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The exciton-polariton research field has undoubtedly passed a threshold dur-
ing the last decades since the first observation of strong coupling in semiconductor
microcavities in 1992 [1], the technological progresses in the sample growth, semi-
conductor physics, optical technics and the theoretical development have led to
the demonstration of fascinating original phenomena and to revisit several classics
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as well. It appears that, at the time I'm writing this thesis, anything looks ex-
pectable from these hybrid quasiparticles. I guess that C. Weisbuch and its cowork-
ers wouldn’t have expected in the early 1990’s that exciton-polaritons could offer the
possibility to explore for instance the black hole [2| or magnetic monopole physics
[3, 4] that shall be discussed in this thesis manuscript. Indeed, the facility to create
almost any sample design allows now to look further than the classical planar mi-
crocavities, with the appearance e.g. of microwires [5], confining the polariton field
in two directions or quantum dots/micropillars, providing zero dimensional states
[6, 7, 8]. In this context, I really had the opportunity to let my imagination drive
me at some stages. The imagination appears now to be the only limitation to people
working in the field. For the previous reasons, the interplay between experimental-
ists and theoreticians has probably never been so strong. It led non-exhaustively
to the observation of nothing less than the Bose-Einstein condensation [9], a super-
fluid behavior [10, 11], numerous nonlinear effects [12, 13], spin sensitive phenomena
[14, 15, 16, 17, 18] and topological excitations [19, 20, 21, 22| during the years 2000.
The present work fits in the continuity and is built on the basis of these fascinating
results.

The manuscript will be presented as follows: In the chapter 1, I shall introduce
the main mathematical tools and physical concepts that were the raw material for
the descriptions of the systems we considered. Then we will turn to the topics
that have been treated during my three years thesis. In more details, I shall start
with a voluntarily short introduction on the now well-known formation of exciton-
polaritons in semiconductors, to rather linger on describing the models that are
used to analyze their behavior depending on the regime of interest. Then T will
specifically discuss the Bose-Einstein condensation and related superfluidity and
topological defects which constitute the main topic of this manuscript. Eventually
we will introduce the spin of polariton and the related features. During the chapter
2 I concentrate on the spinor exciton-polariton condensate highlighting on how my
very first work on the stability of half-vortices has led later on to their interpretation
in terms of magnetic monopoles along with our recent understanding of these so-
called half-integer topological defects. I will propose several realistic configurations
for the nucleation of these objects and, on this road we will make stops at the physics
of solitons and black hole analogues that we have put into interplay. In chapter 3,
I will concentrate on the physics of exciton-polaritons in even lower dimensional
systems, describing the formation of nonlinear gap states and Bloch-oscillations in
periodically patterned quasi-1D microwire samples and the Josephson oscillations
in pairs of quasi-0D micropillars.
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1.1 Exciton-polaritons

1.1.1 The basics

Bulk semiconductors or even dielectrics are known to accommodate conduction
electron-hole pairs, interacting via the Coulomb force. The dipole can be treated
as a quasi-particle called ezciton [23], which can be of the Wannier-Mott or Frenkel
type depending on the relative size (Bohr radius) with respect to the crystal unit
cell. Such electronic excitations are known to interact with the electromagnetic
field carried by photons as first described independently by Pekar [24], Hopfield
[25], and Agranovich [26] in the 1950’s. However, such events remain rare in the
bulk medium (apart from GaN and ZnO semiconductors) where excitons are allowed
to move freely. Later on, in order to obtain a significant interaction strength between
the excitons and photons towards the so-called strong light-matter coupling, arti-
ficial hybrid structures were required. Indeed, the input photonic electromagnetic
field (e.g. from a coherent source) can be confined in a well controlled manner using
a pair of distributed Bragg reflectors having the proper periodicity (DBRs), with a
cavity between them (a Perot-Fabry resonator), while the excitons can be trapped
in quantum wells as described in semiconductor textbooks [27]|. The optimal config-
uration involves quantum wells embedded in between the DBRs at the antinodes of
the photonic wavefunction so that the overlap integral becomes maximized. In the
so-called planar microcavities the photonic and excitonic fields are confined along
the growth axis of the sample and are allowed to evolve freely in the two remaining
directions said to be in-plane. Fig.1.1 shows a scheme of a typical microcavity. One
crucial point is that due to the confinement, the photons gain a parabolic dispersion
for in-plane propagation and are therefore attributed an effective mass, their dy-
namics can be consequently described by means of the Schréodinger equation rather
than standard Maxwell equations simplifying considerably the description of their
coupling to the excitonic field.

Figure 1.1: Scheme of a microcavity having here two quantum wells in the optical
cavity placed at the antinodes of the electric field.
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The simplest mean of describing the exciton-photon mixing is to treat the system
as two coupled oscillators writing the Hamiltonian of the system the following way:

H = Z Eqb ¢k¢k + Z Ey Xka + hQp Z Egb (d’ka + Xk¢k) (1.1)

Here cZ)L and ¢k (XL and xx) are the second quantization bosonic operators that
describe the creation and destruction of a photon (exciton) with in plane momen-
tum k = (kg ky)? respectively. E, (k) = h%k%/2mg4 + 6 (§ is the detuning be-
tween the photonic and excitonic modes at k = 0) and E, (k) = h%k?/2m,, are the
parabolic dispersions relations of the uncoupled fields. Qg is the Rabi frequency
which describes the strength of the light matter coupling. The diagonalization is
straightforwardly obtained finding the eigenvalues of the matrix:

Ey (k) hQ
e (5 )

that give two hybrid dispersion branches describing the so-called ezciton-polariton
modes [30]

B0 = 4 (B09+ B, <k>—wE¢ 19 B, <k>]2+4h9%) (13)
Ey (k) = 1 <E¢( )+ \/E¢ E, (k)]? +4hQQR> (1.4)

The corresponding eigen vectors give the k-dependent excitonic x ¢ and photonic
¢r,u fractions of the polaritons for both branches

\/4h29§% — [Ey — Ex] <EX — By + \/[E¢, — B+ 4h29§%>
or (k) = (1.5)
\/ 2(Ey — E\|* + 8h20%

\/4712% + [Ey — Ex] (E¢ — B+ \/ [Ey — B\ + 47129%%)

ou (k) = (1.6)
V2IEs — BJP + 8h20%
i (k) = 02 (17)
\/47129%3 By Ex] <EX — Byt \J 1By — B + 4712%)
wik) - M2 (18)

%mm% + [Ey — Ex] <E¢ — B+ \/ [Ey — B\ + 4h29§%>

We note that we have imposed ¢r(k)? + xr(k)? = 1 and ¢y (k)? + xv(k)? = 1.
The new polariton creation and annihilation operators are linear combination of the
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exciton and photon operators following

pre = xo(k)bk + ¢r(k)af (1.9)
phe = xe(Rbl + dr(k)ax (1.10)
pe = xu®)bk + du(k)al (1.11)
Pl = xv(bl + du(k)ax (1.12)

The Hamiltonian of the system written on the basis of polariton operators is
diagonal

Hp =Y Ep(k)phprc+ > Eu(K)pipux (1.13)

k Kk

The exciton-polariton is therefore a quasi-particle oscillating between a photonic

state and an excitonic state at the frequency Qg/h at least at k = 0 and for zero

detuning. The two dispersions branches are shown in the Fig.1.2(a) together with

the fractions in the panel (b). It is seen that static polaritons of the lower branch

are strongly photonic while their excitonic fraction increases with their momentum.

6 " 1.0
ﬁos
4
=y =
[ -
£ 2 =06
5‘ —
[ ~e
= 0 S 04
X X
w2 <02
g
s 0.0
-4x10° -2x10° 0 2x10°  4x10° -4x10° -2x10° 0 2x10°  4x10°
k(m™") k(m™)

Figure 1.2: (Left panel) Polariton branches with the parameters Qp = 5 meV,
0 = —2meV, myg = 5 X 10~®myg and my = 0.4mg (mg is the free electron mass).
(Right Panel) Associated photonic (blue curve) and excitonic (purple line) fractions
for the lower polariton branch.

1.1.2 Exciton-polariton interactions

Although photons are obviously able to interfere in any medium, they cannot inter-
act directly in the sense that they cannot scatter on each other (unless very high
energies are involved). In other words, no energy exchange is possible and the quan-
tum state is left unchanged after the crossing of two photons. There is no doubt
that photonic systems can demonstrate nonlinearities, as it would be confirmed by
the large community of people working in the field of nonlinear optics however, they
result from the media itself, leading for instance to second harmonic generation, bire-
fringence, or self-focusing [28]. While excitons can attract each others in the high
density regimes to form biexcitons or even an electron-hole liquid, in the low density
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regime they behave as bosonic particles, repelling each other like neutral atoms.
Besides, excitons can interact with the surrounding lattice excitations (phonons)
as well. Indeed, the excitons can absorb phonons to reach higher energy levels, or
emit phonons demonstrating energy relaxation. These interactions are dissipative
and they can be treated by means of the Lindblad formalism [29] that will be dis-
cussed in the section (3.4). The exciton-polariton consequently inherits the bosonic
properties from its excitonic part, together with the capacity to interact, which is
especially strong for high momenta, where the particles are strongly excitonic. The
polariton-polariton interaction has a crucial impact on their dynamics and has lead
to the demonstration of numerous fascinating nonlinear phenomena such as the op-
tical parametric oscillations [12], bistability [13], or Bose-Einstein condensation [9]
(here, however, phonon scattering should dominate) and its counterparts. The latter
effect will be discussed in the next section.

Exciton-exciton effective interactions are included in the Hamiltonian via the
density-density term:

1
_ (AL
Hy =5 D Vbl bl o Db (1.14)
kk'.q
The interaction of photon-like polaritons in the upper dispersion branch can be
neglected, provided that this branch is not significantly occupied. Transformation

of the interaction Hamiltonian in the polariton basis yields
1 PP
Hpp = 3 Z Vq,k7k/PL+qu_qpkl)k’a (1.15)
k7k,7q
with the interaction strength

VqI,le,k’ = V¢ (k+aq) xz (K —a) xz (k) xz (K') (1.16)

The Hamiltonian for the interacting polaritonic system reads
H=Hp+ Hpp. (1.17)

This retains only the energy conserving polariton-polariton interactions that lead
to a density-dependent blueshift of the polariton modes. An extra term taking
into account the anharmonic exciton-photon coupling saturation could be added as
discussed e.g. in Ref.[31] in order to account for the exciton density-dependent Rabi
splitting.
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1.2 Bose-Einstein condensation

In this section we introduce first the concept of Bose-Einstein condensation in its
mathematical formulation as it was originally proposed by Einstein [Sec.(1.2.1)] and
then extend the concept to the two dimensional polaritonic system. At the time
I’'m writing this manuscript, the Bose-Einstein condensation of exciton-polaritons
and their superfluidity are still under debate [see e.g. [32, 33]], which means by
the way that the subject is definitely interesting. The impressive number of recent
experimental reports based on the polariton condensation argument demonstrate at
least that the effect in question cannot be something completely different. Along
this document, the condensate terminology will be associated with the notions of
accumulation of particles in their ground state and the build-up of macroscopic co-
herence. We will discuss here the polariton condensate forming naturally, thanks
to relaxation processes, under non-resonant pumping scheme [Sec.(1.2.2)]. The ar-
tificial quasi-resonant injection of particles in well defined states leading to macro-
scopically occupied modes will be discussed later in Sec.(1.3). We will then describe
the superfluid properties [Sec.(1.2.4)] of the condensate and introduce the concept
of topological excitations |Sec.(1.2.5)].

1.2.1 Original concepts

Thanks to the symmetry of their wavefunction, bosons are allowed to accumulate
in a single degenerate quantum state. In 1925, extending the work of S. Bose [34]
on photon statistics, A. Einstein proposed that a new phase transition should occur
for noninteracting bosons at low temperature [35]. The fact that at zero Kelvins all
particles should remain in their ground state is not very surprising, as it follows from
Boltzmann theory corrected for the statistics, however the description of the finite
temperature counterpart was clearly a breakthrough. Until the early 1990’s, the
ultracold temperatures required to observe the phase transition for atomic gases were
technologically unreachable and only the year 1995 brought the first experimental
observation of a Bose-Einstein condensate awarded by the Nobel prize [36].

Let us consider N noninteracting bosons at the temperature 7' confined in a
volume R?, where R is the system size and d is the dimensionality. Their distribution
is given by the function:

1

fB(vanu): E(k)— )
exp (71(@3)Tu) -1

(1.18)

where k is the d-dimensional wavevector, E(k) is the dispersion relation of the
particles, kp is the Boltzmann constant and p is the chemical potential, which is
actually negative if E(0) = 0.

Adding a particle to the system requires an energy —u. The value of p is given
by the normalization condition for the fixed total number of particles N,

k
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The ground state can be separated from the others

N(T,p) =
k£0

)_1+Zf3(k,T,u) (1.20)

exp <— —k;‘T

In the thermodynamic limit, the total particle density is obtained replacing the sum
by an integral over the reciprocal space:

: N(T,/J,) 1 e d
T )= 1 —_— = k, T, 1) dk 1.21
TL( 7/'L) R*lgfoo Rd no + (27T)d fB( ) 7”) ) ( )
where 1 .
Top)= lim —— .
no( 7/") R—1>I£oo Rd exp (%) 1 (1 22)
B

If i1 is nonzero, the ground state density vanishes. On the other hand, the integral
on the right hand side is an increasing function of u. So, if one increases the
particle density n in the system, the chemical potential also increases. The maximum
particle density that can be accommodated following the Bose-FEinstein distribution
is therefore:

1 too

ne(T) = lim p / fs (k,T) d% (1.23)
#=0 (2m)% Jo

This function can be calculated analytically in the case of a parabolic dispersion
relation F(k) = h%k%/2m. It converges for d > 2 and it diverges for d < 2. This
means that an infinite number of bosons can always be accommodated in the system
following a Bose-Finstein distribution, the chemical potential is never zero and there
is no phase transition in 2 or less dimensions. In higher dimensions, n. is a critical
density above which it would seem that no more particles can be added. Einstein
proposed that at such high densities the extra particles collapse into the ground-
state, whose density (not accounted for in 1.23) is therefore given by

ne(T) = n(T) — ne(T). (1.24)

The Bose-Einstein condensation is a phase transition characterized by the accumu-
lation of a macroscopic number of particles in their ground state. The chemical
potential embodies an order parameter which becomes zero at the transition.

For the 1D or 2D systems we will consider in this manuscript, the Bose-Einstein
condensation is forbidden strictly speaking for the reason of divergency mentioned
above. However, in 2D the transition to a superfluid state can occur, the so-called
Kosterlitz-Thouless [37] transition. This effect will be described in the section
(1.2.5.3). Moreover, in a finite 1D or 2D system the quasi-condensation of bosons is
possible, because in that case the integral in Eq.(1.23) converges, since the system
is quantized and the summation excludes the divergent region close to the ground
state.

A few years after the observation of the phenomenon in ultracold atomic vapors,
condensates of excitons [38], magnons [39] and exciton-polaritons [9] were claimed.
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In the latter case, the experiment was performed at 5K in a CdTe/CdMgTe micro-
cavity with 16 quantum wells. Later on, other evidences of the polariton condensa-
tion emerged [40, 41, 42]. Fig.1.3 shows the results extracted from the now famous
paper of Kasprzak et al. displaying the angular distribution of the spectrally inte-
grated emission. Below threshold (left), the emission exhibits a smooth distribution
centered around an emission angle of zero degrees, that is, around k = 0. When
the excitation intensity is increased, the emission from the zero momentum state
becomes predominant at threshold (center) and a sharp peak forms at k = 0 above
threshold (right). (b) shows the energy and angle-resolved emission intensities. The
width of the momentum distribution shrinks with increasing excitation intensity,
and above threshold, the emission mainly comes from the lowest energy state.
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Figure 1.3: Condensation of cavity polaritons from Ref.[9]. (a) Far field emission pat-
tern for three different excitation powers at 5K. (b) Energy resolved spectra showing
the typical narrowing of the particle distribution around k£ = 0 above threshold.

Several ingredients of a true Bose-Einstein condensate have now been observed:
above a critical density, condensation takes place in the ground state. The degen-
erate Bose gas appears fully thermalized at 19 K, supporting the interpretation
of a thermodynamic phase transition - a transition between different equilibrium
states. It has been shown later that, despite the finite polariton lifetime, the result-
ing bosonic gas can indeed reach a thermal equilibrium at an effective temperature,
determined by the interactions with the phonon bath [43|. Spontaneous symme-
try breaking (associated with the emergence of an order parameter) has also been
demonstrated by measuring random (from pulse to pulse) polarization of the con-
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densate and studying its statistics in bulk GaN sample [42], where the polarization
of the condensate is not pinned.

More recently, quasi-one dimensional condensation of polaritons was reported in
wire shaped microcavities by Wertz et al. [5]. In this experiment, the condensate
was injected locally and formed at finite momentum due to the repulsion from
the excitonic reservoir and therefore was allowed to propagate ballistically on large
distances with respect to the de Broglie wavelength. The spatial coherence of the
polariton cloud was shown in that experiment to extend over the whole 200 pum
long wire which was an outstanding result, opening new fundamental and applied
perspectives.

1.2.2 Semiclassical Boltzmann equations

The general procedure to populate the polaritonic ground state at low temperature
is the following: a nonresonant (far blue detuned from the polariton branches) laser
pump excites the high energy region of hot free carriers. The latter relax, forming
excitons that subsequently interact dissipatively with the surrounding phonon bath
to eventually reach the polariton part of the dispersion and its ground state [see
Fig.1.4]. These relaxation processes can be accurately described by means of simple
semi-classical rate equations: the Boltzmann equations.

| relaxation from continuum
| via LO-phonon
| emission

1.460

E(eV)

1.455 |

thermalized exciton
population in reservoir

bottleneck region
10° 10
k(cm™)

6

Figure 1.4: Scheme of the formation of a polariton condensate under non-resonant
pumping scheme. The high energy exciton relax down the dispersion emitting
phonons towards the ground state at k = 0.

It was first proposed by Uhlenbeck and Gropper [44] to include the quantum
nature of the particles into the Boltzmann equation, taking into account their
fermionic or bosonic character. In this section we describe the derivation of the ki-
netic Boltzmann equations and present briefly the semiclassical approach for bosons
and fermions. Finally, the main scattering mechanisms in semiconductor microcav-
ities will be discussed.
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Our starting point is the usual Liouville-von Neumann equation for a quantum
system:
in® _ [Ifl(t),p] , (1.25)
dt
where p is the density operator of the system in the interaction representation and
H (t) is the time dependent Hamiltonian describing the interaction of polaritons and
phonons given by

I:I(t) = Z Vk,k’ei(ﬂk/_Qk_wk/*k)tbk/—kakaird + h.c. (126)
KK/

a and b are the polariton and phonon operators respectively. These terms describe
the excitation of a polariton, assisted by the absorption a phonon carrying the energy
difference between the initial and final state. The hermitian conjugate stands for
the reversed processes. The strength of these processes is governed by the matrix
element Vi . The Liouville equation can be transformed by time integration of

Eq.(1.25) and resubstitution in Eq.(1.26):
dp 1 [t a4 A
i=w/ (), [f1(r). p(7)] | ar (1.27)

After the application of the Markov approximation which consequently forbids the
description of any coherent processes, Eq.(1.27) can be integrated yielding

d 1
d—': = 3 Z Z Wik <2a;f(ak/pa;r{,ak — aka;r{a;r{,ak/p — pakaLaL,ak/)
k kAk/
1 f f bt tot
+ 3 Z Z Wi sk <2ak,akpak/ak — Ay Oy Oy AP — pak/ak,akak> (1.28)
k kK
where
Wi = 2 Z [Viere |2 0 §(E(K)— Ek) Fhwxx)  (1.29)
= L+ ey

The Born approximation allows the density matrix to be factorized into the product
of phonon pp;, and boson contributions p corresponding to the different states in the
reciprocal space.

o=@ ] (1.30)
k

The populations of polariton states with wavevector k lie on the diagonal elements
.|.

of the density matrix pg: nx = Tr <akakpk). The same can be applied to the
phonon density matrix. Both populations are assumed to be given by an equilibrium
distribution. The densities dynamics are nothing but the semi-classical Boltzmann
equations and read

dnk

W = —nk ; Wk—)k’ (1 + nk/) + (1 + nk) ; Wk’*)knk' (131)
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Taking into account pump and lifetime-induced polariton decay , one can rewrite
Eq.(1.31) the following way

dnk

W = P — I'enig — nie Ek; Wk k! (1 + nk/) + (1 + nk) Ek; Wi xeni, (1.32)

where Py is the pump source term, 'y is the particle decay rate and Wy _, is the
total scattering rate between states k and k’. This total scattering rate can describe
various physical process, including the interaction between phonons and polaritons
described above. The fermionic counterpart of Eq.(1.32) reads:

dny

W = —Nk %: Wk—>k’ (1 — nk/) —+ (1 — nk) %: Wk/_,knk/, (133)

A similar, but mathematically heavier procedure, can be used to describe the
polariton-polariton scattering process [45]. Given the Boltzmann dynamics, the
main task to be performed in order to describe the relaxation kinetics of particles
in this framework is to compute the scattering rates. One should first identify the
physical processes involved, and the rates follow from the Fermi golden rule. This
procedure is correct only if the scattering processes are weak and treatable in a
perturbative fashion. Interactions should provoke the scattering of particles within
their dispersion relation and should not lead to any energy renormalization. In gen-
eral, this can be not assumed for a strongly coupled microcavity. One should first
treat non-perturbatively the exciton-photon coupling giving rise to a polariton basis,
then, the polaritons can be said to weakly interact with their environment, which
provokes the scattering of polaritons within their dispersion along with Boltzmann
equations. The scattering rates are treated perturbatively, being induced by weak
interactions. The interaction-induced blueshift of the polariton dispersion requires
further theoretical treatment [46, 47].

In a semiconductor microcavity the main scattering mechanisms identified are:
Polariton decay (mainly radiative), polariton-phonon interaction, polariton-free-
carrier interaction, polariton-polariton interaction, polariton-structural-disorder in-
teractions. These scattering rates have been carefully analyzed in Refs.[48, 49, 50,
45, 51], where the main tools were developed towards the simulation of the polariton
relaxation dynamics.

In order to obtain condensation, polariton relaxation should be faster than their
decay. Indeed, one well-known issue is the so-called bottleneck effect, discussed by
Tassone et al. (1997) [49], observed experimentally by Tartakovskii et al. (2000)
[52] and by Miiller et al. (2000) [53]. In the excitonic part (large wavevectors) of
the dispersion, the exciton-polaritons relax towards the ground state via scattering
with phonons. This relaxation mechanism is faster than the particle decay, thanks
to the strong excitonic fraction. Once the edge of the strongly coupled part of
the dispersion is reached, the polaritons still need to dissipate a certain amount of
energy (in the meV range) to reach the ground state of the trap. Depending on
the steepness of the dispersion (that is, on the detuning and Rabi splitting), this
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process, if assisted only by acoustic phonons, may take a long time, longer than
the polariton lifetime in this region. Therefore, polaritons can not strongly popu-
late the states of the dispersion minimum and they accumulate at the edge of the
polariton trap where the density of states is large. Fig.(1.5) shows the observation
of the bottleneck effect extracted from Ref.[53]. This effect manifests as a strong
photoluminescence intensity at the inflection point of the lower polariton branch.
To overcome this problem, experimentalists are used to invoke larger pump powers
or positive photonic detuning that imposes a smoother polariton dispersion favoring
larger lifetimes and faster relaxation due to larger excitonic fractions.

Figure 1.5: Bottleneck effect in a CdTe based microcavity at 9K with negative detun-
ings from Ref.[53]: (a) Photoluminescence spectra and (b) corresponding theoretical
polariton dispersion.

We have given the basic tools required for the description of the polariton relax-
ation occurring under non-resonant injection schemes. We underline that no phase
coherence of the resulting condensate can be describe within this formalism. The
Gross-Pitaevskii equation takes the relay in that case as we will see in the following
section.

1.2.3 The Gross-Pitaevskii equation

Once the relaxation processes have successfully populated the ground state forming
a condensate, the Boltzmann equations are no longer suitable to the description
of the spontaneous coherence that emerges. The Gross-Pitaevskii formalism is an
extension of the famous Bogoliubov theory [54], the latter treating the case of a
uniform Bose gas. The Gross-Pitaevskii theory considers a non-uniform (in the
general case) and dilute interacting Bose gas for which collective properties become
predominant. We will follow in this section the standard description of Ref.[55]. The



14 Chapter 1. Introduction to the exciton-polariton physics

starting point is the Hamiltonian of weakly interacting bosons. A Bose condensate
corresponds to a macroscopically occupied state, the corresponding field operator
U(r) can be written on the basis of single particle wavefunctions ¢;

U(r) = > b, (1.34)

ot

where a;(a)) are the annihilation (creation) operators of a particle in the state ¢;

and they obey the commutation relations
[&1, aﬂ = b3, an, aj] = 0. (1.35)

The wave function g relative to the macroscopic eigenvalue Ny, which is nothing
but the population of the ground state or the number of particles in the condensate,
plays a crucial role and characterizes the so-called condensates order parameter. It
is useful to separate in the field operator the condensate term (for ¢ = 0) from the
other ones:

U(r) = do(r)ao + Z hizo(r) . (1.36)

This is the natural starting point for the Bogoliubov approximation, which consists
in substituting the operators ag and dg with the c-number /Ny. It is equivalent to
ignoring the non-commutativity of the operators ap and dg and is a good approxi-
mation for the description of the macroscopic phenomena associated with the BEC,

here Ny = <aga0> > 1. In fact, the commutator between the operators ag and

dg is equal to one, while the operators themselves are of the order of v/Ny. The
Bogoliubov approximation is equivalent to treating the macroscopic component of
¢oao of the field operator Eq.(1.36) as a classical field, so that Eq.(1.36) can be
written as

T(r) = Uo(r) + 6(r), (1.37)
where we have defined o (r) = vNogo(r) and §¥(r) = >_iz0 @i(r)a;. If one can ne-

glect the non-condensate component 5\11(1'), as it should be at very low temperatures,
then the field operator coincides exactly with the classical field ¥g. The validity
of the Bogoliubov approximation is guaranteed by the occurrence of a macroscopic
occupation of a single particle state Ny > 1.
The function ¥y is called condensate wavefunction and plays the role of an
order parameter, which is a complex quantity, characterized by a modulus |¥(r)| =
no(r) (no = No/V is the condensate’s density) and a phase 0(r):

W (r) = +/ng (r)e?®). (1.38)

The order parameter characterizes the Bose-Einstein condensate’s phase and van-
ishes above the critical temperature.

In order to study the interacting nonuniform Bose gases it is necessary to ex-
tend the previous theory. We will use the Bogoliubov field operator in its general
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form Eq.(1.36). This implies that the operator ¥(r,t) is replaced by its classical
counterpart Wo(r,t) (the order parameter). The starting point is the many-body
Hamiltonian:

. A h 1 A A ~
H = /dr\I/Jr (r) [_QmA + Vear (r) + 3 /dr’\IlJr )V (-r)v (r’)} U(r)
(1.39)
The next step is to obtain an equation, which governs the field Wq(r,¢). For this

purpose one should remember that the field operator W(r,t), in the Heisenberg
representation, fulfills the exact equation

m%@(r,t) - [@(r,t), H] (1.40)
272
= [— ZZL + Vet (r,t) + / v (v, t)V (' —r) (r',t)dr’ | U(r,t).

It would be a mistake to replace W(r,t) with Wo(r,t) for a realistic interac-
tion potential. The replacement is however accurate using an effective potential
Vess = ad(r’ —r), for which the Born approximation is applicable. This potential
should reproduce the same low energy scattering properties as the bare potential V.
Assuming that the function Wy(r,t) varies slowly over distances of the order of the
range of the interaction force, one can substitute r’ with r in the arguments of ¥y,
leading to the famous Gross-Pitaevskii equation (GPE) written for the (non-zero)
mean field (U(r,t)) = U(r,t):

0 h2v? 9
ith—W (r,t) = (— + Vet (r, 1) + | Ug (1, 1) | > Uy (r,t) (1.41)
ot 2m

As one can immediately see, this equation coincides with the Schrédinger equa-
tion, apart from the extra nonlinear term of strength «, the latter describes the
effective particle interactions that introduce an extra density-dependent potential
a|¥q (r,t) |2. One interesting thing to note is that the mass m that enters the equa-
tion in the kinetic energy part, is that of the particles composing the condensate and
not the mass of the condensate as a whole. It originates from the fact that the GP
equation is local and therefore the mass shouldn’t depend on the size of the system.
The validity of Eq.(1.41) is not restricted to soft potentials, but holds, in general, for
arbitrary forces, the s-wave scattering amplitude providing the relevant interaction
parameter. Eq.(1.41) was derived independently by Gross [56] and Pitaevskii [57]
and is now the main theoretical tool for investigating nonuniform dilute Bose gases
at low temperatures. For the exciton-polariton case, the interaction constant has
been determined numerically [50, 58] to be

6E X3 a?
o= 2L
S

where Ej is the exciton binding energy, ap is the 2D exciton Bohr radius, X¢ is

(1.42)

the excitonic fraction and S is a normalization area corresponding e.g. to the pump
spot extension or the size of the sample for an homogeneous pump.
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The mean field approximation encompassed in the previous formalism forbids
to take into account any decoherent or dephasing processes. This equation stands
for the condensed states solely and any quantum fluctuations or scattering with
the environment requires to develop extensions. The complementarity with the
semi-classical Boltzmann equations becomes especially clear. Several attempts were
performed in order to bridge the two theories [59, 47, 60, 61, 62, 63]. Each of them
being accurate up to some limits, so far none of them has been able to describe the
formation of a condensate via relaxation processes, that is, the formation of spon-
taneous coherence. Therefore, depending on the system under study, theoreticians
have to switch between the different available models.

1.2.4 Elementary excitations and superfluidity

Armed with an efficient means of describing the condensate, let us discuss the text-
book problem of finding its elementary excitations [55]. We shall consider weak
perturbation propagating (at wavevector k) on top of the condensate, the latter
being initially defined by the wave function 1y associated with the density ng. We
will restrain ourselves to the one dimensional case (k — k), the two dimensional
case being straightforwardly obtained substituting k& with its radial counterpart
ky = /K2 + kg the dispersion being isotropic provided that the condensate forms

at k = 0. The perturbed order parameter reads:
P (r,t) = \/ng + Ae'tkr=et) 4 pre~ilhe=et) (1.43)

where we assume the energy zero reference to coincide with the energy of the ground
state (condensate) at k = 0. Here A and B are the weak amplitudes of the counter
propagating modes having the complez frequency w. The injection of this expres-
sion into the Gross-Pitaevskii equation 1.41, and linearization of the corresponding
expression yields the following system:

h2k?
h2k?

—hwB = TB-i—omo (A+ B) (1.45)
m

Nontrivial solutions of this system exists if its determinant is zero, which gives the
Bogoliubov dispersion law of elementary excitations (consequently called bogolons).
The dispersion is linear for small k and tends to the dispersion of a free particle in

case of large k:

R2k2\?  h2k?

hwy = :i:\/<> + —an (1.46)
2m m

The first thing to notice is the negative frequency branch defined by Aw_, the latter
has recently been evidenced in a polaritonic system [64, 65| under the stimulation
of a probe beam. The second thing is that in the limit of small wavevectors the
dispersion becomes linear, which means that one can define a speed ¢ = \/an/m for
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the Bogolons called speed of sound. Indeed, these excitations being density waves
propagating on top of a (quantum) fluid, they can be associated with sound waves.
In the opposite limit of large &, the spectrum recovers a parabolic dispersive shape.
The amplitudes A4 (k) and By (k) associated with each branch are found solving the
system with the previously found w4 under the normalization condition A2 +B% =1
yielding:

A ’2 (Wi + a|1/10|2)2 (1.47)
+ = .
<wi —wy — alwo\Q)Q + <a|¢0]2)
2
IB:” = (Wi _ awoﬁ) (1.48)

<wi —wp — a]wo\2)2 + <O¢]¢0]2)

which gives nothing but the amplitudes of the states with wavevector k. One of the
most fascinating properties of a Bose-Einstein condensate is its capability to flow
without any dissipation (friction) and to exhibit an infinite thermal conductivity.
The so-called superfluidity discovered by Kapitza [66] and independently by Allen
and Missener [67] with liquid Helium has obviously attracted much interest. L.
Laudau proposed in 1947 [68] a criterion which allows a propagating BEC to remain
superfluid at subsonic velocities 0 < v < ¢. The BEC would therefore ignore any
defect crossing its flow. For v > ¢, the BEC is said to be supersonic, and the
superfluidity is lost as we will see.

Previously, we have described a static BEC and its excitations formed at k =
0 which for sufficient density (which gives the extension of the linear part) will
obviously be superfluid. However, it is possible for the condensate to form at finite
k owing to some external potential. In that case, the dispersion of elementary
excitations is no more isotropic and one should modify the ansatz, introducing the
condensate wavevector ko and energy wo(ko):

U (e.) = 0000 (g 4 AT | proitkr=D) - (1.49)

The new dispersions branches on a slice along the direction of kg are found from
the transformation k — k — ko and w(k) — w(k — ko) +w(ko), and consequently the
symmetry between wy and w_ is lost. Two regimes to be distinguished are shown in
the Fig.1.6, where Bogoliubov dispersions are plotted. When the condensate forms
with a wavevector corresponding to a subsonic velocity namely v = dw/dk < c,
there is no final state for the Rayleigh scattering (which conserves the energy of the
system) of the propagating BEC. In that case the condensate is said to be superfluid.
On the contrary, for a supersonic regime, namely for v > ¢, the dispersion shape
is modified in such a way that the backscattering becomes possible again within a
single branch.

Another simple way to define the superfluidity criterion is to consider a uniform
fluid at zero temperature flowing along a capillary with a constant velocity v. In that
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Figure 1.6: Dispersions of elementary excitations of a condensate forming at finite
momentum. The dashed line is the bare dispersion. The solid red (black) line
shows a superfluid v < ¢ (supersonic v > ¢) spectrum, the dotted black line is the
bare parabolic dispersion of the particles involved in a linear regime and the dashed
horizontal black line guides the eye to available backscattering points. As one can
see, no Rayleigh scattering is possible in the superfluid regime.

case, dissipation may only come from the scattering with the walls from the capillary.
The basic idea of the derivation is to calculate the energy and the momentum in the
reference frame moving with the fluid and in the static one. The link between the
two frames is obviously given by a Galilean transformation. If a single excitation
with momentum hk appears, the total energy in the moving frame is £ = Ey+¢(k),
where Ej is the energy of the ground state and (k) is the dispersion of the fluid
excitations. In the static frame however, the energy and momentum of the fluid
read:

1
E' = Ey+e(k)+ hkv+ §M”U2 (1.50)
P = p— Mo, (1.51)
where M is here the total mass of the fluid. The energy of the elementary excitations

in the static case is (k) + hkv. Dissipation is possible only if the creation of
elementary excitations is profitable energetically, which means:

e(k) + hkv < 0. (1.52)

Therefore, the dissipation can take place only if v > % In other words, the flow

stays superfluid if the velocity is smaller than the critical velocity v.. This is the

Ve = min <5§Z)> . (1.53)

Landau criterion:
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The link between Bose-Einstein condensation and superfluidity becomes espe-
cially clear noting that given W(r,¢) — a solution of the equation for the field operator
in Heisenberg representation — then:

U (r,t) = U (r — vt) e (mr—zmv?) (1.54)

where v is a constant vector, is also a solution of the same equation. This follows
directly from the Galilean invariance of the field operator. In the moving coordinate
system the condensate wavefunction of a uniform fluid is defined by ¥y = \/1Toe_i“t/ h
where p is the chemical potential (the energy of the condensate). In the static
coordinate system, the order parameter takes the form ¥ = \/770620, where

1 1
(r,t) = 7 [mvr - (2mv2 + ,u> t} (1.55)
is the new phase, while the amplitude ng has obviously not changed. It follows that
the velocity is proportional to the gradient of the phase:

h
v=—Vo. (1.56)
m

This velocity is the so-called superfluid velocity. The phase of the order parameter
is playing the role of a velocity potential. Another way of establishing the relation
(1.56) is to calculate directly the velocity field from:

U(r,t) = /n(r,t)e?™ (1.57)
vt = —zwiizw[\If*(r,t)V\If(r,t)—\If(r,t)V\If*(r,t)] (1.58)

Eq.(1.56) infers a very important property to the ensuing flow. Indeed, looking
at how the latter responds to a rotation by calculating rot(v), one immediately
finds that it is zero. Which means that the flow is irrotational and would therefore
completely ignore any imposed rotation. Keeping this in mind, we will turn back to
this statement in the section (1.2.5.2).

The very first observation of quasi-Bose-Einstein condensation of exciton-
polaritons [9] did not support the superfluid picture. Strong inhomogeneous spatial
distributions and a flat dispersion around k = 0 fed much controversy. Various
following works attempted to describe this effect using various models [69, 59, 70].
Later on, two groups have independently claimed the observation of the superflu-
idity of exciton- polaritons [11, 10, 64]. As an illustration, we show in Fig.1.7 a
series of images of a nonlinear resonantly injected polariton wavepacket colliding
against a structural defect in real space [panels cI-cIII and dI-dIII] and in reciprocal
space [panels cIV-cVI and dIV-dVI], extracted from Ref.[11]. The superfluid behav-
ior is evidenced here by a suppression of backscattered waves (or Cerenkov waves)
at subsonic velocities [see panel (a)]. This statement is supported by the k-space
representation, where the polariton condensate does not change its momentum (no
emission from backscattered states is visible), which is a signature of superfluidity,
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Figure 1.7: Superfluid motion of a polariton droplet and its collision with a structural
defect from Ref.[11]: (c-I)-(c-IIT) Real space images increasing the pumping power.
In the supersonics regimes (c-I) and (c-II) backscattered waves (Cerenkov waves) are
clearly visible while they vanish in (c-III) evidencing the superfluid regime, the flow
ignores the defect. The panels (c-IV)-(c-VI) show the associated reciprocal space
revealing the suppression of backscattering in (c-VI). The panels (d-I)-(d-VI) show
the corresponding numerical results.

as we have seen previously. Besides, under different conditions, Utsunomiya et al.
[10] have reported the first observation of interaction-induced renormalization of
the polariton dispersion, which was in qualitative agreement with the Bogoliubov
theory [54], demonstrating a low momentum linear part. The sound velocity de-
duced from their experiments was of the order of 108 cm - s™'. This value is eight
orders of magnitude larger than that of atomic BECs, resulting from the very light
polariton mass and the seven orders of magnitude stronger interactions. Accord-
ing to the Landau criterion Eq.(1.53), the observation of this linear dispersion in
the low-momentum regime is an indication of superfluidity in the exciton-polariton
system. A lot of efforts have been performed to understand, if the Landau cri-
terion can be applied to the polariton system, which is characterized by a finite
lifetime |71, 72, 73, 74, 75, 76]. In addition, polariton condensates have recently
demonstrated at numerous occurrences the formation of topological defects which
are tightly connected to the notion of superfluidity or especially to its breakdown,
as we will see.
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1.2.5 Topological defects

Apart from the small-amplitude excitations (Bogolons) described in the previous
section, a significant perturbation of the BEC allows the appearance of nontriv-
ial modifications of its wavefunction, including topological defects [77]. Depending
on the dimensionality of the system and on the nature of the interactions between
particles, these defects can be of various types. In one-dimensional systems they
manifest themselves as solitons that are density dips/humps (dark/bright solitons)
for the case of repulsive/attractive interactions correspondingly, accompanied with a
maximum phase shift of 7. Such objects are stable thanks to the interplay between
nonlinear interactions and the dispersion that compensate each other. However,
since a 1D soliton can be continuously unfolded into a homogeneous solution, it
should rather be called a pseudo-topological defect. A vortex, the soliton’s coun-
terpart in two-dimensional (2D) systems, carries a quantum of angular momentum.
Such objects cannot be continuously transformed (at least in scalar condensates)
into a vortex-less solution and are said to be topologically stable. Soliton exci-
tations can also occur in 2D in the form of oblique solitons, as we will see later
[78].

We remind that a BEC is a system of bosonic particles occupying at low tem-
perature the same lowest energy (ground) state. These particles have the property
to share the same single-particle wave function. One consequently talks about a
macroscopic wavefunction or order parameter of the condensate which reads:

U (r,t) = \/n(r,t)edrD) (1.59)

This wavefunction is in the general case complex-valued and thus possesses a phase 6

which can possibly contain a propagation term k- r, while its amplitude is governed

by the density n = |\I»'|2 of particles of mass m in the BEC. The evolution of the wave

function in the mean-field approximation is well described by the Gross-Pitaevskii
equation (GPE):

A

ot 2m

It what follows, we will concentrate on the case a; > 0 which corresponds to repul-

AT + oy |T)* T (1.60)

sive interaction between particles. The GPE assumes the normalization condition:
[|®°dr = N where N is the total number of particles in the system. Station-
—i

ary solutions are found upon writing ¥ (r,t) = 1 (r) e"%** where p is the chemical

potential yielding the stationary Gross-Pitaevskii equation:
h? 9
wp = —TATﬂ + an[yp[*p (1.61)
m

1.2.5.1 Dark solitons in 1D Bose-Einstein condensates

In a 1D system (r — z), the GPE, which remains valid according to the so-called
multiple-scale expansion [79], allows special solutions to occur: the gray solitons,
namely dips in the density that remain stable (do not spread with time) even if they
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propagate, provided that the interactions are repulsive. This dip is associated with
a local shift of the condensate’s phase. The gray soliton solution reads:

2 2
S Us x — st Vs . Us
Yolnh) =y [\/;tanh ( £V2 b 02> i3

Here neo is the density far away from the soliton’s core, v, is the speed of the soliton
related to its depth via vs = ¢\/n(0)/no and & = h//2mu is the healing length of
the BEC which defines the size of the soliton’s core, the latter being modulated by

the relativistic Lorentz factor 1/y = /1 —v?/c2. The faster a soliton moves, the
shallower and the larger it becomes, behaving as a relativistic particle with respect

(1.62)

to the speed of sound. The energy of a gray soliton is obtained injecting Eq.(1.62)
into the condensate’s energy to obtain:

4 2\ 2
Es = ghcnoo <1 - 02> (1.63)
which coincides with a relativistic equation as well. One interesting feature is that
assuming v < c the effective mass of the soliton is given by

4hn oo
c

ms = (1.64)
being therefore negative. This is actually not so surprising since we are considering
a particle-like density dip, in semiconductors for example, holes have also a negative
effective mass. A direct consequence is that a gray soliton will minimize its energy
moving to higher density regions, and consequently two gray solitons (forming local
density minima) see each other as potential barriers and repel on a short range. The
phase shift through the soliton is given by Af = arccos (vs/c) varying between 0
and 7. For vs = 0, the wavefunction is real valued, the density at the soliton’s core
is exactly zero and the phase is the discontinuous Heaviside function of amplitude
m, undefined at x = 0. This solution is called "dark soliton". Gray solitons remain
stable in the system, because interactions are present to compensate the dispersion
that would show a wave packet evolving in the linear Schrédinger equation. The
figure 1.8 shows normalized density profile ng (z) = |¥, (z)|* [panel (a)] of several
gray solitons together with their phase [panel (b)]. Noteworthy, the phase being
discontinuous at the dark soliton’s core (Heaviside function) it is undefined (singular)
at this point, this is an important feature of topological defects that governs their
stability.

