L'affectation de fréquences (AFP) consiste à attribuer des fréquences radio aux liens de communications d'un réseau en respectant un spectre de fréquences donné et des contraintes d'interférence électromagnétique sur les liens. Vu la limitation des ressources spectrales pour chaque application, les ressources en fréquences sont souvent insuffisantes pour déployer un réseau sans interférence. Dans ce cas, le réseau est surcontraint et le problème est irréalisable.

Résoudre le problème consiste alors à identifier les zones surcontraintes pour en revoir la conception.

Le travail que nous présentons concerne la recherche d'une de ces zones surcontraintes avec une approche algorithmique basée sur la modélisation du problème par un CSP. Le problème de l'affectation de fréquences doit donc être modélisé comme un problème de satisfaction de contraintes (CSP) qui est représenté par un triplé : un ensemble de variables (les liens radio), un ensemble de contraintes (les interférences électromagnétiques), et un ensemble de domaines (les fréquences admises). Sous forme de CSP, une zone perturbée peut être considérée comme un sous-ensemble irréalisable irréductible du problème (IIS pour Irreductible Infeasible Subset). Un IIS est un sous problème de taille minimale qui est irréalisable, c'est-à-dire que tous les sous-ensembles d'un IIS sont réalisables. L'identification d'un IIS dans un CSP se rapporte à deux résultats généraux intéressants. Premièrement, en localisant un IIS on peut plus facilement prouver l'irréalisabilité d'un problème donné car l'irréalisabilité d'un IIS, qui est supposé être petit par rapport au problème complet, est plus rapidement calculable que sur le problème entier. Deuxièmement, on peut localiser la raison de l'irréalisabilité; dans ce cas, sur un problème réel, le décideur peut proposer des solutions pour relâcher des contraintes de l'IIS, et peutêtre aboutir à une solution réalisable pour son problème. La recherche d'IIS consiste donc à résoudre un problème fondamental qui fait partie des outils de prise de décision. Ce travail propose des algorithmes pour identifier un IIS dans un CSP incohérent. Ces algorithmes ont été testés sur des instances connues du problème de l'affectation des fréquences et du problème de k-coloration de graphe. Les résultats ont montrés d'une grande amélioration sur des instances du problème de l'affectation des fréquences par rapport aux méthodes connues.

List of Figures

Introduction

In the human ecosystem, all the resources are limited. For example, the scale of the landscape for living, the resource of drinkable water, etc. A crucial reality is that human beings always attempt to benefit themselves maximally without respecting the natural laws. Such conflict between the human's "greed" and nature's "impracticability" leads to the effect that many objectives cannot be achieved without increasing the indispensable resources, or reducing several implied constraints and requests.

Let's begin with a simple example in the real world which demonstrates the above conflict. Suppose that two people named Tom and Jerry decide to open a bar. Tom is available during the week except Monday and Sunday, Jerry is available during the week except Saturday and Sunday which represent the availability of human resources. Their objective is to maintain the bar open during all days in a week except Monday. It is quite clear to see that such an objective cannot be achieved without compromise, since both Tom and Jerry are not available on Sunday. Such human resource shortage leads to the failure of promise. Imagine another academic example, a graph of a triangle consists of three nodes and three arcs with 2 colors, the graph cannot be colored by assigning two adjacent nodes differently.

From these two very simple examples, it is easy to verify the unsatisfiability of the problems and to find the conflicts. In more complex cases, the unsatisfiability and the conflicts are not so visible. For example, a telecommunication operator wants to assign available frequencies to the antenna in a city telecommunication network while satisfying interference between adjacent antennae. Due to the network scale and the complexity of interference defined by the physical laws related to radio communication, it is very difficult for a human to determine whether the given frequencies is sufficient to avoid interference in the network without any computer aids.

In order to adopt the computer aids, the real world problems need to be described firstly in the form of mathematical models. One convenient modeling technique is to define the real world problem as a constraint satisfaction problem. Such a technique elegantly represents the problems by three basic components -the decision variables, the available resources for each variable, and the constraints to satisfy while assigning resources to the variables. Considering the above bar example, the staff assignment needs to be determined as a decision variable, the staff availability is applied as a resource and the promise of bar opening can be considered as a constraint. Thus the problem is interpreted as a constraint satisfaction problem. In the example in the telecommunication network, the antenna can be considered as decision variables which need to be assigned with radio frequencies, the available frequencies are the resources which can be distributed, and finally, the electromagnetic interference laws are the constraints which guarantee the quality of communication service.

By representing them as constraint satisfaction problems, the above real world problems are formally expressed by a set of variables, domains and constraints and many resolution techniques can be adopted to solve this kind of problem which consist in satisfying the constraints while assigning the resources from the domains to the variables.

As mentioned before, the problem model may be unsatisfiable due to lack of resources. In that case the problem is over-constrained and one objective may be to satisfy the maximum number of constraints instead of satisfying all constraints. Another crucial interest of this kind of problems is to find out the reason for failure which causes the unsatisfiability of the problem. Following the terminology proposed by Chinneck [START_REF] Chinneck | Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods[END_REF], such reasons can be interpreted mathematically by an Irreducible Infeasible Subset.

At the beginning of the 1980's in last century [START_REF] Van Loon | Irreducibly inconsistent systems of linear inequalities[END_REF], the researchers from the linear programming community worked on identifying the satisfiability of the linear programming models. A significant research result from this is the identification of a subsystem inside unsatisfiable linear programming system, which is unsatisfiable. By locating a smaller size of unsatisfiable subsystem, the unsatisfiable reason may be concluded to a comprehensive scale. Following the terminology defined by Chinneck, such subsystem can be named as an Infeasible Subset (Subsystem), the optimal definition of Infeasible Subset is called Irreducible Infeasible Subset (IIS). The meaning is that the reduction of that Infeasible Subset by removing one constraint or variable transforms the subset into a feasible one.

Beside the IIS identification in linear programming, the study also extended to solving SAT (boolean SATisfiability problems). The SAT community heavily studies the MUC/MUS (Minimal Unsatisfiable Core/Subformula, the analogous of IIS in SAT problems) detection in the recent decade and develops techniques which efficiently verify the SAT system unsatisfiability.

In SAT problems, the MUC/MUS consists of a subset of clauses and the implied literals under such clauses. Under the scope of more generalized constraint satisfaction problems, an IIS consists of a subset of constraints and a subset of variables. It is unsatisfiable by itself [START_REF] Chinneck | Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods[END_REF], and impacts on modeling and reasoning about the real world problems cannot be over stated but its practical and theoretical importance are highlighted in both Operational Research and Artificial Intelligence communities. In the bar opening example, the negotiation between the two people or the different objectives can be discussed when the failure reason is located. Further action may be to improve the current conflict situation. The identification of IIS not only provides a failure reason as the reference for the further actions, but also can be considered as a proof of the problem unsatisfiability. In the more complex example of frequency assignment to a telecommunication network discussed above, the unsatisfiability of a regional telecommunication network may be difficult to prove. After the identification of one IIS inside the problem, the problem unsatisfiability can be proved through the unsatisfiability proof of a relatively smaller size IIS which constitutes a sub-network of the global network.

As mentioned above, numerous resolution techniques were proposed to identify MUC/MUS in SAT problem or IIS in CSP problems during the last decade. These techniques are dedicated to various applications and efficient in particular domains. In this dissertation, a new method dedicated to the Frequency Assignment Problem, named LCV (Locator, Constructor and Verificator), is proposed to identify a service blockage zone (interpreted by IIS) in telecommunication network. Also the method is adopted to identify the critical subgraph, which is the IIS in the context of the k-coloring problem. This dissertation is organized as following. It begins with Chapter 1, the general introduction of Constraint Satisfaction Problems modeling technique (CSP). The key components of CSP will be addressed and several important definitions and properties will be given. Several CSP resolution techniques developed in recent decades from both operational research and artificial intelligence communities will be illustrated.

The second chapter concentrates on the main topic of this dissertation, the Irreducible Infeasible Subset (IIS). The important definitions of Infeasible Subset (IS) and its optimal form IIS will be explained. The important properties of IIS will be demonstrated and IIS identification will be proven.

Based on these theoretical studies, the practical study on adopting the existing method on the IIS identification in the Frequency Assignment Problem (FAP) will be illustrated and analyzed. It brings motivation in studying a new method dedicated for such application.

Chapter 3 begins with the introduction of the Frequency Assignment Problem and how it can be formulated as a Constraint Satisfaction Problem. The different topologies of CELAR and ROADEF2001 benchmarks used to evaluate the performance of the proposed method are illustrated right after the problem introduction. A comparative analysis between the method proposed by Galinier and Hertz [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] and the new method LCV will be given to demonstrate the performance leverage carried by LCV on the FAP instances.

With the experience in the Frequency Assignment Problem, Chapter 4 attempts to extend the general proposed LCV in identifying the critical subgraph in the k-coloring problem. The chapter begins with the definition of the k-coloring problem and the famous DIMACS benchmarks. The comparison between the state of the art method and the general LCV is illustrated by careful analysis and experimental results.

The general conclusion will be given at the end of this dissertation as the essential report of previous study and experience and the perspective attempt to explore new research area in IIS detection.

Chapter 1

Constraint satisfaction problems and resolution techniques

The Constraint Satisfaction Problem is a convenient modeling technique to model many real world applications. For example, assigning the frequencies on an antennae, allocating staff for airline crews, etc. Given a close look at these real world applications, there are several common characteristics with them. These problems consist in assigning the resources, the available frequencies or the human resources, on the decision variables, the antennae or crew scheduling, and respecting the constraints, the electromagnetic interferences or staff availability.

A constraint satisfaction problem consists of three main components: variables, domains and constraints. In this chapter, the important definitions, theorems and resolution techniques concerning constraint satisfaction problem will be presented.

Definitions for CSP

A constraint satisfaction problem (CSP) consists in finding a legal assignment of values from the domains of variables which satisfies all the constraints of the problem. The variables of CSP is defined as: Definition 1 (Variable). A variable of CSP is a decision variable x which is waiting to be assigned with a value.

The constraint in CSP can be defined as:

Definition 2 (Constraint). A constraint c ∈ C is a relation R c defined on a subset of variables X(c) ⊆ X, it regulates the legal combination of values on X(c).
Where X(c) is the subset of variables under the constraint c, respectively the subset of constraints imposed on same variable x is denoted as C(x), the relation R c defines the permitted Cartesian product of values on the subset of variables X(c). Following the terminology of arity of the mathematical relation, the arity of a constraint can be described as: The un-ary constraint is such a constraint with arity of 1, the binary constraint is such a constraint with arity of 2 and the n-ary constraint is such a constraint with an arity of n, where n > 2. The domain of each variable is defined as: Definition 4 (Domain). A domain of variable x, denoted D(x), consists of a set of values which is available for assignment on variable x.

With the definition of variables, constraints and domains of variables, a CSP can be essentially described as: Definition 5 (Constraint Satisfaction Problem). A CSP is a 3-tuple P = (X, C, D), where X is a set of variables, D is a corresponding set of domains, C is a set of constraints applied on X.

Let X ′ be a subset of X denoted X ′ ⊆ X, C(X ′) be a subset of constraints imposing exclusively the variables of the subset X ′ ; or let C ′ be the subset of constraints where C ′ ⊆ C, X(C ′) ⊆ X be the subset of variables connected by constraints of the subset C ′ . A subproblem of a CSP can be presented as:

Definition 6 (Subproblem). A subproblem of a CSP is a tuple P ′ = (X ′ , C ′ , D), where C ′ = C(X ′) and C ′ ⊆ C and X ′ = X(C ′) and X ′ ⊆ X.
An assignment A of a CSP can be written as: Definition 7 (Assignment and Partial assignment). An assignment A = {a 1 , a 2 , . . . , a m }, is a result obtained by assigning one value a i ∈ D i to each variable x i ∈ X m , where X m is a subset of variables in X, denoted X m ⊆ X. In case X m ⊂ X, the assignment A is a partial assignment. Solving a CSP is to find a solution: Definition 8 (Solution and Partial solution). A solution S of a CSP is an assignment which satisfies all the constraints of this CSP. Respectively, a partial solution is a partial consistent assignment on X ′ which satisfies all the constraints exclusively on a subset of variables X ′ , where X ′ ⊂ X.

In both cases, the solution or partial solution, we say that the assignment is valid or consistent. If the assignment does not satisfy all the constraints, it is invalid or inconsistent. Such assignment is not a solution of the CSP. A satisfiable CSP is defined as: Definition 9 (Satisfiable CSP). A CSP P is called satisfiable if and only if it exists at least one solution to this CSP, otherwise it is unsatisfiable or over-constrained.

For over-constrained or unsatisfiable problems, it is also interesting to find out a compromised solution which respects the maximal number of constraints. Freuder and Wallace declared such problem definition as Partial CSP or Maximal Constraint Satisfaction Problem (Max-CSP) [START_REF] Freuder | Partial constraint satisfaction[END_REF]: Definition 10 (Max-CSP). A Max-CSP is an optimization problem for which the objective is to find one of the assignments that satisfy the maximal number of constraints.

Then we can define the following: Definition 11 (Optimal solution of Max-CSP). An optimal solution of a Max-CSP is an assignment such that it does not exist another assignment which satisfies more constraints, strictly.

There is a particular category of CSP which cannot be ignored. The boolean SATisfiability problem (SAT) plays an important role in the study of CSP, it is a reference benchmark. It is commonly expressed as a propositional formula which can be described as: Definition 12 (Propositional formula). A propositional formula F in Conjunctive Normal Form (CNF) is the conjunction of clauses from a set C = {c 1 , . . . , c m } involving the variable set X = {x 1 , . . . , x n }. Each clause c i ∈ C is the disjunction of literals from a set L i . Each literal is either a variable x ∈ X or its negative ¬x. A CNF formula can thus be expressed in the following way:

F = m i=1 (l∈Li l) (1.1)
A formula F is satisfiable if and only if there exists a truth assignment that satisfies all its clauses. The SAT consists in finding a truth assignment for all the variables, such that the formula F is evaluated to be true, or showing that no such assignment exist. As a particular case of CSP, the SAT inherits the properties of CSP. The clauses of SAT are the constraints of CSP, the variables have the same definition of the variables of CSP and the available values for each literal are two boolean valuestrue or false. As CSP with MaxCSP, the MaxSAT is the analogous in SAT problem.

In following sections, the three major techniques used to deal with CSP will be presented. They are constraint propagation, learning system and resolution methods of CSP.

Local consistency

Definitions of consistency

The consistency or the satisfiability of an assignment refers to the constraints satisfaction or truth of the assignment.

Definition 13 (Local consistency).

Local consistency concentrates the conditions for the consistency of subsets of variables or constraints. They require that a partial solution can be extended to an assignment of another variable such that the resulting assignment is consistent.

There are several levels of local consistency, mainly the Node-Consistency, the Arc-Consistency, the Path-Consistency.

Node-Consistency only concerns a single variable, it may be considered as the single variable domain reduction.

Thus it can be directly interpreted as the domain definition of the CSP.

Definition 14 (Node-Consistency

). A variable x i ∈ X is Node-Consistent if any value a i ∈ D(x i
) is allowed by the unary constraints on x i .

Mackworth [START_REF] Mackworth | Consistency in networks of relations[END_REF] clearly defined the Arc-Consistency for binary CSP:

Definition 15 (Arc-Consistency). Given two variables x i , x j ∈ X under the same binary constraint c ij . x i and x j are Arc-Consistent if for any value a i ∈ D(x i), there exists a value a j ∈ D(x j), such that the values pair (a i , a j) is allowed by the binary constraint c ij on x i , x j . The value a j is called a supporter of the value a i and vice-versa.

The CSP itself is said Arc-Consistent if any couple of adjacent variables is Arc-Consistent. Montanari [START_REF] Montanari | Networks of constraints: Fundamental properties and applications to picture processing[END_REF] proposed Path-Consistency as a necessary condition for the pairs of values in binary CSP:

Definition 16 (Path-Consistency). A variable pair (x i , x j) is Path-Consistent if there exists an Arc-Consistent values pair (a i , a j) satisfying all constraints forming the path between the variables x i and x j , where a i ∈ D(x i) and

a j ∈ D(x j).
Freuder generalized the notion of local consistencies to k-Consistency [START_REF] Freuder | A sufficient condition for backtrack-free search[END_REF]:

Definition 17 (k-Consistency). A CSP is k-Consistent if for any k -1 variables (x 1 , x 2 , . . . , x k-1
), there exists a consistent partial assignment on these k -1 variables and a value a ∈ D(x k), such that the partial assignment of k variable is consistent.

The k-Consistency generalizes all the local consistency which contains a subset of k variables, in particular, 1-Consistency interprets the Node-Consistency, 2-Consistency interprets the Arc-Consistency and 3-Consistency interprets the Path-Consistency.

In following sections, several local consistency algorithms will be presented and compared by their time and space complexity.

1.2.2 Arc-Consistency algorithms

1.2.2.

Global view on Arc-Consistency algorithms

Arc-Consistency (AC) algorithms are local consistency checking algorithms acting as variable domain reduction. The main difference between Node-Consistency and Arc-Consistency is that Node-Consistency exclusively deals with a single variable's domain and Arc-Consistency deals with a pair of connected variables x i and x j which are under the binary constraint c ij . Bessière [START_REF] Bessière | Constraint propagation[END_REF] concludes two important reasons to study Arc-Consistency: it is the basic mechanism used in all solvers and the improvement made for Arc-Consistency can be applied to achieve other local consistencies algorithms.

Briefly, all Arc-Consistency algorithms can be described as removing any value from a variable's domain which is Arc-Inconsistent. We use a graph coloring problem to demonstrate the AC verification. In Figure 1.1, node x i connects with both nodes x j and x k , each node has its proper domain, {red, blue, green} for nodes x i and x k , {red} for x j . The color red in x i has its supporter in node x k , which is blue or green. But it has no supporter in x j 's domain.

With the Arc-Consistency checking, the color red will be pruned from x i 's domain.

Algorithm 1 illustrates the general routine of AC algorithms. The algorithm consists of a Q list which stores the variables waiting for verification. When the domain of a variable x i is reduced, the constraint connected or neighbor variables N (x i) of such variables are inserted into the Q list. Such mechanism avoids the repetitive variables and constraints checking and guarantees that the consistency will be still held while the domain reduction happens. Given a CSP P = (X, D, C), the AC algorithm either returns a CSP P ′ with a set of reduced domains respecting Arc-Consistent P ′ = (X, D ′ , C) where D ′ ⊆ D, or determines that the problem is not Arc-Consistent.

Algorithm 1: AC algorithm general routine

Input: A CSP P = (X, C, D) Output: Return an Arc-Consistent P ′ = (X, C, D ′) or P is not Arc-Consistent Set Q ← V ; 1 while Q = ∅ do 2 Pick a variable x ∈ Q; 3 foreach a ∈ D(x) do 4
Verify if a has a support value in each neighbor domain D(N (x)); There are many AC algorithms proposed in the literature, their slight differences are the various implementations in Line 5 of Algorithm 1. In the following sections, several well known AC algorithms will be essentially described in two categories: coarse-grained and fine-grained which are defined by Zhang and Yap [START_REF] Zhang | Making AC-3 an optimal algorithm[END_REF]. a) Fine-grained: AC4 and AC6

Classified as fine-grained algorithms, the AC4 [10] and AC6 [START_REF] Bessière | Arc-consistency and arc-consistency again[END_REF] both remember the supporter values for each value in the domain of variables. In case of AC4, all the supporter values for each value are recorded with a counter of the number of supporters per value. The generation of supporters is done in a pre-processing step. The advantage of such an approach is that the constraint checking is only executed once during pre-processing, it avoids the checking overhead if the constraints checking is through variable assignment. During the procedure, the value will be removed from the domain only if its supporters counter is reduced to zero. Slightly different from AC4, the AC6 abandons the supporters counter and only records the first consistent supporter value for each value. By recording only one supporter per value, it greatly reduces the space complexity while it may have the risk of increasing the number of constraints Instead of recording all the supporter values, the coarse-grained algorithms only adapt the constraint checking by brute force. The routine of AC3 [START_REF] Mackworth | Consistency in networks of relations[END_REF] can be exactly described as Algorithm 1. The algorithm verifies all the values of a variable to see if there is at least one supporter value in every adjacent (or neighborhood) variables' domain. If a value of x i has no supporter in one adjacent variable's domain, it will be pruned from the domain D(x i). As such value may be a supporter value, the adjacent variables' consistency will be re-verified. The Q list is implemented to avoid the repetitive checking of variables by only adding the variables which are not in the list. It is noticed that checking the values for supporters always begins at the first value of the adjacent variable domain. AC2001 [START_REF] Zhang | Making AC-3 an optimal algorithm[END_REF][START_REF] Bessière | Refining the basic constraint propagation algorithm[END_REF] avoids such repetitive supporter value checking by ordering the values in the domain and recording a pointer to the first supporter's position in the domain. When a supporter is pruned, the new supporter will be found only after such supporter in the domain.

The AC algorithms usually act as the constraint propagator and are embedded in the CSP solvers. In order to choose the right one to integrate inside solvers, it is necessary to compare the algorithms and to wisely implement them in an efficient manner. Let n be the number of variables, e be the number of constraints and d be the maximal size of the domain. The time and space complexities of above four AC algorithms are illustrated in Table 1.1. Beside above four AC algorithms, there are also several other AC algorithms existing in the literature. The reader can refer to [START_REF] Bessière | Constraint propagation[END_REF], [START_REF] Mehta | Two new lightweight arc consistency algorithms[END_REF] and [START_REF] Boussemart | Revision ordering heuristics for the constraint satisfaction problem[END_REF] for more details.

Complexity AC3

AC4 AC6 AC2001 Time O(ed 3) O(ed 2) O(ed 2) O(ed 2) Space O(e) O(ed 2) O(ed) O(ed)
Alongside binary constraints, the AC algorithms can be also extended to deal with high arity constraints. Mackworth [START_REF] Mackworth | On reading sketch maps[END_REF] proposes a general (multi-arity constraints) AC algorithm GAC3 based on the binary AC3 which has a time complexity of O er 3 d r+1 and a space complexity of O (er), where r is the greatest arity among all constraints.

Recursive implementation of AC3

Despite of the time complexity of AC3, its space complexity is less than both the fine-grained algorithms and AC2001.

Wallace [START_REF] Wallace | Why AC-3 is almost always better than AC-4 for establishing arc consistency in csps[END_REF] points out that AC3 computing performance in practice is better than the fine-grained algorithms in their experiments. This evidence suggests that AC3 is an ideal constraint propagator embedded in CSP solvers due to its simplicity and its acceptable worst case computational performance in practice.

Algorithm 2: recursive implementation of AC3 Input: In [START_REF] Boussemart | Revision ordering heuristics for the constraint satisfaction problem[END_REF], the authors present a recursive implementation of the AC algorithms which can be described in Algorithm 2.

A CSP P = (X, D, C) Output: Return P is Arc-Inconsistent or an Arc-Consistent P ′ = (X, C, D ′) foreach x ∈ X do 1 ArcConsistent(x);
The space complexity is reduced thanks to the recursive adoption of AC3 algorithm. The major drawback of recursive approach is that it may cause the repetitive variable checking due to the lack of Q list. Our experiments conducted on the CELAR benchmark (see Section 3.2.1 for detail information of benchmark) allow us to respond to this concern, it shows an average computational time gain of 68.51% on the non Arc-Consistent instances and an average gain of 31.29% on the Arc-Consistent instances.

Other local consistency algorithms

Alongside the Arc-Consistency algorithms, there are also other local consistency algorithms existing in the literature.

Based on local consistency enforcement, these algorithms can be divided into two categories:

• The local consistency algorithms stronger than Arc-Consistency.

