
HAL Id: tel-00823054
https://theses.hal.science/tel-00823054v1

Submitted on 16 May 2013 (v1), last revised 24 May 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards efficient and secure shared memory applications
Emmanuel Sifakis

To cite this version:
Emmanuel Sifakis. Towards efficient and secure shared memory applications. Distributed, Parallel,
and Cluster Computing [cs.DC]. Université de Grenoble, 2013. English. �NNT : �. �tel-00823054v1�

https://theses.hal.science/tel-00823054v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Emmanuel Sifakis

Thèse dirigée par Saddek Bensalem
et codirigée par Laurent Mounier

préparée au sein Verimag
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Towards efficient and secure
shared memory applications

Thèse soutenue publiquement le 6 Mai 2013,
devant le jury composé de :

Mr. Roland Groz
Professeur à Grenoble INP, Président
Mr. Klaus Havelund
Senior Research Scientist at NASA JPL LARS, Rapporteur
Mr. Gilles Muller
Directeur de Recherche à INRIA REGAL, LIP6, Rapporteur
Mr. Ahmed Bouajjani
Professeur à Paris Diderot, Examinateur
Mr. Saddek Bensalem
Professeur UJF, Directeur de thèse
Mr. Laurent Mounier
Maı̂tre de conférences UJF, Co-Directeur de thèse

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

http://tel.archives-ouvertes.fr/tel-00823054
http://hal.archives-ouvertes.fr

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

ABSTRACT

The invasion of multi-core and multi-processor platforms on all aspects of computing

makes shared memory parallel programming mainstream. Yet, the fundamental problems

of exploiting parallelism efficiently and correctly have not been fully addressed. Moreover,

the execution model of these platforms (notably the relaxed memory models they imple-

ment) introduces new challenges to static and dynamic program analysis. In this work we

address 1) the optimization of pessimistic implementations of critical sections and 2) the

dynamic information flow analysis for parallel executions of multi-threaded programs.

Critical sections are excerpts of code that must appear as executed atomically. Their

pessimistic implementation reposes on synchronization mechanisms, such as mutexes, and

consists into obtaining and releasing them at the beginning and end of the critical section

respectively. We present a general algorithm for the acquisition/release of synchroniza-

tion mechanisms and define on top of it several policies aiming to reduce contention by

minimizing the possession time of synchronization mechanisms. We demonstrate the cor-

rectness of these policies (i.e., they preserve atomicity and guarantee deadlock freedom)

and evaluate them experimentally.

The second issue tackled is dynamic information flow analysis of parallel executions.

Precisely tracking information flow of a parallel execution is due to non-deterministic

accesses to shared memory. Most existing solutions that address this problem enforce a

serial execution of the target application. This allows to obtain an explicit serialization

of memory accesses but incurs both an execution-time overhead and eliminates the effects

of relaxed memory models. In contrast, the technique we propose allows to predict the

plausible serializations of a parallel execution with respect to the memory model. We

applied this approach in the context of taint analysis, a dynamic information flow analysis

widely used in vulnerability detection. To improve precision of taint analysis we further

take into account the semantics of synchronization mechanisms such as mutexes, which

restricts the predicted serializations accordingly.

The solutions proposed have been implemented in proof of concept tools which allowed

their evaluation on some hand-crafted examples.

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

RÉSUMÉ

L’utilisation massive des plateformes multi-cœurs et multi-processeurs a pour effet de

favoriser la programmation parallèle à mémoire partagée. Néanmoins, exploiter efficace-

ment et de manière correcte le parallélisme sur ces plateformes reste un problème de

recherche ouvert. De plus, leur modèle d’exécution sous-jacent, et notamment les modèles

de mémoire “relâchés”, posent de nouveaux défis pour les outils d’analyse statiques et

dynamiques. Dans cette thèse nous abordons deux aspects importants dans le cadre de la

programmation sur plateformes multi-cœurs et multi-processeurs: l’optimisation de sec-

tions critiques implémentées selon l’approche pessimiste, et l’analyse dynamique de flots

d’informations.

Les sections critiques définissent un ensemble d’accès mémoire qui doivent être exécutées

de façon atomique. Leur implémentation pessimiste repose sur l’acquisition et le relâchement

de mécanismes de synchronisation, tels que les verrous, en début et en fin de sections

critiques. Nous présentons un algorithme générique pour l’acquisition/relâchement des

mécanismes de synchronisation, et nous définissons sur cet algorithme un ensemble de

politiques particulières ayant pour objectif d’augmenter le parallélisme en réduisant le

temps de possession des verrous par les différentes threads. Nous montrons alors la cor-

rection de ces politiques (respect de l’atomicité et absence de blocages), et nous validons

expérimentalement leur intérêt.

Le deuxième point abordé est l’analyse dynamique de flot d’information pour des exécutions

parallèles. Dans ce type d’analyse, l’enjeu est de définir précisément l’ordre dans lequel les

accès à des mémoires partagées peuvent avoir lieu à l’exécution. La plupart des travaux

existant sur ce thème se basent sur une exécution sérialisée du programme cible. Ceci

permet d’obtenir une sérialisation explicite des accès mémoire mais entrâıne un surcoût

en temps d’exécution et ignore l’effet des modèles mémoire relâchées. A contrario, la

technique que nous proposons permet de prédire l’ensemble des sérialisations possibles

vis-a-vis de ce modèle mémoire à partir d’une seule exécution parallèle (“runtime predic-

tion”). Nous avons développé cette approche dans le cadre de l’analyse de teinte, qui est

largement utilisée en détection de vulnérabilités. Pour améliorer la précision de cette anal-

yse nous prenons également en compte la sémantique des primitives de synchronisation

qui réduisent le nombre de sérialisations valides.

Les travaux proposés ont été implémentés dans des outils prototypes qui ont permis leur

évaluation sur des exemples représentatifs.

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Acknowledgements

Foremost, I would like to express my deepest gratitude to my co-advisor Laurent

Mounier. His immense enthusiasm, support, availability and attention to details made

it a real pleasure to work with him. I also sincerely thank my advisor Saddek Bensalem

for his integrity and support.

I would like to thank all members of the jury for their implication in the evaluation of

my thesis. A special thanks to Klaus Havelund and Gilles Muller for thoroughly examining

my thesis but also for their enriching comments. I also thank Ahmed Bouajjani for his

participation in the jury and Roland Gros who accepted to president the dissertation.

I also thank all my colleagues and officemates at Verimag for their support and encour-

agement over all these past years. A special thanks to my friends Paris, Vasso and Tesnim

with which we shared many good moments but also went through a lot.

Last but not least I am deeply grateful to my family. My parents George and Marie-

Claude to whom I dedicate this thesis. I thank them for raising me with good values, and

making my education always a priority. I also thank my sisters Catherine and Sandra for

their encouragement. Lastly I thank Manolya for all her support especially during the

hard part of redacting this document.

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Contents

1 Introduction 1

1.1 Increasing computing power . 1

1.2 Exploiting computer power . 2

1.2.1 Parallel programming models . 4

1.2.2 Shared memory architectures . 4

1.2.3 Caveats of shared memory . 5

1.3 Security and correctness . 5

1.3.1 Information security . 5

1.3.2 Program validation . 6

1.4 Our contribution . 7

1.4.1 Optimizing pessimistic critical sections 7

1.4.2 Predictive information flow analysis 8

1.5 Organization of the thesis . 8

2 Thread programming model 11

2.1 What are threads? . 11

2.1.1 Description of a process . 11

2.1.2 Description of threads . 12

2.2 Common usage of threads . 13

2.3 Challenges of threads . 14

2.4 Data race detection . 17

2.5 Synchronization mechanisms . 18

2.5.1 Synchronization issues . 19

2.6 Executing threads in parallel . 20

2.6.1 Sequential consistency . 21

2.6.2 Relaxing sequential consistency . 22

vii

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.7 Formalization of a multithreaded program execution 23

2.7.1 Sequential schedule and serialization 25

2.7.2 Parallel schedule and serialization . 25

2.7.3 Constraining interleavings of a multithreaded execution 28

2.8 Summary . 29

3 Optimizing critical sections 31

3.1 Relaxing atomicity of critical sections . 32

3.2 Implementing critical sections . 33

3.2.1 Optimistic implementation of critical sections 33

3.2.2 Pessimistic implementation of critical sections 34

3.2.3 Optimistic versus pessimistic concurrency 34

3.3 Improving pessimistic implementations of critical sections 35

3.3.1 Positioning of our work . 36

3.4 Mutual exclusion mechanisms . 36

3.5 Policies for acquisition/release of protections 41

3.5.1 General algorithm for managing protections 41

3.5.2 Policies for acquisition/release of protections 43

3.6 Observations on policies . 52

3.6.1 Equivalence of Incremental/Eager and Incremental priority release 52

3.6.2 Optimizing critical sections implemented with Incremental policies 53

3.6.3 Inferring optimal total order of variables 54

3.7 Extending critical sections . 56

3.7.1 Loops and conditionals . 56

3.7.2 Function calls . 61

3.8 Recapitulation . 61

4 Predictive information flow analysis 63

4.1 Taint analysis . 64

4.1.1 Explicit information flow . 64

4.1.2 Implicit information flow . 64

4.1.3 Application of taint analysis . 65

4.2 Tracing taintness . 66

4.2.1 Dynamic binary instrumentation . 66

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.2.2 Sequential taint analysis . 67

4.2.3 Optimizing DIFT . 70

4.3 Extending monitored traces . 71

4.3.1 Runtime prediction for concurrency bugs 71

4.3.2 Runtime prediction applied to information flow 72

4.3.3 Positioning of our work . 73

4.4 Predictive explicit taint analysis . 73

4.4.1 Overview of our approach . 73

4.4.2 Slicing the parallel schedule Σ∥(log files) 75

4.5 Sliding window-based explicit taint prediction 76

4.6 Iterative explicit taint prediction in a window 79

4.6.1 Enumerative approach . 80

4.6.2 Iterative approach . 81

4.6.3 Sliding windows - overlapping . 84

4.7 Iterative taint propagation under sequential consistency 85

4.7.1 Respecting program order without kills 85

4.7.2 Taking kills into account . 90

4.7.3 Effects of sliding window . 96

4.8 Respecting synchronization primitives . 99

4.8.1 Inferring order from mutexes . 100

4.8.2 Enforcing explicit mutex ordering in taint dependency paths 102

4.8.3 Enforcing implicit mutex ordering in taint dependency paths 102

4.9 Recapitulation . 105

5 Implementation and experimentation 107

5.1 Optimizing critical sections . 107

5.1.1 Library for managing protections . 107

5.1.2 Experimentations . 110

5.1.3 Experimental results . 113

5.2 Offline predictive information flow . 118

5.2.1 Proof of concept tool . 118

5.2.2 Some experimental results . 124

6 Conclusion and perspectives 127

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

6.1 Optimizing critical sections . 127

6.2 Predictive information flow analysis . 128

Appendix A Boolean equation systems 131

Bibliography 144

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

List of Figures

1.1 Explicitly parallel computer systems. 2

1.2 Data parallelism (loop parallelization). 3

1.3 Parallel systems abstraction . 3

1.4 Physically shared memory architectures. 4

2.1 Address space and status of a process . 12

2.2 Overview of processes and threads. 14

2.3 Deadlock. 19

2.4 Execution of multithreaded application. 21

2.5 Dekkers algorithm broke under Write → Read relaxation 23

2.6 Obtaining serializations for a multithreaded program P 27

2.7 Transitive happens before on thread create 28

3.1 Relaxing atomicity of critical sections . 33

3.2 Synchronization period for high contention lock. (from [KBG97]) 35

3.3 Deadlock by obtaining incrementally read/write protections. 38

3.4 Benefit of write intend protection. 39

3.5 Acquiring protections respecting order . 40

3.6 Policies for acquiring/releasing protections 43

3.7 Global policy . 44

3.8 Eager policy . 45

3.9 Incremental policy . 47

3.10 Incremental/Eager policy . 49

3.11 Incremental/Priority release policy . 50

3.12 Policies for acquiring/releasing protections 52

3.13 Equivalence of Incremental/Eager and Incremental priority release 53

3.14 Choosing arbitrary i0 . 53

xi

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.15 Optimizing access to a variable . 54

3.16 Optimizing order for critical sections . 55

3.17 Good vs bad ordering . 55

3.18 Control Flow Graph (CFG) example. 57

3.19 While loop conditional release protection. 58

3.20 Branch loop conditional release protection. 58

3.21 Nested loops in critical section. 59

3.22 Pessimistic Hd
k computation . 60

4.1 Stack smashing by buffer overflow. 65

4.2 Shadow memory mapping. 68

4.3 DIFT analysis using Dynamic Binary Instrumentation frameworks 69

4.4 Overview of our approach . 74

4.5 Slicing Σ∥ into epochs . 75

4.6 Basic notations . 76

4.7 Sliding window based analysis . 77

4.8 Taint definition for a concrete serialization 78

4.9 Taint definition for a plausible serialization of events in a window W 79

4.10 Relaxed taint definition for a plausible serialization of events in a window W 80

4.11 Enumerative prediction of taint propagation 81

4.12 Obtaining boolean equation system. 82

4.13 Variable dependency graph of disjunctive boolean equation system. 82

4.14 Equivalence between path in dependency graph and tainting serialization . 83

4.15 Iterating over the window . 84

4.16 Example, sequential consistency and iteration 86

4.17 Composing a sequentially consistent serialization based on a TDP 90

4.18 Events contained in σiP . 91

4.19 Inferring a valid serialization for a path P . 91

4.20 Events not belonging to P are considered kills 92

4.21 Kill in W when not generated . 95

4.22 All threads generating x must eventually kill it 95

4.23 Delay killing in tail . 97

4.24 Propagation through incompatible TDP s . 98

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.25 Interleaving critical sections . 101

4.26 Ordering critical sections using mutexes . 102

4.27 Taint paths define implicitly order of critical sections 103

4.28 Implicit precedence of critical sections . 104

5.1 Activity diagram for serve function. 109

5.2 Average computation, Applications 1 and 2 111

5.3 Communication in a network Application 3 112

5.4 Comparison of policies and implementation of mutexes 114

5.5 Problem of incremental policy for application 1 115

5.6 Execution of policies global and eager . 116

5.7 Execution of policies incremental and incremental/priority release 117

5.8 Abstract analysis framework . 118

5.9 Tainting paths for (18,111,5) under relaxed analysis 121

5.10 Tainting paths for (18,111,5) under sequential analysis 122

5.11 Tainting paths for (18,111,5) under synchronization analysis 123

5.12 Cutting of epochs . 125

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1

Introduction

Computer systems are evolving with an astonishing rapid rate and are extensively used

in various contexts, from scientific computations to critical systems, personal computers

and consumer electronics. In all cases there is an insatiable demand for performance,

since it allows to accomplish more complex tasks faster. Moreover, due to the importance

of information manipulated by computer systems correctness and security are a major

concern.

1.1 Increasing computing power

A computer is a machine based on the Von Neuman architecture. It consists of a central

processing unit (CPU) connected to a memory and some input/output (I/O) devices to

communicate with the environment. The CPU is capable of performing a finite set of

arithmetic and logic operations on data with a constant speed defined by the CPU clock.

The sequence of operations to be performed by the CPU are specified in programs. Both

programs and data reside in memory.

Increasing computing power implies performing more calculations in less time. For

several decades the increase of performance in computer systems reposed mainly on the

advance of hardware. According to Moore’s law the cost effective density of transistors

per chip should double approximately every two years. This implied that faster CPUs

and larger memories could be fabricated all at reduced costs. Of course all this gain did

not come for free. Faster CPUs need more electric power, and in combination with the

reduced size heating of chips reaches critical levels.

Increasing the clock speed of a CPU was not sufficient itself for obtaining significant

performance gains. The usage of CPUs had to be optimized (i.e., clock cycles should

not be waisted). To that end several architectural changes have been applied such as:

introduction of cache memories to hide latency for accessing main memory, or usage of

dedicated buses for signals and data transfers. Another type of optimization was to add

parallelism at the hardware level. It came in the form of pipelining, instruction level

parallelism (ILP) and simultaneous multi-threading. This type of parallelism is implicit

because it is transparent to the programmers.

1

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1. Introduction

Reaching physical limits and running out of coarse optimizations with significant ben-

efits, hardware design was oriented towards explicit parallelism. That is, computers con-

sisting of multiple processing units. This came in two flavors:

multiprocessor: multiple CPUs interconnected into some topology are placed inside a

single computer system. Figure 1.1(a) illustrates a multiprocessor system consisting

of two CPUs;

multicore: multiple processing units (called cores) are placed on a single CPU chip.

Figure 1.1(b) presents a multicore CPU consisting of two cores.

CPU0 CPU1

BUS

Memory

(a) Multiprocessor

CPU

core0 core1

BUS

Memory

(b) Multicore

Figure 1.1: Explicitly parallel computer systems.

Programmers must be aware of explicit parallelism in order to exploit it correctly

and efficiently. This turns out to be an utterly challenging task. Parallelism adds non-

determinism which makes it more difficult to reason about a programs correctness. More-

over, analyses and debugging tools that were used on sequential programs must be adapted

to deal with parallelism.

1.2 Exploiting computer power

The switch from single processor to parallel architectures (multicores and multiprocessors)

has a great impact on the way software is conceived. Better performance of a program

no longer comes for free. To improve performance, programs must be parallelized. There

are two sources of parallelism, data parallelism and task parallelism. Data (or loop-level)

parallelism takes advantage of independent data to partition them into data sets and

execute the same computation function on each partitioning concurrently. Figure 1.2 on

the facing page illustrates an example of loop parallelization. The original loop on the

left can be split and be executed in parallel as is the case on the right. Task parallelism

focuses on executing different computation functions concurrently, and potentially on the

same data sets.

Parallel computation is not a new concept in computer systems. In the early 70s already

vector processing was developed to increase performance of mathematical computations.

2

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

1.2 Exploiting computer power

1 int data [1000];

2 for(i=0; i <1000; i++){

3 data[i]++;

4 }

1 int data [1000]

2 % CPU0

3 for(i=0; i<500; i++){

4 data[i]++;

5 }

6 % CPU1

7 for(i=500; i <1000; i++){

8 data[i]++;

9 }

Figure 1.2: Data parallelism (loop parallelization).

Vector computers consist of a master processor which dispatches instructions to a number

of processing units which execute them simultaneously on different memory locations.

Such type of supercomputers were exclusively used for scientific and engineering purposes.

A great break through to parallel computing came with the development of networks and

the increased performance and reduced cost of personal computers. This allowed to build

supercomputers by connecting custom of the shelf computers into clusters and grids.

A cluster is typically a set of homogeneous tightly connected computers, usually through

a high speed local network (e.g., Myrinet). A grid is a collection of heterogeneous loosely

connected computers, often through the Internet. Grids are mostly seen as a distributed

system while clusters often appear as a single computational unit. Both clusters and grids

are used in high performance computing (HPC) to solve complex problems. Two new

trends in HPC are cloud computing and general purpose graphics processing unit (GPGPU)

computing. Cloud computing offers access to remote computer resources through a service

while GPGPU allows to exploit the computing power of graphics processing units, which

consist of thousands of light cores specially designed for parallel performance.

Parallel computers independently of their scale (multi-core, multiprocessor, cluster, grid)

can be abstracted using three building blocks: (i) processing units (ii) memory modules

and (iii) interconnections. An interconnect links processing units between them or with

memory modules. Figure 1.3 illustrates two common parallel architectures, the distributed

memory on the left and the shared memory on the right. In the distributed memory

architecture each processing unit has a private/local memory and can access the memory

of other processing units through the network. In the shared memory case all processing

units are directly connected to a globally visible shared memory.

P

M

P

M

P

M

P

M

a) Distributed memory

P

M

P

M

P

M

P

M

a) Shared memory

P processing unit

M memory module

interconnect

Figure 1.3: Parallel systems abstraction

3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1. Introduction

1.2.1 Parallel programming models

Processing units of a parallel system need to exchange data and synchronize in order

to accomplish a common task. Communication is done either using message passing or

through shared memory. In message passing, as its name indicates, messages are sent be-

tween processing units. This communication model is well adapted for distributed parallel

systems where messages are sent through a network. An interface known as MPI (Message

Passing Interface) has been standardized for message passing communications, and several

implementations of it exist. In the shared memory model data are transfered by placing

them into designated locations of the globally visible address space. The synchronization

is also done through shared memory, using synchronization primitives such as locks.

Both the message passing and shared memory communication mechanisms do not need

to correspond directly to the underlaying platform. That is, message passing can be

implemented through shared memory and dually shared memory can be simulated through

distributed shared memories. In the rest of the document we focus to parallel computer

systems with physically shared memory. That is, we consider multiprocessor and multicore

architectures. In these architectures the shared memory model fits naturally.

1.2.2 Shared memory architectures

Physically shared memory architectures can be devised into uniform memory access (UMA)

and non-uniform memory accesses (NUMA) as illustrated in Figure 1.4. In UMA architec-

tures accesses to the shared memory take the same time independently of which processor

issued them. In NUMA architectures processors can still access any memory location, but

the time required depends whether the memory location resides in its own local mem-

ory (immediate interconnection with memory, faster access) or to the local memory of

other processors (non-immediate interconnection with memory, slower access). NUMA

architectures have a structure similar to distributed memories.

P

MemoryP

P

P

P

P

P

P

Uniform Memory Access (UMA)

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Memory

Memory

Memory

Memory

Non-Uniform Memory Access (NUMA)

Figure 1.4: Physically shared memory architectures.

The architectures can also be classified by the types of processors they are composed

of. In symmetric multiprocessor (SMP) systems all processors have the same characteris-

tics. Dually, in asymmetric multiprocessor (ASMP) systems the processors used can have

different characteristics (e.g., CPU speed).

4

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

1.3 Security and correctness

1.2.3 Caveats of shared memory

In the shared memory model, independently of the underlaying architecture, concurrent

modifications to common memory locations can cause data races. That is, the outcome of

the program executed depends on the order in which memory updates took place. Data

races can have disastrous results. Thus, precautions must be taken, when necessary, to

eliminate them. In the shared memory model synchronization mechanisms that guarantee

mutual exclusion are used to enforce an order among critical sections (portions of code

containing that should be executed atomically). The mis-usage of synchronization mech-

anisms such as locks can introduce deadlocks i.e., disallow permanently the blocked parts

to make any progress.

Mutual exclusion of critical sections implies they are serialized, which is necessary for

the correctness of the programs. Serialization in parallel programs should be minimized

in order to obtain significant performance gains. As formulated in Amdahl’s law: the

speedup of a program using multiple processors in parallel computing is limited by the

time needed to execute the sequential fraction of the program.

The abstraction we used (processing units, memory, interconnection) to describe parallel

computers provides an intuitive overview of the architectures but also hides many details

such as caches. Caches are small and very fast memories which store copies of picked

memory locations in order to hide the latency of main memory accesses. Maintaining

caches coherent is a major issue because a processor may miss the update of a cached

memory location residing on an other processor. To resolve those issues several cache

coherency protocols exist.

Because shared memory parallel architectures can widely vary (UMA, NUMA, different

levels of cache, cache coherence protocols used) the behavior of a program can also vary

according to the platform it is executed on. It is hence necessary to define a memory

consistency model which specifies the behavior of memory with respect to simultaneous

accesses to the same location and issued by different processors. To gain in performance

several relaxed consistency models have been proposed and applied to a vast majority of

commercial architectures.

1.3 Security and correctness

1.3.1 Information security

The importance of information is invaluable and a number of security properties such

as (i) confidentiality (ii) integrity and (iii) availability must be guaranteed. Nowadays

information is stored, processed and transfered among a multitude of devices. Although

encryption algorithms and communication protocols can ensure integrity and confidential-

ity, of data storage and transfer, they are not always used properly. Data are often stored

un-encrypted and their security relies entirely on the operating system access control which

is insufficient.

Benign software may unintentionally leak confidential data, or contain vulnerabilities

5

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1. Introduction

that could be exploited by malicious software (malware). Malwares come in many flavors,

viruses, worms, trojan horses, spywares etc. and focus in disclosing confidential informa-

tion, or causing denial of services (e.g., crash programs) or capture the host computer

(zombie computer) in order to accomplish further malicious tasks. To protect against

software vulnerabilities information flow analysis is mandatory.

Information flow analyses trace how data processed by a program transit inside mem-

ory at execution time. Two popular analyses focusing on preserving security are non-

interference and taint analysis. Non-interference focuses on confidentiality. It ensures

that high (confidential) data do not flow into low (public) data. A program is safe if the

same outputs are observed for different values of high data. Taint analysis on the other

hand tracks untrusted data such as user or network input and checks how they influence

vulnerable statements (e.g., return address of functions). Taint analysis was originally

implemented in the Perl language for identifying security risks on web sites such as SQL

injections and buffer overflow attacks. The term taint analysis is now widely used as a

synonym to dynamic information flow tracing (DIFT). Moreover, the type of informa-

tion traced is not restricted to untrusted data and thus more general analyses can be

implemented.

1.3.2 Program validation

Further to the security aspects, correctness of applications is also crucial. To state a

program is correct a formal specification (mathematical description) must be provided

and formal verification techniques should be employed to demonstrate it. Intuitively,

an application is correct when it exhibits the expected behavior. Formal methods give

verdicts about all executions of a program. Though, to overcome the complexity and non-

determinism of the analyzed systems they use abstractions which usually over-approximate

the systems behavior. This leads to false positives, i.e., finding errors that could not occur

in a real execution of the program. A somehow dual technique called testing is widely

used to validate program executions.

Testing has become an indispensable part of software development. It is applied to

validate if a program meets its functional and extra-functional requirements for a specific

(specially guided) execution. Testing is applied dynamically, that is by executing a pro-

gram or fragment of a program and observe the execution for the tested property. We

must note that testing is not exhaustive and thus it cannot be used for verification. In

order to increase the confidence of programs stress testing is applied to increase coverage

of tested executions. If any functional errors (bugs) are found during testing they should

be resolved through the debugging process.

Debugging of programs consists in finding errors (bugs) and correcting them accordingly.

In order to debug an error it should be reproducible so that it can be replayed as many

times necessary to detect its source. Several tools called debuggers help developers in this

process. They allow a step-by-step execution of the program and inspection of memory at

any point.

The non-determinism of concurrent program executions makes information flow track-

6

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

1.4 Our contribution

ing, testing and debugging more challenging. Concurrent modifications to shared memory

affect the propagation of taintness and observations of testing. Taint propagation or

verdict of tests can be different for repeated executions using the same inputs. The non-

deterministic execution is affected by many factors such as scheduling decisions taken by

the operating system or even the serialization of events by the execution platform. Re-

producing a non-deterministic execution precisely is nearly impossible. Thus, we can no

longer specify precisely the execution that was tested, nor can we easily reproduce bugs in

order to fix them. A partial solution to checking non-deterministic executions is runtime

prediction. The intuition behind it is to infer/predict plausible serializations based on a

concrete execution of the observed application. Thus, upon a single test execution we

predict several neighboring executions which would be hard to enforce.

1.4 Our contribution

This thesis addresses two topics related to parallel executions of multi-threaded programs

on shared memory architectures. The first problem addressed is the optimization of pes-

simistic implementations of critical sections. The second problem addressed is the taint

analysis for parallel executions of multithreaded programs on multicore architectures.

1.4.1 Optimizing pessimistic critical sections

Critical sections are widely used to enforce mutual exclusion between conflicting accesses

to shared resources, e.g., shared memory locations. They are traditionally implemented

using synchronization mechanisms such as locks. The locks necessary to protect a critical

section are in most cases obtained prior to entering the critical section and released only

once the critical section has been executed.

In this work we identify the properties on locks that must be respected such that the

semantic of critical sections is preserved. We then propose several policies intending

to minimize possession of locks and thus increase parallelism at execution time. The

contributions of this work are summarized as follows:

� The definition of a generic lock acquisition/release algorithm for critical sections.

� The instantiation of five policies on top of our algorithm. Correctness of these policies

with respect to deadlock freedom and absence of data races is provided.

� The definition of a new exclusion mechanism called read write intend.

� The development of a library implementing several exclusion mechanisms, including

read write intend. The library also provides functionality for serving atomically the

acquisition and release of sets of synchronization mechanisms.

Publications

Sifakis Emmanuel and Mounier Laurent. Politiques de gestion de protections pour l’implémentation

7

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1. Introduction

de sections critiques. RENPAR, 2011

Sifakis Emmanuel and Mounier Laurent. Politiques de gestion de protections pour l’implémentation

de sections critiques. TSI special RENPAR, 2012

1.4.2 Predictive information flow analysis

Information flow analysis is often applied at runtime since it is more precise. Performing

information flow analysis on shared memory programs executing in parallel is utterly

difficult. To overcome the difficulties introduced by parallel execution the majority of

existing works impose the serialized execution of the analyzed applications. Note that in

this case information flows inferred are restricted to the observed serialization.

In this work we propose a predictive information flow analysis for parallel programs.

Our analysis allows the parallel execution of applications which is the input to our predic-

tion algorithm. The prediction is applied to bounded portions of code that were executed

“simultaneously”. Predictions are inferred by the iterative algorithm we propose. The

prediction focuses into capturing information flows produced by plausible serializations

of the parallel execution observed. The predictions should take into account the charac-

teristics of the execution platform. We use taint analysis as a representative information

flow analysis and consider sequentially consistent platforms. A considerable effort has

been done to reduce false predictions. The contributions of this work are summarized as

follows:

� Proposition of a runtime prediction technique for parallel executions.

� Definition of an algorithm for precise predictive taint analysis. The precision of

predictions comes from:

(i) taking into account the underlaying memory model;

(ii) safely un-tainting memory locations;

(iii) respecting semantics of synchronization mechanisms (locks).

� The algorithm we propose avoids the enumeration of all serializations.

� Implementation of a proof of concept tool.

Publications

Sifakis Emmanuel and Mounier Laurent. Dynamic information-flow analysis for multi-

threaded applications. ISOLA, 2012

1.5 Organization of the thesis

The thesis is organized in six chapters. Chapter 2 provides background information on

threads and formalizes their execution. In chapter 3 we present the contribution on op-

timizing critical sections, while in chapter 4 the contribution on offline predictive taint

8

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

1.5 Organization of the thesis

analysis. Chapter 5 presents the proof of concept experimentations we conducted as well

as some tools that were developed. Finally, chapter 6 provides some perspectives and

concludes the thesis. Below, are some more detailed descriptions on the content of each

chapter.

Chapter 2 provides background information on thread programming model. We start

with a detailed description of different types of threads (kernel, user level). Next,

we abort the challenges introduced by thread programming, races and synchroniza-

tion. The chapter ends with a short presentation of weak memory models and the

formalization of threads and their execution.

Chapter 3 initially details critical sections and gives an overview on the two main imple-

mentation approaches optimistic and pessimistic. Next, it presents some literature

on improving pessimistic implementations of critical sections. Then we present our

algorithm for acquiring and releasing protections and how it is used to compute pro-

tections to be held by each instruction in the critical section according to our policies.

In total, we define five polices and prove they respect the desired properties.

Chapter 4 first presents taint analysis (both implicit and explicit). Then it provides

background information on dynamic taint analysis. The framework for offline explicit

taint prediction is detailed and applied to a completely relaxed memory model, as

well as to a sequentially consistent one. For the sequentially consistent memory

model we also provide details on the refinement of taint predictions by taking into

account untainting of variables and the semantic of synchronization mechanisms

(locks).

Chapter 5 contains the experimentations conducted and the tools developed. The ex-

periments on critical sections although hand-crafted tend to simulate computations

commonly found in image processing, with high contention. The experiments on

taint propagation are also on hand-crafted examples and the implemented tool is

mostly a proof of concept.

Chapter 6 concludes with a summarization of the thesis and presents some perspectives

for the works on optimizing critical sections and predictive information flow.

9

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 1. Introduction

10

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2

Thread programming model

With SMP and multicore architectures becoming ubiquitous shared memory program-

ming goes mainstream. The thread programming model which was widely used even on

mono-processor architectures is suitable for exploiting the parallelism offered by the mul-

ticore and multiprocessor architectures. In this chapter we provide an overview of thread

programming and the challenges programmers have to face.

2.1 What are threads?

A thread or light weight process defines a separate stream of execution within a process. To

make the definition more concrete we present hereafter some background information on

operating systems (OS). We detail processes and threads and point out their differences.

The information we provide is kept at a high level and is based on the Unix OS. More

detailed information on operating systems is provided in [Tan01].

2.1.1 Description of a process

A fundamental task of operating systems is to instrument the execution of several programs

concurrently. This is called multitasking. Because the resources (most importantly the

CPU) are limited the OS has to rapidly switch the execution of programs so that they

appear as executing in parallel. The process abstraction:

� provides isolation between running programs by assigning to each a virtual portion

of main memory (RAM) called the address space in which the program can read

and write. The address space is logically split into three parts as illustrated in

Figure 2.1(a). The text segment contains the programs code while the data segment

the global variables. The stack segment stores information on routines executed by

the program. The free space between data and stack is used for dynamic memory

allocation.

� stores at the OS level (e.g., in the process table) a multitude of attributes related to

a programs execution such as:

11

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

text

data

stack

ad
d

re
ss

sp
ac

e

(a)

executing

blocked ready

(b) transitions among status states

Figure 2.1: Address space and status of a process

– general registers

– program counter

– stack pointer

– status, which can be either of:

* executing when the process uses a CPU;

* blocked when a process gets blocked by an event e.g., reading from hard

disk;

* ready when it is waiting to be scheduled on a CPU.

Figure 2.1(b) illustrates in an automaton the transitions among the status of a

process.

