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Résumé Etendu

Lobjectif de ce travail est de développer des outils statistiques et des modéles in-
formatiques pour initialiser et calibrer les modeéles de microsimulation dynamique sto-
chastique. Nous avons développé ces outils et modeles dans le cadre de 1'élaboration
du modeéle SimVillages, certains développements sont trés spécifiques a ce modele,
d’autres plus génériques.

Lhypotheése a la base de la microsimulation est que se placer au niveau de I'individu
donne plus de chance de comprendre ce qui se passe a un niveau plus agrégé. C’est
dans cette optique que 'on utilise la microsimulation dynamique. L'idée est de créer
une société virtuelle ot 'individu est I'entité a la base du systeme. Cette société virtuelle
devra étre statistiquement semblable a la société "réelle" sur les indicateurs qui nous
intéressent, définis en fonction des objectifs du modele. On fait ensuite évoluer cette
société dans le temps en essayant de reproduire les faits passés pour comprendre com-
ment ils se sont produit et ainsi tenter d’anticiper I’avenir. Mais pour créer un tel modele
informatique plusieurs questions se posent. Tout d’abord comment créer la population
synthétique de base du modele en absence de donnée détaillée sur la population a re-
produire ? Comment extraire I'information des données pour construire la dynamique
du modele ? Si il existe des parameétres du modele inconnus, comment estimer leurs va-
leurs ? Ce travail est consacré a ces questions.

Dans ce résumé étendu, je présente, dans un permier temps, le modéle de micro-
simulation dynamique SimVillages servant de cadre applicatif aux travaux de la theése
dans le but de donner aux lecteurs une idée plus précise du contexte dans lequel s’ins-
crivent les développements méthodologiques présentés. Dans un second temps, je pré-
sente un résumé des chapitres.

Le modele de microsimulation SimVillages

Le modele de microsimulation dynamique stochastique SimVillages a été développé
durant le projet Européen PRIMA'. Son objectif est de permettre de mieux comprendre
les différences d’évolution des municipalités rurales. Dans ce modéle, on fait I'’hypo-
thése que I'évolution de ces communes dépend, d'une part, des interactions entre
municipalités a travers le navettage et la consommation de service et d’autre part du
nombre d’emplois dans les différents secteurs d’activité (fixé de maniére exogéne a
I'aide de scenarios) et d’emplois de services de proximité (supposés dépendant des ca-
ractéristiques de la municipalité).

Le modele SimVillages appartient a la famille des modeéles de microsimulation. Les
origines de I'approche par microsimulation remontent a la fin des années cinquante
(Orcutt, 1957). Elle est la premieére approche a avoir pris en compte le niveau individuel
dans la modélisation des systémes complexes mais elle fait maintenant partie d'une

! PRototypical policy Impacts on Multifunctional Activities in rural municipalities - EU 7th Framework
Research Programme ; 2008-2011 ; https://prima.cemagref.fr/the-project
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famille plus large de modele : les modeéles individus-centré. Cette famille de modéles
regroupe la microsimulation, la théorie des jeux, les automates cellulaires, les simula-
tions orientées-objet et les simulations multi-agents (Amblard, 2003). Les modéles de
microsimulation modélisent a un niveau microscopique (a I'échelle de I'individu) un
systeme complexe, ils sont dynamiques lorsqu’ils évoluent dans le temps et stochas-
tiques lorsqu’ils sont composés d'une part d’aléa rendant chaque résultat du modele
"unique". Lintérét de ce type de modéle est la flexibilité des résultats. En effet, le fait
de travailler a une échelle trés fine permet d’obtenir des résultats a plusieurs niveaux
d’agrégation. Cependant, la microsimulation se voit opposer plusieurs critiques : le vo-
lume de données requis, le temps de calcul et la stochasticité. Depuis la premiere vision
d’Orcutt avec DYNASIM (Orcutt et al., 1976) de nombreux modeles de microsimulation
dynamique ont été proposés tels que DESTINIE (INSEE, 1999) ou encore LifePaths (Sta-
tistics Canada, 2004). Ces modeles permettent d’analyser I’évolution de systemes com-
plexes en prenant en compte une hétérogénéité dérivée des observations des individus
et de leurs interactions. Le modele SimVillages est stochastique incluant des objets hé-
térogenes (individus, ménages, municipalités, emplois, logements,...) et ses propriétés
ne peuvent pas étre dérivées analytiquement, nous avons besoin de réaliser un grand
nombre de simulations pour comprendre son fonctionnement et ajuster les valeurs de
parametres inconnus pour obtenir une bonne adéquation entre données observées et
données simulées.

Le modele SimVillages est un systeme dynamique a temps discret X, = .#(0,7,
X;)ou X; € R" estl'état du systeme, y = (71, ...,Y m) les parametres fixés du modele et 6 =
(61,...,0y) les parametres inconnus du modele. On observe des trajectoires de ce systeme
dynamique, a partir de conditions intitiales X, et pendant un certain nombre de pas de
temps T. Dans le modele SimVillages un pas de temps équivaut a un an. Nous pouvons
observer sur la Figure 1 que le modele commence en 1990 et que pour le confronter a la
réalité nous disposons de deux dates de recensement, 1999 et 2006. Nous pouvons aussi
observer que pour des valeurs fixées de Xy, y et 8 chaque éxecution du modele donne
des trajectoires différentes a cause de la stochasticité.

1l existe deux catégories de parametres, les parametres fixés du modéle 7 et les pa-
rametres inconnus du modeéle 6. Les parameétres fixés du modeéle sont a configurer par
l'utilisateur, leur valeur est dérivée de valeurs et de distributions de probabilité extraites
des données observées a 'aide de méthodes statistiques et de traitement de données.
Elles peuvent aussi prendre la forme de scenario intervenant de maniére exogene dans
la simulation. L'état initial fait aussi partie des parametres fixés du modéle, il est re-
présenté par une population synthétique construite a partir des données observées, a
I'échelle de la région considérée. Chaque individu de cette population est caractérisé
par:

e un ménage dont il fait partie, d'une certaine taille (de 1 a 6 ou plus individus) et
d’'un certain type (personne seule, famille monoparentale, couple avec enfant(s),

couple sans enfant(s) et autre ménage),

¢ un statut au regard de son ménage (chef de famille, partenaire ou enfant),
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e une situation au regard de 'emploi (employé, sans-emploi, retraité, inactif ou étu-
diant),

e une catégorie socio-professionnelle s’il est actif (agriculteur, artisan, profession
intermédiaire, cadre, employé et ouvrier),

¢ un lieu de travail sil est actif occupé (dans une commune de la région ou a I’exté-
rieur de la région) et un secteur d’activité (agriculture, industriel ou service).

Une représentation des entités composant I'état initial du modele est proposée Fi-
gure 2. Il est important que cet état initial soit statistiquement le plus proche possible
de la population observée car il est le point de départ pour la calibration. En effet, I'état
initial a un impact sur les évolutions futures du modéles.

Les parametres inconnus du modele sont ceux que nous n’avons pas pu directe-
ment extraire des données. Nous pouvons observer sur la Figure 3 que les parametres
inconnus du modéle sont extraits des données via une procédure de calibration tandis
que les parametres fixés du modele sont directement extraits des données. La calibra-
tion du modele SimVillages ne peut se faire analytiquement. Pour calibrer le modele,
nous faisons donc varier les parametres pour minimiser une fonction cible, distance
entre des statistiques construites a partir des données observées et des données simu-
lées (population moyenne...). Nous devons pour cela parcourir efficacement 'espace
des parametres afin de trouver le ou les jeux de valeurs de parametres minimisant la
cible. Cela nécessite un grand nombre de simulations du modéle. Par exemple, sur la
Figure 1, le but est de trouver des valeurs de 8 qui ont au moins une trajectoire "proche"
des données observées (représentées par les points verts).

Du point de vue de la dynamique du modele, a chaque pas de temps, la population
des communes évolue, les individus font des choix de vie, d’étude, de carriere, d'union,
peuvent avoir des enfants, divorcer, migrer et mourir. Le modéle prend en compte, de
maniere endogene, les migrations inter-communales, les créations ou les suppressions
d’emplois dans les services de proximité en fonction du nombre d’habitant. En plus
de ces évolutions endogenes on introduit des scenarios représentant les décisions poli-
tiques prises au niveau régional telles que, par exemple, 'implantation d'une entreprise
sur une commune. Ces scenarios modifient de maniére exogene I’évolution des com-
munes.

La région d’étude modélisée avec le modéle SimVillages est le département francais
du Cantal qui possédait 158 723 habitants répartis en 260 communes en 1990. Le modele
a pour point de départ 1990 et I'’estimation de la distribution de valeurs des parametres
a été effectuée en deux points dans le temps, 1999 et 2006 (années correspondant au
recensement de la population effectué par 'INSEE). Une simulation sur un ordinateur
de bureau prend environ une minute. Une description compléte du modele est détaillée
dans Huet et al. (2012a) et sa paramétrisation est détaillée dans Huet et al. (2012b) (dis-
ponible en Annexe A).
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Résumé des chapitres

Ce travail de these se divise en quatre chapitres. Les deux premiers chapitres portent
sur l'initialisation du modele SimVillages avec la création d'une population synthétique.
Le troisiéme chapitre concerne un modéele statistique permettant d’estimer le nombre
d’emplois dans les services de proximité. Le quatrieme chapitre présente une méthode
de calcul bayésien approché permettant d’estimer la distribution des valeurs des para-
metres inconnus du modeéle.

Dans Lenormand and Deffuant (2012), présenté dans le Chapitre 1, nous avons tout
d’abord implémenté I'algorithme proposé par Gargiulo et al. (2010) pour créer une po-
pulation synthétique de ’Auvergne en 1990. Ensuite, nous validons cette population et
nous comparons l'algorithme utilisé avec la méthode Iterative Proportional Updating
(IPU) proposé par Ye et al. (2009). L'intérét de ’algorithme proposé dans Gargiulo et al.
(2010) est qu'il n'utilise que des données agrégées palliant ainsi I'absence d'un échan-
tillon représentatif de la population. Nous montrons dans le premier chapitre que cet
algorithme est plus rapide et qu'il donne de meilleurs résultats que 'autre algorithme
utilisant un échantillon. En contre partie il nécessite plus de temps dans la préparation
des données.

Pour finaliser la population synthétique il a fallu assigner a chaque individu actif
occupé de cette population un lieu de travail lorsqu’il travaillait a I’extérieur de sa com-
mune de résidence. Le réseau formé par les interactions entre communes pour les dé-
placements domicile-travail s’appelle un réseau de navettage. Les données détaillées
étant indisponible en 1990 il a fallu développer un algorithme de génération de réseaux
de navettage permettant de simuler un réseau a partir de données agrégées. Ce mo-
dele a été proposé dans Gargiulo et al. (2012) (disponible en Annexe B), cet algorithme
construit le réseau progressivement, en attribuant aux navetteurs, un par un, un lieu de
travail avec une probabilité d’accepter ce lieu de travail qui augmente avec |'offre d’em-
ploi de ce lieu de travail et diminue avec la distance entre la commune de résidence et
la commune de travail candidate. Ce modele a ensuite été adapté a 34 régions de France
(Lenormand et al., 2012b). Dans cet article, disponible en Annexe C, une généralisation
du modele de base est proposée en incluant I'extérieur de la région (possibilité pour les
navetteurs de travailler hors de la région d’étude) et en comparant plusieurs fonctions
de décisions pour modéliser |'effet de la distance (puissance et exponentielle). Dans Le-
normand et al. (2012c), présenté dans le Chapitre 2, nous proposons une loi permettant
d’estimer le seul parametre du modéle en fonction des caractéristiques de la région étu-
diée, cette loi a été testée et validée sur 80 régions d’Europe et d’Amérique.

Dans le Chapitre 3 nous présentons un modéle statistique permettant d’estimer le
nombre d’emplois dans les services de proximité d’'une commune en fonction de ses
caractéristiques. Dans un premier temps, nous avons essayé d’estimer, pour une com-
mune, la présence ou I’absence de service de proximité mais aussi le nombre d’emplois
dans ces différents services en fonction des caractéristiques de la commune (voir An-
nexe D). Malgré des résultats satisfaisants, ce travail était trop compliqué a mettre en
ceuvre dans le modele SimVillages car il était difficile de sélectionner les services des-
tinés a la population sachant que certains services ne servent qu’en partie a la popu-
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lation locale. Dans Lenormand et al. (2012a), présenté dans le troisiéeme chapitre de la
thése, nous proposons une méthode permettant d’estimer, pour une commune donnée,
le nombre d’emplois dans les services de proximité en fonction du nombre d’habitants
et de son voisinage en terme de service.

Pour estimer la distribution des valeurs des parametres inconnus du modele, nous
proposons dans Lenormand et al. (2012d), présenté dans le Chapitre 4, un algorithme
de calcul Bayésien approché (ABC) par échantillonage préférentiel. Les méthodes
d’échantillonage préférentiel appliquées a I’ABC sont dérivées de méthodes d’échan-
tillonnage classique et elles sont considérées comme étant les plus efficaces en termes
de temps de calcul parmi les méthodes ABC. Nous étudions les parametres de notre
algorithme et nous I'avons comparé a trois algorithmes concurrents dans la littérature.
Nous montrons qu'avec n'importe quelle paramétrisation de notre algorithme, nous
prenons de 2 a 8 fois moins de simulations pour atteindre au moins la méme qualité de
résultats que les trois autres algorithmes.

Mots-clés : Microsimulation, Modele Complexe, Modele Individus Centré, Modele
Stochastique, Calibration, Initialisation, Population Synthétique, Iterative Proportional
Updating, Modele de Réseaux de Navettage, Modéle de Déplacement, Loi de Gravité,
Mobilité Humaine, Réseau Spatial, Besoin Minimal, Service de Proximité, Régression
Quantile, Municipalité Rurale, Calcul Bayésien Approché, Population Monte Carlo, Se-
quential Monte Carlo.






Abstract

The purpose of this thesis is to develop statistical tools to initialize and to cali-
brate dynamic stochastic microsimulation models, starting from their application to
the SimVillages model (developed within the European PRIMA project). This model in-
cludes demographic and economic dynamics applied to the population of a set of rural
municipalities. Each individual, represented explicitly in a household living in a mu-
nicipality, possibly working in another, has its own life trajectory. Thus, model includes
rules for the choice of study, career, marriage, birth children, divorce, migration, and
death.

We developed, implemented and tested the following models:

¢ a model to generate a synthetic population from aggregate data, where each in-
dividual lives in a household in a municipality and has a status with regard to
employment. The synthetic population is the initial state of the model.

¢ amodel to simulate a table of origin-destination commuting from aggregate data
in order to assign a place of work for each individual working outside his munici-
pality of residence.

¢ asub-model to estimate the number of jobs in local services in a given municipal-
ity in terms of its number of inhabitants and its neighbors in terms of service.

¢ a method to calibrate the unknown SimVillages model parameters in order to
satisfy a set of criteria. This method is based on a new Approximate Bayesian
Computation algorithm using importance sampling. When applied to a toy
example and to the SimVillages model, our algorithm is 2 to 8 times faster than
the three main sequential ABC algorithms currently available.

Keywords: Microsimulation, Complex Model, Individual Based Models, Stochastic
Models, Calibration, Initialisation, Synthetic Population, Sample-Free, Iterative Pro-
portional Updating, Network Generation Models, Commuting Patterns, Commuting
Networks, Gravity Law, Human Mobility, Spatial Networks, Minimum Requirement,
Proximity Service Jobs, Quantile Regression, Rural Municipality, Approximate Bayesian
Computation, Population Monte Carlo, Sequential Monte Carlo.






Preamble

This research has been motivated and partly funded by the European project PRIMA
(PRototypical policy Impact on Multifonctional Activities in rural municipalities col-
laborative project, European Union 7th Framework Programme (ENV 2007-1)). This
project aimed at developing a method for scaling down the analysis of policy impacts
on multifunctional land uses and on the economic activities. It developed a microsim-
ulation model, called SimVillages, designed and validated at municipality level, using
input from stakeholders. The model address the structural evolution of the populations
(appearance, disappearance and change of agents) depending on the local conditions
for applying the structural policies on a set of municipality case studies.

This PhD thesis was carried out between January 2010 and December 2012 in the Lab-
oratory of Engineering for Complex System (LISC) in National Research Institute of Sci-
ence and Technology for Environment and Agriculture (IRSTEA) located in Clermont-
Ferrand. The LISC develops individual-based models to study the complexity of social
or eco-system dynamics and new methods for assessing the viability or resilience of
such systems. In the PRIMA project, the LISC has developed the SimVillages model for
the Auvergne case study, and this model has then been adapted to other case studies in
the UK and Germany.

This PhD thesis was supervised by Guillaume DEFFUANT (Head of LISC) and Sylvie
HUET (Engineer).

Each chapter of this PhD thesis is a paper submitted or accepted in a peer reviewed
international journal.

This PhD thesis has been funded by the Auvergne region.
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Overview

This work aims to develop statistical tools and models to initialize and to calibrate a
dynamic stochastic microsimulation model called SimVillages. Some of these tools and
models are very specific to the SimVillages model, while others are more generic.

The microsimulation assumes that by considering the smallest scale brings deeper
understanding of the social processes. The idea is to simulate a virtual social system
where the virtual simplified individuals evolve and interact. These virtual individu-
als should be defined with attributes that are statistically similar to the "real" one for
the indicators of interest; these indicators being defined in terms of the model objec-
tives. Then, when running this virtual system over time it should replicate past events.
Analysing how the model reproduces past events, one can get some assessment of its
capacity to anticipate future trends. But developing such an informatic model requires
to answer several questions. How to generate a synthetic population without detailed
data? If the population is organised in several spatial entities, like municipalities, how
to define the relationship between them? How to extract information from data to pa-
rameterize the model? If there are unknown model parameters, how to estimate their
value? These are the main questions that we address in this work.

In this introduction, I first present the SimVillages microsimulation model which
motivated the statistical tools developed during my PhD in order to give the reader a
more precise idea of the context of the presented methodological developments. Then,
I present a detailed outline of the thesis.

The SimVillages microsimulation model

The model which motivates the statistical methods developed during this PhD is
the dynamic stochastic microsimulation model, SimVillages, elaborated within the Eu-
ropean PRIMA! project. This model couples demographic and economic dynamics ap-

! PRototypical policy Impacts on Multifunctional Activities in rural municipalities - EU 7th Framework
Research Programme; 2008-2011; https://prima.cemagref.fr/the-project
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plied to a population of individuals living in a set of rural municipalities. The dynamics
depend, on the one hand, on the spatial interactions between municipalities through
commuting flows and services, and on the other hand, on the number of jobs in various
activity sectors (supposed exogenously defined by scenarios) and on the jobs in prox-
imity services (supposed dependent on the size of the local population).

The SimVillages model belongs to the family of microsimulation models. The ori-
gins of the microsimulation approach date back to the late fifties (Orcutt, 1957). It was
the first approach taking into account the individual level in the modeling of complex
systems, but it is now part of a larger family of model: the individual-based models. This
family of models includes the microsimulation, game theory, cellular automata, simula-
tions object-oriented and multi-agent simulations (Amblard, 2003). The microsimula-
tion models represent explicitly each individual of the considered population. They are
dynamic when they evolve over time and they are stochastic when they include some
random processes making each model run "different". The advantage of this type of
model is to provide results at different levels of aggregation. However, microsimulation
has several drawbacks: the amount of data required, the computation time, and the
stochasticity. Since the first vision of Orcutt with DYNASIM (Orcutt et al., 1976) many
models of dynamic microsimulation have been proposed such as DESTINIE (INSEE,
1999) or LifePaths (Statistics Canada 2004). The SimVillages model is stochastic and
includes several types of dynamics, which make it impossible to derive its properties
analytically. Therefore, it is necessary to perform numerous simulations in order to ob-
serve its properties. Similarly when calibrating the model, i.e. determining the values of
some parameters in order to minimise some error criterion, a systematic exploration of
the parameter space is required, leading to a large number of simulations.

SimVillages is a discrete-time dynamical system X;+; = .#(0,y, X;) where X; € R"
is the state of the system, y = (71, ...,y ) the fixed parameters and 6 = (6,,...,0,) the
unknown parameters. We observe the trajectories of the dynamical system from the
initial state X, and for a number of time steps T. In the SimVillages model a time step
is set to one year. As we can observe on Figure 1, we start the SimVillages model in 1990
and compare to census data of 1999 and 2006. Because of the stochasticity, for fixed
values of Xy, y and 6, each model run gives different trajectories.

There are two types of model parameters - the fixed parameters y and the unknown
parameters 0. The fixed parameters are set by the user or their values are derived from
observed data using statistical methods and data analysis. They can also be part of sce-
narios determined exogenously. The model’s initial state can also be considered as a
fixed parameter; it is represented by a synthetic population fixed in time and built with
observed data. The model is initialized with a synthetic population representing a set of
municipalities. Each individual in the population is characterized by:

e a household (to which he belongs) of a certain size (from one to six or more peo-
ple) and a certain type (single person, single parents, couples with child(ren) lo-

cated in a municipality of the region,

¢ afamily status (head of household, partner or child),
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e a position about employment (employed, unemployed, retired, inactive or stu-
dent),

¢ a socio-professional category (farmer, craftsman, intermediate profession, exec-
utive, employee or worker) if he is active,

e a place of work (in a municipality of the region or outside of the region) and an
activity sector (primary, secondary and tertiary) if he is occupied.

T T T T >
1990 1999 2006 T Time

Figure 1: SimVillages model schematic representation X;1; = .#(6,7, X;). The trajectories rep-
resent four runs of the SimVillages model from the initial state X, and for a number of time steps
T. In red, two trajectories obtained with parameter value 6. In blue, two trajectories obtained
with parameter value 8’. The green points represent the observed value in 1999 and 2006.

The main components of the SimVillages model are presented in Figure 2. It is im-
portant to have a statistically realistic synthetic population as an initial state because
it is the starting point for calibration. Indeed, the initial state has an impact on future
evolutions of the model.

The unknown model parameters are parameters that we were not able to directly ex-
tract from data. We observe in Figure 3 that the unknown parameters are extracted from
data through a calibration procedure while the fixed parameters are directly extracted
from data to generate the model. The SimVillages model calibration cannot be done
analytically. Therefore, to calibrate the model, we vary the unknown parameters and
we choose the value that minimizes a target function, defined as the distance between
statistics constructed from simulated and observed data. To do this, we need to explore
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Individual
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Figure 2: Main components of the SimVillages model

efficiently the parameter space to find the parameter values minimizing the target. This
requires a large number of model simulations. For example, in Figure 1, we need to find
0 values which have at least one trajectory "near" the observed data (represented by the

green points).

Available data

Population | Variation of

Year (thousands) | population ( %)

The model

1962| 1657
1968| 1592 -4,10 generate
1975| 1481 -7,50
1990 1999 2006
Number | % Number | % Number | %
Farmers 60 10,8 72 15,2 44 83
Craftmen, storekeepers, business owners 124| 223 50| 105 65| 123
Top executive managers, upper intellectual
profession 24| a3 32| 68 15[ 28
Intermediary professions 104] 187 58| 122 98| 186
Employees 144| 259 69| 357 186 352
Workers 100] 18,0 93| 196 120] 227
Total 556 100 474 100 528 100
Effectit | %
Number of households
which moved there since
less than 10 years 200 | 100
2006
Less than 2 years 46 23 Number o
from 210 4 years s | a5 Number of active people
g working in their
of residence
from 5 o 9 years 71 | 355
Number of households Number of active people
which moved there since working out of their
10 years or more 270 100 of residence
from 10 to 19 years 82 30,4 Total active employed
people .
from 20 to 29 years 71 26,3 Ca / I b ra te
30 years and more 117 | 433
Total of 470

Figure 3: From statistics to individuals
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In the dynamics of the model, at each time step, the population of municipalities
evolves, individuals make choices in life about study, career, marriage. They may have
children, divorce, migrate, and die. The model takes into account endogenously inter-
municipal migrations and creations or destructions of jobs in local services based on
the number of inhabitants. In addition to these endogenous changes, scenarios are in-
troduced representing the policy decisions taken at the regional level such as the es-
tablishment of a company in a municipality. These scenarios exogenously change the
evolution of municipalities.

The study area modeled with SimVillages is the French department of Cantal (Fig-
ure 4), which had 158,723 inhabitants gathered in 260 municipalities in 1990. The model
has for its starting point the year 1990 and the model results are evaluated in 1999 and
2006 (years corresponding to the population census conducted by the French Statistical
Institute, INSEE 2). A simulation on a desktop computer takes about a minute. A com-
plete description of the model is available in Huet et al. (2012a) and the parametrization
is detailed in Huet et al. (2012b) (available in Appendix A).

Figure 4: Map to locate the Cantal departement in metropolitan France.

Structure of thesis

This thesis is divided into four chapters. The first two are dedicated to the initializa-
tion of the SimVillages model. The third presents a statistical model aimed at estimating
the number of jobs in proximity services. In the last one, we propose an algorithm using
a Bayesian approach for estimating the posterior distribution of the unknown model
parameters.

During my PhD, I implemented and validated the algorithm proposed by Gargiulo
et al. (2010) that requires only aggregated data to create a synthetic population of the

2 Institut national de la statistique et des études économiques
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Auvergne French region in 1990. In Lenormand and Deffuant (2012), presented in Chap-
ter 1, we compare this sample-free algorithm and a sample-based method, called Itera-
tive Proportional Updating (IPU), proposed by Ye et al. (2009) for generating a synthetic
population, organized in households, from various statistics. We generate a reference
population for the Auvergne region including 1310 municipalities and measure how
both methods approximate it from a set of statistics derived from this reference pop-
ulation. We also perform a sensitivity analysis. The sample-free method better fits the
reference distributions of both individuals and households. It also demands less data
but it requires more pre-processing. The quality of the results for the sample-based
method is highly dependent on the quality of the initial sample.

In order to finalize the synthetic population and to create a socio-economic link with
the 1310 Auvergne municipalities we needed to assign a place of work to each individual
working outside his municipality of residence. The network of municipalities formed by
these journeys to work is called a commuting network. Since detailed data was unavail-
able in 1990 it was necessary to develop an algorithm to generate commuting networks
from aggregated data. This model was proposed in Gargiulo et al. (2012) (available in
Appendix B). The model takes as input the number of commuters coming in and out
of each municipality and it builds the network progressively, allocating commuters one
by one in the different flows. This allocation is made according to probabilities that in-
crease with the number of commuters coming to the destination, and decrease with the
distance between the origin and destination. Then the model was adapted to 34 regions
of France (Lenormand et al., 2012b). In this paper, available in Appendix C, we pro-
pose a generalization of the model including an artificial entity representing the popu-
lation located outside the considered region (offering the commuters the possibility to
work outside of the region) and we propose a comparison between an exponential and
a power function to model the effect of the distance. In Lenormand et al. (2012c), pre-
sented in Chapter 2, we generate commuting networks on 80 case studies from different
regions of the world (Europe and United-States) at different scales (e.g. municipalities,
counties, regions). We show that the single parameter of the model follows a law that
depends only on the scale of the geographic units (municipality, canton, county). We
show that our model significantly outperforms two other approaches proposing a uni-
versal commuting model (Balcan et al., 2009; Simini et al., 2012), particularly when the
geographic units are small (e.g. municipalities).

For the SimVillages model we have also developed a statistical model estimating the
number of jobs in proximity services in a municipality. First, we have tried to estimate
in a municipality the presence or absence of local services and also the number of jobs
in these different services depending on the characteristics of the municipality (see Ap-
pendix D). Despite interesting results, this work is weakened by a strong difficulty: it
requires to distinguish between local and non-local services in the data and we did not
find any rigorous method to perform this task. In Lenormand et al. (2012a), presented
in Chapter 3, we use a minimum requirement approach (Ullman and Dacey, 1960) to
derive the number of jobs in proximity services per inhabitant in French rural munici-
palities. We first classify the municipalities according to their time distance in minutes
by car to the municipality where the inhabitants go most frequently to obtain services
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(called MFM). For each set corresponding to a range of time distance to MFM, we per-
form a quantile regression estimating the minimum number of service jobs per inhabi-
tant which we interpret as an estimation of the number of proximity jobs per inhabitant.
We observe that the minimum number of service jobs per inhabitant is smaller in small
municipalities. Moreover, for municipalities of similar sizes, when the distance to the
MEFM increases, the number of jobs in proximity services per inhabitant increases.

To calibrate the SimVillages model, in Lenormand et al. (2012d) (available in Chap-
ter 4) we proposed an approximate Bayesian computation (ABC) algorithm using im-
portance sampling (for a complete review of ABC methods see Marin et al. (2012)). The
sampling methods applied to ABC are derived from traditional sampling methods and
they are considered as the most efficients of the ABC methods in terms of computation
time. This new approximate Bayesian computation algorithm aims at minimizing the
number of model runs for reaching a given quality of the posterior approximation. We
performed a sensitivity analysis of the parameters of our algorithm and we compared it
to the three competing algorithms found in the recent literature. When applied to a toy
example and to the SimVillages model, our algorithm is two to eight times faster than
the three other algorithms in reaching at least the same quality of results.

To conclude, we summarize the results obtained and we present perspectives and
open questions.
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Abstract. We compare a sample-free method proposed by Gargiulo et al. (2010) and
a sample-based method proposed by Ye et al. (2009) for generating a synthetic popula-
tion, organised in households, from various statistics. We generate a reference popula-
tion for a French region including 1310 municipalities and measure how both methods
approximate it from a set of statistics derived from this reference population. We also
perform sensitivity analysis. The sample-free method better fits the reference distribu-
tions of both individuals and households. It is also less data demanding but it requires
more pre-processing. The quality of the results for the sample-based method is highly
dependent on the quality of the initial sample.

Manuscript:

Lenormand, M. and Deffuant, G. (2012). Generating a Synthetic Population of Individ-
uals in Households: Sample-Free vs Sample-Based Methods. arXiv:1208.6403v1 (Sub-
mitted in Journal of Artificial Societies and Social Simulation).
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1.1 Introduction

For two decades, the number of microsimulation models, simulating the evolution
of large populations with an explicit representation of each individual, has been con-
stantly increasing with the computing capabilities and the availability of longitudinal
data. When implementing such an approach, the first problem is initialising properly a
large number of individuals with the adequate attributes. Indeed, in most of the cases,
for privacy reasons, exhaustive individual data are excluded from the public domain.
Aggregated data at various levels (municipality, county,...), guaranteeing this privacy, are
hence only available in general. Sometimes, individual data are available on a sample of
the population, these data being chosen also for guaranteeing the privacy (for instance
omitting the individual’s location of residence). This paper focuses on the problem of
generating a virtual population with the best use of these data, especially when the goal
is generating both individuals and their organisation in households.

Two main methods, both requiring a sample of the population, aim at tackling this
problem:

e The synthetic reconstruction method (SR) (Wilson and Pownall, 1976). These
methods generally use the Iterative Proportional Fitting (Deming and Stephan,
1940) and a sample of the target population to obtain the joint-distributions of
interest (Beckman et al., 1996; Huang and Williamson, 2002; Guo and Bhat, 2007;
Arentze et al., 2007; Ye et al., 2009). Many of the SR methods match the observed
and simulated households joint-distribution or individual joint-distribution but
not simultaneously. To circumvent these limitations Guo and Bhat (2007); Ar-
entze et al. (2007); Ye et al. (2009) proposed different techniques to match both
household and individual attributes. Here, we focus on the Iterative Proportional
Updating developed by Ye et al. (2009).

e The combinatorial optimization (CO). These methods create a synthetic popula-
tion by zone using marginals of the attributes of interest and a sub-set of a sample
of the target population for each zone (for a complete description see Voas and
Williamson (2000); Huang and Williamson (2002)).

Recently, sample-free SR methods appeared (Gargiulo et al., 2010; Barthelemy and
Toint, 2012). These methods can be used in the usual situations where no sample is
available and one must only use distributions of attributes (of individuals and house-
holds). Hence, they overcome a strong limit of the previous methods. It is therefore
important to assess if this larger scope of the sample-free method implies a loss of ac-
curacy compared with the sample-based method.

The aim of this paper is contributing to this assessment. With this aim, we com-
pare the sample-based IPU method proposed by Ye et al. (2009) with the sample-free
approach proposed by Gargiulo et al. (2010) on an example.

In order to compare the methods, the ideal case would be to have a population with
complete data available about individuals and households. It would allow us to mea-
sure precisely the accuracy of each method, in different conditions. Unfortunately, we
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do not have such data. In order to put ourseleves in a similar situation, we generate a
virtual population and then use it as a reference to compare the selected methods as in
Barthelemy and Toint (2012).

In the Section 1.2 we formally present the two methods. In the Section 1.3 we present
the comparison results. Finally, we discuss our results.

1.2 Details of the chosen methods

1.2.1 Sample-free method

We consider a set of n individuals X to dispatch in a set of m households Y in order
to obtain a set of filled households P. Each individual x is characterised by a type ¢, from
a set of g different individual types T (attributes of the individual). Each household y is
characterised by a type u, from a set of p different household types U (attributes of the
household). We define nr = {n }1<x<4 as the number of individuals of each type and
ny = {ny, }1<i<p as the number of households of each type. Each household y of a given
type uy has a probability to be filled by a subset of individuals L, then the content of the
household equals L, which is denoted c¢(y) = L. We use this probability to iteratively fill
the households with the individuals of X.

P(c(y)= Lluy) (1.1)

The iterative algorithm used to dispach the individuals into the households accord-
ing to the Equation 1.1 is described in Algorithm 1.1. The algorithm starts with the list of
individuals X and of the households Y, defined by their types. Then it iteratively picks
at random a household, and from its type and Equation 1.1, derives a list of individ-
ual types. If this list of individual types is available in the current list of individuals X,
then this filled household is added to the result, and the current lists of individuals and
households are updated. This operation is repeated until one of the lists X or Y is void,
or a limit number of iterations is reached.

Algorithm 1.1 The general iterative algorithm

INpUT: Xand Y
OutpuT: P
Set P=g
while Y # @ do
Pick at random y from Y
Pick at random L with a probability defined in Equation 1.1
if L C X then
P—PUL
Y=Y\{y}
X—X\L
end if
end while
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In the case of the generation of a synthetic population, we can replace the selection
of the list L by the selection of the individuals one at a time by order of importance in
the household. In this case Equation 1.2 replaces Equation 1.1.

P(x1 € yluy)x
P(x2 €yluy,x1 €y)X

(1.2)
P(xs€yluy,x1 €y,x2 €y)X

The iterative approach algorithm associated with this probability is described in Al-
gorithm 1.2. The principle is the same as previously, it is simply quicker. Instead of
generating the whole list of individuals in the household before checking it, one gener-
ates this list one by one, and as soon as one of its member cannot be found in X, the
iteration stops, and one tries another household.

Algorithm 1.2 The iterative algorithm

InpuT: Xand Y
OutpuTt: P
SetP=g
while Y # @ do
Pick at random y from Y
Pick at random x; with a probability P(x; € y|u,)
Pick at random x; with a probability P(x2 € y|uy,x1 € y)
Pick at random x3 with a probability P(x3 € y|uy,x1 €y,x2 €y)

if {x1,x2,x3,...} C X then
P—PU{x1,x2,X3,...}
Y — Y\[y}
X<—X\{x1,x2,x3,...}
end if
end while

In practice this stochastic approach is data driven. Indeed, the types T and U are
defined in accordance with the data available and the complexity to extract the dis-
tribution of the Equation 1.2 increases with nr and ny. The distributions defined in
Equation 1.2 are called distributions for affecting individual into household. In concrete
applications, it occurs that one needs to estimate nr, ny and the probability distribu-
tions presented in Equation 1.2. This estimation implies that the Algorithm 1.2 can not
converge in a reasonable time because of the stopping criterion (Y # @&). This stopping
criterion is equivalent to an infinite number of "filling" trials by households. In this case,
we can replace the stopping criterion by a maximal number of iterations by households
and then put the remaining individuals in the remaining households using relieved dis-
tributions for affecting individual into household.

In a perfect case where all the data are available and the time infinite, the algorithm
would find a perfect solution. When the data are partial and the time constrained, it
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is interesting to assess how this method manages to make the best use of the available
data.

1.2.2 The sample-based approach

In this approach, proposed by Ye et al. (2009), starts with a sample P; of P and the
purpose is to define a weight w; associated with each individual and each househld
of the sample in order to match the total number of each type of individuals in X and
households in Y to reconstruct P. The method used to reach this objective is the It-
erative Proportional Updating (IPU). The algorithm proposed in Ye et al. (2009) is de-
scribed in Algorithm 1.3. In this algorithm, for each type of households or individuals
J the purpose is to match the weighted sum ws; with the estimated constraints e; with
an adjustement of the weights. w; is the weight of household i in the weighted sample
and e; is an estimation of the total number of households or individuals j in P. This
estimation is done separetely for each individual and household type using a standard
IPF procedure with marginal variables. When the match between the weighted sample
and the constraint become stable, the algorithm stops. The procedure then generates
a synthetic population by drawing at random the filled households of P; with probabil-
ities corresponding to the weights. This generation is repeated several times and one
chooses the result with the best fit with the observed data.

Table 1.1: The Iterative Proportional Updating Table. The light grey table represents the fre-
quency matrix D showing the household (HH) type U and the frequency of different individual
(Ind.) types T within each filled households for the sample P;. The dimension of D is | Ps|x(p+q),
where |P| is the cardinal number of the sample P, g the number of individual types and p the
number of household types. An element d;; of D represents the contribution of filled household
i to the frequency of individual/household type j.