• The local consistency algorithms weaker than Arc-Consistency.

Under the first category, there are Restricted Path Consistency (RPC) [START_REF] Berlandier | Improving domain filtering using restricted path consistency[END_REF], Path Inverse Consistency (PIC) [START_REF] Freuder | Neighborhood inverse consistency preprocessing[END_REF] and Max-Restricted Path Consistency (maxRPC) [START_REF] Debruyne | From restricted path consistency to max-restricted path consistency[END_REF] algorithms.

In contrast to Arc-Consistency acting on the domain reduction, these algorithms do not remove the inconsistent value from its domain. Instead, they only record the consistent tuples of values under the form of constraints or partial assignments which may be extended to a solution.

Given a Arc-Consistent instance and two Arc-Consistent variables x i and x j , RPC guarantees that any unique Arc-Consistent values pair (a i , a j) has a value a k ∈ D(x k) which holds the Arc-Consistency on (a i , a k) and (a k , a j) separately, where x k is connected with both x i and x j .

PIC restricts that, for any variable x i , there exists at least a pair of variables x j , x k ∈ X, such that (a i , a j , a k) are locally consistent for any a i ∈ D(x i) where a i ∈ D(x i), a j ∈ D(x j) and a k ∈ D(x k). maxRPC respects not only PIC condition where (a i , a j , a k) is locally consistent, but also the Arc-Consistency on (a i , a j) or (a i , a k).

The Table 1.2 shows the time and space complexity of different path consistency algorithms, where e is the number of constraints, n is the number of variables, d is the maximum size of the domain and t is the number of triple of variable (i, j, k) with c ij , c ik , c jk ∈ C . Comparing with the Arc-Consistency algorithms, these algorithms have relatively higher time complexity. Thus in practice, these algorithms may not be ideal candidates to act as an embedded constraint propagator in a CSP solver [START_REF] Bessière | Constraint propagation[END_REF].

Under the category of the local consistency weaker than Arc-Consistency, it includes Directional Arc-Consistency (DAC) [START_REF] Dechter | Network-based heuristics for constraint satisfaction problems[END_REF], Full Look-ahead (FL), Partial Look-ahead (PL) [START_REF] Haralick | Increasing tree-search efficiency for constraint satisfaction problems[END_REF] and Forward-Checking (FC) [START_REF] Haralick | Increasing tree-search efficiency for constraint satisfaction problems[END_REF]

Deadend learning methods

Deadend learning is a search space reduction technique in solving CSP. Frost and Dechter [START_REF] Frost | Dead-end driven learning[END_REF] report several frequently used learning techniques. Before the description of the learning techniques, two basic definitions need to be declared, they are Deadend and Nogood.

Definition 18 (Deadend).

A deadend is a state of a search node, it occurs when a partial consistent assignment cannot be extended on one variable x. Such variable x is called deadend variable.

A nogood is defined as: Definition 19 (Nogood). A nogood is a pair (A i , X i), where A i is a partial assignment on the subset of variables X i ⊆ X, such that no solution of the CSP contains A i .

A nogood is visible when a deadend occurs. Theoretically, the whole partial assignment causing the deadend can be considered as a nogood. The size of such partial assignment may be very large, which adds the space complexity to store it and the time complexity to verify its appearance during search. A minimal nogood is that for which by unassigning one of its variable, it is not a nogood anymore. Thus the deadend learning techniques are required to effectively and efficiently generate the nogood. Frost and Dechter [START_REF] Frost | Dead-end driven learning[END_REF] compared four types of deadend learning techniques:

• Value-based shallow learning.

• Graph-based shallow learning.

• Jump-back learning.

• Deep learning.

Example 1 is used to demonstrate above learning techniques:

Example 1. Given a CSP P = (X, D, C), a variable ordering ≺ (x 1 , x 2 , . . . , x 5) and a partial consistent assignment A 1...4 = {a 1 , a 2 , a 3 , a 4 } on variables subset {x 1 , x 2 , x 3 , x 4 }, a deadend occurs when the search attempts to find a consistent value on x 5 (see Figure 1. inconsistent with all values in D(x 5). Since the value a 3 is irrelevant in inconsistency, it can be removed from the nogood by Value-based learning. The nogood becomes (a 1 , a 2 , a 4) on the subset (x 1 , x 2 , x 4). The time complexity of Value-based learning is O (n) at each deadend.

b) Graph-based learning

Differing from Value-based learning, Graph-based learning will judge the relevance of the nogood by the connectivity among the variables. Since all the variables (x 1 , x 2 , x 3 , x 4) are connected with x 5 , the nogood is (a 1 , a 2 , a 3 , a 4) on variables (x 1 , x 2 , x 3 , x 4). The complexity of learning at each deadend is O (n).

c) Jump-back learning

During the search of Backjumping algorithm [START_REF] Gaschnig | Performance measurement and analysis of search algorithms[END_REF], it maintains a conflict set for the variable involved in instantiation.

If such a variable is a deadend variable as x 5 , the conflict set is a nogood for the problem. The complexity of this learning method is constant during the Backjumping search.

d) Deep learning

Deep learning literally analyzes the inconsistency between the permutation of values from a partial consistent assignment and the values in the domain of the deadend variable. Suppose in Example 1 that (x 3 , a 3) does not conflict with any values in the current variable x 5 , (x 1 , a 1) conflicts with the values subset I 1 of variable x 5 , (x 2 , a 2) conflicts with the values subset I 2 of variable x 5 , (x 4 , a 4) conflicts with the values subset I 4 of variable x 5 , where I 1 = I 4 ,I 1 = I 2 and D(x 5) = I 1 ∪ I 2 = I 1 ∪ I 4 . Two values permutations (x 1 , a 1 ; x 2 , a 2) and (x 1 , a 1 ; x 4 , a 4) are recorded as nogood.

Dechter [START_REF] Dechter | Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition[END_REF] pointed out that its cost is exponential by the size of the initial conflict set.

Frost and Dechter mention that these learning techniques are very costly in practice. The techniques are only efficient when the deadend occurs frequently during the search [START_REF] Frost | Dead-end driven learning[END_REF]. An effective objective of learning is to minimize the size of the nogoods, in other words, to minimize the number of variable/value pairs forming a nogood. This phenomenon can be explained with the lattice in group theory. Since the nogood represents the property of all combinations in the search space, the smaller the property size is, the more combinations are represented. Thus the smaller size nogood can cut larger space in the search space. Katsirelos and Bacchus [START_REF] Katsirelos | Unrestricted nogood recording in csp search[END_REF] suggest that an exponential number of nogoods and high arity of nogood have a negative impact on the performance of deadend learning techniques. Thanks to clause learning in the SAT problem, they proposed to generalize the nogood under the form of learned clauses of SAT. They concluded that even if such approach has a positive impact on solving CSP instance, it is still not effective in the general case.

One significant problem of nogood learning is the number of nogood recorded. The constantly increasing number of nogoods raises the time complexity of nogood matching and space complexity of nogood storing. Relevance-bounded and size-bounded methods are two popular techniques to limit the number of nogoods recorded. The relevancebounded technique eliminates the irrelevant nogood which are defined by the number of common variables inside nogood and appearing in the current assignment. The size-bounded technique records exclusively the nogood with determined variables size. [START_REF] Bayardo | A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem[END_REF] investigate the above deadend learning techniques with size-bounded and relevantbounded learning techniques. They conclude that the proposed relevant-bounded learning technique is more efficient than the size-bounded technique.

Bayardo and Miranker

From our knowledge, the adoption of learning techniques is not effective in solving general CSP instances. The quantity of generated nogood and the arity of nogood need to be carefully defined, the constraint propagation techniques need to be integrated with learning procedures to generate the nogood efficiently [START_REF] Dib | Nogood recording with tabu search for csp (application to fap)[END_REF]. In the next section, the resolution techniques of CSP will be explained.

Search techniques for CSP

The search techniques to solve CSP can be loosely divided into two categories: complete search and incomplete search.

The methods under the category of complete search explore all consistent solution and can check all solutions. The main technique adopted is the backtracking algorithm. The methods under the category of incomplete search does not explore the whole search space and may only carry out one solution, stochastic local search algorithms are the major solvers to solve the CSP.

Complete search -Backtracking and MAC

Backtracking is the primary complete search algorithm for CSP, it explores the search space based on a partial instantiation in a depth-first manner. The constraints are used to verify whether an extension of variables assignment may lead to a feasible solution. During the search process, all the variables can be classified into three categories:

• Past variables: instantiated variables.

• Current variable: waiting to assign variable.

• Future variables: uninstantiated variables.

A backtracking algorithm consists of two phases: a forward phase and a backward phase. In the forward phase, one of the future variables is selected which is so called the current variable. Thus the current partial solution is extended by assigning a value on the current variable which is consistent with the partial assignment on past variables. The backward phase occurs when there is no existing consistent assignment for the current variable; backtracking returns to the previous last assigned variable in the past variables and try to re-assign another consistent value for such variable (see Figure 1.4).

Maintaining Arc-Consistency during search (MAC) [START_REF] Sabin | Contradicting conventional wisdom in constraint satisfaction[END_REF] is considered the most efficient backtracking method to prove the satisfiability on the general CSP [START_REF] Bessière | MAC and combined heuristics : two reasons to forsake FC (and CBJ?) on hard problems[END_REF]. It embeds an Arc-Consistency propagator inside a chronological backtracking routine. After a value is assigned on the current variable, it will verify if the future variables are Arc-Consistent with the partial consistent assignment. If all the values of one of the future variable's domain are wiped out during Arc-Consistency checking, the current variable will unassign its value and attempt to find another available value in its domain which is consistent with previous partial assignment. If no consistent value can be find, then the backtrack occurs. The major advantage of the MAC algorithm is that all the future variables' domains are verified and reduced based on the inference of the partial assignment on past variables. It dramatically reduces the search space in which there will be no existence of feasible solutions containing the partial assignment. The longer the partial assignment is extended, the more the search space is reduced.

There exists many implementations of MAC, here we propose a simple way to leverage the Arc-Consistency checking. Instead of applying directly on all the variables, it is wiser to apply the Forward-Checking on the future variables on the basis of the current partial consistent assignment before applying Arc-Consistency algorithm on future variables exclusively.

Three approaches can be used to guide the process in an efficient way:

• Choose the lightweight coarse-grained AC algorithms.

• Use cache during search.

• Reduce space and time complexity while implementing AC algorithms in MAC.

The advantage of applying coarse-grained AC algorithms (like AC3, AC2001/3.1) is to avoid the maintenance of a Recently, Likitvivatanavong et al. [START_REF] Likitvivatanavong | Arc consistency in MAC: A new perspective[END_REF] give us the detailed implementations of AC3 and AC2001/3.1 in MAC version.

They propose the cache technique to increase the efficiency of the MAC algorithms. They report the speed up of MAC3 by 30% on hard problems.

Reducing space complexity is recently introduced by Régin [START_REF] Régin | Maintaining arc consistency algorithms during the search with an optimal time and space complexity[END_REF]. He proposes some improvements of MAC6 (based on AC6) and MAC7 (based on AC7) which keep the space complexity of the original Arc-Consistency algorithms.

Alongside with MAC, the Backjumping method [START_REF] Gaschnig | Performance measurement and analysis of search algorithms[END_REF] including Graph-based Backjumping (GBJ), Conflict-directed Backjumping (CBJ), and Dynamic Backtracking (DBT) [START_REF] Ginsberg | Dynamic backtracking[END_REF][START_REF] Jussien | Maintaining arc-consistency within dynamic backtracking[END_REF] are also frequently adopted in solving CSP.

Incomplete search -Heuristics

The 3-SAT problem is one of Richard M. Karp's 21 classic NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. Its more general form as CSP is not tractable due to its complexity. Regarding the sizes of real world problems, heuristics based resolution techniques are more favorable as a compromise between solution quality and computational time.

Tracing the history between the artificial intelligence community and the operational research community, many heuristics or meta-heuristics were proposed in the context of different applications. Local search algorithms play an important role in solving constraint satisfaction problems [START_REF] Russell | Artificial intelligence: a modern approach[END_REF] thanks to their efficiency and effectiveness. As the numerous proposition of heuristics during the recent decades, we essentially intend to address several important heuristic designs in the following text.

Variable Ordering [START_REF] Beck | Toward understanding variable ordering heuristics for constraint satisfaction problems[END_REF][START_REF] Wallace | Determining the principles underlying performance variation in csp heuristics[END_REF] and Value Ordering [START_REF] Dechter | Network-based heuristics for constraint satisfaction problems[END_REF] heuristics are widely chosen to accelerate the search by specifying the critical search space. Several Values Ordering heuristics in the literature are:

• Bayesian Networks based solution estimation [START_REF] Vernooy | An examination of probabilistic value-ordering heuristics[END_REF], with the spanning tree decomposition of a CSP, the probabilities on the values of variables are generated inherently.

• Look-Ahead based values selection [START_REF] Frost | Look-ahead value ordering for constraint satisfaction problems[END_REF], it makes the assumption on the values of the non-assigned variables with maximal number of supporter values, which have more promise to be extended to a solution.

• Nogood learning based values selection [START_REF] Lecoutre | Nogood recording from restarts[END_REF], it judges the extensibility of values by the nogood learned during the search.

Variable Ordering can be roughly divided into two categories: Promise and Fail-firstness [START_REF] Beck | Toward understanding variable ordering heuristics for constraint satisfaction problems[END_REF]. Promise guides the search toward the promise search space which may contain feasible solutions, while the latter cuts the search space by telling the deadend variables to the search. In [START_REF] Wallace | Analysis of heuristic synergies[END_REF], the author gave a more comprehensive study on the performance of various Variable Ordering heuristics.

MinConflict [START_REF] Minton | Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems[END_REF] is the primary technique in designing heuristics. This technique consists in assigning a value on a new variable with Minimum Remaining domain Values (MRV). This mechanism attempts to reach a deadend at the high level of the search tree, further to cut the search space with no feasible solutions inside. That is the reason such an approach is also called fail-first, which always assigns next the most constrained variable.

Another strategy is to measure the next variable to assign by its degree which is the number of constraints implied on it. Such an indicator gives a structure representation of the most constrained variables. Brelaz combined a degree and MRV heuristic in solving graph coloring problems and reported great success despite its simplicity [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF].

Statistic learning is also widely adopted in heuristic design. It associates the variables with the conflict value pairs between each other. Such conflicts can be generated during the search routine, this indicator repeatedly reminds the search to enforce the satisfaction on high score variables. The Breakout algorithm proposed by Morris [START_REF] Morris | The breakout method for escaping from local minima[END_REF] adopts such an approach to indicate the subset of variables which are difficult to be satisfied together.

The successful of integrating local consistency algorithms into backtracking search inspires heuristic design as well. The CN-Tabu [START_REF] Dupont | Efficient filtering and tabu search on a consistent neighbourhood for the frequency assignment problem with polarisation[END_REF] and NG-Tabu [START_REF] Dib | Nogood recording with tabu search for csp (application to fap)[END_REF] both embed an Arc-Consistency algorithm inside Tabu Search and achieved great performance leverage on the Frequency Assignment Problem. With the Arc-Consistency based inference, these algorithms dramatically accelerate search speed by reducing the search space.

As numerous local search techniques are proposed by both the artificial intelligence and operational research communities, the interested readers can also refer a comprehensive study of local searches on CSP resolution in [START_REF] Galinier | A general approach for constraint solving by local search[END_REF].

Techniques in modern SAT solvers

The boolean SATisfiability problem has its particular characteristics which are significantly different from the general form of CSP. There is a particular method of propagation technique named Unit Propagation (UP) which is cheaper and more efficient than in case of local consistency algorithms in CSP [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. Many modern SAT solvers embed the UP in DPLL (Davis-Putnam-Logemann-Loveland algorithm [START_REF] Davis | A machine program for theorem-proving[END_REF]) procedure to accelerate the clause assignment during search. Such a technique is applied on the clause whose literals are all determined except one literal. It consists in assigning a true value on one literal of the clause whose other literals are assigned with false, thus the clause becomes true. This technique is widely adopted thanks to its simplicity and effectiveness.

With the enforcement of UP, the learning from clauses can be generated effectively during the DPLL procedure.

The clause learning can be essentially demonstrated by the following example.

Example 2. Given a SAT instance in form of Conjunctive Normal Form (CNF) which contains three clauses, ω 1 : Regarding the 1-UIP (Unique Implication Point) learning schema [START_REF] Russell | Artificial intelligence: a modern approach[END_REF], the new clause ω l : (¬x 1 ∨ x 4 ∨ x 5) will be learned from the previous DPLL procedure through the resolution graph of this SAT instance (Figure 1.6). Figure 1.7

(¬x 1 ∨ x 2 ∨ ¬x 3), ω 2 : (¬x 1 ∨ x 3 ∨ x 5), ω 3 : (¬x 2 ∨ ¬x 3).
shows how the clause ω l is learned from ω 1 , ω 2 and ω 3 by applying UP with a partial assignment (x 1 : 1, x 4 : 0, x 5 : 0).

With the given partial assignment, the UP procedure decides the variable x 3 being 1 to keep the clause ω 2 true. With

x 3 assigning 1 and the clause ω 1 , x 2 should be assigned with 1 to keep the clause true. While at the same time, the variable x 2 should be 0 to keep the clause ω 3 as true. A conflict assignment on x 2 occurs. Then by applying 1-UIP,

the conflict clause ω l : (¬x 1 ∨ x 4 ∨ x 5) is learned.
The key observation here is that the cost of clause learning during DPLL is relatively cheap in SAT problem, and the result of such learning can be smoothly integrated into DPLL procedure.

As a chain reaction, the more clauses are learned leads to even more learned clauses. Accompanying with the UP, the satisfiability testing will be greatly accelerated. This is why satisfiability testing in SAT is relatively more efficient and more effective than deadend learning in general CSP.

The description of above techniques adopted in SAT shows high efficiency and effectiveness in solving the SAT problem. While it also proves that these techniques are particular in SAT, and they are very difficult to be adopted in general CSP.

This section was dedicated to demonstrate the different characteristics and resolution techniques between SAT and CSP in order to show that the direct adoption of SAT resolution techniques on CSP is difficult to be achieved without significant modifications. For more information on SAT resolution methods, the reader can refer to the recent surveys written by Gu et al. [START_REF] Gu | Algorithms for the satisfiability (SAT) Problem: A survey[END_REF], Hirsch [START_REF] Hirsch | SAT local search algorithms: Worst-case study[END_REF], Hoos and Stützle [START_REF] Hoos | Local search algortihms for SAT: An empirical evaluation[END_REF] and Lynce et al. [START_REF] Lynce | Stochastic systematic search algorithms for satisfiability[END_REF].

Conclusion

The first section of this chapter introduces the basic definitions of CSP, also including the Max-CSP in case of overconstrained CSP. A particular case of CSP named the SAT problem is also introduced as material needed to understand its resolution techniques.

Also important resolution techniques like Arc-Consistency algorithms and backtracking algorithms are presented and illustrated with their complexity. Several Arc-Consistency algorithms are compared based on their time and space complexity. From such a comparison, we conclude that AC3 algorithm achieves a better compromise between computational performance and simplicity of implementation. A recursive implementation of AC3 algorithm is also proposed and shows its performance improvement on over-constrained instances. Among the backtracking algorithms, MAC is efficient to provide the unsatisfiability or satisfiability proof by using simple brute force of constraint propagation.

Beside the exact approach to solve the constraint satisfaction problem, there is also the heuristic approach whose methods vary according to different applications.

Along with the algorithm to solve the general form of CSP, the specific resolution techniques devoted to the SAT problem are also presented to demonstrate their efficiency and effectiveness on proving the satisfiability/unsatisfiability of the SAT instances. In next chapter, we will focus on the main topic of this dissertation, the Irreducible Infeasible Subset identification.

Chapter 2

Irreducible infeasible subset (IIS)

In the previous chapter, CSP as a convenient problem modeling technique is introduced. Its definition and several classical resolution techniques are briefly described. This chapter will focus on the primary subject of this dissertation -the Irreducible Infeasible Subset. As already mentioned in the general introduction, it provides an answer to a crucial question: how we deal with the situation where the given problem is over-constrained?

Freuder and Wallace answer this question with their proposition of Partial CSP, or Maximal CSP (Max-CSP). The objective of this model is to propose a solution which respects the maximal number of constraints. The maximal dedicates itself on a specific measure objective. Such an objective can be measured by the number of satisfied constraints, the sum of weights of satisfied constraints, etc.

Another possible response is to locate the unsatisfiability reason in an over-constrained CSP. The study on finding such reason can be traced back to van Loon's research paper [START_REF] Van Loon | Irreducibly inconsistent systems of linear inequalities[END_REF] in 1980's. He begins the studies on finding irreducible inconsistent systems in linear inequality systems. He is followed by Chinneck [START_REF] Chinneck | Finding a useful subset of constraints for analysis in an infeasible linear program[END_REF] who develops the methods to deal with infeasible subset in linear and mixed integer programming. Their works is further extended by Gleeson and Ryan [START_REF] Gleeson | Identifying minimally infeasible subsystems of inequalities[END_REF], Greenberg and Murphy [START_REF] Greenberg | Approaches to diagnosing infeasible linear programs[END_REF] and others.

All this research inspire the studies on finding the infeasible set on SAT instances. Numerous methods have been proposed during the decades to identify the Minimal Unsatisfiable Subformula/Core (MUS/MUC) in SAT which is the Irreducible Infeasible Subset in SAT instances. Based on these studies, the IIS identification is also extended in different applications which can be modeled as constraint satisfaction problem. In this chapter, we will focus on the IIS identification of CSP. It begins with the definitions of IS (Infeasible Subset) and IIS (Irreducible Infeasible Subset).

The methods dedicated to the IIS identification in the literature will be classified and illustrated. Finally, the motivation behind this dissertation will also be explained.

Definitions of infeasible subset, irreducible infeasible subset and critical set

Within an over-constrained or over-determined constraint satisfaction problem, it may exist one or several infeasible subsets which represent the failure reason of finding a consistent complete solution. The definition of such infeasible subset can be described as:

Definition 20 (Infeasible Subset). An Infeasible Subset (IS) is a subproblem of a CSP, for which there is no solution.

Since an over-constrained problem itself can be considered as an IS, which does not bring any contribution in problem solving, a further definition dedicates to problem resolution can be described: From the minimizing or optimal view, the definition of IIS can also be interpreted as:

Definition 24 (IIS in optimal view). If there is no IS strictly included inside one IS, then such IS is an IIS.

In contrast to the above terminology, in the SAT community the more frequently adopted terms for IS and IIS are Unsatisfiable Core/Subformula (UC/US) and Minimum Unsatisfiable Core/Subformula (MUC/MUS).

A CSP can be conveniently represented as a graph. In the context of graph theory, the IIS holds the following property:

Property 1. An IIS is a connected subgraph of a graph G = (V, E) which defines a CSP. There exists a path composed by the connected constraints between any two variables in IIS.

If an IS is not a connected subgraph, there are potentially smaller IS inside it. By identifying one connected IS inside it, we may take one step forward to an IIS. Along with IS and IIS definitions and their property, the following notation will be introduced to ease the description of resolution techniques:

Definition 25 (Critical constraint). A critical constraint of a CSP P = (X, C, D) is a constraint violated under an assignment which eventually becomes satisfied under another assignment thanks to a local search flip while other constraints become violated [START_REF] Grégoire | Local-search extraction of MUSes[END_REF].

Similarly, a critical variable can be defined as:

Definition 26 (Critical variable). The variable under the critical constraint is called critical variable.

