 2]) @)
— exp(—if(z — &) +iv(z + 2))] pyydB.

Using the Born approximatioR ~ yE:, and inserting Eqs[(4.1) and (4.3) in Eq. (3.13), one
gets forE5 defined in Eq.[(4]2)

E(Sj(ka kinc) = EOI{:S [X(Binc - ﬁa Yinc — ’}/) - )z(ﬁinc - 67 Yinc + ’}/)

4.4
- X(ﬁinc - Ba ~Yinc — ’Y) + X(ﬁinc - 67 —Yinc + ’Y)] . ( )

The first term of Eq.[(4]4) represents contributions comasing to an illumination and an
observation without any interaction with the mirror, Higd41). It is thus equivalent to the
unique term of Eq.[(3.24), obtained in the configuration withthe mirror. The second term
of Eq. (4.4) represents contributions in which the sampikkuminated by the reflection of the
incident beam onto the mirror and the diffracted waves amectly collected by the objective,
Fig.[4.2 (2). The third one represents contributions in Wwhie sample is directly illuminated
by the incident beam and the observation is done after rigfteot the diffracted waves onto the
mirror, Fig.[4.2 (3). The last term corresponds to contidng where the sample is illuminated
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by the reflection of the incident beam and the diffracted \8are collected after reflection onto
the mirror, Fig[4.2 (4).

We see in Equatiori_(4.4) that each measurement depends oRdatier components of
the linear susceptibility of the sample. To reconstructdample permittivity map, it is thus
necessary to separate those terms. To address this issue [84p and Huttet al. [88] used
a priori information on the sample. Nolagt al. [89] proposed a configuration where each
contribution are separated geometrically by using two @edgular mirrors instead of one.
This cannot be done easily in optics since it would requiresitning of the corner between
the two mirrors more precise than the available stages. iipldy the problem, Natteret [90]
noticed that these four contributions can be paired by éhteingy, the Fourier transform along
thex axis of the cosine transform along thaxis of x

X(Bv) + X8, =) = /Qxi$72)exp(—¢ﬁx-—ivz)%—exp(—iﬁx-+i72)dxdz

= 2/)((:15,2) exp(—ifz) cos(|y|z)dzdz (4.5)
Jo
= 2X(8, 17])- (4.6)

From the knowledge of (3, v) for v > 0, it is possible to obtairy(z, z) for z > 0 by inverse
Fourier and cosine transforms. From E@s.l(4.4) (4.8)stattered field may be rewritten
as

Ecsl(k7 kinc) = 2E0k(2] [i(ﬁinc - B, |Vinc - 7|) - i(ﬁinc - B, |Vinc + 7|)} : (47)

To reconstruc, it is necessary to find a procedure for separating the twoi€ocomponents
Y appearing in the right hand side of Elq. (4.7).

4.1.1.2 Reconstruction of the sample permittivity

The problem can be stated as follows. Is it possible to imfemfa set of measurements of
E5(k, ki) the value ofy on a certain domain of the Fourier space? To answer thisiquest
one noteq A, B) the spatial frequencies of the first term of HQ. {4(B). — 5, |Vinc — 7|),
and(C, D) that of the second term of Eq._(4.7.. — £, |7ine + 7|) that are accessible with
one measurement of the diffracted field for the illuminatabservation pairk;,., k). The
frequencies A, B, C, D) must verify the system

Bine —B=A (4.8)
[Yine — | = B (4.9)
Bine —B=C (4.10)
[Vine +7 =D (4.11)

It is possible to prove (demonstration is in Appendix A) ttias system has a solution only if

A=CandD = |A\\/%§2 — 1. Moreover, the frequency vectof’, D) is located inside the
ko-radius half-disks centred &k, 0) and(—k, 0) of the Fourier space, which corresponds to
the zone (2) of Fid..4]13. Zone (2) is the Fourier domain of teepttivity that is accessible in
the transmission configuration of TDM. On the other handytetor( A, B) is located in zone

(1) which corresponds to th#:,-radius half-disk centred & excluding zone (2). Zone (1) is
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Figure 4.3: Zone (1) et (2) in the Ewald Sphere. Zone (1) i®ssible through the term
(A, B) = k — k;, and zone (2) through the ter(@’, D) = k — k!, k! . being the symmetric
of k;,,. with respect to the mirror.

the Fourier domain that is accessible in the reflection curdijpr{ﬂ. Finally, Eq. [4.7) rewritten
as

E5(k. kine) = Eo [X(4, B) — X(C, D)] (4.12)

shows that each measurement is proportional to the diifereha Fourier component in zone
(1) and a Fourier component in zone (2). Changing the ill@atam-observation pairs, within
the possibility of the objective, allows the simultaneocarsof zone (1) and zone (2), i.e. the
whole2k,-radius half-bally > 0. Unfortunately, because of this simultaneous scanniregetis
no way to extract the value gf at a given frequencyA, B) from the set of measurements. For
any arbitrary value of (A, B) in zone (1), there is a value §{C, D) in zone (2) that produces
E5(k, kine). It appears that the data stack, obtained with only one igaléon, is not complete
enough for imaging. We have thus decided to consider alsditfiacted field obtained with a
p-polarised incident field.

4.1.2 lllumination with both p and s polarisation

For thep-polarisation,i. e. with a magnetic field perpendicular to the incident pln=
H(z, 2)y, the reference field reads,

k!
+ eXp@ﬁinc'r - i’yincz)% y (413)
0

y X kinc
ko

Efef = EO eXp(iﬁincgj + Z.inncZ)

wherek’;,. = BincX — YincZ IS the symmetric ok;,,. with respect to the mirror. Note that in this

case the reflection coefficient is equaHta. UsingG® in ref. [92], the method of images

mirror

For the sake of simplicity, one assumes in this chapter tigatiaximum angle accessible through the objective
isa = /2. Simulations in Se¢. 4.2.3 considers a more realistic case.
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and Eq.[(3.183), one obtains after some tedious but strédgivard calculations

Eg(k7 kinc) = 2E10 [k-kinci(ﬁinc - ﬁa h/inc - ’}/D
= Yy X k

+ k-k/inCX(ﬁinc - 67 h/inc + ’YD} k—o (414)
Of course, using the sojepolarisation measurements shows the same indetermmregiosing
the s-polarization measurements. On the other hand, combinatiy gets of measurements
allows the retrieving of on all the2k,-radius half-ball. Indeed, with the linear system defined
by Egs.[(4.V) and(4.14), one can separate the contributi®ty®.. — 3, | Yine +7|) @ndx (Bine —
B, |ine — 7y|) provided that the determinant of the syste,.3FokZ, is non-null. In this case,
one gets
kKine
Eg(k7 kinc) + TEd(k’ kinc)

i(ﬁinc - 67 |innc - 7|) = 4ﬁ BOEI(] (415)

k Kine
B Eg(ka kinc) - k% Ed(ka kinc)
X inc — My | Jinc + = . 416
X(Bine = Bs [Vine + 1) 1B, (4.16)
Noting 6;,. the angle betweerk;,. andz andf the angle betweek andz, one obtains the
simplified formulae

Eé) (k, kinc) — COS(G + HinC)ES (k, kinc)

. B _ 4.17
X(8 B, |y ) 4 sin 0 sin 6, Ey ( )
= Eg(ka kinc) - COS(H - HinC)ECSl(k’ kinc)

B _ : : . 4.18
X(ﬁ B |’7 + ’7|) 4 sin 0 sin 0;,. E ( )

During measurements, for all possible directionk@ndk;,., Eq. (4.17) fills the area of zone
(1), while Eq. [4.IB) fills the area of zone (2). We thus hawewhlue ofy on the2k,-radius
half disky > 0. By an inverse Fourier transform along tlkeaxis and an inverse cosine
transform along the axis of the measured value gf one obtains the polarisability mag,.
The resulting point-spread-functidn which is the inverse Fourier transform of the Transfer
Function,i. e. the disk of radiu®k, [75] centred in0, is then given by

2
iz ) = 21200

(4.19)
where J; is the Bessel function of the first kind and of order 1 ané /22 + 22. Actually,
the reconstructed,,..; is not reallyy convolved byh. Indeed, the cosine transform reconstructs
the even part of functions. Thus, the inverse cosine tramstoeates a,..; that is symmetric
about the mirror. More exactly, the reconstrucigd, is the sum of the actual convolved by

h plus the symmetric of with respect to the mirror convolved ly

We have seen in this section the principle of mirror-asdisdenography in a simplified 2D
scalar configuration. We have stressed the interest of ubmgwo incident polarisations in
order to distinguish the different Fourier components & slusceptibility that appear in the
expression of the diffracted field. We will now apply the saeehnique to the complete three-
dimensional configuration.
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4.2 Mirror-assisted Tomographic Diffraction Microscopy in
the three-dimensional vectorial configuration

In the 3D configuration, the sample permittivity varies @dhe 3 directions of space. We
assume, that, in an ideal configuration, the sample canwmiillated by a plane wave with any
downward directed wave-vectkr,. and observed along any upward directlo(Fig.[4.1).

4.2.1 Modelling the diffracted field

We first establish the expression of the field diffracted glany directionk by a sample de-
posited on a mirror and illuminated by a plane wave along amctionk;,.. Itis recalled that,
for an incident fieldE;,.(r) = Eqexp(iki,..r), the reference field existing above the mirror
without the sample reads

Eref(r> = (EO,H + EO,ZZ) eXp(ikinc,H-rH + kinc,zz> + (_EO,H + EO,ZZ) eXp(ikinc,u-r” - kinc,zz>
(4.20)

where £, is the projection ofE, on the mirror plane. Moreover, the field diffracted by a

dipole placed above the mirror is equal, by virtue of the radtbf images, to the field radiated

in free space by the dipole plus the field radiated by its intagaugh the mirror. If the mirror

is perfectly conducting, the image of the dipgle= p + p.z placed at(r|, z) is the dipole

p’ = —py +p.z placed a{r, —z). Then, using Eq[(3.11) the field radiated by a dipole placed

above a mirror can be written as, foandz’ positive,

— ’ 'l 1 . / /
Gmirror (L, T)p = T/ — [exp(—zk”.(rﬂ — r”) —k,lz—z |)k X (k X (p +pzz))
s kO kHGRQ kz
+ exp(—zk”(r” — I‘T‘) — ]{]Z(Z —+ Z/))k X (k X (—pH —i—pzz))} dk”
1
+ —pd(r —1').
ko
(4.21)
Inserting Eqs[(4.20) and_(4.21) in E§.(3.13), one gets th@ession ofE4(k) defined by
Eq. (3.16), under the renormalised Born approximatl®rm{ o E,.;)
Eq(k, kin) = k:o/ exp|—i(k| — Kine,|)-T|] cos|Kinc, — k-|2]a(r)k x (k x (Eg, + E07Zz))
Q
+ exp[—i(kj| — Kinc,|).T] cos[|kinc,» + k:|2]a(r)k x (k x (=Eq + EO’ZZ))dI‘. (4.22)

Following the approach developed in the 2D case, we défiae the Fourier transform in
thex andy directions of the cosine transform along thdirection of«,

a(k., k) :/Qa(r) cos(k.z) exp(—ik).r))dr. (4.23)

Then, introducingA = kok x (k x Eq ) andB = E;.kk x (k x z), one obtains,
Eq(k, kine) = (Af_ + Bf+) (4.24)
f+ = & (k|| - kinc,Ha |kz + kinc,z|a) + 5‘ (kH - kinc||7 |k:z - kinc,zD (425)
fﬁ = « (k|| - kinC,H7 ‘kz + kinc,z‘) - (kH - kinc,||7 |kz - kinc,zD ’ (426)
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which gives the expression of the diffracted field with redpe the sample polarisability (under
the renormalised Born approximation).

4.2.2 Reconstruction of the sample polarisability

We observe from Eq[{4.24) that the diffracted field dependsam values ofy, taken at two
different spatial frequencies. Yet, these two terms carab#yeseparated if the vectorial diffrac-
ted field {. e. thes andp components) is measured (provided tAaandB are not collinear).
Alternatively, the two terms can be separated if one measaméy one component diy for
two different incident polarisationg,, as in the previous section.

Oncea is retrieved . is reconstructed by an inverse Fourier transform alongcthad
y axis and an inverse cosine transform along4taxis. If measurements were possible along
all possible angles, one would get the valuewdh the 2k,-radius half ball:, > 0. The point
spread function of this imaging system,is the Fourier Transform of the support function of a
ball of radius2k, centred in0 [75],

J% (2]{307“)

h(r) = ——[sin(2ker) — 2kor cos(2ker)] = T

4.27
2m2r3 (Ar/2) ( )

More precisely, the reconstructed polarisability,., is the sum of the actual convolved by
h and plus the symmetric ef with respect to the mirror convolved IBy{75]. For example, the
reconstructed image of a point-object placedla0, z,) above the mirror is

Puieor(01,2) = B (/I + (2 = 2002) + 5 (I 2+ (2 + 0)2) . (4.28)

The influence of the symmetric object on the reconstructéakisability is usually not an issue,
as one knows that there is no sample below the mirror. Agtubthe object is placed about one
A away from the mirror, the mirror image does not modify theorestruction. In this case, the
resolution is isotropic with a resolution af/2 according to the Rayleigh criterion. For objects
closer to the mirror, the influence of the image trough theaniis noticeable and enlarges the
resolution.

We have seen that by measuring two components of the défldatld for any(k, ki)
observation-illumination pairs, or measuring one compomé E, for two incident polarisa-
tions, one can analogically extragtand retrieve the sample polarisability. Practically, abta
ing this set of data requires two successive recording ofiiffiacted field for each incident
direction and may not be very convenient. Now, we will showhia following that, contrary to
the 2D configuration, it is also possible to retrievérom the measure of only one component
of E4 for only one incident polarisation.

In the three-dimensional configuration, there are seviuahination-observation pairs pin-
pointing on the same spatial frequenciesdorThis redundancy stems from the skew-rays for
which k, k;,. andz are not coplanar. It permits to build a linear combinatiorfgffor ex-
tractinga at a given vector frequency. More precisely, introdudidgB, C') and(D, E, F) the
polarisability vector frequencies that appeaBnfor a given(k;,., k), one gets

(A7 B, C) = (kaz - k:inc,xa k:y - kinc,ya |k:z - kinc,z|) (429)
(D7 E7 F) == (k:r - kinc,:m ky - kinc,y7 |kz + kinc,z|)- (430)
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This system has a solution if and onlyAf= D, B = E, (D, E, F') is in the zone (2) of Fig. 413
(assuming cylindrical symmetry around theaxis) and A, B, C') belong to the whol@k, half-
ball radius [73]. There is, however, no defined link betwéeand F'. Indeed for every point
(A, B,C) of zone (2), it is possible (with a reasoning similar to thiaAppendix[A), to find a
pair (k, ki,.) such tha{ D, E, F') = (A, B, F) with F being any value of0, v/2k, — A% — B?].
In particular, for anyw = Ax + By andC such that(v, C') belong to the half-ball of radius
2k, one can find an observation-pék; k;,,.) such thatF" = 0

1 lv||? + C? 1
k= v \/k;g -t SC (4.31)
1 lv||? + C? 1
kinc = él/ + \/k?g — ?I/L — QCZ (432)
v, =22 (4.33)
I4

These two solutions correspond to the inversion of the rbla@incident and diffraction
directions. The Reciprocity Theorern [93] states indeed gk, ki,.) = Eqg(kin, k) for
all k andk;,.. Measurements obtained with these specific illuminatibseovation pairs are
proportional toa (v, 0) — a(v, C). Inverse cosine-Fourier transforming this set of datdggie
the samey,,., map plus a Dirac contribution at= 0 plane that can be discarded.

This procedure shows that there is enough information foonstructingo,,,.s in a set of
data consisting of only one incident polarization and oneponent of the diffracted field.
However, the proposed solution, seems impractical asuires|to select the proper illumination-
observation pair for each vector frequeriey C) of a. Usually the set of measurement never
contains exactly the proper pdk, k;,..). This is why we preferred to used the iterative inversion
algorithm described in the next section.

4.2.3 Numerical experiments

To show the interest of the mirror-assisted TDM concept, erégomed numerical simulations
of the experiment and developed an iterative inversion gaore to reconstruct,,.,. The
calculations were done thanks to a Fortran code providedabycR C. Chaumet [72].

We consider a sample consisting in a non-absorbing diedesgthere with relative permit-
tivity € = 1.01 containing two absorbing spherical inclusions with petimitly ¢ = 1.01+0.02¢
separated vertically by.6)\ centre-to-centre (see Fig._4.4). The far-field diffractgdtihe
sample placed in free-space or on a mirror is calculatedaiggly with the Coupled Dipole
Method €f. Sec.[7.1) and corrupted with nois&/) [72]. The incident (respectively dif-
fracted) waves are sent (respectively detected) in a cotiehaif-angle70° corresponding to
NA = 0.95. We use 64 incident plane waves and 121 observation directegularly spaced
within the incident and observation cones. All the incidplane waves are-polarised and
only one component of the diffracted field is measured (wlisichplifies greatly the experi-
mental set-up).

We study four different TDM configurations: the transmisstase where incident and ob-
servation cones are opposite; the reflection case, wheradigent and observation directions
are done from the same side; the ideal 4Pi case, where irmgdeand observations fill both
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Figure 4.4: Sketch of the test sample used to compare thereliff TDM configurations. The
2)\-diameter sphere has a relative permittivity- 1.01 and contains two absorbing inclusions
with relative permittivitye = 1.01 + 0.02:. These permittivity values are low enough for the
renormalised Born approximation to be valid.

cones above and under the sample; the mirror assisted chases the illumination and obser-
vation are done from the same side and the sample is plackd indinity of a mirror.

To retrieve the permittivity map from the diffracted farkfiean inversion procedure based
on the linearised conjugate gradient algorithm descrilme8ec[7.2.2]1 is used. Under the
renormalised Born approximation, the field inside the samglassumed to be equal to the
reference fieldi. e. the field that would exist without the sample. This approxiorapermits
to diminish dramatically the computational burden.

Results are presented in Fig.!4.5. The transmission coafigargives a correct image of
the sphere but does not resolve the two inclusions. The mamelol from the reflection config-
uration is impossible to interpret because the real andimaagparts of the sample permittivity
are mixed (see Sec. 3.3 and Figsl] 3.2 (d) and (e)). The massisted and the complete config-
uration give comparable images. The sphere is well reaactsil and the two small inclusions
are resolved. This illustrates clearly the interest of thonassisted TDM. The mirror config-
uration brings about a resolution equivalent to the ideab#®, with a set-up no more complex
than that used for the reflection configuration. The resotus almost isotropic, being equal to
A/(2NA) in the lateral direction and/2 in the axial one.

4.3 Conclusion

In this chapter we have shown the interest of placing the gampthe vicinity of a mirror
for improving the axial resolution of Tomographic Difframn Microscopy. We have observed
that, in the specific two-dimensional scalar configuratidrere the sample is invariant along
one axis and the illumination and observation are performiggn one plane, it is necessary
to measure sequentially the diffracted field for two différpolarisations of the illumination
field for reconstructing properly the sample permittivitin the vectorial three-dimensional
configuration, the measurement of one component of theadtfd field for one incident po-
larisation for illumination-observation pairs scannihg bbjective accessible cone is sufficient
for retrieving the sample permittivity map. One obtains $hene resolution as an ideal set-up
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Figure 4.5: Reconstructed permittivity maps obtained fffedent configurations of TDM. The
sample is described in Fig._4.4. The maximum angle definedéypbjective numerical aper-
ture is70°. (a) and (b) real and imaginary part of the permittivity mapanstructed from a
transmission TDM experiment. (c) and (d) real and imagin@axt of the permittivity map
reconstructed from a reflection TDM experiment. (e) and€8)l end imaginary part of the per-
mittivity map reconstructed from a mirror-assisted TDM esment. The black line indicates
the mirror position. (g) and (h) real and imaginary part & germittivity map reconstructed
from an ideal TDM experiment where illumination and obséoraare performed from both
sides of the sample.

where the sample is illuminated and observed from all ptesslipections (as can be done with
two opposing objectives). The improvement brought abouhleymirror and the simplicity of
its practical implementation suggests that it could alsageful for other types of microscopy
techniques. Indeed there is also a lack of axial resoluti@monfocal microscopy as in all types
of technique that requires focussing of a laser beam. Indhewing chapter, we propose to
use a mirror in a confocal microscopy set-up for improving élxial resolution.



Chapter 5

Isotropic Single-Objective microscopy: a
mirror-assisted confocal fluorescence
microscopy

5.1 Principle

In this chapter, we adapt the mirror approach to confocarasaopy in order to ameliorate
the axial resolution[]6]. Indeed, similarly to Tomograplidfraction Microscopy, the axial
resolution of confocal microscopes is several times latigan the transverse one because of
the asymmetry of the illumination and observation (see[3€c2). To address this problem, it
has been proposed by Heli al.[5] to create a quasi-isotropic illumination spot by sermyline
laser beam trough two opposing objectives. The interferdrmetween the counter-propagative
beams allows the reduction of the spot size along the opdixal However this approach
requires a long-arm interferometric set-up that is diftitotune and stabilise. We propose here
to replace one of the objective by a mirror.

Focusing a laser beam before or after a mirror, by itselfpoabring any improvement of
the spot geometry simply because the incident and the refléeids do not participate together
to the spot formation. It is also necessary to shape theentioeam so that both incident and
reflected fields converge toward the same point. Electroetagtime reversal theory recently
provides a proper framework for this goal [9/ 6] 94]. The tlyesiates that by sending in time
reversed order (or with phase conjugation), the field radidly a point source in an arbitrary
environment, one forms an optimal light spot at the sourcatlon [10]. Hence, to focus light
into an isotropic spot before the mirror, one needs to shiapdeam reaching the back focal
plane of the objective so that it resembles the conjugat#iuedield radiated by a dipole placed
at the focussing position. Our approach consists in firsuktmg, at the back focal plane of
the objective, the field radiated by an emitter placed,aabove the mirror. Then, we use a
Spatial Light Modulator (SLM) to impose the required phaagation on the collimated laser
beam reaching the back focal plane. This phase has to be pusitg of the simulated field
phase (phase conjugation). With this proper wave-fronb#eamn focus at the desired position
with an optimal isotropic shape.

