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A space-time study of a three-dimensional nonlinearly saturated open cavity flow is undertaken using time-resolved space-extended experimental data, acquired in both cross-stream and spanwise planes, in incompressible air and water flows. Through multiple modal decompositions in time and space, the waves and coherent structures composing the dynamics in the permanent regime are identified and characterised with respect to the instabilities arising in the flow. Effects of nonlinearities are thoroughly investigated in the impinging shear layer, regarding the self-sustained oscillations and their interactions with the inner-flow. In particular, the analysis conducted throughout the parameter space enlightens a global connection between the selection of locked-on modes and the amplitude modulation at the impingement and the mode switching phenomenon. Furthermore, observations of low frequencies interacting drastically with the shear layer flapping motion underline the existence of intrinsic coherent three-dimensional dynamics inside the cavity in spite of the shear layer disturbances. Linear stability analyses have demonstrated the onset of centrifugal instabilities along the main recirculation. In the present investigation, we focus on the dynamics after saturation occurred. It reveals numerous space-time coherent structures, whose properties are quantified and classified with respect to the underlying instabilities. We observe travelling or standing spanwise waves, as well as steady structures. Finally, some patterns exhibited by the saturated structures suggest that the nonlinear mechanisms governing the mutations of the flow after the linear regime could gain more insight in the frame of amplitude equations.
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In the incompressible inviscid approximation, linear stability analysis carried out around a stationnary basic state of the form of a hyperbolic tangent velocity profile can predict the mode against which the basic state is the most unstable and the range of the destabilising modes [START_REF] Betchov | Stability of a shear layer between parallel streams[END_REF][START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF][START_REF] Michalke | On spatially growing disturbances in a shear layer[END_REF]. Linear stability analysis is performed locally on the basic velocity profile in an initially parallel flow. Growth rates and frequencies of unstable modes are determined as functions of mean velocity U m = (U 1 + U 2 )/2 (where U 1 and U 2 are the two farfield velocities) and local vorticity thickness δ ω . The most temporally unstable wavenumber, based on vorticity thickness, has been obtained by [START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF] in the incompressible case using a dichotomy method:

k kh = 0.4446 δ ω /2 = 0.1415 2π δ ω . (1.1)
The associated frequency is expressed using the mean velocity U m

f kh = 0.4446 π U m δ ω , that is St kh = f kh δ ω /U m = 0.4446/π. (1.2)
Note that the purpose here is not a review of the numerous investigations and extentions related to that celebrated relation. Regarding free shear layer instability, the author refers to the works by [START_REF] Betchov | Stability of a shear layer between parallel streams[END_REF]; [START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF][START_REF] Michalke | On spatially growing disturbances in a shear layer[END_REF]; [START_REF] Williams | Streaklines in a shear layer perturbed by two waves[END_REF]; [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF]; Huerre andMonkewitz (1985, 1990); [START_REF] Monkewitz | Global linear analysis of weakly non-parallel shear flows[END_REF]; [START_REF] Amram | Etude numérique des instabilités dans les couches de mélange compressibles[END_REF]; [START_REF] Huerre | Hydrodynamic instabilities in open flows, chapter 2[END_REF].

Evolution from convective to absolute instability has been investigated by [START_REF] Huerre | Absolute and convective instabilities in free shear layers[END_REF]. Determining whether the shear layer is going to be convectively or absolutely unstable pertains to the chosen reference frame. In other words, disturbances will grow spatially when both streams move in the same direction or, if counterflow exists, as long as counterflow U 2 is such as |U 2 /U 1 | < 0.136 [START_REF] Huerre | Absolute and convective instabilities in free shear layers[END_REF]. In other cases, one observes temporal growth yielding an absolute instability. What remains of the free shear layer inviscid linear stability theory in the case of a non-free shear layer? How does a forcing affect stability properties of the shear layer?

The first effect to be seen comes from flow conditions at separation. [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF] investigated parallel shear flows with different velocity profiles, other than the "classic" hyperbolic tangent. They showed that in the case of laminar boundary layer separating from the wall, the Blasius profile of the incoming boundary layer directly impacts the shear layer thickness and thus, the shear layer critical frequency. Indeed, vorticity contained in the incoming boundary layer is passed on to the shear layer, through the relation at separation,

δ ω0 ≃ 4θ 0 . (1.3)
where θ 0 and δ ω0 are the momentum and vorticity thicknesses at separation (x = 0). If the farfield velocity is noted U 1 (x = 0) = U 0 at separation and the lower velocity is considered as U 2 = 0. From Equations 1.3 & 1.2, the maximum growth rate of a free shear layer just after separation occurs for the frequency f kh0 which can be expressed as a Strouhal number based on incoming boundary layer momentum thickness θ 0 . It comes

St kh0 = f kh0 θ 0 U 0 ≈ f kh0 δ ω0 /4 2U m ≈ 0.4446/π 8 ≈ 0.018.
(1.4)

Unsteady conditions can force the shear layer more drastically by injecting frequencies from the start. [START_REF] Miksad | Experiments on nonlinear interactions in the transition of a free shear layer[END_REF] investigated experimentally the impact of disturbances upstream of the shear layer on the spectral structure of the flow in order to bring to light the transition to turbulence. Two frequencies were picked up at various values around the critical frequency f kh and acoustically injected in the developing shear layer. He demonstrated that such a coloured disturbance is primarily enhanced to the detriment of any other frequency of the natural broad-band spectrum. Then, while the shear layer spreads and energy of the oscillations grows, non-linear interactions between existing frequencies induce new spectral components -linear combinations of the two initial frequencies. Eventually, initial forcing fades out and broad-banded dynamics is rebuilt. In brief, upstream conditions can only have a spatially-limited influence on the spectral signature of the shear layer due to the convective nature of the instability. Another source of forcing for a shear flow is the impingement onto a bluff body. This is the case for a shear layer above a cavity or towards a bevelled edge as well as a jet hitting a plate or a ring. By bringing supplementary boundary conditions to constrain dynamics, those geometries constitute an acoustic resonator, which enhances characteristic vibrations in the presence of a shear flow. Such an assertion was first correctly put forward by Lord Rayleigh himself [START_REF] Powell | Some aspects of aeroacoustics: From rayleigh's until today[END_REF][START_REF] Powell | Lord rayleigh's foundations of aeroacoustics[END_REF][START_REF] Gloerfelt | Aerodynamic noise from wall-bounded flows: Cavity noise, chapter 0[END_REF], intuitively from his observations. Only long after these good old days were conducted the first systematic and extensive studies focusing on the fascinating properties of impinging flows: [START_REF] Powell | On edge tones and associated phenomena[END_REF][START_REF] Powell | On the edgetone[END_REF]; [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] and then, [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]; Rockwell andNaudascher (1978, 1979), among others. They characterised and modelled the rise of self-sustaining oscillations in the impinging shear layer. The underlying mechanism can be understood as follow. When impinging, the flapping motion of the shear layer at the edge is responsible for pressure variations, which are fed back to the leading corner, enhancing Kelvin-Helmholtz vortex shedding. As a result, this aeroacoustic feedback selects and reinforces shear layer oscillations of frequencies f n satisfying the feedback equation

n f n = L U kh + L c s with n ∈ N + * , (1.5)
where L is the cavity length, U kh is the convection velocity of the Kelvin-Helmholtz disturbances along the shear layer and c s is the speed of sound. The integer n represents the number of wavelengths contained between separation and impingement. The spectrum hence contains only a few modes: it is no more broad-banded as in a free shear layer.

In fact, [START_REF] Huerre | Local and global instabilities in spatially developing flows[END_REF] asserted that a flow exhibiting self-sustained oscillations is by definition absolutely unstable since it requires energy from a disturbance to travel both downstream and upstream. That was verified by [START_REF] Colonius | Numerical investigation of a flow past a cavity[END_REF]; [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] with numerical simulations in the compressible regime. The feedback mechanism thus participates in sustaining the highly organised oscillations of the cavity-flow by making the system become globally unstable. The first consequence of that absolute instability is the shear-layer associated frequencies becoming common to the entire flow, such as pointed out in [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF].

The cavity locked-on frequencies

The early studies mentioned above dealt first with the compressible regime [START_REF] Powell | On edge tones and associated phenomena[END_REF][START_REF] Powell | On the edgetone[END_REF][START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] and then for low Mach configurations [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]Rockwell andNaudascher, 1978, 1979;[START_REF] Rockwell | The organized nature of flow impingement upon a corner[END_REF][START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF]. Their common aim was to predict locked-on frequencies of the self-sustained oscillations through lumped simple models based on Equation 1.5, ie. depending on cavity length L and external flow velocity U 0 .

In the compressible regime, the locked-on spectral distribution can usually be matched by the well known experimentally-based empirical Rossiter's formula [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF][START_REF] Delprat | Rossiter formula: a simple spectral model for a complex amplitude modulation process?[END_REF][START_REF] Delprat | Low-frequency components and modulation processes in compressible cavity flows[END_REF]. It models the delayed acoustic feedback, which results in a non-harmonic series of peaks corresponding to the so-called Rossiter modes

St n = f n L U 0 = n -γ M + 1/κ with n ∈ N + * (1.6)
where κ = U kh /U 0 is the velocity of travelling vortices relatively to incoming external velocity. The corrective coefficient γ has been asserted to model the time delay between the vortex impact and the emission of an acoustic wave. In practice, κ and γ are determined empirically and were originally set to κ = 0.57 and γ = 0.25 (1.7)

for a rectangular cavity of length/depth ratio L/D = 4 [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF][START_REF] Delprat | Rossiter formula: a simple spectral model for a complex amplitude modulation process?[END_REF]. More generally, these empirical values must be tuned accordingly to the configuration under study to match the results. Typically, one founds 0.3 κ 0.6 and γ = 0.2.

(1.8)

In the incompressible case, when the Mach number M ≪ 1, information from the impinging condition travels instantaneously (c s → ∞) through pressure [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]Rockwell andNaudascher, 1978, 1979). The frequencies of self-sustained oscillations hence satisfy the relation

St n = f n L U 0 = (n -γ) κ = (n -γ) U kh U 0 .
(1.9)

The coefficient γ is however far less predictable. It cannot be set to a constant value as in the compressible regime. Many empirical models have been proposed over the years, such as in [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF] (see Figure 1.2). Providing reasonable matching with experiments, none could actually predict all features of the self-sustained oscillaitons. Practically, the first order model assuming κ ≃ 0.5 and γ ≪ n is always quite helpful for it provides a simple and general scaling to approximate the locked-on frequencies (Equation 1.10).

St n ≈ n 2 f n ≈ n U 0 2L
(1.10) [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF], respectively). Filled point represent frequencies with largest amplitudes.

The transition from one natural mode n to another can be either sub-or super-critical depending on the geometry of the impinging configuration [START_REF] Rockwell | Self-sustained oscillations of impinging free shear layers[END_REF][START_REF] Kuo | Lock-on characteristics of a cavity shear layer[END_REF]. Contrary to other types of impingement -jet ring, bevelled edge, etc. [START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF][START_REF] Ziada | Oscillations of an unstable mixing layer impinging upon an edge[END_REF][START_REF] Howe | Low strouhal number instabilities of flow over apertures and wall cavities[END_REF]) -hysteresis has never been observed in cavity flows.

As pointed out already by [START_REF] Rockwell | Self-sustained oscillations of impinging free shear layers[END_REF], changes in shape of the averagedvelocity profile and gradient along the shear layer make difficult the estimation of the actual critical frequency. It is anyway questionable to apply the free shear layer theory -based either on upstream conditions at separation only or on locally convective instability -to a globally unstable system. More particularly, one can find in [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] numerical results for which is given the evolution of the vorticity thickness δ ω along the impinging shear layer.

For various Mach numbers and cavity geometries in the compressible regime, it is shown that shear layer spreads faster for long cavities than for shorter ones. This is likely due to selfsustained oscillations of larger amplitude when cavity length L is increased. Similar results have been obtained for experimental data, in the incompressible case, for various cavity lengths, see Section 4.1.5. In the 90's, much has been accomplished in order to take into account the absolute instability of the flow. Beginning with pioneer work by [START_REF] Monkewitz | Global linear analysis of weakly non-parallel shear flows[END_REF] concerning weakly non-parallel shear flows, it has become possible to consider the stability properties of a spatially extended stationary basic state, with respect to which perturbations may either be amplified or not. Since then, spatially extended linear stability analysis has been applied to many configurations, including cavity flows [START_REF] Mamum | Asymmetry and hopf bifurcation in spherical couette flow[END_REF][START_REF] Colonius | Global instabilities and reduced-order models of cavity flow oscillations[END_REF][START_REF] Theofilis | Advances in global linear instability of nonparallel and three-dimensional flows[END_REF][START_REF] Theofilis | An algorithm for the recovery of 2-and 3-D BiGlobal instabilities of compressible flow over 2-d open cavities[END_REF][START_REF] Ehrenstein | On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer[END_REF][START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF][START_REF] Ehrenstein | Two-dimensional global low-frequency oscillations in a separating boundary-layer flow[END_REF][START_REF] Dergham | The use of global modes to compute optimal transient growth[END_REF][START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] Barbagallo | Closed-loop control of an open cavity flow using reduced-order models[END_REF]. Those numerical studies have confirmed the global nature of cavity flow stability and the selection of a few well-defined spectral components. However, the mechanisms leading to self-sustained oscillations in the nonlinearly saturated state are by definition out of the scope of linear stability analysis. Physically, apparition of self-sustained oscillations can be explained by the coupling of two effects:

i) the intrinsic (Kelvin-Helmholtz) instability, depending on shear layer characteristics,

ii) the pressure feedback-loop caused by impingement.

In practice, the regime of the self-sustained oscillations in an impinging flow is mainly determined by both length Λ and thickness δ of the shear layer. That is why versions of the ratio Λ/δ have been used as suitable control parameters since pioneer work on edge tones by [START_REF] Powell | On edge tones and associated phenomena[END_REF][START_REF] Powell | On the edgetone[END_REF]. For impinging jets, Λ corresponds to impingement distance and δ to orifice diameter; for bevelled edges, the ratio becomes impingement distance over boundary layer thickness, and so on. In the case of a cavity flow, regimes of self-sustained oscillations are ruled by the ratio cavity length over momentum thickness at separation L/θ 0 , hereafter called dimensionless cavity length.

The influence the boundary layer thickness at separation is mostly lost when dealing with shear layers initiated by priorly established turbulent incoming flows. For instance, [START_REF] Rockwell | Shallow cavity flow tone experiments: onset of locked-on states[END_REF]; [START_REF] Oshkai | Shallow cavity tones: transformation from large-to small-scale modes[END_REF] recently investigated turbulent flows passing over shallow cavities. They performed parametric studies over a wide range of axisymmetric cavity configurations with the aim of describing emergence of self-sustained oscillations (called flow tones) from a broad-band upstream flow. The scaling obtained from their results showed no connection with the incoming flow, depending only on pressure feedback loop parameters. Other experiments [START_REF] Chatellier | Theoretical and experimental investigations of low mach number turbulent cavity flows[END_REF][START_REF] Ashcroft | Vortical structures over rectangular cavities at low speed[END_REF][START_REF] Haigermoser | Investigation of the flow in a rectangular cavity using tomographic and time-resolved piv[END_REF] and numerical simulations [START_REF] Larchevêque | Large-eddy simulations of a compressible flow in a 3d open cavity at high reynolds number[END_REF][START_REF] Gloerfelt | Aeroacoustic computations of high-reynolds number cavity flows on staggered grids[END_REF][START_REF] Gloerfelt | Compressible proper orthogonal decomposition/galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF][START_REF] Lee | Self-sustained oscillations of turbulent flow in an open cavity[END_REF] have also studied the impact of incoming turbulent structures on the impinging shear layer. Self-sustained oscillations are generally weakened by the adjunction of incoming perturbation but overall the dynamics are unchanged without respect to incoming boundary layer thickness. 

Shear layer mode switching

Impinging shear layers past a cavity do not necessary exhibit a single regime of self-sustained oscillations. In many cases, multiple frequencies statistically coexist in the spectrum. This signature corresponds either to amplitude modulations, as discussed in the next section, or to the selection of two distinct modes of self-sustained oscillations. In the latter case, the locked-on frequency is not permanent but jumps in time from one stage to the other. That transition between two locked-on modes of oscillation is no periodic phenomenon. It occurs suddenly and erratically. That intermittency is named mode switching or mode competition. It has been observed in compressible cavity flow experiments [START_REF] Garg | Quantitative schlieren measurements of coherent structures in a cavity shear layer[END_REF][START_REF] Kegerise | Mode-switching and nonlinear effects in compressible flow over a cavity[END_REF] and numerical simulations (Gloerfelt et al., 2003a,b), as well as in the incompressible limit [START_REF] Lusseyran | Dynamical analysis of an intermittency in an open cavity flow[END_REF][START_REF] Pastur | Quantifying the non-linear mode competition in the flow over an open cavity at medium reynolds number[END_REF].

Such a phenomenon calls for a dynamical analysis to investigate transition sequences between the two modes at the smallest time-scales (first-return applications). Using symbolic dynamics based on local time-series of streamwise velocity (Laser Doppler anemometry measurements), [START_REF] Lusseyran | Dynamical analysis of an intermittency in an open cavity flow[END_REF] showed that successive transitions are unlikely. They rather observed sequences corresponding to several returns in the same vicinity of the first-return map. In other words, once a mode has been selected, the system tends to exclude the other. When using the spectral approach, drastic changes of regime corresponding to time-scales as short as only a few oscillations are difficult to study. The inherent averaging of spectral analysis implies less precision and the dispersion due to flow complexity makes the distinction between the two modes less clear. Nonetheless, [START_REF] Pastur | Quantifying the non-linear mode competition in the flow over an open cavity at medium reynolds number[END_REF] manage to quantify the transition and the existence propability of the two modes in competition. Hilbert transform was performed on band-filtered local time-series to provide an amplitude-based criterion for the presence of mode of oscillation. This study revealed that periods of transition can last for a few oscillations during which both modes are present.

Amplitude modulation at the impingement

One of the most interesting features of open cavity flows is the amplitude modulation of the shear layer flapping motion. On top of the locked-on frequency, some regimes deal with the creation of secondary frequencies resulting from a nonlinear interaction between shear layer self-sustained oscillations and trailing edge. In order to explain such a process, [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF] proposed a descriptive model based on four classes of vortex-edge interactions (clipping, partial clipping, partial escape, escape). Using phase visualisations (hydrogene bubbles) and time-series issued of pressure measurements, they asserted scenarios matching with emergence of secondary peaks 0.4f a and 0.6f a , beyond a threshold at L/θ 0 = 90. More phenomenology concerning vortex-edge interaction can be found in [START_REF] Ziada | Oscillations of an unstable mixing layer impinging upon an edge[END_REF]; [START_REF] Tang | Instantaneous pressure fields at a corner associated with vortex impingement[END_REF], based on dye-streakline observations and pressure measurements.

An alternative point of view to such a mechanical description relies upon a spectral approach, that is an amplitude modulation of the self-sustained oscillations. Indeed, nonlinear interactions between two modes can be seen as amplitude modulation of one by the other, corresponding to linear combination of frequencies in spectral space. Hence the secondary peaks are side-band peaks produced from a carrier frequency f a corresponding to self-sustained oscillations and a modulating frequency f b , which yields the effect of the impingement. Amplitude-modulated regimes are commonly encountered in literature regarding impinging flows. Coming back to [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF], the regime presenting multiple frequencies consists in fact in an amplitude modulation of the dominant mode f a , called β in [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF], by 0.4f a , resulting in the emergence of the side-band frequency 0.6f a . More side-band peaks at 0.2f a 0.8f a were encountered in a similar configuration in [START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF].

As for initially turbulent cavity flows, [START_REF] Larchevêque | Large-eddy simulation of a compressible flow past a deep cavity[END_REF][START_REF] Grace | Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers[END_REF][START_REF] Oshkai | Shallow cavity tones: transformation from large-to small-scale modes[END_REF], or the compressible regime [START_REF] Garg | Quantitative schlieren measurements of coherent structures in a cavity shear layer[END_REF][START_REF] Colonius | Numerical investigation of a flow past a cavity[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF][START_REF] Gloerfelt | Compressible proper orthogonal decomposition/galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF], amplitude modulations often come up as well, inducing secondary peaks. In general, modulating frequencies correspond to L-based Strouhal numbers between 0.25 and 0.4. [START_REF] Delprat | Rossiter formula: a simple spectral model for a complex amplitude modulation process?[END_REF] introduced an original point of view by modelling compressible cavity flows in regards to low (modulating) frequencies observed in various experiments. In [START_REF] Delprat | Low-frequency components and modulation processes in compressible cavity flows[END_REF], a relationship was asserted connecting acoustic "Rossiter" modes to low frequencies through a nonlinear mechanism at the impingement, without respect to the pressure feedback-loop.

All references point out a two-dimensional phenomenon, this amplitude modulation relying on the flapping motion of the shear layer at the impingement. However, the underlying mechanism responsible for this versatile flapping motion as well as for the selection of low frequencies still remains unclear.

3D-effects & centrifugal instabilities

Modulations at far smaller frequencies than f b have also been observed in open cavity flows. Contrary to nonlinear interactions occurring at the impingement, these modulating frequencies are generally imputed to 3D-effects, or in other words, to spanwise dynamics. For instance, though [START_REF] Rockwell | Self-sustained oscillations of impinging free shear layers[END_REF] were mainly dealing with 2D-dynamics implied by the self-sustained oscillations of the shear layer, the three-dimensional organisation of the flow was briefly mentioned (Figure 1.4). Using the very same experimental data, Rockwell and Knisely (1980a) focused on that streamwise vorticity introduced in the shear layer, disturbing the Kelvin-Helmholtz vortices. As well, the experimental observations in Koseff and Street (1984a,b,c) are frequently mentioned regarding three-dimensional dynamics in cavity flows. Low span/depth ratio cavities (S/D <= 3) were used in order to focus on endwall effects. [START_REF] Neary | Shear-layer-driven transition in a rectangular cavity[END_REF] published experimental results in which a regime was showing a side-band peak, located at f 2 ≃ 0.9f 1 , with f 1 the dominant peak. They related appearance of that side-band peak to a spanwise modulation of cavity main recirculation by a low frequency f 1f 2 .

Figure 1.4: Extracted from Rockwell and Naudascher (1979) (Figure 7 ). Topview of oscillating cavity flow (Re θ 0 = 106, L/θ 0 = 142), illustrating three-dimensionality. Interaction between primary vorticity ω ′ z and streamwise vorticity ω ′ x produces severe distortion of primary vortices. Phase visualisation is obtained through hydrogen bubbles generated by a spanwise wire.

More detailled descriptions of the three-dimensional dynamics in cavity flows came out recently with other experimental works using laser techniques. Mainly based on streaklines observations, they brought to light a well-defined spanwise organisation for the inner-flow. Investigating an incoming turbulent flow past a square cavity with dye observations, [START_REF] Djenidi | The turbulent boundary layer over transverse square cavities[END_REF] pointed out versatile three-dimensional coherent structures arising inside the cavity. In [START_REF] Podvin | A reconstruction method for the flow past an open cavity[END_REF], numerical data processed by Proper Orthogonal Decomposition revealed interesting three-dimensional modulation of the dominant modes in the shear layer. In [START_REF] Larchevêque | Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects[END_REF], numerical simulations modelling an asymmetric incoming flow exhibited inner-flow three-dimensional structures, which in turn modulated the shear layer oscillations. In the laminar regime, [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF] relied on smoke visualisations for various geometries and Reynolds numbers to observe vortical structures winding onto the main recirculation and periodically distributed along the span. They reported coherent pairs of rolls either steady or drifting towards the end-walls, depending on the cavity geometry.

For low dimensionless cavity lengths L/θ 0 , the shear layer above open cavities experiences little or no self-sustained oscillations. The outflow is roughly steady, so the dynamics basically reduces to the inner-flow. It can be inferred that lid-driven cavities, for which the boundary conditions are more easily characterised and controlled, present analogous properties. In [START_REF] Chiang | Effects of the reynolds number on the eddy structure in a lid-driven cavity[END_REF], direct numerical simulations of a square lid-driven cavity flow were presented. One could observe 3D-vortical structures arising at mid-span and travelling towards the endwall. Note that the simulations were forcing the symmetry since only half a domain was computed. Pioneer work by Albensoeder et al. (2001) (see Figures 1.5.a & 1.6) and then [START_REF] Guermond | Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at re=1000[END_REF]; [START_REF] Migeon | Details on the start-up developpment of the taylor-görtler-like vortices inside a square-section lid-driven cavity for 1000< re <3200[END_REF]; [START_REF] Migeon | Three-dimensionality development inside standard parallelepipedic lid-driven cavities at re=1000[END_REF]; Albensoeder andKuhlmann (2005, 2006) brought more insight concerning the origin of the so-called Taylor-Görtler-like vortices. Developing between the main recirculation and the cavity walls in the induced boundary layers along the walls, such vortical structures indeed suggested centrifugal instabilities (Figure 1.5.b). Meanwhile, [START_REF] Vogel | Spatio-temporal dynamics of a periodically driven cavity flow[END_REF] performed dye-visualisations in a periodically-driven cavity. By characterising the space-time dynamics of the flow within the forcing period, they demonstrated the rise of spanwise structures organising in both standing and travelling waves. This work was supported by direct numerical simulations in [START_REF] Blackburn | The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow[END_REF]. One may consider such a configuration yielding unsteady boundary conditions as a connection with shear layer driven cavities. In open cavity flows in particular, obtaining quantitative (velocity) measurements regarding the spanwise features is a challenging task. Three-dimensional dynamics involves steady or slow-moving coherent structures, which thus imply characteristic time-scales one or two orders of magnitude greater than those corresponding to shear layer oscillations. Furthermore, in the saturated regime, spanwise dynamics are usually overwhelmed by the primary dynamics of the flow, namely the oscillations of the shear layer and the main recirculation. As a result, implementation of Particle Image Velocimetry (PIV) in a spanwise plane is difficult due to large out-of plane velocity components and to low signal over noise ratio. Another point of view consists in investigating the dynamical system just after bifurcation and before onset of the saturation. In other words, this comes down to studying the stability of the steady base flow against small perturbations. In practice, this is generally achieved through numerical simulations using three-dimensional periodic perturbations upon a two-dimensional base-flow. Such a methodology is sometimes referred to as (Bi-)global stability analysis. Spanwise instabilities in the linear regime have been intensively studied over the past ten years, especially in lid-driven cavities [START_REF] Ramanan | Linear stability of lid-driven cavity flow[END_REF][START_REF] Poliashenko | A direct method for computation of simple bifurcations[END_REF][START_REF] Albensoeder | Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem[END_REF][START_REF] Blackburn | The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow[END_REF][START_REF] Theofilis | Viscous linear stability analysis of rectangular duct and cavity flows[END_REF][START_REF] Chicheportiche | Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity[END_REF][START_REF] Boppana | Global flow instability in a lid-driven cavity[END_REF][START_REF] Gonzalez | Threedimensional flow instability in a lid-driven isosceles triangular cavity[END_REF]. In open flows, the more complex boundary conditions imply a much larger computation domain and continuity issues to overcome, see for instance [START_REF] Theofilis | Advances in global linear instability of nonparallel and three-dimensional flows[END_REF]; [START_REF] Theofilis | An algorithm for the recovery of 2-and 3-D BiGlobal instabilities of compressible flow over 2-d open cavities[END_REF]; [START_REF] Alizard | Flow dynamics in open square cavity: experimental and stability comparisons[END_REF] and the review in [START_REF] Theofilis | Global linear instability[END_REF]. In particular, Brès andColonius (2007, 2008) 

Open issues and aims of the study

After this review, one realises the extensive literature concerned with impinging flows and especially flows past open cavities. In particular, the main features of the shear layer self-sustained oscillations, modelled using the two-dimensional approximation, have been overall understood and characterised for decades, which makes this system a good benchmark. However, the origin of some features still needs to be addressed.

To begin with, a precise comprehension of the evolution of locked-on modes in the shear layer remains out of reach since one usually relies on empirically-based models, whose parameters must be tuned accordingly to match reference datasets. The present study notably provides a law of evolution for locked-on frequencies as a function of the control parameter (dimensionless cavity length), based on parametric experimental data.

Other questions relate to the nonlinear interactions at the impingement. For instance, what mechanism underlies the selection of low frequencies involved in amplitude modulation of the self-sustained oscillations? New insight into the space-time dynamics of the flow at the impingement can be gained through space-extended time-resolved quantitative data, made available by high-speed Particle Image Velocimetry (PIV).

Moreover, intermittency or mode switching has been observed only recently and it would be worthwhile studying mode transitions more thoroughly. In particular, intermittency has been investigated without respect to the amplitude modulation process. Starting from space-time analysis, we adopt an original point of view involving overmodulation to highlight a connection between the two phenomena. A practical criterion is also proposed for distinguishing modeswitching dynamics relying on power spectrum alone.

Although the three-dimensional organisation of the flow in the incompressible regime has been mentioned long ago, to our knowledge only few investigations concern its influence on the shear layer flapping motion when the Reynolds number increases. Indeed, the inner-flow in open cavities is the source of very low frequencies believed to be responsible for great amplitude modulation of the self-sustained oscillations.

Furthermore, the literature review has emphasised the common ground shared with liddriven cavities. Shear-and lid-driven cavities alike can exhibit centrifugal instabilities arising from an originally two-dimensional basic flow. In that context, one strikingly needs new insights regarding the organisation and temporal evolution of the three-dimensional dynamics in the permanent regime. Notably, this consists in identifying quantitatively time and space scales after saturation, by means of space-time analysis and multiple modal decompositions applied to experimental data.

Outline

The questions raised hereinbefore are addressed in this thesis organised in two parts.

The first part deals with the tools and methodologies employed to process and analyse the experimental data. In Chapter 2 are presented the two experimental campaigns. Spatially extended time-resolved datasets have been acquired, respectively, at LIMSI in a cross-stream (wall-normal) plane and at LTRAC in a spanwise plane (parallel to the bottom of the cavity). The facilities as well as experimental protocols and acquisition characteristics are first described in Sections 2.1 & 2.2. Follows a characterisation of the performance of the PIV algorithms utilised to process particle images (Section 2.3). The analysis of the experimental results relies primarily on modal decomposition methods, based on Fourier and Hilbert-Huang transforms. The reader may find details on such methodologies helpful. To that aim, a description of those modal decompositions and their application to a spatially extended time-resolved dataset is provided in Chapter 3.

The second part of this study concerns the analysis of the results obtained in both experimental campaigns. Chapter 4 focuses on the impinging shear layer and the wall-normal dynamics of the flow. After an overview and a parametric study (Section 4.1), we emphasise the space-time dynamics of the nonlinear interactions both inside the shear layer itself (Sections 4.2-4.4) and in relation to the inner-flow (Section 4.5). In Chapter 5, the three-dimensional dynamics in the permanent regime are investigated with respect to centrifugal instabilities. Sections 5.2-5.4 focus on identifying the space and time scales of the inner-flow in a spanwise plane. Then, in Chapter 6, the organisation of the inner-flow is discussed by referring to the insightful frame of linear stability analysis. To extend the scope of the study our results are also considered with amplitude equations.

Chapter 7 summarises the thesis and provides some perspectives.

Part I

Tools and Methodologies

Chapter 2

On the experimental data

Experiments at LIMSI

Wind-tunnel facility

The present work is mainly based on two experimental investigations. The first campaign was carried out at LIMSI by using an open wind-tunnel described in Figure 2.1. The experimental facility is composed of a centrifugal fan providing stationary volume flow upstream of the windtunnel, a settling chamber and a honey-comb panel, placed at the inlet of the contraction, in order to laminarise the flow. In the measurement region, the boundary layer develops above a A = 300 mm-long plate with profiled leading edge. Wind-tunnel spans over S = 300 mm. Distance between top and bottom walls is F = 75 mm, so that the top boundary layer meets the bottom flow largely downstream of the cavity. Cavity depth is D = 50 mm and cavity length L varies from 50 to 100 mm. Complete optical access is made available using reflection-treated glass walls for the wind-tunnel as well as for the cavity setup. Available incoming velocities range from 0.7 m/s to 5.0 m/s. At such low Mach numbers (M ≃ 10 -2 ), the flow can be considered as incompressible. In addition, at the frequencies of the flow -typically 20 Hz -acoustic modes have wavelengths λ acoust much larger than the cavity length L. The pressure-based feedback mechanism can be seen as instantaneous [START_REF] Rockwell | Self-sustained oscillations of impinging free shear layers[END_REF]. Vein noise has been estimated based on Laser Doppler Velocimetry measurements. Background turbulence is less than 1%. The wind tunnel forces frequencies mainly distributed from 0 to 10 Hz, with a maximal power around 1 Hz three orders of magnitude smaller than the cavity flow spectrum for the same frequency range.

Laser Doppler Velocimetry

Local streamwise velocity u measurements, based on laser Doppler velocimetry (LDV), were performed in the shear layer, 5 mm upstream of the trailing corner, 5 mm above the cavity top plane, in the very same conditions as the PIV measurements. The light source is a continuous Argon-ion laser (power 1 W, wavelength 488 nm). The beam is split into two coherent beams by a beam splitter. They cross each other at the LDV point with an angle Θ LDV = 9 • , generating an interference pattern of interfringe d = 3.11 µm. The measuring volume is 1.3 mm in length and 0.1 mm in diameter. One of the two beams travels through a Bragg cell where it is frequency shifted to reduce fringe bias and get rid of direction ambiguity. The first diffracted beam is frequency modulated at ∆f Bragg = 40 MHz. Consequently, the interference fringes scroll at velocity V = d∆f Bragg ≃ 120 m/s, such that V is opposite to the inflow velocity. A convergent lens -photomultiplier system is focused on the LDV control volume and detects the intensity variation of the light diffused by the seeding particles passing through the interference pattern. Photomultiplier signal is processed by a Doppler signal analyser, and the digitised data are stored on a PC computer. As the LDV point is located near the trailing corner, shear layer oscillations as well as low frequencies are of highest amplitude. LDV can provide long LDV count rates are of the order of 2 kHz. Time-series are then equally resampled at the mean particle-sampling frequency by linear interpolation before performing any analysis. For each working point (L/D, U 0 ) of the parameter space, three to six different LDV measurements were performed.

High frame rate acquisition

Equipment: Through the ANR contract HiSpeed PIV, collaborating research teams from FAST, LIMSI, ENSTA, and LadHyX, located in Orsay and Palaiseau (France, Essonne), were entrusted with the means to purchase high repetition rate equipment as pooling ressources to perform time-resolved Particle Image Velocimetry (TR-PIV).

A New Wave Pegasus laser was chosen to deliver the light source. The Pegasus is a dual-head, high repetition rate, diode-pumped Nd:YLF laser system specifically designed for high-speed PIV. Each head can be triggered independently and can operate from 1 to 10 000 pulses per second allowing camera frame rates up to 20,000 frames per second. According to the technical sheet, 1 kHz is the optimal repetition rate. At 1 kHz pulse duration is less than 180 ns and each laser head supplies about 10 mJ per pulse. Beam diameter is 1.5 mm and divergence is less than 3 mrad. Laser wavelength is λ pegasus = 527 nm. In order to acquire frames at high rate, a CMOS camera Photron FASTCAM-APX RS was selected. Its full resolution -1024 × 1024 pixel -is available for repetition rates up to 3 kHz. Images are encoded over 8 bits. Camera on-board memory is 2.6 GB, filled up in about 2.5 s at full resolution and repetition rate of 1 kHz. The Photron camera allows the user to define two time steps, one being equal to 2 n times the other (with n = 0, 1, ...5). The Photron camera was associated with a 60 mm Micro-Nikkor lens, with an aperture set to f # = 2.8.