From above definition, all critical constraints cannot be satisfied simultaneously. The critical constraints and the other constraints eventually form an unsatisfiable subproblem of a CSP. It looks similar to the definition of IS (see Definition 20). We consider:

Hypothesis 2.1 The critical constraints are the candidate constraints to form the IIS.

Based on the above hypothesis, the IIS identification can be accomplished through identifying the critical constraints of a CSP.

In order to simplify the method description, we define that the constraints subset of one IIS is a critical constraints subset whose unsatisfiability has not yet been proven. Regarding the vocabulary consistency, the terms critical constraints subset and constraints subset of IIS will be used interchangeable and will be denoted H. In next section, the resolution techniques to identify IS/IIS inside over-constrained or over-determined problems will be presented.

Resolution techniques in the literature

The contributions carried out by the SAT community cannot be ignored. During recent decades, many methods have been proposed which can be roughly classified into two categories:

• Satisfiability testing approach based on the state change definition (see Definition 21).

• Hitting set approach inspired from the point of view of the hitting set (see Theorem 1).

In following section, we will essentially describe several existing methods by above classification.

Satisfiability testing approach

The significant feature of these methods is an adoption of a satisfiability testing solver which is executed iteratively.

On each iteration, it provides an unsatisfiability or satisfiability proof on a subproblem which is constructed (or de-structed) by inserting (or removing) a constraint in (or from) the current subset of constraints. The satisfiability and unsatisfiability phase transition [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF] [62] will be identified during these iterations. The constraint removed or inserted, which leads the transition between unsatisfiability and satisfiability, is defined as transition constraint:

Definition 27 (Transition constraint). In a CSP P = (X, C, D), c being a constraint in C, and C i being any subset of C, which holds

C i ⊆ C and c ∈ C i . If C i is unsatisfiable and C i \ {c} is satisfiable, then c is called a transition constraint.
Based on above definition, we also have:

Property 2.
Each constraint belonging to an IIS is a transition constraint.

From above definition, it is noticed that the transition constraint is the passage from unsatisfiability to satisfiability or satisfiability to unsatisfiability. By identifying such constraints, not necessary an IIS, but an IS can be generated.

In order to prove the unsatisfiability, the satisfiability testing is explicitly employed to provide the unsatisfiability or satisfiability proof on a subset of constraints.

In [START_REF] Grégoire | On approaches to explaining infeasibility of sets of boolean clauses[END_REF] and [START_REF] Piette | Efficient combination of decision procedures for mus computation[END_REF], the authors give the time complexities for both inserting and removing constraints.

• O (m) for removing constraints.

• O (km) for inserting constraints.

• O (k log m) for inserting constraints with binary search.

Where m is the total number of constraints of the problem and k is the number of constraints belonging to an IS.

It is clear that the removing approach is more efficient than the others. For both removing or inserting methods, the satisfiability testing solver runs iteratively during the IIS detection procedure. In order to accelerate the computation, some heuristics may be adopted to propose the potential variables or constraints which are possibly belonging in an IIS. The hybrids include either a collaboration or an integration mode.

In integration mode, the heuristic is charged to propose the next candidate variable or constraint to be processed under the umbrella of the exact satisfiability testing solver. In case of exact tree search algorithm, it verifies the unsatisfiability of the subproblem at the top of the tree search.

In collaboration mode, an heuristic iteratively collects the critical constraints one by one until the heuristic cannot find a partial consistent assignment on such subset of constraints, then the subproblem formed by such constraints subset is injected into an exact solver. If the solver finds a consistent partial solution, the constraints subset will be returned into the heuristic procedure and extended according to the connectivity property.

In following sections, several IIS identification algorithms introduced in recent decades will be essentially described based on integration or collaboration modes.

Integration mode

These methods consist in embedding an heuristic in an exact satisfiability solver. The heuristic selects the constraints and either inserts them into a satisfiable subproblem, or removes them from an unsatisfiable subproblem iteratively.

The satisfiability solver verifies the unsatisfiability on such extracted subproblem and attempts to detect the transition between satisfiability and unsatisfiability.

Hemery et al. [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF] propose an exact satisfiability testing approach to find the IIS in the frequency assignment problem. Under the umbrella of the MAC algorithm, the wcore heuristically selects the variables to insert in a backtracking search tree according to the violation weights of variables. The violation weights of variables are generated heuristically and indicate the hardness of variables to be satisfied together with existing partial assignment found by MAC [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF].

Based on this approach, Grégoire et al. [START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF] improved wcore by eliminating the occurrence of backtracks during MAC, which yields better solutions in terms of IIS size and computational time.

In contrast to the above methods, zMinimal proposed by Zhang and Malik [START_REF] Zhang | Extracting small unsatisfiable cores from unsatisfiable boolean formula[END_REF] is based on learning from a resolution graph [START_REF] Zhang | Searching for truth: techniques for satisfiability of boolean formulas[END_REF] generated during a DPLL When the empty clause happens, the original clauses induced are identified and are considered as the clauses inside a MUC. The algorithm cannot guarantee a MUC. While if the zMinimal is executed iteratively, it may identify a MUC eventually.

6789A1

Fig. 2.1: Resolution graph

Zhang and Malik, Oh et al. [START_REF] Oh | AMUSE: a minimally-unsatisfiable subformula extractor[END_REF] propose the AMUSE algorithm for SAT problem. The algorithm implicitly defines single critical literals of each clause. By doing so, it uses the critical variables in the search tree and enforces the generation of learned clauses.

Collaboration mode

The methods in this mode consist in organizing a collaboration between an heuristic and an exact satisfiability solver on the global unsatisfiable problem. The heuristic constitutes one or several subproblems on which we cannot find a partial consistent solution, or on which we assume that there is no consistent partial solution through statistic learning.

Then the subproblem is input as an entity into satisfiability testing solver to verify its unsatisfiability.

Eisenberg and Faltings's BOBT-SUSP [70] combines Morris's breakout algorithm and the backtracking algorithm to identify the IS. The algorithm employs the breakout [START_REF] Morris | The breakout method for escaping from local minima[END_REF] method to identify the IS. During each iteration of the breakout algorithm, the weights on violated constraints are incremented. The objective function takes into account the weights to guide the search towards the unsolvable subproblems. Depending on these weights on the violated constraints, the problem is filtered and divided into several subproblems. Then backtracking algorithm is used to verify the unsatisfiability of these subproblems.

Grégoire et al. [START_REF] Grégoire | Local-search extraction of MUSes[END_REF] propose a local search named AOMUS to distinguish MUS from the unsatisfiable SAT instances.

The algorithm records the subsets of clauses on which a local search [START_REF] Mazure | Boosting complete techniques thanks to local search methods[END_REF] fails to find a partial consistent solution.

During the search, the hardness of clauses is recorded by the scores. The algorithm iteratively removes the lowest scores clauses from the formula, and records the last approximated unsatisfiable core in a stack until it finds a satisfiable subset of clauses. Thus the algorithm works on adding the last removed clauses into the stack and attempts to verify if it can identify the transition clause. When the subset of clauses in the stack forms an unsatisfiable core, the removal procedure analyzes the scores of the clauses again, and prunes one lowest score clause each time to reduce the size of unsatisfiable core. The procedure is stopped when it reaches again the transition clause. The Walksat [START_REF] Kautz | Walksat in the sat 2004 competition[END_REF] is employed as the core local search to give an approximated unsatisfiability proof.

Instead of identifying only one critical constraint per iteration, van Maaren and Wieringa's approach consists in finding a bunch of critical constraints per iteration [START_REF] Van Maaren | Finding guaranteed muses fast[END_REF]. All processed constraints are sorted by their arities in increasing order. They noted that if the MUC's size is relatively small the exact approach will outperform the heuristic approach.

Banda et al. [START_REF] De La Banda | Finding all minimal unsatisfiable subsets[END_REF] reduce the computational time by reducing the size of the original problem. They noticed that the transition constraint is strictly inside the IIS and a single IIS holds the connectivity property, while the identification of the transition constraint is quite inconvenient without an efficient satisfiability testing solver.

Mazure et al. [START_REF] Mazure | Boosting complete techniques thanks to local search methods[END_REF] adopt an heuristic to record the critical constraints which are violated during the heuristic search, then those literals belonging to critical clauses are input into a branch-and-bound algorithm to verify the unsatisfiability.

Summary

The development of the satisfiability testing approach consists in adopting heuristic techniques to either generate the weights/scores of each violation of each constraints for statistical learning during the search, or loosely reduce the size of the subproblem and keep the exact satisfiability solver concentrating on the subproblem which potentially forms an IIS.

The weight/score system adopted in this approach provides important statistic learning material, which either can be considered as the measurement of IIS-variable or IIS-constraints independently or guiding the search towards the hard subproblem by integrating the weights into the objective function. The weight representing statistic learning still plays an important role in indicating the subset critical constraints.

It is always fine that the problem can be reduced without losing the completeness of its IIS, thus the exact proof of unsatisfiability is easier to achieve than working on the entire problem. Derived from above studies and experiences, the general routine of this approach can be described as: a heuristic filters the problem and reduces its size, then an exact method iteratively runs on the proof of unsatisfiability of such subproblem by removing or inserting the constraints.

Hitting set approach

Recently, research has shown the relationship between IIS detection and hitting set problem [START_REF] Bruni | Finding minimal unsatisfiable subformulae in satisfiability instances[END_REF][START_REF] Liffiton | On finding all minimally unsatisfiable subformulas[END_REF][START_REF] Galinier | Solution techniques for the large set covering problem[END_REF]. The hitting set approach is based on the relation between hitting set problem and IIS detection. The relation is clearly revealed by Bruni from Università di Roma. In his paper [START_REF] Bruni | Approximating minimal unsatisfiable subformulae by means of adaptive core search[END_REF], Bruni used plain English to describe the relationship and provided the proof.

The significant difference between the hitting set approach and the previous approach is that the Max-CSP solver is heavily employed instead of a satisfiability testing solver. A hitting set problem (also known as graph transversal problem or set covering problem by different communities), is one of the key problems in the combinatorics of finite sets and the theory of diagnosis. The problem is known as NP-complete, and it can be described as follows:

Definition 28 (Hitting set). Given a set M of elements, a collection L = {l 1 , l 2 , . . . , l m }, such that l j ⊆ M and l j = M . A hitting set is the subset I ⊆ M of elements that hits every set of L, for which I ∩ l i = ∅ for every l j ∈ L.

Regarding the definition of the hitting set problem, the violated constraints subsets C v i of a CSP can be modeled as the nonempty subsets l i thus an IIS is the hitting set of the collection of violated constraints subsets. Bruni [START_REF] Bruni | Approximating minimal unsatisfiable subformulae by means of adaptive core search[END_REF] pointed out that:

Theorem 1. Given any violated constraints subset C v of a complete assignment in an over-constrained CSP, and any constraints subset of IIS H, the intersection of these two subsets is not empty, denoted

C v ∩ H = ∅.
The proof of above theorem is given as:

Proof. In order to prove that

C v ∩ H = ∅, we can prove that C v ∩ H = ∅ is wrong.
Given any complete assignment A on an over-constrained CSP P = (X, C, D), we obtain a violated constraints subset C v based on such assignment. Under the assumption that the intersection between H and C v is empty, denoted From above illustration, two IS are carried out by identifying two hitting sets on a collection of several violated constraints subsets. The collection of violated constraints subsets is generated by iteratively executing a Max-CSP solver. In contrast to the satisfiability testing approach, the Max-CSP solver is heavily employed.

C v ∩ H = ∅, we have H ⊆ C \ C v .
Over-constrained problems, whose unsatisfiabilities are difficult to verify but the Max-CSP solutions can be easily found by Max-CSP solvers, are suitable for such approach. For example, the unsatisfiability of the k-coloring problem is difficult to prove when k is close to the chromatic number. In such a case, the hitting set approach shows its dramatical performance increase [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF].

Simply formulating the IIS detection into a hitting set problem will not ease our problem. First, the hitting-set problem itself is NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. If the complexity of the problem cannot be reduced, there is no gain in re-modeling the problem. Secondly, it is costly to enumerate the collection of all violated constraint subsets in different assignments to identify only one IIS.

One idea is to generate a hitting set which has exactly one element in common with each subset in the collection. In case that there is no intersection between any of two subsets, the elements of the hitting set will be exactly one element from each subset. Due to the connectivity property of IIS, all these elements will form a connected component. There are many IIS identification methods in the literature developed by following the above hitting set approach. In the remaining part of this section, we will describe several of these methods.

Bruni and Sassano [START_REF] Bruni | Finding minimal unsatisfiable subformulae in satisfiability instances[END_REF][START_REF] Bruni | Approximating minimal unsatisfiable subformulae by means of adaptive core search[END_REF] proposed an adaptive search to extract minimal unsatisfiable subformula (MUS) of an unsatisfiable CNF instance. The hardness of clauses are approximately evaluated during the iterations of satisfiability testing. During each iteration, it increments the rank of clauses which are violated during the testing. The ranking system inherently represents the hardness of the clauses by the means of the heuristic. An adaptive core analyzes and adaptively changes such ranks until a IIS is found.

Bailey et al. [START_REF] Bailey | A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns[END_REF][START_REF] Bailey | Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization[END_REF] also addressed the dual relation between IIS and the complement sets of maximal satisfiable subsets. When the complement sets are obtained approximately, the intersection between IIS and the complement sets is guaranteed.

Liffiton et al. [START_REF] Liffiton | Identifying conflicts in overconstrained temporal problems[END_REF][START_REF] Liffiton | On finding all minimally unsatisfiable subformulas[END_REF] proposed an approach to find the complement of all the MSS (Maximum Satisfiable Subformula). The MSS represents the maximal consistent subproblem which will become unsatisfiable by adding one supplement constraint on it. Since the IIS is the hitting sets of all complement sets, CoMSS, of the MSS, by enumerating all the MSS, the IIS can be identified. Their experimental results were not very impressive, as the computational time of finding all CoMSS of the problem is costly. It becomes even worse by including the hitting set resolution techniques.

Desrosiers et al. [START_REF] Desrosiers | Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems[END_REF][START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] extend the methods proposed in [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] -Removal, Insertion and HittingSet on finding IIS in SAT and k-coloring instances. The number of Max-CSP solver calls for their approach is O (k), where k is the number of constraints inside an IIS. Alongside all these methods, the readers also can refer the survey in [START_REF] Liffiton | Algorithms for computing minimal unsatisfiable subsets of constraints[END_REF][START_REF] Marques-Silva | Minimal unsatisfiability: Models, algorithms and applications[END_REF] for other propositions in same approach.

Techniques analysis

The common component of these two approaches is to iteratively execute a solver. The significant difference between them is that the satisfiability approach iteratively executes an unsatisfiability testing solver, while the hitting set approach employs a Max-CSP solver to find assignments on CSP. Marques-Silva pointed out that the hitting set approach is less efficient than the satisfiability testing approach on SAT instances because the Max-SAT solver is less efficient when comparing their performance [START_REF] Marques-Silva | Minimal unsatisfiability: Models, algorithms and applications[END_REF]. It is also addressed by Fu and Malik who construct a Max-SAT solver by employing zChaff [START_REF] Moskewicz | Chaff: engineering an efficient sat solver[END_REF] to iteratively identify and eliminate the MUC in SAT instances [START_REF] Fu | On solving the partial MAX-SAT problem[END_REF].

Also the experimental results reported in [START_REF] Desrosiers | Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems[END_REF], demonstrates that the hitting set approach loses its performance on SAT instances. While the same authors shows the improvement in performance on identifying critical subgraph in k-coloring problem when their hitting set approach was applied. These observations demonstrate that:

• For the satisfiability testing approach: if the problem's satisfiability is relatively easy to prove, then adding/removing or the learning embedded strategy can successfully obtain an IIS.

• For the hitting set approach: if the problem's approximation solutions are relatively easy to obtain, then the iterative execution of approximated Max-CSP solver is more efficient than the satisfiability testing solver.

Motivation of this dissertation

In previous sections, the essential definitions of IS and IIS were introduced and followed by important properties and resolution techniques involving IS/IIS. The primary objective of this dissertation intends to adopt the concept and resolution techniques of IIS in telecommunication networks, furthermore, to identify the most interfered zone in a telecommunication network.

Since the number of the available frequencies is a limited resource for particular applications, before deploying a communication network, it is worth to estimate the interference among the antennae to verify if there is any interfered zone which causes service failure.

Such a problem can be modeled as the Frequency Assignment Problem (FAP), and its unsatisfiability/satisfiability is difficult to be determined due to the sizes of problems and the high complexity of the FAP problem itself [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF].

Satisfiability testing may not be suitable for this application, since the unsatisfiability testing solver acts as the core engine during the search which will be executed a considerable number of times.

In paper [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], Desrosiers et al. adopted the methods proposed in [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] on detecting critical subgraphs in a graph. The critical subgraph can be considered as an IIS in the context of k-coloring problem. Thanks to the similarity between the k-coloring problem and the Frequency Assignment Problem, their approach may be considered as the ideal candidate for IIS identification in FAP.

The methods described in [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] are Removal, Insertion and HittingSet. Let H be the subset of critical constraints and C be the set of constraint of the problem. The Removal can be illustrated as in Algorithm 3. The algorithm iteratively removes the constraint which does not change the unsatisfiability on C. Such unsatisfiability is judged by a heuristic named MinConflict(). If by removing a constraint c, the constraints set C becomes satisfiable, the constraint c will be added in critical constraints subset H. The algorithm continues to remove the constraint in C \ H and see if the unsatisfiability state of C will be changed or not. The procedure stops when MinConflict() cannot find a partial consistent solution on critical constraints subset H.

The MinConflict() is an approximate algorithm returning a subset of violated constraints C v which are violated in an assignment found. Such an assignment respects the constraint satisfaction on H a priori, and minimizes the number of violated constraints in C. Regarding the similarity between k-coloring problem and the Frequency Assignment Problem (FAP) [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF], the MinConflict() can be implemented by a Tabu Search algorithm which is also suggested by Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF]. Let f (A) be the fitness function of a complete assignment A, A(x i) be the current value assigned on variable x i in assignment A and (x i , a i) be a move by assigning the variable x i with the new value a i . TabuCol can be illustrated as in Algorithm 4. Choose a candidate 1-move (x i , a i) among all conflict variables with minimum violation;

Algorithm 3: Removal [78] Input : a set of constraints C Output: a subset of constraints H ⊆ C forming an IS H ← ∅, C v ← ∅; 1 repeat 2 choose a constraint c where c ∈ (C \ H); 3 C ← C -{c}; 4 C v ← M inConf lict(C, H); 5 if C v = ∅ then 6 H ← H ∪ {c}; 7 C ← C ∪ {c}; 8 end 9 until C v ∩ H = ∅ ;
6 Add move (x i , A(x i)) into T abuList for L + λ × Conf lict(A) iterations; 7 Set A ← A + (x i , a i); 8 if f (A) < f (A *) then A * ← A 9 until f (s) = 0 or iter = M axIter ; 10
The fitness function f () in line 9 measures the number of violated arcs in the current assignment A. Thanks to the similarity between k-coloring problem and FAP, the neighborhood structure defined in TabuCol is suitable for the case of FAP which changes the frequency value on one variable in conflict.

Based on its simple 1-move neighborhood structure, the algorithm exploits a relatively small part of the search space. Such a strategy dramatically minimizes the runtime while at the same time, the promise on performance is kept.

In addition to the Removal algorithm, the same authors of [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] proposed another algorithm called Insertion. The algorithm can be expressed as in Algorithm 5.

Algorithm 5: Insertion [3]

Input : a set of constraints C Output: The primary difference between these two algorithms is that Removal removes the constraint one by one from C per iteration, while the latter removes a set of constraints. In order to locate the first critical constraint in H, Removal may involve a significant amount of iterations while Insertion processes only one iteration. The results reported in the paper of Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] prove the efficiency of Insertion compared to Removal on the k-coloring problem. After a first constraint c is identified and added into the constraint set H, both algorithms will exclusively construct an IIS on this initial constraint c.

a subset of constraints H ⊆ C forming an IS H ← ∅, C v ← ∅; 1 repeat 2 if C v = ∅ then 3 C ← C \ C v ; 4 choose one constraint c ∈ C v ; 5 H ← H ∪ {c}; 6 end 7 C v ← M inConf lict(C, H); 8 if C v = ∅ then return Fail to find IIS; 9 until H ∩ C v = ∅ ;
Our experiments on the performance of Insertion are conducted on the CELAR benchmark (see Section 3.2.1 for detail information).

Conclusion

In this chapter, the main topic of this dissertation, IIS identification, is introduced. It begins with the basic definitions and properties. There are two definitions based on different views, one is based on the key feature of Irreducible, the other is derived from the Minimal form of IIS. The Irreducible indicates the state change between unsatisfiability and satisfiability, the IIS becomes satisfiable if any one of its variable/constraint is removed. Minimal means there is no strict inclusion between two IIS, that is the two IIS may intersect, but one IIS cannot contain another IIS.

Following basic definitions, an essential survey of algorithms in the literature is presented under two different approaches can be identified. The satisfiability testing approach features a satisfiability testing solver, which iteratively proves the unsatisfiability or satisfiability by removing (inserting, respectively) variable (constraint, respectively) from the testing subproblem. The hitting set approach consists in iteratively executing a Max-CSP resolution algorithm to generate a collection of violated constraint subsets. Thus the IIS can be identified by finding a hitting set of a collection of constraint subsets. The theoretical knowledge behind this approach is that the subset of constraints belonging to an IIS has an intersection with the violated constraints subsets found by Max-CSP algorithm.

We summarize these approaches, and conclude that the unsatisfiability of the instance is relatively easier to be proven, then the satisfiability testing approach is suitable to solve such instance. When the maximal satisfaction of constraints can be achieved conveniently, the hitting set approach is a right way.

At the end of this chapter, we conduct the examination of algorithm performance on one Frequency Assignment Problem benchmark, CELAR. The candidate algorithm is Insertion algorithm proposed by Galinier and Hertz [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF].

The experimental result carried out demonstrates the low-effectiveness on CELAR instances. The algorithm fails to determine the small IIS and is not robust on CELAR instances.

Based on our analysis, we intend to propose a new approach which will achieve better performance than the existing approach on telecommunication applications. The new approach is requested to be fast and robust on IIS detection.

The effectiveness and efficiency will be critical features in the new method.

In next chapter, we will concentrate on adopting existing resolution techniques on the applications of Frequency Assignment Problem and k-coloring problem.

Chapter 3

IIS in frequency planning

The growing demands in radio communication networks and the spectrum rarity these days make radio frequencies more precious than ever. Due to the frequency scarcity, the number of frequencies available is not sufficient to deliver enough capacity to all systems and applications. The only solution to this problem is to maximize the frequency reuse between them, but this strategy may generate interference zones or service perturbation zones inside the telecommunication network, which is the nightmare for every network operator either for civil or for military usage. When it is impossible to reuse the frequency without interference, it is still possible to ease the frequency planning and to reduce interference by changing the network design or parameter settings. Then the question is "which are those interference constraints causing the service perturbation zone in the Frequency Assignment Problem (FAP), and how can we avoid the creation of a perturbation zone at the network design step?". If such constraints can be exactly detected then the decision will be to change the parameter settings of the network transmitters involved in these constraints.

The main objective of this chapter is to propose an approach which is able to identify these infeasible interfering constraints in a telecommunication network in the context of military applications. This approach delivers an effective and efficient decision tool for the network operators to identify the service perturbation zone in the telecommunication network which cannot be solved during the deployment step. Based on the CSP formulation of FAP, such zone can be considered as an Irreducible Infeasible Subset which is over-constrained by the electromagnetic constraints issued from the network parameters settings. So this chapter is devoted to the research on identifying the perturbation zone in one network, an analogous to the IIS in the telecommunication application. This problem is quite new for FAP and was firstly tackled by [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF] as we will see in the next section.