Filled HH .
D HH Type u; HH Type u, | Ind. Type t; Ind. Type z; | Weight
1 dn dig dig+1 dig+p w
|| dipn dipq dipjg+1 dipig+p wp,|
WS ws) wsp WSp+1 WSp+q
E ey =ny, ep="ny, ep+1="nNy ep+q =MNt,
o 61 Op Op+1 Op+q

1.3 Generating a synthetic population of reference for the com-
parison
Because we cannot access any population with complete data available about indi-

viduals and households, we generate a virtual population and then use it as a reference
to compare the selected methods as in Barthelemy and Toint (2012).
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Algorithm 1.3 Iterative Proportional Updating algorithm

INrUT: P, €
OvurtpuT: P
SetP=yg
Generate D € Mp|x(p+¢)(R) described by the light grey table in Table 1.1
Estimate n7 and ny using the standard IPF procedure and store the resulting estimate
into a vector E = (ej)1<j<p+q as in Table 1.1
fori=1to |P|do
Setw; =1
end for
forj=1top+qgdo

_ \OIBs
Compute sw; =" d;jw;

Compute 6; = M
end for
Compute 6 = ﬁ Zf:lq 0j
Set 6 pin =0
SetA=e+1
while A > € do
Set doprev==0
for j=1top+gdo
for i =1to|P| do
if dij # 0 then
wi= we—éjwi
end if
end for
Compute sw; = Zlfi
end for
Compute 6 = ﬁ Zf;q 0j
if 0 < 0ppjp then
Set Wopt = (wi)i<i<ip|

|
1d,-jw,-

0 =0min
end if
A=[0—dprevl

end while
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We start with statistics about the population of Auvergne (French region) in 1990
using the sample-free approach presented above. The Auvergne region is composed of
1310 municipalities, 1,321,719 inhabitants gathered in 515,736 households. In average
the municipalities had about 1000 inhabitants with a minimum of 25 and a maximum
of 136,180.

1.3.1 Generation of the individuals

For each municipality of the Auvergne region we generate a set X of individuals with
a stochastic procedure. For each individual of the age pyramid (distribution 1 in Ta-
ble 1.2), we randomly choose an age in the bin and then we draw randomly an activity
status according to the distribution 2 in Table 1.2.

1.3.2 Generation of the households

For each municipality of the Auvergne region we generate a set Y of households
according to the total number of individual n = |X| with a stochastic procedure. We
draw at random households according to the distribution 3 in Table 1.2 while the sum
of the capacities is below n and then we determine the last household to have n equal
to the sum of the size of the households.

1.3.3 Distributions for affecting individual into household
Single

o The age of the individual 1 is determined using the distribution 4 (Table 1.2).

Monoparental

e The age of the individual 1 is determined using the distribution 4 (Table 1.2).
e The ages of the children are determined according to the age of individual 1 (An
individual can do a child after 15 and before 55) and the distribution 6 (Table 1.2).

Couple without child

e The age of the individual 1 is determined using the distribution 4 (Table 1.2).
e The age of the individual 2 is determined using the distribution 5 (Table 1.2).

Couple with child

e The age of the individual 1 is determined using the distribution 4 (Table 1.2).
e The age of the individual 2 is determined using the distribution 5 (Table 1.2).

e The ages of the children are determined according to the age of individual 1 and
the distribution 6 (Table 1.2).
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Other

e The age of the individual 1 is determined using the distribution 4 (Table 1.2).
e The ages of the others individuals are determined according to the age of individ-

ual 1.
Table 1.2: Data description
ID Description Level
o Municipality
1 N f 1
umber of individuals grouped by ages (LAU2)

2 Distribution of individual by activity statut according to | Municipality
the age (LAU2)

. e . Municipality

3 t-distribut fh hold b d
Joint-distribution of household by type and size (LAU2)

4 Probability to be the head of household according to the | Municipality
age and the type of household (LAU2)
Probability of having a couple according to the differ-

5 ence of age between the partners (from"-16years" to | National level
"21years")

Probability to be a child (child=live with parent) of Municioali

6 household according to the age and the type of house- pality

hold (LAU2)

To obtain a synthetic population P with households Y filled by individuals X we use
the Algorithm 1.2 where we approximate the Equation 1.2 with the distributions 4, 5 and
6 in Table 1.2. We put no constraint on the number of individuals in the age pyramid,
hence the reference population does not give any advantage to the sample-free method.

1.4 Comparing sample-free and sample-based approaches

The attributes of both individuals and households are respectivily described in Ta-
ble 1.3 and Table 1.4. The joint-distributions of both the attributes for individuals and
households give respectively the number of individuals of each individual type nr =
{n+ }1<k<q and the number of households of each household type ny = {n,, }i<i<p. In
this case, g = 130 and p = 17. It’s important to note that p is not equal to 6-5 = 30
because we remove from the list of household types the inconsistent values like for ex-
ample single households of size 5. We do the same for the individual types (removing
for example retired individuals of age comprised betweeen 0 and 5).
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Table 1.3: Individual level attributes

Attribute

Value

Age

[0,5]
[5,15]

[75,85[
85 and more

Activity Statut

Student
Active
Inactive

Family Statut

Head of a single household

Head of a monoparental household

Head of a couple without children household
Head of a couple with children household
Head of an other household

Child of a monoparental household

Child of a couple with children household
Partner

Other

Table 1.4: Household level attributes

Attribute | Value

Size 1 individual

2 individuals
3 individuals
4 individuals
5 individuals
6 and more individuals

Type Single

Monoparental

Couple without children
Couple with children
Other
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1.4.1 Fitting accuracy measures

We need fitting accuracy measures to evaluate the adequacy between both observed
O and estimated E household and individual distributions. The first measure is the
Proportion of Good Prediction (PGP) (Equation 1.3), we choose this first indicator for
the facility of interpretation. In the Equation 1.3 we multiplied by 0.5 because as we
have Z’,:zl Or = Zi:1 E}, each misclassified individual or household is counted twice
(Harland et al., 2012).

p
PGP:l—%w (1.3)
k=10
We use the y? distance to perform a statistic test. Obviously the modalities with a
zero value for the observed distribution are not included in the y? computation. If we
consider a distibution with p modalities different from zero in the observed distribution,
the y2 distance follows a y? distribution with p — 1 degrees of freedom.

2 lezzl(ok - Ek)z

(1.4)
i:l Ok

For more details on the fitting accuracy measures see Voas and Williamson (2001).

1.4.2 Sample-free approach

To test the sample-free approach, we extract from the reference population, for each
municipality, the distributions presented in Table 1.2. Then we use the procedure used
for generating the population of reference but now with the constraints on the number
of individuals from the age pyramid derived from the reference (remember that we did
not have such constraints when generating the reference population). Then we have
filled the households with the individuals one at a time using the distributions for af-
fecting individual into household. We limit the number of iterations to 1000 trials by
household: If after 1000 trials a household is not filled, we put at random individuals in
this household and we change his type for "other". We repeat the process 100 times and
we choose, for each municipality, the synthetic population minimizing the y? distance
between simulated and reference distributions for affecting individual into household.

In order to assess the robustness of the stochastic sample-free approach, we gener-
ate 10 synthetic populations by municipalities, yielding 13,100 synthetic municipality
populations in total. For each of them and for each distributions for affecting individual
into household we compute the p-value associated to y? distance between the refer-
ence and estimated distributions. As we can see in the Figure 1.1a the algorithm is quite
robust.

To validate the algorithm we compute the proportion of good predictions for each
13,100 synthetic populations and for each joint-distribution. We obtain an average of
99.7% of good predictions for the household distribution and 91.5% of good predictions
for the individual distribution (Figure 1.1b). We have also compute the p-value of the
2 distance between the estimated and reference distributions for each of the synthetic
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populations and for each joint-distribution. Among the 13,100 synthetic populations
100% are statistically similar to the observed one at a 0.95% level of confidence for the
household joint-distribution and 94% for the individual joint-distribution.

In order to understand the effect of the maximal number of iterations by household,
we repeat the previous tests for different values of this parameter (1, 10, 100, 500, 1000,
1500 and 2000) and we compute the mean proportion of good predictions obtained for
both individual and household. We note that after 100 the quality of the results no longer
changes (Figure 1.1c).

(a) (b) (©)
1.0 - 1.0 ——p—— 1.001,0 o o o o
: 0 %] o
Lo s 5
084 s = 3
S 0.9 5 0.951
; o 9}
a a
g 061 3 S AL A A A A
E T G 081 ‘ 30901,
2 0.4 , kS ' s
! s S
j 5 0.71 £ 0.85
0.21 i g_ §_
o a
0.0 0.6 : 0.80 -
2 3 4 5 6 HH Ind 0 500 1000 1500 2000

Distributions (individual into household)

Joint—distributions

Figure 1.1: (a) Boxplots of the p-values obtained with the y? distance between the estimated
distributions and the observed distributions for each distributions for affecting individual into
household, municipalities and replications. The x-axis represents the distributions presented in
Table 1.2. The red line represents the risk 5% for the y? test. (b) Boxplots of the proportion of
good predictions for each joint-distribution, municipalities and replications. (c) Average pro-
portion of good predictions in terms of the number of maximal iteration by households. Blue
circles for the households. Red triangles for the individuals.

1.4.3 Iterative Proportional Updating

To use the IPU algorithm we need a sample of filled households and marginal vari-
ables. In order to obtain these data we pick at random a significant sample of 25% of
households from the reference population P and we also extract from P the two one-
dimensional marginals (Size and Type distributions) that we need to build the house-
hold joint-distributions with IPF and the three two-dimensional marginals (Age x Ac-
tivity Statut, Age x Family Statut and Family Statut x Activity Statut joint-distributions)
that we need to build the individual joint-distributions with IPE Then we apply the Al-
gorithm 1.3 using the recommendation of Ye et al. (2009) for the well-know zero-cell
and zero-marginal problems to obtain a weighted sample P;. With this sample we gen-
erate 100 times the synthetic population P and choose the one with lowest y? distance
between reference and simulated individual joint-distributions.

To check the results obtained with the IPU approach, we generate 10 synthetic pop-

Maximal number of iterations
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ulations by municipality using different samples of 25% of households randomly se-
lected. For each of these synthetic populations and for each joint-distribution we com-
pute the proportion of good predictions (Figure 1.2a). We obtain an average of 98.6%
of good predictions for the household distribution and 86.9% of good predictions for
the individual distribution. To determine the error of estimation due to the IPF pro-
cedure we compute the proportion of good predictions for the estimated and the IPF-
reference distributions. As we can see in Figure 1.2b the results are improved for the
household distribution but not for the individual distribution. We also compute the p-
value of the y? distance between the estimated and observed distributions for each of
the synthetic populations and for each joint-distribution. Among the 13,100 synthetic
populations 100% are statistically similar to the observed one at a 0.95% level of confi-
dence for the household joint-distribution and 61% for the individual joint-distribution.
We obtained a similarity between the estimated and the IPF-objective distributions of
100% at a 0.95% level of confidence for the household distribution and 64% for the indi-
vidual distribution.

In order to check the sensitivity of the results to the size of the sample, we plot, on
Figure 1.2c, the average proportion of good predictions of the 13,100 household and in-
dividuals joint-distributons for different values of the percentage of the reference house-
holds drawn at random in the sample (5, 10, 15, 20,25, 30, 35, 40, 45 and 50). We note
that the results are always good for the household distribution but for the individuals
the results are good only from random sample of at least 25% of the reference house-
hold population. Not surprisingly, globally the quality of the results increases with the

parameter.
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Figure 1.2: (a) Boxplots of the proportion of good predictions for a comparaison between the
estimated distribution and the observed distribution for each municipality and replication. (b)
Boxplots of the the proportion of good predictions for a comparaison between the estimated dis-
tribution and the IPF-objective distribution for each municipality and replication. (c) Average
proportion of good predictions in terms of the sample percentage. Blue circles for the house-
holds. Red triangles for the individuals.
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1.5 Discussion

The sample-free method is less data demanding but the data requires much pre-
processing. Indeed, this approach requires to extract the distributions for affecting in-
dividual into household from data. The sample-free method gives better fit between ob-
served and simulated distribution for both household and individual distribution than
the IPU approach. We can observe in Figure 1.3 that, for both methods, the goodness-
of-fit is correlated with the number of inhabitants. This observation is especially true
for the IPU method because it depends on the number of individuals in the sample. In-
deed, the lower is the number of individuals, the higher is the number of sparse cells
in the individual distribution. The results obtained with the IPU approach depend on
the quality of the initial sample. The execution time on a desktop machine (PC Intel
2.83 GHz) is almost the same for 100 maximal iterations by household for the sample-
free method and 25% reference households drawn at random in the sample reference
households for the sample-based approach (Table 1.5).

To conclude, the sample-free method gives globally better results in this applica-
tion on small French municipalities. These results confirm those of Barthelemy and
Toint (2012) who compared their sample-free method for working with data from dif-
ferent sources with a sample-based method (Guo and Bhat, 2007), and obtained similar
conclusions. Of course, these conclusions cannot be generalized to all sample-free and
sample-based methods without further investigation. However, these results confirm
the possibility to initialise accurately microsimulation (or agent-based) models, using
widely available data (and without any sample of households).

Table 1.5: Average execution time for the two approaches for different parameter values.

IPU Iterative

Sample size | Time | Iterations | Time
5 13min 1 40min

10 24min 10 41min

15 29min 100 45min

20 38min 500 58min

25 45min 1000 66min

30 53min 1500 78min

40 74min 2000 88min
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()

Figure 1.3: Maps of the average proportion of good predictions ((a) sample-free and (b) IPU)
and the number of inhabitants ((c)) by municipality for the Auvergne case study. For (a)-(b), in
blue 0.5 < PGP < 0.75; In green 0.75 < PGP < 0.9; In red 0.9 < PGP. For (c), in green, the number
of inhabitants is lower than 350. In red, the number of inhabitants is upper than 350. Base maps
source: Cemagref - DTM - Développement Informatique Systeme d’Information et Base de Données : EBray & A.Torre IGN
(Géofla®, 2007).
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Abstract. We show that a recently proposed model generates accurate commuting
networks on 80 case studies from different regions of the world (Europe and United-
States) at different scales (e.g. municipalities, counties, regions). The model takes
as input the number of commuters coming in and out of each geographic unit and
generates the matrix of commuting flows between the units. The single parameter of
the model follows a universal law that depends only on the scale of the geographic units.
We show that our model significantly outperforms two other approaches proposing a
universal commuting model (Balcan et al., 2009; Simini et al., 2012), particularly when
the geographic units are small (e.g. municipalities).

Manuscript:
Lenormand, M., Huet, S., Gargiulo, E and Deffuant, G. A Universal Model of Commut-
ing Networks. PLoS ONE 2012, 7(10): e45985.
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2.1 Introduction

Billions of people move everyday from home to workplace and generate networks
of socio-economic relationships that are the vector of social and economic dynamics
such as epidemic outbreaks, information flows, city development and traffic (Orttizar
and Willumsen, 2011; Balcan et al., 2009). Understanding the essential properties of
these networks and reproducing them accurately is therefore a crucial issue for pub-
lic health institutions, policy makers, urban development, infrastructure planners, etc.
(De Montis et al., 2007, 2010). This challenge is the subject of an intensive scientific ac-
tivity (see Barthélemy (2011); Rouwendal and Nijkamp (2004) for reviews), in which the
analogy of the gravitational attraction inspires a majority of approaches (Wilson, 1998;
Choukroun, 1975): the number of commuters between two geographic units (cities,
counties, regions...) is supposed proportional to the product of the "masses" of each
geographic unit (the population for example) and inversely proportional to a function
of the distance between them. Unfortunately, numerous experiments showed that the
optimum function and parameter values vary a lot with the case studies (De Vries et al.,
2009; De Montis et al., 2007, 2010; Fotheringham, 1981). This situation is not satisfactory
because when one wants to generate a particular commuting network without having
the total origin destination matrix of commuting, no practical heuristic is available for
choosing the adequate type of function and parameter values. This paper addresses this
problem.

We consider a recently proposed model (Gargiulo et al., 2012; Lenormand et al.,
2012), differentiating itself from the usual gravity law models in two main features:

o It takes as input the total number of commuters in and out from each geographic
unit. With this starting point, the model focuses directly on the influence of the
distance between geographic units on the commuting probability. The model is
data demanding, but these data are widely available.

o It builds the network progressively, allocating commuters one by one in the differ-
ent flows, according to probabilities that increase with the number of commuters
coming in the destination and decrease with the distance between the origin and
destination. These probabilities are updated after each allocation.

Our model is close to the traditional doubly-constrained gravity model (Wilson,
1998; Choukroun, 1975), but it is more flexible and less data demanding. Indeed, the
doubly constrained model and the methods used to solve it require a closed network
of commuters: they cannot take into account commuting links outside the considered
geographical units. Our individual based stochastic approach overcomes this problem
and can deal with the usually available data of total number of commuters in and out of
geographic units.

We test this model on 80 case-studies with geographic units of different scales. For
example in the same case-study the geographic unit can be either the municipality, the
canton or the department, (see an example on Figure 2.1). More precisely, the case
studies include: Czech Republic (municipality scale, 1 case-study), France (municipality
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scale, 34 case-studies), France (canton scale, 15 case-studies including whole France),
France (département scale one case-study (whole France), Italy (municipality scale, 10
case-studies), Italy (province scale, 4 case-studies), USA (county level, 15 case-studies
including whole USA). For a detailed description of the datasets see the Appendix 2.A.

CANTON DEPARTMENT

\/

<S>~15Km? <8>~150Km?2 <8>~5000Km?

Figure 2.1: Three scales of geographic units (Auvergne region, France)

We show that the single parameter of our model follows a simple universal law that
depends only on the average surface of the considered geographic units. This implies
that, given the number of commuters in and out of each geographic unit and their aver-
age surface, we can derive the whole matrix of flows with a very good confidence.

Two other approaches (Balcan et al., 2009; Simini et al., 2012) claim to catch uni-
versal properties of commuting networks. We show that our model yields significantly
more accurate results, especially for case-studies with small geographic units (e.g. mu-
nicipalities).

2.2 The model

We consider the basic double-constrained model setup, without adding any ingre-
dient about the job market characteristics (professions, salary range, etc.). Instead of
solving analytically the optimisation problem, we use an individual based procedure
that allocates virtual individuals one by one in the different flows between geographic
units, according to a probability that is updated after each allocation.

This individual based approach can deal with less constrained data than the doubly-
constrained gravity model that requires the total number of commuters in to be equal
to the total number of commuters out. In other words the doubly contrained model
can only deal with the flows between the considered geographic units; it cannot take
into account the commuting links with destinations outside the case study area. This
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is a problem when only the numbers of commuters in and out the geographic units are
available (and not the complete matrix of the commuting flows), because the data do
not distinguish between the flows inside and outside the case study area. It is therefore
difficult to estimate the correct data to take as input to the doubly-constrained model
in this case. Our approach is more flexible and overcomes this difficulty. It does not
require that the total number of commuters in and out to be equal (for more details see
Lenormand et al. (2012)), hence it can easily use directly the usually available data on
the number of commuters in and out of each geographic unit.

Let s?** and s]’.'” be respectively the global number of commuters starting from unit
u; and the global number of commuters arriving in unit ;. These numbers are ini-
tialised from data and then they are progressively modified by the procedure. More pre-
cisely, at each step we select unit u#; such that sg”” > 0 at random, and we consider a
virtual commuter starting from u;. We draw at random the working place u;+ of this
individual among all possible destinations u; according to probabilities P;—.;:

sine=PDij
_J

N in,—BDi
D St PP

where D;; is the Euclidian distance in meter between units #; and u; (computable
from the Lambert or GIS coordinates). Having drawn u;-, we decrement of one sl.”’”
and s ]lf Note that decrementing si”* and s°%! at each step complicates significantly the
derivation of an analytical expression of the model. We chose a probability decreasing
exponentially with the distance, in accordance with the investigations carried out in
Lenormand et al. (2012) and with the literature on commuting network models. The
importance of the distance in the commuting choices is embedded in parameter : for
B — 0the probability tends to be independent from the distance, while for high values of
[, the probability tends to zero very rapidly when the distance increases, independently
from the number of commuters arriving in the units.

To reduce the border effect (see Lenormand et al. (2012)), we consider the job-search
basin in an extended area, composed by the 7 residential units and m units surrounding
the area. Thus, we have n units which are commuting origins and N = n 4+ m units that
are commuting destinations. The generated network is saved in matrix T € M, xn(N)
where each entry T;; represents the number of commuters between units u; and u;.
The algorithm is presented in Algorithm 2.1.

Pi_,j = (2.1)

2.3 A universal law ruling parameter [

The model depends on a single parameter ruling the importance of the distance
in commuting choice. We show that this parameter can be derived as a function of
the scale of the problem, independently from the socio-geographical location of the
case study area. This opens the possibility to reconstruct the commuting flows (origin-
destination matrix) when they are not provided.

We calibrated parameter 8 by maximising the common part of commuters (CPC),
based on the Serensen index (Serensen, 1948).
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Algorithm 2.1 Commuting generation model

INPUT: DEM,xn(R), si* €NV, 504l eN", B R,
Output: T €M, xn(N)
T;j <0
while >/, 59" >0 do
Pick at random i €[1, n]|, such that s{** #0
Pick at random j from |[1, N]|
with a probability P;_;
Tij = Tij+1
n

in,  gin _
§; S 1

s;?ut - s?ut -1
end while
return T
N 2NCC(T, T)
CPC(T, T)= _ 2.2)
NC(T)+NC(T)
with:
n n n n
NCC(T, T)=ZZmin(T,~j, Ti) NC(T)=ZZ T 2.3)

i=1j=1 i=1 j=1

where T is the observed origin-destination matrix and T is the simulated one. This
is a similarity measure based on the Serensen index in ecology computing which part of
the commuting flows is correctly reproduced, on average, by the simulated network. It
varies between 0, when no agreement is found, and 1, when the two networks are iden-
tical. We priviledged this indicator because of its direct interpretation. Indeed, when
NC(T) ~ NC(T) (it is the case for our model), the CPC represents the percentage of
commuting connection correctly located (i.e. with the right pair origin - destination).
Moreover, we tested on all case studies that the results obtained with the MAE, the RMSE
or CPC! are equivalent (see the Appendix 2.B for more details). As an example on the FR1
case study, Figure 2.2 shows that the same 8 value maximizes the CPC and minimizes
the MAE. In this figure we can also note that the CPC is very sensitive to # and that its
value does not vary much with the different replicas of the stochastic solving process.

Moreover, in order to have an idea of the improvement of the model compared with
complete randomness, we have computed the CPC of a random model where the proba-
bilities presented in Equation 2.1 are uniform (P;—,; = %, where 7 is the number of units).
As shown on the Figure 2.4 we obtained an average CPC around 0.1. For our model, the
CPC is always higher than 0.7 with an average around 0.8, which can be interpreted as
70 to 80 % of correctly predicted commuting connections.

Our goal is to derive the value of # from some easily available global characteristics

1 We have also shown in Gargiulo et al. (2012); Lenormand et al. (2012) that the value of 8 yielding the
maximum CPC also yields the maximum similarity between observed and simulated commuting distance
distributions
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Figure 2.2: Plot of the average CPC (blue circle) and the average NMAE (red triangle) in term of
[ for 10 replications of the model for the Auvergne case study (FR1). The error bars represent
the minimum value and maximum value obtain over the 10 replications.

of the case-study, giving the possibility to reconstruct the commuting flows when they
are not available. Figure 2.3 gives strong evidence of such a universal relation.

The x-axis represents the average surface of the geographic units of the case-study
((S) in logarithm scale) and the y-axis the optimal  value (in logarithm scale). The linear
regression in the log-log plane shows a simple relation:

B=alS)™

with @ =3.15-10~* and v =0.177. We observe that § decreases with the average sur-
face of the units (S), meaning that, when (S) is small (e.g. for municipalities in France)
the distance is more important in the commuting choice than when (S) is large (e.g. for
regions or counties).

We now evaluate the robustness of our estimation of ¢ and v using a common statis-
tical procedure: the cross-validation. The cross-validation aims at evaluating the poten-
tial error of using the f value derived from the regression model instead of deriving this
value by optimisation for a new case study. This procedure repeats a large number of
times the following steps: define a sub-sample of the total sample of case studies, derive
a regression model of B from this sub-sample, for each case study that do not belong
to the sub-sample, derive  from this regression model and compare the corresponding

(2.4)
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Figure 2.3: Log-log scatter plot of the calibrated § values in terms of average surface of the geo-
graphic units for 80 case-studies; the line represents the regression line predicting 3.

CPC with the value of 8 directly calibrated on the complete origin - destination data.
The dataset (including 80 case-studies) is randomly cut into two sets, called the train-
ing set (comprising 53 case-studies) and the test set (composed of 27 case-studies). We
build a regression model on the training set, providing @ and v, from which we derive
estimates of 3 for each of the 27 case-studies of the testing set. We have 27 estimations
of B using the relation in Equation 2.4 where a and v are obtained from the random sub-
sample of 53 case-studies. We repeat this process 10,000 times obtaining 270,000 esti-
mations of B (uniformly distributed over the 80 case-studies) corresponding to about
% = 3,375 estimations of  for each case study. Then we calculate the average, min-
imum and maximum CPC for each of these values of #, and we compare them with the
CPC obtained with value of § directly calibrated on the data.

Figure 2.4 shows, for each case-study, the CPC associated with the calibrated 3, the
average CPC obtained with the 8 values estimated from the cross-validation and the
confidence interval defined by the minimum and the maximum values (but it is too
small to be seen in most cases). The CPC obtained with the calibrated f value (black
triangle) is almost the same as the average CPC obtained with the estimated 8 in most
cases (red square). Globally, we can conclude that the  estimated with the log-linear
model and the calibrated [ lead to very similar CPCs and also very similar MAE and the
RMSE as shown in the Appendix 2.B. The method appears therefore fairly robust and
this gives confidence for using it with the value of 8 derived from our loglog regression
in new cases studies.
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2.4 Comparaison with other universal derivations of commut-
ing networks

Two other different approaches, Balcan et al. (2009) and Simini et al. (2012), claim
also to provide a universal derivation of commuting networks. The objective of Balcan
et al. (2009) is to generate a worldwide commuting network, and the model must deal
with the wide variety of populations and surfaces of geographic units for which the data
are available. To solve this difficulty, the authors project these data on ad-hoc units
defined with a Voronoi diagram. They define their basic unit as a cell approximately
equivalent to a rectangle of 25 x 25 kilometers along the Equator. This allows them to
calibrate their model because a unit is the same object whatever the country. This is an
interesting solution for generating a world-wide commuting network but it leads to an
average commuting distance of 250 km which is much larger than the average distance
of daily commuting. For example for the USA case study the average distance of daily
commuting is about 68 km for the observed network and about 64 km for the simulated
network obtained with our algorithm. For the Auvergne (France) case study at munic-
ipality scale the average distance of daily commuting is about 12 km for the observed
network and about 11 km for the simulated one.

In the radiation model, proposed in Simini et al. (2012), the commuting flow be-
tween two geographic units is a function of the cumulated population in a circle at the
distance between the two units. The model has an elegant analytical solution and the
average flow T;; from unit u; to unit #; can be approximated by

min;

P
(Tij) = (mi— (2.5)

P) (mi—i-s,-j) (m,-+nj+sij)

where m; and n; are respectively the population of units u; and u;, P, is the total num-
ber of commuters and P is the total population in the case-study region, and s;; the total
population in the circle of radius r;; centred at u; (excluding the source and destination
population).

We implemented their analytical approximation and reproduced the graphs pre-
sented in their paper. Figure 2.5 shows the comparison between the radiation model
and ours in the US for inter-county commuting and in the French Auvergne region for
inter-municipality commuting. We observe that in both cases our approach yields sig-
nificantly better results. Moreover, as shown on Figure 2.4, the average CPC for the radi-
ation model on all the case studies is around 0.4, and lower for all case studies than the
one obtained with our approach.

However, it should be reminded that our model uses more specific data (total num-
ber of commuters in and out of each geographic unit) than the radiation model, hence
one could expect our results to be more accurate. Therefore, to be fair with the radiation
model we implemented a modified version of this model using the number of out and in
commuters of each units. This new approximation is presented in Equation 2.6 where
sij the total number of in-commuters in the circle of radius r;; centred at u; (excluding
the source and destination).
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out i
out Si S]l'n
(Tij) = s; (2.6)

(S?ut +Sij) (Siout +S]l:n +Sij)

As shown on Figure 2.4, this new model reaches an average CPC around 0.5 which
is higher than the original radiation model but still significantly lower than the results
obtained with our model. Using the MAE and the RMSE leads to the same conclusions
(see the Appendix 2.B for more details).

2.5 Discussion

The power law of our model’s single parameter 8 with the average area of the case
study geographic units, is surprising to us because of the high variety in our case stud-
ies in terms of scale, number of units, number of commuters and surface areas. For
instance the Auvergne region in France is rural with a population density of about 50
hab./km? whereas the New York City region is very urban with a population density of
about 6500 hab./km?. As far as we know, this is the first time that a single model is shown
to fit such diverse group of datasets.

We show that our approach outperforms the radiation model and that the difference
of input data plays a minor role in this superiority. This superiority is not due to our
particular treatment of the border effects either. Indeed, we could check our approach
outperforms the radiation model also on particular case studies (e.g. on islands such
as Corsica) where this border effect does not play. We can conclude that the accuracy
of our model comes from a proper use of the number of commuters in and out of each
geographic unit and an adequate choice of the function of the distance.

The results of the cross validation procedure give a good confidence in the robust-
ness of this law. However, we have to admit that, despite their diversity, our 80 case
studies come all from western industrialised countries. Therefore it will be important
to check the validity of our law on case studies coming from other continents and less
industrialised countries. Moreover, we use a very rough approximation of the distance
between the geographic units with the Euclidian distance between the unit centroids.
More accurate approximations of this distance would certainly improve the results. Fi-
nally, we also intend to apply our approach to commuting networks inside urban areas
because many cities of the world show an impressive growth and an increasing part of
commuting takes place within them (Roth et al., 2011). An important issue in our per-
spective is to check if our law holds at this scale.
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Figure 2.4: Common part of commuters (CPC) for the 80 case-studies. The red squares represent
the CPC obtained with the value of 8 optimised from data on the case-study network. Black
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f and the average surface of the units obtain with the cross-validation; Dark bars represent the
minimum and the maximum CPC obtained with the estimated 8 but in most cases they are too
close to the average to be seen. The green circles represent the CPC obtained with the random
model. The blue triangles represent the CPC obtained with the radiation model. The purple
crosses represent the CPC obtained with the modified version of the radiation model.
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Figure 2.5: Comparing the predictions of the radiation model with ours for two case studies,
the first row ((a)-(c)) for USAO (USA at county scale) and the second row ((d)-(f)) for FR1 (Au-
vergne region, France at municipality scale). Plots (a), (b), (d) and (e): Comparison between the
observed (Census) and the simulated (model) non-zero flows. Grey points are the scatter plot
for each pair of units. The boxplots (D1, Q1, Q2, Q3 and D9) represent the distribution of the
number of simulated travelers in different bins of number of observed travelers. The blue circles
represent the average number of simulated travelers in the different bins. Plots (c) and (f): Com-
muting distance distributions (km) (i.e. Probability for a commuters of the region to commut at
a distance d). The blue line represents the observed data, the red one the results of our model
and the green one the results of the radiation model.
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Appendix 2.A: Data description

The datasets

Commuting data are usually provided by statistical offices in the form of origin-
destination tables. We analyzed 80 case studies from 7 differents datasets and 4 dif-
ferent countries (described in Table 2.1). In these appendices we called outside the m
units surrounding the area.

The distances

The distances between units are Euclidean, computed using the Lambert coordi-
nates or the latitude/longitude of the centroid of the units.

The case studies

We define two types of case studies: from administrative regions and from aggrega-
tion of small administrative units around a randomly chosen point. Each case study is
composed of a region and an outside (the units surrounding the region at a reasonable
distance).

To build a case study from an administrative region, we select an administrative re-
gion (for example the Auvergne region represented by the dark grey region in Figure
2.6a) and to build the outside we select all the units surrounding the region at a reason-
able distance (for the Auvergne region example, the outside is represented by the light
grey region in Figure 2.6a).

To build a case study by aggregation of units, firstly, we define the number of desired
units and we draw at random a latitude and a longitude (for example the point repre-
sented in Figure 2.6b). In a second time we gradually increase the area of a square with
as center the starting point until the desired number of units is obtained (Figure 2.6c¢).
To build the outside we select all the units surrounding the defined set of units at a rea-
sonable distance or all the remaining units in the country (it depends of the number of
units).

The case studies with an identifier with a 0, for example FRc0, are complete network
of the country without outside. Indeed, we have no data for the surrounding coun-
tries. When we consider a region in the country we can determine the outside as the
units surrounding the region. When we consider as a region the whole country we can't
determine an outside, it is the case for FRcO (all the cantons of France), Frd0 (all the
départements of France), Itp0 (all the provincias of Italy) and USAO (all the counties of
USA).

Sources

The 3 French datasets are measured for the 1999 French Census by the French Sta-
tistical Institute, INSEE. They were kindly made available by the Maurice Halbwachs
Center.

The 2 Italian datasets are measured for the 2001 Italian Census by the National In-
stitute for Statistics, ISTAT.
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Table 2.1: Presentation of the datasets
Case . .
Dataset | Country Distance Region Scale Year | Source
Study
Czech Latitud
1 ze¢ . CzZ 4 1.u © Administrative| Municipality | 2001 *
Republic Longitude

FR1 - .. . C

2 France FR34 Lambert | Administrative| Municipality | 1999 | INSEE
FRcO - Lati Arbi

3 France €0 atlt'ude b1tra1y Canton 1999 | INSEE
FR14 Longitude | aggregation

Latitud
4 France FRdO 4 1.u | Administrative Département| 1999 | INSEE
Longitude

IT1 - Latitud Arbit

5 Italy 4 1.u © 1ra%'y Municipality | 2001 | ISTAT
IT10 Longitude | aggregation
ITpO - Latitud Arbit

6 Ttaly p ahtude HHrary Provincia | 2001 | ISTAT
ITp4 Longitude | aggregation
USAO - Latitud Arbit

7 USA arace ety County | 2000 | **
USA14 Longitude | aggregation

(*) Data are available online at http://www.czso.cz/

(**) Data are available online at http://www.census.gov/geo/www/gazetteer/places2k.html

Figure 2.6: Maps to illustrate the build process regions. (a) Administrative; (b) starting point
of aggregation and (c) limits of aggregated units. Base maps source: Cemagref - DTM - Développement
Informatique Systéme d’Information et Base de Données : EBray & A.Torre IGN (Géofla®, 2007).



http://www.czso.cz/
http://www.census.gov/geo/www/gazetteer/places2k.html

Appendix 2.A: Data description 39
Table 2.2: Description of the case studies
C Number of Aver'flge Standard Observed number Estimated number
ase Number of . Surface unit deviati it £ b £ ters
Stlldy units (area) |.ll'll‘tS (kmz) surface eviation l].[lz.l oI commuters oI commu
(outside) (km?) surface (km?) (area) (area)
CZ 43 630 35369 822.54 703.23 6585 6847
FR1 1310 3463 26013 19.86 12.49 261822 262452
FR2 1269 1447 27208 21.44 16.14 608587 613363
FR3 419 2809 5762 13.75 8.46 90456 76829
FR4 903 3081 8280 9.17 9.55 409661 402565
FR5 2296 2835 41309 17.99 21.30 679639 657095
FR6 261 3124 5175 19.83 10.46 52921 48681
FR7 185 1859 5167 27.93 18.71 9474 8981
FR8 1464 2467 25810 17.63 12.94 333045 333540
FR9 1842 4718 39151 21.25 14.76 514461 529535
FR10 3020 3845 45348 15.02 15.74 502326 494946
FR11 747 3169 16942 22.68 14.15 118508 117217
FR12 1786 3317 16202 9.07 7.46 239931 236314
FR13 1420 3536 12317 8.67 5.64 396800 402128
FR14 433 3914 6211 14.34 12.41 30175 28729
FR15 515 3808 5874 11.41 9.54 76519 72896
FR16 2339 3067 23547 10.07 7.51 505807 507812
FR17 260 1814 5565 21.40 13.15 17310 17071
FR18 1545 3046 27367 17.71 15.78 354824 354566
FR19 1948 1983 25606 13.14 12.94 333045 329908
FR20 36 1245 176 4.89 3.28 193236 182808
FR21 262 1543 2284 8.72 6.62 226205 206624
FR22 185 1707 1246 6.74 3.83 143938 124185
FR23 47 1234 245 5.21 3.03 143586 121474
FR24 377 2283 3525 9.35 7.44 160294 157123
FR25 195 2338 3718 19.07 17.66 26576 24975
FR26 547 449 4116 7.52 15.87 59709 61324
FR27 163 353 4299 26.37 27.53 145995 148922
FR28 327 2788 4781 14.62 9.76 134048 130910
FR29 102 2031 609 5.97 4.21 22520 20549
FR30 40 783 236 5.90 4.28 139181 125542
FR31 196 1597 1804 9.20 6.04 188855 165505
FR32 463 2588 5229 11.29 8.03 50505 51413
FR33 433 2728 6004 13.87 9.07 69377 63078
FR34 286 2088 5857 20.48 13.36 38141 37197
FRcO 3646 0 540241 171.72 99.90 12193161 12193161
FRcl 1062 2584 173797 163.65 91.23 2229003 2265247
FRc2 523 3123 58366 111.60 114.44 3892543 3922481
FRc3 226 3420 33041 146.20 70.56 548048 558086
FRc4 160 3486 25044 156.52 75.47 320432 323169
FRc5 55 3591 7847 142.67 71.64 61761 60285
FRc6 869 2777 131174 150.95 96.62 1995302 1983097
FRc7 2088 1558 351073 168.14 94.18 4459338 4523902
FRc8 100 3546 20246 202.46 161.41 307744 316592
FRc9 600 3046 113905 189.84 103.57 1078183 1095993
FRcl0 302 3344 26627 88.17 77.64 1306425 1274670
FRcll 906 2740 142619 157.42 100.21 2324444 2358580
FRc12 1500 2146 250676 167.12 99.00 3224586 3284517
FRc13 32 3614 6653 207.91 145.33 11959 10634
FRc14 506 3140 75603 149.41 85.63 1311912 1331984
FRdO 94 0 540250 5747.35 1957.11 3548178 3548178
IT1 377 0 24090 63.90 61.89 225351 225351
1T2 395 201 24157 61.16 77.51 409889 408692
IT3 1002 2020 54918 54.81 71.37 1235378 1193338
1T4 201 507 14964 74.45 82.42 246609 248562
IT5 204 1005 10567 51.80 55.68 279014 272310
IT6 51 506 5582 109.45 101.52 57446 51211
177 2000 4001 98693 49.35 60.97 2849914 2812238
1T8 186 1023 2412 12.97 15.25 316602 286285
179 1510 4004 71167 47.13 58.08 1703944 1702002
IT10 705 3008 26809 38.03 41.62 401998 403307
ITpO 99 0 277220 2800.20 1619.86 1567576 1567576
ITpl 50 49 131773 2635.45 1401.23 742229 727038
1Tp2 30 69 93666 3122.21 1599.56 266696 272316
1Tp3 20 79 45854 2292.72 1128.38 264824 259988
USAO0 3108 0 8070785 2596.78 3437.29 34077841 34077841
USA1 1015 2093 1876151 1848.42 916.86 5855813 5902784
USA2 103 3005 101411 984.57 341.47 527136 535608
USA3 54 3054 306284 5671.93 4488.99 604043 597371
USA4 2011 1097 4169235 2073.21 1786.40 14767588 14926726
USA5 202 2906 404093 2000.46 1994.32 8789633 8893748
USA6 504 2604 949238 1883.41 1041.57 2125887 2155981
USA7 806 2302 4234740 5254.02 5626.18 5003104 5099317
USA8 352 2756 2723212 7736.40 7741.02 4147054 4234376
USA9 1507 1601 2877429 1909.38 1517.28 10099598 10234438
USA10 13 3095 14123 1086.37 343.73 58212 53513
USA11l 32 3076 205989 6437.17 4105.95 22496 24085
USA12 1004 2104 1292835 1287.68 563.79 9704950 9735646
USA13 207 2901 207785 1003.79 352.24 1307774 1326018
USA14 301 2807 312955 1039.72 394.71 2054878 2085408
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Appendix 2.B: Results with standard indicators of error

We computed the results with standard indicators of error.

e The Normalized Mean Absolute Error:

Dim 2 | T = Tijl

NMAE(T, T)= — 2.7)
Zizl Zj:l Lij
e Normalized Root Mean Square Error:
XL (T - Ty
NRMSE(T, T)= (2.8

Z?:l Z]r'l:l Tij
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Figure 2.7: Normalized Mean Absolute Error (a) and Normalized Root Mean Square Error (b) for
the 80 case-studies. The red squares represent the errors obtained with the value of  optimised
from data on the case-study network. Black plain triangles represent the average errors obtained
with 8 values estimated with the rule linking 8 and the average surface of the units obtain with
the cross-validation; Dark bars represent the minimum and the maximum errors obtained with
the estimated  but in most cases they are too close to the average to be seen. The green circles
represent the errors obtained with the random model. The green circles represent the errors
obtained with the random model. The blue triangles represent the value obtained with the ra-
diation model. The purple cross represent the errors obtained with the modified version of the
radiation model.
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Abstract. We use a minimum requirement approach to derive the number of jobs in
proximity services per inhabitant in French rural municipalities. We first classify the
municipalities according to their time distance in minutes by car to the municipality
where the inhabitants go the most frequently to get services (called MFM). For each set
corresponding to a range of time distance to MFM, we perform a quantile regression
estimating the minimum number of service jobs per inhabitant that we interpret as
an estimation of the number of proximity jobs per inhabitant. We observe that the
minimum number of service jobs per inhabitant is smaller in small municipalities.
Moreover, for municipalities of similar sizes, when the distance to the MFM increases,
the number of jobs of proximity services per inhabitant increases.

