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Thèse de doctorat
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Abstract

Evolutionary Algorithms (EAs) have received a lot of attention regarding their potential
to solve complex optimization problems using problem-specific variation operators. A
search directed by a population of candidate solutions is quite robust with respect to a
moderate noise and multi-modality of the optimized function, in contrast to some classical
optimization methods such as quasi-Newton methods. The main limitation of EAs, the
large number of function evaluations required, prevents from using EAs on computationally
expensive problems, where one evaluation takes much longer than 1 second.

The present thesis focuses on an evolutionary algorithm, Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), which has become a standard powerful tool for
continuous black-box optimization. We present several state-of-the-art algorithms, derived
from CMA-ES, for solving single- and multi-objective black-box optimization problems.

First, in order to deal with expensive optimization, we propose to use comparison-
based surrogate (approximation) models of the optimized function, which do not exploit
function values of candidate solutions, but only their quality-based ranking. The resulting
self-adaptive surrogate-assisted CMA-ES represents a tight coupling of statistical machine
learning and CMA-ES, where a surrogate model is build, taking advantage of the function
topology given by the covariance matrix adapted by CMA-ES. This allows to preserve two
key invariance properties of CMA-ES: invariance with respect to i). monotonous transfor-
mation of the function, and ii). orthogonal transformation of the search space. For multi-
objective optimization we propose two mono-surrogate approaches: i). a mixed variant of
One Class Support Vector Machine (SVM) for dominated points and Regression SVM for
non-dominated points; ii). Ranking SVM for preference learning of candidate solutions in
the multi-objective space. We further integrate these two approaches into multi-objective
CMA-ES (MO-CMA-ES) and discuss aspects of surrogate-model exploitation.

Second, we introduce and discuss various algorithms, developed to understand, ex-
plore and expand frontiers of the Evolutionary Computation domain, and CMA-ES in
particular. We introduce linear time Adaptive Coordinate Descent method for non-linear
optimization, which inherits a CMA-like procedure of adaptation of an appropriate co-
ordinate system without losing the initial simplicity of Coordinate Descent. For multi-
modal optimization we propose to adaptively select the most suitable regime of restarts of
CMA-ES and introduce corresponding alternative restart strategies. For multi-objective
optimization we analyze case studies, where original parent selection procedures of MO-
CMA-ES are inefficient, and introduce reward-based parent selection strategies, focused
on a comparative success of generated solutions.
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Résumé en Français (abstract in French)

Les Algorithmes Évolutionnaires (AEs) ont été très étudiés en raison de leur capacité à
résoudre des problèmes d’optimisation complexes en utilisant des opérateurs de variation
adaptés à des problèmes spécifiques. Une recherche dirigée par une population de solu-
tions offre une bonne robustesse par rapport à un bruit modéré et la multi-modalité de
la fonction optimisée, contrairement à d’autres méthodes d’optimisation classiques telles
que les méthodes de quasi-Newton. La principale limitation de AEs, le grand nombre
d’évaluations de la fonction objectif, pénalise toutefois l’usage des AEs pour l’optimisation
de fonctions chères en temps calcul.

La présente thèse se concentre sur un algorithme évolutionnaire, Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), connu comme un algorithme puissant pour
l’optimisation continue bôıte noire. Nous présentons l’état de l’art des algorithmes, dérivés
de CMA-ES, pour résoudre les problèmes d’optimisation mono- et multi-objectifs dans le
scénario bôıte noire.

Une première contribution, visant l’optimisation de fonctions coûteuses, concerne
l’approximation scalaire de la fonction objectif. Le meta-modèle appris respecte l’ordre des
solutions (induit par la valeur de la fonction objectif pour ces solutions) ; il est ainsi in-
variant par transformation monotone de la fonction objectif. L’algorithme ainsi défini,
saACM-ES, intègre étroitement l’optimisation réalisée par CMA-ES et l’apprentissage
statistique de meta-modèles adaptatifs ; en particulier les meta-modèles reposent sur la
matrice de covariance adaptée par CMA-ES. saACM-ES préserve ainsi les deux propriété
clé d’invariance de CMA-ES : invariance i) par rapport aux transformations monotones
de la fonction objectif; et ii) par rapport aux transformations orthogonales de l’espace de
recherche.

L’approche est étendue au cadre de l’optimisation multi-objectifs, en proposant deux
types de meta-modèles (scalaires). La première repose sur la caractérisation du front de
Pareto courant (utilisant une variante mixte de One Class Support Vector Machone (SVM)
pour les points dominés et de Regression SVM pour les points non-dominés). La seconde
repose sur l’apprentissage d’ordre des solutions (rang de Pareto) des solutions. Ces deux
approches sont intégrées à CMA-ES pour l’optimisation multi-objectif (MO-CMA-ES) et
nous discutons quelques aspects de l’exploitation de meta-modèles dans le contexte de
l’optimisation multi-objectif.

Une seconde contribution concerne la conception d’algorithmes nouveaux pour l’optimi-
sation mono-objectif, multi-objectifs et multi-modale, développés pour comprendre, ex-
plorer et élargir les frontières du domaine des algorithmes évolutionnaires et CMA-ES en
particulier. Spécifiquement, l’adaptation du système de coordonnées proposée par CMA-
ES est couplée à une méthode adaptative de descente coordonnée par coordonnée. Une
stratégie adaptative de redémarrage de CMA-ES est proposée pour l’optimisation multi-
modale. Enfin, des stratégies de sélection adaptées aux cas de l’optimisation multi-objectifs
et remédiant aux difficultés rencontrées par MO-CMA-ES sont proposées.
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Chapter 1

Introduction

1.1 Context/Motivation

The complexity of real-world problems is steadily growing, alongside with the computa-
tional power of supercomputers, clusters and graphics processing units. This growth main-
tains a permanent demand on powerful simulation and modelling frameworks, coupled with
robust optimization algorithms; overall, the resolution of advanced real-world problems re-
mains ever more expensive in terms of time and/or money. It is not uncommon to deal with
real-world problems where one evaluation of a candidate solution requires a full laboratory
experiment (e.g., protein’s folding stability optimization [Chaput and Szostak, 2004], ex-
perimental quantum control [Roslund et al., 2009], multi-objective optimization of Diesel
combustion [Yagoubi, 2012]). A most common example of real-world problem consists
of optimally tuning the hyper-parameters of a complex system (e.g., compiler optimiza-
tion [Fursin et al., 2005], job allocations in a computational grid [Tesauro et al., 2007]),
as opposed to using expert hand-crafted parameter settings.

Evolutionary Algorithms (EAs) have been thoroughly investigated in this context due
to their ability to solve complex optimization problems by coupling problem-specific vari-
ation operators and selection operators:
Firstly, a search directed by a population of candidate solutions is quite robust with re-
spect to a moderate noise and multi-modality of the objective function, in contrast to
some classical optimization methods such as quasi-Newton methods.
Secondly, the role of variation operators is to explore the search space of potential solu-
tions, taking into account already retrieved information about the problem. The − usually
randomized − variation operators, together with the representation of the candidate so-
lutions, encapsulate extensive prior knowledge about the problem domain.
Finally, selection is responsible for directing the search toward more promising regions on
the basis of the current solutions, controlling the exploration versus exploitation trade-off.

These features make EAs very flexible and suitable for virtually any optimization
problem provided that parametrized solutions can be comparatively assessed. Specifically,
EAs are meant to address a wide range of optimization problems: involving a unimodal or
multi-modal objective function; with or without noise; in a low- or high-dimensional search
space; constrained or without constraints; involving a stationary or a dynamic objective ;
involving a computationally expensive or cheap objective function; and last but not least,
involving a single or multiple objective functions.

The Evolutionary Computation (EC) community has introduced a variety of ap-
proaches to address all abovementioned types of optimization problems. On the one
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hand, these approaches have been empirically validated by practitioners, reporting a num-
ber of breakthrough applications (see, e.g., [Coello and Lamont, 2004, Yu et al., 2008,
Chiong et al., 2011] among many others). On the other hand, the theoretical proper-
ties of some simple variants of the most successful approaches have been established
and related to the first principles of optimization, specifically the natural gradient
[Wierstra et al., 2008, Arnold et al., 2011, Akimoto and Ollivier, 2013].

In the meanwhile, rare position papers discuss the growing gap between the theory and
the practice of EAs [Michalewicz, 2012]. The latter paper, reflecting the author’s personal
point of view based on 20 years of experience in the field of EC, invites to discuss the
question of self-assessment in EC. It suggests that most generally and like many other
scientific fields, EC is driven by two main forces: research and applications. In practice,
some approaches are known to be the most efficient ones with respect to the current bench-
mark or real-world problems, whereas some other and perhaps less efficient approaches
are considered to have more solid theoretical foundations, or to be more general, more
flexible or more elegant. In this perspective, EC could itself be viewed as a black-box,
non-stationary, multi-objective problem per se, with its deployment being shaped under
simultaneous researcher and practitioner dynamic pressures. Along this line, the EC com-
munity collectively aims at building an optimal Pareto set of optimization approaches.

The lessons learned from multi-objective optimization are that, in order to build a
dense Pareto front, one must mandatorily preserve the population diversity, and avoid
discarding too easily the solutions which are dominated w.r.t. the current objectives.
Despite their shortcomings, some solutions are found to pave the way toward truly non-
dominated solutions in unfrequented regions of the Pareto front. In other words, the
celebrated Exploitation versus Exploration trade-off should be considered at the level of
algorithm design, too. Along this line, the contributions presented in this thesis and
detailed below can be divided into two categories:� In a first category (the exploitation category, Chapters 4 and 5), we present princi-

pled and efficient extensions of the prominent Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [Hansen et al., 2003], aimed at surrogate-based single-
objective optimization [Jin, 2005] or surrogate-based multi-objective optimization
[Knowles and Nakayama, 2008] and based on the tight coupling of stochastic opti-
mization and statistical machine learning [Vapnik, 1995, Joachims, 2005].� In a second category (the exploration category, Chapter 6), we present new stochastic
optimization schemes, based on Adaptive Coordinate Descent (Section 6.1), with
kernel-based change of representation (Section 6.4.1), or tackling the CMA-ES hyper-
parameter tuning problem as a (very noisy) optimization problem (Section 6.3).

1.2 Main Contributions

As already said, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and
its variants are acknowledged to be the most efficient approaches in continuous black-box
optimization [Hansen et al., 2010b]. The first part of the presented contributions (the
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1.2 Main Contributions

“exploitation“ part) proceeds by coupling statistical machine learning algorithms with
CMA-ES, in order to address specific issues such as surrogate-based optimization and
multi-objective optimization, while preserving all the invariance and robustness properties
of CMA-ES.

The second part (the ”exploration“ part) investigates independent issues: hyper-
parameter tuning; non-linear adaptive representations; reward-based multi-objective op-
timization.

1.2.1 Coupling CMA-ES with Statistical Machine Learning

One of the main limitations of EAs, the large number of function evaluations required for
a reasonable accuracy of optimization, prevents EAs from being used on computationally
expensive problems, where one evaluation takes more than one second and up to a few
hours or a day1.

A common way to reduce the overall number of function evaluations required to
solve expensive optimization problems is to build surrogate (approximation) models and
carefully treat the information available from the evaluated candidate solutions (see
[Box and Wilson, 1951, Jin, 2005], Chapter 3).

ACM-ES In the spirit of the comparison-based CMA-ES approach, we used a
comparison-based surrogate-learning approach, referred to as Ranking SVM
[Herbrich et al., 1999, Joachims, 2005]. The surrogate learning phase thus does
not exploit the objective values of the available solutions, but only their ranks.
In this way, the overall surrogate-based optimization approach is invariant under
monotonous transformations of the objective function, a most desirable property.
A key contribution compared to the state of the art [Runarsson, 2006,
Bouzarkouna et al., 2010] is to reuse the covariance matrix built by CMA-ES it-
self within Ranking SVM; along this coupling, the overall approach called ACM-ES
inherits CMA-ES invariance under orthogonal transformations of the search space.
A second contribution is to automatically and adaptively control the refreshment
rate of the surrogate model (surrogate lifelength), depending on the empirical error
of the previous surrogate model, under the assumption of a smooth variation of the
optimal (unknown) surrogate along the search.
A third contribution is to interleave surrogate learning with the automatic online
adjustment of the learning hyper-parameters, being reminded that the surrogate
model quality critically depends on the learning hyper-parameters.

1 This limitation is especially observable in the special, but quite common case of the unimodal noiseless
continuous optimization, where gradient information is useful and quasi-Newton methods such as BFGS
[Shanno, 1970], proposed 40 years ago, usually outperform most of advanced EAs [Hansen et al., 2010b].
Unfortunately, this has become, directed by natural selection, a common practice in EC community to
not view BFGS as an alternative approach, arguing that, anyway, the latter does not perform well on
multi-modal and noisy functions. This may create a false impression about the performance of EAs in EC
community, but does not create this impression among practitioners who do compare EAs with non-EC
algorithms, such as BFGS and recently proposed NEWOUA [Powell, 2006]. We shall return to this point
in Chapter 4.
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The proposed algorithm, extensively benchmarked on the Black-Box Optimization
Benchmarking (BBOB) [Hansen et al., 2010a] framework against classical (BFGS
[Shanno, 1970], NEWUOA [Powell, 2006], GLOBAL [Pal et al., 2012]) and Evolu-
tionary Algorithms, is shown to improve by a factor 2 to 4 on the state of the art.

ASM In the same spirit, Aggregated Surrogate Models (ASMs) inspired from the Support
Vector Machine framework are used for multi-objective optimization.
A first approach aims at characterizing the current Pareto-front in the spirit of
[Vapnik, 1995], as follows. On the one hand, One-Class SVM is used to characterize
the (low-dimensional) region of the Pareto front like [Schölkopf et al., 2001]; on the
other hand, Regression SVM [Vapnik, 1995] is used to characterize the distance to
the Pareto front. Both models together are used to estimate the progress toward the
(true) Pareto front, by filtering the offspring estimated on the surrogate.
A second approach uses Ranking SVM to directly learn the Pareto dominance re-
lation. A main originality of the approach compared to the state of the art in
surrogate-based multi-objective optimization, is to characterize the Pareto front us-
ing a single surrogate (as opposed to, using a surrogate for each objective function),
based on preference relations among solutions, e.g., based on Pareto dominance,
Quality Indicators and Decision Maker preferences.
Likewise, an extensive benchmark of the two proposed approaches establishes that
they improve on the state of the art by a factor 2.

1.2.2 Exploratory contributions

Three exploratory contributions inspired from CMA-ES are proposed:� The first one called Adaptive Coordinate Descent (ACiD) hybridizes the simple
Coordinate Descent approach with the CMA-ES adaptation of the problem repre-
sentation.
On the one hand, ACiD demonstrates a linear empirical complexity with respect to
the problem dimensionality (as opposed to, at least quadratic in CMA-ES). On the
other hand, ACiD can be extended to non-linear change of the problem representa-
tion by using the famed kernel trick [Vapnik, 1995].
Comprehensive validation on BBOB shows that ACiD is competitive with CMA-ES.� The second contribution is concerned with multi-objective optimization. In some
cases, the failure of existing approaches is investigated and explained from the weak-
ness of the parent selection procedures.
A multi-objective reward function, measuring how much a parent contributes to
the future populations, is designed and experimented. This approach measuring
the ”value” of an individual as opposed to its instant value, in the perspective of
reinforcement learning [Sutton and Barto, 1998].� Finally, the restart strategies of CMA-ES on multi-modal fitness landscape are an-
alyzed. The optimal restart strategy is viewed as a sequential decision problem,
setting in each restart the two CMA-ES hyper-parameters (the population size and
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the initial mutation amplitude). The restart strategy is viewed as (yet another, but
very noisy) optimization problem, and new restart strategies, with adaptive selection
of the most suitable regime of restarts, are defined and validated.

1.3 Thesis Outline

Chapter 2 presents a historical overview of Evolutionary Computation and introduces
Evolutionary Algorithms in the context of continuous black-box optimization, focusing on
state-of-the-art algorithms for single-objective (respectively, multi-objective) optimization
such as CMA-ES (respectively, MO-CMA-ES).

Chapter 3 presents a survey of popular techniques for surrogate model learning, ex-
ploitation and control, and reviews single- and multi-objective surrogate-assisted optimiza-
tion algorithms.

Chapter 4 introduces surrogate-assisted versions of CMA-ES based on pre-selection of
promising individuals and direct optimization of surrogate model, focusing on questions
of surrogate hyper-parameters adaptation and surrogate exploitation control.

Chapter 5 extends surrogate-assisted CMA-ES with pre-selection to multi-objective
optimization and discusses several ways to learn and incorporate preference information
into surrogate models.

Chapter 6 provides a collection of CMA-like algorithms to explore prospective direc-
tions of the research in EC, including linear time Adaptive Coordinate Descent, new parent
selection strategies for MO-CMA-ES and alternative restart strategies for CMA-ES.

Chapter 7 concludes the thesis and summarizes our contributions toward understanding
of efficient continuous black-box optimization.
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Chapter 2

Evolutionary Algorithms for Continuous
Black-Box Optimization

It may be said that natural selection is daily and hourly scrutinising,
throughout the world, every variation, even the slightest; rejecting
that which is bad, preserving and adding up all that is good; silently
and insensibly working, whenever and wherever opportunity offers,
at the improvement of each organic being in relation to its organic
and inorganic conditions of life.
Charles Darwin, 1859, On the Origin of Species, Chapter 4.

The origins of the idea of natural selection can be traced as far as back to ancient
Greeks philosophers Empedocles, Aristotle et al. A more contemporary and widely ac-
cepted version of this idea by Charles Darwin assumes the evolution of organic beings. In
the present thesis, as well as in Evolutionary Computation, we assume that natural selec-
tion is a driving force of evolution not only for organic beings, but also for non-organic ones.
In Section 2.1, we give a brief historical overview of the evolution of this concept in Evolu-
tionary Computation domain. Section 2.2 introduces continuous black-box optimization
and discusses main properties of black-box problems, which motivate the development of
specific approaches to efficient optimization. We present the state-of-the-art Evolutionary
Algorithms for single-objective (Section 2.3) and multi-objective (Section 2.4) continuous
optimization. Finally, in Section 2.5, we conclude the Chapter and discuss some open
questions of the field.

2.1 Historical Overview of Evolutionary Computation

Evolutionary Computation (EC) is the research field of nature- and evolution-inspired
computational methods used to solve real-world problems, and their toy scientific models.
We divide the history of the EC field into two parts: early approaches proposed before
the first International Conference on Genetic Algorithms (ICGA) in 1985, and modern
approaches proposed after this conference. According to an analysis by [Alander, 1994]

of 2500 papers published on Genetic Algorithms, Evolution Strategies, Evolutionary Pro-
gramming, etc., only 215 papers were published between 1957 and 1984, compared to 928
published between 1985 and 1990. Now the number of published papers per year is still
growing, and while the exact number of papers is difficult to estimate, it might lie in
order of tens of thousands, given that for one of the most cited researchers of the field of
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evolutionary multi-objective optimization, Prof. Kalyanmoy Deb, the number of citation
in the year of 2011 is about 6000 and about 45000 citations overall.

2.1.1 Early Approaches

”The Genetical Theory of Natural Selection” by Ronald Fisher [Fisher, 1930] is probably
the second most influenced book on evolutionary biology after Darwin’s book ”On the
Origin of Species” [Darwin, 1859].

Fisher claimed that natural selection is not Evolution, as it was identified in biological
sciences, but an independent principle worthy of scientific study. He notices that the
first decisive experiments, which opened in Biology this field of exact study, were due to a
young mathematician, Gregor Mendel, whose statistical interests extended to physical and
biological sciences (note that, experimental clarity of Mendel’s work was later criticized
by Fisher [Fisher, 1936]). According to Fisher, while the types of mind which result
from training in mathematics and biology differ profoundly, this difference is not in the
intellectual, but rather in imaginative faculty. The biologists are early introduced to the
world with its immense variety of living things and amazing complexity, and they study
this world as it is. The mathematicians instead deal with barest abstractions and often
try to work in a wider domain than actual for a far better understanding of the actual.
The difference of these two approaches lies not in intellectual methods and even less in the
intellectual ability, but in an enormous and specialized extension of the imaginary faculty
which each field has experienced.

It is interesting to note that Fisher studied the probability of improvement of mutation
on a simple example of Sphere function

∑n
i=1 x

2
i . The initial solution is located on a

distance d/2 from the center of the Sphere; the mutation operator performs a shift with
radius r; the mutation is successful if new solution lies inside the Sphere, and unsuccessful
otherwise. The limit of probability of improvement in this case is 0.5(1 − r/d), meaning
that large mutations are usually unsuccessful and destructive, while small mutations are
more successful, but lead to a slow progress of evolution. The latter observation was
later confirmed and motivated the development of randomized optimization approaches
with the adaptation of mutation step-size. Nowadays, both Evolutionary Computation
and Population Genetic [Orr, 2000] show that the rate of adaptation is maximized for
mutations of intermediate size.

Apart from Fisher’s enormous contribution to statistics, he made the terms of natural
selection and mutation mathematically more comprehensible for a wider scientific public.
Another of his books, ”The Design of Experiments” [Fisher, 1935] became the foundation
for the field of Design of Experiments (DOE). This research on DOE for determining
optimal conditions of chemical investigations was continued by a statistician George P. E.
Box [Box and Wilson, 1951], the husband of one of Fisher’s daughter Joan.

Probably inspired by Fisher’s idea of small mutations and motivated by develop-
ment of DOE methods which do not interrupt manufacturing processes during its op-
timization, George P. E. Box proposed Evolutionary Operation (EVOP) [Box, 1957].
One of the first real-world applications of Evolutionary Operation was described in
[Box and Hunter, 1959] for 2-dimensional and 3-dimensional cases. In EVOP, a reason-
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ably small hyper-rectangle centered in the current solution (current mean) is constructed
such that the quality of the manufacturing process changes only slightly by using one of
possible solutions from the hyper-rectangle. Then, the quality of solutions which lie on the
corners of the hyper-rectangle is estimated and the solution with the best quality is chosen
as the next mean of the hyper-rectangle. EVOP performs coordinate search with adaptive
step-size and resembles the famous pattern/direct search algorithm of Hooke and Jeeves
proposed later [Hooke and Jeeves, 1961]. At least 50 articles about EVOP were published
during the first 10 years after its introduction. Box popularized the idea that artificial
evolution can be useful for real-world optimization problems as well as Fisher showed that
the natural selection can be mathematically studied.

The first computer-assisted experiments of Evolutionary Algorithms are often referred
to Nils Aall Barricelli, who was visiting Princeton University in 1953, 1954. Barricelli
emulated evolution of ”organisms” to find the ”decision function”, that determines the
next move for a player of several games such as Chess, Tax Tix et al. The work was
published first in [Barricelli, 1954], then translated to [Barricelli, 1957]. David B. Fogel
truly said [Fogel, 2006]: ”Nils Barricelli remains a virtually unknown figure in the Evolu-
tionary Computation community, but that is no reflection on his pioneering contributions
and creative thoughts.” Unfortunately, many other great researchers were also relatively
unknown, such as Alex Fraser who simply proposed and implemented [Fraser, 1957] a pre-
Genetic Algorithm with the population of individuals coded using binary strings, so-called
(µ, λ) selection scheme and specific crossover and mutation operators (!).

[Bremmerman, 1958, Bremermann, 1962] discussed the idea of using evolution pro-
cesses to solve optimization problems, making an analogy with DNA and using sequences
of binary variables to code the solution. The author suggested to apply bit-flip mutation
operation to each gene with a probability p, claiming that ”In many cases optimal speed
of improvement is reached for p = 1/n, where n = number of genes”. This mutation
probability has been proven by [Droste et al., 1998] to be optimal on linear functions in
order to reach expected running time O(nlog(n)) for (1+1)-Evolutionary Algorithm, where
the generated by mutation offspring replaces the parent solution if it has better fitness
function. The term of ”fitness function” is also associated with the objective function
f : Rn 7→ R in [Bremermann, 1962].

[Rastrigin, 1963b] (see also [Rastrigin, 1960, Rastrigin, 1963a]) discussed the advan-
tages of randomized search methods on a real-world problem of lathe machine-tool pa-
rameter tuning. This machine-tool operates using many relatively simple single-point
cutting tools, controlled by arms to produce objects of different geometry. The goal is to
minimize a function f(x) of the error of geometry of products by tuning x, the positions of
the arms. The author analyses possible scenarios of using Gauss-Seidel and Gradient-based
methods and proposes to use a randomized search method. In this (1+1)-Evolutionary
Algorithm, before each search step, all arms hold positions of the best solution (with the
minimum error) found so far. Then, all arms should be simultaneously tuned by some
random values to produce a new solution, which is accepted to be the new best solution
only if it leads to a smaller f(x). The mutation operation is not specified, and actually is
not called ”mutation”, while this was probably meant, because the first part of the book
discusses the importance of mutation for organic beings. The author also suggests to
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adapt the mutation distribution ([Rastrigin, 1963b], p. 76) : ”One can use a reward-based
system, increasing the probability of those changes, which lead to improvements of quality
of the system, i.e., to minimization of the criterion of similarity”. The latter proposal was
realized 30 years later in CMA-ES.

An idea of simultaneous mutation of problem parameters very similar to the Rast-
rigin’s one was implemented by Hans-Paul Schwefel and Ingo Rechenberg in the 1960s.
From Hans-Paul Schwefel’s great book ”Evolution and Optimum Seeking” [Schwefel, 1993]

about ”classical” and evolutionary optimization approaches of the 1960s and 1970s: ”In
1963 two students at the Technical University of Berlin met and were soon to collaborate
on experiments which used the wind tunnel of the Institute of Flow Engineering. During
the search of the optimal shapes of bodies in a flow, which was then a matter of laborious
intuitive experimentation, the idea was conceived of proceeding strategically. However,
attempts with the coordinate and simple gradient strategies were unsuccessful. The one
of the students, Ingo Rechenberg, now Professor of Bionics and Evolutionary Engineer-
ing, hit upon the idea of trying random changes in the parameters defining the shape,
following the example of natural mutations. The evolution strategy was born.” First
simulations of different versions of two membered (one parent generates one offspring)
(1+1)-Evolution Strategies (ESs) were performed on the first digital computer Zuse Z23
of Technical University of Berlin [Schwefel, 1965]. Theoretical analysis of these strategies
and first proposals of µ multi-membered strategies (µ + 1) were published later in Ingo
Rechenberg’s doctorate thesis [Rechenberg, 1973]. Unfortunately, between 1976 and 1985
the research on ESs suffered from insufficient financial support [Schwefel, 1993].

Another key sub-field of Evolutionary Computation, Evolutionary Programming was
invented by Lawrence J. Fogel also in the 1960s, leading to the book ”Artificial Intel-
ligence through Simulated Evolution” [Fogel et al., 1966]. Fogel proposed to evolve the
population of Finite State Machines (FSMs) to solve problems of prediction and control
in an environment, defined as a set of sequences from a finite alphabet. All FSMs of the
population are initially identical. Each FSM uses known part of the environment (previ-
ously observed symbols) to predict the next symbol from the unknown environment. The
rate of this prediction is used as the fitness function. At each iteration of the algorithm,
a mutation operator is applied to each FSM to generate an offspring solution. The best
half of a mixed population of parents and offspring becomes the new population. This
loop is repeated for several iterations, then the best machine is taken to predict the new
symbol of the environment, the output symbol is attached to the environmental string.
Fogel proposed several mutation operators to add and delete states and change links of
FSMs. The process is named Evolutionary Programming probably in contrast to Linear
Programming, Dynamic Programming and Quadratic Programming.

[Schumer and Steiglitz, 1968] proposed Adaptive Step-Size Random Search (ASSRS),
an adaptive version of Fixed Step-Size Random Search (FSSRS) [Rastrigin, 1960,
Rastrigin, 1963a, Mutseniyeks and Rastrigin, 1964]. They provided proofs for Optimal
Step-Size Random Search (OSSRS) on unimodal functions and showed that: i). the opti-
mal step-size is proportional to the distance to the optimum, similar results were obtained
later for (1+1)-ES [Auger and Hansen, 2006]; ii). there is an optimal probability of im-
provements for ASSRS (see the 1/5th rule proposed later in [Rechenberg, 1973]); iii). the
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average number of function evaluations to reach a desired accuracy (relative to starting
point) is linear in the problem dimension. Since the distance to the optimum is usually
unknown, only an approximation of the optimal step-size can be estimated. In ASSRS
strategy two alternative solutions are generated by mutation of the current best solu-
tion by a random sampling in the hyper-sphere with two different radii/step-sizes. The
step-size which generated the best solution (made the best improvement) is used for the
next iteration. Experimental results demonstrated that Newton-Raphson method with
Hessian approximation by finite differences outperforms ASSRS by a factor of about 2 on
Sphere function f(x) =

∑n
i=1 x

2
i for n > 20, while on

∑n
i=1 x

4
i function ASSRS outper-

forms Newton-Raphson and simplex methods already for n > 10. It should be noted that
ASSRS finds target fitness function ftarget = 10−8 after about 80n function evaluations,
i.e., it shows the same performance as (1+1)-ES with the 1/5-th rule [Auger, 2009].

In 1975 John H. Holland wrote his book ”Adaptation in Natural and Artificial Sys-
tems” [Holland, 1975], where he proposed Genetics Algorithms (see also Genetic/Adaptive
Plans [Holland, 1969]). Indeed, Genetic Algorithms (GAs) were born from the ”soup” of
ideas of earlier researchers (some of these researchers were mentioned above). The key
contribution of Holland was not only to identify what is relevant in this ”soup”, but to
respect the following scientific trade-off: i). provide a simplified and at the same time
rich theory of how the adaptation and evolution work; ii). provide a working algorithmic
framework to simulate the evolution for solving real-world problems and their scientific
toy models. In Holland’s GA, the population were represented by chromosomes, candidate
solutions of the problem, using binary coded ”genes”. The selection operator allows chro-
mosomes with better fitness function (objective function) to produce offspring more often.
The recombination procedure consists of crossover, mutation and inversion. Crossover ex-
changes sub-parts of parents chromosomes, mutation randomly changes randomly selected
”genes”, inversion reverses the ordering of ”genes” in the chromosome. Holland also pro-
posed the so-called Schema Theorem to provide theoretical evidence of GA convergence,
however it was later criticized [Burjorjee, 2008, Antonisse, 1989] for making unacceptably
strong assumptions on the distribution of fitness over the genome set.

After World War II the basic research attracted significant funding resources. In 1950s
and 1960s major research agencies over the world, such as DARPA, had been promised
to solve key military problems using Artificial Intelligence (AI): speech recognition and
understanding, automatic machine translation, creation of general purpose robots, etc.
However, most of these ambitious problems were not solved (and still are open problems
in our 21-th century) or used approaches were criticized (e.g., in ”Perceptrons” book
by Marvin Minsky [Minsky and Seymour, 1969]), that led to funding cuts. So-called AI
Winter took place from the early 1970s to the early 1980s, when major agencies switched
to ”goal-oriented” research and AI research continued in a limited way, because major
funding for projects was difficult to find. A frustration about AI also influenced the
research in a future of the ”newborn” field of Evolutionary Computation: ”The general
interest in this type of optimum seeking algorithms was not broad enough for there to
be financial support” [Schwefel, 1993]. Another important aspect was the experimental
nature of Evolutionary Algorithms, that required significant CPU resources for algorithm
design phase in contrast to exact methods. The latter problem was partially solved with
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the emergence of personal computers in the 1980s and 1990s, that led to a ”boom” of
Evolutionary Computation.

2.1.2 Modern Approaches

The first International Conference on Genetic Algorithms took place in Pittsburgh, USA
in 1985 and definitely boosted the research on Genetic Algorithms. After a seminal book
”Genetic Algorithms in Search, Optimization, and Machine Learning” [Goldberg, 1989]

(with more than 50.000 citations), David E. Goldberg, invited by Hans-Paul Schwefel,
visited 14th Symposium uber Operations Research, Ulm, Germany in 1989. Together with
Yuval Davidor he presented Genetic Algorithms. The first ”official” meeting of German
and US Evolutionary Computation interests was during the first Parallel Problem Solving
from Nature (PPSN) conference in Dortmund, Germany in 1990. Genetic Algorithms and
Evolution Strategies were presented together with Genetic Programming [Koza, 1990],
Simulated Annealing, Classifier Systems and Immune Networks.

The number of papers published on so-called modern approaches is at least by a factor
of 1000 larger than for so-called early approaches. Therefore, we do not pretend to cover
this topic in a short Section. Instead, we list the most widely used approaches and give
their brief comparison analysis.

Genetic Algorithms

Genetic Algorithms (GAs) is a core of Evolutionary Computation, and probably the
most common approach used for initial pedagogical studies of evolution-inspired opti-
mization and search. A good starting point of such studies is Simple Genetic Algorithm
(SGA), a Holland’s GA, where binary-coded parent solutions compete with offspring solu-
tions, generated after multi-point crossover and bit-flip mutation of parents. Real-Coded
Genetic Algorithms (RCGA) [Wright, 1991] popularized the real-value representation of
decision variables and enriched the set of variation operators, an example of state-of-the-
art RCGA algorithm is the generalized generation gap (G3) model with efficient parent-
centric recombination operator (G3-PCX) [Deb, 2005]. The key aspect of design of GA is
the ”right” choice of representation of candidate solutions for a given problem, such that
the variation operators favor successful exploration and exploitation of the search space.
An illustrative example is the Travelling Salesman Problem (TSP), where a candidate
solution can be represented as a sequence/tour of cities which should be visited. To make
new prospective sequences from the existed ones, problem-specific variation operators can
be used instead of classical crossover and mutation operators, which may create infeasible
solutions (e.g., with more than one visit of the same city [Radcliffe and Surry, 1994]).

It would be unfair to think of Genetic Algorithms only in terms of their comparative
performance on specific optimization problems. The GAs is, first of all, a quite general
and flexible factory/template of new approaches. The flexibility of GAs allowed to explore
a wide range of ideas, such as the study of diversity preservation in multi-modal opti-
mization [Mahfoud, 1995, Sareni and Krahenbuhl, 1998]. Despite a huge progress made
in 1990s, the research on GAs substantially stagnated in 2000s, at least in the domain
of continuous single-objective optimization, where problem-specific approaches such as
Evolution Strategies became the method of choice. In multi-objective optimization, GAs
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made a long step forward (e.g., Non-dominated Sorting Genetic Algorithms-II (NSGA-II)
[Deb et al., 2002]), which other Evolutionary Computation approaches still try to follow.

Evolution Strategies
Evolution Strategies from the beginning have addressed continuous optimization

(though discretized in the early approaches). Several attempts to extend ESs to mixed-
integer optimization [Bäck and Schütz, 1995, Li et al., 2006], unfortunately, have not at-
tracted enough attention in the field. The latest results show that mixed-integer optimiza-
tion is challenging and the premature convergence is possible even for relatively simple
problems [Hansen, 2011, Li et al., 2011].

In this thesis, we focus on ESs as a prospective approach specifically developed for
continuous optimization, we give a detailed description of ESs in Section 2.3.1.

Estimation of Distribution Algorithms
In contrast to many EAs, where the distribution of candidate solutions is

defined implicitly by variation operators, in Estimation of Distribution Algo-
rithms (EDAs) [Larrañaga and Lozano, 2002] the sampling of new solutions is ex-
plicitly defined by a chosen probabilistic model, e.g., multi-variate normal distri-
bution. The baseline EDA algorithms are: Univariate Marginal Distribution Al-
gorithm (UMDA) [Mühlenbein and Mahnig, 2002], Estimation of Multivariate Nor-
mal Algorithm (EMNA) [Larrañaga and Lozano, 2002], Cross-Entropy Method (CEM)
[Rubinstein and Kroese, 2004].

Ant Colony Optimization
Ant Colony Optimization (ACO) was proposed by Marco Dorigo in his PhD thesis

[Dorigo, 1992]. ACO is an optimization technique (often viewed as an EDA) which imitates
the behavior of ants to solve (usually) combinatorial optimization problems. As well as
natural ants, simulated ants are seeking for a path between their colony and a source of the
food. They lay down pheromone trails such that other ants will more likely to follow these
trails and may reinforce attractiveness of the shortest path to the food. Trail evaporation
reduces pheromone values of all trails over time, that allows to preserve some diversity in
optimal path seeking.

Early ACO algorithms were aimed to solve TSP problem, but further were extended
to a wide range of combinatorial problems [Dorigo and Stützle, 2003]: scheduling, vehicle
routing, quadratic assignment, set covering problems, etc.

The main criticism of ACO algorithms can be demonstrated on the TSP problem (a
similar criticism is also relevant for EAs in general) . Problem-specific approaches, such as
modified Lin-Kernigan heuristic, implemented in LKH-2.0 library are able to solve this toy
problem optimally for tens of thousands of cities (85.900 cities in [Applegate et al., 2009])
and efficiently for millions of cities in linear time [Helsgaun, 2009]. The best known solution
for the World TSP Tour of 1.904.711 cities was found by LKH-2.0 in October 25, 2011. It
has length at most 0.0477% greater than the length of an optimal tour (estimated as the
best lower bound established using Concorde TSP code). It seems that these results are
better than the results of ACO algorithms, for which the instances of few thousands cities
are already difficult to solve with and without 3-opt local search [Oliveira et al., 2011].

A common and quite fair answer to this criticism is: i). ACO algorithms are aiming to
find a general approach, which will be useful for a wide range of combinatorial problems
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(this is also true for ”classical” approaches); ii). ACO algorithms investigate optimization
problems in a nature-inspired way, trying to fulfill the gap of understanding between
optimization theory and evolutionary biology. These two things are both relevant for
other EC approaches. Some progress in generalization was recently made when ACO
algorithms for continuous optimization (ACOR) were proposed [Socha and Dorigo, 2008]

and uncovered some similarity with the CMA-ES algorithm.
Genetic Programming
Genetic Programming (GP) was proposed by Nichael L. Cramer during the first

ICGA conference in 1985 [Cramer, 1985] and later popularized by John R. Koza
[Koza, 1990, Koza, 1992]. Genetic Programming is an evolution-inspired technique which
imitates artificial evolution of computer programs that perform a used-predefined task.
GP can be viewed as a GA with a specific representation of individuals, usually in tree
structure, and variation operators defined for this tree. In contrast to other optimization
techniques, the number of components (variables) representing a candidate solution is
usually dynamically changing during the search. This often favors extensive search in the
space of possible topologies, instead of intensive parametric search for a given topology.
As a consequence, the final programs are often too complex for relatively simple problems.
To control this bloat, the minimization of the program size/complexity can be set as the
second objective after the program’s fitness, leading to a multi-objective version of GP
[Koza, 1992]. It is reported by John R. Koza, that analog electronic circuits, designed
using GP often reinvent or/and outperform patented solutions, found by humans. How-
ever, the search in the space of possible topologies is usually heavily constrained by a
designer and user of Electronic Design Automation tools. In Microwave frequency range,
this becomes especially important, because lumped elements are not sufficiently precise
anymore and should be replaced by approximated model for a given technological process,
where each element typically has several variables. The fitness computation also becomes
more expensive. Thus, parametric optimization becomes much more important than it
is usually assumed in GP, and a reasonable trade-off between topological and parametric
search should be found [Loshchilov, 2009].

Differential Evolution
Differential Evolution (DE) was proposed by Rainer Storn and Kenneth Price

[Storn and Price, 1995] and became especially popular in recent few years thanks to rela-
tive simplicity and efficiency of this method. Basically, the original DE adds the weighted
difference between two population vectors to a third vector. Each individual xi of current
population generates one offspring, which will replace the parent in the next generation if
it has better fitness. The offspring yi is a copy of the parent xi, except that some variables
xi,j should be modified: i). randomly picked variable index jrand among n variables; ii).
all variables selected with the crossover probability CR. If a modification of offspring’s
variable yi,j is needed, the new value is computed in the following way:

yi,j = xa,j + F (xb,j − xc,j), (2.1)

where F ∈ [0, 1] is so-called differential weight and a, b, c are indexes of individuals from
the current population. These three or more individuals are usually different from yi and
are chosen depending on the specific mutation strategy of DE.
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DE typically has only few parameters (population size, CR, F ) and several muta-
tion strategies. This allowed DE community to develop a set of techniques for offline
[Storn and Price, 1997] and online parameter tuning [Brest et al., 2006], as well as effi-
cient adaptive operator selection methods [Fialho et al., 2010]. The latter methods add to
DE the robustness it was missing, and would be useful also in other fields of EC.

Particle Swarm Optimization

The concept of Particle Swarm Optimization (PSO) was discovered by James Kennedy
and Russell Eberhart [Kennedy and Eberhart, 1995] through simulation of a simplified
social model of bird flocking, fish schooling, etc. In PSO the population is represented as
a swarm of particles (individuals), which are seeking for the optimum of a function f(x).
Each particle i has its current position xi, best position pi it visited so far and the velocity
vi, which is simply the difference (shift) between its new and old position in the decision
space. The shift for each particle i and decision variable j is computed in the following
way:

vi,j = ωvi,j + c1rp(pi,j − xi,j) + c2rg(gj − xi,j), (2.2)

where rp, rg ∼ U [0, 1] are drawn uniformly, g is the swarm’s best know position and
ω, c1, c2 are control parameters of the algorithm.

The use of current best solution in variation operators favors fast convergence on uni-
modal functions, and may lead to premature convergence on multi-modal functions. A
number of techniques to avoid the premature convergence to local optima have been pro-
posed such as update of velocity of a particle using best p locations of other particles
[Liang et al., 2006]. Another approach to preserve the diversity is, instead of using global
swarm’s best particle g for variation, to use the best one of some local ”sub-swarm”, sup-
posing that the swarm has some topological structure. This structure can be fixed (orig-
inal global star, local star, von Neumann neighborhood [Kennedy and Mendes, 2002]),
but there are also approaches to adapt the topological structure during the search
[Elshamy et al., 2007].

Other Approaches

Particle Swarm and Ant Colony Optimization algorithms proposed in the early 1990s
inspired a wide range of so-called Swarm Intelligence (SI) approaches, which have become
especially popular since the early 2000s, one can say that they have been replacing GAs.
Swarm Intelligence is usually associated with a population of relatively simple agents,
whose collective interaction leads to the emergence of ”intelligent” global behavior. Many
SI algorithms have been proposed in recent years [Blum and Merkle, 2008]: artificial bee
colony algorithm, bat algorithm, Cuckoo search, firefly algorithm, harmony search and
many others. Some of these approaches imitate interesting processes, observed in nature,
that probably will lead to their better understanding.

However, a common criticism, which is also relevant to the whole EC community, is
that most of these approaches have very weak theoretical background and a lack of math-
ematical proofs of their efficiency. In some cases the lack of theoretical analysis of the
algorithm can be compensated by empirical observations of its good performance. To
assess the performance correctly, a precise experimental setup and procedure should be
defined. Unfortunately, this is often not the case for many papers published in EC commu-
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nity every year, that makes the evolution of optimization approaches even more noisy, than
probably it is already because of No Free Lunch Theorem [Wolpert and Macready, 1997].
To reduce the risk of biased benchmarking, in this thesis, we extensively use BBOB frame-
work. Another point of criticism is well illustrated in the paper ”A Rigorous Analysis of the
Harmony Search Algorithm: How the Research Community can be Misled by a ”Novel”
Methodology” [Weyland, 2010], there the author discusses obvious similarities between
Harmony Search Algorithm and Evolution Strategies.

To answer the mentioned above criticism, we should again re-think the evolution of
the EC field as multi-objective optimization, as described in Section 1.1. From this point
of view, we indeed need some diversity of algorithms, because it might be too ”greedy”
to view the performance of the algorithm as the only (single) objective. However, we are
more or less sure that we do not want to have ”bad clones” of already existing approaches,
without giving any credits, because this adds an artificial noise to the algorithm diversity
measure. We also do not want to add any noise to the algorithm performance measure
due to messy experimental validation procedures.

2.2 Continuous Black-Box Evolutionary Optimization

In the black-box scenario, we want to minimize (without loss of generality) an objective
(cost, fitness) function

f : Rn 7→ R (2.3)

The function is called black-box, because no specific assumption on function is made, f is
also called continuous black-box function as decision variables x are continuous variables.

The objective of black-box optimization is to find one or a set of solutions x with as
small values f(x) as possible, using as small number of function evaluations as possible. We
suppose that all information (except dimension n) about the black-box function f comes
from evaluations of candidate solutions x with f . The number of function evaluations
used is a common search costs measure, which characterizes the amount of information
acquired about the f during the optimization process.

There are several properties of f which can make its black-box optimization difficult.
Below we list and comment some of these properties (see also [Hansen et al., 2008]).

20



2.2 Continuous Black-Box Evolutionary Optimization

Multi-Modality

A local minimum (optimum of minimization) of an unconstrained function f is a vector
xl ∈ Rn such that there is a neighborhood N of xl with no better points than xl:

∀x ∈ N ∩ Rn, f(x) ≥ f(xl) (2.4)

A global optimum is a vector xg ∈ Rn, such that there is no xl ∈ Rn better than xg:

∀x ∈ Rn, f(x) ≥ f(xg) (2.5)

An objective function f is called multi-modal if it has more than one optimum. The
optimization of multi-modal function is difficult, because usually there are no guarantees
that the optimum that was found after the optimization by the algorithm is the global one.
Therefore, to increase the chance to find the global optimum, several local optima should
be explored in one optimization run or during several restarts. There is no consensus about
the best global strategy for multi-modal optimization, two the most commonly used are:
i). to preserve some diversity of solutions during the search, using niching approaches to
explore local optima and hopefully find the global one(s) [Singh and Deb, 2006]; ii). to
increase the probability to find the global optima performing multiple restarts with the
same or different parameter settings of the algorithm (see Section 6.3.3). Multi-modal
functions have typically much more complicated fitness landscapes than the unimodal
ones, because of (sometimes large) basins of attraction located around the local optima.