The sections of this chapter will be organized as follows. In Section 3.1, the global properties of FAP and our specific FAP are defined. The FAP benchmarks we used to evaluate our proposals are illustrated in Section 3.2 with their topology and properties. Then our work is presented in two steps corresponding to two different algorithmic approaches we developed. Section 3.3 will address the first algorithm which is directly derived from the method proposed in the literature. After that, by analyzing the advantage and drawback of this approach, a second and new algorithm to detect an IIS in the FAP is presented in Section 3.4. The experimental results of the new method on the FAP benchmarks will be demonstrated in Section 3.6. Finally, a general conclusion of this chapter will be given in Section 3.7.

Introduction

Respecting physical law, the radio bandwidth and the number of frequencies are precious resources which are limited for each communication system. The availability of radio spectrum is regulated by the International Telecommunication Union (ITU) at a world-wide level for each system and by the governments at nation level for each operational usage of the system in the country. The operators are freely or economically licensed to use one or several frequency bands to deploy services. The frequency band is mostly represented by [f min , f max] in which f min is the lowest available frequency and f max is the highest available frequency in the spectrum. As example, the Figure 3. The crucial question is whether it is possible to identify the existence of such zones before the network deployment to eventually modify the network parameters settings and avoid interference. Such a question may be answered by modeling and solving the Frequency Assignment Problem (FAP).

The FAP [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF] consists in assigning frequencies to the transmitters of a radio telecommunication network. The aim is to benefit from the geographical separation of assigned frequencies to reuse the radio spectrum efficiently and to minimize interference in the network. There are many version of the FAP, as many versions as the number of radio systems, a summary is given in [START_REF] Gondran | Modélisation et optimisation des réseaux locaux sans fil Wireless local area network modeling and optimization[END_REF]. The version of the problem considered here is the fixed FAP whose assignment of frequencies on transmitters are not changing with time, as opposed to the dynamic FAP where the available spectrum, the number of frequency per transmitters and/or the frequency index may change [START_REF] Mabed | A dynamic traffic model for frequency assignment[END_REF]. In the fixed FAP the available spectrum is initially defined and usually consists of a set of consecutive equally spaced channels, possibly with some gaps of one or more channels which are unavailable for subsets of transmitters. This version of the FAP is still important in a wide range of terrestrial and satellite based radio systems, both for civil and military applications.

The particular case of the Radio Link Frequency Assignment Problem (RLFAP) considers the network as a set of radio stations equipped with antennae and the radio link among them. The station is both a transmitter and a receiver and the interference arises on the receiving signals. The network can be illustrated by a directed constraint graph, in which the stations are the nodes and the radio links are the directed arcs. The link (i, j) expresses a one way of transmission from the station i to the station j. In RLFAP the frequencies are assigned to the radio links, while in some other problems, like the FAP in cellular networks, the frequencies are assigned to the stations. In our RLFAP each radio link requires only one frequency to carry the communications.

The radio link quality is measured at the receiver by the Signal-to-Interference-plus-Noise Ratio (SINR), or interference ratio, and several interfering signals may be received in the same time in addition to noise. In the case of single interfering signal the SINR involves only two signals which are the carrier link and the single interfering link, then we may express the SINR by a binary interference constraint between these links. Most of time, the constraint will define a spectrum separation to respect between both frequencies assigned to the links; the separation value will depend on the geographical proximity between the links or the difference of received power on each link. If there are several interfering links, the constraint will be n-ary and involves simultaneously the carrier and all interfering links. In that case, there is no specific frequency separation to respect but we define a threshold for the SINR and the frequency assignment on all links will have to satisfy the global threshold. These constraints are very difficult to satisfy as they involve more than two variables. Figure 3.2 shows one station with three different received signals, each one will be successively the carrier and the other both the interfering signals for the selected carrier, the 3-ary constraint will have to be satisfied for the 3 cases.

for military systems. Table 3.1 shows the characteristics of three sets of instances frequently used: CELAR, GRAPH, ROADEF2001 and the original problem SOES. The rows Unary, Binary and N-ary indicate the categories of constraints involve in the benchmark. The row polarization indicates the benchmarks using polarity and frequency assignment all together. The line data source indicates the simplified real world instances, the academic randomly generated instances and the modified real world instances respectively.

The From these figures, we indicate for each instance one Infeasible Subset with bold lines. In higher density graphs ROADEF2001 and SOES, the Infeasible Subsets are difficult to see due to the graph density. In the next section, we present more details and a deeper analysis of each benchmark.

Benchmark description

The CELAR/GRAPH and ROADEF2001 are publicly available for all researchers. The reason for choosing CELAR/GRAPH and ROADEF2001 for our work is that these benchmarks are widely adopted by the artificial intelligence and operational research communities to evaluate their algorithms. It provides an open platform to compare a new approach with the existing approaches. The SOES benchmark is available privately during our research period. It is the evaluation benchmark which allows us to compare the performance between DGA's (Délégation Générale pour l'Armement) previous approach on Irreducible Infeasible Subset and our new proposal. In following sections, these four benchmarks will be illustrated in detail.

Radio Link Frequency Assignment Problem -CELAR and GRAPH

The CELAR benchmark is a set of RLFAP instances defined in the framework of the European project EUCLID CALMA (Combinatorial Algorithms for Military Applications) [START_REF] Cabon | Radio link frequency assignment[END_REF]. All problem instances have been built from an unique real-life instance with 916 links and 5744 constraints (hard and soft).

The GRAPH instances (Generating Radio link frequency Assignment Problems Heuristically) have been proposed

by a group at Delft University of Technology. These instances are randomly generated by van Benthem [START_REF] Van Benthem | Graph: generating radiolink frequency assignment problems heuristically[END_REF], and hold the same characteristics as CELAR instances. The GRAPH instances are similar to CELAR's by their problem structure and their hardness but differ by further randomized constraints. Taking into account preliminary experimentation, the author of GRAPH conjectures that instances generated by GRAPH are generally slightly harder to solve than the CELAR ones.

The aim of both RLFAP benchmarks consist in assigning a limited number of frequencies to a set of radio links defined between pairs of sites in order to minimize the number of frequencies used and the highest frequency used if the problem is feasible, or to minimize a weighted sum of violated constraints if the problem is unfeasible [START_REF] Cabon | Radio link frequency assignment[END_REF].

The RLFAP is known to be very hard to solve, due to its close relation to the vertex coloring problem. Koster et al.

[94] prove (using a reduction from maximum satisfiability) that RLFAP is NP-hard. Each radio link is represented by a variable whose domain is the set of all frequencies that are available for this link. Most constraints involve two variables f i and f j such that:

|f i -f j | > δ ij (3.1)
The two variables f i and f j represent two radio links with interference. The constant δ ij defines the spectrum separation available for these links to avoid the interference, its value depends on the amount of interference between them obtained by computing the SINR. In addition to these constraints there is an equality constraint for duplex links between any couple of stations, the separation of frequency for duplex links must be exactly equal to 238.

RLFAP with polarization -ROADEF2001

In the Frequency Assignment Problem with Polarization (FAPP), each radio link is assigned a frequency polarization pair (f i , p i), where f i is the frequency on the transmitter i and p i is the polarity. The components of the pair represent the frequency carrying the transmitted signal and its wave polarization. Two signs +/-indicate the directions of the polarization, which are the horizontal and vertical directions respectively. In the ROADEF2001 benchmark, the constraints can be divided roughly into two categories -Imperative Constraints (IC) and Electromagnetic interference Constraints (EMC) [START_REF] Defaix | FAPP -problèmes d'allocation de fréquences avec polarisation[END_REF]. The IC constraints are regarded as constraints which should be absolutely satisfied. The IC constraints can be classified into:

• Frequency equality or inequality constraint:

f i = f j or f i = f j ,
• Interval equality or inequality constraint:

|f i -f j | = ε ij or |f i -f j | = ε ij ,
• Polarity equality or inequality constraint:

p i = p j or p i = p j .
Where ε ij is the authorized or non-authorized distance between two frequencies. In contrast to IC constraints, the EMC constraints are considered as soft constraints which can be violated at a certain level. In the context of ROADEF2001 challenge, the instances have 11 levels identified by an integer index k within a range [0, 10[. The level 0 indicates the strictest condition, and the level 10 means the most relaxed level.

|f i -f j | ≥      γ 0 ij ≥ γ 1 ij ≥ • • • ≥ γ 10 ij , if p i = p j δ 0 ij ≥ δ 1 ij ≥ • • • ≥ δ 10 ij , if p i = p j (3.2)
By introducing the polarization, each frequency has an option between two polarities, consequently, it increases the complexity. Usually in the case of equality of polarities, the distance between two frequencies γ k ij defined by an EMC constraint is larger than the case of the inequality distance δ k ij at the same level k. Two frequencies f i and f j may not satisfy on an EMC constraint in the same direction of polarity, but may satisfy the condition in the case of a polarities inequality. Based on Equation 3.2, if two frequencies polarization pairs (f i , p i) and (f j , p j) satisfy level k, they also satisfy all relaxed levels from k, that is all levels greater than k. For example, if two pairs satisfy the level 7, they strictly satisfy all the levels greater than 7, which are 8, 9 and 10.

An assignment of the FAPP problem consists of a set of the frequency and polarization pairs selected from the available sets of frequencies and polarities of all radio links. An assignment is called a solution S, if it satisfies all the imperative constraints. A solution S is said to be k-feasible, if S satisfies all the imperative constraints and all EMC constraints at level k and all relaxed levels from k. A trivial level 11 is introduced in case that there is no consistent solution at level 10. If there is no feasible solution at level 0 for an instance, ROADEF2001 defines three objectives in lexicographic order which are firstly to search for k * , the smallest relaxation level for which a k * -feasible solution exists, secondly to minimize the number of EMC constraints not satisfied at level k * -1 and lastly to minimize the number of EMC constraints not satisfied at all levels lower than k * -1.

The number of permutations for FAPP problem is

n i |d i | × |p i |, in which n is the number of transmitters, |d i | is
the number of available frequencies for the transmitter i and |p i | is the number of polarities for the transmitter i. As the k-coloring problem, the FAPP problem itself is NP-hard [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF].

In Table 3

RLFAP with polarization and n-ary constraints -SOES

SOES is the latest RLFAP benchmark proposed by the CELAR in 2008. These instances were delivered in the context of a DGA (Délégation Générale pour l'Armement) project in which we were involved in a consortium (THALES, SILICOM, ONERA, UTBM). The instances are based on real world problems modified to assess the performance of operational research methods. The main novelty of this benchmark is that in addition to well-known unary and binary RLFAP constraints, SOES contains also n-ary constraints. Polarization assignment is also included in the benchmark in a different way from ROADEF2001 as the different polarities extend binary constraints in the form of:

|f i -f j | ∈                       
∆ ++ ij , if the polarities of f i and f j are both vertical;

∆ +- ij , the frequency f i with vertical polarization, and the other with horizontal one;

∆ -- ij , if the polarities of f i and f j are both horizontal;

∆ -+ ij , the frequency f i with horizontal polarization, and the other with vertical one;

(3.3)

If we only consider the equality and inequality of frequency polarities, the binary constraints are formulated as:

|f i -f j | ∈        ∆ = ij ,
|f i -f j | ∈ ∆ ij (3.5)
There are two types of n-ary constraints which are: the perturbation constraint (Equ. 3.6) and the intermodulation constraint (Equ. 3.7),

i β ip T ip (|f i -f p |) B p (3.6) |f p -(±α i f i ± α j f j)| ξ (3.7)
where f p is the carrier frequency and f i and f j are used by the interfering signals. These constraints correspond to a multiple interference case where the interfering signals generate a global interfering signal on the carrier. For perturbation constraints, the threshold B p indicates the expected reception quality, β ip depends on the budget link between the carrier and the interferer and T ip depends on the frequency separation between the carrier and the interferer. For intermodulation constraints, the α coefficients generate intermodulation interference arising from two initial interfering frequencies. In this thesis, our objective in this benchmark is to find an Irreducible Infeasible Subset based on the binary constraints exclusively, thus the n-ary constraints will not be used.

The sizes of SOES instances are shown in Table 3

A 2-phase algorithm to identify IIS

To best of our knowledge, the algorithm wcore proposed by Hemery et al. [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF] is the first algorithm to detect an IIS on CELAR and GRAPH instances. wcore adopts the satisfiability testing approach mentioned before, which embeds a variable selection heuristic inside an exact satisfiability solver. The variables selection heuristic chooses the critical variables during the MAC search and moves them toward the top of the search tree. The critical variables are measured by the weights generated by a variable selection heuristic. An IIS is detected by proving the unsatisfiability on the subset of selected variables.

This approach is very effective if the infeasibility of the instance is easy to prove. Thanks to the problem specific techniques (unit propagation, clause learning, resolution graph) in SAT, the infeasibility of a SAT instance is relatively easier to be proven [START_REF] Marques-Silva | Minimal unsatisfiability: Models, algorithms and applications[END_REF]. Unfortunately it is not always the case for RLFAP and FAPP, due to the complexity of the instances.

In the previous chapter, we presented two algorithms as the candidates for identifying IIS in RLFAP and FAPP, namely Removal and Insertion. Both algorithms are proposed by Galinier and Hertz [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] and adopted by Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] in detecting a critical subgraph of the k-coloring problem. They consist in iteratively executing an embedded heuristic and identifying the critical constraints potentially belonging to an IIS. The embedded heuristic MinConflict() is dedicated to minimize the sum of the violated constraints during the search.

The Removal algorithm removes the constraints one by one until the rest of the problem becomes feasible. The last removed constraint causing the transition between the unsatisfiability to the satisfiability is recorded and put again into the rest of problem as a critical constraint. During the iteration, MinConflict() will satisfy all the critical constraints a priori by weighting them in its objective function. Removal stops when it fails to find a partial solution on all critical constraints.

In contrast to Removal, Insertion considers one violated constraint as a critical constraint among all violated constraints found per iteration of MinConflict(). The rest of the violated constraints is directly pruned from the problem.

MinConflict() works in the same manner as in Removal. The procedure of Insertion stops when there is no partial solution on all critical constraints. Theoretically, if MinConflict() fails to violate exactly one constraint per IIS, Insertion has the risk to destroy the IIS by removing one more constraint from it.

Beside the Removal and Insertion algorithms, in the paper of Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], the authors proposed another algorithm called prefiltering. The algorithm can be illustrated as: We adopt the prefiltering algorithm and propose a 2-phase method to detect the IIS in CELAR instances [START_REF] Hu | On identifying infeasible subsets in constraint satisfaction problems[END_REF]. The algorithm (Algorithm 7) is composed by two phases -the construction phase and the verification phase. The construction phase will be mainly based on prefiltering algorithm which iteratively selects the violated constraint in C v and adds it into the critical constraint set H. Weights on violated constraints W Cv will be generated by MinConflict() as the indicator of the satisfaction difficulty [START_REF] Morris | The breakout method for escaping from local minima[END_REF]. The verification phase will consist in verifying the infeasibility/feasibility of the constraints set H by an exact algorithm MAC(). Detailed information of these two phases will be presented in following sections.

Algorithm 6: prefiltering [3] input : a set of constraints C output: a subset of constraints H ⊆ C forming an IS H ← ∅, C v ← ∅; 1 repeat 2 if C v = ∅ then 3 H ← H ∪ {C v }; 4 C v ← ∅; 5 end 6 C v ← M inConf lict(C, H); 7 until H ∩ C v = ∅ ;
if C v = ∅ then 4 c ← Select(C v , H, W Cv); 5 H ← H ∪ {c}; 6 H ← Saturate(H, C); 7 end 8 [W Cv , C v] ← M inConf lict(C, H); 9 until H ∩ C v = ∅ ;

Construction phase

In the construction phase, MinConflict() stops when it cannot find a partial solution on the critical constraints set H.

It attempts to satisfy the constraints of H by introducing heavy weights on these constraints into its fitness function.

At same time, it minimizes the violation on the rest of constraints, denoted C \ H. The critical constraints set H is constructed iteratively by choosing one constraint per iteration from C v which is the violated constraints subset found by MinConflict(). The chosen constraint has the heavier weight in W Cv .

It is noticed that MinConflict() will be executed numerous times. Since only one constraint will be identified per iteration, the number of executions of MinConflict() equals the number of critical constraints. It is evident that the MinConflict() cannot be a costly procedure, otherwise the computational performance cannot be guaranteed.

In order to keep high performance on IIS identification, TabuCol [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] is chosen as a perfect candidate playing the role of MinConflict(). TabuCol employs a critical 1-move neighborhood structure. In the FAP, we choose the same strategy and only accept the move on the variables of violated constraints.

A slight difference from original TabuCol is that the MinConflict() need to respect the satisfaction on the constraints in subset H. It appears that a dedicated objective function is needed for such purpose. The objective function needs to distinguish the importance of critical constraints in H from constraints in C \ H.

f = α × (|H|) + |C v | (3.8)
In Equation 3.8, |H| is the number of violated critical constraints, |C v | is the number of the violated constraints in C except those in H, and α is a sufficient large constant which distinguishes the constraints in H from the constraints in C v . The value of α is set as the number of greatest node degree of the testing instance during the experiments, which equals the maximal number of constraints involved on the same variable.

MinConflict() searches an assignment which has minimal cost on the above objective function and returns a violated constraints subset C v . The weights W Cv are generated by MinConflict() on all violated constraints C v during the search. The weights on violated constraints W Cv are carried out by measuring the difficulty of satisfaction during search. The weight on each constraint will be initialized with zero and increased one unit in case that it is violated during each iteration of Tabu. MinConflict() stops when the cost of the fitness function cannot be improved during a given number of iterations. In our experiments, the maximal iteration is set to 1000.

Based on these weights, Select() chooses one violated constraint from C v with the most weight in W Cv . Even though is no direct evidence that the weighting system can identify correctly the constraints belonging to an IIS, numerous studies show that the weighting system can guide the search toward the harder subproblem which may be potentially an IIS [START_REF] Morris | The breakout method for escaping from local minima[END_REF], or indicate the subset of critical constraints which are hard to be satisfied together by heuristics [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF].

It is worth mentioning that the connectivity property of the IIS plays an important role in IIS identification. An IIS is a connected subgraph in the context of constraint graph; if the construction of one IIS respects the connectivity among the constraints, the construction will be effective instead of being misled by adding irrelevant constraints or constraints belonging to another IIS. When the first constraint of one IIS is identified, its adjacent constraints will be considered during IIS construction.

Verification phase

The construction phase ends when MinConflict() cannot find a partial solution on the critical constraints subset H.

The constraint subset H will be handled by the verification phase for the unsatisfiability proof. MAC() sits within the verification phase, and attempts to find a solution exclusively for the constraints subset H. If such solution does not exist, we can conclude that the constraints in H form an IS.

Since the construction phase adopts an approximated approach, it is possible that the constraints in H may not sufficiently form an IS. In such case, MAC() will carry out a consistent assignment on H and the 2-phase algorithm will restart with the assignment as a partial solution for MinConflict() and enter again the construction phase.

Technique of saturation

In the construction phase, a specific procedure named Saturate() (Line 7) is adopted. It is an elegant technique which forms an induced subproblem with little computational cost.

Essentially, the saturation procedure automatically completes the constraints among the critical variables. The saturation technique travels all the critical variables and verifies its neighborhood variables to see if they are critical variables or not. If there is a neighborhood critical variable found, the saturation will covert the constraints exclusively on these critical variables into critical constraints.

The motivation is that there are a few Max-CSP solvers dealing with the minimization of variables violation instead of the constraints violation in the literature. By completing the constraints among the critical variables, any constraintoriented Max-CSP solver can be loosely considered as a variable-oriented solver.

Another motivation is based on the fact that the constraints belonging to an IIS are identified one by one during Suppose that after two iterations, the algorithm identifies two constraints a and b. With the saturation, the constraint d linking the two variables {A, C} is converted to critical constraint automatically. Instead of three executions, the saturation accelerates such procedure by requiring one less run of MinConflict(). In more complicated cases, the number of executions can be reduced more quickly.

Preliminary analysis

The preliminary result of the above approach on the CELAR instances was reported in [START_REF] Hu | On identifying infeasible subsets in constraint satisfaction problems[END_REF], accompanying with the results of the wcore proposed by Hemery et al. [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF]. The experiments were carried out on a computer with 3Gb of memory and an Intel Core 2 Duo (T6300) 1.86GHz processor under Linux (Ubuntu 9.04) operating system. The benchmark is the well known telecommunication instances set CELAR. Several highest frequencies in benchmark are removed from the instances which makes the instances unsatisfiable. In Table 3.5, the first four columns describe the detail information of examined instances. The HighestFreq indicates the highest available frequency for each instance.

The columns under wcore present the size of the IIS found by means of the number of variables and the number of Secondly, in case of satisfiability found by MAC, the solution on H will be preserved and considered as an initial partial solution for the next run of the 2-phase algorithm. There are two reasons behind the consistency on H. First, the constraints set H may intersect with or be included in an IIS. Second, the constraints set H may have no intersection with an IIS at all. In the first case, the constraints in H are not sufficient to form an IIS. While in the second case, the constraints in H have no interest in forming an IIS. By preserving the solution on H, the search efforts in both cases are taken into account.

These observations suggest that the construction phase need to be divided into two parts specifically to emphasize the location step: locating a constraint in one IS and constructing the IS around it. Instead of working on the entire problem with costly procedure, the IS construction will focus only on a small subproblem. In the next section, a new general routine dedicated to IS identification on FAP instances will be introduced.

A general routine for Infeasible Subset (IS) identification -LCV

In this section, a general routine of IS identification will be introduced based on the drawbacks learned from previous experiments. The general routine consists of three independent components (see Figure 3.9) which are Locator, Constructor and Verificator.

These three components cooperate sequentially to identify an IS inside an over-constrained problem. The sequence can be described essentially as following: the locator scans the entire problem and attempts to locate a critical constraint potentially inside an IS; the constructor constructs a potential IS by adding one by one the adjacent constraints around the constraint identified by locator; and finally, the verificator provides the proof of infeasibility of the sub- problem built by the constructor. In order to ease the description of this approach, we introduce the notion of a core which is a subproblem and potentially an IS.

It is noticed that when the unsatisfiability of core is proven, the core is an IS. The pseudo-code of LCV routine is illustrated in Algorithm 8, where X and C are the variables set and the constraints set of the problem, C(x) and X(c)

indicate the constraints set on the variable x and the variables set under the constraint c, C Core and X Core denote the subset of constraints and the subset of variables forming a core, C v is the violated constraint set, W Cv is the weights on the violated constraints C v generated by BreakScan() algorithm (described later).

The general LCV routine is mainly an IS identification algorithm, also, there are two subroutines dedicated to variables IIS and constraints IIS identification and they will be detailed in Section 3.5. In following sections, the three components in LCV will be separately explained.

Locator routine

At the end of Section 3.3.4, we have suggested that the IS search should be divided into two different procedures -IS location and IS construction. The motivation behind is that the IS identification should exclusively deal with the partial problem due to time consumption. In LCV, the locator sits right on the beginning of the routine to identify the location of an IS. It is described by Algorithm 9. The slight difference is that after locating the first constraint, 2-phase continues forming H by selecting another constraint c and locator stops to return directly the constraint c.

Algorithm 9: Locator input : a set of constraints C output: one constraint c if ArcConsistent(C) then 1 [W Cv , C v] ← BreakScan(C); 2 c ← Select(W Cv , C v);
In the FAP instances, there may exist instances which are not consistent even at the Arc-Consistency level. Thus an Arc-Consistency algorithm AC3 is deployed as a pre-filtering procedure. The integration of an AC algorithm is the significant difference between locator and the construction phase in the 2-phase algorithm. Locator detects a deadend (see Definition 18) by FindDeadend() in case that the instance is not consistent at the Arc-Consistency level. In theory, a deadend variable is inside an IIS. The constraints which are adjacent with such a variable can be considered as a candidate list for the IIS location. Heuristically, the constraint c pruning the last value in the domain of deadend variable will be chosen as the constraint potentially in an IIS by SelectCtr(). The AC3 domain filtering is exclusively used in locator, and the domains of variables will be recovered after the location of the first constraint c.