Seeding:

For PIV experiments, seeding particles were liquid droplets of mineral oil DEHS -di(2-ethylhexyl)sebacate -, sprayed at the fan entrance. DEHS density is 0.9 and droplet diameters are of the order of 1 µm, which provides a relaxation time around 3µs, ie. far shorter than any time scale of the flow. Moreover, DEHS surface energy is particularly high, curbing the settling of micro-droplets. This is quite a useful property when dealing with an open windtunnel. The lab is then equipped with a ventilation system which removes the seeding particles before they settle down. Measurements only start after the seeding particle distribution is uniform inside the cavity. On the contrary, visualisations require the seeding not to be non uniformly disseminated within the cavity, light contrast revealing coherent structures of the flow. With that aim, liquid droplets of glycerol (theatre smoke) were used to provide burst of dense seeding.

Acquisition parameters: Planar PIV measurements were conducted at high repetition rate in a xy-plane (cross-stream); providing thereby time-resolved two-dimensional-two-component (2D-2C) velocity fields such as U xy (x, y, z piv , t) = u(x, y, z piv , t) e x + v(x, y, z piv , t) e y .

(2.1)

The laser sheet was set up at the spanwise position z piv = 0.07S, such as to avoid symmetry planes of the flow.

As in any experimental campaign, many compromises must be dealt with when adjusting image acquisition characteristics. Particle image quality is a primary prerequisite. It depends on the amount of energy provided by the light source and seeding diffraction properties and the optical setup. Power requirement is particularly demanding in wind-tunnels where particles must be small enough to show a short relaxation time in air. Particle size and brightness are enhanced by a greater magnification. However, image resolution is limited when acquiring time-resolved data. Indeed, a balance must be found between image size and available number of frames stored in camera on-board memory, from which depends the overall acquisition time.

In that context, the light supply was greatly raised by synchronising both laser heads to their optimal repetition rate (1 kHz). Remark that firing simultaneously (a single laser burst) now imposes frames to be uniformly sampled. In other words, PIV inter-frame delay ∆t will be driven only by camera frame rate.

To increase the dynamic range in PIV images, the laser sheet had to be carefully adjusted. Light intensity measurements were performed by using a Photometer. As expected, they revealed a Gaussian-shaped profile. By spreading the laser sheet over 40 cm in the region of investigation, the effective width for usable particle images was about 15 cm, ie. from 1.5 L to 2 L depending on cavity shape-ratio. Light sheet thickness was reduced as much as possible: the laser sheet was thinner than 1 mm. Such a thickness is available because the flow is mainly two-dimensional. In fact, out-of-plane velocity component is known to be at least one order of magnitude smaller than in-plane velocity.

Another compromise must be reached between the smallest and largest time scales to be resolved in the experiments. The smallest time-scale first corresponds to PIV inter-frame delay ∆t, constrained by particle displacement inside an image pair. Cavity flows are challenging in regards to the wide range of velocities they exhibit. Indeed, cavity inner-flow typically scales on velocities 20 times smaller than incoming velocity. PIV inter-frame delay ∆t was adjusted so as to resolve the inside and shear flow displacements. This lets inner-flow displacements of the order of at least 1 pixel but implies free stream displacement from 10 to 25 pixels depending on the case under study. The outflow is however mainly two-dimensional: spanwise velocity component almost negligible relatively to streamwise component. Longer ∆t could thus be undertaken, such as to guarantee enough precision for the inside flow velocity field. Computation of large displacements will be discussed in Section 2.3. In addition, the highest frequency in the flow imposes the minimal sampling frequency available without producing spectral aliasing. From LDV experiments, characteristic frequencies (including their harmonics) have been observed as up to about 100 Hz for the investigated cases. According to the Shannon-Nyquist criterion, it comes

f s ≥ 200 Hz (2.2)
where f s is the sampling frequency of the TR-PIV datasets. This implies that δt, the time-step between two successive velocity fields, must be smaller than 5 ms. On the other hand, cavity flows also exhibit low frequencies two orders of magnitude lower than highest frequencies. The lowest resolved frequency, which is also the frequency step, depends on the total length of the recording, T . When window-averaging is used for spectral analysis, getting down to 0.1 Hz requires a recording time of T = 20 s. That period increases with δt and N f the number of samples (velocity fields).

T = N f δt (2.3)
Figure 2.2: Various PIV image configurations for LIMSI High-Speed campaign.

Since δt cannot be increased without damaging high frequency identification, T is limited by on-board memory. Image resolution hence has to be reduced in order to get longer records. Depending on whether the shape ratio L/D is 2 or 1.5, image size has been lowered to 640 × 400 or 512 × 400 pixel (see Figure 2.2). In all cases, images cover at least an area 0 ≤ x/L ≤ 1.1 by -1 ≤ y/D ≤ 0.4, with a magnification of µ = 0.176 mm/pixel. As a result, records consist of 8192 to 10484 successive equally sampled images, depending on the experimental configuration.

Reducing image size has a positive side-effect for image optical quality. By using only the central part of the CMOS array -a surface smaller than 11 × 7 mm 2 -parallax distortions are almost completely avoided.

In brief, camera repetition rate was set to f piv = 500 Hz, that is ∆t = 2 ms. δt = 2∆t = 4 ms was chosen so as to maximise recording time while satisfying the Shannon criterionf N yquist = f s /2 = 125 Hz. Recording times T range from 16 s to 21 s, which still do not provide high resolution in regard to very low frequencies. In order to improve statistics on events occurring at large time scales, at least fifteen PIV records were performed for every configuration under study.

Displacement fields are computed using an optical flow algorithm (OPFLOW) which relies on an orthogonal dynamical programming. This kind of algorithm has been originally developed to help in image processing for information technology applications. It has been adapted and optimised to be used in PIV [START_REF] Quénot | The orthogonal algorithm for optical flow detection using dynamic programming[END_REF][START_REF] Quénot | Particle image velocimetry with optical flow[END_REF]. Such an algorithm is particularly suitable for the present study because it can deal with low resolution images while providing with high quality velocity fields nonetheless. By using OPFLOW, it has become possible to work with large reproduction ratio (object size over image size) -typically 10 -, necessary to achieve full field acquisition at high frame rate as well as maintained for long durations. More detail about OPFLOW algorithm will be given in Section 2.3.2.

Experiments at LTRAC

With the aim of studying spanwise dynamics of the cavity inner-flow, PIV experiments were carried out in the Laboratory for Turbulence Research for Aerospace & Combustion (LTRAC), in Melbourne. Spanwise dynamics investigation do not call for high frame rate experiments. In place of a large range of time-frequencies, spanwise dynamics implies a large range of space-scale. Indeed, the inner-flow investigated in a spanwise zx-plane is almost free of shear layer activity and involves large time scales only. The challenge hence rather concerns spatial resolution. Since centrifugal instabilities are involved, images of high reproduction ratio are required to give access to fine structures. On the other hand, spectral analysis and side-wall effects would require the entire span to be considered. Furthermore, out-of-plane velocity component, though limited by the choice of a plane at y/D = -0.1, remains strong. Such system rather requires high quality images to optimise PIV robustness than high repetition experiments.

Water-tunnel facility

Using a water-tunnel is valuable to optimise particle images. Larger particles with better diffraction properties ease PIV computation. The experiments were conducted in a 500 mm cross-section recirculating water tunnel. The tunnel has a 5 m long test section and is capable of free-stream speeds up to 1 m/s. Velocity turbulence intensity in the core region of the test section is less than 0.5 %, as seen in [START_REF] Parker | Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number[END_REF]. Furthermore, water high kinematic viscosity induce lower frequencies in the flow if Reynolds number is kept constant. This is particularly useful for acquiring time-resolved datasets, in spite of low frame-rate cameras. In a closeup on the L = 2D -shaped cavity, the location of the laser sheet is displayed (y = -0.1D). For high resolution images, three cameras are actually required to cover entirely the cavity span, their respective fields of view overlapping in pairs.

The experimental set-up is described in Figure 2.3. The test plate, which has a 6:1 semi-elliptical leading edge, was mounted vertically in the middle of the test section 1 m downstream of the contraction exit. The 50 mm deep, D, 100 mm long, L, cavity spans the water tunnel and is located 6.34 D from the leading edge of the plate. For these experiments the distance from the plate surface to the water-tunnel walls is nominally F = 225 mm resulting in a ratio F/D = 4.5. The water-tunnel was uniformly seeded with 11 µm diameter glass hollow spheres whose density is 1100 kg/m 3 , implying a particle relaxation time of 8 µs. Error intervals have been carefully estimated by taking into account systematic errors -calibration, temperature measurement and geometry precision -, as well as uncertainties related to computation and statistics -turbulence rate, PIV precision, etc. The results presented later in Section 5 have been obtained for three mean free-stream velocities U 0 (A) = 29.5 ± 0.8 mm/s and U 0 (B) = 47.0 ± 0.9 mm/s and U 0 (C) = 107.5 ± 3 mm/s, corresponding to Reynolds numbers based on cavity depth (Re D ) around 1500 and 2400 and 5550, respectively. Inflow characteristics for these three cases are provided in Table 2.1. Temperature conditions at the time of each acquisition have been measured to be taken into account in kinematic viscosity calculation. The incoming boundary layer is characterised through the displacement and momentum thicknesses at separation (x = 0), δ ⋆ 0 and θ 0 , respectively. 

Particle image acquisition

Spanwise (zx)-planes In order to obtain high spatial resolution, PIV single-exposed images were generated using three ImperX B4820 CCD cameras each with an array of 4904 × 3280 pixels and equipped with 105 mm Micro-Nikkor lenses set at a reproduction ratio of 5. Such a configuration was required for a field of view spreading over the cavity span (S = 500 mm). The three imaged regions, each corresponding to 3.62 D × 2.42 D, overlap so as to enable us to merge them in a single velocity field such as U zx (z, x, y piv , t) = w(z, x, y piv , t) e z + u(z, x, y piv , t) e x .

(2.4)

The pulsed illumination to acquire the single-exposed image pairs was obtained using a NewWave dual cavity Nd:YAG laser with a maximum energy per pulse of 120 mJ. A suitable light sheet of nominally 1 mm thickness was produced using appropriate spherical and cylindrical lenses. The light sheet forming a zx-plane, thus parallel to the cavity bottom, was located at y = -0.1 D, that is 5 mm below cavity top-plane spanning its width. Far from the source, brightness was increased by doubling the laser sheet with a mirror placed at z/S = -0.5 -on top of the rig perpendicularly to the cavity. The free stream was validated by acquiring images in another plane at y = 0.3 D. Image acquisition and laser pulse synchronisation were controlled by a timing computer operating on a Real Time Application Interface (RTAI) linux operating system.

Cross-stream (xy)-plane Supporting acquisitions were also performed in a cross-stream plane at z/S = 0.06 with the aim of obtaining incoming flow characteristics in cases B and C. The camera used for those acquisitions was a pco-4000 presenting a 4008 × 2672 CCD array and coding images on 14 bits. It was equipped with a 4 GB on-board memory.

Data merging

The single exposed image pairs from LTRAC campaign were analysed using multigrid crosscorrelation digital particle image velocimetry (MCCDPIV), for which details can be found in [START_REF] Soria | Digital cross-correlation particle image velocimetry measurements in the near wake of a circular cylinder[END_REF][START_REF] Soria | An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[END_REF]; [START_REF] Soria | High resolution multigrid cross-correlation digital piv measurements of a turbulent starting jet using half frame image shift ®lm recording[END_REF]. Characteristics and performance are discussed further in Section 2.3.1. Once velocity fields have been processed for each of the three cameras -left, centre and right areas -they have to be merged into a global field spanning the entire cavity. The merging is performed through a two-dimensional interpolation of the three velocity fields on a single global grid. Then, inside overlap regions is used weighted averaging in order to take into account contributions of both cameras according to their local relevance. Indeed, the closer a pixel is to the image edge, the larger local distortion is. Consequently, weight of contributions of the two overlapping velocity fields was decreased when closing in image edge. Furthermore, as distortion is mainly in opposite directions in both images, its effect is largely removed after merging.

PIV algorithms

MCCDPIV: cross-correlation algorithm

For the PIV campaign carried out at LTRAC, the single exposed image pairs were analysed using multigrid cross-correlation digital particle image velocimetry (MCCDPIV). The code, described in [START_REF] Soria | High resolution multigrid cross-correlation digital piv measurements of a turbulent starting jet using half frame image shift ®lm recording[END_REF], has its origin from [START_REF] Soria | Digital cross-correlation particle image velocimetry measurements in the near wake of a circular cylinder[END_REF] and [START_REF] Soria | An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[END_REF]. It uses an iterative and adaptive cross-correlation algorithm to increase the velocity dynamic range and reduce the random and bias error. The performance, accuracy, and uncertainty of the algorithm with applications to the analysis of a single-exposed PIV and holographic PIV (HPIV) images have been reported in [START_REF] Soria | Multigrid approach to cross-correlation digital piv and hpiv analysis[END_REF][START_REF] Von Ellenrieder | Measurements of a wall-bounded turbulent, separated flow using hpiv[END_REF]. The MCCDPIV algorithm also incorporates a local cross-correlation function multiplication method [START_REF] Hart | PIV error correction[END_REF] to improve the search for the location of the maximum value of the cross-correlation function. For the sub-pixel peak location calculation, a two-dimensional Gaussian function model is used to find the location of the maximum of the cross-correlation function using the least mean square value [START_REF] Soria | Digital cross-correlation particle image velocimetry measurements in the near wake of a circular cylinder[END_REF]. A dynamic mean value operator test [START_REF] Westerweel | Efficient detection of spurious vectors in particle image velocimetry data sets[END_REF] is applied to validate the MCCDPIV data field. Following data validation, the in-plane velocity components in the coordinate directions are computed by dividing the measured MCCDPIV displacement in each interrogation window by the time between the exposures of the image pair and the optical magnification.

An uncertainty assessment based on the methodology outlined in [START_REF] Moffat | Describing the uncertainties in experimental results[END_REF] was conducted in [START_REF] Soria | High resolution multigrid cross-correlation digital piv measurements of a turbulent starting jet using half frame image shift ®lm recording[END_REF]. The uncertainty in the PIV processing algorithm is 0.032 pixels at the 95% confidence level. The RTAI timing system has an uncertainty of 0.15µs. The uncertainty in measuring the magnification factor is 2 pixel over the length of the CCD array used. Based on these values, the largest uncertainties in deduced length scales from the PIV measurement at the 95% confidence level is 0.3% of the imaged region (i.e. 3.62 D) with an uncertainty in the velocity of 1% of the full scale range (FSR) at the 95% confidence level.

Optical flow processing

For the high frame rate images acquired at LIMSI, velocity fields were processed by using an optical flow algorithm (OPFLOW), which relies on an orthogonal dynamical programming [START_REF] Quénot | The orthogonal algorithm for optical flow detection using dynamic programming[END_REF][START_REF] Quénot | Particle image velocimetry with optical flow[END_REF]. Over the years, this algorithm had been successfully employed at LIMSI for cavity flow experiments, in spite of the low resolution of input images (typically less than 1 Megapixel). Based on the minimisation of optical intensity difference between two images, the code has been shown to be one of the most efficient in shear layers, boundary layers or more generally in strong gradient area with respect to other algorithms. Characterisation and comparison with various cross-correlation codes are provided in [START_REF] Quénot | Simple and accurate piv camera calibration using a single target image and camera focal length[END_REF]; [START_REF] Stanislas | 2 nd international piv challenge[END_REF][START_REF] Stanislas | Main results of the third international piv challenge[END_REF]. The particle relative motion is estimated by minimising the norm of the gray level difference, δr ⋆ (r) = min r,δr∈D (2.5) between the images under study. This process is carried out iteratively on horizontal (and vertical) stripes D of decreasing height (and width). Each new iteration uses the estimation of the previous iteration as an initial condition, and the computation ends up with an estimation of the displacement x-(y-)component at any pixel of the grid. One could rightfully argue that no PIV image hold that much information. Indeed, only particles carry information which makes it locally discrete and sparse. Then, how does OPFLOW algorithm provide information at any given pixel of the image? By definition, the minimisation takes into account larger areas (stripes of decreasing width) by fulfilling continuity laws inside. Of course, those laws are obviously not related to flow dynamics in any way. However they produce a similar effect which brings coherence to a reconstruction relying on sparse information.

I(r + δr, t + δt) -I(r, t) ,
In that sense, we understand that this "full-resolution" field is not extracted from local information exclusively. From that interpolated nature comes a greater robustness to high gradients and discontinuities in the flow. On the other hand, if calculation divergence occurs nonetheless, for instance due to a lack of particles, error propagation can be encountered: appearing as partially exploded fields. When calculation fails (exploded fields or large area of false vectors), three successive images, instead of two, are used, which helps in stabilising the minimisation process, though smoothing the displacement field. At last, it remains less than 1% of incorrect displacement fields. The search for those errors is based on the temporal continuity rather than spatial gradients. The validation process applies to every displacement time-series at a given point in space. Outliers are detected when the displacement vector is beyond either one of the thresholds: i) a threshold value defined relatively to the mean displacement, at the same spatial point, over a finite-time slipping window, ii) a maximal slope allowed in the rate of change of the displacement vector, relatively to the time-series standard deviation. When detected, outliers are replaced by linear interpolation between the previous (past) and next (future) displacement values, at the spatial point under consideration. Detection/interpolation procedure is then pursued iteratively until no more incorrect vectors are detected.

As usual, the displacement field is then mapped into a velocity field using a calibrated image (rule) and the time delay between both images, the inter-frame delay ∆t.

Discussion

The present section aims to provide a basic validation of PIV computations performed on the two experimental campaigns at LTRAC and LIMSI. Though both optical flow and MCCDPIV codes have already been largely characterised and validated (see references above), we discuss here their performances and limitations when applied to the present datasets. Examples of processed velocity fields are confronted with a reference code PIVview2C. The latter is an advanced cross-correlation-based-PIV software developed at the German Aerospace Centre (DLR). It is available at LTRAC and a demo version can be found at http://www.pivtec.com. For the sake of comparison, we choose to display vorticity fields and colour scales are designed to highlight any detail and defect in processed data.

zx-plane data at LTRAC Considering spanwise images from LTRAC experimental campaign, high spatial resolution was a primary requirement. It was necessary to enable the identification of centrifugal instabilities (small structures), while embracing the entire span of the cavity to maximise the number of wavelengths. Furthermore, the out-of-plane component being at least as large as in-plane displacement, the inter-frame delay ∆t had to remain small. High magnification was therefore useful to maintain suitable displacements -recall that δx ≥ 1 pixel corresponds to a signal over noise ratio (S/N) higher than 30. Thus, cameras with large arrays were required (three ImperX cameras 4904 × 3280). An example from a single camera is provided in Figure 2.4, for both MCCDPIV and PIVview computations.

Particle images are pre-processed prior to any cross-correlation computation: 3 × 3 kernel Gaussian smoothing is first applied in order to remove peak-locking. Then, particle images are normalised using a 7 × 7 kernel min-max filter, such that at pixel (a, b):

I ′ ab = I ab -I min I max -I min (2.6)
with I min = min[I ij ] and

I max = max[I ij ] for a -3 ≤ i ≤ a + 3, b -3 ≤ j ≤ b + 3.
Both MCCDPIV and PIVview computations are performed with 32 × 32 pixel windows overlapped at 50 %. In this case, displacements are homogeneous enough so that multigriding is not required. MCCDPIV uses cross-correlation based correction [START_REF] Hart | PIV error correction[END_REF] to improve sub-pixel resolution and increase robustness while PIVview makes use of image deformation with B-spline interpolation of degree 3. Overall time for loading and processing each image pair is around 30 seconds for both methods.

As shown in Figure 2.4.(c-d), results from both MCCDPIV and PIVview are very close. In vorticity fields, one can remark that MCCDPIV results reveal a far lower S/N ratio. This good performances constitute a validation of this campaign. In fact, an undemanding computation was expected since the experiment was designed exclusively towards a single purpose: getting high quality velocity fields. This was achieved notably by acquiring high magnification waterflow images -so as to supply optimised seeding and brightness -across a plane minimising out-of-plane velocity (y = -0.1D). More difficulties rise when investigating the flow in a crossstream plane. xy-plane data at LTRAC Observed in a cross-stream plane, an open cavity flow exhibits high gradients of velocity primarily due to the shear layer. Such high disparities in displacement represent a strong limitation for PIV computation. Indeed, adjusting the displacement (through ∆t) to better resolve free stream displacements (outflow) would pull down inner-flow displacements, decreasing drastically their S/N ratio. On the contrary, optimising the computation for low velocities inside the cavity by increasing ∆t lowers the correlation coefficients in the outflow. With PIV algorithms using interrogation windows one can make use of multigriding methods to deal with large displacements. Large windows in the first iteration allow to identify high velocities in order to shift interrogation window accordingly for next iteration, and so on. However, multigriding cannot improve cross-correlation when dealing with high gradients inside the interrogation window itself: the "local" assumption is no longer valid. This is a major issue for images at large reproduction ratios: structures cannot be resolved properly. In the last decade, image deformation algorithms have been introduced in the most advanced PIV codes to increase the robustness to higher gradients. More detail can be sought in [START_REF] Raffel | Particle Image Velocimetry: A Practical Guide[END_REF] and the extensive review therein. Cross-stream plane experiments carried out at LTRAC have been processed using all three algorithms (MCCDPIV, PIVview and OPFLOW), as shown in Figures 2.5-2.6. MCCDPIV and PIVview computations are performed using multigriding from 64 × 64 to 32 × 32 pixel interrogation windows with a 50% overlap. Similarly to zx-planes, MCCDPIV and PIVview rely on cross-correlation based correction and image deformation with B-spline interpolation of degree 3, respectively, to improve precision and robustness. Performances are similar for both crosscorrelation techniques. The number of outliers is below 0.8 %. In particular, large gradients observed inside the shear layer and at the impingement are kept under control thanks to multigriding and high magnification. Spatial resolution is indeed high enough for the structures to be largely bigger than interrogation windows. On the other hand, the S/N ratio in the inner-flow is unavoidably low, so as to keep reasonable displacements in the out-flow (22 pixels at the most)

Processing large images with OPFLOW is rather costly in terms of computation time. For instance, it takes about 50 minutes to process a 4008 × 2672 pixel image pair. Such a duration makes difficult any massive dataset computation for large images. The example given for the sake of comparison in Figures 2.5-2.6 has been downgraded to match resolution of PIVview and MCCDPIV fields. Scales smaller than PIVview and MCCDPIV grid (one out of 16 pixels) are Fourier-filtered. The resulting velocity field is equivalent but without hardly any outlier to be seen, contrary to cross-correlation methods. On the other hand, using full resolution field directly would reveal more noise, probably due to a lack of information at these scales. Indeed, seeding density was adjusted to get about 10 to 15 particles in a 32 × 32 window. In that particular case, full resolution, so costly in computation time when dealing with large images, helps in satisfying the continuity rather than accessing smaller scales, often polluted with noise. Note that such a long computation time is likely due to a lack of optimisation to take into account the increasing size of camera images. CCD arrays were rarely larger than 640 × 480 pixels when OPFLOW was originally designed.

xy-plane at LIMSI: high speed acquisition On top of the high gradients existing in the shear layer, the experiment conducted at LIMSI presented important restrictions, both due to requirements in time-frequency resolution and to equipment limitations. As explained earlier in Section 2.1, ∆t was not let independent from frame rate, making impossible to adjust precisely the displacements to be resolved. Also, image size had to be minimised (around 1/4 Megapixels) to increase acquisition duration. The resulting magnification of 5.67 pixel/mm hence yields 100 pixels along the length of the cavity. Finally, the high-speed camera only codes grey-levels on 8 bits, ie. providing a dynamic range of only 256 levels.

With those restrictions deteriorating image data quality, PIV processing becomes difficult. In Figures 2.7-2.8, results from OPFLOW computation are compared with PIVview and MCCDPIV in the same harsh conditions. Because of the low magnification, multigriding for cross-correlation methods is pushed down to 16 × 16 pixel interrogation windows, with drastic oversampling to reach one vector every 4 pixels (75 %-overlap). In that case, OPFLOW computation time for one field, cropped over a 613 × 400 pixel sub-domain, is of the order of 80 s, on a 2.4 GHz processor. Processing each velocity field using both MCCDPIV and PIVview lasts only a few seconds. Once again, a low-pass filter has been applied to OPFLOW-processed vorticity fields in order to divide by 4 its resolution, down to cross-correlation algorithms. As expected, the main issue with results from cross-correlation techniques concerns the correlation drop in high gradient region inside the shear layer and at the impingement. With such small images, relative window size increases too much to be handled by multigriding only. While PIVview relies on image spline deformation process, thereby preserving a decent robustness, MCCDPIV diverges dramatically. Induced damage is beyond repair: the starting shear layer explodes and the impinging vortex at the downstream corner of the cavity is missing, see Figures 2.7.a and 2.8. Similarly, inflows along the downstream wall are diminished relatively to PIVview and OPFLOW calculations. Velocity fields from PIVview and OPFLOW appear globally coherent. It is a fair match for both snapshot and mean flow. However, contrarily to previous cases, artefacts are clearly visible. For instance, cross-correlation techniques are particularly sensible to background noise. Even when using pre-processing, that is background subtraction and min-max filtering, both PIVview and MCCDPIV results exhibit many outliers close to the walls, likely due to reflexions. OPFLOW appears to be far more robust to image defects. On the other hand, one may note that intrinsic noise is revealed for OPFLOW results by small S/N ratios existing at the centre of the main recirculation in the cavity. OPFLOW errors are shown by high RMS levels in the incoming outflow in Figure 2.8.d. From time to time, computation is destabilised due to incoming (new) particles combined with large velocities. Those exploded regions are removed through time-continuity validation, as explained in Section 2.3.2. Another shortcoming to interrogation window algorithms is the loss of image boundaries. When processing low resolution images, non-treated perimeter expands drastically, in particular for MCCDPIV, for which there is no window modification to overcome that loss. In general, both instantaneous and averaged streamwise velocity profiles -in Figure 2.8.(a,c) -show that boundary layers are better identified with OPFLOW. Finally, OPFLOW resolution (4 pixel width stripes) is greater than PIVview and MCCDPIV algorithms, for which decreasing interrogation window size below 16 × 16 pixel causes too much deterioration to correlation coefficient.

In conclusion, OPFLOW and MCCDPIV algorithms provide satisfying results in different configurations, for which they have been respectively designed and calibrated. On one hand, MC-CDPIV offers equivalent performance to one of the most advanced commercial software PIVview when applied to high quality images. It is therefore perfectly suitable for LTRAC experiments using an optimised PIV set-up. On the other hand, OPFLOW shows an increased robustness to image defects, notably encountered in restricted quality small size images issued from high frame rate experiments, such as conducted at LIMSI. Chapter 3

Decomposing the saturated dynamics of a real flow

Once time-resolved space extended datasets have been obtained from experimental campaigns detailed in previous chapter, it now becomes possible to apply modal decomposition methods to identify time or/and space scales at stake in the flow under study. Decomposing the flow is particularly relevant when studying impinging flows since such systems are known to concentrate their energy in only a few peaks in spectral components. It is therefore possible to reduce the analysis to a few characteristic modes out of modal decompositions.

Below are described the methodologies employed to perform the forthcoming analyses.

In particular, the modal decomposition is primarily applied time-wise to sets of xy and zx-plane velocity fields. For spanwise datasets in Chapter 5, modal decompositions are also performed spanwiseie. along the dimension z. The reader may acquaint himself with the present chapter either now or gradually, when it becomes a prerequisite for the analysis.

The Fourier transform

The first tools described here rely on Fourier transform, that is the projection of the dynamics on a basis of complex sinusoidal functions. The principle of discrete Fourier transform is briefly recalled in the next section.

The Discrete Fourier Transform

Consider a discrete scalar N -long 1D signal

{v j } = {v 0 , v 1 , ..., v N -1 }, (3.1)
such as a time-series issued of a local measurement of the dynamics, consisting for instance of a velocity component v(x p , t) at a given point x p = (x p , y p , z p )

v j ≡ v(x p , y p , z p , jδt) with j = 0, 1, 2, ..., N -1 (3.2)
where δt is the time step of the time-series. Period of acquisition and sampling frequency are thus given by

T = N δt and f s = 1 δt . (3.3)
The discrete (time) Fourier transform F t associates elements {v j } of the physical domain to Fourier modes {ν k } with k = 0, 1, ...N -1 in the spectral domain.

{v j } F t -→ {ν k }
The (scalar) Fourier modes ν k are defined as

ν k = 1 √ N N -1 j=0 v j exp(-2iπ jk N ) (3.4)
with i 2 = -1. Mathematically, the Fourier mode ν k represents the projection of the time-series {v j } on the discrete complex sinusoid function

Ψ jk = exp(2iπ jk N ) (3.5)
yielding the dimensionless angular frequency ω k

ω k = 2πk N ∈ [0, 2π] (3.6)
Of course, Ψ jk is defined modulo 2π, such that

Ψ jk = exp(i ω k ) = exp(i (ω k -2π)) (3.7)
This translates the aliasing which occurs for time scales smaller than 2∆t. Spectral components such that ω k > π are folded onto smaller negative frequencies

ω k-N = ω k -2π.
That is the reason why the input signal must satisfy the Shannon-Nyquist criterion,

f < f s 2 (3.8)
where f stands for any frequency carrying energy in the signal. Note f s /2 is named Nyquist frequency. In practice, the Fourier modes are hence associated with dimensionless angular frequencies

ω k = ± 2πk N ∈ [-π, π] with k = 0, 1, 2, ...N ′ (3.9) such that N = 2 N ′ (even) or N = 2 N ′ + 1 (odd). In the case of a real input signal {v j } ∈ R, |ν k | = |ν -k |.
As a result, the only physical frequencies are positive:

f k = k T = f s k N with k = 0, 1, 2, ...N ′ (3.10)
and cumulate the contributions of both complex conjugate modes ν ±k .

On Power Spectral Densities

This section concerns the computation of averaged power spectral densities (PSD) through discrete Fourier transform and window averaging process (Welch algorithm). It also provides the parameters used for power spectral densities computation of Laser Doppler Velocimetry and time-resolved PIV time-series. One estimates the power spectral density as

PSD(ω k ) = lim N →∞ E[|ν k | 2 ] (3.11)
where ν k is the Fourier mode referring to previous section, and E[• • •] is the expectation of the function between brackets.

Welch algorithm

The estimation of power spectral density tends to the real value through its expectation (Equation 3.11). Therefore, averaging over a rising number n of statistically equivalent acquisitions is usually required since it reduces confidence interval by a factor of 1/ √ n.

This can be achieved by splitting up the signal into shorter segments of length N w elements.

One computes the Fourier transforms out of the n segments -or computation windows -providing n estimations of PSD, over which the averaging is performed. The computation windows are usually overlapped to increase further the number of estimations. Note however that shorter segments imply that one loses precision in frequency since the frequency step becomes

δf = 1 N w δt with N w < N (3.12)
Also, one must take into account that window length T w = N w δt should remain such as T w ≫ τ , with τ the longest characteristic time scale in the dynamics, so as to preserve the approximation T w → ∞.

In order to reduce edge effects due to abrupt truncation, each window is multiplied by a window function, prior to Fourier computation [START_REF] Welch | Modern spectrum analysis, chapter The use of fast Fourier treansform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[END_REF]. That window function forces the signal into a gradual decay when closing the edge of the dataset. For the computation of power spectral densities in the present work, a Hanning function was chosen:

Π j = 1 2 1 -cos 2πj N w -1 with j = 0, 1, ...N w -1 (3.13)
This operation leads to a loss of information contained in a computation window, but it is counterbalanced by window overlapping. Finally, considering the segments {v ℓj ′ } (1 ℓ n), extracted from the time-series {v j }, the converged power spectral density finally writes

PSD(ω k ) = 1 n n ℓ=1 1 N w Nw-1 j ′ =0 v ℓj ′ exp(-2iπ j ′ k N w ) 2 (3.14)

Normalisation

In the forthcoming analyses, power spectral densities are usually normalised and expressed in dB units, noted as functions of frequency f :

PSD(f ) = 10 • log 10 PSD(f ) max f [PSD(f )] , (3.15)
such that PSDs are non-dimensionalised with respect to the dominant frequency. A set of PSDs computed from LDV measurements (streamwise velocity) are plotted in Figure 4.5.

Time spectra across the entire velocity field

When processing time-resolved PIV datasets, time power spectral densities can be processed at various locations in the field, for both velocity fluctuation components (or vorticity), since we are dealing with two-components-space-extended data. The expression 3.14 rewrites as a function of the considered position r = (x, y, z) in the flow

PSD(r, ω k ) = 1 n n ℓ=1 1 N w Nw-1 j ′ =0 v ℓj ′ (r) exp(-2iπ j ′ k N w ) 2 (3.16)
where v ℓj ′ (r) is the variable under study, namely u ′ , v ′ , w ′ , ω ′ z or ω ′ y , etc. PSDs are now normalised relatively to the entire field and expressed in dB units according to

PSD(r, f ) = 10 • log 10 PSD(r, f ) max r,f [PSD(rf )] , (3.17)
such that the spectra are normalised, among all frequencies and over any spatial point, with respect to the highest amplitude of the dominant frequency. Power spectra calculated at different spatial points, out of TR-PIV velocity fields acquired in a cross-stream plane (xy), is depicted in Figure 3.1. The dominant frequency has the same value everywhere in the flow, St = f L/U 0 = 1.04 (f = 19.7 Hz). Only the amplitude of the peak actually varies in space.

In fact, this feature is common to any frequency in the spectrum. It confirms that the flow organisation persists along the entire length of the cavity shear layer and inside the cavity. That signature of a globally unstable flow is characteristic of self-sustained oscillations [START_REF] Rockwell | The organized nature of flow impingement upon a corner[END_REF][START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. PSDs can also be integrated in space to improve statistics. This is done for instance in Figures 4.9 & 4.20.

Computation parameters

Laser Doppler velocimetry (LDV): local measurements performed during the experimental campaign in the wind-tunnel at LIMSI have been used for studying the parametric evolution of the spectral signature of the flow. Acquisitions typically last for about 5 minutes with a sampling frequency of 2 kHz. Segments of approximately 10 s in order to get a frequency step of δf ≃ 0.1 Hz, with a 90 %-overlap. This leads to about 310 samples available for Welch-averaging. As a result, the 99 %-confidence interval is [-0.62 0.66] dB. Note that confidence intervals are computed using χ 2 -distributions of probability.