The next section gives all the theoretical and practicahitledbn the mirror-assisted 1SO
fluorescence microscopy. The text corresponds essentialiye article by E. Le Moal, E.
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Mudry, P. C. Chaumet, P. Ferrand, and A. Sentefsmiropic single-objective microscopy:
theory and experimengl. Opt. Soc. Am. A28, 1586—-1594 (2011) [7]. Additional work on
radial polarisation and two-photon microscopy is also @nésd at the end of the chapter.

5.2 Isotropic Single Objective (ISO) microscopy: Theory ad
Experimen

5.2.1 Introduction

Sharp focusing of light beams is the keystone of numeroukcapipns in crucial technological
fields including far-field optical microscopy [95], opticatiting and reading for high-density
data storage [96, 97], and trapping and manipulation of farticles [98| 99, 100]. Objective
lenses of high numerical aperture with high-order abematiorrections have been developed
to reduce the dimensions of the focal spot down to the diffvadimit. Still, optical focus-
ing systems based on a single-lens geometry cannot fodustig ideally spherical volumes
because the illumination comes only from one side of thelfpoat. As a result, the focal
spot is elongated along the lens optical axis, with an axialedsion about threefold larger
than the transverse ones, at best. Such a pronounced apisctinstitutes a serious draw-
back for any three-dimensional (3D) application in the abomentioned fields of technology.
This fundamental issue has motivated the study of manyrdifteapproaches, among which
are notably the use of pupil filters to control the amplitudd/ar the phase distribution of the
input field [58,101] 102, 103, 104, 160] and (or together witi® use of peculiar polarisation
modes|[59, 105, 106]. These approaches allow to enginearcéotain extent, the spatial field
distribution at the focus; however, they bring about onlydest improvement concerning the
axial dimension of the focal spat [107].

In the specific field of 3D fluorescence imaging in biology, theolution issue has been
addressed through sophisticated approaches resortingretinear excitation processes and
optical focusing systems based on a multiple-lens geonfie®,/109]. In 4Pi microscopy, the
sample is sandwiched between two opposing lenses haviisgthe optical axes and front focal
planes. Focusing light through both lenses in a coherentyiglgs an interference pattern that
exhibits a quasi-spherical intensity peak surrounded lmgeseide lobes |5, 110, 111]. The
4Pi focusing (and detection) scheme has brought about sespéar improvement in the axial
resolution of 3D fluorescence imaging but it requires a chadignment of the lenses and turns
out to be quite sensitive to mechanical drifts.

In this work, we demonstrate that light can be focused intaasgspherical spot thanks to
one microscope objective lens, a mirror and a specially esthapeident beami [6]. In a naive
view, the ISO focusing set-up is equivalent to the 4Pi seiawphich the role of the second lens
is played by the image of the first one in a mirror.

We first detail the concept of ISO microscopy and describentimaerical technique that
permits to simulate with the least possible approximatibagoint spread function of a realistic

1This section was originally published in E. Le Moal, E. Mud®y C. Chaumet, P. Ferrand, and A. Sentenac,
Isotropic single-objective microscopy: theory and expemt J. Opt. Soc. Am. A28, 1586—-1594 (2011) [7].
Theory and simulations were made by Patrick C. Chaumet, /Aerdgenac and myself with the advices of Pr.
Colin Sheppard; Experiments were made by Eric le-Moal artddRaFerrand with the advices of Pr. Rainer
Heintzmann.
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Figure 5.1: lllustration of the 1SO focusing concept, basadthe time reversal theory. (a)
The incident field is made of a sum of plane waves propagatomga:r with complex vector
amplitudee;(u). (b) the field radiated by a dipole placed:at before the mirror can be decom-
posed as a sum of plane waves propagating aleagvith complex vector amplitude,(—u).
To focus at point,z, the time reversal focusing theory states #héti) should ideally be equal
to the conjugate o¢,(—u).

ISO fluorescence microscope. Then, we show how an ISO fluemesanicroscope can be built
out of a conventional confocal microscope and display eérpartal point-spread-functions. We
point out the main features that can hamper the performasfdbe microscope and give some
hints to overcome them.

5.2.2 Principles of ISO focusing and simulations
5.2.2.1 Time-Reversal focusing theory

To focus light into a spherical spot, the illumination shbideally reach the focal point from
every possible direction. To approach this spherical ilhahon with a single objective lens,
we place a mirror nearby the focal plane and engineer thdentwave front so that part of the
incident and mirror-reflected fields converge towards tlvalfpoint.

Hereafter, the sample space (after the objective lens)gsribed by a Cartesian set of
coordinateqz, y, z) with the origin placed at the focal point of the lens and thaxis cor-
responding to its optical axis. In this part, for simpligitie mirror plane is set at the= 0
plane which corresponds to the focal plane. To describerttident beam, it is convenient
to introduce the polar and azimuthal angl@s{) associated to the unit vectonsdefined by
u = cos 6z + sin f cos ¢x + sin @ sin ¢y, uy = z x u anduy = u x u,. The incident field on
the mirror is cast as a sum of monochromatic plane waves [ge®H(a)], propagating in the
u direction with complex amplitude vectefu),

Ein(r) = / / sin fe; (u) exp(ikou - r)dfdde (5.1)
$€[0,27] J0E€[~Omas,Omax]

wherek, = 27 /) is the wave number in the sample space, épd is the maximum angle
that can be reached in the sample space with the chosen mahegerture of the objective.
Because of the transverse nature of the plane wayg@s), can be decomposed on the (u,)
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basis. Assuming the mirror to be perfectly conducting, #feected beam reads,

Eea(r) = / / sin fe, (u)ehot—2w2)zl T4 (5.2)
d)e [07271'} e [*emmuemax}

with e, (u) = —e;(u) + 2[e;(u) - z|z.

The shaping of the incident beam is performed following threetreversal focusing theory
depicted in Ref.[[10] and illustrated in Fig. 5.1. To focughli at the pointry = 2z, e;(u)
should ideally be equal to the complex conjugategf-u), the complex amplitude vector of
the plane wave emitted in theu direction by a dipole-source placed atr,. The radiation of
the dipole in front of the mirror is equivalent to that of twipdles in free space, symmetrically
positioned with respect to the mirror planezgtand—z,, with samez-component and opposite
(z,y) components. As a result, one finds foparallel to the mirror,

eldeal (1) o sin(zoko cos 0)[p — (p - u)p], (5.3)
and the same expression wifln(zo ko cos 0) replaced bycos(zoko cos #) for a dipole normal to
the mirror. Note that the incident bedh,. defined by Eq.[(5]1) witle; given by Eq.[(5.B) fo-
cuses at two points along the optical axis;@and—z,.The shape of the two spots is elongated
along the optical axis in the same way as that of the stangetcobtained by focusing a plane
wave through one objective lens. The quasi-isotropic spobtained through the interference
between the incident and the mirror-reflected beams.

More precisely, if,..x = 7/2, the time-reversal theory states that the total figld, (r, ro) =
Ein(r,rg) + Ereq(r, ro) With e; satisfying Eq.[(5.13) is proportional to the imaginary pdrtte
electric field radiated by the dipole placedrgtbefore the mirror([10]. Now, because of the
rapid decay of the reflected field (namely the field emittedhgyitmage dipole), the field radi-
ated by the dipole before the mirror is quite similar to thé&dfi@adiated by the same dipole in
free-space. Its intensity distribution has a quasi-spghéshape with radius at half-maximum
about) /2. Hence, the time-reversal beam shaping appears as a veigrfivay for obtaining
an isotropic light spot that can be moved with respect to tiveom without distortion, just by

changingy, in Eq. (5.3).

5.2.2.2 Simulation of the Point Spread Function (PSF) of thé&SO microscope

Considering a realistic objective lerts,., is inevitably smaller tham /2. Moreover, it is gen-
erally difficult to shape simultaneously the phase, amgétand polarisation of the incident
waves to obtain a field satisfying E@. (5.3). Hence, to ingast the achievable performances
of the ISO focusing and imaging concept, we have performeullisitions of the illumination
and global PSF of the ISO microscope accounting for thesst@ints.

In our experimental configuration, a Spatial Light Modutaf8LM) that only modifies the
phase of the field is placed at (or conjugated to) the real fdaae of a microscope objective
lens. The first difficulty is to relate the field leaving the SiNane to the plane waves that
illuminate the mirror.

To indicate points and vectors in thie, y) SLM plane, we introduce the cylindrical set of
coordinatesy, 1) associated to the local basis
u, = cosYx + sinyy
u, = —sinYx + cosYy.
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Under Abbe’s sine condition, a poing,() of the rear focal plane (where the SLM is placed)
corresponds to a plane wave propagating in the sample sfmaggtheu direction defined by
the polar and azimuthal angles ¢) which satisfy,¢ equal toy and

sin @ = (sin Oyayx)p/ R, (5.4)

where R is the radius of the aperture at the rear side of the objet¢ie. More precisely,
provided that we can neglect the various reflections on theapcomponents, the electric
field E(p, ¢) collinear tou, [u, ] leaving the SLM plane at poir(ip, ¢) is transformed into
a plane wave propagating alomgthat is polarised along,, [—u,] with a damped modulus
E(p, )V cosf, wherev/cos 6§ is the so-called aplanatic factor. Hence, the complex anysi
vectors of the incident plane waves in the sample space thaemerated by any fiel(p, v)
leaving the SLM reads,

ei(w) = Veos 0 [B(p, v) - ugluy — [E(p, ) - w,Juy ). (5.5)

Eq. (5.5) gives the field in an aberration-free system satigfthe sine condition. Other
apodisation factors could be used (to account, for exangie¢he Fresnel transmission coef-
ficients of the lens), but they were shown to have a limitedaotn the size of the point
spread function[[112]. The field leaving the SLMI(p, ), can be written af(p,v) =
Eo(p, ) explif(p, )], whereEq(p, v) is the incident field on the SLM anfi p, 1) is the phase
modulation applied by the SLM. In our set-up, the SLM is ilimated by a collimated beam
that is linearly polarised along theaxis which corresponds to the working axis of the SLM.
Hence E, is a constant. The pattern displayed on the SLM is given byptase of EqL(5]3)

flp, ) = gsign[sin(zoko cos0)], (5.6)

whered is related top through Eq.[(54). Introducing Ed.(5.6) into EQ. (5.5) amdnparing

the latter to Eq.[(5]3) witlp = x, one observes that the phasep€oincides with that obtained
for eldeal, On the other hand, the modulus and polarisation differeeisily for larged and for
propagation directions outside the, z) or (y, z) planes, but the consequences on the focusing
are negligible[[113].

Once the complex vector amplitudes of the plane waves faynhie incident beam are well
defined, we calculate the reflected beam with Eq] (5.2). Ttafield

Etot (I', 1'0) = Einc(ru 1'0) + Ereﬂ(ru I'0>

depends on the chosen focal paiptvia the phase pattern displayed on the SLM, EqJ(5.6). Yet,
we have checked numerically that, except wheis close to the mirror (typically for distances
smaller than half the wavelength), the spot shape does mptwigenr, is changed. In other
words, the illumination PSESF;(r — 1) o< |Ei(r, T)|? can be assumed to be homogeneous
within the sample space.

Now, to perform a complete modelling of the experiment, oeeds to simulate the image of
a point-like fluorescent source placed-ah the sample space. In our set-up, we use a confocal
detection scheme. The fluorescence light is modified by tiv &hd polarised along theaxis
in the same way as the incident light before being sent, tiir@pinhole, onto a detector. We
assume that the intensity recorded by the detector is ptiopat to [, |E(v).x|*dv whereS is
the pinhole transmission area aB¢v) is the field radiated at point by the fluorescent dipole
Piuwo placed at in the sample space for a given focal patpset on the SLM.
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The calculation offi(v) - x is easily done by invoking the reciprocity theorem|[93]. We
consider a virtual monochromatic dipgbe;...1, Oriented along th& axis, placed at the centre
of the pinhole and radiating at the same wavelength as theeBiuent dipole\’, which is
slightly different from the wavelength of the illumination It generates a plane wave normal
to the SLM plane, and creates, in the sample space, thelglr, o). If pyirtua is Shifted by
v in the pinhole plane, it creates the fidy , (r, ro + v) in the sample space (for simplicity, we
overlook the magnification factors between the pinhole &edsample space). The reciprocity
theorem states tha(v).pyirtual = Privo-Epv (T, To + v). Now, the fluorescent dipole amplitude
is proportional to the field at pointcreated by the incident laser fiel}  (r, ry). Finally, the
intensity recorded by the detector can be written as,

I(r,ro) o< PSFf(r — rO)PSFSIet(r — o), (5.7)
wherePSF). (r — ro) = [, PSF}i(r — ry — v)dv. We note that/(r,r,) depends solely on

r — ro. We then introduce the global PSF of the microscd{# (r — ry) o I(r,ry) which, in

the ideal case of a point detector and a perfectly coherasrefieent source emitting at the same
wavelength as the excitation light is equalRSF;,. This ideal configuration is equivalent to a
4Pi microscope of type C with a point detector [114]. Unfodtely, the fluorophore emits at

a longer wavelength than the excitation wavelength andenmoportant, the coherence length
of the emitted light is abou$ ;m which is generally smaller than the distance between the
fluorescent source and the mirror. As a result, the fluorédight directly emitted towards
the objective lens does not interfere with the emitted libhat is reflected by the mirror before

being collected. In this case,

B (1. x0)|” = [Efo(r,10)[* + [Efq (r, x0) |

mc

and the detection PSF is very similar to that of a conventiooafocal microscope. This con-
figuration corresponds to a 4Pi A type microscape [114]. Nb#t by placing a filter (with
typically a10 nm bandpass) in front of the pinhole, one could increasedherence length of
the fluorescence light so that the direct and reflected beatedare. In this case, the detec-
tion PSF would be similar to the illumination PSF and the gunfation would correspond to a
4Pi-C microscope.

Figurel5.2 shows the global PSF of the ISO microscope, cttedfor a quasi-ideal object-
ive withsin 0., = 0.99 and a more realistic one witfn 6,,,. = 0.80. In these calculations, we
use the parameters of the experimental set-up: wavelength91 nm and pinhole diameter in
the focal pland .22 ). Light is focused in vacuum and the objective lens is assumbd ideally
un-aberrated. The validity of our numerical technique wsecked by comparing its results for
a standard confocal microscope to the semi-analyticalksgions given in [29, Chapter 6]. The
SLM is modelled as 4000 x 1000 pixel array, with a constant phase value on each pixel. To
account for possible errors stemming from the SLM pixedlatithe propagation directions of
the plane waves forming the incident beam are not discrketiséhe Cartesian SLM basis but
in the spherical basig, ¢), 500 inf and 180 ing. The SLM pattern is tuned to focus light
at zo = 20\ from the mirror and the incident polarisation is collinearthex axis. The fact
that the emission wavelength differs from the excitatioe @not taken into account for these
simulations.

The global PSF obtained fafA = 0.99 is quasi-isotropic with diameter abowf3. For
NA = 0.8, the central peak of the PSF is also quasi-isotropic butplagued by side lobes
of higher relative intensity60% to 80% of the main lobe) than that observed f§A = 0.99
(about20%).
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Figure 5.2: Global PSF of an ISO microscope, simulated far diferent objectives in air:
(a) and (c) ideal objective witlhA = sin #,,,, = 0.99. (b) and (d) realistic objectivéyA =
sin 0., = 0.80. These images corresponds to slices taken (a,b) in theveeesand (c,d) axial
planes.

Remarkably, we observe that, along the optical axis, thbajBSF,; of the ISO micro-
scope is perfectly fitted by the globBEF,.; of the conventional confocal microscope (with
same numerical aperture) timess?[Skq(z — zy)]. The parametef depends on the numerical
aperture of the objective (0.70 fdYA = 0.99 and 1.02 folNA = 0.80), see Figl.5.3. This beha-
viour is easily understood if one approximates the 1ISO spdhb interference of two counter
propagative Gaussian beams with superimposed waists. draenpters indicates that, along
the optical axis, the phase of the field forming the beams doesgary along: askyz. Indeed,
there exists a phase delay, known as the Gouy phase (whig@ndepn the beam waist and
thus on the numerical aperture of the objective), that meslifhe period of the interference
pattern. This property gives an interesting self-consistgy to verify that the ISO microscope
is correctly tuned as it relates the ISO point spread fundiiothe standard confocal one ob-
tained with the same objective. In the following we will uséstapproach rather than a direct
comparison between theory and experiment to assess theegaf our mounting. Indeed, we
noticed that comparing theoretical results to experimentas was particularly difficult as the
claimed numerical aperture and apodisation functions efoibjective were not that observed
experimentally[[115].

5.2.2.3 Discussion on the phase pattern

In the absence of the mirror, the incident beam describedji [5.1) and (513) focuses at two
points, located at, and—z, along the optical axis. Therefore, an alternative appraeadime
reversal focusing could consist in splitting the SLM in twadadisplaying two Fresnel lenses
focusing at different points. The phase pattern of eachriétdans is thenf (p, 1) = kozo cos 6
for the first one, and (p, ¢) = —koz, cos § — for the second one. Ther added to this second



70 5 Isotropic Single-Objective microscopy

~3000 ~600
S S

L 5000 &
<2000 .40
= =

& 1000 & 20
E E

Ceoceees0eesd O & 0a00885008eE

9 10 11 =9 T 11
z (um)

10
z (um)

Figure 5.3: Axial profiles taken from the PSF of a ISO micrgex¢solid line) and a conven-
tional confocal microscope (dashed line), simulated féfedent NA in vacuum. (aNA = 0.99.

(b) NA = 0.80. For comparison purpose, the PSF of the conventional cahfoicroscope has
been plotted after modulation kys?[3ko(z — 2¢)] (circle markers). The observed asymmetry
stems from the phase mask discretisation induced by the SLM.

formula is necessary to obtain the right phase match betiiese two focuses. The advantage
of the Fresnel lens mask is that it can generate spots thasai®se to each other as possible
whereas the time-reversal mask becomes very approximata whdecreases below a given
value. In fact, as, tends td), the number of sign changes in the functiom zykon cos 0) tends

to 0 too and, therefore, the phase modulation becomes incggpsss efficient to substitute for
an ideal amplitude modulation in the time-reversal appnodhe disadvantage of the Fresnel
lens mask is that it requires to split the SLM in two areas s dmly part of theu directions
focus atzy (—zp).

In Fig.[5.4 we give an example of the phase masks that areaglisplon the SLM following
the time reversal technique or the Fresnel lens approadhdifierent templates for splitting
the SLM. All three masks shown in Fig. 5.4 were designed foufing light at:o = 1 um (with
A = 491 nm). The simulations of the global PSF obtained with theferéint masks were very
similar (not shown).

We now turn to the experimental measurement of the globald®8te 1ISO microscope. In
our experimental set-up, we have used both the time-rdvamngaFresnel lenses techniques for
engineering the incident beam.

5.2.3 Experimental results
5.2.3.1 Description of the set-up

The experimental configuration of the microscope exhiligssame features as that presented
in the theoretical and numerical section. Basically, th® I8icroscope consists in a conven-
tional home-built confocal microscope that has been matitheallow the wave front shaping
of the incident and detected light, see Hig.]5.5. More pedgisa phase-only SLM (Pluto-
VIS, Holoeye) functioning in reflection was introduced beem a dichroic mirror (z488/633,
Chroma) and a water immersion objective lens (Plan Apotd&, NA = 1.2, Nikon). The
SLM plane was optically conjugated to the rear focal plandefens using a telescope. Hence,
each pixel of the SLM corresponded to one direction in theeplagion region as assumed in
the first section. Excitation was supplied by a continuougav®1 nm laser. The fluorescence
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Figure 5.4. Examples of phase masks for ISO focusing. Fomsstny reasons, only the top
right quarter of the masks are shown (bottom left corner ésdbntre of symmetry). Mask
designs are based on (a,d) the principle of time reversakiag and (b,c,e,f) combinations of
Fresnel phase plates following (b,e) a checker boarghof 50 pixel*-wide squares and (c,f)

a pie chart of 16 slices. These masks were generated for fieoettit configurations in which
the mirror is placed (a-c) in the genuine focal plane of thedive lens and (d-f) a = 6 um
above it. In the latter case, the tekyi cos § has been added to all the phase patterns given in
the text.

light collected in epi-geometry was "de-scanned” by the Siiorder to keep the optical con-
jugation between the pinhole and the probed region. It wastsgly filtered (FF01-525/39-25,
Semrock; centre wavelengtts25 nm; band width:39 nm at90% transmittance45 nm at
50% transmittance, corresponding to a coherence length oftébpm in vacuum) and spa-
tially filtered with a 30um pinhole {.e. 1 Airy diameter) placed in front of a photon counter
(PD1COC, Micro Photon Devices). Both excitation and fluoceese lights were horizontally
polarised (along the axis) so as to be parallel to the working axis of the SLM. Tgpexcita-
tion power and acquisition dwell time were LUV and 1 ms/pixel, respectively.

The sample consisted in a suspension of isolated 100 nmespftduospheres Yellow/green,
Invitrogen) in al%wt agarose gel film (typical thickness of 5 to Lfn) and was sandwiched
between a Ag coated mirror and a conventional A&®cover slip. The mirror, was placed a
few microns away from the focal plane of the microscope dhjedens on a nano-positioning
stage (NanoLP100, Mad City Labs). In our configuration, las@nning was performed by
changing the SLM pattern while transverse scanning was dgneanslating the mirror in the
(z,y) plane with the stage.