1.2.5.2 Vortices and oblique solitons in 2D Bose-Einstein condensates

Let us now turn to the two dimensional case. At the very end of Sec.(1.2.4) we
have seen that the superfluid is irrotational due to the link between its velocity field
and the spatial variations of its phase: v = h/mV#, and therefore rot(v) = 0. So
one would at first sight conclude that the fluid would not respond to an imposed
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Figure 1.8: Gray solitons solutions plotted with the polariton parameters at { = 5
ps for the values vs = {0,0.25,0.5,0.75}¢: (a) Density profiles (b) phases profiles.

rotation. This is only partially true, indeed the phase 6 of the superfluid flow is
defined up to 27 which means that any spatial variation of # around a closed path
is 2{m where [ is an integer:

7{ VO (r,1) = 2r (1.65)

The case | = 0 obviously corresponds to a homogeneous condensate or a slightly
perturbed one with a continuous flow. However, for the cases where [ # 0, the
situation is more intriguing. The only way of having a phase changing e.g. by 27 on
a closed loop is to make it wind around a central point, where it will subsequently
be singular. This phase winding defines the so-called quantized vortex introduced
by Onsager in the context of liquid Helium [80], the quanta corresponding to the
integer [. One direct consequence is that the circulation of the velocity on a closed
loop quantized in units of h/m:

?{v-dlzhy{VH(r,t)-dlzlh (1.66)

m m

The central point where the phase is singular corresponds to a vanishing density of

the fluid n(0) = 0 just like in the dark soliton case. The velocity field around the
vortex core, given that 6(¢) = ¢ in polar coordinates, reads

h h
v=—V0o(rt)=1—uy (1.67)
m mr

As one can see, the particles rotate faster and faster while approaching the density
minimum (the vortex core) like in classical whirlpools [see right panel of Fig.1.9 (ar-
rows)]. But their nucleation within the fluid is radically different. The quantization
of the velocity field means that vortices would appear in a superfluid put in rota-
tion in a step-like manner above some critical velocity below which the rotation is
ignored by the flow. This is a strongly counterintuitive property of quantum fluids.
In the thermodynamic limit the wavefunction of a condensate carrying a vortex

is |55]:
Yy (r,¢) = fi (r) " (1.68)
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The radial part f;(r) has to be evaluated variationally to find e.g. for [ = 1:
r/§
(r/€)* +2
where n., is the density at infinity and £ = h/y/2mu is the healing length of the
condensate, determining the density-dependent vortex (core) size. The correspond-

ing density profile ny = |¢y|? is plotted in Fig.1.68 [left panel| together with the
velocity field, and the associated phase [right panel].

fi(r) =Vne (1.69)

BN 5

0.0

Figure 1.9: Left panel: Phase of the wavefunction (1.68), the singularity is marked
with a white/dashed circle and the phase jump with solid white line. Right panel:
Vortex density profile together with its velocity field (arrows).

In the Born approximation, the free energy of the condensate for the stationary
solution v (r) reads:

= | { Vo Gl ar (1.70)

Injecting Eq.(1.68) into the Gross-Pitaevskii equation (1.70) gives the energy of
the condensate containing a single vortex. To find the vortex energy, one should
substract the energy of the uniform state [ §[1 (r)|*dr containing the same number
of particles N. Following this procedure, the energy of a vortex is separated in a
core energy part that should be evaluated numerically and a kinetic energy part Ej,
which dominates for large system sizes. The latter is given by

121neoh2 R

where R is the radial size of the system which has to be finite, otherwise the vortex
energy growing logarithmically would become infinite. We note first, that obviously
the single quantized vortex (I = 1) is the lowest energy (vortex) state and second,
that the vortex, whose energy is proportional to the condensate density, will there-
fore move along density gradients to minimize its energy. This latter statement will
be determinant in the section (2.5) where we will discuss vortices generation and
propagation.
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Now, dealing with multiple vortices, the corresponding kinetic energy is found
from:

2
E = ;fn [Z Vb (ri)] dr (1.72)

where 6;(r;) is the phase of the vortex ¢ at the position r;. In the simplest case of a
vortex pair, the energy is found to be:

Erp = Eun+ Ewp+ Epn (1.73)
2111 o h? R

Epy = 2270l () (1.74)
m d

l1 and lo being the winding number associated to each vortex and d the distance
between them. The interaction energy E;,; is negative (positive) for vortices having
a winding number with an opposite (the same) sign which means that they attract
(repel) each others. Furthermore, it is easily seen that forming e.g. a vortex having a
winding number [ = £2 is more energetically costly than forming a pair of vortices
with (I1,l2) = (£1,£1) . Therefore, a vortex with a large winding number will
decay into a corresponding number of singly-charged vortices. Another different
configuration is the vortex-antivortex pair.

1.2.5.3 The Berezinskii-Kosterlitz-Thouless transition

In two dimensions, vortices behave differently from other excitations (non-
topological ones), indeed, their energy grows logarithmically with the size of the
system. They can consequently be activated thermally, but only above a critical
temperature Txr7 [81, 37]. In order for the vortex solution to be profitable, it has
to lower the free energy Fy of the system. Taking into account the vortex entropy
Sy induced by the thermal fluctuation at the temperature 7', the free energy reads

Fy = Ey — TSy (1.75)

Here Ey is the energy of a vortex at zero temperature as established previously.
The vortex entropy depends on the logarithm of accessible positions for the vortex

R2
Sy =kpln <€2> (1.76)
where kp is the Boltzmann constant and we assume a size £2 for the vortex. Finally
we obtain: ) )
“mnsoh R

We can immediately derive a critical temperature

12mneoh?

_— 1.
2kgm? (1.78)

TBrT =



26 Chapter 1. Introduction to the exciton-polariton physics

above which the energy of vortices become smaller than the thermal energy kpT'. In
that case we easily understand that single vortices can be thermally activated. Below
TprT they are bound in vortex-antivortex pairs that only perturb the fluid locally
[see Fig.1.10]. The appearance of vortices manifests a breakdown of the superfluidity
as they lead to a friction force between the normal and superfluid fraction of the
fluid. The temperature Tgxr therefore defines the frontier to be crossed to enter
a superfluid regime in two dimensions: defining the so-called Berezinskii-Kosterlitz-
Thouless transition that was evidenced in 2006 with a 2D gas of Rubidium atoms
[82]. Tt is especially clear from the Eq.(1.78) that singly quantized vortices (/| = 1),
which are favored energetically anyway, give the lowest critical temperature with
respect to other winding numbers and we will see that the so-called half-quantum
vortices having half-integer winding numbers will define a twice smaller Tpxr in
spinor condensates.
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Figure 1.10: Vortex-antivortex pair (I = £1). Left panel: velocity field. Right
panel: phase field (cos(6),sin(@)).

Vortices are the elementary topological excitations of superfluids and are well-
known in the context of superconductors [83]. Vortices and vortex lattices were
first nucleated putting an atomic BEC into rotation [84, 86| with a stirring laser,
following the prediction of Williams and Holland [85]. In polariton condensates, the
spontaneous formation of vortices has been first observed at deterministic positions
pinned to disorder [19] [see Fig.1.11|. Next, an artificial phase-imprinting method
was proposed, based on a Gauss-Laguerre probe in the optical parametric oscillator
regime [87, 88, 89]. More recently, vortices have been detected in turbulences in a
polariton fluid propagating past an obstacle [21, 90, 91, 92]. We will focus on this
kind of configuration for the discussion on oblique (half) solitons later on. Such a
large number of experimental observations reflects the convenience offered by the
polaritonic system for the investigation of hydrodynamic-related effects. One of
the advantages is that the vortices are much larger in spatial size than in atomic
condensates (£ ~ lum for polaritons) and therefore more easily observable. The
other advantage is that using the techniques of classical optics it is possible to
reconstruct the entire wavefunction of the condensate, namely its density, from the
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intensity of light escaping from the microcavity, and its phase (mod. 2w), from
interferograms. Furthermore, the control of the condensate parameters such as
its density or its wave vector can be performed by simply changing the pumping
intensity, for example.
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Figure 1.11: Observation of vortices in a polariton condensate from Ref.[19]. (a)
Interferogram evidencing a vortex: the typical fork-like dislocation (phase singular-
ity) is visible inside the red circle. (b) Same information, but this time the vortex
is overlapped with a different region of the condensate. (c) Real-space phase profile
extracted from the interferogram of panel (a). The red circle highlights the vortex
(same real-space area as in (a) and (b). (d) Phase as a function of the azimuthal
angle for different radii as shown in the inset of (d) (magnification of (c)).

1.2.5.4 Oblique dark solitons

In addition to vortices, various types of solitonic wavefunctions are realizable in
two-dimensional BECs. Excitations, such as rarefaction pulses [93], ring solitons
[94], and oblique solitons [78|, are known to occur depending on the excitation
conditions. Especially, in 2006, G. A. El et al. proposed to analyze theoretically
the impact of a defect (potential barrier) crossing the flow of a supersonic BEC [78].
This experiment, quantum analogue of the one involving e.g. a jet aircraft flying at
supersonic velocity in a classical fluid (air), revealed considerable differences between
the two systems. Under the assumption that the defect is large enough with respect
to the healing length £ of the condensate to perturb the fluid on length scales
comparable to &, (pseudo)-topological defects can be nucleated in a quantum fluid.
The prediction of Ref.[78] was that a pair of oblique solitons would be generated
in the wake of the obstacle and that they would extend without deformation [see
Fig.1.12]. One can expect that this kind of solitonic solution in 2D should become
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unstable against perturbations. While the stability analysis performed later showed
that the soliton is indeed unstable [95], the instability is only convective, which
means that the latter is damped while being dragged away downstream from the
defect. The oblique solitons are nucleated from the shock waves because of the
dispersion of the excitations (which is not linear), and because of the interactions
between the particles, which favor the formation of solitons as stable structures.
Another way to describe the generation of solitons is the following: The fluid tends
to accelerate locally close to the defect [96], and since the velocity field and the phase
of the fluid are related via v = h/mV#6, an important local phase shift is acquired,
giving birth to negative interference producing density dips which are nothing but
solitons. Increasing the size of the defect leads to larger phase shifts and then more
than one pair of solitons can appear to accommodate these phase shifts, leading to
multiplets of oblique solitons [see Fig.3 of Ref.[78] or Fig.4 of Ref.[21]].
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Figure 1.12: Oblique dark soliton. Top (grey) panels: theoretical prediction of
their formation past an obstacle from Ref.[78] at 3 different times. The extremities
of the soliton exhibit vortex pairs. Bottom panels: experimental observation in a
polariton fluid from Ref.[21]. (A) Emission out of the microcavity revealing the
solitons accompanied with the expected phase shift along their trajectory (B).
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The stationary BEC flow containing a soliton is described by a following solution:

M (1+a)
Uy = “Ara)n (1.79)
v, = —W (1.80)
2
n(x) = 1—(1-p)sech [ﬁﬂx] (1.81)

where xy = z — ay is a tilted coordinate perpendicular to the oblique soliton (with a
the slope of the soliton with respect to the y-axis), M = v/c is the so-called Mach
number and p = M?2/(1 + a?). In 1D systems we have seen that the speed of a
soliton is related to its depth and it is still true in 2D. Indeed, at fixed value of M,
increasing a increases the depth of the soliton and thus reduces its speed. In other
words, the more the soliton is tilted with respect to the z-axis, the faster it moves
with respect to the condensate, and the shallower and larger it becomes. The phase
of the wavefunction can be recovered writing:

0 (r) = Tg/v(r) dr (1.82)

and as in the one dimensional case, the presence of the soliton (and the related
density dip) is accompanied with a local phase shift lying between 0 and 7. Indeed,
the oblique soliton is nothing but 1D soliton for which the second spatial coordinate
plays the role of the time. However the strict analogue of the 1D dark soliton
doesn’t exist in 2D since an oblique soliton cannot have zero velocity (p = 0) with
respect to the flow. We will see in the section (2.3) how such objects become even
more interesting in polariton condensates taking the spin degree of freedom of the
particles into account.

1.2.5.5 Quantum hydrodynamic picture

It is often useful to operate not with the wavefunction and the Gross-Pitaevskii equa-
tion, but with the equations for density and superfluid velocity, similar to classical
hydrodynamics. The Gross-Pitaevskii equation can indeed be rewritten (neglect-
ing quantum pressure) in a set of dynamical equations for the density n and the
superfluid velocity v:

on , B
s +div(nv) = 0 (1.83)
ov 9
Moy +V [mvi+pn) = 0 (1.84)

The first one is nothing but the continuity equation for the flow and the second one
an Fuler-like equation for a potential flow and zero viscosity fluid. In the presence of
some external potential V' (r) where the total potential energy of the system becomes
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p(n(r)) +V(r), and in the simplest case where v(r) = 0, the density landscape has
to satisfy the simple equation:

po = pln (r)] +V(r) (1.85)

which embody the ground state profile having a chemical potential ug of the so-
called Thomas-Fermi approximation [55] which corresponds to density profiles vary-
ing slowly in space. For dilute gases the previously defined hydrodynamics equations
can be recovered starting from the Gross-Pitaevskii equation neglecting the quan-
tum pressure (kinetic energy) terms that depend on the spatial derivative. In that
regime, the chemical potential grows linearly with n and the equation for the dy-
namics of v reads

mg—:+V(mv2—|—an—|—V) =0 (1.86)
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1.3 Quasi-resonant injection

One of the strong assets of the polaritonic system is that it offers the possibility to
perform quasi-resonant excitation with a laser pump at any energy, momentum and
density, with a well defined spin [see Sec.1.4| (imposed by the polarization of the
laser) to form macroscopically occupied and coherent states having a controllable
spatial extension. Resonant excitation setups have allowed to shine the light on
extremely rich physics: e.g. the bistability [13] and the multistability effect [97], the
optical parametric oscillator [12] regime, or the formation of solitons and vortices
[21, 98].

1.3.1 Modeling the quasi-resonant injection
1.3.1.1 Driven dissipative Gross-Pitaevskii equation

How does one create-exciton-polaritons? Photons are injected through the Bragg
mirrors of the microcavity which have a voluntarily unperfect reflection coefficient
R < 1, so that the photons are allowed to escape, after interacting with the quantum
well excitons, producing a detectable signal for the experimentalist. This photonic
leaking determines the polariton radiative lifetime which typically lies in the range
from picoseconds to tens of picoseconds. Recently, samples possessing very high
quality factors have demonstrated an outstanding polariton lifetime of the order of
30 ps, allowing to analyze the long range ballistic propagation of the quasiparticles
[5]. Besides, while the energy of excitation is fixed by the pump laser wavelength,
the in-plane momentum of polaritons k is inherited from the angle v at which the
microcavity is pumped simply following k = wp/csin(y)u, where wp is the frequency
of the pump.

The simplest quasi-resonant experiment to describe involves a spatially homo-
geneous and continuous wave (cw) pump. Under such conditions, after a steady
state is established, the balance between gains and losses allows to maintain a con-
stant polariton population within the microcavity, fixing the energy of the system
associated with a chemical potential p. Furthermore, exciting the lower polariton
branch at (close to) k = 0 makes possible to appy the parabolic dispersion approx-
imation for the dispersion of polaritons. The polariton is therefore associated with
an effective mass m* defined by

el m7¢ + mix (1.87)
at zero detuning, where mg and m, are the photon and exciton mass respectively.
In this framework, the regular time independent Gross-Pitaevskii equation for the
polariton mean field ¥ (r) = ¢y would seem to be a good approximation to describe
the macroscopically occupied ground state, just like in the non-resonant case far
above the condensation threshold [see Sec.(1.2)].

2
— ;lmpo + altho|?ho = b (1.88)
m
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As we have seen in the section (1.1.2), [see also Eq.(1.42)| the interactions are
provided by the excitonic part and depend on the detuning between the photonic
and excitonic modes that impacts the excitonic fraction Xp.

However, in the previous description a key ingredient has been omitted. Indeed,
in experiments, the frequency wp of the pump is obviously fixed and the stationary
Gross-Pitaevskii equation would remain valid only assuming a perfect resonance,
which would be plausible only in the low pump intensity (low density) regimes.
One should keep in mind that the repulsive interactions introduce an extra density
dependent and positive energy term at|?
blueshift the pumped state. As soon as the interactions become significant, keeping

= ang, which consequently tends to

a perfect resonance becomes elusive and, at this point, taking into account the
injection and lifetime of the particles becomes unavoidable. The first thing is to
go back to a time dependent equation. The pump term is accounted for with a
plane wave source term P(r,t) = Apexpli(kp - r — wpt)] and the radiative lifetime
is phenomenologically introduced via the decay term —iht(r,t)/27, 7 being the
polariton lifetime. These terms can be properly derived using a dissipative Lindblad
formalism [30] [see also Sec.3.4]. The modified time dependent Gross-Pitaevskii
equation reads:

oy R L, ih
lha = —%A¢ + alp|* - EUJ +P (1.89)

In this description, the pump spot can have any spatial extension provided that
large wavevectors, out of the parabolic approximation, remain unpopulated.

1.3.1.2 Elementary excitations

Due to the presence of a detuning dp between the pump frequency and the po-
lariton mode at k = 0 and of the lifetime, the spectrum of elementary excitations
strongly differs from the equilibrium one [59, 99]. The spectrum of the homogeneous
condensate can be found upon injecting the ansatz

" (I’, t) _ ei(kp-rprt) (¢0 + A€+i(k-r7wt) + B*efi(k-rfw*t)> (190)

into Eq.(1.89) and following the same linearization procedure as in the section
(1.2.4). It gives the following set of coupled equations

|:E' (k:p)—hwp—i-a]z/)o\Q— Zf:| Yo+Ap = 0 (1.91)
l:E (kp—i-k) —hwp—hw—i-QOz‘wg‘Z — Zf] A+a¢8B =0 (1.92)
a(@ZJ%)*A-i- |:E (kp—k) —hwp+hw+2a|wo|2 — Zf:| B =0 (1.93)

and the corresponding four dispersion branches are found to be

hoy () = Fwp (kp) +\/[Erpp (K) — fwp + 20n] — [an]> (1.94)

ho (k) = hwp (kp) = \/[Brep (k) — hwp + 2an]® — [an]>  (1.95)
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Here Erpp(k) is the bare dispersion relation of the lower polariton modes. The main
difference between the macroscopic occupation of a mode driven by an external pump
and the usual equilibrium situation is that the dispersion of elementary excitations
can exhibit diffusive flat parts for ép > pg or a gap for dp < u, and the linear
Bogoliubov spectrum is recovered only when the detuning is exactly compensated
by the interaction energy which means that Adp = ang = o as shown in Fig.1.13.
Besides, the imaginary parts of the dispersion branches, which can have positive for
large values of dp, leads to possible instabilities.
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Figure 1.13: Dispersion of elementary excitations of a driven mode at k = 0 for 3
values of the detuning: § = 0.5u¢ (blue lines), § = uo (red lines) and 6 = 1.5u¢
(green lines). The dashed parts are the negative energy branches. The dashed black
line stands for the bare dispersion of the particles Erpp assumed to be parabolic
here.

1.3.1.3 Exciton/photon representation

Now, to model accurately the polaritonic system fully taking into account its non-
parabolic dispersion, it is convenient to separate the excitonic field x(r,t) from the
photonic one ¢(r, t) coupled by the strong light matter interaction described by the
Rabi frequency 2r. Each field is associated with a particle mass mg . Forgetting
first about the pumping and decay terms, analogically to the previous single-field
description, the energy of the system reads

h2 2 h2 2 « 4 hQR * *
E—/{m|v¢’ +%|VX’ +§|X| +T(X ¢+ X9 )}dr (1.96)
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The dynamics of the photonic and excitonic fields can be found from the following
Lagrange equations:

0o OFE

h— = 1.97
"ot 09" (1.97)
Ox OF
h— = 1.98
" or % (1.98)
to obtain the following coupled set of modified Schrédinger and Gross-Pitaevskii
equations
., 0¢ h? ih hQr
— = ——Ap— — — P .
th 9t 2my ) 2T¢¢ + 5 X + (1.99)
., 0x h? 9 ih hQr

Here, we have added the phenomenological lifetimes 74, of the particles and the
pumping term P that obviously enters the photonic dynamics solely, while the inter-
actions are restricted to the excitonic part. Their strength given by a = 6Eba2B /S
doesn’t depend on the excitonic fraction anymore the latter being self consistently
taken into account in the field separation. The set of equations (1.99) and (1.100)
is especially accurate describing the resonant polariton injection and will be used
many times to describe various effects along this manuscript.

1.3.2 Optical parametric oscillator

One of the most striking results demonstrating the bosonic character of polaritons
was reported first by Savvidis et al. in 2000 [12]. The authors have observed the
stimulated scattering of polaritons within a pump-probe experiment. They basically
varied the angle of the resonant excitation to tune the in plane wavevector of the
injected polaritons. A sketch of the experimental setup is shown in Fig.1.14(b). The
cavity had a variable thicknesses around the average value of 3\/2 which allowed to
access different detunings. In the zero detuning case, the lower polariton branch was
excited at variable the angle of the pump beam. A weak probe was used to excite the
k = 0 state providing an initial population. In weak pumping regime, the reflected
spectrum showed the two polariton peaks separated by the Rabi splitting, which
was about 7 meV. When the pump is switched on and for small pump-probe delays
7, an enhancement of the emission of the lower polariton branch was observed. For
a specific angle of § = 16.5, the so-called magic angle, the emission rises up to a
gain of 70. The measured intensity is shown in Fig.1.14(c).

This process can be understood as the scattering of two polaritons from the
pump, having a wavevector kp, to a signal polariton at k = 0 and an idler polariton
at 2kp. This is possible close to the magic angle, which fulfills the energy and
momentum conservation E (2kp) + E (0) = 2E (kp). The process is sketched on
Fig.1.14(a). This experiment brought a strong support to the polariton picture
and offered three new features: First, polaritons can scatter strongly on each other,
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Figure 1.14: Savvidis et al. experiment [12]: (a) Scheme of the parametric scattering,
(b) experimental setup and (c) Reflected probe spectra at 7 = 0 ps for pump off,
co-, and cross-circularly polarized to the probe. Pump spectrum on lower trace.
Inset: Reflected narrow band probe spectra at 7 = 0 ps, with pump pulse on/off,
together with pump photoluminescence without probe pulse (black dots).

provided that both energy and momentum conservations are simultaneously satisfied
in the two-particle collision. This effect requires a nonparabolic dispersion. Second,
polariton scattering can be enhanced by the occupation of the final state. In other
words, polariton scattering can be stimulated, as it is expected for bosons. Third,
polaritons can be present in relatively large numbers at the bottom of the polariton
trap in spite of their short lifetime governed by photon decay.

There are different ways to describe the parametric scattering effect. We will
briefly present the semiclassical description and the three-level quantum model de-
veloped by Ciuti et al. (2000) [100].

1.3.2.1 Semiclassical description

The parametric scattering can be described using simple rate equations. These rate
equations for occupation numbers are closely linked to the Boltzmann equations.
The advantage of the description is that it allows to account easily for all inter-
action processes affecting the polariton relaxation. The important disadvantage is
that the description of the polariton dispersion can not be easily included in this
model. In the resonant configuration one can single out the states, where the energy-
momentum transfer is very efficient and dominates the system, neglecting all other
states. This leads in the simplest case to a three-level model containing the ground
or signal state, the pump state and the idler state. The losses, such as the dominant
radiative decay and the scattering processes driven by disorder, can be taken into
account by phenomenological decay rates. The disorder effects are neglected in this
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model, but scattering with phonons can be included.
The system can be written as a set of three equations

dmo = Py—Tng—angni(ny, +1)* + a(ng + 1) (N; + 1) nf, (1.101)
dmny = P,—Tny+ 2anoni(n, +1)* —2a (ng + 1) (N; + 1) n]% (1.102)

om; = Pi—Tn;—angni(ny, +1)* +a(ng+1) (N; +1) nf, (1.103)
The corresponding linewidth broadening can be written as

1 |Xk|? x|
- = + , 1.104
r A +th 'y¢ ( )

where xx and ¢ are the exciton and photon Hopfield coefficients, respectively,
A is the so-called exciton inhomogeneous broadening, I'y;, is the phonon-induced
broadening and 4 is the cavity-photon broadening. At low temperatures I'y, < A
and in most of the cavity samples A = v¢. We will use I" as a decay constant. Here

o up
- R2al/2

(1.105)

M is the polariton-polariton matrix element of interaction, which is here approxi-
mately equal to one fourth of the exciton-exciton matrix element of interaction. This
system can be easily solved numerically. In the cw excitation case Py = P; = 0, it
gives ng = n; and the system can be reduced to two equations. Using the evolution
equation for the ground state population

o = no (Win — Wout) + Win, (1.106)

where W;, and W, include all channels for incoming and outgoing polaritons,
respectively. The threshold of parametric scattering is given by the condition W, —
Wout = 0 which implies:

no— oL (1.107)

0~ a(2n, + 1) ’
The population ng should be positive or zero which is given by n, = /I'/a and
using n, ~ P/T" yields
r Al

Pipres =T/ = = y=—— 1.108
thres o 72|M‘ ( )

for the threshold of parametric scattering.

1.3.2.2 Quantum model

A quantum model has been developed by Ciuti et al. [100] and is similar to the
Gross-Pitaevskii approach discussed previously, but considering three modes. The
starting point is the Hamiltonian, where interactions with phonons and free carriers
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are neglected. To obtain the equation of motion for polariton operators a; and az
we write the Heisenberg equation:

dak

ihﬁ = lay, H) = Erp (k) ay, + Z Ei%’,k“aLJrkﬂ_kak’ak” + P (k) (1.109)
k k"

j da’T’“ 1 * t int i

lhﬁ = |:ak:7 H] = ELP (k) ap, — Z Ehk/’kuak//ak/ak,+k,,_k + P (kX]_]_]_O)

k.k"

where Ep is the lower polariton branch dispersion relation. The interaction energy

reads
1

2
and P(k) is a source term induced by an external pumping field. Once again, only
the signal, pump, and idler states are considered, and it is assumed that all states
are macroscopically and coherently occupied. In other words, the states are assumed

Elic%’,k" = 5 (Vi o k-t + Vi o b —k) (1.111)

to behave as classical coherent fields and one can replace them by there c-numbers
as first proposed by Bogoliubov [54]. Ciuti et al. used the same approximations but
assuming three macroscopically occupied states. Keeping the signal and idler state
operators and replacing the pump state by a complex number, one can consequently
describe the system by the following set:

ihag = Epp(0)ao+ Eimaly, P2 + Porobe () (1.112)
ihPy, = Evp (kp) P, + Emni Py aoask, + Poump (1) (1.113)
ihPo, = Epp(2ky)aly, + EjaoPi?, (1.114)
where

Epp(0) = Epp(0)+2Vos, 0l P, |? (1.115)
Erp(ky) = Erp (kp) +2Vi, ky iy | Pry |° (1.116)
Erp (2ky) = Epp(2kp) + 2Vay, 1, 0| Ps, |* (1.117)

and i 1
Eint = 3 (Viey epskiy + Viey ipi—ky ) (1.118)

The advantage of this formalism with respect to the one presented in the previ-
ous section is that it allows one to account for the energy renormalization processes
driven by the inter-particle interaction. Here, a blueshift of the three states con-
sidered is induced by the pump intensity. The blueshift itself can result in another
nonlinear effect, which will be discussed in the next section namely the bistabil-
ity. On the other hand, spontaneous scattering processes and the phonon scattering
cannot be described in this framework. This system of equations can be solved nu-
merically replacing all operators by complex numbers. Finally, further treatments
given in detail e.g. in Ref.[30] result in a similar equation for the parametric scat-
tering threshold. This illustrates the equivalence of the semi-classical and quantum
models in this context.
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Figure 1.15: Experimental observation of the bistability cavity polaritons from
Ref.[102]: Variations of the signal output power (in transmission) as a function
of the pump power for a pump detuning § = —0.42 meV. The gray curve is the
result of a theoretical fit. The inset shows more clearly the unstable branch and the
series of intermediate states that are obtained when varying the input intensity in
both directions.

1.3.3 Bistability

An important feature of the resonant excitation scheme is the renormalization of
the polariton energies. This renormalization is observed in the polariton emission,
but it plays also a key role in the absorption of the light from the pump. Two
situations can be distinguished: First, if the laser energy (frequency) is below the
bare polariton energy (negative detuning), the absorption is simply reduced by the
pump-induced blue shift, which drives the mode out of the resonance. Second, if the
laser energy lies above the bare polariton energy (positive detuning), the polariton
energy gets closer to the pump energy owing to the blueshift, which in turn increases
the blueshift, that enhances the absorption and so on.

In the case of positive detuning, two different regimes can be distinguished in
that case. Indeed, while at low pump intensities the polariton energy remains below
the pump energy, at higher pump intensities the polariton gets over the pump energy
and stabilizes above it. It results in a dramatic increase in the population of the
pump state, and the absorption becomes maximum. The threshold is called bistable
threshold, since two polariton populations are possible for the same pump intensity.
Besides, this effect can result as well from the saturation of the exciton oscillator
strength [101]. The bistability phenomenon was first observed experimentally in
2004 by Baas et al. [102]. Also the interplay between the two nonlinear effects
(parametric amplification and bistability) opened a wide field of research [103, 104].

In order to theoretically analyze the bistability, the dynamics of the pump state
can be written as follows
2

— 2 —
hvkpvkp’kp ‘Pkp‘ Pk‘p + Ppump (t) (1'119)

8t15kp =1 (wkp —wp + il“kp) Pkp +

Then multiplying Eq.(1.119) by its complex conjugate and replacing Pkp by the
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population of the pump state and ]Pkp|2 by the pump intensity I, one gets:

2

2
I, = [((wkp —wp) + hvkp,kp,kpzvp) +T%, | Np (1.120)

The experimental observation of the bistability of cavity polaritons [102] is shown
in Fig.(1.15). The emission versus the pump intensity shows the typical s-shape.
Increasing the pump intensity from the lower branch results in a clear jump of the
population at the turning point 1 (higher pumping power). Starting now from the
upper branch and decreasing the pump intensity, the population drops down at the
turning point 2 (lower pumping power). It basically corresponds to a hysteresis
cycle, when the pump intensity is stepwise increased and decreased. The part of the
curve, which connects the two turning points is unstable, which can be found from
stability analysis using Lyapunov exponents and adding a small perturbation to the
model. The turning points can be found under the condition dI,/dN, = 0, yelding:

2 2 2
3<hvkpvkpvkp> NZ? + 4(wkp - wp) + F%p =0 (1.121)

The bistability region is defined by the existence of two distinct positive solutions
for this quadratic equation leading to

wp > wi, + V3T, (1.122)

It follows directly from this condition, that it is necessary to pump at least one
linewidth above the bare polariton state to observe the bistability. Consequently
the solution for the turning points reads

2h (wkp B wp) + \/(wkp B WP)Q B 31_‘%,,

N, = (1.123)
The solution with the minus sign corresponds to the turning point with the higher
pumping intensity. Plugging Eq.(1.123)into Eq.(1.120) defines the threshold for the
pumping intensity.
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1.4 Spin sensitive phenomena

So far we have been neglecting any spin-dependent phenomena and we have seen
that this simplified vision was sufficient to describe the fundamental features of the
exciton-polaritons. However, as we will see in this section, taking into account the
two possible spin projections of polaritons allows to shine the light on a bestiary
of fascinating effects that merge both fundamental and applied concepts. Under
resonant pumping, the spin of the particles is under complete control from the po-
larization of the input laser (except the multistable case), that has to be right (left)
circularly polarized in order to excite spin-up (down) polaritons. On the contrary,
under non-resonant pumping conditions, above the condensation threshold, the po-
lariton condensate forms with a well-defined linear polarization which corresponds to
a linear combination of spin-up and spin-down polaritons due to the spin anisotropy
of the polariton interactions [9] and to built-in splitting between linear polariza-
tions. We discuss in this section the spin dependent phenomena, focusing especially
on the spinor polariton condensate and its topological excitations. We refer to the
exhaustive review by Shelykh et al. [14] for further details.

1.4.1 The spin of exciton-polaritons

In the domain of the mesoscopic physics, spintronics [105] is currently one of the most
promising areas. The main idea of this discipline, based on the quantum properties of
the electrons and/or holes, is to achieve the control of the spins of individual carriers
which would potentially have a huge impact on future information technologies.
Although currently, the applications of spintronics rely on giant magneto-resistance
effect in metals only, there are good perspectives that in the future, semiconductor
spintronic devices, which now still remain at the stage of the theoretical modeling,
will find their way to practical implementations.

One of the most serious obstacles to the realization of spintronic components is a
dramatic role played by the processes of spin relaxation. In this context, it was pro-
posed that the optical counterpart of spintronics, namely spin-optronics [106] would
represent a valuable alternative, since characteristic decoherence times of exciton-
polaritons are orders of magnitude longer than decoherence times of electrons and
holes [107]. Let us introduce here the spin structure of exciton-polaritons.

An exciton is formed by an electron and hole, namely by two fermions having
a projections of their angular momenta equal to J = S¢ = £1/2 for an electron
in the conduction band with S-symmetry and J? = S¢ + M = +1/2,43/2 for a
hole in the valence band with P-symmetry. The states having J? = +1/2 appear if
the spin projection of the hole S” is antiparallel to the projection of its mechanical
momentum M/, these states are called light holes. On the contrary, if the spin and
the mechanical momentum are parallel, the heavy holes with Jf} = +3/2 are formed.

In the bulk samples, at k = O the light and heavy hole states are degenerate.
However, in quantum wells the confinement in the direction of the structure growth
axis lifts this degeneracy so that energy levels of the heavy holes lie closer to the
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bottom of the well than the light-hole levels. The ground state exciton is thus formed
by an electron and a heavy-hole. The total exciton angular momentum J (in the
following it will be referred to as the exciton’s spin) has the allowed projections +1
and £2 on the structure’s growth axis. Bearing in mind that the photon’s spin is
+1 and that the spin is conserved in the processes of photoabsorption, the excitons
with spin projections equal +2 cannot be optically excited. These are the so-called
dark states. In microcavities they are not coupled with the photonic mode so we
can safely neglect them in the following considerations. We note, however, that in
some cases the dark states come into play: they can be mixed with the bright states
by an in-plane magnetic field or, despite the fact that they are optically inactive,
their presence can obviously modify the scattering processes. The bright excitons
having £1 spin projections couple efficiently to light to form exciton-polaritons with
the same spin. It follows that exciton-polaritons behave as a two-level spin system
similar to electrons, but they are bosonic particles (with integer spin) in the low
density limit.

The conservation of the spin during photoabsorption allows to orient the spins of
excitons by polarized light beams: the optical orientation, an effect that impacts also
the polarization of associated photoluminescence. A o4 (o_) circularly polarized
light excites states with angular momenta J = +1 (J = —1). Besides, linearly
polarized light excites a linear combination of J = +1 and J = —1 exciton states,
so that the total exciton spin projection on the structure axis is exactly zero in this
case. Optical orientation of carrier’s spins in bulk semiconductors was discovered
by a Georges Lampel in 1968 [108]. In quantum wells, it has been extensively
studied since the 1980s. This mechanism is especially useful in resonant pumping
experiments, where the polarization of the pump laser allows a complete control of
the spin of polaritons.

1.4.2 Pseudospin representation

We introduce here the pseudospin vector [109] extensively used for electrons, applied
to the polaritonic system. This representation is very convenient to describe the spin
dynamics of the particles and will be used at many occurrences in the next chapters.
Exciton-polaritons with a given in-plane wavevector k can be treated as a two level
system described by the density matrix pg, completely analogous to the spin density
matrix of electrons. pi can be decomposed on a set consisting in the density matrix
I and the three Pauli matrices 0, 4,-

N,
pr = 7k1+Sk~a (1.124)

Here Si, giving the coefficient of the decomposition, is the pseudospin vector of the
state with wavevector k, namely a three dimensional vector lying on a Poincaré
sphere. Its components (S;,Sy,S,)T completely determine the spin states (and
the polarization of the corresponding emission). In particular, the in-plane compo-
nents, lying on the equator of the sphere, define the linear polarization states: S,
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(- b

Figure 1.16: Left panel: a pseudospin vector (red arrow) on the Poincaré sphere,
the black arrows illustrate the corresponding polarization of light. Right panel:
effective magnetic field induced by the TE-TM splitting (red arrows) versus the
Rashba spin-orbit field (blue arrows) on an elastic ring (dashed black circle).

and Sy, are the degrees of linear polarization in the horizontal/vertical and diago-
nal/antidiagonal directions respectively (which means that the pseudospin makes
a double angle with respect to the polarization direction) while the S, projection
gives the degree of circular polarization of the emission corresponding to the spin
state +1 (S = S,u,) and -1 (S = —S,u;) [see left panel of Fig.1.16].

Considering first noninteracting polaritons, the dynamics of the density matrix
is governed by the Liouville-von Neumann equation

Opy

i = [H, pi] (1.125)

The corresponding Hamiltonian reads
Hy = FE (k) —Heppr - Sk (1.126)

where E(k) is the polariton dispersion branch under consideration (the lower one
in the following) and the second term is the magnetic energy term, H.rs being an
effective magnetic field. The latter term minimizes the total energy of the system
when H.f 5 and Sy, are aligned and have the same orientation. The word "effective"
means that we are not dealing with real magnetic fields involving the exciton’s g
factor that would mix the dark and bright states — H.f; applies to the bright states
only. For the noninteracting case we consider, the effective field lies in the plane of
the microcavity. It is called effective, since mathematically it enters the equation
the same way as a real magnetic field would do.

1.4.3 TE-TM splitting and linear spin dynamics

In 1993 Maialle et al. [110] have shown that the Bir-Aronov-Pikus spin relaxation
mechanism [111] involving the spin-flip exchange interaction of electrons and holes is
predominant for the confined quantum-well excitons. The long-range electron-hole
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interaction leads to the longitudinal-transverse splitting of exciton states (or TE-TM
splitting), i.e. the energy splitting between excitons having a dipole moment parallel
(TM) and perpendicular (TE) to the wave-vector. This splitting is responsible for
rapid spin relaxation of excitons in quantum wells. The difference between spin
relaxation dynamics of exciton polaritons and spin relaxation of pure excitons is
expected to come from the different shape of dispersion curves and, consequently,
different energy relaxation dynamics. The Maialle mechanism of spin relaxation is
strongly enhanced because of an additional splitting of the TE and TM polarized
photonic modes in the cavities. It is also essential that the final state bosonic
stimulation is much more efficient for polaritons than for pure excitons, which makes
collective effects in their spin dynamics extremely important. The TE-TM splitting
(or LT splitting) can be mapped to the effective in plane magnetic field Hepr = Hpp
acting on the polariton pseudospin. Hyr being an analogue of the Rashba spin orbit
field acting on electron, possesses however some very peculiar properties as we will
see now.

Indeed, the polariton eigen modes within the microcavity are TE and TM linearly
polarized and these states are by definition dependent on the direction (given by k)
of propagation of the particles. On an elastic circle (|| k|| kept constant) around the
origin in reciprocal space, the TM state having polarization direction parallel to k
therefore corresponds to a pseudospin vector S making a double angle with respect
to k. The consequence is that the orientation of Hyr makes a double angle with
respect to the wavevector as well, while the Rashba field is always aligned with k
[112] [see right panel of Fig.1.16].

The strength of Hyp is defined by the energy splitting between the polaritonic
TE and TM modes. The degeneracy of the TE-TM photonic and excitonic eigen
modes is lifted, considering that they demonstrate different effective masses. The
direct consequence is that the TE-TM splitting for the bare modes grows quadrati-
cally with k and is exactly zero at k = 0. The corresponding bare photonic (¢) and
excitonic (x) dispersion branches are defined by

h2k? R2k?
¢ X
h2k? R2k?
TM T M

where we have allowed for a detuning ¢ between the excitonic and photonic modes
at k = 0. The associated TE and TM polariton branches are uncoupled being
(orthogonal) eigen modes and are found from the eigen values of the matrices |see
Sec.1.1.1 for the spinless two oscillators model|

TE
Mrg (k) = <E<%Q]ik) Egg?k)> (1.129)
EJM (k) Qg )

hon BT (i (1.130)

Mry (k) = <
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Figure 1.17: TETM splitting and pseudospin precession. Left panel: lower TE (blue
line) and TM (purple line) branches, central panel: TETM splitting and right panel:
pseudospin (blue arrows) precession (blue circle) around Hyr (red arrows) on an
elastic circle (dashed black line) in reciprocal space.

giving the lower EEE’TM(k) and upper EgE’TM (k) dispersion branches:
ETE +ETE 1 D)
TE ¢ X
ETM 4 ETM 1 2
™ _ ¢ X
E[M = 4 X _ 2\/(E;§M - E){M) +AR20% (1.132)
ETE +ETE 1 9
TE ¢ X
E;" = — 2\/(EgE - E;—CE) + 4n%2Q3%, (1.133)
ETM 4 ETM 1 2
TM ¢ X
EIM — ; + 2\/ (BIM - ETM)" +an203 (1134)

Focusing on the lower branch, where the condensation usually takes place and that
will be under consideration in the following, the strength of the TE-TM splitting is
simply defined by

Arr (k) = BLE (k) - EFM (k) (1.135)

The values of the TE and TM masses are dependent on the structure under con-
sideration, and both mgg > mgé\(/[ and mgg < m;gf])‘(/[ situation are possible, which
basically changes only the sign of Apr. This interrelation depends on the detun-
ing of the frequency of the cavity photon mode from the center of the stop-band
of the distributed Bragg mirrors [113]. Besides, while the TE-TM splitting grows
quadratically with k for the bare modes, the exciton-photon mixing modifies this
dependence and it demonstrates a maximum value at finite k as it was observed
experimentally in Ref.[107]. We also point out that an energy splitting at k = 0 is
possible and has been e.g. reported in a CdTe microcavities, leading to a pinning of
the linear polarization along a crystallographic axis [114]. The latter effect actually
induces a k-independent effective magnetic field pointing in a well defined direction
determined by the crystallographic axis. Finally, we note that the excitonic TE-TM
splitting is usually orders of magnitude lower than its photonic counterpart and
can be safely neglected. The left panel of Fig.1.17 shows the split lower TE-TM
dispersion branches while the central panel gives the k-dependance of the splitting
ALT-
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The global expression for TE-TM effective magnetic field reads

cos (2¢)
sin (2¢) )
where ¢ is the polar angle in reciprocal space. The specific orientation of Hyr can
now be better understood. Indeed, for particles propagating along the z-direction
the TM state corresponds to xz-polarized particles while for the y-direction it corre-
sponds to y polarized particles and reciprocally for TE states. The dispersions of

Hyor (k) = Apr (K) ( (1.136)

the z and y polarized particles are consequently anisotropic and Hrr has an oppo-
site orientation with respect to x and y propagation directions and by extension the
same applies for any orthogonal directions. The field therefore makes a double angle
with respect to the propagation direction of the particles defined by their wavevector
k as previously mentioned.