High-Dimensionality

The volume of the search space increases exponentially with n, the number of de-
cision variables. This can be illustrated on a simple example: first, place 100 points
in a real interval [0, 1]; then to have a similar coverage in terms of distance between
points in 10-dimensional space requires 10010 = 1020 points. Therefore, some optimiza-
tion techniques, useful for small dimensions such as full coverage of the search space,
become useless for large dimensions. This effect is called the curse of dimensionality
[Richard Bellman, 1957]. Many important concepts such as proximity, distance, or neigh-
borhood, become less meaningful with increasing dimensionality, due to a loss of contrast
of distances [Houle et al., 2010].

When comparing different optimization techniques it is important to mention the di-
mension range for which this comparison is considered. Many optimization algorithms do
not scale in practice for extremely large dimensions (n >> 100), because their compu-
tational complexity and/or memory requirements grow too quickly with n, say cubically
and quadratically, respectively.

Non-Separability

A function f is called separable if the optimum of this function can be achieved by
performing n independent one-dimensional searches along each independent coordinate.
Optimization of separable functions can break the curse of dimensionality, because the
problem complexity grows linearly with n. A function f is called non-separable if the
optimum of f cannot be achieved by one-dimensional searches and partially-separable if f
is non-separable and has blocks of coordinates which can be optimized separately.
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Many real-world problems are partially-separable, because humans tend to view the
world as a structured system/object. Structured view of the world favors extensive use of
decomposition, which allows to separately solve sub-problems of a large partially-separable
problem. The decomposition is a common approach for complex design and optimization
problems, such as design of a new car or airplane. We also often tend to simplify our daily
life using decomposition: we first brush our teeth, then we drive a car to our workplace,
then we work. However, some people find that it is better to do these things simultaneously.

The separability is probably the first property of the problem which should be checked
when analyzing the performance of an optimizer on a benchmark or real-world problem.
Some algorithms explicitly or implicitly exploit the separability, and, therefore, usually
perform quite well on separable problems. The number of function evaluations to reach
the optimum or some target objective value then may scale almost linearly with n. The
separability of a problem or any other property of course should be exploited to improve the
search when automatically detected. However, most of the well-known benchmark problems
are separable and many optimizers have become overfitted [Hawkins, 2004] to this property
- they perform well on benchmark problems, but fail on real-world problems which are
often non-separable or partially-separable. A simple check against this kind of overfitting
is to rotate the search space, such that f still has the same topology, but is not separable
anymore. The overfitting to separability has misled many designers of algorithms and may
be viewed as a drawback of such approaches as GAs, PSO, etc (a detailed analysis can
be found in [Salomon, 1995, Hansen et al., 2008]). A prospective direction of the research
is to adaptively identify and learn the linkage between the variables [Tezuka et al., 2004,
Oliwa and Rasheed, 2012], that may allow to exploit the separability when it is detected.

Noisy
A function f̃ is called noisy if for a given x different f̃(x) values can be observed , per-

turbed by some random component ξ. Optimization of noisy f̃ is called noisy optimization,
which also often distinguishes two popular cases: i). the variance of the noise decreases to
zero when approaching the optimum (multiplicative noise): f̃(x) = f(x)(1 + ξ); ii). the
variance of the noise is lower bounded (additive noise): f̃(x) = f(x) + ξ. Both cases are
widely presented in real-world problems, both make the optimization more difficult, be-
cause the information about the optimized function acquired from one function evaluation
is less precise than in the noise-less case.

Theoretical analysis of optimization algorithms in noisy scenario usually becomes much
more complicated and often requires to make some specific assumptions on the noise model
ξ, hidden behind the evaluations of f . In a noisy environment, first derivatives are usually
difficult or impossible to obtain, that limits the using of gradient-based methods. In a
recently published paper by Jorge J. More and Stefan M. Wildy ”Do You Trust Derivatives
or Differences?” [More and Wild, 2012], the authors discuss why it is difficult to reliably
compute derivatives or difference approximations for problems with high levels of noise.
This fact among others motivated the development of derivative-free algorithms starting
from Nelder-Mead algorithm [Nelder and Mead, 1965] and early Evolutionary Algorithms
in the 1960s.

Ill-Conditioning
A convex-quadratic function f(x) = 1

2x
THx, where H is symmetric positive definite,
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2.2 Continuous Black-Box Evolutionary Optimization

is called ill-conditioned if the condition number of H is much larger than 1. The condition
number of H is the ratio between its largest and smallest eigenvalue, and this is also equal
to the squared rate between the longest and the shortest principal axes of the ellipsoid{
x|xTHx = 1

}
. If the condition number is large, then this ellipsoid is very elongated. On

an ill-conditioned function the length of search steps, performed in different directions of
the decision space may differ by orders of magnitude to produce the same improvements
of the objective function.

Ill-conditioned problems are difficult for optimization, because before we learn an ap-
propriate metric we often make too short or too long search steps. Variable-metric meth-
ods, such as quasi-Newton methods (e.g., BFGS [Shanno, 1970]), learn the inverse of the
Hessian of f and are able to ”renormalize” the search steps. However, these algorithms
often estimate the gradient using finite-difference methods, which suffer from numerical
instability due to round-off errors when the condition number is large, say, larger than 104.
Evolutionary variable-metric algorithms, such as CMA-ES [Hansen and Ostermeier, 2001],
are usually more stable, because they do not need to estimate the gradient to learn an
appropriate metric (e.g., CMA-ES learns the covariance matrix of successful steps, see
Section 2.3.2).

Dynamic
A function f(x, t) is called dynamic, because the objective value for a given x depends

on the time-step t. It means that the function is changing in time: it may be a simple
shift or rotation of the search space or any other change of f . In dynamic optimization
the goal is to find the global optimum of f for a time-step t and, and in the best case,
predict its location for time-steps T > t. However, this is often difficult to do, therefore, a
less ambitious objective is considered - to track the progression of the optimum in through
the space as closely as possible [Branke, 2001, Arnold and Beyer, 2002].

The dynamic version of any f usually becomes more difficult for optimization. This
is especially true for the algorithms, which once make the decision about some part of
the search space, exclude it forever from the later stages of the search (e.g., search space
partition-based methods [Shi and Ólafsson, 2000]).

Deceptiveness
There is no clear definition of deceptive functions, a common example of deceptive

function is a function, where a local optimum has much larger volume of the basin of
attraction than the global optimum (a definition for binary settings can be found in
[Goldberg et al., 1992]). As a result, many optimizers can be misled by the local opti-
mum and simply ”do not see” the global one. This example, however, is not the best one
and is rather related to the multi-modality.

It would be more fair to say that a function cannot be deceptive itself, but only with
respect to a given (class of) optimization algorithm(s). A function f can be called deceptive
for an algorithm A, if the properties of f do not correspond to (hidden) assumptions of
A on f and this leads to a bad performance of A on f with respect to a set of other
optimizers and test problems (e.g., the rank of performance of A drops quickly on f). The
deceptiveness is closely related to the questions of overfitting of algorithms to a given set
of problem, and to No Free Lunch Theorem [Wolpert and Macready, 1997], which states
that all algorithms have identically distributed performance when objective functions are
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drawn uniformly at random.

Expensive

A function f is called expensive or costly if one evaluation of f(x) for a given x is
more costly in terms of chosen metric (time, money, etc.) than the cost of its optimization
(excluding function evaluations) per function evaluation.

The optimization of expensive functions is difficult, because we are constrained by the
relatively small number of function evaluations we can use. The fact that functions can
be expensive in the sense described above motivates the existence of the whole field of
optimization, because, otherwise, a pure random search would be probably a method of
choice (the cheapest generator of x + almost free evaluations of f(x)).

Multi-objective

A problem is called multi-objective if there are m objectives fi(x) for i = 1 . . . m, which
should be simultaneously optimized. If no specific preferences are given, the desirable
output of multi-objective optimization is a Pareto set of optimal solutions, instead of a
single solution, that is usually sufficient for single-objective optimization.

Multi-objective optimization is difficult because the multi-objective problem inherits
properties of all single objectives and the optimization itself should take into account the
criteria of multi-objective optimality, which are less obvious than for the single-objective
case. We will discuss the multi-objective optimization in detail in Section 2.4.

2.3 Single-objective Continuous Evolutionary Algorithms

In this Section, we give a detailed description of Evolution Strategies and Covariance
Matrix Adaptation Evolution Strategy for single-objective optimization. Despite the
general name of this Section, we are biased to the discussion of ESs, mostly because
their theoretical foundations are relatively well investigated [Hansen et al., 2013], and
they perform quite well on benchmark and real-world continuous optimization problems
[Hansen et al., 2010b, Hansen, 2012].

2.3.1 Evolution Strategies (ESs)

Evolution Strategies, introduced by Ingo Rechenberg and Hans-Paul Schwefel in the 1960s
and 1970s [Schwefel, 1965, Rechenberg, 1973], are based on the idea of mutations of inter-
mediate size, mainly represented by multivariate normal (Gaussian) mutations. In ESs a
parent mt of iteration/generation t generates its k-th offspring xk ∈ Rn

xk = N
(
m, σ2C

)
= m+ σ · N (0,C ) , (2.6)

where C ∈ Rn×n is a (positive definite) covariance matrix and σ is a mutation step-
size. The parent m also can be viewed as a mean of current mutation distribution. In
each iteration of (µ+, λ)-ES, λ offspring individuals are created from existing µ parent
individuals. In a plus selection strategy, (µ+λ), µ best out of µ+λ individuals are chosen
to become parents in the next generation. In a comma selection strategy, (µ, λ), parents
never survive and µ < λ best offspring are chosen.
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Algorithm 2.1: The (1+1)-ES with the 1/5th Rule

1: given n ∈ N+, dσ ≈ 1 + n/3
2: initialize mt=0 ∈ Rn, σt=0 > 0
3: repeat
4: x1 = mt + σtN (0, I ) // mutation
5: σt+1 ← σtexp( 1

dσ
(E11f(x1)<f(mt) − 1/5)) // step-size update

6: if f(x1) ≤ f(mt) then
7: mt+1 = x1 // selection of x1 as the new parent if it is better than mt

8: end if
9: t← t+ 1

10: until stopping criterion is met

The research on ESs mainly focuses on questions of adaptation of C and (usually
faster adaptation of) σ during the optimization, and the optimal parametrization of this
adaptation. For a recent comprehensible overview of Evolution Strategies, the interested
reader is referred to [Hansen et al., 2013].

The 1/5th Success Rule

The 1/5th success rule is a basic step-size control strategy for randomized search,
discovered in [Schumer and Steiglitz, 1968] and later, under its current name, in
[Rechenberg, 1973]. Algorithm 2.1 implements (1+1)-ES with the 1/5th rule, where at
iteration t a parent mt generates an offspring x1 (line 4) with Gaussian mutation, defined
by the step-size σ and an identity covariance matrix C = I. Setting the covariance matrix
to the identity means that the variations of all variables are independent of each other,
they are uncorrelated.

The generated offspring replaces its parent (lines 6-7) if it has at least as good fitness
as its parent. The update of the mutation step-size (line 5) depends on the empirical
probability that f(x1) < f(mt), or in other words, E11f(x1)<f(mt). This information can
be obtained from previous iterations. The target success rate 1/5 is chosen by Rechen-
berg [Rechenberg, 1973] after investigations of the optimal success rates of (1+1)-ES on
Corridor (success rate ≈ 0.184) and Sphere (success rate ≈ 0.270) functions for n→∞.

The use of uncorrelated mutations limits the success of (1+1)-ES on non-linear func-
tions. The preservation of the best solution (elitism) limits its application on multi-modal,
noisy and dynamic functions.

Cumulative Step-Size Adaptation

The Cumulative Step-Size Adaptation Evolution Strategy (CSA or CSA-ES) proposed
by [Hansen and Ostermeier, 1996] suggests to consider a path the population takes over a
number of generations, an evolution path. The evolution path records the sum of consecu-
tive successful steps to make a decision about possible corrections of the step-size. If suc-
cessful steps are oriented into the same direction, they will sum up and the evolution path
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Algorithm 2.2: The (µ/µw, λ)-ES with Cumulative Step-Size Adaptation

1: given n ∈ N+, λ = 4 + 3⌊ln n⌋, µ = ⌊λ/2⌋, wi =
ln(µ+ 1

2
)−ln i

∑µ
j=1(ln(µ+

1
2
)−ln j)

for i = 1 . . . µ,

µw = 1
∑µ

i=1 w
2
i
, cσ = µw+2

n+µw+3 , dσ = 1 + cσ + 2max(0,
√

µw−1
n+1 − 1)

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
σ = 0

3: repeat
4: for k = 1, . . . , λ do
5: xk = mt + σt · N (0, I )
6: fk = f(xk)
7: end for
8: mt+1 ←∑µ

i=1wixi:λ // the symbol i : λ denotes i-th best individual on f

9: pt+1
σ ← (1− cσ)pt

σ +
√
cσ(2− cσ)√µwmt+1−mt

σt

10: σt+1 ← σtexp( cσdσ (
‖pt+1

σ ‖
E‖N(0,I )‖ − 1))

11: t← t+ 1
12: until stopping criterion is met

will be relatively long in this direction. Since the same distance in this direction can be cov-
ered with larger steps, the step-size should be increased. If successful steps are opposite to
each other, they sum up making the evolution path relatively short. In this case, the used
step-size is too large and should be decreased. The fundamental adaptation principle of
CSA is to decorrelate successfully selected mutation steps [Hansen and Ostermeier, 1996]:
the adaptation should reduce the difference between the distributions of the actual evolu-
tion path and an evolution path under random selection.

Algorithm 2.2 outlines (µ/µw, λ)-ES with Cumulative Step-Size Adaptation. Initially
chosen mean mt of the mutation distribution (can be interpreted as an estimation of the
optimum) is used to generate λ new solutions (lines 4-5) by adding a random uncorrelated
Gaussian mutation. These λ solutions then should be evaluated on f (line 6). The old
mean of the mutation distribution is stored in mt and a new mean mt+1 is computed
as a weighted sum of the best µ parent individuals selected among λ generated offspring
individuals (line 8). The weights w are used to control the impact of selected individuals,
weights are usually higher for better ranked individuals (line 1), but equal weights are also
commonly used, leading to an (µ/µI , λ)-ES.

To update the evolution path pσ using local information about a successful mutation

step mt+1−mt

σt (line 9), a decay/relaxation factor cσ is used to decrease the importance

of previously performed steps with time. A weight factor cu =
√
cσ(2− cσ)µw for the

local successful step is set to normalize the variance of pσ by solving the equation 12 =
(1−cσ)2+c2u. The step-size update rule increases the step-size if the length of the evolution
path pσ is longer than the expected length of the evolution path under random selection
E ‖N (0, I )‖, and decreases otherwise (line 10). Expectation of ‖N (0, I )‖ is approximated
by
√
n(1 − 1

4n + 1
21n2 ). A damping parameter dσ controls the change of the step-size.

The step-size adaptation of CSA is similar to the one of the 1/5th rule, but benefits
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from using the global information stored in the evolution path. Non-elitist multi-parent
selection strategy of (µ/µw, λ)-ES has many advantages over elitist (1+1)-ES (and (1+λ)-
ES), it is suitable for (moderate) noisy [Arnold and Beyer, 2008] and dynamic optimization
[Arnold and Beyer, 2002]. For a recent theoretical analysis of CSA on linear functions, the
interested reader is referred to [Chotard et al., 2012].

2.3.2 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) proposed by
[Hansen and Ostermeier, 1996, Hansen and Ostermeier, 2001, Hansen et al., 2003] has be-
come a standard for continuous black-box evolutionary optimization. The main advantage
over CSA comes from the use of correlated mutations instead of axis-parallel ones. The
adaptation of the covariance matrix C allows to steadily learn appropriate mutation dis-
tribution and increase the probability of repeating the successful search steps.

The (µ/µw, λ)-CMA-ES is outlined in Algorithm 2.3: the original CMA-ES is recovered
if set c− = 0 in line 14, otherwise the pseudo-code presents a so-called weighted active
CMA-ES [Hansen and Ros, 2010a].

Original CMA-ES

The procedure of the adaptation of the step-size σ in CMA-ES is inherited from CSA-
ES and is controlled by pσ. However, it should be noted that successful steps are tracked
in the space of sampling, i.e., in the isotropic coordinate system defined by principal
components of C . To find a pre-image zk of a sampled point xk in the space of sampling,

a transform Ct− 1
2 xk
σt is applied (as for mt+1 −mt in line 9), where Ct− 1

2 is symmetric

with positive eigenvalues such that Ct− 1
2Ct− 1

2 is the inverse of Ct. If BΛBT = C is
an eigendecomposition into an orthogonal matrix B and a diagonal matrix Λ, we have
C− 1

2 = BΛ− 1
2BT .

The covariance matrix update consists of two parts (line 14): rank-one update and
rank-µ update. The rank-one update computes evolution path pc of successful moves of

the mean mt+1−mt

σt of the mutation distribution in the given coordinate system (line 11),
adapted in a similar way as for the evolution path pσ of the step-size. To stall the update
of pc when σ increases rapidly, a hσ trigger is used (line 10).

The rank-µ update computes a covariance matrix C+ as a weighted sum of covariances
of successful steps of µ best individuals (line 12). In a similar way C− is computed
for µ worst individuals to be used for covariance matrix C update in weighted active
CMA-ES. The update of C itself is a replace of previously accumulated information by
a new one with corresponding weights of importance (line 14): c1 for covariance matrix

pt+1
c pt+1

c
T
of rank-one update [Hansen and Ostermeier, 2001], cµ for C+

µ of rank-µ update
[Hansen et al., 2003], and c− for C−

µ of ”active” rank-µ update [Hansen and Ros, 2010a].

The coefficients c1, cµ, c
− and α−

old are defined such that c1 + cµ − c−α−
old ≤ 1.

The ”right” parametrization of CMA-ES algorithm indeed is an open problem, most
of the parameters of the algorithm were not proven mathematically to be optimal, but
are chosen mostly based on algorithm designer’s (including the author, Nikolaus Hansen)
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Algorithm 2.3: The (µ/µw, λ)-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3ln n⌋, µ = ⌊λ/2⌋, wi =
ln(µ+ 1

2
)−ln i

∑µ
j=1(ln(µ+

1
2
)−ln j)

for i = 1 . . . µ,

µw = 1
∑µ

i=1 w
2
i
, cσ = µw+2

n+µw+3 , dσ = 1 + cσ + 2max(0,
√

µw−1
n+1 − 1), cc =

4
n+4 ,

c1 =
2min(1,λ/6)
(n+1.3)2+µw

, cµ = 2 (µw−2+1/µw)
(n+2)2+µw

, c− = µw

4(n+2)1.5+2µw
, α−

old = 0.5

2: initialize mt=0 ∈ Rn, σt=0 > 0,pt=0
σ = 0,pt=0

c = 0,Ct=0 = I, t← 0
3: repeat
4: for k = 1, . . . , λ do
5: xk = mt + σt ×N

(
0,Ct

)

6: fk = f(xk)
7: end for
8: mt+1 ←∑µ

i=1wixi:λ // the symbol i : λ denotes i-th best individual on f

9: pt+1
σ ← (1− cσ)pt

σ +
√
cσ(2− cσ)√µwCt− 1

2 mt+1−mt

σt

10: hσ = 11‖pt+1
σ ‖<

√
1−(1−cσ)2(t+1)(1.4+ 2

n+1
)E‖N(0,I )‖

11: pt+1
c ← (1− cc)pt

c + hσ
√
cc(2− cc)√µwmt+1−mt

σt

12: C+
µ =

∑µ
i=1 wi

xi:λ−mt

σt × (xi:λ−mt)T

σt

13: C−
µ =

∑µ−1
i=0 wi+1yλ−i:λy

T
λ−i:λ with yλ−i:λ =

∥

∥

∥
Ct−1/2(xλ−µ+1+i:λ−mt)

∥

∥

∥

‖ Ct−1/2(xλ−i:λ−mt)‖ × xλ−i:λ−mt

σt

14: Ct+1 = (1−c1−cµ+c−α−
old)C

t+c1 pt+1
c pt+1

c
T

︸ ︷︷ ︸
rank−one update

+(cµ+c
−(1−α−

old))C
+
µ︸︷︷︸

rank−µupdate

− c−C−
µ︸ ︷︷ ︸

”active”

15: σt+1 ← σtexp( cσdσ (
‖pt+1

σ ‖
E‖N(0,I )‖ − 1))

16: t← t+ 1
17: until stopping criterion is met

views on robustness of the CMA-ES. This relative robustness is also supported by empir-
ical observations of CMA-ES performance on a few benchmark problems, such as Sphere
function and rotated Ellipsoid function.

Weighted active CMA-ES

In the original CMA-ES only best µ out of λ individuals are used to estimate the local
covariance matrix of successful steps to increase the probability of successful samples in
the next iteration. The information about the remaining (worst λ − µ) solutions is used
only implicitly during the selection process.

In active (µ/µI , λ)-CMA-ES however, it has been shown that the worst solutions can
be exploited to reduce the variance of the mutation distribution in unpromising directions
[Jastrebski and Arnold, 2006], yielding a performance gain of up to a factor 2 for the ac-
tive (µ/µI , λ)-CMA-ES with no loss of performance on any of tested functions. A recent
extension of the (µ/µw, λ)-CMA-ES, weighted active CMA-ES [Hansen and Ros, 2010a]
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(referred to as aCMA-ES for brevity) shows comparable improvements on a set of noise-
less and noisy functions from the BBOB benchmark suite [Hansen et al., 2010a]. In coun-
terpart, aCMA-ES no longer guarantees the covariance matrix to be positive definite,
possibly resulting in algorithmic instability. The instability issues can however be numer-
ically controlled during the search; as a matter of fact they are never observed during the
benchmarking on the BBOB test suite.

The main novelty of aCMA-ES is the exploitation of the worst solutions to com-

pute C−
µ =

∑µ−1
i=0 wi+1yλ−i:λy

T
λ−i:λ (line 13), where yλ−i:λ =

∥

∥

∥ Ct−1/2
(xλ−µ+1+i:λ−mt)

∥

∥

∥

‖ Ct−1/2(xλ−i:λ−mt)‖ ×
xλ−i:λ−mt

σt . The covariance matrix estimation of these worst solutions is used to decrease
the variance of the mutation distribution along these directions (line 14).

For a more detailed description of the original and active CMA-ES algorithms, the
interested reader is referred to [Hansen et al., 2003] and [Hansen and Ros, 2010a], respec-
tively.

CMA-ES with restarts

There are several properties of black-box problems which may lead to a prema-
ture convergence of CMA-ES, among the most common are multi-modality and un-
certainty. To increase the probability of finding the global optima, IPOP-CMA-
ES [Auger and Hansen, 2005] and BIPOP-CMA-ES [Hansen, 2009] restart strategies for
CMA-ES were proposed. In IPOP-CMA-ES, CMA-ES is restarted with double the popu-
lation size each time the stopping criterion is met. BIPOP-CMA-ES has two regimes: one
with large population, whose size doubles at each restart and one with small population,
whose size is randomly chosen each restart. CMA-ES restarts under the first and the sec-
ond regimes sequentially, such that two regimes have almost the same budget of function
evaluations used so far. We will discuss these strategies in detail and propose two new
alternative restart strategies in Section 6.3.3.

Natural Evolution Strategies

Natural Evolution Strategies (NES [Wierstra et al., 2008]) is a ”hot” topic in EC com-
munity. NES showed the attractiveness of the natural gradient as a general means to
derive CMA-like optimization algorithms from the first principles. Natural gradient, first
introduced by [Amari, 1998], has several advantages over plain gradient, it allows an al-
gorithm to be invariant w.r.t. orthogonal transformations of the search space and an
order-preserved transformations of the objective function. Let the vector θ represents all
parameters used to define a sampling distribution for new offspring in the search space,
then the natural gradient can be used to estimate an ascent in the θ-space toward higher
expected fitness, i.e., the ascent in the original x-space and in the space of the algorithm
parameters. If θ represents mean and covariance matrix of the multivariate normal distri-
bution, a rank-µ CMA-like optimization algorithm can be recovered.

In this thesis, we do not use NES algorithms, while being elegant they are usually out-
performed by CMA-ES algorithms and the most powerful versions of NES resembles CMA-
ES. However, there are several very interesting features discovered for NES in the first
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PhD thesis on the subject [Schaul, 2011]: hyper-parameters adaptation through adaptive
sampling and reuse of already sampled individuals through importance mixing. Another
interesting study of natural gradient-based optimization is the Information-Geometric Op-
timization (IGO) framework proposed in [Arnold et al., 2011].

2.3.3 Why CMA-ES? Empirical Comparison with other Approaches

In this thesis, we intensively use CMA-ES as a baseline optimization algorithm for com-
parison and as a starting point to further improve optimization techniques in single- and
multi-objective scenario (Section 2.4). It is used both in exploitation (Chapter 4 and
Chapter 5) and exploration (Chapter 6) parts of this thesis, and in this Section, we present
some arguments to convince the reader that the CMA-ES is a good candidate optimization
algorithm.

Invariance properties of CMA-ES

The importance of invariances in science has long been acknowledged. In Computer
Science in particular, the invariance of an algorithm with respect to a given transforma-
tion of the problem domain is a source of robustness, as any theoretical or empirical result
that is demonstrated for a given problem instance can be extended to the whole class of
problems obtained by applying the transformation. For instance, many bio-inspired opti-
mization algorithms such as tournament-based EAs, PSO, or DE only rely on comparisons
of the fitness function, making them invariant under any monotonous transformation of
the fitness. From a theoretical perspective, this invariance property is a source of robust-
ness [Gelly et al., 2007]; from an algorithmic perspective, it removes the need to tune the
algorithm hyper-parameters according to some (generally unknown) scale of the fitness
function.

CMA-ES exhibits the following invariances:� Invariance against rank-preserving transformation of f : if we apply a strictly in-
creasing function g : R 7→ R to f , the optimization of f and g ◦ f is indifferent
whether we minimize, e.g., f , f3 or f × |f |2. As well as in all comparison-based op-
timization algorithms, the algorithm only depends on the ranking of function values
(see Algorithm 2.3, line 8). Therefore it is as ”easy” to optimize some non-convex or
non-smooth functions as well as convex ones (it is also true for all comparison-based
optimization algorithms).� Invariance against angle preserving transformation of the search space (rotation,
reflection, translation) if the initial search point(s) are transformed accordingly.� Scale invariance if the initial scaling, e.g., σ0, and the initial search point(s) are
chosen accordingly.

The key invariance property which contributes the most into the good performance
of the CMA-ES is invariance with respect to the rotation of the search space. Most of
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Evolutionary Algorithms lack of this property and are therefore outperformed by CMA-ES
on problems, where the algorithm may benefit from the learning of correlations between
the variables, e.g., on non-separable problems [Hansen et al., 2011]. Another important
property of the CMA-ES is that it is almost parameter-less algorithm, and there is virtually
only one parameter suggested to be tuned by the user - population size λ. Even for this
parameter there is a default value, which depends on the problem dimension n and is
”well-tuned” for unimodal functions (see also [Smit and Eiben, 2010] for offline parameter
tuning of CMA-ES).

Performance on BBOB framework.

The number of function evaluations used to find a target function value ftarget is a
common metric, adopted from the very beginning of the field [Schumer and Steiglitz, 1968,
Rechenberg, 1973] for ”greedy” evaluation and comparison of EAs. The first International
Contest on Evolutionary Optimization (1st ICEO) organized during the International
Conference on Evolutionary Computation (ICEC) in 1996 was probably the first attempt
to compare different continuous optimizers on a set of benchmark problem in a regime
of competition. Differential Evolution managed to finish 3rd among 8 algorithms and
after two non-evolutionary optimizers (one exploited function separability), this result
definitely boosted the popularity of DE. [Bersini et al., 1996] summarizes the results of the
competition and presents a brilliant argumentation why organization of such competitions
is important. We are agree with the vast majority of these arguments, which have become
even more relevant in the last decade.

A more recent competition of optimizers, Congress on Evolutionary Computation 2005
- Session on Real-Parameter Optimization (CEC-2005), provided a more rigorous inves-
tigation of performance of 11 Evolutionary Algorithms on 25 unimodal and multi-modal
10- and 30-dimensional benchmark problems [Suganthan et al., 2005]. A fitness-distance
analysis of functions landscapes is given in [Müller and Sbalzarini, 2011]. Figure 2.1 from
[Hansen, 2006] shows a comparative performance of 11 tested algorithms, including G-
CMA-ES (a version of IPOP-CMA-ES [Auger and Hansen, 2005]). The higher the curve
on the graph, the better the algorithm performs. For a given algorithm a value on axis-x
(x-value) can be interpreted as a loss factor FEs/FEsbest of number of function evaluations
the algorithm has on (1 - (y-value))·100% of tested benchmark problems.

A relatively good performance of G-CMA-ES on CEC-2005 testbed attracted a lot of
attention and in a long term has made CMA-ES ”an algorithm to compare with”. It has
become a standard tool for real-world problem optimization, it also has more than one
hundred real-world applications [Hansen, 2012] which can be considered as an empirical
validation of its robustness. A detailed statistical analysis of the results of CEC-2005
contest is presented in [Garćıa et al., 2009].

COmparing Continuous Optimizers (COCO [Finck et al., 2010]) is a recent and quite
successful platform to quantify and compare the performance of optimization algorithms
in a scientifically decent and rigorous way. COCO provides means to run an optimization
algorithm on a set of benchmark optimization problems, stores the information about
evaluated points, post-processes the obtained information and, finally, prepares tables and
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Figure 2.1: The graphs show the empirical cumulative distribution function of FEs/FEsbest
over different sets of function in dimension 10 (Left) and 30 (Right) for 11 tested Evolu-
tionary Algorithms during the CEC-2005 optimization contest. FEs and FEsbest denote
the expected number of function evaluations to reach the target function value by a given
and the best performed algorithm, respectively. Large values of the graphs (the cumulative
distribution function) are preferable, they correspond to smaller values of FEs/FEsbest.

figures to analyze the performance of the algorithm itself and in comparison with a set of
already benchmarked algorithms. COCO has been used for the Black-Box-Optimization-
Benchmarking (BBOB [Finck et al., 2010]) workshops that took place during the Genetic
and Evolutionary Computation Conference (GECCO) in 2009, 2010 and 2012.

BBOB provides 24 noise-less [Hansen et al., 2009a] and 30 noisy [Hansen et al., 2009b]

benchmark problems with different properties: separable, non-separable, unimodal, multi-
modal, ill-conditioned, deceptive, functions with and without/weak global structure. All
functions are defined and can be evaluated over Rn, while the actual search domain is
given as [−5, 5]n. For the majority of functions the global optimum xopt is randomly
drawn uniformly in [−4, 4]n. To derive non-separable functions from separable ones and
to control the conditioning of the function, linear transformations are applied. Addition
non-linear and symmetry breaking transformations are applied to a portion of 1/2n of
the search space to make some relatively simple functions less regular. All functions are
defined for n = 2, 3, 5, 10, 20 (and n = 40 which is optional). The goal of optimization
of function f is to reach ftarget = fopt + ∆f (∆f = 10−8) function value using as few
function evaluations as possible. The optimum function value fopt is shifted in f -space
and is different for each function. As an input for optimization of function f , only problem
dimension n and the initial range for decision variables are provided. To collect ”sufficient”
amount of data and make statistical analyses of results more meaningful, 15 trials/runs of
the benchmarked algorithm should be conducted on different instances of function f .

If an algorithm succeed to reach a target precision value ∆ft = ftarget−fopt in a single
run, then its runtime (RT) is the number of function evaluations used. If the algorithm
fails, it can be restarted and run again. The Expected Running Time (ERT), the expected
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2.3 Single-objective Continuous Evolutionary Algorithms

Figure 2.2: Empirical runtime distributions (runtime in number of function evaluations
divided by dimension) on all noise-less functions of BBOB-2009 with ft ∈ [100, 108] in
dimension 10. See text for details.

number of function evaluations to reach a target function value for the first time is used
for performance assessment. The ERT is computed as follows [Finck et al., 2010]:

ERT(ftarget) =
#FEs(fbest ≥ ftarget)

#succ
, (2.7)

where the #FEs(fbest ≥ ftarget) is the number of function evaluations conducted in
all trials, while the best function value was not smaller than ftarget during the trial. The
#succ is the number of successful trials.

To summarize the results from a set of benchmark problems Empirical Cumulative
Distribution Functions (ECDFs) are used. The ECDF function F : R 7→ [0, 1] is defined
for a given set of real-valued data S, such that F (x) equals the fraction of elements in S
which are smaller than x. The function F is monotonous and a lossless representation of
the (unordered) set S [Finck et al., 2010].

Each graph in Figure 2.2 depicts the empirical cumulative distribution of RT of the
annotated algorithm from BBOB-2009 on all noise-less functions f1 − f24 in dimension
10 [Hansen et al., 2010b]. For each function-∆ft-pair, 100 instances (problems) of RT are
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generated, where each ∆ft is in
{
101.8, 101.6, 101.4, . . . , 10−8

}
, i.e., ∆ft ∈]102, 10−8]. Any

given (x-value) in Figure 2.2 indicates a budget of function evaluations used, divided by
dimension, to solve a given (y-value) proportion of problems (function-∆ft-pairs). The
graphs are monotonous by definition. Crosses indicate the maximum number of function
evaluations observed for the respective algorithm. Results to the right of a cross are
bootstrapped and are only comparable between algorithms with similar maximum number
of function evaluations. The limit value to the right indicates the ratio of solved problems.
The horizontal distance between graphs represents a difference in runtime for solving
the same proportion of problems. The area between two graphs, up to a given y-value,
is the average runtime difference (averaged on the log scale), arguably the most useful
aggregated performance measure. The best algorithm covers the largest area under its
graph [Hansen et al., 2010b].

Figure 2.2 clearly shows that all benchmarked algorithms outperform Monte Carlo
search method in a long run, for most of the algorithms the difference becomes significant
already after 101n function evaluations. BIPOP-CMA-ES outperforms all other algorithms
after about 103n function evaluations. It should be noted, that the most difficult function-
∆ft problems correspond to multi-modal functions and are located above the line of 0.6
(60% of problems solved) on y-axis. The performance of BIPOP-CMA-ES above this line,
i.e., on multi-modal functions, can be explained by restart strategies used to increase the
probability of finding the global optimum. The BIPOP restart scheme also outperforms
IPOP scheme (see IPOP-SEP-CMA-ES) on the most difficult multi-modal functions. All
BBOB-2009 algorithms with good performance on multi-modal functions strongly resemble
CMA-ES (AMaLGaM IDEA, iAMaLGaM IDEA) or use CMA-ES as a local search (MA-
LS-Chain, VNS).

The (1+1)-CMA-ES is a CMA version of (1+1)-ES presented by [Igel et al., 2006]. The
elitist (1+1) selection scheme tends to work well on unimodal functions, but suffers from
premature convergence on multi-modal functions. State-of-the-art optimization algorithms
from non-evolutionary community, derivative-free NEWUOA [Powell, 2006], quasi-Newton
BFGS [Shanno, 1970] and GLOBAL method (clustering with local search using BFGS
or Nelder-Mead [Pal et al., 2012]), are very competitive with (1+1) CMA-ES algorithm
on unimodal functions, but are outperformed by BIPOP-CMA-ES on multi-modal ones.
However, these ”classical” algorithms are not invariant to linear transformation of the
objective function, that may be viewed as a potential drawback. Nevertheless as well
as CMA-ES, they clearly outperform other Evolutionary Algorithms (PSO, GA, EDA-
PSO, DE-PSO, G3-PCX) at least by one order of magnitude (this depends on n
and functions discussed) in terms of ERT. These observations motivated the exploitation
(”greedy”) part of this thesis, which consists of improving CMA-ES on unimodal functions,
such that the ”domination” of CMA-ES over ”classical” approaches becomes obvious not
only on difficult multi-modal and noisy functions, but also on ”easy” unimodal functions.

Limitations of CMA-ES.

While being a robust black-box optimizer, CMA-ES also has several limitations:� Space complexity. CMA-ES adapts n2+n
2 parameters in the covariance matrix
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during the search. For large n, the storing of a single matrix with n2 real-valued
elements becomes intractable. On a typical PC this limitation is achieved for n ≈
104.� Time complexity. CMA-ES performs eigendecomposition BΛBT = C of the
covariance matrix, this procedure has a complexity of n3, but can be postponed
until after n/10 generations. Finally, the computational complexity scales between
10−8 and 10−7 ×n2 [Hansen, 2009], i.e., about 10-100ms per function evaluation for
n = 1000, that can be considered to be too expensive for computationally very cheap
functions.� Premature convergence. With no surprise the algorithm may prematurely con-
vergence to a local optimum on multi-modal functions. Surprisingly, a class of uni-
modal functions called HappyCat was found recently, where CMA-ES fails to find
the minimizer [Beyer and Finck, 2012]. The behavior of CMA-ES on this class of
problems is similar to the one observed when evolving at the edge of feasibility
of constraint problems, where step-length control may fail because the mutation
strength decreases exponentially fast such that the CMA-ES is not able to learn the
covariance matrix [Beyer and Finck, 2012].� Large number of function evaluations required to find an optimum. This
can be viewed as general remark for all optimization algorithms, but becomes a less
abstract limitation, when dealing with expensive optimization problems. Chapter 3
will address this limitation.

To address the above-described limitations of time and space complexities, several
versions of CMA-ES with smaller than n2+n

2 control parameters have been proposed. A
recent baseline in this direction is IPOP-SEP-CMA-ES, also called separable IPOP-CMA-
ES, with only n degrees of freedom [Ros and Hansen, 2008]. The algorithm has linear
in n time and space complexity and, therefore, is suitable for large scale optimization,
performing reasonably well on non-trivial optimization problems [Ros and Hansen, 2008].

The reasons of premature convergence of CMA-ES is an open question, which probably
will become clearer by studying alternative variants of online parameter control in CMA-
ES. For example, for the case of HappyCat problems, the effect of premature convergence
can be reduced if a larger population size λ is used.

2.4 Multi-objective Evolutionary Algorithms

In this Section, we briefly describe the main concepts of multi-objective search and discuss
reasons that make it difficult. Then we recall the history of Multi-objective Evolutionary
Algorithms (MOEAs) and, finally, present Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and Multi-objective Evolutionary Algorithm (MO-CMA-ES), which will be
used later in this study (see Chapter 5 and Section 6.2).
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2.4.1 Main Concepts of Multi-objective Optimization

The optimization of the problem with 2 or more (often conflicting) objectives is called
multi-objective optimization. The multi-objective problem is usually difficult to solve,
because it inherits properties of individual objectives. Let us consider more formally,
without loss of generality, a multi-objective minimization problem with n decision variables
(parameters) and m objectives:

Minimize y = f(x) = (f1(x), . . . , fm(x))

where x = (x1, . . . , xn) ∈ X
y = (y1, . . . , ym) ∈ Y

(2.8)

and where x is called the decision vector, X is the decision (parameter) space, y is the
objective vector, and Y is the objective space. The multi-objective problem (MOP) may
have constraints, in this case X should be defined as the feasible decision space.

Definition 1. (Pareto dominance of vectors). The objective vector y1 dominates

the objective vector y2 (y1 ≺ y2)
def⇐⇒(

y1j ≤ y2j for all j ∈ {1, . . . ,m} and y1k < y2k for at least one k ∈ {1, . . . ,m}
)
.

Definition 2. (Weak Pareto dominance of vectors). The objective vector y1 weakly

dominates the objective vector y2 (y1 � y2)
def⇐⇒

(
y1j ≤ y2j for all j ∈ {1, . . . ,m}

)
.

Definition 3. (Strict Pareto dominance of vectors). The objective vector y1 strictly

dominates the objective vector y2 (y1 ≺≺ y2)
def⇐⇒

(
y1j < y2j for all j ∈ {1, . . . ,m}

)
.

Definition 4. (Incomparability of vectors). The objective vectors y1 and y2 are

incomparable (y1 ‖ y2) def⇐⇒
(
y1 6� y2 and y2 6� y1

)
.

Definition 5. (Pareto Optimality of vectors).
The solution x∗ and its corresponding objective vector y∗ = f(x∗) are Pareto optimal
def⇐⇒ ( there exists no y ∈ Y such that y ≺ y∗).
Definition 6. (Approximation set/front). Let Y ⊆ Y be a set of objective vectors.
Y is called approximation set or non-dominated set/front or Pareto front approximation
def⇐⇒ ( any vector of Y does not weakly dominate any other vector in Y). Let denote Ω as
a set of all approximation sets. Vectors of the non-dominated set/front are called non-
dominated vectors.

Definition 7. (Optimal Pareto set/front). Optimal Pareto set/front is an approxi-
mation set of optimal Pareto solutions x∗ and corresponding vectors y∗.

Definition
8. (Better set/front). An approximation set A is better than an approximation set

B (A ⊲ B)
def⇐⇒

(
every y ∈ B is weakly dominated by at least one y1 ∈ A and A 6= B

)
.
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All dominance relations defined above for vectors are easily extendable for sets of
vectors/solutions, by changing relations between variables to relations between vectors.

Performance Assessment

In order to compare the performance of two optimizers, one can run them to minimize
some function f and depending on the output one can say which one performs better on
this particular function. If f is a single-objective function, then this comparison is quite
straightforward: the algorithm which usually (according to some statistical test on several
runs) finds better solutions (smaller value of f) has a better performance on f . If f is
a multi-objective function, the definition of the relation better is now more complicated,
because the solution of (unimodal) multi-objective problem is not just one point, but a
set of Pareto points. The relation better is defined by Definition 8 [Knowles et al., 2006].
The problem arises when two sets are incomparable, but one needs to distinguish between
them and find the more preferable one. It is usually difficult to define this preference
criterion, because in multi-objective optimization two objectives are usually considered:
i). minimize the distance to the optimal Pareto front; ii). maximize the diversity within
the optimal Pareto set approximation. The problem of incomparability becomes even
more serious as the number of objectives m increases [Deb et al., 2001].

To compare output sets of multi-objective optimizers we will follow a widely accepted
procedure suggested by [Zitzler et al., 2002b, Knowles et al., 2006] and use Quality Indi-
cators.

Quality Indicators

The underlying idea of quality indicators is to quantify differences between approx-
imation sets, by applying common mathematical metrics. Thus, even for incomparable
approximation sets one can say which one is better w.r.t. a given quality indicator.

Definition 9. (Unary quality indicator). A unary quality indicator is a function
I : Ω→ R, which assigns a real value to any approximation set Y ∈ Ω.

It is important to note that there exists no unary quality measure that is able to
indicate whether a Pareto set approximation Y1 is better than a Pareto set approximation
Y2 [Zitzler et al., 2002b]. A better quality according to unary indicator in the best case
can guarantee that Y1 is not worse than Y2, i.e., incomparable or better.

Definition 10. (Binary quality indicator). A binary quality indicator is a function
I : Ω×Ω→ R, which assigns a real value to any pair of approximation sets (Y1,Y2) ∈ Ω×Ω.

Properly designed binary quality indicators, in contrast to unary ones, are capable to
indicate whether Y1 is better than Y2.

Definition 11. (Pareto-compliant indicator). The indicator I : Ω → R is Pareto-

compliant
def⇐⇒ for every pair of approximation sets Y1 and Y2, for which Y1 � Y2, I(Y1)

is not worse than I(Y1).
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The quality indicator is Pareto-compliant if it does not contradict the order induced
by the Pareto-dominance relations. Many popular quality indicators are Pareto non-
compliant (generational distance (GD), inverted generational distance (IGD), spread,
coverage, etc. [Zitzler et al., 2002b]), i.e., better quality of Y1 than of Y2 is possible
even if Y2 ≺ Y1. The use of such Pareto non-compliant quality indicators may mislead
the performance assessment procedure. Detailed descriptions of other Pareto compli-
ant indicators, In this thesis, we study multi-objective optimization algorithms using the
Pareto-compliant hypervolume indicator. such as ǫ-indicator and R2 indicator are given
in [Zitzler and Künzli, 2004] and [Brockhoff et al., 2012], respectively.

Pareto Ranking

The Pareto ranks w.r.t. A ⊆ Y of the points in A are iteratively determined. All
non-dominated points in A (denoted ndom1(A) or simply ndom(A)), are given rank 1.
The set ndom(A) is then removed from A; from this reduced set, the non-dominated
points (denoted ndom2(A)) are given rank 2; the process continues until all points of
A have received a Pareto rank. The Pareto rank of point a ∈ A is denoted PR(a, A).
The sorting of points w.r.t. Pareto ranking criterion is called non-dominated sorting
[Goldberg, 1989, Deb et al., 2000].