5.2.3.2 Global PSF of the ISO microscope

To estimate the global PSF of the ISO microscope, we meagshred-dimensional images
of isolated beads in the sample and assumed that the latter smeall enough to be con-
sidered point-like sources. Although a more precise assa#sof the PSF would require
3D-deconvolution of the image by the bead volume, we foundhiyerical simulations that
the actual bead size (100 nm) only slightly affects the ®iegntrast. Different patterns were
displayed on the SLM to engineer the wave front. The besiteaere obtained for the time-
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Figure 5.5: Schematic of the microscope set-up. Captiorsdaache photo-diode (APD); half-

wave plate (HWP); phase-only spatial light modulator (St.Mar focal planer{p). Lenses are
achromatic doublets. See details in text.
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reversal mask [see Fig._5.6 (a)] and the Fresnel mask withslidés pie-chart template [see
Fig.[5.6 (b)]. We observed that the performance of the chdodard templates decreased with
the square size (frorf0 x 50 pixel’ to 1 x 1 pixeP). The influence of the templates on the
experimental image, which is not retrieved with the simuolat, points out the practical limits
of the SLM and, in particular, its failure to generate impottphase changes at high spatial
frequency, see Sedc. 5.2.3.3 for more details.

To check the performance of the ISO set-up, we compared thgarof a bead obtained in
the ISO configuration to that of a bead measured in the colreaitconfocal geometryi.g.
without the mirror and the SLM), see Fig. 5.6 (a). Similadythe simulated PSF shown in the
first section, we observed that the experimental ISO PSesedb the experimental PSF of the
conventional confocal microscope, modulatedcby?[3ky(z — 2)]. We thus obtain a quasi-
isotropic central peak, flanked by high side lobes that retiee less than perfect focusing
achievement of the conventional confocal microscope.

We then checked the homogeneity of the global PSF, by stgdiimimages of beads loc-
ated at various distances from the mirror, [Eigl 5.7. We okeskthat, as expected, the profiles
exhibit the same features whatever the distance of the lmetkok tmirror and the positions of
the fringes change with the location of the beads.

These experimental results suggest that we have achiegdmdést ISO point spread func-
tion possible with such a confocal microscope. It is worthingthat even for experiments
requiring 15 to 20 minute-long measurements, we observatfiftamf the set-up; namely the
ISO PSF was preserved all along. We now describe the prelmstudies that were necessary
to tune properly the 1ISO set-up and obtain these results.

5.2.3.3 Tuning an ISO microscope, cautions and preliminarngtudies

Basically, the ISO set-up requires to check three imporsseys, the confocal detection, the
engineering of the wave front and the mirror positioning.

Confocal detection We have seen in the first section that ISO microscopy reqthiesoth
incident excitation light and collected fluorescence ligattreated by the SLM; otherwise, it
would not be compatible with a confocal detection schemew,Ntorescence light has a
slightly longer wavelength than that of the excitation tiglor which the phase masks were
designed. Due to this chromaticism issue, we expect thenapiposition of the pinhole to
slightly change when going through the phase mask seriesreldre, we evaluated the detec-
tion efficiency of the microscope for each of the phase maskdpcusing light in a droplet
of fluorescent dye solution (Rhodamine 618, mol L~!), as schematised in Fig. 5.8. The
position of the pinhole was optimised while focusing lighu@ before the focal plane. We
observed that the detection efficiency decays slowly asabtesfis moved away by displaying
different masks on the SLM. Loss of efficiency is observedmtmabou0% at the extremes.
Unsurprisingly, we found that the decay depends on the $ite@inhole; larger pinholes yield
smaller losses. A pinhole of diameter afn, (i.e. one Airy diameter), appeared to be a fair
trade-off between the optical sectioning and a relativelystant efficiency of detection over a
sufficiently wide scanning range along the optical axis.
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Figure 5.6: Profile intensity along the axis of the images of isolated 100 nm fluorescent
beads, measured by ISO microscopy. Vertical and horizatitas of these images are shown
in insets. Phase mask designs were based on (a) time reaacs@b) combinations of Fresnel
phase plates with respect to a pie chart of 16 slices, seBHigNote that the image of the bead
was recorded by transverse scanning with the nano-posig@tage and axial scanning of the
sample with the SLM.
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Figure 5.7: Intensity profiles taken along the axial direcif 3D images of 100 nm fluorescent
beads, measured by ISO microscopy using time-reversa¢phasks. Bead-to-mirror distances
are estimated, on the basis of the position of the brightegjd in the interference patterns, to
2.1um (=), 2.5um (...) and 4.3um (- -).
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Figure 5.8: Relative variation of the fluorescent signal dgration of the phase masks dis-
played on the SLM, measured by focusing light in a dropletwdriéscent dye solution (Rhod-
amine 6G). Fresnel-lens phase masks were used to focugliglsingle spot 0 to 12m before

the genuine focal plane of the objective lens. Spatial filteat detection was performed with
pinholes of diameter 3@m (—) and 50m (- -). These curves reveal the dependence of the
detection sensitivity on the SLM display.

Engineering the wave front of the incident beam In a naive view, ISO focusing consists in
forming two spots along the optical axis, one at the focaltmysand the other at its virtual
image behind the mirror. Hence, at least one of them form®obtite genuine focal plane of
the objective lens. Now, for achieving an interferencegratbf optimal contrast, the two spots
should have a similar field distribution and be accuratelyifpmed. Hence, it is necessary to
check that focusing out of the focal plane does not detdadtee spots. We tested the ability
of our water-immersion microscope objective to focus lightto 12;:m before its focal plane
by displaying a Fresnel lens with varying focal length on&hé/. This was done by recording
images of beads scattered in an agarose gel film depositestandard glass slide. Axial slices
of these images are shown in Figs]5.9 (a-b). Spot radji&t[see Fig[5.P] were then evaluated
by fitting axial and transverse profiles taken from the imagk awGaussian function. Axial and
transverse widths were found almost constant (to withiB 0r@), which indicates that focusing
out of the focal plane by wave front shaping with simple Fetghase masks introduces only
negligible aberrations, within 12m (at least) before the focal plane of the objective.

We decided to place the mirror ét= 6 um before the genuine focal plane of the objective
in order to minimise the influence of the incident light thewwinaffected by the SLM which
then focuses behind the mirror. The phase masks were thegnddgo generate two spots at
equidistant locations with respect to a plane that lays at 6 xm before the genuine focal
plane, see Fid. 5.4, and their axial range was limited foy6above and below this plane to
remain within the checked aberration-free domain. Hentallithe experiments, the samples
were axially scanned over a layer of/én before the mirror only.

The phase mask building required also some cautions. I todgpply the time reversal
formulae or to arrange a combination of Fresnel lenses inskpane needs to associate the
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Figure 5.9: Spot radii at/e?, evaluated by fitting (with a Gaussian curve) axial and erse
profiles taken from fluorescence images of a 100 nm bead, mezhstile controlling the actual
plane where light focuses using the SLM. Insert: Axial "ioétwo of these images, measured
while focusing (a) in the genuine focal plane of the lens ddn(a plane located2 ;m before

it.

pixels of the SLM [defined by their coordinates (/)] to the propagation directions after
the objective lens. The main difficulty is to determine thdiua R of the pupil image on
the SLM as introduced in Eq._(5.4). First, an approximateiealf R can be calculated from
the specifications of the objective lens (numerical aperand radius of the pupil) and the
magnification ratio brought by the telescope between the @bl the objective lens. Then,
this value of R can be refined through a simple calibration method that sts81 measuring
the 3D image of a fluorescent bead (in absence of the mirroflpwiisplaying on the SLM
a phase mask for ISO focusing. In that case axial scanningrfenmed with the stage. The
phase mask is designed to generate a spot at a given disiatwéhe mirror and yields two
spots separated B¢, along the optical axis in the absence of the mirror. The intageal the
positions of the two spots and the radid$s optimised until the distance between the two spots
actually corresponded to two times the targetgdFigured 5,10 (b-c) show vertical slices in
an axial plane of the bead image, measured with phase masimeded with the time-reversal
approach forzy, = 1 and 2um. After calibration, the image reveals pairs of spots that a
separated bgz, =2 and 4um along the optical axis, as expected.

Placing the mirror Once the two twin spots are created, we axially scan the ntinrough
focus and measure the detected signal strength. This tgahpiermits one to localise the two
spots with accuracy. The mirror is then placed at equidegtarf the spots with the stage. A
slight tilt of the mirror, if any, can be very accurately ceeted by translating the centre of the
phase mask on the SLM. Namely, its translation by one pixeitiner thex or y directions
(i.e. by 8 um) equates in first approximation to a tilt correction by ab@u°® . The accurate
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Figure 5.10: Fluorescence images (axial slices) of a 100 @8l /measured with time-reversal
phase masks that yield pairs of spots separated by (a) 0,gb)l Zc) 4.m along the optical
axis in the absence of the mirror.

positioning of the mirror is crucial as it governs the ovpgang of the spots.

To investigate the sensitivity of the ISO PSF to possiblepwsstioning or drifts of the
mirror, we measured the image of a bead for different passtiof the mirror. As shown in
Fig.[5.11, the alteration of the PSF is obvious for shifts. 40Q:m or larger. Thus, mechanical
drifts abovel00 nm are expected to deteriorate significantly the PSF. Nowfoued that,
although we did not used any additional stabilising systEsntp 20-minutes long measurements
could be conducted without seeing any deterioration of t8€. Hence, we believe that the
stability of the mirror position withirt00 nm over the experiment time is not an issue.

Correction and calibration of the spatial light modulator The technology of our SLM (li-
quid crystals on silicon chip) has the disadvantage thatakes displays of relatively poor
surface flatness, which may degrade the incident wave frahia#ter the ability of the micro-
scope to focus light. Therefore we did a complete diagndsiBese aberrations by analysing
the reflection of coherent light by the SLM using a wave froemsor (SID-4 HR, Phasics)
mounted on the microscope at the position of the rear focaiebf the objective lens. We
found that the curvature of the SLM mainly introduced de®and astigmatism, as well as
spherical aberrations to a lower extent. We compensatetdkfocus and astigmatism by finely
adjusting the axial and lateral positions of the lenses enstt-up. This was achieved while
keeping all optical planes conjugated and it allowed us ashevave front RMS flatness lower
than 0.1 times the wavelength of light. The remaining sla¢aberrations were minimised by
finely adjusting the objective correction collar while mimning the aspect of the focal spot on
a reflective interface of the sample. As an alternative topemsate for the SLM curvature, we
also exploited the wave front analysis to calculate a "adio@ map” that can be added to any
phase mask on the SLM. However, the first optioa. (handling the "physical” lenses of the
set-up) has the advantage over the second one that the abmficcoscope can still be operated
in conventional mode.¢. without wave front shaping) simply by switching off the SLM.

We configured the SLM to have a linear relationship betweerstgnal sent to its driving
unit and the phase shift actually experienced by the refidaéat. For this purpose, we meas-
ured the phase characteristic of the SLM in an interferoimegt-up. Then we inverted it to
obtain a new data look-up table for the driving unit, in orttehave a linear phase response
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Figure 5.11: Three intensity profiles, taken in the axiaédiion from fluorescence images of
a single 100 nm bead, for different positions of the mirrortHe middle and bottom profiles,
the mirror position differs by 0.1@m and 0.21um from that of the top profile, respectively.
Top and bottom profiles are fitted with envelope curves (dagine) corresponding to (top)
a Gaussian function of radius 0.¢5n at1/¢? and (bottom) a sum of two identical Gaussian
functions of same radius 0.65n but of different centres.

within a well-defined) — 27 phase range at the wavelength of our excitation source (491 n
We also modified the addressing scheme of the SLM. This asidigess digital, which means

that the phase levels are created by pulse width modulabure to low addressing rate and
limited viscosity of the LC molecules, the actual phase Ieexhibit a certain flicker that is

reminiscent from the addressing sequences. NeverthéhesBicker can be reduced by short-
ening the pulse sequences and addressing them more oftan wite frame. Therefore we
switched from the default configuration, designed for 12ifi@itnt phase levels, to a custom
one with 192 phase levels. This naturally reduces the numbeistinguishable phase levels
that can be created, which might not suit all applications.

5.2.4 Conclusion

We have presented in this section the simulations and theriexental implementation of a
novel epifluorescence confocal microscopy techniqueeddEO microscopy (for Isotropic
Single Objective), in which the sample is laid on a mirror @ednned by a quasi-isotropic
spot that is formed through the interference of the direct muirror-reflected field of a spe-
cially shaped illumination beam. We have shown theordticahd experimentally that the
point spread function of this system is similar to that of &@AmPnicroscope. It displays a quasi-
isotropic spot of diameter aboiy2 surrounded by high side lobes. Reducing the side-lobes is
the key point for further improvements of the techniquehtid be obtained by using a micro-
scope objective with an acceptance solid-angle ab@uf116]. The development of an 4Pi-C
equivalent ISO scheme could also be a solution. We have al&stigated in the following
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section the interest of radial polarisation and two photbasination.

5.3 Further works and experiments

Reducing the side-lobes is the key point for further improeats of the technique. To this aim,
we have investigated the interest of radial polarisatiahtaro photons illumination.

5.3.1 Radial polarisation

In a standard confocal microscope, the spot size can be @ateld by illuminating the back
focal plane of an objective by a radially polarised beam [B8jw, the radially polarised beam
at the back focal plane corresponds to the field radiated bgaedoriented along the optical
axis. Itis thus natural to think that using this polarisattould further improve ISO microscopy,
particularly in reducing the side lobes. We have thus cateudl the field radiated by a dipole
oriented perpendicularly to the mirror, see secfion 512.@ne obtains,

eldeal (1) o cos(zko cos @) [p — (p - u)pl, (5.8)
We have simulated the field intensity obtained before theanwhen focusing a radially polar-
ized beam with its wave-front shaped accordingly to the pled€q. [5.8). All the numerical
parameters are the same as that in Sec. 512.2.2. The resuyttotied in Figl 5.12. We observe
that the PSF obtained with the radial polarisation has snmakrtical side lobes but higher
transverse side lobes than the PSF obtained with linearigati@n. It is thus unclear which is
the best for imaging.

5.3.2 Two-photon microscopy

We also applied ISO microscopy concepts to two-photon feemece microscopy [8]. Some
fluorescent markers can absorb photons presenting a wgtelevice larger than their absorp-
tion wavelength([29, Chap. 2]. The absorbed energy is thepgstional to the square of the
intensity at the fluorophore positidg., = o2p,n12%,. While largely less efficient than the usual
fluorescence, this process has many applications in mapyg@9, Chap. 2]. Indeed, as the
total intensity emitted by a fluorescent marker is propodido the square of the incident in-
tensity one can expect focusing deeper in diffusive tiseigeodotaining a better axial resolution.
Generally, in scanning two-photon microscopy, light isusged into the sample but the detec-
tion is performed on a large detector, without a confocalgetWe checked the performance of
the 1SO-scheme in this specific configuration. Fidurel5.X®wshimages of fluorescent beads
illuminated with a pulsed laser source (Nd-YVO4, Amplithiéenitting 6 ps pulses at 1064 nm
with a repetition rate of 34.5 MHz. A SLM compatible with iafred light (X8267-15, Hama-
matsu) was used to shape the beam wave-front. Light emisteédeosample was collected in
epi-configuration and detected without spatial filteringdnyavalanche photo-diode. We ob-
served a significant reduction of the side-lobes as comparede photon fluorescence set-up,
even though the latter was coupled to a confocal detectioense. Further improvement of the
ISO-two-photons fluorescence microscope would be to usesatenfocal scheme. As the illu-
mination and observation wavelengths are very differesg@nd SLM would be necessary to
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Figure 5.12: Comparison of ISO PSF for linear and radial fieddion. (a) and (b)z = 0) and
(x = 0) cut of simulated ISO PSF with a field in the back focal planeapséd along direction

x (see Fig[5.R2). (c) and (dy = 0) and(z = 0) cut of simulated ISO PSF with a field in the
back focal plane polarised radially.
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Figure 5.13: Axial(y, z) and (z, z), and transversér, y) cuts taken from three-dimensional
fluorescence images of 200 nm beads, experimentally mehbyrévo-photon fluorescence
ISO microscopy and standard two-photon fluorescence nuopys Both techniques are based

on non-confocal detection. Fluorescence signal is digglayith a linear grey-level scale.
(Courtesy E. Le Moal)
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process the light emitted by the markers. Indeed, the masfksed! by Eq.[(5]3) are inherently
wavelength dependent.

5.4 Conclusion

We have presented in this section the simulations and theriexental implementation of a
novel epi-fluorescence confocal microscopy techniqudedd50O microscopy (for Isotropic
Single Objective) in which the sample is laid on a mirror acdrsed by a quasi-isotropic
spot that is formed through the interference of the direct muirror-reflected field of a spe-
cially shaped illumination beam. We have shown theordjicahd experimentally that the
point spread function of this system is similar to that of &Afnicroscope. It displays a quasi-
isotropic spot of diameter aboiy2 surrounded by high side lobes. Reducing the side-lobes is
the key point for further improvements of the technique. \&feehinvestigated the interest of ra-
dial polarization and two photons illumination for this pose Additional improvements could
be obtained by using a microscope objective with an acceptaalid-angle aboui5° [116]
and by developing a 4Pi-C equivalent ISO scheme.

This chapter concludes my work devoted to the amelioratidheaxial resolution via the
use of a mirror. In the following chapters, | consider the honation of the lateral resolution
via structured illumination and the development of recargtton algorithms.
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Chapter 6

Structured illumination in fluorescence
microscop;@

6.1 Introduction

In classical wide-field fluorescence microscopy, the sarfipbeescence is excited by a uniform
light intensity and the emitted fluorescence is detectedhatimage plane of a microscope
objective. In the linear regime, the recorded intengifycan be modelled as the convolution of
the fluorescence density of the samplwith the microscope detection point-spread-function
h. The image resolution is limited by the spectral band pasiks whose cut-off is fixed by
Vmax = 2NA /Ao Where),,, is the emitted wavelength amdA is the numerical aperture of the
microscope objective. To improve the frequency contentefitnage, a widely spread solution
consists in illuminating the sample with a non-uniform lighattern. In this case, the recorded
intensity reads, as seen in Chiap. 2,

M = (Ip) * h, (6.1)

wherex stands for the convolution product ands the spatially varying illumination intensity.

Now, if the illumination largest spatial frequency alloweglthe excitation band-passiig
the convolution theorem shows th&t depends on the spatial frequenciespaip to vyax +
v;. Thus, the recorded intensity map contains sample infoomaiat is beyond the detection
band-pass. Many imaging approaches exhibiting a resolbidter than that of classical wide-
field microscopy, like Structured Illlumination fluorescenilicroscopy (SIM) with periodic
excitation patterns [12, 13, 11], near-field hot spots [48/]1translating speckles [118, 119]
and even confocal or related microscopies with focusedatimn spots/[56, 57], rest on this
principle.

However, although these approaches exhibit resolutions typo-fold better than that of the
wide-field microscope [120, 121], they are still seldom uiseithe microscopy community. The
main reason is that they all rely on reconstruction algarghhat require a precise knowledge of
the illumination patterns, small errors on the latter yileddartefacts in the final high resolution

IMost of the text of this section was originally published inNFudry, K. Belkebir, J. Girard, J. Savatier, E. Le
Moal, C. Nicoletti, M. Allain and A. Sentenac, Nature Phatmn6 312-315 (May 2012), and its supplementary
material [14]. Theory and simulations were made by Kamak&air, Marc Allain, Anne Sentenac and myself; ex-
periments and data pre-treatments were led by Jules GinarEac Le Moal; samples were prepared by Cendrine
Nicoletti and Julien Savatier.
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image. This important constraint can be met only if the ilination distortion induced by
the sample or the objective aberrations is negligible artdefset-ups are carefully calibrated
and stabilised to control the illumination. It limits the@ijeation domain to weakly scattering
samples and make the experimental implementation veryiealh Hence, a major step forward
to extend the potential of Structured Illumination Micropg techniques is to develop a method,
hereafter named blind-SIM, that is able to retrieve the darfiporescence density withoat
priori information on the illumination patterns.

The first section of this chapter describes the principleiotSIM algorithm. The second
section presents simulations and experiments of the I8iii-algorithm applied to classical
periodic structured illumination and to speckle illumioat data. The third and last section
presents our attempts to modify the blind-SIM algorithmtfeating measurements with high
frequency illumination patterns produced in the near-ftéld periodic nano-structure.

6.2 Blind-SIM reconstruction method

6.2.1 Principle of blind-SIM

We consider an experimental configuration in which a twoahsional fluorescent sample is
successively illuminated by, different light patternd;—, ;. The fluorescence densipyis
linked to theL imagesM,—; . ;, through

Given theL images, we seek to reconstruct both the fluorescence demrsityhel incident
intensities,i. e. L + 1 unknowns. The system is thus highly under-determined. Tadav
this problem, we introduce the constraint that the sum ahallincident intensities be roughly
homogeneous over the sample plane. This condition assumeshe sample is uniformly
illuminated on average. It reads

-----

.....

L
I ~ LI, (6.3)
=1

wherel, is constant over the sample plane. We use this constrainéfiurcing the number of
unknowns. The last intensity, is assumed to be equal to

L—1
I, =Ll - ) I, (6.4)
=1

so that thel.* equation of[(6.2) can be expressed as

=1

wherel;, is now absent.

The fluorescence density and the- 1 first illuminations are then jointly estimated in an
iterative way so as to minimise the cost functional,
2

My, —

)

L—1
<LIO - ZIZ> p] xh
=1
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where||.|| is an euclidean norm over the image space. As the illuminétioctions/; are jointly
estimated, one need no more assumption on their value tleaapibroximate homogeneity of
their sum. Note that with this approach, the residual inhgemeity of the illumination average
will be transferred to the reconstructed fluorescence tensi

There are various means for finding the minimum of a funclion&e have chosen an
approach based on a non-linear conjugate gradient algarith

6.2.2 Description of the algorithm

The aim of blind-SIM algorithm is to determine the densityflabrophoresy and theL illu-
minations{/;} from the knowledge of the measured intensitlés One notes) the sub-set of
R? wherep and{I;} are reconstructed aridthe sub-set oR? whereM; is measured.

For a given density of fluorophorgsand excitationd;, one defines the residual errgron
Eqg. (6.2) as follows

.= M, — (pl;) * h. (6.6)

The basic idea of the blind-SIM minimisation is to build uppteequences related to the density
of fluorophores and illumination,, } and{/, , }, respectively, so as to minimise

2

Y

T

(6.7)

L—1
=W ||M, = (pL) * h|[} + W HML -
=1

L—1
0 (LIO — Z[l>] * h
=1

wherelV is the normalisation factor

1

=\ (6.8)
> 1M
Subscripts? andI" are included in the norrjj - || and later in the inner produgt|-) to
indicate the domain of integration.