Manuscript:

Lenormand, M., Huet, S. and Deffuant, G. Deriving the Number of Jobs in Proximity
Services from the Number of Inhabitants in French Rural Municipalities. PLoS ONE
2012, 7(7): e40001.
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3.1 Introduction

How many service jobs does each inhabitant of a rural municipality generate in his
own municipality? This question is important for the modelling work carried out in the
PRIMA European project (Huet and Deffuant, 2011)!, dealing with the evolution of ru-
ral areas in Europe. In particular, this model aims at incorporating how the growth or
decline of municipalities is enhanced by the creation or destruction of these jobs. In-
deed, new approaches based on the residential economy point out that the dynamism
of rural areas depends significantly on the demand for locally consumed goods and ser-
vices. We call proximity service these jobs that are generated by the local demand of the
municipality, and this paper proposes a method for assessing their number.

Surprisingly, the literature on the estimation of proximity service job for demo-
graphic microsimulation models is very poor. Furthermore the estimation methods
proposed are rather crude, for example Brown and Robinson (2006) proposed a thresh-
old function to create service jobs for one hundred new people. For a direct estimation,
the main difficulty is that the available data provide the number of jobs in different cate-
gories of services (retail, transportations, various services, public administration, teach-
ing, health and social action) without any information about their relation with the local
demand. In the same category, some jobs can depend on the very local market (the mu-
nicipality), whereas others depend on a wider market of surrounding municipalities or
even the whole region. Even the same job of service can be partially devoted to the local
customers and partially to a larger market. Therefore, the number of jobs in proximity
services can only be estimated indirectly.

In this paper, we propose to use the minimum requirement approach (Ullman and
Dacey, 1960) to perform this indirect estimation. This method is usually used for esti-
mating the share of jobs in a given activity (Ullman and Dacey, 1960; Brodsky and Sar-
faty, 1977), the employment in touristic activities (Dissart et al., 2009; English et al., 2000;
Leatherman and Marcouiller, 1996) or to compute the regional multipliers giving the
propensity to consume locally produced goods (Rutland and O’Hagan, 2007; Woller and
Parsons, 2002; Persky and Wiewel, 1994; Moore, 1975). In our case, the rationale behind
choosing this method is that a large set of municipalities of similar proximity service
market always includes some municipalities where the services are only devoted to this
local market. These municipalities tend to have the minimum number of service jobs,
which gives an estimation of the number of proximity service jobs.

We use two variables to characterise the proximity service market: the municipality
size (number of inhabitants) and the offer of services in the neighbourhood. Indeed, the
municipality size alone is certainly not sufficient to predict the number of jobs in prox-
imity services because, in our data, the average distance between a municipality and its
closest neighbour is about 4 km. Hence there are municipalities that can be very depen-
dent on other ones for their proximity services. We describe the neighbouring offer of
services with the time distance by car to the most frequented municipality (MFM). The
MEFM is the municipality where residents from a given municipality usually go to con-

! The research leading to these results has received funding from the European Commission’s 7th Frame-
work Programme FP7/2007-2013 under grant agreement n° 212345.
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sume services, leisure equipment and facilities that they don't find in their own town.

In practice, we defined seven municipality sets corresponding to intervals of tMFM,
the time distance to the MFM. In each set, following the minimum requirement ap-
proach, we assess the minimum number of jobs per inhabitants with a quantile regres-
sion (Koenker and Bassett, 1978), taking as quantile value the first percentile. Indeed, we
choose the first percentile (100-quantile) instead of the minimum because the observed
data are based on a sample representing a quarter of the population, and the percentile
is likely to be more robust to the lack of precision than the minimum. Moreover there
is no theoretical justification for using systematically the minimum value (Klosterman,
1990). For each of the seven intervals of tMFM, we obtain a satisfactory regression pre-
dicting the first percentile of service jobs per inhabitant. Moreover, the impact of tMFM
corresponds to one’s expectations: the municipalities which are close to a MFM have the
lowest number of jobs in proximity services per inhabitant and, when tMFM increases,
the number of jobs in proximity services per inhabitant increases.

The Section 3.2 presents the material and methods used for predicting the number
of jobs in proximity services per inhabitant. We finally discuss our results.

3.2 Material and methods

3.2.1 The data from the French statistical office

This work uses data about municipalities of less than 5000 inhabitants coming from
the French Census of 1999, 2006 and 2008 managed by the French Statistical Institute,
INSEE and from the French Municipal Inventory of 1999. From this collected data, the
Maurice Halbwachs Center or the INSEE makes available to all researchers the following
data:

e The number of inhabitants for each municipality in 1999, 2006 and 2008;

e The number of jobs in the French tertiary sector (called service jobs) in 1999, 2006
and 2008;

¢ The time distance in minutes by car to the most frequented municipality (tMFM)
in 1999;

The MFM is the municipality where residents from a given municipality usually go
to consume services, leisure equipment and facilities that they don't find in their own
municipality. This variable was obtained in 1999 by asking the following question to
the mayor of each municipality "Where do you go when you need something unavailable
in your municipality?". The time distance to the MFM is expressed in minutes by car
estimated with a average speed/km.

We observe in Figure 3.1 that the dataset is mostly composed of small municipalities
with a small number of service jobs per inhabitant. We note that the minimum number
of service jobs per inhabitant can be expressed by a linear relationship with the loga-
rithm of the number of inhabitants. We observe in Figure 3.2 the time distance to the
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most frequented municipality is mostly between 0 and 20 minutes. The higher is the
tMFM, the more isolated is the municipality. The MFM of a given municipality is as-
sumed to be the same in 2006 and 2008 as in 1999. In order to check the robustness of
this assumption we have highlighted, for a given range of values of tMFM, the outliers
for the bivariate variable Number of inhabitants x Number of service jobs in 1999 and
2008. For different range of values of tMFM, the number of outliers is almost the same
in 1999 and in 2008, and there is about 80% of outliers in common between the two time
series. We give an example for tMFMe€]0, 5] in Figure 3.3. Moreover the 20% "new" out-
liers in 2008 show a growth of inhabitants that is similar to the one of non-outliers. This
does not validate completely the assumption but it reinforces its plausibility.
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Figure 3.1: Number of service jobs per inhabitant function of the number of inhabitants for each
municipality in 1999.

3.2.2 Model estimate of the number of jobs in proximity services per inhab-
itant

In this section, we present the model estimation of the number of jobs in prox-
imity services per inhabitant based on a minimum requirement approach applied to
several tMFM intervals. We assume that the number of jobs in proximity services per
inhabitant in a municipality depends not only on the number of inhabitants but also
on tMFM. Therefore, we define seven sets of municipalities corresponding to intervals
of tMFM (values expressed in minutes): tMFM €]0, 5], tMFM €]5, 10], tMFM €]10, 15],
tMFM €]15, 20], tMFM €]20, 25], tMFM €]25,30] and tMFM > 30. For each of these sets
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Figure 3.2: Histogram of the tMFM in minutes by car in 1999.
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Figure 3.3: Box-and-whisker plot of the number of service jobs per inhabitant function of the
number of inhabitants for tMFM €]0, 5]. The red points represent the common outliers 1999 and
2008. (a) 1999; (b) 2008.

of municipalities we apply a method derived from the minimum requirement approach
to estimate the number of jobs in proximity services per inhabitant as a function of the
municipality size.
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In general, the minimum requirement approach computes minima on subsets of
municipalities of similar sizes, which requires to define these subsets with an appropri-
ate clustering method. We choose to use a quantile regression (Koenker and Bassett,
1978), which does not require to perform this clustering, and yields directly a function
estimating the minimum (or a quantile). We choose the first-percentile (7 = 0.01) in the
regression because our data on the number of service jobs are derived from a sample
representing a quarter of the population, and we expect the first percentile to be more
robust than the minimum to this lack of precision.

Let E be the number of service jobs per inhabitant and P the number of inhabitants.
We consider the following quantile regression model:

E=pp+p1InP+e

where By and f; are parameters and € the residual vector.
With this method, we estimate the number of jobs in proximity services per inhabi-
tant as a function of the municipality size, for each interval of tMFM.

3.3 Results

In this section, we present the results obtained when applying the method on the
data from 1999, 2006 and 2008.

The coefficients of the quantile regression for each set of tMFM obtain with the re-
gression quantile 7 = 0.01 and the 1999 data are presented in Table 3.1. All the coeffi-
cients are significant and the associated standard deviations are quite low. The quantile
regression model is significant with one percentile but also with five percentile, ten per-
centile and the median but we choose the focus on the results for one percentile because
we want to be as close as possible to the minimum. Figure 3.4 shows the relation given
by the model for 1999 for tMFM €]0,5] and tMFM > 30. As we can see on the scatter
plots, we obtained a good fit of the model. To assess changes over time in the relation-
ship we have repeated the procedure in 2006 and 2008 (using tMFM from 1999). We note
that, for all the tMFM intervals, the slope is positive, and it is the highest for tMFM > 30.
This implies that the number of proximity service jobs created (or destroyed) is higher
in big municipalities than in a small one, when the population evolves, and even higher
for municipalities that are far from their MFM.

Figure 3.5 shows the results for 2006 and 2008 with 1999 for a 500 and a 3000 inhab-
itants municipality. For each tMFM interval we observe that the number of proximity
service jobs per inhabitant tends to increase with time. One can see that the number of
proximity service jobs per inhabitant is smaller for tMFM < 15 and then increases. It is
coherent with the results presented in Mordier (2010) which shows the number of ser-
vice providers is higher in isolated rural area than in suburbs of rural center. The same
author shows the number of service providers in rural suburbs is smaller than the on
in rural centres (defined as having at least 1500 jobs). The whole form a curve is also
coherent with Hubert (2009) who shows that in the rural and weakly urban areas the
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Table 3.1: Parameter values and standard deviations (in brackets) of the quantile regression pre-
dicting the number of proximity services jobs per inhabitant for the different intervals of tMFM
in minutes by car in 1999.

tMFM Intercept Slope

10,5] -0.084 (0.0031) 0.016 (0.0006)
15,10]  -0.083 (0.0024) 0.016 (0.0005)
]10,15] -0.079 (0.0014) 0.015 (0.0003)
]115,20] -0.094 (0.0025) 0.018 (0.0005)
120,25] -0.097 (0.0021) 0.019 (0.0007)
125,30] -0.099 (0.0055) 0.019 (0.0012)
>30 -0.112 (0.0067)  0.021 (0.0020)
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Figure 3.4: Number of service jobs per inhabitant function of the number of inhabitants for each
municipality in 1999. The line represents the quantile regression line for 7 = 0.01. (a) tMFM
€]0,5]; (b) tMFM > 30.

average daily moving time is 16 minutes in 1994 and 17 minutes in 2008 in France (for
those moving by car).

Finally, within municipalities of 3000 inhabitants, the ones which are tMFM > 30
have about 0.02 proximity job services per inhabitant more than municipalities close
to MFM (tMFM < 15), while this difference is about 0.005 within muncipalities of 500
inhabitants. This suggests that the same population changes in municipalities of 3000
inhabitants, have a significantly higher impact on the proximity service jobs in munic-
ipalities far from MFM than in municipalities close to MFM. In municipalities of 500
inhabitants tMFM seems to have a weaker impact.
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3.4 Discussion

We choose the minimum requirement approach for deriving the number of prox-
imity services jobs per inhabitant in French rural municipalities, because it seems rea-
sonable that, in a sufficiently large set of municipalities, some of them have only service
jobs for the municipality population itself. Indeed, one can postulate that the long range
services are located only in some privileged municipalities. However, we had to adapt
the minimum requirement to our problem on three aspects:

¢ Instead of considering the share of jobs in a given activity, we considered the num-
ber of jobs per inhabitant. This corresponds better to our assumption that the
proximity service jobs depend on the local population.

¢ We performed a series of minimum requirement procedures, corresponding to
intervals of time distance to the most frequented municipality.

¢ Instead of using a discrete model based on a clustering of the municipalities
by sizes as in the usual minimum requirement approach, we use a quantile re-
gression (Koenker and Bassett, 1978) with as quantile value the first-percentile
(t=0.01).
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The model yields accurate predictions of the first percentile. It suggests that big mu-
nicipalities (close to 5000 inhabitants) generate (or destroy) significantly more proximity
service jobs than small ones (around 500 inhabitants), for the same growth (or decline)
of their population. Moreover, the impact of the time to the most frequented munci-
pality (MFM) corresponds to one’s expectations: The municipalities which are close to
a MFM have the lowest number of jobs in proximity services per inhabitant, and when
the municipality gets farther from the MFM, its number of jobs in proximity services per
inhabitant increases. Finally, this impact of tMFM on the number of proximity service
jobs per inhabitant is significantly higher on big municipalities than on small ones.

We believe that such results can be interesting for policy makers, who have to make
choices for distributing incentives to maintain employment and population in some
rural areas. According to our results, the policies will have higher leverage effects in the
big municipalities of our sample, especially the one with tMFM > 30. Moreover, our
results suggest that in municipalities which are close to MFM, the population changes
are likely to impact also the service jobs in the MFM.
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Abstract. We propose a new approximate Bayesian computation (ABC) algorithm
that aims at minimizing the number of model runs for reaching a given quality of the
posterior approximation. This algorithm automatically determines its sequence of
tolerance levels and makes use of an easily interpretable stopping criterion. Moreover,
it avoids the problem of particle duplication found when using a MCMC kernel. When
applied to a toy example and to a complex social model, our algorithm is 2 to 8 times
faster than the three main sequential ABC algorithms currently available.

Manuscript:
Lenormand, M. et Deffuant, G. (2012). Adaptive Approximate Bayesian Computation
for Complex Models. arXiv:1111.1308v3 (Submitted in Computational Statistics).



54 Chapter 4. Adaptive Approximate Bayesian Computation

4.1 Introduction

Approximate Bayesian computation (ABC) techniques appear particularly relevant
for calibrating stochastic models because their very principle includes stochasticity but
they are applicable to any model. They generate a sample of model parameter values
(6;)i=1,. N (often also called particles) from the prior distribution () and select the 8;
values leading to model outputs x ~ f(x|6;) satisfying a proximity criterion with the
target data y (p(S(x),S(y¥)) < €, p(-) expressing a distance, S(-) expressing a summary
statistic and € being a tolerance level). The selected sample of parameter values approx-
imates the posterior distribution of parameters, leading to model outputs with the ex-
pected quality of approximation. However, in practise, running these techniques is very
demanding computationally because sampling the whole space of parameters requires
a number of simulations which grows exponentially with the number of parameters to
identify. This tends to limit the application of these techniques to easily computable
models (Beaumont, 2010). In this paper, our goal is minimizing the number of model
runs for reaching a given quality of posterior approximation, and thus to make the ap-
proach applicable to a larger set of models.

ABC is the subject of intense scientific researches and several improved versions of
the original scheme are available, such as using local regressions to improve parame-
ter inference (Beaumont et al., 2002; Blum and Francois, 2010), automatically select-
ing informative summary statistics (Joyce and Marjoram, 2008; Fearnhead and Pran-
gle, 2012), coupling to Markov chain Monte Carlo (Marjoram et al., 2003; Wegmann
etal., 2009) or improving sequentially the posterior distributions with sequential Monte
Carlo methods (Sisson et al., 2007; Toni et al., 2009; Beaumont et al., 2009). This last
class of methods approximates progressively the posterior, using sequential samples
S = (Hl.m) i=1,..~ derived from sample S(/~1), and using a decreasing set of tolerance lev-
els {e1,...,e}. This strategy focuses the sampling effort in parts of the parameter space
of high likelihood, avoiding to spend much computing time in systematically sampling
the whole parameter space.

The first sequential method applied to ABC was proposed by Sisson et al. (2007) with
the ABC-PRC (Partial Rejection Control). This method is based on a theoritical work of
Del Moral et al. (2006) to ABC. However, Beaumont et al. (2009) has shown that this
method leads to a bias in the approximation of the posterior. Beaumont et al. (2009);
Toni et al. (2009) proposed a new algorithm, called Population Monte Carlo ABC in
Beaumont et al. (2009) and hereafter called PMC. This algorithm, corrects the bias by
affecting to each particle a weight corresponding to the inverse of its importance in the
sample. It is particularly interesting in our perspective because it provides with a rig-
orous framework to the sequential sample idea, which seems a good way for minimiz-
ing the number of runs. In this approach, the problem is then defining the sequence
of tolerance levels {ey,...,e7}. Drovandi and Pettitt (2011) and Del Moral et al. (2012)
solve partly this problem by deriving the tolerance level at a given step from values of
p(S(x),S(y)) of the previously selected sample. However, a difficulty remains: when to
stop? If the final tolerance level €7 is too large, the final posterior will be of bad quality.
Inversely, a too small €7 leads to a posterior that could have been obtained with less
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model runs.

Moreover, the MCMC kernel used in Drovandi and Pettitt (2011) and Del Moral et al.
(2012) to sample new values 0}”, despite its mathematical elegance, has a significant
drawback in our view: it can lead to particle duplications. Indeed, each time the MCMC
jumps from a particle to a new one which is not accepted, the initial particle is kept in
the new sample of particles, hence when this occurs several times with the same initial
particle, this particle appears several times in the new sample. As long as these dupli-
cations are very few compared with the size of the sample, their effect can be neglected,
but it can easily happen that their number grows to a very significant part of the sample,
then strongly deteriorating the quality of the posterior, as illustrated below. To solve this
problem, Drovandi and Pettitt (2011) proposed to perform R MCMC jump trials instead
of one, while Del Moral et al. (2012) proposed to resample the parameter values when
too many are duplicated. Del Moral et al. (2012) also proposed to run the model M times
for each particle, in order to decrease the variance of the acceptance ratio of the MCMC
jump. However, these solutions increase the number of model runs, going against the
initial benefit of using sequential samples.

In this paper, we propose a modification of the PMC algorithm that we call adaptive
population Monte Carlo ABC (hereafter called APMC). This new algorithm determines
by itself the sequence of tolerance levels as in Drovandi and Pettitt (2011) and Del Moral
etal. (2012), and it also provides a stopping criterion. Furthermore, our approach avoids
the problem of duplications. We prove that the computation of the weights associated
to the particles in this algorithm lead to the intended posterior distribution and we also
prove that the algorithm stops whatever the chosen value of the stopping parameter.
We show that our algorithm, applied to a toy example and to an individual-based so-
cial model, requires significantly less simulations to reach a given quality level of the
posterior distribution than the PMC algorithm of Beaumont et al. (2009), the replen-
ishment SMC ABC algorithm of Drovandi and Pettitt (2011) (hereafter called RSMC) and
the adaptive SMC ABC algorithm of Del Moral et al. (2012) (hereafter called SMC). These
algorithms are detailed in Appendix 4.A.

4.2 Adaptive population Monte-Carlo approximate Bayesian
computation

4.2.1 Overview of the APMC algorithm

The APMC algorithm follows the main principles of the sequential ABC, and defines
on-line the tolerance level at each step like in Drovandi and Pettitt (2011) and Del Moral
et al. (2012). For each tolerance level €,, it generates a sample S(*) of particles and com-
putes their associated weights. This weighted sample approximates the posterior dis-
tribution, with an increasing approximation quality as €, decreases. We say that a pa-
rameter value Bl.m, satisfies the tolerance level ¢;, if when running the model we get
X~ f(xl@im), such that its distance pg.t) = p(S(x),S(y)) to the target data y, is below ¢;.
Suppose the APMC reached step ¢ — 1, with a sample S~V of N, = |aN| particles and
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(t—1
i

their associated weights (91.“_1), w ))izl,,.,Na, the main features of the APMC are (see

Algorithm 4.6 for details):

e the algorithm generates N — N, particles (H}t_l))ijaH,",N where H;t_l) ~

N (Bf,a(zt_l)), the seed 9;." is randomly drawn from the weighted set

(91'([_1)’ wl(t—l))izlea and the variance U(Zt—l) of the Gaussian kernel ./(07, U(Zt_l))
is twice the empirical variance of the weighted set (HZ.U_I), wgt_l)) i=1,.,N,» following

Beaumont et al. (2009).

e the weights wj(.t_l) of the new particles (G;t_l))j:NaH,__,N are computed so that

these new particles can be combined with the sample S(~1 of the previous step
without causing a bias in the posterior distribution. These weights are given by
Equation 4.2 (see below).

¢ the algorithm concatenates the N, previous particles (Hl.(t_l))izlw N, With the N —
Ng new particles (9]( t_l)) i=N,+1,.,N, together with their associated weights and dis-

tances to the data. This constitutes a new set noted S(tte)mp = (Hi(t), wl(.t),pgt)),-zlmjv.

¢ the next tolerance level €, is determined as the first a—quantile of the (pgt)),-zl,“, N-

e the new sample S(*) = (91.(”, wgt))izl,“, N, is then constituted from the N, particles
(1)
of S

temp satisfying the tolerance level ¢;.

o if the proportion p,.. of particles satisfying the tolerance level €;_; among the
N — N, newly generated particles is below a chosen value p,.,,;,, the algorithm
stops, and its result is (Bl.(t)) i=1,.,N, with their associated weights.

Note that in our algorithm, to get a number N, of retained particles for the next step,
the choice of ¢, is heavily constrained: it has to be at least equal to the first a—quantile
of the (pgt))izlw ~ and smaller than the immediately superior (pgt)) value. We chose to
fix it to the first a—quantile for simplicity. This choice also ensures that the tolerance
level decreases from one iteration to the next: in the worst case where p,.c = 0 (no
newly simulated particles accepted), €; = €;—;. Our algorithm does not use a MCMC
kernel and avoids duplicating particles. It requires a reweighting step in O(N?2) instead
of O(N,) in Drovandi and Pettitt (2011), but in our perspective, this computational cost
is supposed negligible compared with the cost of running the model.

4.2.2 Weights correcting the kernel sampling bias

As pointed out by Beaumont et al. (2009), the newly generated particles Hl.(t) in a
sequential procedure are no more drawn from the prior distribution but from a specific
probability density d 5.” that depends on the particles selected at the previous step and
on the chosen kernel. This introduces a bias in the procedure. This bias should be
corrected by attributing a weight equal to n(@i(t))/ d E.t) to each newly generated particle
0.
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The density of probability d E.t) to generate particle 91.(” at step t is given by the sum
of the probabilities to reach 91.(” from one of the N, particles of the previous step times
their respective weights:

w(‘t—l)

(1) _ J -1 -1 () (-1
a; _Z Ne (t—1)0t—190(‘7t—1(9i -0 )) (4.1)
j=1 Zuk=1 Wi

x2
where p(x)= \/%76_7 is the kernel function.

This yields the expression of the weight wgt) to be attributed to the newly drawn
particle 91.(”:

6"
(1) _ n(0;”) 4.2)

Ne (t-1) ;)xoNa (1)) -1 -1 gt) _ glt=1)
25 (wj [ 21 Wi )Ur—l‘P (Ur—l 0" -0 ))
This formula differs from the scheme of Beaumont et al. (2009) where the weights
need only to be proportional to Equation 4.2 at each step. Since we want to concatenate

particles obtained at different steps of the algorithm (while Beaumont et al. (2009) gen-
erate the sample at step ¢ from scratch), we need the scaling of weights to be consistent

1

across the different steps of the algorithm. Using the weight of Equation 4.2 guaran-
tees the correction of the sampling bias throughout the APMC procedure and ensures
that the N, weighted particles 91.([) produced at the t-th iteration follow the posterior
distribution 7 (0|p(S(x),S(y)) < €¢).

4.2.3 The stopping criterion

We stop the algorithm when the proportion of "accepted” particles (Equation 4.3)
among the N—N, new particles is below a predetermined threshold p,.,,;,- This choice
of stopping rule ensures that additional simulations would only marginally change
the posterior distribution. Note that this stopping criterion will be achieved even if
Pacenin = 0, this ensures that the algorithm converges. We present a formal proof of
this assertion in Appendix 4.B.

Pace(t)= 1 - (4.3)

4.3 Experiments on a toy example

We consider four algorithms: APMC, PMC, the SMC and the RSMC. Their imple-
mentations in R (R Development Core Team, 2011) are available !. We compare them
on the toy example studied in Sisson et al. (2007) where 7(0) = %|-10,10) and f(x]0) ~

1o(60, %) +19(0,1) where ,02) is the normal density of mean u and variance
2 100 2 H y M

! http://motive.cemagref.fr/people/maxime.lenormand/script_r_toyex
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o?. In this example, we consider that y = 0 is observed, so that the posterior density of
interest is proportional to (¢) (0, ﬁ) +¢ (0, 1)) 7(0).

We structure the comparisons on two indicators: the number of simulations per-
formed during the application of the algorithms, and the L, distance between the
exact posterior density and the histogram of particle values obtained with the algo-
rithms. This L, distance is computed on the 300-tuple obtained by dividing the support
[—10, 10] into 300 equally-sized bins.

We choose N = 5000 particles and a target tolerance level equal to 0.01. For the
PMC algorithm we use a decreasing sequence of tolerance levels from €; = 2 down
to €11 = 0.01. For the SMC algorithm, we use 3 different values for a: {0.9,0.95,0.99}
and M = 1 as in Del Moral et al. (2012). For the RSMC algorithm we use a =
0.5 as in Drovandi and Pettitt (2011). To explore our algorithm, we test 9 different
values for a: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, and 4 different values for pg.c,,;,:
{0.01,0.05,0.1,0.2}. In each case, we perform 50 times the algorithm, and compute the
average and standard deviation of the two indicators: the total number of simulations
and the L, distance between the exact posterior density and the histogram of particle
values. We used as kernel transition a normal distribution parameterized with twice the
weighted variance of the previous sample, as in Beaumont et al. (2009).

We report below the effects of varying a and p,,,;, on the performance of our al-
gorithm, and compare it with the PMC, SMC and RSMC algorithms.

4.3.1 Particle duplication in SMC and RSMC

The number of distinct particles decreases during the course of the SMC algorithm
whatever the value of a, as shown on Figure 4.1a-c. The oscillations of the number of
distinct particles are caused by the resampling step in the SMC algorithm (see Del Moral
etal. (2012)), but they are not sufficient to counterbalance the overall decrease. This de-
crease deteriorates the posterior approximation as shown on Figure 4.2. For the RSMC
algorithm, the number of distinct particles is maintained at a reasonably high level (Fig-
ure 4.1c), but this has a cost in terms of the number of required model runs (see Fig-
ure 4.2). Note that the APMC and the PMC algorithms keep N distinct particles.

4.3.2 Influence of parameters on APMC

The values of a and p4cc,,;, have an impact on the studied indicators. We find that
smaller @ and pg,,;, improve the quality of the approximation (smaller L, distance),
and increase the total number of model runs, with p,..,,;, having the largest effect (Fig-
ure 4.2). With a large «, the tolerance levels decrease slowly and there are numerous
steps before the algorithm stops. In this toy example, our simulations show that all ex-
plored sets of (&« , pacc,,,) such that pscc,,;, < 0.1 give good results for the criterion
Number of simulations x 15 (Figure 4.3b). Large a provide slightly better results for
small p4cc,,;, While small a provide slightly better results for large pacc,,;, (Figure 4.3b).
On this toy example it appears that intermediate values of ¢ and p,¢c,,;, (0.3 < a < 0.7
and 0.01 < pgec,,;, < 0.05), present a good compromise between number of model runs
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Figure 4.1: Number of distinct particles in a sample of N = 5000 particles during the course of
the SMC and RSMC algorithms applied to the toy example. (a) SMC with @ =0.9 and M = 1; (b)
SMC with @ =0.99 and M = 1; (c¢) RSMC with a = 0.5. In all three panels, the tolerance target is

equal to 0.001.
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Figure 4.2: Posterior quality (L) versus computing cost (number of simulations) averaged over
50 replicates. Vertical and horizontal bars represent the standard deviations among replicates.
Algorithm parameters used for APMC: « in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and psc,,, in
{0.01,0.05,0.1,0.2}. Blue circles are used for p,,,,, = 0.01, orange triangles for p,,,,, = 0.05,
green squares for p,c,,, = 0.1, and purple diamonds for p,,,;, = 0.2. PMC: red plain triangles
for a sequence of tolerance levels from €; = 2 down to €;; = 0.01. SMC: grey plain square for
a in {0.9,0.95,0.99} (from left to right), M =1 and a € target equal to 0.01. RSMC: brown plain
diamond for ¢ = 0.5 and a € target equal to 0.01. Results obtained with a standard rejection-
based ABC algorithm are depicted with black plain circles.
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and the quality of the posterior approximation.

4.3.3 Comparing performances

Whatever the value of @ and pg4c,,;,, the APMC algorithm always yields better re-
sults than the other three algorithms. It requires between 2 and 8 times less simula-
tions to reach a given posterior quality I, (Figure 4.2). Furthermore, good approxi-
mate posterior distributions are very quickly obtained (Figure 4.2). The compromise
between simulation speed and convergence level can also be illustrated using the crite-
rion Number of simulations x L5 (Glynn and Whitt, 1992). This criterion is smaller for
the APMC algorithm (Figure 4.3a).

@ (b)

Number of simulations x L

3000
0'27 _ 1000
2500 A
0.1 800
2000 A
£ 00751 600
1500 - g
2 0.05 400
1000 A
0.025 - 200
500 -|
m—— e 0.01-
07 T T T T T T T T T 1 0
PMC SMC RSMC ABC APMC 01 03 05 07 09
a

Figure 4.3: (a) Boxplot of the criterion "squared L, distance times the number of simulations” for
the different ABC algorithms. APMC: for « in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and p,cc,,,, =
0.01; SMC: for a in {0.9,0.95,0.99}, M =1 and a € target equal to 0.01; RSMC: for ¢ = 0.5 and a
€ target equal to 0.01; ABC: for a € target equal to 0.01; PMC: for a sequence of tolerance levels
from €; =2 to €;; = 0.01. (b) Criterion “squared L, distance times the number of simulations”
in the APMC algorithm for the different values of ¢ and p,,,,- Each cell depicts the average of
the criterion over the 50 performed replicates of the APMC.

4.4 Application to the model SimVillages

In this section, we check if our algorithm still performs better than the PMC, the
RSMC and the SMC when applied to an individual-based social model developed dur-
ing the European project PRIMA?. The aim of the model is to simulate the effect of a

2 PRototypical policy Impacts on Multifunctional Activities in rural municipalities - EU 7th Framework
Research Programme; 2008-2011; https://prima.cemagref.fr/the-project
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scenario of job creation (or destruction) on the evolution of the population and activi-
ties in a network of municipalities.

4.4.1 Model and data

The model simulates the dynamics of virtual individuals living in seven intercon-
nected villages in a rural area of Auvergne (a region of Central France). A single run
of the model SimVillages with seven rural municipalities takes about 1.4 seconds on a
desktop machine (PC Intel 2.83 GHz). The dynamics include demographic change (ag-
ing, marriage, divorce, births and deaths), activity change (change of jobs, unemploy-
ment, inactivity, retirement), and movings from one municipality to another or outside
of the set. The model also includes a dynamics of creation / destruction of jobs of prox-
imity services, derived from the size of the local population. More details on the model
can be found in Huet et al. (2012). The individuals (about 3000) are initially generated
using the 1990 census data of the National Institute of Statistics and Economic Studies
(INSEE), some of them are given a job type and a location for this job (in a municipality
of the set or outside), they are organised in households living in a municipality of the
set. The model dynamics is mostly data driven, but four parameters cannot be directly
derived from the available data. They are noted ), for 1 < p <4, described in Table 4.1.

We use our algorithm to identify the distribution of the four parameters for which
the simulations, initialized with the 1990 census data, satisfy matching criteria with the
data of the 1999 and 2006 census. The set of summary statistics {S,, }1<m<m and the as-
sociated discrepancy measure used p,, are described in Table 4.2. We note S, the sim-
ulated summary statistics and S’m the observed statistics. The eight summary statistics
are normalized (variance equalization) and they are combined using the infinity norm
(Equation 4.4):

1Em(Smy Sy )i <merdl = SUP Pm(Sm,S,,) (4.4)

1<m<M

We first generate a sample of length N from the prior %, ), where [a, b] is available
for each parameter in Table 4.1, with a Latin hypercube (Carnell, 2009) and we select
the best N, particles. To move the particles, we use as kernel transition a multivariate
normal distribution parameterized with twice the weighted variance-covariance matrix
of the previous sample (Filippi et al., 2011).

As in the Section 4.3, we perform a parameter study and compare APMC
with its three competitors. For APMC, a varies in ({0.3,0.5,0.7}) and pgcc,,;, in
({0.01,0.05,0.1,0.2}), and we set N, = 5000 particles. For the PMC, SMC and RSMC
we also set N = 5000 particles and a tolerance level target equal to 1.4. The tolerance
value € = 1.4 corresponds to the average final tolerance value we obtain with APMC
for pacc,,;, = 0.01. Note that otherwise this final tolerance is difficult to set properly
and a worse choice for this value would have lead to worse performances of these al-
gorithms. For the PMC algorithm, we use the decreasing sequence of tolerance levels
13,2.5,2,1.7,1.4}. For the SMC algorithm, we use 3 different values for the couple (a, M):
{(0.9,1),(0.99,1),(0.9,15)}. For the RSMC algorithm we use @ = 0.5, as in Drovandi and
Pettitt (2011). For each algorithm and parameter setting, we perform 5 replicates.
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We approximated posterior density (unknown in this case) with the original
rejection-based ABC algorithm, starting with N = 10,000, 000, selecting 7890 particles
below the tolerance level € = 1.4.

To compute the L, distance between posterior densities, we divided each parameter
support into 4 equally sized bins, leading to a grid of 4* = 256 cells, and we computed
on this grid the sum of the squared differences between histogram values.

Table 4.1: SimVillages parameter descriptions

Parameters Description Range
6, Average number of children per woman [0,4]
0, Probability to accept a new residence for a household [0, 1]
05 Probability to make couple for two individuals [0,1]
04 Probability to split for a couple in a year [0,0.5]

Table 4.2: Summary statistic descriptions

Summary statistic Description Measure of discrepancy
S1 Number of inhabitants in 1999 LL; distance
So Age distribution in 1999 2 distance
S3 Household type distribution in 1999 x? distance
Sa Net migration in 1999 L; distance
S5 Number of inhabitants in 2006 IL; distance
Se Age distribution in 2006 2 distance
S7 Household type distribution in 2006 x? distance
Sg Net migration in 2006 LL; distance

4.4.2 Study of APMC result

APMC vyields a unimodal approximate posterior distribution for the model SimVil-
lages (Figure 4.4). Interestingly, parameters 6, and 6, are slightly correlated (Figure 4.4c).
This is logical since they have contradictory effects on the number of child in the pop-
ulation. What is less straightforward is that we are able to partly tease apart these two
effects with the available census data, since we get a peak in the approximate posterior
distribution instead of a ridge.
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Figure 4.4: Contour plot of the bivariate joint densities of 8; and 8, obtained with our algorithm,
and with @ =0.5 and p,c,,;, = 0.01; (a) 6; and 6,; (b) 6, and 6s; (c) 6, and ,; (d) 6, and 65; (e) 6,
and 0,; (f) 63 and 0,.

