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Introduction générale

L'omniprésence de la technologie CMOS dans notre vie quotidienne démontre le succès de la microélectronique et des recherches visant à fabriquer des circuits électroniques de plus en plus compacts. La brique de base de tout circuit est le transistor qui transforme un signal électrique pour créer des fonctions logiques (ET, NON, OU souvenirs ...), des amplificateurs, ou des fonctions électroniques numériques ou analogiques encore plus complexes. Avec la réduction des dimensions des transistors, ceux-ci deviennent plus rapides et et les circuits associés moins chers. A partir de l'extraordinaire ingénierie des procédés de fabrication des technologies CMOS, les scientifiques ont également développé des structures mécaniques qui interagissent physiquement à l'échelle nanométrique. Ces composants, appelés MEMS (MicroE-lectroMechanical Systems), peuvent être utilisés comme capteurs et servent alors à transformer un signal physique en une réponse électrique ; ils peuvent aussi être utilisés comme actionneurs servant à convertir un stimulus électrique en une réponse mécanique ou physique. Parmi les composants MEMS, les résonateurs font l'objet de nombreuses recherches car ils peuvent atteindre d'excellentes résolutions s'ils sont utilisés comme capteurs. La variation de leur raideur ou de leur masse sert alors à mesurer la variation physique désirée.

Tout comme les transistors, les dimensions des composants MEMS diminuent au fil des années : on est passé des MEMS (MicroElectroMechanical Systems) aux NEMS (NanoElectroMechanical Systems). Par souci de clarté, j'utiliserai dans ce manuscrit le terme de «MEMS» pour désigner indi éremment les MEMS et les NEMS.

Cependant, il est important de signaler que le terme NEMS ne correspond qu'aux éléments mécaniques qui présentent au moins deux dimensions submicroniques. La réduction des dimensions du dispositif mécanique a plusieurs avantages dont celui de rendre le processus de fabrication compatible avec celui des CMOS car les distances de libération de la structure vibrante sont réduites ; de plus, la sensibilité du dispositif est pour certaines applications améliorée ainsi que le facteur de qualité de la structure mécanique sous pression atmosphérique [START_REF] Li | [END_REF]]. En e et, le déplacement mécanique de la nanostructure peut être plus faible que le libre parcours moyen des molécules d'air ce qui réduit l'amortissement visqueux de l'air. Ces petits composants peuvent ainsi mieux interagir avec le monde nanométrique et influer sur les phénomènes physiques et biologiques. La résolution massique est couramment utilisée par les chercheurs pour évaluer les performances des résonateurs puisqu'un objectif majeur du domaine est de mesurer directement la masse d'une molécule unique [Knobel 2008, Naik 2009].
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Les résonateurs MEMS sont aussi mis au point pour servir de nombreuses autres applications comme la mesure de forces [START_REF] Mamin | [END_REF], Kobayashi 2011] (par exemple, celles présentes dans les cellules organiques), celle de fluctuations thermiques [Paul 2006], ou celle de réactions biochimiques [START_REF] Campbell | [END_REF], Burg 2007]. Les composants NEMS pourraient éventuellement être utilisés en spectrométrie de masse [START_REF] Chiu | [END_REF], Naik 2009] ou pour l'analyse de gaz [START_REF] Boisen | [END_REF][START_REF] Hagleitner | [END_REF][START_REF][END_REF][START_REF] Tang | [END_REF]. Avec leur faible temps de réponse et leur excellente résolution massique, les nanorésonateurs peuvent éventuellement parvenir à une résolution semblable à celle des spectromètres de masse conventionnels ou celle des chromatographes de gaz, le tout pour un moindre coût et un temps de mesure plus rapide.

La spectrométrie de masse est utilisée dans de nombreux domaines telles que la médecine, la biologie, la géochimie... Dans un spectromètre de masse conventionnel, l'échantillon est ionisé ; un analyseur de masse est utilisé pour déterminer le rapport masse/charge des particules ionisées et enfin un détecteur compte le nombre d'ions [START_REF] Aebersold | [END_REF][START_REF] Russell | [END_REF], Domon 2006]. La spectrométrie de masse conventionnelle ne peut donc être appliquée qu'à des composants ionisables. Sa résolution limitée et son temps de réponse lent ont entravé les progrès de la biologie et des autres sciences qui l'utilisent [Naik 2009]. Les paramètres critiques des spectromètres de masse sont la mesure absolue de la masse, le pouvoir de résolution (le pouvoir de séparation entre deux composants de masses di érentes) et l'étendue dynamique de la mesure (rapport entre la masse maximale détectable et la masse minimale détectable) [Domon 2006]. Pour obtenir des résultats de qualité su sante, la mesure nécessite souvent des temps très longs qui peuvent être supérieurs à 24 heures. Enfin, même avec le meilleur spectromètre de masse conventionnel, il est encore impossible d'atteindre ce qu'on pourrait appeler le Saint Graal de la biologie : la mesure de la masse de chaque molécule d'une seule cellule.

Le groupe de Roukes à Caltech [Naik 2009] a proposé d'utiliser des composants MEMS comme alternative aux spectromètres de masse conventionnels. En e et, les nanocomposants décrits dans la littérature peuvent atteindre des résolutions massiques su santes pour mesurer la masse d'une molécule unique en moins de quelques secondes [Jensen 2008, Yang 2006]. Un spectromètre de masse à base de MEMS aurait plusieurs avantages : il pourrait mesurer des molécules non ionisables, il aurait une résolution massique indépendante de la masse de la molécule et serait relativement bon marché grâce aux procédés à bas coûts de la microélectronique.

Pour construire un spectromètre de masse à base de MEMS, plusieurs défis doivent tout d'abord être résolus : la conception et la fabrication de composants MEMS robustes, le développement d'une architecture compatible avec un réseaux de nombreux MEMS, et la mise en oeuvre de réseaux de capteurs à faibles couplages internes.

Les trois années de recherche présentées dans ce manuscrit se concentrent sur l'étude d'architectures permettant de réaliser des capteurs à partir d'un composant MEMS passif et d'une électronique de lecture. Des types de résonateurs MEMS ont été choisis pour satisfaire les contraintes imposées par la spectrométrie de masse. Plusieurs schémas de connexions entre le composant MEMS et le premier amplificateur électronique sont décrits et leurs influences sur les performances du capteur sont évaluées. Enfin, la conception et la caractérisation de plusieurs capteurs MEMS pertinents pour les spectromètres de masse sont présentées.

Le manuscrit est organisé de la manière suivante. Un premier chapitre se concentre sur une étude théorique du capteur et des di érents éléments le constituant. Dans un premier temps, le comportement électromécanique de quatre nano-résonateurs qui répondent aux contraintes de la spectrométrie de masse est présenté. Ces résonateurs ont été choisis pour respecter les critères suivants : ils doivent être adressables individuellement et avoir une faible consommation énergétique leur permettant une mise en réseau. Ils utilisent un actionnement électrostatique ou piézoélectrique ainsi qu'une détection capacitive, piézorésistive ou piézoélectrique. Dans la deuxième partie, di érents schémas d'intégration du MEMS et de son électronique associée sont présentés. Le procédé de fabrication de chaque schéma d'intégration est décrit. Un modèle électrique simple évalue les pertes de connexion et les couplages parasites de chaque technique d'intégration.

Dans une troisième partie, di érentes architectures permettant de suivre la fréquence de résonance d'un résonateur sont présentées. Les deux architectures principales existant dans la littérature sont la boucle auto-oscillante et la boucle à verrouillage de fréquence. Cette dernière, constituée d'un comparateur de phases, d'un filtre correctif et d'un oscillateur contrôlé en tension, est la plus populaire dans le domaine des MEMS car elle est robuste et peu sensible aux couplages parasites. Les boucles autooscillantes, constituées d'amplificateurs et de filtres, sont beaucoup moins chères à fabriquer et peuvent être très compactes. Dans cette architecture, l'électronique compense l'atténuation et le déphasage introduit par le nano-dispositif à sa fréquence de résonance ; ainsi, la boucle oscille à la fréquence souhaitée. Cette approche a été adoptée au cours de cette thèse puisque la compacité de l'architecture est indispensable pour réaliser des réseaux de nano-résonateurs (comme dans les spectromètres de masse ou les chromatographes à gaz). Dans la dernière section de ce chapitre, une comparaison objective de la résolution massique optimale de chaque type de résonateur est e ectuée de manière théorique.

Dans le deuxième chapitre, les di érents systèmes réalisés pendant la thèse sont présentés. La première partie est consacrée aux boucles auto-oscillantes dans lesquelles le rebouclage est conçu à partir d'électronique discrète. La première boucle auto-oscillante utilise un résonateur piézoélectrique qui présente un fort signal de fond. L'objectif principal est donc de réduire et contrôler ce signal pour empêcher la boucle d'osciller à des fréquences autres que la fréquence de résonance. La résolution en fréquence de la boucle est alors comparée à celle d'une boucle à verrouillage de fréquence. La deuxième boucle auto-oscillante est basée sur un composant "crossbeam" qui résonne à 20 MHz. L'objectif ici est de mettre en oeuvre un actionnement di érentiel qui compense les couplages entre les câbles et ceux présents dans la puce de silicium. La résolution massique de la boucle est alors mesurée et est comparable aux valeurs présentées dans l'état de l'art. La deuxième section présente la conception d'un ASIC pour des résonateurs "crossbeam" fabriqués seuls sur une Introduction générale puce de silicium. Le circuit comprend quatre boucles auto-oscillantes permettant de faire fonctionner quatre "crossbeam" en parallèle. Chaque boucle auto-oscillante est contrôlée et peut être désactivée en utilisant une interface SPI avec un ordinateur. Le couplage existant dans l'ASIC ainsi que celui présent dans la puce MEMS peuvent donc être évalués. La dernière section présente la conception et les premières caractérisations de résonateurs MEMS co-intégrés avec des circuits électroniques de lecture. Dans les deux premières réalisations, le nano-composant est fabriqué à côté du circuit électronique sur le même wafer. La troisième réalisation utilise une intégration 3D du résonateur et du circuit : le résonateur est fabriqué au dessus des transistors.

Les résultats principaux sont finalement repris dans la conclusions et quelques perspectives sont avancées.

Etude théorique

Ce chapitre présente un modèle de la détection harmonique de résonance. Dans une première partie, le fonctionnement des résonateurs MEMS est décrit. La connexion entre le composant MEMS et son environnement electronique est ensuite présentée. Di érentes architectures électroniques de l'oscillateur comprenant le résonateur mecanique sont ensuite abordées

Le résonateur MEMS

Le résonateur MEMS est composée d'une poutre vibrante, d'une technique d'actionnement et de détection. Ces di érents éléments sont décris dans les parties suivantes.

Description du comportement de la poutre vibrante

D'après [Cleland 2002], la poutre vibrante admet une infinité de résonances mécaniques. Le déplacement mécanique de la poutre peut-être modélisé autour de chaque fréquence de résonance par une fonction de Lorenz. Dans ce manuscrit, nous ne travaillerons cependant qu'avec premier mode de résonance qui d'une manière générale, est le plus énergétique.

La mesure du déplacement mécanique de la poutre est cependant limitée par le bruit thermomécanique due à la température et aux pertes mécaniques de la poutre [Cleland 2002].

Di érentes techniques d'actionnement

Dans le cadre de la thèse, nous nous sommes concentrés sur des techniques d'actionnements et de détections de faible consommation et qui peuvent à terme être utilisé pour des applications portables. Les deux techniques d'actionnement étudiées sont l'actionnement électrostatique et l'actionnement piézoélectrique.

L'actionnement électrostatique utilise la force électrostatique présente entre deux éléments soumis à une di érence de potentiel. La poutre mécanique est donc mise en déplacement grâce à un deuxième élément immobile : une électrode d'actionnement. Cette technique est simple technologiquement à mettre en oeuvre mais requière une faible distance entre la poutre vibrante et l'électrode d'actionnement. L'actionnement piézoélectrique utilise la force piézoélectrique présente dans certains cristaux comme l'AlN ou le PZT. En e et, la piezoélectricité permet de convertir une tension appliquée sur le cristal en une contrainte mécanique. Cette contrainte peut ainsi être convertie en un moment méchanique qui met en déplacement la poutre. La réalisation technologique d'une telle poutre est plus délicate technologiquement mais le gain d'actionnement (définie comme le gain entre la force linéique équivalente d'actionnement et la tension d'actionnement) est important.

Di érentes techniques de détections mécaniques et présentation des résonateurs MEMS correspondants

Les di érentes détection mécaniques utilisées lors de la thèse et respectant les contraintes présentées dans la partie précédente sont la détection capacitive, pié-1.2 Intégration du MEMS et de l'électronique zorésistive et piézoélectrique.

La détection capacitive utilise la variation de la capacité entre une électrode immobile (dit électrode de détection) et la poutre vibrante afin de convertir le déplacement mécanique en un signal électrique. Cette technique de transduction est populaire dans le domaine des MEMS car celle-ci est simple à mettre en oeuvre technologiquement. Cependant, dans le cas de résonateurs de faibles dimensions, le signal en sortie du composant est largement atténué par l'environnement électrique et est di cile à distinguer des signaux parasites dues à des couplages capacitifs parasites.

La détection piézorésistive, dans le cadre de la thèse, utilise la variation de la résistance du silicium avec un déplacement ou une contrainte mécanique. Cette transduction reste simple à mettre en oeuvre et permet d'obtenir de plus important signaux en sortie du résonateur ainsi qu'une influence plus limitée des couplages parasites. Par ailleurs, une comparaison entre la détection capacitive et la détection piézorésistive est proposée dans [Colinet 2009[START_REF] Arndt | [END_REF]].

La détection piézoélectrique est une alternative intéressante à la détection capacitive. Elle permet d'obtenir un signal plus important en sortie du résonateur, mais plus faible que la détection piézorésistive. Tout comme l'actionnement piézoélectrique, le procédé technologique de fabrication est complexe. 

Intégration du MEMS et de l'électronique

Le choix de l'intégration de résonateurs MEMS avec leur électronique de lecture est critique afin de réduire les pertes de connexion MEMS/électronique et ainsi que les couplages parasites. Ces caractéristiques doivent être considérées dans la conception de l'oscillateur comme elles peuvent dégrader la résolution du capteur ou de rendre la mise en oscillation du résonateur di cile. Des pertes de connexion peuvent atténuer le signal de sortie de MEMS et donc réduire le rapport signal-sur-bruit mesuré en sortie du résonateur. Les couplages parasites peuvent cacher la résonance mécanique du MEMS.

Les prochaines sections de cette partie présentent di érentes intégration technologique du résonateur et de l'électronique. Premièrement, le cas où le résonateur est fabriqué seul sur la puce de silicium est présenté. Ensuite les intégrations 2D et 3D du composant MEMS et de l'électronique sur la même puce de silicium est décrite. Une dernière section présente une comparaison entre les di érentes techniques d'intégration du résonateur et de l'électronique.

Résonateur fabriqué seul sur une puce de silicium

Une des méthodes les plus simples pour fabriquer des résonateurs MEMS est de partir d'un wafer de SOI 1 . Le résonateur est fabriqué en utilisant uniquement la couche de silicium supérieure. La géométrie du résonateur est réalisée en utilisant une étape de lithographie et d'une gravure anisotrope. Le résonateur est alors libéré en utilisant la couche BOX (l'oxyde enterrée) du SOI comme une couche sacrificielle et une gravure isotropique humide ou gazeuse (fig. 1.2). Un exemple de ce procédé de fabrication peut être trouvé dans [START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF]]. Le résonateur est relié à l'électronique par pontage. Cette technique requiert une grande surface de silicium dopé ou de métal (typiquement 100 ◊ 100 µm 2 ) afin de pouvoir souder le fil de connexion à la puce de silicium.

Les couplages parasites dans le substrat peuvent être étudiés de la manière suivante. Une capacité est définie entre les pistes d'accès au résonateur et le substrat. Une résistance est ensuite présente dans le substrat qui connecte la capacité précédemment définie à la masse ou à la capacité entre le substrat et la piste de sortie du MEMS (fig. 1.2). Enfin, les fils de connexion peuvent être modélisés comme des antennes de transmission et de réception.

Si un actionnement di érentiel est utilisé, les surfaces de pontage et les pistes d'accès au MEMS sont dessinées de manière symétrique (fig. 1.3). Les tensions appliqués sur chaque piste sont en opposition de phase afin que les couplages parasites s'annulent à 1.2 Intégration du MEMS et de l'électronique la sortie du résonateur. Un couplage peut tout de même subsisté dû aux dispersions entre les fils de connexion, les surface de pontage ou les pistes d'accès. Une autre technique pour réduire les couplages parasites est d'utiliser une seconde couche de métal. La surface de pontage et la piste menant au résonateur est alors réalisée en utilisant la couche supérieure de métal tandis que la couche de métal inférieure est connectée à la masse (fig. 1.4). La couche de métal inférieure agit comme un écran réduisant les couplages parasites. Cependant, la capacité entre la tension d'actionnement du MEMS et la masse est augmenté car l'oxyde entre les deux niveaux de métaux sont souvent fins dans les procédés CMOS. Du à des e ets de bords, une capacité entre le chemin d'actionnement et le substrat demeure, mais il est tout de même réduite par deux ou trois ordres de grandeur.

Chapter 1

Etude théorique

Intégration 2D du résonateur et du circuit électronique de lecture

Le procédé de fabrication d'intégration 2D du résonateur et de l'électronique utilisé dans Leti commence avec la fabrication du résonateur (fig. 1.5) : la couche de silicium est dopée, la forme résonateur est définie avec une gravure anisotrope, puis le MEMS est libéré en utilisant une gravure isotrope, ce qui élimine la couche d'oxyde enterrée. Le résonateur est alors protégé par un dépôt d'oxyde. Un procédé standard de fabrication CMOS est ensuite appliqué pour fabriquer le circuit à coté du MEMS. L'électronique est alors protégée tandis que les couches d'oxyde sur le résonateur sont enlevés. Une gravure isotrope est finalement utilisée pour enlever l'oxyde protégeant le résonateur et afin de libérer la structure.

L'intégration 2D permet de supprimer les surfaces de pontage à l'entrée et la sortie du résonateur et ainsi de réduire les capacités entre les électrodes d'actionnement et de détection et le substrat. De plus, les pistes entre le résonateur et le circuit CMOS sont aussi réduites. Les modifications de la connectique entre le résonateur et le circuit électronique permettent d'augmenter le niveau de signal à l'entrée de l'électronique, le rapport signal sur bruit et de réduire les couplages parasites.

Intégration 3D du résonateur et du circuit électronique de lecture

L'intégration 3D mise en oeuvre au Leti consiste à d'abord fabriquer le circuit électronique en utilisant un procédé standard CMOS avec deux couches de métal. Une autre plaque SOI est ensuite collé sur le premier wafer. Le substrat enterré de la plaquette supérieure est ensuite retiré. La couche de silicium supérieure est utilisée pour fabriquer le résonateur MEMS. La couche d'oxyde enterré est gravée pour libérer la structure tandis qu'une autre couche d'oxyde (en bleu sur la figure 1.6) est utilisée pour arrêter la gravure du MEMS. Les pistes électriques entre le résonateur et le circuit électronique sont très similaires à l'intégration 2D. La di érence majeure provient des vias qui connectent la couche de silicium supérieure à la couche métallique (fig. 1.6). Ils peuvent introduire une résistance série et une inductance.

Cependant, les simulations électriques ne montrent pas de di érences significatives entre l'intégration 2D et 3D. 

Comparaison électrique des techniques d'intégration

Architectures électroniques pour la mesure dynamique de la fréquence de résonance

Afin de suivre dynamiquement la fréquence de résonance du composant MEMS, des architectures d'oscillateurs sont mises en oeuvre. Ces systèmes consistent à intégrer le résonateur dans une boucle afin que celui-ci oscille à sa fréquence de résonance ainsi mesurée à partir de la fréquence d'oscillation. Il y a deux architectures principales d'oscillateurs : la boucle auto-oscillante (SOL) et la boucle à verrouillage de fréquence (FLL) [Rubiola 2008]. La première, représentée dans la figure 1.8 amplifie et filtre le signal de sortie afin que de compenser l'atténuation et de le déphasage introduis par le MEMS. L'architecture FLL illustrée dans la figure 1.9 consiste à contrôler la fréquence actionnement à partir du déphasage introduit par le MEMS. Le circuit de rétroaction veille à ce que le déphasage introduit par le MEMS soit toujours égal à la valeur correspondante à la fréquence de résonance.

Boucle auto-oscillante

Le principal attrait des architectures SOL est leur compacité qui a rendu ces architectures populaires dans les applications commerciales des microsystèmes. Par exemple, Vittoz a réalisé en 1988, un oscillateur basé sur un résonateur à quartz et une l'électronique comprenant environ 30 transistors [Vittoz 1988]. La littérature présente plusieurs réalisations de boucles auto-oscillantes incluant un résonateur MEMS [Verd 2005b, Arcamone 2007]. La surface occupée par l'électronique varie avec l'implémentation technologique mais est comprise entre 200 mm 2 (si l'étage de sortie dans omis, voir chapitre suivant) et quelques mm [Verd 2005b, Arcamone 2007, Vittoz 1988, Zuo 2010].

Le circuit électronique de rebouclage doit inclure un mécanisme d'amplification et de déphasage afin de compenser l'atténuation et le retard introduit par le résonateur MEMS. De plus, il doit inclure un mécanisme qui stabilise les oscillations à une amplitude donnée pour éviter que le MEMS se comporte non linéairement.

Les performances de cette architecture peuvent cependant être limitées par des couplages parasites ou par les non-linéarités dans le circuit électronique. En e et, les couplages parasites peuvent masquer la résonance mécanique du composant MEMS voir même rendre la boucle instable. Les non-linéarités peuvent quant à elles, mélanger le bruit basses fréquences avec le signal oscillant et ainsi limiter la résolution de la boucle [START_REF] Demir | [END_REF]].

Boucle à verrouillage de fréquence

De nombreuses réalisation de boucles à verrouillage de fréquence peuvent être trouvées dans la littérature [Ekinci 2004b, Feng 2007, He 2008, Yang 2006, Ivaldi 2011b[START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF]]. Ces architectures sont généralement préférées aux architectures de boucles auto-oscillantes parce qu'elles sont plus polyvalentes : elles peuvent être utilisées sur de nombreux types de résonateurs à fréquences de résonance di érentes et elles sont moins sensibles aux couplages parasites. Cependant, l'architecture à verrouillage de fréquence requiert un VCO et un comparateur de phase qui peuvent être coûteux, di ciles à concevoir et consommation de surface de silicium. En e et, Il ne semble pas exister dans la littérature la réalisation d'un ASIC incluant ce type d'architecture pour faire osciller un résonateurs MEMS.

1.4 Comparaison théorique des résolutions de di érents résonateurs MEMS Le comparateur de phase détermine le déphasage introduit par le résonateur MEMS à la fréquence fournie par le VCO. Suivant ce déphasage mesuré, la fréquence d'exitation d'un VCO est ajustée afin que le déphasage du résonateur converge vers sa valeur à la fréquence de résonance. Un correcteur, de la forme d'un filtre passebas est implémenté de façon a assuré la correspondance entre le déphasage et la fréquence du signal à la sortie du VCO.

Ce type d'architecture est moins sensible aux couplages parasites car l'étendue de fréquence d'oscillation peut être limitée à des valeurs très restreintes empêchant ainsi que la boucle oscille sur des fréquences parasites.

Enfin, il a été montré de manière théorique et expérimentale que la résolution est identique dans le cas où un résonateur est mis en oscillation grâce à une architecture de boucle auto-oscillante ou à verrouillage de phase : les deux architectures permettent théoriquement d'obtenir la même résolution.

Choix d'une architecture de boucle

Il y a deux principales techniques de mesure en boucle fermée : les boucles autooscillantes et les boucles à verrouillages de fréquences. Le premier est moins cher et plus compact à fabriquer, mais sa résolution peut être limitée dû à des distorsions ou des couplages parasites. Les boucles à verrouillage de fréquences peuvent surmonter ces problèmes mais sont plus complexes. Dans la suite du manuscrit, nous concentrons notre travail sur la conception d'oscillateur utilisant une architecture en boucle auto-oscillante parce que cette architecture est plus compacte. En e et, celle-ci semble donc la plus adaptée lorsque les capteurs (MEMS + électronique de rebouclage) sont implémentés en réseau, comme pour la spectrométrie de masse.

Comparaison théorique des résolutions de di érents résonateurs MEMS

Un algorithme d'optimisation a été mis en place afin de déterminer les meilleures dimensions d'un résonateur et de son électronique associée pour obtenir la plus basse résolution massique. Cet algorithme a été conçu pour les quatre résonateurs présentés dans la partie 1.1 et permet ainsi une comparaison objective des performances de chaque résonateurs (dans le cas d'une intégration ou non du résonateur avec l'électronique ainsi que le cas d'un actionnement simple ou di érentiel). Le détail des aspects modélisé dans cet algorithme ainsi que les limitations de celui-ci est donné dans la version anglaise du manuscrit. Les meilleures dimensions du capteur ainsi que la résolution massique correspondante sont donnée dans le tableau 2.3. Les résonateurs piézoélectriques utilisent un actionnement et une détection linéaire ce qui les rend plus insensibles aux bruits de scintillement créés par les non-linéarités. Si une architecture en pont est utilisée, les couplages parasites créés par la capacité intrinsèque de la couche piézoélectrique est réduite et des résonateurs de faibles dimensions peuvent être conçus. L'actionnement et la détection piézoélectrique présentent un gain important permettant d'obtenir une forte amplitude de signal à la sortie du résonateur ainsi qu'un (très) important rapport signal sur bruit, améliorant ainsi la résolution massique du capteur. Si un résonateur piézoélectrique est co-intégré avec un circuit CMOS et utilise un actionnement di érentiel, sa résolution massique peut être proche de l'état de l'art [Jensen 2008]. Toutefois, l'implémentation technologique de tel capteurs est très di cile.

1.1 mm/V 1.1 mm/V 40 µm/V 1.1 µm/V 1.1 mm/V 1.1 mm/V 1.1 µm/V 0.58 µm/V
D'une manière générale, l'étude montre que les résonateurs à détection capacitive sou rent d'importantes pertes de connexion ce qui rend di cile la réduction des dimensions de ceux-ci. Les poutres encastrées-encastrées avec une détection piézorésistives présentent de mauvaises résolutions massiques à cause de leurs détections non linéaires. Enfin, les deux candidats les plus prometteurs pour la mesure de masse sont le crossbeam et le résonateur piézoélectrique. Le premier peut être fabriqués avec 1.5 Conclusion facilité mais peut aussi être co-intégré avec des circuit CMOS. Le résonateur piézoélectrique présente une transduction linéaire, ce qui améliore la résolution massique du capteur. Celui-ci est cependant di cile à fabriquer et est sensible aux couplages parasites. Les résonateurs présentés ont ensuite été comparés en terme de résolution massique. Il a été montré que les résonateurs crossbeam et piézoélectrique sont les plus prometteurs pour des applications de détection de masse. Grâce à sa fabrication technologique simple et la possibilité de co-intégrer facilement le résonateur avec un circuit CMOS, la poutre encastrée-encastrée avec une détection capacitive est également un candidat intéressant pour la détection de masse.

Conclusion

Le chapitre suivant présente la réalisation et la caractérisation de di érents résonateurs MEMS implémenté dans des boucles auto-oscillantes lors du doctorat.

Réalisation pratique

Dans ce chapitre, la conception et la caractérisation des MEMS implémentés dans des boucles auto-oscillantes sont présentés. Dans la section 2.1, les performances de deux boucles auto-oscillantes (l'une basée sur un résonateur piézoélectrique, l'autre sur un "crossbeam" piézorésistif) réalisé avec l'électronique discrète est évaluée. La section 2.2 décrit la conception d'un ASIC permettant la mise en oscillation de plusieurs "crossbeam". Cet ASIC utilise à la fois électronique analogique et numérique et est composé d'électroniques de rebouclage et de compteurs de fréquence. L'électronique a été dupliquée 4 fois afin que 4 résonateurs MEMS puissent être contrôlés indépendamment. Enfin, la section 2.3 décrit la conception et la caractérisation de résonateurs co-intégrés avec leurs circuits électroniques sur la même puce de silicium.

Boucles auto-oscillantes conçues avec de l'électronique commerciales

La réalisation de deux auto-oscillation des boucles avec une électronique discrète est présenté dans cette section. Ce type d'électronique rend possible de concevoir rapidement et d'optimiser les oscillateurs mais il impose des limitations en terme de flexibilité et peut introduire plus de bruit électronique qu'un circuit intégré dédié. Dans une première partie, la réalisation d'un oscillateur avec un résonateur piézoélectrique est décrite. Ce résonateur est mis en oscillation sous pression athmosphérique afin d'évaluer son potentiel pour la détection de gaz (il sera montré que sa résolution en masse est pauvre parce que les dimensions du résonateur sont grandes). Dans un deuxième partie, la mise en oeuvre d'un "crossbeam" piézorésistif dans une boucle auto-oscillante est décrite. Contrairement au résonateur piézoélectrique, le "crossbeam" est mis en oscillation sous vide afin améliorer le rapport signal sur fond (la mesure dans le vide est justifiée pour les applications de spectrométrie de masse). L'électronique de rebouclage est composée d'amplificateurs à faible bruit, de deux filtres passe-haut et passe-bas du premier ordre, d'un amplificateur à niveau de saturation réglable et d'une sortie di érentielle (fig. 3.6). L'implementation du résonateur en pont permet de réduire le signal de fond du à la capacité intrinsèque de la couche piézoélectrique. Les filtres mettent en forme le signal de fond et empêchent la boucle d'osciller à des fréquences di érentes de la fréquence de résonance. Enfin, l'amplificateur à saturation fixe l'amplitude des oscillations afin que le MEMS se comporte linéairement. Enfin, la réponse fréquencielle de la boucle ouverte est présentée dans la figure 3.7 et montre que les oscillations ne peuvent apparaitrent qu'à la fréquence de résonance du MEMS.

Boucle auto-oscillante à partir d'un résonateur piézoélectrique

La résolution fréquencielle de l'oscillateur est mesurée grâce à di érentes techniques. Elle a tout d'abord été évaluée directement avec un oscilloscope. Les fronts montant du signal mesuré, déterminent la fréquence instantanée et permettent ensuite de calculer la variance d'Allan de l'oscillateur [Rubiola 2008]. Afin d'augmenter la durée de la mesure, le signal de sortie de l'oscillateur est mélangé avec un signal sinusoïdal qui est à une fréquence légèrement plus petite que la fréquence de l'oscillateur de 20 2.1 Boucles auto-oscillantes conçues avec de l'électronique commerciales A partir de la masse de la poutre, m P ZE = 25 ng, la résolution massique est environ égale à 9.8 fg pour la boucle auto-oscillante et de 1.3 fg pour la boucle à verrouillage de fréquence. Ces résolutions massiques sont plus faibles que celles des autres NEMS trouvés dans la littérature dû aux larges dimensions du résonateur, et parce que les mesures ont été e ectuées à pression ambiante. Cependant, à partir de [Ivaldi 2011b], la résolution de la mesure du gaz DMMP est environ de 660 ppb ce qui est intéressant pour des applications commerciales.

Nous estime que l'architecture de boucles auto-oscillante introduit plus de bruit en fréquence en raison du fort signal parasite qui amplifit le bruit basse-fréquence proche de la porteuse. Toutefois, de plus amples mesures et simulations sont nécessaires afin de confirmer théorie.

Boucle auto-oscillante à partir d'un "crossbeam" piézorésistif

The "crossbeam" charactérisé dans cette partie a les dimentions données dans le tableau 3.1. La figure 3.13 présente une image du résonateur obtenu grâce à un microscope électronique à balayage. La fréquence de résonance théorique est de 21 MHz. 

Conception d'un ASIC pour la mise en oscillation de plusieurs "crossbeams"

Objectif du circuit intégré

Les oscillateurs réalisés dans la section précédente utilisent de l'électronique discrète connectées au résonateur grâce à des câbles coaxiaux. Cette approche est justifiée pour mise en oscillation d'un seul résonateur MEMS mais est di cile à mettre en oeuvre lorsque plusieurs dispositifs MEMS sont utilisés, le nombre de connexions devenant trop important. Alors que la plupart des groupes de recherche dans la littérature concentrent leurs recherches sur la réalisation de capteurs avec une résolution massique proche la masse d'une molécule et nécessitant pour cela des électroniques de lecture complexes [Jensen 2008, Yang 2006] ; nous avons choisi de concentrer nos études sur la réalisation de réseaux de résonateurs MEMS. L'utilisation de circuits intégrés associés avec des résonateurs fabriqués chacuns sur une puce de silicium différente permet de fabriquer des réseaux des capteurs à moyenne densité sans avoir besoin de développer des procédés de fabrications complexes : jusqu'à des dizaines ou des centaines de capteurs peuvent ainsi être réalisées.

Dans cette section, nous présentons la conception d'un ASIC composé de quatre circuits de rétroaction indépendants afin de mettre en oscillation de multiple résonateurs "crossbeam" (fig. 3.21). Les "crossbeam" adressés par l'ASIC sont les mêmes que dans la section précédente. Les connexions entre les résonateurs et l'électronique de rebouclage sont largement réduites car l'ASIC et la puce où le résonateur est fabriqué ont une faible surface (généralement autour de 10 à 100 mm 2 ). Les deux puces sont connectées à une carte commune et ne sont éloignés de quelques millimètres. Le délai et les résonances parasites introduis par les connections sont donc minimisés ce qui n'aurait pas été possible avec de l'électronique discrète.

L'architecture boucle auto-oscillante a été préférée à celle de la boucle à verrouillage Chapter 2

Réalisation pratique de fréquence pour plusieurs raisons :

-il aurait été di cile à mettre en oeuvre une architecture de boucle à verrouillage de fréquence en utilisant uniquement de l'électronique analogique. En e et, un VCO, un comparateur de phase et le filtre correcteur aurait été di cile à concevoir analogiquement et de manière compacte. -Si l'architecture utilise l'électronique numérique, elle nécessite donc un convertisseur analogique-numérique. Afin de mesurer la phase du signal avec une précision de 1 ≠ 10°, le convertisseur analogique-numérique devrait être de 6 ≠ 8 bits (soit 360°/2 6 ) et avoir une bande passante supérieure à 25 MHz. D'après [Oliveira 2010], la surface occupée par un tel circuit serait de 0.12 mm 2 minimum. Il sera montré que cette zone est grande par rapport à l'ensemble du circuit. -Il est enfin possible d'utiliser une architecture downmixing (voir [Bargatin 2007]) afin de réduire la bande passante requise pour le convertisseur analogique-numérique. Cependant, un tel choix impose des contraintes supplémentaires au circuit analogique situé avant le convertisseur et qui met en forme le signal issu du résonateur. D'une manière générale, nous avons estimé qu'une architecture à verrouillage de fréquence serait trop di cile à concevoir pour l'application proposée (en terme de temps de conception et de risques). La mise en oeuvre à la fois l'électronique rebouclage et d'un compteur de fréquence semble une solution beaucoup plus compacte et plus facile à concevoir. L'ASIC avec sa surface de 7 ◊ 7 mm 2 (la puce de silicium occupe 2x2 mm 2 ) o re également la possibilité d'utiliser plusieurs ASIC parallèles afin de mettre en oscillation une douzaine de résonateurs.

Architecture de la puce

L'ASIC est composé de quatre blocs contenant chacun un circuit de rebouclage et un compteur de fréquence, une source de courant stabilisée et une interface de communication SPI afin que la puce puissent être directement connectée à un ordinateur externe (fig. 3.22). l'ASIC est donc composé d'électronique analogique et numérique. Le signal analogique dans chaque boucle oscillante est converti en un signal numérique et sa fréquence est mesurée en temps réel moment grâce au compteur de fréquence. Les fréquences mesurées sont moyennées pendant un temps d'intégration variable. La fréquence d'oscillation moyenne est ensuite transmise à un ordinateur grâce à l'interface SPI. Le protocole de communication est également utilisé pour configurer di érents paramètres de l'ASIC (telles que les courants de polarisation ou de la fréquence de coupure des filtres).

Topologie générale de la boucle auto-oscillante

Le signal entrant dans l'ASIC (correspondant au signal de sortie du résonateur) est d'abord polarisé afin que les caractéristiques de l'ASIC soit indépendants de la tension DC en sortie du "crossbeam" (fig. La fabrication du résonateur et l'ASIC sur des puces de silicium di érentes et reliées par pontage peut introduire des retards du signal qui sont di cile à prédire. L'architecture de l'oscillateur doit donc être capable de compenser ces retards de manière réglable. Une architecture de DLL (delay locked loop en anglais) a donc été choisir afin de compenser les déphasages du résonateurs, de la connectique ainsi que celui de l'électronique de l'ASIC.

L'utilisation d'un comparateur nécessaire pour la réalisation de la DLL permet aussi de régler simplement l'amplitude des oscillations dans la boucle. Cependant, la réponse du comparateur est hautement non-linéaire et peut donc amplifier les bruits de scintillement présents dans la boucle. Pour cette raison, une attention particulière a été portée à la conception de la boucle afin de filtrer le bruit basses fréquences.

Enfin des circuits de sorties alimentées avec une tension de 2.5 V sont conçus afin de délivrer une puissance nécessaire pour actionner le "crossbeam". 

Layout de l'ASIC

Co-integration de circuit CMOS avec des nanorésonateurs

Dans le premier chapitre, il a été théoriquement montré que l'intégration des résonateurs MEMS sur la même puce que le circuit CMOS réduit à la fois les pertes de connexion et les couplages parasites. Par ailleurs, l'intégration de résonateurs avec des circuits CMOS est nécessaires à la fabrication de grands réseaux de capteurs. Lorsque des millions de résonateurs sont mis en oscillation, le pontage qui devrait relier le résonateur au circuit de rebouclage devient trop délicat et coûteux. La fabrication des résonateurs et des circuits CMOS sur une même puce est donc une étape technologique nécessaire à la réalisation de large réseaux de capteur pour des applications de spectrométrie de masse. Cette thématique a été étudié dans trois projets di érents :

1. Dans le premier projet, le procédé ST-0. 2.3 Co-integration de circuit CMOS avec des nanorésonateurs A hautes fréquences, les pics dans la mesure du gain sont dues à des résonances électriques dans les câbles de mesure et dans les pointes de connections. Dans la mesure du circuit d'amplification+étage de sortie, la puce de silicium est connecté par pontage à un support ce qui permet une meilleure calibration du banc de mesure. Les résonances électrique sont donc plus fortement compensées grâce à la calibration. Les importantes rotations de phase dans la mesure de la réponse de l'étage de sortie sont duent à la longueur des cables de mesures. Une fois de plus, la mesure de l'amplificateur+étage de sortie présente de meilleurs résultats grâce au pontage. Cependant, le gain de l'amplificateux+étage de sortie est plus faible que celui similé.
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Ceci est sans doute dût aux variations technologique dans la fabrication du circuit (e.g. les di érences dans les courants de saturation des transistors). D'une manière générale, le gain des circuits reste su sant pour mesurer de manière homodyne la réponse des résonateurs. 

Résultats préliminaires des puces co-intégrées MEMS/CMOS

Conclusion de la co-intégration MEMS/CMOS

Dans cette section nous avons vu trois implémentations de MEMS co-intégrés avec un circuit CMOS : de l'intégration la plus simple (co-intégration 2D d'un résonateur avec une détection capacitive) à des procédés de fabrication plus complexe (cointégration 3D d'un résonateur avec une détection piézorésistive). Les circuits conçu sont simples afin compenser de possibles variations dans leurs procédés de fabrication. Les circuits CMOS caractérisés dans les di érents projets sont fonctionnels, mais leurs performances sont un peu en deca que celles prévues par les simulations. 

Conclusion générale

Durant mes trois années de doctorat, j'ai exploré l'utilisation de résonateurs MEMS pour des applications de mesure précise de propriétés physiques et en particulier celle de la mesure de masse. In the first chapter, several architectures for tracking the resonance frequency of the mechanical structure (used to measure a mass) are compared. The two major strategies are frequency locked-loops and self-oscillating loops. The former is robust and versatile but is area-demanding and di cult to implement into a compact integrated circuit. Self-oscillating loops are compact but are sensitive to parasitic signals and nonlinearity. This architecture was chosen as the focus of the PhD project because of its compactness, which is necessary for the employment of arrays of sensors.