The minimisation of EqQL(6]7) provides a maximum likelihaslimation under the assump-
tion that the residual(6.6) is an uncorrelated Gaussiasenand, as such, does not account
properly for the Poisson nature of the data. Its main adgenis that it does not require to
tune any noise-related parameter. Thus, it can be usedyreadhny experiment. Of course, in
cases where the noise has been thoroughly analysed, it nvayrtiederiving specially adapted
algorithms|[122, 123].

Series{p, } and{],,,} are updated at each iteration according to the followingnsee
relations

Pn = pn—1+andn;p7
Il,n = Il,nfl_'—ﬁl,ndl,n;lu (69)
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whered,,, andd, ,,; are updating directions with respect to the density of flpbayesp and
iluminations{/;}, respectively. Scalar coefficients, and 3, ,, are weights that are chosen at
each iteration step such that they minimise

This choice fora,, andj;,, ensures thaf—"(pn, (Il,n)) is reduced at every step. Calculation of
the functionf leads to a polynomial of variables, and/; ,, for which the minimum is obtained
thanks to a Conjugate Gradient methiod [16, p 413][15].

The updating directiond,,., and d;,,,; are based on the gradient of the cost functional
F(p, 1) g, is the gradient of the cost functionl(p, 1;) with respect tp assuming that the
intensities/; do not change within the domain; while g, ; is the gradient ofF(p, ;) with
respect to thé-th intensity,/;, assuming that the density of fluorophores, andithe 1 other
intensities do not change inside the dom@inThe derivation of these gradients is reported in
the AppendixX B and their expressions read as

L

Gnp = —2W Y Dparin1*h, (6.10)
=1

Jin, g = —QW/)<(7’1,n71 - TL,nfl) * h)- (6.11)

Using gradients as updating direction being generallyficient, one prefers to use a conjuga-
tion algorithm [15]. We choose the Polak-Ribiére conjeggtadient formula [124], known as
one of the most efficient ones

Aoy = Gnip T Ynspln—1;p
with -, , = (Gneldnp = In1ip)o (6.12)
"’ ||gn—1;p||?) ’
dn,l;] - 9in;1 + ’Yn,ldl,n—l;l
. <gl n'I|gl nI — 4i n—1-1>Q
with . = = e (6.13)
! ||gl,n—1;f||?)

6.2.2.1 Positivity

In many cases, the use afpriori information ameliorates the stability of solution with pest
to noise. In our problem, the sought density of fluorophgresid intensitied; are both real
and positive. To incorporate this information in the re¢oinsion algorithmp and thel — 1
firstilluminations{/;} are written as the square of auxiliary functighand{i,} such that

[l = Zl27
p o= & (6.14)

The cost functional to be minimised depends now on thesdiayxiunctions as,
L—1
F(& (i)i=1,..0-1) = WZ | My — (€%47) = hHi + WMy, — [€1,] * hHi , (6.15)
=1

with I;, = LI, — .1-,'i?. As previously, one can define the derivatives of this fuoral with
respect taf and; and perform a minimisation through a gradient type algarithlThe final
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estimated values fgr and /; are then the square of the final estimate§ ahdi,. In this case,
the iterative scheme remains unchanged although the mgdditections?, andd; ; reported in
Eqgs. [6.9) tol(6.12) are rewritten with respecttandi; instead ofp and I, respectively

dng = Gng T Vnedn-1¢
With e = (Gnie| Gnie — 9712—1;§>Q’
|gn—1:¢ll,
dpii = Gingi + Ynidin—1s
with Vrusi = <gl,n;i‘gl,n;i - glénfl;i>Q’ (616)
||gz,n—1;i||n

whereg, andg; denote the gradients of the cost functioalvith respect tg and:, respectively

L-1

Ine = —4W Z ilQ,n—lgn—l(rl,n—l *h) = 2WIpn1§n-1(rpn—1*h)

=1

Jini = _4W£72L,1'il,n71 <(7’l,n71 - TL,nfl) * h) . (617)

6.2.2.2 Boundary effects

An important issue of the reconstruction procedure is thenbary effects. Indeed, the image
on the camera of each emitting fluorophore is as large as tim gpread function. Thus,
fluorophores that are outsideand close to the borders may contribute to the measurements.
In the same way, images of fluorophores insitdand close to the borders may be truncated.
Neglecting these effects leads to strong artefacts thdengthe image interpretation.

To circumvent these boundary effects, we apply a commordy usethod in astronomy
[125,/126]. The domaif in which the fluorescence density and incident intensitiesaught
is taken larger than the image arEBa As seen in Figl_6l1, one adds on the four side§’ of
a large edge of width equal to that of the point spread fundiio During the reconstruction
procedure, the fluorescence dengityand the incident intensities,, can vary freely o2 but
the measurement¥; and the residual errors,, are only evaluated ofi.

Q

a8
N

PSF
width

Figure 6.1: Schematic of the interlocking 9f the domain of reconstruction aroumd the
domain of measurement.

Generally, the reconstructed density and illuminationar dliese edges are false (as there
is no measurement to constrain them), but they constit@tetbper boundary condition for
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obtaining a good evaluation df andp in the subset of? that corresponds tb. All the re-
constructed density and illuminations presented in thearpart of the paper are obtained with
these additional edges. This technique is very efficiergteave the boundary effects except at
the very borders of the image.

6.2.2.3 Initial estimates

The initial estimate of the auxiliary function correspamglito the fluorescence density, is
taken constant equal to 1. For the periodic SIM data, thealrestimates of thd. auxiliary
functions corresponding to the illumination pattefnsare homogeneous overand equal to
Vv I. In the speckle case, better initial estimates of the ilhatibn patterns are obtained by
keeping, constant, (imposingd,,.. = 0) during the first 10 iterations.

6.2.2.4 Computational effort

The dominant operation in the blind-SIM algorithm is thewalntion product;h. This opera-
tion, which has to be done several times for each illumimaganade using Fast Fourier Trans-
forms (FFT). Thus, at each iteration the computational effort is i® (LN log(N)), whereN

is the number of pixels if2 and L is the number of illuminations. Typical computation times
are presented together with the experimental results.

6.2.3 Deconvolution of the wide-field images obtained undarniform il-
lumination

It is well known that the positivitya priori information included in any inversion algorithm
permits the recovery of sample high spatial frequenciesateanot accessible with the imaging
procedure (and not always present in the sample)[[46, 47hcéleit is necessary to check
that the resolution amelioration that we observed in thenstucted fluorescence maps comes
from the physical process of combining different structuluminations and not only from
the inversion procedure. We thus adapted our algorithmderoio estimate the fluorescence
density from one single image of the same sample obtainedrundform illumination. The
fluorescence density is estimated by minimising the functional,

F(§) = WM —(1o6%) = hl[f, (6.18)

where) is the image obtained with the uniform illuminatiéy with a conjugate gradient tech-
nique. Our approach amounts to deconvolving the image witbsitivity constraint. We then
compared the reconstructed fluorescence map obtained lfi®sirtgle image with uniform il-
lumination to the one obtained by processingthelM images. As the two experiments should
exhibit the same signal to noise ratio to provide a fair congpa, the single image with uni-
form illumination is always generated by summing thanages of the structured illumination
experiment.

6.2.4 Regularisation and stopping criterion

As it stands, both blind-SIM and deconvolution algorithme aot well regularised. They con-
verge towards meaningless images in which the noise is &ethliTo circumvent this often
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encountered issue, a Tikhonav [127] or a Total variationul&gsation term is usually added
to the cost functional. The weight of the additional regsked term is optimised by forming
many reconstructions of the same sample with differentpatars and eventually choosing the
"most appropriate” one (for instance, by the mean of the ktv€(i128], GCV [129], or even 'by
eye’). To bypass this rather long procedure (that must beatep as soon as the experimental
conditions are modified), we have chosen an algorithm-d#g@mregularisation which consists
in stopping the reconstruction before convergence.

Indeed, the specificity of gradient-type algorithms is tiegt spatial frequency content of
the reconstructions increases with the iteration numbéthé beginning of the iterative pro-
cess, the introduced spatial frequencies stem from metimjormation contained in the
data. Then, after a certain number of iterations, they spord essentially to high-frequency
noise. Early-stopping of the iterative process is known sisngle (but efficient) regularisation
techniquel[130, Chap. 5] that basically acts as a Tikhongwlegisation. Furthermore, because
the iteration number controls the regularity of the solutithe practitioner can choose "by eye”
the solution with the best trade-off between resolution moide amplification. The stopping
point depends essentially on the signal-to-noise ratio@nthe theoretically accessible spa-
tial frequencies of the imaging system. Practically, apgeee of noise-induced features in the
reconstruction is easily seen, being independent for eixeth p

As we are using the same gradient-type algorithm in the i and the deconvolution
methods, this algorithm-dependent regularisation proaedcts in a similar way for all our
data processes. We stopped the iterations at the appeafasome pixel-size structures (for
the synthetic data) or for a given level of background noisethe experimental data). Using
this criterion, inversions were stopped at different itierasteps depending on the experiments.

6.3 Application of blind-SIM to simulated and experimental
data obtained with speckle and periodic illuminations

In this section, blind-SIM algorithm is applied to data saisained with different illumination
patters, classical periodic ones or random speckle onesodResinusoidal patterns belong
to the classical illumination schemes used in SIM fluoreseanicroscopyl[12, 13, 121]. It
is usually obtained via the interference of two coherenlinalted beams (stemming from a
diffraction grating for example) onto the sample. Sevarages of the sample are recorded for
different positions and rotations of the pattern.

Speckle patterns have also been used in SIM fluorescencesoopy [118, 119], but clas-
sical reconstruction techniques require their measureinefiore imaging the sample. With
blind-SIM is it now possible to use random speckle pattefitey are produced when random
phases are applied to different points of a coherent beaey &én be obtained easily by mov-
ing a diffusive paper through the laser beam before the tiagedn the following, we show the
performances of blind-SIM on simulated and experimenttd dad we discuss the limits of the
algorithm.
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6.3.1 Synthetic data

To analyse the resolution gain brought about by blind-SIM,aensidered a flat two-dimen-
sional fluorescent sample whose fluorescence density ia ive

p(r,8) o< [1 + cos(406)] (6.19)

where(r, 0) are the polar coordinates ofn the sample plane. This radial sample is particularly
convenient for studying the resolution of imaging techesjundeed, its radial features dwindle
as one moves closer to the image centre and there is alway# addius under which they are
not recovered.

The sample is placed at the object focal plane of a microsobjeetive of numerical aper-
tureNA = 1.49. It is imaged with the detection point-spread-function

h(r,0) = (Jl(NAkor) /k0r>2kg/7r, (6.20)

whereJ; is the first order Bessel function of the first kind aqds the wave-number in vacuum.

This equation is the normalised version of Eq. (2.16) calmd in Chafd.]2. In the various sim-

ulated experiments, the same sample is illuminated byrdiffieillumination patterns, classical

periodic patterns, distorted periodic patterns and randpeckle patterns. In all cases, the
excitation wavelength is assumed to be equal to the obsenatvelength.

The synthetic images are obtained following £q.](6.2) anmdugdied with Poisson noise and
an additional Gaussian noise corresponding to the rea@.ndise image pixel size i5/20.
Except said otherwise, the photon buddete. the total amount of photons detected by one
pixel for all the measurements is 20,000 on average. The<saaugsoise standard deviation
corresponds to 7 photons per pixel and per measurement. 3Vmfiestigate the performances
of the blind-SIM algorithm on data obtained with random $pedluminations then we point
out the interest of blind-SIM for classical periodic SIM esially if the patterns are distor-
ted), last we analyse quantitatively the resolution gamdifierent patterns illuminations and
different levels of noise.

6.3.1.1 Blind-SIM applied to random speckle patterns

Since blind-SIM does not assume any particular shape faitltimeination pattern, we are free
to use any inhomogeneous patterns and in particular randginhyrcontrasted patterns such
as speckles. Speckles are interesting for structurediilation microscopy because they bare
high spatial frequencies and their statistical averagensity is homogeneous [131, Chap. 3]
(provided enough illuminations are taken) as required leytind-SIM algorithm. Moreover,
from a practical point of view, they are easy to form and tistatistical properties are very
robust.

In this first simulated experiment, 160 different fully deyged speckles are used. They
are calculated as a sum of plane waves with equal amplituttsaandom phases uniformly
distributed in[0, 2] whose wave-vector transverse projections are taken onkaoflisadius
NA.gko. Fig.[6.2 illustrates the image formation process and thenstruction. We observe
that the blind-SIM estimations of the fluorescence density af the first speckle patterns are
in good agreement with the actual values.
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Reconstruction

Figure 6.2: lllustration of the different steps of a simathspeckle blind-SIM experiment. 160
different speckle patterns witKA.; = NA (upper right panel) are multiplied by the sample
fluorophore density pattern (upper centre) and convolvethbymicroscope detection point
spread function. The data are corrupted by Poisson and@dchoise to yield 160 low resol-
ution images (left panel). The reconstruction algorithitinestes simultaneously the image of
the fluorescence density (lower centre panel) and the 16fkigppatterns (lower right panel).
The side of each square imagé is\.

To verify that the frequency mixing between the illuminatiand the object is at the core
of the blind-SIM resolution improvement, we considered anetical experiment in which
the same sample is illuminated by speckles with differeecsp. In Fig[6.B (d,e,f) the re-
constructed fluorescence densities obtained fflom 160 speckle images are displayed for
NA.s = 0.5NA, NAs = NA andNA.s = 1.5NA, respectively and compared to the true
fluorescence density of the sample, the wide-field imageeo$#imple and the deconvolution of
the wide-field image, Fid¢. 6.3 (a,b,c), respectively. Asantpd, the resolution of the blind-SIM
images is always better than that of the deconvolved imagelaarly improves with increasing
NAg.

We now point out the interest of blind-SIM even for classjgatiodic SIM experiments.

6.3.1.2 Blind-SIM applied to distorted periodic illumination patterns

One drawback of the usual SIM reconstruction methods, ssithecone described in Séc. 115.2,
IS its sensitivity to pattern distortion. Indeed, most afgh algorithms assume that the pattern
is a perfectly sinusoidal. Small variations on the contoasin the position of the grid along the
image yields strong artefacts [132, 133]. Now, unfortulyafeatterns distortions are frequently
present in experimental implementations due to the obgeatberrations or to refraction inside
the sample. In this case, it is interesting to compare thelkiIM reconstruction results to that
obtained with a classical inversion scheme.

| have thus simulated a SIM experiment in which the perioliisriinations are strongly
distorted. The sample is illuminated by a periodic lightgsiith periodd ~ \/(1.4NA) which
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/10

Figure 6.3: Numerical study of the resolution of the recanged sample using speckle blind-
SIM versus the excitation pattern spectrum. (a) Fluoreseelensity of the object. (b) Image
of the object obtained with a uniform illumination and anahijective microscop&A = 1.49.

(c) Deconvolution of the wide-field image shown in (b). (diéilescence density reconstructed
by blind-SIM from L. = 160 images obtained with speckle illuminations. The randontkies
are generated with an effective numerical aperture thatlisthat of the detectioNA s =
0.5NA. (e) Same as (d) buifA.,s = NA. (f) Same as (d) buNA.s = 1.5NA. The black
bar corresponds to the incident and emitted wavelengthThe colour scale represents the
normalised fluorophore density. For a fair comparison, #{pegments have the same photon
budget and the deconvolution procedure includes the sagaresation terms as blind-SIM.

is translated by.(d/4), n = 0,1, 2, 3 and rotated byn(27/3), m = 0, 1, 2. For each simulated
image, the periodic illumination pattern is distorted watdifferent aberration.

Blind-SIM is compared to a reconstruction algorithm asswgrthat the illumination is si-
nusoidal and perfectly known. In this last case, the inegrsnethod is similar to blind-SIM
except that th /,} are fixed to perfectly periodic patterns and the iteratiadeis performed
only on the fluorescence density [134]. The perfectly pecigtterns are chosen such that
they match the distorted patterns in the centre of the sample

The results of this simulated experiment are displayedguife(6.4. We observe that blind-
SIM is able to retrieve accurately the distorted periodigilinations and reconstruct the sample
without any visible artefacts. On the contrary the cladsieaonstruction method yields a
sample image that contains strong artefacts (the conygrgiys of the radial sample are mis-
placed), especially far from the sample centre, where thdion is the most important. This
study demonstrates the robustness of blind-SIM againsrpadistortions. Indeed, the illumin-
ation patterns being estimated correctly by the algorithme, can obtain high resolution images
without artefacts.

6.3.1.3 Performance of blind-SIM versus noise and comparis with other techniques

In this paragraph, we analyse the resolution gain achieyeblibd-SIM versus the photon
budget of the experiment. We study three different exatapatterns, the standard homogen-
eous illumination, the speckle illumination and the peicddon distorted) illumination. For the
speckle configuratior§0 images are simulated with different speckle patterns gaedrwith
NA.+ = NA. For the periodic configuratiod,images are simulated using a periodic light grid
with periodd ~ \/(1.4NA) which is translated by (d/3), n = 0, 1, 2 and rotated byn(27/3),

m = 0, 1, 2. The one-shot homogeneous illumination, the 9-shot peridbdminations and the
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Figure 6.4: Reconstructed fluor-
escence density of the ’star-like’
sample and reconstructed illu-
mination patterns given by blind-
SIM for a distorted periodic SIM

experiment. (a) is the actual
fluorophore density of the ’star-
like’ sample. (b) is the fluoro-

phore density reconstructed us-
ing blind-SIM. (c) is the fluoro-

\ \
&
\ phore density reconstructed us-
ing an inversion method assum-
ing the illumination as periodic
f,"'.;,'.;,//f 727 and known[[134].
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80-shot speckle illuminations are simulated with the saoted amount of detected photons per
pixel (on average).

The reconstructed images obtained under periodic and Epécknmination using blind-
SIM (Periodic blind-SIM and Speckle blind-SIM) are comhte the wide-field image (Wide-
Field), its deconvolution (Deconvolution) obtained wittetnon-linear algorithm described in
Sec[6.2.B, and the reconstruction of the periodic SIM datained by assuming that the ex-
citation patterns are perfectly known (Periodic SIM). Irstlast case, the inversion process is
similar to blind-SIM except that th&/;} are fixed to their actual values and the iterative search
is performed only on the fluorescence density [134]. Thetfeadtall the reconstruction proced-
ures include the same regularisation technique permits admparison between the different
imaging techniques and allows one to focus on the role ofkhewn or unknown) excitation
patterns.

We consider a realistic experiment in which the total phdiodget detected on average on
one Nyquist pixel i e. with size\/(4NA) ~ \/6) is aboutl0, 000 and the read noise stand-
ard deviation corresponds tophotons per Nyquist pixel and per measurement. In this case,
the photon noise is dominant and reach#&swhich is typical of most structured illumination
experiments. We plot in Fig. 6.5 the Wide-field, Deconvalati Speckle blind-SIM, Periodic
blind SIM and periodic-SIM images together with one exangflhe speckle data. We observe
that Periodic SIM, Speckle blind-SIM and Periodic blindvisllow a better reconstruction of
the radial periodic pattern than the Deconvolution or Wieéd. The reconstructed pattern is
more contrasted in the periodic SIM image than in the peciadid speckle blind-SIM images
but the limit radius under which the modulation disappeanoughly the same for the three
techniques.

To support this assertion quantitatively, we analysed iipalty the values of the recon-
structed fluorescence density along centred circles obwaniadius. The sample fluorescence
density taken on a circle of radiudreadsfx(s) o 14-cos(27s/L(R)) wheres is the arc-length
along the circle and.(R) = 2w R/40 is the period of the pattern, which decrease&asnds to
zero. To estimate the ability of the reconstruction procesdo retrieve this oscillating pattern
as a function of?, we calculated the modulation contré&tR) = QfR(l/L(R))/fR(O) where

fr is the one-dimensional Fourier transform f6f(s). For the actual sinusoidal fluorescence
density of the sampl&;(R) = [max(fr) — min(fg)]/[max(fr) + min(fr)] = 1 whateverr.

We display in FiglL.6.6 the modulation contrasts obtainedterWide-field, Deconvolution,
Periodic blind-SIM, Speckle blind-SIM and periodic SIM iges as a function of the period,
L(R). This plot shows that the deconvolution procedure permitsicrease significantly the
modulation contrast for periods bigger than the Rayleigteidon L, = 0.6A/NA =~ 0.4\
(namely it corrects the triangular low-pass detectionrjijteut marginally enhances the mod-
ulation contrast for periods smaller tha. On the other hand, speckle blind-SIM, periodic
blind-SIM and periodic SIM recover the sample periodic @attdown to periods about, /2.

To mimic the Rayleigh criterion, we defined the resolutiorttté reconstructed image as the
period for which the contrast is about 0.10/[3i8]e. the modulation is still ‘'eye-visible’. With
this definition, the resolution of the blind-SIM technigusssimilar to that of periodic-SIM.
Yet, the modulation contrast being better enhanced by geriSIM than by blind-SIM, the
periodic-SIM image remain visually more satisfactory thiae blind-SIM images, see Fig. 6.5.