The Eq.(1.125) allows to derive the dynamical equation for the pseudospin

0Sy _ Hef f
ot h
which is nothing but a regular precession equation of S around Hcs;. In particu-

X Sk (1.137)

lar, no evolution of S is obtained when the vectors have the same direction, while
the precession demonstrates a maximum amplitude when S | H.¢r. This descrip-
tion is accurate, provided that the kinetic energy term is negligible with respect to
the (effective) magnetic term which means that —Hegysp - Sy > E (k). The right
panel of Fig.1.17 shows the pseudospin (blue arrows) precession (blue circles) around
H;7 (red arrows) on an elastic circle (dashed black line). The initial pseudospin is
assumed to lie along the x-axis (linear horizontal polarization).

The full picture can be obtained writing the energy of the system on the exciton-
photon basis [see Eq.(1.96)], which allows to avoid the complicated expression for
the nonparabolic dispersions defined above, introducing the spin and the effective
field. First, the two allowed polariton spin projections are included considering vec-
torial fields ¢ = (¢4, ¢_)T and x = (x+, x_)? where the indices & means that we
will work here on the natural circular polarization basis corresponding to polari-
tons states with spin +1. Second, the link between the fields and the pseudospin
representation is made via the density matrix p of the system. Considering only
the photonic field which is the measurable quantity from the emission escaping the
microcavity, one can write the density matrix in both the pseudospin and the field
representations

p = g1+s-a (1.138)
(1l wi)
r= (Mi 6P (1.139)

where S = (S;, Sy, S:)T and o = (04,0,,0,)" and n is the total density of particles
in the system. We obtain the equality

n/2+8. Sp—iS, \ _ [ 61 ¢r0"
<sx+isy n/2—si>‘(¢¢1 |¢|2> (1-140)
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that allows us to express the pseudospin projections in terms of the photonic wave

functions
S = 5 (650 +600) (1.141)
S, = 2 (60— 60 (1.142)
S, = W (1.143)

The energy of the noninteracting system, neglecting the excitonic TE-TM split-
ting, reads

B2
E= / { !V%IQ} + ) [Q; (X5 + d5Xo)| —S-Hpr o dr
v=lon) T o={+-)
o={+,—
(1.144)
Using the identities (1.141-1.143) and the Lagrange equations of the Eqs.(1.97,1.98)

kind we obtain the dynamics of the photonic and excitonic fields

.0 K2 hQ
ih o _ Ay + JXi - 7¢i + Py
ot “2my
— (HLTI :FZHLTy) ¢:F (1.145)
Oxa B2 hQg ih
h—= = A - — 1.14
ot Tom, T — 9= or (1.146)

where we have included the lifetime and pumping terms. We note here that in the
most general case, the term associated with an arbitrary (not necessarily in-plane)
effective magnetic field H = (H,, Hy, H,)T, reads —H - o(¢4, ¢-)T.

The explicit expressions of the components of Hyp are found keeping in mind
that here the photonic and excitonic part are separated. It means that the photonic
dispersion being parabolic, the corresponding splitting is growing quadratically with
k. Then, the coupling with the excitonic field self-consistently modifies the splitting
seen by the polaritons. Consequently in reciprocal space one has

. h2k2 1 1 5 o
Hip = I mg;M ng cos (2¢) = B (k3 + k;) (1.147)
h2 k2 1 1 .

where 3 = h?/4(1/ mgM -1/ ng ). Finally, in the dynamical equations for ¢+ the
terms can be rewritten as

Hip = Hip T iH}p = Bk +iky)? (1.149)

or equivalently in real space given that k; , — —10;4:

)

Hip = B9y T i) (1.150)
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1.4.4 Optical spin-Hall effect

The spin-Hall effect, proposed by Dyakonov and Perel in 1971 [115], is one of the
key concept of spintronics which aims at replacing electric currents by spin currents
for the information transport. The concept of the spin-Hall effect is that an electric
current induces a spin current without any applied magnetic field. It was revisited
and has attracted a lot of attention [116, 117| after its rediscovery by Hirsch in 1999
[118]. Due to the spin-orbit interaction, the scattering probability of an electron
over an impurity in two opposite directions is spin dependent.

The optical counterpart called optical spin-Hall effect [119, 17, 120, 121] is the
most clear evidence of the peculiar spin dynamics of polaritons: When polariton
wave packet, injected resonantly at finite momentum with a linear polarization,
scatters on the structural disorder of the microcavity, it exhibits Rayleigh scattering
in every direction of the plane. The k-dependent precession of S around Hy results
in the appearance, in both real and reciprocal space, of circular polarization domains
in the four quarters of the plane [see Fig.1.18].
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Figure 1.18: Optical spin-Hall effect from Ref.[17] starting from a TM polarized
pulsed pump with wavevector kp = 1.5 um ™! that Rayleigh scatters on the disorder
landscape of the planar microcavity. (a,c) Experimental results and (b,d) simulation.
(a,b) Real space degree of circular polarization p. (colormap) and (c,d) reciprocal
space counterpart. We clearly see the circular polarization domains: red is o,
blue is o_ and green stands for the linearly polarized regions and regions absent of
particles in (c,d).

The OSHE is a linear effect that is especially well described by the pseudospin
formalism, however one should keep in mind that the phase of the particles is lost
in this framework. The precession equation (1.137) can be extended to include
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pumping and lifetime (7) terms following:

oS S

— =H S+f—— 1.151

ot LT X 5+ T ( )
Here the source term f(t) describes the particles injected by a pulse into the state

having a pseudospin S and reads

S
f(t) = "2e /R (1.152)
TR
where Tg is the characteristic Rayleigh scattering time and Sg is the initial pseu-
dospin vector imposed by the polarization of the pump. The population dynamics
is governed by the following rate equation
ON 2&64/7 N

Assuming that the pump is linearly polarized along the z-axis, which means Sy =
(S1,0,0,0)T, yields the important result

Q
S, (p,t) = 50”77?/;@[1%%(975)]@—“7 (1.154)
TR
N, = 25204t/ (1.155)
TR

Here ¢ is the polar angle. The degree of circular polarization reads

Do (6.1) = QSZ]s[d),t) _ Qrry ((b;g[lli;tcos ()] (1.156)

Its time averaged value is found to be

_ Qrsin(29)

pe(9) =T po e (1.157)

and therefore the maximum value of p. is achieved for diagonal directions for which
¢ = pr/4. This is not so surprising since for these specific directions, Hyp and the
initial pseudospin Sg are exactly perpendicular leading to a maximum precession
amplitude as discussed previously. This leads to the antisymmetric polarization
domains in the four quarters of the plane [see Fig.1.18|. The optical spin-Hall Effect
is an analogue to the intrinsic spin-Hall effect for electrons [116, 117]. The role
of the Rashba spin-orbit field in this case is played by the TE-TM splitting [112],
but the associated field has a different symmetry since the Rashba field is aligned
with k. We note that in the case where a polarization pinning is present along
a crystallographic axis, induced by a splitting at k = 0 (static effective magnetic
field), the geometry Hyr is modified leading to the so-called anisotropic optical
spin-Hall effect reported in Ref.[122].
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1.5 Spinor polariton condensate

In this section we discuss the nonlinear spin dynamics of polaritons brought by the
particles self-interactions. We shall introduce first the spin anisotropy of polariton
interactions and review briefly the most famous related effects and then we will
turn to the theory of spinor polariton condensates and their topological defects.
Previously [see Sec.(1.1.2)] we have described the polariton-polariton interactions
whose strength « is dependent on the excitons properties. We have also described
several nonlinear effect such as the condensation, the optical parametric oscillator
or the bistability. Now taking into account both the spin degree of freedom of
polaritons and their interactions will lead to several very interesting new results.

1.5.1 Spin anisotropy of polaritons

Polariton-polariton interactions are known to be spin-anisotropic. Indeed, the in-
teraction of polaritons having the same spin projection is much stronger than that
of polaritons with opposite spin as described in the reference [123]. Basically, the
interaction of two polaritons with antiparallel spins is a second order process that
involves an intermediate scattering event with a dark exciton lying at higher energy
which is consequently less probable. Furthermore, the second order process (involv-
ing the product of two matrix elements) produces a correction to the ground state
which is known to be always negative. In summary, the interaction constant as
between particles having opposite spin projections is much weaker than the parallel
spin interaction constant ay, the typical ratio is g = —0.1, —0.2c; but is variable
depending on the number of quantum well in the structure, their separation and the
detuning between the cavity and exciton modes [124].

The polariton spin anisotropy is responsible for several interesting nonlinear
effect, among which is found: the inversion of the linear polarization during para-
metric processes [125] as it was observed under resonant excitations, the self-induced
Larmor precession [109] [see Sec.1.5.2.3|, the multistability [97], the spin Meissner
effect [126], or condensation related phenomena [14] that shall be discussed in the
following.

1.5.2 The spinor condensate

In the section (1.2), we have introduced the mean field treatment of the macroscop-
ically occupied ground state via the Gross-Pitaevskii equation, here we will extend
this theory including the two spin projections allowed for the polariton condensate
that is consequently said to be spinor. There are two competing representations for
the description of a spinor polariton condensate. The first option is to use the linear
polarization basis (x, %), which can be convenient since the eigen modes are TE and
TM polarized and to describe a condensate forming with a linear polarization, but
since real spin states correspond to circular polarization of the emission, it is far
more natural especially for writing the interaction terms to use the circular polar-
ization basis (04,0_). We shall anyway detail both representation in the following
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which will be very useful for the chapter 2.

1.5.2.1 Linear polarization basis

The functional energy of the spin dependent polariton system reads [127]
E = / (Ekin + Eint — pn) dr (1.158)

The order parameter is normalized to the polariton concentration n = ¥* - . We
will assume here a parabolic polariton dispersion valid around k = 0 and for values
of the interaction blueshift much smaller than the Rabi splitting. The kinetic energy
term encompasses the TE-TM splitting and reads:

Ein = Ui (V; *szp-)+h—2 L b V- o) (1.159)
MmN 2 \mry  mrE '
Y = (¢g,1y) is the vectorial wavefunction of the condensate and we assume a

summation over repeated index, ¢,j = x,y. The interaction energy part is defined
by

Eine = 2" ) — Ll P (1.160)

Uy is the polarization independent interaction constant and is nothing but a;. Uy =
(o1 — ag)/2 is the so-called linear-circular dichroism [128]. The polarization of
quasi-equilibrium condensate formed under nonresonant pumping is governed by
the minimization of its interaction energy [129] which can be rewritten as

(Up — Uh)

Eint = 2

* Ul *
(") + [ <’ (1.161)
Since for the typical microcavities U; > Uy — U; (a2 = —0.1c1), Ejyt is minimized
for [¢* x ¢|* = 0 which means that 6, = 0, = 0. Consequently 1) can be written
as

Valr) = Vigcosly(x)] " (1.162)
Gy (1) = ymgsin[p(r)] e (1.163)

Where 7 is the polarization angle and 6 the is the global phase of the condensate.
The polarization of the ground state is therefore linear with a direction defined by
the angle n(r) not necessarily uniform in space and which completely determines
the order parameter. Indeed, the interaction energy is invariant under local linear
polarization angle modification, however the kinetic energy, being sensitive to local
fluctuation via the gradient operator, is definitely minimized by a uniform polariza-
tion angle distribution over the whole space. This prediction has been confirmed in
the observations of Kasprzak et al. in 2006 [9] and of Ballili et al. next [40]. In
these experiments, the orientation of the linear polarization was fixed along a crys-
tallographic axis and imposed by a splitting at k = 0 that breaks the cylindrical
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symmetry of the Hamiltonian. The chemical potential of the lowest energy state is
found to be u = (Uy — U1)n. We note here that applying an external magnetic field
along the growth axis of the sample can drastically modify the polarization of the
condensate as demonstrated in Ref.[130, 131]: while the condensate becomes ellip-
tically polarized at low magnetic field, it becomes fully circularly polarized above a
critical field H, = Uyn that imposes the pseudospin vector to lie along the z-axis as
well.

Once again, the dynamics of the order parameter @ can be obtained from the
Lagrange equations ihdvy = dE/J™* yielding

oY

thoy =T¢ +Uo (V" - )y = U1 (¥ - ¥) (1.164)

where T' is the kinetic energy tensor that includes the TE-TM splitting terms and
B h? A+ B2, B&%y

2mrE B(’)%y A+ Bagy
and 3 = h%/4(1/mry — 1/mrg) is the strength of the TE-TM splitting.

reads:

T = (1.165)

1.5.2.2 Circular polarization basis

The circular polarization basis o+ = % is more natural not only because it is the
basis of the polariton spin states, but also because preserves the shape of the stan-
dard Gross-Pitaevskii equation where interaction terms are more transparent acting
as density dependent potentials in each components [132]. The functional energy of
the system reads

» a
= [ [T+ 5 (ol + 10-1") + sl o] dr (1.166)
where this time v = (14,9 _)T, the kinetic energy tensor T is defined by
A . 2
— o B(0y — i0y)
T = 2m Y 1.167
< By, +i0,)? LA (1.167)

The effective mass of both component is the same and is taken as m* =
mrepmry/(mrE + mryr). The minimization of E leads to the following coupled
set of Gross-Pitaevskii equations

0 h?
ih % = —5 AU+l Yy + sl [Py + B0, — i0x) Y (1168)
2
"'h%@ - ‘%Aw— + ol P + anlips PP + B0, +i0;) - (1.169)

There are here two coupling terms the first one is the intercomponent interaction
of strength o, the latter acts as a potential oo [¢_|* (ag |1|?) on the ¢y (¢ )
component and since aqg is negative this potential is actually attractive. The second
coupling term is the TE-TM splitting that induces an exchange of the o4 and o_
populations. This circular polarization representation will be mostly favored in the
chapters 2 and 3.
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1.5.2.3 Intrinsic Zeeman splitting

We have already discussed the extrinsic effective magnetic field induced by the
TE-TM splitting, here we present another feature that is the interaction induced
intrinsic Zeeman splitting. Neglecting here the TE-TM splitting, the set of equations
(1.169,1.169) can be rewritten in the following form

2
B = Ay 4 M0 (g P )
B (e - ) s (1.170)
2
i = g MEO (2 )y
- QT(WH —|1/1—| )1/1— (1.171)

It is easily noticed that the last term enters the two equations with opposite signs,
and therefore can be described by the Pauli matrix o.

<+°“5a2(g+n) _041;&2(%+—n_) ><zi>:Hz<+ol _01><Zi>
—_—

Tz

(1.172)
where ny = [1+|?. It can therefore be treated as an effective magnetic field along
the z direction. It is very important to note here, that the direction of this field is
opposite to the z-projection of the polariton pseudospin. Therefore, if the conden-
sate is completely circularly polarized with ¥4 = y/n, ¥ = 0, n being the total
density, the effective magnetic field will point in the negative direction of the z-axis:

H, = =222 (g = p-P?) (1.173)
In the case of polaritons, where ag = —0.1a; the effective field is strengthened and
tends to lock circularly polarized states (having strong density imbalance) in the
system. This feature is responsible for the so-called self-induced Larmor precession
of the polariton pseudospin [16] around the field. In usual spin isotropic atomic
condensates a1 =~ ag, and therefore 2, ~ 0, the field is completely absent. We note
here that this intrinsic Zeeman splitting is responsible for the spin-Meissner effect
[126] namely the suppression of the real Zeeman splitting induced by an applied
magnetic field along the z-axis up to a critical value, and under resonant pumping,
it gives rise to the multistability [97] of the driven polariton mode, that is the
bistable jump of only one circular component while the other is locked down (from
the energy point of view). This specificity will become especially important in the
framework of half-integer topological defects as we will see in the Chapter 2.

1.5.3 Spectrum of elementary excitations

Let us discuss here the spin dependent dispersion of elementary excitations already
introduced in Sec.(1.2.4) for the spinless case. As we know, two situations can be
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distinguished, we can either consider the natural formation of the polariton conden-
sate under nonresonant pumping thanks to relaxation mechanisms or the artificial
macroscopic population of a mode via resonant injection.

In the work of Solnyshkov et al. [99] the spin dependent dispersion of elemen-
tary excitations was analyzed for a driven mode neglecting the TE-TM splitting.
Similarly to Sec.(1.3.1.2), the requirement is to write a spin dependent ansatz for
the perturbed vectorial wavefunction ¥ = (¢4, ¢_)7T:

P = ei(kpac—wpt) (11[)0 + Ae+i(ka}—wt) + B*e—i(kac—w*t)> (1174)

where ¥ = (Yos,%0-)T. A= (A, A )T and B = (By, B_)T are the amplitudes
of the perturbations on top of the condensate for each spin component. Injecting
this ansatz (1.174) into the driven-dissipative Gross-Pitaevskii equation

0 h? ih
ih g]: = - 3 A4+ |V [Py + ol Py — —1y
m 2T
+ P eithor—wpt) (1.175)
e B2 ih
ih—ae = = 5 A + o[+ aslyy Y — o
+ P_eilhommwpt) (1.176)

and linearizing the resulting set of equations yields very complex expressions for the
subsequent dispersion branches in the general case. However for circularly polarized
(e.g. P_ =0, o4 polarization) and linearly polarized (P; = P_) pumps the results
are actually much simpler. In the first case one finds the following four branches for
the circularly polarized excitations:

hwf' = hwp + \/[ELP (k‘) — hwp + 20&177,0]2 — [a1n0]2
ih

- 2 (1.177)
hw; = ﬁwp — \/[ELP (k) — hwp + 20&177,0]2 — [a1n0]2
th
- 2 (1.178)
_ th
hwi = FErp (k) + agng — o0 (1.179)
hw; = 277&)0 — Ny — % (1180)

Here k,, = 0 and ng = [¢g|*>. The renormalization of the dispersion of cross-polarized
excitations (o_ here) consists only in the concentration dependent shift with respect
to the bare dispersion as follows from Eqs.(1.179,1.180). It remains parabolic with
a constant imaginary part given by i//27. This is because polariton-polariton in-
teractions do not mix the circularly polarized components. The renormalization of
the co-polarized dispersion is much more interesting: It is seen from Eq.(1.178) that
the real part is dispersionless in the vicinity of the point where Erp = hw, + 2a1ng.
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Physically, it means that the renormalized mode is diffusive: the excitations cannot
propagate, because their group velocity is zero. As in the spinless case the renormal-
ization of the co-polarized excitations depends on the detuning § = hw, — ELp [see
Sec(1.3.1.2)]. One can assist to a parabolic, flat or linear spectrum. And especially
for the larger values of § the diffusive flat parts form at k # 0 [see Fig.1.19].
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Figure 1.19: Dispersion of the elementary excitations of a driven polariton mode.
(a) and (c) real parts and (b) and (d) imaginary parts. Upper panels: circularly
polarized pump and lower panels: linearly polarized pump. Left panels: flat part
forming at k = 0 for 6 > (a1 — ag)ng and right panel: flat parts forming at k& # 0
for larger values of 6.

In the second case of a linearly polarized driven mode, the elementary excitations
are also linearly polarized with dispersions given by the following expressions

1
hwf_ = h/.up + \/[ELP (/{) — hwp + aing + OZQ’I%()]Q — Z[alno + OQTLQ]2
ih
- — 1.181
2T (1.181)
1
hw; = hwp + \/[ELP (k}) — hwp + aing + Oégno]Q — z[alno -+ a2n0]2
ih
— E (1.182)
_ 1
hwl = hwp + \/[ELP (k:) — hwp + aing — Oé2’l’L0]2 — Z[Oélno — a2n0]2
ih
- — 1.1
2T (1.183)
1
hwl_ = ﬁ/,up — \/[ELP (]{) — ﬁ/.up + a1ng — 052?7,0]2 — Z[alno — a2n0]2
ih
- — 1.184
2T (1.184)

As the linear polarizations are mixed by the anisotropic polariton-polariton interac-
tions (ag # «), the dispersions of both co- and cross-polarized modes can exhibit
flat parts [see Fig.1.19].
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An important result emerges, when the detuning J is exactly compensated by
the interaction-induced blueshift pg = (a1 — az)ng. In that case the linear Bogoli-
ubov spectrum is recovered and we see comparing Eq.(1.181) and Eq.(1.183) that
if ag # 0, the corresponding branches are shifted with respect to each other. The
consequence is that the speed of sound is polarization dependent: The linearly po-
larized spinor polariton condensate is characterized by two speed of sounds. This
result is also valid for the condensate under non-resonant pumping [see left panel of
Fig.1.20].

Additionally, the case of a quasi-equilibrium condensate in the presence of the
TE-TM splitting was analyzed by Shelykh et al. [127]. The main result was that the
linear polarization splitting induces an anisotropic dispersion of elementary excita-
tions, depending on the relative condensate and excitation polarizations [see right
panel of Fig.1.20].
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Figure 1.20: Left panel: 2D Linear dispersions of the elementary excitations of
a driven mode pumped with a linear polarization at k # 0. The co- and cross-
polarized excitations (blue and purple) define two different speeds of sound. The
bare dispersion appears as a white/transparent parabola. Right panel: anisotropic
dispersion of elementary excitations induced by the TE-TM splitting from Ref.[127].
Dashed lines: bare dispersion branches and solid lines: renormalized lower-polariton
branches. The splitting is shown in a dashed/dotted red line. The excitation’s wave
vector is perpendicular to the condensate polarization in panel (a) and collinear
with it in panel (b).
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Chapter 2. Half-integer topological defects in spinor polariton
70 condensates

Multicomponent (spinor) condensates allow more complex topological excita-
tions than scalar ones, which mix both the phase and the spin topologies [1|. One
can cite solitons in spinor one dimensional condensates |2, 3| (vector solitons) and
oblique solitons in spinor two dimensional systems, that have already been con-
sidered theoretically [4]. In one dimension, many possible configurations were de-
scribed, depending on the strength and type of the particle interactions (repulsive
or attractive). In particular, a solution where the kink lies in only one component
was reported: The dark-antidark soliton or half-soliton (HS) [5]. The counterpart of
such a defect in 2D systems is the so-called half-vortex or Skyrmion [6, 7] depending
on the intercomponent interactions type.

Half-integer topological defects were originally predicted by Volovik and Mineev
[8] in 1976 the context of superfluid Helium 3 and their experimental observation was
reported at the intersection of three grain boundaries of cuprate superconductors
by Kirtley et al. (1996) [9] in the form of half-vortices. Along with the first reports
of polariton condensation it appeared quite natural to investigate the possibility of
having quantized vortices in the systems. Rubo predicted in 2006 [10], that due to
the spontaneous formation of the polariton condensate with a well defined linear
polarization as we have seen previously, the elementary topological excitations are
not regular but half-integer vortices. This discovery being first quite mysterious to
the polariton community, has next attracted much attention. The first experimen-
tal observation of vortices in a polariton condensate by the group of Lausanne [11]
followed in 2008 with a non-resonantly populated condensate with a pulsed pump.
In that work, the sample used had strong enough structural imperfections to in-
duce a significant disorder landscape. The separated condensate islands forming
(due to the disorder) at the early times have different phases, and their reconnec-
tion at higher densities induces phase dislocations at their interface in the form
of vortices, as it was understood later [12]. Therefore, the vortices were observed
pinned to defects at deterministic positions. Since this very first experiment was
not polarization resolved, there was no chance of evidencing half-vortices. The next
year, the same group revisited their own experiment [20] [see Fig.2.1]| separating the
two circular polarization components to discover that regular vortices actually co-
existed with the expected half-quantum vortices, which was quite an exciting result.
These experiments have then paved the way to an impressive number of proposals
[14, 15, 16, 17, 18, 19] and experimental reports [20, 21, 22, 23, 24, 25, 26, 27| on
vortices in semiconductor microcavities. And this, thanks to the high degree of con-
trol that is now possible on the optically generated polariton fluid. The generation
of half-vortices has so far been much less studied [10, 132, 29|, and observed only
once [20].

In this chapter we will introduce these half-integer topological defects. We will
first analyze the stability of half-vortices in the TE-TM effective magnetic field and
their interactions [Sec.2.1]. Next, we will introduce their one dimensional counter-
part namely half-soliton and show that half-integer topological defects behave as
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Figure 2.1: Observation of half-quantum vortices in a polariton condensate from
Ref.[20]. (A,B) Reconstructed interferograms for o4 and o_ polarizations at the
energy of the condensate. We see the typical forklike dislocation appearing in only
one component, highlighted by the circles, evidencing the half-vortex. (C,D) Asso-
ciated real space phase map extracted from the interferograms.

magnetic charges accelerated by effective magnetic fields. We shall then propose
means of exciting such fascinating objects towards the formation of real magnetic
currents [Sec.2.2]. We will then switch to the hydrodynamic generation of oblique
half-solitons in a propagating polariton quantum fluid, see that they behave as mag-
netic charges as well, and present their recent experimental observation [Sec.2.3].
We will make a stop at the physics of Black holes demonstrating that the polariton
fluid is a valuable candidate for the formation of sonic holes and we will see that
half-integer topological defects can embody seed signals propagating through these
gravitational analogues [2.4]. Eventually, we will propose another means of exciting
integer and half-integer topological defects using electric currents [2.5].
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2.1 Stability of the half-vortices

2.1.1 Half-vortices

The original description of half-vortices proposed by Rubo [10] was performed on the
linear polarization basis neglecting the TE-TM splitting. The stationary vectorial
order parameter 1 (r) of the two component spinor condensate reads

v= ()= (e ) e

Indeed, for an arbitrary polarization of the condensate, the phases 6, ,(r) and the

densities ng ,(r) are defined independently for each component. However, since the
condensate forms with a well defined polarization, the previous expression can be

v = (17 ) = v () 22)

sin (n)

Which means that 0, = 0, = 0, \/n, = \/nopcosn and /n,; = /ngsinn. ng is
the total density, n(r) is the linear polarization angle and 0(r) is a global phase of

rewritten as

the spinor condensate, namely the phase that would be measured in an experiment
where the polarization is not resolved. This representation, where the phase and
polarization angle are separated means that we consider the particles being part of
a global fluid, each particle having a linear polarization defined by 7. It is possible
here to define a global velocity for the spinor condensate v = i/mV§6. We insist on
the fact that this representation is valid only for linear polarization states, indeed
no global phase can be correctly defined for elliptic condensates (i.e. forming under
applied magnetic field [30]).

We see that for the two component spinor condensate, we are dealing with two
phases n and 6. Following the argumentation of the section 1.2.5.2 devoted to
vortices, we can easily understand that 6(r) being defined modulus 27 is allowed to
wind around a central point to form a global phase vortex which actually coincides
with a usual integer vortex provided that the orientation of 1 remains homogeneous
in space. As well, nothing prevents 7 from winding, in its turn keeping 6 constant to
form the so-called polarization vortex. To describe a vortex state we therefore need
two winding numbers denoted as k and m for the polarization an phase respectively.
The latter cases correspond to an integer value of one winding number while the
other one is zero. One thing to note is that since a linear polarization direction
(corresponding to the oscillation direction of the electric field) is defined only up to
m, it should therefore be possible for n to wind e.g. by only 7 around the vortex
core preserving the continuity of the polarization texture. However, the whole order
parameter defined by Eq.(2.2) is not invariant under the transformation n — n+ pw
(p € Z) so we need something more and anyway the orientation of 7 is oscillating
with time, breaking the continuity. Indeed, on the other hand, we have

(0 )= (St ) = (e ) e
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which means that the order parameter is invariant under the combined transforma-
tions {n,0} — {n+ pm, 0+ qr} where {p,q} € Z provided that p and g have the
same parity. In the winding number representation given that {k,m} = {p/2, ¢/2}
we immediately obtain that £ and m are allowed to take both integer and half-
integer values, defining the so-called half-quantum vortices in the latter case. The 7
winding of a quantity on a closed loop appears as strongly counterintuitive since the
particles need to wind two times in order to recover the initial phase for a Moebius
band. However, it is important to note that for example the {k, m} = {1/2,0} half-
vortex is forbidden, since the global continuity of the order parameter is violated
in that case. The half winding of one of the two phases imposes the other one to
behave in a fractional fashion as well, to preserve this global continuity. A global
winding number could be defined as K = k + m and the continuity would require
K to be an integer in order to recover physical phase windings of 2k around the
vortex core.

The order parameter of the spinor polariton condensate can be seen as an infinite
chessboard. A vortex is defined by a diagonal line connecting two equivalent points
on this chessboard characterized by the winding numbers £ and m as shown in
Fig.2.2.
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Figure 2.2: Representation of the spinor polariton condensate’s order parameter. A
vortex corresponds to a diagonal line connecting two points of the chessboard. This
line is associated with the transformation n — n+ 2km and 8 — 6 4 2mmx. The blue
arrows show the vector field associated with 7 namely Re(vy;,).
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2.1.2 Energy

We know from the section (1.2.5.2) that the vortex energy is dominated by its
kinetic part (or elastic part) [31] growing logarithmically with the system size and
this statement has no reason to fail for half-vortices. Since for the linearly polarized
condensate far from the vortex core we are allowed to separate 6 and 7, the kinetic
energy of the condensate reads:
2
By, = 10 / [V (r) + V6 (r)]2dr (2.4)

~ 2m*

having a single vortex in the system means that

0 = ko (2.5)
n = mo 2

where ¢ is the polar angle, E}, is therefore reduced to

¢ = h/\/2m*p is the healing length of the condensate and the chemical potential
is defined by u = (Uy — Up)ng. As one would have expected, the lowest energy
half-vortices possess winding numbers equal to one half. The four building blocks
are thus defined by

{+1/2,+1/2}

{-1/2,-1/2}

(+1/2,-1/2) %)
Noticing moreover that if e.g. I = 1 and k,m = £1/2, one has I?> = 2(k?+m?) which
means that the energy of an integer, phase or polarization, vortex is twice larger than
that of a half-vortex. The latter therefore embody the elementary topological exci-
tation in a polariton condensate. Importantly enough, the Berezinskii-Kosterlitz-

{k7m} =

Thouless [see Sec.1.2.5.3] is reduced by a factor 2 if half-vortices are involved.

2.1.3 Polarization texture

So far we haven’t yet discussed the core structure of the half-vortex which is es-
pecially interesting. This aspect is however far more transparent on the circular
polarization basis as we will see [132].

Let us rewrite the order parameter (2.2) on the circular polarization basis. Using
the transformation ¢4 = (¢, F ith,) /v/2 we easily obtain

i(0+n)
no e
Yiin =1/ 5 ( £il6—) ) (2.9)

Each component possesses its own phase 0 = 0 +n and 6, = 0 — 1. As well,
the linear polarization angle is defined by the phase difference between the two
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circular components n = (01 — 6_)/2 and the global phase is the sum of the two
6 = (0+ +6_)/2. Considering a vortex state characterized by the winding numbers
k and m we can define a new set of winding numbers (I4,1_) = (k+m, k—m) which
are bound to be integer. The corresponding vortex order parameter reads

iy
Yy = \/T;T( Zu_¢> > (2.10)

Which makes the half-vortex representation much clearer and intuitive, indeed, we
see that from the phase point of view, each component takes separately the form a
vortex wavefunction with the winding numbers (I4,[_). In this representation, the
four elementary half-vortices are characterized by

{+1,0}
{I4,1} = gaﬁ (2.11)
{0, _1}

Meaning that a half-vortex solution corresponds to having a vortex in one component
while the other one remains unperturbed at least if ag = 0, which makes their
interpretation far more natural.

Let us now discuss the half-vortex as a whole, including its core structure. To
do so, we need to rewrite the order parameter out of the linear polarization approx-
imation, which was found by an asymptotic analysis far away from the vortex core,

including the radial profiles fi(r) = y/ny(r) and f_(r) = y/n_(r).

r) el+9
Yy (r,¢) = < ? Eri il > (2.12)

The stationary (0; — —iu) spinor Gross-Pitaevskii equations (1.169,1.169) can be
rewritten in the following dimensionless form

< =% = 1+ Ao |+ Ao X(9y +i0,)’ > ( n > _ ( 0 )
X(ay_iax)z _% - 1+A1|¢—’2+A2W1—|2 Y- 0
(2.13)

We have used here the scaling relations: ¢+ — (u/(0q + ag))1/2 Yy, T —
(hQ/(m*M))l/QI' and t — (R/u)t. Here, p = (a1 + a2)nee/2 with ne =
|14 (00)|? + |th—(o0)|? being the condensate density far away from the vortex core,
A12 = a12/(a1 +ag) and x = Bm*/h?. Injecting the ansatz (2.12) in the equations
(2.13) neglecting first the TE-TM splitting (x = 0) yields the equations for the
radial functions.

" / l2
f++f++ <2—2A1f42r—2142f2—7:g) f+:0 (214)

2
o+ (2—2A1f2—2A2f$—i3> f-=0 (2.15)
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In the simplest case, where the circular polarized components do not interact (A =
0), the half-vortex with e.g. [ = +1, I = 0 corresponds to a homogeneous
distribution of o, component and a simple vortex in o_. Clear enough, in the
center of such a half-vortex the density is non-zero (due to the o4 component) and
the polarization is circular, since the density of the o_ component is zero in the
center of the vortex. Such kind of vortices is referred to as a coreless vortex [1] in
atomic condensates but in that case, the spin isotropy of the interactions gives rather
birth to skyrmion [6, 7] that are asymptotically circularly polarized. In our case,
moving from the center of the vortex, the polarization of the half-vortex changes
from circular to linear in a continuous manner [see Fig.2.3|.

@)

Figure 2.3: Two half-vortex polarization textures from Ref.[10]. (a) (+1/2,4+1/2) or
(+1/2,-1/2) and (b) (-1/2,+1/2) or (-1/2,-1/2) half-vortices. The red arrows show
the orientation of the linear polarization at a specific time and the red circles show
the trajectories of the arrows displaying the degree of circular polarization.

It is interesting to note that at the core position neither the o4 nor the o_
particles contribute to the condensate’s motion since one component is completely
static and the other one is absent. As well, far away from the vortex core the particles
of the component carrying the vortex are almost immobile since v(r) ~ 1/r. It is
therefore very tempting to define a global hydrodynamic velocity v, for the spinor
condensate n n

vy = n—zu + n—;v_ (2.16)
that describes well this behavior. However, apart from a linear polarization case
(which is definitely not the case of the vortex core) for which vy = h/m*6 (6 the
global phase defined above), this velocity cannot be linked with any phase in the
system and its circulation is in the general case not quantized.

The set of equations (2.14,2.15) can only be solved numerically and the results
are shown in the Fig.2.4 in the case (I+,l—) = (+1,0) for Ay = 0 [panel(a)| and
As = —0.14; |panel (b)]. In the first case, the normalized radial function in the
o4+ component is obviously that of a regular vortex and can be well approximated
by the function fi(r) = r/vr?2+2, while f_(r) = 1/2. In the second case the

intercomponent interactions being attractive (Ay < 0) the presence of the dip in
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the o4 density is seen as a weak potential barrier by the o_ component, which
therefore exhibits a shallow density minimum at the vortex position as well [see
Fig.2.4]. Additionally, the vortex size is slightly reduced: the healing length & is
renormalized in the oy component.
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Figure 2.4: Half-vortex normalized density slice n4(r) = f1(r). (a) A2 = 0 and (b)
Ay = —0.1A;. The solid red (dashed/blue) curve shows the o4 (0_) component.
The vortex therefore lies here in the o4 component here: (£1,0) half-vortex.

2.1.4 Impact of the TE-TM effective magnetic field

Now, let us consider a more interesting case where x # 0. The terms associated
with the TE-TM splitting [see Sec.1.4.3| have to be rewritten in polar coordinates:
o [0 d 8,0 03
9.2 — pF2i¢ [ T Z¢ Y% 92, ¢
(Oy £10,)" =T (r ¢2zr2 +2i . 8T,—|—r2 (2.17)
The non-zero exchange between the two components leads to the mutual dependence

of their winding numbers. The only cylindrically symmetric solutions of Eqs.(2.13)
have the following form:

P (r, 0) ) _ u¢< f1(r) >
(g ) =l (215)
which means that necessarily
l=li=10_-2 (2.19)

In terms of Ref.[10] this state corresponds k = —1 and m = 0, namely, a polar-
ization vortex. Which means that in the thermodynamic limit we consider here,
the half-vortex is not allowed to be a stationary solution keeping the symmetry of
the Hamiltonian anymore. In a comment [32] on our paper 28|, an asymptotic
non-cylindrical half-vortex solution was proposed for which the polarization and
phase become warped and the stream lines are no more concentric but warped as
well. However, we explained in our reply [33] that this asymptotic analysis is def-
initely not sufficient to prove the existence of this solution since this is the core
region, which was neglected in the comment, that is actually the most affected by
the TE-TM splitting. Later on, we have been performing numerical simulations
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to see the impact of the TE-TM splitting on a single half-vortex. What we found
was that while for realistic values of the field the half-vortex was not destroyed, we
observed that its core was oscillating being squeezed periodically demonstrating its
non-stationarity.

Back to our cylindrically symmetric solution, the elastic energy of a vortex can
be rewritten on the circular polarization basis as

Eyin = Qm*/ [|V9+| +|VO_|"|dr = pyee (l+ + l_) In E (2.20)
From the above formula and under the condition I = [_ — 2, it follows that the

kinetic energy is minimized for (I4,l_) = (—1,+1). However, one shouldn’t forget
that under the action of an effective magnetic field (induced here by the TE-TM
splitting), the condensate acquires the magnetic energy

Emag = —/dI‘ (HLT . S) (2.21)

whose contribution to the total energy can be significant, depending on the pseu-
dospin texture. Let us therefore calculate the pseudospin associated with our vortex
solution. Since we have |l| = |I_| = 1 we will use the standard approximated radial
functions for scalar vortices to write the following (dimensionless) order parameter

( Z’if > - ﬁ < Z:Z > (2.22)

The pseudospin follows from Eqs.(1.141-1.143) and we obtain

S:E T2 COS (2¢)
Sy | =3 sin (2¢) (2.23)
S. 442 0

The corresponding texture is shown in the right panel of Fig.2.5. We note that
a similar object was refereed to as a wavefunction monopole (by its spin texture)
in Ref.[34] in atomic Bose-Einstein condensates. Two things are remarkable: first,
the pseudospin is in-plane (S, = 0), and thus the polarization is linear everywhere,
defining a polarization vortex, second, S makes an angle 2¢ with the x-direction (the
polarization of the emitted light is radial everywhere). Consequently, our solution
corresponds to a pseudospin aligned with Hpr all over the plane. The condensate
is fully TE or TM polarized depending on which of these two states has the lower
energy, and the magnetic energy is strongly negative. One extra thing to note is that
since the polarization is linear everywhere, the global phase 8 of the condensate can
be defined and is constant. At the vortex core, the total density is zero, while the o
and o_ particles rotating in opposite directions (at the same speed) impose a globally
"static" condensate as follows from v, ~ V6 which appears quite counterintuitive.
Of course, it does not mean that the corresponding kinetic energy is zero.
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To compare, the (I4,1-) = (0, +1) half-vortex pseudospin texture in the absence
of the TE-TM splitting is found as

S:B ’1“2 C‘OS (¢)
gz 215 Em (9) (2.24)

and it is shown in the left panel of Fig.2.5. In that case, the pseudospin is divergent
and makes an angle ¢ with Hy7 bringing a significant positive contribution to the
magnetic energy where the TE-TM splitting is strong in the core region. Of course,
this solution is not stationary in such field, which can be easily checked by numerical
simulations.
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Figure 2.5: Left panel: (+1,0) half-vortex pseudospin texture. Right panel: (-1,41)
polarization vortex pseudospin texture aligned with the TE-TM splitting induced
effective magnetic field.

In summary, the polarization vortex strongly minimizes the magnetic energy
while its kinetic energy is twice larger than in the half-vortex case, as we know.
However, the half-vortex carries much larger magnetic energy, which is significant
near its core where the TE-TM splitting is strong. The kinetic energy is dependent
on the system size, so there is necessarily a crossing between the total energy carried
by the polarization vortex and the one carried by the half-vortex increasing R from
zero to infinity.

2.1.5 Interactions

Now let us consider half-vortex pairs. As we have seen in Sec.1.2.5.2, the kinetic
energy can be reduced by the vortex-antivortex interaction. Indeed, the presence of
a vortex pair heals the large scale perturbation of the phase and velocity field to keep
it only local, the interaction term removes the system size dependent divergence in
the kinetic energy. This is the reason why a condensate perturbed locally would favor
the nucleation of vortex anti-vortex pairs [see Sec.2.5]. Topologically speaking, the
uniform state and the vortex pair state are equivalent [31]. This argument stands for
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a large number of vortices where an equal number of vortex and antivortex should
be excited. For the spinor condensate, and from the point of view of the magnetic
energy, it is necessary to excite an equal quantity of o4 and o_ vortices. In the
absence of the TE-TM splitting, in addition to their individual energy, a half-vortex
pair separated by the distance d adds the following interaction term to the kinetic
energy of the condensate

Th2 N
2m*

(litloy +li-l2-)In <§> (2.25)

Eins =
It is clear intuitively and from the above formula (2.25) that half-vortices sharing
the same component interact, within this component, like scalar vortices, while the
half-vortices lying in different components cannot interact. However, in the presence
of the TE-TM splitting the particle exchange between the two components should
modify the situation. The polarization vortex (—1,+1) appears to be the linear
combination of the (—1,0) and the (0,+1) half-vortex. Let us separate these two
elementary half-vortices by a distance d between them (e.g. along z-axis). In view
of the induced symmetry breaking, it is necessary to rewrite the associated order
parameter in cartesian coordinates

(vrimern ) =(Finas) o

where r. = /(z F d/2)? + y2, ¢4 = arctan[y/(vFd/2)] and fi(ry) =rE/y/r3 +2
are the approximate radial functions that we take as in the unperturbed case for sim-
plicity. The corresponding pseudospin texture is shown Fig.2.6(b). The separation
of the half-vortices impacts on the magnetic energy of the system

Eimag = / [wi;(ay +i0p) Y + (0, + iax)zm} dr (2.27)

that increases with d. The numerical evaluation of E,,q4 is shown in Fig.2.6(a) as a
function of d. One can see that as expected the energy grows logarithmically with
d. Tt follows that the TE-TM splitting makes (—1,0) and (0, +1) vortices interact
and collapse on each other to form the (—1,+41) vortex.