In the second chapter, the electromechanical response of a sensor composed of a mechanical resonator and an appropriate electronics is assessed. Four resonators were chosen for mass spectrometry on the basis of their power consumption and integrability. Their transduction mechanisms are described and an electrical model of each component is developed. The study then focuses on the integration scheme of the resonators with their readout electronics. The technological process, development cost and electrical model of stand-alone, 2D-and 3D-integration schemes are described. Finally, the phase-noise improvement of integrating mechanical resonators in collectively addressed arrays is assessed.

In the third chapter, two self-oscillating loops using either a piezoelectric or a crossbeam resonator are described. The former demonstrates that is it possible to build a self-oscillating loop even when the resonator has a large V-shaped feed-through.

In the second oscillator an excellent mass resolution is measured, comparable to that obtained with frequency-locked loops. The oscillator time response is below 100 µs, a level that cannot be reached with other architectures. The design of a promising integrated circuit in which four resonators self-oscillate simultaneously is described. Thanks to its compactness (7 ◊ 7 mm 2 ), it is also possible to implement the circuits in arrays so as to operate 12 or more sensors. Finally, the integration on the same wafer of the resonator and its sustaining electronics is explored. We first focus on two projects whereby the electronics are 2D-integrated with a resonator using either capacitive or piezoresistive detection, and then on a third project using a 3D-integration scheme in which the circuitry is first fabricated and then the resonator is constructed on top on it.

General introduction

The omnipresence of CMOS technology in our everyday life demonstrates the success of microelectronics and the quest to make electronic circuits ever more compact.

A key component of all circuits is the transistor which transforms an electrical signal to create logic functions (AND, NO, OR ...), memories, amplifiers, or more complex digital or analog electronic functions. As the dimensions of transistors diminish, they become faster and cheaper. Using the extraordinary capacity of the engineered fabrication process that is inherent to CMOS technology, scientists have also developed mechanical structures that interact physically at the micro-or nano-scale. Such components, called MicroElectroMechanical Systems (MEMS) are used as sensors that transform a physical stimulus into an electrical response, or as actuators where an electrical stimulus is converted into a mechanical or a physical response. Among the most sought after MEMS components are resonators that can be used to determine the sti ness or mass of the structure from its mechanical resonance.

As with transistors, the size of MEMS components is shrinking: progressing from MicroElectronicMechanical Systems to NanoElectroMechanical Systems (NEMS).

For the sake of simplicity, the word "MEMS" is used throughout the rest of the thesis to designate indi erently MEMS or NEMS. Reducing the dimensions of the mechanical device has several benefits. Among them, the fabrication process is getting compatible with a CMOS process because the release dimensions are low.

In fact, the term NEMS refers to mechanical components that present at least two submicron dimensions. Scaling down the dimensions of the mechanical device presents several benefits: compact sensors can be fabricated, the sensing capability can be enhanced and the quality factor of the mechanical structure in air is commonly improved [START_REF] Li | [END_REF]]. Indeed, the mechanical displacement of the nanoscale proof mass can be smaller than the mean free path of air reducing the e ects of the viscous damping of air. Smaller components interact better with the nanoscale world and can sense unprecedented physical and biological variations. A notable challenge is to measure directly the mass of a single molecule [Knobel 2008, Naik 2009]. In practice, the limit of mass detection (or mass resolution) is commonly used by researchers to assess the performance of the device.

MEMS components have many other applications such as the measurement of force [START_REF] Mamin | [END_REF], Kobayashi 2011] (as in living cells), thermal fluctuation [Paul 2006], or biochemical reaction [START_REF] Campbell | [END_REF], Burg 2007]. In particular, NEMS components should eventually be used in mass spectrometry [START_REF] Chiu | [END_REF], Naik 2009] or gas analysis [START_REF] Boisen | [END_REF][START_REF] Hagleitner | [END_REF][START_REF][END_REF][START_REF] Tang | [END_REF]. With their fast response and their excellent mass resolution, the nano-devices can potentially achieve similar resolution to conventional mass spectrometers or gas chromatographs but at a lower cost, an enhanced compactness, and with a faster time response because they work at a higher frequency.

Mass spectrometry is used in a large range of applications such as medicine, biology, geochemistry and many others. In a conventional mass spectrometer the sample is first ionized, a mass analyzer is used to determine the mass-to-charge ratio of the ionized particles and finally a detector counts the number of ions [START_REF] Aebersold | [END_REF][START_REF] Russell | [END_REF], Domon 2006]. Conventional mass spectrometry can therefore be applied only to ionizable particles. Their inherent limits of resolution and response time have hindered progress of biology or other sciences [Naik 2009]. Critical parameters of mass spectrometers are their mass accuracy, resolving power (the ratio between the mass of the detected molecule and the minimum detectable mass) and dynamic range (ratio between the maximum detectable mass and the minimum detectable mass) [Domon 2006]. To obtain high-quality data commonly requires very long measurement times that can last up to 24 hours for certain samples. The limited performance of even the best equipment makes it impossible to reach what might be called the holy grail of biology: the measurement of the mass of every molecule of a single cell.

The Roukes group at the California institute of technology [Naik 2009] proposed to use MEMS components as an alternative to conventional mass spectrometers. The latest nano-components in the literature have mass resolutions su cient to measure single molecules in a few seconds or less [Jensen 2008, Yang 2006]. A MEMS-based mass spectrometer would have several advantages: it would be sensitive to nonionized molecules, would have a mass resolution independent of the mass of the molecule and would be relatively cheap thanks to microfabrication. To construct a MEMS-based mass spectrometer, several challenges must be resolved, notably the design and fabrication of robust MEMS components, the development of an architecture compatible with large arrays of MEMS devices, and the implementation of arrays of sensors with low coupling e ects within the arrays.

The three years of research summarized up in this manuscript focus on the architecture analysis of a sensor constructed from a passive MEMS component and its associated readout electronics. The topologies of several relevant MEMS devices for mass spectrometry applications are presented and compared. The interface between the MEMS component and the first electronic amplifier is described in detail and its influence on the performance of the sensor is evaluated. Finally, the design and characterization of several MEMS-based sensors relevant for mass spectrometers are presented.

The manuscript is organized as follows. In the first chapter, a simple generic model of a MEMS resonator is introduced. From the description of the nano-device, di erent architectures that measure the resonance frequency of the nano-component are presented. They can be divided into two categories: open and closed loop measurements. It is shown that although the first is simple to implement, it has a limited dynamic range and is expensive to design and fabricate. Open-loop architectures have therefore been rejected for mass spectrometry applications. In closed-loop architectures, the sensor (composed of the mechanical resonator and its sustaining electronics) has a larger dynamic range and in most cases is limited by the nanocomponent and not by the architecture itself. Two major types of closed loops are presented in the literature: self-oscillating loops and frequency-locked loops. The latter, comprising a phase-comparator, a low-pass filter and a Voltage-Controled Oscillator (VCO), is the most popular in the MEMS domain because it is robust and has low distortion. Most of all, the frequency range of the loop can be adjusted to prevent any undesired parasitic oscillations. Self-oscillating loops, comprising amplifiers and filters, are much cheaper to implement and can be very compact. In this architecture, the electronics compensates the attenuation and the phase-shift introduced by the nano-device at the resonance frequency so that the loop oscillates at this frequency. This approach is adopted in the rest of this work because the compactness of architecture is crucial when designing arrays of nano-resonators (as in mass spectrometers or gas analyzers). In the last section of chapter 1, various frequency measurement techniques necessary for self-oscillating loops are presented and compared.

The second chapter is dedicated to the theoretical assessment of di erent MEMS resonators. First, the electromechanical behavior of di erent resonator topologies is described. Four nano-resonators that meet the requirements of mass spectrometry were chosen on the basis of the following criteria: they should be individually addressable and have a low power consumption (to allow an implementation of the components in arrays). They use either electrostatic or piezoelectric actuation, and capacitive, piezoresistive or piezoelectric detection. In the second section, di erent MEMS and electronics integration schemes are presented. The process flow of each scheme is described and compared. A simple electrical model assesses the connection losses and the feed-through introduced by each integration scheme. Di erent actuation and layout techniques for enhancing the electrical response of the resonators are then described. Using the electromechanical behavior of the resonators, the integration schemes, and the results presented in the first chapter, it is then possible to determine the theoretical mass resolution of each nano-component and thus to objectively compare each resonator. The comparison is based on the 65nm-CMOS process flow of STMicroelectronics, which is compatible with the fabrication of nano-resonators and high frequency analog circuits. The last section is dedicated to the theoretical assessment of collectively-addressed parallel arrays of MEMS resonators. It is shown that an intrinsic electrical limitation remains when the size of the array increases.

In the third chapter, the di erent designs and experimental characterizations realized during the PhD project are presented. The initial focus is on stand-alone self-oscillating loops in which the sustaining electronics are built using commercial

General introduction

amplifiers. The first self-oscillating loop uses a piezoelectric cantilever that introduces large feed-through. The main objective is to prevent the loop from oscillating at undesired frequencies due to the the feed-through. The frequency resolution of the loop is then compared to that of a frequency-locked loop. The second self-oscillating loop is based on a crossbeam resonator that oscillates at 20 MHz. The objective here is to implement a di erential actuation that would compensate for the feed-through introduced by the coupling between each cable and within the silicon chip. The time response of the loop is then measured and shows to have state-of-the-art mass resolution. The second section presents the design of an ASIC for stand-alone crossbeams. The design comprises four self-oscillating loops (including four frequency counters) making it possible to operate four di erent crossbeams in parallel. Each self-oscillating loop is controlled and can be deactivated using an SPI interface with the computer. The coupling in the ASIC and in the MEMS chip can thus be evaluated. The final section presents the design and preliminary characterization of co-integrated MEMS-CMOS devices. In the first two designs, the nano-component is fabricated on the same wafer and next to the electronic circuit (2D monolithic integration). In the third design, the resonator and circuit are co-integrated in a 3D approach: the nano-device is fabricated on top of the transistors.

Harmonic detection of resonance

This chapter describes general architectures of electronic readout for MEMS resonators. It first presents a system architecture oriented description of the MEMS component and what limits its performance. It also describes common open-and closed-loop architectures for measuring the resonance frequency of the MEMS device. The limitations and specifications of the electronics are determined and compared. This chapter therefore provides a general description of the architecture of the MEMS component and its electronic readout and provides guidelines to design optimal MEMS resonators matching with their readout electronics.

In the manuscript, the following notation convention is used. The complex amplitude of a signal is written in italic, while its temporal expression is written using the "sans serif" font. For example, the complex amplitude voltage at the input of the electronics is referred to V elec (f ), while its expression in the temporal domain is written V elec (t). The DC component of the signal is referred with the subscript "-DC": V elec≠DC in the example. The small signal component of V elec (t) is referred to v elec (t). Obviously, the amplitude of v elec (t) is v elec (f ) in the frequency domain. Generally, the power spectral density of the noise expressed at a node is referred to S xx (f ) where xx describes the noise source. For example, the electronic noise expressed at v elec is referred to S elec (f ) (the node where the noise is expressed is given in the text when needed).

MEMS resonator model

The aim of this section is to establish a model of the MEMS component that is common to all resonant MEMS topologies presented in the manuscript, and that makes it possible to introduce the objectives and the constraints of harmonic detection of resonance. It provides the expressions of MEMS response to an input signal and of the MEMS generated noise. The physical explanations of the MEMS resonator will be further described in chapter 2. the mechanical resonator creates a mechanical displacement of the vibrating mass from the applied force and finally, the detection converts the motion into an electrical signal. The complex representation of the input voltage, the force per unit of length acting on the vibrating mass, the mechanical displacement and the MEMS output electrical signal are denoted v act (f ), F l (f ), y (f ) and v MEMS (f ) respectively. The mechanical resonator behavior is usually approximated as a mass-spring-damper system with a high quality factor Q and a resonance frequency

Mechanical resonance

f r = Ò k/m/ (2fi)
where k and m are respectively the sti ness and the mass of the proof mass [Boisen 2011]. The force-to-displacement transfer function H mecha can be modeled by a Lorentzian function:

H mecha = y F l = ÷ A L m (2fif r ) 2 1 1 + j f Qfr ≠ 1 f fr 2 2 (mechanical response), (1.1)
where f is the frequency of F l , and ÷ A ¥ 1 is a normalization constant required to use the mass-spring-damper system approximation (more details on ÷ A is given in appendix B). L is the length along which the force is applied. The Resonance frequencies of the MEMS presented in this manuscript are in the range of 30 kHz to 100 MHz [START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF], Colinet 2010, Ivaldi 2011b]. The quality factor of the MEMS can vary from 50 to 10 000 and highly depends on the environment of the device.

If the MEMS is operated under atmospheric pressure, the air creates some viscous damping on the MEMS vibrating mass and thus reduces the mechanical displacement [Bao 2000]. The corresponding quality factor is generally around 100 [START_REF] Li | [END_REF], Bao 2000]. If the MEMS is operated at low pressure, the viscous damping is negligible and the quality factor depends on the mechanical characteristics of the vibrating mass. The quality factor is generally larger than 1000 [Bao 2000]. The transfer functions of the actuation H act and the detection H det can be considered independent of the frequency around f r and introduce negligible phase-shift. The transfer function of the MEMS H MEMS = H act ◊ H mecha ◊ H det therefore has the 1.1 MEMS resonator model following expression:

H MEMS = v MEMS v act = g MEMS /Q 1 + j f Qfr ≠ 1 f fr 2 2 (MEMS response), (1.2)
where 

g MEMS = ÷ A QL m(2fifr) 2 |H act H det | is the modulus of H MEMS at f = f r . Note that the argument of H MEMS at f r is arg (H MEMS ) = ≠90°.
= f r 1 1 ± 1 2Q 2
, the MEMS gain is reduced by 3 dB (or divided by Ô 2). Similarly to amplifiers, it is said that the MEMS has a bandwidth of f r /Q. If the vibration amplitude is large, the resonator response becomes nonlinear, due for example due to mechanical sti ening e ects, and the performance of the device as a sensing element can be jeopardized. All studies in this manuscript are therefore limited to resonators whose responses are considered linear. The critical actuation voltage, critical actuation force and critical mechanical displacement below which the behavior of the system can be considered as linear are respectively called v act≠c , F l≠c and y c . Much work has been accomplished to study the nonlinear regime of micromechanical resonators [Juillard 2009, Kacem 2008, Mestrom 2009] but this topic is not treated in this manuscript.

Frequency

Resonator gain

g MEMS p 2 g MEMS f r (1 -1 2Q ) f r f r (1 + 1 2Q ) (a 

Feed-through transmission

In addition to the previous electromechanical description of the resonator, it can be necessary to introduce input-to-output parasitic elements in the MEMS component model. They introduce so-called feed-through transmission that adds to the MEMS output signal a signal varying with v act . Feed-through transmission may come from 

H MEMSft (f ) = g MEMS /Q 1 + j f Qfr ≠ 1 f fr 2 2 + H ft (f ). (1.3)
To simplify the notations, H MEMSft will be denoted H MEMS in the rest of the manuscript. H ft is usually modeled as a frequency independent transfer function with a real gain. Similarly to [Lee 2009b] figure 1.3 (left) shows the theoretical e ect of a constant feed-through on the MEMS modulus response. Figure 1.3 (right) shows the theoretical e ect of the feed-through on the phase-shift response induced by the MEMS. In figure 1.3, the feed-through is modeled by a frequency independent real gain. If the feed-through gain has a value close to the MEMS gain at the resonance, then the detection of the resonance frequency may become challenging.

Sometimes a more complex description of H ft is required (see chapter 3). It can occur when the feed-through is locally compensated with adjustable components such as a variable capacitance and/or a variable resistance. The feed-through is locally minimized around f r but can be significant out of the band of interest. Indeed, the MEMS intrinsic feedthrough can vary with the frequency and thus the feedthrough compensation is largely increased out of the resonance frequency. A model of V-shape feed-through can be expressed as the following:

H ft (f ) Ã f p ft r ≠ f p ft f p ft r (V-shape feed-through), (1.4)
where p ft is a parameters that models the frequency dependence of the V-shape feedthrough. Figure 1.4 depicts a V-shape feed-through. A more detailed description of 1.1 MEMS resonator model the V-shape model is given in chapter 3.

It will be shown that a key feature in MEMS resonators is the absolute value of the phase-slope,

- - -ˆÂMEMS ˆf - -
because the resolution of the sensors improves when

- - -ˆÂMEMS ˆf - - -
increases. When there is no feed-through, the maximum of

- - -ˆÂMEMS ˆf - -
is obtained for f = f r and its value is 2Q/f r . However, the feed-through can reduce this slope and thus the resolution of the sensor. Three scenarios are described in this subsection: the slope at f r , the maximum absolute slope and the slope at the frequency where  MEMS = ≠90°. It is assumed in this subsection that H ft is real, positive and constant around f r . From (1.3), we have:

 MEMS (f ) = arg S W W U g MEMS Q 1 1 ≠ f 2 f 2 r 2 ≠ j f Qfr g MEMS Q + H ft 5 1 1 ≠ f 2 f 2 r 2 2 + 1 f Qfr 2 2 6 1 1 ≠ f 2 f 2 r 2 2 + 1 f Qfr 2 2 T X X V (1.5) = ≠ fi 2 ≠ arctan S U Q 3 f r f ≠ f f r 4 + H ft g MEMS S U f r f Q 2 A 1 ≠ f 2 f 2 r B 2 + 3 f f r 4 T V T V .
The slope at f r is thus:

ˆÂMEMS ˆf (f r ) = 1 f r H ft g MEMS ≠ 2Q 1 + 1 H ft g MEMS 2 2 ¥ ≠ 2Q/f r 1 + 1 H ft g MEMS 2 2 . (1.6) It is clear that - - -ˆÂMEMS ˆf - - -(f r ) reduces with feed-through.
In the other scenarios, the calculations are more complex and thus are not presented in the manuscript. Figure 1.5 depicts the evolution of the slope versus the feedthrough. One can see that the slope is optimum if the feed-through is ten times or more smaller than g MEMS . The slope at  MEMS = ≠90°then decreases quickly. It
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Harmonic detection of resonance is also shown on the figure that it can be interesting to actuate the MEMS resonator at a frequency slightly di erent from f r in order to improve the slope.

MEMS noise sources

The readers interested in thebasics of noise analysis should consult [Rubiola 2008].

The definitions and the notations related to noise processes are based on the same book. The random processes in the manuscript are considered as stationary 1 and ergodic2 . A noise process is commonly described by its power spectral density (PSD) defined as:

S x (f ) © F [ • (x)] © ˆR • (x) e ≠2fijf • d• (power spectral density) © ˆR E • {x (t) x (t + • )} e ≠2fijf • d•, (1.7)
where

F [x (t)] © ´R x (t) e ≠2fijf t dt is the Fourier transform of x (t), E {} is the statis- tical expectation and • (x) © E • {x (t) x (t + • )} is the auto-correlation function of
x (t). The most common noise representation is white noise where the power spectral density is independent of the frequency. In opposition, other noises are referred to colored noises. For example, pink or flicker noise has a PSD inversely proportional to the frequency.

An inherent noise in the resonator is thermomechanical noise that can be modeled as a white noise acting at the input of the mechanical resonator block [Cleland 2002].

Other noise sources can be considered such as Johnson noise or from more complex phenomena as invariant fluctuations [Cleland 2002]. The di erent noises generated by the MEMS can be modeled as a noise source at the output of the MEMS that is composed of white noise, frequency-dependent noise, and more complex behavior (e.g. long term temperature variations), with a PSD S MEMS (f ). Another important characteristic of the MEMS is its phase-noise. Its definition is based on the expression of a "noisy" signal:

v MEMS (t) = v MEMS [1 + -(t)] cos [2fif r t + Ï (t)] , (1.8)
where v MEMS is the noiseless amplitude of the signal, f r is the signal frequency, t is the time, -(t) is the relative amplitude noise and Ï (t) is the phase-noise. Assuming that the noise is equilibrated , the PSD of -(t) and Ï (t) are determined from S MEMS (f ) as follows:

S -(f ) = S Ï (f ) = 2 |S MEMS (f )| v 2 mems (phase noise).
(1.9)

Open loop resonant frequency tracking

Based on the MEMS model illustrated in figure 1.1, various possible readout architectures used for the harmonic detection of resonance are described in the following sections of this chapter. We also provide a methodology capable of evaluating the performance of a MEMS resonator with its surrounding electronics.

Open loop resonant frequency tracking

Since f r depends upon the mass and the sti ness of the beam, the MEMS can be used to sense a mass variation of the beam. In this context, the readout electronics should therefore dynamically track the MEMS resonance frequency. Major criteria to evaluate the sensor performance are the frequency resolution, the dynamic range and the mass responsitivity. The latter only depends on the design of the MEMS whereas the resolution and the dynamic range depend both on the MEMS characteristics and the frequency tracking readout architecture. The mass responsitivity Ÿ is defined as follows:

Ÿ = f m (mass responsitivity), (1.10)
where f is the MEMS resonance frequency variation when the MEMS is loaded by a mass variation m.

A mass uniformly added to the MEMS vibrating mass a ects f r as follows:

f = df r dm m ¥ f r 2m m ∆ Ÿ = f r 2m (1.11)
The resolution ‡ m is the minimal detectable mass. It is determined from the frequency resolution ‡ fr . Since the relationship between ‡ m and ‡ fr only depends on the responsitivity of the resonator, it is quite common to characterize and analyze the sensor performance from the MEMS frequency resolution: ‡ m = ‡ fr Ÿ (mass resolution).

(1.12) ‡ fr is the variance of the resonance frequency variation. The resonance frequency presents long term variation due to environmental changes such as temperature variations. Under such considerations, the classical variance estimator, defined as

‡ fr = Ú lim T aeOE 1 T ´T 0 [f ≠ E {f }] 2 dt
improperly estimates the frequency resolution as its value is dominated by the long term environmental variations.

It is often replaced by the Allan variance estimator [Rubiola 2008] that estimates the variance of two consecutive elements and thus reducing the e ect of long time drift. The figure 1.6 illustrates the measurement of the frequency resolution of a periodic signal. The transition times of the signal (defined from the rising edges)

Chapter 1 Harmonic detection of resonance are denoted t k starting at t 0 and finishing at t N ◊M . From the elements t k , the instantaneous period and the instantaneous frequency are calculated:

t 0 t 1 t 2 t k-1 t k t k+1 t N*M f 1 f 2 f 3 f k-1 f k f k+1 f N*M-1 T meas T meas T meas T meas  f 1 T meas   f 2 T meas   f n T meas   f M T meas  t M t 2M t n
Y ] [ T k = t k ≠ t k≠1 (instantaneous period) f k = 1 t k ≠t k≠1 (instantaneous frequency)
.

(1.13)

The elements f k are decomposed into measurement windows in which they are averaged over a time lapse T meas :

f n (T meas ) = 1 M n◊M ÿ k=(n≠1)◊M f k , (mean frequency over T meas ) (1.14)
where M is the number of elements f k during T meas . Finally the Allan variance for a integration time T meas is defined as:

‡ 2 "f /f (T meas ) = E Y ] [ 1 2 C f n≠1 (T meas ) ≠ f n (T meas ) f n (T meas ) D 2 Z \ (AVAR). (1.15)
The Allan deviation is defined from the standard variance as:

‡ "f /f (T meas ) = Ò ‡ 2 "f /f (T meas ) = Ô AVAR (ADEV).
(1.16) ‡ "f /f can also be determined from the PSD of the resonance frequency measurement:

‡ 2 "f /f (T meas ) = ˆOE 0 S "f /f 2 sin 4 (fiT meas f ) (fiT meas f ) 2 df, (1.17)
where S "f /f (f ) is the PSD of the relative frequency variation. Figure 1.7 presents the relation between the spectrum of S "f /f and ‡ 2 "f /f . It can be seen that in the case where the noise is white, ‡ "f /f reduces when T meas is increased. However, colored noises and frequency drifts limit the frequency resolution and define a range of values 1.2 Open loop resonant frequency tracking Flicker freq.

Freq drift

σ fr 2 h -2 f -2 h -1 f -1 h 0 h 1 f h 2 f 2 h 0 /2T meas 2ln(2)h -1
Random walk freq.

(2 π) of T meas for which ‡ "f /f is minimal. If the measurement time lapse is larger than T meas≠opt , not only the measurement will be longer but it can also deteriorate the frequency resolution.

2 6 h -2 T meas T meas-opt
Finally the dynamic range of the sensor should be evaluated. It will be show in the following sections that when a "large" mass is added to the mechanical resonator, the mass resolution of the sensors can be reduced (open-loop architecture) and/or the responsitivity can behave nonlinearily (open-and closed-loop architecture). In some cases, the electronic circuit is simply not operational at a large frequency shift. A first definition of the dynamic range can be based on the added mass (or the frequency shift) for which the resolution is reduced by 3 dB.

Furthermore, with large added mass, the MEMS response f = f ( m) is generally not linear anymore because the added mass to mechanical structure modifies the geometry of the proof mass and thus changes it sti ness. It can also add further stress in the proof mass that will a ect the resonance frequency of the MEMS. It should be mentioned that the nonlinear responsitivity can be calibrated and compensated but only to some extend. The dynamic range is therefore determined from the evolution of the resolution versus the added mass but is also limited to an upper value due to the nonlinear behavior of the responsitivity. A typical value of 10% can be taken for the dynamic range of the MEMS resonator.
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Frequency sweep

The open-loop response of a MEMS resonator can be obtained by measuring the gain and phase of the device over a range of frequency. The measurement being done, a curve similar to figure 1.2 can be obtained. The resonance frequency corresponds to the maximum of the gain. This technique is however very time consuming because one has to sweep the whole frequency span. Moreover, in order to achieve a good frequency resolution, the minimal step of frequency sweep must be very narrow what increases largely the measurement duration (because a large number of points are required).

The frequency resolution is limited by the equivalent output voltage noises of the MEMS response and the electronic equipments. From the PSD of the MEMS+electronics noise expressed at v MEMS , one can determine the corresponding PSD of the phase noise of as:

S Ï MEMS+elec (f ) = 2 S MEMS+elec (f ) [|H MEMS (f )| v act≠c ] 2 .
(1.18)

The PSD of the frequency noise can be determined from S Ï MEMS+elec :

S f = f 2 S Ï MEMS+elec = 2f 2 S MEMS+elec (|H MEMS | v act≠c ) 2 . (1.19)
The frequency resolution is defined as the standard deviation of the frequency measurement:

‡ fr © î ı Ù ˆfr+1/Tmeas fr≠1/Tmeas |S f (f )| df ¥ f r î ı Ù 2 - - -S Ï MEMS+elec (f r ) - - -
T meas (Open-loop frequency resolution)

¥ 2f r Ò |S MEMS+elec | g MEMS v act≠c Ô T meas . (1.20)
It is assumed that 1/T meas π f r and that in the interval

Ë f r ≠ 1 Tmeas ; f r + 1
Tmeas È the variations of S MEMS+elec and S Ï MEMS+elec are negligible. It will be shown in section 1.3 that the frequency resolution with this measurement technique is worse than the one obtained in closed-loop measurements.

Amplitude or phase-shift variation measurement

This technique has been developed to avoid the frequency sweep technique previously mentioned. It consists in setting the actuation frequency to f r [Albrecht 1991, 1.2 Open loop resonant frequency tracking The corresponding resolution can be determined similarly to subsection 1.2.1:

‡ fr ¥ f m r Ò 2 |S MEMS+elec (f r0 )| |H MEMS (f r0 )| v act≠c Ô 2T meas (1.21) ¥ f m r î ı ı Ù Q 2 S U 1 ≠ A f r0 f m r B 2 T V 2 + C f r0 f m r D 2 Ò 2 |S MEMS+elec (f m r )| g MEMS v act≠c Ô 2T meas .
If the ratio f r0 /f m r increases (i.e. f m r decreases) then the frequency resolution also decreases. The evolution of the frequency resolution for a varying f r is depicted in fig. 1.10. This measurement scheme both su ers from a limited dynamic range and a limited frequency resolution. From eq. (1.21), if the dynamic range is determined when the resolution is increased by 3 dB, then the amplitude variation measurement has a dynamic range of 0.5 %.

It is possible to improve the frequency resolution by measuring the MEMS phaseshift variation rather than the amplitude variation (fig. 1.9). The phase-shift introduced by the resonator is :

 MEMS = arg (H MEMS ) = ≠ arctan S W U f r0 Qf m r 1 ≠ 1 f 0 r f m r 2 2 T X V .
( the phase-shift introduced by the MEMS:

tan ( MEMS ) + f r0 Qf m r ≠ A f r0 f m r B 2 tan ( MEMS ) = 0. (1.23) From f m r AE f r0 and eq. (1.23), it is clear that  MEMS AE ≠90°.
The resonance frequency can be determined by selecting the real and positive solution:

f m r = f r0 2 tan (Â MEMS ) 1/Q + Ò (1/Q) 2 + [2 tan (Â MEMS )] 2 . (1.24)
This frequency measurement technique is based on  MEMS . To calculate the resolution of this technique, the phase-noise at the output of the MEMS should be determined from equation (1.9). If the noise is low, the frequency resolution is determined from the slope of the transfer function between  MEMS and f m r

: ‡ fr = df m r d MEMS - - - - - f =f 0 r î ı Ù - - -S Ï MEMS+elec (f r0 ) - - - 2T meas ¥  MEMS ¥≠90°f r0 2Q Ò 2 |S MEMS+elec (f r0 )| g MEMS v act≠c Ô 2T meas = f r0 2Q î ı Ù - - -S Ï MEMS+elec (f r0 ) - - - 2T meas . (1.25)
The expression of df m r d MEMS is complex and therefore is not presented in the manuscript. Note that it depends on the feed-through as described in subsection 1.1.2. The evolution of the frequency resolution versus f r and therefore df m r d MEMS is depicted in Fig. 1.10 (it was considered in this case that the feed-through was negligible). One can 1.3 Closed loop resonant frequency tracking see from figure 1.10 that the phase-shift variation measurement presents a better frequency resolution than the two other open-loop measurements previously described. The dynamic range of the measurement is however limited as for the amplitude variation measurement. Numeric resolution of eq. 1.25 shows that if the dynamic range is determined when the resolution is increased by 3 dB, then the phase-shift variation measurement has a dynamic range of about 0.32 %. In general, the phaseshift variation measurement is preferred to amplitude variation measurement due to its better frequency resolution to the cost of a little dynamic range reduction.

It has been shown in the three presented open-loop measurements that they either su er from a poor frequency resolution or a limited dynamic range. Closed-loop measurement techniques allow overcoming these limitations.

Closed loop resonant frequency tracking

In order to improve the dynamic range of the sensor, oscillator architectures are implemented. Such systems consist in embedding the MEMS in a loop so that it oscillates at its resonance frequency. f r can then be measured by determining the oscillation frequency. There are two major architectures of oscillators: self-oscillating loops (SOL) and Frequency-Locked Loops (FLL) [Rubiola 2008]. The first one, depicted in figure 1.11a amplifies and filters the MEMS output signal so that the transfer functions of the MEMS and the sustaining electronics respect specific conditions in terms of gain and phase only at f r . On the other hand, the FLL topology depicted in figure 1.11b consists in controlling the actuation frequency based on the phase-shift introduced by the MEMS. The feedback electronic circuit ensures that the MEMS induced phase-shift always remains at its value corresponding to the resonance frequency: the MEMS thus oscillates at f r .

In that regard, the FLL feedback electronics can be considered as a nonlinear amplifier and a phase-shifter. However, the main di erence with SOL architectures lays on the use in the architecture of a supposedly high quality VCO. Indeed, the VCO is a signal source that provides a sinusoidal signal at a single frequency, with little distortions and phase-noise. The MEMS actuation is as close as possible to ideal. Moreover, the architecture o ers the ability to control the phase-shift introduced by the MEMS and the actuation frequency (that is controlled by u at the input of the VCO). It is then possible to set boundaries to the oscillation frequency and avoid any undesired oscillations that would originate from parasitic crosstalk.

The SOL and the FLL architectures are described in more details in the following subsections. They are compared in terms of complexity, cost and frequency resolution. 

Self-oscillating loop

SOL architectures are very compact, quite simple to implement and it makes them very attractive for MEMS designers. For example, Vittoz [Vittoz 1988] realized in 1988 an oscillator based on a quartz resonator and a sustaining electronics with about 30 transistors. The literature presents several realizations of ASIC for self-oscillating loops [Verd 2005a, Arcamone 2007]. Their area consumption varies with the technological implementation of the electronics. The area can be as small as 200 µm 2 (if the output bu er stage in omitted, see chapter 3) but integrated circuit are generally in the order of 0.1 to few mm [Verd 2005a, Arcamone 2007, Vittoz 1988, Zuo 2010]. If the electronic is realized using commercial discrete circuits, the area of the oscillator is around few hundreds of mm [Akgul 2009].

The main interests of self-oscillating loop are therefore their compactness and lowcost. They can however be overwhelmed by distortion, nonlinearity, parasitic oscillations... Those limitations are described in this section.

Oscillation conditions

To study SOL, one must virtually open the loop for example between the amplitudelimiter block and the MEMS. The corresponding transfer function is analyzed in order to determine the oscillation conditions. In the case illustrated on fig. 1.11a, the system is composed of a MEMS resonator and a linear sustaining electronic circuit. The open-loop transfer function H OL (f ) is:

H OL (f ) = H MEMS (f ) ◊ H elec (f ) (open-loop transfer function), (1.26)
where H elec (f ) is the transfer function of the sustaining electronic circuit. The oscillations build up at frequencies closed to f osc if:

|H OL (f osc )| > 1 and arg [H OL (f osc )] = 0 (Barkhausen criteria).
(1.27)

1.3 Closed loop resonant frequency tracking These relationships are known as the Barkhausen criteria. The oscillations stabilize when:

H OL (f osc ) = 1.
(1.28)

The sustaining electronic circuit must ensure that the conditions of equation (1.27) are respected only at f r . It must also include a mechanism that stabilizes the oscillations to a given amplitude to prevent the MEMS to oscillate at large amplitudes or from behaving nonlinearly.

A SOL contains amplifiers, filtering blocks and a phase-shifter block. The amplification and the phase-shifting block ensure that the conditions of equation (1.27) are respected at f r . In other words, based on equation (1.2), the sustaining electronic must respect in terms of gain and phase the following conditions (assuming that the feed-through is negligible):

|H elec | > 1/g MEMS and arg (H elec ) = +90°. (1.29)
The literature presents many techniques to realize the phase-shifter.

-The simplest one uses a first order inverting low-pass filter operating in its cut-o frequency regime [Rubiola 2008[START_REF] Bienstman | [END_REF][START_REF] Arndt | [END_REF]]. It has a transfer function H LP F = ≠1 1+jf /fc and its cut-o frequency f c satisfies f c π f r . The phaseshift introduced by the low-pass filter is about arg (H LP F ) ¥ +90°but this filter has a gain of |H LP F | ¥ f r /f c π 1 and attenuates the signal. It can be shown by studying the gain at the frequency corresponding to arg [H OL (f osc )] = 0, that the optimum value of f c that respects the conditions in phase while introducing a maximum gain is f c = f r . However, this optimum can be matter of debate because it supposes that the feed-through is negligible. Moreover the slope of  MEMS (f osc ) is reduced compared to  MEMS (f r ) and it will be shown in the following subsection that the oscillator resolution depends on the slope of  MEMS (f osc ). The oscillator resolution is therefore reduced if f c /f r is increased. It is rather common to set f c ¥ f r /10. -Instead of using a low-pass filter, it is also possible to use a first order high-pass filter with a transfer function of H HP F = jf /fc 1+jf /fc so that its cut-o frequency f c satisfies f c ∫ f r . Attenuation for the high-pass and low-pass filter are similar. -A delay line is another interesting candidate to realize a phase-shift block. It consists in a low-resistive line with a distributed grounded capacitance. The distributed R-C filters introduces a large delay while introducing negligible attenuation. The delay line at frequency below 10 MHz is however very di cult to implement in an integrated circuit. -Other phase-shifter topologies use an active component such as a series of inverters [Rubiola 2008, Bahreyni 2007]. Obviously, the value of the delay • is:

• = 3/ (4f r )
corresponding to a phase-shift of +90°= ≠270°. A Delay Lock-Loop (DLL) can also be used to realize the phase-shifter [Susplugas 2004]. Interests and drawbacks of each phase-shifter architecture are described in subsection 1.3.1.4.
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Harmonic detection of resonance In addition to the phase-shifter other filtering blocks are implemented to prevent that eq. (1.27) is satisfied for other frequencies than f r .

Finally, concerning the mechanism that stabilizes the oscillations, one solution can be an Automatic Gain Control (AGC) so that the sustaining electronic circuit always remains linear [Rubiola 2008, He 2010]. It consists of an amplifier whose gain is adapted in real time as the input amplitude increases. Other mechanisms such as saturation mechanisms can be used to stabilize the oscillations but they introduce more nonlinearity. These mechanisms are described later in this subsection.

Frequency resolution of the oscillator

From equation (1.12), the mass resolution of the oscillator is determined from its relative frequency variation noise. In fact, in oscillators, a phase-noise measurement is usually preferred and the relative frequency variation noise can then be easily determined from the phase-noise [Rubiola 2008]:

S "f /f = A f r ≠ f f r B 2 S Ï .
(1.30)

In the literature, Leeson's formula [Leeson 1966, Rubiola 2008] relates the PSD of the phase-noise introduced in the loop to the PSD of the closed-loop phase-noise that is usually measured at the electronics output (Fig. 1.12):

H Ï (f ) = Closed-loop phase-PSD Open-loop phase injected-PSD = S Ïout (f ) S Ï MEMS+elec (f ) = 1 + S U 1 (f ≠ f r ) ˆÂMEMS ˆf (f osc ) T V 2 (Leeson formula).
(1.31)

The PSD of the closed-loop relative frequency variation noise can be determined from equation (1.30).

1.3 Closed loop resonant frequency tracking

Assuming that |f ≠ f r | π 1/ - - -ˆÂMEMS ˆf - - -(f osc )
and f osc ¥ f r it is possible to determine the PSD of the oscillator relative frequency variation:

S "f /f = S Ï MEMS+elec Ë f osc ˆÂMEMS ˆf (f osc ) È 2 .
(1.32)

Assuming that S Ï MEMS+elec does not vary with f (i.e. white noise), the frequency resolution of the loop is: The noise introduced in the loop comes from the contribution of the MEMS thermomechanical noise S thermo expressed at F l , other MEMS noise S MEMS th expressed at v MEMS , the electronics circuit noise S elec expressed at v elec , the total electronic noise expressed at the input of the electronics is:

‡ fr = 1 ˆÂMEMS ˆf (f osc ) Û S Ï MEMS+elec 2T meas (SOL frequency resolution) = f r 2Q Û S Ï MEMS+elec 2T meas if H ft π g MEMS and f osc ¥ f r . ( 1 
S MEMS+elec = S thermo |H mecha H det H connec | 2 + S MEMS th |H connec | 2 + S elec , (1.34)
where H connec is the transfer function of the MEMS-to-electronics connection. From equation (1.9), the phase-noise introduced at the amplifier input has therefore the following expression:

S Ï MEMS+elec = 2 C S thermo F 2 l≠c + S MEMS th |F l≠c ◊ H mecha H det | 2 + S elec |F l≠c ◊ H mecha H det H connec | 2 D . (1.35)
The corresponding frequency resolution is thus: connection losses and a low electronic noise in order to achieve a oscillator frequency resolution as close as possible to its ideal value defined as:

‡ fr = 1 ˆÂMEMS ˆf (f osc ) Ô T meas ◊ C S thermo F 2 l≠c + S MEMS th |F l≠c ◊ H mecha H det | 2 + S elec |F l≠c ◊ H mecha H det H connec | 2 D (1.36)
‡ fr≠ideal = f r 2QF l≠c Û S thermo T meas if H ft π g MEMS .
(1.37)

E ect of feed-through transmission in SOLs

Subsection 1.1.2 describes how ˆÂMEMS ˆf --fr reduces with the feed-through transmission and thus the frequency resolution can be degraded. Moreover, it can be shown that the feed-through can create some parasitic oscillations that can further reduce the performance of the oscillator. Simulations were made for di erent levels of feedthrough transmission gain on a similar loop than depicted in figure 1.11a. The feed-through is modeled with a real gain independent of the frequency. The amplitude of the oscillations are controlled with a saturation block. The phase-shift of the loop is adjusted with a block having the following transfer function: 1≠jf /fc 1+jf /fc that has a gain equal to 1. The results of the simulations are depicted in figure 1.13 and show that parasitic oscillations can appear in the loop. Indeed, the feed-through modifies the gain and phase-shift of the MEMS resonator and thus the oscillation conditions can also be satisfied at other frequencies.