We perform the same analysis on many other simulated dakatetdl photon budget de-
tected on one Nyquist pixel ranging frof0, 000 to 600 (on average), see Fig. 6.7. Except for
the 600 photon-budget experiment for which the read noise has a botp standard devi-
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Figure 6.5: Reconstructed fluorescence density of thelikrsample using various imaging
techniques. Simulated data are obtained with a total phbtmiyet detected on average on
one Nyquist pixel ofl0,000 and 6 electrons read-noise per Nyquist pixel per measuremen
(a) Wide-Field. (b) Deconvolution of (a). (c) Speckle bh&¢M. (d) Periodic blind-SIM. (e)
Periodic-SIM (with known illumination patterns). (f) Oneample of the 80 measurements
used for the Speckle blind-SIM reconstruction in (c). Thacklbars aré\-long. The colour
scale represents the normalised density of fluorophorem@lsed intensity for (f)).
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Figure 6.6: Contrast of the recovered fluorescence peraehsity as a function of the period
extracted from the images displayed in Kig.]6.5. Thick slitid: Wide-Field. Thin solid line:
Deconvolution. Dotted line: Speckle blind-SIM. Dash-edttine: Periodic blind-SIM. Dashed

line: Periodic SIM (with known illumination patterns).

ation (which corresponded roughly to that of an Electrontiiying Charge Coupled Device
camera), we introduce a standard read noise of 6 photonsxymrgmd per measurement for
modelling the camera performance. These values encompagieavariety of experiments
from the imaging of isolated fluorophores to that of contimsisamples with high fluorescence
density such as those presented in $ec.16.3.2. In all thesepdes, the modulation contrast
curves with respect té (R) obtained by the blind-SIM techniques resemble that degitte
Fig.[6.6. They are below the periodic-SIM curve, but remdowe 0.1 for periods close to
Ly /2, even with very noisy data, see Table]6.1. Actually, indreathe signal-to-noise ratio
permits essentially to ameliorate the modulation confaghe intermediary periods, between

LoandL,/2 as seen in Fig. 617.

This analysis demonstrates the ability of blind-SIM to resrssample high spatial frequen-
cies beyond the detection cut-off even with noisy data amatpout the interest of speckle illu-
mination. Note that the granular aspect of the speckle il image stems from the residual
inhomogeneity of the average illumination, which is pemfed over 80 different speckles only,
and could be reduced by taking more images. Moreover, weugethat there is still room for
algorithmic improvements for enhancing the modulationtst of the intermediary periods.

6.3.2 Experimental data

Blind-SIM was then validated on experimental images stemgrfiom a wide-field microscope
tuned for structured illumination experiments. The dateevatained using a home-built Struc-
tured Illumination Microscope with a high numerical apegtobjective (NA=1.45, 100X, CFI
Plan Apochromat, Nikon) in the Epi-illumination mode. THamination was performed with a
laser beam (He-Ne, 633 nm). The fluorescence light was depldram the laser reflection with
a dichroic mirror and a filter, and finally imaged on an EMCCInesa (Andor iXon 897) with
pixel size about 100 nm (after magnification) correspondogghly to the Nyquist criterion,
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Figure 6.7: Reconstructed fluorescence density of theli&irsample using different imaging
techniques for various levels of photon noise. The first roweasponds to the reconstructions
obtained with Wide-Field, the second row corresponds toWge-Field image deconvolu-
tion, the third row to Speckle blind-SIM using 80 speckle ges, the fourth row to Periodic
Blind-SIM using 9 periodic SIM images and the fifth row to etic SIM (with known illu-
mination patterns) using the same 9 periodic SIM images.fif$te second and third columns
correspond to data corrupted with 6 electrons read-nois@&peuist pixel and per measure-
ment and simulated with a total average number of photonklpguist pixel of 40,000, 10,000
and 2,500 respectively. The fourth column corresponds ta carupted with 1 electron read-
noise per Nyquist pixel and per measurement and simulatdcaiotal average number of 600
photons per Nyquist pixel. See text for details. Whateveteliel of noise, blind-SIM is always
better than Deconvolution and its resolution is close ta tiigoeriodic SIM though with less
contrasted periodic patterns. The granular aspect of $pbdkd-SIM is due to the residual
inhomogeneity of the average illumination which is perfedrover 80 speckles only. The side
of each square image 19\. The colour scale is the same as [Fig] 6.5.
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40,000/ 10,000| 2,500| 600
Wide-Field 0.43 0.43 | 0.43|0.43
Deconvolution 0.33 0.35 | 0.36 | 0.36
Speckle blind-SIM| 0.22 0.23 | 0.26 | 0.32
Periodic blind-SIM| 0.23 0.23 | 0.25 | 0.29
Periodic SIM 0.21 0.22 | 0.24 | 0.29

Table 6.1: Resolution in unit of the reconstructed fluorescence density of the Igtarsample
obtained with different imaging techniques versus thd stsount of photons detected on aver-
age on one Nyquist pixel. The Rayleigh criteriorlis= 0.6A/NA ~ 0.4\. With our definition,
blind-SIM resolution is comparable to classical perio8id4 except at very low signal to noise
ratio. Yet, periodic-SIM yields images which are visuallpma satisfying than blind-SIM, as
seen in Figl_6]7, because the contrast of the periodic pattee better enhanced.

A/(4NA). Before using the reconstruction procedure, the imagd piae reduced by a factor
of two by interpolating the measurements using zero paditirige Fourier space. Provided
that the Nyquist criterion is satisfied initially, this pexure does not create artefacts [135,
pp. 59-79].

The unavoidable small experimental drift was correcteddgystration of the images with
sub-pixel accuracy [136]. For each experiment, we estichateurately the detection point-
spread-function by averaging the fluorescence densitygistrated isolated fluorophores. Note
that we did not correct for the photo-bleaching effect orithiensity fluctuations since they can
be included in the intensity reconstruction.

6.3.2.1 Classical periodic SIM

Blind-SIM was first validated on experimental images of adsesample illuminated by peri-
odic excitation patterns. The sample consisted of 90 nmeki@nfluorescent beads (Spherotech,
SPHERO, Sky Blue) spread on a cover-slip and then immersglgiéerol. The sinusoidal light
patterns (with period about 230 nm) were formed on the salmplienaging a glass transmis-
sion grating (holographic, 80 lines/mm) placed in a seconamaage plane of the microscope.
The orientation and position of the light pattern were medifby translating and rotating the
transmission grating. Sole thel grating diffracted orders were used, the others being leldck
with a diaphragm and a central stop. The grating was traeskght times for three different
orientations (0, 60 and 12)) yielding a total of 24 recorded images. The translatiep stor-
responding to a quarter of the pattern period, was calibréteough the analysis of the laser
reflection on the cover-slip surface. For ensuring the samoéom budget, the wide-field image
was obtained by summing the 24 structured illumination mesaments.

An example of the recorded images and the blind-SIM recoosd fluorescence density
are displayed in Fig[(61.8). We observe that, although thuitation peaks are not visible on
the Fourier transform of the raw images, Fig.16.8 (a,b),®bB1M retrieves accurately the light
patterns, Figl_618 (c,d). In this experiment where the measwidth of the detection point-
spread-function is about 360 nm, the resolution of the b&ld image, Fig[ 6.8 (g) is as good
as that given by an up-to-date SIM algorithm assuming thegeity of the light pattern and
reaches 160 nm. It is much better than that of the deconvaivdé-field image, Figl._618 (f)
which is about 250 nm.
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Figure 6.8: Experimental periodical SIM data processedlingSIM. Fluorescent beads with
diameter 90 nm are illuminated by 24 different standing wawvigh periodd ~ 230 nm through
an oil objective withNA = 1.45 at A\.,. = 633 nm. (a) One of the 24 recorded images. (b)
Absolute value of the Fourier Transform of (a) (after suttirey the mean). The peaks of the
light grid are not visible. (c) Blind-SIM reconstructed &ation pattern of the image displayed
in (). The pattern is reconstructed only where the recoatsd fluorescence density is non-
zero. (d) Absolute value of the Fourier Transform of (c)éafiubtracting the mean). The peaks
of the light grid are clearly visible among noisy-like feggs which indicate the support of the
pattern reconstruction. (e) Zoom of the sample image obthimder wide-field illumination.
(f) Deconvolution of (e), closely located beads are unne=ahl (g) Blind-SIM reconstructed
fluorescent density obtained from the 24 structured illlanon measurements, closely located
beads are now well resolved. The white and black bars inglicam. The grey scale represents
the normalised fluorescent density. About 10000 photonsbpad are detected during the
measurement process.
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6.3.2.2 Speckle patterns

Last, blind-SIM was applied to the experimental microscopages of a biological sample
illuminated by 150 different speckles. The speckles wetaiabd by moving a diffuser through
the laser path prior the microscope objective. The sampkamaultra thin (80 nm) slice of
rabbit jejunum with glycoproteins marked with Cy5 fluoresicdye. The wide-field image of
the sample, the deconvolution of the wide-field image andline-SIM density of fluorescence
are shown in Fid, 6]9 (a,b,c) respectively.

The set-up is the same as that described in the previoussesttept that the transmission
grating was replaced by a diffuser (a grained sheet pradeclts position did not matter, as
long as the back focal plane of the objective was filled withttgred light and as the diffuser
was not directly imaged on the sample. 150 different speitldi@inations were obtained by
translating the diffuser between each image recording.eReuring the same photon budget,
the wide-field image was obtained by summing the 150 spenidges.

The sample consisted in an ultra-thin (80 nm) Epon-embeddetions of rabbit jejunum
deposited on a cover-slip, whose glycoproteins were mankgdCy5 fluorescent dye. More
precisely, the tissue was fixed by immersion in 2,5% gluteiayde in phosphate buffer at pH
7,4 (PBS) 1H followed by 2% osmium tetroxide in PBS 1H. Thecapens were dehydrated
by passage through a graded series of ethanol (70, 90, 1008¢rabedded in Epon 812.
Ultra-thin sections (80 nm) were obtained with a microtomad finally labelled with CI 3.3
monoclonal antibody (1/100) and Cy5-conjugated goat antise (1/200, Bethyl laboratories
corporation).

We observe a significant improvement of the resolution agluidoy blind-SIM. Note that
taking the standard variation of the speckle images (asibimamic Speckle lllumination ap-
proach[137]), while useful for removing out of focus fluaresce, did not yield any resolution
improvement.

6.3.3 Discussion

In conclusion, we have developed a method (blind-SIM) thrauenvents the major issue of
the control andx priori knowledge of the excitation patterns in microscopy using-oniform
illumination. Using blind-SIM, images with a resolutionali twice better than that of wide-
field microscopy can be obtained by simply illuminating séespvith random light speckles.
Moreover the algorithm can process measurements with yaoritrolled or even distorted
periodic SIM illuminations. However, this technique idlsti its infancy and there is still a lot
of work to do.

First the mathematical proof of convergence is an open guresPreliminary studies tend
to show that the implicit regularisation (see Sec. 6.2.4ypla large role in the reconstruction
success.

For now, this method has been developed for imaging thindimeensional samples only.
It would be interesting to extend it to three-dimensiongkots. The algorithm itself can be
straight-forwardly extended to the third dimension. Hoamit requires measurements defined
by the same model
Ml = (Ilp) * ha

with h, the three-dimensional PSF, aidand p three-dimensional illumination and fluoro-
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Figure 6.9: Experimental speckle data processed by bliMil-Bhe sample is an ultra-thin (80
nm) Epon-embedded section of rabbit jejunum with glycogirat marked with Cy5 fluorescent
dye. Itis illuminated by 150 uncontrolled different speekithrough an oil objectiveNA =
1.45) at \.,. = 633 nm. (a) Wide-field image of the sample. (b) Deconvolutionha wide-
field image shown in (a).(c) Blind-SIM fluorescence densityamed from the 150 speckle
images. (d) Image of a similar sample, using a transmisdemtrenic microscope. The white
bar indicates 3im. The grey scale is the normalised fluorophore density. oted humber
of photons per pixel, averaged over the marked micro-\élfjion, is about 20000. Note that
the wavy lines observed in the centre of (a-c) are not anaatefSimilar lines made of dark
points are visible on the TEM image, (d). They are due to thetfaat the microtome cuts the
micro-villi at an angle.
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phore density fields. This means that one has to measure edhmensional image of;p
without modification ofl; which can be difficult experimentally. Another solution idie
to use illumination patterng, that are vertically invariant like, for example, specklesBel
beams([138, 139, 140], but the axial resolution would notrbproved. Nonetheless, we be-
lieve that a suitable algorithm modification could lead tttdresolutions([141].

Finally, we have observed that sole the frequenciefs thfat are below the detection cut-off
contributes to the improved resolution. If the sample isnilinated by a periodic pattern with
a period smaller than the diffraction limit, blind-SIM is tnable to retrieve the pattern, except
in areas where the sample bares only low frequency infoomafAs a consequence, these high
frequencies illumination pattern do not ameliorate thegeneesolution. This hinders the use
of blind-SIM for super-resolution configurations in whidmetsample is illuminated by sub-
diffraction light patterns or in which the fluorescence nmeeubm is saturated [142, 143,124] 25,
144117] 134]. Yet, we believe that modifications of thisoalipm could solve this issue. Our
attempts for breaking this limitation are presented in t&et section.

6.4 Improving further the resolution using Grating assisted
SIM

6.4.1 Principle

Grating-assisted SIM is based on the Total Internal Refladtiuorescence Microscopy
(TIRFM) [145]. In TIRFM, the sample is deposited on a sulistveith a high index of refraction
n;. The sample is illuminated via the substrate by a collimatsim impinging at an angle high
enough to obtain total internal reflection. The excitatiaidfis thus evanescent and decays
exponentially as one moves away from the substrate surfecenly a thin slice (one hundred
of nanometres) of the sample is illuminated, one obtainstaralasectioning in the direction
perpendicular to the substrate surface. TIRFM is populbralogy laboratories because of this
sectioning property.

To combine this advantage with a high lateral resolutioM-$IRFM [13,[12,146] has also
been developed. In this case, two beams instead of one dra@nds the substrate interface.
The interferences create a light pattern that is sinusaidéile (=, y) plane and exponentially
decaying in the axiak, direction (see Fid. 6.10 (a)). In this configuration, one n@del the
sample as a flat two-dimensional object (as only a thin slicaéisces) and the intensity pattern
as

I} = 1+ cos(K.rj + ¢y),

whereK = 2k;,. | is a vector of thgz, y) plane. The SIM-TIRFM principle is similar to that
of SIM as described in Selc. 1.5.2. Assuming that the observat done via the substrate, one
recorded image

M, = (pl)) * h

depends on the spatial frequenciespafontained in the union of the thrée = £y NA-radius
circles centred 08, K and—K. Using several (at least three) illuminations with diffetre,,

we can separate these three terms [13]. Repeating the saocespiby rotation dK in diverse
directions of the plane, one can retrieve the frequencigsrothe circle of radiug. + | K||, as
seen in Figl_6.10 (b) and thus improve the lateral resolufdhe image.
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Figure 6.10: (a) Sketch of a SIM-TIRFM experiment. Two plaraves are sent via the substrate
with optical indexn; towards the sample. (b) Union of tiheradius circle in which the Fourier
components op are measured in SIM-TIRFM. (c) Sketch of a GA-SIM experimehiplane
wave is shaded on a resonant grating with petpcreating a sinusoidal intensity pattern with
periodd. n,, is the optical index of the core of the wave guide. (d) Uniothefk. radius circle

in which the Fourier components pfare measured in GA-SIM.

However in SIM-TIRFM, the maximum possible norml&fis obtained when the two illu-
mination beams are parallel to the substrate interfacéischase,

|K|| = 2kon; sina = 2kgNA = k.,

wherea is the maximum angle reachable with the lens used for piogthe beams. The cut-
off of this technique is then limited t®%.. To improve further the resolution, one has to find a
way to create a sinusoidal pattern with a higher frequency.

One possible solution is the Grating Assisted SIM (GA-SIM17,[134]. This approach
uses the fact that the light intensity existing at the s@fata grating is periodic with the
grating frequency. If the grating is manufactured with a-406 nm period, the light intensity
just above it will exhibit a sub-100 nm period whatever thenmiination wavelength. Of course,
as one moves away from the grating, one will retrieve a diffom limited intensity pattern.
The near-field intensity pattern is not diffraction limiteelcause it is created by the interference
of all the diffracted orders which contain high frequencamescent waves. The problem is
that, in general, the high frequency evanescent orders dnaeey low amplitude and are thus
negligible in the sum. The near-field intensity pattern entlonly weakly modulated.

To address this issue, it has been propdsed [117] to usearispratings as substrate for the
TIRFM experiment. A resonant grating is schematically a-diifoaction periodically struc-
tured wave guide [147] (See Fig. 6110 (c)). The period anadflhation angle are chosen such
that one order of the grating has the same wave-vector asdedjunode (at the excitation
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wavelength). When the temporal and spatial frequencieBeoétectromagnetic field matches
that of a mode of the structure, there is a resonance phermymdre amplitude of the cor-
responding grating order is then greatly enhanced. Thraugdrrect optimisation [134][148,
Chap 1V], the field above the sample can then be approximatgtidosum of the specularly
transmitted wave and the resonant diffracted wavel[117¢ résulting illumination pattern ex-
hibits a lateral sinusoidal pattefp= 1 + cos(K.r + ¢;), where| K|| = 2x/d, d is the grating
period, andy, is a phase depending on the grating geometry and the illuroimdirection. Us-
ing silicon structured wave-guides that support guidedesadth high spatial frequency [134],
it is possible to obtaif K| ~ 3koNA. If the grating has a triangular mesh, one can define
possible resonant directions and thus expect the measat@hg on a(5/2)k.-radius circle
(See FigL6.70 (d)).

Another possibility proposed in ref. [134] is to illuminatee grating with a standing wave
pattern formed by the interference of two plane waves, asdlassical SIM experiment. In
this case, the intensity pattern is the sum of four perioditgons([148, Sec IV.2]: the grid with
wave-vectorK stemming from the interference between the transmittedd#ffracted waves
for each of incident plane wave; the grid produced by the taodmitted waves (with wave-
vector 2k;, ), the grid produced by the transmitted wave of one of thedieist plane wave
with the diffracted wave of the other incident plane waveV@aectorK — 2k;,. ) and the
grid produced by interferences between both diffractedesgwave-vecto?K — 2k;,,. ). This
configuration, hereafter called the Moiré configuratioa tveo main advantages. First, the third
grid has its wave-vector norm about half/of It is thus visible is the measurement, allowing
verification of the correct behaviour of the resonant grpjii8, Sec IV.4.2]. Then, the wave
vector of the fourth grid has for norii2K — 2k, ||| = 4koNA, allowing measurement gfon
a3k.-radius circle.

The grating-assisted SIM seems to be a promising technausub-diffraction resolution
surface imaging. However, it suffers from a strong drawbadckits present state, the recon-
struction algorithm[[134] requires the precise knowled§¢he illumination patterns. Now,
experimentally, these patterns are always slightly madlibye small errors in calibration, aber-
rations of the objectives or fabrication misprints. Moreothe precise position of the grating
cannot be seen since its period is under the microscopeutesol The smallest error on this
grating position leads to strong artefacts that hindersradbe interpretation.

As noted in the previous section the blind-SIM algorithm sloet work for illumination
frequencies that are beyond the detection cut-off. In tHeviing, two research avenues aiming
at solving this issue are presented.

6.4.2 Model of intensity pattern

In blind-SIM, the onlya priori information on the illumination patterns is the homogeneit
of their sumzfz1 I, = LI,. In grating-assisted SIM, we have a lot of information on the
intensity behaviour which stems from the sum of two (or fauthie Moiré configuration) plane
waves. Thus, we can try to build a simple parametric modeiHferillumination patterns as is
done in many classical SIM reconstruction algorithms. Tdeaiis to expresg as functions

of a defined series of parametdns), Ay, A;,0) wherer, is the grating positionA, is the
transmission coefficient of the grating; is the amplitude of the enhanced diffracted order and
0 is the angular misplacement of the grating. We keep theipibgitn priori for the density
function p which is written as the square of an auxiliary function Then we implement an
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optimization algorithm wherg¢ and the parameter series are jointly estimated so as to nsgim
the functional

F(§7r07A07A17 = WZ ||Ml 5 -[l I'Q,AQ,Al, )) * h||2 (621)

Unfortunately, numerical experiments showed that thismlgm was strongly sensitive to
the initial guess fory. As the latter is generally unknown, this algorithm can netused to
process experimental data.

To improve the parametric approach, and inspired by thexsoaction techniques available
in classical SIM[[54, 132, 133], | proposed to change the tional in order to introduce the
autocorrelation op at K. Indeed, defining

2

Ck(p) = : (6.22)

| #0970~ K

we observe that C is weak for the actydl® and high forp estimated from wrong parameters.
Thus, C' is a good indicator of the accuracy of the estimated parasietdsing Parseval’'s
theorem one shows that

2

C(€) = | [ p*(r) exp(iKr)dr
@ (6.23)
4(r) exp(iKr)dr
The new functional is then defined as,
F(faro,Ao,Al, WZHMI 5 I FO,AO,AM )*hH2+VCK(§)7 (6.24)

wherev is a parameter that has to be optimised. Joint optimisatitimkg. (6.24) gives good
results with simulated data but failed with experimentat2nMy opinion is that there is not
enough parameters to fit properly the illumination patteand the experimental variations.
Moreover this approach requires to change the pattern niodelch modification of the illu-
mination series, involving substantial changes in therdlgm. For example switching from the
one beam grating-assisted SIM to the Moiré grating-as3$iSIM requires a deep modification
of the reconstruction program.

This is why another approach is proposed in the followingisac While imposing less
constraints on the illumination pattern, it is easily tufieddiverse illumination series and less
sensitive to experimental variations.

6.4.3 Filtered blind-SIM

To take into account all the possible experimental vanejave assume thdf is no more a
simple collection of dirac-like peaks, as in theory, buttthhacan take non-zero values over
small areas about the peaks location. One thus definése support of/;, as a sub-set of the
two-dimensional Fourier space. For example, one can d&famea series of small disks around
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the theoretical positions of the different pattern frequies. Then one noteS the set of real
functions with value irf2 whose Fourier transform has its support include@ irThe principle
of the filtered blind-SIM is to find the minimum of the functiairEq. (6.7), for/; belonging to
S.

More precisely, the filtered blind-SIM algorithm consistgointly estimatingp and/; so as
to minimize the functional

L-1
Fp, (I)i=1, . WZ |M; — (pI) * b)) + W ||ML — [p <L]0 = Il>] * h
=1
(6.25)

forp € QandVl € [1,L — 1],I, € S. In other words, we minimise the same functional,
but in a different space. AS is a sub-space d®, gradient-like algorithms are still efficient.

The functional is minimised using the blind-SIM algorithrasgribed in Sed. 6.2. The only

modification are the gradients,,.; that are now (see Appendix B)

2

Ging = —2W [p((nm,l — TLn—1) % h)} * f, (6.26)

where f is the function whose Fourier transform is 1$hand O elsewhere. Practically, one
filters all frequencies of, ,,; that are out ofS so thatg; ,.;; € S. The initial guesqd,  is taken
equal tol,, as constant functions are membersSofThe series of, » remains thus is.