2.1.6 Conclusion

In conclusion, we have seen that in the absence of the TE-TM splitting, half-vortices
are the elementary topological excitations of the spinor polariton condensate. Tak-
ing into account the TE-TM splitting, that is always present in planar microcavities,
shows that the single half-vortex is no more a solution preserving the symmetry of
the Hamiltonian, meaning that it is no more a stationary solution. The integer po-
larization vortex, being the bound state of two half-vortices, preserves the symmetry
of the Hamiltonian and its pseudospin geometry is the same as the TE-TM effective
field geometry which minimizes both the magnetic and interaction energy of the
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Figure 2.6: (a) Growing of the magnetic energy E,,q4 with the increase of separation
d between the (—1,0) and (0,+1) half-vortices. The associated pseudospin texture
is shown in the panel (b).

condensate. This solution is consequently stable and stationary and will definitely
not decay into a pair of half-vortices. On the contrary, half-vortices merge to form
the polarization vortex.
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2.2 Half-integer topological defects as magnetic
monopoles analogues

Abstraction is a common tool in physics, serving the better comprehension of com-
plex phenomena. The most evident example is the atom, encompassing an in-
tricate underlying structure of electrons and hadrons, the latter themselves com-
posed of quarks and gluons. This internal structure can of course be completely
neglected while discussing the properties of gases in statistical physics. Such multi-
level abstraction is especially common for solid-state physics, where excitons are
formed from electrons and holes, themselves being complicated elementary excita-
tions formed from several electronic levels of atoms constituting the solid. The exci-
tons can be described as massive quantum particles, which can couple with photons
and form new particles of an even higher level of abstraction: exciton-polaritons.

When a Bose condensate is formed, one can consider its weak excitations as ele-
mentary particles (Bogolons) [see Sec.1.2.4], forgetting the nature of the underlying
bosons. But the weak elementary excitations are not the only type of interesting
perturbations which can occur in a Bose condensate. The topological defects [35]
are currently (and since quite a long time) in the focus of intense theoretical and
experimental research and will be the main topic of the present work. We shall
see how the behavior of half-quantum topological defects can be described in terms
of relativistic "material points" and "point charges" (an easy way) or in terms of
underlying local spin dynamics (a harder way). The importance of such analogies
as "magnetic charges" or magnetic monopoles [36] will thus become especially clear.

We shall start in this section introducing the 1D half-soliton that is the simplest
candidate for the magnetic monopole analogy and analyze their behavior in the
presence of an in-plane magnetic field. We shall extend the theory to the case of half-
vortices. We will discuss how to realistically excite such objects in a semiconductor
microwire and how they will naturally decay into their half-integer constituents,
serving as a source for magnetic currents. Finally, we will concentrate on a new
type of topological excitation in a 2D system: the oblique half-soliton, that has
led to the very first experimental observation of the acceleration of a half-integer
topological defect behaving as a magnetic charge.

2.2.1 Half-solitons as magnetic charges
2.2.1.1 Half-solitons

So far, we have introduced the half-vortex solution in a two dimensional system, we
have analyzed its one dimensional counterpart that we have called a half-soliton in
the Refs.[37, 38, 39, 40] as a continuation of the works of Salomaa and Volovik [5].
Analogously to the half-vortex discussion, the half-soliton corresponds to its integer
counterpart in one component while the other component remains homogeneous (at
least for ap=0). Therefore, the polarization of the condensate is circular (elliptic if
the soliton is moving) at the half-soliton core and linear at +oo. Since the scalar
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dark soliton solution [see 1.2.5.1] is simply given by 1g (x) = /ng tanh (z) and its
phase is a Heaviside function of amplitude 7, on the circular polarization basis and,
in the simplest case where as = 0, the dark half-soliton order parameter reads

() =5 (o) 22

Where the dark soliton lies here in the o_ component. Obviously the o_ phase
displays a 7 phase shift while it remains constant in the o component. Rewriting
Eq.(2.28) on the linear polarization basis yields

< e () > _ Vo ( 1+ tanh (z) ) (2.29)

Py () 2 i —itanh (z)
Looking at asymptotic forms, one can easily obtain:
VS (+00) = /npe?™ cos (2sm) (2.30)
55 (+o0) = ,/noe%h7r sin (2s7) (2.31)
15 (_o0) Ve cos (sm) (2.32)
5S (—o0) = +/nge™ sin (sm) (2.33)

where h and s are half-integer numbers which can be seen as topological charges.
Elementary dark half-solitons appear for {h,s} = {£1/2,£1/2)} and their phase
and polarization angle are shifted from 0 to 7/2 going through their circularly
polarized core. This topological defect can also be seen as a domain wall with respect
to - and y-polarized particles. A plot of the HS density profiles (n; = ‘1[)]1-{5’2,
j = £,z,y) is proposed in Fig.2.7(a). The corresponding pseudospin projections
are found as

S n 2 tanh (x)
s, | = ZO 0 (2.34)
S, 1 — tanh (z)?

and its not surprising that the pseudospin points in opposite directions at the oppo-
site sides sides of the soliton, as shown in Fig.2.7 (red arrows), since it is a domain
wall between = and y polarizations. It is possible to tune the global orientation of
the linear polarization introducing a constant relative phase between the o4 and o_
components appearing as an exp(i¢g) factor in one of the two wavefunctions .
Four configurations are shown in the Fig.2.7(b) changing ¢¢ from 0 to 27 with a
/2 step. Remarkably, the pseudospin field of the half-soliton is similar to the field
created by a point charge being either divergent or convergent for ¢g = 0 or ¢pg =7
respectively.

2.2.1.2 Half-solitons acceleration

We know well now that the pseudospin interacts with effective magnetic fields. Let
us first try to understand from "microscopic" considerations what will happen to
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Figure 2.7: (a) Half-soliton density profiles scaled to ng and £. The solid (blue) and
(red) curves represent the o4 (0_) density profiles, while the dashed-dotted purple
and dashed cyan curves show the x and y components respectively. The red arrows
show the pseudospin vector field. (b) ¢g dependent half-soliton pseudospin textures.
From the top to the bottom: ¢¢ = 0,7/2, 7, 3m/2.

this object, when an in-plane effective magnetic field Hyr = Hu, is applied along
the z-direction. We have already discussed the presence of a splitting at k = 0
in planar microcavities in the context of the optical spin-Hall effect (leading to the
anisotropic OSHE) [see Sec.1.4.4]. This splitting is especially well resolved above the
condensation threshold thanks to the sharpening of the emission lines, and induces
an in-plane effective magnetic field pointing in a well defined direction, determined
by the orientation of the crystallographic axes of a planar cavity or the orientation of
the microwire [41] [see also Sec.3.3.2.1 for more details|. Its interpretation in terms
of a constant effective in-plane magnetic field is even more direct than in the case
of the interaction-induced field in the z direction: if the z and y polarizations have
different energies when the Gross-Pitaevskii equation is written on the xy basis, this
splitting transforms into a term —H,1)+/2 in the circular polarization basis with the
usual coordinate transformation rules ¢4 = (Y F ith,) /2.

Since the existence of a soliton requires a significant interaction energy and there-
fore a significant condensate density, the intrinsic Zeeman splitting [see Sec.1.5.2.3]
behaving as an effective magnetic field Hy = H,u, is expected to play an im-
portant role in circularly polarized regions such as a half-soliton (or a half-vortex)
core. Indeed, due to the spin anisotropy of polariton interactions [see Sec.1.5.1]
the effective field is amplified and tends to lock circularly polarized states (strong
density imbalance) in the system. It provides the natural stability of half-integer
topological defects against an effective magnetic field preventing the precession of
the polarization at their core up to the critical value |3]

(a1 —a2)n

HC: 4 )

(2.35)
that would lead to their destruction.

Assuming here ¢g = 0, let us consider the pseudospin dynamics at each point,
since the other terms in the Gross-Pitaevskii equation (the kinetic energy and the in-
teraction energy) compensate each other at ¢ = 0. For the linearly polarized regions
far from the soliton’s core |x| > £, the pseudospin is aligned or anti-aligned with
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the magnetic field (which contains only a x component) and there is no evolution:
0S/0t = 0. For the core region, there is a non-zero pseudospin projection on the
z axis, and therefore the pseudospin will rotate (precess) around the magnetic field
(which now contains both x and z components). Let us consider the initial moments
of this rotation for the pseudospin in the center of the soliton: S(z = 0,t = 0) = u,,
while the total magnetic field is

a1 — Q9

H(r = 0.t =0) = Hyu, —

(7g)um (2.36)
Rotating around the (positive) H, component, the pseudospin (initially negative
along z) gains a positive S, projection and starts to precess around the positive
H, field, turning towards the negative direction of the z-axis. This is the main
result of our qualitative vectorial consideration of the polarization dynamics: the
pseudospin in the center of the soliton gains a negative z-projection. Therefore, the
domain of negative x pseudospin projection becomes larger, the domain of positive
z-projection smaller, and the wall between these domains is moving to the right.
However, once the soliton core starts to propagate, the kinetic and interaction energy
terms are no more compensated everywhere, and one cannot discuss the evolution
of the system using the qualitative arguments based on polarization dynamics. At
first sight, one may even think that the nonlinear system in question can be solved
only numerically.

However, an important insight into the behavior of the system can be gained
by "changing the zoom". Forgetting about the internal structure, a vectorial grey
soliton in a Bose-Einstein condensate can be considered as a particle [42] with a
negative effective mass (at least at low velocities). Moreover, the pseudospin pattern
of this particle is the same as the field of a point magnetic charge in 1D. The magnetic
energy of the system can be found from the Hamiltonian as the usual scalar product
of the field and the spin, and this magnetic energy depends on the position of the
soliton because of the finite system size. Thus, one can evaluate the force acting on
the magnetic charge from the magnetic field as a gradient of the magnetic energy
with respect to the position of the soliton. This force will consequently accelerate
the soliton.

Considering the soliton as an elementary particle without internal structure
means passing to the limit L > &, where L is the system size (for example, the
length of a wire-shaped cavity, which is usually of the order of 100um). The healing
length of a polariton condensate for a reasonable blue shift of 1 meV expected for
GaAs or CdTe cavities and a polariton mass of 5 x 107 of a free electron mass is
& ~ 1um. In this limit, the wavefunction of the soliton at ¢ = 0 becomes simply
Py = MSign(x —x9), Y- = m, where z( is the position of the soliton. In
general, the tanh function is replaced by the sign function. The magnetic energy of
a condensate containing a half-soliton in an external in-plane magnetic field is

mmz—/Hsm (2.37)
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Here S(x—x0) = nsign(x—xo)uy (xo is the soliton position) in the limit we consider,
giving

Erag (x0) = Han(zo) (2.38)
dE

Frna ——"% — _nH, 2.39

g dl’o n ( )

The force in Eq.(2.39) is therefore acting opposite to the direction of the magnetic
field, but the acceleration will occur in the direction opposite to the force, because
the effective mass of the soliton is negative, at least at low velocities.

For a grey soliton propagating at the speed v, the phase shift induced by the
soliton in the o4 component is Af = 2arccos(v/c) < mand the pseudospin projection
Sz is reduced, which can be expressed as a renormalization of the magnetic charge.
The correction to the charge is found as

q=qo (1 - Z;) (2.40)

where gy = an/2 is the charge at rest for a dark half-soliton. The total correction
for the mass of the soliton and its charge gives the equation of motion

Ha: 2\ 3/2
a=qom (1 - ”) (2.41)
™m

the same as in relativistic physics, integrating which one obtains

v(t) = ctanh (qOchnt> , (2.42)
assuming zero initial velocity. This trajectory is perfectly confirmed by numeri-
cal simulations as shown in Fig.2.8 [see captions|. In the panel (b), the soliton is
introduced as an initial condition and no lifetime is accounted for. In the config-
uration of the panel (c) we have included the polariton lifetime and the pumping
term, the half-solitons are created with a pulsed potential acting on only one con-
densate’s components (o4 here). We see that, using the abstraction of a point mag-
netic charge appears particularly useful, since it allows solving the nonlinear spinor
Gross-Pitaevskii equation analytically and gives a good qualitative understanding
of observed phenomena.

The relative phase ¢g between the two components impacts strongly the soliton
acceleration, indeed, as we have noticed previously, the continuous variation of ¢q
leads to a continuous rotation of the linear polarization around the soliton’s core
[see Fig.2.7]. Since the force acting on the half-soliton is dependent on the scalar
product Hy7 - S, the relative orientation of S and Hyr becomes determinant. In
the cases where ¢9 = (2p+ 1)7/2 (p € Z), away from the soliton’s core S lies along
the y direction, thus Hy7 - S = 0 and no soliton motion can minimize the magnetic
energy of the system which is zero initially. The charge of such a soliton is zero.
On the contrary, for ¢9 = 2pm (¢o = (2p + 1)7), the soliton is bound to move along



2.2. Half-integer topological defects as magnetic monopoles 87

. oPE ‘ < 100
100 Analytical - '_“a "
£ ' 850
< 5ot =
. (a) 0
0 50 100 150 0 20
(ps) X (um)

Figure 2.8: Half-soliton acceleration. (a) Trajectory of a half soliton accelerated in
a constant in-plane effective magnetic field calculated analytically (red solid line)
and numerically (black dots). (b,c) Circular polarization degree p. as a function of
coordinate and time calculated using the spinor Gross-Pitaevskii equation, including
the constant in-plane effective magnetic field. The half-soliton trajectory is visible
as the deep blue minimum (the core is filled with o_ particles). (b) Half-soliton as
an initial condition, no lifetime. (¢) Pumping and lifetime the half-soliton is created
here by a pulsed potential. The black/dotted lines are guides for the eyes showing
trajectories for the splitting values indicated on the figure (in meV).

(against) the field and is attributed a positive (negative) charge. Consequently, in
addition to its velocity-dependent charge renormalization, the soliton charge is ¢q
dependent:

¢ = @ (1 - v2> (2.43)

g = — cos(¢o) (2.44)

The figure 2.9 showing numerical simulations using the spinor Gross-Pitaevskii
equations (2.13) (the TE-TM splitting has to be replaced by a k-independent field
along the z-axis) illustrates the ¢y dependent motion of the half-soliton. The vis-
ible displacements (oscillations at larger time scales) in the cases ¢g = 7/2,37w/2
[Fig.2.9(b,d)] originate from the precession of the pseudospin away from the soliton’s
core visible in the colormap.

We conclude this section with the following remark. First, the ¢g-dependent
renormalization of the charge is given in Eqs.(2.43,2.44) for a well defined orienta-
tion of the effective field Hyr namely along the z-direction as in a real microwire.
Allowing for an arbitrary orientation of Hypr associated with an angle ¢rr the
renormalization would read gy = an/2 cos(¢pp — ¢r7). Second, this charge renormal-
ization seems at first sight to go against a complete magnetic monopole analogy as
the charge is not conserved with ¢9. However, changing the referential in order to
compensate for ¢g namely working in the basis where the field is divergent allows
to recover a fixed charge and in that case it is the effective field itself that would
be renormalized. The situation would be similar to that of an electron in a one
dimensional crystal accelerated by a non longitudinal electric field when ¢y # 0.
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Figure 2.9: ¢g-dependent half-soliton acceleration. We start here from an initial
condition neglecting the polariton lifetime. From (a) to (d), ¢o = 0,7/2, 7, 37/2.

2.2.1.3 Soliton and half-soliton interactions

Short Range Interaction

Dark (gray) solitons are the solution of the 1D Gross-Pitaevskii equation provided
that the condensate is formed of particles that repel each other (a; > 0). Interac-
tions between solitons themselves have been thoroughly analyzed an it is now well
known that dark solitons tend to repel each other as well [43] up to a limiting speed
where they can cross each other, their kinetic energy being dominant. Such a be-
havior is illustrated in the Fig.2.10 showing the degree of circular polarization and
where we have solved the scalar Gross-Pitaevskii equation with the initial condition
given by two dark solitons spatially shifted by 0.5 um [see Eq.(2.55) below|. The
solitons repel at the initial moment and then demonstrate a linear trajectory, which
is a clear signature of their short range interaction.

Now, what about the half-soliton in the two-component condensate? Let us re-
mind that a half-soliton corresponds to a soliton occurring in only one of the two
components. Additionally, if the intercomponent interaction is not neglected, the
presence of a half-soliton in one component obviously perturbs the other one in a
fashion depending on the type of interactions, given by the sign of as. Indeed, for
ag > 0 (ag < 0), the presence of a density minimum in the component carrying the
soliton is seen as a potential well (barrier) of amplitude aones /2, where nq is the
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Figure 2.10: Short range interaction between solitons initially separated by 0.5
pm. (a) Integer soliton repulsion the colormap shows the density n = |1/1|2 of the
single component of a scalar condensate. (b) Half-solitons attraction, which shows
dipolar oscillations for s = +0.2aq (c) half-solitons repulsion for s = —0.2a4,
the colormap in (b) and (c) shows the degree of circular polarization of the spinor
condensate: p. = (ng —n_)/(ny +n_).

total density far away from the soliton, by the other component and consequently a
density maximum (minimum) appears at the position of the soliton [see Sec.2.3.1].
Putting two half-solitons lying in different components next to each other induces
a short range interaction within each component, between a soliton and the den-
sity maximum (minimum) induced indirectly by the other soliton. The half-solitons
having a negative effective mass are repelled (attracted) by the potential wells (bar-
riers) they encounter, which, from their point of view, are barriers (or wells). This
argumentation leads to the following statement: For ap > 0 (a2 < 0), half-soliton
attract (repel) each other while they obviously don’t interact for g = 0. This trend
is shown in Fig.2.10(b) and (c). We note, that in the repulsive case, dipolar oscilla-
tions occur between the solitons, this is due to the effect of their mutual attraction
and the slight initial displacement (the system can be described by a simple pen-
dulum in this case). In the framework of polariton condensates where ag < 0, the
repulsion of half-solitons is therefore a strong asset for the separation of an integer
soliton into a pair of half-solitons of opposite charges.

Long Range Interaction
The solution of Maxwell’s equations for a point electric charge in 1D is a constant
electric field pointing in opposite directions on each side of the charge. Such field
would produce a force of constant magnitude on a second charge independent of its
position, according to the Coulomb’s law. Another way of tracking this interaction
is by looking at the fields generated by the ensemble of the two charges. In 1D,
in the case of two identical charges with opposite signs separated by a distance d,
the sum of the fields they generate in the region outside of the charges cancels out
exactly and is equal to zero. Between the two charges the fields add and it becomes
twice as large as the field created by each individual charge. When the two electric
charges have the same sign, the situation is opposite (zero field in between and
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double field outside). This is the manifestation of the Coulomb behavior of point
electric charges in 1D.

One would expect magnetic monopoles to interact in a similar way. In our
monopole analogues, the role of the field created by each magnetic charge is played
by the pseudospin vector field S emanating from the half-soliton. For instance, the
wave functions describing two individual half-solitons of opposite charges are:

- ( ++/n/2tanh [(z — z1) /€V/2] ) (2.45)

Vn/2

by = (—mtanh [(z — 22) /€V2] ) (2.46)

Noy:

In that case, the solitons occur in the o4 component, located at the positions x1 and
x9 for ¢1 and 19 wavefunctions respectively, as sketched in the two upper images of
Fig.2.11, showing their densities (solid red lines). The o_ density remains constant,
and equal to the asymptotic value of the oy density (linear polarization). The
direction of the pseudospin S vector field can be directly calculated from 2 [see
Eqgs.(1.141-1.143)] and is illustrated by the red arrows in Fig.2.11 lying along the
(x,z) plane since S, = 0. We remind that the charge of the half-solitons is given
by the orientation of its divergent surrounding pseudospin [see Eq.2.44|. Looking
at the first two rows in Fig.2.11(a) we see that the solitons have opposite charges,
indeed while in the first row the pseudospin is divergent (¢1), it is convergent (1))
in the the second one.

|

Figure 2.11: Coulomb-like interaction between two half-solitons. The red arrows

show the pseudospin vector field in the (z,z) plane. The solid/red lines stand for
the density profiles of the spin component that contains the solitons (o4 in our case),
the o_ component remains homogeneous. The black arrows give the propagation
direction of each half soliton due to their interaction. The left panel illustrates the
interaction between two solitons of identical charges that attract each others. The
right panel shows the repulsive interaction between two solitons of opposite charge.

In order to study the magnetic interaction between the solitons, we make half
the sum of the wavefunctions ¢; and 2 to obtain:

i = ( V/n/2 (tanh (@ — 1) /Ni}n—/ tanh [((z =22 /€V2)]) /2 ) (2.47)



2.2. Half-integer topological defects as magnetic monopoles 91

If we concentrate on the o component, this total wavefunction gives a finite density
between the two half-solitons and zero density far away from them, as depicted by
the red solid line in the third row of the panel (b). Since in the condensate the
intracomponent interactions are repulsive (a; > 0), within the o4 component the
particles will diffuse from larger density regions to the lower ones. Clearly enough,
this effect is not at all dependent on the distance between the solitons and provides
the solitons long range repulsion, marked with the black arrows in the panel (b).
The associated pseudospin projection on the axis of the soliton (z-axis) coincides
exactly with the field expected for two electric point charges under the Coulomb’s
interaction. Indeed, .S, is zero away from the solitons and twice the value of the
field SY produced by a single charge in-between them. The behavior is the exact
opposite in the case of two half-solitons having the same charge as illustrated in the
panel (a).

We note that the attractive/repulsive behavior of our magnetic charges is op-
posite to that of electric charges because of the negative effective mass of solitons.
Two half-solitons having opposite charge [panel (b)] repel each others, while they
attract if they have the same charge [panel (a)].

Though the wavefunction profiles we have just described already coincide with
those of the field of attracting/repulsing charges, we can also understand the origin
of this Coulomb-like force looking at the energy of the system arising from the
interparticle interactions. Since polariton-polariton interactions are strongly spin-
anisotropic, the condensate is bound to evolve towards a linearly polarized state to
minimize its free energy [see Sec.1.5.2]. In view of this, we can understand that the
minimization of the energy in the case shown in Fig.2.11(a) pushes the half-solitons
away from each others. This way the system evolves towards linearly polarized state
and reduces its energy. The same considerations apply to the case of Fig.2.11(b)
where this time the minimization imposes the soliton attraction.

We can quantify the magnitude of the Coulomb-like force acting on each half-
soliton by calculating the gradient of the total energy of the system: F; = —9F/dx;,
where x; is the position of the i*" soliton. Assuming that the distance between the
solitons is much larger than the healing length |x1 — z2| > £, we obtain (in the case

where ay = 0) a force:

a1n2

8
which does not depend on ;. In order to write this force as the product of a charge
and a field F = ¢S, we use the equivalent of Maxwell’s equation div(S) = p/a;

IF| = (2.48)

where p is the charge density and «a; plays the role of the dielectric permittivity
€o. Thus, in our case the field of a single charge is given by |S| = n/4, and the
divergence theorem gives the charge of the topological defect: ¢ = ayn/2.

It is impossible to observe the long-range interaction of half-solitons in the typical
configuration where the condensate is linearly polarized everywhere, because in this
case the pseudospin field does not correspond to the field of just 2 electric charges
in 1D. In fact, a homogeneous linearly-polarized condensate corresponds to a field
of a single point charge located at infinity, or to two half-charges at plus and minus
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infinities. This field compensates that of the two half-solitons and screens their
long-range interaction.

2.2.2 Half-vortices as magnetic charges

In the 2D case, the object possessing the spin texture close to that of a magnetic
monopole is the elementary half-vortex (HV) carrying winding number +1 in the
component where it appears. Indeed, provided that the relative phase between the
o+ components is zero, the pseudospin texture is either divergent or convergent.
However, there is an important difference between the field of an electric charge,
which in 2D decreases as 1/r, and the "field" of the half-vortex, which is approxi-
matively constant at large distances. In spite of that, it is still possible to find the
force acting on the HV from the magnetic field as the gradient of the energy of the
system as the function of the displacement of the monopole.

A crucial peculiarity arises from the relative phase ¢ of the two wavefunction
components:

vy = Jngelrotdo) (2.49)
Yo = /n_el-? (2.50)

which gives another continuous degree of freedom for the pseudospin orientation.
Several pseudospin textures are shown in Fig.2.12(a) together with the resulting
sketched trajectories of the HV in the constant in-plane magnetic field H, (black
arrow). These trajectories have been calculated by solving the 2D spinor Gross-
Pitaevskii equations with infinite lifetime. We have considered a cylindrical trap of
radius 50 pm with impenetrable boundaries and we have found the associated half-
vortex "ground state" at fixed chemical potential 4 = ayn ~ 1 meV with a given
set (I+,l—,¢0). Then, for each of the eight half-vortex configurations shown in the
Fig.2.12(a), we have applied the constant magnetic field. The resulting calculated
trajectories are shown in black on the Fig.2.12(b).

We see that the propagation direction is determined both by the topological
charges (l4+,/_) of the HV and by the continuous variable ¢o. We note that the
(I+,1—, ¢o) and the (—l4,—I_, ¢p) HVs are symmetric with respect to the magnetic
field and follow the same trajectory. The proper description for the force acting on
the HV from the magnetic field is given by a charge tensor: F; = ¢;;H; with

—cos (¢o) —sin(¢o)

+sin (¢g) —cos(¢p) (2.51)

qi; = 90

In order to understand better the forces acting on the half-vortex, let us con-
sider the (+1,0,0) one. Two effects, induced by magnetic field, are observed in the
simulations. First, because of the pseudospin rotation around the magnetic field far
from the vortex core, a density gradient appears at short times along the field’s axis
(z in our case) as shown in the [Fig.2.13(a)]. The density determines the kinetic
energy, whose gradient creates an additional force acting on the half-vortex. This
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Figure 2.12: Left panel: Pseudospin textures of eight half-vortices as a function of
the topological charge and the relative phase ¢g (labeled as (l4+,l—,¢p)) and the
resulting propagation directions in a constant magnetic field pointing along the z
direction. Right panel: The o density at the end of the simulation with the Gross-
Pitaevskii equation showing the trajectory (red line) of a particular HV (white
square) together with the other trajectories (black lines) corresponding to the cases
described on the left panel.

force is strong and well defined only in the initial moments after the application of
the field, because later on the different eigenfunctions of the vessel oscillate with dif-
ferent frequencies and the resulting "storm in a teacup" gives zero net force for the
vortex, which therefore propagates with a constant speed acquired in the initial mo-
ments. Second, the constant effect of the magnetic field on the pseudospin texture
creates a constant force accelerating the vortex in the direction given by Eq.(2.41).
The trajectory is parabolic, with the acceleration proportional to the strength of
the magnetic field, as shown in Fig.2.13(b). It is precisely this effect, and not the
previous one, which corresponds to the expected behavior of a magnetic monopole.
The vortices having monopole-like pseudospin textures (divergent or convergent) are
accelerated in a direction parallel to the field. However, the behavior is opposite to
that of the half-solitons namely the divergent (convergent) vortex accelerates along
(against) the effective magnetic field, since contrary to half-solitons, they possess a
positive effective mass. The half-vortex is remarkably stable against density fluctu-
ations, and we are able to track its trajectory for 80 ps. Relativistic effects are not
observed in this case, because the speed v, remains relatively small.

We note that the effect of a static polarization splitting on a half-vortex has been
analyzed in Ref.[45] and a polarization string has been predicted to be attached to
the half-vortex in the lowest energy state. This is indeed what we observe in the
early times of the simulation when the magnetic field is turned on but the string
tends to unbind from the half-vortex because our initial condition is calculated in
the absence of the field and this initial condition is not the eigenfunction of the
complete Hamiltonian, otherwise it would not evolve with time.

The half-vortex can become unstable against the magnetic field, with the stabil-
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Figure 2.13: (a) The density distributions of the two components: ot (red) and
o~ (blue), creating the gradient of the interaction energy accelerating the HV in
the y direction. (b) The x coordinate of the HV as a function of time for several
values of the magnetic field, demonstrating constant acceleration of the half-vortex,
increasing with the field.

ity criterion given in our case by the same estimate as in 1D [see Eq.(2.35)]. If the
magnetic field is stronger, the vortex disappears. Without spin-anisotropy of the
interactions in the homogeneous magnetic field we consider, the pseudospin along
the y axis would make a turn around the magnetic field H, and become completely
S, on one side and —S, on the other side, leading to the destruction of the half-
vortex: instead of having a single point with zero density of ot, we would have a
semi-infinite string. This is the signature of the fact that in the case of a spinor con-
densate, the velocity circulation is not conserved topologically, because one cannot
define in the general case a unique superfluid velocity [46]. Therefore, the HVs can
be destroyed (unwound) by applying a certain magnetic field, as it has been demon-
strated experimentally [47]. In the case of polaritons, the particular spin-dependence
of interactions prevents this from happening for sufficiently low magnetic fields.

Finally, we note that the relative phase between the condensate components
could be tuned applying a weak external magnetic field in the z direction, leading
to a Zeeman splitting for the o™ and o~ components. The relative phase would
increase linearly with time and therefore the direction of the in-plane magnetic
force would change as well.

2.2.3 Towards polariton magnetricity

2.2.3.1 Soliton imprinting

Vortices have already been created in polaritons condensates by several means,
among which is found the artificial phase imprinting induced by a probe carrying
an angular momentum: a "Gauss-Laguerre" (GL) beam [20, 21]. Such a beam is
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obtained from a usual Gaussian beam scattered on a hologram containing a forklike
dislocation. Mathematically, this type of pumping can be described by the following
complex function

Pqay, (I‘,t, l) = AGL\/(:L' — AIL‘)2 + (y — Ay)2

() () () e, 2

The exponentials give the "Gauss" part of the function, while the square root is
the 15! order Laguerre polynomial, giving zero density in the center of the beam.
l is the integer winding number that is to be transferred to the vortex state. The
laser frequency wgy, should be slightly blue-detuned from the bare polariton mode, in
order to make use of the bistability effect and obtain an almost flat density profile of
the condensate except in the center, due to the saturation of the pumping efficiency
on the upper bistability branch [48].

As one can see from the sixth factor of Eq.(2.52), where ¢ is here the polar
angle, the phase is changing continuously from 0 to 2l7 encircling the beam center.
In a pure 1D system, the notion of angular momentum vanishes and grey solitons
embody elementary topological excitations in BECs in place of vortices. The action
of a Gauss-Laguerre beam is therefore to induce a local phase step of —I7 or smaller,
equal to the one resulting from a cut of a vortex by a plane. It is illustrated
in Fig.2.14(a) showing a density slice of the Gauss-Laguerre beam together with
its phase. This technique constitutes an efficient mean for soliton engineering in
1D condensates. We note that, in order to allow the soliton to evolve freely, it is
necessary to use a pulsed Gauss-Laguerre beam, which will also form the background
condensate for sufficient pump intensity.

Besides, experimental creation of half-solitons with independent selection of their
phase (given by l) would require to separate a linearly polarized input laser in its two
circularly polarized components (o4 ) using polarizers, to make one component (for a
single half-soliton) or both of them (for a pair of half solitons) scatter on a hologram,
and to recombine them on the sample. For the case where both components carry
an angular momentum it looks difficult to recover a perfect spatial overlap of the
two beams, which will naturally trigger the separation of the half-solitons, especially
for the normal case of as < 0. Additionally a relative phase ¢y can be introduced
between the two beams increasing the optical path of one component with respect
to the other. ¢g has a crucial impact on the pseudospin textures of the half-solitons
and therefore on their interaction with effective fields. A scheme of a potential
experimental setup is shown in the Fig.2.14(b).

If we consider now a more realistic system such as a microwire [see Fig.2.14],
we should take into account the transverse width of the sample and treat the case
of a quasi-1D condensate for which the angular momentum cannot be neglected
anymore. The central position of the pump spot crucially impacts the symmetry of
the imprinted flow. We have performed numerical simulations of a 2 ym wide and
100 pm long wire using polariton parameters to highlight this feature. On one hand,
if the spot is transversally centered, a static and therefore dark soliton is nucleated
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in the wire, almost as in the pure 1D case [see Fig.2.14(c),(d)]. On the other hand,
a shift of the Gauss-Laguerre beam along the y-axis induces a uniform propagation
of the resulting grey soliton in a direction depending on the transverse shift and on
the sign of the imprinted winding number [ as it is illustrated in the figure 2.14(c)-
(f). A positive (negative) y-shift induces a soliton propagation to the right (left) for
I < 0 and reciprocally for [ > 0. This effect can be qualitatively seen as a "rolling"
of the particles on the boundaries, introduced by a gradient of angular velocity in
the transverse direction. Moreover, the closer is the spot center to a boundary, the
faster the soliton moves along the wire. This "extrinsic" motion has to be taken into
account for an experiment, in which imposing a perfectly centered spot is elusive.
Even in the simulation [see Fig.2.14(d)|, where the precision on the centering is
about 0.1 um, we observe a very small drift of the solitons.

For the simulations, we use the typical parameters of modern GaAs cavities,
including their outstanding lifetimes of about 30 ps in modern samples [44]. We have
solved the spinor Gross-Pitaevskii equations for the photonic ¢(r,t) and excitonic
fields x(r,t) (coupled via the Rabi splitting Vi = 15 meV), fully taking into account
the polarization o4+ = =+, the finite lifetimes 74 = 25 ps and 7, = 300 ps and the
injection of the particles via PéEL(r, t, s, do):

N K2 Vi ih . 1,

A oy N R SV - 2,

L Ox+ h? Vr ih 2 2

h N NV P 254
th=—o; o, X+ + P+ QTXXi-F (a1|Xi! + | xF| )X:I:( 54)

Here mg = 3.6 x 10~°my, my = 0.4mg and myg are the cavity photon, the quantum
well exciton and the free electron masses respectively. U(r) is a potential (e.g. the
confinement potential for quasi-1D wires, or a wedge potential) and /), = H,

2.2.3.2 Natural separation and acceleration of half-solitons in mi-
crowires

Armed with efficient means of creating half solitons, let us now argue on their
potential propagation and acceleration. We shall consider the following situation:
A pair of half-solitons is created by the separated Gauss-Laguerre beams. They are
slightly spatially shifted either initially or naturally due to an intrinsic noise that
breaks the symmetry between the two components. Several contributions will lead
to the separation, evolution and acceleration of half-solitons. First, their dissociation
is triggered by a negative value of g as discussed previously and can be emphasized
by the rolling effect imposed by the GL pump. Second, after the unbinding, half-
solitons start to feel the longitudinal effective field. Let us now discuss the impact
on their evolution.

The normalized condensate wavefunction carrying a dark soliton in both com-

o= (0 )=Vs (ot e ) e

ponents reads
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Figure 2.14: (a) Normalized slice of a Gauss-Laguerre beam together with its phase
(for the case | = +1) as seen by a pure 1D system. (b) Scheme of the separation
of a Gaussian beam into two Gauss-Laguerre beams subsequently shined on a wire
shaped microcavity. (c)-(f) Impact of the traverse displacement of the spots, here
ag =0 and (I4,l-) = (—1,—1). (c)-(d) No transverse displacement leads to static
dark half-solitons in each component. (e)-(f) A small y shift leads to a uniform
propagation of the HS. We see that the direction and speed of propagation depends
on the direction of the shift sign and on the proximity of the spot center from a
boundary respectively. In (e) the o4 (0_) beam is shifted by Ayy = 4+0.25 um
(Ay— = —0.50 pm). The blue lines in (c¢) and (e) stand for the wire’s boundaries
while the white dashed lines show the position of the spot center. In (d) and (f) the
white regions are absent of particles due to the finite size of the spot.

assuming a variable spatial separation d and as = 0. ¢g is a constant relative phase
between the two components, and (I4+,l_) can take independently the values +1
determining the sign of the 7 phase shift through each soliton. The pseudospin
components are straightforwardly calculated using the Eqs.(1.141-1.143) giving

S, = gcos (¢0) tanh [u (x - ‘21)] tanh [z_ (m + g)] (2.56)
gsin (¢o) tanh {u (3: - ‘21)] tanh {z (:z + g)] (2.57)
S, = %tanh [u (x - ;l)r - %tanh [z <x + ;i)r (2.58)

In the case where d = 0, it is seen that the orientation of S is homogeneous and fixed
by the total relative phase A8 = ¢gsign(ly/I_). On the other hand for d # 0, while
the homogeneous pseudospin texture remains constant far from the solitons cores,

N
I

it is of course modified between them. Comparing e.g. S| (doc) and S;(0), it is
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easily seen that the direction of the in-plane pseudospin is always opposite between
the solitons and away from them. This is a crucial point since depending on the
orientation of the effective magnetic field €277, the half-soliton separation will occur
in opposite directions. For example with the set (I,l_, ¢9) = (+1,+1,0), A0 =0
and therefore S| (£o0) = +S,u, while S|(—=d/2 — d/2) = —S,u,. A field Qpr =
Q2;u, is parallel to S| far from the solitons bringing negative contribution in to Epqg
[see Eq.(2.37)], the latter is therefore maximized increasing the spacing between the
solitons, where 2,7 and S| are antiparallel, the solitons are consequently accelerated
in opposite directions (because their mass is negative). In this configuration, the
integer soliton is unstable against the field, the slightest symmetry breaking (e.g.
some noise) between the o4 and o_ components result in its decay into half-solitons.
The situation is opposed for (I4,l_,¢9) = (+1,+1,7). We finally note that Af =
(p+1/2)7 (p € Z) implies Sy (z)-Qp7=0 giving Eyag(d) = Ep: An integer soliton or
a pair of half-solitons carry the same magnetic energy whatever d. However, as soon
as one of the half-solitons starts to move, the S| (x)-€7r=0 is no longer verified, and
the half-solitons become accelerated by the field. We show in the Fig.2.15 several
types of soliton pair pseudospin textures depending on the value of Af.
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Figure 2.15: Pseudospin textures of four separated half-soliton pairs depending on
the relative phase A6.

To underline the contributions to the dissociation of solitons, we have numer-
ically implemented a realistic configuration using Gauss-Laguerre beams in each
component with winding numbers (I1,l-) = (+1,+1) and ¢9 = 0. We show in
Fig.2.16 the half-soliton propagation, separating the different contributions in a sit-
uation where there is no rolling effect. In the panel (a), we show the o impact on the
separation, with €, = 0: we observe the linear trajectories (similarly to Fig.2.10(c))
after the HS are released from the pulsed pump spot, no acceleration is observed. In
the panel (b) only Q77 = Q,u, is present (ap = 0), trajectories become parabolic
up to the limiting speed, which is a clear signature for the constant monopole ac-
celeration (non-relativistic limit). In the panel (c), we show the combined effect of
both ag and Q7 together with the traces of the soliton trajectories (dashed lines)
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from the panels (a) and (b), in that case the acceleration is emphasized by the initial
repulsion. The rolling effect can either assist the separation or block it, depending
on both the winding number imposed and the lateral shift direction.

Figure 2.16: Contributions to the half-solitons motion. (a) ae = —0.2c; and hf), =
0, (b) ag = 0cv; and A, = 100 peV and (¢) e = —0.2c; and A2, = 100 peV. The
dashed lines stand for the trajectories in the configuration of the panel (a) (white)
and (b) (black) to be compared with the red line.

We have seen that the splitting of a linearly polarized beam into its circularly
polarized components allows an independent selection of the winding numbers of the
half-solitons in each component and to fix their initial separation. However, even
this step can be avoided, in order to further simplify the experimental configuration.
Indeed, making the entire beam scatter on a hologram will impose the same winding
number [, = [_ to both condensate components, and the two components will this
time be perfectly superimposed on the sample. In that case, the separation will
not occur, unless the symmetry between the o, and o_ components is broken by
some means. Although noise will always be present in the system and allow the
separation to occur, it might induce (in some realizations) a symmetry breaking on
time scales larger than the polariton lifetime. Moreover, the o4 and o_ solitons
will be separated randomly (e.g. o_ going to left and o1 going to the right in one
realization and the opposite behavior in the next one). These two points, that we
have checked numerically (not shown), are clearly harmful to the reproducibility
of the effect, and therefore, to the creation of a spin current. One should also
bear in mind that a beam prepared to be linearly polarized might carry a small
ellipticity. The ensuing density imbalance between the two condensate components
will lead to the formation of half-solitons with slightly different healing lengths and
therefore different effective masses. The rolling effect (which will occur in the same
direction for both HSs) or possibly the wedge naturally present in microcavities
(or the small gradient of the wire width), will induce an effective mass-dependent
motion providing the separation. We have simulated this configuration with no
initial separation, (I4+,l_-) = (+1,+1) and a 1% ellipticity of the input beam. We
show in Fig.2.17 the separation obtained from the rolling effect shifting the beam
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by Ay = +0.5 pm [panel(a)] and from a wedge in the sample producing linear ramp
potential of slope 10 peV/um [panel (b)]. In that latter case the HSs are accelerated
by the force they undergo not from the side of the magnetic field, but directly from
the potential (R€2; = 0 here).
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Figure 2.17: Separation of perfectly overlapping HSs thanks (a) to the rolling effect
induced by a Ay = 0.5 um shift and (b) to a wedge producing a potential ramp of
slope 10 peV /um. For both configurations ap = —0.2cr1, A2y = 0and Iy =1 = +1.

In conclusion, polariton condensates in quasi-1D microwires constitute an ideal
system for the creation of magnetic currents based on half-solitons thanks to their
easy nucleation, natural separation, and acceleration. The half-light component
in the polariton wavefunction allows the particles to travel at high velocities and
therefore the analogues of magnetic monopoles that are half solitons can travel at
the speeds close to the speed of light. They constitute extremely promising entities
for the fabrication of a new class of high speed spin-optronic devices. While the
propagation of these magnetic charges in wires is technologically attractive, two di-
mensional systems (planar microcavities) allow even more freedom and fundamental
richness encompassed in the angular momentum of vortices as we will discuss in the
following section.

2.2.3.3 Half-vortices separation

Integer vortices in "scalar" polariton condensates (that is, circulary polarized, with-
out significant coupling between the two components) have already been demon-
strated experimentally in the optical parametric oscillator (OPO) configuration
[20, 21]. These vortices have been shown to be relatively persistent, remaining
in the ground state of the OPO for long times, much longer than polariton lifetime.
Another configuration, where the integer and half-integer vortices occur due to the
persistent flows in the polariton condensate under non-resonant pumping, has also
been studied experimentally [11, 13].

We are not particularly interested in demonstrating the self-sustained coherence
of polariton condensate maintained by the OPO. We propose a configuration which
seems to be the simplest from the point of view of experimental realization, in order
to observe controlled separation of half-vortices. Using the Gauss-Laguerre beam we
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Figure 2.18: (a) Initial pseudospin configuration for an integer vortex (+1,+1).
(b) Dissociation into two HVs under the effect of as-induced repulsion only; c)
Dissociation and acceleration of the two HVs under the effect of magnetic field 2.
Panels (b) and (c) correspond to 50 ps after the pulse.

create an integer vortex, which then evolves freely under the effect of spin-dependent
polariton-polariton interactions, constant effective in-plane magnetic field, and k-
dependent TE-TM splitting. We demonstrate numerically the separation of a vortex
(I+,1-) = (4+1,+1), with both components rotating in the same direction, in a weak
static in-plane field of 10 peV. Such integer vortex is likely to form in case of non-
resonant pumping, due to persistent flows in the polariton condensate in a disorder
landscape. The separation into half-vortices occurs for ¢g = 7, while for ¢g = 0 the
two vortices remain coupled with each other. Indeed, the half-vortices of opposite
charges form a dipole, and the interaction between these charges induced by the
field increases with the applied field. This is why, depending on the initial winding
numbers and on the pseudospin texture defined by ¢g, one can sometimes observe
the stabilization of the dipole length at an equilibrium value. Figure 2.18 shows the
initial pseudospin texture (a) and the comparison between the situations without
in-plane magnetic field (b) and with magnetic field (¢). In the case (b) the small
separation is due to the as-induced repulsion. In the panel (c) the half-vortices are
dissociated and accelerated in opposite directions by the constant in-plane magnetic
field, although its value is relatively small.