– file descriptors

– priority

– signals

2.1.2 Description of threads

As mentioned earlier a thread defines a separate execution stream within a process. An

execution stream consists of the following information which is necessary for resuming the

execution on a CPU:

� program counter

� stack pointer

� register values

� status

Defining a thread implies storing the minimum information listed above for the thread.

The rest of the information stored for a process is shared among threads. A process can

hence be conceived as a mean of grouping resources (address space (memory), files, devices

etc.) which are accessible by its threads. By default a process consists of a single thread.

12

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.2 Common usage of threads

Creation and scheduling of threads

There are two ways of creating a thread: manually (user-level threads) or through the OS

(kernel threads). Each has its advantages and weak points. User-level threads were most

popular when OS did not support threads (still some do not). In this case information on

threads is entirely stored in the address space of the process. Moreover, the programmer

is responsible of storing and resuming correctly threads. Kernel threads are created and

managed by the OS so information on resuming a threads execution is stored at the OS

level. Dually, the stack associated to the thread resides in the address space of the process.

The number of threads the OS can manage may be limited. In any case, the creation of

threads is much faster than that of processes because no resources need to be acquired

(e.g., assign a new address space).

For user-level threads the OS assumes managing a regular process, thus in case of a

multiprocessor it will always provide only one CPU to execute on. Moreover, scheduling

of user-level threads is at the complete responsibility of the programmer. This can be

advantageous because any scheduling policy can be applied according to the needs of the

program. Kernel threads on the other hand are scheduled by the OS (multi-threading).

Dually to user-level threads the OS can assign multiple CPUs to the process and thus

execute threads in parallel. In both cases switching between threads is much faster than

switching between processes. Finally, the two types of threads can be combined inside a

process.

Figure 2.2 presents an instance of a computer system stacked into three layers. At the

bottom is the hardware in the middle the OS, and at the top the processes being executed.

The OS has a set of available scheduling units which are linked to a process. A schedulable

unit is assigned to a process for each kernel thread it contains. A process always has at

least one kernel thread (as in proc1) which executes it. Process three (proc3) for instance

has three kernel threads one of which is the main thread and the other two were spawned,

as well as two user-level threads. Finally, the lines connecting a schedulable unit to a CPU

denote the scheduling at a given time.

2.2 Common usage of threads

In section 2.1 we gave an insight of threads implementation and how they are related to

processes. Processes can be seen as a way of grouping resources while threads as entities

to be scheduled for execution. Hereafter we present how the benefits of threads are most

commonly exploited.

The main motivation behind threads is to allow a process to progress while waiting

on a blocking instruction such as reading a file. A great example is a text editor which

stores a backup of the current work while the user edits the text. Instead of blocking the

text editor, a thread is spawned and performs the blocking I/O operation while an other

thread keeps processing the text. Similarly, all programs with user interaction use threads

to remain reactive to user input.

Another common case combines two properties of threads. Access to the same set of

13

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

HARDWARE

CPU CPU MEMORY I/O

OS

proc1

proc2 proc3

schedulable unit

main thread

(always kernel)

spawned

kernel thread

stack frame

private to thread

spawned

user-level thread

Figure 2.2: Overview of processes and threads.

resources and cheap creation and destruction cost. A server which has to reply to a large

number of requests can take advantage of these two characteristics of threads. First, it can

rapidly create a thread per request, thus it can concurrently serve many clients. Secondly,

by sharing the resources it can be more efficient. For example, a web server could read an

html page once and forward it to a number of clients that requested it.

Finally, multicore and multiprocessor architectures allow the parallel execution of

threads, at least for the number of kernel threads. This can be used to increase per-

formance of applications by parallelizing loops or doing parallel sorting etc. Parallel algo-

rithms are privileged because thread synchronization is much easier to achieve (compared

to using inter process communication) and data are immediately shared.

2.3 Challenges of threads

The benefits of thread programming do not come for free. Concurrent modifications

to the shared memory of a process can cause several bugs such as inconsistent data,

memory leaks, program crashing, but can also have disastrous consequences [LT93, Pou04].

Concurrent implies both interleaving instructions of threads and executing them in parallel

(i.e., simultaneously each on a CPU or core). In any case non-determinism creates races

which can be categorized into race conditions and data races. The two types of races

overlap and thus are often used interchangeably. We provide the definition of each and

give an example to clear any ambiguity.

Race condition: occurs when the ordering of events affects the programs correctness.

The ordering may vary due to several reasons such as non-deterministic scheduling,

interrupts, memory operations on multiprocessors etc.

14

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.3 Challenges of threads

Data race: is a special case of race condition where two (or more) threads attempt to

access a memory address simultaneously, at least an operation is a write and no

ordering of the events is enforced. We must note that a data race can be benign.

The overlapping of the definitions is due to the fact that data races are susceptible to

turn into race conditions. Resolving data races by no means implies elimination of race

conditions. Race conditions are more related to the semantic of what is executed and thus

are harder to reason about, identify and resolve.

To disambiguate the definitions we use the example of a bank account withdraw (in-

spired from [Reg11]). It is intuitive that each withdrawal should be atomic. That is,

concurrently withdrawing from an account should reduce the balance of the account by

an amount equivalent to the sum of all concurrent withdraws. Listing 2.1 contains a naive

implementation of function withdraw which removes the specified amount from the given

account acc.

1 withdraw (Account acc , int amount){
2 bal = acc . ba lance ;

3 i f (ba l >= amount){
4 acc . ba lcance = bal −amount ;

5 }
6 }

Listing 2.1: Naive withdraw example.

If two threads t1, t2 issued concurrently a withdraw from an account X then the effect

of the withdraw issued by a thread could be suppressed. Such a case occurs if both threads

read the same initial balance from account X and then race for writing the new balance of

the account. The outcome depends on which thread will write last, since thats the value

that will persist. In this naive implementation we have both race conditions because the

outcome depends on the scheduling of the threads but also data races since no ordering

on memory accesses is enforced.

To correct the implementation of withdraw we must eliminate both data races and race

conditions. We use the mutex synchronization mechanism which, as its name denotes, pro-

vides mutual exclusion. We assume each account is attributed a mutex (accessible through

acc.mutex). More details on synchronization mechanisms are provided in section 2.5.

The implementation of withdraw presented in Listing 2.2 is data race free because all

accesses to attributes of the account are synchronized. This however does not prevent race

conditions to occur.

15

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

1 withdraw (Account acc , int amount){
2 l o ck (acc . mutex) ;

3 bal = acc . ba lance ;

4 unlock (acc . mutex) ;

5 i f (ba l >= amount){
6 l o ck (acc . mutex) ;

7 acc . ba lcance = bal −amount ;

8 unlock (acc . mutex) ;

9 }
10 }

Listing 2.2: Withdraw without data races.

Eliminating race conditions necessitates to execute a set of instructions in mutual ex-

clusion with all conflicting instructions of other threads. These portions of code are called

critical or atomic sections. In our example we want to ensure the balance is updated cor-

rectly. Thus our critical section should ensure the balance has not been modified between

the check and its update. The implementation of Listing 2.3 is both free of race conditions

and data races, at least as long as it concerns concurrent withdraws.

1 withdraw (Account acc , int amount){
2 l o ck (acc . mutex) ;

3 bal = acc . ba lance ;

4 i f (ba l >= amount){
5 acc . ba lcance = bal −amount ;

6 }
7 unlock (acc . mutex) ;

8 }

Listing 2.3: Withdraw without data races and race conditions.

We mentioned earlier that data races can be benign. We extend the withdraw example

such that it contains a data race which is benign. For that we assume the accounts have

a flag which denotes the account has been accessed. This information can be used for

random checking of accounts for instance. Thus for performance it may be profitable

not to protect accesses to it. The implementation of Listing 2.4 has no race conditions

although it contains a data race.

1 withdraw (Account acc , int amount){
2 l o ck (acc . mutex) ;

3 bal = acc . ba lance ;

4 i f (ba l >= amount){
5 acc . ba lcance = bal −amount ;

6 }
7 unlock (acc . mutex) ;

8 acc . f l a g = true ;

9 }

Listing 2.4: Withdraw with data race but without race conditions.

16

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.4 Data race detection

2.4 Data race detection

Data races exist in almost any multi-threaded application for a multitude of reasons:

(i) programmers were unable to anticipate interleavings or (ii) left them voluntarily for

performance reasons (iii) miss-use of synchronization mechanisms (iv) priority inversion

or (v) erroneous assumptions on atomicity of instructions. Because data races can be the

source of various bugs and race conditions, several works have focused on their detection.

Static and dynamic techniques have been extensively used to that end. Even some special

hardware has been designed [MSQT09, ZTZ07, MC91].

Several static analyses and type systems have been defined for race detection, targeting

most commonly C and Java languages. Pratikakis et al. [PFH11] propose LOCKSMITH

a data flow analysis tool for detecting data races in C programs using POSIX threads

and mutexes. The principle of their tool is to deduce a correlation between locks and the

memory locations they protect. A program is race-free if all accesses to a location are

consistently protected by the same lock. RacerX [EA03] is another race detection tool

which also reasons about deadlock freedom. Moreover, it provides a ranking of identified

races according to (i) the likelihood of being a false positive and (ii) the difficulty of

inspection.

Flanagan et al. [FF00, FLL+02, FFLQ08] have conducted a great amount of work on

static race detection of Java programs. In [FF00] they propose a type system capable of

capturing common synchronization patterns such as classes with internal synchronization

and thread-local classes. The type system requires programmers to annotate fields with a

locking expression that protects them. In [FLL+02] they present Extended Static Checker

for Java (ESC/Java). Apart from detecting races it also finds common programming errors

such as null dereferences. Most importantly though it uses an automatic theorem-prover

to reason about the semantics of the program and which gives it the capability of detecting

errors observable at runtime only. Finally, in [FFLQ08] they propose a type system for

inferring atomicity of Java methods.

A drawback of static techniques is the excessive number of false positives they pro-

duce. The reason is most of them make pessimistic assumptions on feasible interleavings.

Dynamic analyses on the other hand are more precise because they reason on feasible

executions and all aliasing issues are eliminated. A plethora of such tools exist. Some

of these tools such as [PK96, YRC05, JBPT09] are based on the happens before relation

defined by Lamport in [Lam78]. In this approach accesses to a shared location by different

threads should be ordered based on a synchronization. Another technique is the so called

lockset analysis employed by Eraser [SBN+97]. It consists in monitoring every shared

memory access and verify consistent locking behavior is observed. That is, all accesses

to a memory location are protected by the same lock. Hybrid tools combining happens

before and lockset technique have also been implemented [OC03, SI09]. Because dynamic

methods incur great overheads at execution time [MMN09] proposes a sampling method

for monitoring running applications. Data race detection analysis is only performed during

selected portions of a programs execution.

Finally, although dynamic data race detection tools are precise a great number of races

17

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

detected are benign. Narayanasamy et al. [NWT+07] split their data races into potentially

benign and harmful. To be able to triage they record the execution into logs and then

perform all analyses offline during replay. To classify a data race two different schedules

are replayed, if the outcome is the same for both schedules then it is considered as benign.

Of course there is no guarantee that all schedules are also benign, but at least the tool

cannot demonstrate a harmful execution. A more recent race detection classification tool

is Portend [KZC12]. It is also based on replaying a concrete execution but does a finer

classification into four categories and has improved accuracy.

2.5 Synchronization mechanisms

Synchronization mechanisms allow to impose an order on the execution of threads and thus

control access to shared resources. There exist several mechanisms to synchronize threads.

We detail hereafter the most commonly used ones. The implementation and behavior of

these mechanisms varies but always relies on special hardware instructions which guarantee

atomic update of the information related to the synchronization mechanism.

lock: is a binary variable with two states locked and unlocked. Only one thread can

obtain the lock at a time, all other threads are prevented from obtaining it until it

is unlocked. Locks provide mutual exclusion and are thus used for protecting critical

sections (sequences of instructions susceptible to create race conditions). There are

typically two variations of locks:

spin lock a thread that was not able to obtain the lock will repeatedly try to obtain

it, resulting into consuming CPU cycles without making any progress. This

tactic is advantageous when the time spinning to acquire the lock is smaller

than a context switch to another thread.

mutex threads that are not able to obtain the lock get blocked allowing other

threads to execute. When the lock is released they are signaled and can try

again to obtain the lock.

semaphores: are mostly used to control access to countable shared resources. A semaphore

can be conceived as a counter with atomic increment (V) and decrement (P) in-

terface. To obtain a resource a process has to decrement the semaphore. If the

semaphores value becomes negative the thread is blocked and put in a waiting list.

To release a resource a thread increments the semaphore. If the previous value was

negative it unblocks the first thread in the waiting queue.

condition variable: allows to block a thread until a condition is true. A condition

variable is always used in conjunction with a lock. The lock is needed for atomically

checking the condition. If the condition is false then the lock is released (so other

threads can update the condition) and the thread sleeps in a queue related to the

condition variable. When another thread updates data of the condition it should

signal a single or all threads waiting on the condition so they can test it again.

18

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.5 Synchronization mechanisms

barriers: are used to synchronize a set of threads. All threads must reach to the state

designated by the barrier prior to continuing. For example in a parallel sorting of

a table all threads must finish sorting their sub-table prior to merging the sorted

parts.

2.5.1 Synchronization issues

Synchronization mechanisms affect the execution of a process by blocking threads when

necessary. This brings to surface some well known problems that of deadlock, livelock or

starvation and priority inversion.

Deadlock

A deadlock (or deadly embrace) occurs when two threads mutually wait on a resource held

by the other thread to be released. For a deadlock to occur several conditions known as

Coffman conditions [CES71] must hold.

i) mutual exclusion: a resource is either held by a thread else it is available.

ii) hold and wait: threads can hold some resources while waiting for others

iii) no preemption: resources obtained by a thread cannot be forcibly released. The

thread must release them voluntarily.

iv) circular wait: there exists a circular chain between two or more threads each waiting

on a resource obtained by the next in the chain. Figure 2.3 illustrates such a case,

where circles represent the resources (locks for instance) and squares the threads.

Edges exiting threads represent resources obtained while incoming edges represent

the requested resources.

t1

t2

R1R2

Figure 2.3: Deadlock.

Deadlock handling

If deadlocks are ignored, then most probably at some point the entire process will get

blocked. To avoid this undesired event several solutions can be used. They are categorized

into: (i) detection and recovery (ii) avoidance (iii) prevention.

19

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

detection and recovery: In this approach action is taken after a deadlock is detected.

To detect deadlocks a graph of resources must be kept up to date. Then, an algorithm

for detecting cycles can be used to detect deadlocks. Recovery occurs by forcibly

removing a resource from a thread, that is braking Coffman condition iii.

avoidance: Dynamically decides whether allowing a thread to obtain a resource can lead

to a deadlock. For this approach to work knowledge of all resources a thread will

need is required. The bankers algorithm proposed by Dijkstra solves this problem.

prevention: To prevent deadlocks it suffices to eliminate one of the Coffman conditions.

i mutual exclusion can be eliminated by using lock free algorithms

ii to lift the hold and wait condition, all threads must obtain the resources they

require prior to starting their execution. Because resources are usually obtained

one by one backing of is necessary i.e., if a resource is not immediately available

all resources previously acquired must be released and try again.

iii removing the no preemption condition correctly necessitates a roll-back of all

actions executed by a thread before releasing the resource. This can be too

expensive to implement or even impossible (in the case of I/O for instance).

iv to eliminate circular waits Dijkstra originally proposed defining a partial order

over the resources and then enforce they are acquired respecting that ordering.

Livelock or starvation

This problem occurs when a thread which is not blocked does not manage to progress. This

can happen due to unfair scheduling for instance. Another case is when higher priority

threads monopolize a resource thus excluding lower priority threads from accessing it.

Priority inversion

Priority inversion occurs when a low priority thread surpasses a higher priority thread.

Here is a typical case of priority inversion as presented in [MSD10]. To demonstrate it

three threads are required: t1 with low priority, t2 with medium and t3 with high priority.

Initially t2,t3 are blocked and thus t1 manages to acquire a resource to be shared with t3.

While t1 has not yet released the resource t2 preempts it because it has a higher priority.

Eventually t2 will run to completion surpassing t3 which will resume only after t2 finishes

and t1 releases the shared resource. To avoid such circumstances priority inheritance is

often used.

2.6 Executing threads in parallel

Threads are executed concurrently, which incurs their execution can be arbitrarily inter-

leaved or occur in parallel (i.e., at the same time). Figure 2.4 illustrates the scheduling

of a multi-threaded application consisting of two threads on a mono-processor and on a

20

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.6 Executing threads in parallel

multi-processor system. When executing on the mono-processor, threads are interleaved

according to the schedule and memory accesses are serialized respecting program order of

executed threads. When executing on a multi-processor (or multicore) system real par-

allelism can be obtained, and memory accesses may not appear in the same order to all

threads. In the example of Figure 2.4 we assume all variables are initialized to zero. For

the mono-processor execution the values of z and w will always be 1 and 8 respectively,

which is the expected result. For the parallel execution though the values corresponding

to z and w can be 1 and 0 respectively, which is a rather unexpected result since the

assignment to y precedes that to x and thus should have taken effect too.

sc
h

ed
u

le
r

t1

t2 t1

z=xw=y

t2

y=8x=1

CPU Memory

Multi-threaded execution on mono-processor

sc
h

ed
u

le
r

t1

t2

t1

z=xw=y

t2

y=8x=1

CPU1

CPU2

Memory
In

t
e
r
c
o
n
n
e
c
t

Multi-threaded execution on multi-processor

Figure 2.4: Execution of multithreaded application.

The memory inconsistencies that can be observed by a multi-processor system are speci-

fied in its weak/consistency memory model. The memory model specifies how the memory

system behaves. That is, it correlates the values read by load operations with the value

written by store operations to the same memory location in a parallel execution of a pro-

gram. The inconsistencies are caused by several optimizations introduced by compilers

and the executing platform. Compiler optimizations are correct for single-threaded ap-

plications while hardware optimizations for mono-processor systems. Adve et al [AG96]

provide more details on shared memory consistency models and the effect of various opti-

mizations.

2.6.1 Sequential consistency

Prior to introducing relaxations of weak memory models, we present sequential consistency

(SC) which is the memory model programmers are used to reason about. Sequential

consistency is defined by Lamport in [Lam79] and focuses on:

program order: a processor must issue memory operations in the same order as they

appear in the program, and prior to issuing a memory operation it must ensure that

21

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

its previous memory operation is complete.

write atomicity: writes to the same memory location are made visible in the same order

to all processors.

2.6.2 Relaxing sequential consistency

For performance reasons most architectures break sequential consistency by using out-of-

order execution, non strict cache coherency protocols, and complex memory interconnec-

tions (e.g., switch-based). Various memory models can be defined by relaxing the program

order and write atomicity which are necessary for SC. The relaxations are bounded within

a time interval δ. We enumerate hereafter some relaxations and present in Table 2.1 how

they are incorporated in a number of relaxed memory models.

program order: in this case accesses are made to different locations

� write to read (W → R): a read operation completes before a preceding write

� write to write (W → W): the order of writes is inversed

� read to read or write (R → RW): a read or write operation completes before a

preceding read

write atomicity: in this case accesses are to the same location

� read own write early: a processor reads the new values it wrote prior they are

made visible to other processors.

� read others write early: a processor can read new values prior they are made

visible to all processors.

Relaxation W → R W → W R → RW
Read Own
Write early

Read Others
Write early

SC

IMB370

PC

TSO

PSO

RMO

WO

PowerPC

Table 2.1: Relaxations accepted by most common memory models

As we can note in Table 2.1 one of the most common relaxations is the write to read

(W→R). Because writes are more costly operations they are often placed in a write buffer

while waiting their completion. Subsequent reads can be served as long as there is no

pending write to the same address in the buffer. We use the example presented in [AG96]

which demonstrates how this relaxation breaks Dekkers algorithm for mutual exclusion.

22

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.7 Formalization of a multithreaded program execution

Figure 2.5 illustrates the pseudo-code to be executed by each thread, and a possible

execution on an architecture which relaxes W→R. Under sequential consistency Dekkers

algorithm guarantees mutual exclusion between two threads. Each thread notifies (by

updating its flag) the other it attempts to access the critical section and then checks

(reads the other flag) if the competing thread has accessed its critical section first. In

the illustrated execution, the circled numbers define the order in which the accesses are

served by the memory. As we can note, both threads update their flag, which goes in the

respective write buffer and subsequently test the competing threads flag which in both

cases returns 0. Thus, both threads assume they can proceed with the execution of their

critical section which breaks mutual exclusion.

R:flag2 R:flag1

Memory

flag1=0; flag2=0;

Interconnect

ALU

W:flag1=1;

ALU

W:flag2=1;
1 2

3 4

Thread1

1 flag1 =1;

2 while(flag2 ==1){}

3 // critical section

4 flag1 =0;

Thread2

1 flag2 =1;

2 while(flag1 ==1){}

3 // critical section

4 flag2 =0;

Figure 2.5: Dekkers algorithm broke under Write → Read relaxation

Programmers developing high performance libraries (e.g., concurrent data structures)

often reside to such algorithms for mutual exclusion and synchronization. To enforce an

ordering of memory accesses low level primitives called memory barriers or fences are used

to prohibit relaxations and hence serialize memory accesses.

2.7 Formalization of a multithreaded program execution

As described previously, a multithreaded program consists of a main thread with a life

span same as that of the hosting process and a set of threads dynamically growing and

shrinking as threads are created and terminated at execution time. Each thread defines

a sequence of events which are scheduled and subsequently executed by the underlaying

platform.

23

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

The sequence of events produced by a thread is usually described in a high level impera-

tive programming language such as C/C++ or Java. At this level, events are statements of

the language such as assignments, conditionals, function calls etc. Programmers are often

mistaken and assume high level statements to be atomic. Prior to executing an event de-

scribed in a high level language, it is faithfully translated into assembly instructions/events

for the targeted execution platform. At the assembly level the events corresponding to

a thread are much finner. They specify load, store accesses to thread-private or shared

memory locations and control the execution flow. Some shared memory locations may be

associated to synchronization mechanisms (e.g., mutexes). Choosing the events to con-

sider depends on the abstraction level needed in order to capture significant information

about the threads execution. Usually the set of events consists of synchronizations and

data accesses. We provide hereafter an example of some types of events:

� read(x) read the memory location x

� write(x) write the memory location x

� lock(m) acquire the mutex synchronization mechanism m

� unlock(m) release the mutex synchronization mechanism m

� spawn(t,t′) thread t spawns thread t′

� thread_start(t) thread t is initialized, it denotes the start of production of events

� join(t,t′) thread t waits for thread t′ to end

� thread_end(t) thread t ends its execution, it denotes the end of production of events

A thread T a (where a is the threads identifier) defines a totally ordered sequence of

events eai where i is a unique identifier of the event (capturing the order relation) and a

is the thread that produced it. The sequence of events is delimited by an initial event

ea1 := thread_start(a) and a final event ean := thread_end(a). To specify the ordering

of events, we introduce the reflexive operator a which denotes that an event e precedes

e′ (e a e
′), where e, e′ belong to the same thread T a. We formalize a thread as a tuple

consisting of a set of events, and the thread specific precedence operator:

Definition 2.7.1 (Thread)

T a = ({eai }, a)

A multithreaded program P statically or dynamically creates a number of threads T ,

each uniquely identifiable. Thus, we formalize a multithreaded program as the union of

all these threads:

Definition 2.7.2 (Multithreaded program)

P = ⋃
a ∈T

T a , where T is the set of all threads executed in P

24

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.7 Formalization of a multithreaded program execution

A multithreaded program can be scheduled in many different ways. A schedule Σ is

a total function mapping events to discrete timestamps in N for which the usual < and

≤ order relations can be established. The timestamps assigned to events belonging to a

same thread T a are always distinct and respect the ordering a associated to it.

Definition 2.7.3 (Schedule of multithreaded program P)

Σ(e) ∶ e ∈P→ t ∈ N such that ∀ek em ⇒ Σ(ek) < Σ(em) where = ⋃
a∈T

a

The scheduling of a multithreaded program can be of two types, sequential or parallel

which we detail hereafter. The execution of a schedule Σ is a serialization σoΣ,π of all

events as observed by an observer o. The order of events one can observe, depends on the

execution platform π = (δ, µ) where µ is the platforms memory model and δ is the max

time span during which the memory model can affect ordering of events. We presented

earlier in section 2.6.2 some relaxed memory models.

2.7.1 Sequential schedule and serialization

In the sequential case, the scheduler maps a distinct timestamp to each event e ∈P, thus

a total ordering of events can be inferred. A sequential schedule Σs respects the following

properties:

Definition 2.7.4 (Sequential schedule Σs of P)

i) ek ≠ em ⇒ Σs(ek) ≠ Σs(em)
ii) ∀ek em ⇒ Σs (ek) < Σs(em)

The serializations (σos,π) that can be observed, by any observer o, for the execution

of a sequential schedule Σs are all equivalent and in accordance with the sequence of

events defined by the schedule Σs. A sequential schedule can be conceived as executing

the multithreaded program on a mono-processor. The threads are interleaved, that is a

context switch occurs between two events eak, e
b
k+1 which guarantees ebk+1 will definitively

observe eak as a preceding event. Concerning how a thread observes itself we remind that

the effect of weak memory models are transparent to the thread itself when executed in

isolation with other threads as is the case here.

2.7.2 Parallel schedule and serialization

In the parallel case, the scheduler maps events to partially ordered timestamps while re-

specting the intra-thread precedence relation of each thread. That is, events executed

by different threads might be assigned the same timestamp. The definition of the map-

ping function for a parallel scheduler Σ∥ is the same as that of multithreaded program

(Definition 2.7.3). We just recall the property to be respected:

25

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

Definition 2.7.5 (Parallel schedule Σ∥ of P)

i) ∀ek em ⇒ Σ∥ (ek) < Σ∥(em)

Contrarily to sequential schedules, different serializations (σ∥,π) can be observed for the

execution of a parallel schedule Σ∥. There are two sources for observing different serializa-

tions from a parallel schedule. First, events executed in parallel (i.e., with the same times-

tamp) can be serialized in any order. Second, effects of weak memory model (µ) allows

threads to observe serializations under which events produced by other threads appear in

an order other than that specified by their precedence relation i.e., we observe intra-thread

interleaving of events. As presented in section 2.6.2 there are several weak memory models

each allowing different relaxations. We introduce the predicate M(π, ek, em) which for a

given platform π = (δ, µ) asserts whether events ek and em can be swapped with respect to

the memory model µ and time interval δ in which it applies. We formalize the serialization

observable by a thread T a for a parallel schedule Σ∥ executed on platform π as follows:

Definition 2.7.6 (Serialization obtained by the execution of a Σ∥)

σa∥,π = { (e1, . . . , en) ∣ ∀eak eam ⇒ k <m ⋁
∣Σ∥(ek) −Σ∥(em)∣ < δ ∧ ∀j such that k ≤ j ≤m.M(π, ek, em) }

Figure 2.6 allows us to summarize the definitions of different scheduling types for a

multithreaded program P. At the top of the figure we provide an instance of P consisting

of three threads. For each thread we can see a snippet of its sequence of events, and their

effect (reads and writes). We note that at this level there is no notion of time.

A sequential schedule Σs of P is then presented which adds unique timestamps to each

event in P. We also provide the serialization σos,π obtained, which gives exactly the same

sequence of events as the schedule Σs.

Just below we juxtapose a parallel schedule Σ∥ of P. Compared to Σs above only the

timestamping of events has changed. We aligned events that were executed in parallel

i.e., those with the same timestamp, one above the other. As detailed earlier, a parallel

schedule can produce several serializations, and threads executed in parallel within a time

interval δ may each observe a different serialization of events in δ.

We illustrate an execution of Σ∥ for a weak memory modelM which allows the W → W

relaxation. We focus on the serialization of events as observed by threads during the

designated time interval δ. We assume that for the events preceding the interval δ the

following serialization has been established: ec6, eb3, ea3.

To decipher the arrows connecting events and how they affect the serialization observed

we need to take into account what each event represents. This information is in the initial

description of P. The arrows connect read events to the corresponding write events. That

is the arrow connecting ea4 to eb5 implies that ea4 reads the value written by eb5.

A serialization of events in δ can re-order them in any way as long as the memory model

M is respected. The memory model we assume allows the W→W relaxation, thus T a may

26

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.7 Formalization of a multithreaded program execution

T c

T b

T a
ea3:=write(y) ea4:=read(c) ea5:=read(y) ea6:=read(d)

eb3:=write(d) eb4:=write(d) eb5:=write(c)

ec6:=write(y) ec7:=read(c) ec8:=read(d) ec9:=read(y)

P

Σs

time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

ec6 eb3 ea3 eb4 ea4 ec7 ea5 ea6 eb5 ec8 ec9

σos,π
ec6 eb3 ea3 eb4 ea4 ec7 ea5 ea6 eb5 ec8 ec9

Σ∥

time

ec6

t1

eb3

t2

ea3

t3

eb4

t4

ea4

t5

ea5

t6

ea6

t7

ec9

t8

ec7 eb5

ec8

T c

T b

T a

E
x
ec
u
te
(π
,Σ
∥)

δ

time

ea3 ea4 ea5 ea6

eb3 eb4 eb5

ec6 ec7 ec8 ec9

σa∥,π

σc∥,π

ec6 eb3 ea3 eb5 ea4 ec7 ea5 ea6 eb4 ec8 ec9

ec6 eb3 ea3 ea6 eb4 eb5 ea4 ec7 ea5 ec8 ec9

Sequential schedule/execution

Parallel schedule/execution

Figure 2.6: Obtaining serializations for a multithreaded program P

observe the write to variable c prior to that of d executed by events eb5 and eb4 respectively.

Thus a possible serialization of events is that corresponding to σaδ,M, which respects the

sequence of events observed both by T a and T c. An other possible serialization could be

σcδ,M which again respects the observations of T a and T c.

A last point to note is the consensus on the ordering of events prior to δ. Although two

writes to variable y occurred possibly in a same δ′ both T a and T c consent that the write

of ea3 persisted.

27

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

2.7.3 Constraining interleavings of a multithreaded execution

For both sequential and parallel schedules of multithreaded programs we allowed the un-

constrained interleaving of events produced by threads. This is not strict enough since

some events imply happens-before and mutual exclusion relations which should be respected

by all valid schedules. Such events can be for instance thread creation and lock acquisition.

The thread creations introduce a transitive happens before relation between the thread

that spawns and the newly created thread. Figure 2.7 illustrates a multithreaded program

P consisting of three threads where T a spawns T b and subsequently T b spawns T c. The

happens before relation established (thick dashed arrows) during a thread creation spec-

ifies that all events preceding the spawn event (ebm) have occurred strictly prior to the

events succeeding the matching thread start event (ec1). In the example of Figure 2.7 the

following happens before relations are established due to thread creations: eam
hbÐ→ eb1 and

ebm
hbÐ→ ec1 (where e

hbÐ→ e′ denotes event e must precede e′). Because events of a thread

are totally ordered, by transitivity we can also infer that eam
hbÐ→ ec1. Finally, we illustrate

with crossed out edges infeasible interleavings due to precedence. Similarly to thread cre-

ation, precedence can be established between events preceding a threads end and events

succeeding a matching join event.

T c

T b

T a
eam:=spawn(T a,T b)

eb1:=thread_start(T b) ebm:=spawn(T b,T c)

ec1:=thread_start(T c)ebk

eak

eck

Figure 2.7: Transitive happens before on thread create

As mentioned in section 2.5 locks are used for mutual exclusion. That is, to guarantee

sequences of events produced by different threads cannot interleave. Such sequences of

events are surrounded by two special events lock and unlock which designate a critical

section. We note a critical section as a tuple (eal ,e
a
u) where eal is the event associated to

the lock operation and eau is the matching unlock. The lock and unlock operations are

applied to a shared synchronization variable. The mutual exclusion relation between two

critical sections is denoted as (eal , eau)
m↔ (ebl , ebu) where m is the synchronization variable

on which the lock and unlock operations apply.

The semantics of locks ensure that at any time only one thread executes its critical

section. That is, even if two threads simultaneously demand to lock a synchronization

variable only one will succeed.

We introduce the happens-before and mutual exclusion restrictions to the scheduling of

multithreaded programs as follows.

28

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

2.8 Summary

Definition 2.7.7 (Schedule of multithreaded programs respecting constraints)

Σ(e) ∶ e ∈P→ t ∈ N such that ∀ek em ⇒ Σ(ek) < Σ(em) where = ⋃a∈T a ⋀
eak

hbÐ→ ebk ⇒ Σ(eak) < Σ(ebk) ⋀
(eak, eam) m↔ (ebk, ebm)⇒ Σ(eam) < Σ(ebk+1)∨

Σ(ebm) < Σ(eak+1)

2.8 Summary

The thread programming model is well suited for exploiting the new massively parallel

architectures. It can be used as a structuring mechanism of applications but also to

exploit parallelism. Threads are cheaper to create and destroy than processes and their

cooperation is easier and faster since it occurs through the shared memory.

The major challenge in thread programming is non-deterministic concurrent accesses to

shared memory. Synchronization mechanisms resolve non-determinism but are cumber-

some to use and even neglected for performance reason. Finally, the type of execution,

serial vs parallel, has a great impact on the correctness of a multithreaded program.

29

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 2. Thread programming model

30

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3

Optimizing critical sections

In this chapter we approach the problem of maintaining efficiently a coherent shared

state in multi threaded applications. As detailed in section 2.3 on page 14 critical or

atomic sections are blocks of code that appear to be executed atomically (free of race

conditions) and thus capable of preserving the shared state coherent. Critical sections

are most commonly implemented manually by surrounding the instructions of the critical

section with the appropriate synchronizations (e.g., Listing 2.3 on page 16). Implementing

critical sections manually can be error-prone, hence their automatic implementation has

captured the interest of several researchers. The problem of implementing critical sections

is orthogonal to that of detecting races.