Hypervolume Indicator

The hypervolume of a set of points A is sometimes also called ”S-Metric”
[Zitzler and Thiele, 1998]. Let aref denote a reference point, dominated by all points
in A. The hypervolume of A is then the volume of the union of the hypercubes defined
by one point of the set and aref . Formally,

H(A) = V olume(
i=m⋃

i=1

Rect(ai,aref )),

where Rect(a, b) is the hyper-rectangle whose diagonal is the segment [ab]. It is clear that
only the non-dominated points in A contribute to the hypervolume.

The hypervolume contribution of some non-dominated point a is defined as the differ-
ence between the hypervolume of the whole set A and that of the set from which a has
been removed:

∆H(a, A) = H(A)−H(A\{a})

Survival Selection

In multi-objective Evolutionary Algorithms µ parent individuals generate λ offspring.
Since the population size is usually bounded, the question of survival selection of µ most
promising / best individuals among λ+µ ones often arises. A common approach is to sort
individuals / vectors of a set X with respect to a total preorder relation ≺X . This relation
is often based on two sorting criteria / quality indicators: i). a Pareto dominance-based
indicator such as Pareto Ranking or Strength Pareto approach [Zitzler et al., 2002a]; ii). a
crowding-distance measure in NSGA-II [Deb et al., 2000], distance to k-th nearest neigh-
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bor in SPEA2 [Zitzler et al., 2002a], hypervolume in SMS-EMOA [Emmerich et al., 2005]

and MO-CMA-ES [Igel et al., 2007b]. Formally, ≺X is defined as follows:

x ≺X y⇔I1(x,X) < I1(y,X)// better dominance-based quality

or// same dominance-based quality and better second sorting quality

I1(x,X) = I1(y,X) and I2(x,X) > I2(y,X)

(2.9)

The ≺X relation can be defined by a binary quality indicator, e.g., the one where the
fitness of an individual x is associated with a ”loss in quality” if x is removed from the
population [Zitzler and Künzli, 2004].

2.4.2 Multiple Approaches to Multi-objective Optimization

The finding of solution(s) of multi-objective problems usually follows either the preference-
based principle or the ideal principle [Deb and Kalyanmoy, 2001, Tusar, 2007], illustrated
in Figure 2.3.

Following the preference-based principle (see Figure 2.3-Left), the multi-objective prob-
lem f(x) is reformulated into a (series of) single-objective problem(s) g(x) using some
preference and/or a priori information about f(x), e.g., the weights used for a weighted
aggregation g(x) =

∑m
i=1 wifi(x). The main advantage of the preference-based princi-

ple is that the solution of the multi-objective problem f(x), reformulated as g(x), can
be found using one of many available single-objective optimizers. This fact made many
preference-based ”classical” optimization methods very popular in the 1960s-1990s: i).
weighted sum methods with the aggregation as the one described above [Zadeh, 1963];
ii). ǫ-constraint method, where only one objective function is minimized, while other
are ǫ upper-constrained [Marglin, 1967]; iii). goal programming techniques, where usu-
ally simplex method or linear programming is used to satisfy Decision Maker’s goals and
priorities [Charnes and Cooper, 1961, Tamiz et al., 1998]. Some of these methods have
several disadvantages: i). uniformly chosen weight vectors does not lead to a uniform set
of Pareto-optimal solutions (e.g., in the weighted sum method); ii). non-convex parts of
the Pareto front cannot be found (e.g., in the weighted sum method); iii). the results
are very parameter-sensitive (e.g., in the ǫ-constraint method). The main disadvantage of
the preference-based principle is that it usually provides only one solution of the multi-
objective problem.

The ideal principle suggests to first find all Pareto-optimal solutions of the multi-
objective problem (see Figure 2.3-Right), then choose one or several solutions taking into
account the preference information. The method is ideal in the sense that it does not
require any additional preference information to be given before the optimization. Thus,
the preference-based choice of solutions is made with the complete information about the
optimal Pareto front (or its approximation) found after the optimization. In practice we
usually bound the maximum number of the Pareto-optimal solutions we are interested in.

Most multi-objective Evolutionary Algorithms (MOEAs) follow the ideal princi-
ple, while preference-based MOEAs also attract attention in the field. A promising
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Figure 2.3: The preference-based principle (Left) and ideal principle (Right) of multi-
objective optimization. The illustration is adapted from [Tusar, 2007].

algorithm in this direction would be a MOEA based on Decomposition (MOEA/D
[Zhang and Li, 2007]), which simultaneously optimizes a number of single-objective ag-
gregated optimization subproblems. It has been shown that the weights used for aggre-
gation can be randomly uniformly assigned to each individual of the population in each
generation or can be changed periodically during the optimization [Jin et al., 2001a]. The
second method combined with ES and CMA-ES usually outperforms the first method on
high-dimensional ZDT problems [Jin et al., 2001a].

Early MOEAs

The first MOEA algorithm, Vector Evaluated Genetic Algorithm (VEGA
[Schaffer, 1985]), was a simple genetic algorithm with a modified selection step, where
each sub-population has its own fitness-proportional based selection w.r.t. only one ob-
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jective. Since the VEGA, the environmental selection has been recognized as the main
difference between most MOEAs and their single-objective analogs. An important step
of its understanding was made by Goldberg in his seminal book [Goldberg, 1989], where
he discussed a concept of the non-dominated sorting, which was later implemented in the
Non-dominated Sorting Genetic Algorithm (NSGA [Srinivas and Deb, 1994]).

The history of early approaches mainly represents the search for a suitable environ-
mental selection mechanism for multi-objective optimization, the key contributors in this
direction are the following algorithms:� First generation. VEGA [Schaffer, 1985], Multi-Objective Genetic Algorithm

(MOGA [Fonseca et al., 1993]), NSGA [Srinivas and Deb, 1994], Niched-Pareto Ge-
netic Algorithm (NPGA [Horn et al., 1994]).� Second generation. Strength Pareto Evolutionary Algorithm
(SPEA [Zitzler and Thiele, 1998]), Pareto Archived Evolution Strategy (PAES
[Knowles and Corne, 1999]), Non-dominated Sorting Genetic Algorithm II (NSGA-
II [Deb et al., 2000]), Strength Pareto Evolutionary Algorithm 2 (SPEA2
[Zitzler et al., 2002a]).

One of the main achievements of the early approaches is the non-dominated sorting
procedure and various secondary sorting criteria.

Modern MOEAs

After appropriate environmental selection schemes were found, many single-objective
optimizers has been translated to their multi-objective versions:� Differential Evolution. Pareto-frontier Differential Evolution

(PDE [Abbass et al., 2001]), Pareto Differential Evolu-
tion Approach (PDEA) [Madavan, 2002], Differential Evolution for Multi-objective
Optimization (DEMO) [Robič and Filipič, 2005], Generalized Differential Evolution
(GDE3 [Kukkonen and Lampinen, 2005]).� Particle Swarm Optimization. Multi-objective Particle Swarm Optimization
(MOPSO [Mostaghim and Teich, 2003]), MOPSO with Time Variant parameters
(TV-MOPSO [Tripathi et al., 2007]).� Evolution Strategy. Multi-objective CMA-ES (MO-CMA-ES [Igel et al., 2007b]).� Estimation of Distribution Algorithms. Multi-objective EDA (MIDEA
[Bosman and Thierens, 2005]), Regularity Model-Based Multi-objective EDA (RM-
MEDA [Zhang et al., 2008]).

However, not all above-described algorithms are ”just” generalized versions of their
single-objective variants. The RM-MEDA makes certain assumptions about the smooth-
ness of f(x) and induces from the Karush-Kuhn-Tucker condition (KKT) that the Pareto
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set in the decision space represents a piecewise continuous (m− 1)-dimensional manifold,
where m is the number of objectives. As variation operations, RM-MEDA performs sam-
pling of new individuals on (m− 1) largest principal components of distributions of local
clusters, detected in the population. Thus, the variation operators are designed to increase
the probability of successful sampling, taking into account the multi-objective context.

The Indicator Based Evolution Algorithm (IBEA) [Zitzler and Künzli, 2004] showed
that the quality indicator itself can be used as a criterion for the environmental selection.
Soon after that, the SMS-EMOA [Emmerich et al., 2005] algorithm demonstrated the
advantages of using the hypervolume (S -measure) as the second sorting criterion in the
non-dominated sorting. This allowed to make a step toward Many-objective optimization
(m > 3), where the widely used crowding distance measure fails to properly estimate
the individual contribution of non-dominated points [Ishibuchi et al., 2008]. However, the
time complexity of the computation of the hypervolume indicator grows exponentially
fast, and to make the hypervolume-based algorithm computationally suitable for large
m, several Monte Carlo simulation schemes to approximate the exact hypervolume values
have been proposed (e.g., HypE [Bader and Zitzler, 2011]). There is also certain progress
in computation of the exact hypervolume: [Emmerich and Fonseca, 2011] proposes an
algorithm for 3-dimensional objective space, which performs faster than the best known
algorithm by a factor of

√
ℓ, where ℓ is the number of points.

Despite the diversity of existed multi-objective algorithms worthy of scientific study,
in this thesis, we focus on MO-CMA-ES because: i). the CMA-ES part of the algorithm
was shown to be efficient in the single-objective case; ii). MO-CMA-ES already shows
good results comparing to NSGA-II [Igel et al., 2007b]; iii). self-adaptation mechanisms
of CMA-ES make it more ”sensitive/adaptive” to changes of the environment (see Section
6.2), while most MOEAs suffer from the lack of this crucial property.

2.4.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II (NSGA-II [Deb et al., 2000]) is probably
the most widely used multi-objective optimization algorithm. The NSGA-II (the second
and drastically improved version of NSGA [Srinivas and Deb, 1994]) is an extension of GA
for multi-objective optimization, where the ≺X preference relation of the environmental
selection is defined in the following way.

The dominance-based quality indicator I1 is defined by Pareto ranking criterion: the
sorting of individuals w.r.t. I1, the non-dominated sorting, yields to several approximation
sets/non-dominated fronts. Then, to order the individuals of the same non-dominated
front Y the second quality indicator I2, defined by crowding distance is applied. The
crowding distance of an individual x ∈ Y is computed as follows:

cd(x,Y) =
m∑

i=1

fi(x
+)− fi(x−)

max(fi(y)|∀y ∈ Y)−min(fi(y)|∀y ∈ Y)
, (2.10)

where x+ and x− are right and left neighboring individuals of x on the objective i.
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Algorithm 2.4: (µ+λ)-NSGA-II

1: given µ← 100, λ← 100, pc ← 0.9, pm ← 1/n, ηc ← 15, ηm ← 20, ttour ← 2
2: initialize t ← 0, random parent population Qt=0;
3: repeat
4: for k = 1, . . . , λ do
5: repeat
6: i1 ← TournamentSelection(Qt, ttour);
7: i2 ← TournamentSelection(Qt, ttour);
8: until i1 = i2
9: if IU(0, 1) ≤ pc then {o1,o2} ← SBXcrossover(xi1 ,xi2 , ηc)

10: else o1 ← xi1 ; o2 ← xi2
11: if IU(0, 1) ≤ 0.5 then x′k ← o1

12: else x′k ← o2

13: x′k ← PolynomialMutation(x′k, pm, ηm)
14: a′t+1

k ← {x′k,y′k = f(x′k)};
15: Qt ← Qt ∪

{
a′t+1
k

}
;

16: end for
17: Qt+1 ←

{
Qt

≺:i|1 ≤ i ≤ µ
}

// Deterministic Selection according to ≺Qt

18: t← t+ 1
19: until stopping criterion is met

The NSGA-II algorithm is outlined in Algorithm 2.4. In iteration t = 0, a popula-
tion Qt=0 of µ individuals is randomly initialized. In each iteration t, the population
Qt generates λ offspring using variation operators of SBX crossover (with probability pc
and parameter ηc) and Polynomial mutation (with probability pm and parameter ηm)
[Deb and Goyal, 1996] (lines 4-15). Tournament-based parent selection is outlined in Al-
gorithm 2.5. Each newly generated decision vector x′k is evaluated and stored as an
individual a′t+1

k (lines 14-15). After the procedure of variation, µ+λ parent and offspring
individuals are sorted (line 17) w.r.t. the partial preorder relation ≺Qt defined above. The
time complexity analysis for NSGA-II as well as for many other multi-objective optimiz-
ers is given in [Jensen, 2003]. By setting λ = 1 and I2 to the hypervolume indicator, the
Algorithm 2.4 recovers (µ + 1)-SMS-EMOA [Emmerich et al., 2005]. In all experiments
of this thesis we will always use NSGA-II with the hypervolume indicator as the second
sorting criterion I2, also referred to as S-NSGA-II.

2.4.4 Multi-objective CMA-ES (MO-CMA-ES)

Multi-objective
CMA-ES (MO-CMA-ES) proposed by [Igel et al., 2007b, Igel et al., 2007a] is based on
CMA-ES adaptive paradigm to handle multiple objectives. MO-CMA-ES involves a set
of µ (1 + 1)-CMA-ES algorithms [Igel et al., 2006], each of which performs step-size and
covariance matrix updates based on its own evolution path, and a Pareto-based survival
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Algorithm 2.5: TournamentSelection

1: given ttour // tournament size
2: best← IU(1, |A|)
3: for k = 2, . . . , ttour do
4: icur ← IU(1, |A|)
5: if icur < best then
6: best← icur
7: end if
8: end for
9: return best

selection mechanism that selects µ individuals from the population of size µ + λ built in
one iteration of the algorithm.

The (µ+λ)-MO-CMA-ES (also referred to as µMO× (1+1)-MO-CMA-ES) is outlined
in Algorithm 2.6. In iteration t = 0, a population Qt=0 of µ individual (1+1)-CMA-ES is
randomly initialized. In each iteration t, the population Qt generates λ offspring (1+1)-
CMA-ES. To generate k-th offspring a parent at

ik
with index ik is selected according to

ParentSelection scheme (line 5). There are three baseline versions of MO-CMA-ES:� Generational (µ + µ)-MO-CMA-ES. If λ = µ and each parent ik generates
exactly one offspring, i.e., ik = k.� Steady-State (µ + 1)-MO-CMA-ES or SS-MO-CMA-ES. If λ = 1 and the
parent ik is randomly uniformly drawn from µ parents, i.e., ik = U(1, |Qt|).� Steady-State (µ≺ + 1)-MO-CMA-ES. If λ = 1 and the parent ik is selected
among non-dominated points, i.e., ik = U(1,ndom|Qt|)

All parameters of the k-th (1+1)-CMA-ES including its mean of the mutation distri-
bution mk = xk, its objective vector yk = f(xk), its step-size σk, computed probability of
success p̄succ,k and evolution path of the step-size pk are encapsulated in an element ak,
which is called individual. When at iteration t an individual at

ik
is selected for mating it

is just copied to an offspring individual a′t+1
k (lines 5 - 6). The mating of a′t+1

k consists of
Gaussian mutation of its decision vector xtik (line 7). Then the fitness of newly generated

offspring is computed (line 8) and it is added to the population Qt (line 9). In the mating
loop (4-9) λ new offspring individuals are added to the population, where each offspring is
a simple copy of its parent with the mutated decision vector x′t+1

ik
and the corresponding

objective vector y′t+1
k .

The augmented population of parents and offspring is truncated to size µ after sorting
w.r.t. ≺Qt , defined in MO-CMA-ES as the non-dominated sorting + the hypervolume
contribution indicator as the second sorting criterion (line 22). Before that, the CMA-ES
parameters of both parent and offspring are updated depending on their success succQt

with respect to the parent and the population Qt. While the success measure succQt can
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Algorithm 2.6: (µ+λ)-MO-CMA-ES Generic MO-CMA-ES scheme

1: given

d = 1 + n
2λ , p

target
succ = 1

5+
√
λ/2

, cp =
p
target
succ λ

2+p
target
succ λ

, cc =
2

n+2 , ccov = 2
n2+6

, pthresh = 0.44

2: initialize t ← 0, random parent population Qt=0

3: repeat
4: for k = 1, . . . , λ do
5: ik ← ParentSelection(Qt, k)
6: a′t+1

k ← at
ik

7: x′t+1
k ∼ xtik + σtikN

(
0,Ct

ik

)

8: a′t+1
k ←

{
x′t+1
k ,y′t+1

k = f(x′t+1
k )

}

9: Qt ← Qt ∪
{
a′t+1
k

}

10: end for
11: for k = 1, . . . , λ do
12: p̄′t+1

succ,k, p̄
t
succ,ik

← (1− cp)p̄′t+1
succ,k + cpsuccQt

(
at
ik
,a′t+1

k

)

13: σ′t+1
k , σtik ← σ′t+1

k exp

(
1
d

p̄′
t+1
succ,k−p

target
succ

1−p
target
succ

)

14: if p̄′t+1
succ,k < pthresh then

15: p′t+1
c,k ← (1− cc)p′t+1

c,k +
√
cc(2− cc)

x′t+1
k −xtik

σt
ik

16: C′t+1
k ← (1− ccov)C′t+1

k + ccovp
′t+1
c,k p

′g+1T

c,k
17: else
18: p′t+1

c,k ← (1− cc)p′t+1
c,k

19: C′t+1
k ← (1− ccov)C′t+1

k + ccov

(
p′t+1
c,k p′t+1T

c,k + cc(2− cc)C′t+1
k

)

20: end if
21: end for
22: Qt+1 ←

{
Qt

≺:i|1 ≤ i ≤ µ
}

// Deterministic Selection according to ≺Qt

23: t← t+ 1
24: until stopping criterion is met.

be defined in different ways, in original MO-CMA-ES it is defined as the ≺Qt preference.

Parent’s and offspring’s success rates p̄′t+1
succ,k and p̄′tsucc,k are updated at each iteration

using some decay factor cp (line 12). In a similar way to that of the 1/5-th rule, the step-
sizes of the parent and offspring are updated in line 13. Thus, if it survives, parent a′tk will
have an updated success rate and mutation step-size, while offspring a′t+1

k will also have
an updated evolution path p′t+1

c,k and an updated covariance matrix C′t+1
k (lines 15-19),

which account the information from the last mutation step.

The relatively good convergence of the MO-CMA-ES is due to its (1+1)-CMA-ES part,
while the diversity/spread preservation is due to its hypervolume-based environmental
selection procedure. There is a less strict variant of succQt success measure than ≺Qt

[Voß et al., 2010], where the offspring is successful if it is selected to the new population
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Qt, more formally:

succQt

(
atik , a

′t+1
k

)
=

{
1 if a′t+1

k ∈ Qt+1

0 otherwise
(2.11)

Another interesting extension of MO-CMA-ES is to use some recombination procedure
for (1+1)-CMA-ES algorithms [Voß et al., 2009]. The recombination consists of sharing
the covariance matrix information between the neighborhood individuals, such than in-
dividuals with closer Mahalanobis distance in the decision space have larger weights of
contribution in the recombination.

2.4.5 Benchmarking

Many ways of measuring the performance of multi-objective Evolutionary Algorithms have
been proposed. In this study, we follow the guidelines of [Knowles et al., 2006] and use only
Pareto-compliant quality indicators, more particularly the widely used hypervolume indi-
cator H. Let P be a µ-size approximation of Pareto front and let P ∗ be the approximate
µ-optimal distribution of optimal Pareto points [Auger et al., 2009]. The approximation
error of the Pareto front is defined by ∆H(P ∗, P ) = H(P ∗) − H(P ). The optimization
goal is to minimize ∆H(P ∗, P ) to have a better approximation of the optimal Pareto front
of the initial multi-objective function f(x).

The most popular sets of benchmark problems in the field are: the bi-objective ZDT
problems [Zitzler et al., 2000], the scalable DTLZ problems [Deb et al., 2001] and the
WFG problems with a wide variety of characteristics [Huband et al., 2005]. ZDT prob-
lems are often considered to be too easy, e.g., the Pareto front is located on a boundary
of the box-constrained decision space, this could bias the optimization process (see Sec-
tion 6.2.2.2). They are also separable, and this is more advantageous for MOEAs with
separable variation operators (NSGA-II, SPEA2, etc.). To make these problems more
reliable, the IHR problems were proposed [Igel et al., 2007b] as the shifted and rotated
versions of the ZDT problems. Another interesting set of benchmark problems, inspired
by the strategies for contructing test problems proposed in [Okabe et al., 2004], is the LZ
problems [Li and Zhang, 2009] with complicated Pareto fronts in decision space. In this
thesis, we will benchmark MOEAs on ZDT, IHR and LZ problems.

2.5 Discussion

The historical overview of Evolutionary Computation presented in this Chapter is itself
an evolution of approaches to optimization. This evolution is a constant fight against
the complexity of the real-world that we try to conquer, solving more and more complex
problems every day. Since the diversity of these problems is growing, a source of robustness
as an ability to adequately solve them with a smallest number of changes in the used
optimization technique has become an attractive property. The CMA-ES algorithm clearly
demonstrates such robustness, originated in invariance properties of the CMA-ES with
respect to rank-preserving transformations of the objective function and with respect to
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2.5 Discussion

the rotation of the search space. The empirical observations confirms that CMA-ES overall
outperforms other techniques on a wide set of black-box single-objective optimization
problems. While we do not observe in the literature such a clear ”domination” (and vice
versa) of MO-CMA-ES on multi-objective problems, we suppose that its better adaptation
to the multi-objective context is worth of scientific study, while its (1+1)-CMA-ES part is
already quite powerful. This research might lead to a more general CMA-like approach,
derived from the first principles, which would work equally good on single- and multi-
objective problems.

In this Chapter, we analyzed Evolutionary Algorithms separately for single- and multi-
objective optimization. While many multi-objective optimizers may be recovered by
changing the environmental selection of their single-objective analogs, the fundamen-
tal difference of these two cases may be more questionable. It would be interesting to
know if a nature-driven ”evolution of everything” (in a very global scale) exists, then
whether this evolution is multi-objective or single-objective, but passed through the multi-
objectivization? The multi-objectivization [Knowles et al., 2001] consists in replacing the
original objective by a set of objectives, or adding some new objectives to the original
one. In certain cases multi-objectivization is shown to be favorable for the search of the
global optimum [Knowles et al., 2001]. We also might ask ourselves whether, e.g., the
company which produces and sells cars is a multi-objective problem driven unit or just
single-objective profit-oriented one, passed through the multi-objectivization? We suppose
that the answers depend very much on the scale with which we look at these questions.
While the multi-objective case is a more general one and should be viewed as our final
goal, we believe that most of colors to draw a picture of a feature general optimizer are
already available in the single-objective case.
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Chapter 3

Surrogate-assisted Evolutionary
Optimization

Much learning does not teach understanding.
Heraclitus, On the Univers.

In a black-box optimization scenario, the only available information about the objec-
tive function f comes from the evaluated candidate solutions. It is often assumed that the
optimization algorithm estimates λ new candidate solutions at each iteration, then, up-
dates its own hyper-parameters θ (e.g., m, σ and C for CMA-ES) in such a way that the
probability of sampling solutions with better fitness increases in a short and/or long term.
One important thing here is that the algorithm often ”forgets” previously evaluated solu-
tions, assuming that all important information is already stored in the θ hyper-parameters.
However, the latter assumption is usually too strong, and most algorithms actually lose
very important information, taking into account only the recently evaluated candidate so-
lutions. This is a fundamental basis for learning an approximation or surrogate model f̂ of
f from a set of selected previously evaluated individuals, called training points/individuals.
Thus, in principle all previously evaluated individuals can be checked and selected to build
f̂ . The surrogate model f̂ later can be used to give hints about where promising candidate
solutions are located. An extreme case is when f̂ replaces the original f and is used for
direct optimization.

In this Chapter, we review the state-of-the-art techniques for surrogate-assisted evo-
lutionary optimization. First we analyze recent trends in Machine Learning (Section 3.1)
and describe the most popular techniques used for surrogate model learning. We focus
on Support Vector Machines (SVMs) in Section 3.2, because we will use SVMs in this
thesis to build surrogate models with nice invariance properties, such as invariance to
rank-preserving transformation of the objective function. After the surrogate model has
been built, it can be exploited in many different ways: in Section 3.3, we review the
state-of-the-art techniques used for surrogate model control and exploitation in single-
and multi-objective scenarios, focusing on Evolutionary Strategies and CMA-ES. Finally,
in Section 3.4, we conclude the Chapter and discuss some prospective directions of the
surrogate-assisted search.

3.1 Surrogate Models

Various surrogate modeling techniques have been proposed to replace the actual expensive
simulations or experiments by cheap surrogate models. Figure 3.1 illustrates the history of
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Figure 3.1: The history of publications reporting the use of the major surrogate techniques
(Left) in all fields and (Right) with Evolutionary Algorithms, using Google Scholar data
(see text for details).

publications reporting the use of the major surrogate techniques. Data was obtained using
Google Scholar [Google, 2012] by a methodology proposed in [Viana and Haftka, 2008].
For each technique we searched articles with chosen keywords, e.g., for the response surface
method (also referred to as Polynomial Regression (PR)) we used the following query:
approximation OR metamodel OR regression OR prediction OR surrogate AND ”response
surface”. Figure 3.1-Left illustrates the number of papers published in all fields. One can
observe that the traditional polynomial response surface approach and Kriging approach
grow every year in average by 10-15% in terms of number of publications per year. This
can be viewed as a factor of growing of the field of theoretical and applied machine learning
and optimization. One can also clearly observe the ”boom” of artificial neural networks
(ANN) in the late 1980s and the early 1990s, and a very similar ”boom” of support vector
machines (SVMs) 10 years later. The growth of popularity of ANN clearly stagnates for
the last 5 years, while SVM might become the most popular approach in machine learning
in the next few years.

To measure the popularity of surrogate techniques used with Evolutionary Algorithms
(see Figure 3.1-Right) we searched using queries such as: ”evolutionary algorithms” and
”neural network”. While the ranking of popularity of surrogate techniques is the same,
the publications often correspond to the tuning of surrogate models (e.g., structures and
weights of ANN, hyper-parameters of SVM) and not the surrogate-assisted optimization.
Many publications only mention surrogate techniques but do not use them, other use
them not for optimization but for, e.g., classification. Therefore, in order to estimate the
popularity of techniques for surrogate-assisted optimization the absolute numbers should
be divided by a factor from 10 to 50 for ANN and SVM and by some smaller factor for
response surface and Kriging.

In this Section, we will describe only major techniques for surrogate model learning:
Polynomial Regression in Section 3.1.1, Gaussian Processes in Section 3.1.2, Artificial Neu-
ral Networks in Section 3.1.3, Radial Basis Functions in Section 3.1.4 and Support Vector
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3.1 Surrogate Models

Machines, which we will discuss in detail in Section 3.2. Many interesting approaches,
such as Generalized Additive Models (GAMs [Hastie and Tibshirani, 1990]), Multivariate
Adaptive Regression Splines (MARS [Friedman, 1991]) and Kernel Partial Least Squares
(KPLS [Rosipal and Trejo, 2002]), are omitted for the sake of space.

3.1.1 Polynomial Regression (PR)

Polynomial regression is a form of linear regression which fits a non-linear model to a
training set D = {(xi, yi), i = 1, . . . , ℓ}, where xi ∈ Rn, yi ∈ R. A PR model that is linear
in β can be expressed as follows [Myers, 1990, Atkeson et al., 1997]:

f̂ = x̃Tβ, (3.1)

where β defines the complexity of the model. Linear (respectively, quadratic) poly-
nomial regression models can be recovered by setting x̃ = (x1, . . . , xn, 1) (respectively,
x̃ = (x21, . . . , x

2
n, x1x2, . . . , xn−1xn, x1, . . . , xn, 1)). The training points can be collected in

a matrix equation

(
(WX̃ )TWX̃

)
β = (WX̃ )TWy, (3.2)

where X̃ = (x̃ 1, . . . , x̃ ℓ)
T is a matrix of x̃ parameters of ℓ training points, y =

(y1, . . . ,yℓ)
T , and W = diag(1) ∈ Rℓ×ℓ defines weights of training points. In global

polynomial regression the weights of all training points are equal, the locally weighted
regression with different weights is described in Section 3.3.2.2.

Estimating the parameters β using regression amounts to minimizing the least square
loss criterion

A(q) =

ℓ∑

i=1

[
(f̂(xi,β)− yi)2

]
(3.3)

by solving (3.2) using least square or gradient-based methods.

The Response Surface Methodology (RSM) proposed by [Box and Wilson, 1951] sug-
gested to use quadratic PR models to perform a sequence of designed experiments (DOE)
to obtain an optimal response from an analyzed function f . The terms PR and RSM are
often used interchangeably.

If the target function f is smooth and its complexity is a priori known, then PR models
may be a good choice. In practice, they are usually good for, e.g., quadratic or cubic
landscapes, but often are not suitable for more complex multi-modal ones. An important
drawback of PR models is that the computational complexity to find exact solution of the
least square problems scales with O(n3param), where nparam is the number of parameters
of the model that scales itself with O(n2) for quadratic PR model. Therefore, the learning
of quadratic PR model scales with O(n6), limiting the range of application to problems
with n . 15 [Kern et al., 2007].
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3.1.2 Gaussian Processes (GP)

Kriging, also also referred to as Gaussian Process (GP) regression, was originally developed
in geostatistics by a South African mining engineer called Danie Krige in the early 1950s
and was further developed by [Matheron, 1963]. Kriging models are rather global than
local surrogate models, hence more suited for larger experimental areas than the areas
typically used in low-order polynomial regression models [Kleijnen, 2009].

A Gaussian process is a collection of random variables, any finite number of which have
(consistent) Gaussian distributions [Rasmussen, 2004]. Therefore, the vector of function
values yℓ of training points can be viewed as only one sample of a multivariate Gaus-
sian distribution with joint probability density p(yℓ|Xℓ), where Xℓ is the set of training
points. Thus, the predictive distribution for a new test point xℓ+1 is obtained from ℓ+1-
dimensional joint Gaussian distribution for the outputs of the ℓ training points and the
test point, by conditioning on the observed targets in the training set:

p(yℓ+1|Xℓ+1,yℓ) =
p(yℓ+1|Xℓ+1)

p(yℓ|Xℓ)
, (3.4)

It should be noted that the dimensionality of each probability density here equals the
number of data points. The (3.4) can be simplified to [Büche et al., 2004]

p(yℓ+1|Xℓ+1,yℓ) ∝ exp

(
−1

2

(yℓ+1 − ŷℓ+1)
2

σ2tℓ+1

)
, (3.5)

a univariate Gaussian with mean and variance given by

ŷℓ+1 = kTC−1
ℓ yℓ, (3.6)

σ2tℓ+1
= κ− kTC−1

ℓ k, (3.7)

where the smooth covariance function between two point xi and xj is defined as

C(xi,xj) = θ1

(
−1

2

n∑

i=k

(xi,k − xj,k)2
r2k

)
+ θ2 + δijθ3. (3.8)

The covariance vector k and variance κ can be expressed in terms of the covariance
function as

ki = C(xi,xℓ+1), i = 1, . . . , ℓ, (3.9)

κ = C(xℓ+1,xℓ+1) = θ1 + θ2 + θ3. (3.10)

The optimization of hyper-parameters θ= {θ1, θ2, θ3, r1, r2, . . . , rℓ} is a multi-modal
function, therefore some combination of gradient-based (e.g., BFGS) and Evolutionary
Algorithms (e.g., CMA-ES) can be used [Büche et al., 2004].
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3.1 Surrogate Models

The computational complexity of model training scales with O(Nℓ3 + nℓ2), where
N ≥ 1 denotes the number of iterations spent on hyper-parameters optimization by a
gradient-based algorithm [Emmerich et al., 2006b]. Each prediction of f̂ scales with O(ℓ2)
in time and computation of σ scales with O(ℓ). Therefore, if ℓ is chosen very conservatively
to be linear in n, then the computational complexity scales at least with O(n3).

3.1.3 Artificial Neural Network (ANN)

The perceptron [Rosenblatt, 1958] is a linear classifier whose output is a function applied
on the weighted sum of its M inputs:

f̂(x,w) = fa


w0 +

M∑

j=1

wjxj


 , (3.11)

where x is the input with a corresponding weight vector w, w0 is a constant bias and
fa : R 7→ R the non-linear activation function.

A basic artificial neural network in the form of a Multilayer Perceptron (MLP) can
be described as a perceptron whose input is the output of other perceptrons. The overall
model of an ANN with one hidden layer of M perceptrons and an output layer with K
outputs for k = 1, . . . ,K takes the form [Bishop, 2006]:

f̂k(x,w) = fa




M∑

j=1

w
(2)
kj fa

(
n∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0


 , (3.12)

where w is the vector of weights and the superscripts (1) and (2) indicate that the
corresponding parameters are in the first and the second layers of the network, respectively.
The activation function is often defined by a logistic sigmoid function fa(a) = 1/(1 +
exp(−a)).

Since it is supposed that each training point xi may have K values f1(xi), . . . , fK(xi),
after optimizing the neural network we want to find the weight vector w that minimizes
the mean square error on training points:

E =
1

ℓ

ℓ∑

i=1

K∑

k=1

(f̂k(xi)− fk(xi)) (3.13)

The main drawback of ANN is that the minimization of (3.13) during the model learn-
ing is a multi-modal problem, therefore popular approaches such as back-propagation
[Bryson and Ho, 1975] and Newton’s method may prematurely converge to local op-
tima. An open question is how to optimally choose the structure of ANN: the
number of hidden layers and perceptrons in each layer, connections between per-
ceptrons. A state-of-the-art Evolutionary Algorithm HyperNEAT for evolving large-
scale neural networks (simultaneous optimization of weights and structure, see also
NEAT [Stanley and Miikkulainen, 2002]) with millions of connections can be found in
[Stanley et al., 2009].
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3.1.4 Radial Basis Functions (RBFs)

The method of Radial Basis Functions (RBFs) [Orr, 1996] approximates f by using a
linear combination of NRBF (usually NRBF = ℓ) radially symmetric functions hi(x)

f̂(x) =

NRBF∑

i=1

wihi(x), (3.14)

where w is the weight vector. Similarly to the polynomial regression optimal weights
can be found by solving

ŵ = A−1HT ŷ (3.15)

where A−1, the variance matrix is A−1 = (HTH)−1, where

H =



h1(x1) · · · hNRBF

(x1)
...

. . .
...

h1(xℓ) · · · hNRBF
(xℓ)


 (3.16)

The variance matrix can be used to estimate the variance σ2 of an independent error
ǫi w.r.t. hi(x). The kernel function hi(x) (see Section 3.2 for definition of kernels) can
be defined by polynomial kernel of degree d and linear splines, but usually is defined by
Gaussian RBF [Bishop, 2006]. It is traditionally assumed that RBF networks have only
one hidden layer [Orr, 1996], sharing some similarities with ANNs with one hidden layer.

As well as in GP, the computational complexity of RBG method scales at least with
O(ℓ3) because of the inversion of A.

Because Support Vector Machines have been the preferred surrogate models in this
thesis, the following Section details several variants of SVM.

3.2 Support Vector Machine (SVM)

Support Vector Machines (SVMs) and kernel-based learning methods have become popular
since the 2000s for solving problems in classification, regression, and novelty detection. In
this Section, we demonstrate the mathematical beauty of the SVM approach first for the
case of simple linear classification and then show its extension to more complex tasks such
as regression and ranking, which can be used for surrogate model learning.

3.2.1 Classification SVM

SVMs were initially proposed for linear classification by Vladimir Vapnik in [Vapnik, 1995],
but have been developed by him together with Alexey Chervonenkis since the 1960s
[Vapnik and Chervonenkis, 1971]. An important property of SVMs that made them pop-
ular is that the prediction model learning is a convex optimization problem, and so any
local optimum is also a global optimum.
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3.2 Support Vector Machine (SVM)
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Figure 3.2: Linear separating hyperplanes for separable case of classification of yellow
(class ’+1’) and green (class ’-1’) points.

3.2.1.1 Linear Separable Classification SVM

Considering a two-class training set D = {(xi, yi), i = 1, . . . , ℓ = N}, where xi ∈ Rn, yi ∈
{−1,+1}, classification problem consists of finding f̂classSVM which can correctly classify
all training points and predict classes of unseen test points.

The Optimal Hyperplane Suppose the training data D can be separated by a
hyperplane

〈 w,x 〉 − b = 0, (3.17)

where w is the norm to the hyperplane. Then, there are infinitely many such hyper-
planes (see, e.g., W1, W2 and W3 in Figure 3.2-a), which separate the set of vectors D
such that all points of one class (e.g., class ’+1’ of yellow points) lie on one side of the
hyperplane (e.g., on the left side), while all points of another class (class ’-1’ of green
points) lie on the opposite side of the hyperplane (on the right side).

A hyperplane is called the optimal separating hyperplane or the maximum margin
hyperplane if the set of vectors D is separable without error and the distance between the
closest vector to the hyperplane is maximal. More formally the separating hyperplane can
be described as follows (after renormalization):

{
〈 w,xi 〉 − b ≥ +1 if yi = +1

〈 w,xi 〉 − b ≤ −1 if yi = −1,
(3.18)

or in a more compact notation as yi [〈 w,xi 〉 − b] ≥ 1. It can be shown that the
optimal hyperplane should satisfy the described above condition and minimize

Φ(w) =
1

2
〈 w,w 〉 = 1

2
||w||2, (3.19)
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that corresponds to the maximization of the margin 2/||w|| between two classes of
points.

Constructing The Optimal Hyperplane To find the optimal hyperplane one has
to solve the following primal quadratic programming problem:

Minimize{w}
1
2 ||w||2

subject to the constraints yi [〈 w,xi 〉 − b] ≥ 1 i = 1, . . . , ℓ
(3.20)

Lagrange multipliers αi, i = 1, . . . , ℓ can be introduced for each of the inequality con-
straints of (3.20) to i). replace the original constraints to constraints on the Lagrange
multipliers themselves, which are much easier to handle; ii). formulate the problem only
in terms of dot products between vectors, which will allow to generalize SVMs to non-
linear classification and regression. The solution of (3.20) is given by the saddle point of
the primal Lagrangian

LP (w, b, α) =
1

2
〈 w,w 〉 −

ℓ∑

i=1

αi{yi [〈 w,xi 〉 − b]− 1}, (3.21)

The Lagrangian has to be minimized with respect to w and b and maximized with
respect to αi > 0. At the saddle point, the solutions w0, b0, and α0 should satisfy the
Karush-Kuhn-Tucker (KKT) conditions [Fletcher, 1987]

∂LP

∂w
(w0, b0, α

0) = w0 −
ℓ∑

i=1

α0
i yixi = 0 (3.22)

∂LP

∂b
(w0, b0, α

0) =

ℓ∑

i=1

α0
i yi = 0 (3.23)

From (3.22) and (3.23) we observe that the optimal hyperplane w0 is a linear combi-
nation of the training vectors:

w0 =

ℓ∑

i=1

yiα
0
i xi, α0

i ≥ 0, i = 1, . . . , ℓ (3.24)

All points xi with non-zero coefficients α0
i are called support vectors. In Figure 3.2-b

support vectors have additional black dots inside the circle.

We can substitute equalities (3.22) and (3.23) into the primal form of Lagrangian
(3.21) and obtain a particular dual form, called the Wolfe dual [Fletcher, 1987]:

Maximize LD(α) =
∑ℓ

i=1 αi − 1
2

∑ℓ
i=1 αiαjyiyj〈 xi,xj 〉

subject to αi ≥ 0, i = 1, . . . , ℓ
(3.25)
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Figure 3.3: Linear separating hyperplanes for non-separable case of classification of yellow
(class ’+1’) and green (class ’-1’) points.

The optimal solution α0 of (3.25) can be used to predict the class of a point x computing
the decision function

f̂classSVM (x) = sign

(
ℓ∑

i=1

yiα
0
i 〈 xi,x 〉 − b0

)
, (3.26)

where b0 is the threshold

b0 =
1

2
[〈 w0,x+1 〉+ 〈 w0,x−1 〉] , (3.27)

where x+1 (respectively, x−1) is any support vector belonging to the class ’+1’ (re-
spectively, to the class ’-1’).

3.2.1.2 Linear Soft Margin Classification SVM

The described above classification SVM is called hard margin SVM, because it assumes
that the training data is separable by a linear classifier, and, therefore, the optimum
solution leads to no error of classification in the training set. In the case where the
training set is linearly non-separable, i.e., some of training points cannot be correctly
classified (see, e.g., the yellow point in the left bottom corner in Figure 3.3), non-negative
slack variables ξi ≥ 0 are introduced to count and minimize the misclassification error.
The soft margin SVM classification problem can be formulated as follows:

Minimize{w,ξ}
1
2 ||w||2 +C

∑ℓ
i=1 ξi

subject to

{
yi [〈 w,xi 〉 − b] ≥ 1− ξi i = 1, . . . , ℓ
ξi ≥ 0, i = 1, . . . , ℓ

(3.28)

The constant C defines the trade-off and an aggregation weight of multi-objective
problem of maximization of the margin and minimization of the error of misclassification.
It also can be interpreted as an upper bound on the impact of the error of any given point.
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Figure 3.4: Linear separating hyperplanes for separable (a) and non-separable (b) cases
of non-linear classification of yellow (class ’+1’) and green (class ’-1’) points.

The dual form of (3.28) is formulated as follows:

Maximize LD(α) =
∑ℓ

i=1 αi − 1
2

∑ℓ
i=1

∑ℓ
j=1 αiαjyiyj〈 xi,xj 〉

subject to 0 ≤ αi ≤ C, i = 1, . . . , ℓ
(3.29)

3.2.1.3 Non-linear Soft Margin Classification SVM

In case the training points cannot be successfully linearly classified in the original space
X ∈ Rn (Figure 3.4-a), they can be mapped using a mapping Φ to some feature (possibly
infinite dimensional) Euclidean space (to be an image Φ(X)), where the classification error
hopefully will be smaller (Figure 3.4-b), because the Vapnik-Chervonenkis (VC) dimension
is higher [Vapnik and Chervonenkis, 1971].

Definition 12. (The Vapnik-Chervonenkis dimension). The Vapnik-Chervonenkis
dimension, V C(H), of hypothesis space H, defined over instance space X is the size of
the largest finite subset of X shattered (isolated) by H. If arbitrary large finite sets of X
can be shattered by H, then V C(H) ≡ ∞.

VC-dimension defines the maximum number of training points which can be classified
exactly for all possible labelings. For a linear classifier defined in n-dimensional space
V C(H) = n+ 1.

VC dimension gives an estimate of the upper bound on ”expected risk”R(α) (a measure
of the error on unseen test data) of an α-parametrized learning machine with probability
1− η:

R(α) ≤ Remp(α) +

√(
V C(H)(log(2ℓ/h) + 1)− log(η/4)

ℓ

)
, (3.30)

where Remp(α) is the ”empirical risk”, i.e., the measured error on the training data,
and ℓ is the size of the training set. The latter bound can be interpreted as follows:
as the problem dimension increases, VC-dimension also increases that may decrease the
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”empirical risk” since it becomes simpler to classify the training data, but also increase
the upper bound of the ”expected risk” on test data (in order to fix the bound, ℓ should
be increased).

The mapping of the training set and the whole algorithm to a higher dimensional
space may improve the generalization error, but computing this mapping may become
computationally intractable for some Φ [Burges, 1998]. Fortunately, the formulation of
SVM (3.29) does not require to explicitly know Φ, but only to know how to compute
dot product of points. Hence if there exists a kernel function K defined on X such that
K(xi,xj) = 〈 Φ(xi),Φ(xj) 〉 for all (xi,xj) [Aizerman et al., 1964], the problem (3.29) can
be solved in X. One example is the Radial Basis Function (RBF):

KRBF (xi,xj) = exp−||xi−xj ||2/2σ2
, (3.31)

where σ is a bandwidth parameter. RBF kernel maps any input point xi onto a
hyper-sphere of radius 1 since K(xi,xi) = 1.

According to Hilbert-Schmidt theory, K(xi,xj) can be any symmetric function satis-
fying the following general Mercel’s conditions [Vapnik, 1995]:

Theorem 1. (Mercer) To guarantee that the symmetric function K(u, v) form L2 has an
expansion

K(u, v) =

∞∑

k=1

ak〈 ψk(u), ψk(v) 〉 (3.32)

with positive coefficients αk > 0 (i.e., K(u, v) describes a dot product in some feature
space), it is necessary and sufficient that the condition

∫ ∫
K(u, v)g(u)g(v)dudv > 0 (3.33)

be valid for all g 6= 0 for which

∫
g2(u)du <∞ (3.34)

To extend the linear classification SVM to the non-linear case (see Figure 3.4-a,b) the
”only” thing to do is to replace the dot product of points defined in the original decision
space X (3.29) by K(xi,xj) defined in the feature space Φ(X) as follows:

Maximize LD(α) =
∑ℓ

i=1 αi − 1
2

∑ℓ
i=1 αiαjyiyjK(xi,xj)

subject to 0 ≤ αi ≤ C, i = 1, . . . , ℓ
(3.35)

Thus, the decision function now is non-linear in the decision space:

f̂classSVM (x) = sign

(
ℓ∑

i=1

yiαiK(xi,x)− b
)

(3.36)

An efficient algorithm to find optimal α parameters of classification SVM can be found
in [Platt, 1998].
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Figure 3.5: The soft margin |ξ|ǫ-loss setting for Support Vector Regression.