For Arc-Consistent instances, the AC3 pre-processing procedure reduces the variables domains which may accelerate search in BreakScan() [START_REF] Galinier | Solving the frequency assignment problem with polarization by local search and tabu[END_REF]. From Figure 3.10, the acceleration on searching the IIS on FAP instances with AC pre-filtering is quite considerable. If the instance is Arc-Consistent, the BreakScan algorithm will sit right after the AC3 algorithm to locate the first constraint. Since in LCV only one constraint need to be located, it essentially requests the algorithm to scan all the constraints and proposes a specific constraint which addresses the location of a potential IIS. Considering it is the only component working on the entire problem, the locator algorithm should not be costly on time computing.

Algorithm 10 slightly changes the original approach of prefiltering by embedding a weighting system. The weights W Cv on the violated constraints in C v are generated by increaseOneUnitWeight() procedure during each iteration of BreakScan with initialization to zero. The selected critical constraint c is the constraint with the maximal weight in W Cv . Using a weighting system as a statistic learning technique is not a new idea in CSP resolution, despite its simplicity, it intentionally guides the search toward the subset of critical constraints which are difficult to satisfy together. The procedure stops when the localSearch() cannot find a solution satisfying all critical constraints in H.

The fitness function of localSearch() can be expressed as:

f localSearch = i∈C ψ i × W i (3.9)
Algorithm 10: BreakScan input : a set of constraints C output: a set of constraints C v and a set of weights

W Cv W Cv , H, C v ← ∅; 1 while H ∩ C v = ∅ do 2 if C v = ∅ then 3 W Cv ← inceaseOneU nitW eight(C v , W Cv); 4 H ← H ∪ C v ; 5 end 6 C v ← localSearch(C, W Cv , H); 7 end 8 C v ← violatedCtrs(H); 9 return C v , W Cv 10
where ψ i is a boolean variable on the constraint c i , it equals 1 if the constraint c i is violated, 0 otherwise; W i is the weight of the constraint c i . By respecting the function, localSearch() attempts to minimize the violation on highly weighted constraints. When localSearch() stops, it returns a set of violated constraints C v which is equal to the final set H. localSearch() stops after a given number of iteration fixed to 1000 without improvement. The local search chosen to be embedded in BreakScan needs to be efficient.

As mentioned before, TabuCol can be considered as candidate for such role. It is interesting to compare it with an even simpler local search and to see the impact between the quality of local search and the performance of BreakScan().

The simple local search we used for such comparison is a hill climbing local search which is created by simply removing the tabu list in TabuCol. The Figure 3.11 shows the results reported in [START_REF] Hu | Yet another breakout inspired infeasible subset detection in constraint satisfaction problem[END_REF], which demonstrates the performance gains by replacing TabuCol by hill climbing. All the time consuming comparison is based on running entire LCV algorithm with TabuCol or hill climbing heuristic as localSearch() in BreakScan() with same size of IS found.

The experiment is conducted without the AC3 pre-filtering procedure. It shows that the simple local search approach has performance gains on 15 instances out of 19. We can conclude that even a simple Hill Climbing local search can guarantee performance of LCV to search an IS under the guidance of the prefiltering algorithm. The future experiments will be carried out exclusively with the Hill Climbing as localSearch() in locator.

Constructor routine

When the critical constraint c is identified by locator, the constructor is in charge of building a core around it. From the experiment in [START_REF] Hu | On identifying infeasible subsets in constraint satisfaction problems[END_REF], the 2-phase algorithm gave no impressive results in comparison with wcore approach. It may be due to that wcore adopts a constructive approach in IIS construction while the 2-phase algorithm always works Algorithm 11 is the routine of constructor which is a combination between an extension procedure and a centralization procedure.

Firstly, we randomly assign the two variables of the initial constraint c with two consistent values to initialize A Core . The extension Extend() works like DSatur, which attempts to assign one by one the variables adjacent with the core X Core . The variable selection is based on MRV (Minimum Remaining Values) instead of DSatur's color saturation degree, and one available value in its domain will be assigned to the selected variable which is consistent with the partial solution A Core on X Core . The procedure stops when Extend() finds a deadend variable, the deadend variable will be added in X Core . Extend() returns the variables set X Core and the partial solution of the core. In case Extend() finds a feasible core, constructor will return the core as a subproblem (see Line 5).

The centralization procedure is executed right after the extension to extract H from X Core issued from extension.

The centralization procedure uses the prefiltering algorithm in [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] to extract a critical constraint subset H from the core constraints C Core . It stops when it cannot find a solution A H on H. i.e. there is at least one constraint violated in H. In case that there is a feasible solution on C Core found during the centralization procedure, the constructor will continue to extend the core by Extend().

Our preliminary analysis shows that the maximal constraint and variable size reduction reaches 80% on CELAR and GRAPH instances with the centralization procedure. Comparing the bold lines in Figure 3.12, the first represents a core C Core after the extension procedure and the latter is a critical constraint subset H processed by the centralization procedure. We see that with the presence of the centralization procedure, the size of the core is greatly reduced to an Algorithm 11: Constructor input : a set of constraints C, a located constraint c and a set of weights W Cv output: the core constraint set H X Core ← X(c); shows the time consumption between the 2-phase algorithm and the LCV algorithm. The performance improvement in time is significant on the CELAR instances, LCV outperforms the 2-phase algorithm on all 10 instances with the same verification algorithm inside them. For the performance on IIS of variables size, LCV only found a larger IIS on 3 instances out of 10 in CELAR (see Table 3.5 and Table 3.6).

1 repeat 2 / * Extension * / A Core ← Assign(X Core); 3 X Core ← Extend(X Core , A Core); 4 if X Core is feasible then return X Core is a feasible problem; 5 H ← ∅,C v ← ∅;
if C v = ∅ then 9 c ← Select(C v , H, W Cv); 10 H ← H ∪ {c}; 11 H ← Saturate(H, C Core); 12 end 13 [W Cv , C v , A H] ← M inConf lict(C Core , H); 14 if C v = ∅ then break; / * go to Line 17 * / 15 until H ∩ C v = ∅ ; 16 X Core ← X(H); 17 A Core ← A H ; 18 until H ∩ C v = ∅ ;

Verificator routine

The verificator is the final component in LCV which provides the infeasibility/feasibility proof of the critical constraints subset H. The verificator is implemented by an exact search algorithm.

1234567859389A453BCD7EC3785 Fig. 3.12: CELAR scen02 extension to centralization Fig. 3.13: Time consuming between 2-phase and LCV

In Section 1.4, several exact algorithms were described and compared briefly. Among them, the MAC algorithm is a good candidate to act as a verificator thanks to its effectiveness [START_REF] Bessière | MAC and combined heuristics : two reasons to forsake FC (and CBJ?) on hard problems[END_REF] and simplicity in implementation. It consists of embedding an Arc-Consistency propagator inside a chronological backtracking routine. There is no overhead memory management thanks to the effectiveness and efficiency of the propagator. As shown in Figure 3.9, the arrow from verificator to constructor indicates the correctness routine if the feasibility on H is proven and the critical constraints subset H will be returned to constructor. A new core will be constructed around X Core . This routine is totally different from the restart mechanism adopted in Algorithm 7, it guarantees that the previous effort will be used. Thanks to centralization in constructor, even if the core X Core grows, its size can still be reduced by the centralization process.

If verificator proves the unsatisfiability of H, LCV returns H as IS.

IIS of variables and IIS of constraints

In previous sections, we have presented LCV as an IS identification algorithm. Based on the result of LCV, we now intend to identify an IIS inside the extracted IS. Following the definition of IIS, it is noticed that an IIS can be identified as an IIS of variables or an IIS of constraints (see Definition 22 and Definition 23).

Based on IIS definition (see Definition 21), any IIS can be identified by removing one by one either the variable or the constraint from an IS. We attempt to iteratively identify a smaller IS inside one IS until no smaller IS can be found. The routine of IIS of variables and IIS of constraints detectors can be briefly described in Figure 3.14. The two detectors iteratively consider the output IS of the previous stage as input IS for the current stage. The procedure stops when the size of variables or constraints set cannot be reduced. In the next section, two detectors named IIS of variables and IIS of constraints detector will be detailed.

IIS of variables detector

Based on the pseudo-code in Algorithm 12, the detector can be divided into two parts, the locate core and construct core. The IIS of variables detector firstly locates a small critical constraint subset H inside the entering IS. The locate core procedure is the implementation of prefiltering in [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] with the embedded saturation technique. The saturation procedure (see Saturate()) is used to complete all the constraints among the critical variables.

Secondly, the detector iteratively adds one x into the located core formed by the critical variables X H and the critical constraints H. The variable selection is based on the MRV heuristic. The procedure stops when MAC() algorithm proves that the core is unsatisfiable.

Since the algorithm uses heuristics to add the variables into the core, the final output can be only considered as an approximated IIS. The detector will be executed iteratively until the variables set sizes of input IS and output approximated IIS are equal.

Algorithm 12: IIS of variables detector

input : an IS Core output: an approximated IIS of variables

X H H ← ∅,C v ← ∅; 1 / * locate core * / repeat 2 H ← H ∪ C v ; 3 H ← Saturate(H, Core); 4 C v ← M inConf lict(Core, H); 5 until C v ∩ H = ∅ ; 6 X H ← X(H); 7 / * construct core * / while M AC(H) feasible do 8 if there is no c ∈ X(Core) \ X H then return X H ; 9 x ← M RV (X(Core) \ X H); 10 X H ← X H ∪ {x}; 11 end 12 return X H ; 13 3.5.

IIS of constraints detector

Following the strategy adopted in [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], the IIS of constraints will be identified on the basis of IIS of variables. When IIS of variables identifies an approximated IIS, IIS of constraints detector will locate a core exclusively based on the critical constraints H without saturation. After the core is located, the detector attempts to iteratively add one constraint into the core until the core H becomes infeasible.

Regarding the pseudo-code in the locate core procedure of Algorithm 13, the slight difference from IIS of variables detector is the absence of saturation. In construct core procedure, the constraint c is chosen among the constraints set adjacent with the variable chosen by MRV (see MAC()). In order to minimize the size of the constraints set, the saturation technique is not applied here.

Algorithm 13: IIS of constraints detector input : an IS Core output: Both detectors can still provide high performance thanks to the size of critical constraints subset H, it is noticed that MAC is heavily executed. In the next section, the experimental results conducted on IIS identification by LCV and the two IIS detectors will be detailed and analyzed.

an approximated IIS of constraints H H ← ∅,C v ← ∅; 1 / * locate core * / repeat 2 H ← H ∪ C v ; 3 C v ← M inConf lict(Core, H); 4 until C v ∩ H = ∅ ; 5 / * construct core * / while M AC(H) feasible do 6 if there is no c ∈ Core \ H then return H; 7 c ← M RV (Core \ H); 8 H ← H ∪ {c};

Experimental results

For both LCV, and wcore [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF], proposed by Hemery et al., experimental results were carried out on an Intel Core 2 Due E5300 (2.6GHz) machine with 3.2Gb memory under linux (Ubuntu distribution). The proposed approach is implemented in C++ and compiled by GCC. The reference method wcore proposed by Hemery et al. is coded in Java.

The minimum and average execution times on each instance are measured for 5 executions. All results presented as IIS are an approximated IIS.

Results for CELAR and GRAPH

All the results here are carried out on the CELAR and GRAPH benchmarks by LCV and wcore algorithm. The version of wcore is the faster version found on the authors' website which is different from the version used in Section 3.3.4. Table 3.6 gives the results on IS and IIS of variables obtained by LCV. Table 3.7 compares the results of IIS of constraints obtained by both algorithms. In Table 3.7, the computational time obtained by wcore is measured by one run on each instance since it is a deterministic algorithm. For both Table 3.6 and Table 3.7, the computational times obtained by LCV are indicated separately by minimum runtime and average runtime obtained in 5 runs for each instance. In Table 3.7, wcore fails to find an IIS on graph03 and graph10 (represented by "-"). The success rate of LCV on CELAR/GRAPH is 100% for all instances.

LCV IS

LCV+detector 3.6, the V ar and Ctr columns represent the minimal IS and IIS sizes for all instances on 5 runs, and the average size of IS and IIS is in parentheses. For most of the instances in GRAPH, the LCV+IIS of variables detector algorithm highlights its effectiveness on variables and constraints reduction.

It is noticed that LCV alone is quite effective on IIS variables identification. LCV+detector only finds 7 instances with smaller size of IIS than the IS found by LCV (see highlighted numbers under column sixth and seventh). Among these 7 instances, only graph06 and graph07 have significant improvement on IIS size. The time consumption for the IIS of variables detector is minor when we compare the average time of LCV alone and the average time of the LCV+detector, the maximal time consumption of the detector occurs on instance scen01 with less than 2 seconds for the same size between IS and IIS.

Table 3.7 shows the IIS of constraints size and computational time comparison between LCV+detector and wcore.

The minimal size of IIS of constraints found on 5 runs is shown under the columns V ar and Ctr and the average size found on 5 run is shown in parentheses. Regarding the computational time, LCV outperforms wcore on all instances except 2 (graph06 and graph07) on average time in 5 runs, its minimum time surpasses wcore on all instances. Regarding the number of constraints in the IIS of constraints, wcore obtains a smaller number of constraints on only 4 instances out of 19. Among them, two instances (graph06 and graph07) have larger variables numbers in the IIS of constraints than the one found by LCV.

Table 3.8 extracts the results of the IIS of variables and the IIS of constraints obtained by LCV+detector from Table 3.6 and Table 3.7. It is noticed that the IIS of constraints detector can still effect the results of IIS of variables.

For all 19 instances, the IIS of constraints detector reduces the number of constraints on 10 instances. On the other hand, with the IIS of variables detector alone, we can always get an IIS with relatively small size.

Figure 3.15 shows LCV's average runtime is very good comparing to the wcore approach except in two instances.

Referring to the minimal runtime in Table 3.7, the LCV's performance surpasses the compared method on all instances and the maximal gain reaches 95%.

In Figure 3.16, we plot the performance gains on the sizes of the IIS for the number of variables in red and the number of constraints in green between LCV and wcore. The performance loss can only be found on 4 instances out of 19, particularly when we compare the constraints sizes. The sizes of variables in IIS obtained by LCV are either equal or less than the one found by wcore.

Next we generate LCV algorithm profile of runtime on two CELAR instances. Figure 3.17 shows the runtime profile of three components in LCV on instance scen01, Figure 3.18 shows the runtime profile on instance scen08. It needs to notice that the scen01 is consistent at the Arc-Consistency level, while scen08 is inconsistent. Comparing Figures 3.17 , it is obvious that locator consumes the major part of runtime on scen01, while on scen08, the constructor is more involved. Since scen08 is not consistent at the AC level, the AC3 algorithm in locator can efficiently find a deadend variable and locate an IIS, while on scen01, locator needs to call Breakscan to locate the IIS which is a more time consuming procedure. In scen08, thanks to the location of the deadend variable, the unsatisfiability of IIS From the comparison, the proposed LCV+detector algorithm surpasses the performance of wcore on both IIS size and computational time. On the instances consistent at the AC level, as mentioned before, wcore consists of embedding a variable selection heuristic inside a MAC (Maintaining Arc-Consistency during search). It suffers from the ordering of assigned variables in its MAC backtracking algorithm. LCV adopts a totally different approach which scans all constraints of the entire problem and proposes a critical constraint potentially inside an IIS which avoids the impact of variables ordering during the search. For the instance inconsistent at AC level, LCV's locator can efficiently locate a deadend variable which is absolutely inside an IIS. Such a strategy dramatically improves the computational performance. Fig. 3.15: LCV+IIS of constraints detector on average runtime compared to wcore

IIS Vars IIS

Results for ROADEF2001 challenge

In this section, we give the results on the instances of ROADEF2001 challenge which were carried out by our LCV with both IIS variables and IIS of constraints detectors. We also used wcore on these instances but it failed to find any IIS in 1000 seconds. Thus we will only present the computational results obtained by our approach. detector loses its effectiveness on IIS detection. Sometimes, the IIS of variables detector did not find an IIS, instead it finds an IS. The strategy of adding variables to core in the IIS of variables detector is not always effective when compared to the removing variables technique described in the literature [START_REF] Marques-Silva | Minimal unsatisfiability: Models, algorithms and applications[END_REF]. Regarding all results on the 40 scenarios including different levels (from fapp01 to fapp40), they can be classified into two categories (see Table 3.9). There are 16 scenarios in first class A, whose sizes of IIS are increasing with the increasing restriction level despite a few exceptions. For the class B of 24 scenarios, the sizes of IIS are either decreasing with the increasing restriction level, or not related to the level. Since restriction level 0 is the most strict one and the variables are strongly under constrained, it explains that the situation happened in class A. The IIS grows its size when the constraint relaxation is taking place. Class B contains the scenarios whose size of IIS decreases with the increasing of level. This is mainly caused by locator. With the relaxation of restriction level, the search locates different IIS inside these problems. So we can identify that there are different categories of problem property in ROADEF2001 instances for IIS identification. Tables 3.10 and 3.11 show all results obtained by LCV on the ROADEF2001 instances at their infeasible levels.

Under the column "instance level", the name of the instances and the levels examined are listed. The three main columns -IS, IISvars and IISctrs represent the results obtained by LCV alone, LCV with the IIS of variables IS IIS vars IIS ctrs instance level V C T(sec) V C T(sec) V C T(sec) fapp01 0 8 12 6.26 [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] In Figure 3.20, two curves show the sizes of the IS at different levels found in fapp05 and the execution times to obtain them. We observe that fapp05 is Arc-Consistent at level 8, 9 and 10, and the computing time reaches the peak at 8 level. The computing time climbs according to the constraints levels, then decreases after the peak.

Results for SOES

The performance comparison on the SOES benchmark is between our LCV algorithm and the in-house SSA algorithm (by DGA). SSA is an algorithm based on simulated annealing developed by the CELAR. We do not have more details about it, only its reference results are provided. The computational results are listed in Table 3.12, where V ars.

indicates the number of variables in the IIS found by both algorithms.

Conclusion

This chapter starts with a general introduction of the Frequency Assignment Problem (FAP), or more specifically, the Radio Links Frequency Assignment Problem (RLFAP) and the Frequency Assignment Problem with Polarization (FAPP). It is followed by detailed presentation of four related benchmarks -CELAR, GRAPH, ROADEF2001 and SOES. An initial algorithm, called the 2-phase algorithm, to identify an IIS is presented and evaluated on the CELAR and GRAPH instances to aid the analysis both on the characteristics of instances and evaluated weak points of the algorithm design. From these preliminary results, two remarks surface:

1. The Arc-Consistency of instances needs to be verified as soon as possible, particularly in a FAP problem.

2. An IIS only represents a small part of the problem, the search need to focus exclusively on a small part of the problem.

As several instances of the benchmarks are not Arc-Consistent, the verification of such consistency is computationally cheap. When arc inconsistency is proven, the IIS is located immediately. The second remark is the key point to reduce the computing time on IIS identification. As is well known, the IIS identification in FAP instances is NP-hard.

Based on the fact that an IIS is a connected component in the context of graph topology, it is wise to only work on relatively small subproblems instead of the entire problem.

Based on these experiences gained from the preliminary analysis, a general IS identifying routine LCV is introduced.

The routine consists of three independent componentslocator, constructor and verificator. The locator scans the entire problem and proposes a constraint which is potentially inside an IIS. Around such a constraint, the constructor forms a hard core by the means of connectivity. Finally, if the infeasibility of such a core is proven by the verificator, the core is an IS.

With the identified IS at hand, two subroutines called detectors to identify the IIS of variables and the IIS of constraints are detailed to detect an approximated IIS. First, an IIS of variables is identified on the proven IS. Then the IIS of constraints is extracted from the IIS of variables by the IIS of constraints subroutine.

The results of LCV on all benchmarks demonstrate the effectiveness and efficiency even in comparison with other approaches on CELAR/GRAPH and SOES problems. The general routine obtains smaller IIS and the speedup in computing time is considerable. The sizes of entire problems and the sizes of IIS have a huge impact on performance.

The analysis on the results of ROADEF2001 shows that the locator is the most costly component among the three. A graph G is not k-colorable if k is lower than G's chromatic number. In such a case, there exists at least one subgraph G ′ ⊆ G which cannot be colored with k colors; if all strict subgraphs of G ′ are k-colorable, the subgraph G ′ is defined as a critical subgraph [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], which can be considered analogous of the IIS in the graph coloring problem.

This chapter is dedicated to identify the critical subgraphs in a graph coloring problem. It will be organized as follows: the definitions of the GCP and the IIS analogous to the GCP, the critical subgraph, will be described first. Several instances from the DIMACS benchmark will be illustrated after the definitions. Before entering the experimental results on critical subgraph detection, the approximated and exact approaches to solving the k-coloring problem will be summarized and two novel data structures to accelerate TabuCol will also be presented.

Finally, the LCV algorithm described in chapter 3 will be applied on critical subgraph identification in the k-coloring problem. The experimental results carried out by LCV on the DIMACS instances will also be compared with the results reported by Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF].

IIS and critical subgraph

A graph G = (V, E) consists of a set of nodes V and a set of edges E. The Graph Coloring Problem (GCP) consists in coloring any two adjacent nodes differently; such coloration is legal. Let S be the collection of all the independent sets of G; each independent set s ∈ S contains a set of vertices that share no edges. Each independent set s ∈ S contains a variable x s whose value equals 1 if and only if the vertexes of s will be assigned the same color. Thus, the GCP can be formulated mathematically through the following model [100]:

min s∈S x s , (4.1)
s.t.

s∈S:i∈s

x s 1, i ∈ V, (4.2)
x s ∈ {0, 1} s ∈ S. (4.3)
The objective function (4.1) minimizes the number of independent sets (the number of colors respectively), the constraint (4.2) guarantees that each node in the graph belongs to at least one independent set. The last constraint (4.3)

defines the variable x s as a binary decision variable.

The intention of the GCP is to find the minimal k number of colors which allows us to color all adjacent nodes differently. Such a minimal number, k, for a graph G is called the chromatic number of G, denoted χ(G). The deter-

mination of χ(G) is NP-hard [101]. A graph G is k-colorable if χ(G) ≤ k. If a graph G is k-colorable, then all its
nodes can be divided into k independent sets.

Definition 29 (k-coloring). Given a graph G = (V, E) and a positive integer k such that k < |V |, the graph k-coloring problem is to determine whether there exists a legal vertex coloring using k colors.

The k-coloring problem can be conveniently formulated as a CSP. The nodes are the variables of the CSP, the edges between them form the constraints of the problem and the domain of the problem consists of the given k colors.

In case the given k is lower than the chromatic number χ(G), the graph G is not k-colorable. It raises the same question from the previous chapter: can we identify an induced subgraph G ′ which is not k-colorable, while all its strict subgraphs are k-colorable? Such a subgraph G ′ is named the critical subgraph:

Definition 30 (Critical Subgraph). A critical subgraph of graph G is an induced subgraph G critical ⊆ G, which cannot be colored with k colors. It becomes k-colorable iff any of its nodes are removed.

The critical subgraph has several important characteristics. Firstly, it is an induced subgraph:

Definition 31 (Induced Subgraph). An induced subgraph G ′ = (V ′ , E ′) of a graph G is such a subgraph that G ′
contains all the edges (x, y) ∈ E with nodes x, y ∈ V ′ .