Ultimately, with automatic implementation of critical sections programmers should not

be concerned about critical sections; compilers should be capable of (i) identifying harmful

data races and race conditions in a program and (ii) take necessary and optimal measures

for eliminating them. In a first step towards completely automatic solutions programmers

are asked to identify critical sections using primitives provided by the language (e.g.,

synchronized in Java or #pragma omp critical in OpenMP). These critical sections

are then automatically protected without further implying the programmer. Listing 3.1

and 3.2 present examples of manual and automatic critical section respectively, using

the classic example of transferring an amount of money between a source (accFrom) and

destination (accTo) bank accounts.

Hereafter we take a closer look to the two implementations of transfer. In Listing 3.1

the programmer manually defines the synchronization for the critical section. In this

case we assume ACCOUNTS is a mutex lock protecting all accounts. Although the choice

of such a coarse grain lock simplifies the reasoning (only need to protect accesses to

accounts using ACCOUNTS) it drastically reduces parallelism by serializing all accesses to

accounts. Moreover, the programmer can easily make errors e.g. forgetting to release lock

on ACCOUNTS at a return point as in line 6 (we intentionally commented it).

In Listing 3.2 on the other hand, the primitive critical is used to designate the critical

section which eliminates potential synchronization errors. The programmer though has

no control over the implementation of the critical section and hence cannot optimize it

if needed. Most implementations of primitives like critical provide the guarantee that

31

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

1 bool t r a n s f e r (amount ,
2 accFrom , accTo){
3

4 l o ck (ACCOUNTS)
5 i f (accFrom . balance < amount){
6 // unlock (ACCOUNTS)
7 return f a l s e ;
8 }
9 accTo . balance += amount ;

10 accFrom . balance −= amount ;
11 unlock (ACCOUNTS) ;
12 return t rue
13 }

Listing 3.1: Manual critical section

1 bool t r a n s f e r (amount ,
2 accFrom , accTo){
3

4 c r i t i c a l {
5 i f (accFrom . balance < amount){
6 return f a l s e ;
7 }
8 accTo . balance += amount ;
9 accFrom . balance −= amount ;

10 return t rue
11 }
12 }

Listing 3.2: Automatic critical section

the execution of the critical section will appear atomic to all other critical sections. This

guarantee is called weak atomicity and is what we assume for critical sections in the

remaining of the document. Another type of guarantee also exists called strong atomicity

which guarantees that the critical section will appear atomic to any statement in the

program. The ATOMOS [CMC+06] programming language guarantees strong atomicty

for its critical sections.

In the remaining of the chapter we provide some information on the implementation

of critical sections respecting weak atomicity. We present the two main approaches, one

called optimistic and the other pessimistic. Further, we give an insight on related work

and position our work prior to presenting it in details. Experimentations conducted on

the optimization of critical sections are provided in chapter 5.

3.1 Relaxing atomicity of critical sections

Critical or atomic sections are supposed to execute atomically. Atomic execution incurs

that the effect of an instruction or set of instructions appears to the rest of the sys-

tem instantaneously. This definition of atomicity corresponds to the strong atomicity we

mentioned earlier. Most processors have in their instruction sets a number of atomic in-

structions such as atomic increment for instance which in one step reads and increments

the value of a variable. To execute a large number of instructions atomically is hard and

penalizes performance by exclusively using the processor.

As stated earlier the most commonly accepted semantic of critical sections is to guar-

antee weak atomicity which relaxes the notion of atomicity by limiting it to other critical

sections and not any instruction in the program. To achieve this type of atomicity it suf-

fices to execute all critical sections in mutual exclusion. Achieving it is straight forward,

we just have to synchronize the execution of all critical sections using a single lock. This

level of atomicity is still too conservative and drastically reduces performance since only

one critical section can execute at a time.

The semantic of critical sections respecting weak atomicity is equivalent to serializable

32

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.2 Implementing critical sections

transactions in a database system. This allows to relax the execution of critical sections

i.e., interleave their instructions as long as their serializability is guaranteed. Two trans-

actions or critical sections are serializable when the outcome is equivalent to that of a

serial execution. Serial means without overlap, i.e., the transactions/critical sections were

executed serially the one after the other in any order.

Figure 3.1 illustrates the impact of relaxing atomicity of critical sections on parallelism.

The example consists of three threads (t1, t2, t3) where t1 and t2 must each execute a

critical section (possibly accessing same shared variables) while t3 has no critical section

to execute. Under strong atomicity while executing a critical section nothing else can

execute, not even instructions of t3 because the critical section must also appear atomic

to them. In weak atomicity the mutual exclusion of critical sections with non-critical

sections is relaxed. Thus the concurrent execution of critical section in thread t1 and t2

with thread t3 is allowed as illustrated. Though, concurrent execution of critical sections

is still not permissible. Finally, allowing serializable weak atomic executions of critical

sections may also allow overlapping of critical sections provided the outcome is equivalent

to their serial execution.

t1 t2 t3

Threads to execute

critical
section

t1 t2 t3

Strong atomicity

t1 t2 t3

Weak atomicity

t1 t2 t3

serializable
Weak atomicity

Figure 3.1: Relaxing atomicity of critical sections

3.2 Implementing critical sections

The automatic implementation of critical sections is divided into two approaches: opti-

mistic and pessimistic. The optimistic approach reposes on the usage of transactional

memories while the pessimistic uses synchronization primitives (such as locks) to enforce

correct executions.

3.2.1 Optimistic implementation of critical sections

In this approach a critical section maps to a transaction. Transactions are executed un-

der the supervision of transactional memories ([ST95, HLMS03, HMJH08]) which guar-

antee their serializability. Transactional memories assume no conflict will occur during

the execution of a transaction. Thus, each thread executes its critical section while the

33

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

transactional system keeps a log of all shared memory accesses. If conflicting accesses

occurred concurrently by different threads, then their modifications to the shared memory

are undone (roll-back) and the transactions are re-executed from scratch. Transactional

memories can be implemented with special hardware [Kni90, HM93, RG02] or through

software [ST95, DSS06].

3.2.2 Pessimistic implementation of critical sections

The pessimistic approach makes no assumption on the occurrence of conflicts at execution

time and thus uses synchronization mechanism (mostly locks) for enforcing atomicity of

critical sections. The challenges to overcome are: (i) infer sufficient synchronizations such

as atomicity of critical sections is not violated and (ii) avoid deadlocks which can be

caused by the usage of synchronization mechanisms, while not reducing drastically the

parallelism. We cite hereafter some distinctive works on the pessimistic implementation of

critical sections.

McCloskey et al. [MZGB06] have developed the tool Autolocker which performs a

source-to-source transformation of C code. Programmers must annotate the program with

information relating locks to shared data. The type-system they define guarantees the cor-

rectness of the transformation. Experimental results they provide exhibit substantial gain

over optimistic approaches. A major drawback of this work is it relies on user annotations.

In their works Emmi et al. [EFJM07] and Hicks et al. [HFP06] do not require any

annotations. They first infer a set of locks necessary to guarantee absence of conflicts

and then perform optimizations to reduce the number of locks. In [HFP06] for instance

coalesced locks are compacted. Both works draw the conclusion that defining a minimal

set of mutexes which guarantee absence of conflicts is NP-hard.

Cherem et al. [CCG08] propose a backward tracking of expressions within the scope of

the critical section. This allows to identify more precisely shared data accessed and thus

infer very fine grained locks. When fine locks cannot be inferred they repose on coarser

locks. An interesting aspect of this approach is to consider a hierarchy of partially ordered

locks. The multi-granularity locking scheme uses the deadlock avoidance protocol of Gray

et al. [GLP75] and is implemented in a runtime library they provide. Finally, Upadhyaya et

al. [UMP10] present a new strategy for inferring locks. They use data structure knowledge

to make more precise alias analysis.

3.2.3 Optimistic versus pessimistic concurrency

Pessimistic solutions perform better when a high contention is expected. The reason is

that each critical section is executed once, while in optimistic solutions a critical section

might have to execute several times until it succeeds to complete. Some transactional

memory implementations like TL2 [DSS06] may use the lock-based approach in case of

multiple failures to complete a critical section. This technique improves their performance

compared to other STM. Moreover, optimistic solutions incur a significant overhead due

to log keeping and transaction committing.

34

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.3 Improving pessimistic implementations of critical sections

Optimistic solutions can be profitable when contention is low and thus a small number or

roll-backs is required. A main advantage of optimistic solutions is composability. Arbitrary

critical sections can be composed, which is equivalent to executing them in the same

transaction. This is infeasible with pessimistic implementations because a deadlock may

occur.

3.3 Improving pessimistic implementations of critical sec-

tions

The works we presented earlier on pessimistic implementation of critical sections propose

cunning analyses and algorithms to infer the finest locks necessary to protect critical

sections. Inferring fine grained locks is not sufficient to obtain performance gains. Locks

must also be used appropriately and their implementation must be optimized. We present

hereafter some optimizations proposed in order to improve pessimistic implementation of

critical sections.

Kagi et al. [KBG97] focus on providing more efficient mutual exclusion through better

locks. They state that to maximize performance of fine-grained parallel applications, the

delay associated to the transfer of exclusively accessed resources must be minimized. They

define the notion of synchronization period which we reproduce in Figure 3.2. It illustrates

the life cycle of a critical section protected by a single lock X and accessed by two processes

PA and PB. The synchronization period consists of three phases: (i) transfer, the lock is

transfered from PA to PB (ii) load/compute, PB loads exclusive data and updates them

and (iii) release, PB releases the lock on X. The transfer and release phases are considered

overhead related to the lock management which can be improved.

Transfer Load/Compute Release

PA release of

lock X completes

requests issued

arbitration

- lock sent to owner

PB acquire of

lock X completes

- exclusive data loaded

- computation performed

- exclusive data written

PB issues release of

lock X

lock re-obtained

- lock released

PB release of

lock X completes

Time

Figure 3.2: Synchronization period for high contention lock. (from [KBG97])

After defining the synchronization period they present a set of optimizations for syn-

chronization mechanisms (local spinning, queue-based locking, collocation, synchronous

prefetch) and how they are incorporated into six synchronization primitives (TS, TTS,

MCS locks [MCS91], LH and M locks [MLH94], reactive synchronization [Lim95] and

35

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

QOLB [GVW89]). The six synchronization primitives are compared on well established

benchmark suites such as SPLASH [SWG92]. Their main conclusion is that QOLB, which

uses all four optimizations, provides consistent and large performance gains.

Suleman et al. [SMQP09] propose accelerated critical sections which leverages the high

performance cores of Asymmetric Chip Multiprocessors (ACMP). Selected critical sections

are executed on high performance cores and thus their execution latency is reduced. Their

solution necessitates some modifications of the instruction set for relocating the execution

of critical sections to the high performance core and notify regular cores of completion.

Relocating all critical sections to the same core causes what they call false serialization.

To reduce it they use simultaneous multi-threading (SMT) on the high performance core

and selective serialization (SEL) which dynamically chooses where the critical section will

be executed. SEL is susceptible of producing deadlocks when used with nested critical

sections.

A most recent work by Lozi [LDT+12] proposes a new locking algorithm entirely imple-

mented in software called remote core locking (RCL). In RCL lock acquisitions are replaced

by remote procedure calls, executed on a dedicated server core. Executing all critical

sections on a server core would introduce false serialization. Thus, the authors provide

a profiler which guides the programmer towards which locks should be transformed into

RCL locks. Moreover, there can be more than one servers which are executed on dedicated

threads i.e., application threads are not penalized by being the server interchangeably as

in [HIST10].

3.3.1 Positioning of our work

The aim of our work is to improve the performance of pessimistic implementations of

critical sections, by minimizing the possession of locks. Contrarily to the works presented

in section 3.2.2 which focus in identifying the finest possible locks necessary to protect a

critical section, we are interested in the usage of the identified locks (i.e., how they are

acquired and released) and their type (i.e., what kind of exclusion is provided). We exhibit

that the most commonly used policy which consists in obtaining all protections prior to

entering a critical section and releasing them once exited (we call it global) is not optimal.

Hence, we propose a number of more flexible policies which: (i) respect the semantics of

critical section, (ii) guarantee deadlock freedom and (iii) perform better than the global

policy.

The problems of identifying synchronizations needed to protect a section and which

policy to use are complementary. Thus, the finest synchronizations are identified, the

greater will be the impact of the applied policy; allowing more concurrency.

3.4 Mutual exclusion mechanisms

We present hereafter three mutual exclusion mechanisms for controlling access to shared

variables. We call these mechanisms protections, each allowing or restricting access to be

exclusive or shared among threads. The granularity of a protection may vary. That is, it

36

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.4 Mutual exclusion mechanisms

can protect a single variable or a set of shared variables.

For the remaining of the chapter we adopt the following notations:

� V is a set of shared variables used in critical sections

� CS = [i1,. . . ,ik,. . . ,in] is a critical section to be executed by a thread. A critical

section is a sequence of instructions. Each instruction ik can be represented by

a sequence of reading (read(x)) and writing (write(x)) of shared variables. The

sequence can be empty if shared variables are not used in the instruction. The

example below illustrates on the left side an excerpt of a critical section and on

the right the sequence of read/write statements we consider for each instruction.

Variables lb,lc are neglected because they are thread local variables and hence

they do not require any protection.

critical{

lc = x + lb;

x = y + z;

lb = lc + 5;

}

i1 : [read(x)]

i2 : [read(y), read(z), write(x)]

i3 : [∅]

� px is a protection either exclusive or not on a shared variable x (x ∈ V)

� Pk = {px∣x ∈ V} is the minimum set of protections needed for the safe access to

shared variables used by instruction ik. More precisely:

– if ik reads a shared variable x then at least a non-exclusive protection on x

should be held;

– if ik writes a shared variable x then a non-exclusive protection must be held.

� P = ⋃nk=1 Pk is the set of all protections needed in the critical section.

We present hereafter three types of protections: mutexes, read/write and read-

/write intend. The first two are classic in the literature while the third one is a variation

of read/write we propose. For each protection we provide its intended use inside a critical

section (i.e., how to compute Pk).

Mutex : this type of protection gives exclusive access (read/write) to the thread that

obtained it. This protection should be held whenever the shared variable associated to it

is accessed.

Pk = {mx ∣ read(x) ∈ ik ∨write(x) ∈ ik }

where mx is a mutex protection related to variable x.

Read/Write : This type of protection distinguishes read from write access to a vari-

able. Read access is non-exclusive and thus multiple threads can read the protected

variable in parallel. Dually, write access is exclusive and only the thread holding the

protection can write (or read) the variable.

37

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

The correct utilization of this protection is not as straightforward as for mutexes. As

we will see later in this chapter protections may be obtained incrementally for a critical

section. In this case when an instruction ik reads a shared variable x which is later on

written in the critical section by an instruction im, then it is necessary to anticipate the

exclusive (write) protection even for reading x at instruction ik.

Pk = { rx ∣ read(x) ∈ ik }⋃
{ rx,wx ∣ read(x) ∈ ik ∧write(x) ∈ im,m > k }⋃
{ rx,wx ∣write(x) ∈ ik },

where rx is a read protection on variable x and wx is a write protection on

variable x.

Figure 3.3 bellow illustrates how a deadlock can occur when (i) protections necessary for

a critical section are obtained incrementally and (ii) there is no anticipation on obtaining

the write protection. Assuming critical sections CS1 and CS2 are executed concurrently by

two threads. Then, both threads could obtain the read protection on x (rx) which is not

exclusive. Later on when each tries to obtain the write protection on x (wx) gets blocked

due to incompatibility with the rx protection previously obtained by the competing thread.

1 critical{

2
3 [read(x)]
4
5 [write(x)]
6 }

1 critical{

2
3 [read(x)]
4
5 [write(x)]
6 }

CS1 CS2

rx

wx

rx

wx

Figure 3.3: Deadlock by obtaining incrementally read/write protections.

Write Intend : This type of protection is a refinement to the Read/Write protection

presented above. It increases parallelism by making the distinction between obtaining the

write protection and using it (i.e., actually writing the protected variable). Concretely,

instead of obtaining the write protection we just reserve it for later use. This is done by

obtaining the write intend protection until the first write is encountered, prior to which

we must obtain the write protection. The switch from write intend to write is guaranteed

because write intend protection is exclusive to write and write intend protections but

non-exclusive to reads.

Pk = {rx ∣ read(x) ∈ ik}⋃
{rx,w′

x ∣ read(x)∈ik ∧write(x)∈im , m > k}⋃
{rx,w′

x,wx ∣write(x) ∈ ik}

where rx is a read protection on variable x, w′
x is a relaxed protection (write

38

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.4 Mutual exclusion mechanisms

intend) on the writing of variable x and wx is the write protection on variable

x.

This type of protection can improve cases such as that illustrated in Figure 3.4 where

CS3 only wants to access variable x for reading. If no write intend protection is used (as

in CS1) then CS3 cannot be executed in parallel with a critical section that modifies x.

When write intend protection is used (as in CS2) then CS3 can execute in parallel with

the critical section intending to write x. A gain is obtained if the reading thread releases

its read protection before the writing thread requires the switching from write intend to

write protection. If not, then the writing thread will be blocked until reader finishes.

Ideally in this example CS3 will get executed in parallel with instructions 3, 4 of CS2.

1 critical{

2
3 [read(x)]
4
5 [write(x)]
6 }

1 critical{

2
3 [read(x)];
4
5 [write(x)]
6 }

1 critical{

2
3 [read(x)];
4
5 [read(x)]
6 }

CS1 CS2 CS3

rx , wx rx , w′
x

wx

rx

Figure 3.4: Benefit of write intend protection.

Table 3.1 below summarizes the incompatibilities between protection types. On the

horizontal and vertical axes we have concurrent threads competing for the protections.

The cross symbol () is used to denote that threads cannot obtain simultaneously that

type of protection.

Protection Mutex Lock

Mutex Lock

Mutex protection

Protection Read Write

Read

Write

Read/Write protection

Protection Read WriteIntend Write

Read

WriteIntend

Write

Write intend protection

Table 3.1: Incompatibilities for each protection type

As discussed earlier in section 2.5.1 the usage of synchronization mechanisms such as

the protections we presented above are susceptible to producing deadlocks, if not used

properly. A deadlock is produced when two threads are mutually waiting for a resource

previously obtained by the concurring thread. A classic solution for avoiding deadlocks is

to define a total order over the shared resources [Hav68, CES71] and then make sure all

threads obtain protections respecting this ordering. Deadlocks are avoided because the

first thread to obtain a common protection will be able to obtain all locks necessary to

complete its critical section.

39

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

We introduce hereafter the transitive binary operator <V which is used to define a

total order on a set of shared variables V. Assuming the following set of shared vari-

ables V = {x, z, y} and the order relation x <V y <V z. If in a critical section

CS1 = [i1, . . . , ik, . . . , im, . . . , in] instruction im accesses variable x and ik accesses y then;

despite the order in which they appear in the critical section, protections on variable x

must be obtained prior to those on y.

Figure 3.5 illustrates an example of how ordering is applied on protections. Assuming

the following set of shared variables V = {x, q, z, y} to which we assign accordingly the

protections (px,pq,pz, py). We define the following ordering q <V x <V y <V z. For the

critical section in Figure 3.5 a protection on variable y is needed at instruction 3 while

protections on x and z are required at instruction 6. According to the ordering defined

for these variables, protections on x should always be obtained prior to those on y and z.

Thus, protection px is moved to instruction 2 prior py.

1 critical{

2
3 [read(y)]
4
5
6 [read(x),read(z)]
7 }

py

px pz

Figure 3.5: Acquiring protections respecting order

To facilitate the identification of protections that need to be obtained in advance for

avoiding deadlocks, we define the predicate Prefix(P). For a given set of protections P

it returns a set containing all protections that should be obtained before protections in P

according to a predefined order relation <V over a set of shared variables V. We explicit

the definition of Prefix(P) for each protection type:

Mutex:

Prefix(P) = {mx ∣ ∃y . x <V y ∧ my ∈ P }

Read/Write

Prefix(P) = { rx,wx ∣ ∃y . x <V y ∧ (ry ∈ P ∨ wy ∈ P) }

Write intend

Prefix(P) = { rx,wx,w′
x ∣ ∃y . x <V y ∧ (ry ∈ P ∨ w′

y ∈ P ∨ wy ∈ P) }

For example: given V = {x, z, y} and the ordering x <V y <V z then Prefix({mz}) =
{mx,my} and Prefix({rz}) = {rx,wx, ry,wy} in the case of read/write protections and

Prefix({rz}) = {rx,wx,w′
x, ry,wy,w

′
y} for write intend protections.

40

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

3.5 Policies for acquisition/release of protections

The problem of implementing critical sections using pessimistic synchronizations can be

decomposed into the following:

� ensure the set of protections Pk necessary for the execution of an instruction ik are

obtained when it is executed;

� guarantee serializability of critical sections (using two-phase locking);

� avoid deadlocks;

� finally, allow the maximum parallelism between threads (avoidance of using a single

global lock for all critical sections).

First, we provide a general algorithm for managing acquisition and release of protections

in a critical section. Then we formalize the properties that should be respected in order to

have a correct implementation of critical sections using protections. Finally, we instantiate

the algorithm with several policies and prove their correctness.

3.5.1 General algorithm for managing protections

The principle of this algorithm is that, in order to execute any instruction ik of the critical

section CS, an extended set of protections Hk ⊇ Pk which guarantees serializability and

deadlock freedom of the section must be held by the thread executing it. The algorithm

consists in:

� obtaining the missing protections Hk ∖Hk−1 prior to executing ik

� releasing the unnecessary protections Hk ∖Hk+1 after executing ik

Table 3.2 presents the principle of the algorithm. In the middle column we list the

instructions ik of a critical section and, separated with a colon, the set of protections Pk
needed to execute them. Above them we have Hk which is the extended set of protections

the executing thread should hold at that point. The computation of Hk sets is defined

by policies. On the left column we have the protections that need to be obtained prior to

executing ik. These are the protections needed by ik that have not yet been obtained at

instruction ik−1. We must note the special case of instruction i1 where we obtain exactly

H1 since prior to entering a critical section no protections are held. Dually, on the right

column we depose the protections to be released after executing ik. These are instructions

no longer needed. Again we note that at the last instruction in we release all protections

held since we are about to leave the critical section.

41

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

Protections to obtain Protections held Protections to release

H1

H1

i1 : P1

H1 ∖H2

⋮
Hk ∖Hk−1

Hk

ik : Pk

Hk ∖Hk+1
Hk+1 ∖Hk

Hk+1

ik+1 : Pk+1

Hk+1 ∖Hk+2

⋮
Hn ∖Hn−1

Hn

in : Pn
Hn

Table 3.2: Principle of general algorithm for managing protections

We formalize hereafter the desired properties of the algorithm presented above.

(P1) Absence of data races. All protections px necessary for accessing variables dur-

ing instruction ik must be obtained. That is, weak atomicity is respected.

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

(P2) Deadlock freedom. Protections are obtained with respect to the total order (<V)

defined on the set of shared variables V :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

(P3) Serializability (two-phase locking). The first phase consists in obtaining (grow-

ing phase) all protections needed to execute the critical section. The second phase

consists in releasing (shrinking phase) the protections. This implies that at some

point in the critical section we hold all protections used P and that a protection can

only be obtained once per critical section :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

42

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

3.5.2 Policies for acquisition/release of protections

In this section we present five instantiations of the generic algorithm presented in sec-

tion 3.5.1 above. Each instantiation corresponds to an acquisition/release policy of pro-

tections. Policies are first presented intuitively and then we provide their formalization

i.e., the computation of the set of protections that must be held (Hk) prior to executing

an instruction ik. All policies presented respect the properties P1,P2,P3 cited above.

The proofs are given after the computation of Hk sets.

For each policy we provide a figure illustrating a critical section and the duration pro-

tections are held according to the policy. The code of critical sections is abstracted using

hatched zones representing the range between the first and last usage of a shared variable.

The duration a protection assigned to a shared variable is held is represented by a vertical

line traversing the hatched zone of the variable. To simplify the examples we assume each

shared variable (x) is protected by a mutex protection (mx).

Figure 3.6 explains in more details the mapping between a critical section and its ab-

stract representation as well as how duration of holding a protection comes into the picture.

On the left side of the figure there is the critical section code (what a programmer ac-

tually writes) and on the right side the equivalent code (automatically produced) which

will guarantee the correct execution of the critical section following a given policy. In the

middle we have the figure itself summarizing those fragments of code. The critical section

is abstracted by simply illustrating the region between first and last access to a shared

variable. In this example x and y are the shared variables. The ordering for avoiding

deadlocks is given explicitly above the abstracted code. Finally, the duration of holding

a protection is mapped to the acquisition (lock(mx)) and release (unlock(mx)) of the

protection (mx) in the actual implementation of the critical section.

1 c i r i t c a l {
2 l a = lb + l c ;
3 x = l a ;
4 l c = lb /2 ;
5 y = x + l c ;
6 l a = (x + y)*2 ;
7 y = l a /3 ;
8 l a = lb ;
9 }

Source code

1 l o ck (mx) ; l o ck (my) ;
2 l a = lb + l c ;
3 x = l a ;
4 l c = lb /2 ;
5 y = x + l c ;
6 l a = (x + y)*2 ;
7 y = l a /3 ;
8 l a = lb ;
9 unlock (mx) ; unlock (mx) ;

Implementation of

critical section with

Global policy

critical

section

Code

x <V y

x

y

Global

x

y

Figure 3.6: Policies for acquiring/releasing protections

43

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

critical

section

Code

x <V y <V z

x

y

z

Global

x

y

z

Figure 3.7: Global policy

Global policy

This policy is the most widely used in pessimistic implementations of critical sections.

It consists in acquiring all protections used in the critical section prior to starting its

execution. The protections are then released once the critical section has been completely

executed. As illustrated in Figure 3.7 the vertical lines traversing each variable cover

the entire critical section. We must note that still the acquisition of protections at the

beginning of the critical section respects the ordering <V to avoid deadlocks.

The computation of protections to hold at each point is defined as follows:

∀k ∈ [1, n] ∶Hk =
n

⋃
j=1

Pj = P

At each instruction ik all protections needed in the critical section must be held

Proof of properties P1-P3

From definition of Hk we have:

- P1 :

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

∀k ∈ [1, n] Pk ∈Hk ⇒ px ∈Hk

- P2 :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

44

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

from P1 px ∈ Pm ⇒ px ∈Hm

∀k,m ∈ [1, n]Hk =Hm
}px ∈Hk

- P3 :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

(i) Any instruction k ∈ [1, n] can be chosen as i0 (because Hk = P for all k)

(ii) from definition of Hk ∀k,m ∈ [1, n]Hk =Hm thus for both cases k ≤m ≤ i0 and

i0 ≤ k ≤m the property holds.

Eager policy

critical

section

Code

x <V y <V z

x

y

z

Eager

x

y

z

Figure 3.8: Eager policy

The principle of this policy is to release protections as soon as they are no longer needed

in the critical section. All protections are acquired prior to executing the critical region.

The release of a protection occurs after executing the last instruction using it in the critical

section. In Figure 3.8 we can see the horizontal lines expanding from the beginning of the

critical section down to the end of the hatched zone of each variable.

The computation of protections to hold at each point is defined as follows:

∀k ∈ [1, n] ∶Hk =
n

⋃
j=k

Pj

At instruction ik we must hold all protections used in subsequent instructions

of the critical section.

Eager policy could be profitable when some shared variables are only used at the begin-

ning of a critical section. Listing 3.3 exhibits such a case, where shared variable x is only

used in the first instruction of the critical section (line 2). The function call ackermann

45

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

at line 4 is a computation intensive function. In this example an early release of x could

allow other critical sections blocked on x to progress.

1 critical{

2 y = x ;

3 y = y +(a/2);

4 z = ackermann(a,y);

5 }

Listing 3.3: Example for Eager policy.

Proof of properties P1-P3

- P1 :

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

From definition of Hk we have:

∀k ∈ [1, n]Pk ⊆Hk ⇒ px ∈Hk

- P2 :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

∀k,m ∈ [1, n] such that k <m we have Hk ⊇Hm thus px ∈Hk

- P3 :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

(i) H1 = P thus we choose i0 = i1
(ii) from definition, Hk is decreasing that is ∀k,m ∈ [1, n] such that k <m we have

Hk ⊇Hm

46

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

critical

section

Code

x <V y <V z

x

z

y

Incremental

x

z

y

Figure 3.9: Incremental policy

Incremental policy

The principle of this policy is to acquire protections as late as possible. That is, just

before the associated variable is used. Protections are released all together at the end of

the critical section. We must note that for this policy (and the remaining ones) anticipation

(i.e., earlier acquisition of protections) may be needed in order to avoid deadlocks. The

anticipation is imposed by the statically defined total ordering on variables and by the

order they appear in the critical section. In Figure 3.9 we can note protection on y is

anticipated up to before obtaining protection on z. Finally, we observe protections are

released at the exit of the critical section.

The computation of protections to hold at each point is defined incrementally. First, we

compute Hd
k which extends the set of used variables Pk by adding necessary protections

for avoiding deadlocks. Here is the computation of Hk :

∀k ∈ [1, n] ∶

- Hd
k = (⋃nj=k Pj) ⋂ Prefix(Pk)

- Hk = ⋃j≤k (Hd
j ∪ Pj)

At instruction ik we must hold the protections used by all instructions preced-

ing it plus the protections of instructions used latter that could cause a dead-

lock.

Incremental policy could be beneficial when a shared variable is only used in the end

of a critical section. Listing 3.4 exhibits such a case, where shared variable x is only used

in the last instruction of the critical section (line 4). In this example a late acquisition of

x could allow the progress of the critical section even if the protection on x was not yet

available.

47

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

1 atomic{

2 y = ackermann(z,a);

3 y = y+a/2;

4 x = y;

5 }

Listing 3.4: Example for Incremental policy.

Proof of properties P1-P3

- P1 :

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

From definition of Hk we have:

∀k ∈ [1, n]Pk ⊆Hk ⇒ px ∈Hk

- P2 :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

x <V y ⇒ px ∈ Prefix(k)
k <m ⇒ px ∈ ⋃nj=k Pj

}⇒ px ∈Hd
k ⇒ px ∈Hk

- P3 :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

(i) Hn = P thus we choose i0 = in
(ii) from definition, Hk is increasing that is ∀k,m ∈ [1, n] such that k <m we have

Hk ⊆Hm

Incremental/Eager policy

As its name implies it is a combination of the two policies described above. Protections

are acquired following the incremental policy and released using the eager policy. We

must note though that to respect two phase locking protections can only be released once

48

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

critical

section

Code

x <V y <V z

x

y

z

Incremental/Eager

x

i0

y

z

Figure 3.10: Incremental/Eager policy

all protections necessary to the critical section are obtained. In Figure 3.10 we can note

that the possession of protection on variable x is extended until point i0 where the last

protection (on z) is acquired. Point indicated as i0 is the turning point of two phase

locking.

The computation of protections to hold depends on their position relative to i0. For

instructions prior to i0 the incremental policy is applied, thus special care must be taken to

avoid deadlocks, while for instructions subsequent to i0 eager policy is applied. Instruction

i0 is identified as the instruction at which we have discovered all protections needed for

the critical section (P).

� i0 =Min ({k ∈ [1, n] ∣ (P ∖⋃j≤k Pj) = ∅})

� ∀k ∈ [1, n] ∶Hd
k = (⋃nj=k Pj) ⋂Prefix(Pk)

�

Hk = { ⋃j≤k (H
d
j ∪ Pj) if k ≤ i0

⋃j≥k Pj if k > i0

Compute Hk as in Incremental policy until last protection needed is reached,

then switch to Eager policy.

Proof of properties P1-P3

This policy is the combination of incremental and eager. Each policy is applied re-

spectively to the sub-critical sections [1, i0] and [i0, n]. The switching of policy is correct

because it occurs when all protections are obtained.

- P1 :

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

From definition of Hk we have:

∀k ∈ [1, n]Pk ⊆Hk ⇒ px ∈Hk

49

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

- P2 :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

- for interval [1, i0] same as P2 for incremental policy

- for interval (i0, n] same as P2 for eager policy

- P3 :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

(i) The instruction i0 is explicitly defined such as it respects the property. In the

worst case, i0 will be in and the policy is equivalent to incremental

(ii) from definition of Hk: in the interval [1,i0] Hk is increasing and decreasing in

(i0,n]). Hence, in both cases the property is respected.

Incremental/Priority release policy

critical

section

Code

x <V y <V z

x

y

z

Incremental/Priority
release

x

y

z

i0

Figure 3.11: Incremental/Priority release policy

This policy is very similar to incremental/eager since again protections are acquired

incrementally up to an instruction i0 and released eagerly after that point. Instruction

i0 is defined differently this time so that early release of protections is prioritized. That

is, we set i0 to be the first instruction after which we no longer use a protection. This

time respecting two-phase locking enforces the anticipation of protections. In Figure 3.11

we note that i0 is now located at the last usage of x. After that point px can be released

since it is no further used in the critical section. To allow the release we must first obtain

protection on z. As we can see this results in obtaining protection on z earlier than we

would if a purely incremental policy was applied.