3.2.2 ǫ-Support Vector Regression (ǫ-SVR)

Considering a training set D = {(xi, yi), i = 1, . . . , ℓ}, where xi ∈ Rn, yi ∈ R, ǫ-SVR pro-
posed by [Vapnik, 1995] consists in finding a function f̂ǫSV R that has at most ǫ deviation
from the actual targets yi for all training points, and at the same time is as flat/regular
as possible (see Figure 3.5-a). ǫ-SVR does not take into account any approximation er-
rors which are less than ǫ: this is defined by a so called ǫ-insensitive loss function |ξ|ǫ
[Smola and Schölkopf, 2004], illustrated in Figure 3.5-b and described as

|ξ|ǫ =
{

0 if |ξ| ≤ ǫ
|ξ| − ǫ otherwise,

(3.37)

The ǫ-SVR problem in primal form is defined as follows:

Minimize{w,ξ,ρ}
1
2 ||w||2 + C

∑ℓ
i=1(ξ

up
i + ξlowi )

subject to




〈 w,xi 〉+ b− yi ≤ ǫ+ ξupi , i = 1, . . . , ℓ
yi − 〈 w,xi 〉 − b ≤ ǫ+ ξlowi , i = 1, . . . , ℓ
ξupi , ξlowi ≥ 0, i = 1, . . . , ℓ,

(3.38)

The dual problem in feature space is

Maximize LD(α) =
ℓ∑

i=1

yi(α
up
i − αlow

i )− ǫ
ℓ∑

i=1

(αup
i + αlow

i )

−1
2

∑ℓ
i=1

∑ℓ
j=1(α

up
i − αlow

i )(αup
j − αlow

j )K(xi,xj)

subject to

{
0 ≤ αup

i , α
low
i ≤ C, i = 1, . . . , ℓ∑ℓ

i=1(α
up
i − αlow

i ) = 0

(3.39)

The prediction function of f(x) is

f̂ǫSV R(x) =
ℓ∑

i=1

(αup
i − αlow

i )K(xi,x) + b (3.40)

The optimal α parameters and corresponding b can be found as described
in [Smola and Schölkopf, 2004]. [Chang and Lin, 2001] proved that ǫ-SVR with pa-
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Figure 3.6: One-Class SVM maps training points of a single class (a) into the feature
space (b) and separates them from the origin by the hyperplane (c) with maximum margin
ρ/||w|| to find the minimum volume hyperspace which encloses most of the training points.

rameters (C, ǫ) has the same solution as ν-Support Vector Regression (ν-SVR
[Schölkopf et al., 2000]) with parameters (ℓC, ν).

3.2.3 One-Class SVM

One-Class SVM was proposed by [Schölkopf et al., 2001] for novelty and outliers detection.
One-Class SVM learns a function f̂OneClassSVM that takes the value +1 in ”small” region
capturing most of the training data and -1 elsewhere. The strategy is to separate the
training data from the origin in the feature space by the hyperplane with maximum margin
ρ/||w|| (see Figure 3.6), and this is equivalent to finding the hyper-sphere with minimum
volume that includes most of the training points [Tax and Duin, 2004]. Given training
vector xi ∈ Rn, i = 1, . . . , ℓ without any class information, the primal problem of One-
Class SVM is

Minimize{w,ξ,ρ}
1
2 ||w||2 − ρ+ 1

νℓ

∑ℓ
i=1 ξi

subject to

{
〈 w,xi 〉 ≥ ρ− ξi i = 1, . . . , ℓ
ξi ≥ 0, i = 1, . . . , ℓ,

(3.41)

where the parameter ν ∈ [0, 1] controls the trade-off between the radius of the hyper-
sphere and the number of training points that it can hold, ν ∈ [0, 1] is also an upper bound
on the fraction of outliers in the data set.

The dual problem in feature space is:

Minimize LD(α) =
1
2

∑ℓ
i=1

∑ℓ
j=1 αiαjyiyjK(xi,xj)

subject to

{
0 ≤ αi ≤ 1

νℓ , i = 1, . . . , ℓ∑ℓ
i=1 αi = 1

(3.42)
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Figure 3.7: Three classes of points are illustrated: blue (rank 1), green (rank 2) and
yellow (rank 3) points. The goal of ranking SVM is to find separated maximum-margin
hyper-planes W(r1) and W(r2) with the norm w such that all points are correctly ranked
w.r.t their score on w.

The decision function is:

f̂OneClassSVM (x) = sign

(
ℓ∑

i=1

yiαiK(xi,x)− ρ
)

(3.43)

The optimal α parameters and corresponding ρ can be found as described in
[Schölkopf et al., 2001].

3.2.4 Ranking SVM

A new learning setting aimed at preference learning, a.k.a. ordinal regression, has been
addressed within the SVM framework [Herbrich et al., 1999, Joachims, 2005]. While pref-
erence learning can be cast as a classification problem on X × X (the class of (x,x′)
is positive iff x is to be preferred to x′), it may offer better generalization to formalize
preference learning as an under-constrained regression problem, where the hypothesis h
mapping X onto the real-valued space R is only required to satisfy h(x) > h(x′) whenever
x is preferred to x′. ǫ-SVR also can be used for ordinal regression (see Section 4.1.4).

Let D = {x1, . . . ,xℓ} and let P denote the set of m pairs (i, j) such that xi is preferred
to xj ; the original formulation of rank-based SVM, involving all preference constraints, is
as follows:

Minimize{w,ξ}
1

2
||w||2 +C

∑

(i,j)∈P
ξi,j (3.44)

subject to

{
〈w, xi〉 − 〈w, xj〉 ≥ 1− ξi,j, ∀(i, j) ∈ P
ξi,j ≥ 0, ∀(i, j) ∈ P (3.45)
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where ξi,j stands for the slack variable associated to the violation of the preference con-
straint associated to (xi,xj).

The dual form in feature space is

Maximize{α}LD =
∑

∀(i,j)∈P αij − 1
2

∑
∀(i,j)∈P

∑
∀(u,v)∈P αijαuv (Kiu −Kiv −Kju +Kjv)

subject to 0 ≤ αij ≤ C, ∀(i, j) ∈ P ,
(3.46)

where Kij = K(xi,xj).
The choice of constraints may significantly affect the model quality as well as the model

learning computational complexity. Usually two cases are considered:

Linear in ℓ number of constraints , e.g., with ℓ − 1 defined preference relations and
corresponding constraints, when xi is said to be preferred to xi+1 for i = 1, . . . , ℓ−1.
This may be sufficient for model learning, since the final chain will correctly rank all
training individuals.

Super-linear/Quadratic in ℓ number of constraints , e.g., with 1.2ℓ (respectively,
(ℓ−1)2

2 constraints), when xi is preferred to some fraction of xj for i + 1 ≤ j ≤ ℓ
(respectively, to all xj for i+ 1 ≤ j ≤ ℓ). This variant may be more robust if there
is some uncertainty in preference relations.

We will discuss in detail both cases and the corresponding optimization procedures
just before their application in Section 4.1.1 and Section 5.2.

When optimal α if found, the decision function that predicts the score of a test point
x is defined as follows:

f̂RankSVM (x) =
∑

∀(i,j)∈P
αij (K(xi,x)−K(xj,x)) (3.47)

The evaluated score of x allows to compute its rank with respect to the other evaluated
points.

3.3 Surrogate-assisted Optimization

The basic idea of the surrogate-assisted optimization is to use one or several surrogate
models f̂ of the objective function f to improve the quality of the search (e.g., in terms
of number of functions evaluations required to reach the optimum). It is usually assumed
that the evaluation of f is expensive in terms of time or money and the learning of f̂ is
relatively cheap. f̂ is learned/built from a set of pairs (x, f(x)) where actual f has been
computed. f̂ should be learned optimally for an algorithm A in the sense that there exists
no f̂ ′ such that f̂ ′-assisted A performs statistically better than f̂ -assisted A (i.e., the
optimum of f can be found faster in terms of number of function evaluations). Of course
one can suppose that the optimal f̂ in the sense described above should be equal to f ,
surprisingly this is not always the case. An illustrative example would be f(x) =

∑n
i=1 x

10
i
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and A is an algorithm which assumes a quadratic shape of f . In this case, f̂ ′(x) ≈∑n
i=1 x

2
i

might be a better approximation for this particular algorithm A than f̂(x) ≈ ∑n
i=1 x

10
i ,

because this f̂ ′ corresponds to the class of functions the A was designed for, while the
optimum of f̂ ′ and f is the same. A similar effect was also investigated in the context
of multi-modal optimization [Yew-Soon et al., 2006], where a smoother approximation f̂ ′

sometimes is preferred to a more precise approximation f̂ of the rugged f , and is able to
prevent the search from getting stuck in local optima.

The optimal learning of f̂ and optimal interaction between f̂ and A conceals many
pitfalls and special cases in single- and multi-objective optimization, which we will discuss
in this Section. A comprehensive survey of surrogate-assisted Evolutionary Algorithms
can be also found in [Jin, 2005, Jin, 2011].

3.3.1 General Framework

A simple iteration of the surrogate-assisted algorithm is the following:

1. Learn f̂ from training set of previously evaluated points (x, f(x)).

2. Use f̂ in A (either by replacing f with f̂ , or by some other mechanism).

3. Compute additional points (x, f(x)).

4. Update training set.

In the following we will analyze in detail some steps of the described above procedure.

3.3.1.1 Model Quality Assessment

Without any doubts, the Mean Square Error (MSE) is the most popular model quality
indicator in the literature. It is defined as follows:

MSE =
1

ℓ

ℓ∑

i=1

wi(f(xi)− f̂(xi))2, (3.48)

where wi = 1, i = 1, . . . , ℓ are the weights of the impact of each predicted f̂(xi) to the
final error estimation.

This indicator was investigated in [Jin, 2003], where one important aspect was ob-
served: the Mean Square Error of the model only weakly correlates with the ability to
select correct individuals. This means that what we usually do (minimization of the MSE
of the model) only weakly correlates with what we really need in comparison-based opti-
mizers (only the correct ranking of individuals). The problem can be partially solved if
the measure uses some rank-depended weighted error wi. However, appropriate weights
are usually unknown a priori.

[Jin, 2003] suggested to use the rank correlation coefficient [Spearman, 1904], given by

ρ(rank) = 1− 6
∑λ

i=1 d
2
i

λ(λ2 − 1)
, (3.49)
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as a measure for the monotonic relation between the ranks of two variables, where di
is the difference between the ranks of the i-th offspring (among λ) individual based on the
original fitness function and on the surrogate model. ρ(rank) = 1 (respectively, ρ(rank) =
−1) when the model predicts correct (respectively, inverse) ranking of individuals. Again,
weight coefficients can be defined to amplify the importance of better ranked individuals.

Rank-based quality indicators are invariant to rank-preserving transformations of
the objective function, therefore, look quite promising for comparison-based Evo-
lutionary Algorithms. However, they are rather unknown in the EC commu-
nity, with a few exceptions [Ulmer et al., 2004, Runarsson, 2006, Kern et al., 2006,
Ingimundardottir and Runarsson, 2011]. There is one simple reason for this: in most
surrogate-assisted Evolutionary Algorithms there is no control of the model quality and
the algorithm A uses the surrogate model f̂ without online checking whether the model
is good or not. This checking is usually done offline, such that the surrogate-assisted
algorithm A does not fail, and this is usually achieved by setting quite conservative surro-
gate model hyper-parameters. The surrogate model quality indicators will attract much
more attention when the comparison of different candidate surrogate models will become
a common part of the learning procedure (see Section 4.3.2).

3.3.1.2 Training and Test Set Selection

Training set selection procedure should answer the question of which training points best
represent the original function f to be used to build the optimal model f̂ . Test set selection
is responsible for identifying which set of test points is best suitable for the model quality
assessment.

Training Set Selection

There are three popular ways to select representative points for model learning:

1. Best Points Select ℓ points with the best fitness among all evaluated points seems
to be a reasonable approach for unimodal noise-less optimization problems. If f is
a noisy function, then this selection may become biased to noise-affected ”lucky”
points. If f is a multi-modal or noisy function, then the algorithm also may search
far away or at a different scale from the subspace where best points were observed,
therefore, f̂ will be learned for a subspace which is far away from the actual optimal
search subspace of A.

2. k-Nearest Neighbor Points One can suppose that the k-nearest neighbor points
(k = ℓ) to some chosen point m (e.g., mean of the mutation distribution in ESs)
best represent the actual search space and are good candidates for model learning.
The Euclidean or Mahalanobis distance can be chosen as well as any other suitable
similarity measure metric (see also clustering method for local models learning in
[Liu et al., 2009]). However, if f is a multi-modal function, it may happen that m is
located around a local optimum visited by A many generations ago, and many of ℓ
closest points to m may correspond to a small cluster of this local optimum, whose
very precise learning may be undesirable.
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3. Recently Evaluated Points One of the simplest strategy is to choose ℓ the most
recently evaluated points, which are very likely to be reasonably good on f and
relatively close to the actual search subspace of A. This approach works reasonably
well on noisy problems, but may be insufficiently ”greedy”, because it ”forgets”
promising individuals generated more than ℓ evaluations ago.

Optimal training and test set selection strategies depend on the surrogate modelling
technique used and the optimization algorithm A (see Section 4.3.3.2), and probably
should combine the described above approaches in some adaptive way.

Resampling Methods

Some approaches to model selection and validation such as resampling methods
[Kohavi, 1995, Queipo et al., 2005, Bischl et al., 2012] can be applied almost indepen-
dently on A.

Split sample validation / Holdout With split sample validation, the whole dataset
D of selected for model learning points is splitted into training set Dtraining and test set
Dtest. The size of the test set ℓtest = |Dtest| is usually smaller than the size of the training
set ℓ = |Dtraining|, but still should be representative enough to estimate the generalization
error and keep the confidence interval reasonably small. The test set is not used for model
learning, because it would lead to overfitting. This limits the amount of information
available for model learning and makes the estimate more biased. Another disadvantage
is that the generalization error estimate is very sensitive to a particular split of training
and test points.

Cross-validation In k-fold cross-validation [Stone, 1974] the dataset D is randomly
splitted into k mutually exclusive subsets (the folds) D1,D2,. . .,Dk. The cross-validation
process is repeated k times, each time i = 1, . . . , k, the model is trained and tested using
training set Di and test set D/Di, respectively. The cross-validation estimate of accuracy
is averaged over k estimates of each subset. In leave-one-out cross-validation, k = ℓ and the
smallest possible test set Di of only one test point (|Di = 1|) is considered. This procedure
provides a good statistical estimate of accuracy, but may become computationally very
expensive if D is large.

Bootstrap In contract to the cross-validation, where all subsets Di are mutually
exclusive, in bootstrap [Efron, 1979] the subsets are generated with replacement. Therefore,
the probability of any point being chosen after ℓ trials is (1/ℓ)ℓ ≈ e−1 ≈ 63.2% (for
large ℓ), thus, only 63.2 % of D will be presented in the training set Dtraining, while
the remaining points form the test set Dtest. The final estimation of the error can be
computed as the weighted sum of errors on the test and training sets. However, this still
leads to a biased estimation of the generalization error, since some points are presented
more than once in Dtraining. An improvement version .632 + bootstrap was proposed in
[Efron and Tibshirani, 1979], where the weights are corrected depending on a quantified
relative overfitting rate.

A comprehensible analysis of successes and failures of the bootstrap and other resam-
pling strategies is given in [Horowitz, 2001, Bickel et al., 1997], and specifically for Evolu-
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tionary Computation in [Tenne and Armfield, 2008, Bischl et al., 2012]. Resampling ap-
proaches, while being powerful tools for accurate model quality estimation, still have only
minor popularity in the EC community, mainly because of additional computations needed
to re-learn the model several times. We envision that resampling approaches will become
more relevant for complex multi-modal functions optimization and for surrogate-assisted
algorithms, which tend to sample new candidate solution from mixed distributions, and,
therefore, will need a careful estimation of the model error in different (disjoint) regions
of the search space.

3.3.1.3 Selection of Surrogate Models and Hyper-parameters Adaptation

To build a surrogate model f̂ of f for the surrogate-assisted optimization algorithm A , a
common approach is to choose a surrogate learning approach with suggested θ hyper-
parameters from the literature. This may become a difficult task in the context of
surrogate-assisted optimization, because the ideal f̂ depends on A, the set of possible
surrogate techniques to build this f̂ is quite large (see Section 3.1 and Figure 3.1), and,
finally, the suggested hyper-parameters are actually suggested for benchmark problems
and not for the real-world problem at hand. An obvious solution to this problem is to
consider multiple surrogates and get the best estimate of f . The two the most popular
ways to aggregate the information from all surrogates in evolutionary and non-evolutionary
optimization are the following [Viana and Haftka, 2008]:

1. Best Surrogate The idea to choose the best surrogate is obvious and probably
was born on the same day when two surrogate models were built with different
θ hyper-parameters of the same surrogate technique. Since the earliest approaches
[Zhang, 1993, Kohavi, 1995] the cross-validation has been intensively used for select-
ing surrogates. It is also a common practice in EC to build surrogate models using
different techniques and then choose the best one for exploitation, for state-of-the-art
approaches in this direction see [Viana, 2011].

2. Weighted Average Surrogate (AWS) [LeBlanc and Tibshirani, 1993] demon-
strated that combining the estimators with some regularization can be useful for
improving prediction performance. The weighted average surrogate f̂AWS(x) =∑k

i=1 f̂k(x) is a weighted aggregation of k surrogate models f̂i(x), where
∑k

i=1wi = 1.
The option ’best surrogate’ is also recovered if all weights but one are set to 0, and
the option ’average surrogate’ if all weights are equal. The averaging may guaran-
tee some robustness, but an adaptation of the weights is definitely a more general
and prospective strategy. A recent analysis of adaptive weights selection depending
on error correlation, prediction variance and cross validation error for PRS, RBF,
Kriging, GP, SVR surrogate models is given in [Acar and Rais-Rohani, 2009].

First papers on selection of surrogates were published many years before Evolutionary
Computation even first time touched this subject, in the early 1990s. However, in the 2000s
the EC community made a step further and many adaptive and self-adaptive approaches
have been proposed. [Zhou et al., 2007] shows that the combination of global and local
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surrogate models performs better together than independently. [Shi and Rasheed, 2008]

suggested to adaptively adjust the model complexity and the frequency of model usage
according to time spent and model accuracy. An illustrative example of advances in
surrogate model adaptation is the approach presented in [Gorissen et al., 2009], where
SVR, Kriging, ANN and Ensemble of surrogate models evolve together with their θ hyper-
parameters in a parallel Genetic Algorithm, and more successful surrogate models are
better represented in the population.

3.3.1.4 Strategies of Surrogate Model Exploitation

The key aspect of surrogate-assisted optimization is to get and exploit maximum informa-
tion from the surrogate model f̂ of f , and this is usually realized in one of the following
ways:

1. Pre-selection of promising solutions Pre-selection has become especially pop-
ular for Evolution Strategies [Emmerich et al., 2002, Ulmer et al., 2004], where λ
individuals are generated at each iteration. In pre-selection strategy there are two
popular options: i). generate λPre > λ individuals, then pre-select and evaluate only
λ′ = λ (usually) best individuals according to f̂ ; ii). generate λPre = λ individu-
als, pre-select and evaluate only λ′ < λ and use f̂ estimate for ranking the other
individuals. In both cases if f̂ well approximates f , the overall number of function
evaluations can be reduced thanks to a quicker (for the first case described above)
or comparable (the second case with smaller than λ evaluations per generation)
progress per generation toward the optimum of f .

2. Surrogate-informed operators All operators of Evolutionary Algorithms in prin-
ciple may benefit from knowing more information about f or at least its good ap-
proximation f̂ . Informed operators [Rasheed and Hirsh, 2000] such as crossover
[Anderson and Hsu, 1999] or mutation [Abboud and Schoenauer, 2002] provide the
capability of quickly moving generated individuals toward regions with improved
fitness.

3. Direct optimization of the surrogate model If f̂ is a reasonably good approx-
imation of f , then it can be used in lieu of f for optimization [Jin et al., 2002]. A
crucial point is to control the optimal time/number of generations that f̂ should be
used to obtain the maximum speedup and prevent the algorithm from divergence
when f̂ is imprecise.

The described above approaches are not that different from each other: the pre-
selection when λPre > λ can be viewed as a Monte-Carlo search with the budget of
λPre function evaluations, and the pre-selection is actually an informed operator. They
are also similar in the sense that in both cases a model quality based control should be
used to maximize the speedup and prevent divergence. In this thesis, we will use both the
pre-selection in Sections 4.2, 5.3 and direct optimization in Section 4.3.
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It should be noted that some surrogate models, such as Kriging, provide not only an
estimation of the fitness of a tested point, but also the level of uncertainty of this estima-
tion. There is a sub-field of optimization (see, e.g., Efficient Global Optimization (EGO)
algorithm in [Jones et al., 1998]), which focuses on the expected improvement maximiza-
tion E [max(f(x)− Y, 0)], where Y is a random variable that models the uncertainty of
the estimation of f(x).

3.3.2 Single-objective Case

In this Section, we will focus on state-of-the-art surrogate-assisted Evolution Strategies.

3.3.2.1 Surrogate-assisted Evolution Strategies

Probably the first surrogate-assisted (µ + λ)-ES and (µ, λ)-ES were proposed in
[Papadrakakis et al., 1998], where evaluations of an expensive structural optimization
problem were replaced by a hidden-layer ANN trained by back-propagation. The authors
suggested to re-learn the model at each iteration adding new training points randomly
drawn from a Gaussian distribution with the mean located in the center of the decision
space. They also reported that a speedup of a factor of 10 can nevertheless be obtained.

[Jin et al., 2001b] proposed individual-based and generation-based evolution control
strategies for surrogate-assisted search with CMA-ES. Individual-based strategy corre-
sponds to the pre-selection strategy, where random (random strategy) or best (best strat-
egy) controlled individuals may be evaluated on the expensive function. In generation-
based strategy the whole population will be evaluated on the expensive function for η
generations every κ generations, where η ≤ κ. The authors found that in both cases
about 50% of individuals should be evaluated in order to have a good final speedup, but
employed only the generation-based strategy, because they found it more suitable for par-
allel implementation. It is suggested to set the fraction of generations η

κ that f̂ is optimized

to be proportional to E(k)
Emax

, where E(k) and Emax are current and maximum model errors,

respectively 1. The cost function of the ANN-based surrogate is defined by

E =
1

ℓ

ℓ∑

i=1

p(xi)(f(xi)− f̂ANN (xi))
2, (3.50)

where p(xi) is the weight for a sample xi, calculated using the covariance matrix C
of CMA-ES:

p(xi) = exp(−1

2
(xi − q)TC−1(xi − q)), (3.51)

where q is an individual in the current population to be refereed. To reduce the
complexity of training set selection, all individuals with a weight smaller than a given
threshold are discarded in learning.

1We found that we actually reinvented this simple idea in our surrogate-assisted CMA-ES, described in
Section 4.3.1.3.
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The experimental validation on 20-dimensional Ackley and Rosenbrock functions as
well as on a real-world problem with computational fluid dynamics (CFD) simulations
showed that the generation-based surrogate-assisted CMA-ES outperforms the original
CMA-ES and that the weighted MSE estimation (3.50) is preferred to the original MSE
estimation (3.48).

[Emmerich et al., 2002] studied Kriging model based pre-selection strategy within
(µ, κ, λ)-ES [Schwefel, 1993] with µ = 15, λ = 100 and κ = 5, where the individuals
that exceed the age of κ = 5 generations are eliminated from the selection procedure. The
authors suggested to evaluate the best λ′ = 10 individuals w.r.t. a criterion based on both
the estimated value f̂(x) and the estimated local standard deviation σ̂(x) of the prediction
RBF model:

Sc(x) = f̂(x)− ασ̂(x), (3.52)

where α defines the selection trade-off between the most promising solutions with α = 0
and promising solutions in still unexplored search areas with α > 0. The experimental
validation of the proposed surrogate-assisted algorithm showed that on unimodal functions
the exploration (α = 1) does not harm, but leads to a better convergence on multi-modal
functions than f̂ -based selection (α = 0).

[Ulmer et al., 2003b] studied RBF networks based pre-selection strategy for (2,8)-ES
with λPre = 30 and (1+1)-ES with λPre = 10 and concluded that the proposed meta-
model assisted ES (MAES) performs better, especially on unimodal functions. Later
[Ulmer et al., 2003a] analyzed GP based pre-selection strategy similar to the one of
[Emmerich et al., 2002] for CMA-ES, where expected improvement was chosen as a se-
lection criterion. The results confirmed the observations of [Emmerich et al., 2002] that
on multi-modal functions the expected improvement-based pre-selection should be pre-
ferred to ”greedy” f̂ -based pre-selection. [Ulmer et al., 2004] further studied SVR-based
pre-selection strategy for (µ, λ) Main Vector Adaptation (MVA [Poland and Zell, 2001], a
CMA-ES variant with linear time and space complexity). They proposed to adjust λPre,
depending on a model quality measure similar to the one proposed by [Jin, 2003] and de-
fined as summed rank of all correctly selected individuals. At each generation t the actual
model quality Qt is compared to a quality Qrand measured for the random model. The
update procedure is the following:

λt+1
Pre =

{
λtP re +

Qmax−Qt

Qmax−Qrand δλPre
if Qt > Qrand

λtP re − Qrand−Qt

Qrand δλPre
otherwise,

(3.53)

where Qmax is the maximum possible quality. Experimental results of the proposed
C-MAES on unimodal and multi-modal functions confirmed that the adaptation works
well even in dynamically changing noisy environment, where the speedup up to a factor
of 2 also can be achieved.

[Runarsson, 2004] found that it is always desirable to evaluate on f at least one best
point among λ evaluated on f̂ , and proposed approximate ranking procedure which suggests
to evaluate on f several additional points only if the model changes its ranking prediction
of λ points (see the next Section for details).
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[Poland, 2004] proposed an ES-like algorithm with quadratic meta-models, which
showed the best results in the literature for an Evolutionary Algorithm on popular Rosen-
brock benchmark problem, where it outperformed CMA-ES by a factor of 4. Unfor-
tunately, the algorithm is not invariant to rank-preserving transformation and its per-
formance probably will degrade significantly if f is scaled differently (also true for all
regression to value based surrogate-assisted optimizers).

[Buche et al., 2005] proposed Gaussian Process Optimization Procedure (GPOP)
which suggests to repeat the following procedure. First, build a GP based model and
directly optimize Eq. (3.52) by CMA-ES. When a local optimum for a given α is found,
it can be evaluated on f and added to the training set. The training set consists of the
union of the NC closest points to the current best solution and the NR most recently eval-
uated points. The search space for each local search is constrained by the hyper-rectangle
around the current best solution. The GPOP outperforms CMA-ES on Sphere and Schwe-
fel functions, but already for Rosenbrock the speedup is less than 2.0 for n = 8, 16 and less
than 0.4 for n = 32. On multi-modal Rastrigin function GPOP is always outperformed
by CMA-ES.

[Runarsson, 2006] first proposed to use ordinal regression and Ranking SVM as sur-
rogate models in Evolutionary Computation. The author studied the performance of
Ranking SVM based CMA-ES within the approximate ranking procedure and found that
the surrogate-assisted version outperforms the original CMA-ES for n ≤ 5, but shows no
improvements for n > 5. The latter can be explained by the use of very small training
set of only 60 training points. However, this paper has played an important role in the
development of comparison-based surrogates that we will propose in Chapter 4.

[Hoffmann and Holemann, 2006] suggested to keep λPre fixed, but adapt λ using the
following formula, similar to (3.53):

λt+1 =

{
max(λt − Qmax−Qt

Qrand δλ, µ) if Qt > Qrand

min(λt + Qmax−Qt

Qmax−Qrand δλ, λPre) otherwise,
(3.54)

Thus, the better the model - the smaller λt+1, and vice versa. The results of the
proposed λ-controlled surrogate-assisted λ-CMA-ES are similar, but not directly compa-
rable to [Ulmer et al., 2004], where MVA was used as a baseline algorithm. A compari-
son in [Hebbel and Nisticò, 2008] confirmed that λ-CMA-ES and C-MAES have compa-
rable performance on a robot’s walking optimization problem. For a detailed analysis
of different model quality indicators used to adapt λ the interested reader is refereed to
[Gräning et al., 2007].

3.3.2.2 The Local Meta-model CMA-ES (lmm-CMA-ES)

The local meta-model CMA-ES was first proposed by [Kern et al., 2006] and later ex-
tended for large populations by [Bouzarkouna et al., 2010] and for partially-separable
functions by [Bouzarkouna et al., 2011]. It is one of the most carefully designed surrogate-
assisted CMA-ES algorithms.

Locally Weighted Regression In lmm-CMA-ES the locally weighted regression
(LWR, [Atkeson et al., 1997]) surrogate model f̂ is build around each generated offspring
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individual q ∈ Rn using a set of training points (xi, yi), i = 1, . . . , ℓ. The model error A is
minimized w.r.t. the parameters β of the local model (f̂ = x̃T · β) at query point q and
can be written as

A(q) =

ℓ∑

i=1

[
(f̂(xi,β)− yi)2K

(
d(xi, q)

h

)]
, (3.55)

whereK(.) is the kernel function and d(xi, q) is the distance between data points xi and
q, and h is the local bandwidth. [Kern et al., 2006] investigated surrogates with different
model complexity and reported that the best performance on test problems is achieved
with the full quadratic surrogate models defined as

f̂(x,β) = βT (x21, . . . , x
2
n, x1x2, . . . , xn−1xn, x1, . . . , xn, 1)

T , (3.56)

where β∈ R
n(n+3)

2
+1 . The weights matrix W of Eq. (3.2) was set by [Kern et al., 2006]

to diag(
√
K(d(xi, q)/h)) ∈ Rℓ×ℓ. For the calculation of d(xj , q) [Kern et al., 2006] pro-

posed to use the covariance matrix C adapted by CMA-ES to take into account corre-
lations between the variables and compute the Mahalanobis distance:

d(xj, q) =
√

(xj − q)TC−1(xj − q) (3.57)

The kernel K is chosen to be bi-quadratic:

K(ζ) =

{
(1− ζ)2 if ζ < 1,

0 otherwise
(3.58)

The bandwidth h is defined by the distance to the k-th nearest neighbor point to q,
where k = n(n+ 3) + 2 was chosen after some experimental analysis on Sphere, Ellipsoid
and Rosenbrock functions.

Approximate Ranking Procedure In lmm-CMA-ES the surrogate model exploita-
tion is controlled by the approximate ranking procedure [Runarsson, 2004], which suggests
to evaluate with f only a fraction of λ new individuals if the ranking of some of λ individ-
uals on surrogate models of the current and previous generations remains unchanged.
In lmm-CMA-ES the original fitness evaluation procedure of CMA-ES is replaced by
the following procedure, where initially all nb = λ individuals are evaluated on f , then
the number of evaluated individuals per iteration is increased (starting with ninit) by
nb = max

(
1,
⌊

λ
10

⌋)
as surrogate models show poor quality of prediction:

1. build λ models f̂i(x) for all i = 1, . . . , λ individuals of the current population
(xi, f(xi))i≤λ.

2. rank individuals according to their approximated value f̂(x): xi:λnic=0
.

3. evaluate the best ninit individuals with the true objective function f and add their
evaluations to the training set.
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4. for nic = 1, . . . ,
⌊
λ−ninit

nb

⌋
do

(a) build λ models f̂i(x) for all i = 1, . . . , λ individuals of the current population
(xi, f(xi))i≤λ.

(b) rank individuals according to their approximated value f̂i(x): xi:λnic
.

(c-1) if (xi:λnic
= xi:λnic−1

, for i = 1, . . . , λ) // ranking of the λ best is the same
then the meta-model is accepted, GO TO STEP 5.

(c-2) if ((ninit + nicnb <
λ
4 ) and (xi:λnic

= xi:λnic−1
, for i = 1, . . . , µ)) // less than

one-fourth of the population is evaluated and ranking of the µ best is the same
or
((ninit + nicnb ≥ λ

4 ) and (x1:λnic
= x1:λnic−1

)) // at least one-fourth of the
population is evaluated and the best individual is the same
then the meta-model is accepted, GO TO STEP 5.

(d) evaluate the nb best unevaluated individuals with the true objective function f
and add their evaluations to the training set.

5. if (nic > 2) then ninit = min(ninit + nb, λ− nb).
else if (nic < 2) then ninit = max(nb, ninit − nb).

In the original lmm-CMA-ES [Kern et al., 2006], the model is accepted if the surrogate-
based ranking of all λ individuals remains unchanged after adding new nb points to the
training set, this model acceptance criterion corresponds to line 4.(c-1) of the procedure
described above. A less conservative model acceptance criterion described in line 4.(c-2)
was proposed in [Bouzarkouna et al., 2010], the corresponding algorithm is called nlmm-
CMA-ES. When λ is large it becomes quite difficult to avoid small perturbations of ranking
and keep it exactly the same after adding new batch of points. For this case if more than
one-fourth of the population is already evaluated the new criterion suggests to accept the
model if the ranking of the best individual does not change.

Performance of lmm-CMA-ES and nlmm-CMA-ES Performance of lmm-
CMA-ES and different versions of nlmm-CMA-ES was tested on Sphere, Schwefel,
Rosenbrock and Rastrigin functions in dimensions 2, 4, 8 and 16 [Kern et al., 2006,
Bouzarkouna et al., 2011]. Both algorithms show a speedup between a factor of 1.1 and
6.7 (usually between 2 and 4) in comparison with the original CMA-ES. In contrast to the
original lmm-CMA-ES, nlmm-CMA-ES is able to better keep this speedup for larger popu-
lations than the default λdefault = 4+3 ⌊log(n)⌋. An important drawback of the algorithm
was discussed already in [Kern et al., 2006] and further studied in [Kern et al., 2007]: the
time complexity of the original algorithm scales with O(n6), limiting the range of ap-
plication to problems with n . 15. Several alternative approaches were proposed in
[Kern et al., 2007] to reduce the time complexity to O(n4), however, the observed cost
in terms of number of floating points operations per saved function evaluation still scales
with O(n5) [Kern et al., 2007].

Besides from the time complexity of the algorithm (relevant for both versions), lmm-
CMA-ES has two other important drawbacks: i). the evaluation of individuals cannot be
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efficiently parallelized; ii). the algorithm loses the invariance of the original CMA-ES w.r.t.
rank-preserving transformation of f . Suppose that there are λdefault CPUs and the evalua-
tion of λdefault individuals on the expensive f runs in parallel on each CPU independently,
if the evaluations are not heterogeneous (see [Yagoubi and Schoenauer, 2012] for an anal-
ysis of heterogeneous case), then there are might be a speedup of the original CMA-ES by
a factor of λ. In lmm-CMA-ES all individuals are evaluated in the batch of maximum size
nb = ⌊λ/10⌋, i.e., the evaluation of λ individuals will take λ

nb
= 10 times more time. Given

that the speedup of lmm-CMA-ES is usually smaller than 10 in this scenario (in number of
function evaluations), we will actually lose the time with comparison to the original CMA-
ES. Therefore, the use of the nlmm-CMA-ES in the scenario of parallel evaluations does not
make much sense for both default and large population sizes. The drawback of the lmm-
CMA-ES is that it uses the metric regression (regression to value) in its quadratic meta-
model, therefore scaling of f will change the meta-model and the quality of the approxima-
tion. This effect is observed for the Schwefel function fSchwefel(x) =

∑n
i=1(

∑i
j=1 xj)

2 and

its scaled variant fSchwefel1/4 = (fSchwefel(x))
1/4, where the speedups for nlmm-CMA-

ES in dimension 4 is 5.4 and 2.9, respectively [Bouzarkouna et al., 2010]. We suppose
that the loss of invariance of CMA-ES w.r.t. rank-preserving transformation of f may
lead to no speedup at all of lmm-CMA-ES on the same test problem under certain rank-
preserving transformations of f . It also should be noted that all original problems in
[Kern et al., 2006, Bouzarkouna et al., 2010] have local or global quadratic landscape, and
this is desirable property for quadratic meta-models.

3.3.3 Multi-objective Case

Surrogate-assisted multi-objective evolutionary optimization is a relativity new field, which
was born in the early 2000s and the majority of the papers were published during the last
three-four years.

One of the first attempts to extend the surrogate-assisted evolutionary search to the
multi-objective case was made by [Yang et al., 2002], who proposed to build Kriging-based
surrogates f̂i for each objective fi and enrich the training set using few points (usually only
two or three) from a set of non-dominated points found after multi-objective optimization
(and niching) of surrogates f̂i. [Farina, 2002] proposed a very similar approach with ANN-
based surrogate models (see also ANN-NSGA-II [Nain and Deb, 2003]), where in order to
increase the diversity of the training set, a point from the most unexplored area of the
search space is evaluated (to find such point is an additional single-objective optimization
problem). The concept of the direct optimization of surrogates f̂i is quite trivial, but
seems to be very reasonable if fi can be approximated efficiently and problem dimension
is relatively small.

Later [Voutchkov and Keane, 2006] studied the same approach and compared differ-
ent types of Kriging, RBF and Polynomial models. The authors reported very interesting
results: on 10-dimensional ZDT2 and ZDT3 functions the proposed surrogate-assisted
algorithms using about 100 function evaluations find a Pareto front approximation com-
parable to the one found by NSGA-II after about 10000 evaluations (our indirect estimate).
This is probably one of the most important results in the field one should keep in mind,
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because it shows ”the real” complexity of these ZDT functions.

Instead of learningm different f̂i surrogate models, another approach is to learn and ex-
ploit only one global modal f̂g, which will aggregate the information about f . In ParEGO
[Knowles, 2006], an extension of EGO algorithm for Pareto optimization, at each iteration
the algorithm builds a randomly-weighted aggregated model f̂g. Then, the best solution

found after optimization of f̂g for a fixed number of generations is estimated and added

to the training set. In contrast to the direct optimization of f̂i surrogates that results to a
set of non-dominated solutions, in ParEGO only one solution is obtained at each iteration,
and, therefore, we should be able to properly formulate a priori our preferences (see the
discussion of preference-based and ideal principles in Section 2.4.2).

[Emmerich and Naujoks, 2004] proposed CR-NSGA-II (NSGA-II with multiple
Kriging-based surrogate models), where at each iteration only λ′ the most promising
points are evaluated on fi (e.g., not dominated by µ parents) out of λ offspring evalu-
ated on f̂i. [Emmerich et al., 2006a] formalized the notion of expected improvement in
multi-objective optimization in terms of hypervolume indicator, such that pre-selection
is seeking to maximize contributing hypervolume minimizing Eq. (3.52), where α con-
trols the trade-off between exploration and exploitation. [Ponweiser et al., 2008] followed
the idea of [Emmerich et al., 2006a] to calculate expected hypervolume contribution of a
potential solution and proposed the hypervolume selection-based EGO (SMS-EGO). SMS-
EGO outperforms Par-EGO [Ponweiser et al., 2008] and is comparable to MOEA/D-EGO
[Zhang et al., 2010], which extends MOEA/D to multi-objective optimization and is based
on a simple pre-selection with some niching in the decision space.

To summarize, both approaches of building individual f̂i and global f̂g surrogates are
popular, there is, however, a trend to build individual surrogates for each objective and
optimize or pre-select solutions w.r.t. expected hypervolume contribution improvement.
However, since this approach usually assumes sequential evaluation of solutions, it might
be less promising in the scenario with parallel evaluations of solutions.

3.4 Discussion

Most of the surrogate modeling methods surveyed in this Chapter build a surrogate model
f̂ of the actual expensive function f which minimizes the mean square error of the pre-
diction of exact values f(x) of training points. However, there are some disadvantages of
the use of MSE as a loss function for surrogate model learning and assessment:

1. MSE is only weakly correlated with the ability to correctly select best/prospective
individuals [Jin, 2003], while the correct selection/ranking of individuals is the only
thing that is needed from f in comparison-based evolutionary optimizers.

2. MSE is not invariant w.r.t. rank-preserving transformations of f , and hence so are
not all MSE-based surrogate-assisted optimization algorithms.

3. MSE is not interpretable for a black-box f and can be used heavily as a quality
indicator in surrogate model control procedures.
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The disadvantages described above are also relevant for all quality indicators which use
exact values of f and not only the information about comparison relations between the
points, which is actually sufficient to build surrogate model. In this Chapter, we presented
the Ranking SVM approach which learns the ranking of training points and predicts the
score of test points. In contrast to PR, ANN, RBF, GP, Ranking SVM is invariant to
rank-preserving transformations of f , that we believe (and will demonstrate) is the key
source of robustness.

Another important aspect of surrogate modeling is the computational complexity of
model learning and testing. GP, RBF and PR models scale at least with O(ℓ3) and/or
O(n3), and this limits their application to low-dimensional problems. ANNs are cheaper to
compute, but the model quality heavily depends on the ANN’s structure and the learning
itself is a multi-modal problem. In contrast to ANNs, the learning of Ranking SVM model
is a convex quadratic programming problem, whose optimum is unique and can be found
by any quadratic programming solver. We will also show in Section 4.1 that the learning
of Ranking SVM is much cheaper and typically scales with O(ℓ2).

The choice of ”appropriate” hyper-parameters (e.g., number of training points) for
surrogate learning procedure is the key problem of efficient surrogate-assisted optimization.
It would be desirable to have a way to automatically detect optimal hyper-parameters
which are, indeed, algorithm- and problem-dependent. In Section 4.3, we will show how to
automatically tune/optimize surrogate model hyper-parameters during the optimization of
the expensive function, thus, significantly reducing the problem of optimal model learning
and hyper-parameters selection.
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Chapter 4

Single-Objective Surrogate-Assisted
CMA-ES

From the practical point of view, it is so urgently desirable to obtain
the smallest probable error with a given number of subjects, that the
method of rank must often have the preference even when we are
dealing with two series of measurements properly comparable with
one another.
Charles Spearman, 1904, The Proof and Measurement of Associa-
tion between Two Things.

In this Chapter, we demonstrate the advantages of the use of ordinal regression over
metric regression in surrogate-assisted optimization, and CMA-ES in particular. In Sec-
tion 4.1, we analyze in detail the learning procedure of Ranking SVM, discuss the question
of the choice of Kernel function and demonstrate comparative results of Ranking SVM
and SVR. In Section 4.2, we present the surrogate-assisted rank-based CMA-ES (ACM-
ES) algorithm, published in [Loshchilov et al., 2010c], which is based on pre-selection of
promising offspring on f̂ . In Section 4.3, we discuss the advantages and drawbacks of the
original ACM-ES and propose the self-adaptive surrogate-assisted CMA-ES (s∗ACM-ES),
published in [Loshchilov et al., 2012e, Loshchilov et al., 2012b, Loshchilov et al., 2012c].
The algorithm relies on iterative optimization of f for one generation and f̂ for n̂ genera-
tions, where n̂ depends on the prediction quality of f̂ . We also show that hyper-parameters
α used to build f̂ can be adapted during the optimization, such that the user is only re-
quired to define the range of these parameters. The algorithm is experimentally validated
on BBOB benchmark problems, where it shows best results for ill-conditioned problems,
outperforming such algorithms as IPOP-aCMA-ES, BFGS and NEWUOA. In Section 4.4,
we conclude the Chapter with a discussion and some perspectives for further research.

4.1 Ordinal Regression

The problem of predicting variables of ordinal scale is called ordinal regression or learn-
ing to rank, even though the latter is a broader term (see, e.g., [Li, 2011]). Ordinal
regression can be viewed as a special case of preference learning, where the statement
x is preferred to y can be simply expressed as an inequality relation f(x) > f(y)
[Chu and Ghahramani, 2005b]. The goal of preference learning is to learn the underlying
ordering f̂ over the instances from these pairwise preference relations. Preference learn-
ing may deal with contradicting preferences, while in ordinal regression the transitivity is
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usually assumed. We will analyze preference learning in a context of surrogate-assisted
multi-objective optimization in Section 5.2. In this Section, we will investigate ordinal
regression within Ranking SVM, proposed by [Herbrich et al., 1999] and popularized by
[Joachims, 2005, Chu and Keerthi, 2005].

4.1.1 Learning to Rank using Ranking SVM

One can rewrite the primal form of Ranking SVM Eq. (3.44) in a more general form with
individual constraint violation weights Ci and desirable difference ǫi on f̂ for each pair of
preference constraints as follows:

Minimize{w,ξ}
1

2
||w||2 +

|P|∑

i=1

Ciξi (4.1)

subject to

{
〈w, xa〉 − 〈w, xb〉 ≥ ǫi − ξi, i = 1, . . . , |P|; (a, b) ← Pi
ξi ≥ 0, i = 1, . . . , |P|, (4.2)

where P denote the set of pairs (a, b) such that xa is preferred to xb.
Then, the dual form of Ranking SVM will have the following form:

Maximize{α}LD =
∑|P|

i=1 αiǫi − 1
2

∑|P|
i=1

∑|P|
j=1 αiαj dKij

subject to 0 ≤ αi ≤ Ci i = 1, . . . , |P|,
(4.3)

where dKij = K(xa, xb)−K(xa, xd)−K(xc, xb)+K(xc, xd) for two pairs of constraints
Pi = (a, b) and Pj = (c, d).