4.4.3 Influence of parameters on APMC

As for the toy example, we find that the intermediate values of (&, pacc,,;,) that we
used lead to similar results (Figure 4.5¢). In practice, we therefore recommend to use a =
0.5 and pacc,,;, between 0.01 and 0.05 depending on the wished level of convergence.

4.4.4 Comparing performances

APMC requires between 2 and 7 times less simulations to reach a given posterior
quality than the other algorithms L, (Figure 4.5a). Again, the gain in simulation num-
ber is progressive during the course of the algorithm. The Number of simulations x 13
criterion is again smaller for the APMC algorithm (Figure 4.5b).

4.5 Discussion

The good performances of APMC should of course be confirmed on other examples.
Nevertheless we argue that they are due to the main assets of our approach:

e We choose an appropriate reweighting process instead of a MCMC kernel, which
corrects the sampling bias without duplicating particles;

e We define an easy to interpret stopping criterion that automatically defines the
number of sequential steps.
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Figure 4.5: (a) Boxplot of the criterion “squared L, distance times the number of simulations”
for the different algorithms. APMC: for a in {0.3,0.5,0.7} and p,..,,;,, = 0.01; SMC: for (a, M) in
{(0.9,1),(0.99,1),(0.9,15)} and a € target equal to 0.01; RSMC: for @ = 0.5 and a € target equal
to 0.01; ABC: for a € target equal to 1.4; PMC: for a sequence of tolerance levels from €; = 3
to €5 = 1.4. (b) Criterion “squared L, distance times the number of simulations” in the APMC
algorithm for the different values of @ and p,..,,;,- Each cell depicts the average of the criterion
over the 5 performed replicates of the APMC. (c) Posterior quality (L) versus computing cost
(number of simulations) averaged over 5 replicates. Vertical and horizontal bars represent the
standard deviations among replicates. Algorithm parameters used for APMC: « in {0.3,0.5,0.7}
and pace,,;, in {0.01,0.05,0.1,0.2}. Blue circles are used for p,c,,;, = 0.01, orange triangles for
Pacenin = 0.05, green squares for pycc,,,, = 0.1, and purple diamonds for p,cc,,,, = 0.2. PMC: red
plain triangles for a sequence of tolerance levels from €, = 3 to €5 = 1.4. SMC: grey plain square
for (a, M) in {(0.9,1),(0.99,1)}, grey star for (e, M) = (0.9,15) and a € target equal to 1.4. RSMC:
brown plain diamond for @ = 0.5 and a € target equal to 1.4. Results obtained with a standard
rejection-based ABC algorithm are depicted with black plain circles.
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Therefore, we can have some confidence in the good performances of APMC on other
examples.

In the future, it would be interesting to evaluate this algorithm on models involv-
ing a larger number of parameters and/or multi-modal posterior distributions. More-
over, APMC could benefit from other improvements, in particular by performing a semi-
automatic selection of informative summary statistics after the first ABC step (Joyce and
Marjoram, 2008; Fearnhead and Prangle, 2012) and by using local regressions for post-
processing the final posterior distribution (Beaumont et al., 2002; Blum and Francois,
2010). We did not perform such combinations in the present contribution, so that our
algorithm is directly comparable with the three other sequential algorithms we looked
at. However, they would be straightforward, because the different improvements con-
cern different steps of the ABC procedure.
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Appendix 4.A: Description of the algorithms

Algorithm 4.1 Likelihood-free rejection sampler 1

Given N the number of particles
fori=1to Ndo
repeat
Generate 0* ~ 71(0)
Simulate x ~ f(x|0*)
until S(x)=S(y)
Set 0; = 6*
end for

Algorithm 4.2 Likelihood-free rejection sampler 2

Given N the number of particles
fori=1to N do
repeat
Generate 0* ~ 11(0)
Simulate x ~ f(x|0%*)
until p(S(x),S(y)) <€
Set 0, = 60*
end for




68 Chapter 4. Adaptive Approximate Bayesian Computation

Algorithm 4.3 Population Monte Carlo ABC (PMC)

Given N the number of particles and a decreasing sequence of tolerance level

€1=.2€T,
Fort =1,
fori=1aNdo
repeat
Simulate 01.(1) ~m(f)and x ~ f(lei(l))
untilp(S(x%,S(y)) <€1
1) _

Set w;
end for
Take cr% as twice the weighted empirical variance of (91.(1) )i<i<n
fort=2to T do
fori=1to Ndo
repeat
(t-1)

Sample 0 from H;t_l) with probabilities w i

Generate OI.U)IB;‘ ~ N (0;,02)and x ~ f(x|9,~(t))
until p(S(x),S(y)) < €;

(t)
(t) 7(0;")
Set w; "’ «
i N 1) _— _ -1
Zj:l w]('t )Ut Yo(o; 1(01'(” - H;I )))
end for
Take 07 41 as twice the weighted empirical variance of (91.(”)15 i<N

end for
2

1
Where ¢(x)= Ee P
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Algorithm 4.4 Sequential Monte Carlo ABC Replenishment (RSMC)

Given N, €1, €1, ¢, a €[0,1] and N, = |aN|,
fori=1to N do
repeat
Simulate 8; ~ (0) and x ~ f(x|6;)
pi=p(Sx),S(y))
until p; <€
end for
Sort (6;,p:) by pi
Set epax =pn
while epax > €7 do
Remove the N, particles with largest p
Set engxT =PN-N,
Setigzee=0
Compute the parameters of the proposal MCMC q(-, -) with the N — N, particles.
for j =1to N, do
Simulate On—n,+j ~ (0i)1<i<n-N,
fork=1aRdo
Generate 0* ~ q(0*, On_n,+) et x* ~ f(x*[0*)
Generate u < %o 1]
(0%)q(ON-nN,+j, 0%)
T(ON-N,+j)9(0%, ON-N,+;
Set HN—Na+j =0*
Set pn—Ng+j = p(S(x*),S(y))
lacc “— lacct1
end if
end for
end for

Set pacc ==

ifu<1A )]1p(5(x*),8(y))sﬁv5xr then

lacc
RN,
log(c)

SetR=————
log(l - pacc)

end while
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Algorithm 4.5 Adaptive Sequential Monte Carlo ABC (SMC)

Given N, M, ¢ €[0,1], g =00, € and N,
Fort =0,
fori=1to N do

Simulate Hi(o) ~ ()

fork=1aMdo

Simulate X(o) ~ f(: |0(O) )

end for

Set Wl.(o) =—
end for 4
We have ESS((WI.(O)), €9) = N where ESS((WZ.(O)), €)= (Zévzl(Wi(O))Z)
Setr=1
while ¢;,_; > e do

Determine €, resolving ESS((W(”), €)= aESS((Wi(FI)), €¢—1) Where
(t-1)
W(t 1)Zk 1L, 1y( ik )

-1
Zk 1]1An 1)’(X(l ) )

W o et Acy = {x| p(S(x),S(y)) < €}

ife; < e then
€n=E¢€
end if
if ESS(W"), ;) < Ny then
fori=1to Ndo
Simulate (H(I 2 X((ltll]\)/f )in (H(t 2 X((; 11]3/[))with probabilities W].(”, 1<j<N
Set Wim =

end for
end if
fort=1to N do
if IAG.(” >0 then
Generate 6* ~ K| (B*IH((;)_D)
for k=1to M do
Simulate X x) ~ f(:|0%)
end for
Generate u < %o
Yl La,, (e p)m(0)K (05 716%)

en
M (t-1) (r=1) (t=1)
Zk 1]lAety(sz)) (9(1) )Kt(9*|9(i) )
Set(@m le)) (6%, X(1::m))
else
(1) A1) (t=1) +A(t=1)
Set (6;) X (i 1.0 = Oy > X(i 1:am)
end if
end if
end for

end while

N

ifu<ia
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Algorithm 4.6 Adaptive Population Monte Carlo ABC (APMC)

Given N, N, = |aN| the number of particles to keep at each iteration among the N
particles (a € [0,1]) and pg4cc,,;, the minimal acceptance rate.
fort=1do
fori=1to Ndo
Simulate Hl.(o) ~m(@)and x ~ f (xIHi(O))
Set pi” = p(S(x), (1))
Set w(o) =1
end for
Let €1 = Q,w(a) the first a-quantile of p(® where p(®) = {pEO)}1<i<N

Let{w“ w, p")} ={6, 0, pMip” < er, 12 i <N}

Take 01 as twice the weighted empirical variance of {(91.(1), wgl))}lsif N,
Set pacc=1
t—rt+1
end for
while p,cc > pace,,;, do
fori=N,+1to Ndo .

Pick 7 from H(t Y with probability % 1<j<Ng
w

k=1 "k

)and x ~ f(x]6 ")

Generate Hl.u 1)|t9lfk ~</V(0i,
Set p{' ™! = p(S(x), S(y))
oy ﬂ(g(t—l))

Z ( (e— 1)/2:]C lw](f l)o_t 1‘;0(0't 1(9()? 1) e}t—l)))

(t-1)

Set w;

end for
_ 1 N
Set Pace = y—x. I ]lpgt—n«z 1
(r-1)

Lete; = Q- (a) where p(/=1) = {pl }1<i<N

Let {(0{", ", p{")} ={(0/ ™", '™, pi Mlp{ V< e, 120 <N}

Take o2 as twice the weighted empirical variance of {(Hl.m, wgt))}ls i<N,
t—t+1
end while
Where Vu €[0,1] and X = {x1,...,x,}, Qx(u) =inf{x € X|Fx(x) > u} and
FX(x)— Zk 1 xk<x

Where ¢(x) = % T2
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Appendix 4.B: Proof that the algorithm stops

We know that there exists €5 > 0 such that €, R € because, by construction of
—T00

the algorithm (¢€,) is a positive decreasing sequence and it is bounded by 0.

For each 0 € ©, we consider the distance (p(S(x),S(y))|0) as a random variable p(8). Let
fp(e) be the probability density function of p(6).

The probability P[p(8) > €,] that the drawn distance associated to parameter @ is higher
than the current tolerance €, satisfies:

Plp(0)= €] =1-P[(p(8)<e]
=1-[" foo)x)dx
We define:

Pmax = sup { sup {fp(Q)(x)}}

6eO | xeR*
We have:

Plp(0)=€:]=1—Prax(€r —€x)

The N — N, particles are independent and identically distributed from 7,4 the density
defined by the algorithm, hence the probability P[p,..(f + 1) = 0] that no particle is
accepted at step t + 1 is such that:

HJ>[pacc(t +1)=0] > (1 =Pax(€r — 600))N_Na

If Py 0x <400, because €, — e, — 0, we have:
t—+00

Plpacc(t+1)=0] — 1
t—+00

We can conclude that p,..(t) converges in probability towards 0 if P,,,x < +00. This
ensures that the algorithm stops, whatever the chosen value of p,,,;, -
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In this thesis, we have developed statistical tools matching various needs for elabo-
rating the microsimulation model SimVillages. Indeed, this model is "data driven" and
it requires the use of statistics from its construction to its validation. With the increase of
data sources and the storage capacities, we can expect that integrated multi-formalism
data driven models will become more and more common. Therefore, the type of ap-
proach we have adopted in the thesis will correspond to an increasing need.

Our work shows that it is generally difficult to use directly existing methods and that
specific needs of the model pose new research problems. For example, to generate a
synthetic population or a commuting network without detailed data we needed to cre-
ate new methods (see Chapter 1 and Chapter 2). To estimate the number of proxim-
ity service jobs we have adapted the Minimum Requirement method to our problem
(Chapter 3) and to calibrate the model we have adapted the Population Monte Carlo
ABC algorithm to speed it up (Chapter 4).

In this chapter, we propose a brief summary and we present some perspectives and
open questions for each contribution of the thesis. Several avenues exist to pursue the
research carried out in this thesis. Indeed, the three first contributions developed in this
thesis need to be tested on more practical applications and/or new case studies. Regard-
ing the calibration of microsimulation models and the Approximate Bayesian Compu-
tation methods, questions and problems abound.
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1 Generating a synthetic population

1.1 Summary of my contribution

In the Chapter 1, we compare a sample-free method proposed by Gargiulo et al.
(2010) with a sample-based method proposed by Ye et al. (2009) for generating a syn-
thetic population, organised in households, from various statistics. We generate a ref-
erence population for a French region including 1310 municipalities and measure how
both methods approximate it from a set of statistics derived from this reference popu-
lation. We also perform a sensitivity analysis. The sample-free method better fits the
reference distributions of both individuals and households. It is also less data demand-
ing but it requires more pre-processing. The quality of the results for the sample-based
method is highly dependent on the quality of the initial sample.

1.2 Perspectives and open questions

Sensitivity to the uncertainty on the initial population An interesting problem which
has notbeen addressed in this thesis is about the sensitivity to the uncertainty on the ini-
tial population of a stochastic dynamic microsimulation model. Indeed, when the intial
state comes from a stochastic model (as for the SimVillages model) we need to choose
one result of synthetic population from this model. Such as, for instance, the "best"
synthetic population among a set of synthetic populations according to the goodness
of fit to the observed data (the 1990 census for the SimVillages model). Then, it is im-
portant to study the degree to which the initial state affects the calibration process and
the model outputs. This requires to use a set of different synthetic populations to study
the impact of the change of initial state on the estimation of unknown model parameter
values and also to study the propagation of the initial state uncertainty on the model
outputs.

Comparison between sample-free and sample-based methods In order to refine the
comparison, it would be interesting to further compare sample-free and sample-based
methods on other case studies.

2 A universal model of commuting networks

2.1 Summary of my contribution

In the Chapter 2, we show that a recently proposed model generates accurate com-
muting networks on 80 case studies from different regions of the world (Europe and
United-States) at different scales (e.g. municipalities, counties, regions). The model
takes as input the number of commuters coming in and out of each geographic unit
and generates the matrix of commuting flows between the units. The single parameter
of the model follows a universal law that depends only on the scale of the geographic
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units. We show that our model significantly outperforms two other approaches propos-
ing a universal commuting model (Balcan et al., 2009; Simini et al., 2012), particularly
when the geographic units are small (e.g. municipalities).

2.2 Perspectives and open questions

Validation of the universal model of commuting networks To carry on the validation
of the commuting network generation model it would be interesting to test the model
on new case studies with different scales, different cultures and at different years. We
could also validate the model using an epidemic model such as a SIR model (Susceptible
Infected Recovered). Indeed, we could measure the impact of the use of the simulated
commuting network instead of the observed one on the epidemic spread of infectious
diseases.

3 Deriving the number of jobs in proximity services

3.1 Summary of my contribution

In the Chapter 3, we use a minimum requirement approach to derive the number of
jobs in proximity services per inhabitant in French rural municipalities. We first classify
the municipalities according to their time distance in minutes by car to the municipal-
ity where the inhabitants go the most frequently to get services (called MFM). For each
set corresponding to a range of time distance to MFM, we perform a quantile regression
estimating the minimum number of service jobs per inhabitant that we interpret as an
estimation of the number of proximity jobs per inhabitant. We observe that the mini-
mum number of service jobs per inhabitant is smaller in small municipalities. Moreover,
for municipalities of similar sizes, when the distance to the MFM increases, the number
of jobs of proximity services per inhabitant increases.

3.2 Perspectives and open questions

Apply the method to other case studies To highlight the differences between societies
in terms of proximity services frequence in rural municipalities it would be interesting
to apply the method to other countries and at different years.

4 Adaptive approximate Bayesian computation for complex
models

4.1 Summary of my contribution

In the Chapter 4, we propose a new approximate Bayesian computation (ABC) algo-
rithm that aims at minimizing the number of model runs for reaching a given quality of
the posterior approximation. This algorithm automatically determines its sequence of
tolerance levels and makes use of an easily interpretable stopping criterion. Moreover,
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it avoids the problem of particle duplication found when using a MCMC kernel. When
applied to a toy example and to a complex social model, our algorithm is 2 to 8 times
faster than the three main sequential ABC algorithms currently available.

4.2 Perspectives and open questions

How to use the parameter posterior distribution estimated with ABC? We have de-
cided to use ABC rather than a heuristic optimisation method to calibrate the SimVil-
lages model because of the theory behind ABC which gives a rigorous mathematical
framework of the estimated quantities. Indeed, with ABC, we estimate the conditional
distribution over parameters given observed data know as posterior parameter distribu-
tion. The posterior distribution can be used in two ways.

First, it is interesting to use this distribution to perform an uncertainty analysis. The
uncertainty analysis determines the level of uncertainty in the model outputs resulting
from the uncertainty in the model inputs or on the parameters. It provides information
on the uncertainty associated with model results. The uncertainty analysis is based on
the distribution of the model results when running it using all the parameters drawn
from the posterior distribution. These model results can be the same as the ones used
for estimating the parameter posterior distribution and thus help evaluate the quality
of this estimation. The model results can also be different from the ones used for the
calibration, and in particular results at future time steps. In the latter case, one can
study how the uncertainty increases with time.

Second, it is interesting to use the posterior distribution to estimate and to extract
the most likely parameter values with, for example, a kernel density estimation. Then,
we can use these parameter values to calibrate the model, to explore the model dynam-
ics and then use these values to discuss the potential future trends that are given by the
model.

ABC versus optimisation The goal of the optimization and ABC are different. Indeed,
with optimization method like Particle Swarm Optimization, we want to find a set of
parameter values for which the error (distance between the observed data and simu-
lated data) is less than a threshold. With ABC, we can theoretically make optimization,
by taking the maximum of the parameter values distribution as such an optimum. It
would be interesting to compare the results obtained with both methods in terms of fit
to observed data and number of simulations.

Choosing summary statistics An important issue in ABC is the choice of summary
statistics. The summary statistics are a set of conditions supposed to be sufficient to
summarize the data. Many good answers have been proposed to select these statis-
tics (see for example Joyce and Marjoram (2008); Fearnhead and Prangle (2012)). How-
ever, all these methods propose to select the summary statistics before performing the
ABC. However, the links summary statistics-parameters change depending on where we
are in the parameter space. It would be interesting, especially in the case of sequential
methods to weight the summary statistics according to the parameter sensitivity and
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thus to modify the importance of summary statistics in each iteration (even sometimes
remove useless statistics). For example, the weights may be determined with sensitivity
indices calculated with the simulations of each iteration.

High performance computing The computational cost of running the SimVillages
model on the Cantal departement is about one minute by simulation. Therefore, to
perform an execution of the APMC algorithm with N, = 1000 particles, ¢ = 0.5 and
a stopping criterion pgcc,,,;, = 0.01 we need 80 iterations so 80 x 1000 minutes (about
56 days). To overcome this limitation, we need to parallelize simulations at each itera-
tion. To do this, we use OpenMOLE (Open MOdeL Experiment) (Reuillon et al., 2010),
a generic workflow engine for experimenting on simulation models using distributed
computing. OpenMOLE allows us, among other things, to separate tasks and to paral-
lelize some of them. We used OpenMOLE to parallelize simulations at each iteration
with a cluster of 24 nodes. Now, to perform one execution of the APMC algorithm we
need about 5 days. We plan to use a computational grid composed of 2000 elements to
study the sensitivity of N, to the parameter posterior distribution.


http://www.openmole.org/




Bibliography

Alonso, W. (1964). Location and land use: toward a general theory of land rent. Publica-
tion of the Joint Center for Urban Studies. Harvard University Press.

Amblard, E (2003). Comprendre le fonctionnement de simulations sociales individus-
centrées : Application a des modeles de dynamiques d'opinions. PhD thesis, Université
Blaise-Pascal.

Arentze, T., Timmermans, H., and Hofman, E (2007). Creating Synthetic Household
Populations: Problems and Approach. Transportation Research Record: Journal of the
Transportation Research Board, 2014:85-91.

Aubert, E, Dissart, J. C., and Lépicier, D. (2009). Facteurs de localisation de I'’emploi
résidentiel en France. In XLVIeme Colloque de I’Association de Science Régionale de
Langue Frangaise (ASRDLF), 6-8 juillet, Clermont-Ferrand, France, 27.

Balcan, D., Colizza, V., Goncalves, B., Hud, H., Ramasco, J. J., and Vespignani, A.
(2009). Multiscale mobility networks and the spatial spreading of infectious dis-
eases. Proceedings of the National Academy of Sciences of the United States of America,
106(51):21484-21489.

Ballas, D., Clarke, G., Dorling, D., and Rossiter, D. (2007). Using Simbritain to model
the geographical impact of national government policies. Geographical Analysis,
39(1):44-77.

Ballas, D., Clarke, G. P, and Wiemers, E. (2005). Building a dynamic spatial microsimu-
lation model for Ireland. Population, Space and Place, 11(3):157-172.

Baqueiro-Espinosa, O., Unay-Gailhard, I., Raley, M., and Huet, S. (2011). Two adapta-
tions of a Microsimulation Model to Study the Impact of Policies at the Municipality
level. Technical report, PRIMA European project.

Barabadsi, A. and Albert, R. (1999). Emergence of Scaling in Random Networks. Science,
286(5439):509-512.

Barrat, A., Barthélemy, M., Pastor-Satorras, R., and Vespignani, A. (2004). The architec-
ture of complex weighted networks. Proceedings of the National Academy of Sciences
of the United States of America, 101(11):3747-3752.

Barrat, A., Barthélemy, M., and Vespignani, A. (2005). The effects of spatial constraints
on the evolution of weighted complex networks. Journal of Statistical Mechanics: The-
ory and Experiment, 11(5):49-68.

Barthelemy, J. and Toint, P. L. (2012). Synthetic Population Generation Without a Sam-
ple. Transportation Science.



80 Bibliography

Barthélemy, M. (2011). Spatial Networks. Physics Reports, 499:1-101.

Beaumont, M. A. (2010). Approximate Bayesian Computation in Evolution and Ecology.
Annual Review of Ecology, Evolution, and Systematics, 41(1):379-406.

Beaumont, M. A., Cornuet, J., Marin, J., and Robert, C. P. (2009). Adaptive approximate
Bayesian computation. Biometrika, 96(4):983-990.

Beaumont, M. A., Zhang, W,, and Balding, D. J. (2002). Approximate Bayesian Computa-
tion in Population Genetics. Genetics, 162(4):2025-2035.

Beckman, R. J., Baggerly, K. A., and McKay, M. D. (1996). Creating synthetic baseline
populations. Transportation Research Part A: Policy and Practice, 30(6 PART A):415-
429.

Berger, T. and Schreinemachers, P. (2006). Creating agents and landscapes for multia-
gent systems from random samples. Ecology and Society, 11(2).

Bernstein, D. (2003). Transportation planning. In The Civil Engineering Handbook. Boca
Raton, London, New York, Washington D.C.: CRC Press LLC.

Birkin, M. and Clarke, M. (2011). Spatial Microsimulation Models: A Review and a
Glimpse into the Future. In Stillwell, J. and Clarke, M., editors, Population Dynamics
and Projection Methods, Understanding Population Trends and Processes, chapter 9,
pages 193-208. Springer.

Birkin, M. and Wu, B. (2012). A Review of Microsimulation and Hybrid Agent-Based
Approaches. In Heppenstall, A. J., Crooks, A. T., See, L. M., and Batty, M., editors,
Agent-Based Models of Geographical Systems, pages 51-68. Springer Netherlands.

Blanc, M., Ambiaud, r., and Schmitt, B. (2007). Orientation économique et croissance
locale de 'emploi dans les bassins de vie des bourgs et petites villes. Economie et
Statistique, 402(1):57-74.

Blum, M. G. B. and Francois, O. (2010). Non-linear regression models for Approximate
Bayesian Computation. Statistics and Computing, 20(1):63-73.

Bousquet, E and Le Page, C. (2004). Multi-agent simulations and ecosystem manage-
ment: A review. Ecological Modelling, 176(3-4):313 — 332.

Bozon, M. and Héran, E (1987). La découverte du conjoint. I. Evolution et morphologie
des scénes de rencontre. Population, 42(6):943-985.

Bozon, M. and Héran, E (1988). La découverte du conjoint. II. Les scenes de rencontre
dans I'espace social. Population, 43(1):121-150.

Brodsky, H. and Sarfaty, D. E. (1977). Measuring the urban economic base in a develop-
ing country. Land Economics, 53:445-454.



Bibliography 81

Brown, D. G., Aspinall, R., and Bennett, D. A. (2006). Landscape models and explana-
tion in landscape ecology - A space for generative landscape science? Professional
Geographer, 58(4):369-382.

Brown, D. G. and Robinson, D. T. (2006). Effects of Heterogeneity in Residential Prefer-
ences on an Agent-Based Model of Urban Sprawl. Ecology And Society, 11(1):46.

Carnell, R. (2009). lhs: Latin Hypercube Samples. R package version 0.5.

Choukroun, J.-M. (1975). A general framework for the development of gravity-type trip
distribution models. Regional Science and Urban Economics, 5(2):177-202.

Clark, W. A. V,, Huang, Y., and Withers, S. (2003). Does commuting distance mat-
ter?: Commuting tolerance and residential change. Regional Science and Urban Eco-
nomics, 33(2):199 - 221.

Coulombel, N. (2011). Residential choice and household behavior : State of the Art.
SustainCity Working Paper, 2.2a, ENS Cachan.

Corvers, E, Hensen, M., and Bongaerts, D. (2009). Delimitation and coherence of func-
tional and administrative regions. Regional Studies, 43(1):19-31.

Davezies, L. (2009). L'économie locale "résidentielle". Géographie Economie Société,
11(1):47-53.

De Montis, A., Barthélemy, M., Chessa, A., and Vespignani, A. (2007). The structure of in-
terurban traffic: A weighted network analysis. Environment and Planning B: Planning
and Design, 34(5):905-924.

De Montis, A., Chessa, A., Campagna, M., Caschili, S., and Deplano, G. (2010). Model-
ing commuting systems through a complex network analysis: A study of the Italian
islands of Sardinia and Sicily. The Journal of Transport and Land Use, 2(3):39-55.

De Vries, ], Nijkamp, P, and Rietveld, P. (2009). Exponential or power distance-decay for
commuting? An alternative specification. Environment and Planning A, 41(2):461-
480.

Deffuant, G. (2001). Rapport final du projet FAIR 3 2092 IMAGES : Modélisation de la dif-
fusion de 'adoption de mesures agri-environnementales par les agriculteurs (1997-
2001). Technical report, Cemagref.

Deffuant, G., Amblard, E, Weisbuch, G., and Faure, T. (2002). How can extremism pre-
vail? A study based on the relative agreement model. The Journal of Artificial Societies
and Social Simulation, 5(4):27.

Deffuant, G., Huet, S., and Amblard, E (2005). An individual-based model of innovation
diffusion mixing social value and individual payoff dynamics. American Journal of
Sociology, 110(4):41-69.



82 Bibliography

Deffuant, G., Huet, S., and Skerratt, S. (2008). An agent based model of agri-
environmental measure diffusion: What for 2 INSISOC, Valladolid, ESP.

Del Moral, P, Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo Samplers. Journal
of the Royal Statistical Society.Series B: Statistical Methodology, 68(3):411-436.

Del Moral, P, Doucet, A, and Jasra, A. (2012). An adaptive sequential Monte
Carlo method for Approximate Bayesian Computation. Statistics and Computing,
22(5):1009-1020.

Deming, W. E. and Stephan, E E (1940). On a Least Squares Adjustment of a Sample Fre-
quency Table When the Expected Marginal Totals Are Known. Annals of Mathematical
Statistics, 11:427-444.

Dissart, J.-C., Aubert, E, and Truchet, S. (2009). An estimation of tourism dependence
in French rural areas. In Matias A., Sarmento M., N. P, editor, Advances in Modern
Tourism Research II, chapter 17. Springer.

Drovandi, C. C. and Pettitt, A. N. (2011). Estimation of Parameters for Macropara-
site Population Evolution Using Approximate Bayesian Computation. Biometrics,
67(1):225-233.

Dubugc, S. (2004). Dynamisme rural : I'effet des petites villes. L'Espace Géographique,
1:69-85.

English, D., Marcouiller, D., and Cordell, H. (2000). Tourism dependence in rural Amer-
ica: Estimates and effects. Society & Natural Resources, 13(3):185-202.

Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate
Bayesian computation: Semi-automatic approximate Bayesian computation. Journal
of the Royal Statistical Society.Series B: Statistical Methodology, 74(3):419-474.

Felemou, M. (2011). Analyse de données relatives a I'évolution des communes d’Auvergne
pour la sélection de communes prototypiques. PhD thesis, Université Blaise-Pascal.

Fernandez, L. E., Brown, D. G., Marans, R. W,, and Nassauer, J. I. (2005). Characterizing
location preferences in an exurban population: Implications for agent-based model-
ing. Environment and Planning B: Planning and Design, 32(6):799-820.

Fik, T. J. and Mulligan, G. E (1990). Spatial flows and competing central places: Towards
a general theory of hierarchical interaction. Environment & Planning A, 22(4):527-
549.

Filippi, S., Barnes, C., and Stumpf, M. P. H. (2011). On optimality of kernels for approxi-
mate Bayesian computation using sequential Monte Carlo. arXiv:1106.6280v3.

Fontaine, C. M. and Rounsevell, M. D. A. (2009). An agent-based approach to model
future residential pressure on a regional landscape. Landscape Ecology, 24(9):1237-
1254.



Bibliography 83

Fotheringham, A. (1981). Spatial structure and distance-decay parameters. Annals, As-
sociation of American Geographers, 71(3):425-436.

Gargiulo, E, Lenormand, M., Huet, S., and Baqueiro Espinosa, O. (2012). Commuting
Network Models: Getting the Essentials. Journal of Artificial Societies and Social Sim-
ulation, 15(2):6.

Gargiulo, E, Ternes, S., Huet, S., and Deffuant, G. (2010). An Iterative Approach for Gen-
erating Statistically Realistic Populations of Households. PLoS ONE, 5(1).

Gitlesen, J. P, Kleppe, G., Thorsen, 1., and Ubge, J. (2010). An empirically based imple-
mentation and evaluation of a hierarchical model for commuting flows. Geographical
Analysis, 42(3).

Glynn, P and Whitt, W. (1992). The Asymptotic Efficiency of Simulation Estimators.
Oper. Res., 40(3):505-520.

Goux, D. (2003). Une histoire de 'enquéte emploi. Economie et statistique, 362(1):41-57.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. E (2010).
The ODD protocol: A review and first update. Ecological Modelling, 221(23):2760-
2768.

Guo, J. Y. and Bhat, C. R. (2007). Population Synthesis for Microsimulating Travel Behav-
ior. Number 2014 in Transportation Research Record. Transportation Research Board
of the National Academies.

Harland, K., Heppenstall, A., Smith, D., and Birkin, M. (2012). Creating Realistic Syn-
thetic Populations at Varying Spatial Scales: A Comparative Critique of Population
Synthesis Techniques. Journal of Artificial Societies and Social Simulation, 15(1):1.

Haynes, K. E. and Fotheringham, A. S. (1984). Gravity and Spatial Interaction Models.
Sage Publications, Beverly Hills.

Holmes, E., Holme, K., Mdkil3, K., Kauppi, M. M., and Mortvik, G. (2002). The sverige
spatial microsimulation model, content, validation, and example applications. gerum
kulturgeografi, Umea university.

Huang, Z. and Williamson, P. (2002). A comparison of synthetic reconstruction and com-
binatorial optimization approaches to the creation of small-area microdata. Working
paper, Departement of Geography, University of Liverpool.

Hubert, J. P. (2009). Dans les grandes agglomérations, la mobilité quotidienne des habi-
tants diminue, et elle augmente ailleurs. Insee premiere, (1252).

Huet, S. and Deffuant, G. (2011a). An Abstract Modelling Framework implemented
through a Data-Driven approach to study the Impact of Policies at the Municipality
level. ESSA 2011 Conference, september 2011, page 22.



84 Bibliography

Huet, S. and Deffuant, G. (2011b). Common Framework for the Microsimulation Model
in PRIMA project. Technical report, Cemagref LISC.

Huet, S., Dumoulin, N., Deffuant, G., Gargiulo, E, Lenormand, M., Baqueiro Espinosa,
0., and Ternes, S. (2012a). Micro-simulation model of municipality network in the
Auvergne case study. Technical report, PRIMA Project, IRSTEA(Cemagref) LISC.

Huet, S., Lenormand, M., Deffuant, G., and Gargiulo, E (2012b). Parameterisation of
individual working dynamics. In Smajgl, A. and Barreteau, O., editors, Empirical
Agent-Based Modeling: Parameterization Techniques in Social Simulations, chapter 22,
page 22. Springer.

INSEE (1999). Le Modéle de Microsimulation Dynamique, DESTINIE. Document de
travail, G9913, INSEE.

Joyce, P and Marjoram, P. (2008). Approximately Sufficient Statistics and Bayesian Com-
putation. Statistical Applications in Genetics and Molecular Biology, 7(1).

Klosterman, R. (1990). Community analysis and planning techniques. Rowman & Little-
field.

Koenker, R. and Bassett, G.J. (1978). Regression Quantiles. Econometrica, 46(1):33-50.

Konjar, M., Lisec, A., and Drobne, S. (2010). Method for delineation of functional regions
using data on commuters. In 13th AGILE International Conference on Geographic In-
formation Science (Guimardes, Portugal), Guimaraes, Portugal.

Leatherman, J. C. and Marcouiller, D. W. (1996). Estimating tourism’s share of local in-
come from secondary data sources. Review of Regional Studies, 26(3):x5-339.

Lemercier, C. and Rosental, P-A. (2008). Les migrations dans le Nord de la France au
XIXe siecle. In Nouvelles approches, nouvelles techniques en analyse des réseaux soci-
aux, Lille France.

Lenormand, M. and Deffuant, G. (2012). Generating a Synthetic Population of Individ-
uals in Households: Sample-Free vs Sample-Based Methods. arXiv:1208.6403v1.

Lenormand, M., Huet, S., and Deffuant, G. (2012a). Deriving the Number of Jobs in
Proximity Services from the Number of Inhabitants in French Rural Municipalities.
PLoS ONE, 7(7):e40001.

Lenormand, M., Huet, S., and Gargiulo, E (2012b). Generating French Virtual Commut-
ing Network at Municipality Level. arXiv:1109.6759v2.

Lenormand, M., Huet, S., Gargiulo, E, and Deffuant, G. (2012¢). Universal Commuting
Network Model. PLoS ONE, 7(10):e45985.

Lenormand, M., Jabot, E, and Deffuant, G. (2012d). Adaptive approximate Bayesian
computation for complex models. arXiv:1111.1308v2.



Bibliography 85

Marin, J.-M., Pudlo, P, Robert, C., and Ryder, R. (2012). Approximate Bayesian compu-
tational methods. Statistics and Computing.

Marjoram, P, Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov chain Monte Carlo
without likelihoods. Proceedings of the National Academy of Sciences of the United
States of America, 100(26):15324-15328.

Moeckel, R., Spiekermann, K., Schiirmann, C., and Wegener, M. (2003). Microsimulation
of land use. International Journal of Urban Sciences, 71(1):14-31.

Moore, C. L. (1975). A New Look at the Minimum Requirements Approach to Regional
Economic Analysis. Economic Geography, 51(4):350-356.

Morand, E., Toulemon, L., Pennec, S., Baggio, R., and Billari, E (2010). Demographic
modelling: The state of the art. SustainCity Working Paper, 2.1a, Ined, Paris.

Mordier, B. (2010). Les services marchands aux particuliers s'implantent dans I’espace
rural. Insee premiere, (1307).

Miiller, K. and Axhausen, K. W. (2010). Population synthesis for microsimulation: State
of the art. ETH Ziirich, Institut fiir Verkehrsplanung, Transporttechnik, Strassen und
Eisenbahnbau (IVT).

Orcutt, G., Caldwell, S., and Wertheimer, R. (1976). Policy exploration through microan-
alytic simulation. Governance in Europe Series. Urban Institute.

Orcutt, G. H. (1957). A New Type of Socio-Economic System. The Review of Economics
and Statistics, 39(2):pp. 116-123.

Ortizar, J. and Willumsen, L. (2011). Modeling Transport. John Wiley and Sons Ltd, New
York.

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., and Deadman, P. (2003).
Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Re-
view. Annals of the Association of American Geographers, 93(2):314-337.

Pastor-Satorras, R. and Vespignani, A. (2004). Evolution and Structure of the Internet: A
Statistical Physics Approach. Cambridge University Press, New York, NY, USA.

Patuelli, R., Reggiani, A., Gorman, S. P, Nijkamp, P, and Bade, E (2007). Network analysis
of commuting flows: A comparative static approach to German data. Networks and
Spatial Economics, 7(4):315-331.

Perrier-Cornet, P. (2001). La dynamique des espaces ruraux dans la société francaise :
un cadre d’analyse. Territoires 2020, 3:61-74.

Persky, J. and Wiewel, W. (1994). The growing localness of the global city. Economic
Geography, 70(2):129-143.



86 Bibliography

Polhill, J., Parker, D., Brown, D., and Grimm, V. (2008). Using the ODD Protocol for De-
scribing Three Agent-Based Social Simulation Models of Land-Use Change. Journal
of Artificial Societies and Social Simulation, 11(2):3.

R Development Core Team (2011). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Reggiani, A. and Rietveld, P. (2010). Networks, commuting and spatial structures: An
introduction. The Journal of Transport and Land Use, 2(3):1-4.

Reggiani, A. and Vinciguerra, S. (2007). Network connectivity models: An overview and
empirical applications. In Friesz, T. L., editor, Network Science, Nonlinear Science and
Infrastructure Systems, volume 102 of International Series in Operations Research &
Management Science, pages 147-165. Springer US.

Reuillon, R., Chuffart, E, Leclaire, M., Faure, T., Dumoulin, N., and Hill, D. (2010). Declar-
ative task delegation in OpenMOLE. In High Performance Computing and Simulation
(HPCS), 28/06/2010-02/07/2010, Caen, France, pages 55—62.