The parameters of the Gauss-Laguerre beam have to be chosen carefully, in order
to minimize the non-desired effects such as the dynamic formation of solitons on the
outer horizon of the density profile. At the same time, the size of the minimum in
the center should be in agreement with the expected healing length. In a word, one
should be as close to the perfect initial condition of a flat infinite condensate with
a vortex in the center, as possible.

However, peculiar undesired effects can arise if a half-vortex becomes trapped
in the spatial density inhomogeneity created by the rotation of the pseudospin of
the other half-vortex, which is not cylindrically symmetric: in some directions the
pseudospin is initially aligned with the field and does not rotate, while in the other
directions the pseudospin is not aligned with the field and is bound to gain a nonzero
Z-projection, which can be a barrier or a trap for the other half-vortex.
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When the half-vortices are sufficiently far from each other (that is, when the
distance between the vortices d > £), each of them can be considered separately, as
a half-vortex composed of a vortex in one component and a homogeneous background
in the other component. Each of them is therefore subject to a force acting from the
effective magnetic field, and we can expect them to accelerate freely. The pseudospin
texture of a half-integer vortex can be either convergent or divergent, looking similar
to that of a point charge, as it is the case in 1D, but there are two important
differences between the 1D and the 2D case. Indeed, in 1D the constant pseudospin
field far from the vortex core is exactly the solution of the Maxwell’s equation
V-S = 4(x), whereas in 2D the pseudospin texture does not depend on the distance
from the core (as well as in 1D), while the solution of the Maxwell’s equation in
this case should be decaying: the field of a charge depends on the distance from
it. The second important difference resides in the presence of the relative phase ¢,
which influences the more complicated texture of the half-vortex and its propagation
direction. Various cases and the corresponding textures have been considered in
Ref.[38]. Moreover, in the 2D case there is a long-distance interaction between
the vortices lying in the same component, and even between vortices in different
components, when a magnetic field is applied. The field creates a transfer of particles
between the two components, and since the particles have nonzero propagation
velocities even far from the vortex core, this creates a long-distance interaction
force, absent in 1D. For the k-dependent TE-TM splitting in planar microcavities,
this interaction has been considered in Ref.[45].

A==~ 0 P § GG | | WO

iz (B)

& 1SR

Figure 2.19: Pseudospin textures of (a) phase vortex (I4,l_,¢9) = (+1,+1,7) and
(b) a polarization vortex (I4+,l_,¢9) = (1,—1,7), dissociated in their associated
half-vortices.

In the ideal case, the condensate wavefunction containing a half-vortex in both
components separated by d reads

il pido
() () e

The radial functions take the approximated form [55] ni(r+, ¢+) = 72 /(r1 + 2),
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where 74 = \/(z F d/2)? + (y F d/2)? and ¢4 = arctan[(y F d/2)/(z F d/2)]. The
components of S are easily found using the Eqs.(1.141-1.143). To give the complete
picture, we show in Fig.2.19 the pseudospin textures for two half-vortex pairs using
the sets of parameters (14,0, ¢9) = (+1,+1,7) and (I4,l—, ¢o) = (1,—1,7) which
constitute a phase and a polarization vortex respectively when the half-vortices
overlap.

In conclusion, half-vortices embody the 2D candidates for the monopole analogy
possessing a divergent pseudospin field (depending on ¢g). They accelerate under
the action of the effective field and are characterized as well by a ¢g-dependent
propagation direction [38| at fixed orientation of the effective field. They constitute
the building blocks for potential 2D-magnetic circuits.

2.2.4 Conclusion

We have shown that the half-integer topological defects in spinor polariton con-
densates not only possess a divergent or convergent pseudospin texture similar to
the textures of point charges in 1D and 2D, but also behave as magnetic charges
(monopoles) in presence of effective magnetic fields, accelerating along them. They
exhibit a velocity dependent renormalization of their mass, size, and charge, and
produce a magnetic analogue of Coulomb’s force. We have proposed a simple con-
figuration for experimental creation, dissociation, and acceleration of half-integer
topological defects — towards magnetricity. In the next section we will present an-
other type of two dimensional topological defect behaving as a magnetic monopole,
that was recently observed experimentally.
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2.3 Hydrodynamic generation of oblique half-Solitons
and half-vortices

In the chapter 1 we have introduced the oblique dark soliton solution of the scalar
Gross-Pitaevskii equation [see Sec.1.2.5.4]. Its experimental evidence was obtained
in an exciton-polariton condensate in 2011 [50] thanks to the high degree of control
offered by the system [see Fig.1.12|. The experiment involved a propagating polari-
ton fluid injected resonantly against an immobile structural defect in the microcavity
following the prediction of Ref.[51] analyzed later on in Ref.[52].

2.3.1 Theory

As we know now, to generate topological excitations we need to be able to create
local phase shifts. A resonant continuous wave pumping scheme imposes a specific
phase at any time under the pump spot. Therefore, the latter has to be absent
over some part of the sample, otherwise the phase would be imprinted everywhere.
Pigeon et al. [51]| proposed to use a localized pump spot with finite momentum
upstream from the defect, allowing the phase to evolve freely around the defect.
The counterpart is that because of the finite lifetime of the particles involved, the
density is decaying with the propagation distance. They managed to obtain numer-
ically three detuning- and thus density-dependent regimes. At larger detunings, low
densities and thus in supersonic regimes, dark solitons appeared downstream from
the defect. In this setup, the solitons appear as stable stationary solutions; however,
one cannot say that they preserve their shape. Actually, due to the density decay,
the healing length increases with the distance from the defect £ = {(z — xzp) and
then the oblique soliton adapts to the local density, becoming larger, shallower, and
curved. One extra feature of the polaritonic oblique solitons is that they are able
to survive even at subsonic velocities. Namely, in the regimes, where no Cerenkov-
like radiation (ship waves) is visible upstream from the defect, the oblique solitons
are stabilized by the damping associated with the decaying flow. Reducing the de-
tuning/increasing the density, the oblique solitons tend to disappear, due to the
development of snake instabilities, to the benefit of vortex dipoles (vortex streets),
as predicted in Refs.[53, 54], but with a lower critical velocity than in the undamped
BEC |55]. One should note here, that vortices survive in subsonic regimes thanks
to the local acceleration of the fluid close to the defect [56], which does not violate
Landau’s criterion. Increasing the density further should allow to enter a superfluid
regime, where no perturbations are induced by the presence of the defect. Never-
theless, in that case, the position of the pump spot becomes determinant. Indeed, if
the latter is too much overlapping with the defect, then the phase will be imprinted,
hiding potential perturbations. If the pump is too far, then the density will have
decayed too much, arriving at the defect’s position. The condition is Ejut > 2Egn,
where Ej,; = p = an is the interaction energy and Ej;, = m*v?/2, with m* an
effective mass, is the kinetic energy. In summary: the polaritonic system allows the
investigation of various hydrodynamic regimes ranging from generation of oblique
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solitons to a superfluid flow, passing by emission of vortex streets, all observed ex-
perimentally by Amo et al. [57, 50]. In their observation, Amo et al. did not
resolve the polarization of the condensate and the solitons were "scalar", since the
excitation was performed with a circularly polarized pump.

In the following, we discuss the hydrodynamic generation of oblique half-solitons
[37] and half-vortices in polariton condensates and their experimental observation,
that was performed in collaboration with our group [40]. I refer the reader to the
section [Sec.1.2.5.4] devoted to scalar oblique solitons.

Let us now focus on the possibility of creating 2D obligue half-solitons. First of
all, it is clear that in the case, where the two components of a spinor BEC do not
interact (ag = 0), if they are initially equally populated, a significant perturbation
in only one of the components will lead to the formation of half-integer topological
excitations. Next, what happens if the interaction between the two components is
no longer negligible? To answer this question following Ref.|4], we turn back to the
spinor Gross-Pitaevskii, rescale them like in Egs.(2.13), and look for stationary solu-
tions, where the phase of each component is expressed by means of their stationary
and irrotational velocity fields via vy (r) = h/m*Vo4 (r), with r = (x,y). We look
for oblique solutions that depend only on the tilted coordinate x = (z—ay)/Vv'1 + a?,
which leads to the following set of equations

(nf/él —nyn/l/2) + 2n% (Aing +209m_) = (g+2u)ni —gnd  (2.60)
(/4 —n_n /2) +2n% (Ain_ +2Aomy) = (q¢+2p)n® —qnd  (2.61)

where Ajo = a12/(c1 + a2) and ¢ = U?/(1 + a?) (U is the velocity of the flow).
This system has to be solved numerically, but we can first consider some simple
arguments. The density profile of an integer oblique soliton in a spinor fluid is given
by nops = 1—(1 — q/u) sech[x+/it — q]° with g = (A1 +A2)ng/2 = Ang/2. Now, for
the case of the OHS, the density notch in the 6_ component, that contains the defect,
is seen as an external potential by the initially unperturbed o4 component, because
of the interactions between the particles of different spins. We suppose that the o
component fits the shape of this potential which is nothing but Asn_. Then, this
perturbation creates in turn a potential for the o_ component given by —Aony, =
—A3n_. Therefore, the density profile is modified as n_ «+ (An, — A%n,) /A.
Iterating this procedure leads to a geometric series and to a renormalization of
the interaction constant seen by the component containing the soliton A A-—
A3/ (A — Ay). Consequently, the OHS solution is approximated by

noms =1~ (1~ a/fi) sech [/ —a| (2.62)

with g = Ang. In this description, the sound velocity is changed like ¢ — ¢ =
/7i/m* and the healing length like & — & = h/\/2m*f. In the case where
Ay < 0(> 0), which corresponds to an attractive (repulsive) interaction, cs is slightly
increased (decreased) and inversely for £&. The component without a soliton obvi-
ously presents a minimum (maximum). This argumentation is compared to direct
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numerical solutions of Eqs.(2.60,2.61) in the Fig.2.20 showing a remarkable accuracy
provided that Ay remains small.

Figure 2.20: An oblique half-soliton density slice normal to its axis. The solid blue
and red curves show numerical profiles, the dashed black curve is the perturbative
solution described in the text and the dashed/dotted green curve show the scalar
soliton solution.

Now let us see how half-vortices [see Sec.(2.1)] and oblique half-solitons can be
generated in a propagating exciton-polariton fluid. The setup we propose is basically
the same as the one required to generate the integer oblique solitons described
previously [51, 50, 52|, namely a continuous and resonant pumping scheme locally
upstream from a defect, imposing a supersonic flow. However, we will now focus
on the spin degree of freedom of the condensate, namely the polarization of the
pump and the polarization of the emission along the propagation. To describe more
accurately the spinor polariton BEC, we take into account the real non-parabolic
dispersion of the particles, their decay and injection, via the set of four coupled
spin-dependent equations

. 8¢i - h2 8 . 8 2
o = T %A%*QRM*DM&LB oz Tigy ) o=
+ Piez(kp-rfth) _ 217¢:|: (2.63)
T¢
e = n? 2 2 ih
ih—= = %AXi + Qroy + (Oél‘Xi| + azlx+| ) e~ o (2.64)

The pump terms of amplitudes P+ allow to select the polarization of injected pho-
tons and thus of polaritons. Dy is the impenetrable potential barrier, that can
affect independently each component. We have chosen a bar-shaped pump spot
upstream from the defect. The effective mass mg is therefore approximated by
me = mZ;M ng (mZ;M + m;g’;E ). To generate half-integer topological defects past
the obstacle we need to be able to break the symmetry of the flow not only with
respect to the density (integer topological defects) but also with respect to its polar-
ization. In what follows, we present 2 different schemes for the generation of oblique

half-solitons.



2.3. Hydrodynamic generation of spinor topological defects 107

The first alternative is to find a way to perturb only one of the two components.
This could be done experimentally if the defect is created optically by a circularly
polarized pulse [58, 21]. This scheme is however far from being ideal since it would
bring of lot of unwanted perturbations to the system and it should rather be seen as
a model experiment. In this framework, one needs to impose D_ = 0 and to inject
linearly polarized photons upstream from the defect which requires Py = P_ and
creates equal population of polaritons with spin +1 and —1. In that case oblique
half-solitons pairs (or HV at higher densities) obviously appear in the component
containing the defect (see Fig.2 of Ref.[37]) and a weak density minimum is imposed
in the other component due to the fact that as < 0.

The second alternative, that we will discuss in more details is, on the other hand,
completely realistic, as it will be confirmed in the next section. The impenetrable
defect is restored in both components and we will benefit from the polarization sepa-
ration brought by the TE-TM splitting. We need to carefully select the polarization
of the pump laser to avoid pseudospin rotation before the fluid reaches the defect.
We choose the latter to be linear in a TM state which corresponds to a polarization
along the direction of propagation (z-axis) and to S pointing along Hyr.

Arriving at the obstacle, the supersonic fluid is split into two parts, propagating
in opposite oblique directions around the obstacle. Before the defect, the pseudospin
was aligned with the effective field, but when the propagation direction changes, the
angle between the pseudospin and the field starts to increase. It induces an anti-
symmetric rotation of the pseudospin: the particles going up (down) will gain a o
(o_) component, providing the seed for the OHS/HV generation. The mechanism
of nucleation of the oblique half-solitons, however, is not as trivial as in the case
of the polarized defect. If no TE-TM splitting was present, our experiment would
lead to the nucleation of a pair of integer oblique solitons, and each of them can
be seen as a superposition of two perfectly overlapping oblique-half solitons. With
the splitting turned on, the oblique-half solitons do not overlap perfectly anymore,
becoming slightly shifted because of the antisymmetry of the flow with respect to
circular polarizations, o4 and o_ providing the seed for their separation. However,
this initial separation is weak for a small defect and seems to be insufficient to sep-
arate them significantly away from the defect, and we definitely need something
more.

Downstream from the defect the flows are complex, but globally the fluid is
moving along the z-axis. Since the half-solitons have been separated, they start
to behave as magnetic monopoles having opposite charges, just like in the 1D case,
because their pseudospin texture is divergent. They start to feel the TE-TM induced
effective magnetic field Hyr that is pointing along the flow. Since the solitons are
oblique, the scalar product Hypp - S is not zero, providing their separation and
acceleration, increasing with the distance from the defect. Omne of them is bent
slightly towards the axis of symmetry of the flow, becoming deeper, while the other
one is moved in the opposite direction, becoming shallower and larger and possibly
hardly visible for larger values of Hyr (larger kp). The situation is obviously totally
antisymmetric for the lower oblique soliton. Moreover, this separation effect is
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emphasized for large density regions (close to the defect) if ag is negative as it
induces the half-soliton repulsion [see Fig.2.21].
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Figure 2.21: Stationary 2D oblique half-soliton, the flow is going from left to the
right. (a) Degree of circular polarization p.: one clearly sees the antisymmetric
pattern imposed by the effective field’s geometry and the OHS separation. (b) Zoom
on the lower o_ soliton (white one in (a)) with the in-plane pseudospin component
S| = (Sz, S,)T (black arrows) exhibiting a rotation of almost 7 through the OHS
(/2 rotation of n). (c¢) Interference pattern in the o4 component showing the phase
shifts at the soliton position the situation is obviously antisymmetric in the other
component (not shown). The repelled soliton is shallower which corresponds to
smaller phase shifts. (d) Density slices 50 um downstream from the defect together
with a p. slice.

Once again, the intrinsic Zeeman splitting arising from the polariton spin-
anisotropy protects the half-soliton up to the critical magnetic field H. [see
eq.(2.35)]. One should keep in mind however, that due to the finite polariton life-
time, the total density is decaying away from the defect and the Zeeman splitting is
decaying as well. At some point, it is unavoidable, that the effective magnetic field
felt by the half-solitons gets over the critical value. At this point, they start to be
converted in the other component, and thus their extension is finite [see e.g Fig.3(c)
of our theoretical paper [37]].

Let us remember that 1D half-solitons are the domain walls between linear polar-
izations, which means that the polarization angle n rotates by 7/2 and the in-plane
projection of S|| = (S, S,)T by 7 going through the HS. This rotation of 7 is also
expected for a the 2D system, nevertheless, the oblique half-solitons possess a non-
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zero velocity with respect to the flow, and therefore have nonzero density in the
component where the soliton lies. Thus, the rotation of 1 as well as the shift of the
global phase 6 are bound to be smaller than 7/2.

We know now that in the scalar condensate increasing the fluid density (or reduc-
ing its speed) leads to the dissociation of oblique solitons into vortex streets [53] and
eventually to the onset of superfluidity [see Sec.1.2.5.4 and Ref.[51]]. We obviously
expect the same behavior to occur for the spinor system. The half-vortex genera-
tion at higher densities can be understood similarly to the half-soliton nucleation:
integer vortices are split into HVs by the effective magnetic field around the defect
and they become accelerated. The difference is that vortices cannot be more or less
shallow like solitons, they can only appear or not, being real topological defects,
which explains why only one species of half-vortices appears in each half-plane in
our simulation but the situation can be different depending on the strength of the
field. We show the corresponding numerical stationary solutions in Fig.2.22, demon-
strating the three density dependent hydrodynamic regimes: Oblique Half-Solitons
[Fig.2.21], streets of half-vortex dipoles [Fig.2.22(a),(b)], and finally a superfluid
regime [Fig.2.22(c),(d)].
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Figure 2.22: (a) Degree of circular polarization: HV trains generation increasing the
pump intensity with respect to Fig.2.21. The inset displays S|| for a o HV pair
(black arrows) and shows the opposite winding of the polarization around the HVs
core. (b) The interference pattern in the o4 component shows the typical forklike
dislocations at the HV position. The positions corresponding to o_ vortices show
no phase modification. (c¢) Superfluid regime: The flow ignores the presence of the
obstacle and shows no phase perturbation as one can see in the panel (d) showing
the complementary antisymmetric o_ component.
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2.3.2 Experiment

Our oblique half-soliton prediction as well as their monopole-like behavior was re-
cently confirmed experimentally in the framework of a collaboration with the L.K.B.
and L.P.N. laboratories in Paris [40]. The setup that was retained was the one in-
volving the quasi-resonant injection of linearly polarized particles and resolving the
polarization. The experiment was performed at 10K within a GaAs microcavity
characterized by a 5.1 meV Rabi splitting, the required defect (potential barrier)
originated naturally from the microcavity structure. The shape of the pump spot
was chosen to be half-Gaussian upstream from the defect [see Fig.2.23 for a scheme|.
The polarization of the beam was chosen to be in a TM state (parallel to the flow
direction) and the wavevector was imposed to be kp = 1.3 um~! — large enough to
impose a supersonic flow at the chosen pumping power. The value of the TE-TM
splitting for this wavevector was estimated to be 20 peV, which is large enough to
separate the half-solitons and low enough not to destroy them on the distance of
observation.

Figure 2.23: (a) Polariton pseudospin S (green arrow) on the Poincaré sphere rep-
resenting all the possible spin configuration of the polariton gas and the associated
polarizations. Initially S points along the y direction followed by the flow (TM
state). (b) Scheme of the resonant injection of the polariton gas above a round
potential barrier (defect) in the sample.

The first thing to note is that since the natural defect was large (around 10 pm)
and the speed of the flow was high (to have sufficiently large splitting), multiplets
of solitons were nucleated and four pairs of oblique half-solitons are visible, which
slightly reduces their separation due to their short range repulsion where the density
is large. Now that we know the generation mechanism, we know that close to the
defect the solitons are almost integer, namely the half-solitons are only slightly
spatially shifted due to the combined effect of the defect and the TE-TM splitting.
Farther away, they start to be accelerated in opposite directions by the TE-TM
field, behaving as magnetic monopoles. This is visible in the degree of circular
polarization of the emission. In the experiment, the half-solitons could be evidenced
as domain walls the most clearly on the diagonal polarization basis (simply due
to their oblique behavior), providing an efficient way of tracking their trajectories.
Experimentally, the pseudospin components cannot be extracted from the order
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parameter of the condensate, they have to be reconstructed from the circular (.5,
indices %), horizontal/vertical (S;, indices H/V) and diagonal/antidiagonal (S,
indices D/A) polarization components of the emission following

Se = (Un—1Iv)/(Ig+1Iy) (2.65)
Sy = (Up—1a)/(Up+1a) (2.66)
S, = (4 —1)/(I++ 1) (2.67)

where I; are the measured intensities with the correspondence I; = |;|?.

The figure 2.24(a)-I shows the formation of two oblique dark solitons to the
right of the barrier’s wake in the o, component of the emission. They can be
identified as the dark straight notches in the polariton density. These solitons are
almost absent in the o_ component [Fig.2.24(a)-II|. In turn, in the o_ emission,
a deep soliton (S1) clearly appears to the left of the barrier’s wake (blue arrow),
where only a very shallow one is present in o [see the profiles in Fig.2.24(c)|. The
absence of mirror symmetry between Figs.2.24(a)-I and 2.24(a)-II arises from the
specific and uncontrolled form of the natural potential barrier. The individual dark
solitons in each o1 component of the fluid appear as long spatial traces with a high
degree of circular polarization p. = (I4 — I_)/(I+ + I_), as shown in Fig.2.25(a).
Interferometry images obtained by combining the real space emission field with a
reference beam of homogeneous phase |Fig. 2.24(b)-I and 2.24(b)-1I| give access to
the phase jump across each soliton. For instance, for the soliton S1 observed in
o_, we measure a phase jump Af_ = 0.857 as shown in Fig.2.24(e), note that it
would be 7 for a strict dark soliton with zero density at its center, while in the
same region the phase in the o4 component is almost unaffected Afy ~ 0. As we
know, a dark soliton lying in only one spin component of the fluid #s the half-soliton.
The mixed spin-phase character of these topological excitations is further evidenced
when analyzing them in the linear polarization basis.

In the regions where the two circular polarizations are of equal intensity (i.e.,
the fluid surrounding the half-solitons) the linear polarization angle n = (04 —6_)/2
and the global phase # = (#; —6_)/2 can be defined. In our experiments we directly
access A© and the change in 7 across the solitons by looking at the linearly polarized
emission, for instance, in the diagonal and anti-diagonal directions (polarization
plane rotated by +45 and —45 with respect to the TM direction). The figure 2.24(d)
and 2.24(f) show that the half-soliton S1 is also present in these polarizations with
a phase jump Af = 0.4w. This confirms that across the half-solitons, # undergoes a
jump Af ~ 0.857/2 ~ (Af4+ + AH_)/2, that is, one half the phase jump observed in
the circularly polarized component in which the soliton is present. We also expect
a similar jump An of the polarization angle [see Fig.2.26(c)]. This is illustrated in
Fig.2.25(b), where all the half-solitons present in our fluid [dashed lines extracted
from Figs.2.24(a)-1 and 2.24(a)-1I| appear as walls between domains of diagonal
(magenta) and antidiagonal (green) polarizations. Mapping the linear polarization
vector in the vicinity of the soliton S1 [Fig.2.26(a)|, we deduce a jump An = 0.327
(Fig.2.26¢], close to the ideal expected value of 0.47.
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Figure 2.24: Density and phase tomography of the half-solitons. (a) Emission of the
polariton gas in o /o_ components and in diagonal/antidiagonal linearly polarized
components with respect to the TM polarization of injection. Half-solitons nucleate
in the wake of the potential barrier [circle in (a)-I] and are evidenced as dark traces
present in only one circular component (arrows). S1 is the half-soliton discussed in
the text. (b) Interferometric images obtained from the interference with a beam of
homogeneous phase. (c) Density profiles of o4 /o_ emission along the dotted line
in (a)-I and (a)-II. The arrows indicate the position of the inner half-solitons, only
present in a given circular polarization, with an associated phase jump shown in
(e) [obtained from (b)-I and (b)-II]. Half-solitons appear in the density profiles of
both diagonal and antidiagonal polarizations (d) (extracted from the dashed line
in (a)-III and (a)- IV), with phase jumps of half the value measured in circular
polarization (f) (obtained from (b)-III and (b)-IV).

Analyzing the half-soliton trajectory from polarization-resolved real-space mea-
surements, we study their acceleration within the effective magnetic field Hy 7 point-
ing in the direction of the flow |y, red arrow in Fig.2.23(b)|. The acceleration arises
from the interaction between this magnetic field, and the pseudospin texture of the
half-soliton, shown in Fig.2.26(b) for the half-soliton S1. In the direction perpen-
dicular to the soliton (dotted line), the in-plane pseudospin S| is divergent, since
it points away from S1 on both sides, as expected for a magnetic charge. Once
again, we are able to evaluate the force acting on the half-soliton as the gradient
of the magnetic energy with respect to the half-soliton position zg. We know from
Sec.(2.2.1.2) that the magnetic energy per unit length is

Ernag (v0) = — / S (z — ) -Hprdz (2.68)
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where the integral is performed here along the 2’ transverse direction, perpendicular
to the half-soliton located at zg. The energy has a positive contribution from the left
of the half-soliton (S and Hyr pointing in opposite directions), and a negative one
from the right (S and Hy7 having the same direction). In order for the magnetic
energy to be minimized, a magnetic force appears pushing the half-soliton towards
the left, increasing the negative contribution. The negative mass of the solitons
imposes the acceleration in the direction opposite to the force. Thus, the half-
soliton S1 that appears in the o_ component of the fluid accelerates towards the
right, as sketched in Fig.2.26(b). The direction of the acceleration is opposite for
the soliton present in the o4 component [see arrows in Fig.2.26(b)|. Moreover, the
simple fact that we observe half-solitons in the system means that they have been
accelerated in opposite directions.
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Figure 2.25: Polarization texture of half-solitons. Left panels in (a) and (b) show
the measured degree of circular and diagonal polarizations, respectively. The right
panels show the calculated patterns from the solution of the spin dependent Gross-
Pitaevskii equation describing the system in the conditions of the experiment. The
dashed lines show the trajectory of the half-solitons extracted from Fig.1(a)-I and
1(a)-II. The trajectories of the half-solitons appear as extrema of circular polariza-
tion and domain walls in diagonal polarization.

The monopole dynamics allows understanding the mechanisms of formation of
the half-solitons in our experiments. An integer soliton nucleated right behind the
obstacle is a superposition of two overlapping half-solitons of opposite magnetic
charges. The presence of the TE-TM splitting induced effective magnetic field makes
them experience opposite magnetic forces, leading to their separation and their
trajectories become curved, as depicted by dashed lines in Fig.2.25, a behavior
similar to the monopole separation in spin ices [49] under magnetic field. The half-
solitons pushed towards the center are slowed down with respect to the flow as the
trajectory becomes parallel to the field. Simultaneously, they gain stability and
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Figure 2.26: Magnetic force acting on the half-solitons. (a) Complete spin texture of
the polariton fluid in the region between 30 and 50 pm downstream from the barrier.
The color scale indicates the degree of circular polarization (latitude in the Bloch
sphere), and the black arrows the direction of the linear polarization as defined in
the equator of the Bloch sphere. The half- soliton S1 presents a pseudospin field
analogue to that of a point charge in the direction perpendicular to its trajectory,
as depicted in (b) for the dash-boxed area of (a). The polarization angle jumps
from the antidiagonal to the diagonal direction when crossing the soliton, as shown
in (c¢). The TE-TM effective magnetic field schematized in b has a component
perpendicular to the half-soliton resulting in its acceleration.

become darker. Those pushed outwards gain velocity and become shallower, until
they eventually disappear. The trajectories of the external shallow half-solitons are
clearly visible in our experiments as domain walls in the diagonal basis, and as
maxima of polarization degree on the circular basis [black dashed lines in Fig.2.25].
One should however notice that the trajectories of these expelled secondary half-
solitons are perturbed far from the obstacle axis by the presence of additional solitons
nucleated by the large barrier, particularly on the right side of the images. The figure
2.27 show a theoretical fit of all the panels of the experimental Fig.2.24 and 2.26. In
these simulations we solve Eqs.(2.63,2.64) and we have deliberately chosen a smaller
defect in order to get rid of the soliton multiplets to emphasize on the monopole
acceleration.

Additionally, we have made a comparison with the original setup for the obser-
vation of integer solitons [50] involving a right circularly polarized beam (o4 and
pseudospin along the z-direction). But this time, the polarization was resolved. In
such a situation, under the pump spot upstream from the defect the strong density
imbalance induces a significant effective field H, that prevents the pseudospin from
precessing around the in-plane Hyr field. Such a behavior is clearly visible in the
Fig.2.28, where the degree of circular polarization remains close to 1 and almost un-
perturbed close to the barrier. The strength of H, is however reduced far away from
the defect where the density of polaritons decays due to their finite lifetime which
allows here the conversion from spin up to spin down polaritons (yellow regions).
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Figure 2.27: Results from Gross-Pitaevskii simulations. The defect is small (4 pm
large) to get rid of the secondary solitons to emphasize on the half-soliton accelera-
tion.

Therefore, under strong o4 pumping, the o_ population remains weak everywhere,
being completely determined by the transfer of particles from the other component.
This is seen in Figs.2.28(a) and 2.28(b), where one can observe integer (scalar) soli-
tons in the oy component, and their copy (but with a smaller density) in the other
component. These integer solitons are not affected by the in-plane field Hyr and
no acceleration can be observed in that case.

This experiment constitutes not only the first evidence of the analogy between
half-integer topological defects and magnetic monopoles but also the first proof of
the separation of an integer topological defect in its half-integer constituents and
this within a stationary regime. This paves the way towards magnetic currents in
semiconductor microcavities. Now that the effect has been observed in the form
of half-solitons, the next step in this direction will be to implement the on-demand
generation of these magnetic currents in a real device using for example our proposal
based on Gauss-Laguerre beams in wires (half-solitons) or planar cavities (half-
vortices).
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Figure 2.28: Experimental results using a right circularly polarized (o) pump. No
half-soliton acceleration is visible (possible) in that case.

2.4 Sonic black holes and wormholes in spinor polariton
condensates

In this part we propose the polariton BEC as an excellent candidate for the con-
struction of 1D and 2D sonic black holes thanks to the finite lifetime of the particles
[59]. While this part looks at first sight to be disconnected from the previous one,
it is actually based on the spinor properties of the polariton condensate and its
topological excitations. Once again, the spinor nature of the BEC allows to expect
even more interesting features. Indeed, mapping the two spin components to two
parallel universes allows the construction of wormholes or Einstein-Rosen bridges
[60] connecting these universes. To test the wormhole structure one needs to study
the propagation of a signal through it. This signal has to be intrinsically stable
and to initially exist in only one of the two universes. Here half-integer topological
defects come into play: a half-soliton appears perfectly suitable for this task. We
will describe inter- and intra-universe wormholes, the latter offering the possibility
of a "faster than sound" travel.

It happens quite often in physics that striking similarities are found between
systems, which from the first glance have absolutely nothing in common. Sometimes,
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such similarities can be exploited to perform laboratory studies on accessible objects
similar to inaccessible ones. One of the most recent examples is that of Klein
tunneling in graphene [61]: The quasi-particles in a solid-state object obey the
same mathematical equations as very high-energy relativistic particles. Astrophysics
allows even less laboratory studies than high-energy physics: scientists are restrained
to the objects in the universe proposed by the Nature, these are studied from very
far and the consideration of gravitational fields requires to manipulate very large
masses. Thus, having a desktop version of a supermassive black hole [62] would be
even more useful. Once again, the physics of the small comes to the aid of the physics
of the large. The analogy between the equations describing the excitations of a Bose-
Einstein condensate and the metrics of the curved space-time has been noticed about
a decade ago [63]. Since then, the scientists have managed to experimentally observe
the event horizons in atomic BECs [64].

However, such atomic condensates are still a bit far from being a convenient
laboratory tool, because they require ultra-low temperatures for their formation, the
measurements of the distributions inside the condensates are relatively complex to
carry out and the construction of the event horizon is provided by artificial external
potentials. Here the solid-state physics comes into play with the exciton-polariton
condensates. The finite lifetime of polaritons in the range of tens of picoseconds turns
into an important advantage, simplifying all measurements, because the decay of the
condensate means the emission of photons from the cavity, and the distribution of
emitted photons gives direct information on the polariton distribution function, on
their dispersion and spatial evolution. Finally, the spin structure of polaritons [see
Sec.1.4] implies possible new effects due to the vectorial nature of the condensates.
These particularities favor polaritons with respect to other systems proposed for
the simulation of black holes, including the optical ones based on metamaterials
[65, 66, 67].

2.4.1 Theoretical description of sonic black holes

It has been understood quite a long time ago in hydrodynamics, that an event
horizon can appear if the flow speed increases and becomes larger than the speed of
sound [68]. Indeed, the excitations in the flowing medium propagate with the speed
of sound (in the linear approximation, that is, long-wavelength limit), and therefore
in the laboratory frame they are unable to go against the flow if its speed is too high.
A great research effort in this domain has recently culminated with the observation
of stimulated Hawking emission in a water tank [69]. A most widespread example of
a structure exhibiting an event horizon is the de Laval nozzle [see Fig.2.29] used in
jet engines. In order to have the exhaust gas velocity higher than the limit allowed
by the Bernoulli’s principle, the gas is accelerated from subsonic to supersonic speed.
No sound waves are able to propagate backwards in the supersonic part of the flow,
which is therefore separated from the subsonic part by what can be called an event
horizon.

The work of W. Unruh [68] has laid down the foundations for this domain of
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Figure 2.29: Scheme of a de Laval nozzle.

research by showing how the hydrodynamic equations can be rewritten using the
metrics to obtain exactly the Schwarzschild’s metric of a black hole (close to its
horizon). Starting from the equations of motion for an irrotational fluid:

Vxv = 0 (2.69)
n(Ov/ot+ (v-V)v) = —Vp—nVo (2.70)
on/ot+V -(nv) = 0 (2.71)

and considering weak perturbations about a stationary solution, one can obtain the
equations for a massless scalar field with a metric

ngQ
¢(no)

ds® = [(¢? (no) — vo - vo) dt* + 2dtvg - dr — dr - dr] (2.72)
where ¢g = ¢'In(ng) is the local velocity of sound. For a spherically symmetric
converging flow in the region where the speed of the flow becomes equal to the
sound velocity, this metric takes exactly the form of the Schwarzschild’s metric of a
black hole at the horizon:

gs? 10 ER) (2004 (r — Rydr® — M(CfiR)) (2.73)

where « is the first coefficient of the development of v(r) around R, that is
a= avﬁ/arL:R.

The seminal work of Unruh considered an arbitrary irrotational fluid, defined
by v = h/mV 0, without detailing its nature. An application for BEC has logically
come 20 years later [63], where § was interpreted as the phase of the order parameter
of the condensate and

U (r,t) = \/n (r)ed®e=nt/h (2.74)

In order to discuss the hydrodynamic approximation for BEC let us rewrite the
stationary Gross-Pitaevskii equation using the phase-density representation of the
wavefunction:

1
h@ + (mvg + Vegt +an —

o,
5 5 Y ﬁ) =0 (2.75)

2m~/n

The last term in this equation is the quantum pressure term, which scales as R~2
and becomes negligible if the typical density variations occur at scales much larger
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than the characteristic length £. When quantum pressure is neglected, one obtains
what is called the Thomas-Fermi limit or hydrodynamic approximation, because
the equation of motion for the condensate becomes simply the Euler’s equation for
potential flow of a nonviscous liquid, as discussed in chapter 1.

Considering the density and phase perturbations n’ and 6 for the BEC (as in
the general case of Unruh [68]) and performing the linearization, one obtains the
following first-order equation for the phase:

O (V=99"0,0") =0 (2.76)

with the metric g given by

G = < — (=) _fT > (2.77)

—v

As one can see, the condition v = ¢ imposes a diagonal element to be zero, which
defines the position of the event horizon.

2.4.2 Hawking emission

The most important goal of the research activity centered on the acoustic black
holes has been to verify the famous S. Hawking’s prediction |70], which described
cosmological black holes and showed that vacuum fluctuations producing parti-
cle/antiparticle pairs would behave in a singular way at the event horizon position.
The huge gravitational fields that reign past the event horizon would absorb one of
the photons towards the black hole which it could not escape, while the other one
would propagate away from the horizon. The consequence of such events would lead
to a loss of mass or evaporation of the black hole with time until its explosion. How-
ever, no detection of such Hawking photons was reported so far, because anyway
they can hardly be extracted from the warmer cosmic background. Consequently,
a quantitative study of such a phenomenon required model systems [71] and among
them are the very promising BECs [63, 72].

The small amplitude excitations (bogolons) in a BEC, can also exhibit linear
dispersion in the long-wavelength limit, defining the speed of sound. The finite
lifetime of polaritons provides a natural way of varying the speed of sound. We
know that propagating condensate can be injected locally via non-resonant 73] or
resonant [50] pumping. Its density is bound to decrease with the distance from the
pumping spot, and ¢ will therefore decrease as well, whereas the propagation speed
will remain constant or may even increase, if the condensate is accelerated by a
potential ramp (for example, by its own self-interactions). At some point the two
speeds become equal, defining the position of the event horizon of the black hole.

The spinor polariton condensate is described by the set of equations (2.63,2.64).
Here D(x,t) becomes a total potential that can encompass: disorder in the mi-
crocavity, potential barriers, and time dependent potentials to impose excitations
in the system. An extra k-independent polarization coupling (conversion) term
ihOyp+ = Ho(r,t)¢+ should be added to photonic parts to account for the extra
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longitudinal-transverse polarization splitting that occurs in 1D wires at k = 0 [41],
and which can vary along the wire.

2.4.3 Sonic holes and wormholes in polariton condensates
2.4.3.1 1D sonic holes

First, let us consider a 1D configuration neglecting the spin degree of freedom. The
polariton flow is resonantly and locally injected by a pumping laser located close
to z = 0 on the figure 2.30(a). The medium is assumed to exhibit small structural
disorder mainly due to the etching of the 1D wire cavities. It is modeled by a random
series of delta-peaks separated by 1 um on average. All results shown in Fig.2.30 are
averaged over 100 disorder realizations. The Fig.2.30(a) shows the polariton density
ne(x), the visible decay is mainly due to the finite lifetime of polaritons. The speed
of the sound ¢(x) decreases together with the density. On contrary, the speed of the
flow v(z) is increasing because of the self-interactions within the condensate. In the
left part, the flow is subsonic and cannot be scattered by the disorder (superfluid).
In the right part, the flow is supersonic. The exponential decay is induced not only
by the life time but also because of the Anderson like-localization in the disorder.
The two regions are separated by an event horizon at v = ¢. In the supersonic
region no excitation can propagate towards the horizon. The generation of Hawking
emission on the horizon is demonstrated in the Fig.2.30(b). Indeed, as recently
proposed in Refs.[74, 75|, emission of Hawking phonons means correlated density
perturbations propagating on both sides of the horizon. Hawking emission can
therefore be detected using the following second order density-density correlation

matrix:
/
@) (z,5) = E/ L) (z)n (=) 2.78
) = ) 7
This matrix is in averaged on many realization of disorder, and is shown at in
Fig.2.30(b). Indeed, as expected, characteristic "Hawking tongues", indicating pos-
itive correlations (because the emission is stimulated by disorder in our case), are
extending from the horizon position, marked by the red dotted lines. We underline
that there is no need to introduce quantum fluctuations to seed Hawking emission
thanks to the presence of the disorder potential, interactions and to the finite lifetime
which broaden the states in momentum and frequency.

2.4.3.2 Closed 2D sonic holes

The finite lifetime of polaritons allows to organize persistent flows, as shown in
Refs.[11, 50, 73] for the cases of quasi-resonant or non-resonant pumping. This
particular property makes the formation of closed event horizon in 2D possible. This
is much more complicated with atomic condensates, where only 1D configurations
have been considered [64]. With polaritons, one needs to pump in a regime allowing
the superfluidity to arise, around a large-scale defect in the microcavity mirrors,
possessing a lower quality factor. Polariton-polariton repulsive interactions will
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Figure 2.30: (a) Propagation of a polariton condensate in 1D: density (black solid
line), flow speed (red dashed line), sound speed (green dash-dotted line). The hori-
zon is indicated by a blue dashed vertical line. (b) Density-density correlation matrix
g(z) (z,2') at t = 200 ps. Dotted red lines are a guide for the eyes, indicating the
Hawking tongues (positive correlations) extending from the main diagonal.

then create a persistent flow converging into the defect region, where the density is
always lower due to the shorter lifetime. The boundary between the superfluid and
supersonic regions forms a circular event horizon.

The figure 2.31 shows the results of a realistic 2D simulation with pulsed spatially
homogeneous pumping. The photon density ng at the time ¢ = 8 ps is plotted as
a function of coordinates [panel (a)]. The defect region with a shorter lifetime is
located at the origin |(z,y) = (0,0)], while the disorder is neglected. The density
inside the defect region decreases faster than outside, and the repulsive interactions
make polaritons propagate towards the center of the figure. The event horizon at
that time is marked with a dashed blue line. The Hawking radiation is in that case
seeded by the non-equilibrium spatial distribution that populates excited states. It
can be observed on the panel (b) as density waves propagating inwards inside and
outwards outside the horizon (red arrows).

2.4.3.3 Wormbholes analogue in the spinor polariton condensate

If a single scalar condensate is a model of a universe which might contain black holes,
it seems natural to map two spinor components to two different universes. They can
be completely decoupled from each other if there are no interactions between the
particles of different spins. Adding a magnetic field can provide a coupling between
these two universes, making possible simulation of wormholes [77].

In astrophysics, inter-universe wormholes are the pairs of singularities located
in different universes and connected together. Using such wormhole, one could pass
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Figure 2.31: (a) 2D black hole around a defect (dark region) in a polariton con-
densate. The dashed red circle shows the event horizon, and red arrows point the
directions of the propagation of the Hawking radiation on both sides of the horizon.
(b) Waterfall density plot at different times. Propagating Hawking phonons are
marked by the red dashed lines.

from one universe to the other. A more interesting situation, when both holes
connected together are in the same universe, is called an intra-universe wormbhole.
Such wormhole can connect two distant regions of space with a tunnel much shorter
than the distance between the two, which might allow faster-than-light travel [78].

Inter-universe wormhole
Let us start with the simpler case of an inter-Universe wormhole. We consider a 1D
quantum wire, as in Ref.|73] and [Sec.2.2.3|. The idea is to first create a closed black
hole bordered by two event horizons and to connect the latter with a white hole in
the other spin component using a local effective magnetic field Hy 7, induced by the
TE-TM splitting at k = 0 [see Sec.3.3.2.1|. Hpr can be controlled by varying the
width of the wire [41], or by applying an electric field [79].