One can solve Eq. (4.3) using Sequential Minimal Optimization (SMO) method
proposed in [Platt, 1998] for classification and later extended for Regression SVM
[Shevade et al., 2000]. SMO suggests to sequentially optimize Eq. (4.3) by tunning min-
imum number of α parameters at a time (usually one or two). Then, Eq. (4.3) can be
rewritten as a maximization w.r.t. some selected Lagrangian multiplier αx as follows:

Maximize{αx}LD = αxǫx − αx
∑

∀i 6=x∈P αidKxi − 1
2α

2
xdKxx + LDconstr

subject to 0 ≤ αx ≤ Cx,
(4.4)

where LDconst is the part of Lagrangian which is independent on αx. If change αx to
α∗
x = αx +∆α∗

x, then Eq. (4.4) can be rewritten as follows:

Maximize{∆α∗
x}∆LD = ∆α∗

xǫx −∆α∗
x

∑|P|
i=1 αidKxi − 1

2∆α
∗2
xdKxx

subject to 0 ≤ αx +∆α∗
x ≤ Cx,

(4.5)

At the stationary point of the objective function (4.5) we have

∆α∗
x =

ǫx −
∑|P|

i=1 αidKxi

dKxx
, (4.6)

where ǫx will be set to 1 for all experiments in this Chapter.
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For the sake of completeness and to demonstrate the simplicity of the learning to rank
approach, we present an efficient implementation of SMO for Ranking SVM in Algorithm
4.1. To reduce the computational complexity we pre-compute dK in lines 2-7, a temporary
vector ∆α∗

i , i = 1, . . . , |P| and matrix DivdKij , i, j = 1, . . . , |P| in lines 12 and 14, respec-
tively. The initial values of α parameters are set to constraint violation weights C in line 9,
any other non-negative initial α would lead to the optimum, but probably with a smaller
convergence rate. For niter iterations (lines 17-28) we select a Lagrangian multiplier αix

(line 18) and update it (line 28) using Eq. (4.6) to maximize the Lagrangian ∆L (line
23). New value αnew should be checked to satisfy 0 ≤ αnew ≤ Cix (line 21), then for any
non-zero ∆α∗

ix
we always have ∆L > 01. The computational complexity of the algorithm

scales with O(niternalpha), where niter should be chosen in order of 1000nalpha (see Section
4.1.2) and nalpha will be set to ℓ− 1 for all experiments in this Chapter. The computation
of Kernel matrix K ∈ Rℓ×ℓ scales with O(nℓ2), i.e., O(n3) if ℓ = n, but it usually has 10-
100 times smaller constant factor than the one of the SMO optimization procedure. The
memory complexity scales with O(ℓ2), limiting the use of non-linear Kernels to ℓ ≤ 10000
on ordinary computers.

The simplest strategy to identify αix with the largest potential increase of ∆L is to
compute ∆L for all αix . This allows to decrease the number of updates of ∆α∗ (lines 26),
but the procedure itself is linear in ℓ, so there is a substantial gain in time only on first
iterations of the algorithm before the distribution of improvements of Lagrangian become
almost uniform for all αix . We tried to apply gradient-based methods to optimize the dual
form whose gradient information is available, but found no gains in terms of time. Finally,
we use the simplest baseline procedure and iteratively choose all αix (line 18). We also
found that random permutation of indexes of α does not lead to a faster convergence.

In a machine learning context, Quadratic Programming (QP) problems such as (4.3)
are usually optimized up to a given accuracy ǫQP . In this thesis, we adopt a different
stopping criterion based on number of iterations niter because in the context of surrogate-
assisted optimization we need to control the computational time spent on surrogate model
learning, as surrogate-assisted optimization involves many steps of surrogate learning.
As the number niter of iterations needed to reach precision ǫQP varies depending on the
difficulty of the underlying QP, which itself varies along the search, we opted for specifying
the number niter of iterations (directly visible in the computational cost) rather than ǫQP

(since we cannot bound a priori niter needed to reach an accuracy ǫQP ). Since our way of
defining the stopping criterion is not common in Machine Learning, we present an analysis
of niter-based stopping criterion and its comparison with ǫQP -based stopping criterion in
Section 4.3.3.10.

1 In an early version of the manuscript, the formula in line 23 was incorrectly given as ∆L ←

∆αdKixix (∆α∗
ix − 0.50, 0.58, 0∆α + 1). The term ”+1” was introduced by a mistake both in the al-

gorithm description and the source code, that led to a loss of perfomance of the learning algorithm in
order of 1% in terms of time and number of iterations of SMO (while, the factor is problem-dependent),
since the algorithm did not pass ”∆L > 0” when necessary and several iterations among niter were lost.
Thus, only about 0.99niter were used instead of the declared 1.00niter . No significant difference of model
quality is observed between the original and the corrected versions. However, the results presented in this
Chapter are given for the original version except for Section 4.3.3.10
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Chapter 4. Single-Objective Surrogate-Assisted CMA-ES

Algorithm 4.1: Rank SVM Dual problem optimization

1: given training points xi, i = 1, . . . , ℓ; Kernel matrix K ∈ Rℓ×ℓ; pool of constraints P;
nalpha = |P|; C ∈ Rnalpha; niter

2: for i = 1 . . . nalpha do
3: for j = 1 . . . nalpha do
4: (a, b)← Pi; (c, d)← Pj
5: dKij = K(xa, xb)−K(xa, xd)−K(xc, xb) +K(xc, xd)
6: end for
7: end for
8: for i = 1 . . . nalpha do
9: αi ← Ci

10: end for
11: for i = 1 . . . nalpha do

12: ∆α∗
i ←

1−∑nalpha
j=1 αjdKij

dKii

13: for j = 1 . . . nalpha do

14: DivdKij ← dKij

dKjj

15: end for
16: end for
17: for i = 1 . . . niter do
18: ix ← i mod (nalpha + 1)
19: αold ← αix

20: αnew ← αold +∆α∗
ix

21: αnew ← max(min(αnew, Cix), 0)
22: ∆α← αnew − αold

23: ∆L← ∆αdKixix(∆α
∗
ix − 0.5∆α)

24: if ∆L > 0 then
25: for j = 1 . . . nalpha do
26: ∆α∗

j ← ∆α∗
j −∆αDivdKixj

27: end for
28: αi ← αnew

29: end if
30: end for
31: output: optimal α

4.1.2 Choice of Kernel Function

Performance of SVM algorithms may be significantly affected by a choice of kernel function.
The most commonly used kernels are RBF kernel Eq. (3.31), Linear kernel defined as

KLinear(xi,xj) = xixj , (4.7)
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4.1 Ordinal Regression

Figure 4.1: Examples of non-linear SVM classification using (Left) Polynomial kernel of
degree 2 [Ben-Hur et al.,2008] and (Right) RBF kernel.

and inhomogeneous Polynomial kernel defined as

KinPoly(xi,xj) = (xixj + c)d, (4.8)

where c > 0 and d is polynomial degree (for difference of inhomogeneous and homoge-
neous (c = 0) kernels see [Scholkopf et al., 1999]).

Polynomial kernels allow to solve non-linear classification (see Figure 4.1-Left) and
regression problems with a decision boundary, whose flexibility is growing with d. The
flexibility of RBF kernels allows to solve even so non-linear problems as the one shown in
Figure 4.1-Right.

To choose an ”appropriate” kernel for Ranking SVM we perform experiments on Sphere
fSphere(x) =

∑n
i=1 x

2
i and Rosenbrock fRosen(x) =

∑n−1
i=1 (100.(x

2
i − xi+1)

2 + (xi − 1)2)

functions. To build a Ranking SVM based model f̂ we first sort ℓ training points in
ascending order w.r.t. chosen f and fill a pool of ℓ− 1 constraints P such that each point
xi is preferred to points xi+1 for i = 1, . . . , ℓ− 1. For RBF kernel we set to σ = csigmaσx,
where σx is the average distance between training points. The trade-off constant Ci was
set to 10Cbase for i = 1, . . . , ℓ − 1. When the model is build after SMO optimization as
described in the previous Section, we measure model quality on ℓtest = |Λ| points ordered
after f as follows:

Err(f̂) =
2

|Λ|(|Λ| − 1)

|Λ|−1∑

i=1

|Λ|∑

j=i+1

11f̂ ,i,j (4.9)

where 11f̂ ,i,j holds true iff f̂ violates the ordering constraint on pair (i, j).

In order to investigate the performance of Ranking SVM on different learning problems
and for different kernel functions, we set csigma and Cbase to the values which lead to the

best results of Err(f̂) observed on test points for different settings of csigma and Cbase. For
each pair of values csigma and Cbase, the training set was filled using 100 (respectively, 250)
training points randomly uniformly drawn from [−2, 2]n and evaluated on 10-dimensional
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Figure 4.2: Average surrogate model error in (Cbase, csigma)-space (respectively, (Cbase,
c)-space) measured in 10 runs of Ranking SVM with RBF kernel (respectively, Polynomial
kernel with degree 2) on (Left) Sphere and (Right) Rosenbrock functions in 10-D after
1000ℓ iterations of the SMO algorithm. The observed best pair of hyper-parameters is
denoted as ’*’.

Sphere (respectively, Rosenbrock) function. The test set was filled using ℓtest = 1000 test
points from the same region. The 31 values of Cbase (respectively, csigma) are uniformly
taken from [−10, 30] (respectively, [−5, 5]). The number of iterations of SMO niter was set
to 1000ℓ (see Section 4.3.3.10 for a discussion).

Figure 4.2 shows the (Cbase, csigma)-space of Ranking SVM hyper-parameters for 10-
dimensional Sphere and Rosenbrock functions. Indeed, the optimal hyper-parameters
(with lowest Err(f̂) values) are different for these problems. A basin (a region where
Err(f̂) is already small and tends to decrease slower) in (Cbase, csigma)-space of a rela-
tively good performance is observed for both problems. As a simple estimator of optimal
C∗
base and c∗sigma, we originally tried to compute the mean/median of 1% (i.e., 9 out of
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Figure 4.3: Average surrogate model error measured in 20 runs of Ranking SVM with dif-
ferent kernels on (Left) Sphere and (Right) Rosenbrock functions in 10-D after kiter1000ℓ
iterations of the SMO algorithm.

31×31=961) the best observed pairs of Cbase and csigma. While this kind of averaging

might be reasonable given that the estimations of Err(f̂) are noisy, it also might be very
harmful when Err(f̂) in (Cbase, csigma)-space is multi-modal: the averaging of points from
two good clusters may produce a point which is worse than the points of both clusters.
The estimation of the global optimum of noisy multi-modal functions itself is an open
scientific problem. Therefore, for the sake of simplicity, in this Section, the estimate of op-
timal hyper-parameters is set to the best pair of hyper-parameters C∗

base, c
∗
sigma, observed

in 31×31=961 experiments. The estimated C∗
base = 6 and c∗sigma = 0.4 (respectively,

C∗
base = 26 and c∗sigma = −0.2667) for 10-dimensional Sphere function with 100 training

points (respectively, Rosenbrock function with 250 training points).

For Polynomial kernel-based Ranking SVM a similar offline tuning procedure is ap-
plied, where instead of csigma the kernel parameter c (see Eq. 4.8) is varied in the range
[10−5, 105]. The estimated optimal values of C∗

base and c∗ for Polynomial kernel-based
Ranking SVM (see Figure 4.2) are used to plot the results shown in Figure 4.3 (see also
Appendix A for several demonstrations of the (Cbase, c)-space). The kernel matrix is
additionally normalized [Graf and Borer, 2001] such that K̃ij = Kij/

√
KiiKjj (note that

RBF-based kernel matrix is normalized by definition since Kii = 1).

Figure 4.3 shows the average model error Err(f̂) estimated on 10-dimensional
Sphere and Rosenbrock functions for 20 runs of Ranking SVM with different ker-
nels: RBF (’RankSVM+RBF’), Linear (’RankSVM+Linear’), Polynomial with d = 2
(’RankSVM+Poly2’), Polynomial with d = 3 (’RankSVM+Poly3’), etc. For RBF kernel-
based (respectively, Polynomial kernel-based) Ranking SVM the estimated C∗

base and
c∗sigma (respectively, C∗

base and c
∗) values are used. It should be noted that these values are

estimated for a given SMO stopping criterion of niter = kiter1000ℓ iterations individually
for each kiter = 0.01, 0.1, 1, 10, and Figure 4.3 investigates a dependency of Err(f̂) on kiter
for different kernel functions.
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Ranking SVM with Linear kernel has Err(f̂) slightly below 0.5, where Err(f̂) can be
interpreted as the fraction of incorrectly predicted comparison relations. A random 50%
prediction (Err(f̂) = 0.5) is due to the fact that the functions are not linear. Quadratic
Sphere function has probably the most suitable topography for Polynomial kernel with
degree 2, so its good results are not surprising. Despite implicitly defined high degree
of non-linearity, Polynomial kernels of higher degree also catch the topography of Sphere
function, but likely due to a relatively successful offline parameter tuning (see Figure 1 in
Appendix A). On Rosenbrock function, on the contrary, the degree 2 is insufficient and
higher degree of non-linearity (d > 2) is needed to catch the ”banana” topography of
this function. Ranking SVM with RBF kernel and Polynomial kernel with degree 10 and
30 show good results on both functions. While the computational complexity of model
learning is growing linearly with kiter, the decrease of model error Err(f̂) usually becomes
slower for kiter > 1 on these particular problems. In some cases, Err(f̂) even increases
with kiter (see, e.g., ’RankSVM+Poly3’ on 10-dimensional Sphere function). This might
be due to one or a combination of the following effects:� A larger number of iterations of SMO optimization leads to a better solution of

the dual Ranking SVM problem, but the optimal solution of the dual problem not
necessary leads to a smaller test error, while this is a goal of parametrization of the
dual - to choose such parameters which will lead to a minimum test error.� The estimated optimal hyper-parameters are located close to ”bad” hyper-
parameters in (Cbase, csigma)-space, and due to the stochasticity of the process,

this might lead to a certain increase of Err(f̂).

Indeed, the described above effects are very likely to be also relevant for online tuning
of model hyper-parameters.

4.1.3 Ordinal Regression vs Metric Regression

Most surrogate approaches described in Section 3.1 are based on standard regression also
referred to as metric regression. To analyze how sensitive metric regression to scaling of f
we conducted several experiments with Support Vector Regression (see Section 3.2.2) and
Ranking SVM.

The implementation of Support Vector Regression is derived from the Shark library
[Igel et al., 2008], where the gradient-based working set selection of QP sub-problem is
used in contrast to the uniform selection used in this thesis (see Section 4.1.1). The
gradient-based selection usually leads to a faster QP problem optimization per iteration of
the learning algorithm, while each iteration is computationally more expensive. In order to
calibrate niter iterations used to learn the model, we perfomed several experiments on 10-
dimensional Sphere function for ℓ = 64, 100, 128, 256, 512, 1024, 2048 and for 961 pairs of
model hyper-parameters. We found that niter = 1000ℓ of Ranking SVM (including the cost
of kernel matrix computation) corresponds to roughly niter = 70ℓ of SVR. Given that our
Ranking SVM code was optimized to be computationally efficient, and in order to reduce
a potential bias to Ranking SVM implementation, in the following we use niter = 100ℓ
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Figure 4.4: Average surrogate model error measured in 20 runs of Ranking SVM and
Support Vector Regression (SVR) with different kernels on (Left) Sphere and (Right)
Rosenbrock functions in 10-D after kiter1000ℓ and kiter100ℓ iterations of the SMO algo-
rithm for Ranking SVM and SVR, respectively.

for SVR as an equivalent of niter = 1000ℓ of Ranking SVM. For all experiments in this
Section we set ǫ of SVR to 0, but other values of ǫ lead to very similar results of these
noise-less functions.

Figure 4.4 shows the results of Ranking SVM with RBF (’RankSVM+RBF’) and
Polynomial with d = 10 (’RankSVM+Poly10) kernels, Support Vector Regression with
RBF and Polynomial kernels on the original function f (’SVR+RBF’ and ’SVR+Poly10’)
and transformed functions g = f2 (’SVR+RBF on f2(x)’ and ’SVR+Poly10 on f2(x)’)
and g = f4 (’SVR+RBF on f4(x)’ and ’SVR+Poly10 on f4(x)’), where f is Sphere and
Rosenbrock functions for Figure 4.4-Left and Figure 4.4-Right, respectively. Note that
Sphere and Rosenbrock functions are positive everywhere.

The results for Ranking SVM are the same for the original and transformed versions,
because the transformations of f do not change the ranking of training points. Our first
observation is that ’SVR+Poly10’ and ’SVR+RBF’ demonstrate best performance on the
original Sphere function f . However, the results of SVR on scaled functions f2 and f4

clearly show that the model accuracy quickly degrades as the transformed function less
resembles the original quadratic function. For f6 and f8 SVR-based surrogate model tends
to demonstrate even worse (comparable to random) prediction of test test points. This
suggests that on one of the simplest optimization problems (e.g., a scaled version of Sphere
function) metric regression may provide arbitrary bad results. On Rosenbrock function
’SVR+RBF’ and ’SVR+Poly10’ perform as well as ’RankSVM+RBF’, but degrade quickly
on f2 and f4.

The reasons of these results become clearer by looking at the space of model hyper-
parameters for f , f2 and f4 (see Figure 2 in Appendix A). The bassin of hyper-parameters
which corresponds to good performance on Err(f̂) becomes much smaller on f2 and f4 (for
these particular problems it becomes more difficult to find ”good” mapping between the
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Figure 4.5: Average surrogate model error measured in 20 runs of Ranking SVM and
Support Vector Regression (SVR) with different rank-based transformations of fitness
values on (Left) Sphere and (Right) Rosenbrock functions in 10-D after kiter1000ℓ and
kiter100ℓ iterations of the SMO algorithm for Ranking SVM and SVR, respectively.

decision and the objective space), and this is especially the case for the hyper-parameter C
and Cbase = log(C). At a first look, it seems reasonably to scale C according to the scaling
of f . However, in the black-box scenario we observe only f , so it is unclear how to scale
C since the notion of ”scaling” can be defined only with respect to another function. As
can been seen in Figure 2 of Appendix A, the bassin of optimal model hyper-parameters is
almost the same for f2 and f4 of Sphere function, but moves significantly for Rosenbrock
function. Thus, even if the optimal bassin is known for f for a given range of C, it is
still unclear how to scale the search range of C (to have a comparable chance to localize
the optimal bassin during the offline tuning) for f2 and f4, since this scaling is problem-
dependent.

In black-box optimization, the scaling of f is unknown and may vary locally during
the search. A sophisticated procedure can be proposed to learn ”optimal” scaling of f
and adapt hyper-parameters of SVM accordingly. However, the results on Rosenbrock
function suggest that presumably even using the original ”preferred scenario” of scaling
(which might be preferred to, e.g., f10), the accuracy of SVR may be at best comparable
to the one of Ranking SVM.

4.1.4 Ordinal Regression using Metric Regression Approaches

One can use metric regression to learn ranking of training points and predict the score of
test points. The original ”raw” objective function value of each training point should be
modified such that it will depend only on the rank of this point.

The simplest rank-based fitness assignment scheme, referred to as ’(1:N)’, sets the
fitness of each training point to be equal to its rank among N = ℓ training points. Since ℓ
is usually growing with n, it might be reasonable to normalize new fitness values by ℓ to
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Figure 4.6: Average surrogate model error measured in 20 runs of Ranking SVM and
Support Vector Regression (SVR) with different number of training points on (Left)
Sphere and (Right) Rosenbrock functions in 10-D after 1000ℓ and 100ℓ iterations of the
SMO algorithm for Ranking SVM and SVR, respectively.

the range [1/N, 1]: we call this scheme ’(1:N)/N ’. As was shown in the previous Section,
quadratic shapes of fitness function may be beneficial for SVR. To check this hypothesis
for rank-based SVR, we set the fitness of each training points to be equal to its squared
and normalized squared rank value in ’(1:N).2’ and ’(1:N).2/(N2)’ schemes, respectively.

It can be seen from Figure 4.5 and Figure 4.4 that rank-based SVR performs worse
than metric-based SVR in its ”preferred scenario” of scaling of f , but does not fail like
metric-based SVR in its ”worst scenario”, e.g., on f4, f6, etc., because rank-based SVR
is invariant to rank-preserving transformations of f . Rank-based SVR performs worse
on 10-dimensional Sphere function, while on Rosenbrock function the difference is not
significant. The normalization of rank-based fitness given to SVR sometimes even worsen
the results, but usually has minor impact. The scaling of the rank-based fitness seems
to be more important than the normalization, but quadratic scaling worsen the results
on Sphere function and is not better on Rosenbrock function. We also tried to use other
scaling schemes such as square root of rank ’(1:N).0.5’, which slightly improves the results
on Sphere, but worsen on Rosenbrock. Finally, the simplest ’(1:N)/N ’ scheme probably
should be taken as a baseline for a black-box function f , but its optimal parametrization
in principle may be adapted during the optimization of f .

4.1.5 Ranking SVM vs Rank-based SVR

It was shown in the previous Sections that ordinal regression usually should be preferred
to metric-regression, since the latter is sensitive to rank-preserving transformations of f .
One should keep in mind that all conjectures and conclusions drawn from experimental
results are supposed to be valid for a given parametrization of algorithms and on a given
set of test functions. However, the results obtained on some functions, such as Sphere
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function, can be generalized for a larger class of problems which resemble Sphere-like
function at least around local and global optima, i.e., on later stages of the optimization
of these problems we actually optimize Sphere-like function.

Figure 4.6 demonstrates the results of Ranking SVM and rank-based SVR for different
number of training points ℓ = 2, 4, . . . , 2048 used to build f̂ on (Left) Sphere and (Right)
Rosenbrock functions in dimensions 2, 10 and 40 (see also Figure 3 and 4 of Appendix
A). It can be seen that Ranking SVM outperforms SVR on Sphere function for ℓ > 10n:
this is very important result which among other reasons has determined our preferences
to Ranking SVM. While on Rosenbrock function Ranking SVM outperforms SVR only for
n = 2, for n = 10, 40 both algorithms have very similar performance.

The main difference between Ranking SVM and Rank-based SVR is that the latter
is more constrained since target values of f̂ are pre-defined for all training points, while
in Ranking SVM only the minimum difference of target values is defined. Thus, Ranking
SVM may find solutions of SVR constrained to have specific f̂ values, but it is also open
to a larger set of optimal solutions, which are unavailable for SVR. An important remark
is that we analyzed the cheapest variant of Ranking SVM with only ℓ − 1 constraints, a
slightly larger number of constraints, say 1.2ℓ, may improve the robustness of the model
learning on multi-modal and/or noisy functions.

The simple offline tuning procedure used in this Section allows to investigate the sur-
rogate models hyper-parameters and to estimate their nearly-optimal values w.r.t. model
error. However, the search range of these hyper-parameters still should be defined by the
user, the estimation itself is computationally expensive and requires a quite large test set
to be available, that is usually not the case (instead, a cross-validation procedure might be
considered). Moreover, the adapted grid search procedure badly scales w.r.t. the number
of hyper-parameters. In preliminary experiments of Section 4.2.2, for the sake of simplic-
ity we use some fixed values of hyper-parameters found after some offline tuning. This is
also the case for multi-objective surrogate-assisted search (see Chapter 5). However, an
important contribution of this thesis is a procedure of surrogate model hyper-parameters
adaptation by CMA-ES (see Section 4.3.2), which replaces the grid search and automates
the resolution of the problem of model selection for the learning problem at hand.

4.2 ACM with Pre-selection

To the best of our knowledge, the only work investigating the use of Ranking SVM as sur-
rogate model within a meta-model assisted EA published before [Loshchilov et al., 2010c]

was [Runarsson, 2006]; while the approach proposed in [Runarsson, 2006] was reported to
bring small improvements over a CMA-ES baseline, a major issue regards the choice of
the kernel, the Achilles heel of all SVM-based methods. Following the path opened by
[Runarsson, 2006], in [Loshchilov et al., 2010c] we investigated the use of Ranking SVM
surrogate models within CMA-ES.

In this Section, we describe Ranking SVM-based CMA-ES, referred to as ACM-ES
[Loshchilov et al., 2010c] for (alphabetically) ranked CMA-ES. In Section 4.2.1, we discuss
the advantages of the use of the Covariance Matrix adapted by CMA-ES, viewed as the
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proper metric to look at the region of the fitness landscape currently explored, and which
renders surrogate learning techniques invariant w.r.t. orthogonal transformations of f . In
Section 4.2.2, we present pre-selection strategy used in ACM-ES and the algorithm itself.
The experimental validation of the approach is reported in Section 4.2.3, and directions
for further work are discussed in Section 4.2.4.

4.2.1 Toward Optimal Kernel Function: Invariance w.r.t. Orthogonal
Transformations

In Section 3.3.2.2, we have described lmm-CMA-ES algorithm proposed by
[Kern et al., 2006], which predicts fitness of an offspring q by building a weighted quadratic
meta-model f̂ around q. An important contribution made by [Kern et al., 2006] was to use
the covariance matrix adapted by CMA-ES to compute the weight of each training point
xj, such that the weight decreases as the Mahalanobis distance

√
(xj − q)TC−1(xj − q) to

the query point q increases. This covariance matrix-based Mahalanobis distance takes into
account the correlations of the data (the Euclidean distance can be obtained by setting
the covariance matrix to identity). Later, in order to decrease the computational complex-
ity of lmm-CMA-ES [Kern et al., 2007] studied different versions of lmm-CMA-ES. They
pointed out more explicitly that

√
(xj − q)TC−1(xj − q) =

√
x′Tj x′j , (4.10)

where x′j is an image of xj in some transformed space, defined as

x′j = C−1/2(xj − q) (4.11)

Later [Hansen, 2008] proposed Adaptive Encoding procedure which gradually learns
an appropriate coordinate system and can be used in principle within any continuous op-
timizer. The author showed that CMA-ES can be viewed as Cumulative Step-size Adap-
tation algorithm performed in the transformed coordinate system, adapted by Adaptive
Encoding procedure. The change of coordinates, defined from the current covariance ma-
trix C and the current mean value m (this was also proposed before in [Kern et al., 2007]),
reads:

x′j = C−1/2(xj −m) (4.12)

We hence propose to define the kernel function (e.g., RBF kernel) directly to the
covariance matrix (the idea was proposed in [Loshchilov et al., 2010c] independently from
a similar idea for Gaussian Processes proposed in [Kruisselbrink et al., 2010]), with σ > 0:

KC(xi,xj) = e−
(xi−xj)

T
C
−1(xi−xj )

2σ2 (4.13)

However, the computation of the kernel matrix with ℓ × ℓ elements may become compu-
tationally expensive if we need to compute Eq. (4.13) for each element. Instead, we can
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Figure 4.7: Contour plots of rotated Ellipsoid function (dotted lines) and Ranking SVM
surrogates (solid lines) obtained with isotropic RBF kernel (Left) or covariance matrix-
based transformed RBF kernel (Right). The transformed RBF kernel is more appropriate
than the isotropic one.

translate all training points to the feature space using Eq. (4.12), where all variables are
as decorrelated as possible and the objective function more resembles the Sphere function,
which is relatively easy to learn (see Figure 4.6). Then, in this feature space, we may
use the Euclidean distance and compute σ, which we set to the average distance between
training points.

Figure 4.7 displays surrogate models of 2-dimensional rotated Ellipsoid function f built
on 15 the same training points using (Left) standard RBF kernel and (Right) transformed
RBF kernel with Eq. (4.13), where C is set to the inverse of the Hessian of f . It can
be seen that the use of the transformed RBF allows to obtain more satisfactory (bold)
contour lines of the surrogate model to the (dotted) contour lines of the original Ellipsoid
function, i.e., we may obtain a much better prediction of f if covariance matrix C is known.
Fortunately, CMA-ES adapts C during the search, therefore, we may transform training
and test points using Eq. (4.12) to make our surrogate modeling approach invariant w.r.t.
orthogonal transformation of the search space. An important detail is that C−1/2 is already
computed within CMA-ES, therefore the transformation comes at almost no additional
cost.

We believe that the use of the transformation (4.12) may improve the performance of
most of the surrogate techniques proposed for CMA-ES. For other EAs which do not adapt
C , the estimation of covariance matrix can be obtained performing Principal Component
Analysis (PCA) of the training data. One should mention that the transformed kernel
(4.13) shares certain similarities with the Fisher Kernel, relatively recently proposed by
[Jaakkola et al., 1999] and briefly reviewed in [Sewell, 2011].
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4.2.2 Overview of ACM-ES

Having chosen the transformation of training and test points after Eq. (4.12), the inte-
gration of Ranking SVM as surrogate model within CMA-ES raises three main issues: i).
how to train the surrogate model, i.e., how to select the current training points in the set
of all points evaluated with the true objective function; ii). how to use the model within
CMA-ES, without perturbing the delicate adaptive mechanism thereof, and iii). how to
select the new points which will be evaluated with the true objective function.

Regarding the first issue, i.e., the selection of the training sample, several requirements
have been identified. Firstly, the number ℓ of training samples must increase with the
dimension n of the search space. Using statistical learning arguments, ℓ should be of the
order of the VC dimension of the model space. Note that after transformation (4.12) the
decision space is a variant of the Sphere function, in the best case, or a noisy multi-modal
variant thereof in the worst case. A second requirement is that the training samples should
not lie ”too far” from the current mean m of the mutation distribution used by CMA-ES
to generate its offspring, since the transformation defined by the current covariance matrix
only aims at the local structure of the fitness landscape around m. Finally, the analysis
of preliminary experiments on the n-dimensional Sphere function shows that ℓ should
increase proportionally to

√
n; the proportionality constant however remains problem-

dependent as will be seen in Section 4.2.3. These ℓ selected points are the most recently
evaluated points with the true fitness function (see Section 3.3.1.2 for a detailed discussion
of different selection schemes). Figure 4.8 illustrates the whole optimization loop of ACM-
ES, the training points selection corresponds to part A. The surrogate model learning
using transformed after Eq. (4.12) training set corresponds to part B.

The second issue regards how to use the rank-based surrogate within CMA-ES. Using
the surrogate model in lieu of the true fitness is a risky option due to the lack of guaran-
tees about errors in regions outside the training sample (i.e., without model error-based
control). A more conservative option thus is to use the surrogate model to pre-screen the
offspring, generating many more pre-children than required, and keeping the best ones
according the surrogate model. Such an approach however rapidly looses the offspring
diversity, hindering the CMA-ES adaptive mechanism used to adapt the covariance ma-
trix. Some trade-off between the optimization of the objective and the adaptation of the
covariance matrix must thus be found.

The approach finally proposed is a two-step process. In order to prevent premature
convergence, and interfere as little as possible with CMA-ES cumulative step-size adap-
tation, a large number λPre of pre-children is drawn using the standard CMA Gaussian
distribution; let them be noted x1, . . . xλPre

, assuming with no loss of generality them to
be ranked after the surrogate model (see Figure 4.8 part C). The λ offspring are obtained
by iteratively drawing a real number a < λPre from distribution N (0, σ2sel0) (where σsel0
is a parameter of the algorithm), and retaining the pre-child with rank ⌊a⌋ (see Figure
4.8 part D). The same procedure is followed to select the points to be evaluated accord-
ing to the true objective function, with the same rationale: on the one hand, one should
select the best points according to the current surrogate model; on the other hand, some
diversity must be preserved. Finally, i). the point with top rank is selected and always
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Figure 4.8: Optimization loop of the ACM-ES algorithm with pre-selection.

evaluated (as in the approximate ranking approach [Runarsson, 2004]); ii). other (λ′-1)
points selected among the pre-children using a rank distribution N (0, σ2sel1) are evaluated,
using the same process as for the offspring selection albeit with a larger standard deviation
(σsel1 > σsel0). A typical distribution of the ranks of the λ offspring is depicted in Figure
4.8 Part D, where λ = 12 white circles are pre-selected among λPre = 500 pre-children
with σ2sel0 = 0.4, while points that will be evaluated with the true fitness are represented
by green circles (λ′ = 4 and σ2sel1 = 0.8).

In ACM-ES, a fixed number λ′ of points is evaluated in each generation, thus bounding
the complexity in terms of true fitness evaluation. The choice of the ratio λ/λ′ thus controls
the efficiency of the approach and the speedup w.r.t. the standard CMA-ES (where λ
offspring are evaluated in each generation).

4.2.3 Experimental Validation

The experimental validation of ACM-ES investigates the performance of the approach
comparatively to CMA-ES and nlmm-CMA, focussing on its scalability w.r.t. the prob-
lem dimension n, the robustness with respect to multi-modality, and with respect to the
calibration of the surrogate training.

Seven uni- and multi-modal benchmark functions have been considered (see Table 4.1,
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Table 4.1: Test functions, initialization intervals and initial std. dev. (from [Kern et al.,
2006; Bouzarkouna et al., 2010]).

Name Function Init σ0

Noisy Sphere fNoisySphere(x)= (
∑n

i=1 x
2
i )exp(ǫN (0, 1) [−3, 7]n 5

Ellipsoid fElli(x)=
∑n

i=1 10
6 i−1
n−1 x2

i [1, 5]n 2

Schwefel fSchwefel(x)=
∑n

i=1(
∑i

j=1 xj)
2 [−10, 10]n 10

Schwefel1/4 fSchwefel1/4 (x)= (fSchwefel(x))
1/4 [−10, 10]n 10

Rosenbrock fRosenbrock(x)=
∑n−1

i=1

(

100.(x2
i − xi+1)2 + (xi − 1)2

)

[−5, 5]n 0.5

Ackley fAckley(x)= −20exp
(

−0.2
√

1
n

∑n
i=1 x

2
i

)

+exp( 1
n

∑n
i=1cos(2πxi)) [1, 30]n 14.5

Rastrigin fRastrigin(x)= 10d+
∑n

i=1(x
2
i − 10.cos(2πxi)) [1, 5]n 2

definitions in [Kern et al., 2006] and [Bouzarkouna et al., 2010]), with dimension n ranging
in [2, 40] except for the Rastrigin function. Within ACM-ES, CMA-ES is used with its
default parameters [Hansen et al., 2003]. Reported results are based on 20 independent
runs. The stopping criterion is reaching target value 10−10, with a maximum of 1000n2

function evaluations.
After preliminary experiments, the rank-based surrogate was trained using ℓ = ⌊30√n⌋

samples for all functions, except for Ellipsoid and Rosenbrock where it was set to ⌊70√n⌋
(see Section 4.3.3.2). The maximum number of iterations of the SVM learning algorithm
was arbitrarily set to ⌊50000√n⌋. The constraint weights Ci in Eq. (4.2) were set to
106(ℓ − i)2.0, implying that the cost of rank-constraints violation quadratically increases
for top-ranked samples. For all functions except Rastrigin, λ′ = λ

3 , σ
2
sel0 = 0.4, σ2sel1 =

2σ2sel0 = 0.8, ℓtest = 500. For Rastrigin function σ2sel0 = σ2sel1 = 0.6.

4.2.3.1 Results and Discussion

Firstly, experiments are conducted to estimate the empirical complexity of the surrogate
training and using, using ⌊100√n⌋ training points, stopping after ⌊50000√n⌋ iterations and
assessing the surrogated model on 500 test points. The empirical complexity with respect
to dimension n (Figure 4.9-Left in log scale) is 1.13, thus, slightly super-linear, contrasting
with lmm-CMA complexity of O(n6) (see Section 3.3.2.2 for a detailed discussion).

Secondly, the comparative validation of ACM-ES, nlmm-CMA and standard CMA-ES
on all benchmark functions is reported in Table 4.2; lmm-CMA and nlmm-CMA results
have been taken from original papers [Kern et al., 2006] and [Bouzarkouna et al., 2010]

when available; those of CMA-ES have been recomputed2. Overall, ACM-ES outperforms
lmm-CMA and nlmm-CMA algorithms on most problems, particularly so for problems
with dimension n > 4. The invariance of ACM-ES w.r.t. monotonous transformations
of the fitness is witnessed by its almost identical results on fSchwefel and fSchwefel1/4

functions, when the stopping criterion is adjusted accordingly (which is not the case for
the results of Table 4.2). Likewise, the results on fElli confirm that ACM-ES also retains
the good behavioral properties of CMA-ES with respect to the ill-conditioning of the fitness

2using the source code available at the website of Nikolaus Hansen:
http://www.lri.fr/~hansen/cmaes_inmatlab.html/
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Table 4.2: Computational effort SP1 (i.e., the average number of function evaluations of
successful runs divided by proportion of successful runs), standard deviations and speedup
performance (spu) of ACM-ES, (n)lmm-CMA-ES and CMA-ES. Results in the (n)lmm-
CMA column are the best of those in [Kern et al., 2006] and [Bouzarkouna et al., 2010]
(marked with leading “n:” for the latter). Successful runs are those who reached the
target fitness value of 10−10. The proportion of successful runs is given in parentheses if
less than 100%. ǫ is the noise level (when relevant).

Function n λ λ′ ǫ ACM-ES spu (n)lmm-CMA spu CMA-ES

fSchwefel 2 6 3 186±5 2.0 81±5 4.5 370±32
4 8 3 289±9 3.0 145±7 6.0 879±60
5 8 3 344±9 3.2 1112±72
8 10 3 558±18 3.6 282±11 7.1 2010±82
10 10 3 801±36 3.3 2667±87
16 11 3 2204±74 2.3 626±17 8.2 5156±161
20 12 4 3531±179 2.0 7042±172
32 14 4 8933±337 1.7 15072±377
40 15 5 13440±281 1.7 22400±289

fSchwefel1/4 2 6 3 551±12 2.8 n:413±25 3.7 1527±76

4 8 3 783±8 3.6 n:971±36 2.9 2847±109
5 8 3 914±15 3.8 n:1302±31 2.7 3505±114
8 10 3 1366±25 4.3 5882±146
10 10 3 1774±37 4.1 7220±206
16 11 3 4193±88 3.0 12411±198
20 12 4 6138±82 2.5 15600±294
32 14 4 14796±310 2.0 29378±330
40 15 5 22658±390 1.8 41534±466

fRosenbrock 2 6 3 511±84 1.4 n:252±52 2.8 700±194
4 8 3 775±108 2.8 n:719±54 (0.85) 3.0 2187±376 (0.85)

5 8 3 854±89 3.0 n:1014±94 (0.90) 2.5 2526±308 (0.95)

8 10 3 1388±139 4.2 2494±511 (0.90) 2.3 5769±547 (0.85)

10 10 3 2059±143 (0.95) 3.7 7669±691 (0.90)

16 11 3 5255±560 3.1 7299±1154 2.2 16317±1281 (0.90)

20 12 4 11793±574 (0.75) 1.8 21794±1529
32 14 4 32261±2165 (0.8) 1.6 52671±5587
40 15 5 49750±2412 (0.9) 1.6 82043±3991

fNoisySphere 2 6 3 0.35 413±114 1.0 n:109±12 3.7 407±61 (0.95)

4 8 3 0.25 428±46 2.0 n:236±19 3.6 844±141
5 8 3 0.22 480±66 2.1 1014±68
8 10 3 0.18 630±76 2.6 n:636±33 2.6 1663±140
10 10 3 0.15 766±90 (0.95) 2.7 2058±148
16 11 3 0.13 1119±115 2.8 n:2156±216 1.4 3120±168
20 12 4 0.11 1361±212 2.8 3777±127
32 14 4 0.09 1997±247 2.9 5767±162
40 15 5 0.08 2409±120 2.9 7023±173

fAckley 2 6 3 352±39 2.1 n:227±23 3.2 735±55
4 8 3 540±29 (0.95) 2.9 1577±83
5 8 3 566±33 3.4 n:704±24 (0.90) 2.2 1904±122 (0.95)

8 10 3 800±22 (0.95) 3.8 3066±114
10 10 3 892±28 4.1 n:2066±119 (0.95) 1.8 3641±154
16 11 3 1530±39 3.7 5672±151
20 12 4 1884±50 3.5 8150±196 0.8 6641±108
32 14 4 2747±62 3.7 10063±203
40 15 5 3690±80 3.3 12084±247

fElli 2 6 3 393±19 2.0 774±73
4 8 3 582±24 2.9 1688±11
5 8 3 683±33 3.4 2342±162
8 10 3 1142±53 4.0 4542±155
10 10 3 1628±95 3.8 6211±264
16 11 3 4706±148 2.8 13177±341
20 12 4 8250±393 2.3 19060±501
32 14 4 27281±753 1.6 44562±530
40 15 5 33602±548 2.1 69642±644

fRastrigin 2 50 25 1640±242 (0.6) 1.2 n:528±48 (0.95) 3.6 1970±418 (0.85)

5 140 70 23293±1374 (0.3) 0.5 n:4037±209 (0.60) 3.0 12310±1098 (0.75)
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Figure 4.9: Left: the cost of model learning/testing increases quasi-linearly with n.
Right: the average speedup and speedup for all problems except Rastrigin.

function. The speedup w.r.t. CMA-ES is depicted in Figure 4.9-Right versus the problem
dimension n. Interestingly, the speedup reaches its peak for n ranging in 8..10, then it
decreases – except on the Noisy Sphere function. A possible explanation is that the noise
level is comparatively less when the dimension increases (as in [Bouzarkouna et al., 2010]),
enabling the regularization involved in the model optimization to counteract the noise
effects.

On the negative side, ACM-ES performs poorly on fRastrigin function, and only solves
it marginally for dimensions n > 8. This failure is attributed to the fact that ACM-ES
does not handle well multi-modal diversity; it tends to accelerate the premature conver-
gence to a local optimum, thus amplifying the weakness of CMA-ES without restarts on
this benchmark problem: the best-performing versions of CMA-ES require an increasing
population size [Hansen, 2009]. Further work will consider the use of niching techniques
as well as model quality control strategies to overcome this weakness.

4.2.4 Preliminary Conclusion

The main novelty of the proposed ACM-ES is that all steps of the algorithm preserve
invariance with respect to both monotonous transformations of the fitness function and
orthogonal transformations of the search space. Comparison-based invariance is enforced
by using Ranking Support Vector Machines to learn the surrogate model; coordinate
invariance is enforced through using the covariance matrix adapted by CMA-ES as SVM
kernel. Experimental validation confirms both invariance claims, and demonstrates the
merits of the approach in terms of fitness evaluations and scalability w.r.t. the space
dimension.

The main weakness of the approach is due to the failure of the surrogate model to ac-
count for multi-modal landscapes, as shown on the Rastrigin function; some improvements,
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Figure 4.10: Rank-based surrogate error vs number of function evaluations, during a
representative run of CMA-ES on 10-dimensional Sphere (Left) and Rosenbrock (Right)
functions. See text for details.

e.g., related to model control, will be discussed in the next Section. Another issue regards
the surrogate model hyper-parameters, which have been calibrated after preliminary ex-
periments on the Sphere function conditionally to the carefully tuned hyper-parameters
of CMA-ES [Hansen and Ostermeier, 2001]. A global approach, considering both sets
of hyper-parameters in an integrated way, would be appropriate. Another perspective,
pointed out in [Runarsson, 2004], is to extend the approach to constrained optimization.

4.3 Self-adaptive Surrogate-assisted CMA-ES

In this Section, we present a surrogate-adaptation mechanism (s∗) which can be used on
top of any surrogate optimization approach. s∗ adapts online the number of generations
after which the surrogate is re-trained, referred to as the surrogate lifelength; further, it
adaptively optimizes during the search the surrogate hyper-parameters using an embedded
CMA-ES module. A proof of principle of the approach is given by implementing s∗ on top
of ACM-ES, a surrogate-assisted variant of CMA-ES, yielding the s∗ACM-ES algorithm.
To our best knowledge, the self-adaptation of the surrogate model within CMA-ES and
by CMA-ES is a new contribution. The merits of the approach are shown as s∗ACM-ES
shows significant improvements compared to CMA-ES and ACM-ES on the BBOB-2012
noiseless and noisy testbeds.

The results of this Section have been published as [Loshchilov et al., 2012e,
Loshchilov et al., 2012b, Loshchilov et al., 2012c].

4.3.1 Preliminary Analysis

Following the characterization proposed in [Jin, 2005], ACM-ES, discussed in detail in the
previous Section, is a surrogate-assisted optimizer with an individual-based evolution con-
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trol. As in many other pre-selection methods (see Section 3.3.2.1 for a detailed overview),
at each generation ACM-ES generates λPre individuals, where λPre is much larger than
population size λ. Then λPre pre-children are evaluated and ranked using surrogate model
f̂ . The most promising λ′ (not always the best) pre-children are selected and evaluated
using the true expensive function, yielding new points (x, f(x)). When the true objective
function of λ′ individuals is known, the ranking of other λ−λ′ points can be approximated.

While the experimental results demonstrate the improvements brought by ACM-ES on
some functions (about 2-4 times faster than CMA-ES on Rosenbrock, Ellipsoid, Schwefel,
Noisy Sphere and Ackley functions up to dimension 20, see Figure 4.9), they also show a
loss of performance on the multi-modal Rastrigin function. Complementary experiments
suggest that:

1. on highly multi-modal functions, the surrogate model happens to suffer from a loss
of accuracy; in such cases some control is required to prevent the surrogate model
from misleading the search;

2. surrogate-assisted algorithms may require a larger population size for multi-modal
problems.

The lack of surrogate control appears to be an important drawback in ACM-ES. This
control should naturally reflect the current surrogate accuracy. A standard measure of the
rank-based surrogate error is given as the fraction of violated ranking constraints on the
test set (see Section 3.3.1.1 and Eq. 4.9). Error value 0 (respectively, 0.5) corresponds to
a perfect surrogate (respectively, random guessing).