Rindfuss, R. R., Walsh, S. J., Turner, B. L., Fox, J., and Mishra, V. (2004). Developing a
science of land change: Challenges and methodological issues. Proceedings of the
National Academy of Sciences, 101(39):13976-13981.

Roth, C,, Kang, S. M., Batty, M., and Barthélémy, M. (2011). Structure of Urban Move-
ments: Polycentric Activity and Entangled Hierarchical Flows. PLoS ONE, 6(1).

Rouwendal, J. and Nijkamp, P. (2004). Living in two worlds: A review of home-to-work
decisions. Growth and Change, 35(3):287-303.

Rutland, T. and O’Hagan, S. (2007). The growing localness of the Canadian City, or, on
the continued (ir)relevance of economic base theory. Local Economy, 22(2):163-185.

Simini, E, Gonzalez, M. C., Maritan, A., and Barabasi, A.-L. (2012). A universal model for
mobility and migration patterns. Nature, 484(7392):96-100.

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). Sequential Monte Carlo without likeli-
hoods. Proceedings of the National Academy of Sciences of the United States of America,
104(6):1760-1765.

Serensen, T. (1948). A method of establishing groups of equal amplitude in plant sociol-
ogy based on similarity of species and its application to analyses of the vegetation on
Danish commons. Biol. Skr., 5:1-34.

Soumagne, J. (2003). Les services en milieu rural, enjeu d’aménagement territorial. Re-
vista da Faculdade de Letras - Geografia I série, XIX.

Stillwell, J. and Duke-Williams, O. (2007). Understanding the 2001 UK census migration
and commuting data: The effect of small cell adjustment and problems of compar-
ison with 1991. Journal of the Royal Statistical Society.Series A: Statistics in Society,
170(2):425-445.



Bibliography 87

Thorsen, I. and Gitlesen, J. P. (1998). Empirical evaluation of alternative model specifi-
cations to predict commuting flows. Journal of Regional Science, 38(2):273-292.

Thorsen, 1., Ubge, J., and Neaevdal, G. (1999). A network approach to commuting. Journal
of Regional Science, 39(1):73-101.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. H. (2009). Approximate
Bayesian computation scheme for parameter inference and model selection in dy-
namical systems. Journal of the Royal Society Interface, 6:187.

Ullman, E. and Dacey, M. (1960). The Minimum Requirement Approach to the Urban
Economic Base. Papers and Proceedings of the Regional Science Assn., 6:192.

Van Den Berg, G. J. and Gorter, C. (1997). Job search and commuting time. Journal of
Business and Economic Statistics, 15(2):269-281.

Verburg, P, Schulp, C., Witte, N., and Veldkamp, A. (2006). Downscaling of land use
change scenarios to assess the dynamics of european landscapes. Agriculture, Ecosys-
tems and Environment, 114(1):39 — 56.

Verburg, P. H., Schot, P. P, Dijst, M. J., and Veldkamp, A. (2004). Land use change mod-
elling: current practice and research priorities. GeoJournal, 61(4):309-324.

Viboud, C., Bjernstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., and Grenfell, B. T.
(2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science,
312(5772):447-451.

Voas, D. and Williamson, P. (2000). An evaluation of the combinatorial optimisation
approach to the creation of synthetic microdata. International Journal of Population
Geography, 6(5):349-366.

Voas, D. and Williamson, P. (2001). Evaluating goodness-of-fit measures for synthetic
microdata. Geographical and Environmental Modelling, 5(2):177-200.

Waddell, P, Borning, A., Noth, M., Freier, N., Becke, M., and Ulfarsson, G. (2003). Mi-
crosimulation of urban development and location choices: Design and implementa-
tion of Urbansim. Networks and Spatial Economics, page 2003.

Wegmann, D., Leuenberger, C., and Excoffier, L. (2009). Efficient Approximate Bayesian
Computation Coupled With Markov Chain Monte Carlo Without Likelihood. Genetics,
182(4):1207-1218.

Williams, I. (1976). A comparison of some calibration techniques for doubly constrained
models with an exponential cost function. Transportation Research, 10(2):91-104.

Wilson, A. G. (1998). Land-Use/Transport Interaction Models: Past and Future. Journal
of Transport Economics and Policy, 32(1):3-26.

Wilson, A. G. and Pownall, C. E. (1976). A new representation of the urban system for
modelling and for the study of micro-level interdependence. Area, 8(4):246-254.



88 Bibliography

Woller, G. and Parsons, R. (2002). Assessing the community economic impact of non-
governmental development organizations. Nonprofit and Voluntary Sector Quarterly,
31(3):419-428.

Ye, X., Konduri, K., Pendyala, R., Sana, B., and Waddell, P. (2009). Methodology to Match
Distributions of Both Household and Person Attributes in Generation of Synthetic
Populations. In 88th Annual Meeting of the Transportation Research Board.



APPENDIX A
Parameterisation of Individual
Working Dynamics

Manuscript:

Huet, S., Lenormand, M., Deffuant, G. and Gargiulo, E Parameterisation of individual
working dynamics. Accepted in Empirical Agent-Based Modeling: Parametrization Tech-
niques in Social Simulations, 2012, Chapter 2?2, 22 pages, A. Smagl and O. Barreteau eds,
Springer.



Parameterisation of Individual Working Dynamics
S. Huet, M. Lenormand, G. Deffuant, F. Gargiulo

*Laboratoire d'Ingénierie pour les Systemes Complexes,
Irstea

How do European rural areas evolve? While for decades the countryside in many regions of Europe was
synonymous with inevitable decline, nowadays, some areas experience a “rebirth, even in areas where until
recently development was not considered possible" (Y. Champetier, 2000). A recent EPSON (European
Observation Network for Territorial Development and Cohesion) project report (Johansson and Rauhut, 2007),
concludes that "since the 1970s a global process of counter-urbanization has become increasingly manifest".
However, this general rebirth of the countryside hides deep heterogeneities. That can be observed in the
Cantal "département" in France where the population remains stable after having been depopulated with
some subgroups of its municipalities have an increasing population while others have a decreasing one. Our
modelling effort aims at better understanding these heterogeneities.

Micro modelling (Gilbert and Troitzch 2005) is a very relevant paradigm to study the evolution of areas
composed from various objects appearing as very heterogeneous. It includes three different approaches:
cellular automata change (Ballas et al. 2005, 2006; Ballas et al. 2007; Brown et al. 2006; Coulombel 2010;
Moeckel et al. 2003; Rindfuss et al. 2004; P.H. Verburg et al. 2002; P.H. Verburg et al. 2004; P. H. Verburg et al.
2006), microsimulation (Orcutt 1957) (INSEE 1999), (Holme et al. 2004), (Turci et al. 2010) (Morand et al. 2010)
and agent-based models (Bousquet and Le Page 2004; Brown and Robinson 2006; Deffuant and al. 2001;
Deffuant et al. 2002; Deffuant et al. 2005; Deffuant et al. 2008; Fontaine and Rounsevell 2009; Parker et al.
2003) (Fontaine and Rounsevell 2009) which have been already used to study problem close to ours.
However, recent reviews recommend a hybrid approach (Birkin and Clarke 2011; Birkin and Wu 2012),
particularly coupling microsimulation and agent-based modelling. Thus, trying to develop an approach which is
as close to the data as we can, we decide to use microsimulation and agent approaches allowing us to address
some complex individual dynamics, largely unknown and for which no data are available, such as the
residential location decision (Coulombel 2010).

The problem of such modelling approach is the link to data. If it is obvious in the basic microsimulation, that is
not so easily manageable in dynamic microsimulation with a “real” evolution time after time of the individual.
Indeed the dynamic microsimulation remains rare (Birkin and Wu 2012): the most common way to introduce
change of the demographic structure is to apply static ageing techniques consisting in reweighting the age class
according to external information. That is to avoid considering functions of evolution of the behaviour of the
individual and their parameterisation. Regarding the multiagent modelling, (Berger and Schreinemachers 2006)
argue it “holds the promise of providing an enhanced collaborative framework in which planners, modellers,
and stakeholders may learn and interact. The fulfilment of this promise, however, depends on the empirical
parameterization of multiagent models. Although multiagent models have been widely applied in experimental
and hypothetical settings, only few studies have strong linkages to empirical data and the literature on
methods of empirical parameterization is still limited.” An example can be read in (Fernandez et al. 2005) which
initialise individual preference from analyses of the data coming from an ad hoc survey but don’t consider a
possible change in the preference of an individual.

In our model®, we tried to have a strong linkage to data both in the definition of the initial population and the
one of the individual behaviour. This model implements virtual individuals, members of households located in
municipalities and their state transitions corresponding to demographic and changing activity events: birth,
finding a partner, moving, changing job, quitting their partner, retiring, dying ... The virtual municipalities offer
jobs and dwellings which constrain the possible state transitions. Because we are interested in understanding
better the dynamics leading to the development or, on the contrary, to the decline and possible disappearance
of municipalities and settlements, two sets of cruxes can be identified in the model: The individual dynamics

1 This work has been funded under the PRIMA (Prototypical policy impacts on multifunctional activities in rural
municipalities) collaborative project, EU 7th Framework Programme (ENV 2007-1), contract no. 212345



which determine the needs for residence and jobs; the dwelling and the job offers exogenous and endogenous
dynamics at the local (i.e. municipality) level.

The present paper focuses on how to make such a model close enough to the data to guarantee a good
understanding of the dynamics of population/depopulation based on "real" situations, and a real utility for
policy makers. As the developed model is very large, taking into account many dynamics, we are going to focus
on the design and the parameterisation of the individual dynamics regarding the labour market.

After a summary of the whole model, presented in details in (Huet et al. 2011), we present how we have
conceived and parameterised the submodel of the individual activity dynamics. The final section tries to explain
what we have learnt from such an exercise. In particular, we want to stress out the necessity not to only
consider the objectives of the model during the design phases, but also since the very beginning censing the
existing data sources and studying the implicit model beside the databases.

1 MODEL DESCRIPTION

We have adopted a micro-modelling approach. The presentation of the model globally follows the
requirements of the ODD (Overview, Design concepts, and Details) framework (Grimm et al. 2006). Indeed, this
recently updated protocol (Grimm et al. 2010) has proved its utility to describe properly complex individual-
based models, for example in (Polhill et al. 2008).

The purpose of the model is to study how the population of rural municipalities evolves. We assume that this
evolution depends, on the one hand, on the spatial interactions between municipalities through commuting
flows and service, and on the other hand, on the number of jobs in various activity sectors (supposed
exogenously defined by scenarios) and on the jobs in proximity services (supposed dependent on the size of
the local population). Indeed, in the literature, the most cited explanation for the evolution of the rural
municipalities is what is called the residential economy (Blanc and Schmitt 2007; Davezies 2009). It argues that
rural areas dynamics is linked to the money transfers between production areas and residence locations. These
money transfers are for instance performed by commuters, or by retirees who move from the urban to the
rural areas. Indeed migrations from urban to rural areas are also considered as a very important strand for rural
areas evolution (Perrier-Cornet 2001). The residential economics studies particularly how an increasing local
population (and money transfers) increases the employment in local services. The geographic situation plays
also a role in the municipality evolution (Dubuc 2004). To summarise, existing literature stresses the
importance of the different types of mobility between municipalities, commuting, residential mobility (short
range distance), migration (long range distance) (Coulombel 2010) and the local employment offer generated
by the presence of the local population.

These two aspects have to be properly taken into account in our model, since our objective is to study through
simulations the dynamics of rural areas. Obviously, it appears also essential to model the demographic
evolution of the municipality considering the strands explaining the local natural balance.

1.1 MAIN ENTITIES, STATE VARIABLES AND SCALES

The model represents a network of municipalities and their population. The distances between municipalities
are used to determine the flows of commuting individuals (for job or services). Each municipality comprises a
list of households, each one defined as a list of individuals. The municipalities also include the offers of jobs, of
residences and their spatial coordinates. Here is the exhaustive list of the main model entities with their main
attributes and dynamics.



1.1.1 MUNICIPALITYSET

The set of municipalities can be of various sizes. It can represent a region of type NUTS 2 or NUTS 32, or more
LAU or intermediate sets of municipalities such as "communauté de communes" in France. In the present
paper, the set corresponds to the Cantal “département” in France composed of 260 municipalities.

Parameter: a threshold distance called "proximity" between two municipalities; beyond this distance the
municipalities are considered too far from each other, to allow commuting between them without considering
to move for instance (parameterised at 25 km).

1.1.2 MUNICIPALITY

It corresponds to LAU23. The municipality is the main focus of the model. It includes:

— A set of households living in the municipality. The household corresponds to the nuclear family*. It includes a
list of individuals who have an occupation located inside or outside the municipality).

— The set of jobs existing on the municipality and available for the population of the model (i.e. subtracting the
jobs occupied by people living outside the modelling municipality set).

— The distribution of residences, or lodgings, on the municipality.

There is a particular municipality, called "Outside": it represents available jobs accessible from municipalities of

the considered set, but which are not in the considered set. The job offer of Outside is infinite and the

occupation is defined by a probability of individuals to commute outside the set (see 2.3.3 for details).

Parameters:

— Aninitial population of households composed of individuals with their attribute value and their situation on
the labour market

— Avresidence offer: available number of residences for each type. A type corresponds to the number of rooms

— Ajob offer: number of jobs offered by the municipality for each type of job; the exogenously defined part of
job offers is distinguished from the endogenously defined part in order to update this last part easily

— The laws ruling the proximity of municipalities: each municipality has rings of ‘nearby’ municipalities
(practically every 3 Euclidian kilometres) with a maximum distance of 51 Euclidian km. The accessibility of
each ring varies depending on the process (commuting, looking for a residence, looking for a partner)
following appropriate probability distribution laws.

— Spatial coordinates

As said earlier, in the case of special municipality called "Outside", all variables, except job offer and job

occupation, are empty.

1.1.3 THE JOB AND THE RESIDENCE

A job has two attributes, a profession and an activity sector in which this profession can be practiced. It is
available in a municipality and can be occupied by an individual. The profession is an attribute of the individual
and can take six various values (see 1.1.5 for details) at the same time it defines a job. There are four activity
sectors: Agriculture, Forestry and Fishing; Industry; Building; Services and Commerce. Overall, considering the
six professions for four activity sectors, we obtain 24 jobs to describe the whole diversity of jobs in the region
we study (i.e. the Cantal "département", called only Cantal later in this chapter).

The residence has a type which is classically its size expressed in number of rooms. A residence is available in a
municipality and can be occupied by 0, one or more households. Indeed several households can live in one
residence for instance when a couple splits up and one of the partner remains in the common residence for a
while. It is also the case in some European countries where it is customary for several generations to live under
the same roof.

2 Eurostat defines the NUTS (Nomenclature of Territorial Units for Statistics) classification as a hierarchical system for

dividing up the EU territory: NUTS 1 for the major socio-economic regions; NUTS 2 for the basic regions for the application

of regional policies; NUTS 3 as small regions for specific diagnoses; LAU (Local Administrative Units 1 and 2) has been

added more recently to allow local level statistics

3 consists of municipalities or equivalent units

4 A nuclear family corresponds to the parents and the children; that is a reductive definition of the family corresponding on
the most common way to define the family in Europe nowadays.



1.1.4 HOUSEHOLD

Table 1. Attributes defining the household state

Name Type Values
Members List of Individuals

Couple Boolean True, false
Leader Individual

Residence Residence

Residence need Boolean True, false
Municipality of residence Municipality

For the initialisation, residences are associated randomly with households. Then, new households are created
when new couples are formed or when people from outside the set of municipalities migrate into the
municipality. Households are eliminated when their members die, or when the couple splits up, or when they
simply migrate outside the municipality set. When a behavior of an individual has an impact on the household,
a leader is assigned randomly, or designed depending on the process. This leader will be the one deciding for
the household. That is for example the case when an individual finds a job very far: she becomes the leader to
make the household moving and finding a residence close to her new job.

1.1.5 INDIVIDUAL

The individual is instantiated via one of the adults of a household having the "couple" status in the birth
method, or directly from the initialisation of the population, or by immigration.

The age to die, the age the person will enter the labour market, and the age of retirement are attributed to the
individual when it is created. These ages are assigned by a probability method. The activity status defines the
situation of the individual regarding employment, especially whether or not she is looking for a job. The
individual can quit a job, search for and change jobs ...

The profession is an attribute of the individual indicating at the same time her skills, level of education and the
occupation she can aspire to. Professions take the value of the French socio-professional categories categorised
in six modalities that define at the same time a kind of occupation, an average level of education and an
approximate salary.

Table 2. Attributes defining the state of an individual

Type Values
Activity status Enum student, inactive, retired, employed, unemployed (only the two
last can search a job)
Profession Enum farmers; craftsmen, storekeepers, business owners; top executive

managers, upper intellectual profession (senior executives);
intermediary professions; employees; workers.

Job Couple of values 24 couples (profession, activity sector) (see 1.1.3 for details)
Place of work Municipality Nil or a Municipality

Household status  Enum Adult, Child

Age to die Integer Drawn from a distribution

Age in labour Integer Drawn from a distribution

market

Age of retirement  Integer Drawn from a distribution

1.2 PROCESS OVERVIEW AND SCHEDULING

1.2.1 THE MAIN LOOP

The main loop calls processes ruling demographic evolution, the migrations, the job changes, and their impact
on some endogenously created services and/or jobs. First, the scenarios are applied to the municipalities. Then,
endogenously available jobs and services are updated in municipalities. Finally, demographic changes are
applied to the list of households. The following pseudo code sums-up the global dynamics:

At each time step:
For each municipality



municipality.update external forcings: offer of jobs, residence
municipality.update endogenous job offer for services to residents
municipality.compute in-migration

For each household:
household.members. job searching decision (this process can make free some

jobs from people becoming retired or inactive)

For each household:
household.members.searching for a job
household.members events (coupling, divorce, birth, death)
household.residential migration
household.members.individual ages

Time is discrete with time steps corresponding to years. The households are updated in a random order during
a time step. We shall calibrate the model on the first 16 years and study its evolution on the next 24 years.

1.2.2 DYNAMICS OF OFFER FOR JOBS, SERVICES AND LODGING

In the municipality objects, jobs, services and dwelling offers are ruled. Changes in dwelling offers are specified

in scenarios. Various sizes are considered in order to match the needs of households.

The job offer process is twofold: one part defined through scenarios which specify the increase or decrease of

jobs in different sectors, and a second part concerning the proximity of service jobs, which are derived by a

specific statistical model.

Indeed, numerous are the researches pointing out the importance of services for the rural areas dynamism

(Aubert et al. 2009; Dubuc 2004; Fernandez et al. 2005; Soumagne 2003). Also the residential economics shows

the importance of the presence of the population in rural municipalities (Davezies 2009). Practically, we

distinguish the proximity services which rely directly on the presence of population from the services which are

decided according to other factors (assets of the location, political will at different levels, etc.). We integrated

the dynamics of creation and destruction of proximity services jobs in the micro-simulation model, using a

statistical model derived from the data of the region. Starting from the classical minimum requirement

approach proposed by (Ullman and Dacey 1960), (Lenormand et al. 2011c) we propose a model which takes

into account the distance between a municipality and its closest centre of services (i.e. most frequented

municipality, called MFM). This new model has been grounded on detailed data related to jobs and poles of

services (Lenormand et al. 2011a). Therefore, we use the extracted statistical relation to adjust the number of

jobs in proximity services in the municipalities of the model.

Itis E =8y +8;In P + ¢ with E = minimum employment offer in the municipality to satisfy the need for services

of one resident; P = the population of the municipality; 8,and 8, = parameters

For each municipality, this function is computed every year in order to update the service sector job offer

depending on the distance of the municipality to the closest pole of service (called MFM). The form of the

function for different municipality sizes with various distances to the MFM indicates that:

® inany case, the job offer is higher in the pole of services and decreases in the surrounding;

e however further from the pole of services, the number of jobs increases again until reaching a plateau at a
distance higher than 10 minutes;

e the larger is the municipality, the higher is the number of jobs in proximity services.

The other creations and destructions of jobs are ruled by scenarios.

Parameters: distances to the Most Frequented Municipality of every municipality of the Cantal (given by the

French Municipal Inventory of 1999); class of distance to the most frequented municipality (MFM) for every

municipality and regression coefficients 8, and 8, extracted of the analysis of the French Census of 1990, 1999

and 2006 (see (Lenormand et al. 2011a) for more explanations).

Classes of distance in minutes to 8o 8,
the Most Frequented Municipality
0| -0.170901146 0.033121263
10,5] -0.130158882 0.025111874
15,10], -0.141049558 0.026983278
>10 | -0.162030187 0.031165605

Table 1. Regression coefficient for the four classes of municipalities of the Cantal

The proportion of proximity service jobs offer over professions is assumed to be the same than the one for the
whole service sector job offers (which is probably a strong approximation). This allows us to distribute the
proximity service jobs in the different jobs in the service sector.



1.2.3 DYNAMICS OF LABOUR STATUS AND JOB CHANGES

A new individual can be generated in a household having the “couple” status with the birth method, or directly
from the initialisation of the population, or from the immigration method. A newly born individual is initialised
with a student status that she keeps until she enters the labour market with a first profession. Then, she
becomes unemployed or employed with the possibility to look for a job. She may also become inactive for a
while. When she gets older, she becomes a retiree. We here describe rapidly these dynamics to situate them in
the global picture of them model. We describe them in more details, especially the choice of parameters and
link to data, in section 3.

Entering on the labour market

The individual stops being a student at the age to enter on the labour market and becomes unemployed. She
searches immediately for a job and can get one during the same year. A first profession she looks for has to be
defined at the same time the first age of research is determined.

Parameters: probabilistic laws to decide the age a student enters on the labor market and the first profession
she is going to look for.

Job searching decision

The decision for searching a job is a two-step process. First, an individual has an activity status indicating if she
is susceptible to search for a job or not. She can change her status and then her probability to seek a job. When
she decides searching, she has also to decide what type of job to search for. Five different activity statuses
define the individual situation regarding the labour market in the model:

1. The student: an individual is a student in the first part of its life, until the age she enters on the labour
market. We consider the probability of a student to look for a job is O since we are only interested in rural
municipalities. Students in age working mainly look for a job in the large cities where they study.

2. The unemployed: an individual is unemployed when she is considered active (on the labour market) and
has no job. For sake of simplicity, we assume an unemployed has a probability 1 to look for a job.

3. The employed: she is an individual who has a job. She can decide searching for another job, in the same
profession or not. Her probability willing to change job classically depends at least on her age.

4. The inactive: she can be inactive for a long time or just stopping to work for one year, having a baby for
example. During this period, her probability to search for a job is 0.

5. The retired: at the age of retirement, an individual retires. Her probability to look for a job is then assumed
to be 0.

We have seen the probability to search for a job (or the law ruling this probability) depends on the activity

status. Figure 1 describes the way an individual changes activity status and thereby the probability to search.

Figure 1 - Transitions of status and their link to the data. Red arrows: change by finding a job; grey arrows:
when she is fired; green arrows: at the age of retirement (picked out from a law extracted from data); yellow
arrows: due to a probabilistic decision of becoming inactive extracted from the Labor Force Survey data;
purple arrows: due to probabilistic decisions extracted from the Labor Force Survey data.

Entering the labour market, the student becomes unemployed and searches for a job with a probability 1. An
unemployed, as an employed, can find a job through processes presented in the following sections and become
employed. If an unemployed always searches for a job by assumption that is not the case for an already
employed individual (her probability to search has to be extracted from data). Employed and unemployed
individuals can also become inactive. Then we assume that they stop searching for a job the time they remain



inactive. Every activity states, except student, can be followed by the retirement state in which we assume the
individual stops searching for a job. An inactive, if she doesn’t retire, either can come back on the labour
market adopting an unemployed status to search for a job or can remain inactive.

Most of the laws ruling the activity status changes have to be parameterised. The grey-arrows transitions are
much more endogenously defined. That is the employed to unemployed transition which is due to the
decreasing availability of job offer implying a sacking. It can also be, for instance a resignation of an individual
leaving her municipality to follow her partner to another place of residence.

Knowing an individual searches for a job, we have to compute which profession she looks for. One can notice
that an individual only looks for a profession; we neglected to take into account the activity sector in her
choice. The activity sector will be defined by the found job among the set of possible job offers for the
individual. We expect the job offer to be a sufficient constraint on the activity sector to allow the model
exhibiting a statistically correct distribution of occupied jobs by activity sector.

Parameters ruling the job research decision: probability becoming inactive; probability to stop being inactive;
probability laws defining what profession to search for; parameters for entering the labour market and to retire

Searching for a job

The question for the individual is now to decide where to search for a job. The challenge consists in preserving
the properties of the commuting distance distribution that we assume constant. Both the choice of the place of
work and the choice of the place of residence impact on this distance. Thus, these processes have to be
designed under this constraint. However, the place of work is not only defined by the strategy of search but
also constrained by the job offer, which has to be properly defined.

If the leader of the household has already found a job far (further than the proximity attribute) from the place
of residence and the household is trying to move close the leader's place of work, then the other household
members, waiting for a change of residence, do not try to change job since they do not know where they will
be living. Until the household finds out a new residence place, nobody is going to change jobs.

In the other cases, if the individual is searching for a job, we consider she begins by choosing where she wants
to work. Practically, she picks out a distance in the probability law of the "accepted distance to work place".
Then, if the distance is higher than 0, she has to decide whether to work outside the set of municipalities. The
decision to work outside is described in detail in 2.3.3. If the individual goes to work outside, she automatically
has a job. She is counted as an outside commuter. The job occupation of the outside and its spatial distribution
can be used to calibrate the model.

If she doesn't work outside, she goes to see the labour office. The labour office collects every job offer
corresponding to the profession she is looking for at the chosen distance. Then the individual chooses one at
random. This procedure allows reproducing the effect of the quantity of local offers. It gives to the municipality
with a larger job offer a greater probability to be chosen.

If she chooses a job at a distance higher than the proximity distance, she becomes the leader of her household.
If the distance is less than the proximity, the next household member, if she exists, will be able to search for a
job. The search procedure is repeated x times if the individual has not found a job. The number of times this
procedure is repeated is specified in a parameter.

Parameters: probability distribution of accepted distances to cross over to work place; probability to commute
outside for an inhabitant of every municipality

Become a retiree

At a given age, the individual becomes a retiree. We assume, for sake of simplicity, that a retiree does not
search for a job.
Parameter: probability to decide the individual’s retirement age.

1.2.4 DEMOGRAPHIC DYNAMICS

A new household can be created when an individual becomes an adult or when a new household comes to live
in the set of municipality (i.e. in-migration). The main reasons for household elimination are out-migration and
death. Three main dynamics change the household type (single, couple, with or without children and
complex®): makeCouple; splitCouple and givingBirth. These processes are now described with more details in
the same order they have been presented in this introduction.

5 A complex household is a household which is not a single, a couple with or without children.



BecomingAnAdult

Becoming an adult means an individual creates her own household. This can lead her to move from parental
residence because of a low dwelling satisfaction level, but it's not always the case. An individual loses her child
status and becomes an adult when: she finds her first job; or she is chosen by a single adult as a partner; or she
remains the only children in a household after her parents leave or die while her age is higher than parameter
firstAgeToBeAnAdult.

Parameter: first age to become an adult — 15 is the age considered by the French or other European National
Statistical Offices

Household migration and mobility

In changing residence process, we include both residential migration and mobility without making a difference,
between short and long distance move, as it is often the case (Coulombel 2010) in the literature. The submodel
we propose directly manages both types of moving. However, it turned out easier for us to distinguish two
categories of migration: the migration of people coming from outside to live inside the set; the migration of
people who already live inside the set.

The immigration into the set is an external forcing. Each year, a number of potential immigrants from outside

the set are added to the municipalities of the set. These potential immigrants can really become inhabitants of

the set if they find a residence by themselves or by being chosen as a partner by someone already living in the
set in case they are single (with or without children). Thus, looking for a place of residence is the only action
they execute until they become an inhabitant of the set. Until the potential immigrant becomes a real
inhabitant, she cannot search for a job. Indeed, the job occupied by people living outside the municipality set
are already taken into account through the scenario and allowing potential immigrants to find a job directly
would be redundant. The definition of who are potential immigrants, how numerous they are, and when they
are introduced is specified exogenously. Since they are created, the potential immigrants are temporarily
places into a municipality from which they can find a residence or being chosen as a partner. They are placed in

a municipality following a probability to be chosen, which is computed for each municipality depending on the

population size of the municipality and its distance to the frontier of the set. A particular attraction of young

people for larger municipalities is also taken into account.

The mobility of people already living inside the set of municipalities is mainly endogenous. Such a mobility can

lead the household simply to change residence, municipality or to quit the set of studied municipalities.

Overall, a household decides to look for a new residence when:

- anew couple is formed: the couple chooses to live initially in the largest residence among the ones of the
partners;

- a couple splits: one of the partners, randomly chosen, has to find out another residence even if she
remains for a while in the same residence (creating her own household);

- an adult of the household finds a job away from the current place of residence (beyond the proximity
parameter of the MunicipalitySet);

- astudent or a retiree decides to move;

- the residence is too small or too large. This can be due to a birth, a new couple or to someone who left the
residence for example. The too small or too large characteristic is assessed through a satisfaction function
depending on the difference of size between the occupied size and an ideal size for this household, and the
average age of the household members. In principle, people tend to move easily when they are younger
and/or when the difference of size is high.

The choice of a new household is twofold: first, the household chooses a distance to move; secondly she

chooses at random a new residence proposition to examine. The proposition is accepted depending on the

level of satisfaction it can give. This satisfaction depends on the difference between the proposed and the ideal
size, and the average age of the household members. In principle, with increasing age we assume a decrease in
flexibility to accept residences different from their ideal.

A move of a household can result in increased commuting distances for some of its working members, even

exceeding the proximity threshold. Such a commuter continues until she becomes the household leader

through the job search mechanism and triggers the household to look for a residence closer to her job.

Parameters for immigration: yearly migration rate; number of out of the set migrants in year -1

probabilities for characteristics of the immigrants (size of the households, age of individuals...); distance to the

frontier of the region of each municipality.

Parameters within the set of municipalities and out-migration:



- The level of satisfaction of the size of the current dwelling or the one of a proposed dwelling is a function
of the size of the household and of the its age composition; this function requires one parameter called 8
which has to be calibrated

- distribution of probabilities for an individual to accept moving over a certain distance to get a residence
starting for her place of work (see (Huet et al. 2011) for more details)

- Laws for migration of students and retirees and acceptable distance of commuting (see for details on these
processes)

Except for 8, all these parameters can be extracted from the Mobility data collected in the French Census,

directly or after applying some statistical tools.

Death

The death age of the individual is determined when she enters the simulation (through birth, initialisation or
immigration). When an individual dies, its household status is updated depending on the number of remaining
members and their statuses, parent or children. Households are eliminated when all their members die, when
the couple splits up, or when they simply out-migrate.

Parameter: probability to die by a certain age - made available by INED from the various French Census at the
national level.

MakeCouple

The method works as follows:

e During each time step, each single individual (with or without children) has a probability to search for a
partner;

e |f the individual tries to find a partner, she tries a given number of times in every municipality close to her
own (her own included) to find someone who is also single and whose age is not too different (given from
the average difference of ages in couples and its standard deviation); she can search among the inhabitants
or the potential immigrants; the close municipalities are at a maximum distance defined by the threshold
parameter "proximity" except for old people who search for a partner only in their own municipality;

e When a couple is formed, the new household chooses the larger residence (the immigrating households
always go into residences of their new partners; this move can force one member to commute very far. This
situation can change only when she is becoming the leader triggered by the job search method and implying
that the household will aim to move closer to her job location.

Parameters: probability to search for a partner; maximum number of trials; average difference of age of

couples and its standard deviation.

The last one is given by the INSEE at the national level based on the data from Census. For the two first, they

have to be calibrated since they do not correspond to existing data.

SplitCouple

All couples, except the potential immigrants have a probability to split up. When the split takes place, the
partner who works further from the residence leaves the household and creates a new household, which
implies that she searches for a new residence. When there are children, they are dispatched among the two
new households at random.

Parameter: probability to split (no possible data source, has to be calibrated)

Giving birth

To simplify, we made the assumption that only households with a couple can have children, and one of the
adults should be in age to procreate. We assumed that couple has a constant probability to have a child over
the years. The parameters are the minimum and maximum ages to have a child and the average number of
children by couple. From these parameters, we compute for each couple the probability to have a child during
that particular year if one randomly chosen individual’s age allows reproduction.

Parameters: minimum and maximum age to give birth, number of children an individual can have during her
life on average. Usually ages for reproduction ranges from 18 to 45. That is the usual base to compute the total
fertility rate corresponding to the number of children divided by the number of women in age to give birth
during any given year. From this rate, it is possible to compute the average number of children of any simulated
woman, which is about 2 for France. We can start with this value to parameterize the model. But the number
of children per couple has to be calibrated since the observed fertility rate of our simulated population can vary



from the value of the parameter. Indeed, the birth can only occur in couples with members having a relevant
age. Consequently, the parameter number of children giving the probability of birth does not correspond with
the fertility rate (which is a measure in the population, implicitly resulting from different processes leading to a
birth).

2 DESIGNING AND PARAMETERISING THE INDIVIDUAL
ACTIVITY

This part focuses on the design and the parameterisation of the individual activity. The purpose is to illustrate
how to model in a micro simulation approach individuals’ behaviour on a labour market utilising existing data.
The European project that funded this work did not fund specific interviews or surveys for this purpose. But,
even if such funding had been available, it would have been difficult to have a sufficiently large sample to
ensure the statistical significance of the obtained attributes and behaviours. Therefore, it seemed better to use
existing large database dedicating especially to the labour force, such as the labour force survey, which gives
information on the labour force based on a very large sample and the weights for projection at various levels.
Moreover these databases, developed by the National Statistical Office, have been built on a data collection
model designed by experts. They represent common knowledge, largely shared by every stakeholder since they
are used as references in decisions and predictions.

We start from existing databases and the objectives of the modelling to characterise our agents and their
attributes and behaviours. That is what we discuss in the following first subsection. The two following
subsections give details on the initialisation of the attributes and on the parameterisation of the behaviours.
The link between attributes and behaviours is guaranteed as this data is implemented to ensure its
compatibility with the agent attribute modalities. Similarly, the projection of attributes and behaviour for the
whole virtual population is easy: an innovative generation population algorithm builds directly a robust and
significant population of individuals while the link between modalities of attributes and their evolving rules
allows an automatic projection at the population level.

2.1 DATA SOURCES AND MAIN MODELLING CHOICES

This is to identify the agent classes and the structure of agent behaviour in each class. The first steps have
been:

® to collect all relevant data source regarding the region we want to simulate considering the exact
problem (aim of the project) we need to address;

e to make a state-of-the art;

From the literature and the expertise coming mainly from economists, we identify two complementary groups
of dynamics to take into account to model the evolution of a local labour market:

e Job offers and corresponding dynamics;

e Job demand and occupation, and corresponding dynamics.

We identify two possible databases to help us conceptualising and parameterizing the model:

e The Census: it gives indication about the situation of individual when being student, retired, or active
and also who is occupied and who is not occupied, what occupations individual have aggregated in
socio-professional categories and activity sectors; Census data are available at the municipality level
for three different dates 1990, 1999 and 2006. We can also benefit from the mobility tables of the
Census giving, at least in 1999, an exhaustive description of the commuting flows between
municipalities; French Census data are also available for 1982 but not electronically;

e Labour force survey (from 1990) and census data;

From literature and data, we have to define agents:

e corresponding to the local level of offer: the municipality

e corresponding to the job demand and occupation: the individual is the one who is going to search for
a job, deciding if and where she searches taking into account the household of which she is a member
and her municipality of residence.

Then we have a municipality offering jobs, composed from households, themselves composed of individuals
who decide, considering their household, if and where they are going to search for a job. A job can be found in
a municipality and individuals accept found jobs based on the distance.

Other available data sources include SIRENE and UNEDIC. The SIRENE database includes information on the
number of societies by activity sector. The UNEDIC database includes the number of paid employees by activity
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sector. But both these data sources describe only a part of our problem and start only in 2000 while the
simulation requires longer periods to allow for a proper calibration of the model.

The incompatible coverage also constrains the choice of agents and their attributes. However, given the
available datasets we decide to start simulations in 1990. On the one hand, it means some the
parameterisation of some attributes is less robust than with shorter calibration periods. A later start would
allow us to use the supplementary information given in more recent surveys and not available in older surveys.
For example, we use only four modalities of size to describe the size of dwellings because only four are
available in 1990 while five and more are recorded in later surveys. On the other hand, the 1990 census data
give us the cross distribution socio-professional categories x sector of activities we use to define the jobs while
this cross distribution is not available later. Then, we can and have to use IPF to define the job offer after 1990
starting from the 1990 cross distribution.

The definition of a job is directly driven by the available data. Both Censuses and Labour Force Survey (or
Employment survey) describe jobs with profession (socio-professional category) and activity sector. Both also
contain data on age and situation (student, retired, actives, occupied or not, inactive) allowing us to make a
connection between both sources of data. Moreover, when the data sources are “official”, it often corresponds
to the common knowledge of stakeholders and other decision makers.

Moreover, as a general modelling good practice, it is particularly important to minimise the number of
unknown parameters. Indeed, every parameter which is not derived from the data has to be calibrated. The
calibration computational cost increases with the number of parameters. Moreover, the more numerous are
the parameters to calibrate, the less relevant also is likely to be the model which, given its large number of
freedom degrees, can produce almost any trajectory.