Similarly to the design of electronic amplifiers, one can impose some margin on the gain of the loop at frequencies where the open-loop phase-shift crosses n ◊ 2fi (n being an integer). For example, in the realizations described in chapter 3, a gain of 1.3 Closed loop resonant frequency tracking 10 dB was imposed between the gain at f r and the gain at frequencies where the open-loop phase-shift crosses n ◊ 2fi.

Nonlinear self-oscillating loop

It should be mentioned that the design of a purely linear electronic circuit is impossible in practice due to the quadratic response of CMOS transistors. Imperfections created by nonlinear parts of the oscillators (that will be described in this subsection) are therefore present for all SOL but with di erent degrees of degradations in the frequency resolution. Moreover, the design and the realization of a highly linear phase-shifter and an amplitude limiter can be di cult and expensive to fabricate.

One can find examples whereby a saturation block is implemented rather than automatic gain control to limit the oscillations amplitude [Gelb 1968[START_REF] Arndt | [END_REF], Akgul 2009[START_REF] Verd | [END_REF]. This is mainly because its implementation can be very simple. It uses an electronic amplification block that has a low dynamic range, i.e. the electronics saturates and its gain reduces when the input amplitude is larger than its dynamic range. The gain of the sustaining electronics reduces as the amplitude of the oscillation in the system grows and thus the steady-state oscillation amplitude can be controlled. It is also possible for some MEMS topologies to use the nonlinearity of the MEMS resonator as a saturation mechanism. On the other hand, the distortions and the nonlinear behavior of the saturation block can modify the contribution of the noise sources on the resolution of the oscillator. The e ect is complex and was rarely theoretically treated in the literature [START_REF] Demir | [END_REF]]. However, based on a Taylor expansion, a simple model of the nonlinear electronic circuit transfer function H elec≠NL can be:

H elec≠NL = H elec 1 1 + HD 2 v elec + HD 3 v 2 elec + ... 2 , (1.38)
where H elec is the linear electronic circuit transfer function, v elec is the complex amplitude of the electronics input signal, HD 2 and HD 3 are constant coe cients that can be determined from the electronics nonlinear behavior. In the case of small nonlinearity, it is assumed that HD 2 v elec π 1 and HD 3 v 2 elec π 1. One can introduce an additive noise to the input signal:

v elec (t) = v elec cos (2fif osc t) + v noise (t) , (1.39) where v noise (t) respects S v elec = F [ • (v noise (t))
] and E {v noise (t)} π v elec (i.e. the noise is small compared to the signal). The electronics output signal is (if only the 2 nd harmonic distortion is considered:

HD 3 = 0) v act (t) = H elec {v elec cos (2fif osc t) + v noise (t) + (1.40) HD 2 Ë v 2 elec cos 2 (2fif osc t) + v 2 noise (t) + 2v elec cos (2fif osc t) v noise (t) ÈÔ .
The term v 2 elec cos 2 (2fif osc t) introduces harmonics at 2 ◊ f osc and does not a ect the frequency resolution of the oscillator. The term v 2 noise (t) can be considered as Chapter 1
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v act (t) = H elec I v elec cos (2fif osc t) + ˆOE 0 |V noise (‹)| cos (2fi‹t + arg V noise (‹)) d‹+ HD 2 C 2v elec cos (2fif osc t) ˆOE 0 |V noise (‹)| cos (2fi‹t + arg V noise (‹)) d‹ DJ .
(1.41) Thus:

v act (t) = H elec Ó v elec cos (2fif osc t) + F ≠1 [V noise (‹)] + v elec HD 2 F ≠1 [V noise (f osc + ‹)] + v elec HD 2 F ≠1 [V noise (f osc ≠ ‹)] Ô (1.42)
The nonlinearity create some frequency aliasing and up-converts the flicker noise close to the oscillating frequency. The figure 1.14 illustrates the aliasing of the colored noise around the oscillation frequency. Note that this computed phase-noise corresponds to S Ï elec+MEMS that is the phase-noise injected in the loop. The Leeson's formula then describes how the injected phase-noise is shaped by the closed-loop.

It is also possible to introduce in the sustaining electronics a comparator so that the output signal is in a two-state regime: the signal is either equal to a voltage V 1 or V 2 . With this architecture, the oscillation amplitude is controlled with ease through V 1 and V 2 . More importantly, since the comparator output signal is logic, digital architectures can be used what simplifies the realization of the phase-shifter and any other filters. For example, the phase-shifter block can be realized using Delay-Lock-Loop (DLL). A DLL can introduce any desired phase-shift whatever the signal frequency is [Susplugas 2004]. Comparator can also be applied in order to filter other frequencies than f r , assuming that their amplitude are small compared to the 1.3 Closed loop resonant frequency tracking one at f r [Bahreyni 2007]. The drawback of this topology is that it introduces large distortions, thus the issues inherent to the saturation blocks are emphasized.

Dynamic range

It is shown in appendix A that the dynamic range of self-oscillating loops is larger than 10% what corresponds to the typical dynamic range of the MEMS resonator. In this case, the dynamic range is not limited by the SOL but by the MEMS resonator itself.

Frequency-locked loop

Numerous example of frequency-locked loop (FLL) can be found in the literature [Ekinci 2004a, Feng 2007, He 2008, Yang 2006, Ivaldi 2011a[START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF]. FLL are generally preferred to SOL architectures because they are more versatile: they can be used on many di erent types of resonators with di erent resonance frequencies; they are less sensitive to feed-through and parasitic environment. On the other hand, an FLL architecture requires a VCO and a phase-comparator that can be expensive, di cult to design and area consuming. As a matter of fact, to the author's knowledge, no ASIC with an FLL-architecture to operate MEMS resonators have been realized.

Theory of operation

A Frequency-Locked Loop consists in constantly maintaining the phase-shift introduced by the MEMS to its value at f r . The term frequency-locked loop [Rubiola 2008] is employed because the phase-shift variations of the MEMS are converted into actuation frequency variations. The output variable of the loop is therefore a term proportional to the resonator actuation frequency.

In figure 1.11b, the phase-comparator compares the phase-shift introduced by the MEMS (between the MEMS input and the amplifier output, the phase-shift introduced by MEMS-to-electronics connections and the amplifier is supposed to be constant around f r and compensated) to the desired phase-shift i.e. the MEMS phase-shift at f r . If there is a phase-shift di erence, the MEMS actuation frequency is modified so that the phase-shift di erence is reduced. It is therefore necessary to analyze the MEMS phase-shift response to the frequency of the actuation voltage f act : 

 MEMS = arg [H MEMS ] ¥ f ¥fr ≠ fi 2 ≠ ˆÂMEMS ˆf - - - - - fr ◊ (f act ≠ f r ) . ( 1 
 MEMS =  MEMS (f ) ≠  MEMS (f = f r ) = ˆÂMEMS ˆf - - - - - fr f, (1.44)
where f = f act ≠ f r . With the introduced notations, the figure 1.11b can be simplified to figure 1.15. Note that  ref is 0 and that the transfer function of the (MEMS+amplifier) block is di erent from the one in section 1.1 since it relates f to  MEMS . It is given by equation (1.44) and in order to avoid any confusions, it will be noted: 

H phase MEMS (f ) =  MEMS f = fact¥fr ˆÂMEMS ˆf - - - - - fr . = 2Q f r (if H ft π g MEMS ) (1.
H F LL (f ) = Â MEMS Â ref = H phase MEMS f V CO H filter 1 + H phase MEMS f V CO H filter , (1.46)
where f V CO and H filter are respectively the transfer functions of the VCO and the filter.

The VCO converts the input signal u into a signal with the frequency f r + f . From fig. 1.15, the transfer function of the VCO relates the input voltage u command into a frequency variation f and is therefore a constant gain: f = f V CO ◊u contrary to the representation in PLLs where the VCO is modeled by an integrator. The filter can be a first order low-pass filter as in [Ekinci 2004a, Ekinci 2004b, Feng 2007, Yang 2006], the transfer function of the filter is then:

H filter = G filter 1 + j f f f ilter , (1.47)
where G filter and f filter are respectively the low-frequency gain and the cut-o frequency of the filter. f filter is set to values lower than the resonator's bandwidth and 1.3 Closed loop resonant frequency tracking thus determines the bandwidth of the oscillator. Higher order filters are also possible as in [Kharrat 2008] in order to improve the robustness of the loop and its time response but they will not be analyzed in this manuscript. From the expressions of H phase MEMS , f V CO and H filter , H F LL can be expressed as:

H F LL = ˆÂMEMS ˆf - - - fr f V CO G filter ˆÂMEMS ˆf - - - fr f V CO G filter + 1 + j f f f ilter . (1.48)
To make the FLL lock correctly at f osc = f r , H F LL should be as close as possible to 1 at low f so that  MEMS is equal to the control signal

 ref i.e.  MEMS =  MEMS +  MEMS (f = f r ) =  MEMS (f = f r ).
Thus, the low-frequency gain of the filter must be large:

G filter ∫ 1 ˆÂMEMS ˆf - - - fr f V CO = H ft πg MEMS f r 2Qf V CO . (1.49)
In practice, the MEMS resonator and mostly the VCO have a non-zero response time introducing delay in the loop, what limits G filter to an upper value that is function of f filter (i.e. the oscillator bandwidth).

Finally, since the VCO input signal is proportional to the VCO output frequency and therefore the oscillating frequency; the oscillating frequency of the system is usually measured with u. The oscillating frequency f osc has the following expression:

f osc = f V CO ◊ u + f r .
(1.50)

Resolution of the FLL oscillator

The di erent noises in the FLL are responsible for some fluctuations on u and limit the resolution of the oscillation frequency measurement. The resolution of the system then is usually analyzed from the PSD of u denoted S u . Figure 1.15 presents the noise introduced by the VCO, the MEMS and the amplification block. They are respectively modeled as a frequency and a phase noise.

The VCO is an oscillator and has a similar frequency noise than the one described in subsection 1.3.1 (assuming that the VCO output frequency is f r ):

S f V CO = S U (f r ≠ f ) 2 + A f r 2Q V CO B 2 T V S Ï V CO ¥ f ¥fr A f r 2Q V CO B 2 S Ï V CO , (1.51)
where Q V CO is the quality factor of the VCO and S Ï V CO is the open-loop phase-noise expressed at the output of the VCO.
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S Ï MEMS+elec = 2 S thermo v 2 amp |H mecha H det H connec H amp | 2 + 2 S MEMS th v 2 amp |H connec H amp | 2 + 2 S elec v 2 amp . (1.52)
The contribution of the noise of the VCO, the MEMS and the electronics is determined from the noise at the input of the VCO:

S u = - - -H phase MEMS H filter - - - 2 S f V CO + |H filter | 2 S Ï MEMS+elec - - -1 + H filter f V CO H phase MEMS - - - 2 .
(1.53)

The theory of operation of the FLL imposes that around f r ,

- - -H filter f V CO H phase MEMS - - -∫ 1.
Out of the resonance (i.e. for large f ) H filter becomes small and H phase MEMS is a bounded function so that S f V CO and S Ï MEMS are filtered for | f | > f filter . The noise can be considered as null at frequencies out of the bandwidth of the filter.

The oscillating frequency is determined from the input signal of the VCO:

f osc = f r + u ◊ f V CO .
The frequency-noise of the FLL S f is therefore:

S f = f 2 V CO S u . (1.54)
The contributions of the VCO , MEMS and amplifier noises are measured as a relative frequency variation at the input of the VCO:

S "f /f ¥ f ¥fr 2 Q c a 1 f ˆÂMEMS ˆf - - - fr R d b 2 S W W W W U S thermo F 2 l≠c ¸˚˙T hermomechanical noise + S MEMS th |F l≠c ◊ H mecha H det | 2 ¸˚˙Ő ther MEMS noise + S elec |F l≠c ◊ H mecha H det H connec | 2 ¸˚˙A mplifier noise + Q a ˆÂMEMS ˆf - - - - - fr f r 2Q V CO R b 2 S Ï V CO 2 ¸˚˙V CO noise T X X X X X V
.

(1.55)

Note that if the VCO's phase-noise is low (i.e. S Ï V CO π 2S thermo /F 2 l≠c ) and if the quality factor of the VCO is large compared to the one of the MEMS then the contribution of the VCO on the resolution of the FLL can be neglected. In fact, this conditions set a limit in the use of a FLL-architecture as it requires a VCO 1.3 Closed loop resonant frequency tracking with phase-noise far better than the MEMS resonator otherwise the VCO degrades the performance of the loop. However, the development of MEMS resonators for sensing application tends to fabricates small resonators with low output electrical signal. The resonator output phase-noise it thus generally larger than the ones of laboratory signal generators.

Assuming that the VCO phase-noise can be neglected, one can see that the PSD of the FLL phase-noise is then similar to the one of the self-oscillating loop:

S "f /f = S Ï MEMS+elec Ë f osc ˆÂMEMS ˆf (f osc ) È 2 .
(1.56)

Thus: ‡ fr = 1 ˆÂMEMS ˆf (f osc ) Û S Ï MEMS+elec 2T meas (FLL frequency resolution) = f r 2Q Û S Ï MEMS+elec 2T meas if H ft π g MEMS .
(1.57)

The two closed-architectures have theoretically the same mass-resolution. Measurements in [Levy 2010] also presents a resonator whose the frequency resolutions in SOL and FLL are similar.

E ect of the feed-through transmission in FLLs

The oscillation frequency range of the FLL can be controlled through the signal u and thus it is possible to prevent parasitic oscillations. If the resonator is embedded in an FLL architecture, parasitic oscillations should be prevented.

The e ect of the slope-reduction of the resonator phase-shift remains as decribed in subsection 1.1.2. Thus, if the feed-through transmission is large, the frequency resolution of the loop can be reduced.

Nonlinear frequency-locked loop

Similarly to SOL-architecture, the MEMS and the electronics of a FLL-architecture can introduce some nonlinearity. Besides the MEMS resonator, the first amplifier and the phase-comparator are likely to introduce sensible non-linearity depending on its technological implementation. Similarly to SOL-architecture, the design of such blocks should minimize the non-linearity with respect to the flicker noise in order to prevent any frequency resolution degradation.
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Dynamic range

In a frequency-locked loop, the dynamic range is limited by the frequency range of either the phase-comparator, the VCO or the MEMS. The dynamic range of the MEMS is similar to the one treated in the self-oscillating loop section. Whatever electronics is used (lab equipment or analog integrated circuit), the dynamic range of the phase comparator and the VCO can be of several orders of magnitude [datasheet c, datasheet a] [Calvo 2009]. The dynamic range of the system will be limited by the MEMS dynamic range.

Oscillating frequency measurement

In an FLL-architecture the oscillating frequency is straightforwardly measured with u. In the case of SOL-architecture, the measurement of f osc is not direct and di erent frequency measurement techniques with their pros/and cons are described in this section. The aim of this section is to evaluate architectures that can measure the frequency of an oscillator with an accuracy larger that the oscillator frequency noise (evaluated with the Allan deviation).

Period-counting

The most intuitive measurement technique consists in measuring the periods of the oscillator output signal. The oscillator output signal is connected to a 1-bit analogto-digital converter that is sampled with a reference clock (fig 1.16). One can then count how long lasts each period (between 2 successive raising edges) thanks to the reference clock signal. In order to reduce quantization noise due to the finite frequency of the reference clock, one should average several periods of the output signal of the oscillators. Moreover, the number of periods taken into account should be adapted to the desired measurement bandwidth (determined from the Allan deviation). A common measurement scheme consists measuring the time t 0 of the first raising edge. The number of periods N between t = 0 and t = T meas are counted and the time t N +1 of the following transition is then measured. The mean value of the signal frequency can be determined from:

1 f osc = t N +1 ≠ t 1 N .
(1.58)

The resolution of the period-counting represents the accuracy of the frequency measurement. The time resolution in this method is "t = 1/f CLK where f CLK is the frequency of the clock. The measurement resolution is determined from equation (1.58):

"f Èf Í = Ô 2 1 Nf CLK ÈT Í (period-counting resolution), (1.59)
where Èf Í and ÈT Í are the mean value of the signal's frequency and period respectively. The factor Ô 2 is due to the fact that two measurements are required to evaluate the oscillating frequency.

The period-counting architecture is simple to realize but it should include a high quality internal oscillator with a frequency (much) larger than the oscillator to be measured and a negligible Allan-deviation. MEMS resonators considered in this work have a resonance frequency up to 100 MHz and Allan-deviation around 10 ≠7 at 1 s making the proposed frequency measurement method valid using a commercial quartz crystal [datasheet b]. Indeed, the relative frequency variation that can be measured with a quartz is around 10 ≠9 .

Delay-based measurement

Another frequency measurement method consists in mixing the oscillator output signal with the same signal delayed by a time • (see figure 1.17). The phase-shift between the signal before and after the delay block is measured using an analog or a digital mixer and a low-pass filter. The frequency variations are converted into phase-shift variations through the delay block. By measuring the phase-di erence " (t) one can determine the oscillation frequency. The delay • can be implemented Harmonic detection of resonance with a "real" delay with a transfer function H delay = e j• or with a first order lowpass filter H delay = 1 1+jf /fc that introduces a phase-shift. A general expression of the signal to be measured is v (t) = v 0 sin [2fif osc t + Ï (t)] where v 0 is the amplitude of the signal. The oscillator signal delayed by • is expressed as.

Y _ ] _ [ v delay (t) = v 0 sin [2fif osc (t ≠ • ) + Ï (t ≠ • )] if H delay = e j• v delay (t) = v 0 sin[2fifosct+Ï(t≠ arctan(fosc/fc) 2fifosc )≠arctan( fosc fc )] Ô 1+(fosc/fc) 2 if H delay = 1 1+jfosc/fc . (1.60)
Thus, the phase-shift between v (t) and v delay (t) is:

Y _ ] _ [ " (t) = 2fif osc • + Ï (t) ≠ Ï (t ≠ • ) if H delay = e j• " (t) = arctan (f osc /f c ) + Ï (t) ≠ Ï 3 t ≠ arctan( fosc fc ) 2fifosc 4 if H delay = 1 1+jfosc/fc . (1.61)
The value of • must be chosen so that • < 1/f osc (i.e. the delay is lower than a period) and so that 2fif osc • is larger than the phase-noise (the introduced delay is measurable). The value of f c must be chosen to maximize the frequency-to-phase slope:

ˆ " noiseless ˆf (f c ) is mazimized∆ ˆ2 " noiseless ˆfc ˆf =0 ∆ 2 1 fc f 2 osc f 3 c ≠ 1 f 2 c 5 1 + 1 fosc fc 2 2 6 5 1 + 1 fosc fc 2 2 6 2 = 0 ∆ f c = f osc (1.62)
Finally, the phase-di erence is then filtered over a measurement time T meas (similarly to the period-counting measurement scheme).

This measurement scheme has shown good results and is commonly used according to the literature [START_REF] Albrecht | [END_REF], Bahreyni 2007, Rubiola 2008]. This method is interesting because the noise out of the resonator's bandwidth is filtered by the phase-comparator before the measurement.

PLL-based measurement

This measurement technique is often used to measure the phase-noise of a highfrequency signal source [Rubiola 2008]. It consists in creating another signal source (assumed noiseless) at the same frequency than the signal to measure. The phasedi erence between the signal sources is mixed to low-frequency similarly to the previously mentioned FLL. Finally the frequency of the oscillator (blue on the schematic) is measured with the input signal of the VCO. 

Conclusion

v osc =cos (2 πf osc t + φ i ) v ref =cos[2 f r v d f VCO t o ] v d =k d  i - o  f r + + + - Figure 1.18: PLL-based measurement
The analysis and the design of the PLL is very similar to the one of the FLL. The closed-loop transfer function between the input frequency and the measured frequency (i.e. at the VCO input) is:

H P LL = v d f osc = 2fik d j f + 2fik d f V CO , (1.63)
where k d is the gain of the phase-comparator and the proportional gain expressed in V/rad and f V CO is the VCO gain expressed in Hz/V. The frequency is properly measured because the gain of H P LL converges when f tends to zero. In practice, the phase-comparator and the VCO communicate with a computer: the phase-shift measurement operated by the phase-comparator is sent to the computer and the frequency of the VCO is given by the computer (the proportional gain is implemented by the computer program). The communication between the equipments and the computer introduces some delay in the loop and can make the system unstable.

The PLL-based measurement technique can be employed to track the very-high frequency signal sources [Rubiola 2008]. It however requires a phase-comparator and a VCO and therefore shows no interest compared to FLL architectures.

Conclusion

In this chapter, a generic model of MEMS resonators was given. It includes the mechanical response of the device and its electromechanical transduction. The main phenomena that limit the resonator performance were also described: the noise introduced by the device and feed-through parasitics.

Di erent methods to track the resonance frequency of MEMS resonators were also described. They are divided into two categories: open-loop and closed-loop architectures. Open-loop measurements are very limited in opposition to closed-loop measurements that can achieve good frequency resolution and dynamic range. There are two main closed-loop measurement techniques: self-oscillating loops and frequency locked-loops. The former is cheaper and more compact to fabricate but its frequency
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Harmonic detection of resonance resolution can be limited due to distortions and to MEMS feed-through transmission. Frequency locked-loops can overcome these issues but they are complex and expansive. Table 1.1 presents a general comparison of di erent architectures for the harmonic detection of resonance. In the following chapters, we concentrate our work on oscillator design using a self-oscillating loop architecture because SOLs are more compact. This architecture thus seems the most adequate when the sensors (i.e. MEMS + frequency tracking) are deployed in array such as for mass spectrometry. Finally, methods to measure the oscillation frequency were presented and compared in terms of complexity and performances.

Based on the architecture description of the self-oscillating loop, it is now possible to assess for a given MEMS resonator the mass resolution of the sensor. The following chapter describes and compares in more details di erent topologies of MEMS resonator and their connection to the electronic circuit. A theoretical assessment of the best achievable mass resolution is calculated for each MEMS resonator.

Conclusion

Open-loop measurement Close-loop measurement 

Various MEMS resonators topologies and their readout electronics

In this chapter, the mechanical behavior of the resonator is first described. Di erent electromechanical transduction techniques are then explained for four selected resonator topologies. The equivalent electrical model of those resonators are also presented and discussed. In a third section, the MEMS-to-electronics connection is modeled. The impact on the connection losses and the feed-through described in the chapter 1 are evaluated. Based on the models presented in this chapter, a theoretical comparison of the MEMS resonators for mass sensing applications is proposed.

Finally the impact of implementing MEMS resonator in arrays is evaluated and discussed. The phase-noise improvement of summing the response of each resonator in the array is assessed.

The mechanical resonator

The most popular geometries for precise mass measurement are beams with high aspect ratios [Jensen 2008, Yang 2006, Roukes 2007]. They have low mass, enhancing the mass resolution, and low sti ness simplifying the resonance frequency measurement.

Consider a beam with length L, width b, and thickness h as depicted on fig. MEMS resonators and their readout electronics of the beam. The beam is submitted to a force per unit length F l (t) in the (OY ) axis direction (i.e. in-plane motion). The displacement  w (x, t) of the beam is governed by the one-dimension Euler-Bernoulli equation: Equation (2.1) can be solved using the Galerkin procedure:

flhb ˆ2 w(x, t) ˆt2 + › ˆw(x, t) ˆt + T (w) ˆ2 w(x, t) ˆx2 + c beam I ˆ4 w(x, t) ˆx4 = F l (t) , ( 2 
w(x, t) = OE ÿ n=1 a n (t) n (x) (modal decomposition), (2.2) 
where a n (t) in meters describes the frequency response of the beam and n (x) without units is the n th eigenmode of the beam associated to the boundary conditions. Appendix B describes the behavior of the beam when all of the modes are considered.

In this manuscript, only the first mode is taken into account while the others are neglected. Consequently, the subscripts n are omitted in the rest of the manuscript. From the appendix B and in case of small mechanical displacement compared to b1 , the complex amplitude of the function w

(t) = a 1 (t) max 0AExAEL [ 1 (x)] (that is w (t) = a 1 (t) 1 (L/2) for a clamped-clamped beam, w (t) = a 1 (t) 1 (L)
for a cantilever beam), denoted w (f ) is given by:

H mecha (f ) = w (f ) F l (f ) = ÷ A L m (2fif r ) 2 1 1 + j f Qfr ≠ 1 f fr 2 2 , (2.3)
where ÷ A is equal to 1.32 for a clamped-clamped beams, to 0.53 for a cantilever beams (more details are given in the appendix B).

2.2 MEMS topologies to make portable, low-power, mass sensors

m = m beam + Ÿ mass m, m
is the mass in kg deposited on to the beam, for example when using it as a mass sensor, Ÿ mass is a normalization coe cient that depends on the spacial localization of m (e.g. punctual or uniform); see appendix B,

f r = 1 2fi Ò c beam I⁄ 4 mL 3
is the resonance frequency of the beam in Hz, ⁄ is equal to 4.73 for clamped-clamped beams, to 1.88 for cantilever beams (see appendix B),

Q = 2fifrm ›L
is the dimensionless quality factor of the beam.

Note that in the case of a small mass m is added to the beam2 , the resonance frequency becomes:

f m r = 1 2fi Û c beam I⁄ 4 mL 3 ¥ f 0 r A 1 ≠ Ÿ mass m 2m beam B , (2.4)
where

f 0 r = 1 2fi Ò c beam I⁄ 4
m beam L 3 is the unloaded resonance frequency of the beam. From the fluctuation-dissipation theorem, the beam is submitted to mechanical noise [Cleland 2002]. It can be modelled by a white noise source acting as a force per unit of length on the beam:

S thermo = 4k B T mf r ÷ 2 A L 2 Q (thermomechanical noise).
(2.5)

MEMS topologies to make portable, low-power, mass sensors

The literature reports mass sensing experiments with remarkable mass resolution below or around the zeptogram (10 ≠21 g) [Jensen 2008, Yang 2006, Ekinci 2004a].

To achieve these excellent mass measurements, NEMS resonators were designed based on a magnetomotive transduction [Yang 2006, Ekinci 2004a] or field emission for carbon nanotubes resonator types [Jensen 2008]. However, these measurements use complex setups and are operated in vacuum.

On the other hand, this manuscript focuses on portable, low-power sensors using on-chip electromechanical transduction. Moreover, with the experience and the culture of Leti, the MEMS resonators should be VLSI-(very large scale integration) compatible so that they can be fabricated on 200 mm-wafers. These constraints deteriorate the achievable mass resolution but make these studies more relevant for commercial applications. For these reasons, we have chosen not to consider neither Chapter 2

MEMS resonators and their readout electronics the magnetomotive [Yang 2006, Ekinci 2004a], piezoshaker [He 2008], or thermoelastic actuation scheme [Bargatin 2007], nor, the optical detection scheme.

v act Y inP -Y inN Z MEMS v MEMS v elec 0°1 80°v act Y inP Y inN v act /2 -v act /2 Z MEMS v MEMS v elec If Y inP and Y inN are negligible v act Y in Y ft Z MEMS v MEMS v elec H ft Feed-through MEMS H connec v act v MEMS v elec

Single actuation

Differential actuation

C output C output C output
Four MEMS topologies are studied in depth. The first one is a clamped-clamped beam with electrostatic actuation and capacitive detection. The second and third MEMS topologies are a clamped-clamped beam and a so-called "crossbeam" with electrostatic actuation and piezoresistive detection. The fourth resonator uses the piezoelectric properties of AlN as its actuation and detection mechanism.

The aim of this section is therefore to provide an electromechanical description of each resonator but also to determine a common electrical model. It will be shown that all these resonators can be described with the electrical schematics depicted in the figure 2.2. The output voltage of the resonators is then equal to

v elec = v MEMS 1 + j2fif Z MEMS C output , (2.6)
where C output is the capacitance at the output of the resonator. Note that in eq.

(2.6) the feed-through was neglected, i.e.

Y ft π v MEMS / (v act Z MEMS ) for a single actuation or Y inP ≠ Y inN π 2v MEMS / (v act Z MEMS )
for a di erential actuation. The transfer function of the intrinsic feed-through can also be calculated as:

H ft = Y ] [ Y ft Z MEMS 1+Y fb Z MEMS for single-sided actuation (Y inP ≠Y inN )Z MEMS /2 1+(Y inP +Y inN )Z MEMS for di erential actuation . (2.7)
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Clamped-clamped beam with capacitive detection

Electrostatic actuation

Consider two electrodes facing each-other (fig. 2.3), one of which is rigid, whereas the other can bend. The two electrodes have a length L and a thickness h. x is the coordinate along the length of the electrodes and g ≠ w (x, t) is the distance between the two electrodes at point x. If a voltage V (t) is applied between the two electrodes, the resulting electrostatic per unit of length is:

F l (x, t) = Á 0 h 2 [g ≠ w (x, t)] 2 V (t) 2 .
(2.8)

(2.8) simplifies to F l (t) = Á 0 h 2g 2 V (t) 2
, when it is assumed that w (x, t) π g. This assumption is obviously only correct for small displacement of the beam and sets an upper limit to the actuation force F l . Note however that the voltage-to-force conversion is nonlinear.

To drive at resonance the MEMS, one can create a harmonic force F l (t) applying a sinusoidal voltage:

V (t) = V DC + v act sin (2fif t) .
(2.9)

Thus the resulting expression of F l (t) is:

F l (t) = Á 0 h g 2 C V 2 DC 2 + v 2 act 4 + V DC v act sin (2fif t) ≠ v 2 act 4 sin (4fif t) D .
(2.10) F l (t) has three frequency components: a DC one, the second one at f and the third one at 2f . The MEMS resonator is mainly sensitive to the frequencies close to f r and thus if f ¥ f r , the complex amplitude of F l (t) can be approximated as:

F l (f ) = Á 0 h g 2 V DC v act (electrostatic force).
(2.11)
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The electrostatic force increases when the gap between the two electrodes is reduced. This feature has made this transduction scheme very popular in MEMS technology where gaps of 100 nm can be achieved [Verd 2005a, Arcamone 2009, Lopez 2009b, Colinet 2010, Lee 2009b].

MEMS resonator with capacitive detection

Capacitive detection consists in measuring the variation of capacitance between a proof mass (here, the vibrating beam) and a detection electrode (fig. 2.3). As the beam moves, the capacitance varies and thus the displacement of the beam can be determined from the electrical measurement. Capacitive detection is very popular in MEMS devices as it can be technologically implemented with ease and it is CMOS-compatible (it requires no exotic materials).

The capacitance C (t) is defined as:

C (t) = ˆL 0 Á 0 h g ≠ w (x, t) dx ¥ ˆL 0 Á 0 h g dx + ˆL 0 Á 0 h g w (x, t) g dx ¥ C 0 C 1 + ÷ D w (t) g D (capacitive detection), (2.12)
where Á 0 is the permittivity of the air, C 0 = Á 0 hL g and ÷ D = 0.52 for a clampedclamped beam. The quantity of interest is:

C (t) = C 0 ÷ D w (t)
g (capacitive detection), (2.13) which reflects the time varying part of the capacitance related to the mechanical motion.

Equivalent electrical model of the clamped-clamped beam with capacitive detection

In practice, it turns out that the quantity of interest C is generally negligible compared to C 0 when using only a fixed electrode and the mechanical resonance of the MEMS device is deteriorated by a large feed-through. In order to reduce the input-to-output capacitive coupling, a common solution found in the literature consists in implementing a second fixed-electrode. The first fixed electrode actuates the beam while the second electrode is employed to detect the mechanical displacement (fig. 2.4)3 , so that actuation and detection are decoupled. From the notations of figure 2.4, the electrostatic force applied on the beam is given by eq. (2.11) if v MEMS π v act . This architecture is electrically modeled by the left schematic of figure 2.2. If C (t) is small compared to C 0 , it can be assumed that Y in = j2fif C 0 . Based on the Thevenin's theorem [START_REF] Thevenin | Sur un nouveau théorème d'électricité dynamique [On a new theorem of dynamic electricity[END_REF]], the voltage v MEMS of figure 2.2 is determined when there is no loading at the resonators output. The current i (t) that flows into the detection electrode is zero:

i (t) = d dt [[C 0 ≠ C (t)] [V DC ≠ v MEMS (t)]] = 0 ∆ dv MEMS (t) dt = V DC d dt C C (t) C 0 D (if C (t) π C 0 and v MEMS (t) π V DC ).
(2.14)

The displacement-to-voltage transfer function is then:

H det (f ) = v MEMS (f ) w (f ) = ÷ D V DC g (capacitive detection).
(2.15)

The output impedance of the capacitive detection is determined when w (t) = 0 and the electrodes other than the detection electrodes are set to the ground. Based on the Thevenin's theorem, the output impedance is the equivalent impedance of C 0 .

The architecture benefits from using a single-sided actuation which simplifies the electronic circuit. Moreover only a DC voltage is applied to the moving beam: using a large DC voltage will not interfere with the electronic circuit. It is particularly useful with recent CMOS technologies that have (very) limited maximum voltages (typically around 1 V). On the other hand, the lead access from the electronic circuit to the MEMS resonator can create some coupling between the actuation node and the detection node and thus create some feed-through (a more detailed analysis of Chapter 2
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Σ 1 L g b g h g ΔL g V g i X O
Figure 2.5: Study case of piezoresistivity the MEMS-to-electronics coupling will be made in section 2.3). Moreover, it should be mentioned that the remaining intrinsic feed-through is negligible compared to a 1-port resonator although it is not totally canceled. The feed-through can be evaluated using electromagnetic finite element simulations.

Clamped-clamped beam with piezoresistive detection

Piezoresistive detection

A piezoresistive material sees its resistance varying with the stress applied on the material. Consider a beam with a length L g , a width b g and a thickness h g (fig.

2.5), made of a piezoresistive material with cubic symmetry, such as silicon crystal. The resistance at rest is equal to R g0 = g0 L g / (b g h g ), where g0 is the resistivity of the isotropic material. If a stress along (OX) is applied to the beam, its resistance varies in the following manner [Bao 2000]:

R g R g0 = L g L g ≠ b g b g ≠ h g h g + g0 g0 , (2.16)
where R g , L g , b g , h g represent respectively the variation of the resistance, the length, width and thickness of the beam. g0 is the resistivity variation of the beam that changes if the beam is submitted to a stress. From [Bao 2000], the relative resistance variation simplifies to:

R g R g0 = " beam L g L g , (2.17)
where " beam is the so-called dimensionless gauge factor of the single crystal material.

Piezoresistive detection makes the fabrication of the resonator more complex as it requires the resonator or a layer of it to be made of a piezoresistive material. Moreover, if the layer is a piezoresistive crystal, the doping level of the layer should be controlled. Finally the detection introduces some white and flicker noise that can limit the performance of this detection scheme. Piezoresistive readout introduces some white and flicker voltage noise with the following power spectral density in V 2 /Hz:

S P ZR = 4k B T R g ¸˚˙w hite noise + Ÿ H V 2 g DL g b g h g f ¸˚˙f icker noise (piezoresistive noise), (2.18)
where k B and T are the Boltzmann constant and the temperature. R g , V g and D are the resistance, the voltage across the beam and the doping level of the resistive beam. Ÿ H (without units) is the Hooge noise coe cient [Harkey 2000].

Electrical model of the resonator

Consider a clamped-clamped beam as depicted on figure 2.6. The electrostatic force per unit of length applied on the beam is again (see eq. (2.11)):

F l (f ) = F lP (f ) ≠ F lN (f ) = Á 0 h g 2 V DC v act (if w (x, t) π g). (2.19)
The resistance of the beam is denoted R. When the beam is subject to a strain L/L, its resistance varies. Assuming the curvature of the beam is small, we have

L L = 1 2L ´L 0 1 ˆw ˆx 2 2 dx (see appendix B) and thus: R R (t) = " beam 2L ˆL 0 A ˆw ˆx B 2 dx = " beam 2 ÷ D C w (t) L D 2 , (2.20)
where ÷ D = 0.52. With the electrical connection of figure 2.6, the output voltage

V MEMS is: V MEMS (t) = ≠V S " beam 4 ÷ D C w (t) L D 2
(nanowire detection).

(2.21)
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X  w  x ,t  g L a L h x b O l 1 b g L g

Negative electrode

Positive electrode The detection is clearly nonlinear and the frequency of V MEMS (t) is twice the one of w (t). Nevertheless, if the actuation voltage is at the frequency f act and the electrical response of the resonator is measured at the frequency 2f act ; it is possible to acquire the open-loop response of the resonator. Finally, the output impedance of the Thevenin's model is equal to

Beam

R MEMS = R/2.
An interesting property of piezoresistive detection is that the output impedance R MEMS can be very small compared the equivalent input impedance 1/Y inN or 1/Y inP and thus the resonator's intrinsic feed-through is largely reduced compared to resonators with a capacitive detection (see eq. (2.7)).

Crossbeam with piezoresistive detection

The crossbeam topology is realized with two piezoresistive gauges placed perpendicularly to the beam close to the anchor (fig. 2.7). The resistance of the gauges is modulated when a perpendicular mechanical stress is applied at x = 0. The stress at x = 0 is given by [Labarthe 2010]:

(x = 0, t) = c beam I hb g C ˆ3 w ˆx3 1 0 + , t 2 ≠ ˆ3 w ˆx3 1 0 ≠ , t 2 D = ≠ c beam I÷ D L 3 hb g w (t) , (2.22)
where ÷ D = 49. The corresponding resistance variation of one gauge is:

R R (t) = " gauge I÷ D L 3 hb g w (t) , (2.23)
assuming the gauges and the beams have the same Young's modulus. With the electrical connections of figure 2.8, the voltage V MEMS (t) is equal to:

V MEMS (t) = V beam0 + " gauge 12 b 3 b g L 3 ÷ D V S w (t) (crossbeam detection). (2.24) 48
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The output impedance of the Thevenin's model is equal to R MEMS = R/2 where R is the resistance of the gauge at rest.

The crossbeam has a linear detection with a low output impedance. The following sections will show that these properties reduce the connection losses which improves the signal-to-noise ratio at the resonator output.

Piezoelectric cantilever

Piezoelectric actuation

Piezoelectricity is a reversible phenomenon that converts a mechanical stress into a voltage and vice versa. This phenomenon only exists in particular crystals such as AlN, PZT... The piezoelectric e ect is governed by [Sta 1988]:

{ } = {c} {¸} ≠ {e} {E} , (2.25)
where:

{ } is the (6 ◊ 6) stress tensor in Pa, {c} is the (6 ◊ 6) elastic sti ness constant in Pa,

{¸}

is the (6 ◊ 6) dimensionless strain tensor, {e} is the (6 ◊ 6) piezoelectric constant matrix in C/m , {E} is the electric field (a 3 components vector) in V/m. Piezoelectric actuation of a beam can be achieved by stacking several layers of material, as depicted in figure 2.9, and applying an electric field across the piezoelectric material and so that the beam is subject to a bending moment. The technological stack is composed of two electrodes with a piezoelectric layer in-between, but also an elastic layer to emphasize the deflection. It is assumed that the piezoelectric behavior is governed by the e ZX coe cient or also referred as e 31 coe cient in the literature (all other coordinates of {e} are neglected): when a voltage is applied in the (OZ)-direction to an infinitesimal volume dx◊b◊dz of the piezoelectric layer, it creates a stress in the (OX)-direction. The resulting moment in the (OY ) direction is then [Brissaud 2003, Ivaldi 2011b]:

M = ˆz=h P ZE +h eb +hs/2≠z 0 z=h eb +hs/2≠z 0 ≠bze ZX E Z (x, t) dz = ≠b 2h eb + h s ≠ 2z 0 2 e ZX v act (t) , (2.26)
where v act (t) is the voltage applied on the piezoelectric layer and z 0 is the position of the neutral line defined in [Brissaud 2003].