50

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.5 Policies for acquisition/release of protections

� i0 =Min ({k ∈ [1, n] ∣ ∃x. x ∈ Pk ∧ x ∉ ⋃j>k Pj})

� ∀k ∈ [1, n] ∶Hd
k = (⋃nj=k Pj) ⋂Prefix(Pk)

�

Hk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋃j≤k(Hd
j ∪ Pj) if k < i0

P if k = i0
⋃j≥k Pj if k > i0

Compute Hk as in Incremental policy until last occurrence of a protection, then

acquire all protections missing from P and switch to Eager policy.

Proof of properties P1-P3

This policy is the combination of incremental and eager. Each policy is applied respec-

tively to the sub-critical sections [1, i0] and [i0, n]. Instruction i0 is explicitly defined to

prioritize release of protections. The switching of policy at i0 is correct because it occurs

when all protections are obtained.

- P1 :

No data race ∀x ∈ V , ∀k ∈ [1, n] : px ∈ Pk ⇒ px ∈ Hk

From definition of Hk we have:

∀k ∈ [1, n]Pk ⊆Hk ⇒ px ∈Hk

- P2 :

∀x, y ∈ V , ∀k,m ∈ [1, n] :
Deadlock
freedom

x <V y ∧ k < m

py ∈ Pk ∧ px ∈ Pm
⇒ px ∈ Hk

- for interval [1, i0] same as P2 for incremental policy

- for interval (i0, n] same as P2 for eager policy

- P3 :

(i) ∃ i0 ∈ [1, n] . H0 = P

(ii) ∀k,m ∈ [1, n] :
k ≤ m ≤ i0 ⇒ Hk ⊆ Hm

i0 ≤ k ≤ m ⇒ Hk ⊇ Hm

Two-phase
locking

(i) The instruction i0 is explicitly defined such as it respects the property. In the

best case, i0 will be i1 and the policy is equivalent to eager.

(ii) from definition of Hk: in the interval [1,i0] Hk is increasing and decreasing in

(i0,n]). Hence, in both cases the property is respected.

51

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

3.6 Observations on policies

Figure 3.12 puts all policies side by side and shows how each behaves for a common

critical section. We can note that all the policies we propose reduce the time protections

are held. Policies Eager and Incremental have a dual behavior. In this example, no

anticipation is needed for incremental policy. This is an ideal case since it gives the

minimal time protections can be held for this policy (each protection acquired exactly

prior to its usage). Policies Incremental/Eager and Incremental priority release seem to

behave best with respect to the other policies since they limit the overall time protections

are held. But each policy can prioritize/penalize the protection on a variable. Policy

Incremental/Eager prioritizes variable z and penalizes x while Incremental priority release

has the inverse effect on these variables. As we detail next the definition of i0 (the point

where all protections P are held and we switch from incremental to eager policy) is very

important in optimizing a critical section.

critical

section

Code

x <V y <V z

x

y

z

Global

x

y

z

Eager

x

y

z

Incremental

x

y

z

Incr/Eager

x

i0

y

z

Incr/Priority
release

x

y

z

i0

Figure 3.12: Policies for acquiring/releasing protections

3.6.1 Equivalence of Incremental/Eager and Incremental priority re-

lease

We present here a special case where i0 is implicitly defined in the critical section. As

illustrated in Figure 3.13 the regions of access to shared variables overlap. All instructions

in the region where the totality of shared variables in the critical region overlap consist

explicit definitions of i0. We note in the figure i0 incr/eager (respectively pr. release) the

point matching to instruction i0 for Incremental/Eager policy (respectively Incremental

priority release). Any of them can be chosen as i0 and both Incremental/Eager and Incre-

mental priority release policies produce the same acquisitions and release of protections.

In fact policy Incremental priority release has no meaning since there is no release to pri-

oritize over the acquisitions of protections. As we can observe in the middle of the figure,

protection on variable y needs to be anticipated. If the following ordering was chosen

x <V z <V y then the policies would give the optimal solution since the protection on each

variable would be held exactly while it is accessed. This optimal solution is illustrated at

the right side of the figure. This observation raises the issue of defining an optimal total

ordering of the variables.

52

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.6 Observations on policies

critical

section

Code

x <V y <V z

x

y
z

i0 incr/eager

i0 pr. release

i0

Incr/Eager
and

Incr/Priority release

x

y
z

Incr/Eager and
Incr/Priority release

Optimal
x <V z <V y

x

y
z

Figure 3.13: Equivalence of Incremental/Eager and Incremental priority release

3.6.2 Optimizing critical sections implemented with Incremental poli-

cies

As observed in the example of Figure 3.13 the total order chosen on variables for deadlock

avoidance has a great impact on the efficiency of incremental policies since they heavily

reside on it. For policies Incremental/Eager and Incremental priority release the choice of

instruction i0 also strongly affects performance. First, we focus on the effect of choosing

an instruction i0 between i0 pr. release and i0 incre/eager when i0 is not implicitly defined.

Then we provide heuristics for defining orderings of variables.

In a critical section with irregular accesses to shared variables as for instance in Fig-

ure 3.14 it is impossible to have an optimal solution as that in the right side of Figure 3.13.

For the example illustrated in Figure 3.14 we assume a strong contention on variable w is

expected. In this case, defining either point marked i0 opt or i0 opt ′ as i0 would be the

best choice since they would guarantee that protection on w will be released right after

its last access.

critical

section

Code

w <V x <V y <V z

w
i0 opt

i0 opt′

x

i0 pr. release

y

z

i0 incr/eager

Incr/Eager

w

x

y

z

i0

Incr/Priority
release

w

x

i0

y

z

i0 opt

w
i0

x

y

z

i0 opt′

w i0

x

y

z

Figure 3.14: Choosing arbitrary i0

For the order chosen w<V x<V y<V z<V and each i0 delimited we provide the region

in the critical section each protection will be held. We focus on the effect of i0 opt and

i0 opt′. For both of them we can observe that they give the same hold regions which is

53

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

also identical to that obtained by policy Incremental priority release. In the case of i0 opt

variable x is less penalized than z while the contrary is observed in the case of i0 opt′.

To optimize access to variable w a better ordering must be defined. Figure 3.15 illus-

trates how protections are held with the new ordering. We can observe how i0 opt and

i0 opt′ optimize access to w. Moreover, with this ordering policy Incremental priority

release penalizes access to w since it forces the acquisition of its protection earlier. In the

case of policy Incremental eager we can note that variable w could be released immediately

after its last access. This does not happen since the algorithm will not release anything

until it reaches point i0.

critical

section

Code

x <V y <V z <V w

w
i0 opt

i0 opt′

x

i0 pr. release

y

z

i0 incr/eager

Incr/Eager

w

x

y

z

i0

Incr/Priority
release

w

x

i0

y

z

i0 opt

w
i0

x

y

z

i0 opt′

w i0

x

y

z

Figure 3.15: Optimizing access to a variable

3.6.3 Inferring optimal total order of variables

As mentioned earlier to avoid deadlocks a total order must be specified on all shared

variables. This ordering affects all incremental policies. We provide here two heuristics

for specifying orderings that will optimize performance of incremental policies but also in

general of the application since even for global or eager policy the protections must still be

obtained respecting this ordering. The principle behind defining an optimized ordering is

that variables that appear higher in the ordering have less dependencies.

Optimize access to a single variable implies that it should never be anticipated. A

variable is anticipated when in a critical section variable x is accessed prior to variable

y and the variables are ordered in the inverse way (i.e., y <V x). To ensure a

protection on a variable z is never anticipated it should be assigned the higher

order:

∀ x ∈ V ⇒ x <V z

Optimize overall critical sections implies finding an ordering such that the acquisi-

tion is optimized for the greatest number of variables. Figure 3.16 illustrates five

different critical sections of a program. For each critical section we form a word by

concatenating the shared variables in the order they appear when crossing the crit-

ical section. The word formed appears below each critical section. The order that

minimizes overall anticipations is that identified as the longest substring of these

54

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.6 Observations on policies

words. In this example substring xy is the longest substring appearing the most

often. Thus, the ordering chosen should always respect that x <V y.

critical

section

cs 1

x

y

z

xzy

cs 2

x

y

z

yxz

cs 3

x

y
z

xyz

cs 4

x

y

xy

cs 5

x

y

xy

Figure 3.16: Optimizing order for critical sections

Figure 3.17 illustrates how protections would be held for all five critical sections using

Incremental policy and two different orderings. Figure 3.17(a) is using the ordering

respecting the heuristic on longest common prefix while Figure 3.17(b) violates it.

As we can note, when the good ordering is chosen much less anticipation is needed

(see variable y).

z <V x <V y

critical

section

cs 1

x

y

z

xzy

cs 2

x

y

z

yxz

cs 3

x

y
z

xyz

cs 4

x

y

xy

cs 5

x

y

xy

(a) Good ordering of variables

z <V y <V x

critical

section

cs 1

x

y

z

xzy

cs 2

x

y

z

yxz

cs 3

x

y
z

xyz

cs 4

x

y

xy

cs 5

x

y

xy

(b) Bad ordering of variables

Figure 3.17: Good vs bad ordering

55

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

3.7 Extending critical sections

The critical sections we considered were sequences of assignments. This assumption sim-

plifies reasoning on protections but it could be too restrictive in practice. In this section

we discuss the integration of (i) loops (ii) conditionals and (iii) function calls into critical

sections. These constructs modify dynamically the execution flow of the program. Thus,

the algorithm should be modified in order to deal with sets of sequential execution paths.

3.7.1 Loops and conditionals

Reasoning on loops and conditionals is typically done using a control flow graph (CFG).

A control flow graph is a simple representation of a program (or an excerpt of code)

consisting of instructions connected with directed edges. A CFG usually has a single entry

and exit point and in-between branching and merging instructions. Instructions that form

sequences can be grouped together into so-called basic blocks.

Figure 3.18 presents the notations we use to illustrate CFGs of critical sections for the

remaining of the chapter. On the left side resides the code of a critical section and on the

right its corresponding CFG. As we can note the entry (critical in) and exit (critical out)

points are denoted by distinctive nodes at the top and bottom of the figure respectively.

Individual instructions and basic blocks are put into boxes; branching conditionals (if)

in diamond shapes; and loop conditionals (while) in trapezium shapes. Loops are further

recognized by the cyclic edges in the graph. In this example after executing the code of

while, we return to its condition to check again if it is still satisfied or not. For instructions

of a CFG we define the following:

succ(k) function returning all successors of instruction k. In Figure 3.18 the successors of

instruction marked as i3 are all instructions on the dashed path starting at i3 and

ending at exit point critical out.

pred(k) function returning all predecessors of instruction k. In Figure 3.18 the predeces-

sors of instruction marked as i3 are all instructions on the dash-dotted path starting

at i3 and going upwards to the entry point critical in.

loop(k,m) a predicate deciding whether or not instructions k and m belong to the same

loop or into nested loops.

allPaths(k) a predicate which decides whether instruction k belongs to all paths or not.

The predicate makes the distinction between instructions and conditionals. In

Figure 3.18 the instructions for which the predicate is true are i1 and i8. We must

note that i2 is excluded despite it is executed in all paths because it is a predicate.

Conditionals and loops diverge the execution flow at runtime forming different paths

(sequences of instructions) connecting the entry and exit point of the critical section. The

algorithm we presented in section 3.5.1 is based on computing precisely the protections

that must be held prior to executing an instruction. Computing this set precisely is no

56

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.7 Extending critical sections

critical{

x = y;
if(x > y){
x = y − z;
x = x /2;

}else{

while(x ! = y){
z − −;
x + +;

}

}

z + = 3;
}

critical in

x = y; i1

x > y
i2

x = y − z; i3

x = x /2; i4

x ! = y
i5

z − −;
x + +;

i6
i7

z + = 3; i8

critical out

true false

truefalse

Figure 3.18: Control Flow Graph (CFG) example.

longer feasible statically due to non determinism. We discuss hereafter how this influences

the policies we proposed.

Global policy

The global policy is not affected by loops nor by conditionals. This is due to the fact

that protections are acquired and released similarly for all execution paths of the critical

section. That is, protections are obtained independently of belonging to the path that

will actually get executed or not. Parallelism is reduced when protections that are not

necessary are obtained.

With control flow graph notations the definition of variables to be held by each instruc-

tion would be the following:

∀k ∈ [1, n] ∶Hk = ⋃
j ∈ succ(1)

Pj = P

Eager policy

According to this policy protections are released after the last access to the protected

variable. When the last access occurs inside a conditional then special care should be

taken on where to position the release of the protection. We distinct the following cases:

loop conditional: in this case if the condition is true then the loop body is executed

and unless a break instruction is encountered the condition is re-evaluated (at least

once more). Hence, releasing the protection inside the loop body could cause: (i) re-

accessing the shared variable without holding the adequate protections and (ii) re-

leasing a protection without holding it (since it was released on previous iteration).

Releasing a protection without holding it can have several side-effects depending on

57

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

the implementation of protections. For instance, in the implementation of Pthreads

- fast mutexes there is no control if the releasing thread is the same as the one that

obtained it and thus we could release the mutex obtained by some other thread.

Finally, for loop conditionals releasing the protection of a variable that appears last

in the conditional should be executed at the exit of the loop. Figure 3.19 illustrates

a critical section consisting of a while loop. On the transitions between nodes we

added, where necessary, the protections to be acquired (Acq) and released (Rel). We

note the release of pw being executed after exiting the loop.

critical{

while(x <= w){
x + +;

}

x + = 3;
}

critical in

x <= w

x + +;

x+ = 3;

critical out

truefalse

Acq(pw,px)

Rel(pw)

Rel(px)

Figure 3.19: While loop conditional release protection.

branching conditional: in this case two execution paths are feasible. Since the variable

is no longer accessed it should be released on both paths. Figure 3.20 illustrates the

releasing of protections. As we can note, independently of the branch executed the

protection will be released immediately after its last access (inside the conditional).

critical{

if(w <= x){
x + +;

}else{

x − −;
}

x+ = 3;
}

critical in

w <= x

x + +;x − −;

x+ = 3;

critical out

truefalse

Acq(pw,px)

Rel(pw)Rel(pw)

Rel(px)

Figure 3.20: Branch loop conditional release protection.

When the last occurrence of a variable is inside the body of a loop then apart the two

problems we aborted previously, on releasing repeatedly inside the loop, we are faced with

a dual problem of not releasing a protection due to un-executed paths. Often loops contain

instructions such as break and continue which cause a direct jump outside the loop and

to the conditional check respectively. In both cases instructions of the loop subsequent to

these instructions are not executed and thus the releasing of protections could be skipped.

This would result into exiting the critical section while possessing protections.

58

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.7 Extending critical sections

To solve this problem, we postpone again all releases until exiting the loop. In case of

nested loops releases must be postponed until the end of the outermost loop. Figure 3.21

presents on the left a critical section containing two nested while loops and on the right the

corresponding CFG illustrating the solution. On the transitions between instructions we

hook the sets of protections that should be acquired (Acq) and released (Rel) as computed

by the algorithm presented in section 3.5.1 on page 41. The release of py at the designated

position is incorrect as premature. On the other hand, releasing of pz will never occur due

to the break instruction preceding it. Dashed lines illustrate the postponing of releases

outside of the outermost loop.

critical{

lb = w;
while(y < w){
y + +;
while(z < lb){

break;

z + +;
}

x + +;
}

x = x /2;
}

critical in

lb= w

y < w

y + +;

z < lb

break;

z + +;

x + +;

x = x /2;

critical out

true

truefalse

false

Acq(pw,px,py,pz)

Rel(py)

Rel(pz)

Rel(pw)

Rel(px)

Figure 3.21: Nested loops in critical section.

Finally, we provide the formalization of computing hold sets for an instruction ik in

a loop. The set Hk no longer holds only the protections necessary for the subsequent

instructions, but also the protections of preceding instructions residing inside the same

loop scope. This modification is necessary to enforce releasing protections after exiting the

loop. Although protections are released immediately after their last access the overhead

of holding the protections is equal to that of executing remaining instructions on last

iteration.

∀k ∈ [1, n] ∶Hk = ⋃
j ∈ succ(j)

Pj ∪ ⋃
j ∈ pred(j) . loop(j,k)

Pj

For branching conditionals (if statements) no problem occurs as long as the code ex-

ecuted in them consists of sequences of assignments and nested branchings. In this case,

59

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

the computation of protections to be held at an instruction ik is defined as the neces-

sary protections of all successors. Protections on not executed branch can be released

immediately.

∀k ∈ [1, n] ∶Hk = ⋃
j ∈ succ(j)

Pj = P

Incremental policy

According to this policy, protections are obtained as late as possible. We remind that

anticipation is often needed to avoid deadlocks. The problems to be faced due to multiple

executions are the following: (i) how to compute protections to be anticipated and (ii) what

to release at the end of the critical section.

To avoid deadlocks the set Hd
k must be correctly computed for each instruction. Many

execution paths with different sets of variables used on each may exist from instruction

ik to the end of the critical section. To be sure no protection is obtained out of order Hd
k

is defined as the union of protections used on all paths originating from ik. This implies

that some protections may be anticipated even though their path may not get executed.

Figure 3.22 illustrates an example where protection py is over-approximated since it must

be obtained prior to executing the conditional. More formally the re-definition of Hd
k :

∀k ∈ [1, n] ∶Hd
k = (⋃

j ∈ succ(j)
Pj) ⋂ Prefix(Pk)

critical in

w <= 2

y − −;

x+ = 5;

z + +;

x+ = 3;

z+ = 3;

critical out

x <V y <V w <V z

truefalse

Hd={px,py}

Acq(?)

Rel(?)

Figure 3.22: Pessimistic Hd
k computation

Another problem with incremental acquisition is that after merging two execution paths,

we can no longer specify the set of protections held at the merging point. In Figure 3.22

at the merging of the conditional protection on variable z is already held if the true

branch was executed and dually not held if false branch was executed. A safe solution

consists in assuming protections that do not belong to the intersection of all paths not

to be acquired. Thus in the example, protection pz should be acquired. Because the

protection may already be held we must be sure that the implementation of protections

60

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

3.8 Recapitulation

used is re-entrant (i.e., a thread can obtain a protection it already holds). This problem

of re-acquiring protections also occurs when iterating loops.

The final problem to be solved is related to not knowing exactly the set of protections

that were obtained during the execution of the critical section and thus what should be

released prior leaving the critical section. As mentioned earlier releasing a protection not

owned can be dangerous. A solution we propose to this problem is having a primitive that

allows the release of all protections held by a thread.

3.7.2 Function calls

Function calls introduce several challenges in the implementation of critical sections caused

by: (i) calling library functions of which the source code is not available for analysis

(ii) recursive functions (iii) nested critical sections, when the function called contains

itself a critical section.

We consider the simplest case where the called function contains no recursion and does

not call any library functions. In this case the code of the function should be inlined such

that is is analyzed along with instructions preceding and following its call. Moreover, if

some called function contains critical sections they should be removed while in-lining.

3.8 Recapitulation

In this chapter we addressed the problem of optimizing critical sections with the pessimistic

approach i.e., using synchronization mechanisms. Initially, we formalized the usage of two

classic synchronization mechanisms mutexes and read/write locks. We also proposed write

intend locks, a variation of read/write lock which can be beneficial when there is a big

number of reading threads and a few that update a value. Next, we focused on the

optimization of critical sections by reducing the overall time protections are held. We

presented a generic scheme for the acquisition/release of protections and used it to define

five policies. We proved that all policies respect a set of properties that guarantee the

correct implementation of a critical section with the pessimistic approach. Finally, we

presented how to extend our work for critical sections consisting of instructions other than

simple assignments.

Comparison to existing work

Existing works on optimizing pessimistic implementation of critical sections can be divided

into three categories: (i) lock free implementations (ii) identification of the finest possible

locks to protect the critical section and (iii) optimize implementation of synchronization

mechanisms.

Our work is complementary to that of identifying the finest possible locks. Definitively,

finding the finest locks reduces contention on synchronization mechanisms and thus allows

more parallelism. Our algorithm assumes this tedious work has been applied to critical

61

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 3. Optimizing critical sections

sections before applying it. With the policies we proposed, except the global which is the

most commonly used in the literature, we minimize possession of synchronization mech-

anisms to smallest possible portion of the critical section without violating its semantics.

Finally, we exhibit through a series of experimentation (presented in chapter 5) the effect

of each policy.

62

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4

Information flow analysis for

multithreaded programs

Information flow analyses infer the data and control dependencies that can occur in a

program. In software security such information is useful for detecting and preventing the

exploit of software vulnerabilities and confidentiality breaches. In debugging and testing

it can be useful for understanding how errors occur and what are their sources. Moreover,

parallelizing compilers can also benefit of it since accesses to independent data can be safely

parallelized. Tracing information flow in sequential programs is difficult due to dynamic

memory allocations, control flow branchings etc. Adapting information flow analyses to

multithreaded programs is even more challenging due to the non-deterministic execution,

caused by the scheduling of threads and the relaxations of the execution platform.

Both static and dynamic techniques have been proposed to address the information flow

tracing problem. Static approaches usually reason on source code level. A vast majority

reposes on type systems to define languages that guarantee by construction secure informa-

tion flows, i.e. executions that do not leak any confidential information. Volpano [VS97]

and Sabelfeld [SM06] have proposed such sequential languages while Barthe [BRRS10]

and Smith [SV98] include in their languages some basic primitives for multithreaded

development. A drawback of these approaches is that they can reject programs that

occasionally flow sensitive data. For instance a benign program may leak sensitive in-

formation only when sending a crash report to its developers. Dynamic approaches e.g.,

TaintEraser [ZJS+11] are better adapted since they monitor at runtime the flow of sen-

sitive data and can interfere in order to prevent the leaking. Dynamic information flow

tracing (DIFT) or taint analysis is widely used for detecting software vulnerabilities and

avoid their exploit. As it applies dynamically it is much more precise than static analyses.

We detail taint analysis and how it propagates in section 4.1.

Hereafter we motivate taint analysis and give an overview of the techniques employed

to address the problem. Further, we introduce runtime prediction: a method to generalize

executions of multi-threaded programs. We present our algorithm for predictive taint anal-

ysis. The implementation of our algorithm along with a proof of concept experimentation

are presented in chapter 5.

63

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

4.1 Taint analysis

Taint analysis is a dynamic information flow tracing technique which consists of tainting

(marking) sensitive or untrusted data and tracing their flow through a program. To

perform taint analysis we need to specify: (i) the taint sources and (ii) a propagation

policy of taintness. Often, untrusted data such as user input and network traffic are used

as taint sources. The propagation of taintness may occur explicitly through copy of value

(e.g., assignment) or implicitly through covert channels (e.g., control flow).

To limit propagation of taintness, a dual process of untainting is used to mark data as

safe. This occurs by assigning an untainted value to data or by sanitizing it i.e., check

they respect some rules and if necessary modify them such that they conform to these

rules. We introduce the following notation for abstracting taint sources and sanitization:

T stands for Taint and is used to abstract all possible taint sources. For instance, user

input obtained through scanf function will be replaced by an assignment of T in

the variable written as in the example:

scanf("%d",val); Ô⇒ val = T;

U stands for Untaint and is used to abstract sanitization functions. Sanitization is often

used on untrusted data in order to ensure they are harmless and thus they can

safely be untainted after its completion. Assuming function clean_search sanitizes

a search string for SQL injections then we can make the following replacement:

clean_search(input); Ô⇒ input = U;

4.1.1 Explicit information flow

Listing 4.1 presents an excerpt of code where initially variable a gets tainted at instruction

2 (by reading user input into it). Also variable e gets eventually tainted through the

dependency path e ⇒ d ⇒ a ⇒ T . The propagation of taintness in variable d is straight

forward since we have an explicit copy of the tainted value. In the case of variable b the

effect of the assignment is subtle to the taint propagation policy chosen. For instance,

it may be assumed that merging tainted data with untainted absorbs the tainting effect.

Most often though it suffices one operand to be tainted in order to propagate taint. Thus,

in most existing taint analyses b would be considered tainted too. Finally, we note the

sanitation of a.

4.1.2 Implicit information flow

Listing 4.2 presents an implicit information flow. Again variable a gets initially tainted.

The tainted data control program execution and thus information about it can leak. In

this example, an external observer can infer information about the value of a by looking at

the printed value of b. Thus information about a is implicitly propagated to all variables

64

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.1 Taint analysis

set inside the scope of control (this includes c). Variable d is not tainted since it is not

affected by the value of a. Implicit flows are very hard to detect since covert channels can

be implemented in many ways. Some typical examples are timing and storage channels.

1 int a,b,c,d,e;

2 a = T ; // scanf ("%d",a);

3 c = 21;

4 d = a;

5 b = c + a;

6 a = U ; // sanitize(a);

7 e = d;

Listing 4.1: Explicit flow

1 int a,b,c,d;

2 a = T ; // scanf ("%d",a);

3 if(a >10){

4 b = 1;

5 }else{

6 b = 0;

7 c = 2;

8 }

9 d = 10;

10 printf("%d",b);

Listing 4.2: Implicit flow

Because implicit flows are based on covert channels they are tedious to track both

statically and dynamically and are often neglected. Implicit information flows are mostly

critical for the non-interference property where confidential data can leak unconsciously.

In the context of taint analysis and vulnerability detection implicit flows affect subtly

the exploitation of a vulnerability. Moreover, implicit propagation of taint introduces too

many false positives which degrades the efficiency of the analysis.

4.1.3 Application of taint analysis

As mentioned earlier taint analysis targets mostly vulnerability detection and prevention.

Therefore, most taint analyses are performed dynamically at runtime. Tainted data are

tracked down and the appropriate checks are performed when necessary in order to respect

the security property.

Other
stack-frames

Return address

buf
(32 bytes)

Other variables
⋮

Other
stack-frames

Return address

buf
(32 bytes)

Other variables
⋮

Malicious
input

Use for
return

tainted
data

attack
1 int read_input (){

2 char buf [32];

3 gets(buf);

4 return 0;

5 }

Figure 4.1: Stack smashing by buffer overflow.

A typical example demonstrating how taint analysis is used for vulnerability prevention

is stack smashing caused by a buffer overflow. Figure 4.1 describes such an attack. On the

65

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

left of the figure we present the code of the function which reads user input into a buffer of

size 32 bytes. The programmer assumes the size associated to the buffer is enough to hold

the input provided. If a user enters a longer input then the data will overflow the buffer

resulting into writing a new value to the return address associated to this stack frame

(illustrate on the right stack frame). This vulnerability can be exploited by ensuring that

the return address is not overwritten with random data but with an address to a malicious

set of instructions. To prevent that from happening a taint analysis should check if the

return address is tainted prior to jumping to it.

4.2 Tracing taintness

Dynamic analysis techniques are widely used in the context of multithreaded applications

for runtime error detection like deadlocks ([LELS05, CFC12]) and data races ([SBN+97,

SI09]. Although detecting data races could be useful for information-flow analysis, it is

not sufficient as such. Hence, more focused analyses are developed to deal with malware

detection ([BKK10, ESKK08]) and enforcement of security policies ([ZJS+11, CM09]).

Building dynamic analysis tools necessitates integrating some monitoring facilities to

the analyzed application. Monitoring features are added either at source code level or

binary level, either statically or dynamically. Waddington et al. [WRS] present a survey

on these techniques. Working at the binary level allows to analyze programs for which

source code is not available such as malwares or libraries. A major drawback is that high

level information is lost making it harder to reason about the program.

Instrumentation code is often added statically in applications as explicit logging in-

structions. It necessitates access to the source code and can be added accordingly by the

developers (which is a tedious and error-prone procedure) or automatically. To automate

this process source-to-source transformations can be applied, for instance using aspect-

oriented programming. Apart from the source level, static instrumentation can also be

applied directly at the binary level, e.g., using binary rewriting functionality of frameworks

like Dyninst [BH00]. Hereafter we take a closer look to dynamic binary instrumentation

(DBI) techniques since they are the most widely used.

4.2.1 Dynamic binary instrumentation

In general, DBI frameworks ([NS07, BH00, LCM+05]) consist of a front-end and a back-

end. The front-end is an API allowing to specify instrumentation code and the points at

which it should be introduced at runtime. The back-end introduces instrumentation at

the specified positions and provides all necessary information to the front-end.

There are two main approaches for controlling the monitored application: emulation

and just-in-time (JIT) instrumentation. The emulation approach consists in executing the

application on a virtual machine while the JIT approach consists in linking the instrumen-

tation framework dynamically with the monitored application and inject instrumentation

code at runtime.

66

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.2 Tracing taintness

Valgrind [NS07] is a representative framework applying the emulation approach. The

analysed program is first translated into an intermediate representation (IR). This IR is

architecture independent, which makes it more comfortable to write generic tools. The

modified IR is then translated into binary code for the execution platform. Translating

code to and from the IR is time consuming. The penalty in execution time is approximately

four to five times (with respect to an un-instrumented execution).

Pin [LCM+05] is a widely used framework which gains momentum in analysing multi-

threaded programs running on multi-core platforms. Pin and the analysed application

are loaded together. Pin is responsible of intercepting the applications instructions and

analysing or modifying them as described by the instrumentation code written in so-called

pintools. Integration of Pin is almost transparent to the executed application.

The pintools use the frameworks front-end to control the application. Instrumentation

can be easily added at various granularity levels from function call level down to pro-

cessor instructions. An interface exists for accessing abstract instructions common to all

architectures. If needed more architecture specific analyses can be implemented using

specific APIs. In this case the analysis written is limited to executables of that specific

architecture.

Adapting a DBI framework to parallel architectures is not straight forward. Hazelwood

et al. [HLC09] point out the difficulties in implementing a framework that scales well in a

parallel environment and present how they overcame them in the implementation of Pin.

As mentioned in their article, extra care is taken to allow frequently accessed code or data

to be updated by one thread without blocking the others. Despite all this effort in some

cases the instrumenter will inevitably serialise the threads execution or preempt them.

4.2.2 Sequential taint analysis

All taint analyzes are decomposed into three distinct phases:(i) tainting (ii) tracing and

(iii) asserting. The first two were presented earlier in section 4.1 and consist in defining

what data are tainted and how taintness propagates. The third phase consists into checking

how tainted data are used. The property to be asserted affects the first two phases too.

Often taint analyzes implemented with DBI [NS05, ZCYH05, CZYH06, QWL+06,

ZJS+11, GLG12] focus on the same properties such as buffer overflows, format string

attacks, stack smashing etc. and compare with each other in terms of precision and per-

formance. The major overheads in these analyzes are caused by instrumentation and

updating shadow memory.

Shadow memories are used to store information about taintness. A mapping exists

between the registers and address space of the application to the shadow memory, as illus-

trated in Figure 4.2. For performance and memory usage optimization shadow memories

are usually implemented as bitvectors. Each bit indicates whether the mapped memory

is tainted or not. The granularity of the mapping may vary, but most often a bit corre-

sponds to a byte of address space or register. Because the lookup and updating of shadow

memory occurs practically for each instruction executed by a processor Nagarajan and

Gupta [NG09] propose architectural support for their implementation. Their proposal

67

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

focuses on multiprocessors and thus incurs modifications both at the instruction set and

at the cache coherency protocols.

registers
es

p

eb
p ⋮

ea
x

eb
x

address space

0
x
00

0
0

0
x
ff

ff

shadow memory

. . .

. . .

tainted
untainted

Figure 4.2: Shadow memory mapping.

Newsome and Dong proposed TaintCheck [NS05] for detecting exploits on commod-

ity software and produce signatures for their early detection and avoidance. They used

Valgrind [NS07] for instrumentation which penalizes the monitored execution due to its

emulation approach. Their information flow tracing is limited to move (e.g., load, store,

push, pop) and arithmetic (e.g., add, sub, xor) instructions. During arithmetic operations

some special registers are updated called EFLAGS which are not taken into account. For

shadow memory they map each byte of memory (register or address space) to a four-byte

pointer, linked to either a tainted data structure 1 or to NULL depending on its taint sta-

tus. Shadow memory is kept in a page-table like structure in order to reduce its size. The

assert phase checks if tainted data are used in jump instructions or passed as arguments

to system calls.

Further to taint propagation TaintCheck keeps a log allowing to trace the flow from the

source that tainted it down to the exploit position. This is necessary for generating the

signature of the attack. Moreover, once an exploit is detected the programs execution may

continue under a constrained environment which allows to learn what is the goal of the

attack. This information is useful for undoing, if possible, the damage done by a malware.

Zhao et al. present DOG [ZCYH05] a program monitoring framework built on top of

Dynamorio [Bru04] for detecting exploits but also preventing confidentiality leaks. DOG

provides a graphical interface from which one can define the taint sources, and associate

to each source a propagation policy and a set of assertions and actions to perform if an

exploit is detected. The propagation of taint supported is similar to TaintCheck [NS05]

apart that they take into account the EFLAGS and allow for implicit propagation through

control. Because implicit propagation can introduce many false positives DOG allows the

user to specify regions in the program where it can be applied. To optimize taint tracing

a bit-vector is used. Each byte corresponds to a bit with value 1 marking it as tainted and

0 as untainted. Moreover, they do not use a page-table based strategy as in TaintCheck

but instead they devise a mapping where it suffices to add a shadow base to the address to

1this is similar to the taint object T we defined, its a fixed point for taintness

68

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.2 Tracing taintness

locate its mapping. The taint checks provided by DOG are somehow typical, i.e., format

string attacks, stack smashing, etc.

Dytan [CLO07] is yet another framework for taint analysis. It is implemented using

Pin [LCM+05] and as DOG it supports both implicit and explicit flow propagation. In

addition to a simple XML configuration the framework also provides an easily extendable

interface allowing the rapid development of more elaborated taint analyzes. The taint

information is also stored in bit-vectors and the granularity of memory mapped is one

byte.