Time resolved Particle Image Velocimetry (TR-PIV):

performed in a crossstream plane (xy). The sampling frequency was f s = 250 Hz, which fully satisfies the Shannon-Nyquist criterion. Length of TR-PIV recordings varies accordingly to the cavity aspect ratio L/D. Indeed, since the size of the dataset was limited by camera on-board memory, a greater L/D would imply larger images and therefore a smaller number of available snapshots. Hence, recordings last from T = 16.4 s for the L/D = 2.0 geometry to T = 21.0 s for L/D = 1.5 geometry. Without window averaging, the frequency step for Fourier transforms is 0.048 Hz δf 0.061 Hz. For power spectral densities, computation windows represent half the acquisition time. The frequency step becomes 0.095 Hz δf 0.122 Hz. Segments are overlapped at 95 %. Furthermore, typically 15 statistically independent recordings were performed, which provides 300 windows and a 99 %-confidence interval of [-0.63 0.67] dB. 

Transfer Functions

Cross-correlation

Time resolved space-extended datasets also make it possible to use spectral analysis time crosscorrelation between distant locations in the flow. As an application, the forthcoming procedure was implemented with the aim of getting the shear layer wave properties in Chapter 4. Considering two points along the direction of propagation of the wave, at x u (upstream position) and x d (downstream position), respectively, ∆x = x dx u apart, the transfer function T ud (ω) between the two points can be determined for any frequency f = ω/(2π).

A good estimate for this transfer function, between an input signal v u (t) (velocity at point x u ) and an output signal v d (t) (velocity at point x d ), can be defined as:

T ud (ω) = P du (ω) P uu (ω) (3.18)
where P du (ω) is the cross spectral distribution between signals v d and v u :

P du (ω) = +∞ m=-∞ R du (m) exp(-iωm), (3.19) which involves the cross-correlation function R du : R du (τ ) = E[v d (t + τ )v * u (t)] = E[v d (t)v * u (t -τ )] (3.20)
where the considered correlation period is τ = 1/f , and a * the conjugate transpose of a. In the case of an equally sampled signal, the expectation E[• • •] of the function under brackets can simply reduce to the time average operator (Rockwell, 1983). Then it comes

T ud (ω) = G(ω) • exp(iφ(ω)), (3.21)
The transfer function T ud , with gain G and phase shift φ, must be used with some care. Indeed, at frequencies f = ω/(2π) where the spectral density is vanishing, that is, when P uu (ω) → 0 in Eq. (3.18), the quantity T ud (ω) is not well defined and only frequencies that significantly contribute to the spectrum should be considered.

It must be noted that this method has been described in the continuous case for the sake of clarity. It applies to discrete signals the same as power spectral densities seen in Section 3.1.2.

     v uj = v u (jδt) v dj = v d (jδt)      with j = 0, 1, 2... (3.22)

Estimation of wave properties

The aim is now to obtain the properties of a travelling wave under study. By estimating the transfer function between a reference point and measurements acquired at various locations widely distributed along the direction of propagation of the wave, one can build the function

T (x, ω) = G(x, ω) • exp(iφ(x, ω)), (3.23)
with x the coordinate along the direction of propagation of the wave and x 0 the reference point where the transfer function is identically initialised:

∀ω, T (x 0 , ω) = 1, φ(x 0 , ω) = 0, G(x 0 , ω) = 1. (3.24)
Therefore, T (x, ω) yields the gain G(x, ω) and the phase φ(x, ω) as functions of the position x and corresponding to the frequency f = ω/2π, as long as the cross spectral distribution P (x, ω) is large enough, as mentioned earlier.

In Chapter 4, transfer functions are used to estimate the wave properties of the lockedon modes in the shear layer. The variable under investigation is the crosswise component of velocity fluctuations v ′ (x, t) observed along the axis of the shear layer. The reference point is set to x 0 = L/2 (cavity mid-length). From the estimation of the phase φ(x, ω) comes the associated wavelength Λ. Space-shift ∆x matches with wavelength when the phase difference ∆φ = 2π, which occurs for:

Λ(ω) = 2π ∂φ ∂x mean (3.25)
Moreover, the phase velocity C of the wave writes as

C(ω) = ω ∂φ ∂x mean (3.26)
Gain of the transfer functions distributed along the shear layer gives access to an estimation of spatial growth ζ(x, ω) of the propagating wave.

ζ(x, ω) = ∂ ln |G(x, ω)| ∂x (3.27)

The Global Fourier Modes

Before dealing with the particular case of the global Fourier decomposition, let us introduce the general scope of the modal decomposition of a multi-dimensional dataset.

Modal decomposition of a multidimensional system

Consider a D-dimensional system v(x 1 , x 2 , ..., x D ) (3.28)
evolving in the domain (e 1 , e 2 , ..., e D ).

One can define a modal decomposition along the dimension e 1 as an operator which projects the dynamics on a set of basis vectors (or functions) Υ k (x 1 ), where k ∈ [0, 1, 2, ...N -1] with N the dimension of the basis. The resulting projections or modes, associated with Υ k are contained in the subdomain (e 2 , ..., e D ) such that

µ k (x 2 , ..., x D ) = v | Υ k (x 1 ) (3.29)
where a | b is the scalar product such that

a | b = x 1 a b * d x 1 (3.30)
Physically, the modal decomposition has identified the x 1 -scales in the basis {Υ k } and separated them from the rest of the dynamics, which ends up contained in the set of associated modes µ k .

The case of Fourier functions

In the case of Fourier decomposition, functions Υ k become complex sinusoidal functions writing as follow:

Ψ k (x 1 ) = exp(2iπx 1 k/N ) (3.31)
with i 2 = -1. The mode µ k is hence defined as

µ k (x 2 , ..., x D ) = v | Ψ k (x 1 ) (3.32) µ k (x 2 , ..., x D ) = x 1 v(x 1 , x 2 , ..., x D ) exp(-2iπx 1 k/N ) d x 1 (3.33)
In practice, global Fourier decomposition is applied to a discrete dataset v(x 1 , x 2 , ...x D ), such that x 1j = x 1 (jδx 1 ), with j = 0, 1, 2, ..., N -1 and N the size of the dataset in the e 1 direction. This implies the functions Ψ k now write as in Expression 3.5

Ψ jk = exp(2iπ jk N ),
and the scalar product logically becomes

a | b = j a j b * j . (3.34)
Hence, the discrete extended Fourier modes are expressed as

µ k (x 2 , ...x D ) = j v(jδx 1 , x 2 , ...x D ) exp(-2iπ jk N ) (3.35)
When applied to spatially extended time-resolved velocity fields, the global time Fourier decomposition provides a set of spatial structures (or global Fourier mode), each of them associated with one temporal frequency (see [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF]; [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]). Figure 3.1 displays the distribution of locations where time-series are extracted across the entire velocity field, in a cross-stream plane (xy), acquired during the high-framerate PIV campaign at LIMSI. An example of global Fourier mode computed from vorticity fluctuations

ω ′ z is provided in Figure 3.2. It is associated with the dominant frequency f a = 19.7 Hz (St = f a L/U 0 = 1.04), in the case L/D = 2.0, U 0 = 1.89 m/s.
Remark that only the tip of the peak is selected for describing the spatial dynamics. One could argue that it appears more relevant to take into account the whole peak to reconstruct a spatial mode. This has been notably realised by [START_REF] Duriez | Application des générateurs de vortex au contrôle d'Ecoulements décollés[END_REF] for the spectral decomposition of a flow past a descending ramp. Presently, tests using such a methodology have been carried out and the physics depicted by the reconstructed field is obviously very similar to the global Fourier mode associated with the dominant frequency alone. However the signal over noise ratio is clearly decreased, which leads to a loss of information regarding the second order structures. Consequently, the spatial structures shown in the forthcoming analyses (in Chapter 4 and 5) are obtained using the tip of the peak under consideration. 

Successive modal decompositions

One may finally note that Fourier decomposition can be applied in turn to the newly obtained µ k (x 2 , ...x D ) along another direction, for instance e 2 in order to continue with the separation of x 2 -scales. As an example, the 2D-Fourier transforms are commonly used in image processing: an image represented by the matrix A ij can be processed into spectral space (k i , k j ) through the double operation F i {F j {A}}. In this thesis, successive Fourier transform is performed in Section 5.4 for datasets such as S 5.4 = v(t, z, x), with a time-Fourier decomposition first (x 1 = t) and then a spanwise Fourier decomposition (x 2 = z).

Motivations for another approach

The analysis carried out in Chapter 5 deals with centrifugal instabilities arising in the innerflow. Different spanwise waves are at play therein, simultaneously or successively, spanning the entire cavity or restricting only to a limited region of the inner-flow. The properties of these waves may change drastically. In particular, the spanwise waves can be strongly modulated in space. Applying space Fourier transform to those data is useful but only provides statistic (integrated) information since it relies on a scalar product. On the other hand, estimating locally the wave properties of such a signal would give more detail regarding the spanwise location of the identified coherent structures. In that context, the Hilbert-Huang Transform could be of great help.

The Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) was developed by N. E. Huang [START_REF] Huang | The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time-series analysis[END_REF][START_REF] Huang | A new view of nonlinear water waves: the hilbert spectrum[END_REF] to describe more precisely the nonlinear distorted signals implied by water waves and other non-permanent systems [START_REF] Huang | The mechanism for frequency downshift in nonlinear wave evolution[END_REF]. Indeed, on top of amplitude modulations related to multi-scale dynamics, nonlinearly saturated waves also yield intrinsic frequency modulations. In other words the instantaneous frequency varies within one period of oscillation. Instead of a deterministic linear operator, such as the Fourier transform, the Hilbert-Huang transform provides a data-based set of modes without any a priori model. More specifically, HHT consists in applying the Hilbert transform on oscillatory components extracted beforehand from the flow by means of the Empirical Mode Decomposition (EMD). A very detailled discussion can be found in [START_REF] Huang | The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time-series analysis[END_REF]. The present section only aims to provide the reader with the basic principle of that methodology, in order to prepare the analysis that is to come in Chapter 5. First, the Hilbert transform is briefly recalled, as well as the distinctive properties of an analytic signal. Then, Section 3.2.3 is concerned with the EMD method.

The Hilbert transform

The Hilbert-Huang transform partly relies on the application of Hilbert transform to obtain the local estimations of the phase and amplitude. The Hilbert transform enables building an analytic signal from real data by providing an imaginary part in quadrature of phase relatively to this input signal. Formally, the Hilbert transform of the 1D-signal v(t) ∈ R writes

H t {v(t)} = H t v = 1 πt * v(t) (3.36)
with a * b the convolution product of a and b. Another way of describing the Hilbert transform is obtained through the spectral space and Fourier transform:

F t {H t v } = -i sign(ω) F t {v} (3.37)
with F t the Fourier transform in time, and sign(x) the function equal to +1 when x > 0, -1 when x < 0 and 0 when x = 0. Physically, one remarks the positive part of the signal spectrum is multiplied -i = exp(-iπ/2), that is rotated by -π/2, while its negative part is multiplied by i = exp(iπ/2), thus rotated by π/2.

Instantaneous/local properties of an analytic signal

The analytic signal ṽ(t) can be build as follow

ṽ(t) = v(t) + iH t v (t) = A(t) exp(iΦ(t)) (3.38)
with the instantaneous amplitude of the analytic signal ṽ

A(t) = (v) 2 + (H t v ) 2 (3.39)
and its phase

Φ(t) = arctan H t v v .
(3.40)

From the phase gradient can be calculated the instantaneous angular frequency ω

ω(t) = ∂Φ ∂t . (3.41)
Note that if one considers a signal s(z), evolving in space along the axis (z), the angular frequency logically becomes the local wavenumber

k(z) = ∂Φ ∂z . (3.42)
Obtaining such instantaneous/local properties is obviously quite appealing. However, the notion of instantaneous or local frequency is highly controversial as explained in [START_REF] Huang | The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time-series analysis[END_REF].

In general, it requires some limitations for the data to which the Hilbert transform is applied.

One considers an estimation of the local frequency as valid if the signal is narrow-banded and such that any given local extremum is followed by a zero-crossing before another extremum is reached. In other words, the signal must not yield a non-zero mean: it has to be a pure oscillatory function. Not satisfying these conditions leads to paradoxes: multiple frequencies can be defined simultaneously because of riding waves.

In order to overcome such an issue, one has often recourse to narrow-band filtering, as in [START_REF] Pastur | Quantifying the non-linear mode competition in the flow over an open cavity at medium reynolds number[END_REF]. The signal is filtered around one considered frequency. Unfortunately, filtering causes distortion by stripping the waves of their harmonics. Another strategy is available with the Empirical Mode Decomposition.

The Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) has been developed to provide suitable oscillatory functions out of the data in order to perform the Hilbert transform. Therefore, it is aimed to be applied to 1D-datasets, such as time-series or, as seen in the following, space arrays, extending along one direction of the reference frame.

The originality of EMD comes from its a posteriori-defined basis. The decomposition relies entirely and directly on the data, without any pre-requirement for the modes resulting from the process. In fact, one only assumes that the data can be decomposed into a set of simple oscillatory modes, called Intrinsic Mode Functions (IMF).

On the Intrinsic Mode Functions

An intrinsic mode function corresponds to oscillations, non-necessarily sinusoidal, which may yield various length scales and amplitudes but are such that the local mean is always null.

One can thus appreciate that such an oscillatory function would meet the requirements for the application of Hilbert Transform.

How can we obtain an IMF?

To begin with, it is important to specify what a length scale is. The aim here is to use the most basic definition, free from any a priori model, such as Fourier decomposition relying upon sinusoidal functions. Consequently, we simply consider a characteristic length scale as the lapse between two successive local extrema. Using that definition, it comes that an intrinsic mode function should verify the following:

(i) all local maxima are positive and all local minima are negative, (ii) the mean value of top and bottom envelopes tends to zero at any given time (position).

In order to extract such intrinsic mode functions out of the data, Empirical Mode Decomposition is based on an iterative/recursive procedure called sifting process and detailled in next section.

The sifting process

In principle, Intrinsic Mode Functions are obtained by subtracting from data a running average defined as the local mean value of the envelopes of the signal. Applying recursively the same process, that running average eventually tends to zero, with oscillations ending up properly centred.

The first issue concerns the construction of top and bottom envelopes at each step of the recursive process. Consider a sample dataset evolving in the z direction, s(z). To be consistent with the above-stated definition of space scales, it is reasonable to define the top and bottom envelopes e max and e min as the "neutral" curves passing through the maxima and embracing the whole data between them. The term neutral means that an envelope should not bring more scales. In other words, it must not yield more local extrema than the underlying data s(z).

Formally, this writes

     e max (z) s(z), ∀z & e max (z) = s(z) if ds dz = 0, d 2 s dz 2 < 0 & N ext [e max ] N ext [s] e min (z) s(z), ∀z & e min (z) = s(z) if ds dz = 0, d 2 s dz 2 > 0 & N ext [e min ] N ext [s] (3.43) where N ext [f (z)] is the number of local extrema of the function f (z).
In practice, the envelope e max (resp. e min ) is built from the maxima (resp. minima) only, connecting those points by means of an interpolation. Of course, extensive research on the construction and optimisation of the envelopes has been ongoing for years, in particular regarding the edge effects. A basic cubic spline interpolation is yet usually used for it has revealed quite satisfying results with a simple implementation. It is not without shortcoming, but the iterative process described below is actually robust enough to overcome the defects of the estimated envelopes. Once the envelopes have been obtained, their expression of the running average to subtract is straightforward, for it corresponds to the mean value

m(z) = e max (z) + e min (z) 2 (3.44)
An example of signal s(z/D) enclosed by the two envelopes, along with its resulting running average, is plotted in Figure 3.3. The first Intrinsic Mode Function IMF 1 (z) is obtained after a recursive process bringing into play the variable functions p 1 (z), named proto-IMF, and m 1 (z) the running average. The recursion starts with initialising the variables p 1,0 and m 1,0 (i = 0) with the data, as shown in Expression 3.45.

     p 1,0 = s(z) m 1,0 = (e max,0 + e min,0 ) /2 (3.45)
Note that m 1,0 is the running average of the signal s(z), using the envelopes e max,0 and e min,0 , constructed so as to fulfil the conditions in Expression 3.43 and Figure 3.3. Then, m 1,0 is subtracted to provide the first proto-IMF p 1,1 , and a new running average can be obtained:

     p 1,1 = p 1,0 -m 1,0 m 1,1 = (e max,1 + e min,1 ) /2 (3.46)
The same operation is repeated recursively as follow:

     p 1,i = p 1,i-1 -m 1,i-1 m 1,i = (e max,i + e min,i ) /2 (3.47)
where p 1,i and m 1,i are the proto-IMF and running average at the i th iteration. The envelopes e max,i and e min,i are based on the proto-IMF p 1,i . Ultimately, one converges towards the first intrinsic mode function IMF 1 , such that

IMF 1 = p 1,n 1 -1 -m 1,n 1 -1 (3.48)
with n 1 the number of iterations required for convergence. The stoppage criterion is obviously a crucial point in the EMD. It will be further discussed in Section (Stoppage criteria).

As an example of data to be processed by Hilbert-Huang transform, we consider a randomly picked-up span array out of PIV data obtained during the LTRAC campaign. More specifically, the data signal s(z) becomes the normalised fluctuating vorticity ω ′ y D/U 0 , extracted from a zx-plane (y piv /D = -0.1) at the streamwise coordinate x e /D = 1.86 out of a single snapshot, with the control parameters Re D = 2400, D/θ 0 = 29.4.

The sifting process for the first Intrinsic Mode Function IMF 1 is illustrated in Figure 3.4. The number of iterations before convergence is n 1 = 10. One remarks that this first IMF concentrates the smallest space scales measured in the span array.

Successive Intrinsic Mode functions

Now that the smallest scales of the dataset have been, the empirical mode decomposition can go on after removing the first IMF from the data:

r 1 = s(z) -IMF 1 = p 1,0 -IMF 1 (3.49)
The residue r 1 (orange curve in Figure 3.4) is used as new dataset from which the sifting process for the second mode, IMF 2 , is carried out. The proto-IMFs p 2,i lead to IMF 2 using a recursive 
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Obtained after n 2 = 7 iterations, the second IMF still exhibits low-energy small scales along the main part of the span but several more energetic bursts arise. They are composed of a few oscillations yielding larger wavelengths and larger amplitudes than the rest of the mode.

Similarly to Equation 3.49, the second residue can be obtained:

r 2 = r1 -IMF 2 (3.51)
The decomposition continues the same way: with each new IMF j , the signal is stripped of larger scales, resulting in a residue r j ; each step j implies a sifting process which consists in recursive iterations i = 1, 2, ...n j providing proto-IMFs p j,i until converging to IMF j . That double-recursion can be written as

                                 p j,0 = r j-1      p j,i = p j,i-1 -m j,i-1      with i = 1, ..., n j IMF j = p j,n j -1 -m j,n j -1 r j = r j-1 -IMF j                                  with j = 1, ..., N (3.52)
Note the residue is initialised to r 0 = s(z).

The Intrinsic Mode Functions IMF 3 to IMF 6 are displayed in Figures 3.6 & 3.7. Physically, note that the length scales are mostly well separated between the different modes and that the highest amplitude is obtained for IMF 3 . Eventually, only remains in the residue r N a function yielding no length scale. In other words, r N (z) is either a monotonic or a parabolic function, that is a function with at the most one local extremum.

Completeness

One can wonder if the basis of Intrinsic Mode Functions is complete. This is true if the residue r N , remaining after all Intrinsic Mode Functions have been extracted, is negligible against the sum of IMFs.

s(z) = N j=1 (IMF j ) + r N (3.53) -4 -3 -2 -1 0 1 2 3 4 -0.6 -0.4 -0.2 0 0.2 0.4 z/D residue r 1 -4 -3 -2 -1 0 1 2 3 4 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 z/D iter. 1 p 2,0 e min,0 e max,0 p 2,1 -4 -3 -2 -1 0 1 2 3 4 -0.6 -0.4 -0.2 0 0.2 0.4 z/D iter. 2 p 2,1 e min,1 e max,1 p 2,2 -4 -3 -2 -1 0 1 2 3 4 -0.6 -0.4 -0.2 0 0.2 0.4 z/D iter. 3 p 2,2 e min,2 e max,2 p 2,3 -4 -3 -2 -1 0 1 2 3 4 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 z/D iter. 4 p 2,3 e min,3 e max,3 p 2,4 -4 -3 -2 -1 0 1 2 3 4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 z/D iter. 5 p 2,4 e min,4 e max,4 p 2,5 -4 -3 -2 -1 0 1 2 3 4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 z/D iter. 7 p 2,6 e min,6 e max,6 p 2,7 -4 -3 -2 -1 0 1 2 3 4 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 z/D r 1 IMF 2 r 2 Figure 3
.5: Sifting process for the second Intrinsic Mode Function, IMF 2 , extracted from the same span array as Figure 3.4. 
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Stoppage criteria

The choice of the stoppage criterion for ending the sifting process remains an open issue, subject of many studies, notably in [START_REF] Huang | A confidence limit for empirical mode decomposition and hilbert spectral analysis[END_REF]. However, the object here is not to debate about the various available methodologies. As a first approach, the simple criterion proposed by [START_REF] Huang | The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time-series analysis[END_REF] provided fairly satisfying results. The sifting process stops if one of the next two conditions is fulfilled:

(i) The numbers of zero-crossings and local extrema differ at the most by 1

(ii) SD < α s where SD is the normalised squared difference between two successive proto-IMFs defined in Equation 3.54 and α s is an arbitrary threshold.

Considering the Intrinsic Mode Function IMF j ,

SD i = z |p j,i-1 -p j,i | 2 dz z p 2 j,i-1 dz (3.54)
The first condition (i) corresponds to the definition of an IMF but in practice, it can reveal too strict to allow convergence by itself, likely because of the cubic spline defects. That is why a second condition (ii) representing the degree of convergence of the sifting process is brought along. In the present work, the threshold was set to

α s = 0.1. (3.55)
The code used for that computation is initially based on the open-access code by Alan Tan: (http:www.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform/all_files)

The Hilbert-Huang Spectrum

The Hilbert Transform can now be applied to IMFs, as described in Section 3.2.1. The resulting analytic signals are plotted in Figure 3.8. Then, local properties of each mode are estimated, as in Section 3.2.2, and the Hilbert-Huang Spectrum HH z becomes available. In this case where a single 1D-data array was considered, the Hilbert-Huang spectrum corresponds directly to the distribution HH z (z, k j ) weighted by local amplitude A j (z) as in Equation 3.39, with k j (z) the local wavenumber of the mode IMF j , defined as in Equation 3.42. HH z integrates the contributions of all IMFs and is shown in Figure 3.9.

As a result, continuous and precise information on wavenumbers (wavelengths) is available for every extracted mode. This means that multiple length scales are locally defined simultaneously, yet without creating a paradox thanks to the decomposition into Intrinsic Mode Functions.

In addition, by weighting the wavenumbers with their associated amplitudes, one reveals only the relevant information, that is where the phase is properly defined. For instance, the high wavenumbers yielded by the mode IMF 1 were too small to show up on the plot. Similar distributions are used for analysing the data in Chapter 5. - 
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Part II

Open Cavity Flow Analysis through Space and Time

Chapter 4

Cross-stream dynamics

Overview and context

Open cavity flows are primarily driven by the (unstable) impinging shear layer, notably responsible for noise generation or structure damage. As described in the review (Section 1.1), from the nested shear layer rise travelling waves enhanced by a pressure feedback-loop to produce self-sustained oscillations or locked-on modes. At the leading order, the symmetries of the shear layer hence impose a spanwise z-invariance to the flow. Consequently, investigating a cross-stream (xy) plane gives access to the main characteristics of the shear layer impinging onto the trailing edge and to the first order organisation of the inner-flow. Though the main features of this system have been long studied, analyses have often been limited to locked-on modes and to parametric considerations. Moreover, for decades, studies were based on local measurements (pressure sensors, hotwire, etc.) or direct observations (schlieren in the compressible regime, and also streaklines through smoke, dye or bubbles), but nowadays quantitative space-extended time-resolved measurements are available by means of high-speed particle image velocimetry (TR-PIV). Space-time global evolution of the system is thereby available in the saturated regime. The present work relies on TR-PIV to confirm and complete results from literature. Then, a thorough analysis of coherent structures is performed through space and time modal decomposition. We aim to identify the nonlinear mechanisms responsible for amplitude modulations and mode switching, as well as the complexity induced by interactions between the inner-flow and the shear layer waves.

Preliminary remarks

The results discussed in this chapter are based on time-resolved data, issued from High-framerate PIV campaign (LIMSI -ANR-contract HiSpeedPIV ). Description and characterisation of experimental work can be found in Section 2.1. As a first approach, smoke visualisations are particularly useful to emphasise the flow dynamics through aesthetically pleasing images. A set of smoke-snapshots are provided in Figure 4.1 for various geometries and incoming velocities. When looking at the entire recordings, it has been noticed that the mixing logically strengthens when incoming velocity or/and cavity length are increased. Part from that, it would be unwise to assert any parametric evolution of the flow by relying only on those pictures. Indeed, aspect of the flow varies a lot depending on relative time to seeding startup. In addition, observations based on streaklines must be considered with caution in an unsteady flow. Streaklines actually cumulate the dynamics in time, which may result in confusing features, such as cellular structures in a shear flow [START_REF] Hama | Streaklines in a perturbed shear flow[END_REF]; [START_REF] Williams | Streaklines in a shear layer perturbed by two waves[END_REF]. Nonetheless, there are many important properties that can be deduced from the pictures in Figure 4.1. In all cases, the shear layer experiences self-sustained oscillations, whose amplitude grows along the top cavity plane. Eventually, nonlinear saturation occurs, as indicated by wave breaking near the impingement. Driven by the outflow, the inside-flow is put into motion, generating a main fluid recirculation inside the cavity, from the trailing edge over about the cavity length. For some shape ratios, a secondary, smaller, counter-rotating vortex forms upstream of the main vortex, close to the backward-facing step.

In addition, the flapping motion induced by shear layer waves generates mushroom-like inflows into the cavity. Those inflows travel down the forward-facing step and then, along the main recirculation. The mushroom-like shapes represent the Lagrangian signature of advected vortex pairs, resulting from injected vorticity at the impingement. Inflow strength is directly influenced by the amplitude of the shear layer oscillations. Concerning the incoming flow, parallel streaklines are observed above the shear layer. This is due to the honey comb. When seeding particles hit the honey comb between two cells, seeding density is decreased downstream along the issued streakline. Hence, homogeneous density would only be restaured either by diffusion or/and velocity fluctuations. Being able to observe those streaklines 700 mm downstream implies an especially low turbulence rate. In other words, the incoming flow is actually parallel. Inside the cavity, various events are depicted, representing available scenarios for the system. For instance, Figures 4.1.(a,b) are two snapshots extracted from the same recording but they show two different paths for advected vortices inside the cavity. In Figure 4.1.a, inflows travel all the way back upstream to coil themselves up around the secondary vortex. Snapshot shown in Figure 4.1.h exhibits shear layer oscillations of smaller wavelength, which likely corresponds to another mode of self-sustained oscillations.

In order to acquire quantitative results, a high repetition-rate PIV campaign was carried out, as described in Section 2.1. Let us recall that the cartesian coordinate system (e x , e y , e z ) is set mid-span at the cavity leading corner. The cross-stream plane under study is located at z/D = 0.4. Examples of snapshots are provided in Figure 4.2. A scalar function a(x, y, t) extracted from PIV datasets splits up into mean flow (time-averaged field) and fluctuations as follow:

a(x, y, t) = a(x, y) + a ′ (x, y, t) (4.1)

For normalised velocity fields and underlying normal vorticity, it comes 

U xy U 0 = u + u ′ U 0 e x + v + v ′ U 0 e y (4.2) ω z D U 0 = ∂v/U 0 ∂x/D - ∂u/U 0 ∂y/D = (ω z + ω z ′ )D U 0 (4.

Inflow characteristics

When studying an impinging shear flow such as the shear layer developing above a rectangular cavity, one must logically characterise the flow conditions at separation. Incoming velocity profile impacts shear layer oscillations primarily and inner-flow for a lower part. In the incompressible regime in particular, shear layer frequencies have been demonstrated as depending strongly on incoming boundary layer [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]Rockwell andNaudascher, 1978, 1979;[START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF]. More specifically, the incoming boundary layer profile injects vorticity which initiates the shear layer, as seen in Figure 4.2.(a,c). As described in Section 1.1.1, [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF] demonstrated that in the ideal case of inviscid free shear layers, initial vorticity thickness δ ω0 , depends on the momentum thickness at separation θ 0 . Section 4.1.5 focuses on shear layer local stability in regards to Kelvin-Helmholtz modes.

More insight thus will be provided regarding the evolution of the vorticity thickness from separation to impingement.

Streamwise velocity profile at separation was measured out of the mean flow for different flow conditions and cavity shape ratio. In order to characterise the incoming boundary layer, of crucial importance in shear layer stability, Blasius model can be considered. In theory, assuming a Blasius profile at separation in our case is a strong assumption since the main stream is in fact a channel flow and perturbations from the cavity flow can propagate back upstream. Let us discuss the validity of such a model.

Dealing with a channel flow instead of an open flow induces changes mainly on the external part of the boundary layer, in other words, the determination of the main stream velocity U 0 . Concerning the laminar assumption, the investigated cases exhibit RMS levels between 1 and 2% at separation, which is already reasonably low. Moreover, smoke visualisations presented in previous section (Figure 4.1) have confirmed that a parallel flow is generated upstream of the cavity. Indeed, parallel streaklines from honey comb pattern can be observed. Furthermore, note that those RMS values integrate PIV noise as well. With the aim of quantifying wind-tunnel intrinsic turbulence rate only, further velocity measurements were performed in the main stream using Laser Doppler velocimetry (LDV) to reduce measurement noise. Normalised RMS was measured below 1% for velocities higher than 0.7 m/s. As often for experimental facilities, turbulence rate increases at low regime. As seen in Table 4.1, the present work focuses on velocities higher than 1 m/s.

First, let us consider raw experimental data. Figures 4.3.(a,b) provide experimental velocity profiles at separation for various cases, normalised by external velocity U 0 , directly estimated from measured velocity profile. Basically, the shape seems quite close to a laminar profile except for the external region where profiles show some variations. Those fluctuations, where mean velocity profile should rather be flat, are likely caused by PIV computation errors. Indeed, here are used raw velocity fields, before outliers have been searched. It so happens that the free stream above the leading edge corresponds to the extreme upstream corner of the field, where computation divergence occurs more often (see Section 2.3 for details). In order to bypass this issue, an estimation of U 0 is obtained by averaging over the entire external region.

On the other hand, the non-zero value at the wall, for all cases, constitutes another concern. This could be related to a systematic error on wall position (y = 0). Furthermore, a slight inflexion point is observed around 1 mm from the wall, likely due to light reflexions inducing computation errors. Since both issues are clearly due to non-physical causes, velocity profiles are revised prior to any boundary layer thicknesses estimation or Blasius fitting. By considering the highest velocity gradient, typically at the 6 th pixel of the profiles, as equal to wall gradient, corrections consisted in padding the profile accordingly until it reaches zero velocity. From that comes a new wall position y = 0 and the estimated error around ǫ y = -0.3 mm (2 pixels). Profiles have been only slightly modified so as to satisfy the boundary conditions. Blasius fit is performed on each case using least mean square optimisation varying the external velocity U B 0 . Establishment length, from the elliptical edge, is already known, l x = 0.300 m. Associated momentum thickness θ 0 is obtained through Blasius fit such that

θ 0 = 0.4696 2νl x U B 0 , (4.4)
By normalising velocity measurements with U B 0 and momentum thickness θ 0 , profiles collapse almost perfectly onto Blasius model, as seen in Figures 4.3(c,d). Non negligible gap remains confined outside of the boundary layer. Difference between experimental data and Blasius model can be quantified by the standard deviation as follow.

∆f it = i (u B i -u i ) 2 i ((u B i + u i )/2) 2 , (4.5)
where u i is the experimental profile and u B i the Blasius fit. In fact, ∆f it can be considered as quantifying the degree of turbulence of the incoming flow. ∆f it is often lower than 1%, 1.3% at the most. All characteristics of the incoming flow are provided in Table 4.1, for the cases investigated in the forthcoming analysis. Except for the case L/D = 1.0, for which the rms rate rises up to 6.4% † , other configurations show less than 2% of rms. The dimensionless numbers are also given. In particular, the dimensionless cavity length L/θ 0 , already pointed out in Section 1.1, constitutes a control parameter for self-sustained oscillations of the shear layer, as in any impinging flow. * * ∆f it characterises the statistic difference between experimental mean profile and Blasius fit, such as described in Equation 4.5. † The higher rms rate for the case L/D = 1.0, L/θ 0 = 54 is due to PIV errors more than flow turbulence. In fact, the PIV time delay was too large to handle the important velocity gradients. This case was only aimed to be used as subsidiary data and for inner-flow analysis (Section 4.5), so that this noise does little damage. 

′ u ′ /U 2 0 (%); (c,g) crosswise Reynolds stress v ′ v ′ /U 2 0 (%); (d,h) Reynolds cross-component u ′ v ′ /U 2 0 (%).

Statistical moments

u ′ u ′ , v ′ v ′ , u ′ v ′ , clearly
show that most of the fluctuating energy is concentrated in the impinging shear layer, near the cavity trailing edge. Indeed, the shear layer flapping motion is the most energetic phenomenon of the fluctuating flow. In addition, intensity distribution of velocity fluctuations is not equivalent for x and y components. In particular, u ′ u ′ -in Figure 4.4.(b,f) -exhibits a structure in two lobes distributed on both sides of the cavity top plane (y = 0), while v ′ v ′ -Figure 4.4.(c,g) -has a gaussian-like shape centred on y = 0. Similar distribution was observed by [START_REF] Williams | Streaklines in a shear layer perturbed by two waves[END_REF]; [START_REF] Kuo | Influence of flow path modification on oscillation of cavity shear layer[END_REF]; [START_REF] Forestier | The mixing layer over a deep cavity at high-subsonic speed[END_REF]. The structure in u ′ v ′ shows that u ′ and v ′ are, in average, of opposite signs atop, and of the same sign below, the cavity top-plane. By making the connexion with instantaneous snapshots seen earlier (Figures 4.1 & 4.2), this probably indicates a segregation of travelling vortices at the impingement. More precisely, impinging vortices such with ω z < 0 -thus corresponding to u ′ (y > 0) > 0 and u ′ (y < 0) < 0 -dive into the cavity, inducing a higher inflow velocity along the wall, that is v ′ < 0. On the other hand, positive vortices (ω z > 0) -in other words u ′ (y > 0) < 0 and u ′ (y < 0) > 0 -are "pushed upwards" at the trailing edge, to be advected downstream in the wake. Henceforth, one may infer that flapping motion is responsible for a fluid exchange between inner-flow and outflow at the impingement.

Negative vortices gathering vorticity from the incoming boundary layer carry some outflow into the cavity, while positive vortices, yielding a lack of vorticity in the shear layer, can catch some fluid from the main recirculation and bring it up out. Some fluctuations of secondary order are also observed inside the cavity, likely corresponding to vortices advected from the impingement back upstream via the main recirculation. Note that similar results were obtained for the case L/D = 2.0, L/θ 0 = 96, in [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF].