4.3.1.1 Model Quality Estimation

Before doing surrogate-assisted optimization one should be sure that the model provides
a reasonable prediction of the objective function. Figure 4.10 illustrates the surrogate
model error during a representative run of CMA-ES (with re-training at each iteration, but
without any exploitation of the model) on 10-dimensional Sphere (Left) and Rosenbrock
(Right) functions using 100 and 250 training points, respectively. Thin blue curves corre-
spond to the model error Err(f̂) measured with Eq. (4.9) on λ offspring (test) solutions,
which were not used to build f̂ . Dotted curves correspond to fitness of the mean m of the
mutation distribution of CMA-ES. A fluctuation of Err(f̂) is clearly observable because
i). the model quality changes depending on used training points, hyper-parameters, etc.;
ii). the estimation of Err(f̂) is imprecise because λ is too small (λ = 10 for 10-dimensional
problems). To make this estimation more robust one of the following approaches can be
used:

1. Use larger λ. This may increase the overall runtime of CMA-ES.

2. Exclude some training points and use them as test points. These points should be
located in the actual search region of CMA-ES. Exclusion of such points may worsen
the model.
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3. Use cross-validation, e.g., leave-one-out cross-validation (see Section 3.3.1.2). This
may significantly increase the computational complexity of the algorithm.

4. Use some relaxation of Err(f̂). The results may be sensitive to the parametrization
of the relaxation (also true for all approaches described above).

For a better numerical stability without additional computational cost, we suggest to
update the surrogate error using additive relaxation with relaxation constant βErr:

Err(f̂) = (1− βErr)Err(f̂) + βErrErr(f̂)loc, (4.14)

where Err(f̂)loc is the local model error estimated on λ points of the current generation
using Eq. (4.9). We experimentally found that βErr = 0.2 represents a reasonable trade-off
between the use of local and global information. This parameter indeed is problem- and
model control approach-dependent. It can be adjusted if some relevant information about
the problem at hand is available. As the initial setting of Err(f̂) we choose a pessimistic
value 0.5 (random prediction) to avoid a potential overestimation of Err(f̂) in the first
generations of CMA-ES. As can be seen in Figure 4.10, the relaxed model error (bold blue
lines) is quite robust w.r.t. outliers, and at the same time is sensitive to local information.

4.3.1.2 Model Exploitation

As can be seen in Figure 4.10, after the first generations of CMA-ES, the surrogate error
decreases to approximately 10%. This better than random prediction can be viewed as a
source of information about the function which can be used to improve the search.

Let n̂ denote the number of generations a surrogate model is used, referred to as sur-
rogate lifelength. In so-called generation-based evolution control methods [Jin, 2005], the
surrogate f̂ is directly optimized for n̂ generations, without requiring any true (expensive)
objective computations. Then, the following generation considers the objective function f ,
and yields instances to enrich the training set, relearn or refresh the surrogate and adjust
some parameters of the algorithm. The surrogate lifelength n̂ can be fixed or adapted.

The above-described procedure, as well as several approaches which we will present
in this Section, can be used in principle with any optimization algorithm. In this work,
however, we consider CMA-ES and its active and restart versions by the reasons discussed
in Section 2.3.3.

An experimental study of the impact of n̂ is displayed in Figure 4.11, showing the
speedup reached by direct surrogate optimization on several 10-dimensional benchmark
problems vs the number of generations n̂ the surrogate is used. A factor of speedup 1.7
is obtained for n̂= 1 on the Rotated Ellipsoid function, close to the optimal speedup
2.0. A speedup ranging from 2 to 4 is obtained for IPOP-aACM-ES with surrogates
for n̂ in [5, 15]. As could have been expected again, the optimal value of n̂ is problem-
dependent and widely varies. In the case of the Attractive Sector problem for instance,
the surrogate model is imprecise and not useful, so n̂ = 0 should be used (thus falling
back to the original IPOP-aCMA-ES with no surrogate) to prevent the surrogate from
misleading the search.
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Figure 4.11: The speedup of IPOP-aACM-ES over IPOP-aCMA-ES, where speedup =
2.0 means that IPOP-aACM-ES with a given lifelength n̂ of the surrogate model, requires
2.0 times less computational effort SP1 (i.e., the average number of function evaluations
of successful runs divided by proportion of successful runs) than IPOP-aCMA-ES to reach
the target objective value of ft = fopt + 10−8. The results of the IPOP-aCMA-ES are
given when number of generations is zero.

4.3.1.3 Adjusting Surrogate Lifelength

A natural idea is then to adjust lifelength n̂ can be adjusted depending on the error made
by the surrogate f̂ on the new λ points evaluated on f . If this error is 0, then f̂ is
perfectly accurate and could have been used for some more generations before learning a
new f̂ . In this case, lifelength n̂ is set to the maximum value n̂max, which corresponds to
the maximum theoretical speedup of the s∗ACM-ES. If the error is circa 0.5, surrogate f̂
provides no better indications than random guessing and thus misleads the optimization:
n̂ is set to 0. More generally, considering an error threshold τerr, we decided to adjust n̂
between n̂max and 0, proportionally3 to the ratio between the actual error and the error
threshold τerr (bold curve in Figure 4.12):

n̂←
⌊
τerr − Err(f̂)

τerr
n̂max

⌋
. (4.15)

4.3.1.4 Alternative Approaches to Surrogate Model Exploitation

To try to improve the results of ACM, we also tested a trust-region-based algorithm,
where f̂ is optimized to find a candidate solution x∗ to be evaluated on f . The trust-
region is bounded using the Mahalanobis distance defined by the covariance matrix of
CMA-ES. We found that the results of ACM on Ellipsoid function can be improved, but

3Complementary experiments show that the best adjustment of n̂ depending on the surrogate error is
again problem-dependent, but that the linear adjustment proposed here is a good compromise.
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Figure 4.12: Number of generations n̂ versus surrogate error Err. Linear interpolation
(bold curve) has been used in the experimental validation.

in larger dimensions (n > 10) this strategy becomes too ”greedy”, the training set is not
sufficiently diverse to build an accurate f̂ . Thus, some diversity preservation procedure
must be considered. The most important drawback of the trust-region-based search is the
evaluation of (usually) only one solution on f per iteration. This makes the algorithm not
suitable for parallel evaluations of solutions, which is the main source of speedup in real-
world expensive optimization. Another important detail is that the algorithm actually not
resembles anymore CMA-ES and its performance is not stable on noisy functions.

Instead of evaluating λ individuals after n̂ generations on f̂ we may use alternative
strategies, e.g., evaluate on f one best or random individual per generation. We found
that this may improve the results, however, there are at least two issues: i). again,
the algorithm cannot be efficiently parallelized; ii). CMA-ES never observes the correct
ranking of all individuals, thus, a potential misleading introduced by the surrogate model
may be heavily corrected.

We also tested several strategies to control n̂, including the following ones:

1. Optimal control of n̂ can be viewed as an operator selection problem with a fixed
number of arms/operators, e.g., 21 arms for n̂ = 0, . . . , 20 (see Figure 4.11).
To find an optimal n̂, Multi-Armed Bandits paradigm can be applied (see, e.g.,
[Fialho et al., 2010]). We also tested an Elo-based (chess rating system named af-
ter Arpad Elo, a master-level chess player) system, where in each game we check
two arms i and j and the one whose ⌊λ/2⌋ offspring are statistically better wins
the game. Using Elo-based approach we may find the rating for different n̂, an
important detail is that even if some arm is rarely used it may quickly reach
high Elo rating if wins against another high-rated arm. The approach can be ex-
tended to the competition of teams of arms using generalized Elo-system proposed
in [Dangauthier et al., 2007, Coulom, 2007].

2. The search for an optimal n̂ can be viewed as a one-dimensional noisy optimization
problem. We may directly apply ESs to solve this problem. For each generated
offspring defined by a decision variable n̂ we run CMA-ES on f̂ for n̂ generations
and evaluate one best, mean or random individual of the n̂-th population on f .
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Then, we may compare different alternatives (solutions) of n̂, choose new mean of
distribution, adapts parameters of ES and repeat the procedure again. It should
be noted that the minimum variance must be fixed to prevent the algorithm from
premature convergence on an integer value of n̂, given that the problem is dynamic
and noisy.

3. An alternative to the previously described strategy would be to consider only two
candidate generations at a time, generations n̂ and n̂+1. We may run CMA-ES on
f̂ for n̂ generation and evaluate ⌊λ/2⌋ individuals on f (without updating f̂), then
run for one more generation and evaluate the remaining λ− ⌊λ/2⌋ individuals. We
may check whether n̂+1-th individuals are statistically significantly better or not, if
this is the case, we may increment n̂ and vise versa. If there is no difference, then we
may suppose that we are around the maximum of curves illustrated in Figure 4.11.
However, it may happen that the one-dimensional curve is flat and we will (almost
randomly) walk unreasonably far away. The latter becomes a problem if the model
quality drops quickly, then we should quickly decrease n̂, but doing so decrementally
may take a long time so that the algorithm finally diverges. As an alternative we
used Wilcoxon rank-sum test to estimate the significance of difference between n̂-th
and n̂ + 1-th generations to set the scale of the increasing/decreasing factor of n̂
correspondingly.

The described above approaches have at least three important drawbacks:

1. When λ points from different generations are evaluated, we have a dilemma to choose
which state of CMA-ES will be used as the actual one for the next generation. We
may compute this state as a weighted sum of all states, which were used to generate
λ points. However, this may potentially introduce an instability to CMA-ES.

2. If the model quality drops relatively quickly, it may take some time to adjust n̂
accordingly.

3. If the model is random guessing (Err(f̂)=0.5), then we will still need to check n̂ = 0
(no surrogate mode used = no loss) and n̂ = 1 (one generation of divergence). Thus,
when the model badly predicts f , which is often the case on multi-modal and/or
noisy functions, the algorithm will often diverge because of n̂ = 1.

To summarize, we choose the approach described in Section 4.3.1.3 as a baseline for our
experiments because it allows to prevent divergence if f̂ is random guessing, the evaluation
of all λ individuals can be easily parallelized, and the implementation of the approach is
straightforward. However, we strongly believe that the other approaches described above
are prospective and can be superior to the error model-based one under certain conditions.

4.3.2 Self-adaptive Surrogate-assisted CMA-ES

In this Section, we describe the novel surrogate adaptation mechanism resulting from pre-
vious discussions, which can be used in principle on top of any iterative population-based
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optimizer without requiring any significant modifications thereof. The approach is illus-
trated on top of CMA-ES and ACM-ES. The resulting algorithm, s∗ACM-ES, maintains a
global hyper-parameter vector θ = (θopt, θsur, n̂,A, α), where:
• θopt stands for the optimization parameters of the outer CMA-ES used for expensive
function optimization (see Figure 4.13);
• θsur stands for the optimization parameters of the internal CMA-ES used for surrogate
model hyper-parameters optimization;
• n̂ is the number of internal generations during which the current surrogate model is
used;
• A is the archive of all points (xi, f(xi)) for which the true objective function has been
computed, exploited to train the surrogate function;
• α stands for the surrogate hyper-parameters.
All hyper-parameters are indexed by the current outer generation g; by abuse of notations,
the subscript g is omitted when clear from the context.

4.3.2.1 Overview of s∗ACM-ES

Let GenCMA(h,θh,A) denote the elementary optimization module (here one generation of
CMA-ES) where h is the function to be optimized (the true objective f or the surrogate f̂),
θh denotes the current optimization parameters (e.g., CMA-ES step-size and covariance
matrix, etc.) associated to h, and A is the archive of f . After each call of GenCMA,
optimization parameters θh are updated; and ifGenCMA was called with the true objective
function f , archive A is updated and augmented with the new points (x, f(x)). Note that
GenCMA can be replaced by any black-box optimization procedure, as long as it is able
to update its own optimization parameters and the archive.

s∗ACM-ES starts by calling GenCMA for gstart number of generations with the true
objective f , where θopt and A are respectively initialized to the default parameter of CMA-
ES and the empty set (Algorithm 4.2, lines 4-7). In this starting phase, optimization
parameter θopt and archive A are updated in each generation.

Then s∗ACM-ES iterates a six-step process (Algorithm 4.2, lines 9 - 22, illustrated in
Figure 4.13):

1 Learning surrogate f̂ using surrogate model hyper-parameters α (e.g., number of
training points, parameters of kernel functions) and the current optimization pa-
rameters θopt such as covariance matrix C (procedure BuildSurrogateModel, line 9;
Section 4.1.1).

2 Optimizing the surrogate f̂ for n̂ generations (lines 11-13). This step classically calls
GenCMA(f̂ ,θopt,A) for n̂ consecutive generations; θopt is updated accordingly while
A is unchanged since this step does not involve any computation of the expensive f .

3 Optimizing the expensive function f for one generation (line 15). In this step, we
sample and evaluate λ individuals on f and update θopt parameters of CMA-ES
accordingly, updating and augmenting archive A with new (x, f(x)) points.
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Figure 4.13: Optimization loop of the s∗ACM-ES.

4 Estimating model error Err(f̂) using Eq. (4.9) on λ recently evaluated points (line
17).

5 Adjusting the surrogate lifelength n̂ using Eq. (4.15) (line 19, Section 4.3.1.3).

6 Optimizing surrogate model hyper-parameters α (line 21).

The contribution regards the adjustment of the surrogate hyper-parameters α (e.g.,
the number of the training points in A; the weights of the constraint violations in Ranking
SVM, see Table 4.3), which are adjusted to optimize the quality of the surrogate Err (Eq.
4.9). Formally, to each surrogate hyper-parameter vector α is associated a surrogate error
Err(α) defined as follows (see Algorithm 4.3): hyper-parameter α is used to learn surrogate
f̂α using Ag−1 as training set, and Err(α) is set to the ranking error of f̂α(Eq. 4.9), using
the most recent λ points from Ag −Ag−1 as test set.

The elementary optimization module
GenCMA(Err,θsur) (in this study, we do not use the archive parameter here) is launched
for one generation (line 21), and the mean of the CMA-ES mutation distribution is used
(line 22) as surrogate hyper-parameter vector in the next surrogate building phase (line
9).

Hyper-parameters might be optimized for more than one generation, however, this
would increase the overall computational complexity of the algorithm, because λhyp surro-
gates must be built at each generation. Since the hyper-parameters optimization problem
is noisy, we suggest to perform one generation with a relatively large λhyp instead of few
generations with a small λhyp.
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Algorithm 4.2: s∗ACM-ES

1: given g ← 0; Err← 0.5; Ag ← ∅;
2: θopt ← InitializationCMA(); // to optimize f(x)
3: θsur ← InitializationCMA(); // to optimize Err(α)
4: repeat
5: {θopt,Ag+1} ← GenCMA(f ,θopt, Ag);
6: g ← g + 1;
7: until g = gstart ;
8: repeat
9: f̂(x) ← BuildSurrogateModel(α, Ag, θopt);

10: gprev ← g;
11: for i = 1, . . . , n̂ do
12: {θopt,Ag+1 = Ag} ← GenCMA(f̂ ,θopt, Ag);
13: g ← g + 1;
14: end for
15: {θopt,Ag+1} ← GenCMA(f ,θopt, Ag);
16: g ← g + 1;
17: Err(α) ← MeasureSurrogateError(f̂ ,θopt);
18: Err← (1− βErr)Err + βErrErr(α);

19: n̂←
⌊
τerr−Err
τerr

n̂max

⌋
;

20: // adjust surrogate hyper-parameters
21: θsur ← GenCMA(Err,θsur);
22: α← θsur.m; // detach the mean m of mutation distibution stored in θsur
23: until stopping criterion is met ;

Algorithm 4.3: Objective function Err(α) of surrogate model

1: given α
2: f̂(x) ← BuildSurrogateModel(α, Agprev , θsur,gprev);

3: Err(α) ← MeasureSurrogateError(f̂ , θopt,gprev);

4.3.3 Experimental Validation

The experimental validation of the approach proceeds by comparing the performance
of s∗ACM-ES to the original CMA-ES and the active CMA-ES (aCMA-ES), considering
IPOP and BIPOP restart scenarios with increasing population size (see Section 2.3.2 for
a detailed description of CMA-ES variants).

The active IPOP-aCMA-ES [Hansen and Ros, 2010a] with the weighted negative co-
variance matrix update is found to perform equally well or better than IPOP-CMA-ES,
which is explained as it more efficiently exploits the information of the worst λ/2 points.
We use IPOP-aCMA-ES as challenging baseline, as it is a priori more difficult to speed
up than the original IPOP-CMA-ES.
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Parameter Range for online tuning Offline tuned value

ℓ=Ntraining

[
4n, 2(40 +

⌊
4n1.7

⌋
)
]

40 +
⌊
4n1.7

⌋

Cbase [0, 10] 6
Cpow [0, 6] 3
csigma [0.5, 2] 1

Table 4.3: Surrogate hyper-parameters, default value and range of variation

Specifically, s∗ACM-ES is validated on the noiseless BBOB testbed by comparing IPOP-
aACM-ES with fixed hyper-parameters, and IPOP-s∗aACM-ES (also called IPOP-saACM-
ES) with online adaptation of hyper-parameters of the surrogate model4.

After detailing the experimental setting, this Section reports on the offline tuning of
the number ℓ of points used to learn the surrogate model, and the online tuning of the
surrogate hyper-parameters (line 21 of Algorithm 4.2).

4.3.3.1 Experimental Setting

The default BBOB stopping criterion is reaching target function value ft = fopt + 10−8.
Ranking SVM is trained using the ℓ most recently evaluated points; its stopping criterion
is arbitrarily set to a maximum number of 1000ℓ iterations of the SMO optimization
procedure (see Section 4.1.1).

After a few preliminary experiments, the Ranking SVM constraint violation weights
(Eq. 4.1) are set to

Ci = 10Cbase(ℓ− i)Cpow

with Cbase = 6 and Cpow = 3 by default; the cost of constraint violation is thus cubically
higher for top-ranked samples. The σ parameter of the RBF kernel is set to σ = csigmaσx,
where σx is the dispersion of the training points (their average distance after translation,
Eq. 4.12) and csigma is set to 1 by default. The number gstart of CMA-ES calls in the
initial phase is set to 10, the maximum lifelength n̂max of a surrogate model is set to 20.
The error threshold τerr is set to 0.45 and the error relaxation factor βErr is set to 0.2.

The surrogate hyper-parameters θsur are summarized in Table 4.3, with offline tuned
value (default for IPOP-aACM-ES) and their range of variation for online tuning, (where
n stands for the problem dimension). Surrogate hyper-parameters are optimized with a
population size 20 (λhyp = 20 surrogate models), where the Err function associated to a
hyper-parameter vector is measured on the λ most recently evaluated points in archive A,
λ being the current optimization population size.

4 For the sake of reproducibility we used the Octave/MatLab source code of IPOP-CMA-ES with default
parameters, available from its author’s page, with the active flag set to 1. The s∗ACM-ES source code is
available at
https://sites.google.com/site/acmesgecco/.
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Figure 4.14: The speedup of IPOP-aACM-ES over IPOP-aCMA-ES w.r.t. fixed number of
training points on (Left) 10-dimensional and (Right) 20-dimensional BBOB benchmark
problems.

4.3.3.2 Offline Tuning: Number of Training Points

It is widely acknowledged that the selection of the training set is an essential in-
gredient of surrogate learning [Jin, 2005, Ingimundardottir and Runarsson, 2011]. Af-
ter some alternative experiments the training set includes the most recent ℓ points
in the archive (see Section 4.3.3.2 for a discussion of different training set selec-
tion strategies). The study thus focuses on the tuning of ℓ. Its optimal tun-
ing is of course problem- and surrogate learning algorithm-dependent. Several tun-
ings have been considered in the literature, for instance for 10-dimensional prob-
lems: 3λ for SVR [Ulmer et al., 2004]; 30 for RBF [Ulmer et al., 2003a]; 2n = 20 for
Kriging [Kruisselbrink et al., 2010]; 50 for ANN [Jin, 2005]; λ, 2λ for Ranking SVM
[Runarsson, 2006, Ingimundardottir and Runarsson, 2011]; n(n+1)

2 + 1 = 66 for LWR in
the lmm-CMA-ES [Bouzarkouna et al., 2010]; ⌊30√n⌋ = 95 and ⌊70√n⌋ = 221 for Rank-
ing SVM in the ACM-ES (see Section 4.2.3).

In all above cases but ACM-ES, the surrogate models aim at local approximation.
These approaches might thus be biased toward small ℓ values, as a small number of
training points are required to yield good local models (e.g., in the case of the Sphere
function), and small ℓ values positively contribute to the speedup. It is suggested however
that the Sphere function might be misleading regarding the optimal adjustment of ℓ.

Let us consider the surrogate speedup of IPOP-aACM-ES w.r.t. IPOP-aCMA-ES
depending on (fixed) ℓ, on unimodal benchmark problems from the BBOB noiseless testbed
(Figure 4.14 for n = 10, 20). While the optimal speedup varies from 2 to 4, the actual
speedup strongly depends on the number ℓ of training points.

Complementary experiments on n-dimensional problems with n = 2, 5, 10, 20, 40 yield
to propose an average best tuning of ℓ depending on dimension n:

ℓ =
⌊
40 + 4n1.7

⌋
(4.16)

Eq. (4.16) is found to empirically outperform the one proposed for the original ACM-ES
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Figure 4.15: Median trajectories of normalized surrogate hyper-parameters estimated on
15 runs of the IPOP-s∗aACM-ES with Ranking SVM on Sphere, Rotated Ellipsoid,
Discus and Rosenbrock 20-dimensional BBOB benchmark problems.

in Section 4.2.3 (ℓ = ⌊70√n⌋), which appears to be biased to 10-dimensional problems,
and underestimates the number of training points required in higher dimensions. Exper-
imentally however, ℓ must increase super-linearly with n; Eq. (4.16) states that for large
n the number of training points should triple when n doubles.

Further, Figure 4.14 shows that the optimal ℓ value is significantly smaller for the
Sphere function than for other functions, which experimentally supports our conjecture
that the Sphere function might be misleading with regard to the tuning of surrogate
hyper-parameters.

4.3.3.3 Online Tuning: Surrogate Hyper-parameters

The IPOP-s∗ACM-ES achieves the online adaptation of the surrogate hyper-parameters
within a specified range (Table 4.3), yielding the surrogate hyper-parameter values to be
used in the next surrogate learning step.

Note that a surrogate hyper-parameter individual might be non-viable, i.e., if it does
not enable to learn a surrogate model (e.g., the number of training points is negative).
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Figure 4.16: Comparison of the proposed surrogate-assisted versions of the original and
active IPOP-CMA-ES algorithms on 10-dimensional Rotated Ellipsoid (Left) and Rosen-
brock (Right) functions. The trajectories show the median of 15 runs.

Such non-viable individual is heavily penalized (Err(α) > 1). In case no usable hyper-
parameter individual is found (which might happen in the very early generations as it is
shown in Figure 4.15), θsur is set to its default value.

The online adaptation of surrogate hyper-parameters however soon reaches usable
hyper-parameter values. The trajectory of the surrogate hyper-parameter values vs the
number of generations is depicted in Figure 4.15, normalized in [0, 1] and considering the
median out of 15 runs optimizing 20-dimensional Sphere, Rosenbrock, Rotated Ellipsoid
and Discus functions.

On Ellipsoid, Discus and Rosenbrock functions the trajectory of ℓ displays three stages.
In a first stage, ℓ increases as the overall number of evaluated points (all points are required
to build a good surrogate). In a second stage, ℓ reaches a plateau; its value is close to the
one found by offline tuning (see Section 4.3.3.2). In a third stage, ℓ steadily decreases.
This last stage is explained as CMA-ES approaches the optimum of f and gets a good
estimate of the covariance matrix of the objective function. At this point the optimization
problem is close to the Sphere function, and as can be seen from the results for the Sphere
function, a good surrogate can be learned from comparatively few training points.

The trajectories of other surrogate hyper-parameters are more difficult to interpret,
although they clearly show non-random patterns (e.g., Cpow on Ellipsoid and Discus func-
tions).

4.3.3.4 Comparative Performances

The comparative performance of s∗ACM-ES combined with the original and the active
variants of IPOP-CMA-ES is depicted in Figure 4.16, on the 10-dimensional Rotated
Ellipsoid (Left) and Rosenbrock (Right) functions. In both cases, the online adaptation of
the surrogate hyper-parameters yields a quasi constant speedup, witnessing the robustness
of s∗ACM-ES. On the Ellipsoid function, the adaptation of the covariance matrix is much
faster than for the baseline, yielding same convergence speed as for the original CMA-
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ES on Sphere function. On the Rosenbrock function the adaptation is also much faster,
although there is clearly room for improvements.

The performance gain of s∗ACM-ES, explained from the online adjustment of the sur-
rogate hyper-parameters, in particular ℓ, confirms the fact that the appropriate surrogate
hyper-parameters vary along search, and can be adjusted based on the accuracy of the cur-
rent surrogate model. Notably, IPOP-s∗ACM-ES almost always outperforms IPOP-ACM-
ES, especially for n > 10 (in some cases, offline well-tuned hyper-parameters, indeed, may
lead to better results).

4.3.3.5 Scalability w.r.t. Population Size

The default population size λdefault = 4 + ⌊3log n⌋ is suggested to be the only CMA-ES
parameter to possibly require manual tuning. Actually, λdefault is well tuned for unimodal
problems and only depends on the problem dimension. Increasing the population size
usually does not decrease the overall number of function evaluations needed to reach an
optimum. However, it allows one to reach the optimum faster in terms of number of gen-
erations. Increasing the population size and running the objective function computations
in parallel is a source of speedup, which raises the question of s∗ACM-ES scalability w.r.t.
the population size.

Figure 4.17 shows the speedup of the IPOP-s∗aACM-ES compared to IPOP-aCMA-ES
for unimodal 10-dimensional problems, when the population size λ is set to γ times the
default population size λdefault (the original IPOP-s∗aACM-ES is shown for γ = 1). In
all experiments gstart was set to 2, because using large populations we may quickly store
sufficiently many points in the training set. For F8 Rosenbrock, F12 Cigar and F14 Sum
of Different Powers the speedup remains almost constant and independent of γ, while for
F10 Rotated Ellipsoid, F11 Discus and F13 Sharp Ridge, it even increases with γ. With
a larger population size, “younger” points are used to build the surrogate model, that is
hence more accurate.

The experimental evidence suggests that s∗ACM-ES can be applied on top of par-
allelized versions of IPOP-s∗aACM-ES, while preserving or even improving its speedup.
Note that the same does not hold true for many surrogate-assisted methods; for instance
in trust region methods, one needs to sequentially evaluate the points.

It is thus conjectured that further improvements of CMA-ES (e.g., refined parameter
tuning, noise handling) will simultaneously be translated to s∗ACM-ES, without degrading
its speedup.

4.3.3.6 Ranking SVM vs Rank-based SVR

We also tested IPOP-s∗aACM-ES with Rank-based SVR surrogate models on 20-
dimensional Sphere, Rosenbrock, Rotated Ellipsoid and Discus functions. In all exper-
iments we used so-called ’(1:N)’ scheme, where fitness of each individual corresponds to
its rank in the training set (see Section 4.1.4). While it was expected that adaptive scal-
ing of rank-based fitness assignment should lead to better results (i.e., adding the scaling
factor to the set of adapted model hyper-parameters), our preliminary experiments do

111



Chapter 4. Single-Objective Surrogate-Assisted CMA-ES

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

γ=λ / λ
default

S
p
e
e
d
u
p

Speedup for large population sizes

 

 

F8 Rosenbrock

F10 RotEllipsoid

F11 Discus

F12 Cigar

F13 SharpRidge

F14 SumOfPow

Figure 4.17: Speedup of the IPOP-s∗aACM-ES over IPOP-aCMA-ES for large population
sizes λ = γλdefault on 10-D problems.

not confirm this hypothesis. The adaptation of ǫ of SVR also does not improve the re-
sults, therefore we set ǫ = 0 for all experiments, that probably is a reasonable setting for
noise-less problems (for a discussion of a dependency between the noise level and ǫ, see
[Smola et al., 1998]). The lack of improvements from the use of more hyper-parameters
may be due to a larger space of hyper-parameters, which requires larger λhyp as well as λ
for a better model quality estimation.

The results are shown in Figure 4.18 and can be directly comparable with the results of
Ranking SVM, presented in Figure 4.15. It can be seen that SVR-based IPOP-s∗aACM-ES
is about 3.2, 2.6, 2.8 and 2.6 times slower than Ranking SVM-based IPOP-s∗aACM-ES
on Sphere, Rosenbrock, Rotated Ellipsoid and Discus functions, respectively. Thus, the
use of SVR surrogate models insignificantly improves the original aCMA-ES. We suppose
that the main reason for these results is that SVR learning is more constrained than
Ranking SVM learning in the sense that f values in SVR learning are pre-defined, while
in Ranking SVM they are variables under constraints that the ranking is correct. Thus,
the space of satisfactory solutions of Ranking SVM model is larger than of SVR, and,
moreover, includes the latter. Finally, the bad results of SVR are not that surprising if
one closely looks at Figure 4.4, where it is shown that Rank-based SVR relatively badly
approximates the Sphere function.

The number of iterations of SMO optimization was set to 1000ℓ for Ranking SVM
and 10ℓ for SVR. These numbers are not directly comparable, because one iteration of
SVR learning includes more simple numerical operations, and, therefore, computationally
more expensive. If the number of training points is fixed, then the learning of SVR with
the given number of iterations is faster than the one of Ranking SVM. However, in our
experiments with hyper-parameters adaptation we found that the learning and the full
run of SVR actually becomes more expensive than the one of Ranking SVM, because
SVR usually requires (as suggested by the adaptation) more training points that quickly
increases the computational complexity. Finally, the full run of SVR takes about 60,
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Figure 4.18: Median trajectories of normalized surrogate hyper-parameters estimated on
15 runs of the IPOP-s∗aACM-ES with Rank-based SVR on Sphere, Rotated Ellipsoid,
Discus and Rosenbrock 20-dimensional BBOB benchmark problems. See Figure 4.15 for
the results using Ranking SVM.

10, 10 and 15 times longer than the of Ranking SVM for Sphere, Rosenbrock, Rotated
Ellipsoid and Discus functions, respectively. We also found that the use of larger than
default population sizes improves the results for SVR, but it is still worse than Ranking
SVM by a factor of about 2-3.

4.3.3.7 Benchmarking on Noiseless BBOB-2012 Testbed

For benchmarking on BBOB noiseless testbed (see Section 2.3.3 for a detailed description
of BBOB framework) we consider four CMA-ES algorithms with restart scenario: IPOP-
aCMA-ES [Hansen and Ros, 2010a], BIPOP-CMA-ES [Hansen, 2009], IPOP-s∗aACM-ES
and BIPOP-s∗aACM-ES.

Results from experiments according to [Hansen et al., 2012] on the benchmark func-
tions given in [Hansen et al., 2009a] are presented in Figures 4.20 and 4.21 and in Table
4.4. The expected running time (ERT), used in the figures and table, depends on
a given target function value, ft = fopt + ∆f , and is computed over all relevant trials
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(on the first 15 instances) as the number of function evaluations executed during each
trial while the best function value did not reach ft, summed over all trials and divided by
the number of trials that actually reached ft [Hansen et al., 2012, Storn and Price, 1997].
Statistical significance is tested with the rank-sum test for a given target ∆ft (10

−8 as
in Figure 4.20) using, for each trial, either the number of needed function evaluations to
reach ∆ft (inverted and multiplied by −1), or, if the target was not reached, the best ∆f -
value achieved, measured only up to the smallest number of overall function evaluations
for any unsuccessful trial under consideration.

IPOP-s∗aACM-ES and BIPOP-s∗aACM-ES are the same algorithm (s∗aACM-ES) before
the first restart occurs, therefore, the results are very similar for the unimodal functions,
where the optimum can be found without restarts. The s∗aACM-ES outperforms aCMA-
ES usually by a factor from 2 to 4 on f1, f2, f8, f9, f10, f11, f12, f13 and f14 for dimensions
between 5 and 20. The speedup in dimension 2 is less pronounced for problems, where
the running time is too short to improve the search. This is the case for f5 Linear Slope
function, where the speedup can be observed only for dimension 20, because the optimum
can be found after about 200 function evaluations. To improve the search on functions with
small budgets it would make sense to use the surrogate model right after the first (gstart =
1) generation of the CMA-ES, while in this study, this parameter gstart is conservatively
set to 10 generations.

The good results on unimodal functions can be explained by the fact that, while using
the same amount of information (all previously evaluated points), s∗aACM-ES processes
this information in a more efficient way by constructing the approximation model of the
function. Similar effect of more efficient exploitation of the available information can be
observed for aCMA-ES in comparison to CMA-ES.

The speedup on multi-modal functions is less pronounced, because they are more
difficult to approximate and the final surrogate model often has a bad precision. In this
case, the adaptation of the number of generations leads to an oscillation of n̂ close to 0,
such that the surrogate model is not used for optimization or used for small number of
generations.

The BIPOP versions of CMA-ES usually perform better than IPOP on f23 and f24,
where the optimum is more likely to be found using small initial step-size. This leads to
overall better performance of the BIPOP versions, and BIPOP-s∗aACM-ES in particular.
The better performance of the latter in comparison with BIPOP-CMA-ES can be partially
explained by the use of the active covariance matrix update. However, this is not the case
for f20 − f24 functions in 5-D and f15−19 in 20-D (see Figure 4.20).

The s∗aACM-ES algorithms improve BBOB-2010 records in dimension 10 and 20 on
f7, f10, f11, f12, f13, f14, f15, f16, f20.

We also compared the proposed algorithms with 43 optimization algorithms tested dur-
ing the BBOB-2009 and BBOB-2010. Figure 4.19 shows empirical runtime distributions of
these algorithm on all noise-less functions (f1− f24) with target values in

{
102, . . . , 10−8

}

in dimension 20. The results for dimension 40 are not presented here, because they are
incomplete due to extremely long runtime of surrogate-assisted versions on multi-modal
functions, where generally millions of function evaluations are needed to reach the opti-
mum.
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Figure 4.19: Performance of 45 optimization algorithms, including IPOP-s∗aACM-ES
and BIPOP-s∗aACM-ES on 20-dimensional noiseless BBOB benchmark problems. For the
interpretation of axis-x and axis-y see Section 2.3.3.

It may be difficult to recognize curves and corresponding algorithms, however, it can be
clearly seen that IPOP-s∗aACM-ES and BIPOP-s∗aACM-ES dominate all other optimiza-
tion algorithms in the range [100n, 1000n] of functions evaluations used for optimization.
In this range our surrogate-assisted algorithms outperform the closest competitor, IPOP-
aCMA-ES, by a factor between 2 and 3. This speedup is due to the good performances
on non-separable ill-conditioned problems (see Figure 4.20), where IPOP-s∗aACM-ES out-
performs all tested on BBOB algorithms, including BFGS and NEWUOA. On original
f8 and rotated f9 Rosenbrock functions IPOP-s∗aACM-ES is as fast as derivative-based
BFGS and at most 2 times slower than NEWUOA algorithm with quadratic meta-models,
which are indeed well suitable for the quadratic form of the Rosenbrock function, but may
fail under certain transformations of f .

For a budget smaller than 100n function evaluations, the proposed algorithms are
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among the best performing ones, while the latter often benefit from exploiting functions
separability or very simple landscape (see, e.g., f1 Sphere, f2 Separable Ellipsoid, f5 Linear
slope).

For a budget larger than 5000n function evaluations, BIPOP-s∗aACM-ES outperforms
all tested algorithm except MOS (a hybrid of DE and CMA-ES, [LaTorre et al., 2010])
which exploits the separability and therefore performs well on f3 Rastrigin and f4 Skew-
Rastrigin-Bueche functions. On multi-modal functions the advantages of using surrogate
models are less significant because of difficult functions landscapes and limited number of
training points together with high computational cost of surrogate learning. In this case,
it might be more advantageous to use alternative restart strategies for CMA-ES which will
lead to a comparable speedup but with a lower computational cost. We will investigate
this question in the exploration part of this thesis, see Section 6.3.3.
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Figure 4.20: Expected running time (ERT in number of f -evaluations) divided by di-
mension for target function value 10−8 as log10 values versus dimension. Different symbols
correspond to different algorithms given in the legend of f1 and f24. Light symbols give
the maximum number of function evaluations from the longest trial divided by dimension.
Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling. Black stars
indicate statistically better result compared to all other algorithms with p < 0.01 and
Bonferroni correction number of dimensions (six). Legend: ◦: BIPOP-CMA, ▽: BIPOP-
saACM, ⋆: IPOP-aCMA, 2: IPOP-saACM.
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Figure 4.21: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all
functions and subgroups in 20-D. The “best 2009” line corresponds to the best ERT
observed during BBOB 2009 for each single target (generally with a different algorithm
for different targets).
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4.3 Self-adaptive Surrogate-assisted CMA-ES

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 15/15

BIPOP-C7.9(2) 14(3) 20(2) 33(4) 45(3) 57(3) 15/15
BIPOP-s 4.0(0.2) 5.1(0.4) 6.6(0.7) 10(0.7) 13(0.8) 16(1) 15/15
IPOP-aC 7.9(1) 14(1) 20(1) 33(2) 45(2) 58(2) 15/15
IPOP-sa 3.9(0.2) 5.0(0.4) 6.5(0.5) 9.5(0.7) 13(0.7) 16(0.8) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f2 385 386 387 390 391 393 15/15

BIPOP-C35(7) 40(4) 44(4) 47(2) 48(2) 50(2) 15/15
BIPOP-s 6.8(1) 8.0(1) 8.9(1) 10(1) 10(1) 10(1) 15/15
IPOP-aC 22(3) 27(2) 29(1) 31(2) 33(2) 34(2) 15/15
IPOP-sa 7.3(1) 8.3(2) 8.9(2) 10(2) 10(1) 10(1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f3 5066 7626 7635 7643 7646 7651 15/15

BIPOP-C 12(7) ∞ ∞ ∞ ∞ ∞ 6e6 0/15
BIPOP-s 10(7) ∞ ∞ ∞ ∞ ∞ 2e7 0/5
IPOP-aC 10(7) ∞ ∞ ∞ ∞ ∞ 3e6 0/15
IPOP-sa 11(15) ∞ ∞ ∞ ∞ ∞ 2e7 0/5

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f4 4722 7628 7666 7700 7758 1.4e5 9/15

BIPOP-C ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/15
BIPOP-s ∞ ∞ ∞ ∞ ∞ ∞ 2e7 0/5
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 3e6 0/15
IPOP-sa 1.9e4(2e4) ∞ ∞ ∞ ∞ ∞ 2e7 0/5

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f5 41 41 41 41 41 41 15/15

BIPOP-C5.1(0.8) 6.2(1) 6.3(1) 6.3(1) 6.3(1) 6.3(1) 15/15
BIPOP-s 4.7(0.7) 5.3(0.7) 5.4(0.7) 5.4(0.7) 5.4(0.7) 5.4(0.7) 15/15
IPOP-aC 5.1(1) 6.2(0.9) 6.2(1) 6.2(1) 6.2(1) 6.2(1) 15/15
IPOP-sa 4.5(0.7) 5.1(0.7) 5.2(0.8) 5.2(0.8) 5.2(0.8) 5.2(0.8) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f6 1296 2343 3413 5220 6728 8409 15/15

BIPOP-C1.5(0.4) 1.3(0.2) 1.2(0.2) 1.1(0.2) 1.2(0.1) 1.2(0.1) 15/15
BIPOP-s 1.4(0.3) 1.2(0.2) 1.1(0.2) 1.1(0.2) 1.3(0.3) 1.4(0.3) 15/15
IPOP-aC 1.6(0.3) 1.3(0.2) 1.1(0.2) 1.1(0.1) 1.1(0.1) 1.1(0.1) 15/15
IPOP-sa 1.5(0.4) 1.2(0.3) 1.1(0.2) 1.1(0.2) 1.2(0.2) 1.3(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f7 1351 4274 9503 16524 16524 16969 15/15

BIPOP-C1(0.5) 4.9(2) 3.5(0.6) 2.2(0.3) 2.2(0.3) 2.1(0.3) 15/15
BIPOP-s 1.0(0.9) 1.6(0.6) 0.84(0.3) 0.61(0.1)↓30.61(0.1)↓30.60(0.1)↓315/15
IPOP-aC 1.6(2) 2.7(1) 1.6(0.5) 0.99(0.3) 0.99(0.3) 1.0(0.3) 15/15
IPOP-sa 1.0(1) 1.6(0.6) 0.92(0.6) 0.66(0.3)↓2 0.66(0.3)↓2 0.65(0.3)↓2 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f8 2039 3871 4040 4219 4371 4484 15/15

BIPOP-C4.0(1) 4.0(0.7) 4.3(0.6) 4.5(0.6) 4.6(0.6) 4.6(0.6) 15/15
BIPOP-s 1.3(0.2) 1.5(0.9) 1.5(0.9) 1.6(0.8) 1.6(0.8) 1.6(0.8) 15/15
IPOP-aC 3.5(0.8) 3.5(0.5) 3.7(0.6) 3.9(0.6) 3.9(0.5) 4.0(0.5) 15/15
IPOP-sa 1.4(0.2) 1.3(0.1) 1.4(0.1) 1.4(0.1) 1.4(0.1) 1.4(0.1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f9 1716 3102 3277 3455 3594 3727 15/15

BIPOP-C4.7(2) 5.7(1) 6.0(1) 6.1(1) 6.1(1.0) 6.1(0.9) 15/15
BIPOP-s 1.5(0.3) 1.7(0.2) 1.7(0.2) 1.8(0.2) 1.8(0.2) 1.7(0.2) 15/15
IPOP-aC 4.1(0.7) 4.6(0.5) 4.9(0.5) 5.0(0.5) 5.0(0.5) 5.0(0.5) 15/15
IPOP-sa 1.6(0.4) 1.8(1) 1.9(1) 1.9(1) 1.9(1.0) 1.9(1.0) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f10 7413 8661 10735 14920 17073 17476 15/15

BIPOP-C1.9(0.2) 1.8(0.2) 1.6(0.1) 1.2(0.0) 1.1(0.0) 1.1(0.0) 15/15
BIPOP-s 0.36(0.1)↓40.35(0.0)↓40.31(0.0)↓40.24(0.0)↓4 0.23(0.0)↓4 0.23(0.0)↓4 15/15
IPOP-aC 1.2(0.2) 1.2(0.1) 1.0(0.1) 0.80(0.0)↓4 0.73(0.0)↓4 0.75(0.0)↓4 15/15
IPOP-sa 0.35(0.1)↓40.36(0.1)↓4 0.31(0.0)↓40.24(0.0)↓40.22(0.0)↓40.23(0.0)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f11 1002 2228 6278 9762 12285 14831 15/15

BIPOP-C10(0.5) 5.1(0.3) 1.9(0.1) 1.4(0.0) 1.2(0.0) 1.0(0.0) 15/15
BIPOP-s 2.5(0.4) 1.2(0.2) 0.44(0.1) 0.30(0.0)↓40.26(0.0)↓40.23(0.0)↓415/15
IPOP-aC 4.5(0.2) 2.3(0.1) 0.87(0.1) 0.64(0.0)↓40.56(0.0)↓40.50(0.0)↓415/15
IPOP-sa 2.5(0.5) 1.2(0.2) 0.45(0.1) 0.31(0.1)↓40.26(0.1)↓40.23(0.0)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f12 1042 1938 2740 4140 12407 13827 15/15

BIPOP-C3.0(2) 4.0(3) 4.5(3) 4.5(2) 1.9(0.7) 2.0(0.7) 15/15
BIPOP-s 0.99(0.9) 1.1(1) 1.2(0.9) 1.2(0.9) 0.55(0.3)↓ 0.59(0.3)↓215/15
IPOP-aC 2.6(1) 3.0(2) 3.2(2) 3.1(1) 1.3(0.4) 1.4(0.4) 15/15
IPOP-sa 0.67(0.1) 0.88(0.7) 1.1(0.7) 1.2(0.5) 0.56(0.2)↓2 0.60(0.2)↓2 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 18749 24455 30201 15/15

BIPOP-C4.3(6) 2.7(2) 5.1(6) 1.5(0.8) 2.3(2) 3.0(2) 15/15
BIPOP-s 1.1(0.9) 0.89(0.7) 1.4(1.0) 0.38(0.1)↓4 0.42(0.2)↓40.40(0.1)↓415/15
IPOP-aC 3.6(3) 3.4(3) 3.7(2) 0.80(0.4) 1.3(0.7) 1.3(0.7) 15/15
IPOP-sa 1.7(2) 1.7(0.8) 1.5(0.7) 0.34(0.2)↓40.37(0.1)↓40.41(0.2)↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f14 75 239 304 932 1648 15661 15/15

BIPOP-C3.9(1) 2.9(0.4) 3.7(0.4) 4.1(0.3) 6.2(0.5) 1.2(0.1) 15/15
BIPOP-s 3.2(1) 1.8(0.6) 1.9(0.4) 1.5(0.2) 1.4(0.2) 0.23(0.0)↓415/15
IPOP-aC 3.6(0.8) 2.7(0.3) 3.5(0.3) 3.2(0.3) 3.9(0.2) 0.67(0.1)↓4 15/15
IPOP-sa 3.0(0.6) 1.8(0.3) 1.9(0.4) 1.4(0.2) 1.4(0.1) 0.23(0.0)↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15

BIPOP-C1(0.4) 2.0(0.8) 1.4(0.5) 1.4(0.5) 1(0.3) 1(0.3) 15/15
BIPOP-s 0.65(0.6) 1.3(0.6) 0.91(0.7) 0.89(0.6) 0.66(0.5) 0.65(0.5) 15/15
IPOP-aC 0.82(0.3) 1.1(0.3) 0.71(0.2) 0.72(0.2) 0.53(0.2)↓2 0.54(0.2)↓2 15/15
IPOP-sa 0.60(0.5) 0.92(0.7) 0.53(0.4) 0.52(0.4) 0.37(0.3)↓40.37(0.3)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15

BIPOP-C1.7(0.4) 1.0(0.7) 1.2(0.7) 1(0.7) 1(0.7) 1(0.7) 15/15
BIPOP-s 1.9(0.6) 0.74(0.4) 0.51(0.3) 0.60(0.5) 0.84(0.5) 0.83(0.5) 15/15
IPOP-aC 2.8(5) 1.1(0.5) 0.88(0.7) 0.80(0.5) 0.82(0.5) 0.76(0.5) 15/15
IPOP-sa 1.8(0.8) 0.55(0.4) 0.77(0.8) 0.52(0.4) 0.55(0.4) 0.50(0.3)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f17 63 1030 4005 30677 56288 80472 15/15

BIPOP-C2.2(2) 1(0.3) 1(1) 1.2(1) 1.3(0.6) 1.4(0.7) 15/15
BIPOP-s 3.2(2) 1.2(0.4) 2.7(3) 1.2(0.7) 1.2(0.5) 1.4(0.8) 15/15
IPOP-aC 2.3(2) 0.89(0.2) 0.50(0.1) 0.82(0.3) 0.83(0.5) 0.87(0.3) 15/15
IPOP-sa 2.5(2) 0.91(0.3) 0.98(1) 1.2(0.5) 1.2(0.4) 1.1(0.5) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f18 621 3972 19561 67569 1.3e5 1.5e5 15/15

BIPOP-C1.0(0.4) 2.4(2) 1.2(0.9) 1.1(0.6) 1.7(0.7) 1.6(0.6) 15/15
BIPOP-s 1.0(0.3) 1.5(1) 0.92(0.4) 0.96(0.4) 1.6(0.6) 1.6(0.5) 15/15
IPOP-aC 1.2(0.4) 1.5(2) 0.75(0.4) 0.91(0.4) 0.78(0.4) 0.83(0.3) 15/15
IPOP-sa 0.96(0.5) 1.4(2) 0.91(0.6) 0.78(0.5) 0.88(0.4) 1.3(0.8) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15

BIPOP-C 169(74) 2.4e4(1e4)1.2(0.6) 1(0.3) 1(0.3) 1(0.3) 15/15
BIPOP-s 143(52) 2.5e4(1e4)0.42(0.3) 0.72(0.4)↓ 0.73(0.4) 0.73(0.4) 15/15
IPOP-aC 166(60) 2.9e4(2e4)0.63(0.4) 0.43(0.2)↓30.44(0.2)↓30.44(0.2)↓315/15
IPOP-sa 154(50) 3.0e4(2e4)0.61(0.5) 0.33(0.1) 0.32(0.2) 0.32(0.2) 14/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15

BIPOP-C4.3(1) 9.2(4) 1(0.5) 1(0.3) 1(0.3) 1(0.3) 14/15
BIPOP-s 2.9(0.5) 2.1(1) 0.97(0.7) 0.87(0.4) 0.86(0.4) 0.85(0.4) 15/15
IPOP-aC 4.7(1) 3.2(1) 0.83(0.4) 0.58(0.2) 0.59(0.2) 0.60(0.2) 15/15
IPOP-sa 2.8(0.5) 1.7(0.8) 0.49(0.2)↓30.45(0.2)↓ 0.45(0.2)↓ 0.45(0.2)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f21 561 6541 14103 14643 15567 17589 15/15

BIPOP-C3.2(6) 55(48) 48(86) 46(84) 43(84) 39(77) 13/15
BIPOP-s 2.6(4) 1.5(1) 6.0(11) 5.8(11) 5.5(10) 4.8(9) 15/15
IPOP-aC 1.9(4) 81(109) 66(94) 64(88) 60(85) 54(77) 9/15
IPOP-sa 2.6(4) 53(94) 157(308) 151(297) 142(279) 126(247) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f22 467 5580 23491 24948 26847 1.3e5 12/15

BIPOP-C 6.8(13) 13(21) 215(267) 202(247) 188(227) 37(48) 5/15
BIPOP-s 7.7(9) 100(96) 178(320) 173(301) 168(274) 35(54) 15/15
IPOP-aC 462(1351) 264(443) ∞ ∞ ∞ ∞ 1e6 0/15
IPOP-sa 175(98) 978(1807) ∞ ∞ ∞ ∞ 2e7 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15

BIPOP-C4.3(5) 32(33) 1(0.8) 2.0(1) 1.2(0.9) 1.2(0.9) 15/15
BIPOP-s 3.0(6) 21(13) 0.61(0.3) 1.4(1) 1.3(1) 1.3(1) 15/15
IPOP-aC 4.1(6) 2.3e4(3e4) ∞ ∞ ∞ ∞ 3e6 0/15
IPOP-sa 4.3(6) 2.9e4(3e4) 906(1022) ∞ ∞ ∞ 2e7 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15

BIPOP-C 1(0.9) 1(0.9) 1(1.0) 1(1) 1(1) 1(1.0) 3/15
BIPOP-s 0.99(1) 0.88(0.7) 0.80(0.9) 0.80(0.9) 0.80(0.8) 0.79(0.8) 6/15
IPOP-aC 25(32) 4.5(5) ∞ ∞ ∞ ∞ 5e6 0/15
IPOP-sa 28(30) 38(43) ∞ ∞ ∞ ∞ 2e7 0/15

Table 4.4: Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 (given in the respective first row)
for different ∆f values of noise-less functions in dimension 20. The central 80% range
divided by two is given in braces. The median number of conducted function evaluations
is additionally given in italics, if ERT(10−7) = ∞. #succ is the number of trials that
reached the final target fopt + 10−8. Best results are printed in bold.
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Chapter 4. Single-Objective Surrogate-Assisted CMA-ES

4.3.3.8 Benchmarking on Noisy BBOB-2012 Testbed

For benchmarking we consider s∗ACM-ES in IPOP restart scenario (IPOP-s∗aACM-ES)
using default parameters and termination criteria as given in [Hansen and Ros, 2010b].
The only one parameter of the surrogate part of IPOP-s∗aACM-ES different from the
default one is the index of generation gstart when we start to use the surrogate model.
For noisy case we set gstart = 5(irestart + 1) instead of the default gstart = 10. We found
that sometimes it makes sense to postpone the surrogate-assisted search if several restarts
(irestart) were performed.