In general relativity, a key concept is the propagation of signals, whose speed can
never exceed that of light in the vacuum. The propagation of phonon wavepack-
ets across the event horizons in BECs has already been studied, for example in
Refs.|74, 76]. In our model system, we need a "signal" that appears in only one spin
component (e.g. o4, representing our universe), that is stable and able to propagate.
The perfect candidate for this task appears to be the 1D half-soliton. As already
mentioned in Secs.1.2.5.1,2.2, solitons have a lot of properties similar to those of
relativistic particles [55, 42|, except that their mass is negative (because they are
actually holes rather than particles): ms = mg/+/1 — v2/c?; their size is given by
ls = &/y/1 —v2/c? where vy is their velocity. For attractive interactions, the mass
can of course be positive. Pairs of half-solitons are created here thanks to a short
time-dependent pulsed potential acting on a single spin component

Uz, t) = Upe~ @0 /uk o= (t—t0)*/72 (2.79)

The Gauss-Laguerre imprinting [see Sec.2.2.3.1] could be used as well. However,
as the speed of a soliton is related to its depth by v = ¢n(0)/ns where n(0) is
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the density at its center and no in its surrounding [55], we need a weak enough
perturbation to excite shallow solitons that will be able to travel at speeds close to
¢ in both spin components (marked as ¢1, c2 below).

The figure 2.32 shows the scheme of a numerical experiment with a single worm-
hole [panel (a)] and the results of the simulations [panels (b), (c)]. A 1D polariton
wire is cw-pumped by two spatially separated, quasi-resonant, o4 polarized lasers
allowing the formation of a steady state flow and convenient density distribution
sketched on the panel (a). Polaritons flow away from the pumping regions and a
closed black hole is formed in the middle. A local effective magnetic field converting
o4+ to o_ is present in the black hole region. The o_ density therefore shows a max-
imum expelling excitations outside from the central region which corresponds to the
formation of a white hole, in which no excitation can enter, in the o_ universe.

After the steady state is obtained, a weak pulsed potential is applied in the o -
component [panel (b)] at ¢ = 5 ps at the left of the left horizon, creating propagating
half-solitons. The continuity of the phase imposes the creation of solitons by pairs.
One of these propagates freely to the left, whereas the other enters the black hole
and remains partly guided inside. The effective magnetic field converts a part of
this soliton into the other spin component: o_ [panel (c)|. The soliton is then able
to cross the horizon of the white hole, propagating away together with the flowing
condensate. Omne can also see that short-wavelength (corresponding to nonlinear
parts of the spectrum) perturbations are still able to cross the horizon of the black
hole in any direction. The holes possess an internal structure. The speed of the flow
is zero at the center and the black hole is in fact composed by two narrower black
holes surrounding a subsonic region.

Intra-universe wormhole
In this last part, we will discuss a scheme for an intra-universe wormhole allowing
the transfer of a HS with an apparent velocity faster than the speed of sound of
its original universe. Such intra-universe wormhole is based on two inter-universe
wormholes similar to the the ones previously described, but connecting the Universes
in opposite directions. The scheme in the figure 2.33(a) shows the proposed ot
density profiles with the two wormholes. Dashed line indicates the propagation of a
half-soliton. A o4 half-soliton is generated at the left. It enters in the o4 black hole
where it is converted in a o_ soliton, which is ejected by the white hole part of the
wormhole. Then, it travels in the o_ component between the two wormholes with
a velocity close to co. It then reaches the second wormhole, which is a black hole
in the o_ component, where it is captured and converted to a o4 soliton ejected
from the white hole. The average velocity of this soliton is close to ¢z which can be
larger than cy, the speed of sound in the o universe. The results of corresponding
simulations are presented in panels (b) and (c).

The pumping is cw quasi-resonant with inhomogeneous elliptical polarization,
providing the density profiles close to Fig.2.33(a). A pair of half-solitons is created
at t = 5 ps in the oj-component at x = 0 [panel (b)|. The "reference" half-
soliton propagates to the left with the speed limited by ¢; and arrives to the edge
at around ¢ = 30 ps. The half-soliton falling inside the black hole converts into the
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Figure 2.32: (a) Scheme of a wormhole between the o (red) and o_ (blue) universes.
Arrows show the directions of the flow in the two components. Dashed lines mark the
event horizons in both components. (b) Results of numerical simulation: ng(x,t)
for both spin components with black dotted lines showing the boundaries of the
black/white holes and white arrows indicating the propagation of signals.

o_ component, gets out of the white hole in o_ [panel (c)] and propagates with a
higher speed, limited by ca > ¢;. This half-soliton arrives to the second wormhole
and is converted back into the o-component, appearing there at ¢t = 25 ps (marked
by the dashed green circle). The two events are marked with black horizontal lines,
and the time difference between them is At = 5 ps.

2.4.3.4 Conclusions

Spinor polariton condensates, being relatively easy to produce and manipulate, can
be used as well for the simulation of astrophysical objects, such as black holes
and wormholes. A 2D black hole with a closed event horizon can be simulated.
Effective magnetic fields, well known as the cause of non-trivial spin dynamics of
polaritons, can be used to organize the coupling between the black holes and white
holes in the two spin components. Half-integer topological defects allow to test the
propagation of signals through the wormhole structures. A system of two separated
and complementary wormholes allows one to organize "faster-than-sound" signal
propagation. This section demonstrates the polyvalence of the polariton system
and the new trends that are now opened by this fascinating research field.
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Figure 2.33: Faster-than-sound signal propagation with two wormholes. (a) Scheme
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with two wormholes showing density profiles; (b) o4 density; (c)o_ density. Dashed
horizontal lines mark the arrival of the two signals (green dashed circles), with At
the time difference between them.

2.5 Electric generation of vortices in a polariton super-
fluid

At this stage, we know that vortices can be excited in a polariton fluid via phase im-
printing techniques using a Gauss-Laguerre beam or in the flowing condensate past
an obstacle. The first option allows the generation of almost static vortices (if only
integer vortices are considered) and the second one nucleates "vortex streets" propa-
gating along deterministic trajectories. None of these proposals consequently allows
an on-demand generation of vortices combined with the possibility of controlling
their trajectory. We propose here a real device devoted to study the vortex physics
allowing to generate vortex-antivortex pairs at will and to control their propagation
towards a real vortex circuit [81].

In more details, we propose another strategy for the generation of vortices in the
polariton superfluid. Contrary to previous proposals, the vortices are not excited
optically but electrically. The idea is based on the possibility of creating dynamical
confining potentials for the particles, by deposition of metallic contacts on top of the
sample and by the application of short voltage impulses to them. We will show that
the use of a horseshoe-shaped contact [shown in Fig. 1] leads to the generation and
propagation of vortex-antivortex pairs (VAPs). Such a structure acts as a "vortex
gun" triggered by an applied external potential. On the basis of this main element,
we will propose schemes towards the guiding and unbinding of VAPs provided by
additional metallic gates. Eventually, we will discuss another simple configuration
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allowing the nucleation of single vortices. Eventually, capitalizing on our previous
knowledge 2.3.1, we will see how in addition to integer vortex dipoles, the device
could allow the generation of half-vortices in the system.

2.5.1 The system and the model

We shall consider a microcavity, assumed to have a high quality factor and charac-
terized by weak intrinsic disorder (e.g. GaAs based) with metallic mesas deposited
on its top. A voltage can be applied to the metal via integrated electric contacts
[see Fig.2.34]. We assume that the polariton condensate is non-resonantly popu-
lated by means of a far detuned cw-homogeneous pump over the whole sample.
This is a crucial point, as a resonant injection scheme would continually impose,
at any time, a well defined phase to the condensate preventing phase singularities
(vortices) from appearing. The polariton population n can remain constant and fix
a chemical potential for the system (since the pump is homogeneous), provided that
a quasi-equilibrium regime between gains — from excitons that relax towards the
ground state — and losses — from photons escaping through the Bragg mirrors — is
achieved.

The role of the metallic contacts on top of the sample is twofold: First, at the
interface between a metal and dielectric Bragg reflectors (DBRs), Tamm plasmon-
polariton states can appear. Such states lead to a local redshift of the lower polariton
mode and thus a time-independent potential trap is created in the region where the
metal is deposited [82, 83]. We note that this configuration is different from the
one involving surface states of a Shottky-like junction resulting in a blueshift of the
polariton modes [84, 85|. The depth of the trap depends on the type of metal and on
the thickness of the layer and values of several meVs are easily achievable. Second,
the application of a voltage to the metallic contacts gives birth to an additional
redshift of the polariton energy due to the excitonic Stark effect[86, 87]. The value
of the shift depends of course on the applied voltage and values of the corresponding
electric field in the range of 0-50 kV/cm result in a potential Uy lying between -2
and 0 meV. Besides, the abrupt appearance of a potential well can strongly perturb
the condensate locally in the region of the contacts. Such a perturbation results in
the excitation of a nonlinear density wave similar to a ring soliton [88] and possibly
of dispersive shock waves in the condensate [89]. Vortices can emerge, when the
solitonic wave expands above some critical velocity producing a vortex necklace
[88] or when two nonlinear waves collide and interfere. This latter situation can
be realized using two facing electric contacts or just a single one with the proper
geometry as we will see.

For the description of the dynamics of the system, we have first used the stan-
dard Gross-Pitaevskii equation for the macroscopic wavefunction of the condensate

P(r, t):
g0ty W

ot Qm*A’l/J(I',t) —|—Oé|1/J(I',7f)|22]Z)(r7t)
+ [Uo(r) + Uy (r,0)] (r,1) (2.80)
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Figure 2.34: The vortex gun: A microcavity with a horseshoe-shaped metallic con-
tact deposited on top of its DBRs. The metal creates a local potential trap for
polaritons due to the formation of Tamm-polariton solitons. The application of
a time-dependent voltage V; is able to increase temporally the depth of the trap
towards the generation of VAPs.

Up(r) is a potential well of the amplitude of 2 meV created by the metallic contacts
and appearing due to the formation of Tamm plasmon-polaritons. Uy (r,t) is an
extra time dependent potential accounting for the exciton Stark shift generated by
the applied voltages. m* = 5 x 10™mg (my is the electron mass) is the polariton
effective mass. « is the polariton-polariton interaction constant. We start here
by neglecting the spin degree of freedom of polaritons assuming that the polariton
condensate is linearly polarized and that both spin components are fully equivalent.

2.5.2 The vortex gun

We start our description with the configuration shown at Fig.2.34. A metallic con-
tact in the form of a horseshoe (half a ring) is deposited on top of DBRs. It has
an inner radius of 5 ym (roughly 2¢) and outer radius of 10 ym. We apply to the
contacts a short 5 ps long Gaussian voltage impulse, producing a time-dependent
redshift of the amplitude of 1.5 meV associated with the potential well Uy. It
results in a local non-adiabatic perturbation of the condensate which generates a
non-cylindrically symmetric solitonic density wave propagating outwards from the
contact. In the inner part of the horseshoe the breakdown of the meeting wavefronts
occurs, allowing the nucleation a VAP propagating along the axis of symmetry of
the system, as shown in Fig.2.35. The vortices are evidenced by: the vanishing den-
sity at their core visible in the colormap, the characteristic velocity field tangent to
them in the panel (b) and the winding of the phase in anticlockwise (vortex [ = +1)
and clockwise (antivortex [ = —1) directions around their core in the panel (c). The
distance separating the vortex and antivortex in the pair related to their speed of
propagation depends on the size of the contact, on the applied voltage and on the
concentration of the polariton superfluid (here on average m = 2.5 x 10%m™2).
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Figure 2.35: VAP nucleated by the application of a voltage impulse of amplitude
—1.5 meV and duration 5 ps to the horseshoe contact. (a) Density n(z,y) (um~?)
of the condensate, 20 ps after the pulse. One clearly sees the solitonic density wave
propagating away from the contact (dark regions) and the single VAP (dashed white
circle). (b) Velocity field of the condensate and (c) phase vector field (cos(f), sin()).

We have therefore proposed a system able to generate VAPs on demand prop-
agating along straight lines: a "vortex gun". Moreover, the modification of the
excitation conditions allows the creation of more than a single VAP. For example if
a periodic sequence of voltage impulses is applied to the horseshoe, the generation
of series of VAPs is observed.

To check the validity of our model based on the equilibrium Gross-Pitaevskii
equation [see eq.(2.80)], we have performed numerical simulations using a more ac-
curate model: namely a set of modified Ginzburg-Landau equations. Indeed, to take
into account the nonparabolicity of the polariton dispersion, we have separated the
photonic field ¢(r,t) from the excitonic one x(r,t) that are coupled via the light
matter interaction associated with the Rabi energy Q2 = 10 meV. We have taken
into account the particles lifetime: 74, = 15 ps and 7, = 400 ps. To model the
nonresonant pumping scheme, we assumed that the exciton relaxation towards the
ground state is embodied by a reservoir which evolves along a simple rate equation
[eq.(2.82)] similarly to the proposal of Ref.[92]. ['r = 5/7, is the scattering rate be-
tween reservoir excitons and condensate polaritons. The reservoir filling is provided
by the source term (pump laser) Pr = 50/7r where 7 = 100 ps is the lifetime of the
particles in the reservoir. The stimulation of the condensate population is seeded
by a short low amplitude probe pulse tuned at the energy of the lower polariton
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branch at k = 0: wg = —hQr/2. The corresponding set of equations reads:
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In this framework, we present the result of a numerical simulation in the figure
2.36 showing the vortex gun configuration (see captions). As one can see, the results
obtained remain very similar to the one obtained using the simplified approach [to
be compared with the Fig.2.35]. The main difference is that the results are less
smooth and therefore less instructive due to the instabilities, intrinsic to the model,
that develop at later times [visible in the density landscape of the panel (e)]. We
therefore assert that the simple model is sufficient to realistically describe the vortex
nucleation and the following guiding processes.

At}

Figure 2.36: Simulations based on the modified Ginzburg Landau model. VAP nu-
cleated by the application of a voltage impulse associated with a gaussian potential
of amplitude —1.5 meV and duration 5 ps to the horseshoe contact. (a) Total densi-
ties of: the photonic component (red line), the excitonic component (blue line) and
the reservoir (black line) showing the condensate being populated by the reservoir.
(b) Density of the photonic component (emission out of the microcavity) 5 ps after
the arrival of the impulse revealing the vortex anti-vortex pair. (c) Propagation of
the VAP away from the horseshoe (gun). (d) and (e) show the phase of the photonic
component associated with (b) and (c¢) to evidence its characteristic winding around
the vortices.
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2.5.3 Vortex guiding

The motion of vortices is affected by flow directions and density gradients [92].
Indeed, as the metal creates a potential well for polaritons, it makes the concen-
tration of the condensate under the contacts greater than in the surrounding area
[it is clearly visible e.g. in Fig.2.35(a)]. We note that, even if photoabsorption
from the nonresonant pump laser can be blocked by the presence of the metal, the
polariton-polariton repulsion would allow an efficient filling occurring much faster
than the polariton lifetime. The elastic energy of singly quantized vortices (I = 1)
is proportional to the condensate density [93]:

Eg = nh*n/m*, (2.84)

and thus metallic layers acts as a potential barrier for vortices. This opens the
way towards the control the VAPs trajectories by means of extra gates flanking the
vortex gun. In this context, we propose first to add a pair of circular electrodes as
shown in Fig.2.37. Owing to the symmetry of our structure, no deviation occurs
until a voltage is applied to one of the two electrodes. On the other hand, if a 15 ps
long Gaussian voltage pulse is imposed to one of them, the VAP deviates from its
straight trajectory as it is shown at Fig.2.37 . One could of course envisage as well
a configuration with a single electrode that would deviate the vortex in a constant
deterministic way. No applied voltage would be obviously required in that case.

Figure 2.37: Control of the VAP trajectory by a pair of circular gates. Panels (a)-
(b) and (c¢)-(d) show the density of the polariton superfluid in real space 30 ps and
55 ps after the VAP generation respectively. The upper (lower) panels correspond
to a voltage applied to the lower (upper) mesa and thus to an upward (downward)
deviation of the VAP. The corresponding trajectories are marked by the white dashed
arrows.

Capitalizing on the previous results, we can now envisage a scheme for a vortex
guide. Indeed, one can deposit two metallic stripes next to the vortex gun. The
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application of a sinusoidal voltage to the upper and lower stripes leads to the oscil-
lation of the VAP between them, as it is illustrated in the inset of Fig.2.38 [see also
Ref.|90] for a movie|. It is important that the voltage applied to the gates are weak
enough not to excite parasite vortices in the system.

Vortex guides could be connected to each other and constitute a basis for varieties
of logic elements. For example we can propose a design for a vortex switch shown
in Fig.2.38: VAPs are created by the vortex gun and move along the vortex guide
E which splits into two outgoing leads Lj and Ly. The metallic gates G and Go
allow a controllable redistribution of the vortices between the two paths namely:
The application of the voltage impulse to the gate G1 (G2) sends the VAP to the
outgoing lead L; (Lg).

Figure 2.38: Inset: Vortex guide consisting of a vortex gun and two metallic stripes.
Periodic application of voltage to upper and lower stripes makes VAP to oscillate
between them. Main plot: vortex switch composed of a vortex gun, a vortex guide
E, two outgoing leads L; and Lo and controlling gate electrodes G; and Go. The
application of the electric impulse to gates G or G2 sends VAPs to leads L or Lo
respectively as marked by black and orange arrows.

2.5.4 Vortex splitting

VAPs can be unbound (destroyed) by means of a wedged metallic mesa, as shown
in Fig.2.39. When a VAP reaches a tip of the wedge, it splits into two separated
excitations traveling along upper and lower sides of the triangle, preserving their
shape [see Ref.[90] for a movie|. The analysis of the phase field around the upper
excitations shown in the panel (e), allows to assert that they are neither individual
vortices nor new VAPs. Indeed no phase singularity is visible but rather a local 7 /2
phase shift going through the density dip characteristic for a gray soliton or more
precisely a rarefaction pulse[94].



Chapter 2. Half-integer topological defects in spinor polariton
132 condensates

uu 1
42 44 46 48 50
% (um)

Figure 2.39: Scattering of a VAP induced by a metallic wedge. The panels (a)-(d)
show the superfluid density at times : 10 ps, 13 ps, 15 ps and 20 ps after VAP
creation respectively. The decomposition of a VAP into a pair of pseudo-topological
excitations propagating along the upper and lower sides of the triangle is evidenced.
The phase vector field of the upper topological excitation highlighted by the white
square in (d) is shown in the panel (e). The phase of the condensate is roughly
shifted by 7/2 through the low density (dark) region which is characteristic for a
gray soliton.

2.5.5 Single vortex generation

So far we have considered the nucleation of propagating vortex dipoles. Now we
show, how single static vortices can be excited as well. We propose simply to use a
single plate configuration as shown in the Fig.2.40. After the application of a short
electric pulse to the plate a "lasso"-soliton is excited similarly to the one observed
in Fig.2.35(a). It’s shape is imposed by the rectangular geometry of the plate and
is consequently strongly non-cylindrical. As a result the soliton is unstable and
breaks into two types of excitations [see Fig.2.40(a)]. VAPs appear and are expelled
towards the plate where they are merged, by the high density that reigns, generating
phonon-like excitations. It reveals by the way another mean of destroying a VAP,
if needed, inside a circuit for example. In addition, stable single noninteracting
vortices are generated at each edge of the plate as it is shown in Fig.2.40(b) [see
Ref.[90] for a movie|. They remain pinned at their nucleation position. In addition,
dispersive shock waves induced by the local perturbation are excited in the system
[see captions of Fig.2.40(b)].

2.5.6 Half-vortices and half-solitons nucleation

Now let us take the spinor nature of the polariton condensate into consideration
separating the two spin components and including the TE-TM splitting. We keep
in this part the parabolic approximation for the polariton dispersion. The dynamics
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Figure 2.40: Generation of single vortices. (a) Superfluid density 30 ps after the
arrival of the pulse which exhibit several features: (1) dispersive shock waves, (2)
lasso-soliton broken into (3) VAPs and (4) single vortices. (b) Zoom on the plate
region at 80 ps, the VAPs have vanished and 4 single vortices remain stable, locked
at there initial positions.

of the system is therefore described by the set
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Here ay = —0.2a;. Obviously it seems difficult to affect here only one of the two

spin components, since the the potential Uy + Uy impacts equivalently on each spin
components. We assume here that the condensate forms with a linear polarization
e.g along the x axis (ngr = ¢%). We note that if the TE-TM splitting would
be absent, the fluctuations of the linear polarization introducing a slightly elliptic
component and therefore a density imbalance between the o1 components could
be enough to break the polarization symmetry. But, in fact the presence of the
TE-TM splitting makes things even simpler. If we remember the mechanism of
formation of the oblique half-solitons, the situation will be here almost the same.
Indeed, applying a voltage to the mesa induces currents, in the initially immobile
condensate, in all the directions of the plane. As soon as the fluid is set in motion,
it starts to feel the effective magnetic field induced by the TE-TM splitting and the
situation is reminiscent to that of the optical spin-Hall effect. We are therefore able
to break the symmetry of the flow with respect to both the phase of the condensate
and the polarization. Consequently, if the TE-TM splitting is sufficiently strong,
our device will naturally excite half-integer topological defects such as half-vortices
and half-lasso solitons from the dissociation of integer topological defect within
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the flow. One should furthermore keep in mind that the negative value of ag will
further assist the separation as soon as it is triggered by the TE-TM splitting [see
Sec.(2.3.1)], even if the latter is weak. We show in the Fig.2.41 the generation of
propagating half-vortices dipoles and half-ring solitons using a horseshoe and circular
mesa respectively. The situation would remain qualitatively the same modeling
the nonresonant injection with a rate equation for e.g. an unpolarized reservoir
connected to both spin components.

-20 20 -20

x(:}m) xtgml
Figure 2.41: Generation of half-integer topological defects in the TE-TM splitting
induced effective magnetic field. In both panel we plot the degree of circular po-
larization p. to image both spin component in a single panel. (a) Generation of
half-vortex dipoles by the horseshoe. (b) Generation of half-ring solitons by a cir-
cular mesa.

2.5.7 Conclusions

We have shown that vortices can be nucleated electrically in a microcavity with
metallic contacts deposited on top of the Bragg mirrors. We have proposed a struc-
ture acting as a "vortex gun'" allowing generation of propagating vortex-antivortex
pairs on demand, analyzed their injection, deviation, oscillations, guiding, splitting
into gray solitons. As well, we have shown the possibility to generate single vortices
and half-vortices/half-solitons. The topological defects generated in the proposed
system are stable and controllable excitations that can be easily guided. Moreover,
the system we propose opens the way towards the analysis of nontrivial solitonic
structures as well as dispersive shock waves inside a superfluid in an unprecedent
manner. The main challenge for the experimental realization of the present pro-
posal resides in the stabilization of the system under the action of frequencies in the
ranges of 10 GHz accessible nowadays [95]. We believe that it could be achieved in
a near future in view of the recent technological progresses.
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2.6 Chapter conclusion

In this chapter we have discussed the incredible richness that offers the two com-
ponent spinor polariton condensate. Its elementary topological excitations, half-
solitons and half-vortices, can be artificially nucleated by several means with the
current technology. We have seen that they can be manipulated as magnetic charges
within the effective magnetic fields intrinsic to microcavities and embody extremely
promising information carriers for the growing field of spin-optronics. The first ob-
servation of oblique half-solitons paves the way to the generation of "magnetricity"
based on half-integer topological defects. We have proposed several realistic config-
urations to generate such objects: namely using phase imprinting technics, making
the polariton fluid collide against a defect or using electric contacts on top of the
microcavity.

Additionally, we have been able to explore the physics of black holes, propos-
ing the polariton quantum fluid as an advantageous alternative for the creation of
acoustic black holes allowing the investigation of the famous Hawking radiation.
The half-soliton being a stable excitation in the condensate plays in this context the
role of test signals allowing to verify the properties of the wormholes that can be
organized thanks to the polariton features.
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While the original planar microcavity that gave birth to the first polariton con-
densate [1| seems to have still much to offer, today’s technological progresses allow
to broaden the perspectives. Indeed, the modern lithography processes push the
boundaries away, and now almost any sample design seems possible to implement.
These perspective open the way to the polariton physics in dimensions lower than
two. One remarkable recent result is the observation of the polariton condensation
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in a very high quality factor quasi-one dimensional microwires by Wertz et al. [2].
In this work, the coherent propagation of the condensate over the whole sample
was an outstanding result. More recently, the condensation was obtained in single
or pairs of micropillars (or "molecules"), where the polaritons were even more con-
fined [3, 4]. The connections between such elements could lead in a near future to
the fabrication of a real polariton-based optical circuit or even a complete optical
computer operating at THz frequencies.

Capitalizing on these results, we discuss here the polariton physics within low
dimensional structures. After an introductory paragraph [Sec.3.1], we will present
first the recent observation of polariton gap states [Sec.3.2| within periodically pat-
terned microwire [5]. Second, we shall discuss our prediction of the Bloch oscillations
of an exciton-polaritons condensate [6, 7|. Finally, we will analyze the Josephson
oscillations of a polariton condensate [Sec.3.3] within the density matrix formal-
ism (suitable for indirect excitons as well) [Sec.3.4]. This effect could be observed
experimentally within pairs of micropillars [8].

Figure 3.1: Low dimensional microcavities. (a) Microwires from Ref.[2], (b) peri-
odically modulated wires from Ref.[5], (c) single micropillars from Ref.[3] and (d)
pairs of micropillars from Ref.[4].
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3.1 Bose-Einstein condensate in a periodic potential

3.1.1 Linear waves in periodic potentials

Let us start here with a reminder on the textbook theory [see e.g. [9]| of linear
waves in a periodic potential. We shall consider here that the particles experience

a cosine potential
U (z) = Acos (koz)? (3.1)

where kg = m/d d, being the period of the potential. Assuming that in the absence
of U the dispersion is parabolic, the stationary Schédinger equation for the field

Y(x) reads
n* o2
By (z) = Com* gx(f)

Applying Bloch’s theorem, we look for eigenfunctions in the form

+ Acos (kox)*t (z) (3.2)

Vp,q (T) = upq (2) €'t (3.3)

where ¢ is the so-called quasimomentum and p is the band index. The function wu,, 4
is d-periodic. We are therefore allowed to rewrite 1(x) and U(z) in terms of Fourier
Series

Upg () = €97 e?mhor (3.4)
m
U(z) =) Upe*mor (3.5)

Injecting this Anzatz into Eq.(3.2) considering 2N +1 modes which means truncating
the sums to |m| = N leads to the set of 2(2N + 1) linear equations

2

2
2m* (q - kao) + ‘/0:| Cq—mG + U+2kocq—2(m+1)ko + U—ch—2(m—1)k0 - Ecq72mko

(3.6)
The choice of our periodic potential imposes Uy2ky = A/4 and U,,—9 = A/2. For a
given quasimomentum ¢, we obtain 2N +1 eigenenergies forming the so-called energy
bands separated by forbidden energy gaps. To each eigenvalue E, corresponds
a eigenfunction defined by the Fourier component cy_9,,k,- The total dispersion
relation obviously strongly depends on both the amplitude A of the potential and
the quasimomentum g. The recoil energy Er = h%k3/2m* is the characteristic scale
in the system and we can consider two opposite limits depending on the ratio A/ER.
In the case A ~ EpR the potential is said to be shallow and the eigenenergies
crucially depend on ¢. Since the gaps width E} scale like AP™! its magnitude is
only significant between the first and second band. Therefore particles having an
energy larger than E; are well described as free particles. The band structure can
be estimated as [10]
2
]_2@ — P 4
R 16E7%

(3.7)
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where ¢ = ¢/k — 1 and s = A/FEpR. This approximation gives here the first (minus
sign) and second band (plus sign). In Fig.3.2, the energies in real space are shown.
In the same graph are shown the real space probability distributions of the eigen-
functions. The eigenfunctions at the lowest and highest energy are almost constant,
which implies that the wave function is mainly given by a plane wave correspond-
ing to an almost free particle. It is important to note that for energies near the
upper band edge of the lowest band, the probability distribution is periodic and its
maxima coincide with the potential minima. For this energy we additionally depict
the wave function, which reveals that the relative phase in the adjacent potential
minima is 7. This is the well-known sinusoidal Bloch state at the band edge defining
the Brillouin zone. From this graph one can also see that the Bloch state in the
first excited band is also sinusoidal but it is in-phase with the periodic potential.
Thus the energy of this state is higher due to the bigger overlap with the periodic
potential.

In the opposite limit, where A > Fg, we enter the well known tight binding
treatment. In that case, the eigenenergies of the first bands are only weakly depen-
dent on ¢ and the energy gaps are large. The first band can be found analytically

[11] to be
EE(:) = \/E,Tl12 — 2J cos (qd) (3.8)

where J is the coupling energy between adjacent wells (Josephson coupling constant)

which can be found as »

J- L <A> e VA Er (3.9)

VT \ Er

The expression (3.8), is plotted in Fig.3.2(c) as a dotted line and reveals the good
agreement with the numerically calculated eigenenergies. The corresponding eigen-
functions are depicted on the right-hand side. Although the absolute value of the
eigenfunctions for the lowest band shows no significant dependence on the quasimo-
mentum, the wave functions at ¢ = 0 and at ¢ = 7 /d differ by the relative phase
between adjacent potential minima [solid lines in Fig.3.2(d)]. As in the weak peri-
odic potential limit, the wave function at the upper band edge of the lowest band is
staggered, i.e., there is a ™ phase jump between different sites. Phenomena studied
in this regime only involve the lowest band, which is well described by localized wave
functions at each site. Therefore, in this limit the dynamics can be described using
the localized Wannier functions, which are superpositions of the Bloch functions

oy (R, 2) = é / e ()P (3.10)

where R is the center of the function. The dynamics is simply described via inter-
well tunneling. The characteristic energy scale of tunneling coupling between two
sites is given by the width of the band, which is 4J.

We have seen that the linear properties of the periodic potential are defined
by the potential amplitude A. The transition between weak and strong potential
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is continuous and thus no well-defined boundary can be given. A characteristic
potential modulation for this transition may be found by equating the bandwidth
and the gap energy, which have the same magnitude at a potential modulation depth
of A=1.4FR.

g=1
6
& 4
@ 2
o
G
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quasimomentum [%] spatial position quasimomentum [%] spatial position

Figure 3.2: Band structure for two different potential depths: (a) weak potential
A = Epg, (b) deep potential with A = 10Eg (s = A/ER). In both cases, the
analytical expressions (3.7) and (3.8) are depicted with dotted lines. In (b) and (d)
we show the spatial dependence of the corresponding Bloch states. The periodic
potentials are represented by the dashed lines. For each energy, the absolute square
value of the corresponding Bloch states is depicted in the gray scale plot, where high
probabilities are darker. Additionally, the wave functions are shown for the energies
at the gaps indicated with the arrows. One clearly sees that the wave functions at
the first gap change their sign from well to well, i.e., there is a phase slip of 7. These
modes are also known as staggered modes.

3.1.1.1 Bloch oscillations and Landau-Zener Tunneling

In the presence of an accelerating force, the linear theory predicts the occurrence
of Bloch oscillations [13] and possibly Landau-Zener tunneling [14] (for shallow lat-
tices) that will be under the scope of this chapter [see Sec.(3.3)]. The wavepacket
dynamics of a particle in a periodic potential in the presence of an additional ex-
ternal potential, i.e., with an external force F', is generally not easy to solve. The
problem becomes relatively simple, though, as soon as the width of the wave packet
in quasimomentum space is small and thus the wave packet can be characterized by
a single mean quasimomentum ¢(t) at the time t. An external force then leads to a
time dependence of ¢ via

ou(t

ot

The force F' can be imposed by an electric field for electrons, a gravitational field

h —F (3.11)

for atoms or a gradient of confinement potential for photons or polaritons. From
above, we easily obtain

1(t)= "t +4(0) (3.12)
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We can deduce the group velocity of the wavepacket lying in the band number p

_ 19Ey(qg)

wlo) =50 (3.13)

The equations (3.12,3.13) determine that the rate of change of the quasimomentum is
governed by the external force, but the rate of change of the wavepacket’s momentum
is given by the total force including the influence of the periodic potential included
in the dispersion shape. The velocity at the time ¢ is

0 (0) = st + 1, (0 (0)) (3.14)

Since vy is periodic in the reciprocal lattice, the velocity is a bounded and oscillatory
function of time. Therefore the result of the force is not a simple acceleration of the
wave packet, and instead the wavepacket demonstrates an oscillatory behavior in
real space [see Fig.3.3(a),(b)]. This counterintuitive phenomenon is known as Bloch
oscillations [12]. The period of these oscillations is
2mh
Tpo = Td (3.15)
In the case of a strong external force F' or a shallow lattice (reducing the gap),
interband transitions are allowed to occur. In the context of electrons in solids,
it is known as the Landau-Zener tunneling, occurring if the applied electric field
is strong enough for the acceleration of the electrons to overcome the gap energy
separating the valence and conduction bands. It was shown by Zener [14] that for
a given acceleration corresponding to a constant force, one can deduce a tunneling
probability Przr across the first band gap in the adiabatic limit

x2A

Przr =e % (3.16)

where Fy = F'd/EpR is a dimensionless force. This phenomenon results in the split-
ting of the oscillating wave packet at the first Brillouin zone edges where the sepa-
ration with the second band is the smallest [see Fig.3.3|(c),(d).

3.1.2 Effect of nonlinearities

Bose-Einstein condensates inside periodic lattices share many features with elec-
trons in solids, but also with light waves in nonlinear materials and other nonlinear
systems. However, the experimental control over the parameters of BEC and of the
periodic potential make it possible to enter regimes inaccessible in other systems.
However, an important difference between electrons in a crystal lattice and a Bose
condensate inside the periodic potential is the strength of the self-interactions and
hence the magnitude of the nonlinearity of the system. Electrons are almost nonin-
teracting (all the interactions are already taken into account in their effective mass),
whereas atoms inside a Bose-Einstein condensate interact strongly. A perturbation
approach is appropriate in the former case while in the latter the full nonlinearity
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Figure 3.3: Wave-packet dynamics in a periodic potential in the presence of a con-
stant force F. (a), (b) An external force leads to a variation of the central quasimo-
mentum g = 0. Since the group velocity changes sign when g exceeds the Brillouin
zone, the wavepacket exhibits an oscillatory behavior in real space [panel (b)]. The
Bloch oscillations are an example of intraband dynamics. (c), (d) For strong exter-
nal forces or small band gaps, nonadiabatic transitions to the first excited band can
occur at the first Brillouin zone edges [panel (c)]. The Landau-Zener tunneling leads
to a splitting of the wave packet in real space [panel (d)]. All plots reveal the Bloch
state structure. Indeed, near ¢ = 0, the wave packet is only weakly modulated with
the period of the periodic potential, while at the band edge it is fully modulated
revealing the sinusoidal Bloch state at the Brillouin zone edge.

must be taken into account. Generally, atom-atom interactions in Bose-Einstein
condensates lead to rich and interesting nonlinear effects. Most experiments to date
have been carried out in the regime of shallow lattice depth, for which the system
is well described by the Gross-Pitaevskii equation. Moreover, the nonlinearity in-
duced by the mean-field of the condensate has been shown both theoretically and
experimentally to give rise to instabilities in certain regions of the Brillouin zone.
The so-called Landau and dynamical instabilities [15] are not present in the corre-
sponding linear system, i.e. the electron system. Such instabilities can be described
within the Bogoliubov theory considering low amplitude perturbations on top of the
periodically modulated condensate [see e.g. pages 255-257 of Ref.[16]]. While the
latter is stable when it forms at zero quasimomentum demonstrating a linear exci-
tation spectrum similar to that of the unmodulated condensate (for low momentum
excitations), instability can develop for the propagating condensate around the top
of the first band.

Considering the interactions between the particles introduces the interaction
energy as new scale in the system. In this framework the situation becomes less
straightforward than the previous linear case. Under the mean field approximation
for the macroscopic wave function ¥ (x), the interaction energy of a condensate is
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defined by
8
B =% / b (2)[4dz (3.17)

In the framework of periodic potential it would be more relevant to evaluate this
interaction energy on a single site integrating the expression (3.17) over one period
of the potential. Several regimes have been analyzed depending on the relative
values of the energies of the system that are: the width of the first band, the width
of the first gap and the on site interaction energy [17]. In the presence of a periodic
potential U(xz), the 1D Gross-Pitaevskii equation for the mean field ¢ (z,t) reads

oy K

59V _
! ot 2m*

AY + alp*y + Uy (3.18)

When the nonlinearities are weak which corresponds to a diluted condensate (|2|? is
small) and assuming a shallow lattice, a simplified description can be found starting
from the linear description of matter wave packets. Indeed, wave packets with a
small momentum distribution, centered around ¢p e.g in the first band (p = 0), are
well described by a slowly varying amplitude A(z,t), (on the scale of the periodicity)
multiplied by the Bloch state corresponding to the central quasimomentum gg

O (x,t) = A(x,t) ug g, () e ME@/R (3.19)

In this framework, it has been shown in different works [18, 19, 20| that in the
case of weakly interacting matter waves, a nonlinear Schrodinger equation for the
envelope A(z,t), can be derived by means of the so-called multiple scales analysis
[21]. The resulting differential equation for the envelope has the same form as
the Gross-Pitaevskii equation but with a modified linear dispersion and interaction
energy. —
ih <%;1 + Uggf> = —2’%*% +U (z,t) A+ ngOznl’A‘QA (3.20)
Here a;,; describes the renormalization of the interaction energy which increases due
to the stronger localization in the periodic potential. Even though the stationary
solutions of Eq.(3.20) do not differ significantly from the linear case, the dynam-
ics of this system is totally different. Especially noteworthy is the formation of
bright solitons, i.e., nonspreading wave packets that appear despite the repulsive
atom-atom interaction provided that the central quasimomentum is in the regime of
negative effective mass close to the first Brillouin zone edges. In the work by Steel
and Zhang [22], such localized solution were named "gap-solitons". Indeed, a local
density increase leads to a local interaction-induced blueshift that allows a state to
form within the band gap. Such localized states are stabilized thanks to the negative
effective mass that makes the effective time evolution to run backward preventing
the dispersion to occur. The appearance of a new class of solitons called out-of-gap
solitons was predicted by Yulin and Skryabin [23], who applied the coupled mode
description developed in the field of nonlinear optics to the case of Bose-Einstein
condensates in periodic potentials. Gap solitons were first observed within an ac-
celerated optical lattice using the so-called dispersion management [24]. Employing
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the multiple scale analysis, it is possible to show that in general, two types of gap
solitons bifurcate from both band edges [25]. These are bright solitons centered on
the maximum (off-site) and minimum (on-site) of the lattice potential respectively.

We have described here only a few samples of the incredibly rich physics that
emerges from the condensation in periodic lattices and we refer the interested reader
e.g. to the recent review [17] and book [16]. In the following, we will see how polari-
tons in patterned semiconductor microcavities allow to investigate the formation of
gap solitons, Bloch oscillations, and Josephson oscillations.
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Figure 3.4: Experimental observation of gap solitons in an optical lattice from
Ref.[24]. Left panel: Absorption images revealing the in situ density distribution in
a one-dimensional wave guide for different evolution times. Clearly, a nonspreading
wave packet is formed after 25 ms. Right panels: Principle of the creation of the
gap soliton using the so-called dispersion management technique.
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3.2 Polariton condensation in solitonic gap states

3.2.1 Introduction

Non-linear wave propagation in a periodic medium is fundamentally different from
the propagation in a homogeneous medium. These non-linear waves can be photons
propagating in a medium with a Kerr non-linearity (x®), or the macroscopic wave-
function of an interacting Bose-Einstein condensate. In this last case, inter-particle
interactions provide the equivalent of the x® nonlinearity. Different localization
phenomena can occur in a periodic medium due to the interplay between the band
structure and inter-particle interactions. In the absence of interactions, a cavity
state appears when the periodic lattice is locally perturbed, for instance, by re-
moving one or several layers forming the lattice [26], or by slightly changing the
periodicity [27] or the material refractive index [28]. In the case of stronger inter-
actions or stronger non-linearities, gap solitons can be generated even without any
local perturbation of the periodic potential. Gap solitons being bright solitons pos-
sess the characteristic hyperbolic secant density profile, slowly varying in the core
region and recovering an exponential decay on the edges. In non-linear photonic
crystal fibres such solitary waves have demonstrated propagation without any dis-
tortion [29, 30]. Remarkably, none of these various localized states can correspond
to the ground state of the system. Thus, their observation with matter waves, for
instance, requires setting atomic condensates out of equilibrium [16]. In the case of
non-linear photonic crystal fibers, the generation of gap solitons involves exciting
the system quasi-resonantly to the forbidden energy gap, and thus high excitation
powers are required [29].

Cavity polaritons are quite unique from this point of view. The quantum state in
which condensation occurs is not necessarily the ground state and strongly depends
on the relative relaxation efficiency towards the different available states [4]. In the
present section, we show that in a 1D periodic potential, polaritons spontaneously
condense in highly localized interaction-induced gap states. These experiments were
performed using non resonant excitation and thus highlight the potentiality of this
strongly non-linear photonic system to generate gap solitons or reconfigurable gap
states.

We have already seen that the polariton condensate characterized by repulsive
interactions supports grey solitons in both 1D [Sec.(1.2.5.1)] and 2D [Sec.(1.2.5.4)].
Additionally, bright solitons were predicted [31] and observed [32] in a planar mi-
crocavity. While repulsive interactions and bright solitons seem at odd (especially
in the absence of periodic potential), these objects are allowed to occur thanks to
the nonparabolic shape of the lower polariton branch. Indeed, polaritons having
a momentum larger than that of the inflection point of the dispersion possess an
effective mass m* = h?(0?E/0k?)~! which is negative. In nonlinear optical media,
described by the nonlinear Schédinger equation, the formation of temporal or spa-
tial bright solitons naturally occurs from the self-focusing Kerr nonlinearity acting
as an effective attractive interaction between photons [33]. Recently, matter wave
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solitons were observed in an atomic Bose-Einstein condensate, and optical lattices
were required in order to engineer the dispersion of the particles to provide the re-
quired negative effective mass |34, 35]. Here we propose to use a similar strategy for
the polaritonic system. Currently, several works have already been devoted to the
behavior of polariton condensates in periodic lattices, [36, 37, 38, 39, 40] and this
topic has started now to attract a lot of attention.

Theoretically, the complete polariton dispersion in the presence of a quasi-1D pe-
riodic potential can be evidenced e.g. solving numerically the linear set of Schédinger
equations for the coupled photonic ¢(z,y,t) and excitonic fields x(z,y,t).