To homogenize the calculation with respect to the other resonators, it may be useful to define an equivalent force per unit of length. It determines the equivalent force 

fl eq bh ˆ2 w (x, t) ˆt2 + › ˆw (x, t) ˆt + r eq ˆ4 w (x, t) ˆx4 = ˆ2M ˆx2 , (2.27)
where fl eq = (fl s h s + fl eb h eb + fl P ZE h P ZE + fl et h et ) /h is the equivalent beam density, h is the total thickness of the beam and r eq is the equivalent beam rigidity [Brissaud 2003]. The discontinuity of the applied voltage at x = L creates a momentum on beam. Eq. (2.27) can be solved using the Galerkin's method [Ivaldi 2011b]:

mẅ (t) + m2fif r Q ẇ (t) + m (2fif r ) 2 w (t) = ÷ A b 2h eb + h s ≠ 2z 0 2L e ZX v act (t) , (2.28)
where the resonance frequency of the beam is expressed as: f r = Ò r eq b⁄ 4 / (mL 3 )/ (2fi). ÷ A = 5.5. The corresponding force per unit of length is:

F l (t) = b 2h eb + h s ≠ 2z 0 2L 2 e 31 v act (t) (piezoelectric actuation), (2.29)
Piezoelectric actuation does not consume much and has an important actuation gain, defined as |F l /v act | (that will be highlighted in section 2.4) that makes piezoelectric beam popular for applications such as low-power switches and energy harvesting [START_REF] Sinha | [END_REF], Chapuis 2007[START_REF] Defosseux | [END_REF]]. The use of piezoelectric cantilevers for mass sensing in liquid environment has also been studied [Maraldo 2007]. The fabrication of such MEMS resonators is however di cult, due to the complex technological stack required, making piezoelectric resonators uncommon in the literature [Masmanidis 2007, Karabalin 2009, Ivaldi 2011b].

Piezoelectric detection

Piezoelectric detection is based on the indirect piezoelectricity e ect, that is the creation of charges when a piezoelectric material is subject to a mechanical dis-2.2 MEMS topologies to make portable, low-power, mass sensors placement [Sta 1988]:

{D} = {e} {¸} + {Á} {E} , (2.30)
where:

{D} is the (3 ◊ 3) electrical displacement in C/m , {Á}
is the (3 ◊ 3) permittivity of the piezoelectric crystal in F/m. Consider a piezoelectric crystal, where only the e 31 is the dominant component of {e} and submitted an electric field in the (OZ)-direction. Equation (2.30) becomes:

D Z = e ZX ¸X + Á P ZE E Z .
(2.31)

For the piezoelectric cantilever depicted in figures 2.9 and 2.10, the current that flows into the piezoelectric layer has the following expression:

i (t) = b ˆL 0 dD Z dt (x, t) dx = b ˆL 0 C e ZX d¸X dt (x, t) + Á P ZE h P ZE dV dt (t) D dx.
(2.32)

From [Brissaud 2003], one can find that:

¸X = (h eb + h s /2 ≠ z 0 ) ˆ2 w ˆx2 , thus: i (t) = e ZX b L (h eb + h s /2 ≠ z 0 ) ÷ D dw dt (t) ¸˚˙m otional current + C P ZE dV dt (t) ¸˚˙f eed-through current , ( 2.33) 
where C P ZE = Á P ZE bL h P ZE is the AlN-layer capacitance and ÷ D = 1.4.

Electrical model of the resonator

As an 1-port resonator, a piezoelectric cantilever can be electrically described with the BVD model [Van Dyke 1928] depicted in figure 2.11. It consists of a static capacitance (corresponding to C P ZE ) in parallel with an complex impedance describing the mechanical behavior of the beam. The latter impedance also called motional impedance is composed of a capacitance C m , a resistance R m and an inductance L m in series. At the resonance frequency, the impedance of the capacitance and the inductance cancel each other. The remaining element of the motion impedance is the resistance describing the in-phase relation between the actuation voltage and the motion current.

An electrical model of the resonance similar to that of the other resonators can be obtained by using: Usually, the input-to-output impedance is much smaller than R m . As a result, the resonance signal is very small compared to the feed-through created by C P ZE . To circumvent this issue, one should design a 2-ports resonator as discussed previously. However, this approach is quite delicate due to the complex technological stack required to fabricate piezoelectric cantilevers4 . The feed-through can however be reduced by implementing the resonator in a bridge architecture (fig. 2.12). The dummy component can be either an identical but unreleased resonator or a variable capacitance and resistance with an admittance equal to Y ft at the resonance. The resonator and the dummy elements are actuated with a signal in counter-phase so that the feed-through is canceled.

Z MEMS = R m = 2fif r m/Q e 2 ZX 1 b L 2 2 (h eb + h s /2 ≠ z 0 ) 2 ÷ D ÷ A . ( 2 

Conclusion

We have presented various actuation and detection transduction techniques that are low-power and CMOS compatible. Table 2.1 gives a summary of the expressions of the parameters of the electrical model associated with each MEMS resonator. The clamped-clamped beam with capacitive detection is the simplest one to fabricate among the four resonators but su ers from a high sensitivity to feed-through and a large output impedance. Piezoresistive detection provides a lower output impedance, however the associated fabrication process requires a piezoresistive material (that can be doped silicon and in that case the fabrication process is not made more complex except one should have a good control of the doping level). Note that piezoresistive detection also introduces some noise and that can deteriorate the signal-to-noise ratio of the resonator. Finally, piezoelectric cantilevers require a 2.3 Interconnections between the MEMS resonator and the readout electronics

Single-sided actuation Y in Y ft Z MEMS Clamped-clamped beam with capacitive detection j2fif C 0 π j2fif C 0 1 j2fif C 0 Clamped-clamped beam with piezoresistive detection 0 j2fif C 0 g0 L 2hb
Crossbeam with piezoresistive detection

0 j2fif C 0 g0 Lg 2hbg Piezoelectric cantilever 0 j2fif C P ZE R m Di erential actuation Y inP Y inN Z MEMS Clamped-clamped beam with piezoresistive detection j2fif C 0 j2fif C 0 g0 L 2hb
Crossbeam with piezoresistive detection

j2fif C 0 j2fif C 0 g0 Lg 2hbg
Table 2.1: Electric parameters of the MEMS resonators.

complex technological process but provide a linear actuation and detection transduction with high gain. The performance of piezoelectric cantilevers is also limited by intrinsic feed-through issues.

The di erent dimensions of all these resonators and the peculiarities of each actuation and detection scheme make their comparison complex. However, after describing e ects of the MEMS-to-electronics interconnection and based on the system architectures of the chapter 1, section 2.4 intends to compare the performance of these di erent resonators and their limitations.

Interconnections between the MEMS resonator and the readout electronics

The integration of MEMS resonators with their readout electronics is crucial to reduce the MEMS-to-electronics connection losses and the feed-through. These characteristics must be considered in the design of the oscillator as they can degrade the resolution of the loop or make the implementation of the self-oscillating loop more complex. Connection losses can attenuate the MEMS output signal and thus emphasize the electronic noise (see subsection 1. the resonator described in section 2.2. In subsection 2.3.1, the connection losses are determined using simple models of the electronics and the MEMS-to-electronic connection. The study highlights the impact of the connections that limit the resonator output signal and the signal-to-noise ratio at the output of the readout electronics. Each connection implementation is then described in a more realistic way. Finally, heterodyne architectures are described and their limitations are discussed.

Basic model of the MEMS-to-electronics connection losses

Presentation of a basic electrical model

The simplest approach to evaluate the connection losses consists in modeling the connections by a grounded capacitance C connec . The equivalent impedance of C connec is compared to the MEMS output impedance to determine the connection losses (fig 2.14):

H connec = v elec v MEMS = 1 1 + j2fif Z MEMS C output . (2.35)
The connection losses are low if the MEMS output impedance is low compared to the equivalent impedance of the connection capacitance (corresponding to a low connection capacitance).

There are 3 major MEMS-to-electronics connection scheme: 2D co-integration, 3D co-integration and wire-bonding (fig. 2.13). Stand-alone resonators are economically interesting because the MEMS fabrication process is simple and decouples the fabrication yield of MEMS and ASIC, thereby reducing the process development of 54 2.3 Interconnections between the MEMS resonator and the readout electronics the device. However the connection capacitance between the MEMS and its associated electronics is generally larger than 10 pF, which results in a decrease of the MEMS output signal and can limit the frequency resolution of the sensor.

C connec M A I pol V dd MEMS v elec C connec C elec v elec v MEMS Z MEMS MEMS =C output
On the other hand, integrating the MEMS and its electronic circuit on the same wafer can reduce the MEMS-to-electronics connection capacitance to as little as 1 fF (fig. 2.13). The fabrication process however is much more complex than for standalone MEMS. The CMOS process flow and the MEMS design must be adapted in order to be compatible: most of the foundries refuse to do such an adjustment due to the inherent cost of associated technological developments.

3D co-integration may allow to overcome the former drawbacks as the fabrication of the electronics and of the MEMS are separated, still ensuring low MEMS-to-CMOS connection capacitance. A typical value of 1 fF is taken in this manuscript for such 3D-integration. The CMOS circuit can be realized using a standard process flow and can even be tested separately from the MEMS once the CMOS fabrication steps are completed. After that, another SOI-wafer is bonded on top of the CMOS wafer.

The MEMS structural material is usually a mono-crystalline silicon layer that is connected to the back-end metal layers of the CMOS circuit.

Simple electrical model of the first amplification stage in an ASIC and the corresponding connection losses

A trade-o must be found regarding the design of the first transistor of the CMOS circuit (fig. 2.14): if the transistor is small, the transistor generates a large noise.

On the other hand, a large transistor has an important input capacitance and thus increases the MEMS-to-electronics losses. From the Berkeley level 1 model of the transistors [Sansen 2006], it is possible to determine the optimal transistor dimensions and the corresponding optimal power consumption. The Gate-Source capacitance is expressed as C gs = 2 3 C ox W A L A where C ox , W A , L A are respectively the oxide capacitance per unit of area, the width and length of the transistor. It results in a connection loss of: Note that in (2.36), the e ect of the Gate-Drain capacitance was neglected which is correct only if the gain of the amplifier and the transistor length are small. This assumption should be verified for the considered CMOS design kit and the amplifier topology. The PSD of the electronic noise expressed at the input of the transistor is (if only the white noise is considered):

H connec = 1 1 + j2fif osc Z MEMS 1 C connec + 2 3 C ox W A L A 2 . ( 2 
S M A = 8k B T L A 3µ N C ox W A V dssat , (2.37)
where µ N and V dssat are the mobility and the Drain-Source saturation voltage of the transistor, respectively. The corresponding signal-to-noise ratio expressed at the transistor's input is:

SN R = v 2 MEMS T meas S MEMS + 8k B T L A 3µ N CoxW A V dssat - - -1 + j2fif osc Z MEMS 1 C connec + 2 3 C ox W A L A 2- - - 2 .
(2.38) 56
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In order to optimize the SN R, the second term in the denominator should be minimized:

8k B T L A 3µ N C ox W A V dssat - - - -1 + j2fif osc Z MEMS 3 C connec + 2 3 C ox W A L A 4- - - - 2 = 8k B T L 2 A 3µ N C ox V dssat ¸˚˙ő nly depends on L A - - -1 + j2fif osc Z MEMS 1 C connec + 2 3 C ox W A L A 2- - - 2 W A L A ¸˚˙ő nly depends on W A L A (2.

39)

L A should therefore be taken to its minimum value L tech imposed by the CMOS design rules while the transistor active area W A L tech should be optimized:

W A = Y ] [ 3 Ô 1+(2fifoscCconnecR MEMS ) 2 4fifoscCoxR MEMS L tech if Z MEMS = R MEMS 3(Cconnec+2C MEMS ) 2CoxL tech if Z MEMS = 1 j2fifoscC MEMS .
(2.40)

It is also quite common to analyze the power consumption of the circuit

P amp = V dd µ N Cox 2 W L V 2 dssat
, where V dd is the supply voltage of the CMOS technology. Based on the HCMOS9 design kit from ST Microelectronics, the figure 2.15 presents the evolution of the amplifier power consumption for the optimal dimensions (W A given by (2.40) and L A = L tech ) versus the equivalent MEMS output capacitance i.e 1/ (2fif osc Z MEMS ). If the MEMS output impedance is purely capacitive then the results presented in fig. 2.15 are independant of f osc . Otherwise, the equivalent output capacitance should be evaluated with respect to f osc . From fig. 2.15, we see that in some cases, the optimal power consumption is too large for practical application. Figure 2.16 depicts the corresponding MEMS-to-electronics connection losses versus the equivalent MEMS output capacitance. In the figure, the blue, green and red regions represent the typical range of the output capacitance of the capacitive, piezoelectric and crossbeam detection scheme.

Interconnection schemes

The previous study highlights the interest of 2D-or 3D-integration of the MEMS and its associated electronics especially for capacitively-transduced resonators. The following subsections aim at refining the model of the connection losses in the case of wire-bonding and 2D or 3D co-integration. The technological flow associated with each connection scheme is described, as well as their associated equivalent electrical models.

Stand alone MEMS connected to the electronics by wire bonding

One of the simplest methods to fabricate MEMS resonators is to start from a SOIwafer 5 . These resonators are defined using only the top silicon layer. The geometry of the resonator is realized using a lithography step and an anisotropic etching. The resonator is then released using the BOX (buried oxide) layer of the SOI-wafer as a sacrificial layer and an isotropic wet or gaseous etching (fig. 2.17). See for example [START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF]].

The resonator is connected to the electronics via pads. Such pads are large conductive areas in doped silicon or in metal on which a thin wire (named "bonding wire") can be welded and its other extremity connected to the electronics. For the wire to be properly bonded, the pad area is usually taken to 100 ◊ 100 µm 2 or more. In the case when the silicon is not very much doped, so as to improve piezoresistive detection of the MEMS resonator, the resistance of the path between the pads and the MEMS electrodes can be large. To reduce the corresponding resistances, it is then common to add a metal layer on top of the pads and on the paths from the pads to the MEMS electrodes. Knowing the area of the pads and of the paths, it is possible to determine a capacitance C BOX of the BOX layer (fig. 2.17). Generally, the bottom face of the silicon bulk is connected to the ground and a resistance R sub from the BOX/silicon bulk interface to the ground should be included in the electrical model. A resistance R lat can be defined between the two capacitance C BOX corresponding to the actuation and detection pads. Finally the bonding wires can act as transmission and reception antennas, and be modeled by an inductance L bonding with a mutual coe cient M bonding between each of them. L bonding and M bonding depend on the length of the wires, the distance and the angle between each of them.

In di erential actuation schemes, the two actuation pads and paths are symmetrically designed (fig. 2.18). The voltages on each actuation pad are in counter-phase so that their feed-through contribution cancel each other at the MEMS output. Note that it is not necessary for the resonator to have a di erential actuation as the feed-through analyzed in this section is created from the MEMS-to-electronics access and not in the resonator itself. In the case of a resonator with single-sided actuation (such as in a clamped-clamped beam with capacitive detection of subsection 2.2.1) Another technique to reduce feed-through is to use a second layer of metal. The actuation path is then realized using the top layer of metal while the lower metal layer is grounded (fig. 2.19). The latter metal layer acts like a shield preventing the actuation voltage from being transmitted to the substrate. This however increases the capacitance C ox between the actuation path and the ground because the oxide layer between metal layers tends to be thin in CMOS processes. The capacitance can be increased by a factor two to three compared to the BOX-capacitance. Due to fringing e ects, a capacitance C edge between the actuation path and the bulk remains but it is reduced by two or three orders of magnitude. The capacitance C ox can be reduced by increasing the oxide thickness or adding a third metal layer when technologically possible (in this case the second layer is filled with an oxide layer and increases the distance between the metal 1 and 3).

For the connection scheme depicted in figure 2.17, the expression of v elec can be largely simplified if the e ect of the inductance is neglected and if it is assumed that R lat π R sub (i.e. the distance between the actuation and the detection paths 2.3 Interconnections between the MEMS resonator and the readout electronics is small compared to the thickness of the bulk) :

v elec = ! 1 + j2fif R lat C BOX 2 " v MEMS + j2fif Z MEMS C BOX 2 v act 1 + j2fif ! R lat C BOX 2 + Z MEMS C BOX 2 + Z MEMS C elec " ≠ (2fif ) 2 R lat Z MEMS C BOX C elec ¥ v MEMS + Z MEMS R lat v act 1 + Z MEMS R lat 1 1 + 2 C elec C BOX 2 + j2fif Z MEMS C elec if 2fif ∫ 2 R lat C BOX .
(2.41)

Note that in the case of a di erential actuation, a term R lat /R lat is factored to v act in eq. ( 2.41) where R lat is the fabrication mismatch in R lat or is a result of a mismatch in the di erential actuation. In the case of the implementation with a shielded actuation, the term C BOX is factored to v act in the first line of eq. ( 2.41) is replaced by C edge . The feed-through is thus reduced by C edge /C BOX .

The signal-to-background ratio SBR can be expressed as:

SBR = - - - - - g MEMS H connec H ft - - - - - = Y _ _ _ ] _ _ _ [ g MEMS R lat |Z MEMS |
for a single-sided actuation

g MEMS R lat |Z MEMS | R lat R lat for a di erential actuation g MEMS R lat |Z MEMS | C BOX C edge
for a shielded actuation .

(2.42) If g MEMS is smaller than 1, it is clear that a feed-through reduction technique is necessary to observe properly the resonance of the resonator.

Figure 2.20 presents, for di erent integration schemes, the evolution of |H connec | and of the SBR versus the MEMS resonance frequency. The parameters taken for the simulations are given in table 2.2 and the MEMS parameters are those of the crossbeam resonator experimentally characterized in chapter 3). In the case of di erential actuation, 100 Monte-Carlo simulations were made with a 1%-standard deviation on the dimensions except for the bonding wire length and the mutual inductance where a 10%-standard deviation was taken (it is considered that the bonding is less reproducible). The SBR represented in figure 2.20 corresponds to the mean value of the SBR obtained through these simulations. In the case of shielded actuation, C egde /C BOX = 1%. Note that the chosen value of C elec = 7 pF includes the electronic input capacitance (¥ 2 pF) and the capacitance of the PCB board on which the resonator chip and the ASIC are bonded (¥ 5 pF). One can see a good match between the simulations and equations (2.41) and (2.42) which validates the assumptions made to obtain our formula.

One can see in equation (2.42) that the SBR is inversely proportional to Z MEMS . It is therefore interesting to design MEMS with low output impedance in order to simplify the measurement of the MEMS resonance. Crossbeam resonators, thanks to piezoresistive detection and the usually small aspect ratio of the gauges, have a small output impedance, which in most cases is smaller than that of the other MEMS resonators. The results presented in figure 2.20 are therefore a best case scenario, among the MEMS resonators. It therefore explains why there are, up 

MEMS-CMOS 2D co-integration

The 2D co-integration process flow used in Leti starts with the fabrication of the resonator: the silicon is doped, the resonator shape is defined with anisotropic etching, then the MEMS is released using isotropic etching, which removes the BOX layer. The resonator is then protected with an oxide deposition. A standard CMOS SOI process flow is applied to fabricate the electronics next to the resonator. The electronics is then protected while the oxide layers over the resonator are removed. Isotropic etching is finally used to remove the oxide protecting the resonator and releasing the structure. A minimum distance of a few micrometers should be taken between the CMOS circuit and the MEMS resonator so that the electronics is not a ected by the resonator's final release. On the top view, the oxide layers and the bulk are not depicted 2D-integration makes it possible to suppress the actuation and detection pads of the resonator. The paths between the resonator and the CMOS circuit are therefore reduced and so is their parasitic coupling. One can estimate that the actuation paths are a few tens of micrometers long over one micrometer wide. The detection path is minimized and is about equal to 10 ◊ 1 µm 2 . With such dimensions, the signalto-background ratio is increased as depicted in figure 2.23. The lower feed-through makes it possible to design oscillators using non-di erential actuation. Di erential actuation can however be implemented to improve the signal-to-background ratio in the case of resonators with larger output impedance (e.g. capacitive detection).

MEMS NMOS

Oxyde

MEMS-CMOS 3D-integration

The 3D monolithic integration implemented in Leti consists in first fabricating the integrated circuit using a standard CMOS process with two metal layers. Another SOI-Silicon wafer is bonded on top of the first wafer. The bulk substrate of the second wafer is then removed. The Si-layer of the second wafer is used to fabricate the MEMS resonator. The underlying oxide layer is etched to release the structure while another oxide layer (in blue on fig. 2.24) is used to stop the release etching from contaminating the CMOS circuit.

The electrical paths between the resonator and the sustaining electronic circuit are very similar to 2D-integration. The major di erence originates from the holes that connect the top silicon layer to the metal layer (fig. 2.24). They can introduce a serial resistance and inductance. However, the electrical simulations do not show any significant di erence between 3D-and 2D-integration.
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Heterodyne architectures

Heterodyne architectures take advantage of a nonlinearity in the MEMS actuation or detection in order to acquire the resonator output signal at a di erent frequency than it was actuated. With this measurement scheme the feed-through can be reduced as the resulting parasitic signal is at a di erent frequency than the detected signal.

The connection losses can also be reduced if the resonator output signal is at a low frequency. On the other hand, the feedback electronic circuit can be more complex as it should modify the frequency of the resonator output signal.

One of the simplest heterodyne architecture uses a quadratic nonlinearity in the actuation or the detection scheme in order to obtain a resonator output signal at twice the frequency of the actuation signal. In the case of electrostatic actuation:

F l (t) = Á 0 h g 2 C V 2 DC 2 + v 2 act 4 + V DC v act sin (2fif t) ≠ v 2 act 4 sin (4fif t) D .
(2.43)

If v act is at frequency f r /2 then F l (t) has a frequency component at f r . If the detection is linear, the resonator output signal is at f r while the actuation voltage is at the frequency f r /2 (fig. 2.25). However, the feed-through can not be completely cancelled out. For example, the electronics may not be purely linear and include a quadratic term. The feed-through signal at the input of the electronics would then be up-converted to twice its frequency: f r . Moreover, quadratic terms may also be found in the resonator detection for instance (e.g. the self-heating e ect in a piezoresistive element). Moreover, in a non heterodyne architecture, the voltage V DC can be large so that v act can be reduced and thus a low feed-through at the input of the electronics can be obtained 7 . If the resonator is actuated quadratically, v act is Amp Nonlinear feedback electronics v act @ f r /2 v MEMS @ f r chosen so that v 2 act /2 = V DC v act (i.e. the actuation force corresponds to the critical actuation force). In this scenario, v act can be larger than in linear actuation and thus the feed-through at the input of the electronics is also increased. Furthermore, the quadratic terms in the resonator transduction amplifies the noise because the signal is squared but the noise is multiplied by the signal (and not squared). Finally, if the resonator is embedded in a self-oscillating loop, the feedback electronics must divide the input frequency by two (in order to close the loop). To the author's knowledge, there is no linear circuit capable of achieving this task and thus a digital circuit must be employed that can emphasize the colored noise as expressed in subsection 1.3.1.4.

A more advanced heterodyne architecture described in [START_REF] Bargatin | [END_REF]] is referred as the down-mixing architecture (fig. 2.26). It requires a 2-port resonator for which the voltage applied on the detection port is at a frequency slightly smaller than the actuation frequency: f det = f act ≠ f . The varying electrical component (a resistance for piezoresistive detection or a capacitance for capacitive or a piezoelectric detection) is biased by the voltage applied on this port. The resonator output signal includes a term at the frequency f . The frequency di erence f can be very small, which simplifies the electronic design and reduces the connection losses in the case of resistive detection. However, as for the previous heterodyne architecture, the nonlinearity or the electronics of the MEMS resonator can also create some feed-through. Consider for instance, the quadratic term in the electronics. The feed-through introduces, at the electronics input, frequency terms at f act and f act ≠ f . The quadratic term in the electronics response can mix the two frequency terms resulting in another signal at f . Overall, heterodyne architecture usually have smaller feed-through than homodyne ones.

Conclusion on MEMS-to-electronics interconnections

This section has described the major types of MEMS-to-electronics connections, their technical challenges and their impact on the sensor performance. 2D co-Chapter 2 MEMS resonators and their readout electronics integration presents optimal performances but is di cult to fabricate. Stand-alone MEMS connected to the electronics by wire-bonding have simple fabrication process but the performances of the sensor are limited by large connection loss and high feed-through. 3D co-integration is technologically challenging because two wafers must be assembled together. However, it has the advantage of decoupling the fabrication process of the CMOS circuit from the MEMS resonator and, thus, makes the fabrication process of the resonator more flexible.

In the subsection 2.3.1, a simple model of the parasitic introduced by the connections was presented. Based on the proposed model a methodology was defined to design the electronics and to evaluate the sensor performances.

MEMS resonators mass resolution comparison

Model presentation

From (i) the system architecture description of self-oscillating loops presented in chapter 1, (ii) the electrical description of the MEMS resonator, and (iii) the model of the MEMS-to-electronics connection of section 2.3.2, it is possible to theoretically assess the mass resolution of the MEMS-based sensor. The gain of the MEMSactuation and detection transduction techniques and the MEMS-to-CMOS connection topologies can be compared and the performance improvement of using a more complex integration scheme as presented in section 2.3 can be evaluated.

The proposed methodology is based on an optimization routine that seeks for the best design (in terms of mass resolution) of the MEMS resonator and the CMOS circuit. The presented results are based on the SOI-65nm CMOS technology from STMicroelectronics. This CMOS-process is one of the most aggressive analog technologies that make it possible to design compact, low-noise and high frequency electronic circuits. If the same design rules are used for the MEMS fabrication, the lithography rules of the process makes it possible to design MEMS resonators with nanometer dimensions that "should" enhance their performances.

The optimization routine uses several input variables that should be optimized. Associated with those variables other implicit parameters are determined from the design rules described in the previous sections. Example of implicit variables are the integration time, the actuation voltage or the transistor width, the latter being determined from subsection 2.3.1. The optimization routine is bounded by several constraints imposed by the fabrication and the environmental properties. Examples of such constraints parameters are the MEMS resonator topology, the MEMS-toelectronics connection, the fabrication process and the associated DRM 8 or the quality factor of the resonator. The figure 2.27 presents the input variables and the design constraints for a clamped-clamped beam with capacitive detection. A simplified description of function used to evaluate the mass resolution and thus to determine the optimal design variables is also depicted in the figure.

The aspects considered in the model of the sensor performance are listed below:

-The electromechanical MEMS resonator response is based on the model presented in sections 2.1, and 2.2. -The electrical behavior of the MEMS-to-CMOS connection and the electronic circuit is based on the model presented in section 2.3. The width of the transistors is determined from eq. (2.40). -The feed-through is modeled as described in section 2.3 and its e ect on the frequency-resolution was modeled as presented in section 1.1.2. The cases of single-sided and di erential actuation are evaluated. -The electronics harmonic distortions are taken to ≠40 dB corresponding to simulations on a typical low-distortion electronic circuit. The harmonic distortions of the MEMS (if any) are based on the model of section 2.2. -The noise sources considered in this work regarding the resonator are the thermomechanical noise, the Johnson noise and 1/f -noise in the piezoresistive elements (if any); regarding the circuit the white-and flicker-electronics noise at its input and the flicker noise at the electronics output.

DRM stands for Design Rule Manual of the considered fabrication process
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The corresponding coe cient is taken constant and equal to 100 ppm. -Based on the white and flicker noise, the harmonic distortion and the frequency drift, the maximum integration time is calculated.

-The e ect of the temperature in the piezoresistive elements (if any) of the resonator is modeled based on analytical modeling. The constraints imposed on the optimization routine are listed below: -The lithography rules for the MEMS and the electronics design are based on the SOI-65nm Dkit from STMicroelectronics. -The thickness of the resonators is imposed by the process flow.

-A maximum voltage of 1 V is taken for the AC-value of the electrical signal. The polarization current of the first electronic amplifier is taken to 1 mA. -The current density in the piezoresistive elements is limited to a value lower than the melting point of the material. -Boundaries on the MEMS resonator actuation are taken so that the resonator response can be considered as linear: in the case of electrostatic actuation, the mechanical displacement is ten times smaller than the gap. In the case of du ng nonlinearity, the equivalent sti ness is ten times smaller than the beam sti ness. -It is ensured that the signal-to-noise ratio within the bandwidth of the resonator is larger than 1. This approach is necessary to compare the transduction mechanisms previously cited in this document: because they uses di erent physical properties and with di erent dimensions, it is di cult compare them objectively.

Finally it should be recognized that the results provided in this section are subject to some limitations as in all models. The purpose of the work presented in this section is mostly to give an impartial comparison of the performances of varous MEMS topologies. The performances of the sensors should be taken with some reserve but can be used to provide an order of magnitude of the expected mass resolution. The major limitations of the modeling are listed below: -The quality factor in vacuum is considered constant (i.e. Q = 1000) for every resonators and for all dimensions. The crossbeam measured at Leti tends to have a quality factor around Q crossbeam ¥ 5000 while the quality factor of the nanowires are around Q nanowire ¥ 1000 due to its higher aspect ratio and the one of piezoelectric can be lower because of residual stress between the layers of the cantilever. Moreover the quality factor tends to reduce at small dimensions, because the more aggressive fabrication process degrades the mechanical properties of the MEMS layers. -Only the second harmonic distortion of the electronics was considered in the model. Moreover it was considered as constant over the dimensions of the electronic circuit. 

Results and discussions

As can be seen table 2.3 gives the results of the optimization presented in the previous subsection and figure 2.28 depicts the evolution of the theoretical mass resolution for a varying beam length. The connection losses of the MEMS resonator using capacitive detection are very important. The large connection losses reduce the signal-to-noise ratio and make the device very sensitive to feed-through. As a matter of fact, the latter issue limits the dimensions of the resonator. Di erential actuation or any other mean of feed-through cancellation are therefore crucial to increase the signal-to-background ratio, reduce the dimensions of the resonator and thus improves its mass resolution. It should also be emphasized that due to the large connection losses, the dominant noise comes from the electronic circuit (except for the co-integrated resonator with single-sided actuation). Note finally, that the unloaded capacitive gain of the resonator is large but is degraded by the connection losses.

The crossbeam resonator features much lower detection losses thanks to its piezoresistive detection. The crossbeam can then be designed with its lowest dimensions. However, when the crossbeam dimensions are small, the beam becomes sti and the actuation voltage, that provokes a mechanical displacement to a tenth of the electrode's gap, is large and emphasizes the electrostatic nonlinearity: it reduces the maximum integration time. Overall, the mass resolution improves only moder- Chapter 2 MEMS resonators and their readout electronics ately if the resonator dimensions are reduced by a certain point. It should finally be underlined that the large signal-to-noise ratio of this resonator topology makes the characterization of the device simpler. As a matter of fact, the mass resolution announced by the model is much better than the state-of-the-art but it will be shown in the chapter 3 that a large flicker noise introduced by the resonator limits its frequency resolution.

.1 mm/V 1.1 mm/V 120 µm/V 1.1 µm/V 1.1 mm/V 1.
The nonlinear detection of the piezoresistive nanowire emphasizes the noise sources in the oscillator. The resonator is actuated at f r but its output signal frequency is 2f r . Moreover, while the resonator output signal is proportional to the square of the mechanical displacement, the noise at the output of the resonator is proportional to the product of the thermomechanical noise with the mechanical displacement. The noise and especially the close-to-carrier colored noise is amplified by the nonlinearity making it di cult to shrink the dimensions of the resonator. Note finally that the resonator presented in table 2.3 has a very large length-to-thickness aspect ratio and thus a low sti ness in the out of plane direction. The release of the mechanical structure will thus probably be critical.

Piezoelectric cantilevers use a linear actuation and detection transduction technique, which makes them more insensitive to nonlinearity and thus to flicker noise. If a bridge architecture is used, the intrinsic feed-through provoked by the AlNcapacitance is reduced and resonators with smaller dimensions can be designed.

The piezoelectric actuation and detection scheme exhibit a large gain making is possible to achieve large resonator output signals and (very) large signal-to-noise ratio, thus improving the mass resolution of the sensor. If a piezoelectric cantilever is co-integrated with a CMOS-circuit and uses a di erential actuation, its mass resolution should reach state-of-the-art mass resolution [Jensen 2008]. However, the implementation of piezoelectric resonators co-integrated with a CMOS-circuit is technologically very di cult.

Overall, the study shows that the resonators with capacitive detection su er from feed-through and high connection losses making it di cult to operate them at low dimensions. The nanowire performances are poor due to the frequency aliasing in the nonlinear detection transduction making the considered topology unadapted for closed-loop mass measurement. Finally the two most promising candidates for mass measurement are the crossbeam and the piezoelectric cantilever. The former can be fabricated with ease but su ers from an actuation transduction that introduces large harmonic distortion thus emphasizing the colored noise and limiting the massresolution of the sensor. The piezoelectric resonator has linear electromechanical transduction, which improves the mass-resolution of the oscillator. The topology is however di cult to fabricate and has a large intrinsic feed-through.

Collectively addressed MEMS arrays

It is usually admitted that implementing MEMS resonators in collectively addressed array increases the SNR because the output signals of the resonators add up in a coherent way, whereas their output noises add up in a statistical way [Ekinci 2004a].

The SNR should therefore increase with the number N of resonators in array according to SN R Ã N . However, there is still no example in the literature of CMOSintegrated MEMS array and only a limited number of stand-alone MEMS array realizations [START_REF] Lee | [END_REF], Bargatin 2008, Kharrat 2009]. The resonators should however be identical and the added mass to be measured should be introduced deposite on each resonators.

Nevertheless, to what extent arrays improve the SNR has never been analyzed in detail. In this section, we demonstrate that the intrinsic electrical behavior of the resonator and its surrounding environment determine an upper limit of the SNR. The case of co-integrated MEMS/CMOS and stand-alone MEMS arrays are studied. For these configurations, the SNR is studied as a function of the number of resonators.

The best achievable SNR and the optimum number of MEMS resonators are also analytically determined.

Subsection 2.5.1 focuses on the determination of the total gain of the MEMS array and its readout electronics. The signal-to-noise ratio at the electronics output and the minimal number of MEMS resonators to reach the best performance are determined in subsections 2.5.3 and 2.5.2. Finally the previous analytical results are compared with SPICE-simulations in subsection 2.5.4.

Amplification gain

An array of N MEMS resonators connected in parallel is depicted in figure 2.29. The output electrical signal of each device is summed into the input of the electronics as shown in figure 2.29. The transistor is biassed by an ideal current source. C load represents the input capacitance of the following electronic stage (e.g. a bu er stage). Its typical value is C load = 100 pF.

The output voltage of each resonator drives its own output impedance Z MEMS , the on-chip routing parasitic capacitance C p , the capacitance of the MEMS-toelectronics capacitance C connec divided by the number of resonators (depending on the MEMS/CMOS connection configuration: for MEMS/CMOS co-integration C connec = 0, for wire-bonding connection C connec = 10 pF, for coaxial cable connection, C connec = 100 pF) and the input capacitance of the electronics also divided by the number of resonators. The small signal drain-source current produced by the transistor flows into its intrinsic admittance and C load .

The transistor is modeled with the Berkeley level 1 model [Sansen 2006]. Its dynamic behavior is described by an input capacitance C gs , a transconductance g m and an
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MEMS resonators and their readout electronics output admittance g ds . Note that the feedback capacitance C gd has been neglected in order to simplify the study. This assumption is only valid in case of low-gain amplifiers and should be verified with the design kit. The Drain-Bulk capacitance C db can be neglected compared to C load : C db π C load . The MEMS gain v elec vact can be calculated from the sum of the MEMS output voltages:

C connec M A C load I ds V dd v out MEMS #1 MEMS #2 ... V act v elec V act ... C p C gs S MA g m × v elec g ds C load v out v elec Electronics v MEMS = H MEMS ×v act Z MEMS MEMS #1 Z in S MEMS Electronic stage 2 S STAGE2 C p v MEMS = H MEMS ×v act Z MEMS MEMS #2 Z in S MEMS C connec
v elec = NH MEMS (f ) v act 1/Z MEMS N/Z MEMS + j2fif (NC p + C connec + C gs )
.

(2.44)

Hence

v elec v act = NH MEMS (f ) N + j2fif Z NEMS (NC p + C connec + C gs )
.

(2.45)

Then the total gain G = vout vact can be deduced:

G = - - - - - - ≠g m H MEMS (f ) [g ds + j2fif C load ] Ë 1 + j2fif Z MEMS 1 C p + Cconnec+Cgs N 2È - - - - - - . (2.46)
Assuming that the amplifier is properly designed (i.e. g ds ∫ 2fif C load ), the total gain has the following expression:

G = - - - - - - - - H MEMS (f ) 1 + j2fif Z MEMS 3 C p + Cconnec+ 2 3 CoxW A L A N 4 - - - - - - - - 2L A K eN (V gs ≠ V tN ) G ≠ae N aeOE - - - - - H MEMS (f ) 1 + j2fif Z MEMS C p - - - - - 2L A K eN (V gs ≠ V tN )
.

(2.47)

We make the assumption that N is large enough so that the admittance of (C connec + C gs ) /N can be neglected compared to the equivalent admittance of C p and Z MEMS :

2fif (C connec + C gs ) /N π Ò (2fif C p ) 2 + 1/Z 2 MEMS .

Signal-to-noise ratio optimization

The noises in this architecture arise from the MEMS devices, the transistor and the following electronic stage. The noise at the output of the MEMS device (thermomechanical noise and Johnson noise) is modeled with a voltage PSD of S MEMS . The voltage PSD of the noise produced by the transistor on its gate is S M A = 8k B T 3gm . The following electronic stage at the transistor drain has a voltage PSD of

S ST AGE2 = 1 5 nV/ Ô Hz 2 2
. This value is typical for a measurement equipment, (e.g. the SR830 lock-in amplifier) or a commercial amplifier. It can also be reached with ease in an Chapter 2 MEMS resonators and their readout electronics integrated circuit. Flicker noise is not considered in this subsection but the validity of this assumption will be confirmed in subsection 2.5.4. The SN R at the input of the electronics can be calculated:

SN R = - - - - - v 2 elec S MEMS+elec - - - - -= G 2 v 2 act S MEMS+elec = - - - - - - H MEMS (fr)vact 1+j2fifrZ MEMS 1 Cp+ Cconnec+Cgs N 2 - - - - - - 2 T meas S ST AGE2 C K eN (V gs ≠ V tN ) 2L A D 2 + ¸˚˙S T AGE2 ae i NEMS 8k B T 3g m ¸˚˙M A noise + S MEMS /N - - -1 + j2fif r Z MEMS 1 C p + Cconnec+Cgs N 2- - - 2 ¸˚˙M EM S noise .
(2.48)

Thus: SN R ≠ae N aeOE - - - H MEMS (fr)vact 1+j2fif Z MEMS Cp - - - 2 T meas S ST AGE2 Ë K eN (Vgs≠V tN ) 2L A È 2 + 8k B T 3gm .
(2.49)

For a given MEMS resonator and for a given implementation, the single way to optimize the SNR is to minimize the term S ST AGE2

Ë K eN (Vgs≠V tN ) 2L A È 2 + 8k B T 3gm .
In other words, implementing MEMS resonators in arrays reduces the MEMS noise-to-signal ratio by a factor N to the point that it can be neglected compared to the electronic noise. Note that if the electronic noise sources are not considered, the signal-to-noise ratio is then, as expected, equal to N ---

H MEMS (f )vact S MEMS - - - 2 T meas .
Since the e ect of the interconnection capacitance and of the input capacitance of the electronics is negligible when N is large, the SN R can be made arbitrarily large by designing electronics with large L A and g m . However, a limitation is always imposed by the maximum polarization current I max and as a matter of fact, the voltage power spectral density of the transistor noise on its gate has a finite value:

S M A = 4k B T (Vgs≠V tN ) 3Imax
. In a well-designed circuit, the following stage is designed according to the input voltage noise and the voltage gain of the previous electronic stage, so that the input voltage noise of stage 2 is negligible compared to the output voltage noise of stage 1: S ST AGE2 is neglected. In these circumstances, the maximum signal-to-noise ratio is: 

SN R max = - - - - - H MEMS (f r )v act 1 + j2fif r Z MEMS C p - - - - - 2 3I max T meas 4k B T (V gs ≠ V tN ) , ( 2 
Z MEMS C p ) 2 > (2fif r ) 2 Z 2 MEMS (C connec + C gs ) 2 /N 2 . Thus: N min≠cap > 2fif r Z MEMS (C connec + C gs ) Ò 1 + (2fif r Z MEMS C p ) 2 = 2fif r Z MEMS 5 C connec + 4I ds L 2 A 3µ N (Vgs≠V tN ) 2 6 Ò 1 + (2fif r Z MEMS C p ) 2 .
(2.51) One must then verify the a priori hypothesis that the noise of the MEMS resonators can be neglected. In other words, one must verify that the following condition is satisfied:

4k B T (V gs ≠ V tN ) 3I max ∫ 1 N S MEMS - - -1 + 2fif r Z MEMS 1 C p + Cconnec+Cgs N 2- - - 2 .
(2.52) Equation (2.52) amounts to a second order equation, from which the minimal number of MEMS resonators N min≠noise can be easily analytically deduced. The numerical results expressed in table 2.4 (N min≠noise criteria corresponds as previously to a SNR-reduction of 3dB compared to SN R max ). For low values of C connec , the term

(2fif r ) 2 Z 2 NEMS 1 C p + Cconnec+Cgs N 2 2
in equation (2.52) is negligible compared to 1 and N min≠noise is governed by N min≠noise = 3Imax 4k B T (Vgs≠V tN ) S MEMS . For high values of C connec , the capacitive attenuation diminishes the MEMS output signal, the MEMS noise becomes negligible and the minimal number of MEMS resonators in array is determined from equation (2.51).