Note that this approach does not allows the use of the pigitenstraint for/;. Indeed
finding the frequency content of the auxiliary functioipknowing the frequency content of

= [, is a difficult task. In most cases there is no simple solutio®se solution is the
use of the field amplitudé; as auxiliary function, with/; = |E;|%. Its frequency content is
indeed easily evaluated. However all the phase informatiof; is lost in the fluorescence
process. Admittedly, algorithms like the Fienup one [14&j cecover the phase of a complex
function from measurements of its modulus. However, theya® that there is no contribution
of fluorophores out of the field of view and this assumptionncarbe made with most of the
experimental samples.

Numerical experiments have shown that this approach leadsrtect reconstructions for
classical periodic SIM, even when the normKfis larger than the detection cut-dff. The
Fourier support of;, S, is, in this case, the union of thig/2-radius disks centred i@ and in
the six possible positions & and—K. We thus believe that this algorithm could be useful for
treating experimental data obtained with saturated stradtillumination microscopy, where
high K are obtained using non-linearity in the emission coefficiefi42,/143] 144].

Filtered blind-SIM has then be tested on simulated gratirarédata. In this case§ is
composed of small disks around each of the expected inggnsguencies for the three direc-
tions of illumination. We first considered the grating witkripd 170 nm that was designed in
ref. [134]. We observe in Fig._(6.11) that the reconstruéiigarophore density and illumination
patterns are close to the actual ones. The remaining differes due to the inhomogeneity
of the sum of illumination patterns. A further treatmenthsis necessary to obtain a suitable
image. For example, one could evaluate the residual inhematy from the reconstructed
and rerun the algorithm using this information. We were unifoately unable to reconstruct
high frequency images from experimental data. We belieatttie intensity at the surface of
the manufactured 170 nm grating is too weak for a proper @&xait of the fluorescence. The
signal-to-noise ratio is then too small for measuring Higlgtuencies op.
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@) (b)

x/
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Figure 6.11: Example of numerical Moiré GA-SIM with a gragiwith period 170 nm. The
star-like fluorescence density of the sample (a) is muétgpby 24 Moiré illumination patterns
(/; shown in (e)). The product is convolved with the point-sgr&anction 4 and corrupted
with noise (/; shown in (c)). Then, the filtered blind-SIM reconstructs @féphore density

estimate (b) and 24 illumination pattern estimates (esgno&/; shown in (d)). The colour
scale represents the normalised fluorophore density @Bggky normalised intensity).

(d) (e)

==

Figure 6.12: Example of numerical Moiré GA-SIM with the 24/ grating. A star-like density
of fluorophores (a) is multiplied to 24 Moiré illuminatioraperns (; shown in (e)). Their
products are convolved with the point-spread-functicend corrupted with noise\{; shown

in (c)). Then the filtered blind-SIM reconstructs a fluorophaensity estimate (b) and 24
illumination pattern estimates (estimate @fshown in (d)). The colour scale represents the
normalised fluorophore density (respectively normalisedrisity). Artefacts appearing in the
centre of (b) demonstrate that filtered blind-SIM is not &fit for all possible nano-structure
for GA-SIM.

Then, we considered a grating with peridth nm, as described in ref. [148, Sec. IV.1.3],
which provides a higher intensity at the grating surfacar{i{fs to a better excitation of the
guided mode). Surprisingly, in this case, the filtered b8 algorithm did not provide satis-
factory reconstructions, see Fi@, (6.12). We observedsiatthe spatial frequencies that can
be measured with a homogeneous illumination are well ré¢oacted but all high-frequency
are false. We tried different Fourier supports and even ddfandifferentS; for each illumina-
tion without any positive outcome. A theoretical underdiag of the convergence of the joint
estimation is needed for explaining why filtered blind-Sitdats successfully data for certain
illumination sets and not for others. Nonetheless, we belibat a suitable algorithm modific-
ation could lead to better results.
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6.5 Conclusion

This chapter presents my work on algorithm developmentf@ge reconstruction in structured
illumination fluorescence microscopy. The originality bétblind-SIM algorithm is to jointly
estimate the object function and the probing illuminatiett@rns. This algorithm is applied
to simulated and experimental data. It is shown that blild-&trieves correctly both the
fluorophores density and the illumination patterns, predithat the illumination frequencies
are contained in the detection transfer function. This @tlgm can be used for classical SIM
experiment using periodic light patterns, and, as thereoigsgsumption on the illumination
patterns except the homogeneity of their sum, using ranqmokée pattern. Thus blind-SIM
is a promising solution for simplifying deeply experimdrgat-ups for SIM microscopy.

To address the challenge of sub-diffraction resolutiomviieyond the cut-off’ illumination
patterns, a modification of the blind-SIM algorithm has disen proposed. The filtered blind-
SIM algorithm seems to be a promising solution although arngtecal understanding of its
limits and an experimental demonstration are still missing

Last, it is worth noting that the idea of jointly estimatingject and probing functions is
commonly used in micro-wave imaging and its optical coupimt, non-linear Tomographic
Diffraction Microscopy. Indeed, when the permittivity deoast is high, the field inside the
sample is modified by the sample itself. In this case, one iéedipdate the probing field
together with the permittivity contrast. Blind-SIM is aetly directly inspired by the algorithms
developed for non-linear electromagnetic imaging. In tewing chapter, | will present an
algorithmic improvement adapted to Tomographic DiffrastMicroscopy data which is quite
related to blind-SIM.



Chapter 7

Tomographic Diffraction Microscopy for
highly refracting samples

As explained in Chap.]3, Tomographic Diffraction TomognahDM) is an optical stainless
microscopy technique aiming at reconstructing a threeedsional map of the sample permit-
tivity. The sample, defined by its relative permittivityis illuminated successively by several
incident plane waveE;,.;. For each illumination, the diffracted field, ; is measured in amp-
litude and phase along different directions of observatidhe aim of TDM is to retrieve a
guantitative three-dimensional map of the sample pennmtittirom the diffracted field meas-
urements. In Chapkl 3 ahd 4 we have presented a linear ragctiest technique based on the
Born (or renormalised Born) approximation which assumaes tiine field inside the sample is
not modified by the sample itself. This assumption is valicewlthe permittivity contrast of
the sample with respect to the background medium is weak. nWne permittivity contrast
is high, this approximation is no more valid and the linearorestruction techniques do not
lead to satisfying images of the sample permittivity. Irstbase, one cannot neglect the modi-
fication induced by the sample on the probing field. As thetimabetween the sample and
the reconstructed image is no more linear, one cannot defirensfer function and the very
notion of resolution becomes problematic. Indeed, it castmvn that, in the multiple scat-
tering regime, all the Fourier components of the sample pvity contribute to the far-field
measurements [150]. Hence, it is theoretically possibletigeve information on that are far
beyond the diffraction limit. Examples of such super-resdlreconstructed permittivity maps
have already been obtained in the simplified two-dimensseaar configuratior [151, 152].

The inverse problem in the multiple scattering regime is-we@ar and ill-posed in the
sense of Hadamard. Hadamard defines a well-posed inversiepras respecting three condi-
tions [153]

e Solutions exist for all possible set of data.
e There is only one solution for each set of data.

e The solution is continuous with respect to the data.

The inverse problems studied in this chapter and in the posvone fail to respect the last
condition, requiring a technique of regularisation (see.®2.4). However non-linear TDM
also fails to respect the second condition. Two differemtrpitivity maps can indeed have the
same diffracted field for all illuminations [154, Annexe G].
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Most of the non-linear inversion algorithms are iterati&arting from an initial guess of
the permittivity map, they improve at each iteration theneation of the permittivity map by
comparing the measured fields to the field that would be obthwith the estimate. These
algorithms often use an accurate and efficient numericaftosimulating the diffracted field
from the permittivity map estimates. The non-linear ini@msnethods require generally a lot of
computation resources, which explains that most of theiagislgorithms for electromagnetic
imaging were developed for two-dimensional samples. Thaolkhe increasing computer per-
formances and algorithmic improvements, it is now posgibtnsider more realistic samples.
This chapter presents my work on the adaptation of a nomlirezonstruction algorithm to the
vectorial three-dimensional configuration.

The first section introduces the model used for simulatiegtiffracted field and presents its
numerical implementation. The second section descrilesatonstruction algorithm. In the
third section the algorithm is applied to experimental datdained with a microwave imager.
The fourth section presents the results obtained from alpgxperimental data provided by a
Tomographic Diffraction Microscope.

7.1 Modelling the diffracting field

The basics of electromagnetic modelling have been presémt€hap[B. Here, we recall its
main results and write them in a more convenient way for thiation the inverse problem.

7.1.1 Analytical models

As there is a large variety of possible imaging configuratjome use symbolic notations for
stating the problem. The sample is assumed to be containtgk ifinite volume2 and the
measurements are taken on the surfac&€he fieldE; inside the sample is the solution &nof
the linear equation (See Chap. 3)

El = Einc,l + AXEla (71)
where A is a linear tensor operator and = ¢ — &, for ¢, the permittivity of the medium
surrounding the sample. The diffracted field measurefl @given by,

Eq; = BYE,, (7.2)
whereB is a linear tensor operator.

The integralioperatoré andB depend on the studied configuration. Using the Green’s
function theory, A can be expressed as

AV:/gzg_(r,r’)V(r’)kgdr’, (7.3)

for any vector fieldV, G is the Green’s tensor that depends on the surrounding ofithels.

We now introduce the three configurations that have been fageithis work. The first
one is the classical configuration for TDM (as in Chiap. 3), $heple is assumed to be in
free space and its diffracted field is collected by a micrpscobjective; the second one is a
TDM configuration with a reflecting substrate (as in CHdp. #he last one is a free-space
configuration with measurement in the Fresnel-zone, as me @go most microwave imaging
set-ups. They are sketched in Hig.]7.1 and described hereaft
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Figure 7.1: Sketch of the three configurations appearingigxchapter

Free-space Tomographic Diffraction Microscopy The sample is in free space, and the de-
tection is done by a microscope objective. This configuratiorresponds to that described in
Chap[B. Demonstrations therein shows that

- 1 exp(ikoAr) ) 1
— . P

G(r,r)p = —mv x V x ( Ar + k—gpé(r -, (7.4)

for any vectorp, with Ar = |jr — r/||.
I is the set ok directions such thdt; < k,NA andB is defined by
BV (k) = kok x (k X V(k)) , (7.5)

for any vector fieldV.

Tomographic Diffraction Microscopy with a planar substrate The sample is deposited on
a planar substrate with a relative permittivityand the detection is done by a microscope ob-
jective. This configuration corresponds to a generaligsaticthe mirror-assisted TDM studied
in Chap[4. One can prove that[72],

_ i 1 :
G(r,r)p = s / — [exp(—iky.(r) — 1)) — k:|2 — 2')k x (k x (p) + p-2))
& kO kHERQ kz
+ T(k) exp(—iky.(r) — 1)) — k(2 + &) )k x (k x (=p| + p.2))] dk;
1
+ —po(r —1'), (7.6)
kO
wherer (k) is the Fresnel reflection tensor defined by
_Veaks P - VR - PL veEkl kP - ek kP

CVak kP VR -k ek — K2+ ek — k2

r(k)Eg

(7.7)




112 7 Tomographic Diffraction Microscopy for highly refracgjrsamples

with E; = (Ep.uy)u, andE, = (Eg.u,)u,, for u, = z x k/kg andu, = z x u,. B is defined
by
BV(K) = kok x (k X V(k)) + kor(k)k x (k x V(k')) , (7.8)

with k/ = k” — k,z.

Imaging in the Fresnel-zone The sample is in free space and the detection is performed on a
surfacel surrounding the sample. In this cageis given by Eq.[(74) anB by

/g r, )V (r')kjdr'. (7.9)

7.1.2 Description of the simulation method

To compute numericall¥£, ;, from a giveny(r), the first step is to solve Eq.(7.1). One discret-
ises(2 in I subunits?; arranged on a cubic lattice and one assumes the figjdsandE; and
the permittivity contrast to be constant over each subunit. Equation|(7.1)

El(r) = Elncl + AXEl
1ncl /g r, I' ( />k3dr/

can be rewritten under this approximationlas [155]

E(r;) ~ E"™(r;) G (v, ;) x (v Ey(r;)kid®, (7.10)

IIM~

whered is the edge length of the lattice, is the centre of2; and
_ 1 _
G(r;,rj) = ﬁ/ G(r;,r')dr’ (7.11)
&

is the propagator between the subugihd the subunit. This method convergesdf< A [156].

Usually an additional approximation is made. The Greentfongj is also assumed to
be constant over each subunit, leadingG¢r;,r;) ~ G(r;,r;). As long as the permittiv-
ity contrast is not too high, this discretisation allows areot computation of the field inside
the samplel[156]. For strongly diffracting samples, howgaebetter approximation is neces-
sary [157] 158, 156].

Equation [[Z.1ID) is a linear system. It is solved numerictinks to a bi-conjugate type
method [159, 160], that is proved to have the best convesgirelectromagnetic fields [18].
Then, the diffracted field&,, are obtained using Ed._(7.2) and the fi#@dpreviously calcu-
lated.

7.2 Description of different reconstruction methods

This section introduces three reconstruction algorithmas tan be found in the literature (for
two-dimensional configurations essentially). First, timedrised Conjugate Gradient method
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(CGM), a linearised inversion algorithm that has the adsgatof speed but is unstable for
highly refracting samples [161, 72]. Then the Hybrid gratiMethod (HM), proposed as
Modified? Gradient Method in ref [19], combining advantages of spaed stability. Finally
the Contrast Source Inversion (CSI) [20] known as one of thstrstable one, used as reference
for stability [162] 163]. All these techniques are iteratand inspired by the Conjugate Gradient
algorithm. That is why a general presentation of this athamiis expounded in the following
subsection.

7.2.1 General principle of the Conjugate gradient algorithm

The Conjugate Gradiert [15] is an iterative algorithm fodiing the minimum of a functional
F(x). Starting from an initial guesg,, one builds a serie§x,,),-1,.. . converging towards
the minimum of a functionaF’. More precisely, one chooses for eacha y,,,; such that
F(xnt1) < F(xn)- If xne1 is properly chosen, this series converges to the minimurf.of
The gradient algorithm (or Steepest Descent algorithmyayto choose an updagg, ., ; from
Xn. The first step is to computg,., the gradient ofF" at the pointy,,. The gradient off is
the direction wherd’ varies the most. A formal definition and calculation rulesdfinctional
gradient can be found in AppendiX B. Then, the update, is defined as,

Xn+1 = Xn + Bngn;xa (712)

where/,, minimises
f(ﬁn) = F(Xn + Bngn;x)' (7.13)

This is a crucial step. One indeed searches for the minimum @f the line passing through
Xn» With vectorg,,, .. This insures that'(x,11) < F(x»,). The value of3, has to be computed
at each iteration. In some cases there is an analytical fasrbut most of the timg),, has to be
estimated iteratively [16, part 10.5].

This method insures that(y,.1) < F(x.) and, if F' is convex, it converges towards the
minimum [16, part 10.6]. However, the convergence is veowslOne need a really high num-
ber of iterations for obtaining a good estimate of the mimm@o accelerate this convergence,
one can use the Conjugate Gradient algorithm [15]. The nol@a is to modifyy,,.; so that it
depends on,.,, but also on allg;., ):=1,...—1. More precisely, one defines the update as

.....

Xnt+1 = Xn T Bndn;x (714)

with
Anix = Gnix + Yndn—1;x- (7.15)
One callsd,,., the descent direction. The line minimisation is performieha the line parallel

to it f(5,) = F(xn + Bndny). The conjugation factot, is chosen following to the Polak-
Ribiere conjugation suggestidn [124] (which is known as ofithe most efficient),

(Gnix|gnix — In—1:x) ' (7.16)

’y =
' 1gn—1x1?

Two points still need to be specified before running the aligor. The first one is the initial
guessy,. It has to be easy to compute and as close as possible to timaumin A good initial
guess reduces indeed the number of iterations. The secerid the stopping criterion. For our
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Figure 7.2: Flow-chart of the conjugate gradient algorithm

ill-posed problems, this stopping criterion is used as aleggsation technique. As discussed in
Sec[6.2.l4, one registexs for a set of iterations and the practitioner chooses the one that has
the best trade-off between resolution and noise. A flowichanmarising the successive steps
of this algorithm is plotted in Fig. 7].2.

7.2.2 Specificity of the reconstruction algorithms

We now describe the three different reconstructions mesthbdt were studied in this work.
They are all iterative and they all rely on the gradient cgape algorithm. They essentially
differ by the functional they minimise and by the minimisetistrategy. Yet, in all cases, the
functionals are built in such a way that the measured fielels@ampared to the fields that would
be produced by the estimatgandE;.

7.2.2.1 The linearised Conjugate Gradient Method (CGM)

In the linearised conjugate gradient method (CGM) [161, #i@ldsE; ,, are assumed constant
during each minimisation step The functional that we minimise depends only on the vaeiabl
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x but changes for each iteration

L
Fu(x) = Wr ) | Eay — BxEul?, (7.17)
=1
wherelWr is the normalisation factor
1
' =& w2
>t 1 Eall

Xnt1 IS cOmputed fromy,, using the conjugate gradient descent direction

Xn+1 = Xn + Bndn;xa

whered,,., is the conjugate descent direction computed from the gnaglig, and the previous
descent directiongi, is the complex value minimising

Oncey,,1 is computedE, ,,;, is obtained solving the near-field equatidbn{7.1)
El,nJrl = Einc,l + AXnJrlEl,nJrl-

As long as the permittivity contrast is not too high, thisalthm converges to an acceptable
reconstruction in less than a hundred of iteration. Howesrace the minimisation of at each
iteration is not ensured, it becomes unstable for high péwmy samples.

7.2.2.2 Hybrid Gradient Method (HM)

The Hybrid gradient Method (HM) is an hybrid between the dnged Conjugate Gradient
Method and the Modified Gradient Method. This method is qaiiginal and, before this
thesis, it had been developed only for two-dimensionakbscanfigurations.

The Modified Gradient Method The Modified gradient Method [164, 165] proposes the
minimisation of a functional built from both Eq§.(7.2) afdX)

wherelVg, is the normalisation factor

B 1

= I = 2
> 121 1 Binel I

Then, the L+1 variable§y, (E;);—,... 1) are jointly updated so as to minimigéusing the
gradient conjugate algorithm. This algorithm insures theimisation of /" at each iteration. It
is thus far more stable that the CGM method. However it regudr large number of iterations,
implying a long computation time.

Q
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Hybridisation The Linearised Conjugate Gradient is time efficient butsfad reconstruct
highly diffracting samples. On the contrary, Modified GeattiMethod is time consuming but
succeeds in reconstructing (to a certain extent) highlyatifed samples. The Hybrid gradient
Method [19/ 166] is a combination of both approaches. It msa$ minimising the Modified
Gradient functional EqQL(7.18). One computes the gradiétt along all its variabley,,,, and
g.n:8, Which, through the Polak-Ribiére conjugation, leadsito tlescent directions,., and
vi,. Then, following the Linearised Conjugate Gradient apphpanother descent direction
w,,, IS introduced, based on the solution of the near-field eqodq. (7.1). We define; ,, =
E';, — E,, whereE’, , is the solution of

E/l,n = Einc,l + AXnE/l,n-

The estimatéy,,, (E;,.);—1....) is then updated using the iteration relation,

Xn+1 = Xn T Bndn;x (719)
El,nJrl = El,n + a})’nvlm + Oé;f)nWlm (720)

.....

The crucial point is the choice of the parametefs and«}’,. Itis clear that ifvi, o], = 0
andaj’, = 1, one obtains the same update as in the linearised Conjugatie@t Method.
Conversely, ifvl, ap, = 0, we are using a variant of the Modified Gradient Method. The

..........

(7.21)
This way, one chooses for each incident¢ke best compromise between the two descent dir-
ections for the electric fieldd; ,,.

7.2.2.3 Contrast Source Inversion (CS)

The Contrast Source Inversidn [20] (CSI) is a modificatiothef Modified Gradient Method.
It rewrites Eqs.[(7]1) and(7.2) in terms of the source dgM3jt= yE; [167]

E! = BP, (7.22)
P; = xEin; + XAPI- (7.23)

This leads to the functional

L L
Fy <X, (Pi)i=1,.., L) =W > [[Bay = BPf + W5 D [P — Einey — XAP[l,  (7.24)
=1

=1

where
, 1

WQ ==
S X Eine |2

Diverse iterative schemes have been proposed to find thenmimiof this functional. Our
proposal is to use the iterative relations

Xn+1 = Xn+5ndn,x (725)
Pihnii = Piptad,p (7.26)




7.2 Description of different reconstruction methods 117

with d,., andd,,.p the descent directions according to the gradient conjugethod, and
(ﬁnv (al,n)lzl ..... L) m|n|m|S|ng

f(ﬁn, ()=, L) = F(Xn + Budniy, (Pin + indinp)i=,., L)- (7.27)

The Contrast Source Inversion is known as one of the moslesitakersion method [162,
163]. We use it as a reference for testing the stability oHMemethod. However it requires a
very large number of iterations, leading to computatioretiwo long for practical use.

7.2.3 apriori information in the expression of the unknowns

Physical considerations impose constraints on the valtidsegermittivity . Indeed, since

its imaginary part is proportional to the absorption coedfit, it cannot be negative for usual
materials. Moreover for dielectric materials, the real pdrthe relative permittivity is always

superior to 1. Adding this information can help the resantof the inverse problem [46].

Algorithms that use positivity constraints are indeed mmofgust to noise [168]. Our way to
impose this constraint is the expression of the complexterm of two real auxiliary functions

¢ andn [169]

x =1+ +1in* — g (7.28)

The positivity constraint is used in the HM algorithm. Asdsai refs. [46] 170] this constraint
modifies the resulting image. For comparison purpose we his@ developed a linearised
Conjugate Gradient Method under positivity constraint@RO.