Results from experiments according to [Hansen et al., 2012] on the benchmark func-
tions given in [Hansen et al., 2009b] are presented in Figures 4.22, 4.23. Table 4.5 gives
the Expected Running Time (ERT) for targets 101,−1,−3,−5,−7 divided by the best ERT
obtained during BBOB-2009 (given in the ERTbest row) in 20-D.

The IPOP-s∗aACM-ES outperforms IPOP-s∗aACM-ES usually by a factor from 2 to
3 on functions with moderate noisy. This is the case for Sphere (f101, f102, f103) and
Rosenbrock (f104, f105, f106) functions with Gaussian, Uniform and Cauchy noise models.
It seems that the moderate noise only slightly affects the quality of the surrogate model
and allows to have a speedup comparable to the one of the noise-less case.

On most functions with severe noise the surrogate model usually is not used (n̂ oscillates
around zero), because it gives a very imprecise prediction of the objective function. An
exception is the 20-dimensional f124 Schaffer function with Cauchy noise, where IPOP-s∗

aACM-ES requires about 7 times more functions evaluations to reach the optimum with
∆fopt = 10−7 than IPOP-aCMA-ES (see Figure 4.22). However, according to Table 4.5,
the performance for ∆fopt = 10−5 is exactly the same for both algorithms, therefore,
we suppose that the loss of performance for ∆fopt = 10−7 can be explained by some
influence of surrogate-assisted search on restart conditions. We also found that if default
coefficients c1 and cµ for the covariance matrix update are used instead of noisy settings
of c1/5 and cµ/5, then IPOP-s∗aACM-ES performs as well as IPOP-aCMA-ES on this
function. However, the use of default coefficients worsen the results of IPOP-aCMA-ES
and IPOP-s∗aACM-ES on other functions.

We also observe some loss in performance of f125 Griewank-Rosenbrock and f128 Gal-
lagher functions for n ≤ 5. For f115 we observe the speedup for n = 5 and loss for n = 20,
probably because of the same reasons as for f124.

The IPOP-s∗aACM-ES improves (sometimes insignificantly) the BBOB-2010 records
in dimension 20 on f101, f102, f103, f104, f105, f106, f107, f109, f112, f114, f117, f118, f120,
f122, f123, f127, f129.
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4.3 Self-adaptive Surrogate-assisted CMA-ES
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Figure 4.22: Expected running time (ERT) divided by dimension for target function value
10−8 as log10 values versus dimension. Different symbols correspond to different algorithms
given in legend of f101 and f130. Light symbols give the maximum number of function
evaluations from all trials divided by the dimension. Horizontal lines give linear scaling,
the slanted dotted lines give quadratic scaling. Legend: ◦: IPOP-aCMA, ▽: IPOP-saACM
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Figure 4.23: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all
functions and subgroups in 20-D. The “best 2009” line corresponds to the best ERT
observed during BBOB 2009 for each single target.
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∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f101 59 425 571 700 739 783 15/15

IPOP-aC6.1(1.0) 1.5(0.1) 1.6(0.1) 2.1(0.2) 2.7(0.1) 3.3(0.2) 15/15

IPOP-sa 4.7(1)⋆ 0.86(0.2)⋆40.73(0.1)⋆4↓20.78(0.1)
⋆4
↓30.88(0.1)

⋆4
↓ 0.99(0.1)⋆415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f102 231 399 579 921 1157 1407 15/15

IPOP-aC1.5(0.4) 1.6(0.2) 1.6(0.2) 1.6(0.1) 1.7(0.1) 1.8(0.1) 15/15

IPOP-sa 1.2(0.2) 0.93(0.2)⋆40.75(0.1)⋆4↓30.61(0.1)
⋆4
↓40.60(0.0)

⋆4
↓40.60(0.0)

⋆4
↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f103 65 417 629 1313 1893 2464 14/15

IPOP-aC5.4(0.9) 1.5(0.1) 1.5(0.1) 1.2(0.1) 1.2(0.1) 1.2(0.1) 15/15

IPOP-sa 3.9(0.8)⋆2 0.83(0.2)⋆4↓20.66(0.1)
⋆4

0.52(0.1)⋆4↓40.55(0.1)
⋆4
↓40.58(0.1)

⋆4
↓315/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f104 23690 85656 1.7e5 1.8e5 1.9e5 2.0e5 15/15

IPOP-aC4.9(3) 1.6(1.0) 0.82(0.5) 0.80(0.5) 0.79(0.5) 0.77(0.4) 15/15
IPOP-sa 3.5(2) 1.1(0.6) 0.55(0.3) 0.52(0.3) 0.50(0.3) 0.49(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f105 1.9e5 6.1e5 6.3e5 6.5e5 6.6e5 6.7e5 15/15

IPOP-aC1.2(0.3) 0.43(0.1)↓3 0.43(0.1)↓3 0.44(0.1)↓3 0.44(0.1)↓3 0.44(0.1)↓3 15/15
IPOP-sa 1.0(0.4) 0.36(0.1)↓30.35(0.1)↓30.34(0.1)↓30.34(0.1)↓30.33(0.1)↓315/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f106 11480 21668 23746 25470 26492 27360 15/15

IPOP-aC0.77(0.2) 0.76(0.2)↓3 0.84(0.2)↓2 0.89(0.1) 0.91(0.1) 0.91(0.1) 15/15

IPOP-sa 0.28(0.1)⋆4↓40.37(0.3)
⋆2
↓40.39(0.2)

⋆3
↓40.45(0.2)

⋆3
↓40.46(0.2)

⋆3
↓40.47(0.2)

⋆3
↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f107 8571 13582 16226 27357 52486 65052 15/15

IPOP-aC0.81(0.4) 0.97(0.4) 1.3(0.6) 1.5(0.9) 1.3(0.7) 1.1(0.5) 15/15
IPOP-sa 0.83(0.5) 1.3(0.8) 1.4(0.7) 1.3(0.8) 1.0(0.5) 0.94(0.4) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f108 58063 97228 2.0e5 4.5e5 6.3e5 9.0e5 15/15

IPOP-aC0.74(0.3) 0.98(0.5) 1.0(0.6) 1.1(0.6) 1.5(0.4) 1.5(0.3) 15/15
IPOP-sa 0.72(0.3) 1.2(0.6) 1.1(0.6) 1.2(0.7) 1.6(0.3) 1.4(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f109 333 632 1138 2287 3583 4952 15/15

IPOP-aC1.1(0.2) 1.2(0.1) 1.2(0.2) 1.2(0.1) 1.1(0.1) 1.1(0.1) 15/15

IPOP-sa 0.93(0.3) 0.78(0.2)⋆3↓ 0.78(0.2)⋆3↓20.89(0.3)
⋆

0.79(0.2)⋆3↓ 0.75(0.2)⋆3↓215/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f110 ∞ ∞ ∞ ∞ ∞ ∞ 0

IPOP-aC . . . . . . 0/15
IPOP-sa . . . . . . 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f111 ∞ ∞ ∞ ∞ ∞ ∞ 0

IPOP-aC . . . . . . 0/15
IPOP-sa . . . . . . 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f112 25552 64124 69621 73557 76137 78238 15/15

IPOP-aC0.84(0.2) 0.84(0.5) 0.89(0.5) 0.93(0.5) 0.94(0.5) 0.93(0.4) 15/15
IPOP-sa 0.89(0.3) 0.79(0.1) 0.84(0.1) 0.88(0.1) 0.88(0.1) 0.88(0.1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f113 50123 3.6e5 5.6e5 5.9e5 5.9e5 5.9e5 15/15

IPOP-aC0.60(0.4) 0.27(0.1)↓30.27(0.1)↓40.29(0.1)↓40.29(0.1)↓40.29(0.1)↓415/15
IPOP-sa 0.54(0.2) 0.35(0.2)↓2 0.31(0.1)↓4 0.32(0.1)↓4 0.32(0.1)↓4 0.32(0.1)↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f114 2.1e5 1.1e6 1.4e6 1.6e6 1.6e6 1.6e6 15/15

IPOP-aC0.64(0.5) 0.35(0.1)↓40.53(0.3)↓ 0.62(0.3) 0.62(0.3) 0.63(0.3) 15/15
IPOP-sa 0.71(0.3) 0.39(0.3)↓30.40(0.2)↓30.50(0.3)↓20.50(0.3)↓20.55(0.3)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f115 2405 30268 91749 1.3e5 1.3e5 1.3e5 15/15

IPOP-aC1.4(2) 1.2(0.6) 0.54(0.1) 0.45(0.0)↓40.45(0.0)↓40.45(0.1)↓415/15

IPOP-sa 0.75(2) 0.67(0.3) 0.31(0.2)⋆24.8(15) 4.8(15) 4.7(14) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f116 5.0e5 6.9e5 8.9e5 1.0e6 1.1e6 1.1e6 15/15

IPOP-aC0.36(0.1) 0.28(0.1)↓ 0.23(0.0)↓20.22(0.0)↓40.23(0.0)↓40.24(0.0)↓415/15
IPOP-sa 0.46(0.1) 0.35(0.1) 0.30(0.1) 0.28(0.1)↓4 0.29(0.1)↓4 0.30(0.1)↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f117 1.8e6 2.5e6 2.6e6 2.9e6 3.2e6 3.6e6 15/15

IPOP-aC0.37(0.2)↓2 0.35(0.2)↓4 0.41(0.3)↓3 0.45(0.2)↓3 0.47(0.2)↓3 0.56(0.3)↓3 15/15
IPOP-sa 0.29(0.1)↓30.26(0.1)↓40.29(0.1)↓40.35(0.2)↓40.42(0.2)↓30.48(0.4)↓215/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f118 6908 11786 17514 26342 30062 32659 15/15

IPOP-aC0.82(0.1) 0.78(0.2) 0.71(0.2) 0.63(0.1)↓3 0.64(0.1)↓4 0.66(0.1)↓3 15/15

IPOP-sa 0.42(0.2)⋆3↓40.49(0.1)
⋆3
↓40.54(0.1)

⋆
↓30.54(0.2)↓40.56(0.1)↓40.58(0.1)

⋆
↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f119 2771 29365 35930 4.1e5 1.4e6 1.9e6 15/15

IPOP-aC1.6(1) 0.62(0.4) 0.83(0.4) 0.42(0.3)↓20.25(0.1)↓40.28(0.1)↓415/15
IPOP-sa 1.5(2) 0.74(0.3) 0.88(0.3) 0.33(0.1)↓30.25(0.1)↓4 0.37(0.3)↓3 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f120 36040 1.8e5 2.8e5 1.6e6 6.7e6 1.4e7 13/15

IPOP-aC0.62(0.3) 0.64(0.2) 0.79(0.4) 0.78(0.4) 0.44(0.2)↓3 0.40(0.2)↓3 15/15
IPOP-sa 0.65(0.5) 0.80(0.4) 1.2(0.6) 0.87(0.5) 0.42(0.1)↓30.39(0.2)↓315/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f121 249 769 1426 9304 34434 57404 15/15

IPOP-aC1.2(0.3) 1.0(0.2) 1.1(0.2) 0.77(0.1)↓30.56(0.1)↓40.64(0.1)↓415/15
IPOP-sa 1.2(0.4) 0.85(0.2) 0.92(0.3) 0.69(0.1)↓30.58(0.1)↓4 0.71(0.1)↓3 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f122 692 52008 1.4e5 7.9e5 2.0e6 5.8e6 15/15

IPOP-aC2.3(3) 0.81(0.3) 0.97(0.6) 0.56(0.3) 0.66(0.1) 0.81(0.9) 15/15
IPOP-sa 2.5(3) 0.94(0.6) 0.81(0.3) 0.53(0.1)↓ 0.51(0.2)↓ 0.57(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f123 1063 5.3e5 1.5e6 5.3e6 2.7e7 1.6e8 0

IPOP-aC6.4(4) 0.72(0.4) 0.88(0.8) 0.94(0.7) 0.50(0.1) 1.9(2) 0/15
IPOP-sa 7.6(8) 0.77(0.5) 0.81(0.5) 1.1(0.7) 0.63(0.4) 0.92(1) 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f124 192 1959 40840 1.3e5 3.9e5 8.0e5 15/15

IPOP-aC1.1(0.5) 3.9(11) 1.0(0.7) 0.91(0.6) 0.76(0.4) 0.62(0.3) 15/15
IPOP-sa 0.86(0.4) 3.0(0.8) 2.2(2) 1.4(0.5) 0.76(0.3) 4.0(5) 14/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f125 1 1 1 2.5e7 8.0e7 8.1e7 4/15

IPOP-aC1(0) 827(912) 3.8e6(4e6)1.1(1) 1.7(2) 1.7(2) 2/15
IPOP-sa 1(0) 1083(1766) 3.3e6(2e6)0.61(0.5) 1.1(1) 1.1(1) 3/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f126 1 1 1 ∞ ∞ ∞ 0

IPOP-aC1(0) 6417(3982) ∞ . . . 0/15
IPOP-sa 1(0) 7156(4580) ∞ . . . 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f127 1 1 1 4.4e6 7.3e6 7.4e6 15/15

IPOP-aC1(0) 193(102) 2.8e5(4e5)1.0(0.9) 1.1(1) 1.1(1.0) 15/15
IPOP-sa 1(0) 238(106) 3.3e5(4e5)0.75(0.6) 0.93(0.5) 0.97(0.6) 14/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f128 1.4e5 1.3e7 1.7e7 1.7e7 1.7e7 1.7e7 9/15

IPOP-aC0.51(0.6) 0.72(1) 1.0(2) 1.0(2) 1.0(1) 1.0(1) 7/15
IPOP-sa 1.3(2) 0.59(0.8) 1.1(1) 1.1(2) 1.1(1) 1.1(2) 8/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f129 7.8e6 4.1e7 4.2e7 4.2e7 4.2e7 4.2e7 5/15

IPOP-aC0.16(0.2)↓ 0.27(0.3) 0.46(0.6) 0.46(0.6) 0.46(0.6) 0.46(0.6) 6/15
IPOP-sa 0.41(0.9) 0.28(0.5) 0.36(0.5) 0.36(0.5) 0.36(0.5) 0.36(0.5) 9/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f130 4904 93149 2.5e5 2.5e5 2.6e5 2.6e5 7/15

IPOP-aC1.5(2) 66(99) 54(71) 54(71) 54(72) 53(70) 6/15
IPOP-sa 0.55(1) 27(34) 30(43) 30(49) 30(39) 30(41) 12/15

Table 4.5: Expected running time (ERT in number of function evaluations) divided
by the respective best ERT measured during BBOB-2009 (given in the respective first
row) for different ∆f values of noisy functions in dimension 20. The central 80% range
divided by two is given in braces. The median number of conducted function evaluations
is additionally given in italics, if ERT(10−7) = ∞. #succ is the number of trials that
reached the final target fopt + 10−8. Best results are printed in bold.
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Figure 4.24: CPU cost per function evaluation of IPOP-aACM-ES with fixed hyper-
parameters.

4.3.3.9 CPU Timing Experiment

For the timing experiment the IPOP-s∗aACM-ES was run on noiseless f1, f8, f10 and
f15 functions without self-adaptation of surrogate model hyper-parameters. The crucial
hyper-parameter for CPU time measurements, the number of training points, was set to
ℓ =

⌊
40 + 4n1.7

⌋
as a function of dimension n.

These experiments have been conducted on a single core with 2.4 GHz under Windows
XP using Matlab R2006a.

On unimodal functions the time complexity of surrogate model learning usually in-
creases cubically in the search space dimension (see Figure 4.24) and quadratically in the
number of training points. For small dimensions (n < 10) the overall time complexity
increases super-linearly in the dimension. The time complexity per function evaluation
depends on the population size, because one model is used to estimate the ranking of
all points of the population. This leads to a smaller computational complexity on multi-
modal functions, e.g., f15 Rastrigin function, where the population becomes much larger
after several restarts. The time complexity on noisy functions is more similar to the one
of Rastrigin function, because in both cases the large populations are used.

The results presented here do not take into account the optimization of model hyper-
parameters, where λhyp surrogate models should be build at each iteration, which leads
to an increase of CPU time per function evaluation by a factor of λhyp. For IPOP-s∗

aACM-ES λhyp was set to 20.

4.3.3.10 Quadratic Programming Problem Optimization

The number of iterations niter used to optimized the QP problem 4.3 is left fixed to
1000ℓ in the hyper-parameters optimization procedure. However, it can also be adapted
by setting Min(niter) = 100ℓ and Max(niter)=1500ℓ (this would complement Table 4.3).
Thus, the procedure of hyper-parameters adaptation could, if necessary, reduce the CPU
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Figure 4.25: Median trajectories of normalized surrogate hyper-parameters (including
niter) from 15 runs of the IPOP-s∗aACM-ES with Ranking SVM on Sphere, Rotated El-
lipsoid and Rosenbrock 20-dimensional BBOB benchmark problems.

cost from 1000ℓ (default setting) to 100ℓ iterations (i.e., by a factor of 10) or on the
opposite allocate 1500ℓ iterations in total to obtain a more precise solution. Figure 4.25
illustrates the results of IPOP-s∗aACM-ES on 20-dimensional Sphere, Rotated Ellipsoid
and Rosenbrock functions (see also Figure 4.15 for similar results without adaptation of
niter). The results show that the adapted niter often lies quite close to its default value
1000ℓ, at least for these objective functions and given procedures of surrogate learning
and exploitation. Therefore, it is likely that more precise solutions of QP will not improve
the results on these test problems. However, a complete analysis of the adaptation of niter
should be performed on large dimension (i.e., 20-D and 40-D), for both noiseless and noisy
BBOB functions in order to investigate whether the results are improved or not.

The surrogate learning step involves a trade-off between the computational effort and
the accuracy of the QP resolution. This trade-off can be controlled through adapting the
number niter of iterations, and/or selecting the αixs (see Section 4.1.1), e.g., selecting a
working set selection based on gradient information of the Lagrangian L. In practice,
the selection proceeds by computing ∆L for all αix at each iteration of the algorithm, to
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Figure 4.26: Cumulative normalized improvements of Lagrangian (Top, lower values are
better) and maximal local improvements of Lagrangian (Bottom) vs number of iterations
of Ranking SVM surrogate learning of 10-dimensional Sphere function for both uniform
and gradient-based selection of Lagrangian multipliers.

update the αix which leads to the largest increase of the Lagrangian and ∆L.

This trade-off has been empirically investigated, comparing the uniform and gradient-
based selection strategies on 10-dimensional Sphere and Rosenbrock functions with 100
training points and 40-dimensional Sphere and Rosenbrock functions with 2000 training
points. The training points, uniformly randomly drawn from [−0.5, 0.5]n, are used to
build Ranking SVM surrogate model with RBF kernel, where σ parameter is defined as
the average distance between the points. The constant C of Ranking SVM is set to 106 in
all experiments. For both selection strategies the maximum number of iterations is 1000ℓ,
for gradient-based selection an additional stopping criterion is used: the algorithm also
stops if Max(∆L)

C2 < 10−20.

The results are displayed in Figure 4.26, showing the cumulative increase of Lagrangian
L and observed Max(∆L) for uniform and gradient-based selection on 10-dimensional
Sphere function. As expected, gradient-based selection converges faster to the optimum
of the QP problem by selecting at each iteration the most promising αix Lagrangian
multiplier. The speedup w.r.t. uniform selection is of order 100 for small number of it-
erations (e.g., 10) and of order smaller than 10 for relatively large number of iterations
(e.g., 104 − 105). Indeed, these speedup factors are problem- and SVM hyper-parameters
dependent. However, an important aspect that should be taken into account is that one
operation of gradient-based selection is numerically more expensive than random or peri-
odic selection. Therefore, the overall CPU time of the gradient selection-based surrogate
learning might be longer than the one of the uniform selection-based learning. In order
to investigate the time complexity of both approaches, we re-plotted the results with,
on the x-axis, the ”time” metric, where ”time” is equal to the number of iterations for
uniform selection and the number of iterations times a factor of how much one gradient
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Figure 4.27: Convergence to the optimum of QP problems vs ”time” of Ranking SVM
surrogate learning for 10-dimensional Sphere and Rosenbrock functions with 100 training
points and for 40-dimensional Sphere and Rosenbrock functions with 2000 training points.
See text for details.

selection-based iteration is more expensive than uniform selection-based iteration.

Figure 4.27 shows the convergence to the optimum of the QP problem versus ”time” for
uniform selection and gradient selection-based strategies. As can be seen, the advantages
of gradient-based selection becomes less obvious by taking into account the CPU time
instead of the number of iterations. Moreover, uniform selection outperforms gradient-
based selection on 10-dimensional Sphere and Rosenbrock functions in the sense of the
cumulative increase of the Lagrangian at the typical stopping point of niter = 1000ℓ. This
was observed in our earlier experiments and has been discussed in Section 4.1.1. The
results for 2000 training points suggest that both approaches are quite comparable at
500ℓ . . . 1000ℓ iterations of uniform selection-based learning. However, at early stages of
QP problem optimization, gradient-based selection clearly outperforms uniform selection.
Thus, if the accuracy of QP problem solution at these early stages is sufficient for accurate
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predictions of f(x), then the CPU time complexity of surrogate model learning can be
reduced by a factor of 10-100 by considering a gradient-based selection. Unfortunately,
our preliminary experiments, as well as the results shown in Figure 4.25 (the adaptation of
niter), suggest that a much lower accuracy of QP problem solutions is not sufficient to build
accurate surrogate models. These preliminary findings, however, should be very carefully
verified considering more objective functions and larger dimensions, since the gradient-
based selection is one of the most straightforward ways to reduce the time complexity
of surrogate learning procedure and scale the algorithm to larger problem dimensions.
Another possibility, to be considered in further work, might be to leave the decision of
gradient-based versus uniform selection, to the hyper-parameter optimization step.

4.3.4 Conclusion and Perspectives

In this Section, we have presented a generic framework for adaptive surrogate-assisted
optimization, which can in principle be combined with any iterative population-based
optimization and surrogate learning algorithms. This framework has been instantiated on
top of surrogate-assisted ACM-ES, using CMA-ES as optimization algorithm and Ranking
SVM as surrogate learning algorithm. The resulting algorithm, s∗ACM-ES, inherits
from CMA-ES and ACM-ES the property of invariance w.r.t. monotonous transformations
of the objective function and orthogonal transformations of the search space.

The main contribution of the s∗ACM-ES regards the online adjustment of i). the
number n̂ of generations a surrogate model is used, called surrogate lifelength; ii). the
surrogate hyper-parameters controlling the surrogate learning phase. The surrogate life-
length is adapted depending on the quality of the current surrogate model; the higher
the quality, the longer the next surrogate model will be used. The adjustment of the
surrogate hyper-parameters is likewise handled by optimizing them w.r.t. the quality of
the surrogate model, without requiring any prior knowledge on the optimization problem
at hand.

IPOP-s∗aACM-ES (respectively, BIPOP-s∗aACM-ES) was found to improve on IPOP-
aCMA-ES (respectively, BIPOP-CMA-ES) with a speedup ranging from 2 to 3 on uni-
modal n-dimensional functions from the BBOB-2012 noiseless testbed, with dimension
n ranging from 2 to 20. On multi-modal functions, IPOP-s∗aACM-ES is equally good
or sometimes better than IPOP-aCMA-ES, although the speedup is less significant than
for unimodal problems. Further, IPOP-s∗aACM-ES also improves on IPOP-aCMA-ES on
problems with moderate noise from BBOB-2012 noisy testbed. BIPOP-s∗aACM-ES usu-
ally outperforms IPOP-s∗aACM-ES and BIPOP-CMA-ES on multi-modal functions (note
that an active version of BIPOP-CMA-ES, BIPOP-aCMA-ES, will be presented in Section
6.3.3).

A long term perspective for further research is to better handle multi-modal (see Sec-
tion 6.3.3) and noisy functions. A shorter-term perspective is to consider a more compre-
hensive surrogate learning phase, involving a portfolio of learning algorithms and using the
surrogate hyper-parameter optimization phase to achieve portfolio selection. Another per-
spective is to design a tighter coupling of the surrogate learning phase, and the CMA-ES
optimization, e.g., using the surrogate model f̂ to adapt the CMA-ES hyper-parameters
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during the optimization of the expensive objective f .

4.4 Discussion

In this Chapter, we focused on single-objective surrogate-assisted CMA-ES algorithms for
optimization of expensive problems of small to medium dimension. In the following, we
analyze alternatives which may be considered for further research:

Core Optimization Algorithm CMA-ES seems to be a good candidate baseline op-
timizer, the only competitive algorithms are i). BFGS and NEWUOA algorithms
which now perform not better than s∗ACM-ES even on well suitable (for them) func-
tions such as Rosenbrock, being sensitive to rank-preserving transformations of f ;
ii). Differential Evolution algorithms which are based on alternative strategies of
optimization and have attracted a lot of attention in the last years (see, e.g., several
DE algorithms in BBOB-2012), but are about one order of magnitude slower than
s∗ACM-ES.

Surrogate Modeling Approach We strongly believe that the ordinal regression should
be preferred to the metric regression, because the invariance of the former allows to
reduce the problem of hyper-parameters tuning. We also suppose that Ranking SVM
definitely should be used as a baseline surrogate technique for comparison-based op-
timization algorithms, at least on unimodal optimization problems. For multi-modal
and/or noisy problems the use ℓ− 1 constraints seems to be too optimistic and ad-
ditional selection of constraints (e.g., the most violated ones) should be considered.
As an alternative to Ranking SVM, Gaussian Processes for ordinal regression can be
used [Chu and Ghahramani, 2005a], however, our preliminary experiments showed
that the surrogate learning is computationally more expensive and numerically in-
stable.

Surrogate Model Control Alternative approaches to the simple surrogate model based
control used in this Chapter were discussed in Section 4.3.1.4. The lifelength-based
control strategy is used because it can be parallelized on λ CPUs and is simple to
interpret. This strategy may be improved by using more sophisticated n̂(Err(f̂))
functions (dotted curves in Figure 4.12) instead of the linear one (bold curve). A
more meaningful estimation of the model error can be obtained if use weights for
different points in Eq. (4.9). We suppose that the two ideas described above may
significantly improve the results. However, we intentionally avoided their further
analysis to prevent the algorithm from a potential overfitting to the testbed and to
keep the strategy in the simple and interpretable form.

Surrogate Model Hyper-parameters Adaptation In addition to already adapted
hyper-parameters, we may also learn which Kernel function is the most suitable
in the current state of the search [Tenne and Armfield, 2007]. Apart from the com-
putational complexity, there is no reason not to use different surrogate modeling
techniques with hyper-parameters adaptation for each technique independently, then
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use the best model or an aggregation of the models for the exploitation phase. It
is also suggested to use larger λhyp if the computational of the model is relatively
cheap.

The main limitations of the s∗ACM-ES which should be addressed in further research:

Space complexity Ranking SVM with non-linear Kernels needs to store Kernel matrix
of size ℓ2. The number of training points usually scales super-linearly with n such
that for n > 100 it is very likely that all required training points cannot be stored
in memory. However, s∗ACM-ES still can be used for say n = 1000 by setting upper
bound for ℓ, but this will lead to a smaller speedup (see Figure 4.9 for a similar
effect for the original ACM). To reduce the space complexity, ensembles of surrogate
models can be used, such that each surrogate model is responsible for ℓ′ < ℓ training
points. In this case, an aggregation procedure of different surrogates should be used.

Time complexity The algorithm scales with O(ℓ2). To drastically reduce the time com-
plexity, one should not use non-linear Kernels. Recent results show that large-scale
linear classification can be extremely fast (see LIBLINEAR [Fan et al., 2008]). We
suppose that the use of ensembles of linear Ranking SVM is an attractive long term
direction of research.

Small Speedup on Noisy and/or Multi-modal Functions The simple reason why
the speedup may be relatively small on noisy and multi-modal functions is that these
functions are difficult to approximate and usually more training points are required
to build their accurate model. To better deal with this problem, one should closely
look at the model learning on simplest 2-dimensional instances of the multi-modal
and noisy problems at hand.

We suppose that the performance of s∗ACM-ES on unimodal functions can be further
improved by more carefully developing surrogate model control and adaptation procedures,
taking inspiration from the prospective directions of research that have been discussed. On
multi-modal functions, however, it seems more prospective to look at alternative restart
strategies for CMA-ES which potentially may bring a comparable speedup at a lower com-
putational cost. We will address this issue in detail in Section 6.3.3. Another interesting
observation that we made during the development of s∗ACM-ES is that if transformation
(4.11) allows to decorrelate all the variables as well as possible such that the transformed
space resembles the Sphere function, then why not use some very simple optimization al-
gorithm which exploits the separability of this space? To answer this question we propose
and investigate in Section 6.1 Adaptive Coordinate Descent method, a non-evolutionary
and non-stochastic algorithm that has a comparable performance with CMA-ES on uni-
modal functions and may have linear time complexity.
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Chapter 5

Multi-Objective Surrogate-Assisted
CMA-ES

Multi-objective optimization problems are usually difficult to solve, because they inherit
properties of individual objectives and a set of Pareto optimal solutions is the primal goal,
rather than one single solution (see Section 2.4 for a review of multi-objective optimiza-
tion). Mainstream surrogate approaches for multi-objective problems, with the notable
exception of [Yun et al., 2004], often extend surrogate-based standard EAs, building one
surrogate for each objective function and replacing the objective by its surrogate (see Sec-
tion 3.3.3). The main limitation of such approaches is due to the approximation noise as
the number of objectives increases. The learning cost indeed increases linearly with the
number of objectives; but the Pareto dominance test, checking whether one individual
is dominated by another one, requires comparing their surrogate values over all objec-
tives; the error thus exponentially increases in the worst case with the number of objec-
tives. Alternative single-model approaches based on the notion of expected improvement
in multi-objective optimization in terms of hypervolume indicator have been proposed
by [Emmerich et al., 2006a, Ponweiser et al., 2008] (see Section 3.3.3). These approaches,
however, usually assume the evaluation of only one candidate solution per iteration that
may lead to a loss of efficiently in the scenario with parallel evaluations.

Addressing the limitations described above, we propose a mono surrogate approach
based on Aggregated Surrogate Models (ASM) aiming at building a global surrogate model
in decision space, characterizing whether an individual belongs to i). the current Pareto
set, or ii). the dominated region, or iii). the rest of the decision space (not yet visited, and
containing the true Pareto set). This surrogate model, providing an aggregated perspective
on all objective functions simultaneously, is then used to guide the search in the vicinity of
the current Pareto set, and speed up the population move toward the true Pareto set. ASM
is constructed by combining ideas from Regression and One-class SVMs and is described
in detail in Section 5.1.

The formulation of ASM has been found to be over-constrained in Section 5.4.3.1,
and, similarly to Chapter 4, we propose a relaxed version inspired from Ranking SVM,
rank-based ASM model (RASM). RASM only requires to locally approximate the Pareto
dominance relation, enabling to rank neighbor points within the objective space. Thanks
to the flexibility of Ranking SVM, RASM is able to learn any kind of preference relations
defined for solutions of multi-objective problem, e.g., based on Pareto dominance, Qual-
ity Indicator and Decision Maker preferences. The description of RASM is presented in
Section 5.2.

As for surrogate model exploitation, we employ a simple pre-selection scheme in order
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to investigate basic properties of ASM models (see Section 5.3). In Section 5.4, we ex-
perimentally validate both ASM and RASM models on a relatively simple two-objective
benchmark testbed, demonstrating a significant reduction of the number of evaluations
of the actual objective functions both for ASM-assisted NSGA-II and MO-CMA-ES al-
gorithms. Finally, Section 5.5 concludes the Chapter and presents some perspectives for
further research.

The results presented in this Chapter have been published as [Loshchilov et al., 2010a,
Loshchilov et al., 2010b, Loshchilov et al., 2010d].

5.1 Aggregated Surrogate Model

In mono surrogate approach, the goal is to build an Aggregated Surrogate Model which
aggregates the informations about preferences among training points in the objective space,
usable to drive the population toward the true Pareto set. In this Section, a surrogate
model f̂ of a multi-objective problem f is learned from i). points belonging to the current
Pareto set, and ii). dominated points.

5.1.1 Rationale and Assumption

At any given time during the EMOA run, the relative position of the Pareto set and
the dominated points can be schematically depicted as follows. The situation might be
simple in the objective space (Figure 5.1-a), with the true Pareto front and the dominated
region located on the two opposite sides of the current Pareto front. It can be much more
intricate in the decision space; Figure 5.1-b illustrates the case where the true Pareto set
(respectively, the dominated region) lies within (respectively, outside) the convex hull of
the current Pareto set. Furthermore, the Pareto set can include many disjoint regions
in the decision space. The assumption made is that the Pareto region includes a small
number of connected components; note that this assumption holds for most classical multi-
objective optimization benchmarks (e.g., IHR1, see Figure 5.5-c and -d).

While ASM expectedly discriminates the Pareto set and the dominated region, a binary
classification approach is ill-suited, as it would not give any precise indication about where
the true Pareto set is located. More generally, the Pareto set (true or current) and the
dominated points cannot be handled in a symmetrical way: dominated points span over
a subspace whereas the Pareto set should better be viewed as a manifold.

It thus comes to map all Pareto points onto a single value ρ (up to some tolerance ǫ);
meanwhile, the dominated points would be mapped onto the half space ]−∞, ρ− ǫ[. Such
a mapping might actually provide useful indications: expectedly, points mapped onto the
half space [ρ+ǫ,+∞[ would belong to the yet unexplored region, which is bound to contain
the true Pareto set, and these points could thus be considered promising.

The above constraints on the ASM mapping can be expressed by combining the Sup-
port Vector Regression formulation ([Smola and Schölkopf, 2004], see Section 3.2.2), map-
ping each point x onto some target value f(x) up to some tolerance ǫ, and the One-class
SVM ([Schölkopf et al., 2001], see Section 3.2.3), mapping a set of points onto a connected
interval and thus characterizing the support of the underlying sample distribution. The
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Figure 5.1: An idealistic schematic view of the Pareto front, depicting dominated points
(white), current Pareto (green) and new Pareto (blue) respectively in objective and deci-
sion space.

main difference is that the target value ρ associated to the Pareto points is free in the
ASM problem.

5.1.2 Lagrangian formulation

Let the training set be defined as D = {x1, . . . xℓ,xℓ+1, . . . xm} where the first ℓ points
belong to the current Pareto front and the following points xℓ+1, . . . xm are dominated
ones. As discussed above, the ASM is obtained from the following learning constraints:� All Pareto points x1 . . . xℓ are mapped on some value ρ up to tolerance ǫ (regression

constraints);� All dominated points are mapped onto (−∞, ρ− ǫ[ (one-class constraints).
Let C and ǫ be two positive constants, and ξupi , ξlowi are slack variables measuring

constraints violations, the primal ASM learning problem is:

Minimize
{w, ξ(∗), ρ}

1

2
||w||2 + C

ℓ∑

i=1

(ξupi + ξlowi ) + C

m∑

i=ℓ+1

ξupi + ρ (5.1)

subject to

< w,Φ(xi) >≤ ρ+ ǫ+ ξupi (i = 1 . . . ℓ) (5.2)

< w,Φ(xi) >≥ ρ− ǫ− ξlowi (i = 1 . . . ℓ) (5.3)

< w,Φ(xi) >≤ ρ− ǫ+ ξupi (i = ℓ+ 1 . . . m) (5.4)

ξupi ≥ 0 (i = 1 . . . ℓ) (5.5)

ξlowi ≥ 0 (i = 1 . . . ℓ) (5.6)

ξupi ≥ 0 (i = ℓ+ 1 . . . m) (5.7)
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The formulation of dual form of ASM learning problem and its resolution using SMO
method is described in Appendix B.

In some cases the set of non-dominated points is too small to build accurate surrogate
models or the preference relations between training points are only partially known, then
it would be reasonable to directly learn preference relations as will be discussed in the
next Section.

5.2 Rank-based Aggregate Surrogate Model

This Section gives an overview of the Rank-based Aggregate Surrogate Model (RASM), a
Ranking SVM-based approach for learning preference information with a relatively small
number of constraints.

5.2.1 Learning Preference Information in Multi-objective Space

To build a mono surrogate model f̂ of a multi-objective problem f , one can use preference
information defined on a set of training points D = {x1, . . . ,xℓ} to satisfy f̂(xa) > f̂(xb)
whenever xa is preferred to xb. All preference pairs (a, b) can be stored in a set of preference
constraints P. Thus, one can formalize the learning of f̂ using Ranking SVM approach
(see Sections 3.2.4) as follows:

Minimize{w,ξ}
1

2
||w||2 +

|P|∑

i=1

Ciξi (5.8)

subject to

{
〈w,xa〉 − 〈w,xb〉 ≥ ǫi − ξi, i = 1, . . . , |P|; (a, b) ← Pi
ξi ≥ 0, i = 1, . . . , |P| (5.9)

The mentioned above problem can be solved using SMOmethod as described in Section
4.1.1. The crucial question is how to fill P such that the final surrogate f̂ would be ideal
for a given algorithm A. Any kind of preference information can be used to fill P, however,
one should look at the following sources, relevant for the multi-objective context, to decide
whether a preference pair (a, b) should be added to P:

Pareto Dominance Check whether xa dominates xb.

Quality Indicator Check whether I(xa) is preferred to I(xb) w.r.t. a given Quality
Indicator I, e.g., hypervolume contribution indicator (see Section 2.4.1).

Decision Maker Check whether the Decision Maker prefers xa to xb.

When xa is preferred to xb ((a, b) is the i-th preference constraint Pi) we learn such
f̂ that f̂(xa) − f̂(xb) = 〈w,xa〉 − 〈w,xb〉 ≥ ǫi − ξi, where ǫi is usually set to 1. Such
definition corresponds to the preference constraint in its usual sense, referred to as ”>”-
constraint. We also may define equality of xa and xb setting ǫi to a relatively small value,
say 10−3, and adding two pairs of constraints: i). 〈w,xa〉 − 〈w,xb〉 ≥ 10−3, and ii).
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5.2 Rank-based Aggregate Surrogate Model

〈w,xb〉 −〈w,xa〉 ≥ 10−3. Thus, the learning algorithm will try to satisfy both constraints,
mapping xa and xb to the same value of f̂ with a small fluctuation in the order of 10−3.
Such ”=”-constraint pairs can be especially useful to define equality of points belonging
to the same non-dominated front.