L 00 K2 hQR ih
- = ——A — P—— )
ih D 2m¢ ¢+ U¢¢ + 5 X + 27_¢ (3 21)
L O0x h2 hQgr ih
h-= = — A —— — .22
! ot 2m, X+ U+ 2 ¢ 274 (3.22)

Here Ug(x,y) is a periodic potential of period d and amplitude A and the excitonic
potential U, (x,y) is zero. The result is shown in the figure 3.5 for a potential of
amplitude A = 1 meV and period d = 2 um. We obtain the typical band struc-
tured dispersion with the occurrence of gaps in both the upper and lower branches.
Interestingly, the first gap has a width which obviously dependent on the potential
amplitude but here it depends as well on the period of the potential due to the
nonparabolicity of the lower polariton branch. Different options can be envisaged to
form this potential, it could be obtained either by depositing a metallic pattern along
the wire [37] that would potentially form Tamm polariton states [41], by excitation
of a surface acoustic wave [39] or by a square-wave-like lateral etching [5].

3.2.2 Surface states in the cw regime

In this direction and in the framework of our collaboration with the LPN in Paris,
an original cavity microstructure with a periodic lateral etching has been designed
in order to confine polaritons in a one dimensional periodic potential. Here we
make use of the mixed nature of the polariton states, acting on their photonic part
to create a periodic potential, and on their excitonic part to induce interactions.
As evidenced by far field emission measurements in the low density regime [see
Fig.3.6(b-d)]|, this periodic potential results in the formation of polariton mini-bands
separated by mini-gaps. The width of the folded Brillouin zones is 7/P, P being
here the lattice periodicity, and the width of the mini-gaps is determined by the
amplitude of the modulation. The real space distribution of the polariton emission
can also be imaged: it is delocalized, demonstrating the propagative nature of the
polariton states in the different sub-bands [Fig.3.7(b)]. We note that, differently
from previously reported techniques used to spatially modulate the polariton energy
[37, 42, 39], the resulting effective amplitude of the modulated potential can be as
large as 2 meV.

Polaritons were generated under non-resonant optical excitation, with a fo-
cused single mode cw laser beam. Increasing the excitation power, we observe
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Figure 3.5: Band structured polariton dispersion in the presence of a periodic po-
tential. Found from solving Eqs.(3.21,3.22) with a short and narrow probe pulse.

an abrupt threshold in the emission intensity, signature of polariton condensation
|[see Fig.3.7(a)]. Real space imaging above threshold reveals that the macroscopi-
cally occupied quantum state is strongly localized around the excitation region. Its
energy lies inside the first forbidden energy gap. This behavior can be explained
by taking into account the repulsive interaction with the cloud of uncondensed ex-
citons, which are continuously injected in the system. This interaction results in a
local blueshift of the polariton states in the excitation area. This repulsive potential
was previously shown to induce a macroscopic expansion of polariton condensates
in non-modulated 1D cavities. Here, in the presence of a periodic potential, the
effect of the exciton cloud is the exact opposite. Indeed, the induced repulsive po-
tential locally perturbs the periodic potential, and thus creates a cavity-like state
in the minigap, characterized by an exponential decay of the probability density
on both sides of the excitation area |Fig.3.7(b,c,h)|. Condensation is triggered on
this excited state rather than on lower energy states of the first allowed band, be-
cause this localized state has the largest spatial overlap with the excitonic reservoir,
providing efficient relaxation kinetics. As a result and counter-intuitively, repulsive
interactions lead to the condensate localization. Of course, if one takes into account
the negative mass at the edge of the Brillouin zone, the inversion of repulsion into
attraction becomes quite natural.
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Experiment
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Figure 3.6: (a) Scanning electron micrograph of a set of laterally modulated wires.
(b) Angle resolved emission measured on a single modulated wire in the low density
regime. The modulation period is P = 2.7 ym and the wire width is modulated
between Wiin = 1.9 um and Wy,e, = 2.8 pm inducing a periodic potential of
amplitude Vo = 1.6 meV on the cavity mode, the detuning is 6 = —1 meV. (c)
same as (b) with P = 2.1 pym, Wy, = 1.8 pum and Wy, = 3.5 pm inducing
a periodic potential V,; = 2.4 meV. The signal inside the rectangles has been
amplified to better show the band folding. (d) Theoretical polariton dispersion of
the wire shown in (c).

3.2.3 Theoretical model

We calculate theoretically the polariton states using Eqgs.(3.21,3.22). Ug(x,y) is fully
reproducing the experimental photonic square-wave confinement potential imposed
by the periodic structure. Besides U, (z,y) materializes the 2 pum large Gaussian
potential imposed by the nonresonant injection-induced excitonic reservoir. This
very simple model is sufficient to identify the accessible states in the system (and
here we actually don’t need more) but obviously does not reproduce the relaxation
kinetics giving the population of each states. The numerical calculations show that
depending on the height of the potential, two orthogonal localized states can appear
in the band gap [labeled as S1 and S2 in Fig.3.7] which correspond to off-site
and on-site states. Experimentally, condensation in one or the other of these two
states is observed. At the threshold, condensation is first favored in the localized
mode of the lower half of the gap (S1). As the population of this state increases,
its blueshift results in a stronger localization, amplifying the transfer of reservoir
excitons and thus providing a positive feed-back mechanism. Next, as the energy of
the condensate rises and exceeds the middle of the gap, the state spatially broadens,
thus reducing the efficiency of the particles transfer into this state. The condensation
switches to the second localized state in the gap (52), which becomes kinetically
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Figure 3.7: Polariton condensation inside the band-gap. (a) Total emission intensity
measured from a single modulated wire as a function of the excitation power. (b-d)
Spectrally and spatially resolved emission for 3 increasing excitation powers. (i-
k) Spectrally resolved far field emission measured on the same wire for the same
excitation powers; the first mini-gap induced by the periodicity is indicated with
dashed lines. (e-g) and (I-m) Calculated emission distribution in real space and in
k-space solving a Schrédinger equation in the presence of both a periodic potential
and a Gaussian potential at y = 0. Three increasing values of the Gaussian potential
accurately reproduce the experimental results. (h) Spatial profile of the S1 and 52
gap states observed in the panels (¢) and (d). A characteristic size (width at half
maximum) of 5 ym and 2.5 um is observed for the S1 and S2 states respectively. In
the inset, the same profiles are shown in logarithmic scale highlighting an exponential
decay length of 2.5 pm. Parameters of the wire: Period 2.7 pym, Wi, = 1.9 pm
and Winge = 2.8 pm, Vopr = 1.6 meV, 6 = —5.5 meV.

favored [see Fig.3.7(c-d)].

We note that when the condensate occupancy becomes very large, repulsive self-
interactions in the condensate should become significant and induce the formation
of a gap soliton bound to the reservoir potential, similar to a surface gap soliton [43].
Nevertheless, the localization length is found to be close to one period, so that the
soliton shape is hardly distinguishable from the single particle cavity state. We will
therefore rather evidence the formation of gap solitons driven by self-interactions
under pulsed excitation conditions. Indeed, in such a non-stationary case, a fast
transfer of excitons from the reservoir into condensed polaritons is driven by bosonic
stimulation. For long enough time delays, it becomes possible to strongly deplete
the reservoir and to achieve a freely decaying polariton condensate [see below|. In
the following, the wires will be non-resonantly excited by picosecond laser pulses
and polariton relaxation across the minibands will be time resolved.

Let us first show how the pulsed excitation scheme allows complete transfer of the
reservoir excitons into the polariton condensate, so that a free polariton condensate
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can be generated. We use a simplified version of a model recently published in
Ref.[4]. We consider an excitonic reservoir maintained at thermal equilibrium (by its
interplay with the phonon bath) coupled to a single polariton state. The relaxation
mechanism we take into account is the scattering of two reservoir excitons toward a
polariton state and a third reservoir state. The temperature of the lattice is assumed
to be low enough in order to be able to neglect scattering from polariton state back
to the excitonic reservoir. The time evolution of the excitonic reservoir population
Np and of the polariton state Ny is described by the following simple set of rate
equations

dN N

ZE = B WNE(No+1) (3.23)
dt TR

AN, N

=0 = 2L WNE(Np+1) (3.24)
dt TR

Here the scattering rate between the reservoir and the condensate is taken as W =
10* s7'. 75 = 400 ps and 79 = 30 ps are the lifetimes of the reservoir and the
polaritons respectively. This system of equations is solved by considering a non-
zero initial reservoir population N9. The figures 3.8(a,b) show the calculated and
measured intensity of the emission versus pumping power. One can see that despite
the assumptions and simplifications made by the model, the general agreement with
the experiment is quite satisfactory. Fig.3.8(c,d) show the calculated and measured
time resolved emission intensity for different pumping powers. Below 2P, (P,
defining the condensation threshold), a long rise time of the emission is observed.
The decay time (not shown) is of the order of hundreds of ps and is governed by the
exciton reservoir life time. The situation radically changes at 3-4 P;;. The rise time
shortens and becomes a few tens of ps and is followed by a monoexponential decay
time of 40 ps given by the polariton lifetime. In this regime, we expect the excitonic
reservoir to be quickly transferred to the condensate, which then decays with its
lifetime. This is confirmed by Fig.3.8(e) which shows, for 4 different pumping rates,
the calculated dynamics of both ground state and reservoir populations. These
results have been obtained with simplified semiclassical Boltzmann equations. At
threshold, the condensate population is completely negligible and all decay times
are given by the reservoir decay time (400 ps). The situation radically changes at
higher pumping. One can see that the rise of the condensate is accompanied by a
depletion of the reservoir. The condensate population becomes completely dominant
in a very large time window, where the decay time of the emission is of the order of
30 ps. This pumping range and time window is favorable to observe inter-particle
interactions within the condensate, which can lead to the formation of gap solitons
as we will see now.

3.2.4 Formation of gap solitons in the pulsed regime

The experimentally measured spatial distribution of the emission is presented in
Fig.3.9(a). In order to properly identify which polariton state is emitting for each
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Figure 3.8: (a,b) Emission peak intensity versus pump power: (a) theory, (b) exper-
iment. (c) Calculated polariton population as a function of time for several pump
powers. (d) Measured total emission intensity as a function of time for different
excitation powers. (e) Time evolution of the population of the reservoir (red) and
of the condensate (blue).

time interval, we show the spectrally resolved emission for different time delays in
Fig.3.9(b-e). Right after the laser pulse arrival, the excitonic reservoir gets pop-
ulated and the relaxation and condensation toward low energy polariton state is
triggered. First, the emission mainly arises from high energy polariton states, close
to the excitonic reservoir and from the second polariton sub-band. Since polaritons
in the second band have high group velocity, they can propagate rapidly outside the
excitation region. This is why for short time delays, an exponential decay is ob-
served in the spatial intensity profiles [reported in Fig.3.9(f,g)]. At longer times, the
emission energy decreases due to both energy relaxation and the decay of the overall
exciton and polariton population. Interestingly, in the time-window (50-80 ps), the
emission is dominated by a state lying inside the energy gap [see Fig. 3.9(d)]. States
at higher energy show almost no emission [Fig.3.9(d)| indicating strong depletion of
the reservoir at this moment. An abrupt change in the spatial profile of the emission
is observed [see Fig.3.9(g-h)]|: starting from an exponentially decaying profile given
by the propagation, the condensate wavefunction becomes focused, and well fitted
using the characteristic hyperbolic secant density profile of a gap soliton:

2
n (@) = [ @) = [y <o>12sech(€f/§) (3.25)
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Here ng is the soliton peak density. The figures 3.9(g-h) show fits of the emission
using Eq.(3.25), and the good qualitative agreement gives strong support to the
interpretation of the gap states as gap solitons. As the energy further decreases, the
condensate reaches the first polariton miniband [Fig.3.9(e)]. The self-focused wave
is strongly enlarged again, transforming into a spreading wavepacket [Fig.3.9(i)].
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Figure 3.9: Condensation dynamics under pulsed excitation. (a) Spatially resolved
emission as a function of time measured on a single modulated wire for an excitation
P = 3P, Py, being the threshold power. The 2 pum radius and 1.6 ps pulse excites
the sample at y = 0 um and ¢ = 0 ps. (b-e) Spectrally resolved spatial distribution
of the emission for different time delays after the arrival of the laser pulse. The
chosen times are indicated as horizontal dashed lines in (a). The first and second
allowed energy mini-bands are indicated as green rectangles while red ones highlight
the first band-gap. (Parameters of the wire: same as in Fig.3.8 except for § = —3
meV). (f-h) Normalized spatial profile of the emission extracted from (a) for the
same time delays of panels (b-e). The green lines correspond to exponential decays
and fits using the gap soliton wavefunction given by the expression (3.25) are shown
with red lines.

These measurements demonstrate the successive switching from propagating to
a localized gap soliton regime. Then, the passage from the gap state into the first
miniband propagating regime is evidenced, when looking at the time evolution of the
emission energy. Fig.3.10(a) shows a step-like jump in the energy decrease occurring
exactly at the moment corresponding to the transition from the gap soliton regime
to the propagating regime in the first mini-band. This is caused by the abrupt
decrease in the density when the strongly self-interacting soliton reaches the first
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miniband, and rapidly spreads, losing all its interaction energy.

This step-like behavior has been reproduced theoretically |see inset of Fig.3.10(a)
and Fig.3.11]. To do so we have included exciton-exciton interactions adding the
usual term a|x|?x to Eq.(3.22) completely neglecting the strongly depleted reservoir.
In such a configuration, the only energy relaxation mechanism involves the lifetime of
the particles that makes the interaction-induce decay with time. Here it is difficult
to start from an initial condition e.g. from a state lying at the bottom of the
second energy band since in this place the particles would decay diffusively without
relaxing their energy. Therefore we have resorted to the following trick: We use a
quasi-resonant pulsed pump detuned by +0.2 meV from the top of the first energy
band, the spot width is taken to be small in order to have a sufficient extension
in momentum space to excite equally both edges of the first Brillouin zone. Then
we use a sufficient pump power to benefit from the bistability effect setting the
localized macroscopically occupied state at the top of the gap. We then monitor
the lifetime-induced relaxation dynamics shown in the figure 3.11(a-c). The panel
(a) shows the energy of the wave-packet versus time. A strongly nonlinear and
discontinuous relaxation is obtained: indeed, in the lower half of the gap, one can
observe a discontinuous jump before the ground state is reached. In the panel (b)
we show the real space dynamics, demonstrating an initial propagative behavior,
because of the pulsed pump-induced linewidth, which allows an overlap with the
bottom of the second energy band to occur, then a localization of the wave-packet
while the gap is crossed (from 20 to 100 ps), and finally, the propagation is recovered
entering in the first band. In the panel (c) we analyze the density profile (black line)
of the localized wave-packet within the gap at energy and instant marked by the
dashed white lines in the panels (a) and (b) respectively. The red curve is a fit
of the profile using the function (3.25) where & = 3 um. This simulation not only
reproduces well the experimental behavior, but also suggests another efficient means
of creating gap solitons in semiconductor microcavities using resonant pumping. We
have by the way checked that this technique allows to form propagating gap solitons,
which could be crucial to use such solitonic states as information carrier analogically
to slow light in optical fibers.

We have as well theoretically considered the opposite regime, which corresponds
to lower excitation power. The excitonic reservoir is still populated and induces
a blueshift of the polariton condensate energy due to repulsive interactions. In
this case the simulation is based, at first, on the analysis of the dispersions at
different reservoir densities, in order to find the conditions required to have the
defect state at the top of the gap. When such state is found, it is used as an initial
condition for a simulation, where the reservoir density is progressively decreased over
time. The time-dependent equation which is solved is essentially the same as above,
except that polariton-polariton interactions are neglected (o« = 0). Now, the energy
evolution |Fig.3.11(d)| is governed by the decrease of the reservoir population. In
this case, polaritons are found to be localized in a defect state in the pump region.
The energy of this state decreases reflecting the decay of the reservoir population.
Once it reaches the conduction band, polaritons start propagating [Fig.3.11(d-e)].
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Figure 3.10: Formation of gap solitons. (a) Emission energy as a function of time
measured at the center of the wire for P = 3F,,. The energy gap is shown with
a red rectangle while the green one corresponds to the first mini-band. The white
arrows point the time delays chosen in (a). The inset shows the time evolution
of the emission energy simulated using a time-dependent Gross-Pitaevskii equation
[see Fig.3.11]. (b) Positions of the two solitons observed in the case of P = 5F;, as
a function of time. The inset shows the spatial profile of the emission measured at
80 ps and a fit using a double gap soliton function.

The localized state presents the spatial exponential decay typical for defect state
|[Fig.3.11(f)], being clearly different from the profile of the gap soliton.

Finally, we show that pumping at higher power we were able to nucleate two
gap solitons propagating away from the excitation area. Again, right after the pulse
arrival, polaritons are formed in the second minigap and spread from the excitation
region further than in the previous case. When the decaying condensate reaches
the gap, it is significantly wider than the soliton characteristic width subsequently
leading to the nucleation of two distinct gap solitons symmetrically positioned on
each side of the excitation spot. The corresponding spatial emission profiles are
shown in Fig.3.10(b), where the pump power is 1.7 time larger than in Fig.3.9. These
gap solitons repel and move away from each other. Both the self-organization of a
spatially wide condensate into several solitons, and the mutual repulsive interaction
are the expected properties of bright gap solitons[16].

3.2.5 Conclusion

The time resolved experiments under non-resonant excitation provide a very effec-
tive and simple way to create gap solitons in a polariton condensate. This is in
strong contrast with standard photonic systems, where the excitation of gap soli-
tons requires complex strategies using resonant beams. Moreover, contrary to the
atomic system in optical lattices which requires numerous lasers to trap the conden-
sate and form the lattice, here we only need one laser. The polaritonic gap solitons
could be further manipulated, for instance, by using several control beams in fully
reconfigurable polaritonic circuits. In such a way, the information could be stored
in polaritonic gap solitons, then released, and eventually transmitted in an ultrafast
way. We have not considered in that work the spin degree of freedom of polaritons



164 Chapter 3. Polariton condensates in low dimensional structures

100 E-
3 -
E. 5 10F
g = 1
] B 4
& ‘E L
£ 3 E
0.1
-10 0 10
Time (ps) Position (um)
(d) (e)y (f) B o A A 5
1
10
) =
- g s
50 1
£
0.
0.01
0
0 50 00 50 0 50 s B P
Time (ps) Position (pm) Position (pm)

Figure 3.11: (a-c): Simulated emission dynamics in the case where only polariton-
polariton interaction is taken into account. (a) Energy of the polariton condensate
as a function of time. The red and green rectangles represent the energy gap and the
first mini-band respectively. (b) Time resolved spatial distribution of the polariton
condensate. (c) Density profile of the condensate at a time delay indicated by the
dashed yellow lines in (b). The red line is a fit with the gap soliton function (3.25)
introduced in the main text. (d-e) Same as (a-c) in the case where only polariton
interaction with the exciton reservoir is included.

that could allow to form propagating polarized gap states.
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3.3 Bloch oscillations of exciton-polaritons

In this section, we will first study theoretically spinless Bloch oscillations of exciton-
polaritons both in linear and in condensed regimes [6]. We propose an original
structure for the observation of this phenomenon despite the constraints imposed by
the relatively short lifetime of the particles. First, we focus on the linear regime in a
perfect lattice where regular oscillations are obtained. Second, we take into account
a realistic structural disorder known to localize non-interacting particles, which is
quite dramatic for propagation-related phenomena. In the non-linear condensed
regime, the renormalization of the energy provided by interactions between particles
allows us to screen efficiently the disorder and to recover oscillations. This effect is
useful only in a precise range of parameters outside of which the system becomes
dynamically unstable. For a large chemical potential of the order of the potential’s
amplitude, a strong Landau-Zener tunneling tends to completely delocalize particles.

In a second part, we shall discuss the spin dynamics of polaritons during their
Bloch oscillations in the presence of the effective field present in the structure |7].
We show that the periods of the Bloch oscillations and of the pseudospin precession
can become commensurate. Under such conditions, linearly polarized exciting pulses
can be transformed in a THz alternating spin current. The structure acts as a spin-
optronic device, which converts the polarization and emits spin-polarized pulses.
Finally, we propose two different schemes which allows to maintain the intensity of
the spin signal during times much larger than polaritons lifetime.

3.3.1 Spinless Bloch oscillations in a disordered microcavity

In 1929, F. Bloch predicted that an electron in the atomic periodic potential would
oscillate in time rather than simply accelerate under the action of a constant electric
field|12|. This pure quantum phenomenon is the consequence of Bragg reflections on
the first Brillouin zone (FBZ) [see Sec.(3.1.1.1)]. Although widely discussed during
the last century, Bloch Oscillations (BOs) were only observed in the 90s in artificial
crystals (superlattices) [44, 45, 46].

BOs have been described and observed in three alternative systems showing
extended spatial and long temporal coherence, namely, coherent light waves propa-
gating in photonic crystals [47, 48|, ultracold atoms 49|, and atomic Bose-Einstein
condensates (BECs) in optical lattices [50, 51| [see Fig.3.12]. In the linear regime,
the electronic, photonic, and atomic systems show very similar single-particle behav-
ior. However, they differ strongly in their specific non-linear response. In electronic
systems, dephasing leads to the destruction of coherent BOs. On the other hand,
photons are non-interacting particles, and of course, if they propagate in a linear
media, no peculiar non-linear behavior is expected. The situation is radically differ-
ent for atomic BECs in optical lattices, where the transport properties are strongly
affected by the non-linear effects linked with the density of condensed particles.
The latter topic is still widely under discussion, as rich physics emerges out of it
[52, 53, 54]. Indeed, while an optical lattice constitutes a perfect periodic optical
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Figure 3.12: Experimental observation of Bloch oscillations of: (a) electrons in a
superlattice from Ref.[44], (b) cavity photons in an array of semiconductor micro-
cavities having varying thickness from Ref.[48] and (d) ultracold cold atoms in an
optical lattice from Ref.[49].

crystal that can lead to long living BOs of dilute (ultra)cold atoms [55], a BEC can
experience decoherence [56] and dynamical instabilities [15, 57] due to non negli-
gible interactions. Moreover, the account of disorder leads to phenomena such as
Anderson-like localization [58, 59| or the breakdown of superfluidity [60, 61]. The
non-uniformity of the potential tends to prevent wave function’s spreading, while
interactions drive the system toward superfluidity. This interplay has serious con-
sequences for the phase diagram of the system [62, 63] and most importantly, the
disorder induces extra dephasing which is revealed by a damping of the matter wave
BOs [64, 65]. Besides, new perspectives have recently been opened by works focused
on spin related BOs [66, 67, 68].

In this section we theoretically describe BOs of polaritons in a patterned one-
dimensional microwire. In both atomic and optical systems, it is possible to design
a potential that allows short period oscillations (less than 1 ps for instance, in
Ref.[47]). This short period cannot occur in polaritonic systems, where oscillations
must take place in the strongly coupled part of the lower polariton branch. In total,
the width of the first Brillouin zone has to be smaller than one fourth of the Rabi
splitting. This gives values of the order of 1 —5 meV and implies some lower bound
for the BOs period, that, at the same time, has to be be smaller than the polariton
lifetime.

In the first part of this section devoted to Bloch oscillations, we propose a realistic
structure in which polariton BOs could be observed, and show numerical simulations
in the linear regime. In the second part of the paper, we study the effect of structural
disorder on BOs of a polariton condensate. Indeed, an important peculiarity of the
polariton system is that it is affected by intrinsic sample disorder which can be
absent in atomic systems and which perturbs much less the propagation of pure
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photons. As a result, polaritons are often found to be localized [1, 69, 70], which
evidently can make the observation of propagation effects, like BOs, difficult. In the
non-interacting regime, we can expect that the polaritons’ motion will be blurred
(dephased) with increasing disorder potential. So, strictly speaking, an uncondensed
thermal gas of polaritons cannot undergo BOs, if the disorder is too important.
Nevertheless, the formation of an interacting polariton BEC should permit us to
recover an oscillatory behavior as a result of a partial screening of the disorder.
The growth of interaction energy leads the polariton gas toward superfluidity at low
velocities, where the influence of disorder is the strongest.

In general, the oscillations are found to be damped because of both the residual
scattering by disorder when polaritons are moving at a supersonic velocity, and the
occurrence of specific parametric instabilities, discussed in Ref.[71] and well known
in the atomic BEC field, when polaritons are accelerated to the inflexion point in the
first Bloch band of the dispersion [see Sec.1.3.2|. The most interesting result is that
one of these effects can compensate the other: The interactions protect (at least par-
tially) the BOs from the damping linked with disorder. The precise characterization
of these non-linear scattering processes is not in the scope of the present discussion.
However, we would like to point out a key specificity of the polariton system with
respect to the atomic one: the possibility to perform resonant excitation experi-
ments (with spatial and frequency resolution) that allows us to address specifically
the various non-linear scattering processes that interacting particles accelerated in
a disordered periodic potential can undergo.

3.3.1.1 Structure and linear Bloch oscillations

The structure proposed is schematically shown in Fig.3.13(a). It is based on a
L, = 100 pm long GaAs microcavity etched in the y-direction in order to realize
a wire having a lateral size in the pm range. The confinement energy provided by
the lateral etching is approximately E. = h27r2/2m*LZ, where m* ~ 2my, (at zero
detuning) is the effective mass of the polariton. The linear potential ramp needed
in order to mimic the electric field acting on electrons can be realized by changing
the lateral size of the wire along its main axis x with a square root dependency
L,(z) ~ Lo/+/x in the region where BOs are expected. In principle, any type of
accelerating potential can be designed thanks to modern lithography technics, but
of course, there are some limitations due to the confinement energy dependence. It
is also possible to make use of the wedge character of microcavities along the growth
z-direction [72]. It should be noted that this potential ramp will be acting on the
photonic part of the quasi-particle. In this work our proposal was to use periodic
metallic deposition to form Schottky like junction (Tamm plasmon polariton states)
that would locally blueshift (redshift) the polariton modes [37, 73]. We understood
later on, in the framework of our collaboration with the LPN for the gap soliton
observation, that the metal tends to reduce significantly the photon lifetime which
can be strongly detrimental to propagation related effects. Therefore, the best
option would actually be to use a squarewave lateral etching in addition to the
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variation of the cavity width to form the required tilted periodic potential. Anyway,
the following strictly 1D description does not favor any sample design apart from
the fact that a lateral etching would act on the photonic component solely, which
would definitely not change qualitatively the wavepacket behavior.

6 -4 -2 0 12 4 6
K (um™)

Figure 3.13: (a) The structure: laterally narrowed wire shaped microcavity with
periodic metallic depositions and the resulting total potential (Only the central
part where oscillations take place is represented for clarity). (b) The associated
initial dispersion of the particles modified by the periodic potential Ue,(z) created
e.g. by the metal or a lateral etching.

To describe the linear dynamics of the system we use the 1D counterpart (r —
x) of Egs.(3.21,3.22) involving the resonant injection of a polariton wavepacket at
ky = 0. Uy(z) = —Fx and U, (z) are here the accelerating ramp potential producing
a constant force F' = 0.2 meV/um [see Sec.(3.1.1.1)] and the squarewave potential
of period d = 1.56 pm and realistic amplitude A = 2 meV, respectively. The
corresponding recoil energy is Er ~ 3 meV and therefore the situation is that of
a shallow lattice. Fig.3.13(b) shows the modified dispersion of exciton-polaritons
with gaps both in the upper and lower polariton branches (LPB), opened by U,.
In the following, we will concentrate on the LPB, where the condensation usually
takes place. The gap and the first band where oscillations are expected, have width
of By = 0.75 meV and A; = 1 meV, respectively.

To begin our analysis and demonstrate the possibility of obtaining regular single-
particle BOs in such a system, we show in Fig.3.14(a) the propagation of a 2-ps-long
and 20-pm-large photonic Gaussian pulse tuned close to the energy of the LPB at
k = 0, with an amplitude low enough to assume a linear regime. Under the action
of the constant force and for the parameters we use, our system exhibits BOs of
amplitude Apo = 12 pum and period To = 25 ps; the latter is close to lifetime of
the particles. A further increase in F, would enhance the Landau-Zener tunneling
(LZT) probability [slightly visible in Fig.3.14(a)| given by Eq.(3.16), and induce a
significant splitting of the wave function at each period of oscillations. Fig.3.14(b)
shows the time evolution of the wave vector k; along the wire with the characteristic
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reflections on the first Brillouin zone edges, which has an extension Zp = 27/d = 4
pm~! changing k, into —k,. We emphasize that the long polariton lifetime obtained
in modern structures is crucial (larger than 30 ps in Ref.|74]) for the observation of
polariton BOs. With the realistic limitations on the ramp potential, it is difficult
to reduce the period of oscillations below 20 ps. Therefore, the polariton lifetime
should exceed this value, for the phenomenon to be observable.
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Figure 3.14: Propagation of a photonic Gaussian pulse in the biased square-wave
potential. (a) The density probability versus time and space reveals clear BOs with
a period of 25.3 ps and an amplitude of 11.7 pum, and (b) density vs time and
momentum shows the characteristic reflections on the edges of the FBZ where the
particles are localized. In both plots a LZT is visible as a fraction of the non-
oscillating particles that escape at each period.

3.3.1.2 Bloch oscillations of the polariton condensate

In this second part, we consider the real specificity of the polariton condensate with
respect to the coherent photonic wave, namely, the role played by interactions. This
role is actually better revealed by considering the impact of a realistic structural
disorder on polariton BOs. This disorder can have several origins, which could be
the intrinsic sample imperfections, the non-ideal lateral etching, or some natural
(artificial) fluctuations of the wells’ depths and widths in the periodic potential. We
assume that initially, before the potential ramp is applied, the resonantly created
polariton condensate is at thermodynamic equilibrium at T = 0K, and is therefore
in its lowest energy state. This situation corresponds to a nonresonant and homo-
geneous pumping over the whole sample. The ground state is found by minimizing
at fixed chemical potential the free energy of the coupled exciton-photon system:
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Next we solve the time-dependent Egs.(3.21,3.22) adding the interaction term | x|*x
to Eq.(3.21), starting from the initial condition given by the ground state found
previously, taking into account the action of the accelerating ramp potential for
different chemical potentials p (given by the energy of the ground state). To clarify,
we first assume first an infinite lifetime of the particles. We show different acces-
sible regimes (described in the next paragraph). Figures 3.15 and 3.16 display the
probability density of the photonic wave function versus time and momentum and
the associated average probability current of the condensate. The latter is given by

. Ll‘
G 0) = gty [ 40V = 47V0) (3.27)
0

where N(t) is the total density of particles and is time dependent to compensate
for absorbing boundary conditions the lifetime of the particles (taken into account
later on). Indeed, (j(t)) is relevant for imaging the global motion of the condensate,
changing its sign (j (¢)) > 0 (< 0) when particles change their propagation direction.

The ground state of a non-interacting or, equivalently, a very dilute condensate
in the presence of disorder is mainly localized in the lowest well of the sample.
As a result, while the condensate is put into motion by the constant force, it is
very sensitive to the disorder; the latter induces back-scattering [74|, which leads
to a dephasing and thus either to a damping of the oscillations or to their total
destruction if the inhomogeneity is strong. In that latter case the system as a whole
is insulating. In real systems we can expect the disorder induced by the sample
imperfections to be weak with respect to the total periodic potential’s amplitude. In
order to introduce imperfections, we modulate the square-wave potential randomly
in amplitude along the wire with a standard deviation Uz = 0.1 meV from the
original potential. In Figs.3.15(a,b) we present this non-interacting case, which
corresponds to a zero chemical potential (N = 1 particle). The dephasing is visible
in Fig.3.15(a) where the creation of new harmonics blurs the oscillations, resulting
in a damping and deformation of the motion in Fig.3.15(b). The solid blue curve
corresponds to the parameters given here while the dotted-red curve is for a disorder
that is twice stronger, showing the total suppression of the oscillations.

With the increase in the chemical potential, interactions drive the system toward
superfluidity in the sense that was used in Ref.[69], that is, particles are no more
affected by the presence of an in-plane potential so they can freely propagate in space
without being scattered, and the interaction energy is able to efficiently screen the
disorder. This phenomenon is called a "dynamical screening of disorder" in Ref.[64].
As a result, the damping is significantly reduced. Thus, owing to the interacting
nature of the particles involved, BOs of exciton-polaritons are observable despite
the presence of a structural disorder. Such a situation is depicted in Fig.3.15(c) and
3.15(d) for g = 0.3 meV.

Nevertheless, interactions are not sufficient to recover perfect oscillations ob-
tained in linear homogeneous regimes, as one can see in Fig.3.15(d), and they also
have drawbacks: Indeed, while the condensate is accelerated up to the first Brillouin
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Figure 3.15: Bloch oscillations in the presence of structural disorder. (left panel)
Probability density of the photonic wave function versus time and momentum. (right
panel) Average velocity of the condensate versus time. (a) and (b) Non-interacting
damped case (u = 0) for Uy = 0.1 meV (solid blue curve) and Uy = 0.2 meV (dotted
red curve). (c) and (d) Interaction-induced revival of the oscillations for p = 0.3
meV.

zone, at a certain point, the velocity exceeds a critical value, and the particles enter a
supersonic regime where they are no longer superfluid and are thus scattered on the
disorder. Scattering results in a dephasing of the oscillations while approaching the
FBZ’s edges. Moreover, with a further increase in the density, parametric instability
develops [15, 57, 71]. As already discussed in the Sec.(1.3.2), this kind of process
is well known in the field of polaritons as the lower branch of their bare dispersion
possesses an inflection point; thus above some density threshold, two polaritons can
scatter at this point towards signal and idler states, conserving both momentum
and energy. Here the same kind of phenomenon takes place, independently of the
disorder, within the Bloch bands, which obviously possess their inflection points.
We show in Fig.3.16(a) and 3.16(b) this kind of phenomenon appearing for x = 0.5
meV; oscillations are completely deformed and no more quantifiable. It is important
to note that for stronger disorders, it is not possible at all to find a screened regime
[Fig.3.15(a)-(b)], because the system enters the parametric instability region before
recovering oscillations.
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Figure 3.16: (a)-(b) Unstable and (c)-(d) strong LZT regimes. For p = 0.5 meV
and 3 meV, respectively.

Finally, an even stronger density wipes out all the effects mentioned above and
puts the Landau-Zener tunneling into play. The interactions renormalize the lowest
Bloch band, almost closing the gap in the dispersion and increasing drastically the
probability of the tunneling to the second band [75]. As a result, BOs vanish,
and particles are almost uniformly accelerated. They practically no longer feel the
lattice. This regime is illustrated in Figs.3.16(c) and 3.16(d) for a very strong,
although probably not experimentally accessible, chemical potential of = 3 meV.
The condensate is accelerated to the edge of the sample and disappears on the
absorbing boundaries, as seen in 3.16(c). The particles are no longer reflected at
the Brillouin zone edges. In Fig.3.16(d), the mean current keeps increasing until
particles reach the boundary, and then decreases because of the remaining trapped
particles.

Eventually, we will now take into account the finite lifetime of the particles to
move to a realistic situation. In that case, the condensate will oscillate a few times
and exponentially decay. Therefore we of course, expect the interaction energy to
vanish with the particles; thus, a condensate prepared with a sufficient chemical
potential to screen the disorder will suffer from growing localization with decreasing
density, which will damp the oscillations. So here the ratio between lifetime and
oscillation period becomes even more crucial. Fig.3.17 illustrates such a situation,
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Figure 3.17: Taking into account the finite lifetime of the particles for p = 0.35
meV. (a) Oscillations remain visible, but (b) they are damped due to the decreasing
interaction energy.

where = 0.35 meV is taken slightly higher than in Figs.3.15(c) and 3.15(d) to
compensate as much as possible for the localization for first oscillation periods.
While the damping remains significant as seen in 3.17(b), several oscillations should
be observable as shown in 3.17(a). Furthermore, in the next section we will see how
the polariton BOs can be sustained to compensate for this natural decay.

3.3.1.3 Conclusions

In conclusion, we have proposed a realistic structure in which Bloch oscillations of
exciton-polaritons, a phenomenon not previously reported, could be observed. We
have analyzed both the linear and non-linear behavior and found a regime where
oscillations are able to overcome the disorder expected in realistic systems as a result
of to the interacting nature of the particles. At higher chemical potential, dynamical
instability switches on and destroys oscillations, and at even higher density the
massive Landau-Zener tunneling leads to a strong delocalization of the particles.
Regarding a real experimental investigation, we would like to point out some
phenomena to be envisaged. First of all, metallic deposition will tend to reduce the
cavity photon’s lifetime; thus a lateral (along the z-axis) square-wave etching could
be considered as a serious option. In a real two-dimensional system one should
expect transverse excitations to modify the instability threshold [76]. Finally, in
a configuration where Landau-Zener tunneling is significant (for a weak lattice or
strong potential ramp) the wave function will split and the non-oscillating part could
be backscattered at the wire’s edges, which will slightly blur the motion. Neverthe-
less, the exceptional progresses in growth and technology leads to higher and higher
quality sample characterized by lower and lower structural disorder therefore we can
safely expect that the polaritons Bloch oscillations could be observed even in the

linear regime.
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3.3.2 Bloch oscillations of exciton-polaritons for the generation of
an alternating THz spin current

The ultimate goal of spintronics is to replace electric currents by pure spin currents.
Its optical counterpart, namely spin-optonics [77], has been proposed as a valuable
alternative, since the characteristic decoherence times of optical excitations are or-
ders of magnitude longer than those of electrons and holes. Consequently, many
proposals of new types of optical spin-based microscopic components have been
made in the past years. Non-exhaustively, one can mention: an optical gate[78], op-
tical circuits based on polariton neurons|[79], a Berry phase interferometer[80], a spin
transistor|81], or a spin switch [82]. This field of research is extremely promising.

In the following, we shall extend the previous discussion on Bloch oscillations of
polaritons, discussing the new phenomena to be expected from their spin dynamics.
In this framework, we make a realistic proposal for device generating alternating THz
spin currents which could be a key ingredient for a spin-optronic circuit. Noteworthy,
regular BOs have been already proposed as a possible source of THz radiations [83]
or as a tool to measure very sensitive atomic physical quantities [84, 85].

We will first mostly concentrate on the low-density linear regime, neglecting
polariton-polariton interactions. In such a regime, low-momentum polaritons do
not strongly differ from cavity photons, and most of the effects we find can perfectly
be obtained for a purely photonic system as it was recently the case for the optical
spin-Hall effect [86, 87]. However, in the very last part of this section we will
discuss a polariton-specific nonlinear stimulation mechanism. The disadvantage of
polaritons is mostly that they of course require low temperature operation, while
their advantage in the linear regime lies in the possibility to finely tune the energy of
the polarized polariton modes|88] with an electric field acting on the quantum well
excitons. Similar modulation can of course be achieved in purely photonic systems
with the Pockels or Kerr effects [89], but they require field intensities orders of
magnitude larger than in the polariton systems. We will describe the polaritonic
system as a reference and, when needed, comment on whether the description is also
suitable for a photonic system.

3.3.2.1 LT splitting in microwires

We remind that, in quasi-one dimensional microcavities the TE and TM eigenmodes
are linearly polarized perpendicular and parallel to the wire’s axis (z-axis) respec-
tively. The additional confinement lifts the degeneracy between the TE and TM
modes even at k = 0, like in usual photonic waveguides (leading to the monopole ac-
celeration see Sec.(2.2). It provides an additional effective static (or k-independent)
magnetic field along the x-axis. While this splitting is already present in planar
structures as first demonstrated in Ref.[90], it is however much larger in wires.
Mainly because of strain relaxation, the effective values can moreover be much larger
than the one extracted from Maxwell’s equations in isotropic media [91]. In what
follows, we will consider the same patterned wires as in the section (3.3) sketched
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Figure 3.18: Scheme of the sample. Wire shaped microcavity with periodic metallic
deposition. The situation described here corresponds to the results of Sec.3.3.3. The
red arrow shows the direction of the effective magnetic field wpr , and the green
arrow shows the initial pseudospin vector Sg . The white curved arrow shows the
trajectory of the particles during one period of BO. The light-blue arrow stands for
the LZT-induced emission. The spheres mark the position of the Gaussian pulse
during its first passage in the wire, and the (linear) color map indicates the degree
of circular polarization: green is 0 (linear polarization) and red is £1 (circular
polarization).

in Fig.3.18. In these samples, the total energy splitting is the strongest at k = 0
and diminishes for increasing k since the excitonic fraction rises for larger k£ . Al-
though the values of the splitting can be different for polaritons and photons, the
general dependence is similar and therefore the discussion concerning the pseudospin
dynamics remains valid for both.

The addition of a periodic pattern leads to a band-structured dispersion of the
polaritons. The first TE and TM bands as well as their energy splitting gain a
27 /d periodicity. In what follows, we will see how it influences the spin dynamics
(pseudospin precession) of the system. We show in Fig.3.19 the corresponding first
TE and TM Bloch bands with their energy splitting. The parameters are those
given in the numerical part of the next section.

3.3.2.2 Spin dynamics induced by the polarization splitting

Let us consider first a linear regime and neglect any gain and dissipation. We known
that in the presence of an effective magnetic field, the pseudospin dynamics of the
center of mass of a Gaussian pulse is given by the following vectorial equation

8S (1) =S (1) x (3.28)

For analytical considerations we assume that our system is described by the tight
binding approximation. This approximation is reasonable so far we are discussing
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Figure 3.19: First TE (solid blue line and left scale) and TM (dashed purple line and
left scale) Bloch bands and their energy splitting (dotted red line and right scale)
for the parameters defined in the next section.

phenomena linked with the BOs period (which does not depend on the width of
the band) and not with their amplitude. We therefore consider cosine-shaped
bands and a strictly one dimensional system (k, — k). Under such conditions,
the first Bloch bands [see Fig.3.19| for the TE (¢ index) and TM (I index) states
are defined by Ej(k) = Jj[1 — cos(kd)] and Ei(k) = J¢[1 — cos(kd)] + Hy, where
H, accounts for the energy splitting at & = 0 (static field) and Jy; are the
coupling constants between adjacent wells. They can be approximated [17] by
Jeg = 481571(14/815’[)3/4 exp(—2+/A/er,) with e, = h?m?/2my d* the recoil energies
and A the amplitude of the periodic potential. Then, the k-dependence of the
effective field along the wire reads

H, — AJ[1 — cos (kd)]

Qrr =Qu, =
LT u 3

u, (3.29)

with AJ = J;—Ji. Eq.3.28 leads to the following coupled equations for the evolution
of the pseudospin components:

Sz (t) = 0 (3.30)
S, (t) = +Hx —AJ[1 ;Lcos (k(t)d)] S. () (3.31)
98. (t) = _H; —AJ[1 ;cos (k(t)d)] S, (t) (3.32)

Under the action of a constant force F', the particles exhibit BOs. Therefore, in the
equations for the pseudospin, the wavevector is time dependent k(t) = F't/h. The
period of oscillations depends on the splitting F'd between the so called Wannier-
Stark states: Tpo = 2wh/Fd. Putting for example Eq.(3.32) into Eq.(3.31) allows
decoupling the equations. The pseudospin is then governed by the following dynam-
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ics
Se(t)= + (3.33)
Sy (t)= + Spycos [ Ahj ZE;TO sin (;;Otﬂ
+ Spzsin [ Ahj 1;3770 sin (;;;t)] (3.34)
S, (t)= — Spysin [ (Hy AJ Ahj I;BFO sin <2B7T0t>}
+  Soz cos [(Hm_hAJ)t + AhJ I;BWO sin (é:()t)] (3.35)

where Sp; = S;(0). This solution is deterministic with respect to the sample param-
eters: a given initial pseudospin vector Sg = (Soz, Soy, So-)T (the polarization of
the input pulse) completely defines the spin dynamics of the system. We are deal-
ing with the evolution of a single particle (a center of mass) thus, the pseudospin
vector S should be normalized to unity, it imposes: S3, + Sgy + S3, = 1. The
maximum precession amplitude given by Eq.(3.28) is obtained when S | Q7. For
arbitrary parameters, the precession of S is expected to be independent of Tpo as
we can see in the figure 3.20(a). However, we can impose a specific pseudospin state
Spo = S(jTpo) with j an integer (j = 1 is sufficient), in order to obtain commen-
surate pseudospin and spatial oscillations. We show in Fig.3.21(b) an example of
such a regime with a set of conditions Sg = (0,41, 0) (diagonal linear polarization)
and Spo = (0,—1,0) (anti-diagonal). The corresponding synchronization criterion

reads
wh (14 2K) _2(H$—AJ)

= - v @@ 7
H, - AJ (1+2k)d

where k is an integer taken to be zero for the case of Fig.3.20(b). For example, using
the typical parameters H, = 0.2 meV and AJ = 0.1 meV we obtain Tpo ~ 20 ps

Tpo = (3.36)

and F' ~ 0.13 meV/um which enters perfectly in the range of accessible values for
polaritonic or photonic systems.