Considering the definition of an IIS in a CSP, the critical subgraph is an IIS of variables in a CSP. Secondly, it is also a connected component of a graph G:

Definition 32 (Component). A maximal connected subgraph G ′ = (V ′ , E ′) of G is called a component (also named connected component) of G [102].
A subgraph which is a component also addresses the connectivity property of an IIS in a CSP. One important application of finding critical subgraph in [102] is to determine the chromatic number of a given graph G. Since the complexity of determining the chromatic number of the graph is exponential, if a small critical subgraph can be identified, then the cost of verification on such a small size critical subgraph by a complete search is affordable.

In next section, the benchmark used to examine the performance will be illustrated and explained. All these instances are from the well known DIMACS benchmark [103].

DIMACS instances

The DIMACS GCP instances is a set of instances proposed by different authors, which are dedicated to examine the performance of algorithms. Regarding the range of results on this benchmark, it is an excellent benchmark to examine critical subgraph identification algorithms. The instances files can be found at Carnegie Mellon University2 . There are several categories of graph which are illustrated as followings.

Book Graphs. This benchmark is based on the relations among the characters of several classic novels which include Tolstoy's Anna Karenina (anna.col), Dicken's David Copperfield (david.col), Homer's Iliad (homer.col), Twain's Huckleberry Finn (huck.col), and Hugo's Les Misérables (jean.col). In Figure 4.1, the graph shows the topology of anna.col instance. Notice that there are duplicated edges in the instances.

Queen Graphs (queen* *.col). Given an n × n chessboard, a queen graph is a graph with n 2 nodes, each corresponding to a cell of the board. Two nodes are connected by an edge if the corresponding cells are in the same row, column, or diagonal. Unlike some of the other graphs, the coloring problem on this graph has a natural interpretation:

given such a chessboard, is it possible to place n queens on the board such that two queens are not in the same row, column, or diagonal? Figure 4.2 shows the graph topology of these Queen instances. By referring to the above instances, the random generated instances are unstructured with high density, while the real or semi-real world instances are well structured with particular graph topology. In the next section, several kcoloring problem resolution techniques are briefly reviewed as k-coloring is not the main topic of this thesis.

Solution techniques for k-coloring problem

The k-coloring problem is a well studied classic combinatorial optimization problem. Many heuristic and exact solution techniques have been proposed in the literature. The challenge of finding more efficient and effective algorithms always attracts researchers in the operational research community. The numerous methods dealing with k-coloring problem can be roughly classified into two major categories, heuristic and exact approaches.

Recently Galinier and Hertz [START_REF] Galinier | A survey of local search methods for graph coloring[END_REF] and Malaguti and Toth [105] give a comprehensive survey of the solution techniques for the GCP. Also Chiarandini and Gualandi maintain an excellent website concerning the solution techniques of the graph coloring problem 3 . Interested readers can refer to these materials for detailed information. The stochastic local searches for k-coloring can be roughly classified into two categories: construction and repair algorithms. The first consists in extending a partial consistent solution to a complete one, the latter attempts to repair the current inconsistent or non-optimal solution to a consistent or improved solution. Recently, the hybridization of these two manners was also adopted. and the largest next color partition is selected in P 2, it is used as the second color partition of the child. Finally, another partition of P 2 is selected for the child. The procedure stops when the child has k independent sets and the nodes not yet selected will be assigned randomly. After the crossover operator, the TabuCol algorithm is used to mutate the child individual.

Add move (x i , A(x i)) into T abuList for L + λ × Conf lict(A) iterations; 7 A ← A + (x i , a i); 8 if f (A) < f (A *) then A * ← A 9 until f (s) = 0 or iter = M axIter ;

Bounds list for FAP

In addition to the decentralized gamma table, we propose another data structure for TabuCol, named bounds list, to deal with FAP instances. Each bound in the bounds list consists of a bound value and a gamma value. Such a data structure benefits from the properties of the FAP binary constraints which are:

|f i -f j | > δ ij ⇒      Eq a : f j < f i -δ ij Eq b : f j > f i + δ ij (4.4)
Equations Eq a and Eq b separate the domain of variable j into three parts: the values lower than f iδ ij , the values greater than f i + δ ij and the values in the interval

[f i -δ ij , f i + δ ij [.

Summary of novel data structures

← ∅, C v ← ∅; 1 repeat 2 if C v = ∅ then 3 H ← H ∪ {C v }; 4 C v ← ∅; 5 end 6 C v ← M inConf lict(C, H); 7 until H ∩ C v = ∅ ; 8
From the pseudo-code of prefiltering, the algorithm stops when at least one critical subgraph is included in the output subgraph. At the same time, it destroys any critical subgraphs which have a larger size than the included one. From the comparison table, the results of LCV are notably worse than the ones carried out by Insertion in [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] for the sizes of critical subgraphs and the computational times. There are 14 instances out of 37 for which LCV obtains larger sizes than Insertion. For the rest of the instances, LCV finds the same size of critical subgraphs but with a longer runtime and a lower success rate in 5 runs.

To explain the difference in the results, it is noticed that the collaboration between Insertion and TabuCol is a perfect match for k-coloring. First, an effective heuristic such as TabuCol, may only violate a minor number of nodes in each critical subgraph. With the help of an embedded weighting system [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], the heuristic may find the critical constraints The problem structure also has an important impact on the performance of LCV. In contrast to FAP instances, in graph k-coloring the edge constraint and color domain are uniform for all nodes in the problems. The constructor in LCV works in a Dsatur like constructive manner which may build a large and k-colorable subgraph. This is why even with the centralization procedure which attempts to reduce the subgraph size, LCV is much less effective than Insertion.

Conclusion

In this chapter, we describe the basic definitions and solution techniques for the graph k-coloring problem. Following the description of the problem, the popular benchmark DIMACS is presented with different categories of instances.

Current solution methods for k-coloring are presented in two classes: heuristic and exact methods.

In the heuristic category, a roadmap of algorithm design in recent decades is introduced from DSatur performance improvement of the LCV approach on DIMACS instances. LCV suffers from a non-tailored algorithm design which is not dedicated to the k-coloring features. We conclude that the LCV is not suitable for a uniform structure problem such as the k-coloring problem where the constraints and the nodes domains are too uniform for the LCV process.

during search) shows its simplicity and effectiveness by embedding domain filtering propagation inside the backtracking. It is chosen to provide the unsatisfiability proof in our method for IIS identification. Alongside the backtracking algorithms, numerous heuristics have been also illustrated; they provide a compromise between computational time and solution quality on large size instances.

The second chapter presents on the main topic of this dissertation -Infeasible Subset (IS) and Irreducible Infeasible Subset (IIS). The definitions of IS and IIS are given at the beginning of the chapter and followed by important properties of IS and IIS. We restate in this conclusion that an IS is a CSP subproblem for which there is no solution and an IIS is an IS which becomes feasible by removing any of its constraints or variables. We have also defined the notion of a critical variable and constraint. The solution techniques in dealing with IIS in the literature are described under two approaches: satisfiability testing and hitting set approach.

The satisfiability testing approach consists of a satisfiability solver and adding/removing heuristic techniques. The hitting set approach consists in iteratively generating the violated constraints subsets by a MaxCSP solver and finding a hitting set on the basis of these violated constraints subsets. These two approaches share common iterative execution mechanisms and are distinguished by using a different embedded core solver. Our theoretical analysis concludes that the hitting set approach is more suitable for applications for which the satisfiability is difficult to prove, and the maximal satisfaction solutions are conveniently obtained. At the end of the chapter, we have detailed the Insertion algorithm, which is proposed by Galinier and Hertz [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF], and extended by Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] to deal with the frequency planning problem. We have shown the drawback of the Insertion algorithm on the FAP and explained the motivation of a new method to deal with FAP instances.

The third chapter launches the study of IIS identification on our target operational research problem, the frequency planning. The chapter starts with a brief introduction of the FAP and its CSP modeling. After clarifying the connection between the FAP and CSP, the benchmarks used to evaluate our approach are illustrated by their characteristics and topologies. We have used four benchmarks with several instances: CELAR (11 instances), GRAPH (9 instances), ROADEF2001 (40 instances with different levels of constraint relaxation i.e. 220 instances at all) and SOES (20 instances). For CELAR and GRAPH we have converted the instances into infeasible ones by removing some upper constraints from the variables domain. For ROADEF2001 we have kept the infeasible levels of relaxation, and for SOES2008 the n-ary constraints are not used. All these problems are RLFAP based that is the Radio Link

Frequency Assignment Problem but ROADEF2001 and SOES2008 are frequency and polarization planning problems while CELAR and GRAPH do not include polarization planning. IIS results were already published on CELAR and GRAPH; IIS results were given by the CELAR on SOES2008 instances; and there were no previous results for ROADEF2001 when we did the work.

An initial algorithm, called the 2-phase algorithm, is conceived to address some important design aspects on searching for an IIS on the FAP instances. The algorithm is based on a construction phase (the selection of a constraint to detect the IIS) and a verification phase (verification of the infeasibility/feasibility of the set of selected constraints by the exact algorithm MAC). Something quite important there is that the algorithm tries to build the IIS by exploiting the connectivity property of the IIS. When the first constraint of one IIS is identified, its adjacent constraints are considered during IIS construction. Indeed, the IIS is a connected subgraph, so if the construction of one IIS respects the connectivity among the constraints, the construction is more efficient by concentrating the search around some initial constraints. In this procedure we have applied a technique of saturation which consists in completing the constraints among the critical variables. Using the saturation technique, the number of executions of MinConflict() is reduced substantially. In comparison with Hemery et al. [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF] on CELAR instances, the results were promising but the algorithm was not efficient in the construction phase.

Based on the experimental analysis on the 2-phase algorithm, our new proposal of the LCV algorithm is described for IS search. The LCV consists of three independent components which are named locator, constructor and verificator.

The routines of LCV can be described briefly as follows: locator scans the entire problem and attempts to locate a Then in order to iteratively identify a smaller IS inside one IS until no smaller IS can be found, two detector routines for IIS of variables and IIS of constraints have also been introduced to extract the IIS on the basis of the IS found by LCV. The IIS of variables detector firstly locates a small critical constraint subset H inside the entering IS. Secondly, the detector iteratively adds one variable into the located core formed by the critical constraints H and its variables.

The variable selection is based on the MRV heuristic. The procedure stops when the MAC algorithm proves that the core is unsatisfiable. The other detector is similar but it adds constraints to the core and does not apply a saturation technique.

The new LCV+detector approach has shown a significant performance improvement when dealing with the CELAR and GRAPH instances. From the comparison with Hemery et al. [START_REF] Hemery | Extracting MUCs from constraint networks[END_REF], the proposed LCV+detector algorithm surpasses the performance of wcore on both IIS size and computational time. Also we have observed that LCV+detector of constraints offers the best performance. These results were confirmed on ROADEF2001 on which we compared the sizes of IS (obtained with LCV), IIS of variables and IIS of constraints (obtained with LCV plus the respective detector). Finally concerning SOES2008 instances, we have compared our LCV results with the results given by the SSA algorithm from DGA/CELAR and the performance of LCV was better for all cases.

In the fourth chapter, considering the existing results on FAP application, we apply the LCV algorithm on critical subgraph identification to the graph k-coloring problem. The chapter of critical subgraph identification begins with the definition of the k-coloring problem and the introduction of some exact and heuristic solution techniques in the literature. We have observed that TabuCol is still a competitive candidate to provide an excellent compromise between solution quality and computational time. By analysis the behavior of TabuCol, we have proposed two novel data structures to accelerate performance on both FAP and k-coloring instances. These structures are called gamma table

and bounds list table. The gamma table stores the number of inconsistency values for each value of the variable domain in a decentralized way. The second structure is dedicated to the FAP problem; it introduces bounds describing the variable domain. The bounds come issued from the T -coloring constraints and they allow TabuCol to speedup the inconsistency checking of each value by considering the value outside the bounds and inside the bounds of the interval of the frequency spectrum. We evaluate formally the time and space complexity of the move evaluation and move update of TabuCol with the proposed data structures.

At the end of the chapter, we have compared the results obtained by LCV and Desrosiers et al. Insertion+prefiltering algorithm [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF]. The results of LCV on several DIMACS instances were not impressive on runtime performance and size of critical subgraph. We have underlined the problem for LCV with the uniform representation of constraints and domains in the k-coloring problem, and further, the heuristic used in constructor to extend the subproblem. The design of LCV cannot take advantage on the structure of the k-coloring problem, while Insertion can benefit from the combination of its constraints pruning mechanism and embedded TabuCol in dealing with the same problem. We have concluded that, currently, our proposed LCV is not efficient and effective for the critical subgraph identification in the graph k-coloring problem.

After our current research on IIS detection on frequency planning and graph k-coloring, there is still the possibility of exploring new solutions. As mentioned before, the results of LCV on the frequency planning application were very impressive while the results on graph k-coloring cannot achieve the same performance as the state of the art method

Insertion+prefiltering. The preliminary analysis casts a doubt on the heuristic used in the constructor routine of LCV for k-coloring. Thus, one possible research avenue will focus on the proposal of new heuristics to construct the critical constraints subset effectively. Alongside constructor, locator also can be modified to improve IS detection. Instead of locating one constraint, several constraints can be considered at same time. The third research direction can be focused on the IIS detection in the problem with high-arity constraints. Such objective attracts more attention recently in frequency planning application due to the fact that modern modeling techniques of FAP involve high-arity constraints as described in Section 3.2.3. Such a challenge explores a different domain and may bring the benefits on IIS detection with intermodulation and perturbation constraints. If this problem is solved, the conversion between n-ary constraints and binary constraints will be unnecessary in IIS detection for n-ary problems.

1. 1

 1 AC on graph coloring problem . 1.2 Local consistencies . 1.3 Graph of Example 1 . 1.4 Backtracking process . 1.5 MAC implementation . 1.6 Resolution graph of Example 2 . 1.7 Implication graph of Example2 . 2.1 Resolution graph . 2.2 The k-coloring problem of Example 3 . 3.1 Radio spectrum for wireless communication in USA (Copyright c radio-scanner-guide.com)3.2 RLFAP (Copyright c Exalt Comm. Inc,.) . 3.3 Topology scen02 in CELAR . 3.4 Topology graph03 in GRAPH . 3.5 Topology fapp16 in ROADEF2001 . 3.6 Topology scen20 in SOES . 3.7 Saturation . 3.8 Time consuming of first attempt on CELAR scen01 . 3.9 LCV general routine . 3.10 Comparison of LCV IIS search speed with and without AC3 . 3.11 Comparison of LCV processing time with hill climbing and TabuCol as localSearch() in BreakScan() . . 3.12 CELAR scen02 extension to centralization .3.13 Time consuming between 2-phase and LCV . 3.14 Routine of IIS detectors . 3.15 LCV+IIS of constraints detector on average runtime compared to wcore . 3.16 LCV IIS of constraints size gain compared to wcore . 3.17 CELAR scen01 LCV profile . 3.18 CELAR scen08 LCV profile . 3.19 Overall performance on IIS size for ROADEF2001 . 3.20 Time and IS variable size on fapp05 for 10 levels . 3.21 Consuming time of the three components of LCV on fapp05 . 3.22 Consuming time of Arc-Consistency and local search algorithms inside locator component on fapp05 . 4.1 anna.col (undirected without duplicated edges) . 4.2 queen5 5.col . 4.3 le450 5a.col . 4.4 miles250.col . 4.5 fpsol2.i.2.col . 4.6 games120.col . 4.7 Crossover in HCA . 4.8 Several evolutionary algorithms for k-coloring . 4.9 Example 4 -connections and gamma table for node E . 4.10 Time comparison on DIMACS le450 5a with 4 colors . 4.11 Bounds list of Example 5 . List of Tables 1.1 Time and space complexity of AC algorithms . 1.2 Time and space complexities of several Path Consistency algorithms . 2.1 Results of Insertion on CELAR benchmark . 3.1 Four Benchmarks of RLFAP . 3.2 Characteristics of CELAR and GRAPH . 3.3 ROADEF2001 . 3.4 SOES instances . 3.5 Results comparison between wcore and 2-phase . 3.6 Results on IS and IIS of variables obtained by LCV . 3.7 Results comparison between wcore and LCV on IIS of constraints . 3.8 IIS of variables and IIS of constraints detectors comparison . 3.9 Results classification of ROADEF2001 . 3.10 ROADEF2001 results . 3.11 ROADEF2001 results . 3.12 SOES results obtained by SSA and LCV . 4.1 Category of some local search algorithms . 4.2 Comparison for move evaluation and update between Hertz and Werra [97] and gamma table 4.3 Time and space complexity for both novel data structures . 4.4 DIMACS results comparison between Insertion+prefiltering [78] and LCV .

Definition 3 (

 3 Arity of constraint). The arity of a constraint c indicates the number of variables involved in such a constraint, denoted |X(c)|.

Fig. 1 . 1 :

 11 Fig. 1.1: AC on graph coloring problem

5 if

 5 a has no support in one of these domains then 6 Remove a from x domain D(x); x) = ∅ then return P is not arc-consistent; 10 if x has any value a removed from D(x) then 11 Set Q ← Q ∪ N (x); = (X, C, D ′);15

 checking since the number of the available supporters values are unknown. AC6 elegantly avoids such this risk by fixing the values ordering in the domain, thus the values set before the recorded supporter value are inconsistent as a supporter. If the supporter is pruned from the domain, only the values behind it have to be verified and AC6 will choose the first consistent value as the new supporter. b) Coarse-grained: AC3 and AC2001/AC3.1

5 Removed ← f alse; 6 foreach 10 Removed 14 if 17 ArcConsistent

 56101417 a ∈ D(x) do 7 foreach y ∈ N (x) do 8 if a has no supporter in D(y) then 9 remove a from D(x); Removed = true then 15 if D(x) = ∅ then return P is not Arc-Consistent; 16 foreach y ∈ N (x) do

Fig. 1 . 2 :

 12 Fig. 1.2: Local consistencies

Fig. 1 . 3 :

 13 Fig. 1.3: Graph of Example 1

 Fig. 1.4: Backtracking process

Fig. 1 .

 1 Fig. 1.5: MAC implementation

Fig. 1 . 6 :Fig. 1 . 7 :

 1617 Fig. 1.6: Resolution graph of Example 2

Definition 21 (

 21 Irreducible Infeasible Subset). An Irreducible Infeasible Subset (IIS) is an IS which becomes feasible by removing any of its constraints or variables. The above definition of IIS is based on the destructive view which indicates the state changing based on removing a constraint or variable. The removed element brings the state change from infeasible to feasible. Thus the IIS can be regarded as: Definition 22 (Irreducible Infeasible Subset of variables). An infeasible set X of variables is said irreducible (IIS) if any proper subset of X is feasible. Definition 23 (Irreducible Infeasible Subset of constraints). An infeasible set C of constraints is said irreducible (IIS) if any proper subset of C is feasible.

[51]

 51 procedure to solve SAT instances. The resolution graph represents a directed acyclic graph from the original clauses, through the clauses learned from processed clauses, to the empty clause which indicates a MUS. During the procedure, the non-inference clauses are pruned and only the impliedly learned and original clauses are studied to identify a MUC.Figure 2.1 represents a resolution graph generated during the DPLL procedure, the black nodes ω 1 , ω 2 and ω 3 represent the original clauses, the red node ω l represents a learned clause and the empty node is an empty clause. It indicates the relation between the learned clauses and the original clauses.

 Since all violated constraints are excluded from H, there is no violated constraint in H under the assignment A. This conclusion breaks the IIS definition 20 -there is no consistent partial assignment on the subset constraints H.Based on the IIS definition, by removing exactly one constraint from each IIS of a CSP, the problem becomes satisfiable. Thus the exact total number of violated constraints in an optimal Max-CSP solution can be determined through the IIS detection. Example 3 gives an illustration of IS detection by the hitting-set approach.Example 3. To color a graph as shown in Figure2.2, the numbers represent the indices of the nodes and the letters represent the indices of the arcs. The chromatic number of this graph is χ(G) = 3. The problem is infeasible with only giving 2 colors. A collection L of violated constraints subsets can be described as: {a, f }, {a, g}, {b, f }, {b, g}, {c, f }, {c, g}, {d, f }, {d, g} and {e}. Two hitting sets of such collection can be described as {a, b, c, d, e}, {f, g, e} which are also two IS (luckily the IIS) of the problem.

Fig. 2 . 2 :

 22 Fig. 2.2: The k-coloring problem of Example 3

10 return H; 11 Focusing

 11 on the Min-Conflict strategy, TabuCol adopts a very simple critical 1-move (or 1-exchange)[START_REF] Galinier | A survey of local search methods for graph coloring[END_REF] neighborhood structure. The neighbor solutions are generated by only changing the color (or frequency) of one node among all the conflict nodes.

Algorithm 4 :

 4 TabuCol Input : a graph G = (V, E) and k number of colors Parameters: M axIter, L and λ Output : a complete assignment A * on G with k colors Create a random assignment A; 1 set A * ← A and iter = 0; 2 Set T abuList ← ∅; 3 repeat 4 iter ← iter + 1;5

10 In Algorithm 5 ,

 105 MinConflict() is the same approximated algorithm mentioned in Algorithm 3. The algorithm stops when MinConflict() cannot find a solution respecting all constraints in H. The constraint set H increases its size at each iteration by choosing a constraint c from the violated constraint set of MinConflict(). As in Removal, line 9 stops the algorithm if it fails to find an IIS.

 1 shows the frequency intervals of spectrum regarding the usages in USA up to 1GHz. Regarding the growing of radiocommunication demands, the efficient usage of radio spectrum is an important problem on which research teams are hugely involved since the 1990's.

Fig. 3 . 1 :

 31 Fig. 3.1: Radio spectrum for wireless communication in USA (Copyright c radio-scanner-guide.com)

Fig. 3 . 3 :

 33 Fig. 3.3: Topology scen02 in CELAR Fig. 3.4: Topology graph03 in GRAPH

Fig. 3 . 5 :

 35 Fig. 3.5: Topology fapp16 in ROADEF2001 Fig. 3.6: Topology scen20 in SOES

 if equality of polarization; ∆ = ij , if inequality of polarization; (3.4) Equations Equ 3.3 and Equ 3.4 describe the binary constraints with polarization in the SOES instances, accompanying with the non-polarization variant (Equ. 3.5).

8 1 Given an initial solution on C; 2 /

 12 It is originally developed as a pre-procedure to reduce the size of instances. Comparing the pseudo-code of Insertion and prefiltering algorithms, prefiltering puts all violated constraints C v into the critical constraints set H and never prunes the constraints from the whole constraint set C. With such a difference, prefiltering highlights all violated constraints found by MinConflict() and leverages their importance by converting them into the critical constraints set H. By preserving all violated constraints per iteration, there is no risk to prune any constraints belonging to an IIS from the problem. Thanks to such a feature, it has no risk to prune more constraints from IIS even with relatively poor performance of MinConflict() on FAP instances. Algorithm 7: 2-phase algorithm input : a set of constraints C output: a subset of constraints H ⊆ C forms an IS H ← ∅, C v ← ∅, W Cv ← ∅;

10 /

 10

 the executions of MinConflict(). Without any acceleration technique, ideally the number of MinConflict() executions equals the number of constraints belonging to an IIS. With the saturation technique, the number of executions of MinConflict() can be reduced substantially. The Example 3.7 illustrates the mechanism of saturation. The graph contains 4 nodes {A, B, C, D} and 5 arcs {a, b, c, d, e}. As mentioned before, the Selection() will select only one constraint per iteration as critical constraint.