A most recent work TaintEraser [ZJS+11] focuses on confidentiality, it blocks unintended

data exposure to the network or local file system by applications. TaintEraser makes

several optimizations in taint analysis without losing in precision. First, it uses function

summaries which resume the effects of a functions execution and thus there is no need

to instrument it at runtime. Moreover, they perform on-demand instrumentation, i.e.,

they do not instrument the entire program execution. Finally, to enforce confidentiality

of sensitive data it allows to log the leak, block the action or replace the sensitive data

with random ones. The output channels protected are network connections and files.

All frameworks presented above use DBI to add monitoring. Figure 4.3 illustrates

an overview of their mode of operation. The DBI framework observes the instructions

executed by the processing unit and updates accordingly the shadow memory and takes

action if needed. As presented in the figure, the execution of multithreaded programs is

serialized. This is convenient for monitoring since the DBI frameworks observe a sequential

schedule Σs (see Definition 2.7.4) which allows the shadow memory to be updated precisely.

sc
h

ed
u

le
r

t1

t2

t3

t4

t2 t1 t4 t3

CPU1

CPU2

In
t
e
r
c
o
n
n
e
c
t

Memory

DBI

shadow
memory

Figure 4.3: DIFT analysis using Dynamic Binary Instrumentation frameworks

Adding instrumentation at runtime incurs two drawbacks. First, it penalizes execution

having to produce the instrumentation dynamically, at least for the first 1 time they get

executed. Second, it is hard to apply any optimizations since high level program structure

has been lost. Saxena et al. [SSP08] try to weaken these problems by proposing a binary

rewriting technique for adding instrumentation. Prior to adding the monitoring code

they extract as much high level information as possible from x86 executables, so that

optimizations can be applied.

1instrumented code is stored into code caches for later use

69

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

4.2.3 Optimizing DIFT

A great challenge DBI frameworks are facing is dealing efficiently and correctly with mul-

tithreaded programs and their parallel execution achieved on the multicore platforms.

As illustrated in Figure 4.3 existing DIFT analyses based DBI frameworks serialize their

execution. Though necessary for tracing information flow precisely it incurs a great pe-

nalization of the execution time. To improve DIFT analyzes several solutions requiring

the support of specialized hardware have been proposed.

Nagarajan et al. [NKWG08] takes advantage of multicore processors to perform DIFT

transparently and efficiently. Their solution reposes on spawning a new thread dedicated

to the analysis and running on a dedicated core in parallel with the main thread (the

monitored application). The monitoring core tracks taintness and sends an interrupt to

the main thread when the use of a tainted value violates the specified security policy.

Intense communication between the cores executing main and monitor thread respectively

is required. Initially shared memory was used for their communication but it added too

much overhead to the execution. Thus, they proposed the usage of a dedicated hardware

FIFO 1 buffer. Although this buffer does not exist in current multicore processors, it

has been proposed by several other works [RVS+06, SKSP06]. For their experimentations

they used the Simics full system simulator on which they implemented the hardware

FIFO queue. The results they obtained showed a 48% overhead which is much better

than aforementioned frameworks which introduced an overhead of about 300% and more.

The work of Ruwase et al. [RGM+08] reposes on the log-based architecture

(LBA [CKS+08]) to implement a parallel dynamic information flow analysis. LBA in-

troduces several hardware components in the CPU design that allow the extraction of a

log trace for a monitored application. The log can be read by the monitoring thread.

The analysis of the log happens in parallel. It is broke into segments each processed by

a worker thread running on a dedicated core. The worker threads create summaries of

segments and send them to the monitoring/master thread which updates meta-data and

makes the appropriate checks. For the parallelized DIFT they proposed a big number

of worker threads is necessary, but it does not always guarantee a speedup compared to

sequential frameworks.

A most recent work by Ozsoy et al. proposes SIFT [OPAGS11] which takes advantage of

symmetric multithreading (SMT). The implementation of their work though necessitates

modifications which increase the size of the processor core by core by 4.5%. Although it is

relatively small compared to the solution proposed in Raksha [DKK07] which increases chip

size by 20%. Hardware-based DIFT solutions seem very appealing but necessitate non-

trivial hardware modifications which make the design of processing units more complex.

Thus chip manufacturers are not willing into adapting them.

1First In First Out or queue like storage and processing policy

70

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.3 Extending monitored traces

4.3 Extending monitored traces

Dynamic information flow analysis performed either at software level, using a DBI frame-

work, or with support of sophisticated hardware, allow the meticulous analysis of a single

execution trace. That is, the verdict concerns only the specific execution which is of-

ten serialized. Such a solution is very intrusive and hides sources of concurrency bugs

such as races caused by non-deterministic scheduling and effects of weak memory model

relaxations.

Although monitoring of applications is useful itself, as long as the performance losses

are acceptable, in some contexts such as debugging or testing, limiting the verdict to a

single execution is too restrictive. To overcome this problem runtime prediction is used

to expand the analysis by inferring executions. The inferred executions capture different

interleavings for the executed application.

Depending on the accuracy of the interleaving computation the prediction may under-

approximate (miss errors) or over-approximate (produce false positives). In the former

case, the initial execution trace is usually captured as a totally ordered sequence of events

which is relaxed pessimistically i.e., allowing only a subset of feasible interleavings. In the

latter case, execution traces are conceived as unordered sets of events and interleavings are

computed by enumerating all possible interleavings and then eliminating some unfeasible

paths (e.g., based on happens before relations).

4.3.1 Runtime prediction for concurrency bugs

Runtime prediction has been widely used in the identification of concurrency bugs such

as race conditions and deadlocks. To perform such analysis the frameworks proposed

in the literature [JNPS09, SFM10, WG12] abstract executions by logging information

necessary to discover interleavings susceptible to cause concurrency bugs. The logs consist

of shared memory accesses and various synchronization primitives such as lock acquisitions

and releases, thread creation and join etc. The frameworks are differentiated by the

logged information, the algorithms detecting interleavings and either they over or under

approximate. The algorithms used can be split into enumerative and symbolic. In the

former case all interleavings are enumerated and then bogus ones are filtered, while in

the latter case constraints on interleavings are encoded into logic formulas fed to SMT 1

solvers [DM06].

Several works use enumerative algorithms. Some of them [WS06b, WS06a] over-

approximate since they solely rely on the algorithms inferring the interleavings. To reduce

false positives CalFuzzer [JNPS09] and PENELOPE [SFM10] try to infer a schedule ca-

pable to exhibit the concurrency bug. The inferred schedule is executed and if the bug

occurs then it is reported by the framework, else it is dropped.

In the symbolic category Wang et al. [WG12] provide a detailed survey. Moreover they

briefly present their contribution in the domain. First, they mention a theoretical optimal

solution they proposed, the CTP [WCGY09] (Concurrent Trace Program), which captures

1Satisfiability Modulo Theories

71

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

all interleavings that can possibly be inferred from a single trace, without introducing any

bogus interleavings. Subsequently they present two abstractions UCG [KW10] (Universal

Causality Graph) which over-approximates and a dual work, TSA [SMWG11] which under-

approximates the set of traces computed in TCP.

4.3.2 Runtime prediction applied to information flow

In the context of information flow runtime prediction has not yet been widely used. We

present hereafter two recent analyses: DTAM [GLG12] and Butterfly [GVC+10].

In their work Ganai et al. [GLG12] propose DTAM analysis which identifies a subset of

tainted input sources and shared objects that can affect the execution of a multithreaded

program. That is, the tainted data have an impact on the control-flow of the program

or its shared state. The tainted data get classified according to six relevancy types that

describe how they tainted data can affect the program execution. To infer the information

flow dependencies DTAM proposes a serial variation DTAMserial and two parallel ones

DTAMparallel and DTAMhybrid.

DTAMserial monitors the serialized execution of the multithreaded program and keeps

track of taintness as in usual DIFT analyses. In the parallel variations each thread per-

forms thread-local taint propagation. The information flow between threads is taken into

account during the offline phase. For the offline phase relevant information needs to be

logged. Each thread logs shared memory accesses along with the runtime taint value they

have computed. Some basic synchronization primitives are also kept into the log such as

fork/joins and wait/notifies allowing to infer happens before relations. For their relevancy

analysis even conditionals are logged.

The difference between the DTAMparallel and DTAMhybrid is that DTAMparallel does not

take into account happens before relations and thus the results are less accurate. Else, the

inter-thread propagation in both cases is rather coarse. Once a shared memory location

is tainted in a thread, it remains indefinitely and propagates to all other threads. Such an

approach drastically over-taints and it can result into considering everything as tainted.

The main objective of Goodstein et al. [GVC+10] is to provide a lifeguard mechanism

for (multi-threaded) applications running on multi-core architectures. It is a runtime

enforcement technique, which consists in monitoring a running application to raise an

alarm (or interrupt the execution) when an error occurs (e.g., writing to an unallocated

memory). The main difficulty is to make the lifeguard reasoning about the set of parallel

executions. To solve this issue, the authors considered (monitored) executions produced

on specific machine architectures [CKS+08] on which heartbeats can be sent regularly as

synchronization barriers, to each core. This execution model can be captured by a notion

of uncertainty epochs, corresponding to code fragments such that a strict happens-before

execution relation holds between non-adjacent epochs. These assumptions allow to define

a conservative data-flow analysis, based on sliding window principle, taking into account a

superset of the interleaving that could occur in three consecutive epochs. The result of this

analysis is then used to feed the lifeguard monitor. This approach can be used to check

various properties like use-after-free errors or unexpected tainted variable propagation.

72

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.4 Predictive explicit taint analysis

4.3.3 Positioning of our work

Our work is inspired from Butterfly analysis [GVC+10] though the objectives are not the

same. Our intention is to provide some verdict to be used in a property oriented test-based

validation technique for multi-core architectures. As such, our solution does not need to

be necessarily conservative: false negatives are not a critical issue. A consequence is that

we do not require any specific architecture (nor heartbeat mechanism) at execution time.

Another main distinction is that we may proceed in a post-mortem approach: we first

produce log files which record information produced at runtime, then this information

is analyzed to provide various test verdicts (depending on the property under test).This

makes the analysis more flexible by decoupling the execution part and the property check-

ing part. From a more technical point of view, we also introduced some differences in

the data-flow analysis itself. In particular we considered a sliding window of two epochs

(instead of three). From our point of view, this makes the algorithms simpler, without

sacrificing efficiency. Finally, a further contribution is that we take into account lock-set

information to reduce the number of false positives.

4.4 Predictive explicit taint analysis

Hereafter we present our approach to predictive explicit taint analysis of multithreaded

programs. The motivation is to use it for test validation, that is extend the results of a

tested parallel execution to the set of plausible serializations that could have occurred.

Since we are in a testing context our predictions do not need to be sound (taint value can

be over or under approximated). For a test to be representative of a concrete execution

the monitoring should be as transparent as possible. As presented in section 4.2.2 most

works force the serialization of multithreaded applications, which is very intrusive. We do

not impose such restrictions to the scheduling, i.e., we allow the parallel execution of the

application, and reason a posteriori about taint propagations.

4.4.1 Overview of our approach

In our approach, an abstract view of which is presented in Figure 4.4, we propose an

offline sliding window-based analysis. First, the multithreaded application is executed and

a parallel schedule Σ∥ (see Definition 2.7.5) is captured in the form of log files. A log file

is recorded per executed thread containing the timestamped sequence of events produced

by the thread mapped to it (upper part of Figure 4.4). Next, the log files are sliced

into so called epochs and the sliding window-based taint analysis is applied (lower part of

Figure 4.4).

Due to the information flow property we are interested in (taint propagation), the

logging of events is exhaustive. Typically all memory accesses, affecting both shared and

thread-local variables, in the form of use/def relations and some synchronization events. We

remind the T and U notations introduced in section 4.1 where T is a fixed tainted variable

and dually U an untainted one. For an event e we introduce the following functions:

73

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

sc
h

ed
u

le
r

A

B

C

D

B C

A D
CPU1

CPU2

In
t
e
r
c
o
n
n
e
c
t

Memory

A.log D.log

B.log C.log

O
n

li
n

e
p

h
as

e

A.log B.log C.log D.log

l1

l2

l3

l4

eAk

eBk

eBm
eCk

eDk

W Analysis

State (ST)

O
ffl

in
e

p
h

as
e

Figure 4.4: Overview of our approach

Def(e) returns the singleton set of variables defined i.e., written by event e

Used(e) returns the set of variables used i.e., read by event e

Computing all interleavings (i.e., all serializations) of logged events is impractical. To

avoid the interleaving explosion problem we propose (i) the slicing of logs into epochs (l)

which limits the number of events to interleave and (ii) a processing algorithm which infers

taint propagation without enumerating all serializations. Because the slicing can occur

between arbitrary events there is no guarantee that a happens before relation is established

for events belonging to consecutive epochs. Thus, we extend the bounding of interleavings

to events belonging in a window consisting of two adjacent epochs. Section 4.4.2 provides

more details on slicing.

The lower part of Figure 4.4 illustrates a window consisting of two consecutive epochs

(W={l2,l3}) and the considered interleavings of events eAk , eBk , eBm, eCk in it. We note

that also events belonging to the same thread can be interleaved. This allows to reason

on taint propagation under relaxed memory models. Moreover the figure presents how

slicing bounds the prediction to events belonging to adjacent epochs only. For instance,

the interleaving between events eBk and eDk denoted with a dashed line is considered in the

preceding window consisting of epochs l1, l2. On the contrary the interleaving between

74

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.4 Predictive explicit taint analysis

eCk and eDk is crossed out because it will not be considered by the analysis since the events

do not belong to adjacent epochs. Similarly, the interleaving of events eAk and eBm with eDk
are not taken into account.

We apply our analysis using a sliding window consisting of two adjacent epochs. The

window slides over epochs thus all interleavings of an event with events in its preceding

and succeeding epochs are explored. The analysis identifies taint propagations inside the

currently analyzed window W and summarizes their effect in state ST, which acts as a

shadow memory.

4.4.2 Slicing the parallel schedule Σ∥(log files)

The slicing of log files into epochs affects the prediction since it defines which events can

be interleaved. The slicing technique we use is time-based, that is we define a time period

τ which slices the logs as illustrated in Figure 4.5(a). The time slicing is well adapted for

our purpose because it allows the analysis to consider interleavings of events that were

executed simultaneously, or at least in parallel with respect to the chosen period τ .

Choosing the value of τ is delicate. In principle it should be large enough to capture

(i) the delta between the execution of an event and the assignment of the timestamp and

(ii) the effects of the platform on the ordering of the executed instructions (weak memory

models). Taking into account criterion (ii) is meaningful only when the logging of events

is at the assembly level and the timestamping utterly precise. We note that, by setting a

large value for τ the analysis may infer taint propagations caused by different schedules.

Dually, choosing a small value will under-approximate taint propagation, and thus the

analysis will not infer taintness for all feasible serializations under the observed schedule.

Finally, if the entire execution log is split into just two epochs (i.e., one window) then the

analysis reasons about all possible executions of the program.

1τ

2τ

3τ

4τ

0τ A B C D

Σ∥

time

(a) Time slicing

arbitrary
slicing

A B C D

Σ∥

time

(b) Arbitrary slicing

Figure 4.5: Slicing Σ∥ into epochs

In general, the slicing can be performed arbitrarily. Figure 4.5(b) illustrates such an

arbitrary slicing delimited by thick loosely dashed lines. Some heuristics that can produce

interesting slices are to use context switches or synchronization barriers as the slicing

75

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

points. In the case of synchronization barriers for instance, slicing at these points is not

sufficient. A dummy epoch should be introduced such that it forces the analysis not to

reason about the interleavings. The dummy epoch should define empty blocks for the

threads concerned by the synchronization.

We introduce hereafter some key notations that we use in the sequel. As mentioned

previously the slicing of log files defines epochs as illustrated in Figure 4.6. The events of

a thread belonging to an epoch form a block. Each block is uniquely identified by a tuple

(l, t) where l is the epoch it resides in and t is the thread identifier. Events within a block

are uniquely identified by a triplet (l, t, i) where l, t specify the block it belongs to, and i

is the identifier of the event. As illustrated in Figure 4.6 event eBi = (l,B, i).

l-1

l

l+1

Thread A Thread B Thread C

E
p

o
ch

block (l + 1,C)

eBi =(l,B, i)

0τ
time

1τ

2τ

3τ

Figure 4.6: Basic notations

We further define the functions Thr(e) and Epoch(e) which return respectively the

thread that executed event e and the epoch it belongs to. Finally, we introduce a binary

reflexive operator ↭ which denotes two events can be interleaved based on the window

interleaving assumption. More formally:

ek ↭ em ⇒ ∣Epoch(ek) −Epoch(em)∣ ≤ 1

4.5 Sliding window-based explicit taint prediction

As mentioned earlier what we propose is an offline sliding window-based analysis for pre-

dicting explicit taint propagation. There are two aspects in our analysis:

(i) prediction of explicit taint propagation within a window, and summarization of its

effects;

(ii) reasoning correctly about the sliding windows which causes them to overlap.

We introduce hereafter the notations used in our sliding window analysis. Figure 4.7

illustrates two consecutive windowsW ′ = {lh, lb} andW = {lb, lt} whereW is the currently

76

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.5 Sliding window-based explicit taint prediction

analyzed window consisting of epochs labeled lb, lt while W ′ is the preceding window con-

sisting of epochs labeled lh, lb. The labeling of epochs is relative to the currently analyzed

window and is adopted from [GVC+10]. The upper epoch of the currently analyzed win-

dow (W in Figure 4.7) is called body (lb) while the lower one tail (lt), finally the epoch

preceding body is called head (lh). We remind that STW ′ summarizes the taint predictions

down to the indexed window (W ′).

W
in

d
ow
W

′
W

in
d

ow
W

STW ′

STW

head lh

body lb

tail lt

A B C

Figure 4.7: Sliding window based analysis

Prior to abording explicit taint prediction of a window we define explicit tainting and

un-tainting of a variable. Next, we provide a formal definition of taintness on a serialized

execution of events. Finally, we adapt this definition to fit a serialization of events in our

window-based taint prediction.

We use the oracle isTainted(x) which asserts if a variable x is tainted or not. It al-

lows us to define explicit tainting/generation (gen(e)) and respectively un-tainting/killing

(kill(e)) of the variable defined by an event e:

gen(e) = { {Def(e)} if ∃x ∈ Used(e) s.t. isTainted(x)
{∅} if ∄x ∈ Used(e) s.t. isTainted(x)

kill(e) = { {Def(e)} iff ∄x ∈ Used(e) s.t. isTainted(x)
{∅} if ∃x ∈ Used(e) s.t. isTainted(x)

Taint propagation occurs through a series of taintings over a serialization. That is,

there is a tainting source that causes variables to be tainted. Moreover, a tainted variable

remains so until some event un-taints it. We provide hereafter the definition of taintness

for a variable x at an event e of a serialization σ.

Definition 4.5.1 (Taintness on a serialized execution: taint(σ,x, ek))
Let σ be a valid serialization of the analyzed application, x a variable, and ek an event in

σ. We (recursively) define predicate taint(σ, ek, x), meaning that variable x is tainted at

event ek on σ. Note that event indexes correspond to the position/order of events on the

serialization.

77

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

taint(σ, ek, x) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = T ⋁
∃m ≤ k such that: Def(em) = x ∧

∃y ∈ Used(em) . taint(σ, em, y) ∧
∀n .m < n < k⇒Def(en) ≠ x

Intuitively, a variable x is tainted at event ek of σ if it was assigned with a tainted

variable at a preceding event em (or at the event ek itself), and never re-assigned in

between. Figure 4.8 illustrates the definition of taint(σ, ek,x). The serialization is not

complete, since the occurrence of events post ek do not affect the taint value of x at event

ek. Applying the taint predicate recursively, tracks back to the initial taint source which

is always variable T . We remind that T is a constantly tainted variable which abstracts

all taint sources.

start

e1

σ =

ew: z=T ev: y=z em: x=y ek
ek+1

Def(en)≠ z Def(en)≠ y Def(en)≠ x

Figure 4.8: Taint definition for a concrete serialization

We adapt the taint definition above to our window-based prediction analysis. Note that,

the definition is applied on a valid serialization σiW of events in W . Since the serialization

is bounded to events belonging to the windowW , recursively applying the taint definition

may not be able to reach the constantly tainted variable T . Thus, the taint definition

must rely on summarizations of taint predictions, that is it suffices to reach a variable

in STW ′ . We provide the definition of window-based taintness (taintW(σiW , ek, x)) on a

serialization σiW of events in window W .

Definition 4.5.2 (Taintness on a serialization of a window W)

Let σiW be a valid serialization of the currently analyzed window W , x a variable, and

ek an event in σiW . We (recursively) define predicate taintW(σiW , ek, x), meaning that

variable x is tainted at event ek on σiW .

taintW(σiW , ek, x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = T ⋁
x ∈ STW ′ ∧ ∄j < k such that: Def(ej) = x ⋁
∃j ≤ k such that: Def(ej) = x ∧

∃y ∈ Used(ej) . taintW(σiW , ej , y) ∧
∀m.j <m < k⇒Def(em) ≠ x

Figure 4.9 illustrates the application of definition taintW(σiW , ek, x) on an example.

The events preceding W are abstracted in the dotted path and the predictions of their

plausible serializations, with respect to a given slicing and the application of window-based

taint prediction to it down to W ′, are summarized in STW ′ . Applying the definition for

78

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.6 Iterative explicit taint prediction in a window

variable x at event ek we obtain the recursive calls of events pointed by the arrows initiated

from ek. The recursion ends in the summary of the preceding window STW ′ .

start

STW ′={T , z}

σiW

ev: y=z em: x=y ek

Def(en)≠ z

Def(en)≠ y Def(en)≠ x

Figure 4.9: Taint definition for a plausible serialization of events in a window W

4.6 Iterative explicit taint prediction in a window

To introduce explicit taint prediction of a window W we consider the simple case where:

(i) events inW can arbitrarily interleave, even those produced by the same thread. That

is, any serialization σiW of events is considered valid (no memory model restrictions).

In section 4.7 we illustrate how to enforce sequential consistency.

(ii) events that kill/un-taint variables are ignored. This assumption simplifies propaga-

tion of taintness and is often used e.g., [GLG12]. This assumption will be raised in

the case of sequentially consistent serializations in section 4.7.2.

We provide hereafter the definition of relaxed taintness which introduces the ignoring of

killing/un-tainting variables:

Definition 4.6.1 (Relaxed taintness on a serialization of a window W)

Let σiW be an arbitrary serialization of the currently analyzed window W
(σiW = { (e1, . . . , en) ∣ ∀k <m ⇒ ek ↭ em}), x a variable, and ek an event in σiW . We (re-

cursively) define predicate taintR(σiW , ek, x), meaning that variable x is tainted at event

ek on σiW .

taintR(σiW , ek, x) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = T ⋁ x ∈ STW ′ ⋁
∃j ≤ k such that: Def(ej) = x ∧

∃y ∈ Used(ej) . taintR(σiW , ej , y)

Figure 4.10 presents the definition of relaxed taintness propagation in a window. As

illustrated, the events killing variables are ignored i.e., the condition of not redefining a

variable between its tainting and its usage to taint some other variable has been removed.

For example, the effect of event ew (which is crossed out) is ignored, thus it does not

prevent the taint propagation at event em.

79

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

start

STW ′={T , z}

σiW

ev: y=z ew: y=U em: x=y ek

Figure 4.10: Relaxed taint definition for a plausible serialization of events in a window W

4.6.1 Enumerative approach

A natural way of predicting taint propagation in a window W is to compute all serializa-

tions σiW by enumerating all permutations of events in it. Given the cardinality (number

of events) of W denoted as ∣W ∣, there will be ∣W ∣! such serializations, since all interleav-

ings are feasible. A sequential taint analysis should then be applied on each serialization

σiW , with i ∈ [1, ∣W ∣], using as initial state STW ′ and producing a local state ST iW which

predicts relaxed taint propagation for the analyzed serialization. That is, for each variable

x in ST iW the predicate taintR(σiW , last(σiW), x) holds, and likewise. By last(σiW) we

denote the last event of serialization σiW .

x ∈ ST iW ⇔ taintR(σiW , last(σiW), x)

We present in Algorithm 1 how each plausible serialization of window W is analyzed.

First, a copy of taint predictions down to the preceding window (STW ′) is made. The

copy is updated locally such that when a variable gets tainted it is added to the state.

Dually, when a variable is untainted no action is taken since these events are ignored.

Algorithm 1 Relaxed taint analysis of a serialization (kills are ignored)

In: σiW , STW ′

1: ST iW ← STW ′

2: for all e ∈ σiW do
3: if Used(e) ∩ ST iW ≠ ∅ then
4: ST iW ← ST iW ∪Def(e)
5: end if
6: end for

Out: ST iW

The analysis of each serialization σiW with Algorithm 1 computes its relaxed taintness

into ST iW which contains the set of variables that can be tainted by σiW , without taking

un-taintings into account. To summarize the predictions of all serializations in W , i.e., to

compute STW , it suffices to take the union of all local predictions. Figure 4.11 illustrates

the enumerative approach.

STW = ⋃
i∈[1,∣W ∣!]

ST iW

80

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.6 Iterative explicit taint prediction in a window

ST iWST 1
W ST

∣W ∣!
W

STW ′

σ1
W σiW σ

∣W ∣!
W

STW = ⋃i∈[1,∣W ∣!] ST iW

Figure 4.11: Enumerative prediction of taint propagation

4.6.2 Iterative approach

The enumerative approach presented above has an exponential complexity (∣W ∣! serializa-

tions to process) which makes it impractical. We present here an iterative algorithm with

linear complexity for predicting relaxed taintness propagation. Our algorithm iterates over

an arbitrary serialization of events in a window at most ∣W ∣ times and infers STW . We

justify the correctness of our solution by showing taint prediction is equivalent to solving

a boolean equation system (BES). Note that the transformations we present hereafter are

only used to illustrate the correctness of the solution and never occur in the analysis. In

appendix A on page 131 we provide basic notations and definitions for boolean equation

systems.

Equivalence to boolean equation systems

Taintness is a binary value that characterizes a variable as either tainted (true, ⊺) or un-

tainted (false, �). Thus, taint propagation can be expressed in terms of boolean equations.

As mentioned earlier, taintness is explicitly propagated to a variable if there exists a tainted

variable among those used to define it. By associating to each variable x in the logs a

boolean shadow variable denoted as x , we can transform an event ek into an equivalent

boolean equation as follows:

ek ≡ Def(ek) = ⋁
x ∈Used(ek)

x

Figure 4.12 illustrates how events in a block can be transformed into an equivalent

boolean equation system. The first step transforms each event into an equivalent boolean

equation as detailed above. After this first transformation we might have several boolean

equations defining the same variable. To obtain a boolean equation system for the block

we must eliminate all duplicate definitions. We achieve this by taking the disjunction of

all equations defining the same variable. This merging of boolean equations is valid with

respect to taintR. Recall that according to taintR a variable x is tainted if there exists

an event that assigns it a tainted value.

The boolean equation system E we obtain by the above transformation of events consists

81

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

eA1 : x = y, z
eA2 : y = x,m
eA3 : b = x
eA4 : y = k, y
eA5 : w = b, p

Logged events

eA1 : x = y ∨ z

eA2 : y = x ∨ m
eA3 : b = x

eA4 : y = k ∨ y

eA5 : w = b ∨ p

Transform to
boolean equations

x = y ∨ z

y = x ∨ m ∨ k ∨ y

b = x

w = b ∨ p

Boolean equation
system E

transform

to bool eq.

merge

bool eq.

Figure 4.12: Obtaining boolean equation system.

of disjunctive boolean equations. Such boolean equation systems are often represented as

directed graphs GE = (V,E), where V = { x ∣ x ∈ E} ∪ {⊺,�} is the set of vertices and E

is the set of directed edges, representing dependency between variables. Figure 4.13(a)

illustrates the dependency graph for the BES E obtained from the block in Figure 4.12.

ST = {T, y, p}

E ≡ (x = y ∨ z)(y = x ∨ m ∨ k ∨ y)(b = x)(w = b ∨ p)

xb

w p

y

m kz

⊺

�

(a) Initial BES

xb

w p

y

m kz

⊺

�

(b) Updated according to ST

Figure 4.13: Variable dependency graph of disjunctive boolean equation system.

For each variable x defined in the boolean equation system E we show that if there

exists a solution that makes it true then there also exists a serialization σ of logged events

such that taintR(σ, last(σ), x) holds and conversely.

Finding a solution that assigns a variable x of E with true is equivalent to identifying

a path in the dependency graph of the BES that leads from vertex mapped to x to

the true vertex. Before searching for such a solution we must update the dependency

graph such that there exists an edge connecting each variable in the ST with the true

vertex. This update introduces the information about tainted/true variables in the BES.

Figure 4.13(b) illustrates the updated dependency graph with respect to ST = {T, y, p}.

We can now easily identify which variables can reach the true vertex. For instance b is

assigned a true value through the path (x , y ,⊺).

We argue now why the existence of a path that propagates true value to a variable

x implies the existence of a serialization that propagates taintness. The path in the

dependency graph defines in which order the equations should be applied such that true

value reaches the desired equation defining x . Under the current assumptions (completely

82

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.6 Iterative explicit taint prediction in a window

relaxed memory model and not taking untaintings into account) events can be arbitrarily

re-ordered. Thus, we can produce a serialization where the ordering of events matches the

order imposed on boolean equations. That is, we group all events defining a variable and

subsequently order these groups such that they match the ordering of boolean equations.

The events defining variables for which the path does not precise an ordering can be placed

arbitrarily.

Figure 4.14 illustrates a plausible serialization that propagates taintness to b with re-

spect to taintR. On the left side of the figure we have the set of boolean equations that

correspond to the block on Figure 4.12. In the middle we re-order the boolean equa-

tions such that true value can reach variable b . Finally, on the right side we exhibit a

serialization that taints b under taintR.

ST = {T, y, p}

EW ≡ (x = y ∨ z)(y = x ∨ m ∨ k ∨ y)(b = x)(w = b ∨ p)

x = y ∨ z

y = x ∨ m ∨ k ∨ y

b = x

w = b ∨ p

Boolean equation
system

y = x ∨ m ∨ k ∨ y

x = y ∨ z

b = x

w = b ∨ p

Re-order to
propagate ⊺ to b

eA4 : y = k, y
eA2 : y = x,m
eA1 : x = y, z
eA3 : b = x
eA5 : w = b, p

Serialization propagating
taintess to b

Figure 4.14: Equivalence between path in dependency graph and tainting serialization

Although there are many efficient algorithms for solving disjunctive BES our taint anal-

ysis is based on the iterative one. Note that, as explained in the following section, we do

not iterate over the BES itself but directly on the logged events.

Iterative algorithm

As argued above, we can iterate over a block to obtain the predictions of relaxed taintness.

This can be generalized to a window where we iterate on on an arbitrary serialization

σitW . We choose this serialization to be defined as the concatenation of blocks in the

window respecting program order. We concatenate first blocks in lb followed by those

in lt. Figure 4.15 illustrates the serialization of events that is iterated. The iteration is

divided into two phases: (i) horizontal and (ii) vertical. The horizontal phase makes a

pass over events in an epoch by crossing blocks left to right. The vertical phase iteratively

initiates horizontal passes over the body and tail epochs successively.

Algorithm 2 presents the vertical phase, which iterates over the serialization σitW of events

in W . The phases of the algorithm are also illustrated on the left side of Figure 4.15. The

algorithm for horizontal processing of an epoch is provided in Algorithm 3. The horizontal

algorithm applies a transfer function on each block. Here the transfer function is equivalent

to Algorithm 1 where the serialization processed is the blocks events in program order (i.e.,

83

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

V
er
ti
ca
l(
W
,S
T
)Horizontal(lb, ST)

Horizontal(lt, ST)

lb

lt

A B C

ST

ST

ST

ST

(lb,A)

(lb,B)

(lb,C)

(lt,A)

(lt,B)

(lt,C)

σitW

Figure 4.15: Iterating over the window

as they appear in the log). We must note that the transfer function should be monotonic

on ST, that is it either adds or removes elements from it. This is required required to

terminate the iteration of vertical algorithm.

Algorithm 2 Vertical processing V ertical(W , STW ′)
In: W = {lb, lt}, STW ′

1: ST ← STW ′

2: repeat
3: ST ←Horizontal(lb, ST)
4: ST ←Horizontal(lt, ST)
5: until (ST unmodified)
6: STW ← ST

Out: STW

Algorithm 3 Horizontal processing of epoch Horizontal(l, ST)
In: l, ST

1: for all block bl ∈ l do
2: ST ← Transfer(bl, ST)
3: end for

Out: ST

We covered so far the aspect of predicting a relaxed form of explicit taint analysis within

a window. We provided an intuitive enumerative method and an equivalent iterative. In

subsection 4.6.3 that follows we abord the sliding window phase of the analysis.

4.6.3 Sliding windows - overlapping

As mentioned earlier the slicing of log-files into epochs limits the interleaving of events to

be taken into account. Due to the arbitrary slicing we extend the interleaving of events

to adjacent epochs. The explicit taint prediction analysis is applied on a sliding window

consisting of two epochs. As illustrated in Figure 4.7 the sliding window allows each event

84

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

to be interleaved with events in its preceding and succeeding epochs. In windowW ′ events

in epoch lb are interleaved with events in lh, while in window W with events in lt.

The disjoint processing of interleavings for events in an epoch can affect the approx-

imation of the predictions. That is, they can either over or under approximate explicit

taint propagations. These issues are not observable for the relaxed taintness where no

killing/untainting of variables occurs. We will focus on the effect of sliding window for the

case of taint prediction under sequential consistency in section 4.7.3.