Let us now turn to numerical modeling of the system. For this purpose, we use
a set of spin-dependent Schriodinger equations and, for a first simple description,
we start with neglecting the lifetime of the particles and assuming parabolic bare
dispersions

L0 ¢+>: 2Zj§9;2+U 53,62 <T/J+> <P+>
g (4 <ﬁaz2+H 223*5;+U o )P\ pl ) 83D

This first description suits well a pure photonic system and is the common sim-
plest approximation to the polaritonic system which will be extended in Sec.3.3.3.1.
The initial Gaussian light pulse injected via Py(x) is right circularly polarized
(S = (0,0,41)), resonant with the lower polariton branch (LPB) at k& = 0 and
its amplitude is taken low enough to consider a linear regime. The effective mass
is defined by m* = 2mym;/(m; + my) where m; = 5 x 10™°mg, m; = 0.95m; are
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Figure 3.20: Pseudospin dynamics during BOs (a) for arbitrary parameters and (b)
following the criterion (3.36). The solid red curves shows the S, component of the
pseudospin, the dashed blue curves shows the .S, component (S, is always zero) and
the dotted black line stands for the trajectory of the center of mass of the wave
packet.

the masses of the transverse and longitudinal modes and mq is the free electron
mass. We note that the mass of the polariton is usually of the order of twice the
cavity photon mass. U(x) is the total external potential: the sum of the square-
wave periodic potential of amplitude A =5 meV (large enough to stay close to the
tight binding approximation) and period d = 1.56 um and a ramp potential —F'z,
F =0.1 meV/um~! being a constant force. The off-diagonal terms account for the
k-dependent LT splitting, where 8 = h?/4(m; — my)/(mym;). We remind that the
components of S are defined by the wave function components ¥4 along

Sy = S (v-v7) (3.38)
So = (sl —w-P) /2

The Figure 3.21 shows the probability density in real space of the o (a) and o~ (b)
components. In (c¢)-(d) we plot the degree of circular polarization, which is nothing
but S, because it is normalized to unity, in real and momentum space respectively.
Remarkably, as described analytically in the previous section, every single spatial
oscillation in the first Brillouin zone displays alternatively a right or left circular
polarization. Because each spin component is present in the system only for a half-
period, we will call this regime "Half-Bloch Oscillations" (HBOs). We note that



3.3. Bloch oscillations of exciton-polaritons 179

this effect requires no external magnetic field to be applied. Nevertheless, for a
microcavity with sufficiently high exciton g-factor, an additional tuning could be
provided by means of applied magnetic field.

K, (um’™)

Figure 3.21: Half Bloch-Oscillations. The (a) and (b) panels show the emission
intensity in real o4 and o_ space respectively. (c¢) and (d) are the corresponding
circular polarization degree in real and momentum space respectively.

3.3.3 Emission of a terahertz spin current

So far, we have been working with wide gaps between the minibands which is not
realistic for the case of polaritons because of the limitations on the height of the
periodic potential imposed by technological constraints discussed previously. For
shallow potentials, the Landau-Zener tunneling [see Sec.(3.1.1.1)] can be significant
and induces a signal loss every single oscillation, which is usually harmful for the
observation of steady-state BOs. However, we are going here to take advantage
of this effect in order to generate periodic polarized light beams at the FBZ edges.
Indeed, reducing the value of the periodic potential’s amplitude A to a more realistic
value will tend to increase Przr (defined by Eq.(3.16)) and then induce a significant
emission at every oscillation at the point where the band separation is the smallest.
The peculiarity of our spin-dependent system is that the emitted pulses will have
a specific circular polarization degree, controlled by the coupling between BOs and
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the pseudospin precession. Indeed, the LZT occurs every j + 1 /2 oscillations and
the corresponding emission has a circular polarization degree

Tpo (H, — AJ)]

2 h
TBO (Hx - AJ)
2 h

SLZT — 4 S, sin [(j+1)

— Socos [(] +1) (3.39)
In particular, using the same conditions as in Fig.3.20(b), the circular polarization
degree of the emitted signal is SL4T = (—1)7**. We show in Fig.3.22 a configuration
showing a synchronized regime for A =1 meV, k = 0 and H, = 0.2 meV. The LZT-
induced signal measured 40 pym away from the input pulse reveals a spin current,
alternating between o4 and o_. We make the following remark: of course, if the
effective magnetic field is present along the whole wire, the signal’s pseudospin is
expected to keep on rotating while it propagates, which can either be regarded as an
issue or not. In such case the polarization of the output signal will crucially depend
on the propagation distance. However, in the synchronized regime, the relative
polarization between two consecutive pulses will not depend on the propagation
distance. Anyway, since the effective field depends strongly on the lateral size of the
wire, it can be reduced in the region of free propagation, so that it will not affect the
polarization of the emitted signal significantly during its propagation time. In the
figure 3.22, Q7 is acting only in the BOs region in order to preserve the polarization
of the signal outside of this region for the sake of simplicity.

3.3.3.1 Realistic polaritonic system

In this section we will focus on the polariton system with all its specificities. We
should rewrite Eqs.(3.21,3.21) taking into account the two spin projections (indices
+) and the TE-TM splitting

L O0py R 0?6+ Qg ih
h = - L YA
! ot 2mg O0x? + 2 Vs 27'¢¢i +Ust+
82

+ <ﬁax2 + Hx) ¢+ + Py (3.40)
L Ox+ B2 ?xy Qp ih
i - _ Ll - 41
ot 2m,, Oz? + 2 o QTXXi+UXXi (3.41)

The analytical description of the previous section appears of course a bit less accu-
rate with respect to the full treatment. The dependence of Q7 over k is slightly
affected because of the modified shape of the first Bloch band, which mostly changes
the amplitude of oscillations and the shape of the pseudospin oscillations, but is not
detrimental for our effect. The period Tpo is not expected to strongly vary be-
cause it depends on the quantity F'd, and therefore our commensurability criterion
remains valid. The design of a real sample would require of course a comprehensive
description of the dispersion imposed by the structure which has to be predicted by
full two-dimensional simulations.
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Figure 3.22: LZT emission regime. (a), (b) and (c) show the same representations
as Fig.3.21 (in (a) and (b) the local density is normalized for clarity) while the (d)
panel shows the normalized circular polarization degree of the emitted signal 40 um
away from the input pulse. The latter has been filtered so that very low density
regions don’t contribute to the normalized signal.

We aim now at reproducing the synchronized LZT-emitter regime of Fig.3.22.
To do so, we need to compensate the particles losses by pumping. It can be done
thanks to a pulsed input synchronized with Tpp as seen in Fig.3.23, where particles
are injected every two oscillations periods (2730 = 50 ps) when the signal weakens
too much due to both LZT and lifetime. The wire is therefore acting as an ultra
fast spin emitter which converts a linearly polarized input into two oppositely circu-
larly polarized outputs in that particular case. Many other configurations are also
possible, depending on the parameters imposed by the sample and the polarization
of the input, for example the conversion from circular to linear polarization.

Finally, let us consider a sample etched specifically to achieve the commensurable
oscillation regime described above. A small controllable perturbation to the BOs
period or to the LT splitting, produced by an electric contact [88] or even strain
on the sample, would lead to a loss of this synchronization and to an arbitrary
relative circular polarization degree between two consecutive LZT pulses. In the
synchronized regime the average polarization difference of two consecutive pulses
is AS, = 2 which can be assigned a logical 1, whereas in any incommensurate
configuration the polarization difference is smaller, which can be regarded as logical
0. The switching between the two regimes is controlled by a gate (perturbations).
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The device can therefore be used as a spin-optronic switch working at the frequency
1/Tgo in the range of tens of THz.

0 20 40 60 p o 200 400
X (Um) t (ps)

Figure 3.23: Accounting for the real non-parabolic dispersion and the lifetime of
the particles. Input pulses with a period of 2173 ~ 50 ps are used to maintain the
output signal intensity.

3.3.3.2 Driven half-Bloch oscillations and LZT emission

In this last section, we show that polaritons BOs and the alternating spin signal
can be maintained thanks to a localized non-resonant pump. The latter is spatially
located in the region of the LZT emission. The pump power is tuned just below the
condensation threshold. It essentially generates an unpolarized excitonic reservoir
localized within the pumping area [2]. BOs are then triggered by a single resonant,
linearly polarized pulse as previously. The oscillations can then be sustained despite
of the life time because the propagating wave packet is re-amplified (stimulated)
each time it passes below the localized non-resonant pump. The clear advantage of
this scheme is that it no more requires the use of THz synchronized input pulses.
The modeling of such scheme is more challenging. It requires the description of
the coupling between an incoherent excitonic reservoir and a coherent polariton
condensate. Contrary to the previous sections, it is now essential to properly take
into account the interactions between all types of particles. Here we are going to use
the simplest description of this problem based on modified spin dependent Ginzburg-
Landau equations. These equations have been introduced for the spinless case in
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Sec.(2.5) [see Eqs.(2.81,2.82,2.82) and Ref.[92]] to describe the polaritonic system.

0o+ h? 82¢i Qg ih
s = - Ry - —
ot 2my Ox? + 2 Y 27¢¢i+U¢¢>i
62
+ (6(%2 + Hx) ¢x + Py (3.42)
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ot omy a2 T P gp Xt Do
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+ @ (IXﬂ:!2 + nR) X+ + ?RnRXj: (3.43)
Ong _ nR cw|2 | | eal?
o = * PR ~Tn (\¢+ + 9] )nR (3.44)

This model has the advantage of being reasonably simple but does not take into
account the interaction with surrounding phonons and therefore lacks any thermal-
ization mechanisms. The latter could be treated using a master equation approach
[8, 93]. We assume a localized exciton reservoir with a lifetime 7r = 500 ps. The
reservoir population np is described by a rate equation, containing a non-resonant
cw-pump Pr(z) = Arexp[(x — xgr)?/0%]/Tr With zg = 25 ym and o = 2 pm.
I'r = 200/7R is the scattering rate towards the oscillating polariton condensate.
The interactions between particles with parallel spins are introduced via the con-
stant a = 6Eba2B/S, where Ej, = 10 meV is the exciton binding energy, ap = 1072
um its Bohr radius, and S is the normalization area (we neglect here intercomponent
interactions ag = 0). For the pumping intensity we consider, the presence of the
reservoir induces an effective localized potential barrier ang(x). The latter should
not be too large, to perturb only weakly the oscillations of the pulse. We show in
Fig.3.24 the numerical results obtained in this framework [see captions|. The reso-
nant short pulse is amplified by stimulated scattering from the excitonic reservoir.
The condensate population is roughly doubled each time it crosses the reservoir
area. The lifetime and LZT emission-induced losses become strongly compensated
upon a relevant reservoir density as we can see in Fig.3.24(a). This figure should
be compared to Fig.3.24(b) where the free oscillations (non-resonant pumping is
absent) are displayed. We note that in (a) there is still a weak global decay of the
number of particles, because the density can not be increased too much to avoid
parametric instability discussed in the spinless part.

We are therefore able to create persistent driven Bloch oscillations of polaritons
as well as a maintained alternating spin emission with a single input pulse thanks
to the bosonic and interacting nature of the particles. This mechanism based on
stimulation is not only advantageous to compensate the polariton lifetime. Since
the stimulated scattering is spin-selective, the spin component with a higher popu-
lation is amplified more than the other component when the traveling wave packet
crosses the reservoir region. Thus, it provides a necessary feedback, compensating
any deviations from a perfect o4 emission and further improving the efficiency of
the device. Another advantage of working in this nonlinear high density regime is
that it allows to overcome the BOs damping due to the structural disorder of the
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Figure 3.24: Half-Bloch oscillations and LZT emission stimulated by a local reser-
voir. Density of photonic particles for driven Bloch oscillations (a) compared to free
oscillations (b) with a 50 ps lifetime. The solid-red and dashed-blue curve stand
for the total density of o4 and o_ particles respectively versus time and the dotted
black curve shows the sum of the two. (c) Degree of circular polarization in real
space, the solid white lines show the position of the reservoir. (d) LZT spin signal
emitted.

microcavity. We would like to point out that this scheme is not specifically linked
with spin dependent oscillations, but can be also used to achieve sustained spinless
BOs.

We make the following final remark. A similar effect could also be achieved with
a pure photonic system. The amplification of the propagating wave would how-
ever require to achieve the gain condition, which occurs only with pumping powers
typically one or two orders of magnitude larger than the amplification condition in
a polaritonic system[94, 95]. Also the repulsive excitonic reservoir tends to expel
polaritons for the pumped area whereas in the weak coupling regime, gain confine-
ment tends to localize photons below the non-resonant pumping laser, which can
be highly detrimental for the BOs. From these points of view, the use of the strong
coupling is advantageous, whereas, on the other hand, it requires low temperature
operation, at least in arsenide-based systems.
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3.3.3.3 Conclusions

Bloch-oscillations of exciton-polaritons reveal to be promising not only from the
fundamental point of view, offering the possibility to observe the spatio-temporal
oscillations but also offer interesting applied perspectives. Indeed, once again the
polariton spin dynamics imposed by the effective magnetic field combined with the
Landau-Zener tunneling broadens the perspectives towards an alternating spin cur-
rent emitter working at THz frequencies. We have shown how such signal could be
sustained despite the polariton lifetime simply thanks to a local cw and nonresonant

pump.
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3.4 The role of phonons in Josephson oscillations of a
polariton and indirect exciton condensates

Collective phenomena lie beyond many remarkable effects in condensed matter
physics. One of their famous manifestations is Josephson effect [96], which was first
predicted to occur between superconductors separated by a thin dielectric layer.
Due to the build-up of the macroscopic phase coherence resulting in the appearance
of an order parameter (playing a role of macroscopic wavefunction of the Cooper
pairs) ¥(r,t) = \/ne’, a tunnel current appears between superconduction regions
proportional to the sine of the phase difference between them [97]:

I = Ipsin A (3.45)

where Iy is a constant depending on the properties of the junction.

Later on, it was proposed that similar phenomena can be observed using
liquid Helium [98] and cold atoms [99], where the appearance of a macro-
scopic wavefunction accompanies the transition towards superfluid and BEC states
[100, 101, 102, 103] respectively. In this last case, the Josephson effect can take place
between two spatially separated Bose-Finstein condensates of atoms, weakly cou-
pled through a potential barrier. The situation there can demonstrate new physical
phenomena with respect to the original junctions between superconductors, as inter-
actions between the tunneling particles play a major role and can lead to remarkable
nonlinear effects in the Josephson dynamics. These effects are the anharmonicity
of the Josephson oscillations [104, 105] and macroscopic self-trapping in the case,
when the initial imbalance between the two condensates exceeds some critical value
[106, 107, 108]. The serious disadvantage of the cold atom systems is that the cor-
responding critical temperatures are extremely small (usually in the nano-Kelvin
range) and thus any experimental investigations in the field become challenging.
Besides, low critical temperatures rule out any possibility of using the system for
practical applications.

On the other hand, in the field of condensed matter physics, various candidates
were proposed for the realization of Bose-Einstein condensates with critical tem-
peratures orders of magnitudes higher than those of cold atoms. The formation of
exciton condensates in bulk semiconductors was theoretically predicted more than
40 years ago [109], but appeared to be difficult to realize experimentally. Since then,
other solid- state systems were proposed for the achievement of high-temperature
BEC, including Quantum Hall bilayers [110, 111], magnons [112], indirect excitons
[113, 114] and exciton-polaritons. The latter two systems will be in the focus of the
present section.

Spatially indirect excitons have been widely studied both experimentally and
theoretically in recent years [see Ref.[114] for a review|. For such particles, electrons
and holes are localized in parallel coupled 2D layers. Their wave functions show
a very little overlap and consequently, indirect excitons have a very long lifetime
(up to tens of milliseconds), and can be treated as metastable particles. Superfluid
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Figure 3.25: Observation of the nonlinear Josephson effect in a bosonic Josephson
junction from Ref.[99].

behavior of a system of indirect excitons has been predicted by Lozovik and Yudson
more than 30 years ago [115, 116, 117| and subsequent theoretical [118, 119, 120]
and experimental [121, 122, 123, 124, 125] studies have suggested that this should
be manifested in a series of remarkable effects, including persistent currents and
Josephson- related phenomena.

The recently demonstrated possibilities of engineering of spatial confinement
for excitons and exciton-polaritons [126, 127, 128, 129, 2, 4] open a way to the
investigation of the Josephson effect based on the tunneling between two spatially
separated condensates of these particles [130, 131, 132, 133| in the cleanest fashion.
We note that coherent oscillations of a polariton condensate were observed recently
but within natural traps in the disorder landscape of the microcavity [70], which is
not the ideal situation.

The Josephson effect for excitons and cavity polaritons has several important
differences from those for superconductors and cold atomic BECs: First, the inter-
particle interactions play by far a more important role here, leading to the an-
harmonicity of the Josephson oscillations and to the self-trapping effect [104, 106].
Second, the presence of the polarization (spin) degree of freedom, combined with
spin-anisotropy of polariton-polariton interactions gives rise to a much richer and
original phenomenology, including spontaneous polarization separation in the real
space[131, 133]. Third, due to their short lifetime, cavity polaritons (not indirect
excitons) cannot be considered as stable particles, and effects of pump and decay
should be accounted for, while considering Josephson- related phenomena. Due to
the strong polariton- polariton interactions one can expect that effects of bistability
and multistability can play an important role. Fourth, indirect excitons and cav-
ity polaritons efficiently interact with phonons, which play the role of a source of
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decoherence and can also affect the tunneling rates [134].

3.4.1 The model

The system we analyze here is schematically represented on the Fig.3.26. We con-
sider two spatially separated excitonic or polaritonic condensates located in a pair
of coupled traps that could be formed by a merged pair of micropillars similarly
to those of Ref.[4]. Each trap (indices L and R in the following) contains a single
confined discrete level. These two localized states are weakly coupled the one to an-
other by the tunneling constant J. This tunneling process can give rise to a coherent
oscillation between the right and the left wells, which can be described as a bosonic
Josephson effect (extrinsic Josephson effect in terms of Ref.[131]). The particles have
two spin projections, corresponding to the right (o4 index 1) and left-circular (o_
index |) polarizations of the counterpart photons. Due to the structural asymmetry,
one can have a coherent exchange of particles between the condensates with oppo-
site polarizations [135, 90] (spin dynamics induced by an effective field), referred to
as intrinsic Josephson effect [131]. Besides, the system contains excited delocalized
levels, which are coupled with localized states in the traps via processes involving
acoustic phonons which contribute to the exchange of the particles between the
traps and introduce a source of decoherence to the system. An alternative process
of transfer of particles from one well to another and based on polariton-polariton
scattering could be envisaged. This will involve the simultaneous scattering of one
condensed particle to a reservoir state and the scattering of a reservoir particle to
the other condensed state. This type of mechanism can lead either to decoherence or
to the enhancement of the Josephson coupling constant depending on the coherence
degree of the reservoir state |136].

Figure 3.26: Geometry of the system. Spinor polaritons are confined in two traps
coupled with each other by coherent tunneling and with delocalized excited states
by energy-conserving phonon-assisted processes. Such coupled potential well could
be experimentally obtained within pairs of micropillars.



3.4. The role of phonons in Josephson oscillations of a polariton and
indirect exciton condensates 189

Within the second quantization formalism, the model Hamiltonian is thus sep-
arated into two parts:

H=H., + Hgjo (3.46)
The coherent part reads:
H., = Hy+ Hj+ Hq + Hpo—pol (3.47)
where:
Hy = ¢ (aTLTaLT + ahau + GET(LRT + ahaRQ (3.48)
H; = J(aETaRT—i_aJ]r{TaLT+aTL¢aR¢+aTR¢aL¢> (3.49)
Hqog = Q (CLETCLL¢ + CLTLJILT + GETCLRJ/ + aham) (3.50)
Hpol—pol = Hyp + Hyy (3.51)
(673] aTLTaETaLTaLT + aJ]fﬁaJ]r{TaRTCLRT
Hyr o= 5| ot ' (3.52)
arp @ aLlar) + AR AR ORLAR]|
HTi = Q9 (aTLTaTLiaLTaLi + CLETCLJIEN{CLRTU,R¢) (353)

a' and a are respectively the bosonic creation and annihilation operators for the po-
lariton or exciton field, the subscripts L, R and 1, ] refer respectively to condensed
particles in the left or right trap with o4 or o_ polarization. Hy is the free par-
ticles Hamiltonian, H; stands for the spin conservative Josephson tunneling, Hq
models the spin flip process induced by the structural anisotropy and H,—p is the
condensed particles interaction term which contains respectively parallel (H44) and
antiparallel (Hy)) spin-dependent scattering processes.
And the decoherent part:

Hieco=Hy + H_ (3.54)
where:
T T
H. = D “TLTT“”@ Toutb (3.55)
=\ topaith; +ag aib;
N T T
_ arra;b; +ar a; b;
H. = D) i ) W ) (3.56)
i—1 +aRTaiT i + CLRiaii i

which contains the spin conserving interactions between condensed particles and
the acoustic phonons reservoir described by b;r and b; operators. The decoherent
Hamiltonian is split the following way: H_ models the excitation of a L or R
condensed particle toward the i** of the N trapped state (al-L operator) via the
absorbtion of a phonon with energy hw; and H, represents the opposite relaxation
scheme.
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We shall describe the dynamic of the system by means of the density matrix
formalism that allows to merge the previous coherent and dissipative processes. The
time evolution of the condensed part is treated by the usual Liouville-von Neumann
equation: ‘

i
(8tp)co = ﬁ [107 HCO] (357)
under the assumption that any scattering act is conserving the coherence. For any
operator A, one has: (A) = Tr(pA) and thus:

(A), = (o) = {(mdl) s

Applying this formula to the observables n¢r, g1 11 = aJEL,R}{mi}a{L,R}{TJ} and

to correlators that follow, namely: aJ«ER,L}TG{RvL}i’ a}R,L}Ta’{L:R}i and a1{-R,L}Ta{L7R}T
and using mean field approximation for truncation of the fourth- order correlators
one can get a closed set of ten evolution equations. We write here only write one
sample of each type of equation, the remaining complementary ones are straight-
forwardly obtained by permutations of L, R and 1,] indexes. We also compact the
notation for mean values of correlators i.e. for example <a}rﬂa LT> becomes agL:

h(ataﬂ)co 2 [agL - aﬁf] +iQ [npy —npy]

+ dlar(npy —npp— 1) +as (npy —ngy — D]ayy,  (3.59)
h(ataTRTL)m = iJ[npr —ngy] +iQ [agL — QQL]

+ il (npy — npy — 1) + ag (ngy —ngy)]aly (3.60)
h(@tagL)co = J [aﬁL — a?R} + i) [OJ%TL — aﬁLL}

+ ilar (npy —npy — 1) + o (npy —npy)] agL (3.61)

The dynamics of the decoherent part involving phonons is dissipative, and should
be treated in the following way. Liouville- von Neumann equation can be rewritten
in the following integro-differential form:

(atp)deco = _% / [Hdeco (t) 5 [Hdeco (t/) P (t/)” dt/ (362)

—00

where Hgeeo(t) is the time- dependent Hamiltonian of the polariton- phonon inter-
action |Eq.(3.54)] written in a Dirac picture. To account for the decoherent nature
of the evolution with phonons, Born-Markov approximation should be applied while
treating Eq.(3.62). It consists in replacing ¢’ by ¢ which will give after integra-
tion only energy-conservative terms [137|. The time evolution of the density matrix
considering Eq.(3.54) is thus given by the following master equation:

S NAEYWyp = 2(HypH +H pH{)— (H{H +H Hy)p
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where the factor 71 (AFE) denotes the conservation of energy. For time evolution of
the mean value of any arbitrary operator A, with still (A) = Tr(pA) one has:

6 ABOA) = Tr(plH-[A,H,])) +Tr (plHy; A H-)))  (3.64)

We now apply Eq.(3.64) to the previous densities and correlators with
Eqs.(3.55,3.56) to obtain the set of equations for the decoherent part, and once
again we only write the six foretype equations:

N
(Onit)dece = 2W Y Re{(n}" + Dniy(npr + 1+ affy)

i=1
+ afl (afl + o] = [y + Dy + )
o oo i) (3.65)

(atagL)deco = WZ{ o + 1)[(nz¢ + nzT)ozLL + nz¢04 + nzTOéN*
=1

+ ﬁ(nL\L‘l‘nLT'f'Q"‘a +all*)]

— 2P(ngy + nip + 2)at + (ngg + Doy,
+ nzT+1)aRL+a“(nL¢+nLT+aRL+au*)]} (3.66)

(atag[,)deco = WZ{ + 1 nZT(nLT + npry +2+ 2a )

+ aﬁ(QRL + aw*) + Oéw*(a + aﬂ)]

— 0"[(nir + 1) (npy + npy + zagL)
+ a”(a%i +age) + o (o, + o)1} (3.67)

(atOéJéTL)deco = WZ{(nfh+1 nW(OZLL—'_a )‘f‘an(OéRR‘f‘a )

+ CMH(TLRi—l-nLT-F?-f—Oé +a )]
— n[(ni, + 1)(ag), + o )+(nn+1)(aRR+a )
+ a”(n3¢+nm+a +am))} (3.68)

(Onit)deco = 2W Z Re{nf"[(nis + 1)(nst + ngy + 2Re(a};))

+ oy <aﬂ* + oy + Oy + gy )]

- (n —l—1)[nzT(nL¢+nRT+2+2Re(aRL))
+ oyl (o + aflp + afy + ol (3.69)
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N
@0 cco = W Z {0 [(nay + nig + 2)(af), + aglp + a7 + ;)

+ H(nm +nr, +npt +npy)
— (" )[(nig + nap)(al + oy + ol 4+ ail)
+ H(nm+nL¢+nRT+nm+4+2Re(a —l—aﬁL))}} (3.70)

We get 2N extra equations for the excited levels populations n; and n; plus N
more for the new associated correlators oz“ so a total of (10 4+ 3N) equations which
can be solved numerically. The scattering rates can be estimated as W = D?/Th,
with I' being a characteristic broadening of the level, nfh = bzbi is the distribution
of phonons with energy E; = hw; at the temperature T given by the Bose-Einstein
distribution.

In order to get closer to a realistic situation, one can include in the model the
inter-excited levels transitions processes by adding to the decoherent Hamiltonian
(Eq.3.54) the extra term:

N N
Hipt—ex =D Z <aiTa;r'Tbj—i + awa}ibj_i) + Z (a}TainLj + a}iaub}l)
i<j i>]
(3.71)
which participates to time dependent equations the following way (the 2 spin down

equations are obviously the same):

N
Omir)iseg™ = W3 Lt = (1l ) o |

i>j

+ WZ{ g+ (Lt g g (372)

1<j

The full set of equations for the dynamics of the system is finally obtained by:
~ ~ ~ ~\ tnt—ex
B, <A> - 6t<A> + 8t<A> + 0 <A> (3.73)
co deco deco

We are then able to describe the long living indirect excitonic system. Now, to
study properly the behavior of the decaying polaritonic condensate as well, one also
has to include pumping and lifetime to the Hamiltonian. The last results of the
numerical experiment described in the next section involve non-resonant pumping
of the excited levels, which can be easily introduced in the master equation [137]
and give standard pump and decay terms in dynamic equations for the occupancies.
The addition to all equations due to finite lifetime is

a <E>lt = - <2> I (3.74)

where 7 is the particle lifetime. For the pumping, a constant source term is added
only to the equations for the populations

s (M) parp = P (3.75)
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In the following we present the results of numerical simulations of the system of
the kinetic equations derived in the previous section. In all calculations, the values
chosen for the parameters when they are not taken to be zero are J = 50 peV,
Q=060 peV, a1 =3 peV,ao = 0.1ag , W =2.23-10"%s ! peV and T = 20 K.

3.4.2 Josephson oscillations and self-trapping

We start considering the case of particles of infinite lifetime, corresponding to indi-
rect excitons in coupled quantum wells. Therefore, here no decay or pumping terms
included and we start from some hypothetical initial population of the ground states,
the excited states being initially unpopulated. In the third subsection of the results,
finite particle lifetime is introduced along with pumping, corresponding to the po-
lariton system.

t (ps)

Figure 3.27: Josephson oscillations for the case 7 = 0. Spin degree of free-
dom is neglected to emphasize effects of polariton-polariton and polariton-phonon
interactions. Curves show population imbalance at different occupation num-
bers.(Solid /black: Nz, = 100, dashed /red: Ny, = 200, dotted /blue: Nz = 500) Inset:
the oscillations for the case when interaction with phonons are absent.(Solid /black:
N1, = 10, dashed/red: Nj, = 70, dotted/blue: Nz, = 150) One sees that polariton-
polariton interactions lead to self- trapping effect, shortened period and anharmonic-
ity, while interaction with phonons lead to the damping of the Josephson oscillations
and increased population needed to reach self-trapping.

Fig.3.27 shows the Josephson oscillations, when all particles are initially in the
left well. We have neglected here the spin degree of freedom (2 = ap = 0) for
simplicity and to emphasize the effect of exciton-exciton and exciton-phonon inter-
actions. The figure shows the time evolution of the population imbalance, defined
as

p= M MR (3.76)

ny +ng
The inset shows the oscillations in the absence of phonons. The main plot shows
that the phonon interactions induce a damping of the oscillations as compared to
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the inset plot. The effect of increasing the population and therefore exciton-exciton
scattering, is the self-trapping of the particles, characterized by a shortened period
of oscillations and their anharmonicity, which is especially obvious in the time in-
terval 400 — 600 ps for the dashed-red curve. The population imbalance creates
a strong interaction-induced blueshift in the well having the largest population so
that the L, R condensed states are strongly out of resonance reducing significantly
their coupling. Another observation is that the phonon damping lowers the effect
of exciton-exciton scattering in the sense that a much higher population is needed
to get back to the self-trapping.

3.4.3 Spatial separation of polarization

Accounting now for the spin degree of freedom, one can observe interesting phe-
nomena in the polarization domain. We keep € = 0 (no spin flips) for the moment
to clarify. In that case, the spin up component behaves quite independently of the
spin down component. They do affect each other slightly through the weak exciton-
exciton scattering. We can thus have three situations, where both spin components
are self-trapped, only one of them which corresponds, or neither. Fig.3.28 shows
the behavior of the polarization degree in both traps for two different population
numbers but same initial polarization degree. Initially all particles are in the left
trap. The solid/black and the dashed/red curves are the circular polarization de-
grees in the left and right traps, respectively, for N = 100. Neither spin component
is self-trapped, so the oscillations of the polarizations are quite similar. For N = 200
(dash-dot /blue: L, dotted/green: R) the spin-up component is self-trapped, and we
get a spatial separation of polarization. The oscillations are damped by the phonon
interaction, and for large times the polarizations equalize. The inset shows the case
N = 200 without phonon interaction. There is a visible separation of the polar-
izations, but without damping, the spin-down component makes full oscillations
between the two traps and thus the polarization degree periodically reaches 1. The
short oscillations in the right trap polarization (dashed/red) are due to the oscilla-
tions of the spin-up component, which are not visible in the left trap polarization.

3.4.4 Bistability and sustained oscillations

For a consistent description of the Josephson tunneling in polariton systems one
needs to introduce pumping and decay terms into kinetic equations. In the case
where decoherence in the system due to the interaction with acoustic phonons is
neglected, the dynamics can be described by the driven dissipative Gross-Pitaevskii
equation, which in some range of parameters can have several different stationary
solutions. The system thus demonstrates multistability [138] as recently observed
experimentally [82]. We remind that in the case of the quasi-resonant pumping,
the bi(multi)-stability occurs when the pumping laser lies above the energy of the
interacting polariton state. An increase of the pumping results in a larger population
of the state which becomes closer in energy to the one of the laser, increasing the
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Figure 3.28: Temporal dependence of circular polarization degree in both traps. We
let €2 = 0 for simplicity. Initially there are no polaritons in the right trap, Ny in the
left with initial circular polarization degree p. = 0.8. (Ny = 100: Solid/black: L,
dashed/red: R; Ny = 200: dash-dot/blue: L, dotted/green: R) For Nj = 100, no
self-trapping occurs and the L/R polarizations oscillate in a similar way. For Ny, =
200, the spin-up particles are self-trapped and the system shows a spatial separation
of polarizations. Inset: Ny = 200, no phonons. One sees a similar separation of
polarizations, but the polarization of the right trap goes to 1 periodically as the
spin-down component is emptied.
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absorption light absorption. Above some threshold, an avalanche effect takes place
and the system jumps on a new stability point with a much larger population and
an energy of the state lying above the one of the laser. Decreasing the pumping
intensity from this higher stability branch the system will jump back to the the
branch with a smaller population only for a pumping much below the one allowing
to jump up, leading to the formation an hysteresis cycle. Although we use a different
approach to be able to include polariton-phonon interaction, one can expect that a
similar type of effect will appear in our results. In our model the low population
stable branch corresponds to the case a balanced population in the two wells. The
high population stable branch corresponds to the self trapping case.

Fig.3.29 shows the behavior of polaritons having a lifetime 7 = 16 ps. In both
plots, the spin-down component of the first excited level is being pumped continu-
ously at varying strengths. As the excited levels are delocalized, the nonresonant
pumping is spatially homogeneous. The inset shows the case where only one spin
component is considered. Up until ¢ = 250 ps, the excited level is being pumped
with a low power, and the equilibrium state is stable. At ¢ = 250 ps the pumping
strength is increased beyond some threshold which causes the populations to split
and stabilize in a state where the occupancy of one of the traps is much higher than
the other. In numerical calculations, this requires sending a very small asymmetric
probe to get out of the unstable equilibrium.
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Figure 3.29: Bistability in polariton Josephson junction with pump and decay. Main
plot: € = 60 peV. Initial conditions at t = 0 are Ny, = 5, p.r, = 0.5, Nr = 0 to
break the symmetry. At ¢ = 250 ps and ¢ = 650 ps the amplitude of the constant
pump increases in a step-like manner. In the intermediate regime of moderate
pumping, the system reveals self- sustained oscillations. Inset: €2 = 0, spin degree
of freedom neglected. In this case, no self-sustained oscillations can be observed, but
the bistability jump remains. A short probe is sent to the left trap at the moment
of the pump jump.
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The situation gets even more interesting when one considers both spins and
introduces the coherent coupling between the two. In this case, there is also a
stable state of split populations for high pumping strength and equal populations
for low pumping strength but in between there is a regime where the populations
do not reach stationary values but reveals self-sustained oscillations resulting from
the interplay between intrinsic and extrinsic Josephson effects as is shown in the
main plot of Fig.3.29 (Only the spin-down particles are shown for readability). This
can be explained in terms of a Hopf bifurcation appearing in our system, where for
a certain range of parameters the equilibrium point becomes unstable and instead
a stable limit cycle is created. Another interesting effect is that the oscillations
are not necessarily periodic and become chaotic for a certain range of parameters
[132], which means that a strange attractor instead of a limit cycle is formed in
the system. Figure3.30 shows an illustration of the concepts of attractors and limit
cycles in the phase space with the left and right trap populations on the axes.
The paths show the trajectory of the populations over time for the nonoscillating,
periodically oscillating, and chaotically oscillating regimes.

100

757

100

Figure 3.30: Hlustration of the concepts of attractors and limit cycles. The middle
trajectory (blue line) is for low pumping and has an attractor point with equal
populations. The lower trajectory (red line) is for pumping in the oscillatory regime
as shown by the appearance of a limit cycle. The upper trajectory (black line)
is for pumping in the chaotic regime, resulting in a strange attractor with chaotic
behavior. Note that it was necessary to make a phase shift of 10 ps between the
populations to make the cycles visible since in reality the populations oscillate more
or less in phase, creating a trajectory that goes back and forth in the same track.

The oscillations and their Fourier spectra are shown for two cases in Fig.3.31.
They are for Q = 55,90 peV and pumping strengths P = 10,13 ps ', respectively. In
the first case, the oscillations are periodic, as characterized by their Fourier spectrum
with sharp peaks. The second case shows chaotic oscillations with a broadband
Fourier spectrum. These periodic and chaotic oscillations have previously been



198 Chapter 3. Polariton condensates in low dimensional structures

predicted for a polaritonic system [131, 132].
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Figure 3.31: Two plots showing the differences between chaotic and regular os-
cillations in the system. In the upper plot, w = 55 peV and P=10 ps™1, and the
oscillations are non-chaotic, characterized by a a Fourier spectrum with sharp peaks.
The inset shows the Fourier spectrum in arbitrary amplitude units as a function of
the frequency (ps~1). In the lower plot, w = 90 ueV and P=13 ps~1. In that case,
the oscillations become chaotic.

The figure 3.32 shows a phase diagram of the system in axes of pumping strength
P versus the polarization splitting €2. The pump is still applied to the spin-down
component of the first delocalized excited level. The area A corresponds to low
pumping, where the only population splitting is the one between the spin up and spin
down. In B, both spin components get split equally. C' is the range of parameters
which give rise to sustained oscillations, and in D there is a massive split-off of one
of the spin-down populations while spin-up populations remain low. The shaded
part of C' is where chaotic oscillations can be observed.

3.4.5 Conclusions

In conclusion, we analyzed the Josephson-related phenomena in coupled conden-
sates of indirect excitons and cavity polaritons taking into account their peculiar
spin structure, particle-particle interactions, scattering with phonons and pump and
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Figure 3.32: Phase diagram for polariton system with constant non- resonant circu-
larly polarized pumping of one of the excited levels. A: No obvious splitting pattern
of populations. B: Spin-up and spin-down particles enter bistable states separately.
C: Self-sustained oscillations. D: Massive splitting where one of the populations
with same polarization as the pump reaches a high value while the others have a
low value.

decay terms. For long living indirect excitons, we have shown that exciton-exciton
interactions lead to anharmonicity of Josephson oscillations, self trapping effect and
spontaneous separation of the fractions with opposite circular polarizations in the
real space. The main effect of the particle-phonon interaction is to dampen the
oscillations and raise the population threshold for the self-trapping to appear. For
cavity polaritons having short lifetimes we demonstrated the bistable behavior of
the Josephson junction in the regime of the incoherent constant pump. We have
shown that the account of the coupling between the polaritons with opposite circular
polarizations can qualitatively change the bistability pattern and in some range of
the parameters lead to self-sustained oscillations. These oscillations can then have
periodic or chaotic behavior.

3.5 Chapter conclusion

The new class of samples that are accessible nowadays gives to both theoreticians and
experimentalists the possibility to investigate the polariton physics within almost
any geometry. We have seen that a polariton condensate in a periodic potential is
able to form in a solitonic gap state naturally thanks to its off-equilibrium specificity.
Such solitonic states could be turned into efficient information carriers. We have
shown how the famous Bloch oscillations can be reproduced with our half-matter
half-light quasiparticles. The quasi-one dimensional polaritonic system is foresighted
as a serious candidate for building real spin-optronic polariton circuits. In this
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direction, we have proposed the spin-dependent Bloch oscillations as an efficient
source of THz spin currents. Besides we have analyzed in more details one single
period of the previous lattice discussing the spin-dependent Josephson oscillations
of a polariton (and exciton) condensate within a double well accounting for a finite
temperature. Thanks to its bistable or multistable behavior, such a system could
be crucial for the creation of ultrafast optical switches or triggers. Putting all these
elements together could lead in a near future to the fabrication of an operational
optical computer.
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New trends in the physics of spinor exciton-polaritons condensates

Abstract: Along this thesis manuscript I shall present some emergent nonlinear
phenomena in spinor exciton polariton-condensates. After an introductory chapter
bringing the necessary background, I will in a first part focus on half-integer topolog-
ical defects discussing their stability, acceleration and nucleation in the presence of
effective magnetic fields. We will see that these objects behave as magnetic charges
being fascinating dirac’s monopole analogues. Remarkably we will see as well how
they can be used as stable signals allowing to seed the physics acoustic black holes
analogues.

In a second part I will concentrate on low dimensional structures. Especially,
I’ll describe the formation of gap solitons and the Bloch oscillations of exciton-
polaritons in periodically patterned microwires, and besides, the room temperature
Josephson oscillations within pairs of coupled micropillars.

Résumé: Au long de ce manuscrit de thése je présenterais des effets non-
linéaires émergents dans les condensats d’exciton-polariton spineurs. Aprés un
chapitre d’introduction amenant les notions de bases nécessaires, je me concentrerais
dans une premiére partie sur les défauts topologiques quantifiés par des nombres
demi-entiers et discuterais leur stabilité, accélération et nucléation en présence de
champs magnétiques effectifs. Nous verrons que ces objets se comportent comme
des charges magnétiques manipulables démontrant une analogie fascinante avec
les monopoles de Dirac. De maniére remarquable nous verrons également que ces
objets peuvent étre utilisés comme des signaux stable pour sonder la physique
d’analogues acoustiques de trous noirs.

Dans une seconde partie j’étudierais des structure de basse dimensions. Plus
particliérement, je décrirais la formation de solitons de bande interdite et les
oscillations de Bloch des exciton-polaritons dans des microfils comportant des
structures périodiques et d’autre part les oscillations Josephson & température
ambiante dans des paires de micropilliers couplés.

Keywords: Exciton-polaritons, nonlinear optics, Bose-Einstein condensation,
spin dynamics, topological defects, vortex, solitons, analogue gravity, black-holes,
magnetic monopoles, Bloch oscillations, Josephson effect.

Mots clés: Exciton-polaritons, optique nonlinéaire, condensation de Bose-
Einstein, dynamique de spin, défauts topologiques, vortex, solitons, systémes
gravitationnels analogues, trous noirs, monopoles magnétiques, oscillations de
Bloch, effet Josephson.
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