One of the main differences between the scalar two-dimeasiand the vectorial three-
dimensional configurations is that the three-dimensioeal+iield propagatay presents a sin-
gularity (See for example Ed. (3]10)). As seen in $ec. Bihig leads to an alternative de-
scription of the scattering problem in terms of local fieldl@ample polarisability (instead of
macroscopic field and permittivity contrast). In this cdse, (7.1) is replaced by

Eiocari(r) = Eijpey(r) + PV /Q G(r,v")a(r)Ejgea, (r')k5dr’, (7.29)
with Elocau(r) = El(r) [8(1‘) + 2]/3 and
_e(r) —1
a(r) = SW.

The second term of the right-hand part of this equation i®galy lower than the second term
of the right-hand part of Eq_(74.1). This is the reason whyrém®rmalised Born approximation
is usually better than the Born approximation and why thenfdation ina reduces the com-
putation time of the near-field equation [155]. This modiiiza acts as a pre-conditioner that
eases the inversion of EQ.(V.1).

It is thus tempting to use the description with the local fialtl polarisabilitya for re-
constructing the sample. In this case, the polarisabibty be seen as an auxiliary variable
describings. Note that the positivity constraint can also be imposedéogolarisability. In-
deed one can easily verifies that,

Re(x) >0 N Re(a) >0 (7.30)
>0 >0 '

Sm(x) Sm()



118 7 Tomographic Diffraction Microscopy for highly refracgjrsamples

One can thus impose the positivity dowith the same type of auxiliary functions as that used
for . Note however that Eq[(7.B0) is an implication and not anivedgnce. Reconstruc-
tions with positivity imposed on can lead to reconstructedwith strong negative values. We
implemented the formulation in terms of local field and samblarisability in HM, but, un-
fortunately did not observe any marked improvement, neitnehe reconstruction quality nor
in the computation time, for the examples studied. Hencealse of the interest of imposing
the positivity one, the formulation in terms of seems then preferable.

7.3 Application to micro-wave datﬂ

To investigate the performances of the different inversiethods sketched in the previous
section, we applied them to experimental data stemming tlemmicrowave imaging set-up
described in the special section [171, 172]. In this imatjez,targets are illuminated by an
electromagnetic wave which can be assimilated to a plane widwe scattered field is measured
at 81 points on a sphere enclosing the targets (Imaging iRrésnel-zone) with regular angular
steps and with 36 incident directions taken in they) plane by rotating regularly oveé2r| the
emitting antenna about theaxis. The background medium is homogeneeys; 1.

With this illumination and detection configuration, a simgtattering analysis estimates the
resolution of the reconstruction ag4 in the transversér, y) plane and\/1.8 in the(z, z) and
(y, z) planes. We considered two different targets, which arerdestin Fig[7.8, and several
incident frequencies from 3 GHz to 8 GHz.

Prior to presenting the reconstructions obtained with the tlifferent inversion methods
described in the first section, it is important to discussrtbenvergence behaviour and the
stopping criterion. First, it is important to stress tha ttonvergence of the three methods is
not ensured mathematically. Yet, because of the mininusgirocess, the cost functional of
CSl and HM are forced to decay at each iteration. Under somditions, the CSI functional
has even been shown to exhibit only one local minimum[173) il other hand, the decay of
the cost functions of CGM and PCGM is not automatic as thd fiefd inside(? is estimated
through a direct calculation, without minimising the castctional.

We observed that, in all the considered examples, the costiéins of CSI, CGM and
PCGM had a similar behaviour. After a certain number of tieres, they would decay slowly
and continuously without visible changes on the reconstms. The HM cost function, on
the contrary, would rapidly reach a constant value whichedédpd on the accuracy with which
the scalar coefficients,, a;,, anda;’, were optimized. We decided to stop the iterations of
CGM, CSI and PCGM when the reconstruction did not evolveiSaantly any more, while we
stopped the HM iteration when the cost function reached Euweau. Note that, the cost func-
tions of these methods being normalised differently, wenoanise their values as a stopping
criterion.

Most of the text of this section was originally published inMudry, P. C. Chaumet, K. Belkebir and A.
SentenacElectromagnetic wave imaging of three-dimensional targeting a hybrid iterative methodinverse
Problems28, 065007 (2012)[21]. My main contribution was the codes efittversion algorithms.



7.3 Application to micro-wave data 119
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Figure 7.3: (a) Sketch of the experimental set-up. The iilhation is done on théz, y) plane
with ¢, from O° to 350 step 10. The polarisation of the incident field is along thédirection.
The receiver position angles varigs from 20° to 340 step 40 andé, from -60° to 60° step
15°. (b-c) the two different targets under study. (b) two digiecubes of relative permittivity
e = 2.4 and sidex = 2.5 cm located ata/2,a/2,a/2) and(a/2,a/2,5a/2). (c) Two spheres
in contact with relative permittivity = 2.6 and radiug- = 2.5 cm. The centres of the spheres
are located at—r,0,0) and(r, 0, 0).

7.3.1 Two cubes along the direction

The first considered target is made of two small cubes plat®wahez axis, as shown in

Fig.[Z.3 (b). This simple object permits to test and validateHybrid Method and to compare
its performances to that of CGM, PCGM and CSI in terms of caymece and computation
time.

Atlow frequency: 4 GHz We first inverted the data obtaineddaBHz. At this frequency, the
inter-distance between the cubes centres is about twodhifte wavelength, which is above
the single scattering resolution limit in tledirection. As expected, both CGM, PCGM, CSI
and HM are able to resolve the two cubes, Eigl 7.4. Unsurgfigi the results obtained with
PCGM and HM using the permittivity positivitg priori information are better than that given
by CGM and CSI without thig priori information. With these data with a high signal-to-noise
ratio, it appears that PGCM is better than HM.

At high frequency: 8 GHz We now study the data obtained at 8 GHz which exhibits a lower
signal-to-noise ratio than those obtained at 4 GHz [172].1A8 expected, all four methods
retrieve accurately the two cubes. PGCM and HM are once aligintly better than CGM
and CSl. In this case, however, PGCM is not as good as HM asanstructs small ghosts
objects outside the targets and exhibits high permittipeggks whereas the HM reconstructed
background is perfectly equal to one and its reconstructechitivity close to the actual value.
We have observed on many examples that, with data presemtimgh signal-to-noise ratio,
PGCM was the most efficient technique for retrieving the cigenallest details but that, on the
other hand, it was the least robust to noise.

Computationtime The computation is carried on a single Intel Xeon processihr3v2 GHz
clock speed. For the two cubes target, we give in [ab. 7.ndheber of iterations, the compu-
tation time per iteration and the total computation timeassary to obtain the reconstructions
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Figure 7.4: Reconstructed permittivity of the first targetq cubes along the axis) presented
in Fig.[7.3 obtained with the different inversion methodsnfrdata obtained at 4 GHz. The
first column corresponds to CGM reconstruction; the seco®QGM, the third to CSI and the
fourth to HM. The first line represents the relative permityiin the plane(y, z) atz = 0; The
second line represents the relative permittivity in thepla:, z) atz = 0 and the third line the
relative permittivity versus for x = y = 0.
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Figure 7.5: Same as in Fig. 7.4 but at 8 GHz.

plotted in Figs.[(74) and (7.5). We observe that CSI is muotvexr than all the other ap-
proaches. Indeed, although its iteration computation tgtee smallest, as one does not need
to solve any forward problem, the number of iterations reggifor converged resultis huge. On
the other hand, CGM, PCGM and HM have a relatively long comfpori time for each itera-
tion, but this issue is largely compensated by the small rexrabiterations required for getting
a converged result. Actually, solving the forward problevhich used to be very time consum-
ing, is now performed surprisingly fast thanks to the re@dgorithmic progress [17, 18]. The
CGM iteration is faster than PCGM and HM because it does rrptire to optimise iteratively
the scalar coefficients,.

Note that for CGM, PCGM and HM the iteration computation timereases with the illu-

Frequency Method Iteration number Time by iteration (minptal time (min)

4 GHz HM 28 6.35 178
4 GHz PCGM 25 3.2 80
4 GHz CGM 200 0.91 182
4 GHz CSl 3000 0.72 2146
8 GHz HM 13 8.46 110
8 GHz PCGM 25 7.68 192
8 GHz CGM 200 1.2 240
8 GHz CSlI 3000 0.83 2493

Table 7.1: Time of computation necessary to get the final ex@agl number of iterations needed
for the four methods presented in this section.
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Figure 7.6: Behaviour of the cost functional for the foufeliént methods at 4 GHz and 8 GHz.
(@) CGM. (b) PCGM. (c) HM. (d) CSI.

mination frequency. Indeed, the time required to solve ihectiproblem depends directly on
the object size with respect to the illumination wavelength8 GHz, convergence of PCGM
takes more iterations than at 4 GHz because of the lessalg@noise ratio. At this frequency,
HM is the fastest method.

The behaviour of the residual error versus the iteratiorlaigd for each method and for
both frequencies in Fig.4.6. We observe that, except foPB&M which is most sensitive to
noise, the high frequency data yields a better residue ti@lotv frequency data. These curves
are emblematic of the cost function behaviour of these nisthorhe HM residue reaches
quickly a constant value plateau while the three other nosthdecrease monotonically and
slowly after a few iterations. We recall that one cannot camaghe value of the residues as
each method has its own normalisation.

We now turn to another target which is more difficult to inves it is larger than the
wavelength of illumination or have a complex structure. dtrpits to investigate the perform-
ances of the techniques in terms of reconstruction accuaagyobustness to noise.

7.3.2 Two spheres in contact

At low frequency: 5 GHz In this section we study two spheres in contact. This conditiom

is particularly difficult as the contact is punctual and the tspheres form an object larger
than the wavelength of illumination for the frequency of 5 GHhe CGM and PCGM fail to
converge and the reconstructions presented ir Fig. 7.@sjpond to those obtained for the best
residue,i. e. the 43-th iteration and 2-th iteration, respectively. Téxaumple points out the
main problem of the CGM and PCGM in which the cost functiondsforced to decrease.

On the other hand, the CSI method, third line of Eigl 7.7, eoges and it retrieves the shape
of the two spheres. Yet, the reconstructed relative perntytis too high, especially close to
the contact point. Similarly, HM gives a map of permittivitgnich roughly fits the actual shape
of the spheres while the permittivity at the contact pointas overestimated.

We have observed that if the frequency is increased up to § BMAails to find the object
and sole the CSI gives a meaningful result. For frequendiesea7 GHz all methods fail.

Frequency hopping To ameliorate the reconstruction, one can use the datanelottait dif-

ferent frequencies and perform a frequency hopping praeedit each frequency, the object
initial estimate introduced in the inversion algorithm isemn by the reconstruction obtained
at the preceding (lower) frequency. Figlrel7.8 presentsdhelts obtained using frequency
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Figure 7.7: Reconstructed permittivity map of the secongitia(two spheres in contact) depic-
ted in Fig[ 7.8 (c) obtained with the four inversion methoasf data obtained at 5 GHz. First
line CGM; second line PCGM,; third line CSI; Fourth line HMr&ti and second column: cut
of the relative permittivity versus for y = z = 0 and fory = 0 andz = a/2, respectively.
Third and fourth column map of relative permittivity in tke, y) plane forz = 0 andz = a/2,
respectively.
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Figure 7.8: Same as Fig. 7.7 but the reconstruction is obdaiith HMvia a frequency hopping
procedure applied to the data measured at 3-4-5-6-7-8 GhjRdlative permittivity versus
fory = z = 0 and (b) fory = 0 andz = a/2. (c) Map of relative permittivity in(z, y) plane
for (c) z = 0 and (d)z = a/2.

hopping HM for the sequence 3-4-5-6-7-8 GHz. We considerdg M because CGM and
PCGM failed to converge at 5 GHz and because CSI was much ngp lbtook 22 hours for
HM to reconstruct the spheres and we had estimated the CStdi days.

We observe in Figure_7.8 that HM combined with frequency lgmives an accurate
reconstruction of the two spheres. With the good initiaineates, the convergence issue for
frequencies above 6 GHz has disappeared. This examplsesrée interest (in particular with
respect to computation time) and the robustness of HM. Nwedt 8 GHz the object size is
about three wavelengths.

These two examples illustrate the results of our proposeshisgruction algorithms. This
study shows that the Hybrid Gradient Method (HM) has a stglmbmparable to other recon-
struction algorithms but that it is far quicker. This is whysocan consider to apply it to optical
TDM measurements, where the data-sets are huge becauserétlty observation directions
that are obtained with the microscope objective and the came

7.4 Application to optical data@

7.4.1 Configuration and experimental set-up

Our TDM set-up is based on a reflection microscope, as seeg.iii.B, in which the camera has
been replaced by a wave-front sensor. A collimated laseni{eiz-Ne 633 nm), controlled by a
mirror mounted on step motors (Newport NSA12), illuminatessample through an objective
with NA = 0.95 (Zeiss Epiplan-Apochromat 50 under various angles of incidence. The
back-scattered field is imaged with a 28fagnification on a high-resolution wave-front sensor
(Phasics SID4-HR, 400300 pixels) based on quadri-wave lateral shearing intenietry [83].

No reference path is needed and both the phase and inteh#ity maged field are retrieved
with a single shot measurement.

To demonstrate the potential of our set-up for reconstmgdtie permittivity map of three-
dimensional samples, we consider a test object made of ésim cylinders{ = 2) deposited
on a reflective silicon substrate = 15.07 + 0.18i. This geometry corresponds to the second

2lmages and parts of the text of this section was originallylished in Y. Ruaret al. Tomographic diffractive
microscopy with a wavefront sens@ptics Letters37, 1631-1633 (2012) [22]. My main contribution was the
code of the inversion algorithm.
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incident and g
reflected field '

........... scattered field

Figure 7.9: Schematic of the TDM set-up. M, rotative mirr@&E, beam expander. D, dia-
phragm. BS, beam-splitter. OL, objective lens. L1, tubesld?, L3, relay lensesf( = 3.5
and 20 cm). WS, wave-front sensor.

configuration defined in Selc. 7.1. Note that Chapter 4 sugdglest this configuration can have
an improved axial resolution. The cylinders have a diamgtese to 1um, a height of 120 nm,
and their axes are placed at the corners of a square with &ide.

A phase reference is measured on the bare substrate formadbrice prior to imaging
the sample with a pixel size of 105 nm, and a single shot measemt is performed. This
reference further diminishes speckle noise. We have usedideinces in the plang, z) with
the electric field orthogonal to the plane of incidengglarisation), and 6 incidences in the
plane(y, z) with the electric field parallel to the plane of incidengepplarisation), with polar
angles varying in the{30, 30] degrees range. The data have been restricted to about 2,000
scattering angles centred on the specular reflection oruthersite.

7.4.2 Results

Figure[7.10 shows the relative permittivity map recondtrddrom the measured diffracted
fields. (a-b) is obtained with the Hybrid gradient Methodwpiositivity constraint. Moreover,
the absorption of the resin being negligible, the pernititiis assumed positiven(= 0 in
Eq. (7.28)). Fig.[(7.10) (c-d) is obtained with a linear irsien technique under the renorm-
alised Born approximation (code provided by Laurent MijJoadd assuming that the sample
is placed in vacuum. A vertical phase variation renderstengmetable the real and imaginary
parts of the reconstruction, so we decided to plot the madafithe permittivity map. This
implies that these images cannot be interpreted as a meaqueamittivity. Figurd 7,10 (a) and
(d) show a longitudinal cuty, =) in the middle of two of the cylinders, and (b) and (c) show a
transverse cutr, y) at the height where the reconstructed permittivity reaéhesmximum.
e.z = 125 nm for the non-linear inversion and= 53 nm for the linear inversion.

We observe that, with the non-linear reconstruction, thedverse and axial dimensions
of the resin cylinders have been correctly retrieved. Thesemence of the iterative process
was obtained after four iterations with a computationaktiof about 3 hours. The maximum
reconstructed permittivity is smaller than the actual ealu= 2.

On the contrary, the linear reconstruction technique giewia far less accurate reconstruc-
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Figure 7.10: Comparison of the permittivity map retrievathwhe iterative inversion algorithm
(a-b) and the modulus of the 3D inverse Fourier transfornmefdata set (c-d). (a) longitudinal
cut aty = 1 um, (b) transverse cut at = 125 nm (plain blue line: actual geometry of the
sample). (c) transverse cut at= 53 nm, (d) longitudinal cut ayy = 1 um. Cuts are along
dashed lines.

tion, especially along the axis. Indeed, the presence of the reflective surface ispreted as
a mirror object symmetrically placed along this axis. Ttendal resolution is also lower, partly
due to the absence of the positivity constraint and partly tduthe assumption of single scat-
tering. Moreover, reconstruction shows speckle pattarrise background due to noise in the
measurements and errors on the positioning of the measwagdeincies in the Fourier space.
Indeed linear reconstruction implies usually several heddf measurements [76]. Despite
its lack of accuracy, linear inversion appears to be quiteftkin particular for estimating the
initial size of 2 in our inversion algorithm.

This experimental result demonstrates the interest ofexonstruction technique for TDM.
It can be used for various configurations and is stable fanlzigefracting samples. It allows
the use ofa priori constraints, like the positivity of the permittivity andetestriction of the
reconstruction volume. Itis also more robust to noise than linear reconstructamtsrequires
less incidences.

7.5 Conclusion

When the permittivity contrast is not small in comparisoritgeconstructions of permittivity
maps from TDM data necessitate non-linear inversion teghes that account for multiple scat-
tering. This chapter presents the different algorithms lia&e been developed in the team to
address this issue. They are all based on a rigorous maglefiithhe diffraction process.

These algorithms have been applied to data issued from #gené&lr data base, a base of
micro-wave tomographic data. This study shows that the @enSource Inversion algorithm
is the most stable for highly refracting samples, but thec@mputation time is prohibitive.
Conversely, the Hybrid Method is slightly less stable butdgfaicker, allowing reconstructions
from measurements taken at several wavelength.

The Hybrid Method has then been applied successfully to TRpeemental data where
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the dielectric sample is deposited on a highly reflectingttea This demonstrates the validity
of this approach for permittivity map reconstruction in qaex configurations. It also shows
that a correct permittivity map can be obtained with a limhiteimber of incidences. Further

experiments are in progress for imaging more complex sasygvid studying the limit of resol-
ution.

We believe that this work underlines the interest of the kyMethod in non-linear tomo-
graphy. A possible extent would be to build a hybrid from tlen@€ast Source Inversion as the
resulting method could be more stable for the highest difing samples. Another perspective

is to build an algorithm inspired from the previous chapl@at estimates jointly the permittivity
mape and the incident fieldE;,,.



Conclusion

This Ph. D. thesis was devoted to the amelioration of theluéiea of stainless and fluores-
cence microscopies using spatially inhomogeneous illatrons. More precisely, we studied
Tomographic Diffraction Microscopy (TDM), in which the safe varying permittivity diffracts
the field of tilted incident plane waves, and structuredmiination fluorescence microscopy, in
which the sample fluorescence is excited by non-inhomogenigght intensities.

We demonstrated numerically and experimentally that, th bases, the axial resolution can
be made equivalent to the transverse resolution just byrgdlce sample on a mirror. The mir-
ror allows a quasi-isotropic observation and illuminatadrihe sample in a much simpler way
than the classical 4Pi configuration using two facing objest On the other hand, it requires a
technigue to separate the reflected waves of those reacinewglylthe objective. In TDM, we
derived a specific numerical inversion scheme for treategstack of holograms. We showed
that, under the Born approximation, one could get a onea-arrespondence between the
object spatial frequencies within a ball of radiis/ A and the data. In confocal fluorescence
microscopy, we developed a specific phase-shaping of thgeincbeam so that it focuses into
a quasi-isotropic spot before the mirror. We believe thatapproach may be useful in many
microscopy configurations, like classical incoherentniioation microscopy or in techniques
using non-linear light-matter interactions, such as higtmonic generation, STimulated Emis-
sion Depletion (STED) or even STochastic Optical Recorsiva Microscopy (STORM) and
Photo-Activated fluorescence Light Microscopy (PALM), lalso for three-dimensional pat-
terning and reading.

The improved resolution obtained when the illuminationgatgally inhomogeneous stems
from the frequency mixing between the object and the probeld. The super-resolved map
of the sample is numerically reconstructed from the manygesaobtained under different il-
luminations. Most of the reconstruction algorithms assuina the probing field is perfectly
known. In this work, we developed inversion methods thabmstruct both the sample and the
probing fields with the least possibdepriori information on the latter. We used iterative tech-
niques that minimise a functional over all possible sampl# arobe functions, measuring the
distance between the actual measurements and a modeldtuséd illumination fluorescence
microscopy, our reconstruction method (named blind-SINoves the use of uncontrolled or
even random illumination patterns. It permits a dramatig®ification of the experimental im-
plementation. In TDM, our reconstruction method permiteaadle highly contrasted samples
in which the internal field departs significantly from theighent field because of multiple scat-
tering. Interesting perspectives opened by our algoritrmsamong others, the combination of
TDM with random illuminations, the adaptation to non-lin@ave-matter interaction such as
saturated fluorescence [142] or the development of sukadiibn surface imaging using high
frequency near-field patterns [174, 117, 175]. This lashpbas been initiated for grating-
assisted fluorescence imaging and requires additional fwotkeing totally operational.
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In conclusion, | think that combining an accurate imageration model to sophisticated
reconstruction procedures is a promising path for imprgvire performances of microscopes
while simplifying the experimental set-ups. With the incseng computing and algorithmic
performances, this approach will certainly gain in poptyaand, hopefully, attract researchers
from the Inverse Problem and Signal Processing community.
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Appendix A

Demonstration of the results cited In
Secl4.1.1)2

Et 'unique cordeau des trompettes marines
Guillaume Appolinaire

The goal of this appendix is to prove results cited in SecIf&1
This starts with the system

Bine —B=A (A.1)
[Vine — | = B (A.2)
Bine —B=C (A.3)
[Yine + 7] =D (A.4)

There are bounds on the values thap;.., ¥ and~;,. can take. Since the wavelength does
not vary and since the considered plane waves are not earese have

Biznc + ’Yiznc - k:g (A6)

With the chosen sign convention (see [Fig] 4.1), this meaats th

v o= (k-5 (A.7)
Yine = — \/ k% - ﬁian' (A8)

From Eqgs.[(A.ll) and (Al3), one finds immediat. From Eqgs.[(A.R) and (Al4), one
hasB > 0andD > 0
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Inserting Egs.[(A]7) and (Al8) in Ed.(A.2) one gets suceadgi
VB =8+l — B2 = £B
= (28l
ko — B = B* + kg — B2 F 2B/ k§ — 32
+2By\/k2 - B2 =B*+ B, — ° (A.9)

Equation [(A1) leads t@?. = (A + 3)? = % + A? + 2AB. Inserting this equality in

inc

Eqg. (A.9), one obtains successively

+2B/k3 — B2 = A? + B? + 248
4B (k§ — B?) = (A? + B + 24B)?
4B*(k2 — B%) = (A% + B*)? + 4A(A? + B?)B + 4A%p?