4.7 Iterative explicit taint propagation under sequential

consistency

The iterative prediction is a comfortable and efficient way of predicting taint propagation

when any serialization of events is valid and kills are not taken into account. In this

section we present how to adapt the iterative algorithm such as explicit taint propagation

under sequential consistency is predicted within a window. Briefly, we must filter out taint

propagation that is caused by non sequentially consistent serializations of events. Initially,

we maintain the assumption that killing variables is not affecting taint propagation (i.e.,

they are ignored). We recall from section 2.6.1 on page 21 that sequential consistency

enforces (i) program order and (ii) write atomicity. Write atomicity is meaningful only for

parallel executions, thus it does not affect reasoning on serializations as is the case.

4.7.1 Respecting program order without kills

The taint property we are interested in is relaxed taintness propagation (see Definition 4.6.1

on page 79) applied to sequentially consistent serializations. We remind the precedence

binary operator which defines ordering of events for a single thread (order in which

events of a thread were logged). Furthermore, we introduce a more general binary operator

which denotes precedence between events produced by any thread and respecting the

window interleaving assumption. We remind the more detailed notation of events for a

given slicing eti ≡ (l, t, i), where Epoch(eti) = l. The operators are formalized as follows:

(l, t, i) (l′, t′, j) ≡ (t = t′ ∧ (l < l′ ∨ (l = l′ ∧ i < j))) ∨ (t ≠ t′ ∧ l′ ≥ l − 1)

(l, t, i) (l′, t′, j) ≡ t = t′ and (l, t, i) (l′, t′, j)

We provide here the definition of a sequentially consistent serialization consisting of

events belonging to a window W . Since events are restricted to a window, the events

belonging to different threads can appear in any order. Though, for an event em in the

serialization we must ensure that all events ek in the same thread that precede it (ek em)

also precede it in the serialization.

σiW = {(e1, ..., en) ∣ ∀k,m ∈ [1, n] s.t. k <m⇒ ek em

∀m ∈ [1, n] , ek ∈W s.t. ek em ⇒ ek ∈ σiW ∧ k <m}

85

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

We provide hereafter an example on which we apply the iterative taint prediction as

presented earlier and sketch the proposed adaptation. Figure 4.16 illustrates a window

consisting of two blocks (lb,A) and (lb,B) (the tail epoch is empty), which are iterated in

order A,B. On the right side are the summaries obtained by each iteration. We focus on

the second iteration where variables y,w,d are marked as tainted. While the tainting of

variables y,w respects program order, that of variable d does not. The serialization σiW for

which taintR(σiW ,d, eB1) holds is the following (eB2 , eA1 , eA2 , eA3 , eB1). Executing eB2 before

eB1 does not conform with program order and thus tainting of d should not be included in

the taint predictions.

eA1 : x=y;
eA2 : y=z;
eA3 : w=y;

eB1 : d=w;
eB2 : z=T;

lb

A B

STW ′={ T , c }

Iteration1: STW={ T , z }
Iteration2: STW={ T , z, y, w, d }
Iteration3: STW={ T , z, y, w, d, x }
Iteration4: STW={ T , z, y, w, d, x }

Figure 4.16: Example, sequential consistency and iteration

To filter out taint predictions that do not respect program order, we should verify that

for each predicted taint propagation there exists a sequentially consistent serialization of

events that justifies it (note that, still killings/untaintings of variables are ignored). To

do so, we keep track of events that taint variables as well as the tainting source (i.e.,

through which variables taintness is propagated). This information about generated/-

tainted variables is stored in what we call the gen history of the window (GHW). GHW
maps each tainted variable x to a set of markings. A marking m is a pair (e, V) where

e is the event that taints x (Def(e) = x) and V is the set of variables that cause it to

be tainted (V ⊆ Used(e)). The gen history stores information for the currently analyzed

window only. We define the function GHW (x) which returns the markings associated to

a variable x inside a window W .

GHW (x) = { (e, V) ∣ Def(e) = x ⋀
∀y ∈ V ∶ y ∈ Used(e) ∧

∃σiW such that taintR(σiW , e, y) }

Table 4.1 illustrates the usage of GHW for the example of Figure 4.16. During first

iteration we update GHW (z) with the marking (eB2 ,{T}). The marking encodes the

information that variable z was tainted at event eB2 , and that the variable that caused it

to be tainted is T which belongs to STW ′ . Similarly, each successive iteration adds the

markings accordingly. GHW captures all the necessary information to track the source of

tainting inside the window, and infer whether it respects sequential consistency or not. We

point out with a colored background the invalid markings, i.e., false taint propagations.

The filtering of false predictions can occur either online, the variable is neither added to

the ST nor a marking is added to GHW , or offline. Finally, we introduce the function

Events(GHW (x)) which returns a set containing all events that taint variable x.

86

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

Vars STW ′ Iteration1 Iteration2 Iteration3

T

c

z (eB2 ,{T})
y (eA2 ,{z})

w (eA3 ,{y})

d (eB1 ,{w})

x (eA1 ,{y})

Table 4.1: Gen history example

Definition 4.7.1 (Events(GHW (x)))

Returns the set containing all events that taint variable x according to GHW .

Events(GHW (x)) = {ek ∣ ∃m = (ek, V) ∈ GHW (x)}

We provide in Algorithm 4 the transfer function to be applied on blocks such that

GHW is updated properly and used to filter out online the non sequentially consistent

taint propagations. Of utmost importance is function TaintingV ars which returns the

set of variables that can taint the variable defined by the current event e. If the set of

tainting variables tv is not empty, then we update the GHW accordingly by adding the

mapping (Def(e), (e, tv)) (line 4) and also update the set of taint predictions (at line 5).

Algorithm 4 Transfer function for taint analysis

In: B , ST
1: for all e ∈ B do
2: tv = TaintingV ars(e);
3: if tv ≠ ∅ then
4: GHW ← GHW ∪ {(Def(e) , (e, tv))};
5: ST ← ST ∪Def(e);
6: else
7: // ignore kills, do nothing
8: end if
9: end for

Out: ST

To define function TaintingV ars we need to introduce first the notion of taint depen-

dency path. We start with a more generic definition, that of a backward dependency path

Pb, which is a sequence of events that form a chain of defined and used variables.

87

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

Definition 4.7.2 (Backward dependency path Pb)

Pb = {(e1, . . . , en) ∣ ∀k ∈ [1, n − 1] . Used(ek) ∩Def(ek+1) ≠ ∅}

A taint dependency path P for a variable x is a backward dependency path limited to a

window W . The path is retrieved in GHW and ends in the initial set of tainted variables

STW ′ where we recall W ′ is the window preceding W .

Definition 4.7.3 (Taint dependency path P)

P = {(e1, . . . , en) ∣ ∀k ∈ [1, n] ∶ ek ∈W ⋀ Used(en) ∩ STW ′ ≠ ∅ ⋀
∀k ∈ [1, n − 1] ∶ Used(ek) ∩Def(ek+1) ≠ ∅ ∧

∃ y ∈ Used(ek) ∩Def(ek+1), (em, V) such that

(em, V) ∈ GHW (y) ∧ em = ek+1 }

A taint dependency path is the sequence of events that correspond to the recursive

invocations of taintR. Recalling Figure 4.10 on page 80 the taint dependency path for

variable x is P = (em, ev). Note that, inversing a taint dependency path P produces a

partial serialization, enforcing the ordering of some key events, such that Def(e1) gets

tainted, where e1 is the first event in P. We use the notation σ(P) to represent the

partial serialization of events corresponding to a taint dependency path P. That is, given

P = (e1, e2, e3) then σ(P) = (e3, e2, e1). Moreover, we call TDP (GHW , x) the set of taint

dependency paths for variable x with respect to GHW . The set of paths can be obtained

with a recursive exploration of markings for variable x.

Back to the definition of TaintingV ars(e) in Algorithm 4. The function computes the

set tv of variables that taint Def(e) (the variable defined by e). For every variable y ∈ tv
there must exist a taint dependency path P such that: if e is added to it as the first event,

the resulting path is valid. The definition of a valid path can be modified accordingly to

capture any restrictions that must apply to serializations of events (i.e., capture different

weak memory models). For now a path is valid if the events respect sequential consistency.

For sequential consistency, the call to isV alid(P) is equivalent to calling isConsistent(P)
which we define here:

Definition 4.7.4 (Predicate isConsistent(P))

A taint dependency path P is sequentially consistent if the serialization of events it

defines, which is the inverse order of events, is sequentially consistent. Thus predicate

isConsistent(P) is defined as:

∀ek, em ∈ P then (k <m⇒ em ek)

Algorithm 5 presents the computation of tv. For each variable in Used(e) it obtains its

taint dependency paths and extends them by adding event e as the first event (line 12).

We use the following notation e.P to denote the concatenation of paths or of an event

e with a path P. The resulting path is checked for validity. If it is valid then variable

88

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

y ∈ Used(e) can successfully taint Def(e) and is added to tv. There is a special case

where variable y belongs to STW ′ . In this case we produce an immediate path consisting

uniquely of event e and after checking it for validity we add y to tv.

Algorithm 5 TaintingV ars(e), set of variables that produce valid taint propagation

In: e
1: tv ← ∅
2: for all y ∈ Used(e) do
3: if y ∈ STW ′ then
4: P ← e // P is a path consisting of just event e
5: if isV alid(P) then
6: tv ← y ∪ tv
7: continue;
8: end if
9: end if

10: TPy ← TDP (GHW , y)
11: for all P ∈ TPy do
12: P ← e .P // add event e as first event of P
13: if isV alid(P) then
14: tv ← y ∪ tv
15: break;
16: end if
17: end for
18: end for
Out: tv

To clarify the definition of TaintingV ars(e) we apply it to the example of Fig-

ure 4.16 and the corresponding illustration of its gen history in table 4.1. First, we apply

TaintingV ars(eB2) during first iteration. Since Used(e) = T which belongs to STW ′ the

path to check is P = (eB2) which respects sequential consistency. Thus, variable T is added

to tv. We apply now TaintingV ars(eB1) during the second iteration. There is only one

taint dependency path for variable w which is P = (eA3 , eA2 , eB2). We add eB1 as the first

element, P = eB1 .P = (eB1 , eA3 , eA2 , eB2). The resulting path P is not sequentially consistent

because eB2 does not precede eB1 (eB2 eB1).

Note that in this section we make the assumption that kills are ignored. Thus, if there

exists a sequentially consistent path P that generates a variable x, then there also exists

a serialization σiW that generates it. To produce σiW it suffices to extend the partial

serialization σ(P) obtained from P such that all remaining events in W are positioned on

σiW respecting program order for all threads. Based on the assumption the effect of these

events is ignored.

We illustrate in Figure 4.17 the composition of a serialization. On the left side we

illustrate the currently analyzed window (for clarity we assume its tail epoch is empty)

consisting of two blocks. The arrows depict the taint dependency path P that taints x. On

the right side, we explicit the path P and the derived partial serialization σ(P). Below it

we appose the remaining events denoted asW ∖P. An arrow initiated from each remaining

event indicates its plausible positioning such that a sequentially consistent σiW is obtained.

89

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

eA1 : y=z;

eA2 : y=U ;

eA3 : x=y;

eA4 : x=U ;

eB1 : z=U ;

eB2 : z=T ;

eB3 : z=U ;

STW ′={ T }
Thread A Thread B

y

z
T

P = (eA3 , eA1 , eB2)

σ(P) = (eB2 , eA1 , eA3)

W ∖P = (eB1 , eB3 , eA2 , eA4)

Figure 4.17: Composing a sequentially consistent serialization based on a TDP

4.7.2 Taking kills into account

In this section we introduce the killing/un-tainting of variables. Taking kills into account

makes taint predictions more accurate and thus reduces false positives. Though, extra

care must be taken since we do not want our analysis to miss any valid taint propagations.

The killing of a variable affects taint prediction in two ways:

i) it prevents taint propagation between variables;

ii) it excludes variables from the summarization of the window.

Prior to detailing the two cases we give their intuition using the example of Figure 4.17.

In the first case, kill/untainting of a variable occurs between the tainting point of a variable

and its usage to propagate taintness to another variable. In the example event eA2 must

be executed between eA1 and eA3 . With kills taken into account the given path P cannot

produce a serialization such that x is tainted. For the second case we shall focus on variable

z which is explicitly tainted at event eB2 . Note that the succeeding event eB3 untaints z.

Thus on all sequentially consistent serializations of the window variable z will eventually

be untainted and thus should not be included in the taint predictions of the window (i.e.,

STW).

We approach the killing/untainting of variables by separating the two cases identified.

The killing of variables that break tainting paths is treated online during the iterative

algorithm. Dually, the killing of variables that excludes them from the summarization of

the window is treated offline i.e., after the iterative algorithm (Algorithm 2)has completed.

Killing a taint dependency path (TDP)

For the killing of tainting paths P we need to verify that there exists a sequentially

consistent partial serialization σiP consisting of all events preceding the events in P, such

that taintW(σiP , e1,Def(e1)) (see Definition 4.5.2 on page 78) holds, where e1 is the first

event in P. Figure 4.18 illustrates with a light background the events that must be included

in σiP . In this abstract example the path P is designated by the arrows. The check for

the existence of a σiP is performed online during the computation of TaintingV ars (see

Algorithm 5 on the preceding page) as part of the isV alid(P) predicate. More precisely,

90

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

predicate isV alid(P) is the conjunction of predicates isConsistent(P) (see Definition 4.7.4

on page 88) and noKill(P) which we define after the presentation of some key examples.

eA1
eA2
eA3
eA4
eA5

eB1
eB2
eB3
eB4
eB5

eC1
eC2
eC3
eC4
eC5

STW ′={ T }
Thread A Thread B Thread C

Figure 4.18: Events contained in σiP

Figure 4.19 illustrates two examples. In both examples the solid arrows, labeled by the

variable that propagates taintness, represent the tainting path P that causes variable x to

be tainted at events eA3 and eA4 accordingly. The dashed thick arrows designate where the

killing events should be placed such that they do not break P. In Figure 4.19(a) event eA2
must be positioned after eB2 such that it kills variable z only after it has propagated its

taintness to variable y. Similarly eB1 must be placed before eA1 such that it kills z before

it gets tainted. In this example the killing events can be serialized such that P is capable

of tainting x. Dually, in Figure 4.19(b) the path P does not hold. As illustrated eA2 must

be place after eB1 while inversely eA3 before eB1 . Due to the program order imposed one of

the two events will inevitably break P.

eA1 : z=T ;

eA2 : z=U ;

eA3 : x=y;

eB1 : z=U ;

eB2 : y=z;

STW ′={T}
Thread A Thread B

y

z

T

(a) valid serialization exists

eA1 : z=T ;

eA2 : z=U ;

eA3 : y=U ;

eA4 : x=y;

eB1 : y=z;

STW ′={T}
Thread A Thread B

y

z

T

(b) no valid serialization exists

Figure 4.19: Inferring a valid serialization for a path P

To verify if there exists a serialization σiP such that the killing events do not break P
we perform some sanity checks on the composition of P with the preceding events. Here

are the observations that allow us to make these checks in a incremental way.

� all events that are not part of P are considered as kills. Figure 4.20 illustrates an

example where two tainting paths are present, one defined by solid and the other by

91

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

dashed arrows. The solid path is considered as invalid because event eA2 is considered

a kill of variable z witch breaks the solid path. Variable x though gets tainted by

the dashed path.

eA1 : z=T ;

eA2 : z=w;

eA3 : y=z;

eB1 : w=T ;

STW ′={T}
Thread A Thread B

z

T

Figure 4.20: Events not belonging to P are considered kills

� events belonging to different threads can be serialized independently

Before giving the definition of predicate noKill(P) we introduce the following notations:

σa⊕σb is a sequentially consistent merge operator. Given two serializations of events

σa and σb, themselves respecting sequential consistency, it produces all plausible

sequentially consistent serializations containing events of σa and σb.

σ(eAk , eAm) defines a sub-sequence of events produced by a thread. The events contained

are scoped by eAk and eAm, where eAk eAm. For example, σ(eA1 , eA6) = (eA2 , eA3 , eA4 , eA5)

taintSource(P) returns the tainting source, i.e., the variable that is reached by P in STW ′ .

In the example of Figure 4.20 taintSource(P) = T (both for the solid and dashed

paths).

Definition 4.7.5 (Predicate noKill(P))

Under sequential consistency, a taint dependency path P is not broken by a killed variable

if there exists a sequentially consistent serialization of events belonging in P and the events

preceding them such that, between two successive events ei, ei+1 of P there is no event ej
such that Def(ej) = Def(ei).

∀ek ∈ P = (e1, ..., ek, ..., em, ..., en) we distinct the following cases:

� ∃m > k such that em ek ∧ ∄eq such that m > q > k ∧ em eq

– if m = k + 1 then (e.g., Figure 4.20 eA3 ,eA1)

∀ej s.t. em ej ek ⇒ Def(ej) ≠ Def(em)

– else (e.g., Figure 4.19(b) eA4 ,. . . ,eA1)

∃σ = (. . . , ei, . . . , ej , . . . , ei+1, . . .) ∈ σ(P)⊕ σ(em, ek) s.t.

∀ei, ei+1 ∈ σ(P), ej ∈ σ(em, ek) ⇒ Def(ej) ≠ Def(ei)

92

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

� ∄m > k such that em ek

– if k = n then (e.g., Figure 4.19(b) eA1)

∀ej such that ej ek ⇒ Def(ej) ≠ taintSource(P)

– else (we introduce a dummy event) (e.g., Figure 4.19(b) eB2)

P ′ = P.ek′ where Def(ek′) = taintSource(P)∧
∀ej ∈W such that Thr(ej) = Thr(ek) ⇒ ek′ ej

Now we can apply the first case where:

∃m > k such that em ek ∧ ∄eq such that em eq

(note that m > k + 1)

To simplify the definition of predicate noKill(P) in the case were m > k+1 we make use

of the merge operator ⊕ implying that all sequentially consistent serializations consisting

of events in σ(P) and σ(em, ek) are computed. This may be misleading since we stated

earlier that we verify the existence of σiP incrementally. We provide here the checks that

verify that:

∃σ = (. . . , ei, . . . , ej , . . . , ei+1, . . .) ∈ σ(P)⊕ σ(em, ek) s.t.

∀ei, ei+1 ∈ σ(P), ej ∈ σ(em, ek) ⇒ Def(ej) ≠ Def(ei)

Definition 4.7.6 (Positioning kill events)

Given a taint dependency path P = (e1, . . . , ek, . . . , em, . . . , en) where em ek and

m > k + 1. We want to check that events in σ(em, ek) can be ordered such that they respect

sequential consistency and do not kill a variable between the point it is defined and used

to propagate taintness. That is between events ei, ei+1 in σ(P) where k ≤ i < m. To re-

spect program order, for an event ej (em ej ek) that kills a variable of σ(P) all events

preceding should be able to be positioned before it and dually all succeeding events after it.

Given P = (e1, . . . , ek, . . . , em, . . . , en) where m > k + 1 and em ek:

� ∀ej s.t. em ej ek ⇒ Def(ej) ∩ (⋃i∈[k+1,m]Def(ei)) ≠ ∅

⋁

� ∀ej , i ∈ [k + 1,m] s.t. em ej ek ∧ Def(ej) =Def(ei)

then:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀ej′ s.t. em ej′ ej ⇒ ∃i′ ∈ [i + 1,m] s.t. Def(ei′) ≠Def(ej′)
⋁

∀ej′ s.t. ej ej′ ek ⇒ ∃i′ ∈ [k + 1, i − 1] s.t. Def(ei′) ≠Def(ej′)

93

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

To conclude taking into account kills in taint propagation we remind that the predicate

noKill(P) is used in conjunction with isConsistent(P) in the call of isV alid(P) at Al-

gorithm 5 on page 89. Thus, the gen history of the current window (GHW) is precisely

updated.

Excluding variables from window summarization

As mentioned earlier the killing of variables such that they are excluded from the summa-

rization of a window are treated offline. After the iterations of Algorithm 2 have completed

we hold STW which over-approximates the set of tainted variables down to W and GHW
which contains the markings for generated variables. For each marking m in GHW the

following is true:

m = (ek, V) ∈ GHW ⇔ ∃ σiP s.t. taintW(σiP , ek,Def(ek))

We remind that, a variable x is included in the summarization of the window if there

exists a serialization σiW of all events in W such that taintW(σiW , last(σiW), x) holds.

Dually, to exclude a variable x from the summarization then on all serializations σiW the

last assignment to x should be with an untainted value. Since we do not construct all

serializations, but instead use the iterative algorithm which guarantees us to identify all

propagations, we cannot precisely (at least not cost-effectively) identify variables killed in

W . Thus, we under-approximate the killing of variables by identify the following cases for

which we are certain variables are killed in W :

� x is defined and never generated

∃ek ∈W s.t. Def(ek) = x ∧ GHW (x) = ∅

� all threads that generate x successively kill it

∀ek ∈ Events(GHW (x)) ⇒ ∃em ∈ W s.t. ek em ∧ Def(em) = x ∧
em ∉ Events(GHW (x))

The first case is straight forward. Variable x is defined in W but no marking exists

for it in GHW . Thus, all events in W that define it assign an untainted value. We

conclude that on all serializations σiW x is killed and thus can be removed from STW .

Figure 4.21 illustrates an abstract example where only the code of events that define x is

given explicitly. We assume that there does not exist any valid tainting path such that

variable d is tainted at eC1 . Thus, on all serializations σiW variable x is lastly assigned an

un-tainted value. As illustrated x is removed from STW .

In the second case variable x is generated. Thus, there exists at least a partial seri-

alization σiP for which x is tainted at event ek. To ensure that finally x is assigned an

untainted value, on all plausible serializations, it must be killed by an event em of the

same thread that succeeds ek i.e., ek em. Figure 4.22(a) illustrates an abstract example

94

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

eA1
eA2 : x=U

eA3
eA4

eA5

eB1
eB2

eB3
eB4
eB5

eC1 : x=d

eC2
eC3

STW ′={ T , x }

STW={ T }

Thread A Thread B Thread C

Figure 4.21: Kill in W when not generated

where all threads that taint x successively kill it. We can note that program order guar-

antees that eventually the last assignement to x is always an untainted value. Hence, x is

safely excluded from STW . Dually in Figure 4.22(b) thread C generates x at event eC1 and

there does not exist any succeeding event in C that kills x. Obviously for the serialization

σiW = (. . . , eC2 , eC3 , eC4 , eC5) x ens up tainted.

eA1
eA2 : x=y

eA3

eA4 : x=U

eA5

eB1 : x=T

eB2
eB3 : x=U

eB4
eB5

eC1
eC2

eC3

eC4
eC5

STW ′={ T , x, y }

STW={ T , y }

Thread A Thread B Thread C

(a) Kill after generating

eA1
eA2 : x=T

eA3

eA4 : x=U

eA5

eB1 : x=T

eB2
eB3 : x=U

eB4
eB5

eC1
eC2 : x=T

eC3

eC4
eC5

STW ′={ T , x, y }

STW={ T , x, y }

Thread A Thread B Thread C

(b) Generating without killing

Figure 4.22: All threads generating x must eventually kill it

To conclude removing killed variables from the summarization we provide Algorithm 6

which updates Algorithm 2 by adding the offline processing that refines the summarization

of the currently analyzed window. We also give in an algorithmic-like form the removing

of killed variables in Algorithm 7.

95

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

Algorithm 6 Vertical processing V ertical(W , STW ′)
In: W = {lb, lt}, STW ′

1: ST ← STW ′

2: repeat
3: ST ←Horizontal(lb, ST)
4: ST ←Horizontal(lt, ST)
5: until (ST unmodified)
6: STW ←WindowKills(ST,GHW)

Out: STW

Algorithm 7 WindowKills(ST,GHW)
In: ST,GHW

1: STW ← ST
2: for all x ∈ ST do
3: if GHW (x) = ∅ ∧ ∃ek ∈W s.t. Def(ek) = x then
4: STW ← STW ∖ {x}
5: else
6: no kill exists ← false
7: for all ek ∈ Events(GHW (x)) do
8: if ∄em ∈W s.t. Def(em) = x ∧ ek em ∧ em ∉ Events(GHW (x)) then
9: no kill exists ← true

10: break;
11: end if
12: end for
13: if no kill exists = false then
14: STW ← STW ∖ {x}
15: end if
16: end if
17: end for
Out: STW

4.7.3 Effects of sliding window

We mentioned earlier in section 4.5 that there are two aspects in our sliding window-based

analysis: (i) predicting explicit taint propagations within a window and (ii) reasoning

correctly about the overlapping of interleavings caused by sliding windows.We develop

here how the sliding of windows affects our predictions, and what precautions can be taken

such that our predictions remain an over-approximation of taintness, but also increase the

confidence on the soundness of the predictions.

Killing variables in tail causes under-approximates taint propagation

We focus on the killing of variables within a window. The definition we gave before

is correct when restricted to a window. When sliding windows, it may cause under-

approximation of taint predictions. Figure 4.23 illustrates such an example. We note that,

in window W ′ variable x is killed since on all serializations σiW ′ it is finally assigned a

non-tainted value. Though, the killing is premature because it eliminates the propagation

96

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.7 Iterative taint propagation under sequential consistency

of taintness to variable z. The propagation is feasible under our assumptions since eB1
can be executed prior the untainting of x. The arrow shows the interleaving under which

taintness is propagated in W .

W ′

W

eA1 : x=y

eA2 : x=U

eB1 : z=x

STW ′′ = {T,x,y}

STW ′ = {T,y}

lh

lb

lt

Thread A Thread B

Figure 4.23: Delay killing in tail

The example of Figure 4.23 shows that kills that occur in the tail epoch of a window

may hide valid taint propagations on the consecutive window. To overcome these issues,

we shall only exclude a variable from the summarization if it is killed in the body of a

window.

Incompatible TDP s over-approximate taint propagation

Windows consisting of two epochs allow us to reason only on valid interleavings, based

on our initial assumptions, but has the disadvantage of predicting possibly incompatible

propagations. For two consecutive windows W ′, W the interleavings of events in the

common epoch lb with lhin W ′ and lt in W are computed independently. Thus, it is

possible that the serializations that propagate taintness in W ′ and W are conflicting.

Figure 4.24 illustrates an example of incompatible TDP s. In the first window W ′ =
{lh, lb} variable x is tainted through P1 = (eB1 , eC1 , eA3 , eA1) traced with a solid line. The

summary STW ′ correctly contains x as there exists a serialization which taints x. Sliding to

the next window W = {lb, lt} we identify with a dashed line P2 = (eA4 , eA2 , eB3) which taints

variable y using x. Taint dependency path P2, although valid in W , is not compatible

with the one that generated x (which is the tainting source for variable y). Namely,

the two TDP s cannot be merged and hence they do not provide a concrete serialization

demonstrating how y gets tainted.

Merging TDP s computed in different windows is not always feasible. However, TDP s

indicating why a variable is tainted within a window are not unique (although finding a

single path is sufficient in our algorithm). For instance, a closer look at Figure 4.24 shows

a second P3 = (eB2 , eA1) (with dash-dotted path) for variable x which is compatible with

P2.

97

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

W ′

W

eA1 : d=T ;

eA2 : q=p;

eA3 : c=d;

eA4 : y=q;

eB1 : x=b;

eB2 : x=d;

eB3 : p=x;

eC1 : b=c;

STW ′′ = { T }

STW ′ = { T,d,c,b,x }

STW = { T,d,c,b,x,p,q,y }

lh

lb

lt

Thread A Thread B Thread C

Figure 4.24: Propagation through incompatible TDP s

The incompatibility of TDP s over-approximates our predictions. To reduce the number

of false positives we can classify the tainted variables into two categories strong and weak.

Strongly tainted variables are those for which taintness propagation occurred through

mergeable tainting paths. Dually, weakly tainted variables are those for which non-

mergeable tainting paths may exist. For the strongly tainted variables a witness execution

can be constructed.

We provide hereafter two heuristics that can be used to identify strongly tainted vari-

ables:

1. If a tainting path P contains uniquely events from the window’s body and its tainting

source variable is strongly tainted, then it defines a strongly tainted variable as well.

Since P contains only instructions in body epoch it has no conflicts with paths in

the succeeding window.

2. If a variable x is tainted in two consecutive epochs and (i) there is no kill of this

variable in the common epoch and (ii) the variable that made it tainted in the first

epoch is strongly tainted, then x is strongly tainted.

98

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.8 Respecting synchronization primitives

4.8 Respecting synchronization primitives

As presented in section 2.5 on page 18 several synchronization mechanisms exist to im-

pose an ordering on the execution of threads. We focus on the usage of mutexes for the

synchronization of critical sections and take advantage of their semantics to infer more

accurate taint dependency paths in our analysis. That is, we add extra restrictions to the

isV alid(P) function.

We remind a mutex is a binary variable with states locked and unlocked. Critical sections

are portions of code that should be executed atomically. To synchronize access to critical

sections all threads need to acquire the necessary mutexes prior to entering their critical

section, and release them once its execution is completed. A thread acquires/locks a mutex

m by calling a blocking function lock(m) and releases/unlocks it by calling unlock(m).
A successful call to lock(m) allows the thread to enter the critical section and prevents

other threads from entering their critical section protected by the same mutex m until

it is released (unlock(m)) by the thread that initially obtained it. A mutex acquisition

always has a matching mutex release. As mentioned earlier in section 4.4.1 on page 73

synchronization events are also logged. We define hereafter a protection 1 which is a

triplet (m,el, eu) where m is the mutex used to synchronize threads, el is the logged event

corresponding to the locking of the mutex (lock(m)) while eu is the event corresponding

to the matching release of the mutex (unlock(m)). The locking event always precedes the

unlocking event, thus el eu. Finally, we will use a dot notation in the sequel to refer

to the elements of a protection. Thus, given a protection p = (q, ek, em) then p.m = q,

p.el = ek and p.eu = em.

A critical section may be synchronized using several mutexes. Moreover, the set of

mutexes protecting events of a critical section may not be the same for all events. We call

context the set of protections surrounding an event and define the function cont(e) which

returns the context for an arbitrary event e. More precisely:

cont(e) = {p ∣ p.el e ∧ e p.eu}

We provide hereafter a small example to clarify the notion of protection and context

we just introduced. Listing 4.3 presents an excerpt of a log file with events produced by

thread A. On the right side, we identify the two protections present in Listing 4.3 namely

pa, pb matched to mutexes ma and mb respectively. We also provide the context for events

eA3 and eA5 .

1There is no connection with protections in chapter 3

99

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

eA1 : lock(ma)
eA2 : lock(mb)
eA3 : x = y;

eA4 : unlock(mb)
eA5 : w = z;

eA6 : unlock(ma)
Listing 4.3: Critical section

pa = (ma, e
A
1 , e

A
6)

pb = (mb, e
A
2 , e

A
4)

cont(eA3) = { pa, pb }
cont(eA5) = { pa }

Moreover, we introduce two operators for contexts: ⊓ which computes the set of mu-

texes shared between two contexts, and 0 which computes the set of mutexes used in

same critical sections and shared between two contexts. Finally, we define the function

Mutex(c) which gives the set of mutexes for context c.

c1⊓ c2 = {m′ ∣ ∃(p ∈ c1 , q ∈ c2) such that p.m = q.m =m′ }

c10 c2 = {m′ ∣ ∃(p ∈ c1 , q ∈ c2) such that p = q ∧ m′ = p.m}
We note that the equality for two protections is defined as a complete match of all

elements of the protection triplet:

p = q ⇒ p.m = q.m ∧ p.el = q.el ∧ p.eu = q.eu

Mutex(c1) = ⋃
p ∈ c1

p.m

4.8.1 Inferring order from mutexes

By definition of mutual exclusion critical sections protected by the same mutexes never

execute concurrently. Thus, in the produced log files timestamps of synchronization events

should be in accordance with the order they were executed. While the timestamps allow

us to infer the exact ordering, we try to predict different serializations of entire critical

sections if possible.

Figure 4.25 illustrates how the execution of two critical sections can be interleaved. In

this instance we can clearly identify that the critical sections were executed in the order

A,B. This ordering implies that only variable y should end up tainted. With the current

slicing our analysis assumes all events are interleavable. Although the analysis should not

interleave events belonging to a critical section (i.e., eA2 , eA3 , eB2 , eB3), it can interleave

the lock/unlock events resulting into considering a different synchronization where the

ordering of critical sections is B,A. As illustrated in the summary STW our analysis

predicts both serializations of the critical sections and thus both x and y are considered

tainted.

In the example of Figure 4.25 the execution of critical sections could be interleaved.

This is not always the case. For critical sections to be interleavable by the analysis they

should appear within two consecutive epochs, i.e. be bounded in a window. If this is

not the case then a fixed ordering between events in the critical section is imposed and it

100

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.8 Respecting synchronization primitives

STW ′={ T }

STW= { T , x, y }

eA1 : lock(m)
eA2 : y= U;

eA3 : x= T;

eA4 : unlock(m) eB1 : lock(m)
eB2 : x= U;

eB3 : y= T;

eB4 : unlock(m)

lb

lt

A B

ti
m

e

Figure 4.25: Interleaving critical sections

should be respected by the inferred taint dependency paths. For that reason we introduce

the binary operator pa ⋖ pb which checks if events protected by protection pa precede those

protected by pb. The operator is defined as follows:

pa ⋖ pb ⇒ (pa.m = pb.m) ⋀ (Epoch(pa.el) < Epoch(pb.el) − 1 ⋁
Epoch(pa.el) < Epoch(pb.eu) − 1)

Figure 4.26 illustrates the conditions for defining precedence based on the protections.