2.2 DEFINING THE INITIAL INDIVIDUAL LABOUR ATTRIBUTES

The main source of information to define attributes and their values is Census data. The French Census is
available for 1990, 1999 and 2006. The 2006 Census has to be used with caution since it is different from 1990
and 1999. It is now a continuous survey which interviews a part of the population every year. Municipalities
having less than 10000 inhabitants are exhaustively surveyed by 1/5 every year. Larger municipalities are
sample surveyed every year. In both cases, INSEE, responsible for the Census, give the information allowing the
projection at the population level every year. A very good point is that the access to data is easy and free®.
To compute a population with sufficiently realistic local statistical properties for individuals and households, we
propose an algorithm described in (Gargiulo et al. 2010) presenting the generation of households in the
Auvergne Region. An improved version has been developed for generating the Cantal population. To
summarize our algorithm, we build for each municipality a list of agents with the exact number of individuals
being each age and a list of households with the exact number of household members. Then, we try to fill one
by one each household with individuals taking into account the probability of households having some
particular properties, such as being a couple or having a given number of children. Each time a household is
completed, another one is selected to be filled. At the end, we have a virtual population of households
following the exact distribution of sizes, having good statistical household properties and composed from
individuals following the exact distribution of ages. To built the initial population of Cantal, our algorithm uses
for each municipality:
- Thedistribution of the size of households — available at the municipality level in 1990
- The distribution of ages of individuals — available at the municipality level in 1990
- The distribution of ages of the reference person of households — available at the municipality level in 1990
- The distribution of household types (single, couple, couple with children, single-parent, other) - available
at the municipality level in 1990
- The distribution of age differences for couples — only available at the national level in 1990
- Thedistribution of the probability to be a child (i.e. living at parental home) by age and for each household
type — available at the municipality level in 1990
This generation method is different from the nowadays used IPF (Iterative Proportional Fitting) which reweight
a measured population under some constraints to obtain a virtual population representing the one the
modeller is interested in. However this method can not control the attributes at both levels, the person and the

6 made available by the Maurice Halbwachs Center of the Quételet Network (http://www.reseau-quetelet.cnrs.fr/spip) for
1990. For 1999 and 2006, they are directly accessible through internet via the website of INSEE
http://www.recensement-1999.insee.fr/ and  http://www.insee.fr/fr/publics/default.asp?page=communication/
recensement/ particuliers/diffusion_resultats.htm)
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household. Some recent work proposed a hierarchical IPF (Miller and K.W. 2011) to control the two levels but
they still required an initial sample, which can be reweighted to fit the scale the model is interesting in.

After the virtual population has been built, individuals require a labour market status. That means the following
four individual attributes have to be parameterised during the initialisation: Activity status; Profession,
approximated by the socio-professional category; Sector of activity to define, with the profession, the occupied
job; Place of work.

To characterize the status we distinguish between active and inactive individuals. Active people can be
employed or unemployed. For non-active people we distinguish three categories: students, retired and other.
No further characterization is required for non-active person. On the contrary, active people, both employed
and unemployed require a socio-professional category (SPC) defining their profession. Moreover, employed
individuals require a sector of activity defining the occupation (see 1.1.3 and 1.1.5 for details). Once the
municipality of employment is determined, the employed individual is successfully parameterized.

Figure 2 | Algorithm for the initialization of the activities for Auvergne case study

‘ Choose an individual ‘

activity status =
student
n profession = null
activity sector = null
place of work = null
yes
‘Studem(age)’2

activity status =
inactive
n profession = null
activity sector = null
place of work = null

yes
4

activity status = retired
profession = null
activity sector = null
place of work = null

activity status = unemployed
n profession = SPC
activity sector = null
place of work = null

Choose a profession SPC according
to the age

Employed
(age)?
yes
2

‘ Choose a place of work

municipality(SCP) ‘"‘

Choose an activity sector Sector
according to the SPC

I

activity status =
employed
profession = SPC
activity sector = Sector
place of work =
municipality

Figure 2 shows the generation algorithm. The initialization of the activities starts from the population of
households previously generated for each village: each person is assigned an activity, according to the
characterization presented above. All the individuals younger than 15 are automatically considered students.
For all the others the first step is the decision about being active or not. This decision depends on the age of
the person. If the person is not active then her age determines whether she is retired or a student. If she is
neither student nor retired, she will be identified with the status "inactive". If the person is active, the first step
is the selection of the socio-professional category (SPC). This choice depends on the age. Secondly it is decided
whether the person is employed or unemployed, according to the age. If she is unemployed, no further choices
are needed. If she is employed, the municipality of employment is determined. The municipality of
employment depends on two questions: first, does she work inside her municipality of residence? If no, find at
random a place of work among the possible places of work starting with her own municipality of residence if
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employment is available according to the SPC. The possible places of work are defined through a generated
virtual network built from the mobility data of the French Census of 1999 (see the generation model proposed
in (Gargiulo et al. 2011) and improved in (Lenormand et al. 2011b)). Finding a possible place means the
individual can find a free job partly defined by the same SPC as hers. A vector for available jobs is maintained
(corresponding to the total number of commuters-in at the beginning of the initialisation) for each municipality
and decreases with individuals filling vacancies. If no vacancies remain among the possible places of work while
an individual is still looking for employment, the attribution of a place of work among the possible ones is
forced. Indeed, this can occur due to the fact the generated virtual network is built under the only constraints
related to the job demands and the job offers of each municipality. The virtual network doesn’t consider the
SPC then it can’t ensure a demand with a particular SPC can be satisfied by an offer with this SPC in the set of
municipalities it has fixed as possible places of work. Finally, an activity sector is attributed to the employed
individual based on the cross distribution SPC. We have to acknowledge that the French Statistical Office, as
many Statistical Offices, use two ways to count the jobs: counted on the place of residence — that means
corresponding to the job occupation by people living in a municipality wherever they work; and counted on the
place of work — that means counted on the municipality where people work wherever they live. The algorithm
uses the following data for each municipality of the set:
- Age x activity status counted on the place of residence
- Age x SPC for actives counted on the place of residence
- Distribution of probabilities working inside her place of residence by SPC
- A generated commuting network through (Gargiulo et al. 2011) (Lenormand et al. 2011b) given for each
municipality the distribution of commuters out to each of the other municipality
- SPCfor actives x activity sector counted on the place of work

2.3 DEFINING THE INDIVIDUAL BEHAVIORAL RULES REGARDING ACTIVITY

This part is dedicated to the parameterisation of events on the labour market. Characterization and
parameterization is required for those rules that change the value of the individual’s attributes related to its
labour activity: Activity status; Profession, approximated by the socio-professional category; Sector of activity
to define, with the profession, the occupied job; Place of work.

The main data source to do so is the European Labour Force Survey, and particularly its French declination
called in French "Enquéte Emploi", meaning "Employment survey". The data are kindly made available for free
by the Maurice Halbwachs Center of the Quételet Network’. This Employment survey was launched in 1950. It
was redesigned in 1968, 1975, 1982, 1990 and 2003. From 1982, the survey became an annual survey. Since
the last redesign the survey is implemented continuously to provide quarterly results. The resident population
comprises persons living on French metropolitan territory. The household concept used is that of the ‘dwelling
household’: a household means all persons living in the same dwelling. It may consist of a single person, or of
two families living in the same dwelling.

As our approach starts the simulation in 1990 the first period is based on annual data while from 2003 on
values can be considered in quarterly time steps (Goux 2003) (Givord 2003. The data to select from these two
periods vary a bit due to the structural and practical changes in the survey).

Coming back to the description of the whole data, the sample sizes of the data varies from 168883 to 187326
from 1990 to 2002 each year and from 92300 to 95647 each quarter a year for the new Employment survey.
The individuals are asked a very comprehensive series of questions from 1990 to 2006, related to their work. In
particular, we can follow their situation year by year, and also their wishes to change job and the type of job
they are looking for. Table 2 shows the variables we extract from the databases to compute the probabilities
we need. However, for the sake of simplicity, we use only data from 1990 to 2002 to explain how to extract the
information we need from the data..

Table 2. Data to extract from the various databases of the French labour force Survey to compute the
probabilities related to working status of the individual

1990 to 2003 2004 2005 2006 2007 | Meaning of the variable
2002

ag Ag Ag ag Ag Ag Age

annee annee Annee annee annee annee Year of interview

7 http://www.reseau-quetelet.cnrs.fr/spip/
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dcse csepr Csepr csepr csepr csepr Socio-professional category

cspp cspp Cspp cspp cspp cspp Socio-professional category of the
father

dcsep cser Cser cser cser Cser Socio-professional category one vyear
before

dcsea cslong Cslong cslongr cslongr | cslong Socio-professional category which has

been occupied for most of the time [for
inactive and unemployed people]

tu99 tu99 tu99 tu99 tu99 tu99 Urban area type
fip eoccua Eoccua eoccua eoccua eoccua | Occupation one year before
extri extriA, extri99 extrio5, extrio6 extrio6 Weights making the interviewed
extriA04 extrio4, extrioe, individuals representative (depending
extrios, on the census done 1999 or of the first

result from the last French census (in
2004, 2005, 2006)

rg reg Reg reg reg Reg Region of residence

fi sp00 sp00 sp00 sp00 sp00 Occupation during the month of
interview

- trim Trim trim trim trim For the second period of the survey, the
only keep the first quarter of the year.

csrech csrech Searched socio-professional category

drel Situation in regards to employment

(mainly to use drel=5 meaning people
looks for a job (or another job))

soua ; mrec Wish another job; Is the individual has
searched for a job during the last four
weeks?

From the databases, we considered only the population being more than 14 that is not military people of
students (FI = 3 and 4).

2.3.1 ENTERING THE LABOUR MARKET

A first step consists of extracting the age from which on the individual is going to look for a job. This will
determine the age at which a student status changes to a "on labour market" status. We consider in the period
1990 to 2002 the value FIP=3, which means that the individual was student the year before and the value Fl=all
the possible values except 3 means that the individual is not a student anymore. Then, for each five-year step
we compute the probability to be a given age and having entered on the labour market for every year.

We used the weights to obtain a projection of the data at the Auvergne level. Auvergne is the region containing
the Cantal “département” and three others. That is the closer significant and representative level of the Cantal.
Then, we assume the probabilities are the same at the regional and the "département" level.

The second step is to allocate a first SPC (proxy used for defining the profession) to the individual allowing us to
approximate what she is going to look for. We know that both these variables, the age of entry and the first
SPC, are not independent. Moreover, a social determinism rules the choice of the profession by children
compared to the profession of their parents. Figure 3 presents such a relation for the Auvergne population. It
shows, for example, that almost only farmers’ children become farmers or that executives’ children mainly
become executives and/or adopt an intermediary profession.

Thus, starting from this social determinism, we have some indications to set the SPC of children. However, we
also have to decide the age of entry in the labor market, and we know that this age is not independent from
the level of education, which can be related to the SPC. Consequently, we apply a two-time process which, at
first, decides the age at which to enter the labor market using the father’s SPC and then determines the child’s
SPC depending on the age of entry.
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Figure 3. Distribution of SPCs choices by children regarding the father’s SPC (in abscissa) for the Auvergne
population. Source: French Labour Force Survey, 1990 to 2002 data.

The age of entry on the labour market is determined by the SPC of the father. Since the individual has no
gender in our model, the father is randomly chosen between the two parents when there are two.

A criticism can be formulated to this approach since the SPCs of the couple members is not controlled, while
we know from the literature that the partner is not chosen at random regarding her SPC (Bozon and Héran
1987). The homogamy can be explained by the constraint associated to the meeting places (Bozon and Héran
1988). It has been identified as a possible next step for modelling.
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Figure 4. (a on the left) Probability of a “first” SPC depending on the age of entry in the labour market; (b on
the right) Distribution of probability to enter the labour market at a given child age for each of the six
father’s SPC considered — French population. Source: French Labour Force Survey, 1990 to 2002 data.

Figure 4a shows the distributions of probabilities to enter the labour market depending on the various ages of a
child for each of the six SPC attributed to the father. We can for example read that if the father is an executive,
the probability to enter on the labour market before 20 is only 0.1 while it is more than 0.5 if the father is a
worker. Once our individual has an age to enter the labour market, we can determine her first SPC. Figure 4b
shows for each age of entry on the labour market (abscissa) the distribution of probabilities over the possible
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SPC to provide the individual with a first SPC. For example, one can notice how high the likelihood of looking
for a worker position for the individual looking at first for a job at 15 is, while at 30, she will mostly look for
intermediary or executive positions. The individual who enters the labour market can decide looking for a job.

2.3.2 INDIVIDUAL JOB SEARCHING DECISION

We assume that the probabilities are stable in time for the Auvergne region. Thus, we mix the data from the
years 1990 to 2007 in a single sample. Starting from the variables presented in the table 2, we count the
frequencies of transitions between inactive, unemployed, employed, from one year to the following. For each
counted transition, we take into account the weight of the related individual in order to have a probability
quantified for the Auvergne level.

Finally, we calculate the probability to reach a given situation by dividing the total obtained for a transition
starting from the situation x by the sum of all the totals related to the transitions starting from this same
situation x.

We focus on the municipalities of the Auvergne region having less than 50000 inhabitants using the area type
"tu99".

From and to the inactive status

The following variables are used to extract the transitions from a starting situation to an arriving situation. They
are used for the transitions from and to the inactive status.
e fip =7 plus 8 or EOCCUA = 6 plus 7 to define the inactive status as starting situation; fi = 7 or SP = 8 to
define the inactive status as arriving situation;
e fip =2 or EOCCUA = 2 to define the unemployed status as starting situation; fi = 2 or sp00 = 4 to define
unemployed status as an arriving situation ;
e fi=1or EOCCUA =1 to define employed status as starting situation;
® DCSP or DCSA are used to define to starting SCP for unemployed and employed while DCSE is used to
define the arrival SCP (for unemployed).

The table 3 shows the extracted probabilities for the Auvergne region.

Table 3. Probabilities of the transitions "inactive — unemployed”, "unemployed — inactive depending on
SPC", "employed — inactive depending on SPC"

Arriving situation _|Inactives Unemployed

Starting | craftmen et | interm. | | |
situation Starting SCP Arriving SCP farmers al executives _|profes. employees _|workers
Inactives 0,00005557] 0,00055947] 0,00031037] 0,00172877] 0,00644310] 0,00604629]
Unemployed [farmers 0,05462738

craftmen et al 0,06335331

executives 0,11808481

interm. profes. 0,06202433

employees 0,07066007

workers 0,06165634
|Employed  [farmers 0,00650018

craftmen et al 0,01423226

executives 0,01729000

interm. profes. 0,01192824

employees 0,00930251

workers 0,01129013

Probability to look for a job with a given profession

The probabilities are computed using the same method we used to compute the probabilities of transitions of
activity status. The difference is that we use the answers to the questions about the fact that the interviewee
looks for another job. For the first period, we select the employed individuals (fi = 1) looking for a job (drel1=5).
For the second period of the survey, from 2003 to 2007, we assume people look for a job if they have answered
SOUA=1 (want to have another job) and MREC = 1 (have searched for recently) or SOUA=1 and MREC = 2 and
NTCH =1 or 2 (have not recently search for because they wait for answer to recent applications or they have
been ill for a while).

Deciding looking for a job when unemployed

Unemployed people are assumed to be those who search for a job. Even if, in the labour force survey, only 80%
of unemployed people declare searching a job, we assume the probability to search for a job of unemployed
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people is one. Indeed, if we consider the whole model, it globally underestimates the job offer and the
probability to find a job. This is difficult to correct as, for instance, we cannot consider that in most cases a job
offer is proposed before it has been quit while the model time step is not less than one year. Also we assume
the job offer equal to the job occupation. Then, the probability to search for a job of unemployed people is one
in order to compensate a bit this underestimation and be able to occupy every job offer (which is the state the
model has to reach). The data indicates the probability to look for a job for unemployed individuals is quite
stable until 54 years of age and dramatically decreases for older individuals. A second step of the modelling
work would be to see if this dramatic decrease needs to be considered. We also analyse how different
parameters describing the household (the number of unemployed in the household, the number of children, or
the type of household) influence the probability to look for a job, and we did not find any clear dependency.
The probability to begin searching (i.e. becoming unemployed) if an individual did not search previously (not
because she is employed) corresponds in the model to the transition from inactive to unemployed. As already
mentioned, it is the complementary value for each age range of the value to make the transition from inactive
to inactive.

Since an individual is unemployed, it is necessary to define which SPC she is going to search for. It varies a lot
with the current SPC of the individual. As shown in Table 4 even if there is a tendency to look preferentially for
her own SPC, an unemployed individual can prefer changing SPC. That is particularly the case of farmers and
craftsmen. Then, we parameterise the process from the computation of the probability distribution to choose a
SPC knowing the current SPC.

Table 4. Probability for unemployed people to search for a job with various SPCs knowing the current SPC of
the individual

SPC/ Farmers craftsmen et al executives interm. prof. employees Workers
Looks for
Farmers 0.000 0.000 0.000 0.177 0.376 0.447
craftsmen et al 0.000 0.079 0.012 0.088 0.443 0.377
Executives 0.000 0.037 0.499 0.256 0.171 0.037
interm. prof. 0.000 0.009 0.053 0.591 0.273 0.074
Employees 0.003 0.007 0.006 0.063 0.808 0.113
Workers 0.006 0.010 0.003 0.056 0.251 0.674

Deciding looking for a job when already employed

We consider those respondents being employed who answered that they are looking for another job. We have
the age of these people, as well as the type of their current job. The analysis shows that the age is a very
significant variable for determining if an employed individual looks for another job (see Figure 6a). Young
people are more susceptible to look for another job and this tendency decreases with age.

Probability of an individual looking for a job when it is
Probability of an individual looking for a job when it is already employed (Auvergne - already ( gne - municipalities with less than
02+ municipalities with less than 50000 people) - Source French labour force surve: 0.1 50000 people) - French labour force survey (1990 to 2001
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Figure 6 — (a) Probability for an already employed individual to look for another job according to the age (on
the left); (b) Probability that an already employed individual looks for another job according to socio-
professional category (on the right).

The SPC is also a significant variable to predict the probability to look for a job (see Figure 6b). Some SPC, such
as employed farmers or craftsmen are not very susceptible to look for another job. On the contrary, others,
such as workers and especially employees have quite a high probability to look for another activity.
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Table 5 shows the parameter values for the decision searching for a given profession when the individual is
already employed for some age ranges. For employed people, we built a probability containing the both
information have decide to search for a job and what she searches for. It is important to point out that the
probabilities presented in Table 5 do not add up to one but to the overall probability to search, which is quite
low for already employed people.

Table 5. Extract of probabilities for employed people with a given SPC and a given five-year old age to look
for a job within a given SPC.

Age Range | Looks for/ Is a | farmers | craftmen et al | executives | interm. prof. | employees | workers

15 Farmers 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0002
craftmen et al | 0.0000 0.0000 0.0000 0.0000 0.0011| 0.0014
executives 0.0000 0.0000 0.0000 0.0000 0.0010 | 0.0000
interm. prof. 0.0000 0.0000 0.0000 0.0000 0.0143 | 0.0040
employees 0.0000 0.0000 0.0000 0.0000 0.1319| 0.0168
Workers 0.0000 0.0000 0.0000 0.0000 0.0162 | 0.0498
Farmers

craftmen et al

executives

interm. prof.

employees

Workers
55 Farmers 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000

craftmen et al | 0.0000 0.0000 0.0000 0.0000 0.0002 | 0.0002

executives 0.0000 0.0000 0.0000 0.0000 0.0002 | 0.0000

interm. prof. 0.0000 0.0000 0.0000 0.0000 0.0030 | 0.0005

employees 0.0000 0.0000 0.0000 0.0000 0.0274 | 0.0021

workers 0.0000 0.0000 0.0000 0.0000 0.0034 | 0.0062

2.3.3 INDIVIDUAL SEARCHES FOR A JOB

Since the individual knows which profession she wants to search for, she has to find a place where to look for a
job. Firstly, the individual selects an accepted distance she would want to commute. The next section presents
how to the related probabilities. If the chosen distance is higher than zero, the individual has to decide if she is
going to work outside her set of municipalities. The law allowing this decision and the way to extract it from
data is the subject of what follows in the next section. In case the individual has not found a job, she revises the
maximum distance. She revises the distance up to 10 times.

The probability to accept a distance to cross over to work

The distance of search for a job is selected from a probability law giving the probability to accept a certain
distance between the residence and the work place. The principle is very simple: the probability to commute at
a given distance i [pc(i)] is assumed to be the product of a probability to accept a certain distance i [pa(i)] by
the pay offered at i [Oi] with a renormalisation coefficient k: pc(i) = k pa(i) * Oi.

Then, it is possible to extract the probability to accept a given distance (pa) to work place, which will be used in
the model. This procedure, coupled to an appropriate job offer, will allow maintaining the statistical properties
of the pc distribution over the time of the simulation.

We extract from the mobility data of the 1999 Census for every municipality of the Auvergne region data on
commuting (pc) and data on job occupations, which we assume to be equivalent to job offers (0). Evidently,
the number of occupied jobs is used as a relevant proxy for the job offer of a municipality. An exhaustive
description of the work allowing to build this probability law is given in (Felemou 2011).

Figure 5 shows an example of commuting data probability distribution (DDC = pc ) and of job offer probability
distribution (DOE = O) for one randomly chosen municipality.

A classification of acceptable distance distributions shows municipalities can be classified in three different
groups, apparently depending on the size of the municipality of residence (see Figure 6 on the right). Thus, we
assume for this parameter three probability distributions shown on the left of Figure 6 for three different size-
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dependent classes of municipalities (to the right of Figure 6). The data suggests that the larger the municipality,
the lower the probability to work in the place of residence and the longer the commuting distance.
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Figure 5 - Example for one municipality of the density distribution of job offers (DOE=0) and the one of
commuters (DDC=pc)

2 4 — Classe 1
— Classe 2 .
Classc 3 |8 |
| 2
=,
| )
2
f g
a2 a
o
H 2
2 2]
2 \
i = |
o
=
S
S —_
o .
I '
g |
. =
“
a e : 1
2 ! .
T T T T T T — : —
o - p——
0 20 40 €0 20 100
T T T
Digrancagkm} Classe” Classe? Classed

Figure 6 - Probability laws that an individual accept to a certain commuting distance knowing that a job is
available for it.(on the left) - Different population sizes for the municipalities of each sub-group (on the right)

It is important to emphasise that only if the selected distance is higher than zero, the individual has to decide if
she is going to outside or inside the set.

Going to work outside the set

When the individual is commuting — meaning she has picked out a distance of research higher than 0 — she has
to check if she has a chance to commute outside considering her place of residence. Indeed, an individual living
close to the border of the set has a higher probability to commute outside the set. Then, the individual chooses
at random to work outside depending on the probability associated with her municipality of residence. Each
municipality has such a probability which is a function of its distance to the border of the set. This function is
extracted from the mobility data from 1999 (Source: INSEE). Figure 7 shows this function for the Cantal
department and the whole Auvergne region of which Cantal is a part. Both laws are quite close and it appears
relevant to use as a parameter the law extracted for the whole region since it is probably less noisy.
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Figure 7 - Probability to commute outside the set (ordinate) depending on the distance of the municipality of
residence to the frontier of the set (abscissa in Euclidian kilometers) - Red: Cantal; Blue: Auvergne

We are now describing how to extract the probability law for the final event which is going on retirement.

2.3.4 GOING ON RETIREMENT, AND STOP SEARCHING FOR A JOB

To extract the transition to the retirement, we consider, in the period 1990 to 2002, the value FIP=all except 5
or 6, which means that the individual has not yet retired and the value FI=5 or 6, which means that the
individual is now retired. We assume that the retiree does not search for a job anymore since this is generally
the case true in France. Figure 8 shows that the speed of transitioning into retirement varies a lot from one SPC
to another: we can read for example that at 60, 63 % of workers are retired while only 17 % of farmers are
retired. Then, instead of considering a generic retirement law for all the individuals we consider a law for each
SPC. Indeed, as these laws influence the job availability at a given moment it is very important to be sufficiently
precise.
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Figure 8. Speed of going into retirement by SPC (source LFS) — France level
3 LESSONS / EXPERIENCE

First, we want to stress the necessity to not only consider the objectives of the model during the design, but
from the very beginning exploring existing data sources and studying the implicit model beside the existing
databases. The availability of data and the more or less implicit model guiding the collection of data constrain
the definition of agents, their attributes and behaviours.
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Using large existing databases can appear more relevant, especially the “official” ones from the National
Statistical office, than collecting a small sample and reweighting it to obtain a statistically significant artificial
population.

For these large databases, the models guiding the collection of data represent the expertise knowledge and
generally assume some dynamics, particularly if time series are collecting during the survey. Moreover, if the
data sources are collected by the National Statistical Office, they probably represent the commonly used
information and knowledge by the stakeholders and policy makers. A model which aims to inform decision
making is more useful if it can be easily understood and discussed by the relevant decision makers. This is
easier if the model starts with common knowledge.

More generally, the modeller has to identify the rationale behind the considered data sources and use it to
build the dynamic model. Indeed, this rationale often makes some implicit assumptions on the dynamics. Let’s
take the definition of a household as an example. “In surveys prior to 2005, people were required to share the
same main residence to be considered as households. It was not necessary for them to share a common budget.
De facto, a household corresponded to a dwelling (main residence)”. Thus, until 2005, the French National
Statistical Office (INSEE) assumes the household/family is defined by the place where it lives, which is unique.
Indeed, following the INSEE definition, each person in a household may belong to only one family. In this
framework, residential mobility is a household/family decision and the number of occupied dwellings in a place
corresponds to the number of resident households. That is also what we assume in the model. “Since 2005, a
dwelling can include several households, referred to as "living units". Every household is composed of the people
who share the same budget, that is who contribute resources towards the expenses made for the life of the
household; and/or who merely benefit from those expenses.” The new definition is based on the fact that
related or unrelated individuals can share the same budget and have a habitual residence (the dwelling in
which they usually live). This new definition takes into account some cultural evolutions and allows a European
homogenization of the way households are defined. However, it modifies the way the dynamic of move can be
considered since each individual of the household can have more than one dwelling. This is to point out that
the choice between one data source and another corresponds to a representation of the world to which some
particular dynamics can be linked. If the first definition of household is more related to the idea that
relationships between people can be identified by the concept of family and/or the identical of place of living,
the second definition puts the economical constraints (i.e. the sharing budget) much more at the heart of the
dynamics of closeness. A modeler, having the choice between a data source containing data built on the first
definition and another one based on the second definition, should be aware of the choice to make and
communicate about it. Thus, choosing to only use data on the SCP and the activity sector to describe a job
while it is possible to use the salary, which is available in some databases, makes having an occupation much
more important than the level of salary. It also implies, for example, that an individual can change jobs just to
change their working environment. Differently, the classical economic models considering job change start
from the salary and assume an individual changes to increase their salary. We simply assume our individual
wants to change jobs, without necessarily changing SCP at the same time. However, one can notice our
assumption is relevant due to the existence of a minimum salary in France which ensures a minimum amount
of money to live with.

The choice of existing databases for facilitating model design and parameterisation needs to consider:

® alonger as possible period of calibration: indeed it is not sufficient to strongly link the model to data if the
model is not calibrated or calibrated with poor data compromising the robustness of the trajectory of
underlying model dynamics;

e a sufficient number of modalities for each attribute in order to be able to reproduce the diversity of
relevant agent types and behaviours. For example, we chose to aggregate in our work jobs in 24 types; at
the end this depends on data availability;

e a minimum number of variables to calibrate: too many unknown parameters implies we don’t know much
about the dynamics and every explanation for observed trajectories can be valuable;

e the possibility to use them simultaneously for initialising agent attributes and defining agent behaviours:
that means in particular that they have to have common variables allowing for a link between them. The
challenge is to make an easy fit between attributes and behaviours.
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Finally, starting from large national databases makes it likely that the model can be easily implemented and
parameterized in another country. For instance, the example on the individual dynamics of activities indicated
the possibility to apply the model in another European country even if some small adaptations are required.
Indeed, Europe tends to harmonise the data bases in order to have common indicators at the European level.
Then, large national databases have been designed or redesigned for answering the European demand. For
example, the French “Employment survey” is the data source for the French contribution to the European
Labour Force Survey. That is why (Baqueiro Espinosa et al. 2011) proposes a way to parameterise our model
directly starting from the data of this European survey. For the same reason, national census data in Europe
tend to consider more and more comparable or identical variables. That makes it possible to use them to
parameterise our model even if a particular attention to the definition of used concepts remains: while to be a
retiree in France (at least until a very recent period) means not looking for a job, it is not the case in UK for
example.

Taking into account data at an early stage is not an easy task. It is at the same time laborious and confusing
since the modeller is confronted with a very large set of information and more or less implicit knowledge.
Finding a way to use the data and to choose the object, their attribute and the dynamics in order to remain
simple as possible is much more demanding than developing a theoretical model. However, for such complex
systems and models as ours that focus on the dynamics of interacting municipalities, the approach allows to
properly define and control some sub-dynamics, even if they are not independent from other dynamics in
order to test hypothesised system properties. For our concerns, we expect the expertise we developed for the
labour market in conjunction with the robust parameterisation of the individual activity dynamics and job offer
dynamics, will allow us to better understand how the demography impacts on the population/depopulation
phenomena and how these phenomena impact on demography in return.
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APPENDIX B
Commuting Network: Getting the
Essentials

Abstract. Human mobility and, in particular, commuting patterns have a funda-
mental role in understanding socio-economic systems. Analysing and modelling the
networks formed by commuters, for example, has become a crucial requirement in
studying rural areas dynamics and to help decision-making. This paper presents a
simple spatial interaction commuting model with only one parameter. The proposed
algorithm considers each individual who wants to commute, starting from their
residence to all the possible workplaces. The algorithm decides the location of the
workplace following the classical rule inspired from the gravity law consisting of a
compromise between the job offers and the distance to the job. The further away
the job is, the more important the offer should be to be considered for the decision.
Inversely, the quantity of offers is not important for the decision when these offers are
close by. The presented model provides a simple, yet powerful approach to simulate
realistic distributions of commuters for empirical studies with limited data availability.
The paper also presents a comparative analysis of the structure of the commuting
networks of the four European regions to which we apply our model. The model is
calibrated and validated on these regions. The results from the analysis show that the
model is very efficient in reproducing most of the statistical properties of the network
given by the data sources.
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Model: Getting the Essentials. Journal of Artificial Societies and Social Simulation 2012,
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Abstract

Human mobility and, in particular, commuting patterns have a fundamental role in understanding socio-economic systems.
Analysing and modelling the networks formed by commuters, for example, has become a crucial requirement in studying rural
areas dynamics and to help decision-making. This paper presents a simple spatial interaction commuting model with only one
parameter. The proposed algorithm considers each individual who wants to commute, starting from their residence to all the
possible workplaces. The algorithm decides the location of the workplace following the classical rule inspired from the gravity law
consisting of a compromise between the job offers and the distance to the job. The further away the job is, the more important the
offer should be to be considered for the decision. Inversely, the quantity of offers is not important for the decision when these
offers are close by. The presented model provides a simple, yet powerful approach to simulate realistic distributions of commuters
for empirical studies with limited data availability. The paper also presents a comparative analysis of the structure of the
commuting networks of the four European regions to which we apply our model. The model is calibrated and validated on these
regions. The results from the analysis show that the model is very efficient in reproducing most of the statistical properties of the
network given by the data sources.

For two decades, not only the number of commuters (i.e. people living in a municipality and
working in another) but also, the average distance travelled by workers has increased in most
European countries. This makes commuting a fundamental phenomenon in understanding socio-
economic macrostructures. The precise description of commuting patterns has a central role in
many applied questions: from the studies on traffic and the planning of infrastructures (Ortuzar
2001) to the diffusion of epidemics (Balcan 2009) or large demographic simulations (Huet 2011).

Despite their importance for describing realistic socio-economic frameworks, datasets describing
human commuting patterns are rarely provided by statistical offices. Therefore a large effort has
been made to find some algorithmic procedures able to reconstruct commuting flows, starting
from the aggregate datasets that are usually available. These are models that simulate the
morphogenesis of the network, taking into account the constraints given by the available
aggregate data and the geographical properties of the networks. Good reviews of these methods
can be found in (Ortuzar 2001), in the framework of transport modelling, in (Barthélémy 2011), in
the framework of spatial networks modelling, and finally in (Rouwendal 2004) concerning micro-
economy. On the other hand the field still has many gaps, mostly due to the difficulties met in
calibrating the parameters of the proposed models and in finding good descriptions for zones
inhabited by small populations. A discussion on the state of the art is provided in section 1.

Our research takes place in the framework of the European project PRIMA'. The microsimulation
model developed within the PRIMA project simulates the dynamics of the population living in the
European rural (low population density) municipalities. Therefore, one of our main focuses is the
commuting structures in the rural areas of our case study regions. These structures had to be
analysed and reproduced in the microsimulation model which aims to help decision-making
regarding land-use policies. Thus, we needed a simple commuting network algorithm able to

! PRototypical policy Impacts on Multifunctional Aciiies in rural municipalities — EU 7th
Framework Research Programme; 2008-2011; httgsdpremagref.fr/the-project



generate the network of the European regions where the detailed commuting data was not
available.

For some of these regions, the only available data at the municipality level consisted of total
number of individuals commuting out of the municipality and total number of individuals
commuting into the municipality. In these cases, the precise structure of the commuting network
was unknown. In other words, the exact flows of individuals going from a municipality where they
live to another one where they work was missing. Consequently, these flows had to be recreated
on the basis of a set of assumptions. A description of the case studies we analysed is provided in
section 2.

This paper describes the method we used to recreate all the commuting flows. Our method
generates a commuting network, using a Monte Carlo simulation approach that can also be
applied to low density zones. It is based on the individual choices of the commuters. We propose
an extremely simplified framework, inspired by the gravity law, which aims to be general enough
to be applicable to areas with diverse geographical features and different commuting structures.
Despite its simplicity, the proposed approach is capable of faithfully replicating the structure of
observed commuting networks.

Our algorithm considers each individual who wants to commute, from their living place to all
possible workplaces. Individuals decide where they work following a classical rule consisting of a
compromise between the job offers and the distances to the jobs. The further away the job is, the
more important the offer should be to be considered in the decision. Inversely, the number of
offers is less important for decision-making when these offers are in municipalities nearby. We
initialize the algorithm with aggregate data on job seekers (i.e., the number of out-commuters)
and job offers (i.e., the number of in-commuters) in each municipality. The algorithm memorizes
past choices and after a job is associated to a commuter, the local information for the
municipalities involved in the choice is updated. The algorithm is repeated until all the jobs are
assigned. The details of the model are explained in section 3.1.

We also provide a method to calibrate the unique parameter of our algorithm, using detailed data
from statistical offices. We show that, even if the selected regions are significantly diverse, the
parameter does not vary dramatically from one region to another. The calibration method is
presented in section 3.2.

Finally, we provide a quantitative framework to compare the network observed by statistical
offices with the generated structures of our algorithm (Section 4). In particular, we articulate the
validation systems at two levels. In section 4.2 we focus on the global topological properties of the
network, such as the probability distributions of important network indicators (e.g., degrees and
weights). In section 4.3, we introduce a statistical framework that allows a comparison, at the local
level, of the similarity between the flows observed in the real case against those present in the
generated network.

An implementation of the algorithm in netlLogo, provided as additional material and detailed in
the appendix, allows a graphical representation of the generation model.

1. Background



The literature on the construction and use of commuting networks is abundant; both from the
point of view of the analysis of the structures, and from the point of view of the models (see the
reviews of (Ortuzar 2001; Barthélémy 2011; Rouwendal 2004) in various research domains).

Many recent papers adopted an approach based on network theory. An interesting and complete
analysis of the commuting structures from this point of view was introduced in (De Montis 2007;
De Montis 2010). In this framework, most importantly concerning the modelling issues, the
guestion about the commuting networks is set in the larger conceptual category of spatially
constrained network structures. This kind of analysis concerns not only commuting, but all the
situations where the geography has a significant role: from the reconstruction of migrant patterns
(Lemercier 2008) to the analysis of the internet at autonomous system level (Pastor-Satorras
2004), to airline network structure (Barrat 2004). A particularly important study in this context is
(Barrat 2005) where the concept of "preferential attachment" (Barabasi 1999) is adapted in order
to consider not only the strength of a node given by its current in-degree, but also the spatial
constraint included in the journey-to-work network.

A more classical approach comes from the micro-economists (Rouwendal 2004). Starting from the
monocentric model of residential location proposed by (Alonson 1964), economists and
geographers in urban modeling initially did not consider the space as determinant in residence
location of the individual, assuming that places of work are all located in the center of a unique
city. In the same way, looking at the decision regarding the job, job search theory does not take
especially into account the distance of commuting in its first formalization. It assumes a worker’s
optimal strategy is simply to reject any wage offer lower than a reservation wage, and accept any
wage offer higher than this reservation wage. However, commuting time was soon included in
new job-search models as in (Van Den Berg 1997). In this model, a job offer consists of a wage and
a commuting time pair. To be applied, this approach requires data on wage offers and their
locations. When working with models at very local level (e.g., municipalities or villages), wage data
is oftentimes difficult to obtain.

However, the most used approach to the modelling of commuting or migration structures is the
one based on the so-called gravity law models (Haynes 1988). The term gravity law is a metaphor
from classical physics. We can imagine that as it happens in gravitation, the interaction between
two municipalities depends proportionally on a parameter: for example, the size of the
municipality (equivalent to mass in the gravitational law), and in inverse proportion with some
power law of the distance. It is recognized that the concept of “distance” can be formulated as
something other than a real geographical or spatial category: it can be a travelling time, a
topological distance on a network, but also a "social" distance (e.g. the cases of border cities
where different languages are spoken). The classical formalization of probability p; of a commuter
to live in the municipality i and to work in the municipality j is the following:

b = f(M;)g(N;)h(dy)
T H(M)G(N)N(g) Eq.1
i
where we consider different proportionality parameters M;, N; respectively for the origin and
destination municipalities (this size could refer to the area of the municipalities, its population or
the number of working people) and the distance between each pair of municipalities dj.

Using this probability model, it is possible to determine the traffic between each pair of
municipalities with different methods (e.g. IPF, multinomial models, etc.). We notice that the



functions f(M;), g(N;) and h(d;) may assume any possible shape. For h(dj), the literature generally
agrees that an exponential specification appears to fit better with reality. However, in some
applications, a power law decay often seems to be a better fit (De Montis 2007; De Montis 2010;
Reggiani 2007). Some studies propose a combined form of the two (Ortuzar 2001), or a different
form (de Vries 2009), in order to better fit the empirical data.