In fact, the two conditions imposed by N min≠cap and N min≠noise must be respected. N min≠noise tends to dominate for co-integrated resonators whereas N min≠cap tends to dominate for stand-alone resonators.

Results, discussions

SPICE simulations of arrays were made for N from 1 to 100 000. The simulated transistor is taken from ST Microelectronics HCMOS9 design kit. The dimensions of M A are optimized for each N and C connec based on the Berkeley level 1 model of the transistor. Its width was then adjusted in order to adapt to the more advanced SPICE model of the design kit.

The results in terms of SN R are given in figure 2.30 for several values of: C connec . The simulated MEMS resonator is a crossbeam [START_REF] Mile | In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection[END_REF]] (fig. 2.31a) with the dimensions given in table 2.31b.

The other parameter values are referenced in table 2.5. At the resonance frequency, H MEMS (f r ) is calculated from [START_REF] Arndt | [END_REF]]: The MEMS output signal increases with N and saturates to the limit H MEMS (f r ) v act (the voltage of the Thevenin model of the MEMS resonator). The MEMS output signal improvement with N reaches therefore a maximum. Moreover as N is getting larger, the SNR increases as well as the value ( (H MEMS vact) 2

H MEMS (f r ) = 3.83 Á 0 " Si c Si QV DC V g l g 2 b g . ( 2 

S MEMS

). Indeed, the signal output of the MEMS array scales as N , whereas the standard deviation of the noise scales as Ô N .

The two previously mentioned limitations (described by N min≠cap and N min≠noise ) to the SNR of the MEMS array can be observed in figure 2.30. When C connec is lower than 10 pF, the performance of the MEMS array is mostly driven by the MEMS noise sources and not by the MEMS output capacitance (C connec and C gs ).

For larger values of C connec , the MEMS output capacitance strongly attenuates the MEMS output signal. In this case, the aim of implementing MEMS resonators in array is to reduce the connection capacitance. Finally, the number of resonators where the SNR reaches a limit on figure 2.30 shows a good correspondence with the values of table 2.4.

As shown by equation (2.50), the SN R for an infinite amount of MEMS resonators does not depend upon C connec . Clearly, for a su cient number of MEMS devices, the SN R will be the same whether the resonators are co-integrated or not with their readout electronics.

The resistive behavior of the MEMS gauges introduces some flicker noise. However, from [Harkey 2000], the corner frequency of the flicker noise compared to the thermomechanical white noise of the MEMS device (corresponding to the frequency at which the PSD of the flicker noise is equal to that of the thermomechanical white noise) is around 2.7 MHz. The corresponding Hooge noise coe cient was taken to Ÿ H ¥ 10 ≠5 . The corner frequency of the transistor used in the di erent simulations for a large MEMS array is 1.6 MHz. The low corner frequencies of the transistor and gauge flicker noise validates the hypothesis made in section 2.5.2 that the flicker noise can be neglected.

It should be highlighted that in this study, neither the technological dispersions, nor the increase of C p with N (arising from the complex layout routing that should be implemented) have been modeled. The technological dispersions are likely to further reduce the performance of MEMS arrays. It is possible to use an analytical approach, rather than costly Monte-Carlo simulations, to account for dispersions on the central frequency. This can be done using [Bargatin 2008] if the dispersions are assumed to follow a Cauchy law, or [Kharrat 2009] in the case of a normal law. In the former case, the standard frequency deviation ‡ = 1% results in a loss of 10 dB, whereas in the latter case, the loss is only 7.2 dB. Note that the value of SN R max reduces due to dispersions as the quality factor of the resonators becomes larger. Nevertheless, these results still demonstrate the high interest of having MEMS connected in arrays especially when a stand-alone readout electronics is used for which the connection capacitance are large.

Conclusion of collectively-addressed MEMS arrays

After introducing a simple electrical model of the MEMS resonators, an array of MEMS devices all connected to a common amplifier was analytically studied. It shows that the performance in terms of SN R of the MEMS array is larger than that of a stand-alone MEMS resonator. However as N increases, the SN R of the array reaches a limit whether the array is co-integrated or not with its electronics. This limit was analytically studied and depends on the electronics input noise, the MEMS output signal and impedance. The minimal number of MEMS to achieve close to optimal performance depends mainly on the connection configuration. Stand-alone MEMS arrays are interesting candidates to improve the resonators performances up to ones of co-integrated MEMS/CMOS system without the cost of a specific process development. This study therefore provides a simple analytical assessment of the best achievable performances.

SPICE simulations for an array of crossbeam MEMS resonator were performed. They show similar results to those predicted by the analytical study. They also show that the SN R improvement is small (AE 10 dB) for architectures with low connection capacitance as MEMS/CMOS co-integrated or 3D-integrated architecture.

An improvement of 45 dB can be reached for stand-alone electronics configuration (where C connec ¥ 100 pF). Although the results presented here are based on a single active transistor circuit, one should expect similar results with more complex electronics architecture (OTA, cascode...). Even by including possible technological dispersions, this would not change the overall results presented here

Conclusion

In this chapter the electromechanical behavior of various resonators was described. Di erent electromechanical actuation and detection transduction techniques were presented using simple analytical expressions. Di erent MEMS-to-electronic connection implementations were presented and compared. Their intrinsic connection losses and feed-through were presented and techniques to improve the MEMS-toelectronic connections were proposed and evaluated.

These MEMS resonators were then compared based on the system architecture description presented in chapter 1, the description of the MEMS resonator and the electrical model of the oscillator. It was shown that the crossbeam resonator and the piezoelectric cantilever are very promising candidates for mass sensing applications. Thanks to its simple technological fabrication and the possibility to co-integrate it with ease with a CMOS circuit, the clamped-clamped beam using a capacitive detection is also an interesting candidate for minute mass sensing.

Finally the implementation of MEMS resonators in array was explored and the electrical limits due to the CMOS circuit were determined. This study reveals a

Practical realizations

In this chapter, the design and the characterization of MEMS-based closed-loop oscillators are presented. In section 3.1, the performance of two di erent self-oscillating loops (one based on a piezoelectric cantilever, the other on a piezoresistive crossbeam) realized with discrete electronics is assessed. Section 3.2 describes the design of an ASIC to self-oscillate multiple stand-alone crossbeams. This ASIC uses both analog and digital electronics and is composed of sustaining electronic circuits and frequency counters. On the same ASIC, this electronics was duplicated 4 times so that 4 MEMS resonators can be controlled independently. Finally, the section 3.3 describes the design and characterization of resonators integrated on the same wafer with their electronic circuit. Capacitive clamped-clamped beams and piezoresistive crossbeams were co-integrated with a dedicated CMOS readout circuit.

Self-oscillating loops using discrete electronics

The realization of two self-oscillating loops with discrete electronics is hereby presented. This type of electronics makes possible to quickly design and optimize oscillators but are limited in terms of flexibility and can introduce larger electronic noise as it will be discussed. In a first part, the realization of an oscillator with a piezoelectric micro-cantilever is described. This resonator is actuated under atmospheric pressure in order to evaluate its potential for gas sensing (it will be shown that its mass resolution is poor because of the large dimensions of the device). In a second part, the implementation of a piezoresistive crossbeam in a self-oscillating loop is described. As opposed to the piezoelectric cantilever, the crossbeam is actuated in vacuum to improve the signal-to-background ratio (working in vacuum is justified for mass spectrometry applications).

Self-oscillating loop with a piezoelectric micro-cantilever

Hereby is described the design and the characterization of the self-oscillating loop with a piezoelectric cantilever. First the dimensions and the fabrication process of the piezoelectric micro-cantilever are detailed. Then, a method on how to circumvent the feed-through intrinsic to piezoelectric resonators is proposed. This feed-through reduction technique consists in using a variable capacitance and a variable resistance implemented in a bridge architecture. The overall topology of the oscillator is then justified. In a third part, di erent frequency resolution measurement techniques to evaluate the performance of the self-oscillating loop are described and compared. Finally, the frequency resolution of the self-oscillating loop is compared with the one of an FLL-architecture.

Presentation of the piezoelectric micro-cantilever

The self-oscillating loop is realized using a 50 nm-thick AlN piezoelectric resonator (fig. 3.1). The resonating element is a micro-cantilever composed of the following material stack (depicted in figure 3.2) deposited on a standard silicon wafer (from bottom to top) : 600 nm-thick silicon nitride, 100 nm-thick platinum, 50 nm-thick AlN, 25 nm-thick platinum. Fabricated with standard CMOS compatible, surface micro-machining technology [Ivaldi 2011b], the 140 ◊ 40 µm -cantilever area is defined with two Ultra Violet lithography steps. A XeF 2 plasma isotropic etching technique is used to release the cantilever (the silicon bulk acts as a sacrificial layer).

With such dimensions, the resonance frequency is theoretically 42 kHz but was measured at 36 kHz. The di erence is believed to originate from a too aggressive release process, consequently part of the clamping area is also free-standing, i.e. less rigid.

The measured resonator output voltage corresponding to a critical amplitude displacement of 100 nm is around 3 mV versus 4.2 mV obtained theoretically (see subsection 2.2.4).

Feed-through reduction

In 1-port piezoelectric cantilevers, a major issue to deal with is the large intrinsic feed-through introduced by the piezoelectric static-capacitance. Figure 3.3 depicts the behavior of the equivalent capacitance of the micro-cantilever versus frequency : the useful signal is about 30-times smaller than the intrinsic feed-through. The most common feed-through reduction technique consists in implementing the resonator in 84 3.1 Self-oscillating loops using discrete electronics a bridge architecture using an identical but unreleased micro-cantilever or a variable capacitance to cancel the feed-through. We have chosen the implementation that uses a variable resistance and capacitances because the feed-through could be further reduced around f r than when an identical unreleased cantilever is implemented. Indeed it is believed that the release a ects the dimensions of the cantilever and creates a mismatch between the static capacitance of the released and the unreleased cantilever.

Moreover, the AlN-layer introduces non-null dielectric losses that can be modeled by introducing an imaginary part to C P ZE : C P ZE ¥ C P ZE (1 + jd) where d π 1 represents the dielectric losses (measured to d ¥ 1%). They can be canceled by implementing a variable resistance in parallel to the variable capacitances. Finally, the value of |C P ZE | varies with the frequency. Using an HP4194 impedance meter, one can model the evolution of C P ZE as :

C P ZE = C P ZE0 A f f r B p ft (1 + jd) , (3.1)
where p ft ¥ ≠4.4 ◊ 10 ≠3 (from measurements) is a fitting parameter and C P ZE0 = 33 pF (from measurements) is the value of the AlN-capacitance at f r . The figure 3.4 compares experimental data with the model of the bridge gain versus frequency. Therefore the model correctly describes the behavior of the bridge and the resulting feed-through. The di erence between the model and the measurement is due to an imperfect adjustment of the variable components (the resistance or the capacitances). Figure 3.5 depicts the measurement of the gain of the bridge around f r . One can see that the signal-to-background is close to 3 making it possible to implement the micro-cantilever in a self-oscillating loop. 

Topology of the self-oscillating loop

The attenuation introduced by the MEMS resonator is compensated using a lownoise ADA4817 commercial amplifiers with large bandwidth. The MEMS-to-electronics connection losses are minimized by connecting the first amplifier very close to the MEMS resonator. The resulting connection capacitance is estimated to be smaller than 10 pF. The oscillation amplitude in closed-loop is controlled using an AD8036 clamping amplifier. The major challenge in the design of the loop is to filter the feedthrough out of f r : figure 3.5 shows that below and higher than f r , the feed-through signal is larger than the resonance signal. Figure 3.5 shows that the phase-shift varies from +90°1 to ≠180°, what can be explained by the fact that the static capacitance C P ZE is smaller than the variable capacitances at high frequency. The phase-shift at the resonance frequency is around ≠90°. In order to respect the oscillating conditions, the phase-shift should be translated up by +90°so that the overall open-loop phase-shift is 0°at f r . The corresponding phase-shift should then vary between +180°and ≠90°.

To avoid at low-frequency that the phase-shift is equal to n◊2fi (n is an integer), the order of the high-pass filters should be equal to 1. At high-frequency, the phase-shift is lower than ≠90°preventing also the low-pass filtering from being larger than a 

Frequency resolution of the oscillator

The frequency fluctuations of the closed-loop are measured with several techniques all on the same device. This subsection reports the frequency resolution measured directly with an oscilloscope acquiring the signal. In order to improve the measurement duration, the oscillator output signal was mixed with a signal source at a frequency slightly smaller than the oscillator frequency so that the resulting frequency is low (around 100 Hz). The frequency resolution of the loop is also evaluated with a frequency counter and with delay-based measurement. Each of these techniques turns out to give similar results that will be discussed in the following paragraphs Because the downmixed signal is at a lower frequency, the sampling rate of the oscilloscope can be reduced and thus one can acquire larger measurement durations : the counter part of this technique is that low integration times cannot be explored unlike the direct measurement method. The corresponding Allan variation is depicted in figure 3.9b and shows an Allan minimum deviation around 4.0 ◊ 10 ≠7 for an integration time of 3.2 s. At higher integration times, the Allan deviation increases with a slope close to 1 (fitted to 0.94) what seems to correspond to a frequency drift.

Measurement with a frequency counter

The frequency resolution of an oscillator can also be evaluated using a dedicated equipment such as a frequency counter. The frequency counter measures the number of rising edge during a given gate time and then calculates the corresponding mean frequency. This equipment however is subject to several limitations. First, due to the low communication rate of the GPIB connection with computer, the gate time cannot be smaller than 0.1 s. Moreover, the GPIB connection, introduces some dead time during which the frequency in not measured. From [START_REF] Barnes | [END_REF]], the dead time emphasizes the e ect of the frequency drift and thus imposes a constraint on the gate time. Finally, the frequency measurement algorithm2 used by the frequency counter seems to be sensitive to the frequency drift since the Allan deviation varies with the gate time and integration time (fig. The frequency counter however provides reasonable frequency resolution measurement with a minimum of 4.4 ◊ 10 ≠7 for an integration time of 5 s and a gate time of 1 s. This result is quite consistent with the one obtained with the downmixed technique.

Delay-shift based measurement

This measurement is based on the technique described in section 1.4.2 and is depicted in figure 3.11a. It provides a minimal frequency resolution of 3.9 ◊ 10 ≠7 ( for an integration time of 2.4 s. Once again, this result is consistent with the previous ones. 

Frequency resolution comparison of the SOL with FLL 3

The frequency resolution measured with a self-oscillating loop is compared with the one obtained with a frequency locked-loop implemented with laboratory equipments, externally controlled via a GPIB communication link and a Labview interface (not that the same microcantilever is used in all measurements). First, the frequency resolution of the FLL was measured only with the bridge implementation and with a single commercial amplifier. As in the SOL, the amplifier is connected as close as possible to the MEMS in order to minimize the MEMS-to-electronics connection losses. In a second measurement, the frequency resolution of the FLL is evaluated on the complete open-loop scheme of the SOL architecture, including the passive filters, the clamping amplifier and the supplementary amplifiers (the loop is opened between the second ADA4817-amplifier and the third one). The GPIB communication between the lock-in amplifier, the computer and the VCO introduces some delays in the loop and thus limits the minimum integration time to about 1.5 s. The frequency resolutions measured with the FLL-architecture and the SOL-architecture are depicted in figure 3.12. One can see that the minimum frequency resolution using a FLL-architecture corresponds to the minimum integration time. The corresponding frequency resolution is about 8 times lower than the one of a SOL-architecture.

From the cantilever mass m P ZE ¥ 25 ng and equation (1.12) of page 13, the mass resolutions are about ‡ m≠SOL ¥ 9.8 fg for the SOL-implementation and ‡ m≠F F L ¥ 1.3 fg for the FLL-implementation. These mass resolutions are not as good as other NEMS-based examples in the literature due to the large dimensions of the cantilever, and because the measurements were made at ambient pressure. From [Ivaldi 2011b], the theoretical gas resolution for the DMMP is around 660 ppb. It is believed that the SOL-architecture introduces a larger frequency noise due to the large feed-through out of the resonance frequency : at low-frequency, the white and flicker noises are amplified by the feed-through transmission and are then up-converted close to the oscillation frequency by the nonlinearity present in the loop. However, more experimental measurements and simulations are required to confirm this possible explanation. A V-shape feed-through is di cult to model in a time-dependent simulation. A measurement setup enabling to adjust a V-shape feed-through level would be a way to further study this topic.

Conclusion on the piezoelectric cantilever based self-oscillating loop

It was shown that using a bridge architecture and with careful filtering, it is possible to implement a piezoelectric micro-cantilever in a self-oscillating loop. After comparing the pros and cons of di erent frequency resolution measurements, it was shown that the piezoelectric cantilever implemented in a self-oscillating loop has a frequency resolution around 4 ◊ 10 ≠7 .

Using a FLL-architecture on a similar piezoelectric cantilever but with di erent dimensions4 , Ivaldi [Ivaldi 2011b] measured frequency resolution close to 10 ≠8 making it an interesting gas sensor with concentration resolutions close to 10 ppb for DMMP vapors [Ivaldi 2011a]. Although the frequency resolution of the SOL-architecture is degraded compared to a FLL-architecture, it can be an interesting low-cost alternative to the expensive components required to implement the FLL-architecture.

Self-oscillating loop with a piezoresistive crossbeam

In this subsection, a piezoresistive crossbeam and its electrical connections are first described. The open-loop characterizations are then presented. The frequency re- solution of the closed-loop system is presented in subsection 3.1.2.3 and compared to its theoretical value determined in chapter 2. Finally, the response time of the oscillator is evaluated.

Crossbeam presentation

The crossbeam characterized in this subsection has the dimensions given in table 3.1. The figure 3.13 depicts a scanning electron microscope image of such resonator.

The theoretical resonance frequency is 21 MHz.

The crossbeam is designed for gas sensing applications 5 . The packaging and the on-chip electrical connections of the resonators were designed accordingly : the crossbeam is distanced from the electrical pads of about 2 mm so that the resonator can be encapsulated with ease [Li 2010, Arcamone 2011]. The figure 3.14a presents the electrical leads to the resonator captured with an optical microscope. As a consequence, large connection losses between the resonator and the first electronic amplification stage are induced. Moreover, due to the geometrical configuration of the electrical leads, the feed-through should increase drastically. Electromagnetic simulations 6 of the on-chip electrical environment were performed and are depicted on figure 3.14b. An error of 0.3 dB and 4°was introduced in the di erential actuation that corresponds to the typical imperfection of the hybrid coupler (Pulsar JF-03-412).

5. However we have characterized the device in vacuum for future mass spectrometry applications.

6. performed by Gérard Billot and Jean-Baptiste David
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Practical realizations With the typical parameters used in section 2.4, the expected signal-to-background ratio using a single-sided actuation is around G SBR = 7 dB, Â SBR = 48°and around G SBR = 30 dB, Â SBR = 180°using a di erential actuation. A di erential actuation is therefore required in order to simplify the implementation of the selfoscillating but also to optimize the frequency resolution.

Open-loop characterization

We have measured the following parameters of the crossbeam resonator and the first amplifier : the electronics gain and induced noise, the connection losses and the gauge factor.

In order to measure the electronic gain and induced noise, a network analyzer (HP8753E) and a spectrum analyzer (N9020A) connected to the amplifier were used (as depicted in magenta and blue on fig. 3 In order to evaluate the connection losses, one can connect the first port of the network analyzer to a gauge of the crossbeam (the second gauge is kept unconnected) and the second port to the output of the electronic circuit (in green on fig. 3

.15a).

From the gain of the electronic circuit and the value of the resistance of the gauge, it is possible to determine the capacitance at the output of the crossbeam : C connec + C elec = 30 pF. The measured value of C connec + C elec is reasonable as the on-chip crossbeam output capacitance is estimated to be around 20 pF and the connection capacitance introduced by the SMA-connectors between the MEMS-chip and the 94 3.1 Self-oscillating loops using discrete electronics 

Normalized frequency [kHz] Transmission gain S21 [dB]

Crossbeam with the amplifier in the chamber signal-to-background ratio: 3dB

Crossbeam alone in the chamber signal-to-background ratio: 0.2dB

Crossbeam with the amplifier in the chamber and attenuators after the hybrid coupler signal-to-background ratio >30dB

Figure 3.16: Di erentially actuated crossbeam frequency response for di erent measurement setups. NB : however that the applied voltage slightly di ers between each measurement setups.

amplifier is around 5 ≠ 10 pF . Overall, the MEMS-to-electronics connection losses can then be evaluated to :

|H connec | = 1/ |1 + j2fif r Z MEMS C output | = ≠21 dB.
In order to measure the gauge factor and the thermomechanical noise of the crossbeam, the gauges are polarized with a DC voltage of 3 V and the actuation electrodes are grounded (in red on fig. 3.15a). The spectrum of the electronic output is recorded with the spectrum analyzer (fig. 3.15b). The thermomechanical noise is clearly observed : S thermo = 63 nV/ Ô Hz (measured at the output of the amplifier). From this value, the gauge factor of the silicon was extracted : " Si = 77 [He 2006].

It has been observed that there is a large capacitive coupling in-between the cables that link the resonator in the vacuum chamber and its readout electronics : the transmission gain is around ≠40 dB at 20 MHz. The resonance of the crossbeam is therefore di cult to observe and embedding an amplifier inside the chamber to reduce connection losses and the coupling in-between the cables is necessary (fig. 3.17 and 3.16). In addition to this issue, some imperfections in the hybrid coupler used to create a di erential actuation were detected. This issue can however be reduced by implementing two attenuators at the output of the hybrid coupler to adjust the phase-shift and attenuation induced by the passive device. Figure 3.16 shows that the gain and the phase-shift of the system have to be adjusted to ensure the resonator's self-oscillation. Using a similar electronic circuitry than in subsection 3.1.1 (fig. 3.17), the gain of the open-loop is larger than 0 dB. An AD8037 clamping amplifier sets a finite adjustable limit to the oscillation amplitude. The phase-shift in the loop is adjusted with a delay line rather than with filtering. The delay line is implemented using a coaxial cable with a length of about 2 meters. The figure 3.18 presents the open-loop gain and phase-shift of the system : the oscillation conditions are fulfilled only at f r . 

Frequency resolution measurement

The frequency stability of the closed-loop oscillator is measured with two di erent techniques : a spectral acquisition and a temporal acquisition. In the first acquisition, the oscillator signal is measured with an E5052A signal source analyzer. The Phasenoise spectrum depicted on figure 3.19 is then converted into its equivalent Allan deviation through the equations (1.17) and (1.30) of pages 14 and 22. Note that this measurement was not possible with the piezoelectric cantilever because the signal source analyzer frequency range starts from 10 MHz. Moreover, the phase-shift based measurement used in the previous subsection is di cult to implement because the cables introduce large phase-shifts at this frequency : the phase-shift variations are thus di cult to calibrate.

The temporal acquisition uses a DPO7254 oscilloscope as discussed previously in subsection 3.1.1.4. The instantaneous frequency is extracted from the time lapse between two consecutive rising edges. The Allan deviation is then calculated by averaging these instantaneous frequencies as for the piezoelectric cantilever (fig. 3.19). This simple signal processing shows a large error in the evaluation of the Allandeviation. The error is believed to be due to the poor oscillator signal-to-noise ratio at the bandwidth of the loop (what was not the case for the piezoelectric cantilever). In order to extract more accurately the frequency resolution of the oscillator, a digital PLL-based post-processing of the oscilloscope signal is implemented (fig.

3.19)

. With this post-processing technique, the temporal measurement corresponds to the frequency measurement. It should be emphasize that this so-called digital PLL processing used to evaluate the frequency resolution is di erent from the one described in subsection 1.4.3. Indeed, the data acquisition is made with the oscilloscope (equivalent to an 8-bit Analog-to-Digital Converter) and the digital PLL Chapitre 3

Practical realizations

processing is made at a software level coded in C-language. Therefore, there is no need of hardware equipment such as a VCO and a phase-comparator. The Silicon area consumption to implement this post-processing technique should therefore be small.

It was also attempted to measure the frequency resolution of the oscillator using a frequency counter but the results were similar to the temporal acquisition using the rising edge-based post-processing. It therefore seems that the algorithm used in the apparatus is based on the transition times of the signal and thus does not evaluate properly the frequency resolution of the loop.

It clearly appears on the Phase-noise spectrum, that for low o set frequency, the oscillator noise spectrum is dominated by flicker noise. However the origin of this flicker noise remains unclear and is under investigation.

The best frequency resolution of the resonator is around 2 ◊ 10 ≠7 at T meas = 20 ms.

With the dimensions of the resonator, the corresponding mass resolution is ‡ m = 110 zg. The model presented in section 2.4 however predicts a mass resolution around ‡ m≠th = 1 zg at T meas≠th = 1 s (considering the crossbeam dimensions, the quality factor and the actuation DC voltage used in the measurement). The di erence in mass resolution is due to the large flicker noise in the oscillating loop. However, it should be recognized that the mass resolution of this 18 MHz crossbeam is comparable with the state-of-the-art mass resolution of NEMS embedded in self-oscillating loops which is ‡ m≠Feng2008 = 50 zg at T meas≠Feng2008 = 200 ms [Feng 2008] 7 . The mass resolution of the presented self-oscillation loop is therefore twice larger than the state-of-the-art, but with an integration time 10-times smaller (larger measurement bandwidth).

Response time of the oscillator

When MEMS resonators are electrostatically actuated, a simple method to assess the time response of a sensor is to modify the DC-actuation voltage. Indeed, the DC voltage slightly shifts the resonance frequency of the resonator through the wellknown "spring-softening" e ect. The response time of the oscillator can be evaluated from the transition time between one DC voltage to another. The DC voltage source that polarizes the actuation electrodes was replaced by a FG120 pulse generator at a frequency of 274 Hz 8 . The oscillator output signal is acquired with the DPO7254 oscilloscope and the signal was processed with the digital PLL algorithm discussed here-above. The evolution of the oscillation frequency versus time is depicted on figure 3.20. The signal is fitted using an exponential time response and it is evaluated that the oscillator time response is below 100 µs.

7. Unfortunately, the mass resolution corresponding to an integration time of 20 ms is not given in this paper.

8. An arbitrary frequency was chosen that would not be miss-confused with the harmonics of the 50 Hz-frequency of the domestic supply and whose period would be close to the time response of the sensor. Such a 18 MHz crossbeam implemented in a self-oscillating loop architecture can therefore be used to sense mass changes with sub-milliseconds sampling rates. However at such a low integration time, the mass resolution is deteriorated to about 5 ag.

Conclusion of crossbeam based self-oscillating loop with discrete electronics

In this subsection, inherent di culties with stand-alone nano-resonators were analyzed and circumvented in order to implement them in self-oscillation. The on-chip feed-through was reduced using di erential actuation ; the parasitic coupling in the vacuum chamber cables was reduced by introducing an amplifier in the chamber.

Finally, the imperfections of the hybrid coupler were reduced using two attenuators.

The gain and noise characteristics of the 18 MHz crossbeam were measured and correspond to the values in the literature. Finally, we have shown that the openloop gain and phase-shift of the resonator and its feedback circuit can be adjusted so that the system oscillates only at f r .

The frequency resolution of the oscillator was then measured using a frequency and a temporal acquisition. The two acquisition methods presented similar results if a PLL-algorithm is used to analyze the temporal acquisition. From the phase-noise measurement of the oscillator, it was shown that the noise spectrum is dominated by flicker noise but its origin remains unclear at this stage.

Finally, the time response of the sensor was evaluated. The corresponding time response was measured to T meas = 85 µs allowing to use the crossbeam self-oscillating loop as a mass sensor with sampling rates below millisecond. 3.2: Comparison between the di erent self-oscillated resonators.

Conclusion of self-oscillating loops using discrete electronics

Two self-oscillating loops were realized with discrete electronics : the first one involves a big MEMS resonator which has interesting gas resolutions. The challenge encountered during the design of the loop was to filter the V-shape feed-through in order to prevent parasitic oscillations. The frequency resolution of the loop was evaluated with di erent measurement techniques that have consistent results. The overall frequency resolution of the SOL-architecture is however degraded compared to the MEMS resonator embedded in a FLL-architecture.

The second self-oscillating loop uses a 18 MHz piezoresistive crossbeam. The major task in the implementation was to design a homodyne setup measurement that would reduce the feed-through signal. The frequency resolution of the resonator was acquired with other measurement techniques then the 36 kHz-SOL since the crossbeam resonance frequency is much higher. With with such dimensions, the crossbeam presents an excellent mass resolution that is comparable with the stateof-the-art.

Table 3.2 compares the performances of these two di erent self-oscillating loops : their relative frequency resolutions of each oscillator are similar. However with its small dimensions, the crossbeam can sense excellent mass resolution. On the other hand, the piezoelectric cantilever is interesting for gas measurement whereby a resolution of 660 ppb for DMMP vapors can be achieved. Note however that the crossbeam resonator presents also interesting resolution for gas sensing (the oscillator under atmospheric pressure has however not been realized yet).

Integrated circuit for multiple crossbeams

Objective of the integrated circuit

The oscillators realized in the previous section use commercial electronics that are connected to the stand-alone resonator through coaxial cables. This approach is 3.2 Integrated circuit for multiple crossbeams justified for operating a single MEMS resonator but is di cult to implement when several MEMS devices are used, the number of connections being too large. Whereas most research groups in the literature concentrate their research on the realization of sensors with mass resolution towards single molecule resolution and with complex measurement setups [Jensen 2008, Yang 2006] ; we have chosen to concentrate our study on the realization of arrays of MEMS resonators. The use of stand-alone integrated circuits with homodyne architecture makes possible to fabricate arrays of sensors with medium density : up to tens or hundreds of sensors can be realized.

In this section, we present the design of a stand-alone ASIC including four independent feedback circuits in order to self-oscillate multiple crossbeam resonators in parallel (fig. 3.21). The crossbeams addressed by the ASIC are the same as in the previous section. The inherent connections between the resonators and the feedback electronics are largely reduced because the ASIC and the silicon chip including the MEMS resonator can be implemented close to each-other and because the areas of the resonator chip and the ASIC are small (typically around 10 ≠ 100 mm 2 ). The 2 chips are connected to a common PCB board and are only distanced by a few millimeters. The inherent delay and parasitic resonances that would be introduced by connection cables are therefore largely reduced. This would not be possible with discrete electronics.

The SOL architecture has been preferred to the FLL one for several reasons : -it would have been arduous to implement an FLL-architecture using only analog circuits. Indeed an analog VCO and phase-comparator can be di cult to design and can be area consuming. -If the architecture uses digital electronics then it requires an analog-to-digital converter. In order to measure the phase-shift of the signal with 1 ≠ 10°accuracy, the analog-to-digital converter should be of 6 ≠ 8 bits (i.e. 360°/2 6 ) at a frequency larger than 25 MHz. From [Oliveira 2010], the area of such a circuit would be of 0.12 mm 2 minimum. It will be shown that this area is large compared to the Chapitre 3 overall circuit.

Practical realizations

-It can be argued that a downmixing architecture (see subsection 2.3.3) can be employed in order to reduce the constraints on the analog-to-digital converter because the sampling frequency is reduced. However, this architecture would impose large constraints on the front-end analog filtering needed before the analog-to-digital converter.

Overall, it is believed that an FLL-architecture would be too challenging (in terms of design time and risks) to design the proposed application.

Implementing both the complete feedback electronics and a frequency counter seems a much more compact and feasible solution. Only a clock reference, a communication cable with a computer and a DC power are required. The packaged ASIC with an area of 7 ◊ 7 mm 2 (the actual silicon die is of 2 ◊ 2 mm 2 , the rest of the area is dedicated to the packaging) also o ers the possibility of using several ASIC in parallel in order to address dozen or more resonators.

However, the fabrication of several resonators and feedback electronics each on a single chip has some counterparts : some electrical and mechanical coupling may appear between the di erent resonators or between the di erent circuits within the ASIC chip. The characterization of the multi-oscillators system makes it possible to assess the coupling when electromagnetic models would probably fail at this task.

Global architecture

The ASIC is composed of 4 blocks containing each a feedback circuit and a frequency counter ; a power management block and a SPI communication interface so that the chip can be directly connected to an external computer (fig. 3.22). The ASIC is therefore composed of analog and digital electronics. The analog signal in each oscillating loop is converted into a digital signal and its frequency is measured in real time via the digital frequency counter. The measured frequencies are averaged over a minimal integration time of 10 µs. The averaged oscillation frequency is then sent to a computer through the SPI communication interface. The communication protocol is also used to configure specific parameters (such as the polarization current or the cut-o frequency of the filters) of the self-oscillating circuit.

The frequency counters sampled at 1 GHz consist in counting during a fixed time T meas the number of rising edges of the oscillating signal. In order to achieve a larger accuracy in the frequency measurement, the time of the first and last rising edge are measured and the mean frequency is modified accordingly to the method presented in subsection 1.4.1 of page 32. From eq. ( 1.59) at page 33, a frequency resolution better than 10 ≠7 is achieved for T meas Ø 15 ms which is compatible with the results of subsection 3.1.2. It should be mentioned that the frequency measurement technique implemented in the ASIC provided poor resolution in subsection 3.1.2. The issue was only discovered after the design of the ASIC but we hope that including the comparator in the loop as it is done in the ASIC can prevent this issue.

The architecture implemented in the ASIC allows to activate or deactivate each oscillator on demand. It also o ers the possibility to measure each oscillating frequency in parallel or sequentially. The coupling between each oscillator can thus be evaluated : it is possible for that a frequency shift is detected on an unloaded resonator due to coupling e ects with a loaded resonator.

General topology of the proposed oscillator

The ASIC input signal (corresponding to the resonator output signal) is first biased so that the ASIC characteristics are independent of the crossbeam DC output voltage. The electrical signal is then amplified in order to increase its amplitude and to neglect the noise contribution of the following stages. The following analog stages are dedicated to further amplify and to filter the signal in order to prevent parasitic oscillations at other frequencies than f r . Note that the analog blocks are biased by independent current sources whose values can be adjusted. The tunability of the bias current makes the ASIC more robust and the ASIC characteristics can be modified if needed.

Because the resonator and the ASIC are fabricated on di erent wafers and connected by wire bonding, it is assumed that the connections could modify the phase response of the crossbeam's resonance and that the phase-shift introduced by the connections 
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IN-delayed n th delay stage n-1 th delay stage first delay stage n+1 th delay stage N th delay stage would be di cult to predict accurately. The architecture of the oscillator should therefore be capable to phase-shift the input signal to any value. To the author's knowledge there is no analog architecture capable of finely tuning the phase-shift of the signal that is compact and low power.

Therefore, an analog/digital mixed architecture has been preferably implemented.

It uses a delay lock loop (DLL) that consists of a series of delay blocks which are controlled by a feedback loop (fig. 3.24). Each delay block is basically an inverter and therefore the delay introduced by each block is a function of its bias current.

It is then possible by adjusting the bias current to control the delay introduced by each stage. The output of the last delay block (IN ≠ delayed) is compared to the input signal (IN) with a phase comparator. The delay of each delay block is then controlled through a charge pump so that a 2fi-phase-shift is imposed between the signal IN and the signal IN ≠ delayed. The phase-shift introduced by the n th -delay block is then 2fi ◊ n N where N is the number of delay blocks. Using a multiplexer it is then possible to select any output of the delay line and therefore select a signal with the desired phase-shift according to the input signal. A delay line composed of 64 blocks was implemented : the phase-shift resolution of the DLL is therefore 2fi/64 < 6°. Note that the DLL can also be used to compensate any phase-shift introduced by the rest of the feedback circuit.

Saturating the signal at the output of the analog front-end into a 1-bit signal makes it also possible to easily control the amplitude of the oscillation because it is fixed by the supply voltage. The counterpart of this approach is that the comparator, used to convert the analog signal into a 1-bit digital signal, is highly nonlinear and thus transposes the flicker noise close to the carrier (see subsection 1.3.1.4 at page 25). For this reason, one should filter the flicker noise to limit this e ect. The next subsection will discuss in more details this aspect.

Finally large 2.5 V bu ers are designed to drive the crossbeam with a high actuation power.

NB : the design of the di erent blocks of the ASIC was divided between the actors of the project. I designed the analog blocks and realized their layout as well as the comparator layout.

Analog circuit design

The simplified schematic of the analog part of the circuit depicted in figure 3.25 is composed of the following stages :

-a biasing block, -a low-noise amplifier (LNA), -a low-pass filter, -an active high pass filter with a gain of 10, -and a comparator with an adjustable o set.

Low-noise amplifier A fully di erential low-noise amplifier is designed. The DC voltage on each input transistors (M 13 and M 14 ) are imposed by the biasing blocks described in the following paragraph. The AC signal to be amplified is then connected through a decoupling capacitance to the positive input of the amplifier. The fully di erential architecture of the amplifier makes possible to convert the input signal of the crossbeam into a di erential signal. Several other architectures could also convert the MEMS output signal into a di erential one but these architectures introduce larger noise [Palmisano 2003]. As a matter of fact, they are not suitable to low-noise and high frequency applications. The dimensions of the transistors are chosen large enough in order to achieve a low white and flicker noise at the input of the amplifier. However, the length of the transistor gates are designed based on the trade-o between low-flicker noise and high input capacitance. Overall the amplifier has a typical voltage gain of 20, a bandwidth of 120 MHz and an input noise of 1.5 nV/ Ô Hz.
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Practical realizations Finally, as in all fully di erential amplifier, a control of the common mode is required. Two other single-ended amplifiers are implemented in order to control the common mode. The power consumption and the capacitance at the output of the LNA are reduced by diminishing the width of the single-ended amplifiers by a factor 10.