Spectral signature

The most distinctive property of impinging flows is their coherence, resulting in a sparse spectral signature. Self-sustained oscillations convey a few enhanced frequencies scaling approximately on U 0 /L due to pressure feedback, instantaneous in the incompressible regime (see Sections 1.1.2 & 1.1.3 for details). This is verified by spectra shown in Figure 4.5, which all exhibit a distribution of well-defined peaks, around St= f n L/U 0 = n/2, with n = 1, 2, 3, ... In the cases under study, the dominant peak is often located near St= 1 and produces harmonics. Details regarding the computation of power spectral densities can be found in Sections 3.1.1-3.1.2.

Spectra have been ordered with increasing dimensionless cavity length L/θ 0 . This corresponds either to higher velocities, through Expression 4.4 ( 1 θ 0 ∝ √ U 0 ) or to larger cavity length. Note that energy globally exhibited by spectra is correlated with L/θ 0 . When L/θ 0 increases, the energy distribution evolves from low to high Strouhal numbers. All peaks experience a slow but regular drift towards higher frequencies. More particularly, the stage of dominant peaks around St ≃ n/2 rises with the parameter L/θ 0 : (n = 1, 2) at low L/θ 0 and then n = 3 appears for high values of L/θ 0 .

0.5 1 1.5 2 2.5 3 3.5 4 4.5 In order to depict the evolution of the shear layer flapping motion in the parametric space, the focus is now on the most energetic peaks in power spectra out of the shear layer region. Using both LDV and TR-PIV measurements, frequencies associated with shear layer oscillations have been collected in 
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Results are in very good agreement with experimental data obtained by [START_REF] Sarohia | Experimental investigation of oscillations in flows over shallow cavities[END_REF] and insightful studies by Rockwell and co-authors [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]Rockwell andNaudascher, 1978, 1979;[START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF], or more recently, [START_REF] Kuo | Influence of flow path modification on oscillation of cavity shear layer[END_REF]; [START_REF] Kuo | Lock-on characteristics of a cavity shear layer[END_REF]; [START_REF] Delprat | Low-frequency components and modulation processes in compressible cavity flows[END_REF]. In particular, They are often referred to as locked-on frequencies. As described in the literature review in Sections 1.1.2 & 1.1.3, such a spectral signature driven by dimensionless cavity length, L/θ 0 , and evolving regardless of cavity shape-ratio L/D, depicts the dual interplay of both pressure-based feedback and shear layer instability. The parameter n can be seen as the number of cycles within the cavity length: the phase difference between leading and trailing edges is constant around 2πn [START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF]. Locked-on modes (n) are selected or not, according to their amplification by the shear layer. When two regimes are equally amplified, mode switching occurs, as mentioned in Section 1.1.4 [START_REF] Pastur | Quantifying the non-linear mode competition in the flow over an open cavity at medium reynolds number[END_REF][START_REF] Lusseyran | Dynamical analysis of an intermittency in an open cavity flow[END_REF].

Shear layer frequencies do not align strictly with the simplistic model in which L-based Strouhal numbers are equal to n/2 (Equation 1.10). Many factors left aside in this simple model are likely to change the idealised feedback loop. The underlying Kelvin-Helmholtz instability is only taken into account through velocity profile at separation (U 0 and θ 0 ), whereas shear layer characteristics evolves along x from leading to trailing edge of the cavity.

The influence of the inner-cavity flow has also been neglected. The corrective term γ from Equation 1.9, often seen as the signature of a phase delay due to corner interaction, can be reintroduced and determined empirically from the present dataset (Figure 4.6.a). Using the linear fits expressed as

f n L U 0 = n 2 + L/θ 0 -41n 20 (17 -n) ≈ 3 n 8 + L/θ 0 340 , (4.6)
the coefficient γ writes as an affine function of L/θ 0 with n as a parameter:

f n L U 0 = n -γ n 2 with γ n (L/θ 0 ) = 41n -L/θ 0 10 (17 -n) . (4.7)
Note that γ n = 0 when control parameter L/θ 0 = 41n. Physically, one can assert that those values of L/θ 0 correspond to regimes in which both shear layer intrinsic instability and phase-locking are in perfect resonance.

Finally, one may notice a few points which depart from the "locked-on" scheme. Those frequencies are investigated in detail in a paper under revision and will be discussed further in Sections 4.3 & 4.5.

Local stability in the shear layer

To discuss more thoroughly the mechanism leading to self-sustained oscillations, it is tempting to apply local linear stability analysis of free shear layers to our system. It is however very important to remember that characteristics of the shear layer are here obtained from a saturated state instead of the actual base-flow. Although the mean flow -Figures 4.4.(a,e) -seems quite similar in shape to the base flow obtained using numerical simulations for linear stability analyses, such as in [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]; [START_REF] Barbagallo | Closed-loop control of an open cavity flow using reduced-order models[END_REF]; de Vicente (2010), both fields are not equivalent in nature. The basic flow represents the stationary solution, generally unstable in working conditions, while the mean flow is, by definition, the arithmetic mean of the flow after saturation has occurred. Furthermore, local stability studies theoretically apply to free shear layers, considered as two-dimensional parallel inviscid flows [START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF][START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF][START_REF] Huerre | Absolute and convective instabilities in free shear layers[END_REF][START_REF] Amram | Etude numérique des instabilités dans les couches de mélange compressibles[END_REF][START_REF] Huerre | Hydrodynamic instabilities in open flows, chapter 2[END_REF]. Such an assumption is intrinsically ruled out by the impingement at the trailing corner and the inner-cavity flow, responsible for the emergence of global stability properties. As a result, the following analysis based on a self-similar model and a critical frequency directly related to vorticity thickness must be interpreted with caution. To begin with, cross-stream velocity profiles U x (y), extracted from mean flow at different abscissas x, are fitted with an hyperbolic-tangent profile of the form:

U(y) = U m + ∆U 2 tanh 2(y -y c ) δ ω (4.8)
where ∆U is the shear strength and U m the mean velocity at the inflexion point y = yc. Shear-layer vorticity thickness δ ω is defined as:

δ ω = ∆U ∂U ∂y max , (4.9)
The fit is performed by minimising its L 2 -norm difference with the mean cross-stream profile, for which the shear layer region only is considered (-0. (g,h,i), vorticity thickness at the leading edge is δ ω0 ≃ 4θ 0 (Equation 1.3), which satisfies the theoretical properties of Blasius-profile mixing layers, as defined by [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF]. Then, δ ω shows a fairly monotonic increase along the shear layer, until very close to the impingement, where it abruptly decreases. That evolution is coherent with the results found in literature, from pioneer experiments by [START_REF] Sarohia | Experimental investigation of oscillations in flows over shallow cavities[END_REF] to TR-PIV results in [START_REF] Haigermoser | Investigation of the flow in a rectangular cavity using tomographic and time-resolved piv[END_REF] or two-dimensional numerical simulations in [START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF]. The inflexion point, y c , estimated from hyperbolic tangent fits, remains roughly unchanged along x/L. In Figure 4.8.a is provided the parametric evolution of shear layer vorticity thickness δ ω (x/D) normalised by θ 0 . The unique value δ ω (0)/θ 0 ≃ 4 at separation confirms the validity of Equation 1.3 for all our cases. All curves fairly collapse until x/D = 0.8, where vorticity thickness becomes dependent of the dimensionless cavity length: the slope ∂δω ∂x along the shear layer strengthens with L/θ 0 . Once such characteristics have been obtained, the most amplified frequency associated with each hyperbolic-tangent profile U(y) can be estimated. Following [START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF]; [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF]; [START_REF] Amram | Etude numérique des instabilités dans les couches de mélange compressibles[END_REF]; [START_REF] Huerre | Hydrodynamic instabilities in open flows, chapter 2[END_REF], the critical frequency f c in a free shear layer satisfies f c = 0.142U m /δ ω (see Section 1.1.1); and the neutral mode (zero growth-rate) is given by f m = 0.32U m /δ ω . As well as both U m (x) and δ ω (x), f c is expected to be a function of streamwise position x/D. It actually shows a decrease along the shear layer in It has been already pointed out that the critical frequency estimated through a local hyperbolictangent law stability analysis cannot be fully reliable since the system under study is known to be globally unstable, firstly due to the impingement and to a lower part, to the inner-flow. Shear layer frequencies remain constant across the entire flow contrarily to what is assumed with local stability analysis.

Nevertheless, estimations of critical frequency f c are consistent with regards to the actual frequencies of self-sustained oscillations (peaks emerging in spectra). In every case, the dominant frequency f a and other energetic peaks arise within the range explored by f c (x).

Averaging f c over the cavity length even matches the single peak f a L/U 0 = 1.0 in the first case, see 

Nonlinear dynamics of the self-sustained oscillations

The rest of this chapter aims to provide more insight regarding the space-time dynamics of the shear layer travelling waves in the permanent regime. In particular, the nonlinear interactions at play in the different regimes of self-sustained oscillations are investigated by making great use of the time-resolved space-extended data out of the TR-PIV campaign. Four aspects can be highlighted:

• saturation of the self-sustained oscillations (Section 4.2)

• multiple shear layer modes and amplitude modulation (Section 4.3)

• Mode switching and overmodulation (Section 4.4)

• Inner-flow frequencies (Section 4.5)

Self-sustained oscillations and harmonic families

In this section, space-time coherent structures corresponding to self-sustained oscillations of the shear layer are investigated in depth by making use of time-resolved space-extended data. In order to study the self-sustaining mechanism only, we focus on cases with harmonic spectral signature, that is exhibiting a single harmonic family: L/D = 2.0, L/θ 0 = 82. A power spectral density of such a flow is provided in Figure 4.9. Note that power spectra performed on TR-PIV data have been validated by comparison with LDV data in [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. Normalised PSD (dB) Spectrum exhibits a dominant frequency, f a = 13.5 Hz, corresponding to a Strouhal number f a L/U 0 = 0.98. Not less than four harmonics emerge from noise level, h f a with h = 2, 3, 4, 5. This monochromatic signature indicates a strong nonlinear saturation of a single locked-on mode concentrating most of the energy. In other words, a highly coherent flow with periodic dynamics. Note nonetheless the existence of a low energy peak at sub-harmonic f a /2, which recalls first regime in [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF]. In addition, energy levels rise for low frequencies, around f ∆ L/U 0 = 0.05 (f ∆ = 0.7 Hz), that is one order of magnitude below the dominant modes, corresponding to slow motions of the flow.
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Space-time structures of self-sustained oscillations

In order to describe self-sustained oscillations of the shear layer, various space-time representations are employed. The observed sample is a close-up in time, extracted from one of the fifteen 16 s-long recordings available for case L/θ 0 = 82, L/D = 2.0. The excerpt lasts over 2.5 s, ie. 21 < t U 0 L < 55 in dimensionless time units. As a visual and qualitative approach, a (x, y, t)-volume is depicted in Figures 4. 10 & 4.11 in which iso-surfaces of spanwise vorticity fluctuations ω ′ z D/U 0 are displayed. Negative and positive vorticity structures are coloured in blue and yellow, respectively. Such a 3D representation uses t-axis as a third (spanwise) dimension. Two-dimensional eddies, existing in an xy-plane, 

Wave properties

Shear layer locked-on oscillations have been globally observed inside the space-time domain (x, y, t). They correspond to progressive waves along streamwise direction, as expected from Kelvin-Helmholtz instability based disturbances. The present section aims at estimating the travelling wave properties of each frequency related to locked-on mode, ie. the harmonic family h f a . Indeed, since the velocity fields are both spatially and temporally resolved, it is possible to directly estimate the wavelength and phase-velocity associated with a given frequency, by using transfer functions between two locations within the shear-layer. The procedure is described in Section 3.1.3. Transfer functions are estimated on crosswise component v ′ in the shear layer because it exhibits larger oscillations whose amplitude is more continuous in space than those of streamwise component u ′ , as seen Figures 4.4 & 4.12.(b ∩ d). Estimate is performed for different x-values in the streamwise direction, at height y/D = 0, where turbulence intensity is maximum. Phases along x are referenced with respect to the signal at x 0 /L = 0.5 (where φ = 0) because the velocity fluctuations are too weak to provide a clean reference point at the cavity leading corner, x/L = 0. Similarly, at x/L = 1, boundary effects at the trailing corner may alter the phase. At mid-length, spectrum exhibits strong peaks, and the fluctuations are still exponentially increasing with space, indicating that linear instability approximation stands and non-linear effects do not play a significant role yet. Transfer functions are estimated at points distant by a multiple of δx/L = 0.016 from the reference point (x 0 /L = 0.5). The plus/minus sign depends on whether the point under consideration is downstream or upstream, relatively to the reference point. The dominant frequency f a = 13.5 Hz (f a L/U 0 = 0.98), together with its first two harmonics f a2 = 2f a and f a3 = 3f a are investigated. In Figure 4.13.a, the unwrapped phase φ(x) is shown with respect to x/L for the main frequencies associated with self-sustained oscillations of the shear layer. The phase φ(ω a , x) varies quasi-linearly along the shear layer, as expected from progressive Kelvin-Helmholtz waves. Overall phase variation over L is close to 4π, indicating that the wavelength is of the order of L/2. More precisely, a linear regression on φ(x) for f a , of the form: For the harmonics 2f a and 3f a , the phase is not defined before x/L ≃ 0.5. Fitting φ(ω a2 , x) from x/L = 0.5 to x/L = 0.9 gives the phase gradient k a2 L = L(∂φ/∂x) mean = 7.3π. The resulting wavelength is therefore Λ a2 /L = 0.27, which implies a phase velocity C a2 /U 0 = 0.53 m/s. Similarly, one obtains for the second harmonic 3f a , k a3 L = 10.9π and Λ a3 /L = 0.18 and C a3 /U 0 = 0.54 m/s. As expected, phase velocities C ah corresponding to every harmonic of the locked-on mode f a are identical, which implies a non-dispersive medium with respect to the self-sustained oscillations of the shear layer. Indeed, h f a modes are not independent from one another. They all pertain to a single underlying Kelvin-Helmholtz wave. This wave is distorted by nonlinearities, thus it ends up decomposed into a harmonic family in Fourier space and yields the trivial linear dispersion relation:

φ(ω, x) = α(ω)x + γ(ω), (4.10)
C a = 2πf ah k ah = Λ ah f ah ≃ U 0 2 with h = 1, 2, 3... (4.11)
The growth rate ζ of shear layer travelling waves can be estimated from streamwise distributed transfer functions -see Equation 5.5. However, it is more sensitive to signal/noise ratio than phase. As a result, only the dominant frequency f a has its amplitude defined across the cavity.

A travelling wave is considered as linearly spatially unstable if ζ is constant along x, such that the amplitude of the mode grows exponentially as e ζ(x-x 0 ) . This is the case for ζ a , constant from x/L = 0.2 to x/L = 0.8, that is before saturation and distorsion nearby the trailing edge. Prior to linear growth, it must be noted that the dominant mode f a is already enhanced just after the separation. This might be the signature of the feedback-loop responsible for the self-sustained oscillations of the shear layer.

On the contrary, growth rates corresponding to harmonics are obtained on a rather restricted region of the shear layer. In Figure 4.13.b, linear regressions on (∂ ln |G(ω, x)|/∂x) are performed such that 0.2 x/L 0.7 for f a , 0.5 x/L 0.8 for 2f a and such that 0.5 x/L 0.7 for 3f a . Note that harmonics are likely to be only nonlinearly unstable, hence they are not expected to grow exponentially. Wave properties for h f a harmonics are collected in Table 4.2.2.

Transfer functions performed along the shear layer constitute the first step of a global space-time analysis, restricting only to two-point correlation along the shear layer. The next step consists in globally distributed time Fourier transforms, which yield the spatial structures associated with any temporal frequency of the spectrum. √ modulus; (g,h) complex angle (in π units).

Spatial structure of the shear layer modes

The identification of the coherent structures constitutive of the flow can be achieved by applying global Fourier decomposition to time-resolved space-extended data issued from TR-PIV measurements. The procedure is described in Section 3.1.4 and in [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. We refer to global Fourier modes, the spatial distribution of Discrete Fourier-transforms (DFT) in the entire field, associated with one temporal frequency. Considering the case L/θ 0 = 82, L/D = 2.0, Fourier mode associated with locked-on frequency f a is presented in Figure 4.14.

For this first mode, many features are displayed for both components of velocity fluctuations u ′ and v ′ : real and imaginary parts, modulus and angle. The following remarks based on these figures can be generalised to other shear layer modes. For instance, similar results have been obtained in [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF] for a case L/θ 0 = 96, L/D = 2.0.

As expected, growing oscillations are observed inside the shear layer, along the line y = 0 -see Figures 4.14.(a-d). Their wavelength is logically Λ a /L = 0.5, the same as for transfer function in previous section. One remarks that real and imaginary parts are in phase quadrature. Coherently, the complex angle (or phase) shows a monotonic variation in the streamwise direction -Figure 4.14.(g,h) -, featuring a travelling wave. Spatial structures differ from one component to another. While v ′ crosswise profiles are even functions, u ′ exhibits odd profiles along the shear layer. This is consistent with the literature, notably the results in [START_REF] Williams | Streaklines in a shear layer perturbed by two waves[END_REF]. In other words, u ′ consists of two (roughly) anti-symmetrical domains on both sides of a streamwise line just below y = 0. This results in a zero-energy line in the intensity map displayed in Figure 4.14.e, and corresponds to a phase discontinuity in Figure 4.14.g. That distribution recalls of RMS components seen earlier in Figure 4.4. The shear layer mode associated with frequency f a represents in fact most of the energy contained in the spectrum. Such a spatial distribution is the signature of an alley of eddies travelling downstream along the shear layer, in a cartesian reference frame (x, y). That can be explained through a simplified model of purely azimuthal vortices, such that v eddy (r) = v θ (r) e θ . (4.12)

It comes that induced fluctuations in the cartesian reference frame write as

u ′ e x + v ′ e y = v θ (r) sin θ e x + v θ (r) cos θ e y (4.13)
Consequently, streamwise axis x is null on the line θ = 0, π, carrying the centres of eddies. On the contrary, v ′ , projection on the crosswise direction, is maximal there.

Inflow vortices are visible along the forward facing step. Evolution of the angle seen in Finally, vorticity maps for both real and imaginary parts are given along with vector fields in Figure 4.15, in order to identify directly vortical structures. Vorticity distributions also exhibit a phase discontinuity or separation along the shear layer but it does not coincide with the one observed for u ′ . Instead, it is located around the inflexion point. Similar results were briefly presented in [START_REF] Rowley | Pod based model of self-sustained oscillations in the flow past an open cavity[END_REF]. In spite of the impingement, the present results can be favourably compared to linearised stability theory of free shear layers. For instance, one can see the profiles of vorticity obtained in pioneer numerical work by Michalke in 1964 in the case of temporally growing waves: Figure 4.16 is directly printed from [START_REF] Michalke | On the inviscid instability of the hyperbolic tangent velocity profile[END_REF]. However, temporally amplified disturbances cannot predict the asymmetry and distorsion exhibited by global Fourier mode at f a . In order to take into account the non-periodical evolution of vorticity profiles along the shear layer, Michalke then proposed to consider spatially growing disturbances in [START_REF] Michalke | On spatially growing disturbances in a shear layer[END_REF]. Figure 10 of the latter reference is provided in Figure 4.17 

Amplitude modulation

In general, dynamics of impinging shear layers do not restrict to a single harmonic series. As displayed earlier in Figure 4.5, spectra often exhibit secondary peaks, which do not necessary pertain to a harmonic family. Instead, these peaks have been identified as products of an amplitude modulation of the self-sustained oscillations at the impingement. They are named side-band peaks in the following. Normalised PSD (dB) 
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Side-band peaks and low frequencies

An example of spectrum exhibiting such side-band peaks is given in Figure 4.20, for the case L/D = 1.5, L/θ 0 = 79. The self-sustained oscillations of the shear layer are represented by the predominant harmonic family f ah = hf a = [30.5 Hz, 61 Hz, 91.5 Hz], corresponding to L-based Strouhal numbers f ah L/U 0 = [0.99, 1.98, 2.96]. Then, the main side-band peaks belong to a triadic interaction involving h f a harmonics and the low frequency f b = 11.7 Hz (St= 0.38), the associated frequencies writing as

f h+ = h f a + f b and f h-= h f a -f b (4.14)
for right and left side-band peaks, respectively, located around the harmonic hf a . For instance, the side-band frequencies associated with the dominant frequency f a are f + = f a + f b = 42.2 Hz (St= 1.37) and f -= f af b = 18.8 Hz (St= 0.61). Such a spectral signature is distinctive of saturated oscillations yielding the carrier frequency f a modulated in amplitude by the modulating frequency f b . In addition, note that two other low frequencies are observed: i) the very low frequency f ∆ appears again (here equal to 0.7 Hz, ie. f ∆ L/U 0 = 0.023); ii) the modulating frequency f Ω = 6.5 Hz (f Ω L/U 0 = 0.21). The latter interacts with f a and 2f a to produce further side-band peaks f ℓ = f af Ω and f 2ℓ = 2f af Ω , respectively. Frequencies f ∆ and f Ω are discussed in detail in Section 4.5.

Spectra only give a statistical information on flow features. To go one step further, Fig- 

Wave properties of the side-band peaks

Investigating the wave properties of the side-band peaks relatively to carrier frequency may be of interest. Do the side-band peaks pertain to the same wave family as hf a harmonics? How does their amplitude grow along the shear layer?

Transfer functions give access to local phase and amplitude as functions of x/L for every selected spectral component. Results are plotted in Figure 4.22. Wave characteristics deduced from those plots can be found in Table 4.3.2. According to the amplitude evolution plotted in Figure 4.22.b, the considered shear layer modes are properly defined at least in the second half of the shear layer (x/L 0.5). There associated growth rates estimated from the slopes displayed in Figure 4.22.b are of the same order. Note that both 2f a and f 2+ are expected to be only nonlinearly unstable, produced through saturation and amplitude modulation, respectively. Consequently, constant growth rates seem irrelevant and in any case could only be estimated from a small portion of the plot. The phase exhibits a linear increase for all considered frequencies, carrier (f a ,2f a ) and side-band (f + ,f 2+ ) alike, indicating progressive waves. Remark notably that both amplitude and phase related to frequency f + point out a very coherent wave, defined as clearly as the dominant (carrier) wave at f a . Furthermore, the phase velocities related to side-band frequencies are equal to those of carrier modes:

C + ≃ C 2+ ≃ C a ≃ 0.5U 0 .
(4.15)

Therefore, carrier and side-band modes all pertain to the same non dispersive wave family. One may notice the phase-gap between leading and trailing edges k + L = 6π, of the side-band peak 

Modulating and side-band frequencies in the parameter space

More generally, amplitude modulation of the self-sustained oscillations is encountered in most of the cases investigated in the present study. In Frequencies f b exist for various geometries and are independent of L/D. Recall that the locked-on frequencies collapse around n = 1, 2, 3 stages and more precisely, satisfy the feedback equation 4.7. Many of them can now be identified as side-band peaks associated with low frequencies f b , which precisely correspond to the gap between two locked-on modes. Then, a question naturally arises: What does this amplitude modulation physically represent?

In other words, does the low frequency predates side-band frequencies? Or the other way around, does the side-band peaks come first and produce the low frequency by nonlinear interaction at the impingement? Following [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF]; [START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF], low frequency generation and amplitude modulation are indeed related to vortex-edge interaction at the impingement (see Section 1.1.5 for more references). However, there is no details regarding the selection of the particular frequency f b . In particular, vortex-edge interaction exists in every case without respect to amplitude modulation occurrence. Therefore, it cannot explain alone the appearance of an amplitude modulated regime.

On the other hand, side-band frequencies f ± align continuously and equally with carrier frequencies f a in the parametric space. This suggests a mechanism relying on cavity length resonance. Incidentally, linear stability analyses performed in highly unstable impinging shear layers, ie. L/θ 0 ≫ 1, have exhibited linearly growing modes whose frequencies are equidistant in the spectral space but not in an harmonic ratio. Such a spectral organisation designates all locked-on modes as linearly unstable, contrary to low frequencies f b . Hence, f b would only come up in the permanent regime, resulting from a nonlinear coupling between two co-existing locked-on global modes.

Nevertheless, time-frequency diagram as well as time-series (Figure 4.21) have shown that a single carrier frequency f a is observed. The side-band peaks, the highest being at f + , only appear through amplitude modulation. One can assert that the energy carried by frequency f + is too small compared to that of the dominant frequency f a to be observed as another mode of self-sustained oscillations. For instance, the spectrum in Figure 4.20 averaged over the region of impingement has shown a 12dB-gap between the peaks at f a and f + . Ultimately, it can be inferred that the amplitude modulation of the self-sustained oscillations can be initially caused by the superposition of multiple (two) unstable locked-on modes, rather than the interaction with the low frequency f b . The locked-on mode of highest amplitude saturates and produces harmonics, while the other, barely visible, only appears through the interference process. The low frequency f b present in the spectrum would come out later via nonlinear interactions. Space-time analysis in the next section will bring more insight into the connection between side-band f ± and low frequencies f b .

A few low frequencies have been designated as f Ω peaks because they deviate from the above-described organisation. They cluster as 0.1 f Ω L/U 0 0.22 and their associated side-band peaks (f af Ω ) do not satisfy the locked-on relation (Equation 4.7). Moreover, they seem to restrict to a narrow range of the parameter space (L/θ 0 ). Thus, this is likely the signature of another mechanism. 

Space-time dynamics

Amplitude modulation mechanism and modulating frequency f b are studied throughout their space-time dynamics, the same way as the self-sustained oscillations of the shear layer in Section 4.2. 

Spatial structure of the amplitude modulated shear layer

The dynamics of the amplitude modulated shear layer at the impingement has been observed as a whole. Global Fourier decomposition enables identifying the spatial structure associated with each characteristic time-scale (see Section 3.1.4 regarding the method). Presently, the global Fourier modes associated with the locked-on frequencies, namely the dominant (carrier) frequency f a L/U 0 = 0.99 and its right side-band frequency f + L/U 0 = 1.37 are shown in One observes that both spatial modes are very much alike that of dominant mode f a = 13.5 Hz of the harmonic case in the previous Section (4.2). Those shear layer modes are composed of an alley of eddies of alternative vorticity, travelling downstream along the shear layer as indicated by the phase shift between imaginary and real parts. More precisely, the dominant mode exhibits two wavelengths along the cavity length as expected from a locked-on mode at stage n = 2. Regarding the mode associated with the right side-band frequency f + , it is very similar except it fits three wavelengths along the shear layer, so it rather corresponds to a locked-on mode at stage n = 3. This confirms the intrinsic instability of the spectral component f + , existing without respect to the amplitude modulation of the carrier wave f a by the modulating frequency f b .

In Figure 4.28 are given the global modes associated with the first harmonic of the carrier mode 2f a and its corresponding right side-band frequency f 2+ = 2.36. As expected, they pertain to the same non-dispersive wave packet: the associated space-scales decrease proportionally with the increasing frequencies, so as to travel at the same phase velocity.

More interesting is the global Fourier mode associated with the edge frequency f b = 11.7 Hz (St = f b L/U 0 = 0.38) in Figure 4.29.(a,b). It shows a travelling mode, as indicated by the shift between real and imaginary parts. It arises just before the impingement and then describes a travelling wave along the forward-facing step of the cavity. One observes an alley of counter-rotating vortex pairs travelling downwards. This constitutes the by-product of the amplitude modulation of the self-sustained oscillations in the shear layer. Indeed, larger oscillations at the impingement imply greater inflows into the cavity. These inflows are then advected away from the impingement, together with induced counter-rotating eddies, via the main recirculation.

The global Fourier mode associated with the left side-band frequency f -= f af b = 18.8 Hz (f -L/U 0 = 0.61), in Figure 4.29.(c,d), exhibits shear layer oscillations of wavelength λ -≈ L -that is a locked-on mode at stage n = 1 -but energy levels are too low to see any coherent vortical structure arising along the shear layer. Like other shear layer-related modes, the oscillations induce inflows into the cavity at the impingement. However in that case, the alley of alternative vorticity cells travelling along the forward-facing step are particularly energetic relatively to self-sustained oscillations. The spatial signature of this frequency f -appears quite similar to the one of edge frequency f b . This might indicate that f -component is rather due to the by-product of amplitude modulation (nonlinearly induced by f b ) than to a linear unstable mode like the right side-band peak at f + . Note that the relative contributions of the two side-band peaks f ± vary with the dimensionless cavity length L/θ 0 . Configurations other than (L/D = 1.5, L/θ 0 = 79) can exhibit a more energetic left side-band peak. For instance, the LDV spectra plotted for cases (L/D = 2.0, L/θ 0 = 70) and (L/D = 2.0, L/θ 0 = 75) in Figure 4.5 present only left side-band peaks. Located around St = f L/U 0 ≃ 0.5, these spectral components correspond to locked-on modes at stage n = 1. Another instance is found for the case studied in Section 4.2. If one recalls the frequency detected as the sub-harmonic f a /2 in Figure 4.9, one can remark that the broad-band peak is actually the conjunction of both modulating frequency f b L/U 0 ≃ 0.4 and left side-band frequency f -= f af b ≃ 0.6. The amplitude of these peaks indicates the self-sustained oscillations are indeed only slightly amplitude modulated.

Main remarks on the amplitude modulated regime

In this section, the interest was on the amplitude modulation of the self-sustained oscillations in the impinging shear layer. One could realise that amplitude modulation generally involves several locked-on modes -satisfying the phase-locking condition between separation and impingement ∆φ = 2nπ -and a low (modulating) frequency f b . (i) One locked-on mode is selected and enhanced and produces harmonics: it corresponds to the carrier family h f a (with h = 1, 2, 3, ..

.). (ii)

The other locked-on modes may become side-band peaks f ± = f a ± f b . Nonlinear effects produce side-band peaks around the carrier harmonics, ie.

f h± = h f a ± f b . (iii)
The edge frequency f b corresponding to oscillations of the envelop is initially generated by the interaction of the locked-on modes at the impingement. Then the global organisation of the flow induces a feedback in bringing the disturbances at frequency f b back downstream into the shear layer, reinforcing the amplitude modulation.

Every shear layer mode pertains to the same non-dispersive wave packet travelling at the same phase velocity C a ≃ U 0 /2 (Kelvin-Helmholtz waves). In other words, each frequency-wavenumber pair corresponding to a locked-on mode is proportionally related, such that 4π {St ah,h± } ≃ {k ah,h± } L ∀ h ∈ [1, 2, 3...] (4.17) Also, both carrier and side-band frequencies verify the feedback relation (Equation 4.7) proposed in Section 4.1.4 for self-sustained oscillations frequencies. Finally, remember that the selection of locked-on modes is governed by the control parameter L/θ 0 . The amplitude of the locked-on modes, carrier and side-band alike, varies continuously across the parameter space depending on L/θ 0 . Most of the cases under study organise around a stage n = 2 carrier, nonetheless f a actually goes from one stage n to another when L/θ 0 is modified. In the next section, the investigation focuses on the transitions from one stage n to another n ± 1.

Mode switching and overmodulation

The previous section has shown that the amplitude modulation of the self-sustained oscillations near the impingement is primarily due to the superposition of multiple locked-on modes, existing simultaneously in the shear layer. For the previously investigated case, the spectrum was organising around a carrier f a and side-band peaks f ± at least an order of magnitude below.

What happens when the system exhibits a regime in which two locked-on modes are evenly unstable?

Time-frequency dynamics

In There are time periods during which f a is dominant (130 t U 0 /L 280), time periods with both frequencies co-existing simultaneously (0 t U 0 /L 120), and time periods when f + drastically overcomes f a (280 t U 0 /L 380). This is the signature of a system experiencing mode switching or intermittency. That versatile and non periodic phenomenon was discussed in the literature review (Section 1.1.4). Mode switching is often considered as implying "jumps" from one regime of oscillation to another. The transitions appear as discontinuities in the spectrum. The transitions between different regimes are indeed rather abrupt but not within one cycle of oscillation. It is interesting to study the mode switching process in the frame of signal processing: that is with regards to temporal evolutions of both amplitude and carrier of the signal under consideration. Close-ups in time are realised and corresponding time-series are plotted in Figures 4.30.(c,d) in order to probe directly the time-fluctuations.

•(1s t 3.9s) The first sequence under investigation is a period of co-existence of the two modes, recalling what was observed for the amplitude modulated case in Section 4.3. Levels of energy are rather even in the present case (see Figure 4.30.a). The close-up time-series plotted in Figure 4.30.c exhibits tremendous amplitude modulations at almost any given time of the excerpt. This is completely consistent with the co-existence of two modes. Superimposing waves of equivalent amplitude indeed induces overmodulation. As in the previous section, the envelope oscillates at the difference frequency f +f a = f b , but with far higher amplitudes leading to drastic distortion of the signal (null or even negative envelope). Regarding the carrier frequency, as the second component f + grows closer to dominant component f a , the carrier is no more approximately equal to f a but in the range between the two frequencies. It does not show up in the spectrum but physically, it corresponds to the small time-scales of the signal and evolves continuously depending on the relative amplitude of the two peaks. The nonlinear interactions are modified by such a regime. There can be almost no energy detected for any harmonic of either frequencies f a or f + , whereas an harmonic 2 f a is clearly visible when f a is on its own (for 130 t U 0 /L 280). This likely implies that the energy of f a is drained out by the presence of another dominant mode f + . Instead, energy levels are quite high for the second right side-band peak f 2+ = f a + f + = 68.3 (St= 2.41). Such an energy spike at that frequency is produced nonlinearly by the two locked-on modes f a and f + .

•(8.8s t 11.6s) The second closeup in Figure 4.30 consists of four successive periods: one first observes oscillations at f a , then a transition towards the mode f + occurs, leading to a period with f + alone, and finally the oscillating regime at f + undergoes interferences of the mode f a , rising again. It can be seen that the co-existence of the two modes implies again an overmodulation of the signal. Each time the amplitude of the oscillations is forced to zero due to that overmodulation, the frequency is no more defined. As a result, the system can lock on one or the other available modes. Another case is presented in Figure 4.31. Obtained for a different geometry L/D = 2.0 and control parameter L/θ 0 = 96, it presents nonetheless a similar spectral organisation (Figure 4.31.b). The time-frequency dynamics shows numerous transitions between the two lockedon modes (Figure 4.31.a). In particular, a very abrupt transition from f + to f a at t ≃ 8.7 s. This configuration presents a constant overmodulated state since the two locked-on modes are almost always present with variable intensities. This is indicated by the coupling frequency

f 2+ = f a + f + .

Saturation of the second locked-on mode: two harmonic families

One of the major changes in the intermittent regimes is the rising of second harmonic family h f + in competition with the (initially) dominant family h f a . The spectral signature is no more organised around a unique carrier harmonic family with side-band peaks. One of the side-band peaks is energetic enough to saturate and thus produce harmonics of its own. This is illustrated by the spectrum in Figure 4.32. A peak at 2 f + now rises on top of other side-band peaks. Of course, this can already be observed in the time-frequency diagrams during the periods when f + overcomes f a and becomes the carrier of the self-sustained oscillations. This is the case for instance, in Figure 4.31 for 7.9 s t 8.7 s. Remark that noting f a the peak at 29.2 Hz and f + the right side-band peak at 39.4 Hz is an arbitrary choice because f a is more present than f + and therefore has a higher energy level in the spectrum. An evolution of the presence ratio between those two modes could lead to consider the lower frequency as a left side-band frequency (f a → f -) of the dominant mode (f + → f a ). That is why the parametric evolution of the self-sustained oscillation frequencies is often referred to as "jumps" from one stage to another by considering only the dominant (or most present) shear layer mode. 

f ∆ f b f - f a f + 2f a f 2+ 2f + 3f a f 3+
f * L/U 0 C * /U 0 Λ * /L k * L ζ * L a 1.