That means that is a root of the second-degree equation

48%(A% + B?) — 4BA(A? + B?) + (A* + B*)? — 4B%kj = 0, (A.10)
Its discriminant is

A = 16A%*(A* + B*)? — 16(A* + B?)[(A* + B*)? — 4B°k{)
= 16A4%(A% + B*)? — 16(A% + B*) (A% + B*)* + 64(A* + B*)B%k;]
= —16B*(A® + B*)?* + 64(A? + B*) Bk}
= 16B*(A* + B?)[4k] — (A + B?)]

Equation[(A.10) has a solution if and onlyX > 0 that is equivalent to

4k > A* + B? (A.11)

that defines thek-radiusz > 0 half-ball.
Solutions of Eq.[(A.ID) are

1 1| 4k2
———A+-B 0O _ 1. A.12
b 2 2 A2+ B2 ( )

Using Eq.[(A.1), we have immediately

1 1 4k2
e = —A+ =B U—
2 2 2 A2 + B2

(A.13)

The previous reasoning proves that the system composedsoflfEd) and[(A.2) implies

Egs. [A.12) and(A.13). One need now to check that Eqgs. (Aah?)) [A.13) are solutions of
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Egs. (A1) and(AR). They are obviously solutions of EqI)A.To prove that they are solutions
of Eq. (A.2), one need to calculateand~;,.

Equation[(A.T) leads to

v o= SR (A.14)

1 1 4k2
= |kK—-|-A+£>-B o _
0 2 2 A2 + B2

A2 B2/ 4k AB | 4k2
gD 0 0 A.16
T (A2+32 )jF o \| 2+ B2 (A.16)
(A2 4 B2)k2  A® B2 B2 AB | 4k2
N G o L S = 1 (A7
\reEy= P arp 1 T\ p (A-17)

(A.15)

B A® A2 AB | 42

-2 1 A.18
1 1 Terpt e\t (A.18)
B A k2 AB | k2

A 1 1 A.19
R <A2+B2 )qE 2 \| 425 B2 (A.19)

2

11 472
= “Bx - U
\ BF AN e

1 1. | 4k

In the same way, Eq._(A.8) leads to

(A.20)

11 Ak2

inc:__Bj:_Ié1 -
K BN

1\ . (A.22)

One gets EqL(Al2),:n. — v| = B only if the formulae in the absolute valuespand~;,.
have the same sign. That means

A2
4 2

A? (A2 fOBQ —1) < B (A.24)

A? ST A% + B? A.25

g - 47 (A.25)

4A%K2 < (A% + B?)? (A.26)

2kolA| < A?+ B? (A.27)
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Equation2ky| A| = A? + B? describes the twé,-radius circles centred ifky, 0) and(—ky, 0).
This and Eq.[(A.I1) proves thatl, B) has to be in zone (1) of Fig.4.1.

If 2ko|A| < A% + B?, we get

1 1 4k?
= —BF¥_-JA 0 1 A.28
1 1 4k?
me = —-BF-|A 0 1 A.29
that verifies Eq.[(AR).
Equation[(A.4) leads then to
4k2
D=|A 0 1. A.30
AN (A-30)
This implies that
4k2
2 2 0o
D* = A (A2 = 1) (A.31)
A? 4+ D* = A? 4 (A.32)
FER ok :
From Eq.[A.27),
1 1
< A.33
A2+ B? T 2kolA| ( )
4k2 A* 4k2 A* . 2 42
< Itipl by 4k; A A.34
A B S Sy A] multiplying by 443 (A.34)
4k2 A?
ey < 2ko|A| (A.35)
A? 4+ D? < 2k|A|, using Eq.[(A.3D) (A.36)

This proves thatA, D) is in two ky-radius circles centred ik, 0) and(—ky, 0), that means
in zone (2) of FiglL 4.
4k2
A2+ B2
(A, B)isin zone (1) B > 0 and2ky|A| < A% + B% < 4k2)
and(C, D) isin zone (2) 0 > 0 andC? + D? < 2kl A|).

Summarising, we hav€ = A, D = | A|
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Gradient calculation

Bergere tour Eiffel le troupeau des pont&le ce matin
Guillaume Appolinaire

B.1 Definition of a functional gradient and basic examples

This section gives the mathematical definition of a fundiagradient. Deriving an example it
expounds calculation rules for least-square functionals.

B.1.1 Definition

To define the gradient of a functional, one need first to defieadirectional derivativel' is a
functional of the variable:, a function defined of the sét. For any function: of Q, D, F'(u)
the directional derivative of' along the direction is defined as

F(ertu)—F(:E).

D.F(u) = 2lg% ; (B.1)
Theng, the gradient off’ is defined as
g» = argmax(D, F'(u)|[|ul] = 1), (B.2)

thus the direction were the directional derivative is thghleist.

According to this definition, gradients are normalised sashg.|| = 1. However, since
in gradient type algorithms their value is always multigligy a constant that is optimised, we
most of time neglects it in the following.

B.1.2 First example

As a first example, we detail here the calculation of the gnaidof the functional Eq[(6.18)
defined in Sed. 6.2.3
F(p) = WM — (plo) * h[. (B.3)
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F(p + tu) is written
Flp+tu) = WIM —[(p+tu)lo] * b}
= WIM — (pI) * h — t(ulo)  hJ3. (B.4)
For the sake of simplicity, one notes

Py = M — (ply)  h. (B.5)

F(p + tu) is then

Fp+tu) = WP —t(uly) =kl
= W(Py — t(uly) * h|Py — t(uly) * h)r
= WIRF — 26W (| (ulo) * h)r + W]|(ulo) * bt
— F(p) - 2W{By|(uly) * B + O(F) (8.6)

Finally,
F(p+tu) — F(p)

D,F(u) = %1_13-01 p (B.7)
= 2W(FR[(ulo) * h)r (B.8)
Assumingh as even¥z € Q, h(—z) = h(z), one has successively
= (Lo(Fo * h)|u)a (B.10)
that leads to
D,F(u) = —2W({Io(P*h)|lu)g (B.11)
(=2W Iy ( Py * h)|u)q (B.12)

To find the gradient, = arg max, (D,F(u)|||u|| = 1), one uses a theorem that states that
u = % maximiseq (a|u)|||u]| = 1). Thus from Eq.[(B.I2), one gets

el

 2WIy(Pyxh)
o =W Iy + b

(B.13)

The normalisation factor does not matter in the Conjugated{@nt algorithm. We finally
have

g, = —2W1y(DPy * h) (B.14)

B.1.3 Second example, functional with an auxiliary functio variable

In Sec[6.2.B the functional Ed.(6]18) is modified for impgsihe positivity ofp. This is done
in optimising an auxiliary functiog such thap = £2. The new functional is

F(§) = WM — (1) = h[;.
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Of courseg¢ can be derived using the reasoning of the previous sectioweMer, one can
avoid these tedious calculations using the chain rule

0
ge = 8_§gp- (B.15)

Using this relation and the definition pf¢) we find

ge = 289, (B.16)
and with Eq.[(B.14) one finally gets

ge = —AWEL(Py % h). (B.17)

B.2 Gradients for Chap.[6

We gives here some details for the derivation of the gradieséd in Chapl6.

B.2.1 Gradients for the blind-SIM algorithm without positi vity

The gradients for the blind-SIM algorithm described in $&& derives from the functional
Eq. (6.7)

2

r

g, is the gradient of" when thel; are assumed constant. It is by definition

g, = argmax(D,F(u)|l|ul|=1) for (B.18)
a 1)— - F I)i—
D,F(u) — lim (p+tu, ()izs,...p) = Flp, (I)izr,.n) (B.19)
t—0 t
For the sake of simplicity, one notes

L—1
I=LIj-> I (B.20)

=1

and, forl =1,...,L,

PO,l = Ml — (p[l) * h,, (BZ].)

called thel-th residue.

F(p+ tu, (I;);=1... 1) IS written

.....

L
Fp+tu,(I)i=1..p) = WY _|IM = [(p+ tu)L] * )}
=1

L
= W M — (ph) * b — t(ul}) * h}}. (B.22)
=1
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F(p + tu) is then

L
F(p+tu, (Il)lzl ,,,,, :WZHPOl_t(uIl)*hH%
=1

=W (1P} = 26(Poul(uly) = hyr + || (ul)) « B|})  (B.23)
=1

= F(p) = 20W > (Pos|(ul)) = h)r + O(t?) (B.24)

=1
Finally,

D,F(u) = =2W > (Pol(ul)) * h)r (B.25)

Assumingh as even¥z € Q, h(—z) = h(z), one has successively

L
D,F(u) = —2W > (Poy* hlul)g
B
= —2W > (I)(Poy = h)|u)a

1=1
u> (B.26)
Q

L
= <—2W > L(Poyxh)
Using the theorem of maximality cited in the previous settmne finally has

=1

L
go=—2W > I(Pyy*h) (B.27)

=1

gi.1 is the gradient of” whenp and the(L — 2) other [, are assumed constant. It is by
definition

gi.1 = arg mSLX(Dl;IF(U)H‘UH =1) for (B.28)

Fp, I + tu, (L)) m= imzt) — F(p, (1)) met.. -
Dy F(u) :Pn% (p, Iy + tu, (In)m=1,...L 1,t 7&1) (py (L) m=1, L 1).
o

(B.29)
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ExpandingF'(p, I + tu, (Im)m=1,...-1,mz1), ONE gets

L—-1
F(p, I + tu, (In)met,.povnt) =W Y I PomllE + WMy = (p(Li + tu)) * h|[F
m=1,m#l
2
+ W || M, — (LIO— Z I, Il+tu)>] «h
m=1,mz#l r
L—-1
=W Y N Pomllt + WIIPoy = t(pu) * Al
m=1,m#l
+ WM = [p(I — tu)] + A7
L-1
=W Z | Po.ml[7 + W || Poy — t(pu) * k|7
m=1,m#l
+ WP, + t(pu) * h||
L
=W Y 1Pomllf = 20W (Po|(pu)  h)r
m=1

+ 2tW(P0 ol(pu) * h)r + O(?)

.....

This leads to
Dl;[F(u) = —2W<P0’l — P07L|(pu) * h)r
= —2W{((Py; — Po.r) * hlpu)q
= (—2Wp[(Poy — Po.r) * hl|u)q (B.30)
that implies
g1 = —2Wp[(Pog — Po..) * hl. (B.31)

B.2.2 Gradients for the blind-SIM algorithm with positivit y

In Sec[6.2.2]1 the functional is modified to impose a pagjtisonstraint using the auxiliary
functionsi; and¢ defined by Eq.[(6.14)

I
p

I
~

-2
l

The new functional is given by Ed. (6]15)

2

F(ga (il)l:1 ..... WZHMZ *h||F+W||ML—

¢(on-3)]

r
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The gradients can be immediately derived from the previeaan using the chain rule

L
g = —AWD &if(Poy*h) (B.32)
=1

g = —AWE[(Poy — Poy) * h). (B.33)

B.2.3 Gradients for the filtered blind-SIM

In Sec[6.4.8 an algorithm is described, minimising the fiomal Eq. [6.7)

2

r

for p € Qandl, € S, S being the set of real functions with valueirwhose Fourier transform
has its support included if, a sub-set oR?.

This functional is the same as the one of $ec. B.2.1. The oadifination is the setin which
I, are estimated. This does not modify the calculations leatbry, in Eq. (B.27). However,
this changes the gradienjs;. As the functional is unchanged, Efg. (Bl.30) still holds

Dl;[F(u) = <—2Wp[(P07l — PO,L) * h]|u>g
gi.1 is the direction that minimiseB,.; F'(u) insideS. Formally it is defined, noting =
—QWp[(PoJ — PO,L) * h], by
g1 = argmgx(Dl;[F(uﬂHuHQ =1,uc¢€ 5)
= argmax((v|u)g||[ullq = 1,u € S). (B.34)

The condition of membership & hinders the use of the maximality theorem. One has to find
an expression d,.; F'(u) that includes this condition.

Defining f the function whose Fourier transform verifies

- 1 ifkeS
k B.35
I ){0 otherwise ( )

one hastu € S, fi = athusvu € S,u* f =uandvu € Q, f xu € S. Then, assuming as
even, since; € S,

DirF(u) = (v|ux f)g (B.36)
= (v flu)a. (B.37)
ﬁ maximises((v * f|u))|[[u] = 1) andv « f € S, thus
HZ I ;H = argmax(DyrF(u)[[ullo = 1,u € S).

This proves that

g1 = —2W<,0[(P07l —Pyy)* h]) « . (B.38)
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B.3 Gradients for Chap.[{

We give here some details for the derivation of the gradiasésl in Chapl7. The calculation
technigues expounded in the previous section still applee need, however, to keep in mind
that now the variables are complex numbers and the fig]dmd the sourceP, are vectorial

functions of space.

B.3.1 Gradients for the Hybrid Gradient Method

The gradients used in the Hybrid Gradient Method descriheBeic[7.2.2]2 derives from the
functional Eq.[(7.18)

L L
Fo(x: (Ei)i=1,..0) = Wr Z IEa; — BXE|E + Wa Z IE; — Einey — AXE|[3

gy 1s the gradient of” when theE; are constant. It is by definition
gy = argmax(D, F(u)|||ul]|=1) for (B.39)

F E F E)-
DF(u) = lim (x +tu, (Ep)i=1,..0) — F(x, (Ep)i=1,.., L). (B.40)

t—0 t

Expansion ofF'(y + tu, (E;);—

F(X+tu, (El)lzl

-----

L L
=W Y [Ba =B+ Ef+Wa > B~ Eines— A(x+tu)Ei3.

=1 =1
For the sake of simplicity, one notes

PO,l = Ed,l — BXE[ (B41)
Qo = E; —Ei; — AxE, (B.42)

called thel-th residues.
F(x + tu, (E;);=1,.. 1) can then be written

.....

ey

L L
= Wr Z [Po; — tBuE|[f + Wy Z Qo — tAuE|3

L
)+ > [~2tWrRe(Po, | BuE:)r
=1

— 2th§R€<Q0J|AUEl>Q] O(tQ)

-----

Thus the functional derivativl, F'(u) is

L
D\ F(u) = =2 (WrRe(Po, [ BuE)r + WoRe(Qo | AuE))q).

=1
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B and AT being the adjoint of respectiveB andA, this becomes

L
D\ F(u) = =2 (WrRe(B'Pq[uEy)q + WoRe(ATQq|uE:)o).

=1

u is scalar wherE, is vectorial. A specific care is needed at this step. Indeed
(B'Py,JuE)q = /Q (B'Py;) " .(uE)dr
— / (E;.B'Pgy) " udr
Q
= (E;.B'Py,|u)q.

This leads to
L

DXF(U) = -2 Z(Wp%€<E?.BTPOJ‘U>Q + WQ%@(ETATQOJ"M)Q)
=1
Q
L

gy =2 (WrE;.B'Pg; + WoE; ATQq,). (B.43)

=1

L
DXF(U) = Re <—2 Z(WFEZ(-BTPO,I + WQE?ATQOJ)

=1

We finally have

The positivity constraint is imposed by using two real aiaxyl functions such that, from
Eq. (7.28) .,
X(En)=1+&+in" —&

Gradients along these auxiliary functions can be foundgugia chain rule

X

ge = Re <gX8_§) (B.44)
ox

gy = We <gx8_77> (B.45)

This leads to

L — —

=1

L — —

gy = 4nSm (Z(WFEZ‘.BTPOJ+WQEZ‘.ATQ0J)>. (B.47)
=1

.....

is equal to
glE = argmlzlxx(Dl;EF(u)|||u|| =1) for (B.48)

F(p, E;+ tu, (E _ B E B
DZ;EF(U) _ ,lfir% (0, B +tu, (Ep)m=1,.., Lt,mﬂ) (0, (Bp)m=1,.., L).
_)

(B.49)
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Expansion of'(p, E; + tu, (E,,)m=1, .1.mx) gives

L L
F<p7 El + tu7 (Em>m:1 ..... L,m;ﬁl) = WF Z ”PO,mH% + WQ Z HQO,mH?)
m=1,m%#l m=1,m#l

+ Wr||Ea; — BX(E; + tu) |7
+ Wal|(Ei + tu) — Eine; — Ax(E; + tu) |3,

L L
= We > Ponllt+Wa > [1Qomld
m=1,m%#l m=1,m%#l

+ Wrl[Poy — Byul[f + WallQo, + t(u — Axu)lg

.....

+ 2th§R€<Q0J|u — AXU_)Q

Thus the descent directions are successively

DI’EF(U) = —QWF%€<POJ|BXU>F + 2WQ§R6<QO’Z|U - AXU>Q
= —QWFBCEe()g*BTPOJ\u)Q + 2WoRe(Qo |u)q — 2Wg%€<x*ATQOJ\u)Q
Re(—2Wrx*BIPy; + 2Wq (Qoy — X*ATQO,I) |u)o.

We finally have

gie = —2Wrx"B'Pg, 4+ 2Wq (Qoy — X" ATQo)) - (B.50)

B.3.2 Gradients for the Contrast Source Method

The gradients used in the Hybrid Gradient Method describeSkeic[7.2.2]3 derives from the
functional Eq.[(7.24)

=1 =1

This functional is composed on two terms. The first one doésl@pend ory and has thus
no influence ory, .

The residues are redefined as

P,, = E, - BP, (B.51)
Qo; = Pi—xEics — XAP, (B.52)

Derivation of g, starts with the expansion of

L L
F(x+tu, (P)iz1,n) = We ) |[Pollt +Wo D 1P — (x + tu)Eines — (x + tu) AP|[3
= =

L L
= Wr Y Pl + W5 1Qos — tu(Bines + AP
=1 =1

.....
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This leads to the direction derivative

DXF<U’> = _2W&/]§R6<Q0,l|u<Einc,l +APl>>Q
== —2Wé%6<(Einc,l + AP[)*.Q07Z|U/>Q

that leads to the gradient

gX = —QWé(EinCJ + AP[)*.QOJ. (853)

-----

is equal to

gip = argmlzlxx(Dl;pF(u)|||u||:1) for (B.54)
F P t Pm m=1,...,.Lm _F ) Pm m=1,...
DipF(u) = lim (0, Prt 1, (P, - #) = Ep Pr)narr) (g g
_)

For obtaining the gradient along the source functigns, one need to expand

L L
Fp P+, (P i) = We S0 [Ponl2 4108 30 Qo
m=1,m#l m=1,m#l

+ Wr||Eq; — B(P; + tu) ||}
+ WPy + tu) — XEines — XA (P + tu) |3

L L
=We > Pomli+Wo > [Qomld
m=1,m#l m=1,m#l

+ Wr||Poy — tBu|f + W[ Qoy + tu — txAullg,

-----

+ 2tW5Re(Qo,|u — xAu)g.
The directional derivatives are thus

DipF(u) = —2WrRe(PoiBu)r + 2W5Re(Qo lu)a — 2WHRe(QoulxAu)o
= —2WF§R€<BTP0J|U>Q + 2W6§R6<Q071|U>Q — 2Wé%6<AT(X*QO’l)|u>Q

that leads to the gradients

gip = —2WrB'Pg; + 2W,, (Qo; — AT(x*Quy)) - (B.56)
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Abstract

Various fields of experimental science are constantly ragusmaller resolu-
tion for optical microscopy. In this thesis are presenteatss works for im-
proving resolution in fluorescence microscopy and in Torapfgic Diffraction
Microscopy (TDM), an emerging phase microscopy techniduéhe first part
it is shown that one can improve the axial resolution in dépgsthe sample
on a mirror. In confocal fluorescence microscopy, this issdloypshaping the il-
lumination beam with a Spatial Light Modulator. In TDM thssdone by adapt-
ing the reconstruction method. Then algorithms are prapésereconstruct-
ing high-resolution images from structured illuminatioeasurements with un-
known illumination fields, both in fluorescence imaging fokSIM algorithm)
and in TDM. This allows a dramatical simplification of the exipnental set-ups
in fluorescence structured illumination and the image rstrantion of high op-
tical index samples in TDM.

keyword: optical microscopy, resolution, fluorescence, phase eeapy, structured illu-
mination, inverse problems.

Réesuneg

La microscopie optique est une technique essentielle ppmodbreuses dis-
ciplines des sciences expmentales qui @cessitent de€solutions sans cesse
plus petites. Dans ce travail defe sont grsengs plusieurs travaux pour I'am
lioration de la esolution en microscopie de fluorescence et en microscopie
tomographique par diffraction (MTD), un€&cgente technique de microscopie
de phase. Dans un premier temps, il est moue @poser lechantillon sur
un miroir permet d’augmenter l&solution axiale en MTD et en microscopie
confocale de fluorescence. En microscopie confocale, tlgaur cela mettre
en forme le faisceau incident @pea un modulateur spatial de luane. En
MTD, il suffit d’adapter le programme de reconstruction. leauxieme partie
présente des algorithmes pour reconstruire des images lesat@tiona partir
de mesures eaclairement structéravec de champs d’illumination inconnus,
a la fois en microscopie de fluorescence (algorithme blin}&t en MTD.
En microscopie de fluorescence, ces algorithmes permelgesitnplifier dras-
tiguement les montages exjimentaux produisantédclairement structéret en
MTD, d’obtenir des images dchantillonsa fort indice.

mots-cles :microscopie optique, résolution, fluorescence, micrpecde phase, éclairement
structuré, problemes inverses.
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