 Fig. 3.7: Saturation

 constraints, and the computational time. The columns under 2-phase indicate the minimal size of the IIS and minimal execution time in 50 runs obtained by 2-phase algorithm, and the numbers in the parentheses are the maximal IIS size and maximal execution time in 50 runs.It is noticed that in the first five instances, the numbers of constraints in IIS obtained by the 2-phase are larger than the one found by wcore. The reason is that 2-phase algorithm uses the saturation technique to complete all constraints among the variables. Overall, 2-phase outperforms wcore by computational time on 3 instances for the same IIS of variables set size. Regarding the IIS size, 2-phase found smaller IIS on 5 instances out of 10.

 Our first step is to generate a performance profile of the two phases of the 2-phase algorithm which are construction and verification. MinConflict() is the main computation consumer in the construction phase, while MAC() plays the same role on the verification phase. The time consumption of both procedures is illustrated in Figure3.8. It is quite obvious that the heuristic's runtime consumption largely surpasses the exact one. Through analysis, two main observations are revealed. Firstly, MinConflict() runs numerous times and always minimizes the fitness function on all constraints C. The design choice is made on the theoretical analysis on Insertion mentioned at the beginning of Section 3.3. Such a strategy avoids the risk of IIS destruction while it is a time consuming task. Further, comparing the number of violated constraints found by MinConflict() and the total number of constraints in one IIS, it suggests that there may exist more than one IIS inside the instance. The computation resource of the algorithm is used to search for one IIS among all possibilities in the full problem.

Fig. 3 . 8 :

 38 Fig. 3.8: Time consuming of first attempt on CELAR scen01

Fig. 3 . 9 :

 39 Fig. 3.9: LCV general routine

8

 8 Based on above pseudo-code, the locator scans all constraints of the problem and identifies a specific constraint potentially inside an IS. As in the 2-phase algorithm, such a constraint is selected among the violated constraints C v according to the weights W Cv (Select() in Line 3 of Algorithm 9). The weights W Cv are carried out by BreakScan() which searches on entire problem. It is noticed that the Select() in the 2-phase algorithm accepts three parameters C v , W Cv , H, while the Select() in locator only accepts two parameters C v , W Cv . These two functions will select the first constraint c exclusively on its weight in W Cv . The difference is that after locating the first constraint c, 2-phase starts to form H with the saturation process from c while locator stops immediately after finding c.

7 /

 7 Extend() finds a deadend and fails to extend a partial solution * / C Core ← C(X Core); * The following loop is the same as construction phase in 2-phase algorithm * / repeat 8

19 return H; 20 acceptable

 20 scope for the unsatisfiability check. Comparing to the Algorithm 7, the new cooperation between locator with constructor has significant performance gains even without the Arc-Consistency check in locator.Figure 3.13

Fig. 3 . 14 :

 314 Fig. 3.14: Routine of IIS detectors

and 3. 18

 18

 Ctr IIS Vars IIS Ctr CELAR Var Ctr Var Ctr GRAPH Var Ctr Var Ctr scen01

Fig. 3 . 16 :Fig. 3 .

 3163 Fig. 3.16: LCV IIS of constraints size gain compared to wcore

Fig. 3 . 19 :

 319 Fig. 3.19: Overall performance on IIS size for ROADEF2001

 16.63 3 3 17.18 3 3 17.74 4 7 6 57.08 5 5 60.18 5 5 60.88 5 3 3 34.08 3 3 34.62 3 3 35.18 IS IIS vars IIS ctrs instance level V C T(sec) V C T(sec) V C T(sec) fapp11

Fig. 3 . 20 : 7 .

 3207 Fig. 3.20: Time and IS variable size on fapp05 for 10 levels

Fig. 3 . 21 :Fig. 3 . 22 :

 321322 Fig. 3.21: Consuming time of the three components of LCV on fapp05

 The improvement in computing time can be focused on accelerating the Arc-Consistency algorithm and decreasing the consumption of embedded local search. On 5 runs, LCV found 100% success for CELAR/GRAPH, for 216 instances in ROADEF2001 and SOES. It failed to find IIS only on 4 ROADEF2001 instances. Chapter 4 IIS in graph k-coloring problem When you are looking at a map, there is perhaps a crucial question: "How many colors do we need to color the countries of a map in such a way that adjacent countries are colored differently?". Such question demonstrates a classic example of the graph coloring problem. The Graph Coloring Problem (GCP) or more specifically in this chapter, the Vertex Coloring Problem, consists in coloring any two adjacent nodes with different colors. It is a famous and classic problem in operational research, the studies of such a problem and resolution techniques in the literature can be traced back to 19th century 1 .

Fig. 4 . 1 :Fig. 4 . 3 :

 4143 Fig. 4.1: anna.col (undirected without duplicated edges) Fig. 4.2: queen5 5.col

Figure 4 .

 4 Figure4.6) where the nodes represent each college team. Two teams are connected by an edge if they played each other during the season. Knuth gives the graph for the 1990 college football season.Miles Graphs (miles*.col). These graphs are similar to geometric graphs. The nodes represent a set of United States cities and two nodes are connected if the cities are close enough on the basis of the distance between them given by road mileage in 1947. Figure4.4 shows that this instance is well structured and has several independent

Figure 4 .Fig. 4 . 5 :

 445 Fig. 4.5: fpsol2.i.2.col Fig. 4.6: games120.col

10 PartialCol,

 10 proposed byBlöchliger and Zufferey [115], extends the solution from a k-legal partial solution. It also adopts a reactive tabu tenure Foo-scheme which adaptively corresponds to the fluctuation of the objective function.Such a scheme avoids the unpromising part of the search space and helps the tabu tenure to escape from these areas.However experimental results show that the construction method is only better on flat instances than the repair method of TabuCol. Avanthay et al. [116] adopt a VNS (Variable Neighborhood Search) [117] approach to solve the GCP, they propose various neighborhood structures to diversify the neighborhood solutions and to explore different search spaces. Hertz et al. propose the VSS (Variable Space Search) [118] algorithm which, not only switches among the neighborhood structures, but also defines different objective function for each neighborhood structure. The algorithm uses cyclic executions of three different heuristics which is derived from Formulation Space Search (FSS) [119]; also it is similar to Hyper-heuristics introduced in [120]. Chiarandini and Stuetzle simplified VNS and proposed an ILS (Iterated Local Search) [121] approach to solve the k-coloring problem. Devarenne et al. design a mechanism to avoid the local optima by detecting the loop of visited nodes [122]. Dib et al. propose TabuNG [123] to reduce the search space by recording the partial solution which cannot lead to the feasible solutions. In these approaches, different neighborhood structures are proposed to diversify the neighborhood solutions and to exploit the different search space avoiding the local optima. In [124] and [116], the authors have proposed various neighborhood structures for the k-coloring problem.

 Galinier and Hao proposed HCA (Hybrid Coloring Algorithm) [106] which achieves better solution quality than the simple adoption of a genetic algorithm on GCP[127]. HCA replaces the original mutation operator by TabuCol and uses an elegant crossover operator. The Greedy Partitioning Crossover operator consists in selecting the maximal cardinality color partition ignoring nodes already chosen from other parent. Such an offspring strategy creates one individual with high stable independent sets from both parents.

Figure 4 .

 4 Figure 4.7 illustrates three steps of crossover in HCA. In each generation of HCA, two individuals P 1 and P 2 are selected from the population and considered as parents to form a new individual Child. Initially, the child inherits the nodes in the biggest color partition from P 1. Then, the duplicated nodes in P 2 are removed (the shaded parts in P 2)

Fig. 4 . 7 :

 47 Fig. 4.7: Crossover in HCA

Figure 4 .

 4 Figure 4.8 illustrates the loose relation among several evolutionary algorithms for the k-coloring problem. The improvement of solution quality carried out by evolutionary algorithms is visible by comparing with stochastic local search algorithms. While at same time, the evolutionary approach often causes computational overhead.

Fig. 4 . 10 :

 410 Fig. 4.10: Time comparison on DIMACS le450 5a with 4 colors

Table 4 .

 4 [START_REF] Freuder | Partial constraint satisfaction[END_REF] shows the comparison between Desrosiers et al. Insertion+prefiltering approach and LCV approach. The results of Insertion is obtained on using a computer with a Athlon 1.6Ghz CPU and 512Mb of RAM[START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], the results of LCV's are carried out on a PC Intel Core 2 Duo 2.6Ghz with 3.8Gb RAM. LCV is implemented in C++ without parallelization.The k column indicates the number of colors available for each instance, and it is fixed such that each instance is not k-colorable. The second, third and fourth columns list the sizes of the critical subgraphs and the minimum computational time in 5 runs obtained by Insertion+prefiltering. The fifth and sixth columns give the size of critical subgraphs found by LCV. The Success/5 column indicates the number of successes in 5 executions of LCV to get the same critical subgraph size as Insertion+prefiltering. The last column indicates the minimum execution time in seconds when the LCV algorithm is successful, without the execution time of the verificator routine.

 [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] in 1979 to TabuCol[START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] in 1987, HCA [106] in 1999 and EvoDiv[133] in 2010. This history shows that the algorithm development from simple heuristic to stochastic local search algorithms and nature inspired evolutionary approach improve the state-of-the-art for this problem.Under the category of exact algorithms, due to the NP-hardness, the methods in the literature are still not very efficient in dealing with larger instances. From our knowledge, the state of the art of these algorithms to determine the k-colorability is proposed by Herrmann and Hertz. Their hybrid approach [138] achieves an impressive performance improvement on relatively larger instances comparing to the previous proposals.After the description of the state of the art methods in solving the k-coloring problem in the literature, two novel data structures dedicated to accelerate the computational time of TabuCol for k-coloring and FAP problems are proposed.Both structures adopt a so called Tabling Strategy which reduces the time complexity of the evaluation step in TabuCol by remembering the current violation states. Our results show a significant speed gain using such an improvement. The first structure, named gamma table, stores the inconsistency state for each domain value of each variable. The second structure, named bounds list, is dedicated to the FAP; it allows TabuCol to accelerate the choice of the new resources during a move. The adoption of LCV on the critical subgraph identification in the k-coloring problem is evaluated by comparing it to the performance of Insertion+prefiltering proposed by Desrosiers et al. The experimental results indicate no

 critical constraint potentially inside an IS; constructor constructs a potential IS by adding one by one the adjacent constraints around the constraint identified by locator; and finally, verificator provides the proof of feasibility or infeasibility of the subproblem built by the constructor. The verificator routine still uses a MAC algorithm to check the infeasibility of the constraint subset. Contructor uses several heuristics such as the saturation technique to introduce new constraints, minimum conflict technique, and minimum remaining value to find a frequency assignment which minimizes constraint violation. Locator uses the AC3 algorithm as a pre-filtering step, we have seen that it accelerates the IIS search speed, and an embedded local search in the BreakScan routine to minimize the violations on highly weighted constraints. A comparison between Hill Climbing and TabuCol is done as the local search procedure in BreakScan and has emphasized the improved performance of Hill Climbing.

Further, the research

 may concentrate on identifying all the IIS of a problem. All IIS detection may bring two benefits. Firstly, since one IIS indicates the unsatisfiability of the problem and the constraint violation in a small part of the problem, even with the relaxation of constraints in such an IIS, it still may not change the global unsatisfiability of a problem in case that there exists several IIS. With the identification of all IIS and constraint relaxation, we may propose a complete solution to modify the problem modeling. Secondly, all IIS detection may provide a compromise MaxCSP solution. Regarding the relation between the IIS detection and MaxCSP solution, one MaxCSP solution can be achieved by violating the constraints which form a minimum hitting set on the collection of all IIS.

Table 1 .

 1 1: Time and space complexity of AC algorithmsIn Table1.1, it is noticed that AC3 has the highest time complexity while other algorithms are similar in time complexity. The AC3 and AC2001 have less space complexity than the fine-grained ones, notably AC4 and AC6.

Table 1 .

 1 algorithms. 2: Time and space complexities of several Path Consistency algorithms DAC maintains the Arc-Consistency between any two connected variables x i and x j by ordering x i ≺ x j . It means that all the values authorized in the domain of variable x i need to find at least a supporter in domain of x j , but not necessarily for the values in the domain of x j .Given a variable ordering ≺ (x 1 , x 2 , . . . , x i , . . . , x n) of n variables and a partial assignment A i on the subset variables {x 1 , x 2 , . . . , x i }, FC filters the domains of non-assigned variables {x i+1 , . . . , x n } by removing the values which are not consistent with the partial consistent assignment A i .FL and PL offer stronger local consistency based on the pre-processing of FC. Given the same conditions of FC mentioned above, PL applies DAC on variables subset {x i+1 , . . . , x n } by the defined ordering. Based on PL, FL even enforces the DAC from the variable x j ∈ {x i+1 , . . . , x n } to the variable x k ∈ {x 1 , . . . , x i }.

	Algorithms	time	space
	RPC1 [17]	O end 3	O (ed(n + d))
	RPC2 [19]	O end 2	O (end)
	maxRPC [19] O en + ed 2 + td 3	O (end)
	PIC1 [18]	O en 2 d 3	O (ed + td)
	PIC2 [20]	O en + ed 2 + td 3 O (ed + td)

Table 2 .

 2 1 demonstrates the results obtained on the over-constrained instances in CELAR. The second and third columns indicate the sizes of variables and constraints of the IIS found by Insertion. The final column shows the number of successful runs in 10 executions, the N/A means that the unsatisfiability of subproblem identified by Insertion cannot be proven in 30 minutes.

	CELAR IIS variables size IIS constraints size Successful rate
	Scen04	5	10	2/10
	Scen05	5	10	2/10
	Scen06	N/A	N/A	N/A
	Scen07	9	26	2/10
	Scen08	N/A	N/A	N/A
	Scen09	7	19	1/10

Analyzing the cause of the exponential verification time, we observe that the size of the subproblem identified by Insertion is too big to verify its unsatisfiability in a reasonable time. It raises the need of a new algorithm to deal with

Table 2 .

 2 1: Results of Insertion on CELAR benchmark the frequency assignment problem to find smaller IIS if it exists, or same size IIS within less time. In the next chapter, a new hybrid algorithm will be proposed to improve IIS identification on FAP instances.

Table 3 .

 3 CELAR benchmark consists of 11 instances, the problem size is from 200 to 916 variables, with 1235 to 5744 constraints and the maximal number of available frequencies is 48. The GRAPH benchmark contains 14 instances with 200 to 916 variables, 1134 to 5246 constraints and a maximum of 48 frequencies. CELAR and GRAPH instances involve binary constraints exclusively. The ROADEF2001 benchmark contains 40 instances with 200 to 3000 variables and 1108 to 41781 constraints.The maximal number of frequencies is 998 which includes the two polarities. The density of the instances is higher than the ones in CELAR and GRAPH. Also ROADEF2001 only contains binary constraints with or without polar-1: Four Benchmarks of RLFAP Comparing the four sets of instances, the number of variables and constraints, and the density, are relatively smaller for CELAR and GRAPH. However the density is not sufficient to explain the structures of these benchmarks. With the aid of graph visualization the differences among the benchmarks can be shown more clearly. The Figures 3.3 to 3.6 illustrate the difference in graph topology between these benchmarks on 4 particular instances. The topologies of GRAPH, ROADEF2001 and SOES are quite similar but very different from CELAR which is really simplified.Many CELAR instances are composed of branches with different densities in which there are several very dense subproblems. The visual graphs of GRAPH, ROADEF2001 and SOES instances look like nests, the nodes are strongly connected with each other.

	Benchmark	CELAR GRAPH ROADEF2001 SOES
	Nb. instances	11	11	40	20
	Nb. variables	200-916 200-916	200-3000	16-2000
	Nb. constraints 1235-5744 1134-5246 1108-41781 73-13439
	Nb. Freq	48	48	182-998	49-727
	Density	0.01-0.07 0.01-0.06	0.01-0.6	0.006-1.22
	Unary				x
	Binary	x	x	x	x
	Polarization			x	x
	N-ary				x
	Data source	simplified academic	modified	modified

ity. All information about these benchmarks can be collected on the well known web page dedicated to FAP (see http://fap.zib.de/problems/). The SOES benchmark is the most recent and contain more problem features. SOES has 20 instances with 16 to 2000 variables and 73 to 13669 constraints. The numbers of available frequencies is from 49 to 727.

Table 3 .

 3 2 shows the characteristics of CELAR and GRAPH instances where N b.V ar is the number of variables, N b.Ctr is the number of constraints, HighestF req is the highest frequency used for each domain, AC column indicates whether the instance is Arc-Consistent or not (C or IN C) and density is the graph density. For our experiments, the instances with the objective of minimum span have been converted to infeasible instances by removing several upper frequencies from the domains, and the instance with minimum order are pruned from the benchmarks so we only keep 9 GRAPH instances.

	CELAR Nb. Var Nb. Ctr HighestFreq AC Density
	scen01 916	5548	666	C	0.01
	scen02 200	1235	380	C	0.06
	scen03 400	2760	380	C	0.03
	scen04 680	3967	666	INC 0.02
	scen05 400	2598	666	INC 0.03
	scen06 200	1322	792	INC 0.07
	scen07 400	2865	792	INC 0.04
	scen08 916	5744	792	INC 0.01
	scen09 680	4103	792	INC 0.02
	scen11 680	4103	666	C	0.02
	GRAPH Nb. Var Nb. Ctr HighestFreq AC Density
	graph03 200	1134	366	INC 0.06
	graph04 400	2244	380	INC 0.03
	graph05 200	1134	792	INC 0.06
	graph06 400	2170	792	INC 0.03
	graph07 400	2170	792	INC 0.03
	graph10 680	3907	380	INC 0.02
	graph11 680	3757	792	INC 0.02
	graph12 380	4017	792	INC 0.06
	graph13 916	5273	792	INC 0.01
	Table 3.2: Characteristics of CELAR and GRAPH

Table 3 .

 3 .3, the basic characteristics of ROADEF2001 instances are presented. the columns 2,3 and 4 indicate the size of instances with the numbers of variables, the numbers of constraints and the numbers of frequencies. The AC level gives the highest level of Arc-Consistency for each instance, and Feasible level indicates the highest level of instance for its feasibility (k feasible). scen Nb. Var Nb. Ctr Nb. Val AC level Fea. level scen Nb. Var Nb. Ctr Nb. Val AC level Fea. level

	fapp01	200 1108	190	3	4	fapp21	500 1589	242	4
	fapp02	250 1636	210	2	2	fapp22 1750 16924	802	7
	fapp03	300 2327	250	7	7	fapp23 1800 33337	302	9
	fapp04	300 1799	270	1	1	fapp24 2000 14301	302	7
	fapp05	350 2488	270	8	11	fapp25 2230 11974	302	3
	fapp06	500 3478	290	5	5	fapp26 2300 12761	302	7
	fapp07	600 4778	302	9	9	fapp27 2550 6231	242	5
	fapp08	700 3834	282	5	5	fapp28 2800 12046	998	3
	fapp09	800 4800	350	3	3	fapp29 2900 41781	998	6
	fapp10	900 6071	362	6	6	fapp30 3000 33301	778	7
	fapp11 1000 8005	362	8	8	fapp31	400 1644	700	5
	fapp12 1500 13439	310	2	2	fapp32	550 5017	998	6
	fapp13 2000 13669	190	3	3	fapp33	650 4631	498	5
	fapp14 2500 21610	362	4	4	fapp34	750 4623	998	4
	fapp15 3000 17754	182	5	5	fapp35 1500 11723	698	6
	fapp16	260 2088	302	11	11	fapp36 2000 10067	454	7
	fapp17	300 2056	302	4	4	fapp37 2250 22553	998	5
	fapp18	350 2387	302	8	8	fapp38 2500 32622	698	3
	fapp19	350 3114	802	6	6	fapp39 2750 12605	502	3
	fapp20	420 2487	302	10	10	fapp40 3000 28313	698	4

3: ROADEF2001

Table 3 .

 3 .[START_REF] Freuder | Partial constraint satisfaction[END_REF], where N b.F q is the number of available frequencies, V ars is the number of variables and Ctrs is the number of constraints. The sizes of instances of SOES are largely different from the ones in ROADEF2001 which are relatively smaller.

	Scenario Nb. Fq Nb. Vars Nb. Ctrs Scenario Nb. Fq Nb. Vars Nb. Ctrs
	SCEN 01 91	50	172	SCEN 11 100	770	4041
	SCEN 02 123	47	185	SCEN 12 72	702	3623
	SCEN 03 100	40	166	SCEN 13 700	182	3297
	SCEN 04 143	16	73	SCEN 14 91	300	2593
	SCEN 05 99	50	465	SCEN 15 155	1500	13439
	SCEN 06 75	38	859	SCEN 16 727	121	840
	SCEN 07 49	50	187	SCEN 17 71	568	4140
	SCEN 08 49	50	197	SCEN 18 95	2000	13669
	SCEN 09 50	48	229	SCEN 19 60	154	2928
	SCEN 10 49	50	208	SCEN 20 577	249	2938

4: SOES instances

Table 3 . 5

 35

: Results comparison between wcore and 2-phase Based on the comparison, despite the 2-phase algorithm detecting the smaller IIS in variable sizes, its computational performance is not very impressive regarding Hemery et al.'s proposal. In this section, a computational consumption analysis is presented to analyze the algorithm design problem in the 2-phase algorithm.

Table 3 .

 3 6: Results on IS and IIS of variables obtained by LCVIn Table

	.04	2.41

Table 3 . 7

 37

		wcore IIS Ctr	LCV+detector IIS Ctr
	CELAR Var Ctr Time(sec) Var	Ctr	Min(sec) Ave(sec)
	scen01 10 25	30.33 10(10) 27(27.2)	19.47	22.49
	scen02 10 29	18.02 10(11) 18(23)	9.42	10.98
	scen03 10 29	20.47 10(10) 18(19.2)	10.21	12.22
	scen04	4 4	9.87 4(4) 4(5)	1.07	1.95
	scen05	4 4	7.81 4(4) 5(5.2)	1.22	1.31
	scen06	8 14	17.91 5(5) 7(7.2)	2.65	3.25
	scen07	9 16	17.22 8(8) 16(17.3)	7.05	7.95
	scen08 12 22	22.07 7(7.7) 13(17)	8.76	11.5
	scen09	7 14	14.97 5(6.5) 10(14.7)	4.18	6.2
	scen11	8 28	22.88 8(8) 28(28)	13.95	15.12
		wcore IIS Ctr	LCV+detector IIS Ctr
	GRAPH Var Ctr Time(sec) Var	Ctr	Min(sec) Ave(sec)
	graph03 --	-4(4) 3(3.4)	0.85	0.95
	graph04 4 3	5.27 2(2) 1(1)	0.19	0.21
	graph05 8 11	10.96 7(7.8) 9(12.2)	1.36	1.36
	graph06 5 5	9.6 4(4.3) 6(7.2)	5.8	10.33
	graph07 5 5	9.53 4(4.3) 6(7)	5.15	10.25
	graph10 --	-2(2) 1(1)	0.22	0.23
	graph11 6 6	11.43 4(5.2) 6(7.4)	3.24	3.83
	graph12 7 8	12.04 5(5.2) 7(7.6)	4.25	5.79
	graph13 10 17	20.79 4(4) 6(6)	0.94	1.05

: Results comparison between wcore and LCV on IIS of constraints is not very difficult to prove. In scen01, verificator uses significant time to prove the unsatisfiability on a smaller over constrained critical constraints subset.

Table 3 .

 3 8: IIS of variables and IIS of constraints detectors comparison

		723			B 88		
		733						
		63						
	B	43 53						
		23						
		3						
		123						
		8 9 A B 3 7 8 9 A B 3 2 8 9 A B 3 C 8 9 A B 3 4 8 9 A B 3 D 8 9 A B 3 5 8 9 A B 3 E 8 9 A B 3 6 8 9 A B 3 F 8 9 A B 7 7	3 4	3 D	3 5	3 E	7 7	7 2	7 C
		89AB						

Table 3 .