Wave properties of the two competing families

The wave properties of family h f + can be estimated the same way as h f a to compare the two waves. Transfer functions have been computed (Section 3.1.3 for method) for the parameters L/D = 2.0, L/θ 0 = 91 along the shear layer at y/D = 0.05. The resulting gain and phase of the waves associated with frequencies f a , f + , 2f a , 2f + are plotted in Figure 4.33. Wave properties deduced from these plots are provided in Table 4.4.2.

Both waves at fundamental frequencies f a and f + carry enough energy to be well defined across the entire cavity length. Harmonics 2f a and 2f + are properly defined only in the second half of the shear layer. By definition, harmonic components require the larger scales to be energetic enough before the nonlinear saturation may occur. The phase of the four modes increases regularly, which indicates constant phase velocities. In Table 4.4.2, the estimated average phase velocities are roughly equal to 0.5 U 0 , as expected from Kelvin-Helmholtz waves.

The gain profiles along the shear layer for both locked-on frequencies f a and f + are almost identical. Hence they yield the same growth rate, which is estimated from the fit between 0.3 and 0.7 L (linear growth region). As for the harmonics 2 f a and 2 f + , they present also a similar profile along the shear layer. In brief, there are two Kelvin-Helmholtz waves, propagating along the shear layer and saturating before the impingement but pertaining to different stages of self-sustained oscillations: (n = 2 for h f a and n = 3 for h f + ).

Spatial structures of the two harmonic families

Global Fourier decomposition is performed on case L/D = 1.75, L/θ 0 = 96 with the aim of confirming the spatial structure of frequency 2 f + , expected to correspond to the spatial harmonic of that of the right side-band peak f + . The two harmonic families (f a , 2 f a ) and (f + , 2 f + ) are associated with shear layer locked-on modes, in Figures 4. 34 & 4.35, respectively. The rise of f + first harmonic is confirmed by the vortices advected along the impinging shear layer, twice smaller than the structures exhibited by f + spatial structure.

The saturation of the second locked-on mode, occuring when it is actually selected as a carrier frequency, can be used as a simple criterion for distinguishing persistent regimes of oscillation from intermittent regimes. Based on the spectrum measured near the impingement where the saturation occurs, the existence of two distinct harmonic families indicates mode switching dynamics.

Critical stability region for self-sustained oscillations

The carrier frequency of the self-sustained oscillations can be distinguished from a side-band peak through the existence of associated harmonics. The parametric diagram depicting the evolution of the locked-on frequencies as functions of the dimensionless cavity length L/θ 0presented in Section 4.3 -can be edited by separating the carrier from side-band frequencies.

The resulting plot is shown in Figure 4.36. Such a separation is actually quite insightful because it highlights a critical region in which most of the frequencies are enhanced so that they become carrier frequencies. This region is defined a posteriori for L-based Strouhal numbers as

St = 0.014 (L/θ 0 -11) ± 1/3 = f * L U 0 ± 1/3 (4.18)
The centreline corresponds to f * , which can be seen as a critical frequency of the impinging shear layer. It passes through the stages n = 1, 2, 3 where the experimental fits actually satisfy the simplified model (Equation 1.10), that is the feedback equation without correction term (γ n = 0). A critical frequency defined a posteriori should take into account the global stability of the system. However, it is most interesting to note that f * θ 0 /U 0 ≃ 0.012 (for the range of parameters under study) is very close to preliminary results from local linear stability analysis obtained in Section 4.1.5 (see 

Inner flow and very low frequencies

The self-sustained oscillations of the shear layer are the most salient mechanism in open cavity flows. That is why the nonlinear dynamics of the shear layer modes has concentrated most of our attention up to now. However, the flow organisation does not restrict to that only aspect. As reviewed in Section 1.1.6, frequencies one to two orders of magnitude lower than shear layer frequencies are generally also at play and correspond to coherent structures arising inside the cavity. Some of these "very low" frequencies are expected to be due to three-dimensional instabilities (f ∆ ), as discussed in [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]. Others are observed more sporadically (f Ω ) and might be concerned with a secondary feedback inside the cavity driven by the shear layer.

Secondary feedback

On top of the locked-on modes and edge frequencies f b , the spectral signature of the flow may exhibit other shear layer frequencies departing from the generic scheme. Those peculiar configurations are apparently restricted to a narrow region of the parameter space (f Ω and corresponding side-band peaks in Figure 4.23). A similar organisation could already be observed for equivalent parameters in [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF]; [START_REF] Rockwell | Review -self-sustaining oscillations of flow past cavities[END_REF]. This is illustrated by two parametric plots extracted from [START_REF] Rockwell | Prediction of oscillation frequencies for unstable flow past cavities[END_REF] (Figures 6,7 ), provided in Figure 1.2 of Section 1.1.3. While most of the peaks corresponded to locked-on frequencies aligning with the three stages n = 1, 2, 3, a few shear-layer frequencies were located between two n-stages for 1 L/D 2 : they did not satisfy the feedback relation (Equation 1.9). That discrepancy was not highlighted at the time. However, these results along with other similar low frequencies for compressible cases [START_REF] Gloerfelt | Aeroacoustic computations of high-reynolds number cavity flows on staggered grids[END_REF][START_REF] Delprat | Low-frequency components and modulation processes in compressible cavity flows[END_REF], suggest that a secondary mechanism could be at play for certain configurations, on top of edge modulation f b .

In this context, two unusual spectral distributions can be seen in Figure 5. (b,c) of [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. One of them is the configuration L/D = 1.5, L/θ 0 = 79, which has been investigated in Section 4.3. Low frequencies, noted f Ω , are part of an amplitude modulation process in which they interact with the dominant locked-on mode (carrier frequency f a and its harmonic 2f a ), to induce side-band peaks The global Fourier mode associated with f Ω exhibits vortical structures of alternative sign all along the main recirculation. The shift between imaginary and real parts denotes the propagation of those eddies. The whole structure revolves in the inner-flow, filling the entire cavity in the xy plane. Such a spatial signature could probably imply a hydrodynamic feedback, on top of the pressure-feedback due to impingement.

f ℓ = f a -f Ω and f 2ℓ = 2f a -f Ω . ( 4 
As for the left side-band peak, the associated spatial structure depicts a shear layer mode. One observes oscillations of growing amplitude when closing in the impingement and splitting up at the trailing edge of the cavity to produce inflow vortices travelling downwards, along the forward-facing step of the cavity. Note that the inflow vortices are as intense as the shear layer oscillations. This is consistent with the other left side-band peak at f -observed in Figure 4. 29.(c,d). It is unambiguously produced through nonlinear interactions between dominant and low frequencies f a and f Ω .

This matter would require more attention in order to settle the precise nature of the underlying mechanism responsible for the apparition of frequency f Ω . 

Three-dimensional structures in the inner-flow

Almost the entire range of the spectrum has been investigated and the characteristic spectral components have all been identified and discussed apart from the very low frequencies, denoted as f ∆ in Sections 4.2 and 4.3. Streamwise fluctuations u ′ out of experiments all consistently show high levels of energy for frequencies below St< 0.2. Such low frequencies have often been overlooked as they are considered as physically irrelevant, believed to be caused by experimental defects, despite the consistency of their presence in the measurements. Studying frequencies of such a low order of magnitude relatively to salient time scales of the shear layer is indeed challenging at best. However, a few investigations highlighted the importance of such scales in the open cavity flows, notably [START_REF] Rockwell | Vortex edge interaction: Mechanisms for generating low frequency components[END_REF]; [START_REF] Neary | Shear-layer-driven transition in a rectangular cavity[END_REF]; Delprat (2010) (see Section 1.1.6 for the detailled review). They usually pointed to a three-dimensional organisation of the inner-flow responsible for those frequencies.

Lately, global linear stability analysis, commonly used for confined flows in lid-driven cavities [START_REF] Ramanan | Linear stability of lid-driven cavity flow[END_REF][START_REF] Poliashenko | A direct method for computation of simple bifurcations[END_REF][START_REF] Albensoeder | Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem[END_REF][START_REF] Blackburn | The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow[END_REF][START_REF] Theofilis | Viscous linear stability analysis of rectangular duct and cavity flows[END_REF][START_REF] Chicheportiche | Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity[END_REF], has been applied to open cavities, notably by [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]; de Vicente ( 2010), with the aim of demonstrating the existence of linearly growing modes in the spanwise direction. They showed that such modes actually exist for low Reynolds numbers and low dimensionless cavity lengths (L/θ 0 < 60) yield very low frequencies compared to shear layer dynamics (f D/U 0 ≃ 0.02). Using direct numerical simulations, [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF] have shown that these modes may interact with the latter.

Another drastic amplitude modulation

In Figure 4.38, time-series of crosswise v ′ and streamwise u ′ velocity fluctuations and associated spectra are plotted for two points picked up in the shear layer and in the cavity, respectively. They depict the difference of the dynamics between the inner-flow and the shear layer selfsustained oscillations. In particular, the dominant frequency f a investigated in Section 4.2 is absent of the spectrum extracted near the bottom of the cavity. On the contrary, time-scales about 30 times larger than shear layer oscillations are encountered inside the cavity rather than in the shear layer -especially regarding the crosswise component.

In fact, such low frequencies correspond to amplitude modulations of the self-sustained oscillations. As seen in Figure 4.38.a, the energy of the shear layer flapping motion can actually decrease dramatically because of these very low frequency modulations. Note that these large time scales are not strictly a periodic phenomenon, which suggests a broad-band range of low frequencies. Nonetheless, the tip of that broad-band peak, already named f ∆ in previous sections, is clearly recovered both on its own and in terms of side-band peaks, 

f a ± f ∆ with f ∆ D/U 0 ≃ 0.02, ( 4 

Spatial structures associated with very low frequencies

Low frequencies around f ∆ have been identified as likely due to centrifugal instabilities and their nonlinear interaction with the shear layer modes has been revealed. Hence, the underlying spatial organisation inside the cavity would be insightful. Examples of global Fourier modes associated with f ∆ frequencies for various control parameters are provided in Figures 4.39-4.41.

Though the spatial structures differ from one configuration to another, several common features appear without ambiguity:

• These low frequencies yield high energy levels, even when compared to shear layer modes.

• the structures organise themselves in various branches winding on the main recirculation.

• there is no salient indication of travelling waves inside the xy-plane (no clear shift between real and imaginary parts).

• outflow is visible at the impingement, confirming once more the impact of those inner-flow large-scales upon the flapping motion of the impinging shear layer.

Case L/D = 1.0 in Figures 4.39.(a,b) is of particular interest for comparison purposes with numerical data performed by Yann Fraigneau and presented in Section 6.2. More generally, various L/D geometries have been studied numerically for lower Reynolds numbers Re D , that is closer to the threshold. Most notably, the global Fourier modes obtained in the present study are very similar to xy-cuts of three-dimensional eigen modes issued of linear stability analyses [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF][START_REF] Meseguer-Garrido | Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows[END_REF]. The coherent structures observed in the experiments likely correspond to the saturated state of spanwise waves covering the entire cavity along the span. That is why the second part of our investigation will focus on spanwise dynamics. Chapter 5

Spanwise dynamics

Until now, the analysis has focused on the main features of the open cavity flow, namely the impinging shear layer, usually exhibiting intense self-sustained oscillations, and its nonlinear interactions with the inner-flow. To that aim, the investigation dealt with a cross-stream (xy) plane containing the main directions of the flow. A common feature to all configurations under study was the dramatic modulations of the shear layer dynamics by modulating frequencies one to two orders of magnitude below the locked-on frequencies of the self-sustained oscillations.

These "very low" frequencies formed a broad-band peak, whose tip was noted f ∆ in the previous chapter. The dynamics associated with such large time scales were identified as slow moving structures in the inner-flow, overriding the flapping motion of the shear layer, deep inside the cavity. More specifically, the fluctuations associated with f ∆ concentrated onto the main recirculation and inside the boundary layers induced alongside the cavity walls. Such space and time scales suggest an underlying three-dimensional organisation.

As a matter of fact, though cavity flows have often been modelled as invariant in the spanwise direction (z), the main recirculation inside the cavity can give rise to three-dimensional structures. As introduced in the literature review (Section 1.1.6), existence of spanwise waves resulting from centrifugal instabilities has been shown both using experimental observations [START_REF] Djenidi | The turbulent boundary layer over transverse square cavities[END_REF][START_REF] Albensoeder | Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem[END_REF][START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF] and linear stability analyses [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF]. The study now concerns the space-time dynamics in a zx-plane inside the cavity to characterise such instabilities.

Preliminary remarks

PIV datasets

Experimental data have been generated from PIV images acquired in the spanwise zx-plane plane located at y piv = -0.1D, just below the shear layer, with D = 50 mm the cavity depth.

The two-dimensional two-component velocity fields (2D-2C) write

U zx (z, x, y piv ) U 0 = w(z, x, y piv ) U 0 e z + u(z, x, y piv ) U 0 e x , ( 5.1) 
here normalised by U 0 , the outflow velocity at separation (above the leading edge of the cavity).

Set-up and PIV computations have been discussed in Chapter 2, where the three investigated cases are described (Table 2.1).

The shear layer may be unstable or not, depending on the dimensionless cavity length L/θ 0 (Rockwell andNaudascher, 1978, 1979). Laser-sheet location y piv = -0.1D was chosen with the aim of identifying the three-dimensional structures of the cavity inner-flow where they can impact directly the impinging shear layer. Another interest of such a plane is its tangency to the rotating main recirculation: out-of-plane velocity v(z, x, y piv ) is far smaller than in-plane velocity U zx except for the outer regions of the main recirculation, nearby the leading and trailing edges of the cavity.

Examples of instantaneous velocity (and vorticity) fields are presented in Figures 5.1 and 5.2. The region of interest comprises the entire cavity span S = 10D. Dimensionless velocity components extracted from PIV datasets split up into mean flow (time-averaged field) and fluctuations as follow:

U zx U 0 = w + w ′ U 0 e z + u + u ′ U 0 e x .
(5.2)

As for the corresponding vorticity, it comes

ω y D U 0 = ∂u/U 0 ∂z/D - ∂w/U 0 ∂x/D = (ω y + ω y ′ )D U 0 . (5.3)
As expected for such Reynolds numbers, the cavity flow is three-dimensional: highly coherent spanwise-oscillating structures can be observed. No visible trace of two-dimensional streamwisetravelling wave from the shear layer is found in levels of crosswise vorticity component ω y . Indeed, shear layer modes remain mainly confined in xy-plane, hence generating only spanwise vorticity component ω z .

The first two configurations (A: Re D = 1500, D/θ 0 = 23.2) and (B: Re D = 2400, D/θ 0 = 29.4), respectively in Figures 5.2.(a-b), exhibit large scale structures with phase-frontlines all along the cavity length. The entire section, from upstream to downstream cavity walls, experiences a spanwise oscillation. Spanwise-oscillating vortical structures appear to be closely entangled to the base flow: ie. the main and secondary recirculations. For both cases, phase evolves continuously in the spanwise direction but experiences discontinuities around x/D ≃ 0.7 and x/D ≃ 1.8 with fluctuations nearby the leading and trailing edges of the cavity out of phase relatively to the main recirculation. Such phase discontinuities are consistent with qualitative results by [START_REF] Migeon | Details on the start-up developpment of the taylor-görtler-like vortices inside a square-section lid-driven cavity for 1000< re <3200[END_REF]; [START_REF] Migeon | Three-dimensionality development inside standard parallelepipedic lid-driven cavities at re=1000[END_REF]. These demarcation borders are also pointed out by converging (resp. diverging) streamlines which, in a slice of a three-dimensional flow, mark off the position of a sink (resp. source). Although they are generated with fluctuations of velocity, streamlines are still pulled in and stretched by an out-of-plane velocity, resulting in strong concentrations of vorticity. These features indicate that centrifugal instability waves travel along the main xy-recirculation cell. As for the characteristic length of the centrifugal instabilities, preliminary observations lead to a dominant wavelength of λ ≃ D, as expected for a L = 2D-length-cavity [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF]. Contrarily to low D/θ 0 ratios, case C (Re D = 5550, D/θ 0 = 46.6) in Figure 5.1.c has lost most of its spanwise organisation. It shows numerous vortical structures at small scale, erratically distributed, in particular near the downstream edge of the cavity. That evolution throughout parameter θ 0 can be explained by a mutation of the three-dimensional flow. Being at first dominant for low D/θ 0 cases, centrifugal instabilities generate well-organised spanwise waves in the inner cavity flow. Their associated vorticity is mainly carried by the xy-plane (ω ci ′ = ω cix ′ e x + ω ciy ′ e y ). Then in case C, centrifugal instabilities dynamics is disturbed by the unstable shear layer. Indeed, intense spanwise vorticity ω z ′ comes from the self-sustained oscillations whose amplitude grows with parameter L/θ 0 [START_REF] Rockwell | Self-sustained oscillations of impinging free shear layers[END_REF][START_REF] Knisely | Self-sustained low-frequency components in an impinging shear layer[END_REF]. An increase of the complexity with the dimensionless cavity depth D/θ 0 is in accordance with previous works [START_REF] Albensoeder | Nonlinear three-dimensional flow in the lid-driven square cavity[END_REF]Brès andColonius, 2007, 2008;[START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF]. 

Spanwise boundary conditions

It must be noted that in opposition to numerical simulations which often use periodic spanwise conditions, an experimental facility implies the cavity span to be limited by no-slip boundary conditions. In the present case, cavity endwalls are the floor and ceiling of the water-tunnel. U (x, y, z = ±S/2) = 0 with S = 10D

(5.4)

Instead of a 2D-base flow like those used in linear stability analysis [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF][START_REF] Theofilis | Global linear instability[END_REF][START_REF] Meseguer-Garrido | Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows[END_REF], such boundary conditions lead to the creation of Bödewadt (Ekman-like) layers of opposite sign near both endwalls. They form slow-rotating centripetal disks making the junction between the main recirculation and rigid boundaries. [START_REF] Albensoeder | Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem[END_REF]; [START_REF] Albensoeder | Nonlinear three-dimensional flow in the lid-driven square cavity[END_REF] have investigated the case of a square lid-driven cavity S/D = 6.5. The endwall regions therein expand as far as a quarter of the span, restricting vortical cells to the central region only (see Figure 1.5). The present results are closer to those obtained by [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF], who observed spanwise oscillations until a close vicinity of the endwalls. Furthermore, both numerical and experimental flows in lid-driven cavities [START_REF] Guermond | Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at re=1000[END_REF]; [START_REF] Migeon | Details on the start-up developpment of the taylor-görtler-like vortices inside a square-section lid-driven cavity for 1000< re <3200[END_REF]; [START_REF] Migeon | Three-dimensionality development inside standard parallelepipedic lid-driven cavities at re=1000[END_REF] as well as open cavities [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF] have shown that Bödewadt layers draw the outer edge of the internal cavity flow from the midspan region and then reinject the fluid back through the centreline of the main recirculation. That steady secondary flow may induce an additional spanwise drift to the centrifugal instability vortices twining around the main recirculation. On the other hand, the solid boundary conditions imposed by endwalls are also known to have a braking effect on the main recirculation of the inner-flow [START_REF] Shankar | Fluid mechanics in the driven cavity[END_REF]. This suggests that coiling perturbations, growing due to centrifugal instabilities, would propagate at a slower pace in the three-dimensional base-flow than in a two-dimensional base-flow.

Spanwise wavelengths analysis

Space Fourier transform

In order to determine spanwise wavelengths at play in the cavity inner-flow, a space Fourier analysis can be undertaken along the direction z. Spanwise wavenumbers are defined as

β = 2πD λ (5.5)
where λ is the corresponding spanwise wavelength. The principal issue with space Fourier Transform applied to that system is the lack of precision in the wavenumbers identification.

Relying on spanwise array length, here S = 10 D, wavenumber resolution is basically 2π/10 = 0.63. That is problematic since wavenumbers to be resolved are of the order of 2π, that is only 10 wavelengths in the whole span. Length of spanwise arrays is increased by padding them with zeros before Fourier Transform computation. The spectral resolution of space Fourier spectra is thus improved in spite of induced noise: dimensionless wavenumber step is decreased to δβ = 0.32. Statistics are then performed on spectra |F z (ω y ′ )| to obtain a mean spectrum |F z (ω y ′ )| : averaged over various x positions (one out of 4 rows, that is about 40 spanwise arrays) and the whole set of velocity fields (more than 2000 samples for each configuration). Spectra samples used for averaging are not fully independent. Nonetheless, having about 80000 spanwise arrays of different phase is large enough to get sufficient convergence in terms of Fourier transform intrinsic noise, hence a reduced confidence interval (see Section 3.1.2). Statistical convergence regarding the flow dynamics cannot be settled since we deal with a system exhibiting a high sensitivity to initial conditions and involving extremely large time-scales. The mean Fourier spectrum is displayed against dimensionless wavenumbers β in Figure 5.3 for the three cases. When the entire span is studied (dashed lines), the spectrum embraces side effects caused by Bödewadt boundary layers and evolution of centrifugal instability wavelengths along z. On the other hand, such boundary conditions also skew the assumption of periodic series and hence induce noise and globally scale down energy in spectrum. To reduce boundary effects, vorticity fields have been multiplied by a Hamming window (Equation 5.6) prior to Fourier computation (plain lines in Figure 5.3). Ω(z) = 0.54 + 0.46 cos 2πz S = 0.54 + 0.46 cos 2πz/D 10 (5.6)

The range and amplitude of active wavelengths grow wider and larger when going from cases A to C. This yields an increase of energy and complexity. Case C even shows a continuous spectrum, indicating a reduction of flow coherence. All cases exhibit maximal energy around β max ≃ 2π (that is λ ≃ D = 50 mm). More particularly, the highest peak is located at β max (A) = 6.3, β max (B) = 5.8 and β max (C) = 6.8 (±0.16), respectively. These results are coherent with those found in literature [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF]. Secondary peaks appear also for case B around β ≃ 7.5 and β ≃ 10. ′ , non-dimensionalised by U 0 /D. Prior to Fourier computation is applied either a square window (dashed) or a Hamming window (plain). Integrated along x/D and snapshots for greater statistics, curve thickness corresponds to the 95%-confidence interval of Fourier calculation.

Space Hilbert-Huang transform

On top of a poor resolution, space Fourier spectra only provide an averaged energy, integrated along the entire span series. If the signal under study is strongly modulated, either in amplitude or in frequency (wavenumber in the present case), projecting on Fourier modes removes local information. On the other hand, Hilbert-Huang transform (HHT) gives access locally to amplitude and wavenumber associated with each empirical mode. The description of the methodology (Empirical Mode Decomposition followed by Hilbert transform) in Section 3.2 constitutes a prerequisite to the forthcoming analysis.

Applied to the same datasets as space FFT, spanwise HHT can be used to build intensity distributions HH z (z, β), which yield the wavenumber contents and evolutions along the spanwise direction z. In practice, obtaining such distributions is not straightforward. The procedure is pictured in Figure 5.4. In brief, 1) From any snapshot, vorticity fluctuation ω y ′ (z, x) field is considered as a set of spanwise arrays (one out of 4 rows).

2) These spanwise arrays are processed with Empirical Mode decomposition (1D), resulting in Intrinsic Mode Functions (IMF).

3) Then, Hilbert transforms are computed on the IMFs to give access to spanwise functions of local amplitude A(z) and local wavenumber β(z) for each IMF at every considered position x of any snapshot in the TR-PIV dataset. 4) Re-ordering by descending averaged amplitude, the first IMF usually contains most of the Figure 5.4: Schematic outline of the space decomposition methodology using both Fourier and Hilbert-Huang transforms performed on dimensionless vorticity fluctuations ω y ′ nondimensionalised by U 0 /D energy already. In consequence, contributions of the other IMFs are neglected. 5) Noting t the snapshot index, one gets two 3D-matrices A(z, x, t) and β(z, x, t).

6)

Local wavenumbers β(z, x, s)) are equally sampled, such that β = i δβ with i ∈ N + and δβ = 0.1 (5.7) and weighted by corresponding local amplitudes in order to construct the amplitude distribution map HH z (z, β, x, t), so-called Hilbert spectrum in [START_REF] Huang | A new view of nonlinear water waves: the hilbert spectrum[END_REF].

HH z (z, β, x, t) = A(z, x, t) if β -δβ/2 < β β + δβ/2 (5.8) 7)
Integrating over streamwise position and snapshots, it comes (Figure 5.5) C exhibits a rather sparse distribution of wavenumbers. A common feature to all cases is the continuum of low wavenumbers 2π/10 β 1 present along the entire span. They correspond to the largest space scales of the flow since the cavity spans over S/D = 10. An increase is observed only when approaching the strict vicinity of lateral walls: larger gradients must be induced inside the Bödewadt layers as a consequence a solid spanwise conditions. That feature is particularly visible in Figure 5.5.c. It is remarkable that such space scales, corresponding to spanwise boundary conditions, persist despite the removal of the mean flow.

HH z (z, β) = HH z (z, β, x, t)dx dt. (5.9) (a) (b) (c) 
The marginal spectrum [START_REF] Huang | A new view of nonlinear water waves: the hilbert spectrum[END_REF] is obtained by integrating over z:

hh z (β) = z HH z (z, β) dz (5.10)
It is not equivalent to Fourier spectra. Instead of a power spectral density, a marginal Hilbert spectrum is rather a "probability" function of β, weighted by associated amplitudes A. Marginal spectra hh z are plotted in Figure 5.6 for the three cases. Part from the signature of the boundary conditions at β = 2π/10, the most "probable" wavenumbers are respectively β(A) = 6.35, β(B) = 6.25 and β(C) = 7.2 (±0.05).

Asymmetries are revealed, in case A : Re D = 1500 especially, for which more energy is found on the left side of the cavity. For a lower part in case B : Re D = 2400 where, on the other hand, higher amplitudes are observed towards the right wall. On the contrary, case C at higher Reynolds has become approximately homogeneous. Asymmetries will be discussed further in the following. ′ D/U 0 , for the three cases.

Space-Time structures in the inner flow

Until now, the study has been restricted to space scales only. Snapshots are used as samples to perform a statistic approach on spatial spectra. Though in a saturated regime, time evolution of centrifugal instabilities yet remains to be investigated. Spanwise structures could be timemodulated, travelling waves or steady phenomena, implying or not Strouhal numbers. In the following, the discussion focuses on temporal evolution of characteristic length-scales in the inner-flow.

Dataset coherence

Time scales are only available as long as successive snapshots remain dependent, at least in regards to frequencies at play in the inner-flow. PIV sampling rates for the three cases are f s (A) = 0.34 Hz, f s (B) = 0.37 Hz, f s (A) = 0.33 Hz, corresponding to dimensionless frequencies

St(A) = f s (A)D/U 0 = 0.57, St(B) = f s (B)D/U 0 = 0.39, St(C) = f s (C)D/U 0 = 0.15, respectively.
Those rates provide Nyquist Strouhal numbers far greater than frequencies expected to be involved in centrifugal instabilities. However, rising shear layer modes disturb spanwise fluctuations, which may lead to a swift loss of correlation in time.

A covariance matrix can help to highlight time-correlation in datasets. To that aim, a spanwise line is extracted at a given position x c /D = 0.5 from velocity fields such as to form a matrix

V i = [V 1 (z, x c ) V 2 (z, x c ) ... V N (z, x c )]
with N the number of snapshots considered. Then, the covariance cov ij between two instants V i and V j is calculated such as (5.11) where V i is the span-averaged value at instant V i . One can normalise cov ij to get correlation coefficients C ij as below

cov ij = k l V i (z k ) -V i V j (z l ) -V j ,
C ij = cov ij √ cov ii cov jj .
(5.12)

One obtains a symmetric matrix, whose diagonal is identically equal to 1. Correlation maps are given for the three cases A, B, C in Figure 5.7. The correlation matrix associated with case A reveals a strongly periodic pattern of period τ corr U 0 /D ≃ 50, properly resolved in PIV dataset. Note the dominant Strouhal number corresponding to correlation period is St= (τ corr U 0 /D) -1 = 0.02. There is also a long-period modulation corresponding to St≃ 300 -1 = 0.0033. Regarding case B, correlation map reveals a rather complex organisation. Hypothesis of dataset coherence continues to be valid as shown by maximum time-correlation values still extending to several successive snapshots (around matrix diagonal). However, despite some diagonal patterns barely visible, coherence period is not as long as for case A, which indicates that the flow involves multiple modes of oscillations. On the contrary, case C appears totally uncorrelated in time: high correlation coefficients are observed strictly on the diagonal. This was expected since the shear layer -greatly unstable for such parameters (L/θ 0 = 93.2) -implies much mixing inside the cavity. It drastically disturbs at high frequency the inner-flow dynamics. The forthcoming part of this chapter will focus on low Reynolds cases A and B, for which space-time coherence is present. 

Space-Time diagrams

Space-time planes are employed to investigate temporal evolution of vorticity fluctuations in the inner-flow for cases A in Figure 5.8.(a-f), and B in Figure 5.8.(g-i). Horizontal axes stand for spatial coordinates z ′ = z/D and x ′ = x/D, successively, while vertical axis represents dimensionless time t ′ = t U 0 D . On the left hand side, diagrams display a spanwise slice (z ′ , t ′ ) at a given position x ′ . On the right hand side, slices are streamwise (x ′ , t ′ ) and extracted from two distinct z ′ positions. Black dashed lines mark the positions of extracted space-time planes. Note that two different segments of the dataset are presented for case A in Figures 5.8.(a-c) & 5.8.(d-f), respectively for 30 t ′ 390 and 1775 t ′ 1905. The dimensionless time unit D U 0 is chosen for it was shown to be suitable to scale the frequencies involved in the inner-flow [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]. That time-scale corresponds to D-based Strouhal numbers, which will be used exclusively from now on (St = f D/U 0 ). Spanwise space-scales are observed out of any horizontal line of (z, t)-planes, in Figures 5.8.(a,d,g). As expected from space Fourier spectra in Section 5.2, both cases exhibit strong spanwise oscillations, whose characteristic wavelength is mainly found around λ = D (β = 2π). That wave-like signature corresponds to the centrifugal instabilities arising and rolling along the main recirculation. Three main scenarios are observed: i) left or right travelling waves represented by characteristic lines z = w ϕ t, with w ϕ the associated phase velocity; ii) interference effects when two counter-propagating waves superimpose; iii) steady structures nearby the endwalls.

i) Travelling waves

Phase velocities w ϕ of travelling waves can be estimated from slopes depicted by space-time structures. Some are pointed out by white plain lines, and provided in Table 5.1. The dimensionless spanwise phase velocity w ϕ /U 0 = ∆z ′ /∆t ′ is obtained out of Figures 5.8.(a,d,g). For case A, the lines (1), (2), ( 3) and ( 7) follow the primary spanwise travelling waves. Left or right waves, they travel at various dimensionless phase velocities of modulus |w ϕ /U 0 | from 0.006 and 0.022. These velocities link up the main spanwise wavelength λ ≃ D (wavenumber β ≃ 2π) to a Strouhal number through the expression

St = w ϕ U 0 β 2π = w ϕ U 0 D λ ≈ |w ϕ | U 0 .
(5.13)

The main time scales can be roughly estimated from streamwise diagrams (extracted streamwise lines), in 8) and ( 9) on the right-hand side of the cavity span (-2 z/D 5), a localised structure is pulsating for -4 z/D -2.

ii) Interferences (beating)

For some regions, those counter-propagating waves overlay and induce interferences (or beating), seen as draughtboard patterns in (z, t)-planes. This can be modelled as follow where β L 0 and β R 0. This rewrites as the product of two waves

ψ(z ′ , x ′ , t ′ ) = A ψ (x ′ ) sin 2πSt L t ′ -β L z ′ + sin 2πSt R t ′ -β R z ′ (5.14) (a) (b) (c) (d) (e) (f) (g) (h) (i) 
ψ(z ′ , x ′ , t ′ ) = 2 A ψ (x ′ ) cos 2πSt -t ′ -β -z ′ sin 2πSt + t ′ -β + z ′ , (5.15) such that St ± = St L ± St R 2 and β ± = β L ± β R 2 , ( 5.16) 
With this expression, one recognises a wave amplitude-modulating another wave. The phase velocities of the two resulting interference waves are given by

w ± ϕ = 2π St ± β ± .
(5.17)

The most salient example of such a pattern is given by the two counter-travelling waves depicted by slopes ( 1) and (2) in Figure 5.8.(a). In this case, the counter-propagating waves exhibit roughly equal wavelengths λ ≃ D,

β L = β(1) ≃ -2π and β R = β(2) ≃ 2π (5.18) therefore it comes β -≃ -2π and β + ≃ 0 (5.19)
As a consequence, the Strouhal numbers corresponding to the left and right waves (1) and ( 2) hence are approximatively equal to phase velocities (Equation 5. The value of St + is confirmed by observation of Figure 5.8.b. As for Strouhal number St -, one can remember the correlation map previously presented in Figure 5.7.a, which showed an amplitude modulation of period 300 in dimensionless units, yielding the very same interference St -≈ 300 -1 . Finally, the phase velocities (given by Equation 5.17)

w - ϕ = +0.002 and w + ϕ → ∞ (5.22)
indicate that the beating pattern consists of a slow-travelling wave (St -= -0.004, β -= -2π, w - ϕ = +0.002), globally modulated in time at the dimensionless frequency St + = 0.02.

Another example of beating is barely visible in the other time-segment in Figure 5.8.d for which there is almost no right wave to be seen. As for case B, a highly energetic draughtboard pattern is found in Figure 5.8.g. However, the underlying travelling waves are not clearly visible because the space-time structures are rather distorted by increased complexity of the dynamics (Re D ր, D/θ 0 ր). Nonetheless, two propagating features can be extracted by slopes ( 8) and (9) from Figure 5.8.g. In that case, remark that the left wave (w ϕ (8) = -0.017) is faster than the right wave (w ϕ (9) = 0.014). In Figure 5.8.i is observed a temporal oscillation of Strouhal number St ≃ 1/65 = 0.015. This could match an interference pattern composed of slopes ( 8) and ( 9 Could the setup imperfections be responsible for those symmetry breaking? As in any experiments, experimental conditions are characterised within uncertainties. Imperfections that could lead to spanwise asymmetries are concerned with the cavity geometry (a) and/or the incoming velocity profile, which can be altered by either a systematic asymmetrical velocity profile caused by the water-tunnel design (b); an angular discrepancy between the cavity rig and the water-tunnel (c) (see Figure 2.3 for setup). No systematic bias is observed since asymmetry varies depending on series. Therefore, uncertainties on both cavity geometry (a) and water-tunnel design (b) are ruled out for they remained unchanging during the entire campaign.

On the other hand, the set-up had to be opened (roof removal) in order to clean regularly the test-section of settling particles. As a result, the position of the rig could vary by about ±1 mm over the span S = 500 mm. Such an uncertainty (c) of ±0.2%, corresponding to an angular error of ±0.11°, cannot explain alone the symmetry breaking. Consequently, an intrinsic sensitivity of the dynamics should rather be considered, as it will be discussed in Chapter 6.

iii) (Quasi)-steady structures

For case A, the second segment presented in Figure 5.8.d shows steady structures near the lateral walls of the cavity (at |z/D| 0.5). These structures may be related to Bödewadt layers.