Biasing blocks

The biasing block with the input decoupling capacitance C 1 makes the electronic circuit independent of the crossbeam resonator's DC output voltage. The biasing stage is composed of transistors with the same length than the ones of the LNA but with a smaller width in order to both reduce the silicon area and the input noise. It might seem that reducing the size of the transistors increases the thermal electronic noise but in our case, the coupling capacitance filters the noise at high frequencies (i.e. around the crossbeam resonance frequency). Indeed, the voltage noise at the input of the LNA can be approximated to :

v noise≠bias =  8 /3k B T g m≠bias - - -j2fif C 1 Cp C 1 +Cp + g m≠bias - - - ¥  8 /3k B T g m≠bias 2fif C 1 Cp C 1 +Cp if g m≠bias π 2fif C 1 C p C 1 + C p , (3.2)
where g m≠bias is the equivalent admittance of the biasing block and C p the MEMSto-electronics connection losses. The equivalent impedance of the transistors should be large in order to have a good impedance matching with the resonator output impedance. Moreover, in order to achieve a very low noise at the LNA input (¥ 0.5 nV/ Ô Hz), the capacitance C 1 should equal to 30 pF. Another biasing block is designed for the other input transistor of the LNA in order to bias identically the amplifier. However, the noise at lower frequencies is large but it is filtered in the further blocks.

The large dimensions of the transistors M 13 and M 14 of the LNA introduce a capacitance between their gates and sources. A parasitic path is created between the two inputs of the LNA and thus the AC input signal on M 13 can be transferred to the gate of M 14 . The AC signal at the inputs of the LNA varies in phase and the gain of the amplifier vanishes. A large grounded capacitance (C 2 = 15 pF) is introduced at the input of the transistor M 14 in order to reduce the AC signal at M 14 created by the existing path.

Passive adjustable low-pass filter

The passive first-order low-pass filter allow adjusting the bandwidth of the LNA. By introducing a variable capacitance at the amplifier output, the bandwidth of the LNA is modified and thus high frequency-noise can be filtered. A set of capacitances are connected or not to the LNA output via NMOS switches. The capacitance at the amplifier output can be adjusted through 6 configuration bits.

Active high-pass filter

The constraints imposed on the high-pass filter are to filter the frequencies lower than 10 MHz while introducing little supplementary noise in the loop. The block cannot be realized with g m ≠ C filters [Sansen 2006] because the architecture cannot introduce little noise while respecting the impedance criteria (a high input impedance compared to the output impedance of the LNA, and a low output impedance compared to the input impedance of the following comparator).

The proposed structure is a classic di erential active first-order high-pass filter based on a di erential amplifier designed to introduce a gain close to 50. The feedback loop is composed of a resistance (implemented with the PMOS transistors M 31 and M 33 ) and capacitance. The structure has a high pass filter behavior and introduces an overall gain close to 10.

The transistors M 32 and M 34 are designed to introduce a DC threshold voltage between the input and the output of the high-pass filter so that it reduces the size of the transistors M 31 and M 33 . Moreover, this approach reduces the area consumption and improves the reliability of the transistors M 31 and M 33 .

Comparator with an adjustable o set

The comparator uses two single-sided buffer with adjustable bias current. By adjusting the bias current, the saturation voltage of the transistors M 41 and M 42 can be adjusted and a DC o set between V comp+ and V comp≠ can be introduced and adjusted. The variable o set was implemented in the loop in order to compensate any mismatch in the previous amplification stages but also so that parasitic oscillations may be prevented. The comparator then consists of a classic 2-stages single-ended amplifier with an inverter at its output. A special care was given in the layout of such design to prevent any parasitic signal from the inverter (i.e. the digital circuit) to propagate in the analog circuit.

Overall simulations and layout

Figure 3.26 depicts the ASIC layout. As announced, the die area is 2 ◊ 2 mm 2 . The pad ring composed of 48 pads fills a large area and the actual circuit is about 1.5 ◊ 1.5 mm 2 . The circuit is divided between the 4 feedback circuits (with an area of 0.29 mm 2 each) and the digital circuit of control. The layout of a feedback circuit is depicted in figure 3.27. The adjustable current sources occupy the largest area, the area is then decomposed between the analog front-end and the DLL. If a second version of the ASIC is realized, the experience acquired from the characterization of the first chip should allow in the future to remove the adjustable current sources and thus to reduce the area consumption of the chip to 0.15 mm 2 or less. Moreover, with the characterization of the first chip and if the phase-shift introduced by the crossbeam is repeatable, then the DLL might be optional.

Only the analog circuit characteristics are presented in this section because it is the circuit that I designed. It was simulated over a range of temperature from 20°t o 80°and over various process corners. The circuit except the comparator has the following characteristics :

-the gain at 20 MHz is larger than 140, -the bandwidth can always be larger than 100 MHz, -the high pass cut-o frequency is in-between 6.5 MHz and 11.5 MHz -the electronic input noise is lower than 1.8 nV/ Ô Hz. The overall ASIC is based on a mixed analog/digital architecture whereby the analog front-end filters and amplifiers the signal. The mixed architecture makes the feedback-loop very flexible and best suited to the application. Indeed, the phaseshift, the bandwidth, an o set and the biasing current of the analog stages can be adjusted in the loop. All in all, the architecture remains compact so that is can address multiple resonators : it is possible to implement an array with a typical distance of 500 µm between each resonators. Furthermore, the flexibility introduced in the loop can be simplified in the case of a second ASIC and thus a more compact ASIC can be realized.

MEMS/CMOS co-integration

Context and objectives

In the chapter 2, it was theoretically shown that integrating the MEMS on the same wafer as the CMOS circuit reduces both the connection losses and the feed-through. Moreover, the integration of MEMS resonators with CMOS circuits is required to fabricate large arrays of sensors. When millions of MEMS resonators are implemented in arrays, the wire bonding to individually connect the resonators to the sustaining electronics becomes unrealistic and too costly. The fabrication of the resonators and the CMOS circuitry on the same wafer is a necessary technological step to realizes sensors for mass spectrometers. This thematic was investigated in this work through three di erent projects :

1. In the first project, a ST-0.35µm bulk CMOS process is adapted to be compatible with a MEMS resonator on a SOI-wafer. The integrated MEMS resonator is a clamped-clamped beam that uses an electrostatic actuation and a capacitive detection. The beam and the electrodes of the MEMS are highly doped using a similar doping level than for the transistors contacts.

2. In the second project, a FDSOI-process developed at Leti for digital electronics is adapted to be 2D co-integrated with piezoresistive resonators. This homemade process o ers more flexibility, e.g. one can choose the type of SOI-wafer and the doping level of the MEMS (and thus to use piezoresistive detection).

3. In a third project, the 3D-integration where the single-crystal MEMS resonator lays on top of its circuity in a 3D-stack is explored. The fabrication is based on another FDSOI-process developed at Leti for digital electronics.

In each project, the technological process of the CMOS transistors was modified to be adapted to the MEMS resonators. It was then assumed that the characteristics of the transistors may vary from the models of the design kit. The electronic circuits were designed to be flexible and simple. The on-chip systems composed of the resonator and the electronics were designed based on two di erent strategies : they were either implemented in a closed-loop or an open-loop architecture as depicted in 3.28. In the closed-loop configuration (fig. 3.28a), the output of the feedback electronics is connected to the resonator actuation voltage. The bu er therefore drives the oscillator signal out of the Silicon chip. The bu er is designed to charge to 3.3 MEMS/CMOS co-integration connection cables between the MEMS-CMOS chip and an external measurement apparatus (e.g. a frequency counter). The feedback electronics is designed so that the MEMS+feedback electronics respect the oscillation conditions. In the open-loop architecture (fig. 3.28b), the oscillator is realized out of the chip by the use of an external feedback circuit. The on-chip open-loop architecture is more flexible and less risky because the gain and the phase-shift of the open-loop can be adjusted externally. In this case, the amplifier is designed to provide a gain su cient so that the noise of the following stages can be neglected. The reduced constaints on the design of the amplifier makes it possible to design such block with smaller input noise than in the on-chip closed-loop configuration. The bu er is similar to the one of the closed-loop configuration because the connection capacitance between the MEMS-CMOS chip and an external measurement apparatus (here a lock-in amplifier or a phase-shifter to implement a FLL or a SOL) are similar. Overall, fully-integrated oscillators are often preferred in a final product or in the domain of high density arrays of sensors.

In the two first projects, closed-loop architecture were implemented. As mentioned previously, the 2D co-integration reduces in a large manner the connection losses. It will be shown that in the two first projects, the product g MEMS ◊ |H connec | is close to 1 and thus the gain of the sustaining electronics is low. The feedback circuits can then be based on a Pierce oscillator topology that uses only a single active transistor.

A trade-o must be found regarding the dimensions of this transistor : if its area is too large, its input capacitance is large what increases the connection losses. If its length is small, the transistor provides low gain. If its width is too small, than the transistor cannot charge the capacitance of the following electronic stage (i.e. the bu er). The theoretical design of the Pierce oscillator in the case of the resonators with a capacitive or a resistive detection is described in the following subsection.

Theoretical design of a co-integrated MEMS Pierce oscillators

This subsection addresses the feasibility of a fully-integrated MEMS-based Pierce oscillator in cases when the motion of the resonator is converted into an electrical signal through (a) capacitive or (b) resistive detection. Our approach uses a MOS Berkeley level 1 model description of a standard CMOS technology. This methodology can easily determine for a given MEMS or NEMS resonator if it is possible to implement it in a Pierce oscillator scheme, and can also be used as a design rule to shrink the resonator's dimensions down to achieve the highest resonance frequency. As a study case, the approach is illustrated on electrostatically-actuated resonators : (a) a clamped-clamped beam resonator using capacitive sensing, and (b) a piezoresistive crossbeam. Both oscillators are based on a STMicroelectronics HCMOS9 design kit. The technology makes it possible to fabricate transistors with gate length dimensions as small as 130 nm making it good candidate for high fre-Chapitre 3

Practical realizations quency applications without the high fabrication cost and the constraints of more advanced processes.

Oscillation conditions

As described in section 1.3.1.1, the Barkausen conditions for a system to oscillate at f osc are :

|H MEMS (f osc ) ◊ H elec (f osc )| > 1 and arg [H MEMS (f osc ) ◊ H elec (f osc )] © 0 [2fi] . (3.3)
To oscillate at f r , the electronic circuit must then have a gain at f r larger than 1/g MEMS and a phase-shift  elec equal to ≠ MEMS . If the electronics introduce a supplementary phase-shift  so that  elec = ≠ MEMS + Â, and if the gain is su cient, the resonator will still oscillate at a frequency f osc little di erent from f r 9 :

f osc ¥ f r A 1 + Â 2Q B .
(3.4)

By definition, the gain of the MEMS resonator at f osc is smaller than g MEMS . Its value can be approximated to :

|H MEMS (f osc )| ¥ g MEMS C 1 ≠ Â 2 2 D .
(3.5)

From equations (3.3) and (3.5) it is seen that to ensure oscillations, |H elec (f osc )| must increase as  increases. A trade-o must be established in order to achieve a large electronic gain while introducing small Â. The goal of the electronic design should then be to maximize the quantity expressed by :

|H ps elec (f osc )| = |H elec (f osc )| A 1 ≠ Â 2 2 B .
(3.6)

Sustaining electronics for a capacitive MEMS resonator

In this subsection, we show that, for the architecture shown in fig. 3.29, there exists optimal transistor dimensions for M A for which |H ps elec (f osc )| is maximized. Approximate expressions of the optimal transistor width W A≠opt and length L A≠opt are : -C load = 200 fF is the Pierce oscillator output capacitance, -K Õ n = 125 µA/V 2 is the transconductance coe cient, -C gd0 = 0.5 fF/µm nominal gate-drain capacitance, -V E = 7.7 V/µm is the impedance parameter, -V gs = 0.6 V is the gate-source DC voltage, -V T = 0.36 V is the threshold voltage. The resulting electronic gain is :

Y _ _ ] _ _ [ W A≠opt ¥ 3 Ú 2fifrC load C 2 connec 16K Õ n C 2 gd0 V E L A≠opt ¥ (V gs ≠ V T ) 3 Ú 2K Õ n Cconnec 2fifrC load C gd0 V 2 E , ( 3 
- - -H ps elec≠opt (f osc ) - - -¥ 3 8 3 î ı Ù 2K Õ n V E C 3 MEMS 2fif r C 2 connec C load C gd0 , ( 3.8) 
where C MEMS is the output capacitance of the resonator. The corresponding electronic supplementary phase-shift is  = 0.5 rad that corresponds to an oscillating frequency of : f osc ¥ 1.00025 ◊ f r .

Description of the circuit Figure 3.29 shows the schematic of the capacitive MEMS-based Pierce oscillator and its small signal equivalent circuit, where :

-

g m is M A 's transconductance, -Z P is M A 's gate biasing impedance, -C gdA is M A 's gate-drain capacitance, -g dsA is M A 's drain-source admittance, -g dsB is M P 's drain-source admittance, -C in = C connec + C gsA , -C dbA is M A 's drain-bulk capacitance, -C dbB is M B 's drain-bulk capacitance, -C out = C load + C dbA + C dbB .
The small signal equivalent schematic of the circuit uses the Berkeley level 1 [Sansen 2006] model of the transistors. The electronic design of the Pierce-oscillator consists in determining the optimal dimensions of the transistors 

H ideal elec = v out v MEMS = ≠g m C MEMS j2fif osc C in C out ¥ ≠g m C MEMS j2fif osc C p C load .
(3.9) Such an ideal circuit introduces a +90 phase shift in the oscillator feedback loop and thus ensures that the oscillations conditions 3.3 can be met at f = f r . However, it is not possible in practice to achieve a large transimpedance gain (i.e. large g m or small C in ) without increasing the values of C gdA , g dsA , g gsP and Z P . The next sub-section is devoted to the determination of an optimal design of the electronics.

Maximum electronic gain

The non-ideal electronic transfer function has the following expression :

H elec = ≠j2fif osc C MEMS (g m ≠ j2fif osc C gdA ) / ; g dsA + g dsP Z P + j2fif osc 5 (g dsA + g dsP ) (C MEMS + C in + C gdA ) + C out + C gdA Z P + g m C gdA 6 ≠ ≠ (2fif osc ) 2 Ë (C MEMS + C in + C gdA ) (C out + C gsA ) ≠ C 2 gdA ÈÔ . (3.10)
We assume that :

-the MEMS resonator output capacitance is negligible compared to C p : C MEMS π C p < C in , -the e ect of M P can be neglected (i.e. g dsP π g dsA , C dbP π C load ),
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-the e ect of M A biasing can be neglected (i.e. Z P ∫ 1 2fifoscCout , Z P ∫ Cout C in 1 g dsA +g dsP ), -the transistors dimensions respect 50 nm π L A π 50 µm and W A L A π 15000 µm so that C gdA π C gsA , C dbA π C load , g m ∫ 2fif osc C gdA , -the gate-source capacitance of M A is low compared to the shunt capacitance :

C gsA π C p . With the previous consideration, the expression of the electronic transfer function H elec can be written as :

H elec = H ideal elec 1 1 ≠ H ideal elec 1 C dgA C MEMS + g dsA gm Cp C MEMS 2 .
(3.11)

The phase introduced by this circuit is

 elec = fi/2+arctan Ë- - -H ideal elec - - - 1 C dgA C MEMS + g dsA gm Cp C MEMS 2È
and its gain is

|H elec | = H ideal elec / Ú 1 + - - -H ideal elec - - - 2 1 C dgA C MEMS + g dsA gm Cp C MEMS 2 2
. Assuming  =  elec ≠ fi/2 is small, a Taylor expansion of (3.11) yields :

|H elec | ¥ - - -H ideal elec - - -◊ 1 1 ≠ Â 2 /2 2 .
(3.12)

In other words,  not only introduces a resonator gain reduction (cf. eq. (3.5)) but also a circuit gain reduction. A modified gain (|H ps elec | = H ideal elec ◊ (1 ≠  2 )) takes into account the resonator gain reduction due to  can be introduced. Starting from the Berkeley level 1 model [Sansen 2006] applied to the transistor M A :

g m = 2K Õ n W A L A (V gs ≠ V T ) , g ds = K Õ n V E W A L 2 A (V gs ≠ V T ) 2 , C gd = C gd0 W A , (3.13)
where W A , L A are the width and length of M A , respectively. The expression of |H ps elec | can then be expressed in terms of W A and L A :

|H ps elec | = 2K Õ n W A L A (V gs ≠ V T ) C MEMS 2fif osc C p C load ◊ S U 1 ≠ 2K Õ n W A L A (V gs ≠ V T ) 2fif osc C p C load 3 C gd0 W + C p V gs ≠ V T 2LV E 4 T V . (3.14)
Maximizing |H ps elec | with respect to W A and L A yields to the following expression of the optimal parameters W A≠opt , L A≠opt and

- - -H ps elec≠opt - - -: Y _ _ _ _ _ _ ] _ _ _ _ _ _ [ W A≠opt = 3 Ú 2fifoscC load C 2 connec 16K Õ n C 2 gd0 V E L A≠opt = (V gs ≠ V T ) 3 Ú 2K Õ n Cconnec 2fifoscC load C gd0 V 2 E - - -H ps elec≠opt - - -= 3 8 3 Ú 2K Õ n V E C 3 MEMS 2fifoscC 2 connec C load C gd0 . (3.15) As - - -H ps elec≠opt
---depends on C MEMS and thus on the characteristics of the resonator, it is possible to introduce the transimpedance gain of the circuit defined as ---determines that  is constant :  = 0.5 rad. It implies that the oscillation frequency is slightly shifted with the following value (here Q = 1000) : (3.16) where f osc is the oscillation frequency in the loop. The results of equation (3.15) for f = f osc are therefore also valid at f r .

f osc f r ¥ 1.00025,
Illustration : maximum oscillating frequency for a clamped-clamped beam resonator Let us consider a capacitive clamped-clamped beam with fixed dimensions (b = 300 nm, h = 160 nm, g = 200 nm) and varying length. The fixed dimensions corresponds to the crossbeam measured in subsection 3.1.2. Based on section 2.2.1.2 f r and g MEMS have the following expressions :

f r = ⁄ 2 2fi Û c Si 12fl Si b L 2 , g MEMS = 12Á 0 ÷ A ÷ D Q ⁄ 4 c Si V 2 DC L 4 b 3 g 3 .
(3.17)

Self-sustained closed-loop oscillations start if :

1 g MEMS ◊ - - -H ps elec≠opt - - - 2 > 1.
The maximum resonance frequency can be determined by studying the evolution of 

Sustaining electronics for a resistive resonator

Similarly to subsection 3.3.2.2, we show that for a Pierce oscillator architecture, there exist optimal transistor dimensions for M A for which

- - -H ps elec≠opt (f osc ) - - -is maximized : Y _ _ ] _ _ [ W A≠opt ¥ 3 Ú 9 Ô 5 8 C load V E 2fifrK Õ n[ 3C gd0 V E +Cox(Vgs≠V T )] 2 R 2 MEMS L A≠opt ¥ (V gs ≠ V T ) 3 Ú 15 8 K Õ n (2fifr) 2 C load R MEMS V E [3Cgd0VE+Cox(Vgs≠VT )] , (3.18)
where R MEMS is the resonator output resistance. The resulting electronic gain is :

- - -H ps elec≠opt (f osc ) - - -¥ 3 î ı Ù 25 Ô 5 72 K Õ n V 2 E (2fif r ) 2 C load R MEMS [3C gd0 V E + C ox (V gs ≠ V T )] . (3.19)
The corresponding electronic supplementary phase-shift is  = 1/ Ô 5 rad that corresponds to an oscillating frequency of :

f osc ¥ 1.00024 ◊ f r .
Description of the circuit Figure 3.32 shows the schematic of the piezoresistive crossbeam-based Pierce oscillator and its small signal equivalent circuit. The circuit is similar to that of the capacitance MEMS-based Pierce oscillator. The electronic circuit has the following ideal transconductance at the frequency f osc if the e ect of C gdA , C in , g dsA , g gsP and Z P are negligible : Such an ideal circuit introduces a phase-shift of +90 and ensures the oscillations conditions (3.3) are satisfied at f = f r . Similarly to the previous section, the effect of the parasite parameters (i.e C gdA , C in , g dsA , g gsP and Z P ) on the electronic transimpedance are explored.

H ideal elec = v out v MEMS = ≠ g m j2fif osc C out ¥ ≠ g m j2fif osc C load . ( 3 

Maximum transimpedance gain

The non-ideal electronic transimpedance is :

H elec = ≠ (g m ≠ j2fif osc C gdA ) / ; (g dsA + g dsP ) 3 1 + R MEMS Z P 4 + j2fif osc [g m R MEMS C gdA + R MEMS (g dsA + g dsP ) (C in + C gdA ) + 3 1 + R MEMS Z P 4 (C load + C gdA ) 6 ≠ (2fif osc ) 2 R MEMS [C in C out + (C in + C out ) C gdA ] < .
(3.21)

Similarly to subsection (3.3.2.2), we assume that :

-the e ect of M P can be neglected (i.e. g dsP π g dsA , C dbP π C load ), -the e ect of M A biasing can be neglected (i.e. R MEMS ∫ Z P ), -the transistors dimensions respect 50 nm π L A π 50 µm and W A L A π 15000 µm so that : C gdA π C gsA , C dbA π C load , g m ∫ 2fif osc C gdA . The expression of the electronic transfer function H elec can then be simplified as follows :

H elec = H ideal elec 1 1 + 2fif osc - - -H ideal elec - - -(C gdA + C in /A 0 ) + j 5 2fif osc C in R MEMS ≠ |H ideal elec | A 0 R MEMS 6 .
(3.22)

In order to achieve the proper phase-shift, the circuit is designed so that the output current from the MEMS resonator flows in its output impedance : 1/R MEMS ∫ 2fif osc C in . This approach has two consequences :

1. The circuit can no longer operate if the resonance frequency is larger than f osc ∫ 1/ (2fiR MEMS C in ) because the current will flow into C in and the phaseshift of the circuit will no longer respect the Barkausen conditions, 2. If the product 2fif osc R MEMS is low (compared to 1/C p ), the circuit input capacitance can be increased and as a result, the transistor M A becomes larger.

The last consequence may contradict the hypothesis taken in subsection (3. 

H elec = H ideal elec Ë 1 + 2fif osc - - -H ideal elec - - - 1 C gdA + C gsA A 0 2È S W U1 + Q c a 2fifoscC gsA R MEMS ≠ | H ideal elec | A 0 R MEMS 1+2fifosc|H ideal elec | 1 C gdA + C gsA A 0 2 R d b 2 T X V . (3.23) Finally, one can assume that 2fif osc C gsA R MEMS π |H ideal elec | A 0 R MEMS … (2fif osc C gsA ) ◊ (2fif osc C load ) ∫ g dsA /R
MEMS and therefore the phase-shift term 2fif osc C gsA R MEMS can be neglected. Using the Berkeley level 1 model [Sansen 2006] description of the transistor M A , the expression of |H ps elec | can then be expressed in terms of W A and L A :

|H ps elec | = 2K Õ n W A L A (V gs ≠ V T ) R MEMS 2fif osc C load / Y _ _ ] _ _ [ . 5 1 + K Õ n W 2 A L A (V gs ≠ V T ) R MEMS 3 C gd0 C load + C ox (V gs ≠ V T ) 3C load V E 46 ◊ S W W U 1 + Q c c a K Õ n W A L 2 A (Vgs≠V T ) 2 2fifoscC load V E 1 + 2K Õ n W 2 A L A (V gs ≠ V T ) R MEMS 1 C gd0 C load + Cox(Vgs≠V T ) 3C load V E 2 R d d b T X X V Z _ _ _ _ \ (3.24)
By maximizing |H ps elec | with respect to W A and L A , one can find the optimal parameters W A≠opt , L A≠opt and

- - -H ps elec≠opt - - -: Y _ _ _ _ _ _ ] _ _ _ _ _ _ [ W A≠opt = 3 Ú 9 Ô 5 8 C load V E 2fifoscK Õ n[ 3C gd0 V E +Cox(Vgs≠V T )] 2 R 2 MEMS L A≠opt = (V gs ≠ V T ) 3 Ú 15 8 K Õ n (2fifosc) 2 C load R MEMS V E [3Cgd0VE+Cox(Vgs≠VT )] - - -H ps elec≠opt - - -= 3 Ú 25 Ô 5 72 K Õ n V 2 E (2fifosc) 2 C load R MEMS [3Cgd0VE+Cox(Vgs≠VT )]
.

(3.25)

The evolution of 

f osc f r ¥ 1.00024, (3.26) 
where f osc is the oscillation frequency in the loop. Once again, the results of (3.15) for f = f osc are also valid at f r .

Illustration : maximum oscillating frequency for a piezoresistive crossbeam

Consider a piezoresistive crossbeam similar to subsection 3.1.2. As with the capacitively sensed resonator, the length of the beam varies in order to sweep a given range of resonance frequency. Based on section 2.2.3, f r and g MEMS have the following expressions :

f r = ⁄ 2 2fi Û c Si 12fl Si W L 2 , g MEMS = Á 0 " Si ÷ A ÷ D Q ⁄ 4 c Si V DC V g L W g g 2 . (3.27) 120 3.3 MEMS/CMOS co-integration R MEMS = Si Lg 2hWg ¥ 8.
1 k where Si = 416 µW.m is the resistivity of the silicon. V DC = 0.4 V is the DC component of the actuation voltage, V g is twice of the e ective DC voltage applied on each piezoresistive gauge. From the subsection 3.3, self-sustained closed-loop oscillations will start if :

1 g MEMS ◊ - - -H ps elec≠opt - - - 2 > 1.
The maximum resonance frequency can be determined by studying the evolution of

1 g MEMS ◊ - - -H ps elec≠opt - - - 2
versus the resonator dimensions (figure 3.34) : the maximum resonance frequency is about 35 MHz corresponding to a minimal beam length of 3.9 mm.

Conclusion of limits of Pierce oscillators

This section describes the design of a MEMS-based oscillator built around a single active MOS transistor. The paper focuses on the design of the oscillator sustaining electronics and its limitations. A simple analytical formula is provided to determine for a given MEMS resonator the maximum transimpedance gain achievable by the circuit for capacitively or (piezo)resistively sensed MEMS resonators. The formula uses the technological parameter of a Berkeley level 1 model of transistors. It can therefore also be used to assess the performance of a CMOS process for Pierce oscillator applications. Additionally, this paper presents the study of the maximum resonance frequency achievable to fulfill the self oscillation conditions for a capacitively sensed clamped-clamped beam and for a piezoresistive crossbeam. It confirms the results announced by [Colinet 2009] and provides an expression of the electronics transimpedance gain and the associated transistor's dimensions. In the presented Pierce oscillator configuration, the minimal resonator length and therefore the maximum frequency of the MEMS-based oscillator strongly depend on the mechanical design of the resonator. It remains possible to increase the maximum oscillation frequency by reducing the beam length-to-width ratio, the gap or by increasing the resonator DC-polarization voltages. The electronic architecture exposed in the paper is well adapted to MEMS or NEMS resonator arrays since the electronics area constraint is drastically reduced. However other electronic architectures can be more competitive in terms of robustness, insensibility to parasitic signals (e.g. di erential electronic), phase-noise, resonator feed-through reduction (i.e. electronics including filtering or PLL), etc.

2D co-integration of resonators with capacitive detection

and a 0.35 µm CMOS circuit 10

Description of the technology and the MEMS resonators

The MEMS resonator and the sustaining electronics are fabricated from the STMicroelectronics 0.35 µm-bulk process. In fact, the MEMS and the CMOS circuit are fabricated on a SOI wafer with a 1 µm layer of SiO 2 and a 1 µm top layer of silicon defining the thickness of the resonator to h = 1 µm. The top silicon is so thick that it has been supposed that the electrical behavior of the transistors is very similar to the one fabricated on a bulk wafer. The MEMS resonator is first fabricated at CEA-LETI using a 250 nm deep ultraviolet lithography step that limits the resonator geometries. The gap is then filled with SiO 2 , a CMP 11 step planarizes the wafer. The resonators are then protected and the wafer is processed in STMicroelectronics. The CMOS circuit is fabricated using standard bulk wafer process without taking into account that the fact that the substrate is SOI. The CMOS circuit being completed it is passivated and the process is completed at Leti. A series of dry-etching steps removes the dielectric layers on top of the resonator. The back-end layers of the CMOS process (oxide and metal layers) are protected using a HF O 2 deposition (a gate oxide). The resonator is then released through an HF isotropic etching.

Due the technological requirements, the thickness of the clamped-clamped beam is h = 1 µm. The minimal dimensions and gap of the resonators are 250 nm. From the model of the resonator described in section 2.2.1, it can be shown that the beam width and gap should be taken to its minimum : b = g = 250 nm. Finally, three sets of beam length are designed : one at 20.9 µm, the second at 14.8 µm and the last one at 10.5 µm. The corresponding resonance frequencies are 20 MHz, 10 MHz and 5 MHz respectively. The table 3.3 presents the characteristics of the 3 di erent designed resonators. 
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CMOS circuit design and theoretical assessment of the system 12

Three di erent versions of the circuit were designed. The first one is a closed-loop Pierce oscillator. The second is identical to the first but the output of the feedback circuit is not connected to the resonator actuation electrode as depicted in figure 3.35. This open-loop configuration is implemented to study the oscillation conditions.

In the third version, the capacitance of the Pierce oscillator circuit is reduced so the gain of the circuit is increased. For practical reasons, the same three versions of the electronic circuit has been implemented for all the resonators. With the dimensions of figure 3.35, the transfer function of the circuit can be approximated to : (3.28) thus the open-loop phase-shift should be close to 0°. In order to achieve an openloop gain larger than one, V DC should be larger than 24 V, 6.7 V, 2.2 V for the three resonators versions respectively.

H elec (f ) ¥ ≠ g mA j2fif C out ∆ Y ] [ |H elec (10 MHz)| = g mA 2fif Cout ¥ 1.4 arg [H elec (10 MHz)] ¥ +90°,
Finally, the bu er used to charge the connection capacitance is based on a single stage topology [Sansen 2006]. The dimensions of the transistors are designed to drive an output capacitance around 5 pF that corresponds to the input capacitance (plus a margin) of a commercial amplifier connected directly to the chip.

The characteristics of the overall electronic circuit are presented in table 3.4. Note that in this simple implementation, the electronic noise dominates. The performance of the resonator embedded in the Pierce oscillator can be evaluated for a mechanical displacement of a tenth of the gap. From the model of section 2.4, the corresponding mass resolution in vacuum is theoretically equal to 1.0 ag at T meas = 0.23 s, 4.7 ag at T meas = 0.41 s, 22 ag at T meas = 0.74 s for the 3 resonators versions respectively. These results are comparable with the state-of-the-art works of fully integrated MEMS resonators [Verd 2007[START_REF] Verd | [END_REF]]. As discussed previously, the design of the electronics can be improved by integrating a more complex architecture with a lower input noise : it should be possible to enhance the mass resolution of the oscillator.

Layout of the Pierce oscillator

Figure 3.36 depicts an optical image of the Pierce oscillator. The total oscillator area (including the output bu er) is about 80 ◊ 60 µm making the oscillator an excellent candidate for arrays of sensors.

Characterization

Stand-alone electronics

The fabrication process of a first series of chips omitted the last technological steps : the protection of the CMOS circuit and the release of the MEMS resonator. Obviously, the chips were fabricated more rapidly but Practical realizations only the stand-alone electronic circuits could be characterized. The corresponding measurement setup is depicted in figure 3.37. The response of the electronics is characterized in terms of gain and induced phase-shift (fig. 3.38). The responses of the circuits are consistent with the simulations and thus the fully integrated MEMS oscillators should reach their theoretical performances. However it can be noticed that the bu er bandwidth is smaller than expected : this is probably due to a large connection capacitance between the bu er and the commercial amplifier (larger than 5 pF).

V b V meas V out M B M A M P M 1 M 2 M 3 M 4 Feedback circuit Buffer C load V g0 V dd_amp V dd_buffer gnd buffer gnd amp V elec 0.79 V 2.7 V 3.
Co-integrated MEMS-CMOS preliminary measurements 13 A few weeks after the end of my PhD contract, some wafers including MEMS resonators co-integrated with the CMOS circuits were completely fabricated for the first time. The first successful characterizations were obtained with clamped-free beams rather than the clamped-clamped beams presented in this manuscript. The chips were tested with the measurement setup depicted in figure 3.39. The mechanical resonance of the beams was both detected under atmospheric pressure and in vacuum (fig. 3.40). The beam measured has the following dimensions : 5.9 µm-long and 250 nm-wide. The measurements under vacuum are very interesting because the signal-to-background ration is large and the open-loop gain is larger than 0 dB : it should be possible to close the loop. In fact, the closed-loop designs are currently being tested.

These preliminary measurements demonstrate the success of the proposed integration approach and announce promising perspectives towards the realization of onchip MEMS-CMOS oscillators with very small surface consumption. These fabricated chips are particularly interesting compared to other co-integrated chips in the literature [START_REF] Verd | [END_REF], Arcamone 2007, Uranga 2005, Lopez 2009a, Teva 2007] because the resonator are fabricated from single-crystal silicon. Moreover, the area consumption of the NEMS-CMOS pixel are very compact.

2D co-integration of resonators with piezoresistive

detection and a 0.3 µm CMOS circuit14 

Description of the MEMS-CMOS technology and of the MEMS resonators

In this project, the electronics is designed with a FDSOI CMOS technology developed at Leti. The transistors are manufactured on a SOI wafer and are fully depleted. Their ultra-thin oxide thickness limits the supply voltage of the electronic circuit to 1.2 V. Their technology is not properly mature yet and was developed for a single metal layer. If two lines have the cross each other without contact, the polysilicon ). The electronics design was optimized for CB4. layer (used for the gate) is locally employed as a second conductive layer. This scenario is avoided as much as possible because the resistance of the polysilicon layer is much larger than the metal layer. The process uses a deep ultraviolet lithography what limits the transistor length to 0.3 µm. The thickness of the top silicon layer is 45 nm as required for the FDSOI transistors. The single-crystal MEMS resonators are realized on the same layer and are consequently very thin (among the tiniest in the literature) what should enhance the performance of the device in terms of mass sensitivity.

V b V meas V out M B M A M P M 1 M 2 M 3 M 4 Feedback circuit Buffer C load V g0 V dd_amp V
The possibility to implement single-crystal resonators with a 10 19 cm ≠3 doping level makes it possible to design piezoresistive crossbeam resonators. The resonators dimensions being defined using electron beam lithography, it is possible to reach more aggressive dimensions than the ones described in subsection 3.1.2. The beam width can be as small as 30 nm and the electrode/beam gap can be as small as 60 nm. With these constraints, di erent crossbeam resonator were designed (see table 3.5).

Similarly to the previous case, the resonators are first defined. After being released, a thermal oxidation coats the MEMS with a 10 nm thick SiO 2 layer and an isotropic deposition step of polysilicon is performed to fill the trenches. The CMOS circuit is then fabricated and passivated. Finally, the oxide layers on top of the resonator are etched and the resonators are released using an XeF 2 -isotropic selective etching of the filling polysilicon layer. This novel approach is interesting because only backend oxide should be etched to release the resonator. The release step can be made using XeF 2 etching process is very selective and the CMOS back-end layers are not degraded during the release (as opposed to HF release). 

MEMS/CMOS co-integration

CMOS circuit design and theoretical assessment of the system

Di erent electronic topologies were implemented with the crossbeams. First, a Pierce oscillator was designed to operate in closed-loop configuration. A voltage amplifier was also designed that presents a large amplification gain and a low input capacitance. As opposed to the previous project, it was decided to design the amplifier with optimized dimensions in order to achieve a large gain, high bandwidth and low-input noise.

Pierce oscillator using a crossbeam resonator The electronic architecture of the oscillator is similar to the one of the previous project ; only the dimensions of the transistors and of the capacitance di er. For practical reasons, we have chosen to implement the same transistor geometries for all crossbeams of table 3.5 and C load is adjusted to ensure that the open-loop gain is in-between 1 and 2.

With the model of section 2.4 and assuming that the beam displacement is a tenth of the gap, the theoretical mass resolution for the di erent crossbeam of table 3.5 is 0.4 zg in 2.3 s, 0.2 zg in 1.5 s, 0.6 zg in 3.0 s, 0.3 zg in 1.3 s and 1.0 zg in 7.4 s respectively. The mass resolutions are close to the state-of-the-art. However, it is believed that they should be 2 orders of magnitude larger than the predicted ones because of the large anomalous flicker noise measured in subsection 3.1.2.

Voltage amplifier for an open-loop configuration

The characteristics of the Pierce oscillator show that the dominant noise in the loop is introduced by the electronics. Thus, it was decided to design another circuit so that its input noise can be smaller. Although the gain and phase conditions in the Pierce oscillator restrain the geometry of the transistors, it is possible to design a dedicated amplifier with larger transistors and with no loading capacitance and thus to reduce the electronics input noise (fig. 3.42). The NMOS transistor amplifies the input circuit while the PMOS transistor acts as a DC current source. With the dimensions given in figure 3.42, the characteristics of the amplifier are given in table 3.7.

Bu er Based on resonators characteristics, one wants to design a 100 MHz output bu er. In this project, the bu er is designed to drive an output capacitance of 100 pF as opposed to the previous project where the bu er was designed for an output capacitance of 5 pF. A capacitance of 100 pF corresponds to coaxial cables of 1 m and thus the measurement of the chip is more simple. With this constraint, the dimensions of the corresponding transistors are very large and thus introduce a large bu er input capacitance : typically in the order of 1 pF. In this scenario, the bu er input capacitance would be too large for the designed electronic amplifiers. We From simulations, the flat-band gain of the circuit is about ≠6 dB and its bandwidth is about 63 MHz.

Layout of the Pierce oscillator

Figure 3.45 presents an optical image of the Pierce oscillator. The Pierce oscillator area (excluding the output bu er) is smaller than 30◊20 µm (without optimization) making the oscillator an excellent candidate for arrays of sensors. The bu er area can be excluded in this assessment because in future MEMS-CMOS systems, the oscillation frequency could be counted digitally on the chip, avoiding the use of such bu ers.

Characterization

Stand-alone electronics The electrical characterization of the electrical test structures (transistors and capacitances) of the CMOS process has revealed a large difference in the threshold value of the transistors. The absolute value of the NMOS and the PMOS threshold voltage increases by 50 ≠ 200 mV. Moreover, the saturation current is larger than expected for the NMOS transistor but lower for the sonators. It is however clear that further process engineering are necessary in order to realize a repeatable NEMS-CMOS co-integrated chip. Only under this condition, the CMOS circuit can be made more complete including a reliable feedback circuit, a frequency counter and a communication protocol.

Co-integrated MEMS-CMOS preliminary measurements

In the last months of my PhD project, the wafers including nanoresonators co-integrated with the electronics were fabricated. It was shown that only the CB2 crossbeam could be released due to a process error : the beam of the other resonators have all been stuck on the bottom silicon layer during the BOX etching.

The first measurements of such nanoresonators were operated with the circuit including the voltage amplifier. Such systems were measured using a homodyne detection with a di erential actuation. Figure 3.48 describes the measurement setup employed to acquire the mechanical resonance of the crossbeam. Figure 3.49 depicts the mechanical resonance of the MEMS-CMOS system either in atmospheric pressure or under vacuum. One can see on the measurements in atmospheric pressure that the mechanical response emerges out of the background when the absolute value of the DC actuation voltage increases. These measurements are the first reported in the literature whereby the mechanical resonance of such light (5.6 fg) and small resonators (1.2 ◊ 0.08 ◊ 0.025 µm 3 ) is acquired under atmospheric pressure and using a homodyne detection. If the co-integrated nanoresonator is measured under vacuum, the mechanical resonance is clearly observed. The signal-to-background ratio is larger than 15 dB (close to 20 dB) and the phase-shift response is close to the one of 3.3 MEMS/CMOS co-integration a Lorentz function.

To the author's knowledge, the presented results are the only measurement of nanoresonator with a piezoresistive detection and co-integrated with a compact CMOS circuit at very high frequency (¥ 100 MHz). In fact, this particular piezoresistive detection seems necessary to measure, using a homodyne detection scheme, a nanoresonator with a very high resonant frequency and low dimensions.

Unfortunately, the open-loop gain of the tested devices is too small to implement the devices in an on-chip closed-loop. It is however considered that the bu er stage might largely attenuate the gain of the MEMS-CMOS chip and the open-loop gain at the amplifier output (before the bu er) of the designed Pierce oscillator might be larger than to one measured. Such structures have not been tested yet by lack of time.