 3

	10: ROADEF2001 results

Table 3 .

 3 11: ROADEF2001 resultsThe scenario fapp30 was a very particular case during our test; at level 2 (Arc Inconsistent level), it found a size of IS with 3 variables and 3 constraints while consuming about 1022.62 seconds on average. Since the level is not Arc-Consistent, locator can easily find a deadend variable with AC3. Most time is consumed in runtime in the construction and verification phases. With a detailed analysis, constructor finds a large critical constraints set on which verificator gives a satisfiability proof. This means that at the first construction procedure, the MRV strategy in constructor fails to find the right variable to form a critical constraints set. Despite this failure, the MRV strategy works well on all other instances.

 The time limitation for both LCV and SSA algorithms was 6 hours. From the table, LCV finds always smaller IIS size than the one found by SSA algorithm.

	SSA LCV	SSA LCV
	scenario Vars. Vars. scenario Vars. Vars.
	SCEN 01 50	6 SCEN 11 770 30
	SCEN 02 47	3 SCEN 12 702	5
	SCEN 03 40	3 SCEN 13 182 29
	SCEN 04 16	4 SCEN 14 300 11
	SCEN 05 50 13 SCEN 15 1500	2
	SCEN 06 38	5 SCEN 16 121 10
	SCEN 07 50	4 SCEN 17 568 13
	SCEN 08 50	6 SCEN 18 2000	2
	SCEN 09 48	7 SCEN 19 154 39
	SCEN 10 50	4 SCEN 20 249 13

Table 3 .

 3 12: SOES results obtained by SSA and LCV

 Focusing on the Min-Conflict strategy, TabuCol adopts a very simple 1-move (or 1-exchange) neighborhood structure. The neighbor solutions are generated by only changing the color of one node among all the conflict nodes. Using a tabu thresholding technique and a tabu list, the method achieves better performance than the Simulated Annealing approach[113, 114]. Algorithm 14 illustrates the routine of TabuCol. Its elegant critical 1-move neighborhood structure reduces the number of neighborhood solutions, while at the same time, good solution quality is kept.Choose a candidate 1-move (x i , a i) among all conflict variables with minimum violation;

	Algorithm 14: TabuCol
		Input	: a graph G = (V, E) and k number of colors
		Parameters: M axIter, L and λ
		Output	: a complete assignment A * on G with k colors
		Create a random assignment A;
	3	
	4	repeat
		iter ← iter + 1;
	6	

3 http://www.imada.sdu.dk/∼marco/gcp/ 1 A * ← A and iter = 0; 2 T abuList ← ∅;

5

Table 4 .

 4 1 proposes a classification of algorithms mentioned in this section.

	Heuristics	Construction Repair Hybrid
	[97]TabuCol	x
	[115]PartialCol	x
	[116]VNS	x
	[118]VSS	x
	[121]ILS	x
	[122]ALS	x
	[123]TabuNG	x

Table 4 .

 4

	4.3.1.3 Evolutionary algorithms
	In 1975, Holland proposed a nature inspired meta-heuristic, called the genetic algorithm [125]. Then, a specific cat-
	egory of algorithms named Evolutionary Algorithm derived from these ideas has been developed. These algorithms
	adopt both individual and population evolutions and natural selection and are applied to many optimization problems
	[126].

1: Category of some local search algorithms

In

[START_REF] Galinier | A survey of local search methods for graph coloring[END_REF]

, Galinier and Hertz point out that stochastic local search is very efficient to solve graph coloring problem.

The experimental results shown in [104] compare several stochastic local search algorithms, the authors conclude that TabuCol is robust and efficient despite its simplicity. Several algorithms surpass its performance but with higher runtime or complicated algorithm designs. However such advantages are often visible for a subset of specific instances.

As suggested in [106], TabuCol is an ideal local search algorithm to integrate into other search algorithms thanks to its elegant design and efficiency.

Table 4 .

 4 Gamma table for FAP and graph k-coloringIn[START_REF] Galinier | A survey of local search methods for graph coloring[END_REF], Galinier and Hertz mentioned a n × k centralized γ-matrix to represent the state and level of inconsistency for each color per node, where n is number of nodes and k is the number of given colors. Thanks to its elegant design, a significant acceleration was achieved on the performance of TabuCol. Slightly different from the data structure mentioned in[START_REF] Galinier | A survey of local search methods for graph coloring[END_REF], we propose a decentralized version of γ-matrix, called gamma table, to accelerate TabuCol on solving both the FAP and the graph k-coloring problem. Example 4 gives an illustration of gamma table on the graph k-coloring problem.Example 4. Given 5 adjacent nodes A, B, C, D, E with connections as in Figure 4.9. Let the color assignment of four nodes be {A : Red, B : Blue, C : Blue, D : Y ellow} and the current color on node E is Red, so we have one violation.Figure 4.9 shows the gamma table of node E in Example 4. Based on the color assignment of neighboring nodes of E, the inconsistency states of colors in the domain of E are: Red on one edge, Blue on two edges and Y ellow on oneedge. The fourth color Green is consistent with the neighborhood assignment of E. In order to store this information and eliminate the constraint verification, the inconsistency state can be stored in a table named the gamma table where the gamma values are the number of inconsistencies per color per node.Suppose now that we have such gamma table for each node. Using a linear search in the gamma table, we know that Green is the best move for E since Green has the minimum inconsistency state in the domain of E. If the move inconsistency of this color with node E and all the gamma values of Red are decreased with one unit. Also the value of the objective function will be reduced with the difference between the two gamma values of E for Green and Red.The time complexity of the move evaluation and the move update procedures of our proposal and the original TabuCol data structure designed by Hertz and Werra[START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] is shown in Table4.2, where e is the maximum degree of the graph and k is the given number of colors. The space complexity to implement such a structure is O (nk), where n is the total number of nodes. Comparing with[START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF], the complexity of move evaluation for each node per iteration is significantly reduced. Despite the higher complexity of the move update with gamma table, we have a significant runtime performance gain on TabuCol because during each iteration of TabuCol, the number of execution of the move evaluation is much larger than the move update's. Figure4.10 shows the time variation according to the number of TabuCol iterations on one DIMACS instance. The gamma table only consumes 38.3% of time in comparison with[START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] to complete the same task. 2: Comparison for move evaluation and update between Hertz and Werra[START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] and gamma table

	#57967C65	83
	57!6C	
				123	755C6C 76575656
	665 47CA5C5	45267		3432DE	6C
	26C!C5 "CC9C57	896ABC9		44F	46C C 69C!
					CC
	Fig. 4.8: Several evolutionary algorithms for k-coloring

is accepted by TabuCol, the assignment on E is changed, so the gamma tables on E's neighbors {A, B, C, D} need to be updated. All gamma values of color Green in the domains of {A, B, C, D} will be increased with one unit which indicates the

 Equation (4.4) creates two bound values (f iδ ij) and (f i + δ ij) that we put in a bounds list data structure. Thus the bounds list consists of two bound values bounding the gamma values. It is noticed that the inconsistency state of each value a in the domain equals the sum of all gamma values associated with bound values smaller than a.In order to calculate the inconsistency state in such a manner, the bounds and values of the domain need to be sorted in the same way. With the ordered bounds list and domain values, a merge sort is used to rapidly determine the inconsistency states of all domain values. The space complexity of using a bounds list is O (mt), where m is the total number of constraints and t is the upper number of bound values created for all constraints. Let d be the maximal cardinality of the domains, the time complexity to evaluate all the values of each variable (move evaluation in TabuCol) is O ((t + d) log(t + d)). Such complexity is obtained by the usage of Merge Sort. The time complexity of using a bounds list for move update for the FAP is O (e), where e is the maximal number of constraints involved in one variable; it is lower than the time complexity of using a gamma table (see Table4.2).

				D9			789ABC DECF
	C8F	3		3			
			89AB D9			
	1	2	5	6	34	31	32
							D9CEAB8EA
	Fig. 4.11: Bounds list of Example 5

The difference between the gamma values in the bounds list for FAP and the gamma values in gamma table for FAP is that in the bounds list the gamma values have plus and minus (+/-) signs to calculate the inconsistency state of the values in the variable domain. Let us consider the following example: Example 5. Let's define a duplex communication with two radio links f 1 and f 2 , the available frequencies for these two links are {2, 4, 6, 8, 10, 12, 14} and the constraint to avoid interference is defined as

|f 1f 2 | > 3.

Firstly we sort the domain values from smaller to larger. If the link f 1 is assigned frequency 6, then two bound values of 3 and 9 are created for f 2 . The domain of f 2 is separated by these two bounds into three intervals {2}, {4, 6, 8} and {10, 12, 14} (see

Figure 4.11)

. The gamma values associated with the two bound values are +1 and -1.

Initialized with a zero inconsistency state, all values greater than bound 3 have the inconsistency state of 1 (obtained by 0 + 1); all values greater than bound 9 have the inconsistency state of 0 (obtained by 0 + 1 -1).

Table 4 .

 4 [START_REF] Galinier | Solution techniques for the large set covering problem[END_REF] shows the evaluation and update time complexity and the space complexity for both novel data structures, where e is the maximum degree of the graph, d is the total number of domain values, n is the number of nodes, m is the total number of constraints, and t is the upper number of bound values created for all constraints. The choice between the two approaches for the FAP problem, and more generally for the CSP with binary constraints, depends on the number of bounds created from the constraints: if the number of bounds is small, it is worth choosing the bounds list approach, otherwise, the gamma table is better because of its space and time complexity.

		Gamma table Bounds list
	Time complexity(move evaluation) O (d)	O ((t + d)log(t + d))
	Time complexity(move update)	O (ed)	O (e)
	Space complexity	O (nd)	O (mt)

Table 4 .

 4 3: Time and space complexity for both novel data structures4.5 Experimental results on critical subgraph identificationIn the previous chapter, we introduced a general routine to detect an IIS in the FAP named LCV. Thanks to the similarity between the FAP and the k-coloring problem, we intend to apply LCV on DIMACS instances with minor modifications. At first we present the state of the art of the methods in critical subgraph identification in the k-coloring problem.It is worth mentioning that the prefiltering algorithm (Algorithm 17) is used to reduce the size of the graph in the first step. From the authors' observation, it dramatically accelerates the critical subgraph identification by providing a smaller size graph for the Insertion algorithm, denoted H.

	Algorithm 17: prefiltering [78]
	input : a set of constraints C
	output: a subset of constraints H ⊆ C forming an IS
	H

Table 4 .

 4 Insertion+prefiltering[START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] LCV Instance k |V | |C| Min Time(sec) |V | |C| Success/5 Min Time(sec) 4: DIMACS results comparison between Insertion+prefiltering [78] and LCV in one critical subgraph efficiently. After the identification of such a constraint, Insertion removes all violations concerning other critical subgraphs. Thus the other critical subgraphs are destroyed and the search will exclusively focus on the current located critical subgraph. Second, TabuCol's neighborhood structure consists in changing the color on the violated nodes exclusively. By removing all non-selected violated constraints on each iteration of Insertion, the number of neighborhood solutions to evaluate in TabuCol is dramatically reduced, then the time consumption for TabuCol is very low.

	le450 5a	4 5 10	10.7 5 10	1	28.65
	le450 5b	4 5 10	13.4 5 10	1	28.71
	le450 5c	4 5 10	17.8 5 10	1	83.4
	le450 5d	4 5 10	16.7 5 10	2	27.96
	anna	10 11 55	0.3 11 55	2	1.09
	david	10 11 55	0.3 11 55	1	3.15
	homer	12 13 78	0.8 30 208	-	9.96
	huck	10 11 55	0.2 11 55	5	5.48
	jean	9 10 45	14.2 10 45	5	0.14
	games120 8 9 36	0.4 9 36	5	0.57
	miles250	7 8 28	0.2 8 28	5	0.06
	miles500 19 20 190	0.9 20 190	5	16.47
	miles750 30 31 465	2.1 31 465	-	191.52
	queen5 5	4 5 10	0.5 5 10	5	0.02
	queen7 7	6 7 21	0.5 7 21	3	0.44
	queen8 12 11 12 66	1.9 12 66	2	3.59
	queen10 10 11 10 45	3.8 12 45	1	1.03
	queen11 11 10 11 55	2.5 11 55	2	31.86
	queen12 12 11 12 66	3.5 21 113	-	75.6
	queen13 13 12 13 78	2.6 16 89	-	216.17
	queen14 14 13 14 91	6.8 26 149	-	39.46
	queen15 15 14 15 105	6.4 15 105	2	281.36
	queen16 16 15 16 120	6.7 27 188	-	27.92
	fpsol2.i.1 64 65 2080	209.9 65 2080	2	640.15
	fpsol2.i.2 29 30 435	20 30 435	1	1554.87
	fpsol2.i.3 29 30 435	52.5 31 457	-	1618.02
	inithx.i.1 53 54 1431	897.7 54 1431	3	554.71
	inithx.i.2 10 11 55	0.3 11 55	1	3.15
	inithx.i.3 30 31 465	14.2 45 721	-	147.88
	mulsol.i.1 48 49 1176	4.4 50 1224	-	42.94
	mulsol.i.2 30 31 465	6.4 35 578	-	123.85
	mulsol.i.3 30 31 465	6.5 34 551	-	24.99
	mulsol.i.4 30 31 465	6.8 31 465	1	38.21
	mulsol.i.5 30 31 465	6.9 36 545	-	39.05
	zeroin.i.1 48 49 1176	12.3 49 1176	3	72.91
	zeroin.i.2 29 30 435	11.4 34 540	-	36.05
	zeroin.i.3 29 30 435	5.6 31 462	-	26.53

http://en.wikipedia.org/wiki/Graph coloring

http://mat.gsia.cmu.edu/COLOR/instances.html

Acknowledgments

This work is a fruit of my cordial relationship with Alexandre CAMINADA as my advisor. His perpetual encouragement and motivation have illuminated my graduate life. The immense time and the expertise he dedicated make this research possible. His great personality and excellent professional attitude will always be an example for me to follow. I am grateful to Professor Philippe GALINIER as my co-advisor, for his inspired discussions and invaluable comments on my research.

I am deeply indebted for patience and generosity in the transmission of knowledge with Laurent MOALIC, Alexandre GONDRAN, Hakim MABED and Mohammad DIB. I would give a special thank to Dr. Jean-Noël MATIN, who enlightens me with the beauty of mathematics, for his patience and dedication to research.

My thanks goes also to the members in IRTES laboratory: Dr. Yan FEI, HuiDe ZHOU, You LI, Julien MOREAU, Dr. Frédéric LASSABE and Stefan TEODORESCU, with whom, my journey become enjoyable. I am immensely indebted to my parents for their unconditional and constant love, it would be impossible for me to express my gratitude towards them in mere words. I dedicate this thesis to them.

List of publications

Seminars

• Jun HU, Une méthode hybride pour la recherche de zone de blocage dans le réseau télécommunication, Project meeting with DGA/Silicom, Rennes France, 24 April 2008.

• Jun HU, Méthodes exactes et approchées pour la recherche de zone de blocage dans le réseau télécommunication, Project meeting with DGA/Silicom, Belfort France, 29 November 2007 Considering the constraints to satisfy, the objectives of RLFAP include to minimize the number of frequencies used, to minimize the span between the lower and the higher frequency used in the spectrum, to minimize the number of unsatisfied constraints for a given set of frequency, etc. There are many options as described in [START_REF] Dib | Tabu-NG:hybridation de programmation par contraintes et recherche locale pour la résolution de CSP[END_REF]. The main theoretical model to represent this set of problems is the class of graph coloring problems such as graph coloring, k-graph coloring for k colors, T -coloring where T defines the forbidden channel separations, set-coloring problems where a set of frequencies may be assigned to the variables, etc., where sometimes the graph is an hypergraph. References on these problems can be found in [START_REF] Gondran | Hypergraph t-coloring for automatic frequency planning problem in wireless lan[END_REF]. In addition to frequency assignment, the wave plane polarization also plays an important role in interference management. The plane polarization is a property of radio waves that describes the orientation of the wave plan, and can be horizontal or vertical. In such a case, the wave plane assignment is an extension of the standard FAP, the separation between frequencies or the SINR threshold are various according to the polarity of the carrier and the interfering signals. In practice, the constraints are easier to respect, i.e. a smaller frequency separation or lower SINR threshold, if the polarities are different. Assigning simultaneously the polarity and the frequency brings more complexity to the problem because we have more variables and the constraints difficultly depend on polarity choice.

Based on the nature of the problem characteristics, the RLFAP can be formulated as a CSP. It consists of a finite set of available frequencies, the CSP domain, a finite set of radio links, the CSP variables, and a finite set of interference constraints, the CSP constraints respectively. If the problem is feasible, the aim of RLFAP consists in assigning a frequency to all radio links while satisfying the constraints and minimizing one of the standard FAP objective mentioned above; if the problem is infeasible the aim is to minimize the number of unsatisfied constraints, and hence the residual interference.

In order to solve the RLFAP problem as a CSP and evaluate the performance of the methods, many benchmarks already described as CSP have been proposed by the telecommunication or operational research community mainly

detector and LCV with IIS of constraints detector on the basis of IIS of variables. The column V indicates the number of variables, C indicates the number of constraints and T the average computing runtime in seconds on 5 runs.

Heuristic approaches

Due to the NP-complete nature and the size of real world instances, many solution techniques of the k-coloring problem have been proposed under the umbrella of heuristic methods. As an approximated approach, an heuristic cannot guarantee the optimal solution since only a partial search space of the problem is explored and it may be trapped in local optima.

The breakthrough of heuristic design for the GCP begins with the famous DSATUR algorithm proposed by Brélaz [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] in 1979. In 1987, TabuCol [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] achieves a significant performance gain despite its simplicity. In 1999, the hybrid evolutionary algorithm HCA by Galinier and Hao [106] gives another performance increase thanks to its elegant crossover design and the replacement of mutation by a local search operator.

These algorithms illustrate the development from simple heuristics, to local search meta-heuristics and then to evolutionary meta-heuristics. In the following sections, several approximation algorithms will be explained based on such a classification.

Summary of heuristic methods

From the literature, the best solution quality is found using evolutionary algorithms as opposed to the stochastic search algorithms. While the simple heuristics and several stochastic local search algorithms obtain acceptable solution quality within shorter computational time, their solution quality on graph coloring instances based on real world applications are quite good considering the runtime used, but poor performance is found on random or quasi-random instances on which the quality of evolutionary approach is better.

Global intensification and diversification are two key cornerstones in the meta-heuristic process. Well dedicated neighborhood structures may efficiently solve many real world problems thanks to the understanding of specific problem structures, but when facing academic problem instances, a more sophisticated diversity strategy is needed to avoid local optima.

Exact approaches

Numerous exact algorithms dealing with the GCP have been proposed, such as Brown's implicit enumeration algo- proposed an hybrid approach which significantly improves the algorithm effectiveness on relatively larger instances.

The algorithm can be essentially expressed as Algorithm 15, it is based on a very simple property: Based on Property 3, the original graph G is reduced by iteratively removing the nodes which do not change its upper bound. If removing a node changes the upper bound, the removal will be reversed (Line 4 of Algorithm 15).

Eventually, the algorithm will obtain a subgraph G ′ , whose upper bound will be changed by removing any of its node. Then the smaller subgraph G ′ will be verified by a branch and bound algorithm proposed by Peemöller [136] (ChomaticN umber() of Algorithm 15) which is a correction of Brélaz's modification of Brown's algorithm [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF].

Even if the complexity of Peemöller's approach is exponential, thanks to the reduced size of G ′ , the Herrmann and Hertz's approach has proven its effectiveness on larger instances than the previous exact methods in the literature.

Desrosiers et al. [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] adopt Herrmann and Hertz's algorithm to verify the chromatic number of identified critical subgraphs.

Algorithm 15: Simplified version of [138] without the correction procedure As we use TabuCol in the constructor routine of our LCV algorithm for IIS identification in FAP and graph k-coloring problem, in this section we present two novel data structures to improve the performance of TabuCol. TabuCol can be divided into two main procedures -move evaluation and move update. Based on its 1-move neighborhood structure, the move evaluation is run for all colors on all violated nodes, which may occur thousands of times per iteration.

Comparing with the evaluation procedure, the move update procedure is run once per iteration on only one node.

Acceleration of TabuCol can be achieved by reducing the time consumption on the move evaluation.

Our proposal is to store the states of inconsistency, called the Tabling Strategy, on each color per node. Instead of an exponential comparison procedure, a linear search algorithm can find the minimal inconsistency color. The first structure, called gamma table, is applied for FAP and graph k-coloring problem, while the second structure, called bounds list, is an additional structure and is very efficient for T -coloration constraints such as FAP constraints.

Desrosiers et al. propose three algorithms to identify the critical subgraph [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF], Removal, Insertion and Hittingset.

Among these three algorithms, Insertion shows the best performance. The authors also show that Insertion with preprocessing of the prefiltering algorithm can achieve better performance than only using Insertion. Let's first recall the Insertion algorithm (see Algorithm 16).

Algorithm 16: Insertion [START_REF] Desrosiers | Efficient algorithms for finding critical subgraphs[END_REF] Input : a set of constraints C Output: a subset of constraints where

By minimizing Equation (4.5), the heavily weighted constraints are satisfied. MinConflict() is run iteratively until at least one edge cannot be satisfied in H. TabuCol is adopted as the embedded local search in MinConflict(). Considering Line 4 of Algorithm 16, it removes all the violated edges except the chosen constraint c. Thus the subproblem entering MinConflict() will contain only one violated edge. Since TabuCol exclusively changes the color on violated nodes, the edges with zero weight will be ignored and not be evaluated. That is the main reason why the Insertion algorithm works very rapidly.

Conclusions and perspectives

In this dissertation, we have studied the problem of identifying on Irreducible Infeasible Subset in the context of a constraint satisfaction problem, and more specifically, a binary constraint satisfaction problem. The thesis is organized as follows: the first two chapters introduce the state-of-the-art, definitions and solution techniques, of the Constraint Satisfaction Problem (CSP) and Irreducible Infeasible Subset (IIS). The third chapter introduces our contribution to IIS identification with a new method called LCV for Locator-Constructor-Verificator, and its application to the Frequency Assignment Problem (FAP). In the fourth chapter, we propose some enhancement on TabuCol data structure to speedup the algorithm and we apply LCV method to identify critical subgraphs in the graph k-coloring problem. These chapters are summarized as follows.

In the first chapter, we have introduced the definition of the constraint satisfaction problem (CSP) which is represented by a triple of a finite variables set, a finite constraints set and a finite domains set. Three local consistency levels, namely Node-Consistency, Arc-Consistency and Path-Consistency, are introduced to identify the consistency on a subset of variables and constraints of the problem. We have detailed several algorithms for Arc-Consistency, and their time/space complexity are also compared. From the comparison, we have selected the AC3 algorithm to be embedded in our method for IIS search thanks to its simplicity and effectiveness in domain filtering.

In addition to the Arc-Consistency algorithms, the deadend learning is also an effective technique to reduce the search space. The definitions of deadend and nogood are given in the chapter to ease the description of learning methods. The deadend learning technique generates supplementary constraints to cut the branches of the search tree under which it is not possible to find feasible solutions. Despite of their knowledge generating capability, the learning techniques still need to improve their time and space complexity to be used efficiently.

The solution techniques of the CSP are presented under exact and heuristic categories. Under the exact approach, several backtracking algorithms are introduced as main players to solve the CSP. These methods can provide an exact satisfiability/unsatisfiability proof of the problem. Among them, the MAC algorithm (Maintaining Arc-Consistency