Regarding the streamwise space-time planes, Figures 5.8.(b-c,e-f,h-i) indicate a phase discontinuity around x/D = 0.8, likely corresponding to the frontier between the two recirculations. This is consistent with phase velocities u ϕ of opposite sign on each side of this position. When x/D > 0.8 phase velocities are positive (u ϕ (6), u ϕ (10), u ϕ (12) > 0), while waves travel backwards for x/D < 0.8 (u ϕ (5), u ϕ (11) < 0). 

Space-time modal decomposition

The space-time dynamics of the cavity inner-flow has been thoroughly characterised in the physical domain. More insight can be obtained through an investigation of the same patterns in the spectral domain. To that aim, a modal decomposition in time would give access to coherent structures associated with a given time-scale. Indeed, when samples are time-resolved, Fourier transform can be performed along time-series extracted from various points spatially distributed across the velocity fields, as shown in Section 3.1.4. If every point of the grid is selected, one ends up with a set of complex spatial modes of dimensions equal to those of velocity fields, each associated with a Strouhal number. Then, additional decomposition can help to identify the space scales yielded by each complex spatial modes under study.

Characteristic Strouhal numbers

Prior to investigation of coherent structures, a preliminary study consists in performing the power spectral density over time-series and integrating in space. Such time spectra are presented in Figure 5.9. Fourier transform uncertainty is reduced thanks to integration over the entire field and to window averaging: 95 %-confidence interval is about ±0.12 dB. Windows of 650 samples correspond to about 1130 and 1680 dimensionless time units (t U 0 /D) for cases A and B, respectively. Recall that time units are chosen accordingly to Strouhal numbers based on cavity depth D, a relevant scaling for frequencies induced by centrifugal instabilities [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]. Padding with zeros, Fourier transforms are computed over 1024 points, which results in spectral steps δSt(A) = 0.00056 and δSt(B) = 0.00038, respectively.

Both cases exhibit a spectrum culminating around St = f D/U 0 = 0.02, as expected from space-time diagrams and correlation maps. Other peaks are also observed but they could either represent independent modes or result from nonlinear interactions. They are classified in arbitrary spectral families m = {0 -4}, which will be investigated in Section 5. On the contrary, the spectrum of case B (Re D = 2400, D/θ 0 = 29.4) shows overall a higher background level, as expected from higher values of control parameters. Indeed, as the system goes further from threshold, more modes become unstable, leading to a wider range of active frequencies. Also, case B involves more energy than case A (see Figure 5.3), which can theoretically imply stronger nonlinear interactions. Settling the origin of these various peaks would be premature without an investigation of their associated spatial structure. 

Associated spatial modes

After the space-integrated power signature, spectral analysis can be developed through spatially extended (2D) time Fourier decomposition, as used in the previous chapter. The methodology is described in Section 3.1.4. Projecting the dataset on exp(2πif k t) functions, the resulting complex spatial modes (global Fourier modes) are available for any Strouhal St k such that

St k = k δf D U 0 = k N D U 0 δt with k = -N/2, ... -1, 0, 1, 2...N/2 (5.24)
where δt U 0 /D is the sampling step in dimensionless time units, and N + 1 the number of snapshots. Samples of N + 1 = 430 snapshots are used so that Strouhal steps are respectively

D/U 0 N δt (A) = 13 10 -4 & D/U 0 N δt (B)
= 8.9 10 -4 (5.25)

Real and imaginary parts of global Fourier modes associated with relevant Strouhal numbers are depicted in b).

Identifying space-scales

In order to identify space-scales associated with each relevant Strouhal number, both Hilbert-Huang and space Fourier transforms have been applied spanwise to (time) global Fourier modes, using the same methodology as in Section 5.2. The reader will find a schematic outline of the decomposition in Figure 5.10. On the Hilbert-Huang transform (HHT), Empirical Mode Decomposition is performed successively on real and imaginary parts of each time Fourier mode. One out of two x-positions are used. Then considering only the first two most energetic Intrinsic Mode Functions (IMFs), Hilbert transform gives access to local (β, A) couples throughout the field. For the sake of clarity and synthesis, the intensity maps of the picked IMFs are summed up resulting in Hilbert-Huang spectra HH z ωy (z, β 0, x, St k ). Integrating over the streamwise position x, one ends up with a Hilbert-Huang distribution HH z ωy (z, β) for each Strouhal number St k . Hereafter, Hilbert-Huang distributions will simply write HH z for the sake of simplicity (HHT has only been applied to ω ′ y fluctuations). Remark that both real and imaginary parts are considered independently from one another when HHT is applied. As a consequence, the information in phase contained in complex global Fourier modes is lost, which implies unsigned wavenumbers. HH z k maps are provided in Figures 5.11.b,5.18.b and Figures 5.12.c to 5.27.c.

Regarding the spanwise Fourier analysis, it is carried out at every position x and provide F zt (β, x, St k ) spectra in Figures 5.11.c,5.18.c for the mean flow and in Figures 5.12.d to 5.27.d. Spanwise arrays are originally composed of 823 points (823 vectors spanwise in the velocity fields). To increase spectral resolution, they are padded with zeros to reach 1024 points (corresponding to a length of 1.25S). Despite that extention of spanwise arrays, spectral resolution of F z (β, x, St k ) remains far lower than the one of HHT spectra. On the other hand, Fourier transform provides a spectrum of signed wavenumbers. Indeed, by taking into account the phase of the (complex) time Fourier modes, space Fourier transform preserves left or right-travelling waves. The Fourier spectrum is not integrated over x to provide a streamwise distribution of energetic wavenumbers, while the HHT spectrum gives access to their spanwise distribution.

Results

We aim to discuss the coherent structures revealed by time and space decompositions applied to our experimental results. For each considered time scale, space scales distribution can help to identify the underlying phenomenon. Note that it would be fastidious and pointless to discuss every frequency extracted from the spectrum. Instead, only a handful of global Fourier modes are presented here. Remark that results are obtained out of a limited number of events. In this sense, they yield characteristic features of the present dataset rather than an exhaustive • m = 0: Prior to the study of characteristic Strouhal numbers of the dynamics, the first mode to be considered is the mean flow, which can be seen as the mode St = 0 (see Figure 5.11). Contrary to the forthcoming Fourier modes, the mean flow is obviously not complex since it yields no temporal behaviour by definition (the spanwise Fourier spectrum is thus symmetrical). Overall, it exhibits almost no spanwise oscillations so that β → 0, indicating an organisation fairly two-dimensional (in terms of cross-stream vorticity ω y ). Note that β = 0 mode is available in space-Fourier spectrum whereas Hilbert-Huang transform deals only with oscillatory modes by definition (Intrinsic Mode Functions). As a result, for HHT spectra one gets min(β) = 2π/10, which corresponds to the largest wavelength, that is the cavity span S = 10D. Nevertheless, the endwall regions exhibit some energy with wavenumbers increasing to reach β ≃ 10 (λ/D = 0.6). This represents the (steady) signature of the spanwise solid boundary conditions. The spanwise space Fourier spectrum indicates the oscillations are of higher amplitude near the downstream edge of the cavity (Figure 5.11.c). As data acquisitions last for long periods (typically 20 min), experimental conditions can vary, implying slow motions in theoretically steady phenomena. Consequently, the lowest Strouhal numbers can be considered as completing the mean flow. For instance in Figure 5.12, the mode associated with St = 0.001 for case A involves slowly moving waves nearby the endwalls, at β = ±10, it is thus very similar to the mean flow.

• m = 1: In the time-spectrum in Figure 5.9.a, a peak appears at St 1 = 0.007 for case A. Its spatial structure is displayed in Figure 5.13 and indicates a travelling mode (phase quadrature between real and imaginary parts). The unique positive wavenumber β 1 = 8 in the Fourier transform implies a single right travelling wave ψ 1 (z, x, t) such as

ψ 1 (z, x, t) = |ψ 1 (z, x, t)| exp[i(2πSt 1 t ′ -β 1 x ′ )]
(5.26) with the dimensionless variables x ′ = x/D and t ′ = t U 0 /D. The associated phase velocity c 1 can be deduced through the relation • m = 4: Extracted at St 4 = 0.039, the mode investigated in Figure 5.17 depicts a left-travelling wave of wavenumber roughly such that 10 β 13. This mode unambiguously corresponds to the first harmonic of the dominant mode 2 L , displayed in The focus is now on case B for which the control parameters have been increased (Re D = 2400 and D/θ 0 = 29.4). The time spectrum in Figure 5.9.b has shown that temporal dynamics is richer than in case A. Characteristic global Fourier modes are presented and the associated spanwise space-scales are investigated the same way as before, using both Hilbert-Huang transform and space-Fourier transform.

c 1 U 0 = 2π St 1 β 1 ≃ 0.0055 ( 
• m = 0: The meanflow in Figure 5.18 is similar to the one seen for case A. One primarily observes a strong two-dimensional signature (β ≃ 0) close to downstream and upstream cavity walls (x/D → 0 and x/D → 2). Low energy spanwise oscillations arise nonetheless nearby the endwalls.

The global Fourier modes associated with the lowest Strouhal numbers can be considered as steady structures within uncertainties and experimental defects. In this respect, they constitute an extension of the mean flow. The spatial structure presented in Figure 5.19 is associated with Strouhal number St= 0.002. Unlike case A, "quasi" steady spanwise oscillations are distributed over the entire span quite homogeneously (Figure 5.19.a-c) and broad-banded in the spectral space. Fluctuations yield both positive and negative wavenumbers ranging continuously over 7 |β 0 | 13 (that is 0.5 λ/D 0.9). In addition, note that fluctuating energy corresponds essentially to spanwise fluctuations since the spectral range around zero (F z (β ≈ 0, x) → 0) is blank (Figure 5.19.d). • m = 1: Regarding "slow-moving structures" (m = 1), while case A exhibited a single mono-chromatic right-travelling wave, one observes in case B a continuum of modes for frequencies up to St= 0.010 (Figure 5 The global Fourier mode presented in Figure 5.22 shows another left-travelling wave whose wavenumbers range as -7 β -4. This wave is particularly interesting because it is tremendously modulated both in amplitude and wavenumber -see . In particular, one notices the parabolic evolution of the dominant wavenumbers in HH z map. In brief, as the Strouhal number raises, one observes a monotonic decrease of associated wavenumbers. As a result, these left-travelling modes pertaining to the family (m = 1) actually do not share the same phase velocity. Their phase velocities c 1 (St 1 , β 1 ) indeed evolve quite continuously from -0.002 to -0.015, (5.29) This continuum of modes suggests an underlying multi-component wave, yielding a positive group velocity, that is opposite to the phase velocities of every wave components. • m = 2: Similarly to case A, the time spectrum for case B (Figure 5.9.b) shows a pair of dominant peaks corresponding to the dominant wavelength λ/D ≃ 1 (β 2 = ±2π). Those two peaks are found at St = 0.013 and St = 0.018, respectively.

with St 1 ր, |β 1 | ց ⇒ -0.002 c 1 U 0 = 2π St 1 β 1 -0.015.
υ 1 = 2π ∂St 1 ∂β 1 ≈ 0.01 ( 
The former is associated with the mode presented in Figure 5.24, consisting of a right travelling wave confined in the region 1.5 z/D 5. Based on the same sample as the space-time diagram in Figure 5.8.g, the characteristics and the location of the present mode suggest a connection with the feature pointed out by slope 9. For that matter, there is a match between phase velocities (see Table 5.1) More generally, if one considers all travelling modes for both cases A and B, associated with the dominant wavenumber β = ±2π, one recognises a common characteristic shape, tilted with respect to the direction of propagation. (5.33)

c 2 R U 0 = 2π St 2 R β 2 R = 0.
Instead, Figure 5.27 reveals a left-travelling wave associated with space scales clearly larger than λ = 1/3, since 5 β 10. In addition, this wave organises as "S"-shaped structures located around mid-span, a signature distinctive from any other Fourier mode extracted from the same sample. This rules out a nonlinearly produced structure and rather points to an independent origin: maybe another linearly unstable mode. 

Synthesis

On the multiple modal decompositions

• Time Fourier modal decomposition provides very coherent modes, that identify unambiguously the different components of the flow, despite the fact that spanwise waves arising in the cavity inner-flow are not strictly periodic but rather strongly amplitude modulated.

• Also, modal identification using time Fourier transform is challenging when applied to dynamics exhibiting such a continuous spectrum. In that regard, the sample discussed here is not exhaustive but aims to provide an insightful picture of three-dimensional features encountered in the inner-flow, resulting from centrifugal instabilities in particular.

• Spanwise Fourier and Hilbert-Huang transforms have revealed themselves quite complementary. Results from both methods fairly match, thereby validating the identified spacescales. In addition, both methods complete each other as summarised in Table 5.2. ⊲ Fine information on both amplitude ⊲ Streamwise distribution and wavenumber modulations ⊲ Spanwise integration (concise and statistic information)

On the identified dynamics

The main features of the dynamics observed in cases A and B are presented in Table 5.3. Both flows share several common characteristics in spite of different control parameters. The most important is the presence of highly coherent propagating waves such as described below.

Dominant counter-propagating waves

The dominant space-scale β ≃ ±2π is associated with mono-chromatic travelling waves, corresponding to a single Strouhal number such that St ∈ [0.013, 0.023]. In fact, the dominant dynamics of the flow often involve pairs of counter-propagating waves, starting from a single source, not necessarily located at mid-span. When two travelling waves coexist, typically in the source region, they can therefore overlap to produce interferences (beating). However, standing waves are not likely since counter-propagating waves are generally not symmetrical. Those dominant waves are consistently shaped as highly coherent structures covering the whole cavity length, with a phase discontinuity around x/D = 0.8. Because wavenumbers are roughly identical for all those waves, Strouhal number and phase velocity are directly connected.

Concerning the effect of lateral boundary conditions, travelling waves present smaller phase velocities nearby the endwalls. For instance, the source of the pair of counter-propagating waves shown in Figures 5.14 & 5.15 is located closer to the left-wall than to the right-wall. As a result, the right-travelling wave (St = 0.023) is faster than the left-travelling wave (St = 0.019).

The situation is inversed when considering the pair of counter-travelling waves shown in Figures 5.24 & 5.25. It can be inferred that wave properties of the flow depend on the source location, relatively to the endwalls: the propagation could be slowed down by solid boundary conditions [START_REF] Shankar | Fluid mechanics in the driven cavity[END_REF]. Chapter 6

Broad-banded structures

Discussion on centrifugal instabilities

The space-time analysis of the time-resolved zx-velocity fields has revealed different patterns resulting from the spanwise modulations of the cavity inner-flow. Direct observations of spacetime diagrams extracted from the experimental datasets have been confirmed and quantified by the results issued of modal decomposition in the spectral domain. As the system was studied in the permanent regime, we have been dealing with saturated travelling waves arising in the innerflow. In that regard, we expect that our observations be better-understood in the framework of amplitude equations.

Nonlinear regime

The previous chapter has shown that amplitudes of spanwise oscillations actually evolve over space and time, but at much larger scales than the characteristic wavelength and frequency of the underlying travelling waves. It is therefore reasonable to assume that scales are separated, hence, amplitude dynamics may be described by amplitude equations following an adiabatic reduction of the dynamics. The form of the amplitude equations is imposed by the symmetries broken by the primary instability. In the present case, where the transition is fairly supercritical, let us consider the rising of two modes, counter-travelling waves of identical dimensionless frequencies, St L = St R , and opposite wavenumbers, β L = -β R , such that the state may be described as

ψ(z ′ , t ′ ) = A L (z ′ , t ′ ) e i(2πSt L t ′ -β L z ′ ) + A R (z ′ , t ′ ) e i(2πSt R t ′ -β R z ′ ) . (6.1)
with z ′ = z/D and t ′ = t U 0 /D the dimensionless spanwise and time variables, respectively. In that case, the amplitude equations should reduce to cubic coupled complex Ginzburg-Landau equations (CCGLE) of the form

           τ ∂A L ∂t ′ -υ ∂A L ∂z ′ = αA L -ξ|A L | 2 A L -χ|A R | 2 A L + η ∂ 2 A L ∂z ′2 τ ∂A R ∂t ′ + υ ∂A R ∂z ′ = αA R -ξ|A R | 2 A R -χ|A L | 2 A R + η ∂ 2 A R ∂z ′2 (6.2)
where the coefficients are unknown but identical for both modes. Note that asymmetric modes would imply non-equal coefficients.

For each "carrier" mode (St j , β j ) with j = {L, R}, the characteristic time-scale of the amplitude dynamics is given by τ . Physically, the real part of α/τ represents the linear temporal growth-rate of the underlying mode j, while the imaginary part of α/τ accounts for the angular frequency of the amplitude modulation, if it exists. Coefficients υ and η are the group velocity and diffusion coefficient, respectively. Coefficients ξ and χ characterise the contributions of the nonlinear terms. The real part of ξ is positive in order to counter-balance the (linear) growing of the mode. The imaginary part of ξ/τ accounts for the nonlinear frequency shift of the mode in the saturated regime and χ accounts for the coupling between both modes.

The evolution of these coefficients can be considered with respect to ̺, the control parameter. If ε designates the distance to critical point ̺ c in the parameter space

ε = ̺ -̺ c ̺ c , (6.3)
then the coefficient α, which yields the temporal evolution, scales like ε. On the contrary, coefficients τ , υ, η, ξ and χ are usually supposed to be, at the leading order, independent of the control parameter. On the other hand, since the present case deals with three-dimensional dynamics, diffusion and nonlinear coupling terms can logically depend on the 3D-distribution of the wave varying with respect to its wavenumber β. Consequently, CCGLE coefficients are likely functions of β. Moreover, note that in the present case, one expects a multi-dimension parameter space, yielding notably dimensionless cavity depth, Reynolds number or cavity aspect ratio. Control parameters hence actually write

̺ = [̺ 1 , ̺ 2 , ̺ 3 , ...] = [D/θ 0 , Re D , L/D, ...] (6.4)
Embracing the inner-flow space-time dynamics would obviously require a much more complete system of coupled equations.

Nevertheless, even a single pair of counter-travelling waves actually suffices to explain the features encountered here. For instance, [START_REF] Riecke | The stability of standing waves with small group velocity[END_REF] used an equivalent system of two CCGLE to describe the interaction of two counter-propagating waves regarding the stability of standing waves with small group velocity, which recalls the patterns seen earlier in Sections 5.3.2 & 5.4. Indeed, the system under investigation in [START_REF] Riecke | The stability of standing waves with small group velocity[END_REF] was revealing space-time figures fairly similar to ours. In particular, one could find localised regions of the space-time domain where counter-travelling waves superimposed to create standing waves whereas the same travelling waves excluded each other in other regions of the space-time domain. The authors explained these dynamics using an amplitude stability analysis. This led to a stability condition of standing waves which can be reduced to the following criterion:

     ξ 2 r > χ 2 r ⇒ Standing waves (superimposition) ξ 2 r < χ 2 r ⇒ Stand -alone travelling waves (exclusion) (6.5)
where ξ r and χ r are the real parts of the coefficients ξ and χ, respectively. Such a condition compares the saturation effects (ξ r ) relatively to coupling between the two modes (χ r ). It seems reasonable that superimposition occurs only if the energy transfer between the two wave remains limited relatively to the wave enhancement.

More similarities can be found in numerous references making use of CCGLE. The systems under study, though generally of low dimension, already exhibit symmetry breakings and dependence to initial conditions. For example in 1D-systems, sources and sinks due to two counter-travelling waves are investigated in [START_REF] Van Hecke | Sources, sinks and wavenumber selection in coupled cgl equations and experimental implications for counter-propagating wave systems[END_REF]; Pastur et al. (2003a,b).

In [START_REF] Malomed | Domain wall between travelling waves[END_REF], a separatrix of the space-time domain is identified as the collision of two travelling waves or a source or a sink.

To conclude, amplitude equations could provide an interesting prospect but obviously need further investigation. The scheme at hand is of course more complex than the one described by the idealised case of two rising symmetrical modes. Relying on (spanwise) linear stability analysis, the following discussion will show that several (continuous) branches of linearly growing modes are actually expected to arise in the inner-flow.

Linear regime

Until now, analysis of the flow dynamics focused on identifying and characterising the inner-flow in the permanent regime. The system under study was thus observed after saturation had occurred and in a three-dimensional geometry (solid spanwise conditions). While such a study is essential regarding the nonlinear interactions at play, it makes it difficult to settle the origin of the instabilities. Investigation of the mechanism underlying the onset of instabilities consists in studying the linear stability of the system around a steady solution, the base flow U B . These days, it is commonly achieved through numerical simulations, as detailled in the literature review (Section 1.1.6).

In the case of three-dimensional instabilities in the cavity inner-flow, one generally uses a two-dimensional base-flow U 2D B to which spanwise wave disturbances are applied using spanwise periodic conditions. The rise or decay of these disturbances characterise the stability of the system against the considered space scale. The growth rate σ is obtained as a function of the wavelength λ/D (or wavenumber β).

Such a linear stability analysis was conducted by Yann Fraigneau at LIMSI, in the frame of this work [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF], along with three-dimensional direct numerical simulations of an incompressible open square cavity flow (L/D = 1). The direct numerical simulations (DNS) are briefly presented below but details on the OLORIN code and other technical informations can be found in [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF].

Direct numerical simulations in an open square cavity

The numerical study addresses an incompressible and isothermal flow whose governing equation can be described by the non-dimensional Navier-Stokes equations:

   ∂U ∂t + (U • ∇) U = -∇p + 1 Re D ∆U ∇ • U = 0 (6.6)
where U is the velocity field and p the pressure field. The geometric setup consists in an open cavity capped with a parallelepipedic duct in which is generated the channel flow driving the inner cavity flow. A cartesian coordinate system (x, y, z), for streamwise, crosswise and spanwise directions, respectively, is set midspan at the top of the upstream cavity wall. The cavity dimensions are L = 50 mm, L/D = 1, S/D = 6, similar to experimental conditions at LIMSI. Upstream and downstream lengths of the duct are respectively L u /L = 1 and L d /L = 3 and its height is D v /D = 3. The Reynolds number is set to Re D = 3 850 (external velocity U 0 = 1.2 m/s), and the boundary layer momentum thickness is such that D/θ 0 = 38.5. Data from the DNS are used further in this section as a reference for linear stability results.

Linear stability analysis

The linear stability analysis characterises the time-evolution of infinitesimal three-dimensional perturbations, u ′ , with respect to an unstable steady base flow U B , by means of linearised Navier-Stokes equations. The method is described in [START_REF] Mamum | Asymmetry and hopf bifurcation in spherical couette flow[END_REF]. One rewrites the system as ∂u

′ ∂t ′ = N u ′ + ∆u ′ ≡ Au ′ , (6.7)
where N is the linearised operator of evolution around the base-flow U B , associated with the Eulerian part of the Navier-Stokes equations and ∆ is the linear operator associated with viscous terms. The main instability features are depicted by the leading eigenpairs of the linear evolution operator, A, namely eigenpairs with the greatest real part. Leading eigenpairs are determined by the Arnoldi method [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF].

In practice, the use of a full three-dimensional base flow is still out of reach. On the other hand, two-dimensionalised base flows U 2D B are now widely used, for instance in [START_REF] Albensoeder | Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem[END_REF]; [START_REF] Theofilis | Advances in global linear instability of nonparallel and three-dimensional flows[END_REF]; [START_REF] Theofilis | An algorithm for the recovery of 2-and 3-D BiGlobal instabilities of compressible flow over 2-d open cavities[END_REF]; [START_REF] Ehrenstein | On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer[END_REF]; [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF]; [START_REF] Ehrenstein | Two-dimensional global low-frequency oscillations in a separating boundary-layer flow[END_REF]; [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]; [START_REF] Barbagallo | Closed-loop control of an open cavity flow using reduced-order models[END_REF]; de Vicente (2010); [START_REF] Theofilis | Global linear instability[END_REF][START_REF] Meseguer-Garrido | Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows[END_REF]. In order to get the two-dimensionalised base flow U 2D B , a preliminary two-dimensional numerical simulation is performed in the cross-stream plane (xy), for the same Reynolds number Re D = 3 850. Note that using spanwise periodic boundary conditions is indeed a simplification of the system. The base flow U 2D B is shown in Figure 6.1. This square cavity configuration constitutes a canonic case providing a particularly straightforward analysis. Indeed, in spite of the relatively high Reynolds number, this two-dimensional geometry exhibits a stable steady-state (no shear layer oscillation). Using a L/D = 2-cavity instead would have implied a larger dimensionless cavity length (L/θ 0 = 77), the control parameter of the impinging shear layer. This would have led to an unstable two-dimensional flow and therefore would have required dedicated methods to converge to a steady base-flow.

Hereinbelow are reported the salient results of the linear stability analysis, whose full extent is presented in [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF].

A two-dimensionally stable flow implies that the instability of the complete three-dimensional base-flow U B must occur with respect to spanwise modes. Therefore, the initial conditions superimposed upon the two-dimensional base-flow U 2D B are of the form:

u ′ (x, y, z) = u 0 (x, y) cos 2π λ m z exp (µ m t) , (6.8)
that is, a mode of wavelength λ m = D/m, m ∈ N ⋆ , in the spanwise direction, and (complex) growth-rate µ m = σ m + iω m , with σ m the temporal growth-rate and the angular frequency

ω m = 2π St m D/U 0 . (6.9) (a) (b) 
Figure 6.2: Dimensionless growth-rate (a) and frequency (b) with respect to dimensionless spanwise wavelength λ/D. Three families are found: i) steady growing modes (black squares), ii) oscillatory growing modes, with a constant frequency, St = f D/U 0 ≃ 0.025, and small wavelength, 0.24 λ/D 0.62 (green triangles), iii) oscillatory growing modes of larger wavelength, with a frequency increasing with wavelength (red circles). The faster-growing mode belongs to family i) with a dimensionless wavelength λ/D ≃ 0.4.

Only stationary wave-like modes are considered because no spanwise drift is observed in the permanent flow (DNS). The base flow is unstable with respect to the modes such that σ > 0, resulting in three branches of linearly growing modes. The associated temporal growth-rates σ and Strouhal numbers St are provided in Figure 6.2, as functions of λ/D. No unstable mode is found for wavelengths λ/D > 1.32, which confirms the base-flow stability with respect to streamwise perturbations (σ < 0 when λ → ∞).

One branch (black squares in Figure 6.2) is associated with a steady structure (St = 0), for wavelengths λ/D ∈ [0.24, 0.62]. The largest growth-rate on this branch is found at λ/D = 0.40. We will refer to this mode as mode (i). A spatial representation of mode (i) is shown in Figure 6 Regarding the spanwise boundary conditions, the no-slip conditions implied by endwalls in the experiments could have an additional effect on the onset and the development of the linearly unstable mode. A DNS run has been performed in the very same conditions part from the spanwise rigid boundary conditions. The top view of an instantaneous field is displayed in Figure 6.4. It shows that no-slip conditions actually have a limited effect on the periodicity of the structures: the non-invariance mostly restricting to the direct vicinity of the endwalls. The wavelength is otherwise equal to the one predicted by linear stability analysis (λ/D ≃ 0.4). However, one observes a drift of the vortical rolls from the mid-span region towards the endwalls, as expected from the experiments in the spanwise plane in the present chapter, as well as in the literature [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF]. Furthermore, one may recall the global Fourier modes obtained from experimental results in an xy-plane in previous chapter (Section 4.5). In particular, Figures 4.39.(a,b), displayed spatial structures associated with the tip of a broad-band peak at frequency f ∆ D/U 0 = 0.017 in a similar geometry (L/D = 1.0), but for a much higher Reynolds number Re D = 7700. The control parameter L/θ 0 = 54 was such that shear layer oscillations were of particularly low amplitude. These structures fairly look like those of Figure 6.3 -mode (i) -but are unsteady. This is likely due to the same endwall-induced drift.

In Figure 6.2 is also found another branch of modes (green triangles), referred to as (ii), with similar space scales (over the same range of wavelengths λ/D ∈ [0.24, 0.64]) but oscillating in time. They exhibit Strouhal numbers roughly constant at St ii = 0.0255. Again, the highest growth-rate corresponds to wavelength λ/D ≃ 0.4 (β = 15, 7). The complex spatial mode associated with the highest growth rate is given in Figure 6.5. The structure resembles that of the steady mode (i) but it indicates a swaying motion represented by the phase shift between the real and imaginary parts. Indeed, real and imaginary parts are neither phase opposed (as a standing wave) nor in quadrature of phase (as a travelling wave). This family (ii) of oscillating modes yields smaller growth rates than the steady modes seen earlier. One can wonder if they actually influence the permanent regime. To that aim, a local measurement has been extracted from the saturated flow in the three-dimensional DNS.

The power spectral density out of this time-series is plotted in Figure 6.6. The frequency of the fastest-growing mode of family (ii) is present at St = f D/U 0 ≃ 0.026, but the dominant peak rises at half this frequency, St = f D/U 0 ≃ 0.013. Those modes seem to modulate in time the underlying structures of the first family (i). Moreover, the dynamics associated with f D/U 0 = 0.026 are similar to the eigenfunctions of family (ii) (see [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF] for details). This suggests that both families (i) & (ii) appear in the flow in the permanent regime.

In other words, the saturated flow is influenced by not only the most linearly unstable mode but rather a selection of several unstable eigenmodes. 3.17.

Once again, these spatial structures are insightful with regards to the global Fourier modes obtained from experimental results in an xy-plane. For the sake of comparison, Figure 6.7 presents the spatial structures of streamwise velocity component u ′ associated with Strouhal number St = 0.027, in the very same geometry L/D = 1.0 and for a higher Reynolds number Re D = 7700. Except for the logically higher noise level in the experiment, both real and imaginary parts of the global Fourier mode in Figure 6.7 look very similar to those of the spanwise eigenfunction in Figure 6.5. They could coherently correspond to the saturated state of the linear mode (ii).

Finally, a third branch of linearly unstable modes is observed (red circles) in Figure 6.2. Denoted (iii), those modes are associated with larger wavelengths, starting from the point where the stationary branch becomes stable at λ/D = 0.62 until λ/D = 1.32. Corresponding Strouhal numbers increase from 0 to about St = 0.0146. The largest growth-rate is found for λ iii /D ≃ 0.82 with St iii ≃ 0.012. Note that the eigenfunctions of branch (iii) actually exhibit wave characteristics similar to those of the continuum of travelling waves pointed out in the experiments for case B.

To conclude, linear modes are recovered in the permanent regime without significant distortion, despite the nonlinear effects. Remark that such an assertion should not be trivially generalised to any configuration for the stability properties of the flow logically depend on the geometry. In fact, [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF]; de Vicente ( 2010) have demonstrated that the square L/D = 1 cavities actually presents some peculiar features. For instance, the most linearly unstable mode corresponds to a wavelength of λ/D = 0.4 where larger aspect ratio typically show a wavelength of higher growth rate around λ/D ≃ 1. Linear stability studies have demonstrated that the mode family here-called (iii) becomes more unstable when L/D increases. Furthermore, wider cavities are generally also two-dimensionally unstable, against Kelvin-Helmholtz modes of the shear layer. Nevertheless, eigenfunctions generally share similar characteristics with saturated dynamics observed in the experiments, regardless of the geometry. These salient features are summerised hereinafter:

• The existence of continua of modes over a large range of wavenumbers (wavelengths) is typical. It explains why multiscale patterns have been identified with the space-time analysis of the permanent regime, even without strong nonlinear couplings.

• Associated frequencies are scaled as similar D-based Strouhal numbers (St 0.03).

• Eigenfunctions are fairly consistent with the global Fourier modes obtained from experiments.

Promising results are about to be published in the frame of an ongoing collaboration with Javier de Vicente and Fernando Meseguer from Universidad Politecnica de Madrid. They have performed an extensive parametric study of the global eigenfunctions in the open cavity flow.

In particular, some of their configurations match the two cases experimentally investigated in this thesis (L/D = 2 and Re D = {1500, 2400}).

Concluding remarks

• The two experimental campaigns, performed in both xy-and zx-planes, have confirmed the existence of a broad-banded dynamics within the inner-flow, associated with low frequencies such that f D/U 0 ≈ 0.02. The spatial structures observed in both planes correspond to the very same three-dimensional dynamics, which consists of spanwise-distributed vortical structures coiling onto the main recirculation.

• The spanwise waves observed experimentally correspond to the saturated state of centrifugal instabilities, which are onset around the main recirculation alongside the cavity walls. The linear stability of a 2D base-flow with respect to (periodic) spanwise waves shows that entire wavepackets can arise naturally. The fluctuations due to centrifugal instabilities scale on the cavity depth D. In particular, spanwise wavelengths λ are typically such that 0.4 λ/D 1.6.

• In the permanent regime, localised or global features can occur and endure, depending on the initial conditions or/and a slight uncertainty on flow conditions. The most salient phenomena are pairs of counter-travelling waves of wavelength λ/D ≃ 1 (β ≃ 2π), associated with frequencies such that 0.013 St = f D/U 0 0.023. That range of Strouhal numbers is in good agreement with the results from direct numerical simulations in the compressible regime by [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF] (0.015 St = f D/U 0 0.026). Interference effects are observed between travelling waves. This results in a beating which induces an overall time modulation of the flow.

• The influence of solid walls as opposed to periodic boundary conditions is visible in the experiments. First, the closer to the endwalls travelling waves are, the slower they are. This might suggest that infinite distance from the endwalls (equivalent to periodic conditions) would result in dominant frequencies closer to those of linear stability analyses, that is around St = 0.025 [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF][START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF]. Second, steady (or slow moving) structures are more likely to be observed nearby the endwalls. These structures typically yield larger wavenumbers around β = 10.

Chapter 7

Conclusions

Context

Open cavity flows have been long studied, along with other impinging flows, for their astonishing properties regarding the self-sustained oscillations of the shear layer. Extensive research has been carried out regarding the locked-on flapping motion of the shear layer, responsible for intense noise generation and fluid-structure interactions.

An exhaustive understanding of the global organisation of the cavity flow yet remains out of reach. In particular, secondary aspects have often been neglected. Side-band peaks resulting from nonlinear interactions induce a discrepancy between shear layer spectra from experiments and predictions of empirical simplified models. Through space-time analysis in the permanent regime, new insight about the saturated state of the self-sustained oscillations could be gained.

In addition, both lid-and shear-driven cavities have become interesting objects in regards to three-dimensional dynamics at play around the main recirculation induced by either the lid or the outflow. The rise of centrifugal instabilities has been observed both experimentally and numerically, and confirmed by linear stability analysis.

When dealing with open cavities, shear layer dynamics inject fluctuations of spanwise vorticity, which interact with centrifugal instabilities to induce more complexity. Few observations have imputed low frequency amplitude modulations of the shear layer waves to spanwise oscillations in the inner-flow. Numerically, similar nonlinear interactions between centrifugal instability waves and Rossiter modes have been highlighted in the compressible regime for low Reynolds numbers (typically Re D = 1500). However, experimental investigations were still needed to focus on the spanwise waves of the inner-flow in the permanent regime.