3D co-integration of resonators with piezoresistive detection and a 30 nm CMOS circuit 15

The 3D integration of a MEMS resonator above an integrated circuit makes possible to fabricate the circuit independently from the MEMS resonator. The electronic circuit can then be fabricated with a standard CMOS process and the MEMS process can be adjusted independently. In fact, the 3D-integration of the resonator with a CMOS circuit seems the most relevant integration scheme for arrays of MEMS resonator.

Description of the technology and the MEMS resonators

In this 3D technology, the CMOS circuits are first fabricated according to a 30 nm CMOS design kit with two metallic layers. The ultra-thin oxide thickness of the technology limits the supply voltage to 1 V. Once the CMOS process is completed, a reverse SOI wafer is bounded on top of the dielectrics of the CMOS wafer. The bulk and the buried oxide are then grinded until reaching the top silicon layer. The crossbeam resonators are fabricated on the silicon top layer whose boron doping level is around 10 19 cm ≠3 with the 4 sets of dimensions given in table 3.8. Windows are opened above all MEMS resonators in order to remove the dielectrics above the crossbeam by dry etching. Unlike other examples of monolithic integration (the 2Dintegration previously presented), the key point here is that the buried sacrificial oxide and the top dielectrics have comparable etching rates since both are deposited oxides. The nominal release distance being 150 nm (half beam-width plus a 50 nm margin), the openings in the dielectrics are separated from any metal line by at least 2.5 µm in order to ensure su cient margin avoiding any damage of the metal lead. 

Design of the CMOS circuit and theoretical assessment of the system

A very short timeframe (less than a month) could be allowed to this project. This is way, the strategy employed has been to design a simple electronics in an open-loop configuration. The electronic design is organized as follows : first the dimensions of the bu er's transistors are determined in order to charge the connection capacitance (¥ 100 pF). The input capacitance of the bu er was then measured and the amplifier is designed so that it could charge the bu er's input capacitance. It has been assumed during the electronic design that the input capacitance of the amplifier is small so the connection losses are negligible. Finally the amplifier and the bu er are both biased with independent external current sources. 

MEMS/CMOS co-integration

This methodology has the advantage of rapidly designing the electronics. However the design of the first amplifier is not based on the characteristics of the resonator but on the bu er's ones. It will be shown that the electronic noise is comparable to the resonator's output noise.

Bu er design

The bu er architecture is based on an operational amplifier whose output and the minus input are connected. The di erential architecture was chosen over the non-di erential architecture (like on the previous projects) because this topology is less sensitive to the DC voltage at its input [START_REF] Gray | [END_REF]]. However it requires a third transistor between the supply voltage and the ground and is therefore more sensitive to a variation of the threshold voltage of the transistors.

The dimensions of the transistors M 11 /M 12 , and M 13 /M 14 are equal by pairs. It ensures that the output signal is close to the input signal while being capable to drive large capacitance. In order to achieve a bandwidth of f buf = 100 MHz, the biasing current is determined to be I buf f er = 2 ◊ 10 mA. The saturation voltage of the transistors M 11 /M 12 , V dssat11 = 0.1 V, is set on purpose to a low value in order to reduce I buf f er . To achieve I buf f er = 2◊ 10 mA with V dssat11 ¥ 0.1 V, the aspect ratio of M 11 and M 12 must be larger than : W L > 2500 (determined from simulations). The length of M 11 and M 12 is taken to L 11 = 0.1 µm what minimizes the area occupied by the transistors while ensuring a proper copy of the bu er input voltage. The corresponding input capacitance of the bu er is around C buf = 1 pF (with a margin). The transistors M 13 and M 14 must be designed for V dssat13 < 0.25 V while I 13 = 10 mA. Increasing V dssat13 allows reducing the aspect ratio of the corresponding transistor for a given biasing current : it leads to W L > 3000. The transistor M 15 must respect the following aspect ratio : W L > 2500. The transistors M 15 and M 16 are implemented in a current mirror configuration so that M 15 acts as a current source. With an aspect ratio of M 15 10-times larger than M 16 , the DC-current flowing into M 15 is 10 times larger than M 16 . This scaling was chosen in order to reduce the power consumption and the size of the paths in the layout.

As a matter of fact, because the supply voltage of the technology is so low (V dd = 1V ) and the threshold voltage is quite high (V T ≠NMOS ¥ 0.5V ), it is di cult to design an upstream amplifier circuit with an NMOS input transistor. Therefore the input transistor of the previous block should be PMOS.

Amplifier design

The circuit topology depicted on figure 3.50 amplifies the voltage di erence between the MEMS output voltage and a DC voltage V MEMS≠DC . V MEMS≠DC is set by an external voltage source so that it is equal to the MEMS DC output voltage. From simulations, it was determined that the active transistor should have a gate length larger than L = 0.3 µm so that the amplifier gain is larger than G amp > 15. In order to achieve an amplifier bandwidth larger than 100 MHz, the transistor width and its corresponding biasing current should be larger than Characteristics of the MEMS+CMOS systems The table 3.9 shows how the CMOS circuit (amplifier + bu er) behavior fulfills the requirements in terms of gain (> 20 dB) and bandwidth (> 100 MHz). The simulations shows that the circuit input noise is lower than 14 nV/ Ô Hz in the frequency range [0.5, 100] MHz. With these circuit characteristics, the corresponding signal-to-noise ratio and the theoretical mass resolution of the sensor is determined : the mass resolution is close to the state-of-the-art but again, the issue encountered in subsection 3.1.2 might degrade in practice the theoretical results.

Layout of the resonator+ASIC

The figure 3.51 presents the layout of the crossbeam resonator 3D-integrated with the CMOS circuit. The di erential amplifier is located next to the resonator and the bu er covers the rest of the area between the two contact pads. Overall the total area occupied by the resonator and the readout circuit is around 100 ◊ 100 µm 2 . The area covered by the amplifier is however similar to the one occupied by the crossbeam resonator and thus highlights the interest of 3D-integration for arrays of sensors. In fact, in the future, they could even be superposed to optimize the space occupation.

MEMS/CMOS co-integration

Conclusion of MEMS/CMOS co-integration

This section presents three implementations of MEMS co-integrated with CMOS circuitry, progressing from the simplest integration scheme (2D-integration of a capacitively detected MEMS) to more complex fabrication processes (3D-integration of piezoresistively detected MEMS). The design of the electronic circuit was kept simple to compensate for eventual process vagaries. Several electronic designs were compared in order to establish the most suitable architecture. The CMOS circuits characterized in the di erent projects are functional but their performances are somewhat lower than that predicted in the simulations.

The 2D co-integration of a capacitively detected MEMS based on a mature CMOS process has electrical characterics very similar to the simulations. The CMOS process was thus only marginally a ected by the modification introduced by the MEMS Chapitre 3

Practical realizations fabrication. This opens the possibility of designing more complex electronic circuitry in order to fabricate complete sensors or array of sensors. The 2D co-integration of a piezoresistive detected MEMS process, however, was more a ected by the technological adaptations. Additional process engineering is thus required to obtain a more complete and reliable product.

The MEMS-CMOS preliminary measurements show that with a 2D co-integration scheme, it is possible to measure the mechanical response of a 100 MHz-nanoresonator using a homodyne detection. Indeed, implementing the resonator close to the electronics reduces both the connection losses and the feed-through transmission. Although further measurements are needed, the realization of complete closed-loop SOL seems possible because in this case, the actuation electrodes are removed.

Table 3.10 summarizes the characteristics of the 3 co-integrated designs presented in the manuscript. It also compares them to di erent realizations described in the literature. One can see that the capacitively detected resonator realized is original because it is fabricated from single-crystal silicon (what should enhance its quality factor) and because the area consumption of the MEMS-CMOS pixel is very small. Its performance expressed in terms of responsitivity is however limited and is di cult to improve because of the issues raised by the capacitive detection (issue detailed in sections 2.4 and 3.3.2). Piezoresistive detection on the other presents a high detection gain and a low output impedance that permit to fabricate light nanoresonators with high resonant frequency.

Conclusion

This chapter focused on designs and characterizations of self-oscillating loops, from the proof-of-concept of a single oscillator to integrated sensors that can be implemented in arrays. The former uses stand-alone MEMS resonators self-oscillated with discrete electronics. The overall area of the sensors is around 200◊200 mm 2 (without optimization) making it di cult to implement the sensors in large arrays.

The first work related to piezoelectric cantilevers showed that it is possible to realize self-oscillating loops despite the large intrinsic feed-through inherent to such components. Di erent techniques for estimating the frequency resolution have been compared and the pros and cons of each were detailed. Overall, the frequency resolution of the self-oscillation loops is degraded compared to that of the frequency-locked loop probably due to the large feed-through at lower frequencies. In general, because of its low piezoelectric layer thickness and high frequency resolution, the resonator shows a true potential for gas sensing with 10 ppb resolution for DMMP vapors. The second self-oscillating loop uses a crossbeam resonator that should have an excellent mass resolution. To design a crossbeam-based SOL required investigation of di erent feed-through reduction techniques. This oscillator uses simple electronics and has a frequency resolution similar to that of more complex measurement setups composed of an FLL-architecture with a downmixing implementation. The major noise sources in the loop were characterized and compared to the closed-loop phase-noise. Close to the carrier, the phase noise is dominated by flicker noise that limits the frequency resolution of the sensors. The origin of this noise remains unclear and is under investigation. Overall, the latter sensor has a performance close to the state-of-the-art of mass measurements and with faster response times.

In the second section, the design of an ASIC is described. This circuit addresses multiple crossbeam resonators and comprises 4 self-oscillating loops and their associated frequency counters. The proposed implementation makes it possible to monitor 4 or more sensors in a compact area. The problems associated with coupling between the sensors can be assessed because each oscillator can be deactivated and its oscillating frequency can be measured in series or in parallel. Each self-oscillating loop is composed of an analog front-end that amplifies and filters the resonator output signal. The amplified signal was digitized in order to use a delay-lock loop as a phase-shifter. The architecture allows the phase-shift to be adjusted finely and independently of the frequency. The oscillation amplitude is also controlled with ease by the supply voltage of the digital electronics. Finally, the ASIC was fabricated as a proof of concept so that similar circuits can be monolithically integrated with the MEMS resonator.

The last section focused on the monolithic integration of MEMS resonators with their readout electronics. It describes three di erent projects in which the MEMS component is fabricated next to the CMOS circuit (2D-integration) or above it (3Dintegration). The prospect of fabricating compact sensors composed of the resonators and the feedback electronics is explored. The area consumption of the sensors is 100 ◊ 100 µm 2 or less and respects the requirements of arrays of sensors. The tested circuits were all functional but their performances varied. The results demonstrate that the modifications introduced in the CMOS fabrication do not a ect the viability of the circuit. The preliminary measurements of MEMS-CMOS components are satisfactory but further work is required to reduce the feed-through transmission so as to operate the resonator in a closed-loop. The presented fully integrated MEMS-CMOS structures are therefore the first steps towards the realization of large arrays of MEMS-based sensors.

General conclusion

During my three years of PhD studies, I explored the use of MEMS resonators in applications that require precise measurement of physical properties. This promising research field involves several scientific domains. To fabricate a sensor from a MEMS resonator, the architecture of the overall system (composed of the MEMS component and the complementary electronics) must be analyzed ; the design of the electronics and the mechanical resonator must be optimized ; and finally, the inherent practical constraints imposed by the fabrication and characterization process must be surmounted.

In the first chapter, I summarize the requirements and performance of di erent architectures that can monitor the resonant frequency variations of a MEMS component.

Even though my PhD focuses on MEMS resonators (as they are used for mass sensing) this chapter is common to all micro-or nanoresonators. I established that in order to obtain a sensor with a large dynamic range, a closed-loop architecture is required to dynamically track the resonant frequency of the MEMS component. Two major closed-loop architectures are described in the literature : self-oscillating loops and frequency-locked loops. My research focused on self-oscillating loops because their architecture is more compact and better suited to the fabrication of arrays of sensors. In the same chapter, I present the limitations and the constraints imposed by this architecture. Certain aspects of the feed-through and the non-linearity had previously been considered problematic. I confirm this by demonstrating that the feed-through not only degrades the frequency resolution of the sensors but also can make the oscillator unstable. In addition, the non-linearity introduced by the resonator or electronics can amplify the colored noise around the carrier. The last section of the chapter describes di erent frequency measurement techniques, their operation principles and the advantages and disadvantages of each technique.

The second chapter focuses on the MEMS topologies and implementation schemes that are suitable for mass spectrometry. I describe four MEMS resonators : (i) a clamped-clamped beam with electrostatic actuation and capacitive detection, (ii) a clamped-clamped beam with electrostatic actuation and piezoresistive detection, (iii) a resonator with the shape of a crossbeam, an electrostatic actuation and a piezoresistive detection, and (iv) a cantilever with piezoelectric actuation and detection. I assess their electromechanical transduction and their theoretical mass resolution. In order to properly compare the performances of each MEMS resonator, the MEMS-to-electronics connection was incorporated into the model. I describe three major integration schemes : stand-alone resonators, and 2D-or 3D-integration of MEMS and electronics. Each integration scheme is electrically modeled from a typical layout design to assess its feed-through and its connection losses. The electrical model leads to analytical formulae that were verified by electrical simulations. The stand-alone fabrication process was found to have the worst performance but it is the cheapest. On the other hand, the 2D-integration fabrication process has few electrical limitations but its technological development is often too expensive for industrial applications.

Piezoresistive crossbeams and piezoelectric resonators have the best mass resolutions. The crossbeam benefits from a more complex mechanical structure than classic beams which improves its piezoresistive detection. The piezoelectric cantilever benefits from a linear electromechanical transduction scheme with high gain but its technological stack can be expensive to develop. In the last section of the chapter, I analyze the benefits of implementing an array of parallel and collectively addressed resonators. Although it is commonly assumed that implementing MEMS resonators in parallel arrays reduces the phase-noise of the array (compared to that of a single resonator), I show that the circuit introduces an electrical limit. This limit must be evaluated to properly assess the performance of such an array.

In the last chapter, I describe the designs and practical realizations made during my PhD project. I first present the construction and characterization of a self-oscillating loop using stand-alone resonators (a piezoelectric cantilever and a crossbeam) and commercial electronic components. A major di culty with the piezoelectric cantilever is the V-shaped feed-through behavior which requires careful filtering to prevent parasitic oscillations in the loop. The frequency resolution was then measured with di erent techniques, each having their pros and cons. The frequency resolutions measured with the di erent techniques are similar but lower than those obtained with an FLL-architecture. With the latter architecture, the MEMS resonator produced good performance for gas sensing : a resolution of 10 ppb was achieved for DMMP vapors. The di erence in frequency resolution between the two architectures is believed to be due to the large feed-through at low frequency that accentuated the noise. This oscillator yields practical information on how to construct a low-cost gas sensor.

The second self-oscillating loop uses a crossbeam resonator. The major challenge in the design of the loop was to develop a measurement setup that limits the crosstalk within the resonator chip and in access to the chip. The frequency resolution of the loop was similar when measured using temporal and frequency acquisition.

The frequency resolution of the self-oscillating loop was found to be similar to that of a frequency-locked loop but in both architectures, a flicker noise degrades the resolution of the sensor compared to that predicted by the model developed in the previous chapter. In the second section of the final chapter, I present the design of an ASIC that can self-oscillate four crossbeams in parallel. The ASIC includes four frequency counters that allow it to measure simultaneously the resonance frequency of the four MEMS components. The ASIC incorporates analog and digital electronics. The crossbeam output signal is first amplified and filtered using analog circuits. The signal is then digitized to simplify the architecture of the phase shifter while achieving good control. The coupling within the array, a problem inherent to arrays of sensors, could be evaluated with the ASIC design. Moreover, because of its small dimensions (7 ◊ 7 mm 2 ), the ASIC can also be implemented in an array comprising 12 or more resonators.

In the last section of the chapter, the principal technological challenge inherent to the fabrication of large arrays of MEMS sensors is explored, namely co-integration of the MEMS and the electronic circuit on the same die. This technological step is necessary towards the construction of arrays incorporating millions of sensors because alternative integration schemes would require too many wire connections. This topic was explored in three projects in which the resonators are either 2D or 3D co-integrated with the electronics. In the first project, I realized di erent electronic circuits that address 2D co-integrated MEMS resonators with capacitive detection. The second project uses a technological process, developed in Leti, that makes the fabrication more flexible and allows the construction of 2D co-integrated nanowires and crossbeam resonators. This design incorporates resonators with very high resonance frequency (> 100 MHz). In the third project, I designed a highperformance amplifier and a bu er to interface with 3D co-integrated crossbeam resonators. The MEMS/CMOS co-integrated chips are currently being manufactured and their performance should be evaluated in the next months.

Based on the realization of the self-oscillating loop including a crossbeam resonator, a future goal could be to further investigate the origin of the close to carrier flicker noise that limits the performance of the mechanical resonator. Another objective would be to understand why the frequency resolution of the oscillator is improperly evaluated when the frequency counter measures the time lapse between consecutive rising edges. In this context, it would be interesting to operate temporal simulations of a closed-loop with di erent phase-noise levels and frequency spectra in order to evaluate the limits of the frequency measurement technique. Such simulations are di cult to implement, however, as they are very time consuming.

As described in the manuscript, an integrated circuit was designed and is being fabricated. Obviously, it would be interesting to verify the functionality of the circuitry and then to implement it with one or more resonators. The coupling between the di erent resonators and sustaining electronics should be assessed to evaluate whether medium dense arrays implemented with stand-alone resonators can be realized. Two approaches could be considered if a second version of the integrated circuit was to be designed. If supplementary manpower can be assigned to the design of such circuitry, the experience acquired with the first realization might allow them to implement a frequency-locked loop architecture in the chip. Another possible approach would be to maintain the self-oscillating loop architecture, but to simplify the circuitry based on the experience acquired with the first realized chip so that the second version would be more compact. An interesting objective would be to construct an integrated circuit capable of self-oscillating 10 or more resonators.

Finally, the first realizations of MEMS-CMOS co-integrated systems are probably the most promising outcome of my research. The preliminary measured characteristics of such systems are very satisfactory and indeed very promising. Obviously it would be very exciting to compare their characteristics with the other mentioned co-integrated implementations, once they are constructed. This integration scheme is very new in our group and rare in the literature, and it clearly o ers many perspectives. The electronic architectures usually employed for resonators should be rethought in order to fulfill the particular demands of nanoresonators. Furthermore when comparing the minute areal demands of a NEMS component with the larger demands of its release area and the area of associated feedback electronics, it is evident that there is an unsatisfactory filling factor. A possible improvement is the realization of a mixed array that would consist of individually addressing compact oscillators as described in section 3.3, with the modification that the resonator is replaced by a small array of collectively addressed resonators. To conclude, NEMS-CMOS oscillators co-integrated into compact pixels are very new and rarely treated in the literature. Any exploratory work in the domain promises to uncover new physical phenomenon at the nanoscale level as well as promising new applications of the technology. 

List of Symbols

Low pass filter as the phase-shifter

If the phase-shifter is implemented using a low-pass filter. The phase-shift, close to 90°, introduced by this bloc is only valid for a limited range of frequency. The lowpass filter cut-o frequency can therefore limit the operating frequency range of the oscillator. On the other hand, the gain of the filter increases when the oscillating frequency reduces. The oscillation frequency should first be determined from eq.

(1.27):

arg S W U g MEMS /Q 1 ≠ 1 fosc f m r 2 2 + j fosc Qf m r ◊ G amp 1 + j fosc fc T X V = 0 ∆ ⁄ Y ] [ S U 1 ≠ A f osc f m r B 2 ≠ j f osc Qf m r T V ◊ C 1 ≠ j f osc f c D Z \ = 0 ∆ f osc = f m r Û 1 + f c Qf m r . (3.29)
The maximum detectable added mass corresponds to |H OL (f osc )| = 1:

1 = g MEMS /Q Û 5 1 ≠ 1 fosc f m r 2 2 6 2 + Ë fosc Qf m r È 2 ◊ G amp Ú 1 + 1 fosc fc 2 2 ∆ f c Qf m r S U 1 + A f m r f c B 2 + f m r Qf c T V = g MEMS G amp /Q ∆ f m r f c ¥ Q∫1 g MEMS G amp 2 ≠ Û 3 g MEMS G amp 2 4 2 ≠ 1. (3.30) 1 + 1 f r0 fc 2 2 ∆ f m r f c = 1 2 S W UG f r0 î ı Ù A f r0 f c B 2 + 1 ≠ î ı Ù G 2 f r0 A f r0 f c B 2 + G 2 f r0 ≠ 4 T X V ∆ f m r f r0 = f r0 ∫fc 1 G f r0 A f c f r0 B 2
(low-pass filter).

(3.31)

For example, if f c = f r0 /10 and G f r0 = 3 dB then f m r ¥ f r0 /140. The corresponding dynamic range for the self-oscillating loop using a low-pass filter is therefore much larger than for open-loop measurement techniques.

High-pass filter as the phase-shifter

In the case of a high-pass filter used as a phase shifter, the gain of H OL reduces with f m r . The gain condition in (1.27) sets a lower-frequency boundary for the operating frequency. Similarly to the case of the low-pass filter, one can find:

f m r f r0 = G f r0 2 S W U î ı Ù A f r0 f c B 2 + 1 ≠ î ı ı Ù 1 + A f r0 f c B 2 S U 1 ≠ A 2 G f r0 B 2 T V T X V f m r f r0 = f r0 πfc 1 G f r0
(high-pass filter).

(3.32)

The dynamic range of the oscillator using a high-pass filter is lower than using a low-pass filter.?

Delay block as the phase-shifter

If the phase-shifter is realized through delays, the introduced phase-shift varies with the frequency. If f r reduces, the phase-shift introduced by delays also reduces and thus limits the frequency range for which the oscillation conditions are valid. Similarly to the previous calculations, the oscillating frequency must be determined: 

arg S W U G amp g MEMS /Q 1 ≠ 1 fosc f m r 2 2 + j fosc Qf m r e i2fi• fosc T X V = 0 ∆ tan (2fi• f osc ) = 1 Q f osc /f m r 1 ≠ (f osc /f m r ) 2 ( 
Y _ _ _ _ _ _ ] _ _ _ _ _ _ [ n (x) = A Õ n cos 1 ⁄ n x L 2 + B Õ n sin 1 ⁄ n x L 2 + C Õ n cosh 1 ⁄ n x L 2 + D Õ n sinh 1 ⁄ n x L 2 if x < 0 n (x) = A n cos 1 ⁄ n x L 2 + B n sin 1 ⁄ n x L 2 + C n cosh 1 ⁄ n x L 2 + D n sinh 1 ⁄ n x L 2 if x Ø 0 . (3.52)
The boundary conditions imposes that:

Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ A Õ cos 1 ⁄ n l 1 L 2 ≠ B Õ sin 1 ⁄ n l 1 L 2 + C Õ cosh 1 ⁄ n l 1 L 2 ≠ D Õ sinh 1 ⁄ n l 1 L 2 = 0 A Õ sin 1 ⁄ n l 1 L 2 + B Õ cos 1 ⁄ n l 1 L 2 ≠ C Õ sinh 1 ⁄ n l 1 L 2 + D Õ cosh 1 ⁄ n l 1 L 2 = 0 A Õ + C Õ = 0 ≠A cos 1 ⁄ n L≠l 1 L 2 ≠ B sin 1 ⁄ n L≠l 1 L 2 + C cosh 1 ⁄ n L≠l 1 L 2 + D sinh 1 ⁄ n L≠l 1 L 2 = 0 A sin 1 ⁄ n L≠l 1 L 2 ≠ B cos 1 ⁄ n L≠l 1 L 2 ≠ C sinh 1 ⁄ n L≠l 1 L 2 + D cosh 1 ⁄ n L≠l 1 L 2 = 0 A + C = 0 B Õ + C Õ ≠ B ≠ D = 0 ≠A Õ + C Õ + A ≠ C = 0 .
(3.53)

In order for the solution not to be null, the previous equations should be linearly dependent and therefore ⁄ n should respect the following condition for a given l 1 /L:

1 ≠ cos 1 ⁄ n l 1 L 2 cosh 1 ⁄ n l 1 L 2 cos 1 ⁄ n l 1 L 2 sinh 1 ⁄ n l 1 L 2 ≠ sin 1 ⁄ n l 1 L 2 cosh 1 ⁄ n l 1 L 2 = 1 + cos 1 ⁄ n L≠l 1 L 2 cosh 1 ⁄ n L≠l 1 L 2 cos 1 ⁄ n L≠l 1 L 2 sinh 1 ⁄ n L≠l 1 L 2 ≠ sin 1 ⁄ n L≠l 1 L 2 cosh 1 ⁄ n L≠l 1 L 2 . (3.54)
The parameter l 1 /L is a design parameter and should be optimized for the crossbeam to achieve the maximum performances. From [Labarthe 2010], it can be shown that the optimum value of l 1 /L is l 1 /L = 0.15. Note that however the following development is valid for any value of l 1 /L. .

Y _ _ _ _ _ _ ] _ _ _ _ _ _ [ n (x) = 0,n Ë ≠ cos 1 ⁄ n x L 2 + cosh 1 ⁄ n x L 2 + -1,n sin 1 ⁄ n x L 2 + -2,n sinh 1 ⁄ n x L 2È if x < 0 n (x) = 0,n Ë ≠ cos 1 ⁄ n x L 2 + cosh 1 ⁄ n x L 2 + -3,n sin 1 ⁄ n x L 2 + -4,n sinh 1 ⁄ n x L 2È if x > 0 , ( 3 
(3.56)

Finally the coe cient 0,n can be determined from the property ´L 0 n 1 (x) n 2 (x) dx = L ◊ " n 1 ,n 2 , thus: (3.57)

The rest of the development is similar to one of the clamped-clamped beam.

Finally, table 3.11 gives the approximated values of the coe cients ⁄, 0 , -, f r , ÷ A for n = 1 in the case of the clamped-clamped beam, a free-clamped beam and a crossbeam.
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 11 Figure 1.1: Schémas simplifiés des résonateurs étudiés lors de la thèse : (a) une poutre encastrée-encastrée avec un actionnement électrostatique et une détection capacitive, (b) une poutre encastrée-encastrée avec un actionnement électrostatique et une détection piézorésistive, (c) une poutre en forme de croix avec un actionnement électrostatique et une détection piézorésistive, (d) une poutre encastrée-libre avec un actionnement et une détection piézoélectrique.
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 12 Figure 1.2: Illustration d'une fabrication d'un résonateur seul sur une puce de silicium.
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 1314 Figure 1.3: Illustration d'une fabrication d'un résonateur seul sur une puce de silicium et avec un actionnement di érentiel.
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 15 Figure 1.5: Illustration d'une intégration MEMS/CMOS 2D
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  Figure 1.6: Illustration d'une intégration MEMS/CMOS 3D.
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 19 Figure 1.8: Schéma d'une boucle auto-oscillante.
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 23 Figure 2.1: Image du microrésonateur piézoélectrique.

  Figure 2.4: Réponse fréquentielle de la boucle ouverte.
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 25 Figure 2.5: Variance d'Allan du résonateur piézoélectrique implémenté dans une boucle auto-oscillante ou dans une boucle à verrouillage de fréquence.
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 27 Figure 2.7: Schéma simplifié de la boucle auto-oscillante.
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 2829 Figure 2.8: Diagramme de Bode de la fonction de transfert en boucle ouverte.
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 214 Figure 2.11: Architecture générale de l'ASIC (les jauges piézorésistives ne sont pas connectées afin de simplifier le schéma).
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 218 Figure 2.18: Schéma de mesure des circuits électroniques.
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 219 Figure 2.19: Mesure du diagramme de Bode des circuits électroniques. Les courbes continues correspondent aux mesures et les courbes en pointillées correspondent aux simulations.
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 220 Figure 2.20: Image de l'oscillateur de Pierce obtenue avec un microscope optique. La partie encadrée en pointillés est une image au microscope à ballayage élecronique du nanorésonateur.
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 221222223 Figure 2.21: Banc de mesure pour la caractérisation des circuits électroniques.
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 225 Figure 2.25: Layout du "crossbeam" co-intégré en 3D avec l'électronique.

  Figure 1.1: General MEMS model

  Figure 1.2 presents a typical resonance response of a MEMS corresponding to equation (1.2). The MEMS has a bandpass filter behavior. It can be determined that at f
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 12 Figure 1.2: Theoretical Bode diagram of a MEMS resonator.

  Figure 1.3: Theoretical e ect of a constant feed-through on the gain (left) and the argument (right) of the MEMS transfer function

  Figure 1.4: Illustration of a Vshape feed-through.
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 16 Figure 1.6: Frequency measurement.
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 17 Figure1.7: Relationship between the PSD spectra and the Allan variance reproduced from[Rubiola 2008] 
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 19 Figure 1.8: Illustration of a measurement of an-amplitude variation.

  Figure 1.10: Evolution of the frequency resolution versus the resonant frequency variation for amplitude and phase-shift variation measurements.
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 111 Figure 1.11: General architecture of (a) a self-oscillating loop, (b) a frequencylocked loop
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 112 Figure 1.12: Noise injection in a self-oscillating loop

  .33) Comparing the frequency resolution of the SOL-architecture with the open-loop architectures expressed in equations (1.20), (1.21) and (1.25) of pages 16, 17 and 18, it is clear that the SOL-architecture provides a frequency resolution better or equal to the ones of the open-loop architectures.
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  Figure 1.13: Simulations of the e ect of the feed-through transmission in SOLs

  Figure 1.15: Simplified FLL topology including its intrinsic noise sources

  Figure 1.16: Period-counting

  Figure 1.17: Delay-based measurement

  Comparison of the di erent architectures for harmonic detection of resonance. The e ect of the feed-through was neglected in the expression of the mass resolution.

  Figure 2.1: Beam dimension and axis definition

  of the beam's material in kg/m 3 , w (x, t) is the displacement in the (OY ) direction in m, › is a damping coe cient in N.s/m 2 , T (w) is the internal stress in the beam equal to T (w) = c beam hb¸1 (w) in the case of a clamped-clamped beam and equal to zero in the case of freeclamped beam, ¸1 (w) is the dimensionless strain (relative change of length) in the (OX) direction, c beam is the beam's Young's modulus in Pa, I = hb 3 12 is the moment of inertia of the beam in the (OY ) direction in m 4 .
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 22 Figure 2.2: Electrical model of a resonator.
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 23 Figure 2.3: Electrostatic actuation and capacitive detection.

  Figure 2.4: 2-port clamped-clamped beam with capacitive detection and electrostatic actuation.
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 26 Figure 2.6: Clamped-clamped beam with piezoresistive detection
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 28 Figure 2.7: Crossbeam with a piezoresistive detection

  Figure 2.11: BVD model of the resonator
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 213 Figure 2.13: Representation of di erent NEMS/CMOS connection topologies
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 214 Figure 2.14: Simple schematic of the MEMS-to-electronics connection.
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 215 Figure 2.15: Optimal amplifier power consumption versus equivalent MEMS output capacitance

  5. http://www.soitec.com/fr/
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 2217 Figure 2.16: NEMS-to-electronic connection losses versus the equivalent MEMS output capacitance. The crosses represent H connec for a resonator with a resistive output impedance and the circles represent H connec for a resonator with a capacitive output impedance.
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 2 Figure 2.20: SPICE simulations of |H connec | and SBR versus the MEMS resonance frequency for di erent actuation implementations of a crossbeam resonator. The curves in dashed lines depict the analytical formulas.
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 221 Figure 2.21: Connection losses versus the equivalent MEMS output capacitance.
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 222 Figure 2.22: Simplified illustration of a 2D-cointegrated MEMS/CMOS system.

  Figure 2.23: Feed-through gain in a 2Dintegrated NEMS/CMOS oscillator
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 226 Figure 2.25: Heterodyne architecture.
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 227 Figure 2.27: Simplified illustration of the function to determine the optimal design for a clamped-clamped beam with capacitive detection.

  Figure 2.28: Graphic representation of the theoretical mass resolution versus the beam's length.
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 229 Figure 2.29: Schematic of the MEMS array and its readout electronics.
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 2 Figure 2.30: SNR versus the number of MEMS for 3 values of the connection capacitance. The crosses (+) correspond to the simulated points and are linked with a line. The value of SN R max is represented by the dashed horizontal line.
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 2 Figure 2.31: Crossbeam MEMS: (a) SEM illustration, (b) dimensions of the resonator

  Figure 3.1: SEM caption of the micro-cantilever.
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 33 Figure 3.3: Equivalent capacitance of the PZE cantilever measured with a HP4194 impedance meter.
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 34 Figure 3.4: Evolution of the MEMS+first amplifier gain in the bridge implementation (see figure 3.6).
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 35 Figure 3.5: Gain and phase-shift of the bridge around the resonance frequency.
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 36 Figure 3.6: Simplified schematic of the self-oscillating loop.
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 37 Figure 3.7: Gain and phase-shift response of the open-loop
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 39 Figure 3.9: (a) Schematic of the Allan deviation measurement using a down-mixing architecture, (b) plot of the Allan deviation versus the integration time.

Figure 3 . 10 :

 310 Figure 3.10: Allan deviation measured with a frequency counter.

Figure 3 Figure 3 . 12 :

 3312 Figure 3.11: (a) Schematic of the phase-shift based measurement, (b) evolution of the Allan deviation versus the integration time.

  L g = 500 nm Gauge's width b g = 80 nm Electrode-beam gap g = 200 nm Table 3.1: Dimensions of the crossbeam.
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 313 Figure 3.13: Image of the crossbeam. In blue, the actuation electrodes ; in yellow, the beam and in green, the piezoresistive gauges.
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 3 Figure 3.14: (a) Optical image of the electrical connections of the crossbeam, (b) simulated on-chip parasitic feed-through and connection loss (the gain was normalized to the voltage at the resonator if no capacitance is present at the output of the resonator).

Figure 3

 3 Figure 3.15: (a) Measurement setups 1 in magenta, 2 in blue, 3 in green and 4 in red. (b) Noise spectrum at the first electronic amplifier output.

  .15a) : G amp = 14 dB and S elec = 1 6.4 nV/ Ô Hz 2 2 around 18 MHz. The datasheet of the amplifier announces a voltage noise of 4 nV/ Ô Hz. The amount of measured noise is acceptable since the resistance of the circuit (required to adjust the amplifier gain) introduces extra voltage noise.
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 317 Figure 3.17: Simplified schematic of the closed-loop.
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 319 Figure 3.18: Open-loop transfer function versus frequency
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 320 Figure 3.20: Evolution of the oscillation frequency versus time when the DCactuation electrodes are polarized with a pulse generator.
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 321 Figure 3.21: General architecture of the arrays of oscillators with stand-alone ASIC (the piezoresistive gauges connection are not represented to simplify the illustration).

  Figure 3.22: General architecture of the ASIC (the piezoresistive gauges connection are not represented to simplify the illustration).

  Figure 3.23: General architecture of the self-oscillating loop.
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 324 Figure 3.24: Schematic of a delay-locked loop.
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 325 Figure 3.25: Simplified schematic of the analog circuit

  Figure 3.26: Layout of the ASIC.
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 328 Figure 3.28: General topology of the integrated resonator with the electronics : (a) fully-integrated oscillator, (b) oscillator implemented with an external feedback electronics.

Figure 3 . 29 :

 329 Figure 3.29: Transimpedance amplifier schematic (left) and its equivalent small signal schematic for a capacitively sensed resonator (right).
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 331 Figure 3.31: Evolution of the oscillator open-loop gain for a capacitively sensed resonator with varying length.
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 332 Figure 3.32: Transimpedance amplifier schematic (left) and its equivalent small signal schematic for a piezoresistively transduced MEMS resonator (right).
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 3 Figure 3.33: (a) Comparison between the analytical formula (17) and SPICE simulations, (b) transistor dimensions
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  Figure 3.34: Evolution of the oscillator open-loop gain for a MEMS resonator with piezoresistive detection and a varying length (i.e. varying resonant frequency)

Figure 3 . 35 :

 335 Figure 3.35: Schematic of the electronic circuit. In the Pierce oscillator configuration the node v out and v act are connected.
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 336 Figure 3.36: Optical image of the Pierce oscillator (the beam is not released yet).
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 337338 Figure 3.37: Schematic of the measurement setup for the stand-alone circuit.
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 3340 Figure 3.39: Co-integrated NEMS-CMOS measurement setup.

  Figure 3.41: Schematic of the Pierce oscillator using a crossbeam.

  Figure 3.43: Schematic of the high-frequency bu er.

  Figure 3.47: Gain of the stand-alone circuits versus frequency. The plain curves correspond to the measurements and the dash lines corresponds to the simulations.
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 350 Figure 3.50: Schematic of the 3D-integrated ASIC. The dimension (width and length) of the transistors are in micrometers.
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 351 Figure 3.51: Layout view of a crossbeam 3D-integrated with its readout circuit
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 355 Figure 3.55: Boundary conditions of the crossbeam
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Table 1 .

 1 en augmentant l'influence du bruit électronique) et rendent le dispositif sensible aux couplages parasites. En e et, la réduction des dimensions du résonateur, et donc l'augmentation de sa sensibilité, est limitée par ces couplages parasites. L'actionnement di érentiel ou tout autre moyen de réduire ces couplages est donc nécessaire afin d'améliorer le signal sur fond et la résolution massique. Il convient également de souligner que dû aux importantes pertes de connexion, le bruit dominant vient du circuit électronique. Notons enfin, que le gain de détection capacitif du résonateur est important mais il est compensé par les pertes de connexion.Le résonateur crossbeam présente en revanche, des pertes de connexion bien plus faibles grâce à sa détection piézorésistive. Il peut alors être conçu à ses plus faibles dimensions. Il convient enfin de souligner que l'important signal sur bruit rend la caractérisation de ce dispositif aisée. Il s'avère que la résolution massique annoncé par le modèle est bien meilleure que l'état de l'art, mais il sera montré dans le chapitre suivant, qu'un bruit de scintillement présent dans le résonateur réduit sa résolution par rapport à la valeur prédite par le modèle.

	Gain de	Non linéaire	Non linéaire	57 V/mm	5.1 V/µm
	detection	Non linéaire	Non linéaire	5.1 V/µm	3.3 V/µm
	Pertes de	10 dB	0 dB	21 dB	34 dB
	connections	10 dB	0 dB	80 dB	32 dB
	Rapport signal	5.2 dB	5.2 dB	188 dB	178 dB
	sur bruit	5.2 dB	5.2 dB	113 dB	168 dB
	Bruit principal	Johnson Johnson	Johnson Johnson	Thermoméch. Electronique	Thermoméch. Thermoméch.
	Rapport signal			0 dB	0 dB
	sur fond			35 dB	29 dB

1: Comparaison des résolutions massiques des di érents types de résonateurs MEMS. Les résultats en gras correspondent aux résonateurs avec un actionnement di érentiel, autrement l'actionnement est unilatéral.

La détection non linéaire

[He 2008

] du nanofil piézorésistif amplifie les sources de bruit présents dans la boucle. Le résonateur est actionné à sa fréquence de résonance mais le signal à la sortie du MEMS est à une fréquence double. Par ailleurs, alors que le signal de sortie résonateur est proportionnel au carré du déplacement mécanique, le bruit à la sortie du résonateur est proportionnel au produit du bruit thermomécanique avec le déplacement mécanique. Le bruit est ainsi amplifiée par la non-linéarité : il est donc di cile d'obtenir de bonnes résolutions massiques. Notons enfin que le résonateur présentés dans le tableau 2.3 a un important facteur de forme longueur-sur-épaisseur et donc une faible raideur dans la direction hors plan : la libération de la structure est donc délicate.

  Dans ce chapitre, le comportement électromécanique de di érents résonateurs ont été présenté. Di érents techniques d'actionnements et de détections électromécaniques ont été décrites. Di érentes techniques d'intégration du MEMS et de son électronique associée ont été présentées. Les pertes de connections ainsi que les couplages parasites associés à chaque technique d'intégration ont été évalué et comparé. Enfin des techniques de réduction des couplages parasites ont été décrites et évaluées.

Dans la suite du chapitre, des architectures permettant de suivre la fréquence de résonance des MEMS ont été présenté. Les deux architectures a che des résolutions théoriquement identiques mais di èrent quant à leur compacité, et sensibilité aux couplages parasites. Il a été choisi de retenir l'architecture de boucle auto-oscillante car celle-ci peut-être très compacte.
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1: Dimensions du crossbeam.