The most common applied model of spatial interaction to generate commuting networks is the so
called “doubly-constrained” model (Wilson 1998; Choukroun 1975). Based on the gravity law, it
predicts the number Tj; of journeys-to-work between any pair of origin (i) - destination (j) zones
considering the number of out-commuters of j and the number of in-commuters of j:

T =ABRQ ) a2
where:
1
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The factors A; and B; ensure that the T table is consistent with the exogenous rows and columns
totals:ZT”- =R and ZTiJ =Q; . These balancing factors, plus a distance parameter 8, implicit in the
j i

function h(dj),have to be calibrated. An entropy maximization approach allows calibrating such
model considering only one parameter to find () since A; and B; are automatically solved by this
method. This optimization approach consists in associating any particular microstate with a
macrostate, which is simply the number of trips from an origin to a destination. A macrostate is
feasible if it reproduces known properties referred to as system states (for example, the total
number of travelers). Estimating the solution of the model consists in finding the macrostates,
maximizing a chosen distance function of the considered macrostate to the observed data among
the feasible macrostates (Bernstein 2003).

Several improvements were proposed based on this doubly-constrained model. In (Fotheringham
1981), a competing destination model is introduced to improve the spatial structure of the
generated network. (Fik 1990) extend this competing model to measure the accessibility of a
destination related to destinations of the same hierarchical order in the system of central places
(founded on the Central Place Theory). They also incorporate a measure that relates to the
number of intervening opportunities from the living place i to the attractive force j. These
intervening opportunities are the potential destinations within a distance smaller than dj. To go
beyond the gravity law models’ weaknesses, some authors developed an approach founded on
the network paradigm (Thorsen 1999; Gitlesen 2010). This kind of procedure has the disadvantage
of increasing the number of parameters, which is what we wanted to avoid.

Very recently, (Simini 2011) proposed an algorithm free of parameters to generate many different
spatial networks. They consider the job demand and the job offer as a part of the population of
the origin-destination zones, and compute the probability of a flow between the origin i and the
destination j, considering these parts and the density of people living between i and j. They apply
this principle for the generation of the commuting network of USA at the county level. This model
is very interesting, nonetheless we doubt its suitability to reproduce a commuting network at such
a low level as the municipalities in our study regions (such as France, where the average size of an
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Auvergne municipality is 1024 inhabitants). Though this model addresses similar issues, the
authors conclude the lack of an effective distance weakens their model fitness.

Our study analyses different regions from various countries. Regions are defined as sets of NUTS3?
areas for each country; these regions vary in size, population, and other economic and social
properties. We are interested in the inter-municipality commuting network. Very few papers deal
with this topic on a small scale. Some studies analyse the inter-municipality commuting network
(De Montis 2007; De Montis 2010), showing that the Sardinian and the Sicilian inter-municipal
commuting networks exhibit a traffic property based on a power law with exponent 2. Others,
such as (Thorsen 1998), compare different spatial interaction models by an empirical evaluation of
the municipalities of a Norwegian region. One study analyses at the district level (which is higher
than the municipality level) the German commuting network (Patuelli 2007), using a comparison
of two spatial interaction models. The set of publications shows the interest in such an approach
to study the evolution of these types of networks over time.

For the presented model, the individual choice for a job location is probabilistic. Decisions are
mainly stochastic, and so is the model. Each time the model is run, we obtain a different network
based on the statistical properties used as input. This should be contrasted with the generation of
an optimized network making deterministic the flow between the related municipalities. Especially
for the latter, a deterministic approach does not appear relevant, since the local commuting
choice is influenced by many local decisions which can be seen as random variations. The
validation of the model shows that we obtained a good fit of the network given by the observed
data. These results are very stable; the stochasticity of the model thus reflects local diversity
without perturbing the statistical properties of the network. For the deterrence function, we
decided to use a power law; nevertheless, another function could be tested.

2. Regional commuting network structures — Specific differences and global properties.

The first part of our study concerns the analysis of our study regions. The local statistical offices®
provide all the information necessary to characterize the structure of the commuting network. We
consider: two separated NUTS2 regions in France (Auvergne and Bretagne), each composed of
four NUTS3 regions; a group of two NUTS3 regions in the UK (Nottinghamshire and Derbyshire);
and a group of two NUTS3 regions in Germany (the Altmark region is composed by the districts of
Stendal and Salzwedel). Differences between the data availability within regions must be noted, as
the data for Auvergne and Bretagne is much more comprehensive, in comparison to the other two
case study regions. Indeed, data describing the commuting flows between each pair of
municipalities with less than 10 commuters is not available in the German data (Altmark) and the
simlar flows smaller than 3 are not available in the English data (Nottinghamshire and Derbyshire).

The selected regions differ on many aspects: the number of municipalities, geographical structure,
and socio-economic characteristics. They were chosen by the European project because they are

? The Nomenclature of Territorial Units for StatisticsUNS 2 corresponds to European basic regions foapiéication of regional
policies and NUTS 3 to small regions for specifi@ghoses. For more details, see
http://epp.eurostat.ec.europa.eu/portal/page/pouisl_nomenclature/introduction

® In France: thanks to the Maurice Halbwach Centelichvimade available the complete French origin-datibn tables for
commuters in 1999. In Germany: Commuting data washased from the German Federal Employment AgeBapdesagentur fur
Arbeit) for the year 2000. In the United Kingdonrigh-destination data was obtained via the OffmeNational Statistics NOMIS
online database (https://www.nomisweb.co.uk/) fer year 2001.



all rural regions with diverse socio-economic characteristics. Table 1. presents some basic
characteristics of each case study.

Table 1. Characteristics of selected study regions

Region Number of Average size Average Number of Part of Total
municipalities ofa inter- commuters commuters area
municipality | municipality living and living in surface
(by number distance (in working in the and (in
of km) region working kmz)
inhabitants) outside the
region
Auvergne 1310 1024 88 261822 7.73% 26,013
(France)
Bretagne 1269 2447 99 608587 7.32% 27,208
(France)
Altmark 91 2527 50 16770 66.82% 4,715
(Germany) -
subregions
Nottinghamshire 372 5300 44 573022 12.4% 4,839
/Derbyshire (UK)

The objective of this first analysis is to determine the characteristics of the commuting networks
composed by the regional commuting flows that are present in each region. For this analysis, we
create a commuting matrix from a dataset containing the number of individuals that commute (i.e.
reside in one settlement and work in another) within each of the selected regions. A
representative section of the matrix used is shown in Table 2. Each row represents the place of
residence and each column represents the working place; the cell at the intersection of each row
and column contains the number of persons living and working in the corresponding row and
column. For our analysis we ignore the cells in the diagonal of the table, as they represent non-
commuting individuals (i.e., persons living and working in the same place).

Table 2. Example of commuting data from the Altmark Region

Municipality of employment
81026 81030 81035 81045 81080 81095

81026 0 0 0 0 0 0

81030 0 0 0 3 0 0

Municipality of 81035 0 0 0 2 0 0
residence 81045 0 2 2 0 2 2
81080 0 0 0 0 0 0

81095 0 2 0 8 0 0

After analyzing some global properties of the network structure we observe that the presented
regions have quite dissimilar structures. The first analyzed property of the networks concerns the
distributions of the degrees. The degree is a property of the associated un-weighted network. For
the construction of the un-weighted network we consider all the municipalities and add a directed
link between the municipality i and the municipality j if at least one individual commutes from i to
j. The in-degree of a municipality i (kin(7)) is the number of links entering in i, while the out-degree
(kout(7)) is the number of links starting from i.

The probability distributions of the “in and out” degrees are represented in figures 1. As we can
observe on these figures, the different case studies are characterized by very different behaviours
according to the degree distribution.
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Figure 1. In and Out degree distributions of each case study region

The out-degree distribution shows that the municipalities in the UK region always have a large and
uniform degree distribution. This can be explained by the fact that for the UK, the number of
commuters is extremely large, and the network is very dense in terms of links. This kind of uniform
structure can be connected to the lack of “working hubs” able to attract workers more strongly
than the other municipalities. This corresponds with what we observe in the in-degree distribution
where we see that few municipalities have a small in-degree while a considerable part has a high
in-degree.

The situation in Auvergne and Bretagne, where the in-degree distributions suggest the presence of
real “working hubs” in the commuting network (a small but not unimportant part of municipalities
reached much more than the others) is totally different.

For the Altmark region, the total number of connections is generally lower, suggesting that this
region represents only a part of a larger commuting network. This can be explained considering
that the majority of commuters in the studied region work outside this region (66.82% as shown in
Table 1).
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Figure 2. Distribution of the commuting distances (in meters) for the selected case studies

Another important consideration concerns the distribution of distances covered by the
commuters. This measure is presented in Figure 2.

The distribution of the distances shows that in the UK regions, smaller distances are favoured. This
confirms our intuition that job offers are homogeneously distributed among all the municipalities
in the region (thus, there are no working hubs). For this reason people do not need to travel long



distances to find a job. The opposite situation is observed in the Altmark case, where a significant
share of the commuters can travel up to 80 km.

In this section we provided a brief description of the selected case studies. We showed the
structural differences and global properties of the studied commuting networks. In the following
section we present a method to construct a synthetic network, based on the decision of the
individual workers. This method is then used to generate commuting networks for regions where
the detailed commuting data is not available.

3. A Monte-Carlo simulation approach to generate realistic commuting networks

The usual methods for reconstructing the structure of commuting networks are based on the
gravity law. The main hindrance of this approach is that it is not easy to calibrate the gravity law
model (Williams 1976). Moreover, it is a deterministic method which appears inappropriate when
flows for small municipalities must be predicted, as it is the case for our study regions. We
propose a simple network generation model that presents a higher level of universality and which
can be applied with a good degree of confidence to all the case study regions.

3.1 The individual-level generation model

The model is based on the individual choices of the commuters, namely people in the active class
that do not work in the municipality where they reside.

When looking for an occupation outside of the living place, two factors can influence the choice of
the destination: the distance of the potential workplace and its “attractiveness” (defined by the
number of jobs it offers). The further away the possible destination is, the more its attractiveness
will matter in the decision. If the possible destination is near, the settlement attractiveness
becomes less significant for the individual’s decision for a workplace.

We start from a typology of data that is usually available, for each municipality, in each case study:
. the total number of out-commuters (R;), also called the job demand of the municipality i,
. the total number of in-commuters (Q), also called the job offer (or attractiveness) of the
municipality j,
. the distances among each couple of municipalities (d;)

In the presented study we use the Euclidean distances in km to describe the distances. Similar
results can be obtained using, for example, the road distance or travelled time measures. Some
performed test on the results showed that the algorithm is robust to the choice of other distance
definitions.

To each commuter residing in each municipality i, the algorithm associates a working destination j
according to the job offers of all the municipalities different from i in the region and the distance
between the municipality i and all the possible destinations. The algorithm for the generation of
the network evolves according to the following steps:

For each renmi ning conmuter who has not already found a place to work, we:
e Select a residence nunicipality i at random anong the nunicipalities where
there is at |east one out-commuter (R >0)
* Select the working destination j randomy following the probability
di stribution given by:



b = Qd;”
-1 TN 0.8 Eq. 3
ZQ]dij
j#i
e Update the nunber of out-conmuters of i and the nunmber of in-commuters of j:
R=R-1, Q=Q-1

* Recalculate thep_jdistribution

The relation between the offer and the distance is characterized in the model with the parameter
[ which captures the relative impact of the distance. Using this algorithm we ensure that the
generated network respects exactly the incoming and outgoing traffic from each node.

Different values of the parameter £ produce different distance and degree distributions for the
generated networks. We calibrate the parameter for the case studies where the complete
information in the network is known, in order to have the same distance distribution as the one
observed for the real network.

Analysing the calibration on the regions where the data is available, we observe that with an
appropriate choice of the parameter 5 we are able to generate a commuting network with
statistical properties which are very similar to the real network. The calibration procedure and the
analysis of the accuracy of the generation algorithm are presented in the following sections.

3.2 Model calibration

The proposed model depends on the spatial parameter [ which represents the relative
importance of the distance to the destination when choosing a working place. A typical property
that distinguishes commuting networks is the distribution of the travelled distance for each
worker. We employ this information to calibrate the parameter S. In fact, each value of
produces a network with a typical distance distribution, as it is displayed in Figure 3 for the
Auvergne case study.

probability to cross over a distance

9 100 49

Euclidian distance (in km)

M pela=0 ®hela=2.7 ®Observeddata Mbela=5

Figure 3. Distance (d in KM) distribution for the real network and three different Bvalues for the
Auvergne case study

We observe that, for excessively low values of 5, the preference toward distant working places is
overestimated, while for excessively high values, the choice of close places is overestimated. We
calibrate B in order to minimize the distance between the generated travelled distance
distribution and the one obtained from the observed data. The minimized distance is the
Kolmogorov-Smirnov distance:



DKS :S;,I[#Pco(d)—ch (d) Eq 4

where P/g(d) are the cumulative distance distributions for the observed (o) and generated (g)

networks.

For each case study we calculated this distance for different values of Sand chose the minimum of
the function (D, )(B) as the calibrated parameter value. Indeed, to choose the parameter value,

we considered (D, ) since the model is stochastic. The value of (D) is obtained by calculating

the average of the Dys, measured on 100 replications of the generated network for each S value.
Within these replications, the variation of the measured Ds is very low, at most 1.13% of (DKS>.

The calibration process is described by the Figure 4. Each dot corresponds to a tested value of 8
(with a step of 0.5 from 0 to 7 for £ and with a step of 0.1 from 2 to 3 for the (D,4) values

required to identify the minimum). Figure 4 shows that for the analyzed regions, the value of 8
lays in the range [2, 3].
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Figure 4. Calibration process results for the four case study regions based on the minimization of
the average Kolmogorov-Smirnov distance over 100 replications (each dots represents the result

for a tested Svalue.)

Table 3 lists the optimal values for all the studied regions, where the (D, ) distance is minimized.
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Table 3. Optimal values of 3 for the studied regions

Region 6
Auvergne 2.71
Bretagne 2.59
Altmark 2.1
Nottinghamshire and 2.2
Derbyshire

In the analyzed regions, notwithstanding the relevant geographic and demographic differences,
the coefficient varies slightly in the interval £[2,3].

Moreover, we can observe that for all the regions in the whole considered interval, the average KS
distance (D,s) between the observed distribution and generated ones is always small. This

suggests a strategy for applying this algorithm to the cases where the calibration datasets are not
available. A stochastic procedure where at each replication the S value is randomly extracted in
the interval £ [2,3] can reproduce, with a good approximation, the commuting patterns of the
region. This last assumption is valid only if the considered region is sufficiently isolated; that is, if
the total number of commuters, in and out from a municipality, commute to other municipalities
within the same region.

4. Validation

To assess the quality of the generated network, we compare its properties to the properties of the
observed network (i.e., data obtained from the regions’ corresponding National Statistical Office).

Two different kinds of properties are investigated: a first group is measured on the municipality
network where we consider that two municipalities are linked when at least one worker
commutes between them, whatever the origin-destination is (i.e., considering an unweighted
network); a second one is measured on the weighted network which has direct links weighted by
the number of individuals commuting from a given municipality to another one.

For the unweighted network, two different indicators are considered:
1. The ability of the generated data to fit the observed in and out degree distributions of the
"municipality" network;
2. The traffic density distribution describing the density of each weight that can be associated
to an undirected link. For an arc between two municipalities, this weight is the sum of the
individuals going from one municipality to the other in both directions through the arc.

For the weighted network, we compare the number of commuters of both the generated and the
observed network.

All these statistics were not used to generate simulated networks. Moreover, we must remember

that the number of people looking for a job in a municipality i (R) and the job offers in a
municipality j (Q;), are reproduced precisely in all municipalities by the generation algorithm.
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4.1 The properties of the municipality network (i.e. the unweighted network)

We consider three variables to describe the topological properties of the network and the
characteristic of the commuting flows: the in and out degree distribution (p(k;,) and p(kout)) and
the traffic distribution (p(T)). These indicators are influenced by the choice of the parameter 5. As
we can observe in Figure 5 for the Auvergne case study, for 5=0 (i.e., when the geography is not
important), higher network degrees and lower traffics are observed. As the geography becomes
more important (i.e., as S is increased) the maximum network degree decreases and the
maximum amount of traffic increases. When distance is not important, people choose their
working destination in a wider range of available municipalities. On the contrary, a strong distance
constraint forces to choose only between the nearby municipalities. As a consequence of this,
traffic on this smaller number of connections will also be globally higher.

For the Auvergne case study, Figure 5 shows the comparison of the generated and the observed
data. It can be seen that, the distributions at the calibration point (£=2.7) fit the distributions of
the observation network perfectly. This fitness should be observed, considering that none of the
three measurements (in-commuting degree, out-commuting degree and distribution of traffic),
are used by the model; thus, the fitness of the generated network to the observed one is a
positive assessment of the effectiveness of the model.
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Figure 5. In (ki,) and out (ko) degree distributions and traffic (T) distribution for some
generated networks with various values of fand for the observed network for the Auvergne
case study. The results for the generated networks are averaged on 100 replications of the
generation algorithm.

Figures 6 shows the comparison between these measures for the observed network and the
generated ones for the other case studies. As we can notice in these figures, the traffic (T)
distribution is well reproduced in all the case studies. It is not the case for the degree distributions
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in the UK case study where the generation process completely fails in the estimation. We attribute
this discrepancy to the quality of the Census data. Indeed, in UK, a small-cell adjustment method
(Stillwell and Duke-Williams 2007) is applied to prevent disclosure of personally identifying data. In
particular, this method suppresses some commuting data by replacing values of 1 and 2 with 0 or
3. This adjustment makes the definition of a link between two municipalities different in the
model beyond the data and in the generated network through our algorithm. According to the
census data, two municipalities are linked only if at least three individuals commute among them.
In our generated network, they are linked if at least one individual commute among them. A large
number of municipality pairs are, in reality, linked by only one or two individuals. Such pairs are
underestimated in the real UK data. We believe this is the reason why the model seems to
overestimate the connectivity between municipalities.
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Figure 6. In (ki,) and out (ko) degree distributions and traffic (T) distribution for the generated
networks at the calibration point and for the real network for the Bretagne, Altmark and UK
case studies. The results for the generated networks are averaged on 100 replications of the
model.

4.2 The common part of commuters of the weighted network

We now define an indicator to compare the generated commuting network and the observed
commuting network. The statistical offices of France, Germany and United Kingdom provided the
observed commuting networks. Assuming that M,(N) is the set of all possible networks for a set of
municipalities. Let OO MH(N) be one commuting network when O is the number of commuters

from municipality i to municipality j. Let GO Mn(N) be another commuting network between the
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same set of municipalities where Gj is the number of commuters from municipality /i to
municipality j.

To assess the similarity of flows between the generated and the observed networks, we can
compute the common part of commuters (CPC) (Eg. 7) from the number of common commuters
(NCC) between O and G (Eq. 5) and the number of commuters (NC) in O (Eqg. 6). The CPC appears
to be a good indicator of the prediction quality. This indicator may be seen as a simplified variant
of the S@grensen index, with the two compared matrices having the same size. The CPC was chosen
for its intuitive explanatory power: it is a similarity coefficient which gives the likeness degree
between two networks. Its value ranges from 0, when there are no commuters flows in common
in the two networks, to a value of 1, when all commuters flows are exactly identical in the two
networks.

NCC,(G,0)= "3 (min(G;,0;)) Eq. 5
i=1 j=1
i=l j=1
_NCG(G,0)
CPC—iNCn(O) Eq.7

This gives us an indicator to directly compare one replication of the generated network with the
observed one. We do the same with all the 100 replications for a given B value and compute the
average of the obtained 100 CPC to evaluate the quality of the model. Within the 100 replications,
the CPC varies at most, by 1.76% of the average; this means that the stochastic model is very
stable (i.e., the stochasticity does not have a significant effect on the properties of the network).
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Figure 7. Common part of commuters (at the bottom) for different 8 values for each case study
region (compared to the calibration graph of the Figure 4, presented on the top)

Figure 7 presents the average CPC for each region and for different 8 values. It is noticeable that
the best value of the average CPC function is very close to the one given by the calibration value of
B for all the studied regions. This point is stressed out in Figure 7 by the dotted line showing the
match between the average CPC value and the minimum of the Dys. The proximity, in terms of 8 of
the minimum of the Dys function with the maximum of the CPC function, is surprising and
reinforces the idea the CPC is a good quality indicator. We also notice that the best values for
both, the D¢s and the common part of commuters, varies when defining the model parameter
between 8 =2 and 8 = 3. Also, the results from the CPC indicator reinforce the suggested method
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for the generation of a network in the case where the data is not directly available. In fact, for any
point in the interval 8 [[2,3], and for all the considered regions, the CPC value never goes below
CPC=0.6, showing that the generation process yields networks that match the observed network
with good accuracy.

Table 4 shows the average CPC for each case study region and the optimal B value. Results are
encouraging: average CPC values fall between 0.67 and 0.76. On average we obtained about 70%
of commuters in common. It means that 70% of the observed network is returned by the model.
One may also notice that the optimal 8 value seems to vary in the same way as the average inter-
municipality distances of the region (see table 1), for which the Germany and the UK regions both
have a small value, whereas the Auvergne and the Bretagne regions, both show a large value.

Table 4. Average Common Part of Commuters for the four case study regions

Region B Average Common
Part of Commuters
Auvergne 2.71 0.683
Bretagne 2.59 0.684
Altmark 2.1 0.751
Nottinghamshire and Derbyshire 2.2 0.676

5. Discussion and conclusions

We propose a very simple stochastic individual-based model able to generate a commuting
network with good accuracy. This model is based on the doubly-constrained model proposed by
Wilson (1998) and has its roots on the so-called gravitational laws (i.e., consider that individuals
tend to “gravitate” towards more attractive areas). It is built on the same principles: an individual
tends to choose a job location depending on the job offers and the distance to the offer. The
effect of the distance decreases as the distance increases, following a function that we have
chosen as a power law. Our model has only one parameter which can be easily calibrated. It
ensures that the number of out-commuters and in-commuters for each municipality is respected
without needing to solve an optimization problem. However, it must be stressed that our
proposed model does not try to reconstruct the exact structure of a commuting network.
Achieving this would require considering additional local properties, which are very specific for
each region. Instead, we aimed to create a model that can generate realistic synthetic networks
from a limited set of data (number of in-commuters and out-commuters on each municipality),
which can be used in cases where the detailed commuting data is unavailable. Moreover,
reproducing exactly a network at a very low level, especially for very small municipalities (e.g.,
around 1000 inhabitants on average in some French regions or less than 200 for the studied
German region) makes no sense since very small commuting links between small municipalities
can result from stochastic factors that cannot be captured with a real deterministic law. As our
algorithm is stochastic, it obtains many possible combinations of generated networks respecting
the total local commuting flows. This approach seems more relevant than a deterministic
approach for modelling a commuting network at the municipality level.

Our algorithm is validated on four case-study regions situated in France, Germany and the United-
Kingdom. We compare the properties of the observed network given by the complete origin-
destination table to those of the generated networks. We conclude that the in and out degree
distributions of the municipality network, the traffic distribution of the same network are well
fitted by the generated networks' distributions. Moreover, the common part of commuters of a
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generated network with the observed network (i.e., the complete origin-destination table)
appears high for all the case study regions. Incidentally, we have noticed that the optimal
parameter value of our algorithm is very close to the parameter value that yields a higher value of
common commuters.

The proposed model appears quite relevant for our main problem. Nevertheless, we must
remember that aggregated statistics available at the municipality level correspond to all the in-
commuters and all the out-commuters of each municipality. This includes commuters that live or
work outside the region (i.e., in other municipalities not included in the network). To be sure that
our model produces a representative network, it has to be applied on a region where these
commuters linked to the outside represent an insignificant part of the total number of commuters.
In other words, the region should be what Paelink and Nijkamp (1975) called a "polarized region":
"a connex area in which the internal economic relationships are more intensive than the
relationships with respect to regions outside the area" (Corvers 2009; Konjar 2010) .

In spite of this limitation, it is apparent from the results of the analysis of the Altmark network (a
region where 66.82% of the workers commute outside the region) that the similarity of the
generated and real network is good (as shown in the analysis of Figure 7). However, we have to
keep in mind that the data regarding the commuting flows smaller than 10 are not available for
the Altmark region, and currently we do not know how this limitation impacts on the results. Two
issues have affect on the proposed method when the used data includes individuals residing or
working outside the region. On the one hand, the model will tend to overestimate the traffic
within municipalities, as residents who ought to work outside are distributed within network
municipalities. On the other hand, the number of connections may be underestimated as
residents occupy jobs which should be taken by individuals living outside the region (thus, leaving
municipality with low attractivity without in-commuters).

Such limitations may be addressed with the use of additional data detailing the number of
individuals commuting from or to places outside the region. Alternatively, it is possible to conclude
through aggregated data at the regional level or expertise, whether a region is sufficiently
independent from another regarding the labour market.

The second issue concerns the model calibration. Most of the known power-law networks have an
exponent value situated between 2 and 3. Our first case studies seem to show that the exponent
of our power-law deterrence function varies in the same range. We notice that the error remains
quite low between these two boundaries for 3.

A further possible analysis involves testing the quality of an algorithm free of parameters
proposed by (Simini 2011), even if it does not take directly into account the number of
commuters. Such algorithm should be tested on sparsely populated regions such as the ones we
worked on (i.e., at the municipality level). They apply this principle for the generation of the
commuting network of USA at the county level. This model is very interesting; albeit we question
its quality to reproduce a commuting network for very local regions the ones we studied.

Finally, the model could be improved by the use of other types of distances (such as the
commuting time between municipalities). Although our results show that even using a measure
such as the Euclidean physical distance (in the case of French regions, or a driving distance (in the
case of the Germany region), the model generates networks with similar properties of those
observed by the real data. Such refinement is usually limited by the lack of distance data (in this
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case, commuting time) for the regions. Furthermore, it may be possible to select a better value of
B if additional case study regions with geographical and socio-economic differences are analysed.
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Appendix: Implementation of the model in the NetLogo framework

An example implementation of the model is included to illustrate how the model works. The
implementation was performed in NetLogo 5.0RC4* and may run in previous versions (it was
successfully tested in version 4). The implementation provides a way to visualize the generation of
a network from two input files containing the in-commuting and out-commuting information for
each municipality in a region and the distances between each pair of municipalities.

As mentioned, the model requires two input files to run:

1. The commuters file named commuters.csv: Which should contain a list of municipalities
(one for each line in the file) and the number of individual who commute-out and
commute-in (in that order) for each municipality. Each column must be separated by one
blank space.

2. The distances file named distances.csv: Which should contain the distance between each
pair of municipalities as a three column row containing the origin municipality, the
destination municipality, and the distance between the pair (in that order). Each column
should also be separated by a blank space.

The interface of the implementation is shown in Figure 8. Prior to starting a simulation the beta
parameter must be set in order to define the weight of the distance in the commuting decision.
For illustrative purposes the proportional-sizes control is provided to present each municipality
(depicted as a house in the interface) with a size relative to the initial number of in-commuters
(job availability).
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Figure 8: Interface of sample model implementation in NetLogo

* http://ccl.northwestern.edu/netlogo/
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The buttons go and go-forever are used to run the simulation for one step or for a continuous loop
(until the total number of commuters has been processed). The update-layout button runs a
network layout procedure until pressed again; this may be used to improve the visual position of
the network (it does not have any effect on the simulation results).

Results are reported in the three provided charts, which show the distribution of in-commuters,
out-commuters, and traffic (number of links with a number of commuters are present). The
number of processed commuters and the total number of commuters read from the input files is
also shown.
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Abstract. We aim to generate virtual commuting networks in the rural regions of
France in order to study the dynamics of their municipalities. Since it will be necessary
to model small commuting flows between municipalities with a few hundred or thou-
sand inhabitants, we have opted for the stochastic model presented by Gargiulo et al.
(2012). This model reproduces various possible complete networks using an iterative
process, stochastically selecting a workplace in the region for each commuter living
in the municipality of a region. The choice is made considering the job offers in each
municipality of the region and the distance to all of the possible destinations. This
paper will present methods for adapting and implementing this model to generate
commuting networks between municipalities for regions in France. We address three
different issues: How can we generate a reliable virtual commuting network for a region
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that is highly dependent on other regions for the satisfaction of its resident’s demands
for employment? What about a convenient deterrence function? How to calibrate the
model when detailed data is not available? Our solution proposes an extended job
search geographical base for commuters living in the municipalities, we compare two
different deterrence functions and we show that the parameter is a constant for network
linking municipalities in France.

Manuscript:

Lenormand, M., Huet, S. and Gargiulo, E Generating French Virtual Commuting Net-
work at Municipality Level. arXiv:1109.6759v2 (Submitted in Journal of Transport and
Land Use).

C.1 Introduction

The connection between the home and workplace plays a central role in under-
standing the socio-economic relations in a network of rural municipalities (Clark et al.,
2003; Reggiani and Rietveld, 2010). Indeed, new economic theories assume local posi-
tive dynamics can be explained by implicit geographical money transfers made by com-
muters or retired people (see for example Davezies (2009)). Simulation is becoming an
increasingly convenient tool to study populations and their interactions over the space.
That is particularly the case with the individual-based approaches which allow study-
ing theories at the individual level since they simulate the variations in how individuals
interact with each other and with their environment. Recent modeling reviews show
the increasing use of such a tool (Parker et al., 2003; Waddell et al., 2003; Bousquet and
Le Page, 2004; Verburg et al., 2004; Rindfuss et al., 2004; Birkin and Wu, 2012). However,
these approaches require generation models capable of building reliable virtual com-
muting networks that consider each individual within a population. That is the case
in the SimVillages dynamic microsimulation model we developed during the PRIMA!
project. Indeed, in the SimVillages model, after generating a synthetic population of in-
dividuals (Gargiulo et al., 2010), it is necessary to choose a place of work for each worker
within this population because a commuting origin-destination table was unavailable.

The goal of the European PRIMA project was to understand the dynamics of rural
municipalities in France. At the most, 95% of them have 3000 inhabitants. This means
that most of the commuting flows we want to study are weak, with a spatial distribu-
tion largely determined by chance. This is why we opt for the stochastic model recently
proposed by Gargiulo et al. (2012). Moreover, we want to consider the commuting net-
work on different dates. Detailed data regarding flows between pairs of municipalities
are only available in France for the year 1999. For other dates, the only reliable data is
aggregated data for each municipality, which describes how many people work outside
of the municipality and how many come from outside of the municipality to work. Such
data lacks precision regarding the various places of work and the various municipali-

! PRototypical policy Impacts on Multifunctional Activities in rural municipalities - EU 7th Framework
Research Programme; 2008-2011; https://prima.cemagref.fr/the-project
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ties where citizens reside. Then we also choose the Gargiulo et al. (2012) model for its
ability to generate a population of individuals on a commuting network, starting from
this data. This model reproduces the complete network using an iterative process that
stochastically selects a workplace in the region for each commuter living in the mu-
nicipality of the region. The choice is made while considering the job offers in each
municipality of the region and the distance to all possible destinations. It differs from
the classical generation models presented in Orttizar and Willumsen (2011) since it is a
discrete choice model where the individual decision function is inspired by the gravity
law model, which is not usually employed on an individual level (Haynes and Fothering-
ham, 1984; Orttizar and Willumsen, 2011; Barthélemy, 2011). Moreover, such a model
ensures that for every municipality the virtual total numbers of commuters both com-
ing in and going out are the same as the ones supplied by the data. This paper presents a
method to adapt and implement this model to generate commuting networks between
municipalities for regions in France. This implementation has forced us to address three
different issues: How can we generate a reliable virtual commuting network for a region
highly dependent of other regions to satisfy the need for job for the people living in the
municipalities? What about a convenient deterrence function? How should the model
be calibrated when detailed data is not available?

The first problem to solve involves the fact that regions in France are not islands,
as presented in the example of De Montis et al. (2007, 2010). Indeed, some of the in-
habitants, especially those living close to the borders of the region, are likely to work in
municipalities located outside the region of residence. This part, especially if it is signifi-
cant, causes the generated network to register false if we only consider that people living
in the region also work in the region. A method for solving this problem involves gen-
erating the commuting network only for people living and working in the region. How-
ever, in order to do this it is required that the modeler know the quantity and the place
of residence for individuals who work outside but live in the region. Data providing this
information is very rare. Therefore, we address this issue by extending the job search ge-
ographical base for commuters living in the municipalities to a sufficiently large number
of municipalities located outside the region of residence. Then, we compare the model
without outside municipalities and the model with outside municipalities in 23 regions
in France and come to a conclusion regarding the quality of our solution.

The second problem relates to the form of the deterrence function which governs
the impact of distance on choice of the place of work relative to the quantity of job offers.
The initial work done by Gargiulo et al. (2012) propose the use of a power law. However,
Barthélemy (2011) states that the form of the deterrence function varies greatly, and can
sometimes be inspired by an exponential function, such as in Balcan et al. (2009), or by
a power law function as in Viboud et al. (2006). To choose the much more convenient
deterrence function, we have compared the quality of generated networks for 34 regions
in France obtained with both the exponential law and the power law. Better results were
obtained with the exponential law.

The final problem was related to calibration. The generation model, as with most of
the currently used commuting network generation models, has one parameter to cali-
brate. This parameter governs the impact of distance on the individual decision regard-
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ing the place of work relative to the quantity of job offers. This parameter was calibrated
through minimization of the Kolmokorov-Smirnov distance between the observed and
simulated commuting distance distribution for individuals of the studied region. When
detailed data is not available, it is necessary to find a way to determine this parameter.
The only available distance that can be used is the Euclidian distance. While detailed
commuting network data was available for the year 1999 and could be used for calibra-
tion, it was not available for earlier or more recent years. Though it may be possible to
assume the parameter value does not change over time, a transportation network can
evolve greatly at the local level to reduce the time distance. Such a change cannot be
recorded when using the Euclidian distance. A solution was finally found. Using 34 re-
gions in France, we show that every region can be generated using a constant value for
the parameter. Then, we assume that the parameter value is constant over time and
space.

C.2 Material and methods

C.2.1 The French regions and data from the French statistical office

A complete description of the regions from which the network was generated is pro-
vided in Table C.4. These regions have been randomly chosen for their diversity in terms
of number of municipalities, number of commuters and surface areas. Some corre-
spond to a region while others are closer to the county (known as "departements" in
French).

The French Statistical Office (INSEE) collects information regarding each individ-
ual’s residence and place of work. From this collected data, the Maurice Halbwachs
Center or the INSEE make the following data available for every researcher:

e in 1999, data regarding the numbers of individuals commuting from location i to
location j for every municipality of a region;

¢ in 1990 and 2006, the total number of commuters, the total job offers and the
total number of workers in residence for every municipality. These data allow
computations to be made for the number of workers that commute to their office
of employment for each municipality.

The Lambert coordinates for each municipality are easy to find on the internet. They
allow calculations regarding the Euclidian distance between each pair of municipalities.

Using these data sets, we will begin our implementation of the model presented in
the next section.

C.2.2 The Gargiulo et al. (2012) model

Consider a region composed of n municipalities. We can model the observed com-
muting network starting from matrix R € M;,»,(N) where R;; represents the number of
commuters from municipality i (in the region) to municipality j (in the region). This
matrix represents the light gray origin-destination table presented in Table C.1.
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Table C.1: Origin-destination table for the region; The light gray table represents the commuters
living (place of residence RP) and working (place of work WP) in the region for each municipality
of the region; The dark gray line represents the number of out-commuters from municipality
of the region to the region for each municipality of the region (i.e. the row totals of the light
gray table); The dark gray column represents the number of in-commuters from the region to a
municipality of the region for each municipality of the region (i.e. the column totals of the light
gray table).

The inputs of the algorithm are:

e D=(d;j)<i,j<n the Euclidean distance matrix between municipalities.

e [; the number of in-commuters from the region to municipality j of the region,
1 <j < n (ie. the number of individuals living in the region in municipality i
(i # j) and working in municipality j).

e O; the number of out-commuters from municipality i of the region to the region,
1<1i < n (i.e. the number of individuals working in the region in municipality j
(j # 1) and living in municipality ).

I and Oy can be respectively assimilated to the job offers for those employed in the
region and the job demand of those employed in the region for municipality k, 1 < k <
n. The algorithm starts with:

n
i=1
and
n
Oi = ZR” (C-z)
j=1

The purpose of the model is to generate the light gray origin-destination sub-table
of the region described in Table C.1. To do this it generates matrix S € M, x ,(N) where S;;;
represents the number of commuters from municipality i (in the region) to municipality
J (in the region). It's important to note that S;; =0if i = j. The algorithm assigns to each
individual a place of work with a probability based on the distance from the place of
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residence to every possible place of work and their corresponding job offer. The number
of in-commuters for municipality j and the number of out-commuters for municipality
i decrease each time an individual living in i is assigned municipality j as a workplace.
The algorithm is stopped when all out-commuters have a place of work. The algorithm
is described in Algorithm C.1 with m = n.

Algorithm C.1 Commuting generation model
INPUT: DEeM,;;xn(R), IeN", 0eN", B Ry
OuTPUT: SEM,;»xm(N)
Sij <0
while } " 0;>0do
Simulate i ~ %4 where A= {k|k €|[1, n]|, Ox # 0}
Simulate j from |[1, m]| with a probability:

1;f(dij, B)
S I f(dik, B)

P,'_)j =

S,‘j <—Sl‘j+l

Ij (—Ij -1

O0,—<0;,-1
end while
return S

Gargiulo et al. (2012) uses deterrence function f(d;;, #) with a power law shape:

flay,pr=d;l 1<ij<n. (C.3)

C.3 Statistical tools

This section presents the tools used to calibrate the model and to compare various
implementation choices.

C.3.1 Calibration of the 3 value.

The same method used in Gargiulo et al. (2012) is used to calibrate the  value.
is calibrated so as to minimize the average Kolmogorov-Smirnov distance between the
simulated commuting distance distribution and one building from the observed data.
For the basic model we compute the commuting distance distribution with the com-
muting distance of individuals who are commuting from the region to the region. For
the model focused on the outside we compute the commuting distance distribution
with the commuting distance of the individuals who are commuting from the region to
the region and outside.