Means

We have focused this work on the space-time dynamics of an incompressible three-dimensional open cavity flow in the permanent regime. To that aim, experimental investigations using timeresolved PIV measurements have been realised. Giving access to time-resolved snapshots is particularly useful since it enables the modal decomposition in time of space-extended information. Hence, it helps in identifying spatial structures associated with any given time-scale. Coherent structures such as travelling waves, interference patterns or amplitude modulations can be revealed and characterised, bringing insightful information about the nonlinear effects at play in the saturated state.

The permanent regime allows us to use time Fourier transform for most of the analysis (no transient dynamics). Global Fourier modes were hence obtained through time Fourier decomposition applied to time-resolved velocity fields. On the other hand, the space scales of the spatially modulated spanwise waves observed in the inner-flow called for a more advanced identification.

In particular, (complex) global Fourier modes issued of time-Fourier decomposition were investigated through spanwise modal decompositions: both Fourier and Hilbert-Huang transforms were used. The analysis took benefit of Hilbert-Huang transform for a precise and local esti-mation of the amplitude and wavenumbers along the span through Hilbert-Huang transform. Statistic information and direction of the waves (sign of wavenumbers) were obtained by Fourier decomposition.

In order to study the shear layer nonlinear dynamics on one hand and the spanwise waves in the inner-flow on the other hand, two distinct experimental campaigns were undertaken in the salient plane of each aspect. i) A cross-stream plane (xy) was chosen to focus on the locked-on Kelvin-Helmholtz waves propagating along the shear layer. High frame rate PIV acquisitions were performed in the wind-tunnel at LIMSI (Orsay) in the incompressible regime, for Reynolds numbers based on cavity length 8000 Re L 15000. A range of cavity lengths L and incoming velocities U 0 was investigated, so as to modify the control parameters L/θ 0 and L/D governing the impinging shear layer and the main recirculation. The time-resolved space-extended datasets enabled a time-Fourier analysis of time-scales over about three orders of magnitude (10 -1 f 10 2 Hz).

ii) The study of centrifugal instabilities arising in the inside-flow was based on velocity fields acquired in a spanwise wall-parallel plane (zx), extracted at y/D = -0.1 inside a cavity such that L/D = 2. The experimental campaign was carried out in a large water-tunnel at LTRAC (Melbourne). With the aim of optimising the PIV processing of such low amplitude threedimensional structures, three large-array-cameras had to be placed alongside and synchronised, so as to ensure high spatial resolution datasets, while covering the entire span. Despite the far lower data rate than in the high-speed PIV campaign at LIMSI, time-resolution was achieved nonetheless because the equivalent time scales at stake were drastically lowered by water viscosity. Furthermore, frequencies associated with the inner-flow dynamics are one to two orders of magnitude smaller than the shear layer locked-on modes. The focus was mostly on two low Reynolds configurations (Re D = 1500, D/θ 0 = 23.2) and (Re D = 2400, D/θ 0 = 29.4) exhibiting a highly coherent organisation across the entire cavity span (S = 10 D). By coupling these two approaches, the nonlinearly saturated coherent structures of the flow have been identified at every time and space scales.

Results

To begin with, shear layer dynamics has been investigated in the frame of a parametric study over ranges of cavity aspect ratios L/D and dimensionless cavity lengths L/θ 0 . The evolution of the spectral signature of the self-sustained oscillations has been revealed with respect to L/θ 0 . An empirical experimentally-based model was deduced from the parametric study. Using the phase relationship between separation and impingement φ(x = L)φ(x = 0) = 2nπ -with n the number of cycles within the cavity length -and the correction term γ as a function of L/θ 0 and parameter n, most locked-on frequencies observed in spectra can now be predicted. Selection of dominant frequencies among the unstable locked-on modes depends on a critical frequency evolving with L/θ 0 relatively to lock-on stages n = 1, 2, 3. The space-time analysis of the various regimes of oscillation has notably revealed a posteriori a critical zone in the (St, L/θ 0 ) space. Inside that critical region, shear layer modes correspond to carrier frequencies. In other words, they are sufficiently enhanced to saturate and produce harmonics. On the other hand, locked-on frequencies outside this critical region do not produce harmonics, though they are still associated with growing modes. They become side-band peaks overlaying with the carrier to induce amplitude modulation. Their nonlinear interactions with the carrier generate more side-band peaks (non harmonic series). Furthermore, nonlinear interactions between locked-on modes produce a low frequency (edge frequency), issued of the amplitude modulated self-sustained oscillations at the impingement. In addition, mode switching process was also observed in many configurations under investigation. Intermittency is usually studied without regards to amplitude modulation mechanism. In the present work, mode switching has gained new insight using a signal processing approach. A connection exists between amplitude modulated regimes and intermittent regimes. When evolving across the parameter space, the system passes continuously from one stage of oscillation n to another n ± 1. As a result, for some control parameters, two locked-on modes are actually in the critical region: both are thus largely enhanced. In that case, the interference between the two modes becomes predominant (overmodulation), which leads to dramatic drops of the envelope and enables competition to occur.

In the second part of the analysis the spanwise waves due to centrifugal instabilities in the inner-flow have been identified and characterised. Spanwise Fourier and Hilbert-Huang transforms performed directly on the experimental datasets have confirmed centrifugal structures exhibit wavelengths scaling on D and that the dominant spanwise wavelength for the control parameters under study is λ/D ≃ 1. Then, space-time diagrams have shown the strongest structures in the inner-flow are spanwise travelling waves with wavelengths such that 0.3 λ/D 1.6. The phase velocities strongly vary in space and from sample to another, implying a continuum of frequencies such that f D/U 0 0.04. Generally occurring by pairs of counter-propagating waves, coherent structures partially overlay to induce interference patterns, which cause a global amplitude modulation in time.

The spatial structure of the spanwise waves do not change drastically from the linear regime to their saturated state, as indicated by the good match between eigenfunctions and global Fourier modes in xy-planes. Nevertheless, not all linearly growing modes are observed everywhere and at any time in the experiments. Nonlinear mechanisms are likely responsible for the selection of different states in non-symmetrically separated regions. Consequently, the permanent regime of centrifugal instabilities could be perceived through coupled amplitude equations.

Perspectives

Further works remain to be accomplished in collaboration with the researchers J. de Vicente and F. Meseguer Garrido (Madrid) and obviously Professor J. Soria in Melbourne. Current studies concern the evolution of the spanwise waves in the inner-flow, from the onset of centrifugal instabilities (linear stability analyses performed in Madrid) to the permanent regime (experimental data from LTRAC). Though far less coherent, the investigation of the spanwise dynamics of the inner-flow when the control parameters increase (Re D ր, D/θ 0 ր...) could be of interest. Using modal decomposition methods based on statistics rather than time-resolved data, such as proper orthogonal decomposition, would probably bring more insight into the distorted state of centrifugal instabilities far from the threshold. In addition, this investigation has provided a precise identification of the spatial structures associated with the characteristic time scales of the flow ranging over at least two orders of magnitude. This knowledge will be most insightful for the application of close-loop control strategies to the very same experimental facility.

Outils et Méthodes

B.2 Sur les données expérimentales

Ce travail vise à aborder ces questions ouvertes par le biais de mesures expérimentales, en particulier de champs de vitesse résolus en temps. Cette résolution temporelle de données spatialement étendues permet la mise en oeuvre de méthodologies apportant une analyse fine des échelles spatio-temporelles de l'écoulement. Dans un premier temps, les dispositifs expérimentaux utilisés au LIMSI à Orsay et au LTRAC à Melbourne sont décrits et les choix expérimentaux sont discutés en fonctions des objectifs. D'abord, la soufflerie du LIMSI est brièvement décrite (Figure B.1). L'équipement et les paramètres d'acquisition de la technique de vélocimétrie par images de particules (PIV) à haute fréquence sont ensuite détaillés. Ce premier banc expérimental est dédié à l'étude de l'écoulement de cavité dans un plan xy parallèle à l'écoulement et normal au fond de la cavité. La dynamique de l'écoulement dans ce plan, présentant une très large gamme de fréquences, impose d'importantes contraintes sur les mesures de champs de vitesse. Celles-ci sont rendues possibles par l'utilisation de PIV haute fréquence. Le deuxième banc expérimental, situé au LTRAC en Australie, est lui plus spécifiquement dédié à l'analyse de la structure spatiale tridimensionnelle de l'écoulement en se focalisant sur les champs de vitesse dans un plan zx perpendiculaire au plan de mesure choisi au LIMSI, permettant d'analyser les structures spatio-temporelles dans toute la largeur de la cavité. La résolution spatiale nécessaire à l'analyse est obtenue par l'utilisation de trois caméras haute résolution (Figure B.1). Dans un second temps, on s'intéresse aux algorithmes PIV utilisés pour traiter les données issues de ces campagnes. L'algorithme d'inter-corrélation (MCCDPIV) [START_REF] Soria | An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[END_REF][START_REF] Soria | Multigrid approach to cross-correlation digital piv and hpiv analysis[END_REF] est utilisé au LTRAC et un algorithme basé sur la minimisation des différences d'intensité optique et la programmation dynamique (OPFLOW) [START_REF] Quénot | The orthogonal algorithm for optical flow detection using dynamic programming[END_REF][START_REF] Quénot | Particle image velocimetry with optical flow[END_REF] est utilisé au LIMSI. Ces deux méthodes sont décrites et comparées avec un code de référence du DLR (PIVview), ce qui permet de les valider et d'en faire une brève analyse critique.

B.3 Décomposer la dynamique saturée d'un écoulement réel

Les outils d'analyse utilisés dans la suite sont conçus pour tirer partie de la double définition en espace et en temps des mesures expérimentales. La première série d'outils est basée sur la transformée de Fourier, qui permet notamment de remonter à la densité spectrale et aux modes de Fourier globaux 1 de l'écoulement dans le plan de mesure. Par un processus similaire, le calcul de fonctions de transfert entre deux points distincts de l'écoulement rend aussi possible l'estimation des propriétés des ondes (longueur d'onde, vitesse de phase, taux de croissance spatial). Enfin, la transformée de Fourier est aussi utilisée spatialement, suivant l'envergure (direction z), afin d'obtenir les nombres d'onde des structures tridimensionnelles observées dans un plan zx. Le second type de décomposition modale utilisée dans ces travaux fait intervenir la transformée de Hilbert-Huang, qui consiste en une décomposition en modes empiriques (Empirical Mode Decomposition, EMD), suivie d'une transformée de Hilbert. Appliquée à une onde spatiale 1D, cette technique permet de remonter aux caractéristiques locales de l'onde et en particulier le spectre local en nombres d'onde. La transformée de Hilbert-Huang s'avérera particulièrement utile pour compléter les résultats de la transformée de Fourier dans l'étude des ondes le long de l'envergure. En effet, elle pallie aux limitations de la transformée de Fourier, en apportant une précision accrue et une information locale. L'utilisation conjointe des deux méthodes permet donc une analyse plus poussée et complète des échelles spatiales de l'écoulement intra-cavitaire. [START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. Ces modes correspondent tous deux à des modes accrochés de la couche cisaillée impactante. Ils présentent une allée de tourbillons contra-rotatifs se déplaçant et grossissant le long de la couche cisaillée. On remarque que le rapport harmonique entre les fréquences se retrouve dans les nombres d'onde associés (taille des structures). Cela confirme qu'à la fois f a et f + satisfont la même relation de dispersion de Kelvin-Helmholtz, se déplaçant à une même vitesse de phase, environ égale à U 0 2 . En revanche, seul le mode à f a est suffisamment puissant pour pouvoir créer des harmoniques h f a avec h = 2, 3, 4. En fait, la fréquence f a peut être considérée comme la porteuse du signal et f b la fréquence modulante décrivant les oscillations de l'enveloppe du signal. Ce modèle est illustré par le diagramme temps-fréquence et la série temporelle extraits en régimes modulés en amplitude et intermittents. L'évolution de la dynamique est uniquement conditionnée par la présence plus ou moins forte du deuxième mode d'accrochage.

Dans un autre registre, on peut s'intéresser à la dynamique plus lente de l'écoulement. L'analyse des spectres montre en effet une caractéristique constante pour tous les paramètres étudiés: un niveau d'énergie élevé pour les très basses fréquences, au moins un ordre de grandeur en dessous des fréquences des oscillations auto-entretenues. Un exemple du pic large-bande centré sur la fréquence notée f ∆ est donné en L'étude spatio-temporelle de l'écoulement révèle une dynamique très riche d'ondes tridimensionnelles. On note en particulier que la longueur d'onde qui prédomine dans les spectres de Fourier en z est proche de la profondeur de la cavité D, en accord avec une nature centrifuge. Phénoménologiquement, cette longueur d'onde principale est associée à des paires de tourbillons contra-propagatifs distribuées le long de l'envergure, comme précédemment observé dans les visualisations par [START_REF] Faure | Visualizations of the flow inside an open cavity at medium range reynolds numbers[END_REF][START_REF] Faure | Threedimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape[END_REF]; [START_REF] Douay | Secondary instability of centrifugal vortices in a cavity shear flow[END_REF] ou dans des simulations numériques telles que dans [START_REF] Pastur | From linear stability analysis to three-dimensional organisation in an incompressible open cavity flow[END_REF]. Plus précisément, on remarque que les structures cohérentes dominantes sont généralement constituées de paires d'ondes progressives gauche et droite pouvant s'exclure ou se superposer localement (Figure B.10). Dans le deuxième cas, les interférences des deux ondes produisent des oscillations quasi-stationnaires, qui apparaissent comme des damiers dans le diagramme spatio-temporel.

Une décomposition de Fourier en temps permet d'identifier les différentes ondes en fonction de leur fréquence temporelle. En Figures B.11 De telles ondes progressives rappellent l'organisation spatiale et les caractéristiques des modes globaux issus des analyses de stabilité linéaire d'un état de base uniforme transversalement. Ces modes globaux identifient en effet les ondes dćoulant des effets centrifuges dus à l'écoulement recirculatoire dans la cavité [START_REF] Brès | Three-dimensional instabilities in compressible flow over open cavities[END_REF][START_REF] De Vicente | Spectral Multi-Domain Method for the Global Instability Analysis of Complex Cavity Flows[END_REF][START_REF] Meseguer-Garrido | Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows[END_REF]. Or, puisque ces ondes transverses correspondent aux modes intra-cavitaires observés dans le plan xy, on montre ainsi que les très basses fréquences responsables de la forte modulation d'amplitude des oscillations auto-entretenues proviennent d'instabilités d'origine centrifuge, y compris loin du seuil d'instabilité dans le régime permanent. En revanche, il reste des interrogations concernant la sélection des structures saturées parmi les modes propres instables. En effet, bien que les modes fournis par les analyses de stabilité linéaire (structures stationnaires ou ondes progressives) se retrouvent dans les mesures expérimentales de ce travail avec des caractéristiques similaires, les modes dominants dans le régime permanent ne correspondent pas aux modes les plus linéairement instables. Cette disparité pourrait être due aux conditions latérales non-périodiques. On observe d'ailleurs un ralentissement des ondes générées au voisinage des parois latérales (en z/D = ±5). Les interactions non-linéaires se produisant dans le régime saturé peuvent également induire de tels modifications et expliqueraient aussi les brisures de symétrie et les domaines d'ondes spatialemnt localiées, observés dans l'écoulement. 

B.6 Conclusions

Ce travail de recherche a eu pour objet l'écoulement passant une cavité ouverte de géométrie parallélépipédique dans le régime incompressible. La dynamique tridimensionnelle de ce système globalement instable et saturé non-linéairement a été étudié par une approche spatio-temporelle utilisant des données expérimentales résolues à la fois en temps et en espace. Ces données ont été acquises dans deux plans longitudinaux, respectivement perpendiculaire et parallèle au fond de la cavité, pour des nombres de Reynolds basés sur la profondeur de cavité de 1500 à 8000 environ, au cours de deux campagnes expérimentales effectuées au LIMSI (en soufflerie) et au LTRAC (dans une boucle en eau). A l'aide de méthodes de décompositions modales en temps et en espace -Fourier et Hilbert-Huang -, les ondes et les structures cohérentes constituant la dynamique dans le régime permanent ont été identifiées et caractérisées afin de pouvoir remonter aux différents mécanismes d'instabilités dont elles dérivent.

Dans un premier temps, l'objectif était d'approfondir notre compréhension de l'effet des non-linéarités sur les oscillations auto-entretenues de la couche cisaillée impactante et leurs interactions avec l'écoulement intra-cavitaire. C'est notamment par une analyse spectrale d'une région de l'espace des paramètres qu'il a été possible de mettre en évidence un lien entre l'accrochage des modes d'oscillations auto-entretenues, la modulation d'amplitude au niveau du coin impactant et l'intermittence de ces modes, encore très peu comprise. On a également pu caractériser en détails la signature spatio-temporelle des basses fréquences observées pour confirmer que les dynamiques lentes présentes dans l'écoulement intra-cavitaire sont toutes directement connectées à plusieurs mécanismes non-linéaires de modulation d'amplitude des modes d'oscillations auto-entretenues de la couche cisaillée.

Par ailleurs, le rapprochement des structures spatiales associées à ces basses fréquences avec les modes propres transverses issus de simulations numériques a démontré l'existence d'une dynamique tridimensionnelle intrinsèque à l'intérieur de la cavité, indépendamment des perturbations causées par la couche cisaillée instable. En effet, les analyses de stabilité linéaire globale, réalisées autour d'un écoulement de base 2D, c'est-à-dire avec conditions limites latérales périodiques, ont déjà mis en évidence que des instabilités centrifuges résultent de la courbure induite par la recirculation et produisent des ondes progressives selon l'envergure de la cavité.

On s'est donc intéressé à la dynamique transverse de l'écoulement intra-cavitaire dans le régime permanent pour discuter du devenir des instabilités centrifuges après que la saturation non-linéaire se soit produite et dans le cas de conditions limites réelles. L'étude de la dynamique saturée a ainsi révèlé de nombreuses structures cohérentes se composant généralement de paires de tourbillons contra-rotatifs distribuées le long de l'envergure et s'organisant autour de la recirculation principale, rappelant les visualisations publiées précédemment, notamment par l'équipe du LIMSI. Les propriétés de cette dynamique tridimensionnelle ont été quantifiées et classées en s'appuyant sur la forme des instabilités sous-jacentes: des ondes transverses progressives ou stationnaires. Les nombres d'onde et les fréquences mis en jeu confirment la nature centrifuge de toutes les structures cohérentes observés dans le plan transverse.

Nous avons vu que la dynamique saturée découle bien des instabilités centrifuges décrites par les modes propres issus des analyses de stabilité globale. Pourtant, les modes dominant le régime permanent ne correspondent pas strictement aux caractéristiques des modes les plus linéairement instables. Il reste donc à déterminer les mécanismes responsables de la sélection et de la modification des modes instables dans le système réel saturé. Une collaboration est en cours avec l'Universitad Politecnica de Madrid sur les mêmes configurations que celles menées dans l'expérience. Le parallèle entre données expérimentales et stabilité linéaire n'a pas été exposé en détails dans ce travail mais apporte un complément primordial dans la caractérisation des mécanismes de sélection des structures tridimensionnelles organisant l'écoulement intra-cavitaire. Ces mécanismes pourraient être liés au changement de conditions limites ou à l'action des non-linéarités au cours du transitoire.

Il se trouve que le développement local des structures tridimensionnelles de l'écoulement saturé et leur forte sensibilité aux conditions initiales nous indiquent que les termes non-linéaires gouvernent l'état et l'évolution de la dynamique intra-cavitaire. Cela suggère qu'une approche faiblement non-linéaire et l'utilisation d'équations d'amplitude pourraient nous renseigner sur cette dynamique.
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 1 Figure 1.1: Schematic description of an open cavity flow

Figure 1 . 2 :

 12 Figure 1.2: Extracted from Rockwell (1977) (Figures 6 & 7 ). Comparison of empirically-based theory with experimentally determined frequencies as functions of L/D (L/W in Rockwell (1977)); (left) L-based Strouhal numbers, (right) D-based Strouhal numbers (S L and S W in Rockwell (1977), respectively). Filled point represent frequencies with largest amplitudes.
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 13 Figure 1.3: Figure extracted from Gloerfelt (2006). Large-eddy simulations are performed for a L/D = 2 cavity at a Mach number of 0.4. Snapshots of instantaneous vorticity modulus averaged over spanwise direction, depicting little or no influence of incoming boundary layer thickness at high Reynolds number. With laminar inflow, (a) δ ini = 3.5 mm, (b) δ ini = 6.1 mm; with turbulent inflow, (c) δ ini = 3.5 mm, (d) δ ini = 6.1 mm.
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 15 Figure 1.5: Extracted from Albensoeder et al. (2001): (a) Steady three-dimensional cellular flow for L/D = 1 at Re D = 850. The lid is located at the bottom of the figure and move into the plane. The flow was visualised by aluminium flitters and illuminated in the plane y/D = 0.5. Extracted from Albensoeder and Kuhlmann (2006): (b) Numerical simulation of the flow for the same parameters. Shown are vorticity iso-surfaces |ω x | = 210. Remark that experimental studies have been almost exclusively based on streaklines observations.In open cavity flows in particular, obtaining quantitative (velocity) measurements regarding the spanwise features is a challenging task. Three-dimensional dynamics involves steady or slow-moving coherent structures, which thus imply characteristic time-scales one or two orders of magnitude greater than those corresponding to shear layer oscillations. Furthermore, in the saturated regime, spanwise dynamics are usually overwhelmed by the primary dynamics of the flow, namely the oscillations of the shear layer and the main recirculation. As a result, implementation of Particle Image Velocimetry (PIV) in a spanwise plane is difficult
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 16 Figure 1.6: Extracted from Albensoeder et al. (2001) (Figure 15 ): (a) Close-up of Figure 1.5.a (steady three-dimensional flow pattern for L/D = 1 at Re D = 850); (b) a sketch of the streakline topology for a single wavelength.

  used direct numerical simulations and linear stability analysis to characterise centrifugal instabilities arising in the cavity inner flow in the compressible regime. They have shown that those centrifugal instabilities organise themselves as spanwise waves whose wavenumbers scale on cavity depth D almost regardless of Mach number and fairly match experimental results cited above. Frequencies associated with resulting spanwise structures also scale on D such as 0.011 ≤ f D/U 0 ≤ 0.026. Among other parameters, Strouhal numbers actually depend on cavity aspect ratio L/D and dimensionless cavity length L/θ 0 . Recently, de Vicente (2010) and Meseguer-Garrido et al. (2011) have notably confirmed and extended such results to open cavities of various aspect ratios and for a large range of control parameters D/θ 0 and L/D.
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 2 Figure 2.1: Wind-tunnel facility (a) and test section in close-up (b). PIV setup (c) for the high frame rate campaign at LIMSI.
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 23 Figure 2.3: Scheme of the experimental set-up. Dimensions are given in millimetres.In a closeup on the L = 2D -shaped cavity, the location of the laser sheet is displayed (y = -0.1D). For high resolution images, three cameras are actually required to cover entirely the cavity span, their respective fields of view overlapping in pairs.
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 2 Figure 2.4: A snapshot obtained from one of the three cameras (central part of the cavity in the zx-plane at y/D = -0.1), for Re D = 5550 and D/θ 0 = 46.6. Instantaneous velocity field, (a) MCCDPIV and (b) PIVview computations. One vector out of two are displayed, colours encode dimensionless vorticity ω y D/U 0 . Profiles of dimensionless velocity, (c) spanwise component w/U 0 and (d) streamwise component u/U 0 , for MCCDPIV -(×) and interpolated outliers (•) -and for PIVview (-⊡)
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 2 Figure 2.5: Same snapshot as Figure 2.5. Profiles of dimensionless velocity, streamwise component u/U 0 (a) and cross-stream component u y /U 0 (b), for MCCDPIV -(×) and interpolated outliers (•) -, for PIVview (-⊡) and for OPFLOW (•).

  Figure 2.6: A snapshot in a xy-plane for Re D = 5550 and D/θ 0 = 46.6. (a) Obtained through (a) MCCDPIV, (b) PIVview, (c) OPFLOW computations. One vector every 32 pixels is displayed, colours encode dimensionless vorticity ω z D/U 0 .

  Figure 2.7: A snapshot in a xy-plane issued from the high frame rate campaign at LIMSI, in configuration L/D = 2, U 0 = 1.71 m/s, Re D = 5650, L/θ 0 = 91. Obtained through (a) MCCDPIV, (b) PIVview, (c) OPFLOW computations. One vector every 4 pixels is displayed, colours encode dimensionless vorticity ω z D/U 0 .
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 2 Figure 2.8: Same snapshot as previous Figure. Profiles of dimensionless velocity, streamwise component u/U 0 (a) and cross-stream component u y /U 0 (b). Statistics of one dataset of 4096 time-resolved velocity fields: streamwise mean velocity u/U 0 (c) and streamwise RMS u ′ u ′ /U 0 (d). Markers are for MCCDPIV -(×) validated, and (•)interpolated outliers -, for PIVview (-⊡) and for OPFLOW -(•) validated, and (△) time-interpolated vectors.
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 3 Figure 3.1: Normalised power spectral densities, in dB at various locations of the cross-stream (xy) velocity field, for L/D = 2.0, Re L = 12670 (U 0 = 1.89 m/s). Contributions of both velocity fluctuations u ′ et v ′ are summed up. Extraction points every 7 × 7 pixels (dots) and full resolution near the impingement (grey region).

  Figure 3.2: Global Fourier mode associated with f a = 19.7 Hz in the case L/D = 2.0 & Re L = 12670 (U 0 = 1.89 m/s). Real part (top) and imaginary part (bottom) are displayed both in overview (from dots in Figure 3.1) and close-up at the impingement (grey part in Figure 3.1). Colours encode vorticity and vector fields represent velocity.
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 3 Figure 3.3: A given signal s(z/D) enclosed by the two envelopes e min and e max . Its running average is defined as m = (e min + e max )/2. The space coordinate z is non-dimensionalised by the length scale D.

Figure 3

 3 Figure 3.4: Sifting process for the first Intrinsic Mode Function, IMF 1 , extracted from a span array of normalised fluctuating vorticity s(z) = ω ′ y (z, x e , t e )D/U 0 , randomly picked-up in the dataset Re D = 2400, D/θ 0 = 29.4 (at the streamwise position x e /D = 1.86 of a given snapshot).
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 3 Figure 3.6: Sifting processes for the Intrinsic Mode Functions (left) IMF 3 and (right) IMF 4 , extracted from the same span array as Figure 3.4.
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 3 Figure 3.7: Sifting processes for the Intrinsic Mode Functions (left) IMF 5 and (right) IMF 6 , extracted from the same span array as Figure 3.4.
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 3 Figure 3.8: Analytic signals produced from Intrinsic Mode Functions IMF j by means of the Hilbert transform. The resulting envelope (amplitude A j (z) of the intrinsic mode) is simply the modulus of the analytic signal (Equation 3.39).

Figure 3

 3 Figure 3.9: Hilbert-Huang Spectrum produced from the set of analytic signals based on Intrinsic Mode Functions IMF j . Colours encode the local amplitude A j (z) associated with the local wavenumber k j (z). Local amplitude is normalised by its maximum value. The original data series is recalled atop.

  Figure 4.1: Smoke visualisation snapshots extracted from TR-PIV data, in a cross-stream plane (x, y). On the left-hand side, (a,b), L/D = 2.0, U 0 = 1.1 m/s; (c), L/D = 2.0, U 0 = 1.4 m/s; (d), L/D = 2.0, U 0 = 1.9 m/s. On the right-hand side, (e), L/D = 1.5, U 0 = 2.3 m/s); (f), L/D = 1.5, U 0 = 2.9 m/s; (g), L/D = 1.75, U 0 = 1.5 m/s; (h), L/D = 1.75, U 0 = 2.5 m/s

  Figure 4.2: Snapshots extracted from TR-PIV data, in the cross-stream plane (x, y, z/D = 0.4), for two cases, (a,b) L/D = 2.0, L/θ 0 = 96, Re L = 12670, (U 0 = 1.89 m/s); and (c,d), L/D = 1.5, L/θ 0 = 76, Re L = 10240, (U 0 = 2.10 m/s). At the top (a,c), colours scale dimensionless vorticity (ω z + ω z ′ )D/U 0 and vectors represent total velocity u + u ′ and v + v ′ . At the bottom, (b,d) depict fluctuating field only: colours scale dimensionless vorticity fluctuations ω z ′ D/U 0 and vectors represent velocity fluctuations u ′ and v ′ .
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 4 Figure 4.3: Incoming boundary layer profiles for various cases; (top), raw data, (bottom) revised profiles collapsed by normalising by momentum thickness θ 0 , as described in text. Blasius profile is given in plain line as a reference.

Figure 4

 4 Figure 4.4: Statistical moments extracted in a cross-stream plane (x, y) for two examples: on the left-hand side, L/D = 2.0, L/θ 0 = 91; on the right side, L/D = 1.5, L/θ 0 = 79. (a,e) Mean flow with mean vorticity ω z in colour scales and streamlines; (b,f) streamwise Reynolds stress u ′ u ′ /U 2 0 (%); (c,g) crosswise Reynolds stress v ′ v ′ /U 2 0 (%); (d,h) Reynolds cross-component u ′ v ′ /U 2 0 (%).
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 4546 Figure 4.5: Power spectral densities (streamwise velocity component) at (x = L -5 mm, y = 5 mm) for various cases. This yields the evolution of spectral signature with increasing dimensionless cavity length L/θ 0 , as a function of Strouhal number based on cavity length. For the sake of clarity, each spectrum is incremented by 20 dB. Curve thickness corresponds to 95%-confidence interval.

  Figure 4.6.(a,b), with respect to dimensionless cavity length L/θ 0 . The same data are displayed in both diagrams with different Strouhal normalisations: (a) St L = f L/U 0 and (b)

  Figure 4.6.b matches perfectly data presented in Rockwell and Knisely (1980b)-Figure 1, or Rockwell and Naudascher (1979)-Figures 8b&9. Similarities are also found with various impinging shear flows, as in Knisely and Rockwell (1982)-Figure 4 in the case of a backward-facing step followed by a thick edge. Most of L-based Strouhal numbers (Figure 4.6.a), obtained for various configurations L/D and incoming velocities U 0 , collapse onto three different stages, close to n/2 with n = 1, 2, 3.

  Figure 4.7: Shear-layer local features along streamwise coordinate x/D: (a,b,c) cross-stream profiles fitted by a hyperbolic-tangent law; (d,e,f) twice the mean velocity 2U m (•), shear strength ∆U (+) and U 1 = U x (y → +∞) (•); (g,h,i) normalised vorticity thickness δ ω /θ 0 ; (j,k,l) the most destabilising Strouhal number based on L (•), estimated as in a free shear layer, the wave celerity being given by c = U m (x), together with its average (-•-) and measured power spectral density. Three cases are presented: (left) L/D = 2.0, U 0 = 1.38 m/s, L/θ 0 = 82; (middle) L/D = 2.0, U 0 = 2.18 m/s, L/θ 0 = 103; (right) L/D = 1.5, U 0 = 2.89 m/s, L/θ 0 = 89.

  4 y/H 0.4). Examples of fitted profiles are provided inFigures 4.7.(a,b,c). The inflexion point is such that the gradient (∂U x /∂y) is maximum, by definition. In addition, U x (y c ) corresponds to the mean velocity U m = (U 1 + U 2 )/2. The extrema velocities are defined as U 1 = U(y → +∞) and U 2 = U(y → -∞), respectively. The shear strength is then given as ∆U = U 1 -U 2 . In Figures 4.7.(d,e,f), U m and ∆U exhibit a variation along the shear layer, due to the evolution of U 2 (x) implied by the recirculating flow. More complexity is observed when L/θ 0 increases (mixing strengthens). In particular, for the higher L/θ 0 = 103 case -Figure4.7.(middle) -U 2 first decreases for x/D < 0.5, indicating a counter flow due to secondary vortex, then it rises with the main recirculation. In Figures 4.7.

  Figures 4.7.(j,k,l). Critical Strouhal number based on momentum thickness at separation f c (x/D)θ 0 /U 0 is plotted in Figure4.8.b for different L/θ 0 . Its behaviour mainly depends on that of vorticity thickness, mean velocity U m varying only by about 10% at the most. In Section 1.1.1, Equations 1.3 & 1.2 were merged to estimate the critical θ 0 -based Strouhal number just after separation, f c 0 θ 0 /U 0 ≈ 0.018 (see Equation1.4). In the present study, the critical Strouhal number at separation is around 0.015 for all L/θ 0 cases. Then it stabilises around 0.013 and starts to decrease drastically from x/D = 1 to a close vicinity of the impingement.

  Figure 4.8: Streamwise evolution of the shear layer for all investigated cases: (a) vorticity thickness δ ω normalised by momentum thickness at separation θ 0 , (b) most destabilising Strouhal number based on θ 0 . Colours scale the dimensionless cavity length L/θ 0 .

  Figure 4.7.j. Concerning the second and third cases, in Figures 4.7.(k,l), pressure feedback imposes two different frequencies of self-sustained oscillations of stages n = 2 and n = 3, close to critical frequency f c : St= 1.4 and St= 1 for L/θ 0 = 89; St= 1.1 and St= 1.5 for L/θ 0 = 103. Ultimately, Kelvin-Helmholtz instability represents the intrinsic mechanism underlying the shear layer flapping motion, despite the global organisation of the flow. Cavity length resonance enhances one or two locked-on modes -satisfying phase relation between cavity edges -from the range of unstable frequencies, depending on their relative position to critical frequency f c .
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 49 Figure 4.9: Normalised power spectral distribution of u ′ (black) and v ′ (blue) fluctuations for case L/D = 2.0, L/θ 0 = 82; out of the PIV time series and space-averaged over the impingement vicinity (1.6 x/D 2.0 and -0.25 y/D 0.25). Line heaviness corresponds to 95%-confidence interval.
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 4 Figure 4.10: Iso-surfaces of vorticity fluctuations, ω ′ z D/U 0 = 1.8 (yellow) and ω ′ z L/U 0 = -1.8 (blue), in the space-time volume (x, y, t), issued from time-resolved PIV data for configuration L/θ 0 = 82. Only an excerpt of the entire set, such as 21 < t U 0 L < 55, is displayed.

  Figure 4.12: Space-time diagrams and time-series issued from time-resolved PIV data for configuration L/θ 0 = 82, L/D = 2.0 with the same abstract in time as Figure 4.10 (21 < t U 0 L < 55). The space-time diagrams are obtained at (a) y/D = 0.1, (b) y/D = 0, (c) y/D = -0.7 (streamwise) and at (d) x/L = 0.96, (e) x/L = 0.33 (crosswise). Contour levels of vorticity fluctuations ω ′ z D/U 0 range from (a), -4.1 (dark) to 3.5 (light); (b), -10.7 to 5.5; (c), -3.2 to 3.5; (d), -7.4 to 5.7; (e), -2 to 2.1. Three characteristic time-series, for both streamwise and crosswise velocity fluctuations u ′ /U 0 and v ′ /U 0 , are extracted at intersections of these space-time planes: at the impingement, above the top-cavity plane (a ∩ d), on the top-cavity plane (b ∩ d); inside the main recirculation, (c ∩ e). Schematic (f) locates extraction regions.

Figure 4

 4 Figure 4.13: Streamwise evolution from trailing to leading corners of the unwrapped phase φ(x/L)/π (a) and amplitude G(x/L) (b), for shear layer locked-on harmonic family h f a , with h = 1, 2, 3, for the case L/θ 0 = 82, L/D = 2.0.