Figure 2.6: Image du "crossbeam". En bleu, les électrodes d'actionnement, en jaune, la poutre vibrante et en vert, les jauges piézorésistives.

sorte à ce que la fréquence qui en résulte soit faible (autour de 100 Hz). La durée d'acquisition de l'oscillateur est ainsi augmentée. La résolution en fréquence de la boucle est également évaluée avec un compteur de fréquence et avec une technique mesurant les fluctuations de déphasage introduites par un filtre passe-bas. Chaques techniques donnent des résultats cohérents et ceux-ci sont présentés dans la figure 3.12. La résolution fréquencielle de la boucle auto-oscillante est donc environ de 4 ◊ 10 ≠7 pour un temps d'intégration de 3 s. Enfin, le résonateur piézoélectrique a aussi été implémenté dans une boucle auto-oscillante et la stabilité de la boucle exprimé avec la variance d'Allan est mesurée (fig.

3

.12). Il est montré que la résolution fréquencielle est améliorée d'un facteur 8 par rapport à la boucle auto-oscillante.

  Conception d'un ASIC pour la mise en oscillation de plusieurs "crossbeams"

	In CB #2 Out-2.2 Electronique Out+ Electronique In Out+ Out-CB #1 CB #1 Carte PCB Fils de pontage Pistes sur PCB	Electronique In Out+ Out-CB #3 Puce du résonateur MEMS Electronique In Out+ Out-Electronique In Out+ Out-CB #4 CB #5	Electronique In Out+ Out-CB #6	Electronique In Out+ Out-CB #7	Electronique In Out+ Out-CB #8
	de rebouclage	de rebouclage	de rebouclage	de rebouclage	de rebouclage	de rebouclage	de rebouclage	de rebouclage
	Compteur	Compteur	Compteur	Compteur	Compteur	Compteur	Compteur	Compteur
	de fréq.	de fréq.	de fréq.	de fréq.	de fréq.	de fréq.	de fréq.	de fréq.
	ASIC #1			ASIC #2		
	Communication SPI						
	Figure 2.10: Architecture générale du réseaux d'oscillateurs réalisé à partir de
	plusieurs ASIC (les connections des jauges piézorésistives ne sont pas représentées
	afin de simplifier le schéma).						
	A partir des dimensions du "crossbeam" et de la masse volumique du silicium, la
	résolution massique de la boucle est estimée à 100 zg qui est comparable à l'état de
	l'art des boucles auto-oscillante [Feng 2008].				

La résolution fréquencielle de la boucle auto-oscillante est mesurée par deux techniques. La première utilise un analyser de signal qui mesure le bruit de phase de l'oscillateur. La variance d'Allan est ensuite calculée à partir de

[Rubiola 2008

]. La deuxième technique utilise un oscilloscope afin d'acquérir la réponse temporelle de l'oscillateur (cette méthode est donc similaire à la partie sur le résonateur piézoélectrique). Les résultats des mesures sont ensuite comparées à la variance d'Allan obtenue grâce à une boucle à verrouillage de fréquence

(fig. 3.19)

. Il est mesuré que la meilleure résolution fréquencielle est de 2 ◊ 10 ≠7 pour une temps d'intégration de 20 ms. La variance d'Allan du "crossbeam" implémenté dans une boucle à verrouillage de fréquence est similaire à celle de la boucle auto-oscillante.

  Figure3.26 présente le layout d'ASIC. Comme annoncé, la zone de silicium est de 2 ◊ 2 mm 2 . La couronne de 48 plots occupe une grande surface et le circuit occupe lui environ 1.5 ◊ 1.5 mm 2 . Le circuit est divisé entre quatre circuits de rebouclage (occupant une superficie de 0.29 mm 2 chacun) et une électronique numérique de contrôle. Le layout du circuit de rebouclage est représenté dans la figure 3.27. Les 2.3 Co-integration de circuit CMOS avec des nanorésonateurs sources de courant réglable occupent la majorité de la surface, le restant est ensuite divisé entre le le circuit analogique et la DLL. D'une manière générale, l'ASIC est basé sur une architecture mixte analogique/numérique où le circuit analogique filtre et amplifie le signal issue du résonateur. L'architecture mixte rend la boucle auto-oscillante très flexible et adaptée à l'application. L'architecture reste pour autant compacte afin d'adresser de multiples résonateurs : il est possible de mettre en oeuvre un réseaux d'oscillateurs distancés de 500 µm environ. Par ailleurs, la flexibilité introduite dans la boucle peut être simplifiée dans le cas où un seconde version plus compacte de l'ASIC serait réalisées.

CMOS Metal line between the MEMS input and the CMOS output Figure 2.17: Photo

  Schéma du circuit électronique et du résonateur. Dans la configuration en boucle fermée, les noeuds v out et v act sont connectés. de l'oscillateur de Pierce obtenue grâce à un microscope optique (le résonateur n'est pas encore libéré).est réduite afin que le gain du circuit soit augmenté. Enfin, un étage de sortie est conçu afin de charger les capacités de connexions. Les dimensions des transistors sont conçus pour charger une capacité de sortie autour de 5 pF qui correspond à la capacité d'entrée (plus une marge) d'un amplificateur commercial directement connecté à la puce.

	Chapter 2			Réalisation pratique
		Les dimensions sont en micromètres
				M 3 :W×L	M 2 :W×L
				0,8×0,5	4×0,625
				M 4 :W×L
				10×0,5
		M P :W×L		
	Électrode de détection	1×1	C load		M 1 :W×L 10×0,5
		,5		
	Résonateur MEMS Circuit de rebouclage	Étage de sortie
	Figure 2.16: 2.3.1 Co-intégration 2D de résonateurs avec une détection MEMS
	capacitive et un circuit CMOS 0.35 µm
	La figure 3.36 représente une image optique de l'oscillateur Pierce. La surface totale
	occupé par l'oscillateur (y compris l'étage de sortie) est d'environ 80◊60 µm 2 faisant
	de l'oscillateur un excellent candidat pour des réseaux de capteurs.
	Trois di érentes versions du circuit électronique ont été conçus. Le premier est un
	oscillateur de Pierce en boucle fermée. Le deuxième est identique au premier mais
	implémenté en boucle ouverte : la sortie du circuit rebouclage n'est pas connectée
	à l'électrode d'actionnement du résonateur comme représenté dans la figure 3.35.
	Cette configuration en boucle ouverte est mis en oeuvre afin étudier les conditions
	de mise en oscillation. Dans la troisième version, la capacité à la sortie du circuit

2.3.1.1 Description du procédé de fabrication

Le résonateur MEMS et l'électronique intégrée sont fabriqués à partir du procédé technologique STMicroelectronics 0.35 µm. Le MEMS et le circuit CMOS sont fabriqués sur un wafer SOI avec une épaisseur de 1 µm de SiO 2 et une épaisseur de 1 µm silicium supérieure définissant donc l'épaisseur du résonateur à 1 µm. Le silicium supérieure est considéré comme su semment épais pour que le comportement électrique des transistors soit très similaire à celui fabriqué sur un wafer "bulk" ***.

Le résonateur MEMS est d'abord fabriquée au CEA-Leti en utilisant une étape de lithographie avec une résolution de 250 nm. Les surfaces gravées sont ensuite remplies avec du SiO 2 et une étape CMP planarise le wafer. Le circuit CMOS est ensuite fabriqué à STMicroelectronics en utilisant le procédé technologique CMOS-bulk sans prendre en compte que le substrat est SOI. Le circuit CMOS étant terminé, il est passivé et le processus est terminé au Leti. Une série d'étapes de gravures sèches enlèvent les couches diélectriques au-dessus du résonateur. La couche de métal du procédé CMOS sont protégées par un dépôt HF O 2 (un oxyde de grille). Le résonateur est alors libéré grâce à une gravure isotrope HF. Les dimensions minimales et le gap électrostatique des résonateurs sont de 250 nm. Enfin, trois di érentes longueurs de poutres sont choisi : 20.9 µm, 14.8 µm et 10.5 µm. Les fréquences de résonance correspondantes sont 5 MHz, 10 MHz et 20 MHz.

2.3.1.2 Caractérisation des circuits électroniques

  

	Les premières puces fabriquées ont suivi un procédé technologique simplifié qui ne comprend que les étapes technologiques CMOS. Leur processus a été plus rapide parce que les étapes technologiques fabriquant les MEMS ainsi que celle protégeant le circuit CMOS de la libération des résonateurs ont été omis. Evidemment, seuls les circuits électroniques peuvent être caractérisés. Le schéma de mesure des circuits est présenté dans la figure 3.37. La réponse fréquencielle des circuits en termes de gain et déphasage est donnée dans la figure 3.38. Les réponses des circuits sont simi-laires avec les simulations et donc les oscillateurs MEMS intégré devraient atteindre leur performances attendues. Cependant, comme décrit dans la figure 3.38, la bande passante de l'étage de sortie est plus faible que dans les simulations : ceci est proba-V b V meas V out M B M A M P M 1 M 2 M 3 M 4 Circuit de rebouclage Étage de sortie C load V g0 V dd_amp V dd_buffer gnd buffer gnd amp V elec 0.79 V 2.7 V 3.3 V Amplificateur commercial près de la puce +6 dB Analyseur de réseaux : blement dû à une capacité de connexion plus importante que celle simulée (plus de 2.3 Co-integration de circuit CMOS avec des nanorésonateurs HP8753E

-intégration 2D de résonateurs avec une détection piézorésistive et un circuit CMOS 0.3 µm 2.3.2.1 Description du procédé de fabrication

  

	Dans ce projet, l'électronique est conçu avec une technologie CMOS, FDSOI dé-
	veloppée au Leti. Leur épaisseur d'oxyde ultra-fine limite la tension d'alimentation
	de l'électronique circuit à 1.2 V. Le procédé de fabrication n'est pas encore arrivé
	à maturité et est développé avec un seul niveau de métal. Le procédé utilise une
	lithographie qui limite la longueur de grille des transistors à 0.3 µm. L'épaisseur du
	silicium supérieure est de 45 nm, imposé par les transistors FDSOI. Les résonateurs
	monocristallins sont réalisés sur la même couche de silicium et sont donc très minces
	ce qui devrait améliorer les performances du capteur dans termes de sensibilité. La
	possibilité de réaliser des résonateurs monocrystalins avec un niveau de dopage de
	10 19 cm ≠3 permet de concevoir des résonateurs "crossbeam" à détection piézorésis-
	tive. Les dimensions des résonateurs sont définies en utilisant la lithographie par
	faisceau d'électrons (EBEAM), il est donc possible de fabriquer des résonateurs par-
	mis les plus petits trouvés dans la littérature.
	Comme pour le procédé technologique précédent, les résonateurs sont d'abord fabri-
	qués. Après avoir été libéré, une couche d'oxydation thermique de 10 nm d'épaisseur
	est ajouté autour des résonateurs. Ensuite un dépôt isotrope de SiO 2 est e ectué
	pour remplir les espaces gravés. Le circuit CMOS est ensuite fabriqué et passivés.
	Enfin, les couches d'oxyde au dessus du résonateur sont gravées et les résonateurs
	sont libérés en utilisant une gravure isotrope XeF 2 qui grave préférentiellement la
	couche de polysilicium autour des résonateurs. Cette nouvelle approche est intéres-
	sante parce que l'oxyde qui doit être gravée pour libérer le résonateur est un oxyde
	déposé. L'étape de libération peut donc utiliser une gravure XeF 2 qui est moins
	aggressive envers les couches des circuit CMOS : il n'est donc pas nécessaire de
	protéger les circuits électroniques (contrairement à une libération HF ).
	Di érentes architectures électroniques ont été conçu. D'abord, un oscillateur de
	Pierce a été conçu pour fonctionner en boucle fermée. Un amplificateur a également
	été conçu qui présente un plus fort gain d'amplification et une faible capacitance
	d'entrée. Contrairement au projet précédent, il a été décidé de concevoir l'amplifi-
	cateur avec des dimensions optimisées afin d'obtenir un gain important, une bande
	passante élevée et un faible bruit introduit.
	La figure 3.45 présente une image optique de l'oscillateur de Pierce. La surface
	occupée par l'oscillateur (excluant l'étage de sortie) est inférieure à 30 ◊ 20 µm 2 faisant l'oscillateur un excellent candidat pour des réseaux de capteurs. L'étage
	de sortie peut être exclu dans cette évaluation de surface parce que dans l'avenir

Buffer hautes fréquences Circuit de rebouclage NEMS 10 µm 100MHz nanorésonateur

  

.3 Co-intégration 3D de résonateurs avec une détection piézorésistive et un circuit CMOS 30 nm

  

	Chapter 2				Réalisation pratique
		V dd		V dd	Source externe
					de courant
	M6: 25×0.3	M5: 50×0.3		M13&M14: 300×0.1	I buffer =
					2 mA
		M1&M2:	V NEMS-DC	M11&M12:	Sortie
	I amp =	80×0.3		250×0.1
	1 mA			
		M3&M4: 50×0.5	M15:	M16: 25×0.1
	Source externe			250×0.1
	de courant			
	NEMS			
		Amplificateur		Étage de sortie
	Figure 2.24: Schéma de l'électronique dans le projet d'intégration 3D. Les dimen-
	sions des transistors (largeurs et longeurs) sont en micromètres.
	Dans l'intégration 3D étudiée, les circuits CMOS sont d'abord fabriqués selon pro-
	cédé technologique CMOS-30nm avec deux niveau de métal. Une fois le procédé
	CMOS terminé, un wafer SOI est collé au premier wafer afin d'ajouter une couche
	de silisium monocrystalin sur lequel les résonateurs "crossbeam" seront fabriqués.
	Les diélectriques au-dessus de la couche supérieure de silicium sont ensuite gravés.
	Enfin, le résonateur est libéré grâce à une gravure humide.
	Pour ce projet, un délai très court (moins d'un mois) a été donné pour la conception
	des résonateurs et de l'électronique. La stratégie employée a donc été de concevoir
	une électronique simple dans une configuration boucle ouverte. La conception élec-Lors des der-tronique est organisé comme suit : d'abord les dimensions des transistors de l'étage niers mois de mon doctorat, les puces où les nanorésonateurs sont co-intégrées avec de sortie ont déterminés de manière à charger la capacité de connexion. La capacité l'électronique ont été fabriqués. Les premières mesures ont été faites sur des nanoré-d'entrée de cet étage est ensuite déterminée et l'amplificateur est conçu de sorte à sonateurs co-intégré avec le circuit d'amplification (identique à celui caractérisé). Les ce qu'il puisse charger cette capacité. Il a été supposé lors de la conception élec-mesures ont utilisé une détection homodyne sous pression atmosphérique ou dans tronique que la capacité d'entrée de l'amplificateur est faible de sorte à ce que les le vide. La figure 3.49 présente la résonance mécanique du résonateur. Ces mesures pertes de connexions soient négligeables. Enfin, l'amplificateur et l'étage de sortie sont les seules reportées dans la littérature avec un résonateur aussi petit et mesuré sont polarisés par des sources de courant externes. Cette méthode à l'avantage de avec une détection homodyne et sous pressure atmosphérique. rendre la conception de l'électronique rapide mais la conception de l'amplificateur
	n'est pas basé sur les caractéristiques du résonateur et n'est donc pas optimale. La
	figure 3.50 présente le schéma de l'électronique. La figure 3.51 présente le layout du "crossbeam" co-intégré en 3D avec le circuit CMOS. L'amplificateur di érentiel est situé à côté du résonateur et l'étage de sortie 2.3L'intégration 3D d'un résonateur MEMS au-dessus d'un circuit intégré permet de occupe le reste de la surface entre les deux plots de connection. La surface totale
	rendre indépendant la fabrication du circuit de la fabrication du résonateur. le circuit occupée par le résonateur et le circuit CMOS est d'environ 100◊100 mm 2 . La surface
	électronique peut alors être fabriqué avec un procédé CMOS standard et le procédé occupée par l'amplificateur est cependant similaire à celle occupée par le résonateur
	de fabrication du MEMS n'a pas à être adapté à celui du CMOS. D'une manière et ce qui souligne donc l'intérêt de l'intégration 3D pour les réseaux de capteurs.
	générale, l'intégration 3D du résonateur avec un circuit CMOS semble que le schéma Dans une prochaine version, l'amplificateur et le "crossbeam" pourraient même être
	d'intégration le plus pertinent pour les réseaux de capteurs MEMS/CMOS. superposés afin optimiser la densité des capteurs.

  Frequency aliasing of the flicker noise in a nonlinear oscillator negligible compared to the other term because E {v noise (t)} π v elec and HD 2 v elec π 1 implies that HD 2 E {v 2

			HD 3
			HD 2
	-1	f -1	Linear
		S vmems 0	Random walk freq.
			Flicker freq.
			f osc
	Figure 1.14:	

noise (t)} π v elec . The signal v noise (t) can be expressed by its one-side Fourier transform: v noise (t) = ´OE 0 V noise (‹) exp (≠j2fi‹t) d‹. Thus:

  spectral density of the phase-noise introduced by the MEMS and the electronics.

	Frequency locked-loop		Control of the MEMS	phase-shift		Requires a VCO and	phase-comparator	Large: >10 000 mm²		High:	Large (limited by the	MEMS)	Few	Requires calibration	Low
	Self-oscillating loop		The MEMS oscillates at its	resonant frequency		Simple		Little: can be smaller than	0.1 mm²	High:	Large (limited by the MEMS)		Yes (emphasized for non-	linear sustaining electronics)	Little	Varies but can be important
	Phase-shift	variation	Meas. of the MEMS	phase-shift	variation	Requires a VCO and	phase-comparator	Large: >10 000 mm²		High:	Low: ~1%		Few	Requires calibration	Low
	Frequency Sweep		Determination of	the maximum gain		Requires a VCO and	Lock-in amplifier	Large: >10 000 mm²		Low:	Very large (limited	by the MEMS)	Few	Very	Low	is the power
			Measurement	principle		Complexity		Area	consumption	Resolution	Dynamic range		Distortion	Ease of	implementation	Sensitivity to	feed-through
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	parameter	value
	Wire length	5 mm
	Pad area Path area Distance	100 ◊ 100 µm 2 100 ◊ 10 µm 2 20 µm
	between paths	
	BOX thickness	145 nm
	Bulk thickness	750 µm
	L bonding	5 nH
	M bonding	0.25 nH
	C BOX	2.7 pF
	R sub	682 k
	R lat	26 k
	Z MEMS	1.25 k
	g MEMS C elec	1.18 ◊ 10 ≠2 7 pF

2: Parameters of the study of the substrate coupling.

3 Minimal number of MEMS resonators to reach the best array performance

  Equation (2.48) shows that implementing MEMS resonators in array reduces the effect of C connec and C gs . Indeed, the low-pass filter term in equation (2.48), is reduced by increasing N until it reaches |1 + j2fif r Z MEMS C p | 2 . Assuming that the MEMSnoise is negligible (this hypothesis should be verified a posteriori), one can determine the number of resonators N required to achieve close-to-maximal SN R by solving the following condition 1 + (2fif

				2.5 Collectively addressed MEMS arrays
	C connec	0 1 pF 10 pF 100 pF
	N min≠cap	1	2	20	196
	N min≠noise 5 Table 2.4: Minimal number of MEMS versus C connec 4 1 1
	2.5.				
					.50)

Table 2

 2 

.4 gives N min≠cap for several values of C connec and for a minimal transistor length of 0.13 µm. The values of the other parameters are given in table 2.5. Obviously N min≠cap increases with C connec .

Table 2 . 5 :

 25 Study parameter values for a doping level of 10 19 cm ≠3

  M A and M P . Their dimensions determine the values of g m , C gsA , C gdA , g dsA , g gsP , C dbA , C dbP and therefore the amplification capability of the electronics. Note that it is considered that the MEMS is negligible compared C connec (that is typically in the order to 5 fF).The resonator output voltage v MEMS is attenuated due to the connection losses and the resulting voltage is v elec . The active transistor M A amplifies and converts v elec into a current which is then converted back into a voltage through C out . If the e ects of C gdA , g dsA , g gsP and Z P are negligible, the electronic circuit has the following ideal transfer function at a frequency f osc :

	Chapitre 3				Practical realizations
		9 10	Analytical formula (2) SPICE simulations	Frequency (MHz)	M A :	opt L W × (µm×µm)	opt	M P : (µm×µm) P L W ×	P	ps opt e H -
		8		1	0.24×0.36	4.7×1.1		8.8
	Electronic gain	5 6 7		3 5 10 30 50	0.24×0.36 0.29×0.30 0.36×0.24 0.51×0.16 0.61×0.14	4.7×1.1 5.5×0.9 6.9×0.7 9.9×0.5 11.7×0.42		6.8 6.0 5.0 3.4 2.8
		4		100	0.91×0.13	17.5×0.39		2.1
		3					(b)		
		1 2	10	100					
			frequency [MHz]						
			(a)						
	Figure 3.30: (a) Comparison between the analytical formula (9) and SPICE simu-
	lations, (b) transistors dimensions					
	MEMS resonator output capacitance C					

  3.2.2) (C gsA π C p ). In fact, for a resistive MEMS resonator, we have to assume that :C gsA ∫ C p . As in subsection (3.3.2.2), a modified electronic gain |H ps elec | = |H ps elec | (1 ≠ Â 2) is introduced that takes into account the reduction of the resonator gain :

  Characteristics of the resonators for V DC = 5 V.

	Version	b	a	c
	L	10.5 µm	14.8 µm	20.9 µm
	b	250 nm	250 nm	250 nm
	h	1 µm	1 µm	1 µm
	g	250 nm	250 nm	250 nm
	Mass	6.1 pg	8.6 pg	12.2 pg
	f r	20 MHz	10 MHz	5 MHz
	g MEMS	1.1	4.3	17
	Z MEMS	360 M	30 M	720 M
	|H connec | Output noise 1.4 nV/ 8.8 ◊ 10 ≠3 Ô Hz 2.3 nV/ 6.2 ◊ 10 ≠3 Ô Hz 7.7 nV/ 8.8 ◊ 10 ≠3 Ô Hz Table 3.3:
	10. The design of the resonators was made by Julien Arcamone	

Table 3 . 4 :

 34 Characteristics of the electronics circuit.

	11. Chemical Mechanical Planarization
	12. Catherine Bour realized the layout of the CMOS circuits. Julien Arcamone designed of the
	MEMS resonators, their layouts and the MEMS-CMOS connections.
	123

CMOS Metal line between the MEMS input and the CMOS output

  

  Characteristics of the crossbeam when operated in vacuum (doping level 10 19 cm ≠3

	Chapitre 3				Practical realizations
	Name	CB1	CB2	CB3	CB4	CB5
	l w l n w n g Mass f r g MEMS R MEMS |H connec | Output noise 11 nV/ 1.5 µm 100 nm 100 nm 50 nm 60 nm 16 fg 78 MHz 0.35 2.2 k 0.99 Ô Hz 12 nV/ 1.2 µm 100 nm 100 nm 50 nm 60 nm 13 fg 122 MHz 0.28 2.2 k 0.99 Ô Hz 9.6 nV/ 2 µm 100 nm 100 nm 50 nm 90 nm 21 fg 44 MHz 0.21 2.2 k 1.0 Ô Hz 13 nV/ 1.6 µm 130 nm 100 nm 50 nm 80 nm 22 fg 87 MHz 0.21 2.2 k 0.99 Ô Hz 7.6 nV/ 2.5 µm 50 nm 100 nm 30 nm 220 nm 13 fg 14 MHz 72 ◊ 10 ≠3 3.7 k 1.0 Ô Hz Table 3.5:

  The dimensions of the transistors were designed as follows. First the amplifier gain increases with the length of M A . It was however simulated that with the minimum length of the technology (0.3 µm), a gain larger than 30 dB can be achieved what is enough. The transistor length was thus set to its minimum value. The width of the transistor is then determined from a trade-o between a low-noise and a low input capacitance. The length of M B is set larger than L A so that it introduces a little gain reduction. The width of M B is then determined from the required biasing current of M A .

	Chapitre 3				Practical realizations
		V dd	The dimensions are in micrometers			
		M B : W×L=				
	V bias	10×1 V amp		To buffer	Parameter	Value
					Gain	35 dB
	V elec	M A : W×L=	C buf <	Bandwidth	330 MHz
	IN	10×0,3		30 fF	Input noise	19 nV/	Ô	Hz
					Input capacitance	290 fF
	Figure 3.42: Schematic of a voltage	Table 3.7: characteristics of the vol-
	amplifier.				tage amplifier.		

  Characteristics of the four di erent crossbeams implemented with a CMOS circuit . The doping level of 2 ◊ 10 19 cm ≠3 and the value of H connec is based on the input capacitance determined in the ASIC design.

	Chapitre 3					Practical realizations
	Name	CB1		CB2		CB3	CB4
	L	5 µm		4 µm		3 µm	2 µm
	b	200 nm	200 nm	200 nm	200 nm
	L g	550 nm	550 nm	550 nm	550 nm
	b g	100 nm	100 nm	100 nm	100 nm
	h	150 nm	150 nm	150 nm	150 nm
	g	200 nm	200 nm	200 nm	200 nm
	f r	14 MHz	22 MHz	39 MHz	88 MHz
	Mass	350 fg		280 fg		210 fg	140 fg
	G MEMS R MEMS	50 ◊ 10 ≠3 0.8 k	40 ◊ 10 ≠3 0.8 k	30 ◊ 10 ≠3 0.8 k	20 ◊ 10 ≠3 0.8 k
	|H connec | Output noise 8.7 nV/ 1 Ô Table 3.8:	1 Hz 9.5 nV/ Ô	1 Hz 10.8 nV/ Ô	1 Hz 12.9 nV/ Ô	Hz
	15. The resonators design was made by Julien Arcamone

  at f r / (2Q) 109 dB 116 dB 126 dB 130 dB

	Chapitre 3					Practical realizations
	Parameter Value	Electronics Gain Bandwidth Input capacitance Input noise 23 dB 106 MHz 150 fF 14 nV/ Ô Hz
			Overall characteristics	
	Resonator	CB1	CB2	CB3	CB4
	SN R Mass resolution	4.8 zg	2.5 zg	1.1 zg	0.5 zg

Table 3 . 9 :

 39 Characteristics of the 3D-integrated ASIC.

Table 3 .

 3 10: Comparison of the characteristics of the di erent co-integrated systems.

	Realization	fr	Responsitivity	MEMS material	MEMS-CMOS
					pixel area
	2D co-integration of a	6 MHz	1.2 Hz/ag	Single-crystal silicon	¥ 80 ◊ 60 µm 2
	capacitively detected MEMS				
	2D co-integration of a	100 MHz	4700 Hz/ag	Single-crystal silicon	¥ 30 ◊ 30 µm 2
	piezoresistively detected				
	MEMS				
	3D co-integration of a	88 MHz	310 Hz/ag	Single-crystal silicon	¥ 30 ◊ 30 µm 2
	piezoresistively detected				
	MEMS				
	2D co-integration of a	60 MHz	1.9 Hz/ag	Aluminium	NI
	capacitively detected MEMS				
	in [Verd 2006]				
	2D co-integration of a	100 MHz	12 Hz/ag	Polysilicon	¥ 300 ◊ 300 µm 2
	capacitively detected MEMS				
	in [Uranga 2005]				
	2D co-integration of a	182 MHz	98 Hz/ag	Polysilicon	¥ 300 ◊ 300 µm 2
	capacitively detected MEMS				
	in [Teva 2007]				

  Phase-shift di erence between the MEMS phase-shift at f and at f r

	{e}	g	Resistivity variation of the gauge Piezoelectric constant
	Èf Í	b g	Width variation of the gauge Mean value of the frequency
	ÈT Í	C (t)	Capacitance variation in the capacitive detection Mean value of the period
	f w (x, t)	Frequency di erence Displacement of the beam
	E	f	Resonance frequency variation Statistical expectation
	ADEV h g v act (t)	Allan deviation Thickness variation of the gauge Actuation voltage
	AGC v noise (t) L g	Automatic gain control Length variation of the gauge voltage noise
	AVAR m v(t)	Allan variation Added mass Voltage signal
	AlN "t µ N	Aluminum Nitride Sampling time of the reference clock Electron mobility of the transistor
	ASIC CMOS " Â MEMS (f )	Phase di erence Application specified integrated circuit Complementary metal oxide semiconductor
	FLL	Â ref	Frequency lock loop Desired phase-shift di erence
	LNA	Â SBR	Low-noise amplifier Signal-to-background ratio phase-shift
	MEMS ¸1	MicroElectroMechanical Systems Strain of the beam
	NEMS ÷ K	NanoElectroMechanical Systems Coe cient for the Du ng e ect
	SOI ÷ A	Silicon on insulator Actuation normalization constant
	SOL ÷ D	Self-oscillating loop Detection coe cient
	VCO	•	Voltage-controlled Oscillator Auto-correlation function
	Dkit " beam	Design kit Gauge factor
	DLL " Si	Delay lock loop Gauge factor of the silicon
	DMMP Ÿ mass	Dimethyl Methylphosphonate is Sarrin gas simulant Normalization coe cient that depends on how m is added to
	FDSOI	Fully depleted silicon on insulator the beam
	NMOS Ÿ H	Negatively doped metal-oxide-semiconductor field-e ect transis-Hooge noise coe cient
	⁄		tor	Modal coe cient ????
	PLL {¸}	Phase lock loop Tensor of the strain
	ppb { }	Particule per billion Tensor of the stress
	ppm {Á}	Particule per million Permittivity of the piezoelectric crystal
	PSD {c}	Power spectral density Elastic sti ness constant
	-(t) {D}	Relative amplitude noise Electric displacement
	g0 {E}	Resistivity variation of the gauge Electric field

g0

Resistivity of the gauge at rest

Table 3 .11:

 3 The solution of (3.53) provides the Values of the normalization constants for di erent types of beam following expression of n (x):

	Appendix

pF). La fabrication des puces sur lesquelles les résonateurs sont co-intégrés avec le Circuits CMOS n'est pas encore terminée. La protection du circuit CMOS et la

This condition is closely related to the concept of reproducibility[Rubiola 2008].

i.e. ÷ K w(x, t) π b where ÷ K is a constant that only depends upon the mechanical conditions imposed on the beam.

compared to the mass of the beam: m π m beam Ÿmass,n .

A two-electrodes resonator with di erential actuation is also reported in[Juillard 2009[START_REF] Giner | [END_REF]].

It should however be mentioned the work published in [?] where 2-ports resonators where fabricated using either piezoelectric or piezoresistive detection.

The measured frequency is equal to the actuation frequency as opposed to down-mixing architecture[START_REF] Bargatin | [END_REF]].

It is considered that the product V DC ◊v act is adjusted so that the actuation force corresponds to the critical actuation force.

The 90°-value, larger than the expected value of 0°for a Lorentz behavior, is due to the variable resistance that acts as a low-pass filter and thus unbalances the bridge.

Agilent refuses to provide information about this algorithm.

This work was performed with the help ofPaul Ivaldi 

We did not have access to these components because the number of functional devices was limited.

The preliminary measurement of the MEMS-CMOS chips were made by Julien Arcamone.

The design of the resonators was made by Julien Arcamone and Laurent Dura ourg.

The scalar product of the function f (x) is defined as: ´L 0 f (x) n (x) dx
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MEMS resonators and their readout electronics major interest of array in the case where resonators are fabricated on a di erent wafer than the CMOS circuit.

The following chapter presents di erent MEMS resonators and oscillators realized and characterized during this PhD study.

Chapitre 3 Practical realizations Figure 3.8: Allan deviation measured directly with an oscilloscope and for 3 different sampling rates. The maximum integration time on the graph is a 20 th of the measurement duration in order to properly estimate the variance. The inset presents the instantaneous frequency for a sampling rate of 100 ns.

Direct measurement using an oscilloscope

The output signal of the oscillator is measured using an oscilloscope. The instantaneous frequency is determined using a post-processing method which calculates the time lapse between two successive rising edges. Three sets of measurements were made with di erent oscilloscope sampling times : 1 ns, 10 ns and 100 ns. The measurement duration is then set according to the maximum number of points that the oscilloscope can handle in a single acquisition. Using the oscilloscope DPO7254, it is possible to acquire up to 500 millions points. The figure 3.8 presents the Allan deviation of the oscillator (calculated from eq. (1.15) at page 14) for the 3 di erent sampling rates. From the inset, the measured frequency with a sampling rate of 100 ns is discretized and thus not properly measured : the period variation of the oscillator is quantified by the finite resolution of the oscillator sampling rate. Consequently, the frequency resolution is degraded as seen on figure 3.8. The sampling rate of the oscilloscope is therefore empirically determined to 10 ns. The corresponding measurement duration is 5 s and the maximum integration time is 0.25 s (a twentieth of the acquisition time in order to get a proper estimation of the variance). However, it is wished to estimate the Allan deviation at larger integration time in order to determine its minimal value. The downmixed measurement technique discussed hereafter details how this measurement can be achieved.

Downmixed measurement using an oscilloscope

In order to increase the acquisition duration, the oscillator output signal is downmixed with a supposedly ideal signal source at a frequency f source slightly lower than the oscillating frequency. Figure 3.9a describes the measurement setup used. The resulting down-Chapitre 3 Practical realizations PMOS voltage. The behavior and the performance of the circuits should therefore be a ected.

Commercial

The bu er and the bu er+voltage amplifier were first characterized using the measurement setup depicted in figure 3.46. The frequency response of the bu er and the bu er+voltage amplifier is depicted in figure 3.47. In order to achieve an electronic gain larger than one, the voltage supply of the amplifier stage is increased because the threshold voltage of the transistors was measured larger than in the model of the design kit. The DC voltage applied to the bu er and the biasing stage remain in the typical range defined by the simulations.

At high frequencies, the peaks in the electronic gain are due to electric resonances in the measurement cables and in the electrical pads. In fact, the amplifier+bu er was bonded to a support and thus the pads were not used in this measurement. The peaks are reduced in the response of the amplifier+bu er compared to the bu er response. The large phase rotations in the bu er phase-shift response introduced by the bu er are due to some delay introduced by the cables. Once again, the bonded amplifier+bu er chip presents better results as the calibration of the measurement is of a better quality. However one can see that the bu er gain corresponds to the simulations. The gain of the amplifier+bu er is however lower than the value given by the simulations. It is believed that it is due to process variations (e.g. the variation in the saturation current of the transistors). The gain remains large and compensates the connection losses that would appear in the case of a stand-alone resonator. 

Silicon chip

+6 dB

Commercial amplifier for impedance adaptation 

Appendix A: determination of the dynamic range in self-oscillating loops

Similarly to subsection 1.2.2 the following notation are introduced: f r0 is the resonance frequency of the MEMS when no mass is loaded. f m r is the resonance frequency corresponding to a loading mass m.

Appendix

The parameter g MEMS ◊ G amp can be determined from the open-loop gain when there is no loading mass on the MEMS G f r0 :

.52: Dynamic range of the self-oscillating loop using a delay bloc The parameter • is set so that f osc = f r0 : • = 3/ (4f r0 ) corresponding to a phaseshift of +90°. Equation (3.33) has no analytical solution and must be solve numerically. Figure 3.52 presents the dynamic range calculated numerically for a self-oscillating loop using delays as phase shifter. This curve can be fited to the following expression:

DLL as the phase-shifter

Finally if a DLL bloc is used to ensure the proper phase-shift, the phase-shift and the gain introduced by the bloc does not change with the frequency. However DLL architectures are designed for a frequency range of operation that limits the dynamic range of the oscillator. However the range of operation frequency is often large. For example, in the chapter 3, the design of an ASIC uses a DLL-bloc and its frequency range of operation is larger than 10%.

Appendix B: multi-mode frequency response of a beam

Based on the Euler-Bernoulli equation given in (2.1), it is possible to use the galerkin decomposition:

where a n (t) is a function in time that describes the frequency response of the beam and n (x) respects: Appendix and where " n 1 ,n 2 is the Kronecker delta function that respects:

The general solution of eq. (3.36) is:

where A n , B n , C n , D n and ⁄ n are parameters to be determined from the mechanical conditions imposed on the beam. Here are the equations imposed by common mechanical conditions:

Clamped end Free end Fixed end

Consider for example a clamped-clamped beam at x = 0 and x = L, then the parameters A n , B n , C n , D n and ⁄ n should respect:

For the beam to be in motion, the parameters A n , B n , C n , D n should be non-null, thus the determinant of the matrix should be null and thus ⁄ n should respect:

Equation (3.40) has an infinite amount of solutions ⁄ n . Those solutions are the flexural modes of the beam. The equation cannot be solved analytically and the solutions of it are obtained numerically. Note however, that the coe cient ⁄ n does not depends on the dimensions of the beam but only on mechanical conditions imposed on the beam. The expression of n becomes:

Appendix

wheren = ≠ cos(⁄n)≠cosh(⁄n) sin(⁄n)≠sinh(⁄n) is another coe cient that only depends on ⁄ n . Finally, the coe cient 0,n is determined from the property:

With the properties of n (x), the Euler-Bernoulli equation becomes:

If the scalar product of the equation is calculate over each n (x) then n equations are defined 16 :

If a mass is added on the beam, the parameter flhb that represents a mass per unit of length is modified. It should be decomposed into:

where fl mass is the density of the added mass and A mass is the area along the section of the beam occupied by the added mass. From eq. (3.45), the value of ´L 0 flhb 2 n (x) dx can be rewritten as: (3.46) where Ÿ mass,n is a constant that depends on how the mass is added to the beam and on the flexural mode of the beam:

The value of Ÿ mass,n is given in the following table in the case where the mass is added uniformly to the beam and in the case where the added mass can be considered as punctual.

Mass added uniformly on the area the beam

Punctual mass located at

In the case of punctual mass, the influence of the mass is balanced by 2 n (x 0 ) and therefore it is not possible to measure its mass without knowing the location of the punctual mass. The phenomenon is described in the articles [Dohn 2005, Lee 2009a, Dohn 2007, Dohn 2010] that also propose solutions overpass this issue.

The maximum displacement of the beam is located at L/2 are is denoted w (t) = q OE n=1 w n (t), where w n (t) = a n (t) n (L/2). The equation (3.44) becomes:

where

›L are respectively the resonance frequencies and the quality factor of beam. In the case of small added mass to the beam 17 , the resonant frequency behaves as:

confirming that the added mass can be measured from the resonant frequency. The corresponding complex amplitude of the mechanical displacement denoted w (f ) is calculated from the complex amplitude of F l (x, t) denoted F l (x):

where ÷ A,n = n(L/2) L ´L 0 n (x) dx is a parameter that only depends on ⁄ n . If F l (x) can be supposed as independent of x, H mecha = y F l is equal to a sum of transfer functions H mecha,n defined as: 

Note that the expression of the SN R is only valid if the electronic noise of the following electronic stages is negligible. The gain of the amplifier should therefore be larger than 10 dB with a corresponding bandwidth larger than f r . The signal to noise ratio was determined for di erent commercial amplifiers presented in table 3.12. The amplifier have di erent voltage and current noise and di erent bandwidths. The figure 3.57 depicts the evolution of the SN R of eq. (3.58) versus di erent MEMS resonators (the corresponding resonators characteristics are given in table 2.3 and are discussed in section 2.4) and for the presented commercial amplifiers. The SN R of an ASIC co-integrated or not with the MEMS resonator and based on the design rules of subsection 2.3.1 is also depicted in the figure for comparison. If the amplifier has a too small bandwidth to be operated at the resonance frequency of the MEMS (e.g. for the crossbeam), then its corresponding SN R of eq. (3.58) is not depicted. One can see that the performance varies with the amplifier as with the considered MEMS resonator, but overall the performance of the commercial amplifiers are lower than for an ASIC co-integrated or not with the MEMS. It should however be noted that only the noise of the electronics was considered in this study. In the case where the resonator detection transduction is large and the connection losses are low, the noise of the electronics can be neglected and the choice of the commercial amplifier is less relevant. 3.12. "capa" refers to a clamped-clamped beam with capacitive detection, "CB" to crossbeam and "PZE" to piezoelectric cantilever. "single" refers to a single-sided actuation and "di " refers to a di erential actuation.