The darkened areas are events in critical sections protected by the same mutex (let it be

m) and the events surrounding it are the lock and unlock events. Each critical section

defines a protection: pa = (m,eAk , eAm), pb = (m,eBk , eBm), pc = (m,eCk , eCm). We note that the

lock release event (eCm) for critical section in thread C does not appear in the figure, but

it definitively exists in a subsequent epoch. The relation pa ⋖ pc obviously holds because

the acquisitions of the mutex are not interleavable. Contrarily though, the acquisitions of

the mutex are interleavable between critical sections of thread A and B. Despite that, the

relation pa ⋖ pb also holds because the acquisition event of thread A (eAk) cannot interleave

with the release of mutex by thread B (eBm) which is necessary for swapping the execution

order of the critical sections.

The precedence operator is also used to compare contexts c1 ⋖ c2. For a context to

precede another we need to identify precedence between any two protections belonging to

the contexts, that is:

c1 ⋖ c2 ⇒ ∃ (pa ∈ c1 , pb ∈ c2) such that pa ⋖ pb

101

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

lh

lb

lt

A B C

eAk

eAm
eBk

eBm
eCk

Figure 4.26: Ordering critical sections using mutexes

4.8.2 Enforcing explicit mutex ordering in taint dependency paths

When the critical sections cannot be interleaved, then their execution order must be re-

spected by all inferred taint dependency paths. That for, we enforce the consistency

check function (isConsistent()) by adding an extra restriction that enforces the prece-

dence of events that constitute a taint dependency path based on their contexts:

Definition 4.8.1 (Predicate isConsistent(P))

Ensures interleaving assumptions and explicit ordering imposed by critical sections are

respected:

∀ek, em ∈ P then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k <m⇒ em ek

⋀
cont(em) ≠ ∅ ∧ cont(ek) ≠ ∅ ⇒ cont(em) ⋖ cont(ek)

4.8.3 Enforcing implicit mutex ordering in taint dependency paths

As mentioned earlier critical sections can be re-ordered by the analysis when they reside

within the same window. The order in which they are executed is defined by the taint

paths containing events belonging to those critical sections. Once an order is set it should

be respected throughout the path.

Figure 4.27 illustrates two instances of the same window each depicting a different taint

dependency path imposing a different ordering of the critical sections. On Figure 4.27(a)

the tainting path P1 = (eAm, eBm, eCm, eAk) implies the execution order C,B of the critical

sections since eCm precedes eBm. Dually, the tainting path P2 = (eCk , eBk , eAn , eAk) in Fig-

ure 4.27(b) implies the execution order B,C of critical sections.

102

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.8 Respecting synchronization primitives

A B C

STW ′ = { T }

eAk : w=T;

eAm: x=y;

eAn : g=w;

eBk : f=g;

eBm: y=z;

eCk : e=f;

eCm: z=w;

(a) Path defining C,B order

A B C

STW ′ = { T }

eAk : w=T;

eAm: x=y;

eAn : g=w;

eBk : f=g;

eBm: y=z;

eCk : e=f;

eCm: z=w;

(b) Path defining B,C order

Figure 4.27: Taint paths define implicitly order of critical sections

The examples provided above illustrate how a taint dependency path imposes the or-

dering of critical sections by visiting events inside them. Once the execution order is set

between two (or more) critical sections we need to ensure that the path (i) is not bouncing

between two critical sections, protected by the same mutexes and (ii) the serialization of

events respects the order imposed by the critical sections.

Figure 4.28(a) illustrates a path bouncing between two critical sections. That is, there

exist two events in the tainting path that belong to the same critical section (eBm, eBk)

and inbetween there exists an event that belongs to a mutually excluded critical section

(eCm). In this example, initially events eBm, eCm connected with a dotted edge define the

order C,B between the critical sections. Subsequently, events eCm, eBk linked with a dashed

edge define the inverse ordering of critical sections (B,C). Thus the tainting path is no

longer valid. To prevent such paths from propagating taintness we introduce a new path

restriction noRe − entry(P):

Definition 4.8.2 (Predicate noRe − entry(P))

Ensures implicit ordering of critical sections is respected throughout the path:

∀ek, en ∈ P such that k < n then

(M = cont(ek)0 cont(en) ≠ ∅)⇒ ∄em such that Thr(em) ≠ Thr(ek) ∧ k <m < n ∧
Mutex(cont(em))⋂M ≠ ∅

The second thing we need to take care of when considering the implicit ordering of

critical sections, is to respect entirely the serialization of all events. Figure 4.28(b) has

slightly modified the example of Figure 4.28(a) such that the bouncing between critical

sections is avoided, but illustrates the problem of killing the linking variable (z in our

example) on the serialization of the critical sections. Again the dotted edge connecting

events eBm, eCm specifies the ordering of the critical sections to be C,B. Because the events

103

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

A B C

STW ′ = { T }

eAk : x=y;

eBk : f=T;

eBm: y=z;
eCk : w=f;

eCm: z=w;

eCn : z=U;

(a) Invalid path, redifing order of critical sections

A B C

STW ′ = { T }

eAk : x=y;

eBk : f=T;

eBm: y=z;
eCk : w=f;

eCm: z=w;

eCn : z=U;

(b) Serializing events respecting order of critical sec-
tions

Figure 4.28: Implicit precedence of critical sections

belonging to different critical sections are explicitly connected (only one linking variable

is used) all events on dashed path must be taken into account. More precisely we have to

check there is no event that kills the linking variable.

To filter out these incorrect paths we add one more check called atomicKill(P). It

checks if there does not exist any kill (i.e., redefinition) of linking variable between two

subsequent events of the path ek, ek+1 that are executed by different threads and protected

by a common mutex. The definition of atomicKill(P) we provide takes into account the

case of events protected by sets of mutexes (contexts). The events that should be checked

are those preceding event ek and succeed ek+1 and for which the set of protections is

common for ek and ek+1.

Definition 4.8.3 (Predicate atomicKill(P))

Ensures the linking variable between events belonging to separate threads and protected

by a common set of mutexes is not killed by an event belonging in their serialization.

∀ek, ek+1 ∈ P such that (M = cont(ek)⊓ cont(ek+1) ≠ ∅) then:

∄em such that em ek ⋀ (cont(em)0 cont(ek))⋂M ≠ ∅ ⋀ Def(em) =Def(ek+1)

∄em such that ek+1 em ⋀ (cont(em)0 cont(ek+1))⋂M ≠ ∅ ⋀ Def(em) =Def(ek+1)

104

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

4.9 Recapitulation

4.9 Recapitulation

In this chapter we addressed the problem of taint analysis for multithreaded programs,

a representative information flow analysis widely used in vulnerability detection. We

proposed an offline sliding window-based taint analysis which allows the prediction of

taint propagations that could have occurred under valid serializations of the executed

multithreaded program. We give hereafter an overview of our analysis and the refinements

we did on taint prediction.

Online phase:

� Unrestricted multithreaded program execution: the program is executed with-

out imposing any scheduling restrictions (i.e., it is not serialized) and memory

accesses to both shared and thread local variables are logged.

Offline phase:

� Slicing of log files into epochs: such that events that were executed within a

bounded time interval belong to the same or adjacent epochs.

� Sliding window-based analysis:

– use a window of two consecutive epochs;

– apply taint prediction on the window and create a summary that contains

plausible taint propagations down to the analyzed window.

� Taint prediction: we use an iterative algorithm which allows predicting taint-

ness propagation without enumerating all serializations of events in the analyzed

window. The iterative algorithm is based on the equivalence between comput-

ing taint propagation and solving disjunctive boolean equation systems. The

serializations inferred by the predictive algorithm can account for the mem-

ory model. We applied it to sequential consistency and made the following

refinements:

– safely untainting variables;

– taking lock synchronizations into account.

Comparison to existing work

Existing works on dynamic information flow tracking of multithreaded programs force

them to execute sequentially. This allows to apply typical dynamic information flow

analyses as in the case of sequential programs. This somehow naive approach penalizes

execution time of analyzed application but also eliminates the effects of weak memory

models and simultaneous memory accesses. Moreover the analysis results are restricted to

the serialized execution.

To the best of our knowledge the only works addressing the problem of dynamic in-

formation flow for parallel executions of multithreaded programs are those of Ganai et

105

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 4. Predictive information flow analysis

al. [GLG12] and Goodstein et al. [GVC+10]. We introduced these works in section 4.3.2.

Having fully presented our work allows a closer comparison.

The work of [GLG12] is closer to ours since (i) it does not need specialized hardware

and (ii) has an offline prediction phase for taint propagation between threads. The goal

of their offline prediction phase is slightly different from ours since they try to predict the

effect of different operating system schedules while we target mostly into predicting the

effect for plausible serializations of the executed schedule.

A first point of comparison is on the runtime execution and information logged.

In [GLG12] they perform thread local dynamic information flow at execution time and

only log information on accesses to shared variables. When logging a write to a shared

variable they also include the locally computed taintness such that it can be used for offline

propagation. This choice leads to more concise logs but less precise predictions since not

all propagations can be re-calculated offline.

The second point of comparison is the prediction algorithm. As mentioned above their

logs are less precise thus taint propagations cannot be computed offline. Instead, they

simply propagate taintness if there exists a write of a shared variable with a tainted value

and a read of this variable by different threads. The order in which they were logged

does not matter. Finally, they do not take untainting into account since they assume all

interleaving of events to be plausible, at least in the implementation of DTAMparallel. In

the implementation of DTAMhybrid they refine the propagation by taking into account

happens before relations.

Regarding the work of Goodstein et al. [GVC+10] it is based on a specialized architec-

ture and performs online prediction for usage in the context of lifeguards. The specialized

architecture produces synchronization barriers among the cores. This architectural sup-

port is required to switch between program execution and program analysis. In addition

it forms bounded blocks of code executed in parallel. This corresponds to the notion of

epochs we obtain by slicing offline the logs obtained by a parallel execution.

Their prediction mechanism is similar to ours 1 in that it uses a sliding window (con-

sisting of three epochs instead of two in our case) and constructs summaries to capture

the effect of inferred serializations. Their prediction methodology focuses on implement-

ing classic dataflow analyses (e.g., available expressions) and thus consists into analyzing

blocks independently and propagating necessary information between blocks. Concerning

taint analysis, they state it is not straight forward to implement in their framework and

give some elements on how to proceed. They provide, as we do, a taint prediction for a

completely relaxed memory model and for sequential consistency. They also account for

untainting to reduce false positives. Comparing the accuracy in taint prediction we have

the benefit of taking synchronization mechanisms into account which they do not.

1our work is inspired from [GVC+10]

106

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5

Implementation and

experimentation

In this chapter we present the tools implemented and experimentations conducted to

validate the theory presented in chapters 3 and 4. We start with the optimization of

critical sections where we compare the policies detailed in section 3.5, as well as the types

of protections which we developed in a library. Next, we present a tool-chain for performing

predictive taint analysis under sequential consistency as described in section 4.7.

5.1 Optimizing critical sections

In this section we present several experimentations which allowed us to compare the per-

formance of policies described in section 3.5 and of different types of protections presented

in section 3.4. Prior to presenting the experimentation we introduce a library for managing

protections we implemented.

5.1.1 Library for managing protections

We have developed a library for managing protections in C++. Our library is capable of

handling all three types of protections described in section 3.4. Its main characteristics

are the following:

� re-entrant acquisition of protections. This implies that if a thread requests a pro-

tection it already possesses it wont get blocked.

� atomic acquisition of protections. This implies that either all protections in the

requested set will be obtained (if they are available) or none (if any of the protections

is not available) resulting into blocking the thread.

The atomic acquisition is extremely useful when a total order on variables (<V) cannot

be established (e.g., in case of dynamic memory allocations). The policies that can be

107

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

used in such a case are Global and Eager which do not require the definition of predicate

Prefix() which relies on <V .

The main components of the library are the classes implementing each protection type

(Mutex, ReadWrite, WriteIntend) and the ProtectionManager (PM) which manages the

protections at runtime. The library uses common data structures provided by the Standard

Template Library (STL) and synchronization mechanisms provided by the Pthreads library.

The implementation of each protection resides on using sets which hold thread identifiers

and ensures the exclusion restrictions presented in table 3.1 on page 39 are respected. For

instance the implementation of read/write class contains two sets one for readers and one

for writers. Listing 5.1 below shows a snippet of the read/write protection implementation

focusing on how to test if the read protection is available and what are the updates in case

of acquisition and release.

1 class ReadWrite : public Protection{

2 private:

3 set <int> readers;

4 set <int> writers;

5

6 pubic:

7 bool testAcquireRead(int thread_id){

8 if(writers.empty () ||

9 writers.count(thread_id) == 1)

10 return true;

11 return false;

12 }

13 bool AcquireRead(int thread_id){

14 readers.insert(thread_id);

15 return true;

16 }

17 bool ReleaseRead(int thread_id){

18 readers.erase(thread_id);

19 return true;

20 }

21 ⋮
22 };

Listing 5.1: Implementation of Read/Write protection

The ProtectionManager (PM) is the most important component since it is responsible

of managing the protections i.e., update the shared data structure containing the state

of protections and blocking the threads when needed. Protections of supported types

can be added and removed at runtime from the PM. The PM is actually a global variable

accessible to all threads. Each thread can initiate an acquisition/release of protections

through a call to serve(REQ). REQ is a set of requests the PM serves atomically. Each

108

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.1 Optimizing critical sections

request specifies (i) the protection to be accessed (ii) if it is an acquire or release request

and (iii) the type of exclusion (depending on the type of the protection). Listing 5.2

1 class ProtectionManager{

2 private:

3 pthread_mutex_t MAN_MUTEX;

4 pthread_cond_t COND;

5 list <Protection*> PROT;

6 public:

7 bool serve(set <Request > REQ);

8 ⋮
9 };

Listing 5.2: ProtectionManager snippet.

The ProtectionManager keeps all protections in a linked list (PROT) which is protected

by a Pthread mutex (MAN_MUTEX). Moreover a condition variable (COND) is used to notify

blocked threads of modifications in the PM. Figure 5.1 illustrates an activity diagram for

function serve(REQ). The execution cycle of the function is as follows. First the lock

on PROT must be acquired. Then a test is performed to see if all requests in REQ can be

served. If so (i) the update of appropriate protections is performed (ii) the lock is released

and (iii) threads waiting on COND are signaled the state of PM has been modified. If the

test was not successful then the thread releases the lock and gets blocked.

lock

can serve
REQ

wait

unlock

signal

update

false
true

lock ∶= pthread mutex lock(&MAN MUTEX)
unlock ∶= pthread mutex unlock(&MAN MUTEX)
signal ∶= pthread cond broadcast(&COND)

wait ∶= pthread cond wait(&COND,&MAN MUTEX)

serve(REQ)

Figure 5.1: Activity diagram for serve function.

109

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

5.1.2 Experimentations

The experimentations we present hereafter are based on handcrafted applications which

exhibit the benefits of policies (see section 3.5) and protections (see section 3.4). Moreover,

we point up the gains in using atomic acquisition of sets of variables when using our library

presented in section 5.1.1.

Description of applications

We describe hereafter the applications we use in our experimentations. Applications 1 and

2 compute the average value of nodes structured in different topologies while application

3 simulates communication in a tree-like topology.

Application 1 and 2

These applications compute in parallel the average value of a set of nodes organized in

two types of data structures: a circular list and a two dimensional torus (2D-torus). In

our case each node is an integer variable. We assume that a protection is assigned to each

node and also a thread is spawned per node.

The parallel computation of the average is performed as follows. The nodes are split

into small intersecting clusters (clustering depends on the nodes structuring). Each cluster

has a master node which atomically computes the average value of the cluster and then

updates all nodes with the computed value. The intersecting nodes propagate the clusters

average to neighboring clusters. The computation ends when all clusters have stabilized

to the same value which is the average of all nodes.

For the needs of our experimentations we slightly modify the algorithm described above.

The modification consist in: (i) making different executions more comparable and (ii) am-

plifying the effect of synchronization mechanism.For the first point (i) despite keeping the

same clusterings and initial values of nodes, how fast will the average stabilize depends

on the communication order as well as rounding happening on divisions etc. To solve this

problem we decided to fix the number of computations of each cluster (i.e., each cluster

will compute the average value for a fixed number of times independently if algorithm

stabilized or not). For the second point (ii) the problem is that computations are very

simple and the gains of each synchronization mechanism or policy are hard to observe.

To overcome this problem we added some overhead in memory accesses and computation

in the form of ackermann [Sun71] computations. We chose to add ackermann since it is

computation intensive that is it consumes CPU cycles and hence the thread cannot be

preempted as would be the case of a sleep call for instance.

Application 1 illustrated in Figure 5.2(a) is a circular list. The cluster is defined as three

consecutive nodes. Each node of the structure is the master node of the cluster consisting

of itself and its left and right neighbor. The pseudo-code for critical section executed by

threads associated to master nodes is illustrated in Listing 5.3. The pseudo-code is in

accordance with Figure 5.2(a) which focuses on a cluster consisting of nodes x, y, z.

110

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.1 Optimizing critical sections

1 critical{

2 // a,b,c,ave : local variables

3 // x,y,z : shared variables

4

5 a = x; ackermann ();

6 b = y; ackermann ();

7 c = z; ackermann ();

8 ave = (a+b+c)/3;

9 x = ave; ackermann ();

10 y = ave; ackermann ();

11 z = ave; ackermann ();

12 }

Listing 5.3: Critical section of circular list master node

x y z

(a) Average of list

N

S

W C E

W

N

S

E C

0

1

2

3

4

5

1 2 3 4 5 6 70

(b) Average of 2D-torus

Figure 5.2: Average computation, Applications 1 and 2

Application 2 illustrated in Figure 5.2(b) is a two dimensional torus. The cluster is

defined as five neighboring nodes. Each node of the structure is the master node (C)

of the cluster consisting of itself and its north (N), east (E), south (S) and west (W)

neighbors. The critical section executed by each thread is identical to that of application

1 presented in Listing 5.3 except that now more nodes participate. Figure 5.2(b) illustrates

two clusters one in the center of the torus and one on the bottom right corner where we

can see how its south and east neighbors fold in the torus.

Network communication, Application 3

Application 3 is inspired from communication algorithms used in wireless sensor net-

works. We consider a set of nodes deployed in a tree-like structure where leaf nodes try to

propagate information towards the root. Figure 5.3 illustrates such a topology. The arrows

show the direction of messages sent. As we can note a child node transmits potentially

111

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

to several parent nodes. A thread and a shared variable are associated to each node. A

transmission is represented by a write of the shared variable of the receiving node. To

simulate errors in the network we introduce a success probability. If transmission failed

then we assume its re-transmission is always successful (i.e., a message is transmitted

maximum two times towards a destination). Moreover, the transmission of messages to

multiple parents is done atomically. Finally, transmission time is simulated with a sleep.

The transmission time is used again to amplify the gains of each policy .

R

Figure 5.3: Communication in a network Application 3

The nodes behavior can be split into leafs, intermediate and root. The root node is

unique and it behaves as a sink,it only receives messages from its children. Dually, the

leafs are source nodes, they only transmit messages to their parents. Intermediate nodes

combine both behaviors, they receive messages from their children (leaf nodes or other

intermediate nodes) and forward them to their parent nodes (also intermediate nodes or

the root). Listing 5.4 contains the pseudo-code for an intermediate node. It checks whether

a “fresh” (i.e., not re-transmitted) message has been received, and if so it is relayed to its

parents.

1 critical{

2 // msg is message shared variable of the node

3 if(msg.isFresh ()){

4 // transmit message to each parent

5 for(p ∈ Parents){

6 sleep(TRANSMISSION_TIME);

7 // randomly decide success of transmission

8 ok = rand (100) < SUCCESS_PROBABILITY;

9 if(ok)

10 p.msg = msg; // copy message to parent

11 else{

12 sleep(TRANSMISSION_TIME);

13 p.msg = msg;

14 }

15 }

16 }

17 }

Listing 5.4: Critical section of intermediate node in application 3

112

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.1 Optimizing critical sections

5.1.3 Experimental results

In this section we present the experimental results obtained using the applications de-

scribed in section 5.1.2. We compare the policies described in section 3.5 using mutexes

provided by Pthreads but also our implementation described in section 5.1.1. We also

made a comparison of protection types presented in section 3.4.

All experimentations were performed on a quad-core Intel Xeon W3520 with 6GB of

ram sunning Debian GNU/Linux 5.0.8 (lenny). The code was compiled using GCC 4.3.2

without any optimization flags. The execution platform used does not strongly affect our

observations. The gains in execution time should be observable on any parallel execution

platform.

Comparison of policies

For each application presented in section 5.1.2 above we have compared the first four

policies using fast mutexes provided by Pthreads and mutexes implemented as protections

in our library. Policy Incremetal/Priority release is excluded from the experimentations

because in all cases it was equivalent to policy Incremental/Eager. This is due to the

pattern of access to the shared variables as discussed in section 3.6.1. We detail hereafter

how the applications were instantiated.

Application 1 (average circular list) we used 20 nodes connected in a circular list

topology and each had to complete 20 average computations as detailed in its de-

scription. The ackermann function was fed with argument values 3, 10 (execution

time on the specified platform ≈1sec).

Application 2 (average 2D-torus) we considered a 2D-torus of size 10×10 where each

node had to perform 5 average computations. Again memory accesses were simulated

by ackermann with values 3, 10.

Application 3 (network communication) the topology consisted of 70 nodes dis-

tributed in 6 levels (root=1 level, leafs=1 level, intermediate=4 levels). Intermediate

and leaf nodes had at most 4 parents. The termination condition for the experimen-

tation was the root to receive 50 messages. Delay for message transmissions was set

to 1sec (TRANSMISSION_TIME = 1000; in milliseconds) while the success probability

to 80% (SUCCESS_PROBABILITY = 80;)

Figure 5.4 provides the plots of the execution times obtained for each application. The

plots are composed by the histograms of the four policies compared, each implemented

with Pthread and Protection (our implemented library) mutexes.

As we can observe in all cases, the Eager release policies perform better than the Global

policy. This is due to releasing earlier protections which allows other threads to progress.

Policy strictly Incremental is not efficient for applications 1 and 2. The cause of such a

reduced parallelism is that each thread obtains a subset of the required protections not

sufficient for completing the critical section, resulting in having a small number of threads

113

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

 0

 20

 40

 60

 80

 100

Global Eager Incr Incr/Eager

E
xe

cu
ti

o
n
 t

im
e

(s
e
co

n
d

s)

Policy

Application 1 - Average circular list.

Pthreads
Protections

(a) Application 1 - circular list average

 0

 50

 100

 150

 200

 250

 300

 350

Global Eager Incr Incr/Eager

E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d

s)

Policy

Application 2 - Average 2D-torus.

Pthreads
Protections

(b) Application 2 - 2D torus average

 0

 50

 100

 150

 200

 250

Global Eager Incr Incr/Eager

E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d

s)

Policy

Application 3 - Netwrok communication.

Pthreads
Protections

(c) Application 3 - network communication

Figure 5.4: Comparison of policies and implementation of mutexes

114

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.1 Optimizing critical sections

capable to execute in parallel. Figure 5.5 illustrates the case for application 1. The arrows

denote the origin node has obtained the protection on the destination node. The dashed

arrows are blocked nodes and as we can see just one node is capable of progressing.

1 nn−1n−2

Figure 5.5: Problem of incremental policy for application 1

Another observation is that our implementation of mutexes reduces drastically the ex-

ecution times with policies global and eager. This is due to the atomic acquisition of sets

of variables as presented in section 5.1.1. Since in these two policies all protections are

obtained at the beginning of the critical section the threads will never get blocked in the

critical section waiting for a protection to become available.

To get a deeper insight of the policies behavior we monitored closely the execution

of application 1 using Pthreads fast mutexes. The results are presented in Figure 5.6

and 5.7 which contain the execution time-line of each policy. On the vertical axis we have

the number of threads while on the horizontal the time progress (in milliseconds). The

different colors indicate the status of threads at a given time following this terminology:

In CS: the thread has entered its critical section. This implies it has obtained at least

one of the protections required and executed an instruction on a protected variable.

Blocked: the thread is blocked waiting on a protection. A thread can be blocked outside

a critical section, if no protected instruction of the critical section was executed,

or inside if it gets blocked after a protected instruction of the critical section was

executed.

Executing: the thread is in the critical section and not blocked.

In all time-lines we observe the decrease of number of threads which is due to their

termination. Furthermore since the same time scale has been used we can easily compare

the execution times.

For policies global and eager the curves In CS and Executing are complementary. This

is expected since in these policies all protections must be acquired prior to executing the

critical section. Comparing these two, we note that eager policy exploits better parallelism

since in general we have two threads executing.

For the incremental policies we observe a burst of parallelism which rapidly turns int

a huge number of blocked threads. This is the behavior described in Figure 5.5 where

the burst maps to most threads obtaining their left neighbor simultaneously and hence

reading in parallel its value. The switch to blocked state comes right after when each node

tries to obtain its own protection which is reserved by its right neighbor. Despite this

phenomenon as we can note policy Incremental/Eager recovers rather fast and reaches

rather often the parallel execution of four threads.

115

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

 0

 5

 10

 15

 20

 0 20000 40000 60000 80000 100000

N
u
m

b
e
r

o
f

th
re

a
d
s

Execution time (milliseconds)

In CS
Blocked

Executing

(a) Global policy

 0

 5

 10

 15

 20

 0 20000 40000 60000 80000 100000

N
u
m

b
e
r

o
f

th
re

a
d
s

Execution time (milliseconds)

In CS
Blocked

Executing

(b) Eager policy

Figure 5.6: Execution of policies global and eager

Comparison of protections

The comparison between protections is made on a modified version of application 2 (av-

erage computation of a 2D-torus). The example is specially crafted such as gains of finer

protections can be observed. Listing 5.5 details the critical section of a master node the

figure next to it illustrates the accesses. In this version of application 2 (which no longer

computes the actual average value) the neighbors accesses are the north and west and their

values are uniquely read. The only variable written is that associated to the master node.

Once again accesses to variables are amplified with the ackermann function. An extra

ackermann computation has been added which prolongs the holding of write protection

on master node (C). The extra computation promotes the write intend protection.

116

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.1 Optimizing critical sections

 0

 5

 10

 15

 20

 0 20000 40000 60000 80000 100000

N
u
m

b
e
r

o
f

th
re

a
d
s

Execution time (milliseconds)

In CS
Blocked

Executing

(a) Incremental policy

 0

 5

 10

 15

 20

 0 20000 40000 60000 80000 100000

N
u
m

b
e
r

o
f

th
re

a
d
s

Execution time (milliseconds)

In CS
Blocked

Executing

(b) Incremental/Eager policy

Figure 5.7: Execution of policies incremental and incremental/priority release

1 critical{

2 // x,y,z,ave : local variables

3 // C,N,W : shared variables

4

5 x = N; ackermann ();

6 y = W; ackermann ();

7 z = C; ackermann ();

8 ave = (x+y+z)/3;

9 ackermann (); // Extra computation

10 C = ave; ackermann ();

11 }

Listing 5.5: Critical section of modified 2D-torus average

C

N

W

The modified version of 2D-torus was executed on a torus of size 10×10 where each

node had to execute its critical section presented in Listing 5.5 five times. The ackermann

function was again fed with values 3, 10. Table 5.1 presents the results for each protection

type. As we can note the more flexible read/write and write intend protections can bring

significant gains. Of course, the example was specially crafted. Obtaining such impressive

gains by using these protections are not straight forward.

117

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

Mutex ReadWrite WriteIntend

8m49s 7m18s 6m26s

Table 5.1: Execution times per protection

5.2 Offline predictive information flow

5.2.1 Proof of concept tool

As a proof-of-concept, we implemented a tool chain for our offline taint prediction anal-

ysis. The tool chain, presented in Figure 5.8, is split into an instrumentation phase (left

side of figure) and execution and analysis (on the right side). First, the source files are

instrumented to produce the log files. Next, the program is executed and log files are gen-

erated. The log files are sliced into arbitrarily sized epochs and taint analysis is performed

as described in section 4.7.

taint
analysis

t3.logt2.logt1.log

Window

results

executesource.c

instrument

source instr.c

Figure 5.8: Abstract analysis framework

Source code instrumentation

The code instrumentation is implemented using the CETUS framework [DBM+09]. It

is a C source-to-source compiler written in Java which provides some interfaces for an-

alyzing and transforming the parsed C code. The instrumentation process consists in

adding explicit logging instructions which record time-stamped information on used/de-

fined variables of assignments. Special attention is given to keep track of variables passed

as arguments into function calls and return values. Function calls related to mutex lock-

ing and un-locking are treated specially. For this proof of concept implementation not the

entire ANSI C language can be instrumented. The limitations are purely syntactical and

do not limit the analysis framework.

Each thread is logged in a dedicated file, so there is no need to synchronize logging

instructions and thus we do not perturb much the applications execution. The time-

stamping of log entries is in micro-seconds, relative to the beginning of the programs

execution. The information carried by a log entry depends on the underlying instruction.

In general it contains the set of used variables (actually their addresses on memory) and

118

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.2 Offline predictive information flow

the defined variable (if it exists). Hereafter we sketch the instrumentation of some basic

instruction types:

- Assignments: the defined and used variables are clearly stated. In the right hand side of

assignments there should be no function calls. For instance, the instrumentation of the

assignment x=y+z; results into:

x=y+z;

fprintf(LFP,"A:%d #D %p #U %p | %p ", GET TIME(),&x,&y,&z);

At execution time the log entry produced would look like that:

A:45389 #D 0x43564 #U 0x43428 | 0x43642

Type of instruction

(A for assignment)

timestamp

Defined variable Used variables

- Functions: passing arguments by value hides the dependency between the variables

affected by the argument and the variable the function was called with. To overcome

this problem we augment each function by adding a void* argument per variable in the

argument list. Moreover inside the function we add a dummy assignment that will link

the variable given as argument with the variable used inside the functions code during

the offline analysis. Here is an example:

void f(int a){
...

void f(int a,void* aPT){
fprintf(LFP,"A:%d #D %p #U %p ", GET TIME(),&a,aPT);

...

The logging of function calls stores the time they were called, the function name and a

set of variables that were passed as arguments. The only function that is time-stamped

differently is pthread mutex lock(..) which timestamps the return of the function.

This corresponds to the time the lock was obtained.

Log processing

Analyzing the log-files is divided into two phases. First, a slicer is used to set explicit

epoch boundaries in the log-files. As mentioned in section 4.4.2 we use a time-based

slicing. Second, the sliced log files are parsed and analyzed.

The parsing and main skeleton of the analysis are generic. They have been implemented

in Java and are easily extendable. The parsing consists in reading from the log files time-

stamped sets of used and defined variables. We read an epoch at time and feed the sliding

119

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

window analysis with it. This implies that the log files do not need to be read entirely

in memory to perform the analysis. The skeleton of the analysis (i.e., the Vertical and

Horizontal passes) have been interfaced such that other analyses that can benefit from

that structure can be easily implemented. Notably, one would implement a new analysis

by re-defining: (i) what information is held in the summary of an epoch (ii) how the

analyzed property is propagated and (iii) how it is summarized.Finally, the framework also

provides a lock-set analysis which identifies calls to library functions pthread mutex lock

and pthread mutex unlock and encodes them as protections presented in section 4.8. This

step should be performed a priori on the whole log files, since bounds of critical section

may spawn over several windows.

At this time, the taint analyzer implementation makes no distinction between strongly

and weakly tainted variables and can compute three types of taint propagation:

relaxed all interleaving of events in the window are accepted and kills are not taken into

account;

sequential only sequentially consistent propagations are taken into account and variables

killed are excluded from the summarization;

synchronized extends sequential propagation such that limitations introduced by locks

are taken into account.

Visualizing taint propagations

Our tool is also capable of producing a representation of taint propagations in analyzed

windows. We provide hereafter the visualization produced, during the analysis of a window

with the three different types of analysis. The analysis has been slightly modified into that

we produced all tainting paths that correspond to event (18,111,5) in block (18,111).
Each path is illustrated with a different color. Figure 5.9 illustrates the paths under

relaxed analysis, Figure 5.10 under sequential and Figure 5.11 under synchronized.

120

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.2 Offline predictive information flow

Figure 5.9: Tainting paths for (18,111,5) under relaxed analysis

121

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

Figure 5.10: Tainting paths for (18,111,5) under sequential analysis

122

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.2 Offline predictive information flow

Figure 5.11: Tainting paths for (18,111,5) under synchronization analysis

123

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

5.2.2 Some experimental results

To validate the framework and the analysis mechanics we initially used some toy examples

(traceable manually), but rich enough to produce interesting behaviors especially regarding

the epoch size. We illustrate those findings hereafter. Next,we applied the analysis on a

bigger handcrafted example. In both cases, for simplicity the shared variables used are

integers. The printing of a tainted variable is the malicious behavior we want to detect.

The experimentations we carried out demonstrate: (i) the effect of epoch size on the

accuracy of the analysis (ii) the reduction of false positives due to mutex support .

Thread A

1 n=rand ();

2 ack(n);

3 X=TAINT;

Thread B

1 n=rand ();

2 ack(n);

3 X=0;

Thread C

1 n=rand ();

2 ack(n);

3 print(X);

The example above illustrates the code to be executed by distinctive threads. The

function ack called is an Ackermann computation (time consuming) which adds non de-

terminism in the order in which each thread executes its third instruction. Hereafter is

the log produced by a parallel execution of the above program. During this execution the

physical address corresponding to X was &X=0x8b4 and the printed value was 0 (i.e., X was

untainted).

thread A.log

A: 615 #D 0xb77 #U rand

F: 780 #F ack #U 0xb77

A: 858 #D 0x8b4 #U 0x84f

thread B.log

A: 814 #D 0xb6f #U rand

F: 878 #F ack #U 0xb6f

A: 1108 #D 0x8b4 #U

thread C.log

A: 677 #D 0x24f #U rand

F: 840 #F ack #U 0x24f

F: 1752 #F print #U 0x8b4

As we can observe in the log, Thread A taints shared variable X at time 858 (micro-

seconds since the program started). Further in the execution at time 1108 Thread B

un-taints X and consequently Thread C prints it at time 1752.