Figure 4 .

 4 Figure 4.14: Global Fourier modes for frequency f a in case L/θ 0 = 82 & L/D = 2.0. Top: from streamwise u ′ (left) and crosswise v ′ (right) velocity fluctuations. Colours scale (a,b), real part; (c,d), imaginary part, (e,f)√ modulus; (g,h) complex angle (in π units).

  Figures 4.14.(g,h) shows eddies are advected downwards and then upstream close to the bottom of the cavity. Since those eddies yield by construction the same frequency as the self-sustained oscillations of the shear layer, primary and secondary travelling waves superimpose to produce an interference pattern depicted by slack water regions in intensity maps displayed inf).

  .

Figure 4

 4 Figure 4.15: Global Fourier mode for frequency f a in case L/θ 0 = 82 & L/D = 2.0 (continued). Colours encode vorticity ω z ′ , vector fields depict velocity, (a) real part, (b) imaginary part.

Figure 4 .

 4 Figure 4.17: Lines of constant vorticity Ω = Ω + ω ′ z of the disturbed hyperbolic-tangent velocity profile in the spacewise case for the frequency 0.2067 of maximum amplification with a disturbance amplitude ǫ = 0.0005 (from Figure 10 in Michalke (1965)).

Figures

  Figures 4.18& 4.19, respectively, concentrate in the vicinity of the impingement, that is where the self-sustained oscillations of the shear layer are of high amplitude. Depicted wavelengths get smaller when h is raised, as implied by the dispersion relation (Equation4.11). Furthermore, oscillations are also visible along the cross-stream profiles. The resulting distribution organises as a draughtboard pattern of alternative vortical structures. Since crosswise space scales decrease the same way as streamwise ones (wavelengths) when h increases, higher harmonics correspond to finer structures, as observed in[START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF];[START_REF] Ehrenstein | Two-dimensional global low-frequency oscillations in a separating boundary-layer flow[END_REF];[START_REF] Gloerfelt | Compressible proper orthogonal decomposition/galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF] 

  Figures 4.18& 4.19, respectively, concentrate in the vicinity of the impingement, that is where the self-sustained oscillations of the shear layer are of high amplitude. Depicted wavelengths get smaller when h is raised, as implied by the dispersion relation (Equation4.11). Furthermore, oscillations are also visible along the cross-stream profiles. The resulting distribution organises as a draughtboard pattern of alternative vortical structures. Since crosswise space scales decrease the same way as streamwise ones (wavelengths) when h increases, higher harmonics correspond to finer structures, as observed in[START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF];[START_REF] Ehrenstein | Two-dimensional global low-frequency oscillations in a separating boundary-layer flow[END_REF];[START_REF] Gloerfelt | Compressible proper orthogonal decomposition/galerkin reduced-order model of self-sustained oscillations in a cavity[END_REF] 

  Figure 4.19: Global Fourier mode for second harmonic 3f a (St= 2.94) in case L/θ 0 = 82 & L/D = 2.0. Real part (top) and imaginary part (bottom) are displayed both in overview and close-up at the impingement. Colours encode vorticity and vector fields represent velocity.

Figure 4 .

 4 Figure 4.20: Normalised power spectral distribution of u ′ (black) and v ′ (blue) fluctuations for the case L/D = 1.5, L/θ 0 = 79; out of the PIV time series and space-averaged over the impingement vicinity (1.3 x/D 1.5 and -0.25 y/D 0.25). Line heaviness corresponds to 95%-confidence interval.
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 44 Figure 4.21: Temporal evolution of velocity fluctuations v ′ (x p , y p , t) at point (x p /D = 1.35, y p = 0), out of TR-PIV data for the case L/D = 1.5, L/θ 0 = 79. (a) Time-frequency diagram for the entire recording (21 s), colours encoding spectral density; (b) corresponding mean spectrum (in log scale); (c) time excerpt of the investigated time-series v ′ (x p , y p , t)/U 0 , such that 61 t U 0 /L 123 in dimensionless time units (2 s t 4 s).

  Figure 4.23, parametric diagrams depicting the evolution of locked-on Strouhal numbers against the dimensionless cavity length L/θ 0 (given in Section 4.1.4) are completed with low frequencies f b and f Ω . Most of the low frequencies are noted f b and satisfy 0.3 f b L/U 0 0.45. (4.16)

Figure 4

 4 Figure 4.23: Parametric evolution of both shear layer and low frequencies as functions of the dimensionless cavity length L/θ 0 . Data are extracted from LDV spectra, for numerous cases investigated during the past few years. (a) Frequencies normalised as Strouhal numbers based on cavity length L. Linear fits (purple lines) correspond to the empirical locked-on condition (Equation 4.7). (b) The same data, divided by L/θ 0 , resulting in Strouhal numbers based on momentum thickness at separation θ 0 . Colours indicate different L/D configurations and rectangle dimensions represent uncertainties.
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 4 Figure 4.24: Iso-surfaces of vorticity fluctuations, ω ′ z D/U 0 = 1.1 (yellow) and ω ′ z L/U 0 = -1.1 (blue), in the space-time volume (x, y, t), issued from time-resolved PIV data for configuration L/θ 0 = 79. Only an excerpt of the entire set, such as 61 < t U 0 L < 123, is displayed.

  Figures 4.24& 4.25 provide iso-vorticity surfaces in a 3D-representation of the space-time domain. Similarly to the harmonic case in Section 4.2, one observes self-sustained oscillations of the shear layer inducing periodic inflows inside the cavity along the forward-facing step. The resulting stream downwards the cavity now fluctuates depending on amplitude variations of the flapping shear layer: larger oscillations at the impingement correspond to stronger inflows. In Figure 4.25, when one follows the inflows down along the forward-facing step, oscillations at the shear layer frequency f a are overwhelmed by fewer and stronger vortical structures. These vortices are advected further upstream along the main recirculation. Remark that they seem to be periodically generated at a time scale about 2 to 3 times larger than the one of the self-sustained oscillations. This would be consistent with the low frequency f b L/U 0 = 0.38 (11.7 Hz), relatively to dominant frequency f a L/U 0 = 0.99 (30.5 Hz). The correlation between strong vortical structures along the forward-facing step and f b frequency component is well-confirmed by the space-time slice in Figure 4.26.d. Oscillations at frequency f b are even dominant in the time-series in Figure 4.26.(b ∩ d). These oscillations correspond to modulations of the envelope of the self-sustained oscillations depicted in Figures 4.26.(a & a ∩ d). In the following, the modulating frequency f b will be known as edge frequency.The travelling eddies observed in the (x, y, t)-volume near the bottom of the cavity(Figures 4.24,4.25) can here be identified as large scale fluctuations and followed across the space-time slice in Figure4.26.c.

Figure 4 .

 4 Figure 4.25: Same space-time domain as Figure 4.24, shown from upstream (a) and below (b).

  Figures 4.27.(a,b) & 4.27.(c,d), respectively.

  Figure 4.27: Global Fourier modes for the predominant locked-on frequencies, (a,b), carrier mode f a ; (c,d), right side-band frequency f + in case L/θ 0 = 79 & L/D = 1.5. Real part (top) and imaginary part (bottom) are displayed with colours encoding vorticity and vector fields representing velocity.

  Figure 4.30 is depicted the time evolution of the crosswise velocity fluctuations v ′ extracted out of TR-PIV data inside the impinging shear layer for the control parameters L/D = 1.75, L/θ 0 = 96. The time-series is extracted in the core of the impinging shear layer (x p /D = 1.35, y p /D = 0). A time-frequency diagram in Figure 4.30.a is processed the same way as in previous section. It shows that dominant frequencies seen in the averaged spectrum (Figure 4.30.b) are not persistent anymore. Naming the two locked-on frequencies at play: f a (St a = f a L/U 0 = 1.03) corresponding to the most energetic peak, and the right side-band frequency f + (St + = f + L/U 0 = 1.39), one observes a competition between those two modes.

Figure 4

 4 Figure 4.30: Temporal evolution of velocity fluctuations v ′ (x p , y p , t) at the extraction point (x p /D = 1.35, y p = 0), out of TR-PIV data for the case L/D = 1.75, L/θ 0 = 96. (a) Timefrequency diagram for the entire recording (16 s), colours encoding spectral density; (b) corresponding mean spectrum (in log scale); Two time excerpts of the investigated time-series v ′ (x p , y p , t)/U 0 are displayed such that (c), 28 t U 0 /L 110 in dimensionless time units (1 s t 3.9 s); (d), 250 t U 0 /L 330 (8.8 s t 11.6 s)

Figure 4

 4 Figure 4.31: Temporal evolution of velocity fluctuations v ′ (x p , y p , t) at the extraction point (x p /D = 1.70, y p = 0), out of TR-PIV data for the case L/D = 2.0, L/θ 0 = 91. (a) Time-frequency diagram for the entire recording (16 s), colours encoding spectral density; (b) corresponding mean spectrum (in log scale); (c) time excerpt of the investigated time-series v ′ (x p , y p , t)/U 0 , such that 111 t U 0 /L 188 in dimensionless time units (6.5 s t 11.0 s).
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 44 Figure 4.32: Normalised power spectral distribution of u ′ (black) and v ′ (blue) fluctuations for the case L/D = 2.0, L/θ 0 = 91; out of the PIV time series and space-averaged over the impingement vicinity (1.6 x/D 2.0 and -0.25 y/D 0.25). Line heaviness corresponds to 95%-confidence interval.
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 44 Figure 4.34: Global Fourier modes for (a,b), the dominant mode f a ; (c,d), its first harmonic 2 f a , in case L/θ 0 = 96 & L/D = 1.75. Real part (top) and imaginary part (bottom) are displayed with colours encoding vorticity and vector fields representing velocity.

  .19) Yet, they do not match the spectral organisation expected from modulating frequencies related to locked-on mode selection, such as f b . Instead, f Ω frequencies are such that 0.1 f Ω L/U 0 0.22. (4.20) Consequently, one can assume that frequencies f Ω are not due to nonlinear interactions between locked-on modes. With the aim of answering that question, spatial structures associated with frequency f Ω = 6.5 Hz (St = 0.21) and its corresponding left side-band peak f ℓ = 24.0 Hz (St = 0.78) are displayed in Figure 4.37.(a,b) and Figure 4.37.(c,d), respectively.

  Figure 4.37: Global Fourier modes for (a,b), the low frequency f Ω ; (c,d), the left side-band frequency f ℓ , in case L/θ 0 = 79 & L/D = 1.5. Real part (top) and imaginary part (bottom) are displayed with colours encoding vorticity and vector fields representing velocity.

  Figure 4.38: Velocity fluctuations extracted from TR-PIV datasets for L/D = 2.0, L/θ 0 = 82: (light blue) crosswise fluctuations v ′ /U 0 extracted inside the shear layer (x p /D = 1.70, y p = 0); (black) streamwise fluctuations u ′ /U 0 extracted inside the cavity (x p /D = 1.0, y p /D = -0.75). (a) Time-series and (b) corresponding time spectrum (window averaged).

Figure 4

 4 Figure 4.39: Global Fourier modes associated with low frequency f ∆ for (a,b), L/θ 0 = 54, L/D = 1.0, Re D = 7700, f ∆ D/U 0 = 0.017. (c,d), L/θ 0 = 79, L/D = 1.5, Re D = 7470, f ∆ D/U 0 = 0.019. Real part (top) and imaginary part (bottom) are displayed with colours encoding vorticity and vector fields representing velocity.
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 5 Figure 5.1: Examples of instantaneous fields in plane (x, y = -0.1D, z) for the three configurations Re D = 1500, D/θ 0 = 23.2, (a); Re D = 2400, D/θ 0 = 29.4, (b); Re D = 5550, D/θ 0 = 46.6, (c). Dimensionless vorticity ω y D/U 0 is displayed in colour scales along with streamlines.

Figure 5 . 2 :

 52 Figure 5.2: The same instantaneous fields as Figure 5.1 with the mean flow subtracted. Dimensionless vorticity fluctuations ω y ′ D/U 0 are displayed in colour scales along with streamlines generated from fluctuations only.

Figure 5

 5 Figure 5.3: Space Fourier spectrum as a function of dimensionless wavenumbers β, for the three cases A : Re D = 1500, D/θ 0 = 23.2 ; B : Re D = 2400, D/θ 0 = 29.4 ; C : Re D = 5550, D/θ 0 = 46.6. Fourier transform is performed on vorticity fluctuations ω y′ , non-dimensionalised by U 0 /D. Prior to Fourier computation is applied either a square window (dashed) or a Hamming window (plain). Integrated along x/D and snapshots for greater statistics, curve thickness corresponds to the 95%-confidence interval of Fourier calculation.
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 55 Figure 5.5: Hilbert-Huang spectral analysis performed on dimensionless vorticity fluctuations ω y ′ D/U 0 , for the three cases A : Re D = 1500, D/θ 0 = 23.2 ; B : Re D = 2400, D/θ 0 = 29.4 ; C : Re D = 5550, D/θ 0 = 46.6. Colours encode HH z distribution in a (z/D, β)-space. Figures 5.5.(a-c) confirm that dynamics mainly scales on wavenumber β = 2π -corresponding to a wavelength λ/D = 1. Indeed, both low Reynolds number configuration A and B show a concentration of high amplitudes for 5 β 10. As expected from Fourier spectrum, case

  Figure 5.6: Hilbert-Huang marginal spectrum performed on dimensionless vorticity fluctuations ω y ′ D/U 0 , for the three cases.

Figure 5

 5 Figure 5.7: Time-correlation maps for cases A : Re D = 1500, D/θ 0 = 23.2 (left) and B : Re D = 2400, D/θ 0 = 29.4 (middle) and C : Re D = 5550, D/θ 0 = 46.6 (right). Colours encode correlation coefficients between two instants, as a function of dimensionless time t U 0 D . Statistics material is given by a spanwise line extracted at x c /D = 0.5, y piv /D = -0.1 for 800 time units.

  Figures 5.8.(b-c,e-f,h-i). For example, one can guess from Figure 5.8.c the Strouhal numbers St(2) ≃ 1/50 = 0.02 ≈ w ϕ (2) (for t ′ 180) and St(3) ≃ 1/150 = 0.007 ≈ w ϕ (3) (for t ′ 180). Similarly, one gets St(7) ≃ 1/50 = 0.02 ≈ w ϕ (7) from Figure 5.8.f. Space-time diagrams displayed in Figures 5.8.(g,h,i) correspond to the dataset B : Re D = 2400, D/θ 0 = 29.4. In Figure 5.8.g, part from some space-time correlated features depicted by the slopes (

Figure 5 . 8 :

 58 Figure 5.8: Space-time diagrams at y/D = -0.1 for cases A : Re D = 1500, D/θ 0 = 23.2 -two time-abstracts (a-c) & (d-f) -and B : Re D = 2400, D/θ 0 = 29.4 (g,h,i). Fluctuations of normal vorticity ω y ′ (negative values are dark) are extracted from (left) spanwise lines, and (right) streamwise lines, providing parametric functions of dimensionless time t U 0 D and dimensionless position, z/D and x/D, respectively. Spanwise diagrams are extracted at (a), x/D = 0.5; (d), x/D = 1.5; (g), x/D = 0.5; and streamwise diagrams are extracted at (b,e), z/D = -2; (c,f), z/D = 1; (h), z/D = -3; (i), z/D = 2. Dashed black lines represent intersections between streamwise and spanwise diagrams. Several slopes corresponding to travelling structures are also displayed (white plain lines).

  ) in Figure 5.8.g. If λ/D = 1why the counter-propagating wave patterns are not symmetrical (|w ϕ (1)| = |w ϕ (2)| and |w ϕ (8)| = |w ϕ (9)|).

  4.4. m = 0 → Steady features m = 1 → Slow variations (large time-scales) m = 2 → Dominant time scales m = 3 → Secondary peaks m = 4 → Possibly the harmonics of the dominant peaks Many well-defined spectral components are visible in case A : Re D = 1500, D/θ 0 = 23.2. For instance, the peaks rising at St = {0.038, 0.057} in case A likely correspond to harmonics of the dominant Strouhal number since 0.038 = 2 × 0.019 and 0.057 = 3 × 0.019.

  Figure 5.9: Time Fourier power spectral density performed on dimensionless cross-stream vorticity fluctuations ω y ′ D/U 0 for cases A (a) and B (b). Indices m = [0, 1, 2, 3, 4] correspond to arbitrary spectral subdomains for the sake of clarity in the following.
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 5 Figure 5.10: Schematic outline of the space-time decomposition methodology performed on vorticity fluctuations ω y ′ non-dimensionalised by U 0 /D

  Figure 5.12: Spatial mode associated with St = 0.001 (m = 0) for case A : Re D = 1500, D/θ 0 = 23.2. (a,b) Real and imaginary parts of time Fourier mode, colours encode fluctuations of dimensionless vorticity ω y ′ D/U 0 ; (c) HH z (z, β) map issued from Hilbert Huang Transform; (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).
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 555 Figure 5.13: Spatial mode associated with St = 0.007 (m = 1) for case A : Re D = 1500, D/θ 0 = 23.2. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.14. It doubles both Strouhal and wave numbers (St 4 = 2St 2 L and β 4 ≃ 2β 2 L ) and its spatial distribution -Figures 5.17

Figure 5

 5 Figure 5.17: Spatial mode associated with St = 0.039 (m = 4) for case A : Re D = 1500, D/θ 0 = 23.2. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.18: Mean flow (St = 0, m = 0) for case B : Re D = 2400, D/θ 0 = 29.4. (a) Colours encode fluctuations of dimensionless vorticity ω y ′ D/U 0 ; (b) HH z (z, β) map issued from Hilbert Huang Transform; (c) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.19: Spatial mode associated with St = 0.002 (m = 0) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.20: Spatial mode associated with St = 0.003 (m = 1) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.22: Spatial mode associated with St = 0.008 (m = 1) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units). The global Fourier mode associated with Strouhal number St = 0.009 exhibits space scales such that -7 β -2 (Figure 5.23). Those large scale structures (typically λ/D ≈ 2π/4.5 = 1.4) are carried by a left-travelling wave embracing the entire cavity.

Figure 5

 5 Figure 5.23: Spatial mode associated with St = 0.009 (m = 1) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.24: Spatial mode associated with St = 0.013 (m = 2) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).
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 5 Figure 5.25: Spatial mode associated with St = 0.018 (m = 2) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).

  Figure 5.26: Spatial mode associated with St = 0.024 (m = 3) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units). • m = 3: Regarding the other peaks such that 0.02 St 3 0.03 for case B, Figure 5.26 shows a global Fourier mode associated with St = 0.024. It is more complicated than previous travelling waves. Multiple space scales are revealed: 5 |β| 15 (Figure 5.26.d). Spanwise fluctuations are distributed over the entire span and heavily modulated as shown by large variations of wavenumbers in the HH z map (Figure 5.26.c).

  Figure 5.27: Spatial mode associated with St = 0.041 (m = 4) for case B : Re D = 2400, D/θ 0 = 29.4. (a,b) Real and imaginary parts, (c) Hilbert Huang Transform: HH z (z, β) map, (d) spanwise Fourier spectrum F z (β, x) (in 10 -3 units).
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 6 Figure 6.1: Two-dimensional steady base-flow for Re D = 3 850 and L/D = 1.

  Figure 6.3: Cross-stream structure of (a) the spanwise eigenfunction with the largest growth rate in family (i) (St = 0), grey levels encode u ′ modulus; (b) the most energetic spanwise Fourier mode, λ/D = 0.4 (β = 15.7), grey levels encode power spectral density of u ′ , in units of U 0 .
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 64 Figure 6.4: Vorticity contours from DNS data with rigid boundary conditions. Topview of zx-plane at y/D = -0.3.

  Figure 6.5: Cross-stream structure of the spanwise eigenfunction with largest growth-rate of the second family (St ii = 0.025), referred to as mode (ii): real part (a), imaginary part (b). Grey levels encode streamwise component u ′ , in units of U 0 .
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 666 Figure 6.6: Power spectral density computed from velocity time-recording at a probe inside the cavity (DNS data with periodic lateral conditions).
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 13 Figure B.1: Dispositifs expérimentaux utilisés pour les mesures PIV, (haut) LIMSI, (bas) LTRAC.

  Figure B.6.
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 6 Figure B.6: Évolution temporelle des fluctuations de vitesse v ′ (xp, yp, t) au point (xp/D = 1.35, yp = 0), issues des champs de vitesse résolus en temps pour le cas L/D = 1.5, L/θ0 = 79. (a) Diagramme temps-fréquence pour l'enregistrement complet (21 s), les couleurs codant la densité spectrale; (b) le spectre moyen correspondant; (c) extrait de la série temporelle telle que 61 t U0/L 123 en unités sans dimension (2 s t 4 s).

Figure B. 8 :

 8 Figure B.8: Fluctuations de vitesse extraites des champs pour L/D = 2.0, L/θ0 = 82: (bleu clair) fluctuations v ′ /U0 extraites dans la couche cisaillée (xp/D = 1.70, yp = 0); (noir) fluctuations u ′ /U0 extraites dans la cavité (xp/D = 1.0, yp/D = -0.75). (a) Série temporelle et (b) spectre correspondant.

  Figure B.10: Diagrammes spatiotemporels en y/D = -0.1 pour (a) ReD = 1500, D/θ0 = 23.2, (b) ReD = 2400, D/θ0 = 29.4. Les fluctuations de vorticité ωy ′ (valeurs negatives sombres) sont extraites de lignes suivant l'envergure pour x/D = 1.5 pour former des fonctions paramétriques des unités adimensionnées de temps t U 0 D et de position z/D.

  .a et B.12.a sont affichées les parties réelles de deux ondes progressive opposées visibles dans le diagramme spatio-temporel de la Figure B.10.a.

  Figure B.11: Structure spatiale associée à St = 0.019 pour le cas ReD = 1500, D/θ0 = 23.2. (a) Partie réelle, (b) Transformée de Hilbert-Huang, (c) transformée de Fourier.

  Figure B.12: Structure spatiale associée à St = 0.023 pour le cas ReD = 1500, D/θ0 = 23.2. (a) Partie réelle, (b) Transformée de Hilbert-Huang, (c) transformée de Fourier.
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Table 2 .

 2 1: Characteristics of the wall bounded laminar inflow at the leading edge.

		U 0 (mm/s)	δ ⋆ 0 (mm)	θ 0 (mm)	Re D	Re θ 0	D/θ 0
	A B C	29.5 ± 0 .8 47.5 ± 0 .9 107.5 ± 2 .8	5.59 ± 0 .28 4.27 ± 0 .18 2.61 ± 0 .13	2.16 ± 0 .11 1.70 ± 0 .07 1.07 ± 0 .05	1500 ± 43 2400 ± 51 5550 ± 161	65 ± 4 .9 81 ± 5 .0 119 ± 9 .2	23.2 ± 1 .2 29.4 ± 1 .3 46.6 ± 2 .4

Table 4 .

 4 1: Characteristics of the wall bounded laminar inflow at the leading edge.

				*	* *				
	L	ν	U 0	rms ∆f it δ 99 0	θ 0	Re L	Re θ 0 L/D L/θ 0
	(mm)	(mm 2 /s)	(m/s)	(%)	(%)	(mm)	(mm)		
	50	15.6	2.42	6.4 †	0.6	6.86 0.92	7700	143 1.00	54
	75	15.1	1.77	1.1	0.6	7.99 1.07	8800	126 1.50	70
	75	15.4	2.10	1.3	0.9	7.37 0.99 10200 135 1.50	76
	75	15.4	2.31	1.3	0.9	7.04 0.94 11200 141 1.50	79
	75	14.9	2.81	1.6	1.3	6.38 0.86 14100 161 1.50	88
	75	14.9	2.89	1.6	0.5	6.28 0.84 14600 164 1.50	89
	88	15.4	2.48	1.0	0.7	6.77 0.91 14100 146 1.75	96
	100	15.1	1.38	1.9	1.3	9.08 1.22	9100	111 2.00	82
	100	14.9	1.71	1.8	0.9	8.17 1.10 11500 126 2.00	91
	100	14.9	1.89	1.9	1.2	7.78 1.04 12700 132 2.00	96
	100	15.0	2.18	2.0	0.9	7.22 0.97 14500 141 2.00	103
									

* rms corresponds to standard deviation of velocity measurements, averaged over crosswise position y and normalised by external velocity U 0 .

  In this section, the mean flow and normalised Reynolds stresses are presented and brieflye) depict the mean flow for two geometries. Again, parallel incoming flow is confirmed by streamlines above the cavity. The main vortex inside the cavity is almost centred in the L/D = 1.5 case, whereas it is much more confined in the downstream half of the cavity when L/D = 2. Streamlines indicate secondary steady vortices nested in bottom corners of the cavity. Now considering the fluctuations, they are statistically characterised by Reynolds stress tensor components ρu ′ i u ′ j , computed from time-resolved PIV datasets and hereafter normalised by ρU 2 0 (given in %). If one considers independently time-series of 4096 field realisations each, statistical convergence is already within 2% for the mean flow and within 10% for Reynolds tensor components. Furthermore, convergence is improved by averaging over 15 different recordings. Both geometries presented in Figures 4.4.(b-d,f-h) show a similar signature. As expected, the Reynolds tensor components,

Table 4 .

 4 2: Wave characteristics for shear layer harmonic family h f a measured at y/D = -0.05. = 0.1 to x/L = 0.9, such as to avoid boundary effects. It gives an estimated mean dimensionless phase gradient (or normalised wavenumber) k a L = L(∂φ/∂x) mean = 3.9π for f a . Equation3.25 gives Λ a /L = 0.52 ≃ 1/2. Corresponding phase velocity can be estimated at C a = 0.50 U 0 , which matches the slope observed in space-time planesb)).

	( * )	f * L/U 0	C * /U 0	Λ * /L	k * L	ζ * L
	a	0.98	0.50	0.52	3.9π	6.3
	a2	1.96	0.53	0.27	7.3π	7.8
	a3	2.94	0.54	0.18	10.9π	7.8
	is computed from x/L					

Table 4 .

 4 3: Wave characteristics for the amplitude modulated regime (f a and f + components) , fulfils the phase relationship between leading and trailing edges (∆φ = 2nπ), which implies the right side-band peak f + is a locked-on mode at stage n = 3. The second side-band peak f 2+ on the other hand, do not satisfy such a relation, which suggests this mode has no connection with the pressure feedback loop. It is only a spectral signature of the amplitude modulation.

	measured at y/D = 0.05					
	( * )	f * L/U 0	C * /U 0	Λ * /L	k * L	ζ * L
	a	0.99	0.53	0.53	3.8π	7.5
	+	1.37	0.49	0.35	6.0π	6.8
	a2	1.98	0.53	0.27	7.5π	-
	2+	2.36	0.53	0.22	9.0π	-
	f +					

Table 5 .

 5 1: Phase velocities out of space-time diagrams.

	Line	w ϕ /U 0	u ϕ /U 0
	1	-0.018	-
	2	0.022	-
	3	0.006	-
	4	0.002	-
	5	-	-0.036
	6	-	0.158
	7	-0.020	-
	8	-0.017	-
	9	0.014	-
	10	-	0.031
	11	-	-0.018
	12	-	0.074

Table 5

 5 

	.2: Space modal decomposition diagnosis
	Spanwise Hilbert-Huang Transform	Spanwise Fourier Transform
	⊲ Wavenumber high resolution/precision ⊲ Left or right travelling waves
	⊲ Spanwise distribution	(signed wavenumbers)

  Contrary to global stability analyses involving a two-dimensional basic flow and periodical boundary conditions, large scales are here imposed in the mean flow by the solid boundary conditions of the endwalls. This induces energy for wavenumbers β ≈ 2π/10, corresponding to cavity span. On the other hand, modes associated with Strouhal numbers St→ 0 also contains (quasi) steady structures of smaller scales. They correspond to broadly distributed wavenumbers around β 0 = ±10. These steady structures are particularly broad-banded for case B. Broad-banded structures can be unsteady as well: a continuous branch of wavenumbers (5 |β| 15) arises for Strouhal numbers around St= 0.025. The time spectrum is more continuous in case B. The most characteristic feature of that richness consists of a continuum of modes for Strouhal numbers up to 0.01. These travelling waves whose wave and Strouhal numbers evolve continuously, range from slow-moving small-scale structures (β ≃ -10, St ≃ 0.003) to fast-moving large-scale structures (β ≃ -4, St ≃ 0.01). The modes shown in Figures 5.20-5.23 are extracted from a single sample and consist of left-travelling waves. Altogether, they form a wavepacket travelling at a positive group velocity, ie. opposite to all phase velocities. However, depending on the sample, right and left travelling waves are seen to arise indifferently, as long as their properties verify All the global Fourier modes presented above are left-travelling waves but it is not a necessary condition.

	Continuum in case B			
		Table 5.3: Characteristics of global Fourier modes under study
		A : Re D = 1500, D/θ 0 = 23.2		B : Re D = 2400, D/θ 0 = 29.4
	m	St	β	St	β
	0 1 2 3 4	0 ↓ 0.002 0.007 0.019 β 2 L ≃ -2π (left travelling wave) 0.013 β 2 R ≃ 2π (right travelling wave) |β 0 | ≈ 2π/10 (BC * ) 0 |β 0 | ≈ 2π/10 (BC * ) & & ↓ |β 0 | ≃ 10 0.002 7 |β 0 | 13 0.003 -12 β 1 -7 β 1 = 8 (left travelling waves) ↓ (right travelling wave) 0.009 -7 β 1 -2 0.023 β 2 R ≃ 2π (right travelling wave) 0.018 β 2 L ≃ -2π (left travelling wave) 0.027 β 3 ≃ 0 & 5 |β 3 | 10 0.024 β 3 ≃ 0 & 5 |β 3 | 15 0.039 β 4 L ≃ -12 0.041 -11 β 4 -5 (harmonic of left wave) (left travelling wave)
		(			

* ) Signature of confinement (solid Boundary Conditions)

modes spatiaux complexes associés à une fréquence unique(Rowley et al., 

[START_REF] Migeon | Details on the start-up developpment of the taylor-görtler-like vortices inside a square-section lid-driven cavity for 1000< re <3200[END_REF][START_REF] Basley | Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv[END_REF]. Ces structures spatiales sont obtenues en appliquant la transformée de Fourier en temps sur les séries temporelles extraites en tout point du champ (de vorticité par exemple)
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Résumé en Français Étude Expérimentale des Ondes et Structures Cohérentes dans un Écoulement Tridimensionnel de Cavité Ouverte

Un écoulement de cavité ouverte tridimensionnel saturé non-linéairement est étudié par une approche spatio-temporelle utilisant des données expérimentales résolues à la fois en temps et en espace. Ces données ont été acquises dans deux plans longitudinaux, respectivement perpendiculaire et parallèle au fond de la cavité, dans le régime incompressible, en air ou en eau. A l'aide de multiples méthodes de décompositions globales en temps et en espace, les ondes et les structures cohérentes constituant la dynamique dans le régime permanent et pouvant être produites par des mécanismes d'instabilités différents sont identifiées et caractérisées.

Tout d'abord, on approfondit la compréhension de l'effet des non-linéarités sur les oscillations auto-entretenues de la couche cisaillée impactante et leurs interactions avec l'écoulement intracavitaire. En particulier, l'analyse spectrale d'une portion de l'espace des paramètres permet de mettre en évidence un lien entre l'accrochage des modes d'oscillations auto-entretenues, la modulation d'amplitude au niveau du coin impactant et l'intermittence de ces modes. De plus, l'observation des basses fréquences interagissant fortement avec les oscillations auto-entretenues démontre l'existence d'une dynamique tridimensionnelle intrinsèque à l'intérieur de la cavité indépendemment des perturbations causées par la couche cisaillée instable.

Les analyses de stabilité linéaire ont montré que des instabilités centrifuges peuvent résulter de la courbure induite par la recirculation. L'étude de la dynamique après saturation révèle de nombreuses structures cohérentes dont les propriétés sont quantifiées et classées en s'appuyant sur la forme des instabilités sous-jacentes: des ondes transverses progressives ou stationnaires. Enfin, certains comportements des structures saturées suggèrent que les mécanismes non-linéaires gouvernant le développement de l'écoulement une fois sorti du régime linéaire pourraient être étudiés dans le cadre des équations d'amplitude.

Mots-clés: cavité ouverte, dynamique spatio-temporelle, écoulement tridimensionnel, PIV résolue en temps, analyse spectrale, transformée de Fourier, transformée de Hilbert-Huang, couche cisaillée impactante, accrochage de modes, instabilité de Kelvin-Helmholtz, modulation d'amplitude, intermittence, instabilités centrifuges, tourbillons de Taylor-Görtler, ondes progressives, interférences

Synthèse détaillée en Français

Ce mémoire de thèse porte sur une étude expérimentale des ondes et structures cohérentes dans un écoulement de cavité ouverte tridimensionnel. Le manuscrit est rédigé en anglais dans le cadre de la co-tutelle de thèse entre l'Université Paris-Sud à Orsay (Laboratoire LIMSI/CNRS) et l'Université de Monash à Melbourne (Laboratoire LTRAC).

B.1 Introduction

Le premier chapitre introduit la problématique générale du sujet de thèse. L'écoulement audessus d'une cavité est une configuration fondamentale et générique que l'on retrouve aussi dans de nombreuses applications. C'est à ce double titre qu'il a fait l'objet de nombreuses études. Schématiquement, l'écoulement de cavité présente deux caractéristiques dynamiques principales : i) l'instabilité intrinsèque de la couche cisaillée se développant au-dessus de la cavité et le potentiel de rétroaction associé à l'impact de l'écoulement (et des structures tourbillonnaires éventuelles) sur la paroi avale de la cavité; ii) la recirculation générée à l'intérieur de la cavité. Le couplage entre ces différents éléments conduit à l'émergence d'oscillations auto-entretenues de la couche cisaillée, dont la dynamique non-linéaire a révélé une richesse qui laisse de nombreuses questions ouvertes. On met ainsi en évidence la prédiction et la compréhension des modes auto-entretenus, la compétition entre ces modes et l'intermittence qui en découle, la modulation en amplitude des battements de la couche cisaillée et l'organisation tridimensionnelle de l'écoulement en cavité d'envergure finie. Il a en effet été observé que des structures tridimensionnelles peuvent émerger de l'écoulement de recirculation intra-cavitaire. Vraisemblablement issues d'instabilités centrifuges dues à la courbure des lignes de courant dans la cavité, la transformation de cette dynamique transverse dans le régime permanent reste encore peu étudiée. Dans ce travail, on s'intéressera donc • au mécanisme de sélection des modes d'oscillations auto-entretenues, concernant en particulier le lien entre la modulation d'amplitude au coin impactant et l'intermittence se produisant pour certains domaines de l'espace des paramètres;

• aux interactions non-linéaires entre les modes de couche cisaillée et l'écoulement intracavitaire, notamment avec les très basses fréquences dominant l'écoulement à l'intérieur de la cavité.

Cela nous amènera ensuite

• à caractériser les structures cohérentes tridimensionnelles qui apparaissent dans l'écoulement intra-cavitaire dans le régime permanent;

• à étudier ces structures au regard des instabilités centrifuges émergeant le long de la recirculation principale, comme démontré par les analyses de stabilité linéaire.