As Gargiulo et al. (2012) model is stochastic, the final calibration value we consider
is the average 8 value over ten replications of the generation process.



Generating commuting networks for French regions 143

C.3.2 Anindicator to assess the change.

It is necessary to have an indicator to compare the simulated commuting network
and the observed commuting network. Let R € My, x5, (N) represent a commuting net-
work when R;; represents the number of commuters from municipality i to municipal-
ity j. Let S € My, xn,(N) represent another commuting network for the same munici-
palities. We can calculate the number of common commuters between R and S (Equa-
tion C.4) and the number of commuters in R (Equation C.5):

ny np

NCChyxno($,R)=Y_ > min(S;j, Rij) (C.4)
i=1 j=1

ny n»p

NCnns(R)= Y Y R (C5)
i=1 j=1
From Equation C.4 and Equation C.5 we calculate the Serensen similarity index
(Serensen, 1948). This index is suitable because it corresponds to the common part
of commuters between R and S. Thus it is called the common part of commuters (CPC)
(Equation C.6):

2NCCyp xn,(S,R)

CPC S,R)=
”1><n2( ) NCanZ(R)—l-NCnlxnz(S)

(C.6)

This index has been chosen for its intuitive explanatory power, as it is a similarity
coefficient that provides the likeness degree between two networks. The index ranges
from a value of zero, for which there are no any commuter flows in common in the two
networks, to a value of one, when all commuter flows are identical between the two
networks.

C.4 Generating commuting networks for French regions at mu-
nicipality level

C.4.1 How to cope withregions that are notislands or those that lack detailed
data?

A commuting network is defined by an origin-destination table (light gray table in
Table C.2). At the regional level, this means that it is necessary to know, for each munic-
ipality of residence and for each municipality of employment, the value for the flow of
commuters traveling from one to another. This kind of data is not always provided by
statistical offices and the datasets are usually aggregated: only the total number of out-
commuters and in-commuters for each municipality is available for each (dark gray row
and colum in Table C.2). To apply the model and define the commuting network, unless
we are on a significantly isolated region?, we need to find a way to isolate from the total
number of in(out)-commuters (dark gray row and colum in Table C.2) the fraction that

2 An island for example, in this case gray rows and colums in Table C.2 would not exist
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relates strictly to the region (light gray table in Table C.2). However, this is not a simple
task.

Furthermore, even if these parts can be isolated, a problem remains due to the bor-
der effect. Indeed, if we consider only the region, there is the risk of making an error
in the reconstruction of the network for municipalities near the region’s border. The
higher the proportion of individuals working outside of the region, the more significant
the error will be.

To go further, we propose to change the inputs for the algorithm. Instead of only
considering the regional municipalities as possible places of work, we also consider an
outside of the region. The outside represents the surroundings of the studied area. The
following section describes a method for considering this outside area practically.

C.4.1.1 Anew extended to outside job search base.

We implement the model, while choosing whether or not to take the outside into
account, to generate 23 various regions in France. Their outside is composed of the set
of municipalities of their neighboring "departments".

We consider the outside of the region to be composed of m —n municipalities, where
n represents the number of municipalities in the region. The inputs are the directly
available aggregated data at the municipal level:

e D=(d;j) Jsizn the Euclidean distance matrix between municipalities both in the
same region and in the outside.

® (Ij)i<j<m the total number of in-commuters of municipality j of the region and
outside ofit (i.e. the number of individuals working in municipality j of the region
or the outside and living in another municipality).

® (Oi)1<i<n the total number of out-commuters of municipality i of the region only
(i.e. the number of individuals living in municipality i of the region and working

in an other municipality).

The purpose of the algorithm that introduces the outside is to generate the origin-
destination table (light gray and gray sub-table in Table C.2). To do this the algorithm
presented in Algorithm C.1 is used to simulate the Table C.3. From this, through differ-
ence the Table C.2 can be obtained with the total number of in-commuters (I;)1<j<n,
the total number of out-commuters (O;)1<i<, and the light gray table of the Table C.3.

A matricial representation of the origin-destination table presented in the light gray
and gray sub-table in Table C.2, known as the simulated matrix S € M, 4+1)x(n+1)(N) is
obtained. S;; represents:

¢ the number of commuters from municipality i (in the region) to municipality j
(in the region) ifi,j #n+1;

o the number of commuters from outside to municipality j (in the region) if i = n+1
andj#n+1;

o the number of commuters from municipality i to outside if i #n+1and j = n+1.
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Table C.2: Origin-destination table; The light gray table represents the commuters living and
working in the region for each municipality of the region; The gray column represents the out-
commuters living in the region and working outside (Out.) for each municipality of the region;
The gray line represents the in-commuters working in the region and living outside (Out.) for
each municipality of the region; The dark gray line(column) represents the total number of
out(in)-commuters for each municipality of the region.

WP
RP M, M; M, Out. | Total
Ml 0 le Rln Rlout
Mi Ril Rl] Rin Riout
Out- Routl s Rout] eee Routn
Total

Table C.3: Origin-destination table from the region to the region and the outside; The light gray
table represents the commuters living (place of residence RP) and working (place of work WP)
in the region for each municipality of the region; The gray table represents the commuters living
(place of residence RP) in the region and working (place of work WP) outside of the region.

wP
RP Ml eee Mj eee Mn Mn+1 s Mm
Ml 0 s R]] s R]n R1n+1 s le
M; Riq Rij Rin Rint1 Rim
Mn Rl’ll e Rn] e 0 Rnn+1 oo an

C.4.1.2 Comparison of the two models: Assessing the impact of the outside.

We assess the impact of the outside through a comparison between the network
generations for 23 French regions both with and without the outside. The generation is
made on a municipality scale using a power law deterrence function.

Both implementations are compared through their CPC values for each region. We
replicate the generation for each region ten times and our indicator on each replicate
is calculated. In all the presented figures, the indicator averages ten replications. The
variation of the indicator over the replications is very low, averaging 1.02% at most. Con-
sequently, this is not represented on the figures. Figure C.1 presents the common part
of commuters CPC, (S, R) between the simulated network S and the observed net-
work R obtained with the regional job search base (square) and obtained with a job
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search base comprising the region and its outside (triangle). It’s important to note that
for the implementation without outside S € M,,« ,(N) while for the implementation with
outside S € M(;+1)x(n+1)(N). In order to compare the two models, the regional network
(commuters from the region to the region) must be taken into consideration. Indeed, in
the without-outside cases NC,,x,(S) = NCpxn(R) but this is not necessarily true for the
with-outside cases.

Figure C.1 shows that the two job search bases give results which are not different.
Thus, introducing the outside solves the problem linked to a lack of detailed data with-
out changing the quality of the resulted simulated network. Indeed, one must keep in
mind that the inputs for the with-outside cases do not require detailed data in compar-
ison to the without-outside cases.
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Figure C.1: Average CPC for 23 regions. The squares represent the basic model; The triangles
represent the model with outside.

C.4.2 Choosing a shape for the deterrence function

The next problem relates to the form of the deterrence function which rules the im-
pact of distance on the choice of the place of work relative to the quantity of job offers.
The initial work done by Gargiulo et al. (2012) proposes to use a power law. However,
Barthélemy (2011) states the form of the deterrence function varies significantly, and
can sometimes be inspired by an exponential function as in Balcan et al. (2009) or by a
power law function as in Viboud et al. (2006). Through choosing the much more conve-
nient deterrence function, we compare the quality of generated networks for 34 French
regions obtained with the model with outside using both the exponential law and the
power law.

A deterrence function following an exponential law is introduced:

f(dij,/i)=e_ﬁdif 1<i<nandl1<j<m . (C.7)

To compare the two deterrence functions, we have generated the networks of 34
various French regions (see Table C.4 for details) that replicate ten times for each region.
The networks were generated with a job search base for the algorithm that considers the
outside.
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For example, Figure C.2 shows that we obtained a better estimation of the Auvergne
commuting distance distribution when using the exponential law.
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Figure C.2: Density of the Auvergne commuting distance distribution; the solid line represents
the observed commuting distance distribution; the dotted line represents the commuting dis-
tance distribution obtained with the calibrated model with a job search base comprising the out-
side and the exponential law; the dashed line represents the commuting distance distribution
obtained with a job search base comprising the outside and the power law. The two simulated
commuting distance distribution are computed for one replication each.

More systematically, we plot, for the exponential law and power law, the average of
the replications for the common part of commuters CPC;,+1)x(n+1)(S, R) in Figure C.3.
This clearly indicates that the average proportion of common commuters is always bet-
ter when using an exponential law represented by squares.
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Figure C.3: Average CPC for the power shape (triangle) and the exponential shape (square) for

34 french regions.
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C.4.3 Spatial Analysis

To better understand how CPC is spatially distributed at a more granular level we
mapped the CPC by municipality for three models and three study areas. In Figure C.4,
it can be observed that for all case studies (in rows) the highest values of the CPC were
obtained by municipalities using the model with an exponential shape including the
outside (third column). It can also be noted that the model without the outside (second
column) and the model with the power shape including the outside (first column) give
results which are not wholly different.

As we can see in Figure C.4, the CPC values are not uniformly distributed in the
municipalities of the three areas. The error seems to increase as distance from the urban
areas increases.

We now focus on the third model with an exponential shape including the outside to
better understand which types of municipalities compose the three clusters (CPC < 0.5,
0.5 < CPC £ 0.75 and 0.75 < CPC). We identify the number of out-commuters as the
most explanatory variable. Indeed, we can observed in Figure C.5 that the distribution
of the number of out-commuters in each cluster is significantly different. The higher the
average number of out-commuters, the higher the CPC. Having performed analyses of
variance (ANOVA) for each case study, we obtained significant differences between the
averages for the number of out-commuters in each cluster with a 0.95% level of confi-
dence for each case study.

For the three regions, the CPC value is strongly linked to municipality characteris-
tics. Indeed, the municipalities with 0.75 < CPC are urban and suburban municipalities
with a high number of out-commuters that are closed to a large urban municipality. In
contrast, the municipalities with a low number of out-commuters that are far from large
urban municipalities have a CPC lower than 0.5. For this type of municipality, the com-
muting flows are very small. Thus they are difficult to reproduce with the mechanisms
taken into consideration. However, the distance to cities does not appear to be partic-
ularly responsible for the error. The timing for the job offer arrival on the job market is
probably much more significant in determining the local topology of the network than
elsewhere. These flows represent about 4% of the total number of out-commuters for
the Auvergne region, 1% for Bretagne and 5% for Aquitaine.

C.4.4 Calibrating the model for French regions

The final problem involves the calibration process, which previously required de-
tailed and accurate data.

Figure C.6 shows the calibrated 8 values for each of the 34 regions in France. It can
be observed that these values display subtle variations from about 1.7-10~4 to 2.4-10~*
with the average f valued (C =1.94-10~%) corresponding to the red line.

Then we hypothesize that it is possible to directly calibrate the algorithm to generate
the 34 regions in France, by using a constant equal to C. To study the influence of this
approximation on the common part of commuters we have computed the CPC with C
as the parameter value for the 34 regions. We observe in Figure C.7 that the influence
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Figure C.4: Maps of the average CPC by municipalities obtained with ten replications. In green
CPC <£0.5; In yellow 0.5 < CPC < 0.75; In red 0.75 < CPC. (a), (d) and (g) Model with the power
shape without outside; (b),(e) and (h) Model with the power shape with outside; (c), (f) and (i)
Model with the exponential shape with outside. (a)-(c) Auvergne case-study; (d)-(f) Bretagne
case-study; (e)-(h) Auquitaine case-study. Base maps source: Cemagref - DTM - Développement Informatique

Systeme d'Information et Base de Données : EBray & A.Torre IGN (Géofla®, 2007).
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Figure C.5: Boxplots of the number of out-commuters in term of the CPC by municipality for
the model with the exponential shape with outside. (a) Auvergne case study; (b) Bretagne case
study; (c) Aquitaine case study:.

of the f3’s approximation on the CPC is very weak. It can then be noted that the average
CPC obtained with C is, for some regions, higher than the CPC obtained by the  value
that is not averaged. It is possible that the common part of commuters is better with
another beta value because it is not a calibration criterion.

It is not necessary to study the influence of the ’s approximation on the calibration
criterion. Indeed, from the studies made by Gargiulo et al. (2012), we know the CPC
and the calibration criterion show a significant correlation. The CPC and the calibration
criterion follow the same evolution in terms of 8. The f value for minimization of the
Kolmogorov-Smirnov distance is very close to the one obtained for maximization of the
CPC (see the Figure 7 in Gargiulo et al. (2012) which perfectly illustrates this relation).
The CPC values remain quasi-identical to f=C or to § valued from the calibration pro-
cess presented in Sub-section C.3.1, the quality of the approximation of the calibration
criterion, i.e. the commuting distance distribution, remains the same.
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Figure C.6: The circle represents the average calibrated f values for ten replications (The confi-
dent interval is composed of the minimum and the maximum) for each regions; the line repre-
sents the average 3 value for the 34 regions.




Discussion and conclusion 151

1.0 1
4
3] & Ny
5 o
g 091
g ® ®
o m ®
s}
- 0.8 & a &
g = ) ™ £ w
&)
c o a® INE=N @m & w
o 0 oy &)
E 0.7 @ O
IS N
S
O
0.6
LA S e L B S B B B S LA A e S B R AR I
AN ONOVDOANMIINONDNOANNTOONDDOANM S
YAt AANNNNNNNNNANDR MO O
[INTRTRTRTRTRTRTRT qiqidhiqidhidhididhididhqidhididhidhidhidhidiidh i g o gn ¢
[T T TR T T T T T T T T T T T T TR TR TR TR TR T TR TR TR T

Figure C.7: Common part of commuters for the 34 regions; The squares represents the average
CPC (10 replications) obtained with the calibrated 8 value; The triangles represents the average
CPC (10 replications) obtained with the estimated § values (average 8 value over the 34 cali-
brated f values).

C.5 Discussion and conclusion

To study the rural area dynamics through microsimulation, we need virtual com-
muting networks that link individuals living in the municipalities of various French re-
gions. As the studied scale is very low, the flows are low, and we thus decided to opt for a
stochastic generation algorithm. The one recently proposed by Gargiulo et al. (2012) is
relevant to our problem. Starting from this model, we implement the commuting net-
works of 34 different French regions. The implementation work leads us to solve three
practical problems.

The first problem involves the fact that our French regions are not islands. Indeed,
some of the inhabitants, especially those living close to the border of the region, are
likely to work in municipalities located outside the region of residence. However, classi-
cal approaches to generating commuting networks consider only residents of the region
that work in the region. That is also the case for ours. Data providing details, or knowl-
edge, allowing the modeler to evaluate people living in the region but working outside is
difficult to obtain. Thus, we address this issue by extending the geographical base of the
job search for commuters living in the municipalities to a sufficiently large number of
municipalities located outside the region of residence. We compare the model without
municipalities located outside and the model with outside municipalities to 23 French
regions. We are able to come to a conclusion regarding the relevance of our solution
which keeps the value of our quality indicator identical. At the same time, it is not nec-
essary to have information regarding those who do not work in the region, which allows
us to generate networks using only the aggregated data.

The Gargiulo et al. (2012) model is based on the gravity law. Then, our second prob-
lem relates to the deterrence function, which is more of a power law or an exponential
law depending on the study. Moreover, as empirical studies comparing generated net-
works to "real" data are extremely rare (Barthélemy, 2011), few know which is better.
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In order to select the more convenient one for our French regions, we have compared
the quality of generated networks for 34 regions obtained with both the exponential law
and the power law. Better results were obtained with the exponential law, no matter the
region. Indeed, the 34 regions display significant variance in regards to surface area, the
number of municipalities, and the number of commuters.

The final problem involved calibration. Applying a model with an extended job
search base and an exponential deterrence function, we found a constant equal to
1.94-10~* to be a perfect parameter value for generating commuting networks for French
administrative regions, no matter the region. However, we did not test this result for
other countries with different types of administrative regions. The robustness of this
result to commuting networks of different scales has been studied in Lenormand et al.
(2012). The B value correlated to a scale consistent with the results obtained in this
paper.

A spatial analysis of three different case studies has been proposed, and it was
shown that the CPC value by municipality strongly correlated with the number of out-
commuters for the municipality. Our model is not able to reproduce very small flows
which represent between 1 and 5% of the total flows in the region we studied. However,
we continue to question if it makes sense to attempt to reproduce them.
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Table C.4: Description of the regions

Number of Number of Regi Average
ID Region municip. municip. eglon area municip. area Number of
8 HCIp. CIp (km?) P commuters
(region) (outside) (km?)

FR1 Auvergne 1310 3463 26013 19.86 295776
FR2 Bretagne 1269 1447 27208 21.44 653710
FR3 Ain 419 2809 5762 13.75 162370
FR4 Alsace 903 3081 8280 9.17 440961
FR5 Aquitaine 2296 2835 41309 17.99 700452
FR6 Mayenne 261 3124 5175 19.83 69915
FR7 Lozere 185 1859 5167 27.93 12273
FR8 Poitou-Charente 1464 2467 25810 17.63 375363
FR9 Centre 1842 4718 39151 21.25 624693
FR10 Midi-Pyrénée 3020 3845 45348 15.02 546162
FR11 Limousin 747 3169 16942 22.68 139481
FR12 Franche-Comté 1786 3317 16202 9.07 268399
FR13 Haute-Normandie 1420 3536 12317 8.67 469335
FR14 Haute-Marne 433 3914 6211 14.34 42690
FR15 Vosges 515 3808 5874 11.41 92053
FR16 Lorraine 2339 3067 23547 10.07 547457
FR17 Creuse 260 1814 5565 21.40 23949
FR18 Languedoc-Roussillon 1545 3046 27367 17.71 409116
FR19 Charente-Maritime 1948 1983 25606 13.14 375363
FR20 Haut-de-Seine 36 1245 176 4.89 973173
FR21 Yveline 262 1543 2284 8.72 618741
FR22 Val d’Oise 185 1707 1246 6.74 526600
FR23 Val de Marne 47 1234 245 5.21 642092
FR24 Haut-Rhin 377 2283 3525 9.35 183504
FR25 Tarn et Garonne 195 2338 3718 19.07 41600
FR26 Pyrénée-Atlantique 547 449 4116 7.52 65469
FR27 Alpes-Maritimes 163 353 4299 26.37 163445
FR28 Loire 327 2788 4781 14.62 178828
FR29 Territoire de Belfort 102 2031 609 5.97 45185
FR30 Seine-Saint-Denis 40 783 236 5.90 655200
FR31 Essonne 196 1597 1804 9.20 518321
FR32 Ardennes 463 2588 5229 11.29 59963
FR33 Aube 433 2728 6004 13.87 75561

FR34 Corréze 286 2088 5857 20.48 49815
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D.1 Introduction

This study investigates the possibility to define the endogeneous dynamics of cre-
ations and destructions of services, as well as the creation and destruction of jobs, in
the PRIMA microsimulation model'. The aim is to include in the model some rules
that create or destroy services, and to create or destroy jobs in the services according to
changes in the population of the municpality.

Hence, the objective of this paper is to elaborate statistical rules that provides the
likely availability of services and the number of jobs in Auvergne municipalities except
Clermont-Ferrand (1309 municipalities), from a set of variables describing the munic-
ipality (demographic and geographic descriptors). The demographic and geographic
data describing the municipality are provided by the "Census". The numbers of jobs by
services come from a survey carried out on one quarter of the population.

! see Huet and Deffuant, 2010, a Common Framework for the Microsimulation Model in PRIMA project,
PRIMA working Paper
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D.2 Predicting the number of jobs in services

D.2.1 Explanatory variables

The explanatory variables used in the model are :

e Density of population (people by meter?)
e Population

e Population 0-14 years

e Population 15-29 years

e Population 30-59 years

e Population over 60 years

e Number of unemployed

¢ Number of outgoing commuters

e Number of incoming commuters

¢ Number of farmers employed

o Percentage of retired people

e Travel time to access the most frequented town (min)

We assume that the number of job in services depends on the municipalities caracteris-
tics and location. The explanatories variables were selected to that effect.

D.2.2 Method

Let J be the variable stating the number of jobs of a given category of services in the
different municipalities. Let Y = {Y¥;}1<;<p be the p explanatories variables describing
the demography and geography of the municipalities. The purpose of this method is
to determine a subset of g decorrelated variables E, E C Y, which provides the best
prediction of J through a GLM :

q
J=Bo+ ) BiYi+e

i=1

Where ; (j €1[0, g]|) are parameters and € is the residual vector.

Algorithm

Initially, we choose the Y variable the most correlated whith J, noted Y{;;. We obtain
two sets of variables E; = Y1) and E» = Y/Y[;). The set E; represents the selected vari-
ables for the model. In the next steps, the algorithm tries to add relevant variables to
Ell

¢ We define subset of candidate variables E»; selected in Ej, as follows: a variable Y{;
of E is selected if and only if we have |cor(Y;), ¥(j))| < r for all ;) € E; (r is a parameter
and 0 < r <1). This enables us to insure the independence of candidates variables with
the variables of the model. If E»; =@ we stop the algorithm.
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e Then, we choose in E,; the variable which omptimises a criterion C (see below for
different type of criteria). We include this variable into E; and we suppress this variable
of a set Ey;. If there is no variable which optimises the criterion we stop the algorithm.

o It’s possible that because of the addition of a variable in the model, one or several
coefficients of variables already in the model become non-significant(see below for the
significativity-test). In this case, we suppress these variables from E; and we include
them into Eo;.

So we have E» = E»1 U Eo»

Criterion

Residual sum of square (RSS)
n
RSS=Y (X;— X}’
i=1

When X; is the approximation of X; by the GLM, 1 <i < n.

Akaike information criterion (AIC)

RSS

Bayesian information criterion (AIC)

BIC=nln (?) +In(n)(g+1)

Correlation criterion
If Z is the variable candidate the correlation criterion is |cor(Z,(X—X))|, when X is the
approximation of X with the GLM without the variable candidate Z.

Significance criterion
For a model :

p
X=Po+ Y _PiYite
i=1
The significance test for a coefficient B; (0 < k < p) is: Hy: "Bx = 0" and H; :
"Bk #0". Under the null hypothesis, the statistic T = # follow a law S;,— 1
IX=XIZ 2 yyy-
n—p—1 kk

of Student with n—p—1 degree of freedom. So the coefficient for a risk a is no-significant
if the p-value p =P(S,—p—1 > |T]) > a.
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Figure D.1: Number of jobs. Blue diamonds: simulated values; Red triangles: observed values.

D.2.3 Results

We have separated the 1309 munuicipalities in two groups. The first one is used for
the construction of the model (66%) and the second one for the validation (33%). For
each service, we have used the method described previously, the coefficients associated
to the variables are discribed in the Table D.1. We observed that the higher are the popu-
lation, the population between 15 and 29 years and the percentage of retired people, the
higher is the number of jobs in services. The farther is the municipality from the most
visited town, the higer is the number of jobs in services.

To validate the model we have constructed two indicators :

e Percentage of good answers. The predictions are rounded to the nearest multiple
of 4 because the data come from a survey about one quarter of the population.

o Percentage of good answers with an error inferior or equal to 4.

The results are shown in the Table D.2. On average, we have around 80% of good
answers and 13% of errors are inferior or equal to four.

To check the results at the regional level we draw up the graphic below. For each ser-
vice, we compare the real and the simulated number of jobs in the region. We observed
that the results are globally good.

The next step is to continue this study with groups of services (such as health, edu-
cation, leisure, basic).
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Table D.1: Coefficient of the GLM for each kind of service

Travel time to
Service Intercept Population i‘i;.::él;;g:p?z n?;:f‘s;stiltl: d
city
Nursery school -2,0401 0,0035 0,0293 0
Elementary school -2,0226 0,0075 0 0,0944
Junior hight school -9,8059 0,0115 0 0,4470
High school -21,8209 0,0171 0,4842 0
Nursery -2,1317 0,0020 0,0411 0
Health Center -0,0283 0,0002 0 0
Pharmacy -3,1896 0,0034 0,0430 0,0714
Ambulance -0,1429 0,0005 0 0
General Praticioner -5,5929 0,0055 0,1213 0
Dentist -1,5018 0,0017 0,0312 0
Veterinary -0,7194 0,0008 0 0,0433
Auxiliary Medical -1,5499 0,0021 0,0379 0
Hospital -43,7759 0,0316 1,0268 0
Clinical -0,8810 0,0060 0 -0,1365
Police Station -6,6966 0,0057 0,1565 0
Post Office -4,1422 0,0061 0 0,2216
Automotiv repair -0,2955 0,0025 0 0
Mason 0,8415 0,0067 0 0
Carpenter 0,9397 0,0026 0 0
Plumber -1,3877 0,0030 0 0,0697
Hairdressing -4,2821 0,0043 0,1012 0
Restaurant -2,6569 0,0047 0,0591 0
Groceries 0,1347 0,0012 0 0
Hypermarket -5,4726 0,0051 0,1030 0
Supermarket -3,1587 0,0047 0 0,1091
Bakery -1,4188 0,0041 0 0,0575
Butcher meat -2,9586 0,0030 0,0616 0,0660
Fishmonger -0,0911 0,0002 0 0
Bookshop -2,1375 0,0020 0,0482 0
Clothing store -7,7926 0,0063 0,1806 0
Shoe store -1,8320 0,0013 0,0341 0,0223
Appliance Store -1,1066 0,0013 0,0237 0
Furniture store -0,7909 0,0017 0 0
Drugstore -0,7319 0,0022 0 0
Cinema -0,2602 0,0002 0,0060 0
Fuel station -0,1735 0,0006 0 0
Coffee Tobacco -0,1558 0,0004 0 0,0121
Tobacco -0,0808 0,0003 0 0
Laundry -0,6510 0,0012 0 0
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Table D.2: Percentage of good answer for each kind of service

Servi Percentage of good Percentage of good
ervice answers with an error
answers <4
Nursery school 82,56 94,42
Elementary school 53,02 83,26
Junior hight school 61,16 76,74
High school 73,02 82,09
Nursery 88,84 96,98
Health Center 99,07 100,00
Pharmacy 80,70 94,88
Ambulance 94,19 98,14
General Praticioner 80,23 92,33
Dentist 90,70 98,14
Veterinary 91,16 97,44
Augxiliary Medical 85,35 95,81
Hospital 70,23 76,51
Clinical 76,74 88,84
Police Station 80,00 92,56
Post Office 60,23 83,49
Automotiv repair 76,74 92,09
Mason 32,09 81,40
Carpenter 58,84 89,30
Plumber 74,19 95,12
Hairdressing 80,23 95,35
Restaurant 70,23 90,23
Groceries 79,07 92,79
Hypermarket 83,72 90,70
Supermarket 75,12 90,47
Bakery 72,79 89,07
Butcher meat 78,14 92,56
Fishmonger 98,60 100,00
Bookshop 90,23 96,74
Clothing store 78,60 91,16
Shoe store 91,86 97,21
Appliance Store 90,93 97,91
Furniture store 91,16 96,05
Drugstore 86,51 95,12
Cinema 99,30 99,77
Fuel station 93,95 98,37
Coffee Tobacco 94,65 99,07
Tobacco 97,44 99,07
Laundry 93,02 98,60
Mean 81,19 92,97
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D.3 Predicting the presence and absence of services

In this section, we try to predict the presence or the absence of services in the differ-
ent municipalities. Indeed, it can be important to include this dynamics in the model
because it can have an impact on the probability that people settle in the municipality
or not.

D.3.1 Explanatory variables

The explanatory variables used in the model are :

e Density of population (people by meter?)

e Population

e Population 0-14 years

e Population 15-29 years

e Population 30-59 years

e Population over 60 years

¢ Number of unemployed

e Number of outgoing commuters

e Number of incoming commuters

e Number of farmers employed

e Number of jobs

e Percentage of retired people

e Travel time to access the most frequented town (min)
e Distance to the nearest urban pole (meter?)
e Main town of a "canton" (binary)

We assume that the presence of a service depends on the municipalities caracteris-
tics and location. The explanatories variables were selected to that effect.

D.3.2 Method

We have a variable to be explained X. We have a set of variables Y = {Y;}1<;<; com-
posed by p explanatory variables. We use a logit model:

| 1lifthereis the service
| 0otherwise

1

PX=1|%,... Y,)=
( | ! m) 1+ef(ﬂ0+zf=1ﬁiyi)

When B; (j € 1[0, p]|) are parameters. We used a stepwise algorithm with Bayesian
information criterion to select the variables the most explanatory for each service.
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D.3.3 Results

For each services, we have used the method described previously to construct a GLM
with the data of 1988 in Auvergne. The coefficients associated to the variables are dis-
cribing in the Table D.3. We observed that the variable used by the major part of services
are Population over 60 years and Main town of a "canton". The probability of a presence
of a service increases if it’s a main town of a canton.

To validate the model we have constructed tree indicators :

e Percentage of good answers.
e Percentage of 0 "catch" by the model.
o Percentage of 1 "catch" by the model.

The results are discribing in the Table D.4 for the Auvergne in 1988 and 2007. To
validate the model we observed the results for 2007, about 62% of services have more
than 70% of 1 "catch" by the model and about 90% of services have more than 70% of 0
"catch" by the model. The method is running well for allmost all the service.

The results at the national level are discribing in the Table D.5. We observed that
about 50% of services have more than 70% of 1 "catch" by the model and about 89% of
services have more than 70% of 0 "catch" by the model.

These results are reasonably satisfactory. However, the approach should now be
adapted when considering broader groups of services (basic, health, education, leisure).
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Table D.3: Coefficient of the GLM for each kind of service
'}‘ravel Distance
time to .
. Main to the
Population Percentage access town near-
Service Intercept Population over 60 of retired the ofa est
years people town’s
fre- canton urban
quentest(min) pole
Nursery school -3,1525 0,0045 0 0 0 1,8316 0
Elementary school -1,8003 0,0175 0 -0,0285 0 0 0
Junior hight school -5,9126 0 0,0085 -0,0827 0,0644 2,7427 0,0001
Health Center -4,6287 -0,0009 0,0063 0 0,0646 0 -0,0001
Pharmacy -7,9636 0,0029 0,0156 0 0 5,0488 0,0001
Ambulance -3,8480 -0,0011 0,0125 0 0 1,4751 0
General Praticioner -6,7065 0,0035 0,0122 0 0 4,3575 0,0001
Nurse -3,3989 0,0013 0,0090 0 0 2,1669 0
Physiotherapist -3,1578 0 0,0130 -0,1016 0,0405 1,4224 0
Dentist -6,5629 0,0036 0 0 0 2,7314 0,0001
Treasury -6,0121 -0,0010 0,0063 0 0,0777 5,1709 0
Job center -3,2001 0,0002 0 -0,0610 0,0546 3,2949 0
Police station -6,4060 0 0,0033 0 0,0787 5,0247 0,0001
Post office -3,4737 -0,0023 0,0337 -0,0410 0 16,6582  0,0001
Bank -6,3183 0 0,0129 -0,0898 0,0731 3,3406 0,0001
Automotiv repair -1,7686 0 0,0225 -0,0300 0 15,1279 0
Mason -1,3064 0,0025 0,0074 0 0 0 0
Plasterer painter -2,3924 0,0040 0 0 0 1,3873 0
Carpenter -1,3039 0 0,0158 0 0 0 0
Plumber -1,1131 0 0,0163 -0,0490 0 2,2831 0
Electrician -1,7380 0 0,0155 -0,0354 0 1,6171 0
Hairdressing -4,3541 0 0,0241 -0,0764 0 2,9036 0,0001
Veterinary -4,3797 -0,0005 0,0050 0 0,0472 2,0757 0
Restaurant 0,2584 -0,0019 0,0232 -0,0252 0 0 0
Seniors: -4,4917  -0,0008 0,0082 0 0,0462  2,1472 0
Accommodation
Groceries -3,0197 0 0,0251 0 0 14,4594 0,0001
Hypermarket -2,9347 0,0001 0 0 0 0 -0,0080
Supermarket -3,8019 0 0,0068 -0,1311 0,0900 0 0
Large surface craft -4,6882 0 0,0018 0 0,0675 1,3724  -0,0001
Bakery -3,1932 0 0,0234 0 0 15,6587 0
Butcher meat -4,7440 0 0,0223 0 0 3,7717 0,0001
Fishmonger -1,0961 0 0,0025 -0,0271 0,0250 0 0,0001
Bookshop Stationery -5,8711 0 0,0105 0 0,0409 2,8087 0,0001
Clothing store -5,3591 0 0,0085 0 0,0408 2,0967 0,0001
Shoe store -5,3088 0 0,0066 0 0,0353 1,8684 0,0001
Appliance Store -4,2433 0 0,0091 0 0 1,8648 0,0000
Furniture store -3,4620 0 0,0038 0 0 1,6209 0
Drugstore -3,5742 -0,0011 0,0155 -0,0484 0 2,3776 0,0001
Cinema -5,1465 0 0,0016 0 0,0631 1,5374 0
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Table D.4: Percentage of good answer for each kind of service in 1988 and 2007

Percentage P Percentage
. of good ercentage Percentage of good Percentage Percentage
Service answers of 0 catch of 1 catch answers of 0 catch of 1 catch
1988 1988 1988 2007 2007 2007
Nursery school 84,57 93,99 67,17 79,98 79,63 82,22
Elementary school 88,92 64,38 94,24 81,13 51,46 98,19
Junior hight school 95,95 98,47 73,88 95,42 98,48 66,40
Health Center 97,63 99,68 41,30 97,40 98,44 53,33
Pharmacy 94,81 97,85 83,80 94,42 97,45 83,85
Ambulance 91,37 97,76 54,40 92,21 94,57 70,99
General 93,43 97,67 80,43 93,51 96,37 84,59
Praticioner
Nurse 87,24 96,39 63,76 89,92 96,27 72,09
Physiotherapist 92,67 97,55 66,99 90,30 99,52 53,44
Dentist 94,73 98,10 76,59 94,81 98,44 76,61
Treasury 97,17 98,40 85,60 96,03 96,36 91,92
Job center 94,04 98,01 48,08 97,48 97,91 64,71
Police station 96,49 98,70 79,74 97,10 98,46 85,92
Post office 83,19 92,15 70,64 88,77 90,25 85,11
Deposite and 96,41 98,51 82,04 92,21 98,90 59,64
savings banks
Automotiv repair 77,31 83,55 71,60 79,91 83,92 73,80
Mason 75,02 69,18 78,51 71,28 62,80 80,00
Plasterer painter 79,60 91,71 62,84 76,09 86,65 60,57
Carpenter 73,26 67,26 77,02 70,44 64,90 76,08
Plumber 77,31 88,73 63,77 74,26 91,68 55,13
Electrician 79,37 92,12 60,15 78,53 92,20 57,39
Hairdressing 91,83 97,24 75,83 83,88 98,26 56,15
Veterinary 93,12 98,22 46,09 94,12 98,55 54,89
Restaurant 78,15 11,45 97,73 71,96 25,30 93,93
Seniors: 92,90 97,74 57,86 92,82 98,39 60,00
Accommodation
Groceries 78,69 79,16 78,35 75,71 68,86 89,74
Hypermarket 99,31 99,92 20,00 98,85 100,00 11,76
Supermarket 96,72 99,02 65,56 94,65 99,50 44,35
Large surface craft 97,56 99,45 44,44 96,72 99,52 39,34
Bakery 82,05 92,23 69,04 85,18 91,73 75,33
Butcher meat 86,63 95,02 69,25 86,78 89,09 79,07
Fishmonger 64,63 82,16 43,00 82,89 82,84 85,71
Bookshop 94,65 98,56 73,00 93,74 96,37 77,09
Stationery
Clothing store 93,28 98,20 65,31 92,97 94,37 78,99
Shoe store 93,28 97,99 59,88 93,35 94,18 78,87
Appliance Store 90,68 97,77 58,30 91,14 92,03 80,77
Furniture store 91,37 98,37 34,27 95,11 97,56 58,54
Drugstore 91,29 97,83 63,45 90,22 92,36 70,99

Cinema 96,03 99,36 29,03 97,25 98,67 42,42
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Table D.5: Percentage of good answers for each kind of service in 2007 in France

Service Pi::::‘;l;:sg;g;??gd Percentage of 0 catch  Percentage of 1 catch
2007 in France 2007 in France
France
Nursery school 78,28 78,12 78,82
Elementary school 79,67 48,56 97,96
Junior hight school 94,96 98,36 64,66
Health Center 96,10 98,11 44,53
Pharmacy 92,55 94,41 86,29
Ambulance 92,18 94,93 69,20
General Praticioner 90,79 94,48 81,25
Nurse 88,07 93,18 74,26
Physiotherapist 90,97 99,04 61,84
Dentist 93,82 97,17 78,70
Treasury 92,20 97,54 26,35
Job center 98,53 99,36 50,33
Police station 90,32 96,39 34,23
Post office 85,88 86,94 83,11
Deposite and savings 91,06 98,64 56,10
banks
Automotiv repair 78,49 79,30 77,30
Mason 71,85 63,41 79,90
Plasterer painter 77,13 82,77 69,42
Carpenter 73,42 70,29 76,65
Plumber 74,67 87,36 60,83
Electrician 77,34 88,82 60,13
Hairdressing 84,46 98,12 60,38
Veterinary 93,27 99,37 42,06
Restaurant 62,06 26,27 95,72
Seniors: 90,91 98,88 46,80
Accommodation
Groceries 73,25 66,78 91,19
Hypermarket 97,56 99,81 20,78
Supermarket 93,39 99,21 50,54
Large surface craft 94,23 99,26 28,36
Bakery 83,94 86,64 79,56
Butcher meat 84,50 85,76 80,37
Fishmonger 83,01 82,91 85,36
Bookshop Stationery 92,58 96,03 71,28
Clothing store 93,03 96,14 70,57
Shoe store 94,49 95,64 78,46
Appliance Store 90,85 92,59 75,21
Furniture store 93,59 97,54 51,95
Drugstore 89,63 92,13 67,97
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