Figure 5.12 illustrates analyzing the log using two periodic partitionings. The solid and

dashed horizontal lines denote the limit of epochs. Above each line/epoch we note the

set of tainted variables observed by the analysis when entering that epoch. Using the left

partitioning (bigger epoch size) an error is detected, since instruction print(X) of Thread

C can precede the un-taint instruction of Thread B. On the contrary with partitioning used

124

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

5.2 Offline predictive information flow

on right side (small epochs size) the printing is considered safe as based on the interleaving

assumptions it cannot precede the un-tainting.

858

1108

1752

X=TAINT

X=0

print(X)

{∅}

{X}

{∅}

ti
m

e

X=TAINT

X=0

print(X)

{∅}

{X}

{X}

{∅}

{∅}

Figure 5.12: Cutting of epochs

The more complex hand-crafted example consists of a shared array of five elements

which is randomly accessed by five threads. Each access is either: (i) an update with a

random value (ii) an explicit taint (iii) an untaint operation followed by a print (iv) an

update using another element of the array (to create longer taint dependency paths).Two

variations of the application were tested. In the first one accesses are not synchronized

and thus data races are likely to arise resulting into printing tainted variables. In the

second, all accesses are protected using a mutex per element of the array. In this case, no

errors occur since un-tainting and printing of an element are atomic. All executions are

performed on a machine with 4 cores.

Simply executing the version without synchronization reveals some errors showing that

tainted values can be printed. As expected, applying our analysis allows to find more

errors. Table 5.2 presents how the size of the epoch chosen for the analysis affects the

number of errors found. The second column of the table displays the number of errors

observed at execution time per array element. The last columns display the number of

errors detected by our analysis depending on the epoch size. As we can note, increasing

this size increases the number of errors found by the analysis. Conversely, reducing too

much the epoch size leads to false negatives, i.e., real errors are missed for epochs of size 1

µseconds (the number of errors detected by our analysis is smaller than the ones detected

at runtime).

Node Runtime errors
Epoch size in µ sec
100 50 20 10 1

0 1 8 6 2 2 0

1 2 11 7 4 2 1

2 0 9 3 0 0 0

3 1 5 3 1 1 1

4 0 5 1 0 0 0

Table 5.2: Errors found vs epoch size

In the example with mutex synchronization no errors occur at runtime. Table 5.3 dis-

plays the number of errors detected by our analysis depending on the epoch size. Without

125

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 5. Implementation and experimentation

100 50 20 10

locks ignored 25 12 2 0

locks into account 4 0 0 0

Table 5.3: Using lock information in the analysis

taking mutex into account plenty of errors are found. When mutex synchronization re-

strictions are applied by the analysis the number of reported errors reduces but still they

correspond to false positives, that can be eliminated by considering the diagnostics pro-

duced by the analysis. On these examples: (i) executing the instrumented version of the

application introduces an overhead of about 50% (ii) log file analysis takes less than 1

second on a Intel i3 CPU @2.4GHz with 3GB of RAM.

126

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 6

Conclusion and perspectives

In this work we addressed two topics related to the parallel execution of multi-threaded

programs using shared memory. The first topic regarded the efficient implementation of

critical sections using the pessimistic approach, i.e., using locks. The second topic was

related to information flow, more precisely on predictive taint analysis. We summarize

hereafter the work presented on each topic and provide some perspectives for each.

6.1 Optimizing critical sections

In this part we proposed a generic algorithm for obtaining/releasing protections necessary

to provide serialization of critical sections. We provided five acquisition/release policies

that guarantee serializability of critical sections and deadlock freedom. We conducted

experiments showing that the policy called global, the one traditionally used, performed

worse than policy eager release on all experimentations. Moreover, we implemented a

library for the management of protections which allows the atomic acquisition of a set of

protections. Using this library we obtained significant performance gains compared to the

Posix library.

Perspectives for optimization of critical sections

Several perspectives are envisioned for this work. First, the experimentations should be

extended on more realistic examples, e.g., apply to PARSEC benchmark [Bie11]. This

would allow to strengthen the observation that the global policy is in general not the most

performing. Making this step further necessitates automatic transformation of critical

sections into lock protected portions of code. Initially, user annotations (as in [MZGB06])

could be used to specify the policy to be applied on the critical section while the locks

necessary to execute each statement would be inferred automatically using one of the

existing analyses in the literature. Taking this further, the selection of the most profitable

policy could be automatically inferred by identifying code patterns that are more profitable

for a specific policy.

Another interesting direction consists into improving the implementation of the library

127

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 6. Conclusion and perspectives

for managing protections. The implementation is way from being optimal. The necessary

information is stored into classic data structures and protected by a single coarse grain

mutex lock. Using finer locks would allow the library to serve multiple requests in parallel.

Moreover, some type of scheduling could be introduced in the processing of the requests in

order to avoid starvation. This phenomenon can be observed if a thread requests a large

number of protections which may never be available simultaneously. A straight forward

solution would be to apply FIFO scheduling even if it reduces parallelism. Another ad-hoc

solution could be to bound the number of protections to be requested atomically. This

solution though gives no guarantee on avoiding starvations.

6.2 Predictive information flow analysis

In this work we focused on taint analysis, a representative information flow analysis, and

proposed an efficient algorithm for offline prediction of taintness. During the online phase

that precedes, the multithreaded program is executed without any scheduling restrictions

(i.e., it is not serialized) and a log of all memory accesses is produced. Our prediction

technique consists into breaking the logs into epochs which are then processed using a

sliding window. Taintness is predicted locally for every window and summarized. The

summary produced is used as input to the next window. The prediction algorithm uses

an iterative method to infer taint propagations without enumerating and analyzing all

plausible serializations of events in the window. We presented in details how to predict

taint propagations under sequential consistency. Moreover, we included refinements to

taint prediction such that untainted variables are correctly excluded from window sum-

marizations. We further refined taint predictions by taking into account the semantics of

locks. Finally, we implemented a proof of concept tool.

Perspectives for predictive information flow analysis

Identification of information flows is a central issue in all vulnerability detection tools.

Existing tools either do not deal with multithreaded programs or they force them to

execute sequentially. Our prediction algorithm could be incorporated in such a tool to

allow extend the verdicts to a set of plausible serializations for a given parallel execution. In

the context of testing it could be used in combination with a fuzzer to increase coverage and

guide tests towards interesting executions. Finally, as observed by the experimentations,

epoch slicing strongly affects predictions. Heuristics could be proposed for defining the

minimum epoch size, or to indicate interesting events to use as slicing points.

The tool developed can be considerably improved. First, the current implementation of

the source to source transformation could be extended such that more complex C programs

can be processed. Also a more interactive interface for the analysis of windows would make

back tracking of information flows more comfortable. Notably we could implement the

distinction between strong and weak taintness. This would allow to exhibit a concrete

trace, spanning over several windows, that propagates taintness to variables designated as

strong.

128

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

6.2 Predictive information flow analysis

Finally, a promising direction would be to use some dynamic binary instrumentation

framework for generating the log files. This would unleash the restrictions on input pro-

grams. It would also allow producing much finer logs, since we would log events at the

assembly level and not the source code level as we do now. At this level of logging it makes

sense to consider other memory consistency models such as TSO.

129

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter 6. Conclusion and perspectives

130

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Appendix A

Boolean equation systems

Hereafter we provide some background information on boolean equation systems (BES).

The definitions and notations we introduce are from [Kei05, GK04] and are standard in

the literature.

Definition A.1.1 (Boolean expression [Kei05])

Let X = {x1, x2, . . . , xn} be a set of boolean variables. The set of boolean expressions

over X is denoted by B(X) and is given by the grammar:

α ∶∶= � ∣ ⊺ ∣ xi ∣ α ∧ α ∣ α ∨ α

where � stands for false, ⊺ stands for true and xi ∈ X

Definition A.1.2 (Syntax of boolean equation system [Kei05])

A boolean equation system E is of the form σixi = αi where σi ∈ {µ, ν}, xi ∈ X and

αi ∈ B(X)

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

Note that:

� all left hand sides of the equations are different

� all variables in the right hand side are from X

� the σ sign is µ if the equation is a least fixed point or ν if it is a greatest fixed point.

Definition A.1.3 (Boolean equation system standard form [Kei05])

A boolean equation system E

131

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter A. Boolean equation systems

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is in standard form if, for all i ∈ [1, n], the right hand side expression αi is of the form

y ○ z or y where ○ ∈ {∧,∨} and y, z ∈ X ∪ {0,1}

Definition A.1.4 (Boolean equation system alternation depth [Kei05])

Given a boolean equation system E

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

its alternation depth is the number of variables xi with 1 ≤ i ≤ n such that σi ≠ σi+1

A boolean equation system E is alternation free if its alternation depth is zero. That is,

all equations compute the same fixed point.

Definition A.1.5 (Variable dependency graph [GK04])

Let E be a disjunctive/conjunctive boolean equation system

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

the dependency graph of E is a directed graph GE = (V,E, `) where:

� V = {i∣1 ≤ n} ∪ {�,⊺} is the set of nodes

� E ⊆ V × V is the set of edges such that, for all equations σixi = αi

– (i, j) ∈ E iff a variable xj occurs in αi

– (i,�) ∈ E iff false occurs in αi

– (i,⊺) ∈ E iff true occurs in αi

– (�,�), (⊺,⊺) ∈ E

� ` ∶ V → {µ, ν} is the node labeling function defined by `(i) = σi for 1 ≤ i ≤ n, `(�) = µ,

and `(⊺) = ν.

Lemma A.1.1 (Solution of BES implies path existence [GK04])

Let GE = (V,E, `) be the variable dependency graph of a disjunctive (respectively con-

junctive) boolean equation system E. Let xi be any variable in E and let the valuation v be

the solution of E. Then, the following are equivalent:

132

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

1. v(xi) = ⊺ (respectively v(xi) = �)

2. ∃j ∈ V with`(j) = ν (respectively `(j) = µ) such that:

(a) j is reachable from i, and

(b) GE contains a cycle of which the lowest index of a node on this cycle is j

133

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Chapter A. Boolean equation systems

134

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

Bibliography

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency mod-

els: A tutorial. Computer, 29(12):66–76, December 1996.

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. An api for runtime code patching.

Int. J. High Perform. Comput. Appl., 14(4):317–329, November 2000.

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-

ton, 2011.

[BKK10] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the efficiency

of dynamic malware analysis. In Proceedings of the 2010 ACM Symposium on

Applied Computing, SAC ’10, pages 1871–1878, New York, NY, USA, 2010.

ACM.

[BRRS10] Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei Sabelfeld. Security

of multithreaded programs by compilation. ACM Trans. Inf. Syst. Secur.,

13(3):21:1–21:32, July 2010.

[Bru04] Derek L. Bruening. Efficient, transparent and comprehensive runtime code

manipulation. Technical report, 2004.

[CCG08] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for

atomic sections. In Proceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’08, pages 304–315,

New York, NY, USA, 2008. ACM.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM

Comput. Surv., 3(2):67–78, June 1971.

[CFC12] Maria Castillo, Federico Farina, and Alberto Cordoba. A dynamic deadlock

detection/resolution algorithm with linear message complexity. In Proceedings

of the 2012 20th Euromicro International Conference on Parallel, Distributed

and Network-based Processing, PDP ’12, pages 175–179, Washington, DC,

USA, 2012. IEEE Computer Society.

[CKS+08] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B.

Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael

Ryan, and Evangelos Vlachos. Flexible hardware acceleration for instruction-

grain program monitoring. In Proceedings of the 35th Annual International

135

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

Symposium on Computer Architecture, ISCA ’08, pages 377–388, Washington,

DC, USA, 2008. IEEE Computer Society.

[CLO07] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic

taint analysis framework. In Proceedings of the 2007 international symposium

on Software testing and analysis, ISSTA ’07, pages 196–206, New York, NY,

USA, 2007. ACM.

[CM09] Maximiliano Cristia and Pablo Mata. Runtime enforcement of noninterference

by duplicating processes and their memories. In WSEGI, 2009.

[CMC+06] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,

Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The atomos trans-

actional programming language. In Proceedings of the 2006 ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’06,

pages 1–13, New York, NY, USA, 2006. ACM.

[CZYH06] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient

flow tracing with dynamic binary rewriting. In Proceedings of the 11th IEEE

Symposium on Computers and Communications, ISCC ’06, pages 749–754,

Washington, DC, USA, 2006. IEEE Computer Society.

[DBM+09] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann,

and Samuel Midkiff. Cetus: A source-to-source compiler infrastructure for

multicores. Computer, 42:36–42, 2009.

[DKK07] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible

information flow architecture for software security. In Proceedings of the 34th

annual international symposium on Computer architecture, ISCA ’07, pages

482–493, New York, NY, USA, 2007. ACM.

[DM06] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Technical

report, 2006.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceed-

ings of the 20th international conference on Distributed Computing, DISC’06,

pages 194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race

conditions and deadlocks. In Proceedings of the nineteenth ACM symposium

on Operating systems principles, SOSP ’03, pages 237–252, New York, NY,

USA, 2003. ACM.

[EFJM07] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock

allocation. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’07, pages 291–296,

New York, NY, USA, 2007. ACM.

[EL11] Sifakis Emmanuel and Mounier Laurent. Politiques de gestion de protections

pour l’implémentation de sections critiques. RENPAR, 2011.

136

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

[EL12a] Sifakis Emmanuel and Mounier Laurent. Dynamic information-flow analysis

for multi-threaded applications. ISOLA, 2012.

[EL12b] Sifakis Emmanuel and Mounier Laurent. Politiques de gestion de protections

pour l’implémentation de sections critiques. TSI special RENPAR, 2012.

[ESKK08] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A

survey on automated dynamic malware-analysis techniques and tools. ACM

Comput. Surv., 44(2):6:1–6:42, March 2008.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for

java. In Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, PLDI ’00, pages 219–232, New York,

NY, USA, 2000. ACM.

[FFLQ08] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer.

Types for atomicity: Static checking and inference for java. ACM Trans.

Program. Lang. Syst., 30(4):20:1–20:53, August 2008.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. Extended static checking for java. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming lan-

guage design and implementation, PLDI ’02, pages 234–245, New York, NY,

USA, 2002. ACM.

[GK04] Jan Groote and Misa Keinänen. Solving disjunctive/conjunctive boolean

equation systems with alternating fixed points. In Kurt Jensen and Andreas

Podelski, editors, Tools and Algorithms for the Construction and Analysis of

Systems, volume 2988 of Lecture Notes in Computer Science, pages 436–450.

Springer Berlin / Heidelberg, 2004.

[GLG12] Malay Ganai, Dongyoon Lee, and Aarti Gupta. Dtam: Dynamic taint analysis

of multi-threaded programs for relevancy. In Proceedings of the 2012 ACM

SIGSOFT symposium on Foundations of Software Engineering, FSE ’12, New

York, NY, USA, 2012. ACM.

[GLP75] J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granularity of locks in a shared

data base. In Proceedings of the 1st International Conference on Very Large

Data Bases, VLDB ’75, pages 428–451, New York, NY, USA, 1975. ACM.

[GVC+10] Michelle L. Goodstein, Evangelos Vlachos, Shimin Chen, Phillip B. Gib-

bons, Michael A. Kozuch, and Todd C. Mowry. Butterfly analysis: adapt-

ing dataflow analysis to dynamic parallel monitoring. In Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming lan-

guages and operating systems, ASPLOS ’10, pages 257–270, New York, NY,

USA, 2010. ACM.

[GVW89] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchro-

nization primitives for large-scale cache-coherent multiprocessors. In Proceed-

137

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

ings of the third international conference on Architectural support for pro-

gramming languages and operating systems, ASPLOS-III, pages 64–75, New

York, NY, USA, 1989. ACM.

[Hav68] J. W. Havender. Avoiding deadlock in multitasking systems. IBM Syst. J.,

7(2):74–84, June 1968.

[HFP06] Michael W. Hicks, Jeffrey S. Foster, and P. Pratikakis. Lock inference for

atomic sections. Proceedings of the First ACM SIGPLAN Workshop on

Languages, Compilers, and Hardware Support for Transactional Computing,

2006.

[HIST10] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining

and the synchronization-parallelism tradeoff. In Proceedings of the 22nd ACM

symposium on Parallelism in algorithms and architectures, SPAA ’10, pages

355–364, New York, NY, USA, 2010. ACM.

[HLC09] Kim Hazelwood, Greg Lueck, and Robert Cohn. Scalable support for mul-

tithreaded applications on dynamic binary instrumentation systems. In

Proceedings of the 2009 international symposium on Memory management,

ISMM ’09, pages 20–29, New York, NY, USA, 2009. ACM.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.

Software transactional memory for dynamic-sized data structures. In Pro-

ceedings of the twenty-second annual symposium on Principles of distributed

computing, PODC ’03, pages 92–101, New York, NY, USA, 2003. ACM.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural

support for lock-free data structures. In Proceedings of the 20th annual inter-

national symposium on computer architecture, ISCA ’93, pages 289–300, New

York, NY, USA, 1993. ACM.

[HMJH08] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-

posable memory transactions. Commun. ACM, 51(8):91–100, August 2008.

[JBPT09] Ali Jannesari, Kaibin Bao, Victor Pankratius, and Walter F. Tichy. Hel-

grind+: An efficient dynamic race detector. In Proceedings of the 2009

IEEE International Symposium on Parallel&Distributed Processing, IPDPS

’09, pages 1–13, Washington, DC, USA, 2009. IEEE Computer Society.

[JNPS09] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. Calfuzzer: An

extensible active testing framework for concurrent programs. In Proceedings

of the 21st International Conference on Computer Aided Verification, CAV

’09, pages 675–681, Berlin, Heidelberg, 2009. Springer-Verlag.

[KBG97] Alain Kägi, Doug Burger, and James R. Goodman. Efficient synchronization:

let them eat qolb. In Proceedings of the 24th annual international symposium

on Computer architecture, ISCA ’97, pages 170–180, New York, NY, USA,

1997. ACM.

138

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

[Kei05] Misa Keinänen. Solving boolean equation systems. Research Report A99,

Helsinki University of Technology, Laboratory for Theoretical Computer Sci-

ence, Espoo, Finland, November 2005.

[Kni90] Tom Knight. Artificial intelligence at mit expanding frontiers. chapter An

architecture for mostly functional languages, pages 500–519. MIT Press, Cam-

bridge, MA, USA, 1990.

[KW10] Vineet Kahlon and Chao Wang. Universal causality graphs: a precise

happens-before model for detecting bugs in concurrent programs. In Proceed-

ings of the 22nd international conference on Computer Aided Verification,

CAV’10, pages 434–449, Berlin, Heidelberg, 2010. Springer-Verlag.

[KZC12] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race

bugs: telling the difference with portend. In Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’12, pages 185–198, New York, NY, USA,

2012. ACM.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, July 1978.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Trans. Comput., 28(9):690–691, September

1979.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, PLDI ’05, pages 190–200, New York, NY, USA,

2005. ACM.

[LDT+12] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles

Muller. Remote Core Locking: migrating critical-section execution to improve

the performance of multithreaded applications. In Proceedings of the Usenix

Annual Technical Conference, USENIX ATC ’12, pages 65–76, Boston, MA,

USA, 2012. USENIX Association.

[LELS05] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: a

dynamic deadlock detection mechanism using speculative execution. In Pro-

ceedings of the annual conference on USENIX Annual Technical Conference,

ATEC ’05, pages 3–3, Berkeley, CA, USA, 2005. USENIX Association.

[Lim95] B. Lim. Reactive synchronization algorithms for multiprocessors. Technical

report, Cambridge, MA, USA, 1995.

[LT93] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.

Computer, 26(7):18–41, July 1993.

139

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

[MC91] Sang L. Min and Jong-Deok Choi. An efficient cache-based access anomaly

detection scheme. SIGOPS Oper. Syst. Rev., 25(Special Issue):235–244, April

1991.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Trans. Comput.

Syst., 9(1):21–65, February 1991.

[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Efficient software

synchronization on large cache coherent multiprocessors. Technical report,

1994.

[MMN09] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace:

effective sampling for lightweight data-race detection. In Proceedings of the

2009 ACM SIGPLAN conference on Programming language design and im-

plementation, PLDI ’09, pages 134–143, New York, NY, USA, 2009. ACM.

[MSD10] MSDN. Priority inversion. http://msdn.microsoft.com/en-us/library/

aa915356.aspx, 2010.

[MSQT09] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. Sigrace:

signature-based data race detection. In Proceedings of the 36th annual inter-

national symposium on Computer architecture, ISCA ’09, pages 337–348, New

York, NY, USA, 2009. ACM.

[MZGB06] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: syn-

chronization inference for atomic sections. In Conference record of the 33rd

ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, POPL ’06, pages 346–358, New York, NY, USA, 2006. ACM.

[NG09] Vijay Nagarajan and Rajiv Gupta. Architectural support for shadow memory

in multiprocessors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, VEE ’09, pages

1–10, New York, NY, USA, 2009. ACM.

[NKWG08] Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and Rajiv Gupta. Dynamic

information flow tracking on multicores, 2008.

[NS05] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for auto-

matic detection, analysis, and signaturegeneration of exploits on commodity

software. In NDSS. The Internet Society, 2005.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In Proceedings of the 2007 ACM

SIGPLAN conference on Programming language design and implementation,

PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[NWT+07] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and

Brad Calder. Automatically classifying benign and harmful data races using

replay analysis. In Proceedings of the 2007 ACM SIGPLAN conference on

140

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

http://msdn.microsoft.com/en-us/library/aa915356.aspx
http://msdn.microsoft.com/en-us/library/aa915356.aspx

BIBLIOGRAPHY

Programming language design and implementation, PLDI ’07, pages 22–31,

New York, NY, USA, 2007. ACM.

[OC03] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection.

In Proceedings of the ninth ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPoPP ’03, pages 167–178, New York, NY,

USA, 2003. ACM.

[OPAGS11] Meltem Ozsoy, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Tameesh Suri.

Sift: a low-overhead dynamic information flow tracking architecture for smt

processors. In Proceedings of the 8th ACM International Conference on Com-

puting Frontiers, CF ’11, pages 37:1–37:11, New York, NY, USA, 2011. ACM.

[PFH11] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: Practi-

cal static race detection for c. ACM Trans. Program. Lang. Syst., 33(1):3:1–

3:55, January 2011.

[PK96] Dejan Perkovic and Peter J. Keleher. Online data-race detection via coherency

guarantees. In Proceedings of the second USENIX symposium on Operating

systems design and implementation, OSDI ’96, pages 47–57, New York, NY,

USA, 1996. ACM.

[Pou04] Kevin Poulsen. Tracking the blackout bug. http://www.securityfocus.

com/news/8412, 2004.

[QWL+06] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and

Youfeng Wu. Lift: A low-overhead practical information flow tracking system

for detecting security attacks. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 39, pages 135–148,

Washington, DC, USA, 2006. IEEE Computer Society.

[Reg11] John Regehr. Race condition vs data race. http://blog.regehr.org/

archives/490, 2011.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of

lock-based programs. In Proceedings of the 10th international conference

on Architectural support for programming languages and operating systems,

ASPLOS-X, pages 5–17, New York, NY, USA, 2002. ACM.

[RGM+08] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran,

Shimin Chen, Michael Kozuch, and Michael Ryan. Parallelizing dynamic

information flow tracking. In Proceedings of the twentieth annual symposium

on Parallelism in algorithms and architectures, SPAA ’08, pages 35–45, New

York, NY, USA, 2008. ACM.

[RVS+06] Ram Rangan, Neil Vachharajani, Adam Stoler, Guilherme Ottoni, David I.

August, and George Z. N. Cai. Support for high-frequency streaming in cmps.

In Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 39, pages 259–272, Washington, DC, USA, 2006.

IEEE Computer Society.

141

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

http://www.securityfocus.com/news/8412
http://www.securityfocus.com/news/8412
http://blog.regehr.org/archives/490
http://blog.regehr.org/archives/490

BIBLIOGRAPHY

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: a dynamic data race detector for multithreaded

programs. ACM Trans. Comput. Syst., 15(4):391–411, November 1997.

[SFM10] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. Penelope: weav-

ing threads to expose atomicity violations. In Proceedings of the eighteenth

ACM SIGSOFT international symposium on Foundations of software engi-

neering, FSE ’10, pages 37–46, New York, NY, USA, 2010. ACM.

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: data race

detection in practice. In Proceedings of the Workshop on Binary Instrumen-

tation and Applications, WBIA ’09, pages 62–71, New York, NY, USA, 2009.

ACM.

[SKSP06] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: a helper-

thread approach to programmable, automatic, and low-overhead memory bug

detection. IBM J. Res. Dev., 50(2/3):261–275, March 2006.

[SM06] A. Sabelfeld and A. C. Myers. Language-based information-flow security.

IEEE J.Sel. A. Commun., 21(1):5–19, September 2006.

[SMQP09] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt. Ac-

celerating critical section execution with asymmetric multi-core architectures.

In Proceedings of the 14th international conference on Architectural support

for programming languages and operating systems, ASPLOS ’09, pages 253–

264, New York, NY, USA, 2009. ACM.

[SMWG11] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. Predictive anal-

ysis for detecting serializability violations through trace segmentation. In

Satnam Singh, Barbara Jobstmann, Michael Kishinevsky, and Jens Brandt,

editors, MEMOCODE, pages 99–108. IEEE, 2011.

[SSP08] Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-grained binary

instrumentationwith applications to taint-tracking. In Proceedings of the 6th

annual IEEE/ACM international symposium on Code generation and opti-

mization, CGO ’08, pages 74–83, New York, NY, USA, 2008. ACM.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceed-

ings of the fourteenth annual ACM symposium on Principles of distributed

computing, PODC ’95, pages 204–213, New York, NY, USA, 1995. ACM.

[Sun71] Yngve Sundblad. The ackermann function. a theoretical, computational, and

formula manipulative study. BIT Numerical Mathematics, 11:107–119, 1971.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-

threaded imperative language. In Proceedings of the 25th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’98,

pages 355–364, New York, NY, USA, 1998. ACM.

142

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

[SWG92] Jaswinder P Singh, Wolf Weber, and Anoop Gupta. Splash: Stanford parallel

applications for shared-memory*. Technical report, Stanford, CA, USA, 1992.

[Tan01] Andrew Tanenbaum. Modern Operating Systems 2nd edition. Prentice Hall,

2001.

[UMP10] Gautam Upadhyaya, Samuel P. Midkiff, and Vijay S. Pai. Using data struc-

ture knowledge for efficient lock generation and strong atomicity. In Pro-

ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’10, pages 281–292, New York, NY, USA,

2010. ACM.

[VS97] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program

security. In Proceedings of the 7th International Joint Conference CAAP/-

FASE on Theory and Practice of Software Development, TAPSOFT ’97, pages

607–621, London, UK, UK, 1997. Springer-Verlag.

[WCGY09] Chao Wang, Swarat Chaudhuri, Aarti Gupta, and Yu Yang. Symbolic prun-

ing of concurrent program executions. In Proceedings of the the 7th joint

meeting of the European software engineering conference and the ACM SIG-

SOFT symposium on The foundations of software engineering, ESEC/FSE

’09, pages 23–32, New York, NY, USA, 2009. ACM.

[WG12] Chao Wang and Malay Ganai. Predicting concurrency failures in the gen-

eralized execution traces of x86 executables. In Proceedings of the Second

international conference on Runtime verification, RV’11, pages 4–18, Berlin,

Heidelberg, 2012. Springer-Verlag.

[WRS] Waddington, Roy, and Schmidt. Dynamic analysis and profiling of multi-

threaded systems.

[WS06a] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of

atomicity errors in concurrent programs. In Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel programming,

PPoPP ’06, pages 137–146, New York, NY, USA, 2006. ACM.

[WS06b] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multi-

threaded programs. IEEE Trans. Softw. Eng., 32(2):93–110, February 2006.

[YRC05] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of

data race conditions via adaptive tracking. In Proceedings of the twentieth

ACM symposium on Operating systems principles, SOSP ’05, pages 221–234,

New York, NY, USA, 2005. ACM.

[ZCYH05] Qin Zhao, Winnie W. Cheng, Bei Yu, and Scott Hiroshige. Dog: Efficient

information flow tracing and program monitoring with dynamic binary rewrit-

ing abstract, 2005.

[ZJS+11] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David

Wetherall. Tainteraser: protecting sensitive data leaks using application-level

taint tracking. SIGOPS Oper. Syst. Rev., 45(1):142–154, February 2011.

143

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

BIBLIOGRAPHY

[ZTZ07] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted

lockset-based race detection. In Proceedings of the 2007 IEEE 13th Interna-

tional Symposium on High Performance Computer Architecture, HPCA ’07,

pages 121–132, Washington, DC, USA, 2007. IEEE Computer Society.

144

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

ABSTRACT

The invasion of multi-core and multi-processor platforms on all aspects of computing

makes shared memory parallel programming mainstream. Yet, the fundamental problems

of exploiting parallelism efficiently and correctly have not been fully addressed. Moreover,

the execution model of these platforms (notably the relaxed memory models they imple-

ment) introduces new challenges to static and dynamic program analysis. In this work we

address 1) the optimization of pessimistic implementations of critical sections and 2) the

dynamic information flow analysis for parallel executions of multi-threaded programs.

Critical sections are excerpts of code that must appear as executed atomically. Their

pessimistic implementation reposes on synchronization mechanisms, such as mutexes, and

consists into obtaining and releasing them at the beginning and end of the critical section

respectively. We present a general algorithm for the acquisition/release of synchroniza-

tion mechanisms and define on top of it several policies aiming to reduce contention by

minimizing the possession time of synchronization mechanisms. We demonstrate the cor-

rectness of these policies (i.e., they preserve atomicity and guarantee deadlock freedom)

and evaluate them experimentally.

The second issue tackled is dynamic information flow analysis of parallel executions.

Precisely tracking information flow of a parallel execution is due to non-deterministic

accesses to shared memory. Most existing solutions that address this problem enforce a

serial execution of the target application. This allows to obtain an explicit serialization

of memory accesses but incurs both an execution-time overhead and eliminates the effects

of relaxed memory models. In contrast, the technique we propose allows to predict the

plausible serializations of a parallel execution with respect to the memory model. We

applied this approach in the context of taint analysis, a dynamic information flow analysis

widely used in vulnerability detection. To improve precision of taint analysis we further

take into account the semantics of synchronization mechanisms such as mutexes, which

restricts the predicted serializations accordingly.

The solutions proposed have been implemented in proof of concept tools which allowed

their evaluation on some hand-crafted examples.

te
l-0

08
23

05
4,

 v
er

si
on

 1
 -

16
 M

ay
 2

01
3

	Introduction
	Increasing computing power
	Exploiting computer power
	Parallel programming models
	Shared memory architectures
	Caveats of shared memory

	Security and correctness
	Information security
	Program validation

	Our contribution
	Optimizing pessimistic critical sections
	Predictive information flow analysis

	Organization of the thesis

	Thread programming model
	What are threads?
	Description of a process
	Description of threads

	Common usage of threads
	Challenges of threads
	Data race detection
	Synchronization mechanisms
	Synchronization issues

	Executing threads in parallel
	Sequential consistency
	Relaxing sequential consistency

	Formalization of a multithreaded program execution
	Sequential schedule and serialization
	Parallel schedule and serialization
	Constraining interleavings of a multithreaded execution

	Summary

	Optimizing critical sections
	Relaxing atomicity of critical sections
	Implementing critical sections
	Optimistic implementation of critical sections
	Pessimistic implementation of critical sections
	Optimistic versus pessimistic concurrency

	Improving pessimistic implementations of critical sections
	Positioning of our work

	Mutual exclusion mechanisms
	Policies for acquisition/release of protections
	General algorithm for managing protections
	Policies for acquisition/release of protections

	Observations on policies
	Equivalence of Incremental/Eager and Incremental priority release
	Optimizing critical sections implemented with Incremental policies
	Inferring optimal total order of variables

	Extending critical sections
	Loops and conditionals
	Function calls

	Recapitulation

	Predictive information flow analysis
	Taint analysis
	Explicit information flow
	Implicit information flow
	Application of taint analysis

	Tracing taintness
	Dynamic binary instrumentation
	Sequential taint analysis
	Optimizing DIFT

	Extending monitored traces
	Runtime prediction for concurrency bugs
	Runtime prediction applied to information flow
	Positioning of our work

	Predictive explicit taint analysis
	Overview of our approach
	Slicing the parallel schedule (log files)

	Sliding window-based explicit taint prediction
	Iterative explicit taint prediction in a window
	Enumerative approach
	Iterative approach
	Sliding windows - overlapping

	Iterative taint propagation under sequential consistency
	Respecting program order without kills
	Taking kills into account
	Effects of sliding window

	Respecting synchronization primitives
	Inferring order from mutexes
	Enforcing explicit mutex ordering in taint dependency paths
	Enforcing implicit mutex ordering in taint dependency paths

	Recapitulation

	Implementation and experimentation
	Optimizing critical sections
	Library for managing protections
	Experimentations
	Experimental results

	Offline predictive information flow
	Proof of concept tool
	Some experimental results

	Conclusion and perspectives
	Optimizing critical sections
	Predictive information flow analysis

	Appendix Boolean equation systems
	Bibliography