It should be noted that for a training set of size ℓ we may have at most nalpha =

ℓ2 − ℓ constraints ( ℓ2−ℓ
2 if use only ”>”-constraints). Let us recall that the computational

complexity of Ranking SVM scales with O(n2alpha), i.e., O(ℓ4) if all constraints are used.
Moreover, from the the single-objective surrogate-assisted search, we know that ℓ may
scale with O(n1.7) that would lead to O(n7) complexity of learning full model. This is
clearly an unsatisfactory computational complexity, therefore we should find a way to build
reasonably good f̂ using much less constraints, preferably O(ℓ) number of constraints.

5.2.2 Dominance-based Preference Learning

For the sake of tractability of RASM model learning we propose the following simple
procedure (see, e.g., [Vapnik, 1979] for ”chunking” procedure and [Joachims, 2005] for a
recent review of the idea of selection of the most violated constraint):

1. Initialize a set of active constraints Ωactive by primary constraints and a set of passive
constraints Ωpassive by secondary constraints.

2. Optimize Eq. (5.8) with P = Ωactive.

3. Remove the most violated constraint from Ωpassive and add it to Ωactive. Optimize
Eq. (5.8) with P = Ωactive. Repeat this step until stopping criterion is met.

Figure 5.2-Left illustrates a set of solutions in the objective space for which one should
find a suitable set of constraints to learn f̂ . For fast model learning the size of the set of
constraints should be linear in number of solutions. Primary constraints are constraints
which best describe the model and should be learnt in the first place. Secondary con-
straints are all other constraints which represent a source of the information about f ,
but cannot be learnt all together due to limited computational resources. Let primary
dominance constraints be associated to pairs (xi,xj) such that xj is the nearest neighbor
of xi conditionally to the fact that xi dominates xj (continuous arrow, Figure 5.2-Left,
Algorithm 5.1, lines 4-10), and let secondary dominance constraints be associated to
pairs (xi,xj) such that xi belongs to the current Pareto front and xj belongs to another
front from non-dominated sorting (dotted arrow, Figure 5.2-Left, Algorithm 5.1, lines
17-22).

After optimization of Eq. (5.8) for NIterActive = 1000× |Ωactive| iterations (Algorithm
5.2, line 3), the model f̂ still may incorrectly predict some (test) preference relations from
Ωpassive. We may identify the most violated constraint constrmv from Ωpassive (lines 6-
13) and add it to Ωactive (line 17) to continue learning the model for NIterPerPassive =
10 × |Ωactive|. After adding NConstrToAdd such constraints (typically 10% the number of
primary constraints in the presented experiments, see Section 5.4), a robust f̂ can be
obtained with relatively cheap learning.
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Figure 5.2: Constraints involved in Rank-based Aggregated Surrogate Models. Left: The
current RASM. Right: possible extensions with ”=” constraints, see Section 5.5.

5.3 ASM-assisted MOEAs with Pre-selection

This Section describes the Pareto-SVM algorithm, exploiting the ASM and RASM
mono surrogates (ASMs) to speed up Evolutionary Multi-Objective Optimization. The
terms ASM and RASM will be used interchangeably in this Section.

5.3.1 Discussion

As mentioned earlier, surrogate-assisted multi-objective optimization most commonly pro-
ceeds by replacing the objective function with the surrogate model, computing the true
objective on carefully selected points, and retraining the model from time to time using
recently evaluated individuals.

The situation here is different as the optimization problem is a multi-objective one, and
the single ASM surrogate model is being built. The most natural idea, optimizing directly
the ASM model, raises the following two issues. Firstly, the true Pareto set expectedly
lies away from the dominated points and beyond the current Pareto set; the ASM would
thus be used to explore yet unexplored regions, i.e., for extrapolation. Secondly and more
importantly, identifying the Pareto set critically relies on the population diversity. While
all individuals in the current Pareto set are equally mapped on the same f̂ value, some will
be ’more equal than others’, in the sense that they will get a higher ASM value by chance.
Optimizing ex abrupto the ASM model would thus favor some regions of the Pareto set
and hinder the population diversity.

For these reasons, the ASM model will be used to implement the pre-selection (aka
informed operators) approach (see Section 3.3.1.4). Next Sections respectively outline the
full algorithm, and describe the two specific modules of the Pareto-SVM algorithm, the
surrogate model update and its use within informed operators.
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Algorithm 5.1: Selection of Constraints for RASM model

1: given (x1,y1), . . . , (xℓ,yℓ), C
2: initialize Ωactive,Ωpassive ← ∅
3: Rank1,...,ℓ ← NonDominatedSorting((x1,y1), . . . , (xℓ,yℓ))
4: for i = 1, . . . , ℓ do
5: ∆ymin ←∞
6: for j = 1, . . . , n do
7: if ((xi ≻ xj) AND (i 6= j)) then
8: ∆y ← ‖yi − yj‖
9: if ∆y < ∆ymin then

10: ∆ymin ← ∆y; jmin ← j // nearest neighbor in objective space
11: end if
12: end if
13: end for
14: constr.α← random ∈ [0, C]; constr.a← i; constr.b← jmin; constr.ǫ← 1.0
15: Ωactive ← Ωactive ∪ {constr}
16: end for
17: for i = 1, . . . , ℓ do
18: for j = 1, . . . , ℓ do
19: if ((Ranki < Rankj) AND (Ranki = 1)) then
20: constr.α← random ∈ [0, C]; constr.a← i; constr.b← j; constr.ǫ← 1.0
21: if constr /∈ Ωactive then
22: Ωpassive ← Ωpassive ∪ {constr}
23: end if
24: end if
25: end for
26: end for
27: return Ωactive,Ωpassive

5.3.2 The Algorithm

The general description of MOEA (Algorithm 5.3) is based on the usual parent-
selection → variation→ survival selection loop, with optionally some archive maintenance
(line 5), as many popular MOEAs need to maintain some archive of the non-dominated in-
dividuals encountered during the search [Deb et al., 2000]. Note that line 4 describes both
the parent selection and the application of the variation operators; it implicitly accounts
for any choice procedure among multiple operators.

The Pareto-SVM algorithm is described likewise in Algorithm 5.4. The main differ-
ences are the model update (line 5) and the call to the informed operators (line 7) that
replaces the standard call to variation operators, with the surrogate model f̂ as additional
argument. The archive maintenance is limited to storing all newborn offspring (line 8).
Actual update, including the ASM update, takes place every Klearn generations (line 4).
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Algorithm 5.2: SVM Optimization

1: given Ωactive, Ωpassive, NIterActive, NIterPerPassive, NConstrToAdd

2: for i = 1, . . . , NIterActive do
3: Ωactive ← SVMOptimizationIteration(Ωactive)
4: end for
5: for i = 1, . . . , NConstrToAdd do
6: constrmv ← Ωpassive1

7: ξmax ← 0
8: for j = 1, . . . , |Ωpassive| do
9: constr ← Ωpassivej

10: ξj ← f̂(xconstr.i) + ǫconstr.ǫ - f̂(xconstr.j)
11: if ξmax > ξj then
12: ξmax ← ξj
13: constrmv ← constr // find the most violated constraint
14: end if
15: end for
16: if ξmax > 0 then
17: Ωactive ← Ωactive ∪ {constrmv}
18: Ωpassive ← Ωpassive\ {constrmv}
19: for j = 1, . . . , NIterPerPassive do
20: Ωactive ← SVMOptimizationIteration(Ωactive)
21: end for
22: end if
23: end for
24: return Ωactive

Algorithm 5.3: Standard MOEA

1: initialize Archive ← ∅
2: Pop ← MOEA.Init()
3: while NOT Stopping Criterion do
4: Offspring ← VarOp(ParentSelect(Pop))
5: UpdateArchive(Pop,Offspring)
6: Pop ← SurvivalSelect(Pop,Offspring)
7: end while
8: return Pop.BestIndividual

5.3.2.1 Model Update

The model update (Algorithm 5.5) starts from the current archive (as produced from
the previous update) augmented by all newborn offspring (line 8 of Algorithm 5.4) and
first removes the possible duplicates (line 1 of Algorithm 5.5). In most cases (depending
on Klearn and the number of offspring generated per generation), the size of the archive
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5.3 ASM-assisted MOEAs with Pre-selection

Algorithm 5.4: Pareto-SVM

1: initialize Archive ← ∅
2: Pop ← MOEA.Init()
3: while NOT Stopping Criterion do
4: if #generation ≡ 0 [Klearn] then
5: f̂ = UpdateModel(Archive, Pop) // every Klearn generation
6: end if
7: Offspring ← InfOp(ParentSelect(Pop), f̂)
8: Archive ← Archive ∪ Offspring
9: Pop ← SurvivalSelect(Pop, Offspring)

10: end while
11: return Pop.BestIndividual

X1

X
2

true Pareto
SVM Pareto

Objective 1

O
b
je

c
ti
v
e
 2

Dominated
Pareto

Figure 5.3: A schematic view of the training data selection in objective space (Left)
and SVM-informed selection of children from the pool of pre-children in decision space
(Right).

increases far too much to make it possible to efficiently apply the Pareto-SVM learning.
Furthermore, pruning the archive should not be done solely based on Pareto dominance,
as in most standard MOEAs where only the best Pareto points are of interest. We need
instead to ensure a good coverage of the dominated region that has been visited in the
past, to make sure that the ASM will label these regions as ’dominated’. Borrowing ideas
from PESA [Corne et al., 2001], the objective space is equally partitioned into Narchive

boxes, and the archive keeps one point per box. Boxes are computed in lines 2 and 3,
points are put in their respective boxes in line 5, and all boxes are pruned (line 8), keeping
a uniformly chosen point among the non-dominated points of the box if any.

ASM is learned from a training set made of one point per box (line 10), plus the
current population that is likely to contain non-dominated points (line 11). The training
set is pruned to remove the duplicates and thereafter sorted using non-dominated sort to
distinguish between current Pareto and dominated points (line 13). Finally it is passed
to the ASM learning algorithm that returns the new ASM surrogate model to the main
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Algorithm 5.5: UpdateModel(Archive, Pop)

1: EliminateDuplicates(Archive)
2: ComputeObjectiveBounds(Archive)
3: PartitionObjectiveSpace(NArchive)
4: for all P ∈ Archive do
5: FindBox(P) // Assign P to the box it belongs to
6: end for
7: for all Boxes B do
8: Ind[B] ← Random(NonDominated(B)) // Select one point per box
9: end for

10: Archive ← ⋃
B Ind[B] // at most NArchive points

11: TrainingData ← Archive ∪ Pop
12: EliminateDuplicates(TrainingData)
13: NonDominatedSort(TrainingData)
14: return Pareto-SVM(Training Data) // returns f̂

Algorithm 5.6: InfOp(Parents, F )

Require: OP(s) // variation operator(s)
1: Offspring ← ∅
2: for iOff = 1 to RequiredSize do
3: Choose variation operator Op // Eventually
4: GainBest ← 0
5: for i = 1 to λPre do
6: Ind ← Op(Parents)
7: IndPop ← NearestNeighbor(Ind,ND-Parents)
8: Gain ← f̂(IndPop) - f̂(Ind)
9: if Gain > GainBest then

10: GainBest ← Gain
11: Best ← Ind
12: end if
13: end for
14: Offspring ← Offspring ∪ {Best}
15: end for
16: return Offspring

algorithm (line 14).

5.3.2.2 Informed Operators

The Pareto-SVM algorithm uses the ASM to yield informed operators
[Rasheed and Hirsh, 2000]. Upon calling a variation operator, λPre pre-children are gener-
ated and ordered according to their quality estimate on f̂ ; a probabilistic selection attached

140



5.4 Experimental Validation

10
2

10
3

10
2

10
3

10
4

Number of training points

L
e
a
rn

in
g
 t
im

e
 (

m
s
)

Slope = 2.2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Rank

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

σ2=0.01
σ2=0.001

σ2=0.1

Figure 5.4: Left: Learning time of the proposed dominance-based RASM on ZDT1
function. Right: Mapping the ranks of pre-children to a normal distribution.

to the offspring indices is achieved, using a normal distribution with variance σ2sel (Figure
5.4-Right). Granted that the number of offspring is sufficiently large, parameter σ2sel thus
controls the selection pressure and the exploration vs exploitation trade-off. However we
use at the moment a small value σ2sel = 0.001 for the normal distribution for the ranked
point to be chosen (Figure 5.4-Right) to simulate the situation when new offspring always
has the first rank.

An additional difficulty is raised in the multi-objective context, as a better surrogate
value does not imply a smaller distance from the Pareto set. Quite the contrary, a child
that is far from its parent can have a better ASM value than its parent while being
nevertheless farthest from the Pareto front than some other points, because of the errors
in the surrogate model, and/or the ǫ tolerance in the ASM and RASM formulations.
In order to handle this issue, confirmed from preliminary experiments, the pre-children
filtering is based on their ASM gain with respect to the closest point in the current Pareto
set.

Formally, Algorithm 5.6 describes how all offspring are generated from the current
parent population. For each offspring to be generated (outer loop, lines 2 to 15), a variation
operator is chosen (line 3) if more than one are available (depending on the type of MOEA)
and applied λPre times (line 6). To each pre-child thus obtained, is associated its nearest
neighbor among current non-dominated parents (line 7), and the ASM improvement of
the pre-child compared to its nearest neighbor determines whether the pre-child is kept
(line 9). An example for λPre = 3 is shown in Figure 5.3-Right.
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5.4 Experimental Validation

5.4.1 Experimental Setting

Two state-of-the-art EMOA algorithms are considered: (100+100)-NSGA-II (see Section
2.4.3) and 100× (1+ 1)-MO-CMA-ES (see Section 2.4.4). Both algorithms use the hyper-
volume indicator as second-level sorting criterion to rank individuals on the same level of
non-dominance.

The Pareto-SVM approach is assessed by comparing the original algorithms
with their ASM and RASM enhanced versions, considering the widely used ZDT1:3-6
[Zitzler et al., 2000] and their rotated variants IHR1:3-6 [Igel et al., 2007b] benchmark
problems. The dimension is set to 30 (resp. to 10) for ZDT1-3 problems (resp. for all
other problems). As the true Pareto front of all ZDT problems lies on the boundary of the
decision space, and for the sake of an unbiased assessment (to prevent MO-CMA-ES from
exploiting this specificity), the penalization term is set to α = 1 instead of the original
10−6 [Igel et al., 2007b] (see Section 6.2.2.2 for a discussion).

Both ASM and RASM are based on the RBF kernel, where the bandwidth σ is set as
the average distance between all pairs of training points. The SVM penalization constant
C is set to 1000 after few preliminary experiments.

The training set D that is used at each generation to build the RASM model is an
archive that contains at most Narchive = 1000 points. The current population is added to
the archive at each generation. When this archive gets larger than Narchive, it is pruned
by removing the worst individuals after non-dominated sorting. Furthermore, in order
to improve the diversity of the training set (many points too close together can lead to
poor surrogate model), an additional filtering procedure is applied to the archive. The
2-objective space has been divided into 100×100 boxes, and at most one point among the
archived non-dominated points of each box is retained in the archive (see Figure 5.3).

The parameters of ASM models have been calibrated using a few preliminary experi-
ments (their automatic tuning will be considered in further work):

ASM The allowed deviation ǫ of non-dominated points on f̂ is set to 10−5. The ASM
learning was stopped after 300,000 iterations, corresponding to circa 0.5 – 1.0 sec.
on a 2.26 GHz processor for ZDT1.

RASM As detailed in Section 5.2, RASM maintains the set Ωactive of active constraints,
initialized to the set of primary dominance constraints. After an initial round
of NIterActive = 1000 |Ωactive| iterations, Ωactive is incrementally enriched every
NIterPerPassive = 10 |Ωactive| iterations with the most violated constraint among the
secondary dominance constraints, until a total of at most NConstrToAdd = 0.1 |Ωactive|
secondary the most violated constraints have been added.

The f̂ update frequency Klearn is set to 10. The ASM-enhanced operators were com-
puted as described in Algorithm 5.4. In the MO-CMA-ES case, in order to introduce an
additional diversity, the global mutation step size of pre-selected offspring was modified
to σ

′
= σ exp(−d+2dk) where d = 0.7 and k is uniformly distributed in [0, 1].
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5.4.2 Performance Measures

Many ways of measuring the performance of EMO algorithms have been proposed. After
[Knowles et al., 2006], this study uses Pareto-compliant quality indicators, more partic-
ularly the widely used hypervolume indicator IH . Let P be a µ-size approximation of
Pareto front and let P ∗ be the approximate µ-optimal distribution of optimal Pareto
points [Auger et al., 2009]. Several algorithms proposed in [Auger et al., 2009] can be
used for approximation of µ-optimal distribution. The approximation error of the Pareto
front is defined by ∆H(P ∗, P ) = IH(P ∗)− IH(P ). All reported results are averaged over
10 independent runs with at most 100,000 fitness evaluations.

In the case of IHR problems, the arbitrary rotation matrix O ∈ IRn×n must be fixed.

5.4.3 Model Validation

The goal of the first experiments is to empirically evaluate the accuracy of ASM and
RASM models.

5.4.3.1 ASM model

In order to evaluate its accuracy on ZDT1 and IHR1 problems, the ASM model was trained
using calibrated training data set A: 20000 points were generated at a given distance from
the (known) nearly-optimal Pareto points, and non-dominated sorting was applied to
rank those points. Front ndom1(A) denotes the closest front from the true Pareto front,
ndom2(A) denotes the second one and so forth.

Figure 5.5 illustrates the distribution of f̂ values for training and test data in deci-
sion and objective spaces, where the training set respectively includes ndom80(A) and
ndom100(A) as non-dominated and dominated points. As shown in Figure 5.5, f̂ cor-
rectly approximates the Pareto-dominance in the sense that for all k, f̂(ndomk(A)) >
f̂(ndomk+20(A)) on average.

As seen for the IHR1 problem, although the f̂ value usually lies in an ǫ-width tube
for training Pareto points, the new Pareto front may be non-linear. This behavior is quite
normal when we deal with difficult problems. It may lead to premature convergence if we
use very selective f̂ -based filter (λPre is large), as high f̂ -based selection pressure may
accelerate the exploration of the prospective regions of Pareto front and entail some loss
of diversity. Note that, as Pareto-SVM was devised to speed up the EMOA convergence
and does not specifically take into account the Pareto diversity, it may be inefficient with
regard to the approximation of the µ-optimal distribution of nearly-optimal Pareto points.

As mentioned in the introduction, the ASM problem is over-constrained as all Pareto
points must be mapped on a narrow interval ]ρ − ǫ, ρ + ǫ[; in such cases, it results in a
poor generalization error of the ASM (visible, e.g., from its errors on the rest of the Pareto
archive). This problem was fixed using an additional k factor, replacing ρ by kρ in Eq.
(5.1). The best k value w.r.t. the ASM generalization error was determined in original
algorithm from a preliminary trial, leading to k = 1 for one set of problems and k = −1
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Figure 5.5: ASM model for 30-dimensional ZDT1 and IHR1 problems.Non-dominated
fronts ndom80(A) (white circles) ≺ ndom100(A) (green circles) form the training data,
while ndomk(A) (blue circles) for k < 80 represent the test data. See text for details.

for another set. Probably, a better solution is to reformulate Eq. (5.1) as follows:

Minimize
{w, ξ(∗), ρ}

1

2
||w||2 + C

ℓ∑

i=1

(ξupi + ξlowi ) + C
m∑

i=ℓ+1

ξupi +
1

2
Dρ2

In the new formulation, D is an additional problem-dependent parameter, which in
some sense makes the learning problem harder. On-going work aims at understanding this
phenomenon +/-ρ, and relating it to the structure of the multi-objective landscape.
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Figure 5.6: Left: at each iteration of RASM model learning procedure the most violated
secondary constraint is added and model quality f̂ is estimated on 1000 test points.
Right: normalized Pareto rank predicted by RASM model for 1000 test points on 30-
dimensional ZDT1 functions.

5.4.3.2 RASM model

Some experiments are first conducted to estimate the complexity of RASM model training
on 30-dimensional ZDT1 problem. The empirical complexity with respect to the number
of training points is circa 2.2 (slope in Figure 5.4-Left in log scale). The fact that the
complexity is super-quadratic is not surprising since the computational complexity of SMO
optimization procedure is quadratic in number of constraints and the number of constraints
is up to 10% larger than the number of training points. The complexity however remains
bounded as the size of the training set (extracted from the archive) is less than 1,000,
limiting de facto the computational cost of the RASM learning.

Figure 5.6-Left shows RASM model learning for 30-dimensional ZDT1 problem using
500 training points, uniformly randomly generated in [0, 1]30 search space. We sorted all
training points using non-dominated sorting procedure and filled the sets of primary and
secondary constraints as described in Section 5.2.2. After the initial learning of RASM
model with primary constraints, we iteratively add the most violated secondary constraint
and continue to learn the model. Figure 5.6-Left shows that the model error estimated at
each iteration on 1000 (hidden from the learning part) test points decreases. The learning
stops when the most violated constraint does not violate preference relations anymore. In
the following we limit the number of the most violated constraints to be added by 10% of
the number of primary constraints (e.g., would be 50 the most violated constraint for this
example). Figure 5.6-Right shows normalized Pareto Rank, predicted by RASM model.
The prediction, indeed, is not perfect but seems to be suitable to direct the search toward
the Pareto front.
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5.4.4 Benchmarking of ASM and RASM assisted MOEAs

The second set of experiments investigates the effect of using ASM and RASM model
within existing MOEAs on different benchmark functions.

The first experiments with ASM and RASM-based MOEAs show that Pareto-SVM

indeed speeds up both S-NSGA-II and MO-CMA-ES on most problems. Figure 5.7 shows
the on-line behavior of the algorithms for ZDT1 and IHR1 with ASM models (the results
for RASM are quite similar).

For the ZDT1 problem, the optimal Pareto front is linear and lies on the boundary
of the decision space. Therefore, dominated points often lie at the decision space center,
while Pareto points go toward the boundary, making the ASM model fairly simple: the
One-Class SVM for dominated points covers the internal region of the decision space, while
a small subspace of the Pareto points is covered by SVM-Regression with a given ǫ value.

ASM-based S-NSGA-II (ASM -NSGA) works nearly 1.5 times faster with λPre = 2 and
more than 2 times faster with λPre = 10 than the original version with regard to the ∆H
value and the number of function evaluations. The value ∆H = 0.001 for ZDT problems
corresponds to the situation when all points are non-dominated.

The IHR problems, rotated variants of ZDT problems, are non-separable and thus
significantly more difficult for the MOEAs with variation operators which use separability.
The Pareto set of IHR1 for a given rotation matrix is shown in Figure 5.5-c. The MO-CMA-
ES inherits invariance properties from the CMA-ES (though the hypervolume indicator is
not invariant w.r.t. rank-preserving transformations of objectives, the invariance can be
achieved by an approach described in Section 6.4.3), therefore it is also efficient on these
rotated problems, while S-NSGA-II can approximate only a small part of optimal Pareto
front which corresponds to the center of decision space.

The variance of results on ZDT1 problem is small because this problem is very simple
for surrogate modeling and even if some premature convergence initially leads to sample
only a small part of the Pareto set, the algorithm quickly explores the rest of the set
thanks to separability. On rotated IHR1 problem, such quick moving is difficult, hence
the higher variance of results which corresponds to slowly moving along the Pareto front.
A high selection pressure also accelerates this effect.

Both MO-CMA-ES and S-NSGA-II only approximate a small part of the Pareto front
of IHR1 in first generations, but in contrast to S-NSGA-II, MO-CMA-ES can gradually
approximate the whole front. This can be seen clearly in Figure 5.7-b, witnessed by the
flat line between 10000 and 40000 evaluations. In this case, while the ASM model helps
MO-CMA-ES to converge faster to the Pareto front, it can not give any preference to the
extreme points which in fact help to move along the Pareto front.

This observation sustains the idea that quality indicators should probably be taken into
account during the ASM learning. The hypervolume indicator may provide useful addi-
tional information, especially because extreme points usually have the highest importance.
Also, hypervolume or epsilon indicators are well suited for many-objective optimization,
when most points are non-dominated.

Table 5.1 shows the comparative results of all baselines, ASM and RASM-based EMOs;
in the latter cases, both λPre = 2 and λPre = 10 pre-offspring are considered. Different
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Figure 5.7: On-line performances of original and ASM-informed S-NSGA-II on ZDT1
(left) and MO-CMA-ES on IHR1 (right) problems with different values of number of
pre-children p = λPre. Error bars indicate the 20% and 80% percentiles (almost indistin-
guishable for ZDT1).

target values for ∆H have been set, and the number of evaluation needed to reach those
values are reported - normalized by the smallest value of the table (recalled on the top
row, legend “Best”). Hence 1 indicates the best result, while e.g., 2 indicates that this
algorithm needed twice the number of evaluations of the best algorithm to reach the
target ∆H value. These results first confirm that S-NSGA-II performs best on separable
functions ZDTx and MO-CMA-ES on non-separable functions IHRx. They also show that
both RASM -NSGA and RASM -MO-CMA work nearly 1.5 times faster with λPre = 2 and
more than 2 times faster with λPre = 10 than the baseline versions with regards to the
∆H value and the number of function evaluations.

ASM -NSGA and RASM -NSGA yield comparable performances. A more thorough
analysis shows that RASM -MO-CMA is usually faster at the beginning (up to 10000-15000
function evaluations) though it might suffer from a premature convergence thereafter:
experiments on concave IHR2 (and to some extent, also on ZDT2) show that RASM -MO-
CMA converges to the value ∆H = 0.1 nearly 1.5 times faster than with ASM model, and
fails to go further. This failure is blamed on the fact that the diversity of the population
is hardly preserved; a small part of the optimal Pareto front is sampled. A general trend
is observed, that increasing the selection pressure leads to a faster convergence. However,
increasing the number of pre-children can also lead to premature convergence, like for MO-
CMA-ES on IHR problems with λPre = 10. This happens because the filter prefers the
points which are possibly better than their parents according to f̂ though they might be
farther from the true Pareto front than other parents. The comparison of the pre-children
with the closest parent in decision space (Algorithm 5.6, line 7) addresses this drawback
to some extent. Indeed, RASM learning and the RASM-based offspring selection only aim
at speeding up the convergence; further work will be required to extend the approach and
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approximate the µ-optimal distribution of nearly-optimal Pareto points.

Table 5.1: Comparative results of two baseline EMOAs, namely S-NSGA-II and MO-
CMA-ES and their ASM and RASM variants. Median number of function evaluations
(out of 10 independent runs) to reach ∆Htarget values, normalized by Best: a value of 1
indicates the best result, a value X > 1 indicates that the corresponding algorithm needed
X times more evaluations than the best to reach the same precision.

∆Htarget 1 0.1 0.01 1e-3 1e-4 1 0.1 0.01 1e-3 1e-4

ZDT1 ZDT2
Best 1100 3000 5300 7800 38800 1400 4200 6600 8500 32700

S-NSGA-II 1.6 2 2 2.3 1.1 1.8 1.7 1.8 2.3 1.2
ASM -NSGA λPre=2 1.2 1.5 1.4 1.5 1.5 1.2 1.2 1.2 1.4 1

ASM -NSGA λPre=10 1 1 1 1 . 1 1 1 1 .
RASM -NSGA λPre=2 1.2 1.4 1.4 1.6 1 1.3 1.2 1.2 1.5 1

RASM -NSGA λPre=10 1 1.1 1.1 1.5 . 1.1 1 1 1.2 .
MO-CMA-ES 16.5 14.4 12.3 11.3 . 14.7 10.7 10 10.1 .
ASM -MO-CMA λPre=2 6.8 8.5 8.3 8 . 5.9 8.2 7.7 7.5 .
ASM -MO-CMA λPre=10 6.9 10.1 10.4 12.1 . 5 . . . .
RASM -MO-CMA λPre=2 5.1 7.7 7.6 7.4 . 5.2 . . . .
RASM -MO-CMA λPre=10 3.6 4.3 4.9 7.2 . 3.2 . . . .

ZDT3 ZDT6
Best 1300 3500 7100 10100 15200 2500 3600 5200 12300 .

S-NSGA-II 1.4 1.9 1.6 1.9 2.2 2.1 3.4 3.8 2.7 .
ASM -NSGA λPre=2 1.1 1.3 1.1 1.2 1.3 1.4 2.4 2.6 2 .
ASM -NSGA λPre=10 1 1 1 1 1 1.1 1.8 2.3 2.3 .
RASM -NSGA λPre=2 1.1 1.3 1.2 1.4 1.6 1.5 2.4 2.8 2.1 .
RASM -NSGA λPre=10 1 1.1 1.1 2 . 1.4 2 2.3 1.8 .
MO-CMA-ES 15.4 17.8 . . . 2.5 2.6 2.5 2 .
ASM -MO-CMA λPre=2 9 . . . . 1.1 1.2 1.1 1 .
ASM -MO-CMA λPre=10 8 25.6 . . . 1 1.1 1.3 2.5 .
RASM -MO-CMA λPre=2 8.5 . . . . 1.5 1.2 1.2 1 .
RASM -MO-CMA λPre=10 8.1 . . . . 1 1 1 1.6 .

IHR1 IHR2
Best 500 2000 35300 41200 50300 1700 7000 12900 52900 .

S-NSGA-II 1.6 1.5 . . . 1.1 3.2 6.2 . .
ASM -NSGA λPre=2 1.2 1.3 . . . 1 3.9 4.9 . .
ASM -NSGA λPre=10 1 1.5 . . . 1.4 6.4 4.6 . .
RASM -NSGA λPre=2 1.2 1.2 . . . 1.5 . . . .
RASM -NSGA λPre=10 1 1 . . . 1.2 5.1 4.8 . .
MO-CMA-ES 8.2 6.5 1.1 1.2 1.2 5.8 2.7 2.1 1 .
ASM -MO-CMA λPre=2 4.6 2.9 1 1 1 3.1 1.6 1.4 1.1 .
ASM -MO-CMA λPre=10 9.2 6.1 1.3 1.2 . 5.9 2.6 2.4 . .
RASM -MO-CMA λPre=2 2.6 2.3 2.4 2.1 . 2.2 1 1 . .
RASM -MO-CMA λPre=10 1.8 1.9 . . . . . . . .

IHR3 IHR6
Best 800 . . . . . 16500 . . . .

S-NSGA-II 1.5 . . . . 5.4 . . . .
ASM -NSGA λPre=2 1.1 . . . . 3.8 . . . .
ASM -NSGA λPre=10 1 . . . . . . . . .
RASM -NSGA λPre=2 1.3 . . . . 2.2 . . . .
RASM -NSGA λPre=10 1.1 . . . . 2.6 . . . .
MO-CMA-ES 9.6 . . . . 2 . . . .
ASM -MO-CMA λPre=2 7.2 . . . . 2 . . . .
ASM -MO-CMA λPre=10 12.1 . . . . . . . . .
RASM -MO-CMA λPre=2 3.3 . . . . 1 . . . .
RASM -MO-CMA λPre=10 2.6 . . . . 1 . . . .
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5.5 Discussion

In this Chapter, we investigated two Aggregated Surrogate Models, ASM and RASM, for
surrogate-assisted multi-objective optimization with pre-selection of promising offspring.

The original ASM model is built by combining One-class and regression SVMs; thanks
to the non-linear kernel, ASM can be learned efficiently in non-linear functional spaces.
ASM learning problem, however, was found to be over-constrained; in such cases, it results
in a poor generalization error. In contrast, using a Learning to Rank framework in RASM,
the resulting surrogate model does not require that all Pareto points are mapped onto the
same value. It is thus both more constrained in the dominated region, and less constrained
on the Pareto front, than ASM.

Furthermore, RASM approach opens new and interesting perspectives for real world
multi-objective problems, enabling for instance to account for the user’s preferences in
a flexible way by simply adding user-defined constraints to the order-based SVM for-
mulation. Most importantly, the rank constraint formalization enables to accommodate
conflicting preferences: to the best of our knowledge, this corresponds to a significant
advance on the state of the art.

The experimental validation of the proposed approach shows that RASM-EMO usually
converges faster than ASM-EMO, with the caveat that it sometimes leads to premature
convergence (e.g., on ZDT2 and IHR2 problems). This premature convergence was blamed
on the selection pressure and the adjustment of parameter σ2sel. A further work will explore

the adjustment of σ2sel and λPre depending on the model error f̂ in a similar way to n̂ in
the case of single-objective surrogate-assisted optimization (see Section 4.3.1.3).

It is emphasized that RASM might incorporate additional specific constraints in each
generation. Some possible constraints are described in Figure 5.2-Right: such non-
dominance constraints involved points on the current Pareto front, and include inequality
constraints from the extremal points over their neighbors (continuous arrows), and equality
constraints for all neighbor pairs on the Pareto front (continuous double arrow), as well as
between extremal points (dotted double arrows). Along the same lines, constraints could
be weighted, e.g., the weight of constraints related to points with the largest hypervolume
contributions can be increased online. We already tested several strategies for primary
and secondary constraints selection and found that the following simple strategy for pri-
mary constraints selection often shows better results: select a pair (a, b) with probability
p (e.g., 10%) if xb is located in the following Pareto front to the front of xa. The main
drawback of this strategy is its computational complexity which is growing faster than for
the proposed in this Chapter approach due to usually larger number of constraints needed
to learn the model. However, the strategy seems to be prospective and should be further
investigated.

Historically, most of the work presented in this Chapter was done in 2009 and 2010,
before the introduction of surrogate model control and hyper-parameters adaptation for
single-objective surrogate-assisted optimization in Chapter 4. Thus, the extension of these
approaches to the multi-objective case will be in the focus of future research. Preliminary
results for direct optimization of SVR-based surrogate models (one model per objective)
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and an analysis of offline tuning of n̂ are presented in [Yagoubi, 2012], where NSGA-II
surrogate-assisted algorithm was successfully applied for real-world multi-objective opti-
mization of Diesel combustion. [Pilát and Neruda, 2011] proposed Multiobjective Memetic
Algorithm with Aggregate Surrogate Model (ASM-MOMA), where ASM model is used for
direct local optimization and the best found individual during the optimization is placed
back to the population. The authors combine direct optimization with pre-selection in
[Pilát and Neruda, 2012] and suggest to use Evolution Strategy for ASM model optimiza-
tion. The speedup between a factor of 2 and 10 is reported for optimization of ZDT
problems. Thus, the question whether individual surrogates per objective or ASM mod-
els are better for surrogate-assisted search remains open. The answer on this question
may become clearer when self-adaptation mechanisms investigated in Chapter 4 will be
translated to the multi-objective case and assessed on a rich set of benchmark problems,
organized in a kind of BBOB for multi-objective optimization.
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Chapter 6

Exploring new frontiers using CMA-like
algorithms

In this Chapter, we explore and expand frontiers of the Evolutionary Computation domain,
and CMA-ES in particular, motivated by pure curiosity and answering questions, which
have arisen in the exploitation part of the thesis in Chapters 4, 5. The discussed questions
and corresponding approaches are presented in chronological order.

In Chapter 3 (see Section 4.2.1), we showed that the use of the decorrelated coordinate
system, provided by the covariance matrix of CMA-ES, may drastically improve the re-
sults of surrogate-assisted CMA-ES on non-separable and ill-conditioned functions. Given
the fact that CMA-ES can be viewed as CSA-ES performing in this decorrelated space
[Hansen, 2008], we wondered whether there is a simpler algorithm which is competitive
to CSA-ES in this space? As candidate algorithm we take one of the simplest derivative-
free optimizer, Coordinate Descent method, and combine it with the Adaptive Encoding
procedure proposed in [Hansen, 2008] to design Adaptive Coordinate Descent (ACiD), a
method, which has a competitive performance to CMA-ES on unimodal functions and,
to the best of our knowledge, is the only linear time algorithm with a reasonably good
performance on non-separable ill-conditioned problems. This algorithm is investigated in
Section 6.1. Some of the results have been published in [Loshchilov et al., 2011a].

In Chapter 5, we observed that the multi-objective optimization may significantly
slow down when only few individuals of the population are able to improve the current
Pareto front approximation. This is the case for IHR1 problem (see Figure 5.7), where a
sub-part of the Pareto front can be relatively quickly found, while the rest of the front is
approximated slowly and substantially thanks to the extreme (right) point in the objective
space which generates new (hopefully) extreme point. We wondered whether there is a
way to improve the search allowing the most successful individuals to generate offspring
more often? To answer this question we introduce reward-based parent selection schemes
for multi-objective optimization in Section 6.2 and demonstrate that a significant speedup
can be obtained by carefully looking at the dynamic of successful individuals. Some of the
results have been published in [Loshchilov et al., 2011b].

In our recent experiments with s∗aACM-ES in Chapter 4 we found that the speedup
obtained on multi-modal functions is much less significant than on unimodal ones. This
is mainly due to the difficulty to learn the landscapes of these functions, which typically
require a very large number of training points. The latter requirement is usually difficult
to satisfy because i). we simply do not have enough training points around the actual
region of search, and ii). the computational complexity of learning grows quickly (usually
quadratically) with the number of training points, given that the runtime is usually very
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large on multi-modal functions. In this case, rather than build computationally expensive
surrogate models, it might be reasonable to look at alternative restart strategies for CMA-
ES to improve the search without any increase of the computational cost. We address
this idea in Section 6.3, where we propose two new alternatives to the original IPOP
and BIPOP restart strategies, that have also been published in [Loshchilov et al., 2012a,
Loshchilov et al., 2012d].

In Section 6.4, we briefly discuss other prospective approaches that we investigated
during the thesis. Finally, Section 6.5 concludes the Chapter and presents some perspec-
tives for further research.

6.1 Adaptive Coordinate Descent

Independence from the coordinate system is one source of efficiency and robustness for
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The recently proposed
Adaptive Encoding (AE) [Hansen, 2008] procedure generalizes CMA-ES adaptive mech-
anism, and can be used together with any optimization algorithm. Adaptive Encoding
gradually builds a transformation of the coordinate system such that the new coordinates
are as decorrelated as possible with respect to the objective function. But any optimization
algorithm can then be used together with Adaptive Encoding, and this Section proposes to
use one of the simplest of all, that uses a dichotomy procedure on each coordinate in turn.
The resulting algorithm, termed Adaptive Coordinate Descent (ACiD), is analyzed on the
Sphere function, and experimentally validated on BBOB testbed where it is shown to out-
perform the standard (1 + 1)-CMA-ES, and is found comparable to other state-of-the-art
CMA-ES variants on unimodal functions.

In this Section, we present an extended version of ACiD, originally published in
[Loshchilov et al., 2011a], with a more detailed discussion of i). Adaptive Encoding
parametrization in Section 6.1.3.1; ii). extension to noisy optimization in Section 6.1.3.5;
iii). extension to large-scale optimization in Section 6.1.3.6.

6.1.1 Introduction

Separable continuous optimization problems are problems in which the objective function
can be optimized coordinate-wise. Finding the global optimum of a separable function in
IRn amounts to perform n simple line searches along each of the n coordinates. Unfortu-
nately, interesting problems are usually not separable. Nevertheless, many optimization
methods implicitly assume some form of separability of the objective function, or at least
are much more efficient on separable functions as they explicitly use the coordinate system
in their search. A well-known exception is the CMA-ES that performs a rotation-invariant
search, and is thus independent of any coordinate system. The basic idea of CMA-ES is
to evolve, besides a population of solutions to the optimization problem at hand, a “Co-
variance Matrix” that can be viewed as a coordinate transform: in case of a quadratic
objective function, CMA-ES Covariance Matrix has been empirically demonstrated to
gradually converge to a matrix which is proportional to the inverse Hessian matrix of the
objective function. In the coordinate system defined by this inverse Hessian, the quadratic
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objective function has become separable, and the optimization problem, almost trivial. Of
course, CMA-ES covariance matrix is only, in the quadratic case, an approximation of the
inverse Hessian. And many interesting problems are not quadratic indeed (and if they
were, they would be easy to solve directly). Nevertheless, twice continuously differen-
tiable objective functions can be viewed as close-to-quadratic around their optima (local
or global), and adapting the coordinate system with respect to the “cumulative path” of
the search makes it easier and faster to find the optimum.

The basic principles of this adaptive coordinate transformation have been generalized
to general search strategies, under the name of Adaptive Encoding in [Hansen, 2008], and
experimented with Cauchy mutations in a stochastic search framework. The original
Cauchy-based ES is heavily coordinate-dependent, and its results deteriorate when the
degree of non-separability of the objective function increases. However, this limitation of
Cauchy mutation almost vanishes with Adaptive Encoding, demonstrating the usefulness
of a well-designed adaptive coordinate system.

Putting things together, a natural idea is then to couple with Adaptive Encoding some
simple optimization method, i.e., some successive coordinate-wise line searches: coordi-
nate line-searches only work well for separable functions, but Adaptive Encoding should
gradually lead the search toward a transformed coordinate system where the objective
function resembles more a separable function than in the original system, paving the
road for the coordinate line-searches. Though the resulting algorithm has little to do
with Evolutionary Computation, it heavily relies on Adaptive Encoding, the backbone of
CMA-ES algorithms. The idea of adapting the coordinate system during the search can
be attributed to the famous Rosenbrock’s method [Rosenbrock, 1960].

This Section is organized the following way: Section 6.1.2 first introduces the algorith-
mic background, namely Adaptive Encoding and some Coordinate Descent Method, before
detailing their coupling into the Adaptive Coordinate Descent algorithm. Section 6.1.3
presents the experiments that validate Adaptive Coordinate Descent first on the Sphere
function, the well-known separable test function, establishing performance bounds for the
proposed approach. Extensive experiments on the BBOB testbed are then presented and
discussed. Finally, Section 6.1.4 concludes the Section and sketches directions for further
research.

6.1.2 Algorithms

6.1.2.1 Adaptive Encoding

Though historically introduced as a derandomization of self-adaptive Evolution Strategies
[Hansen et al., 2003], CMA-ES was only recently revisited as a hybrid between some ES
with adaptive step-size and some Adaptive Encoding (AE) procedure [Hansen, 2008]. AE
can be applied to any continuous domain search algorithm, in order to make it independent
from any given coordinate system. As a result, some search algorithms that performed
rather poorly on non-separable functions can be tremendously boosted (e.g., by a factor
up to 3 orders of magnitude for Evolution Strategy with Cauchy mutation [Hansen, 2008]).

An iteration of CMA-ES, decomposed into Adaptive Encoding and Evolution Strategy
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a) Principal Component Analysis

b) Adaptive Encoding Update

a
1 (0,0)

0
b

1

0

b
2

0

a
2

0

b 2
1

a
2

1

a
1

1 b
1

1

c) Coordinate Descent Method
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Figure 6.1: AECMA-like Adaptive Encoding Update (b) mostly based on Principal Com-
ponent Analysis (a) is used to extend some Coordinate Descent method (c) to the opti-
mization of non-separable problems (d). See text for details.

Algorithm 6.1: CMA-ES = Adaptive Encoding + ES

1: xi ← m+ σNi(0, I), for i = 1 . . . λ
2: fi ← f(Bxi), for i = 1 . . . λ
3: if Evolution Strategy (ES) with 1/5th success rule then

4: σ ← σexp
∝( success rate

expected success rate
−1)

5: end if
6: if Cumulative Step-Size Adaptation ES (CSA-ES) then

7: σ ← σexp
∝( ‖evolution path‖

‖expected evolution path‖
−1)

8: end if
9: B←AdaptiveEncoding(Bx1, . . . ,Bxµ)

with step-size adaptation, is described in Algorithm 6.1. In standard Evolution Strategy,
λ offspring are sampled (line 1) from a normal distribution with step-size σ and mean m,
where m is the centroid of best µ individuals of the previous iteration. The λ offspring
are evaluated (line 2 with B = I the identity matrix). Depending on the choice of the
step-size adaptation rule, the step-size is then adapted, either by some rule similar to the
one-fifth rule [Rechenberg, 1973] (line 4), or using the Cumulative Step-size Adaptation
[Hansen and Ostermeier, 1996] (line 7).

CMA-ES differs from standard ES on lines 2 and 9, that describe the use of the Adap-
tive Encoding procedure. CMA-ES maintains a coordinate system transformation matrix
B, and though it evaluates the individuals in the original coordinate system of IRn (line 2),
it generates the offspring, using some isotropic normal distribution, in some transformed
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coordinate system (line 1). The n × n matrix B is the matrix of the transformation. In
Algorithm 6.1, offspring xi are represented in this transformed coordinate system, and
Bxi are their images in the original coordinate system. Matrix B is iteratively adapted
by the AE procedure using information from the most successful µ offspring (line 9).

The CMA update rule for B, denoted as AECMA, derived from the origi-
nal Covariance Adaptation rule of the (µ, λ)-CMA-ES [Hansen and Ostermeier, 2001,
Hansen et al., 2003], is detailed in Algorithm 6.2. The Adaptive Encoding update is simi-
lar to some Principal Component Analysis (PCA) of the successful search steps. The goal
of PCA is to find an orthogonal transformation to convert the set of possibly correlated
variables into a set of uncorrelated variables, called principal components, that are the
eigenvectors of the covariance matrix of the data. However, while PCA is usually used to
reduce the dimensionality of the data by taking into account only the main principal com-
ponents (corresponding to the largest eigenvalues), CMA retains all principal components.
These components are determined at each iteration by the eigendecomposition of the cur-
rent covariance matrix C (line 16 of Algorithm 6.2). The transformation matrix B is the
square-root of the covariance matrix C (line 17). An illustration of Principal Components
Analysis is shown in Figure 6.1-a, where the principal components are depicted as the
dotted lines, such that the largest variance by any projection of the data comes to lie on
the first principal component, the second largest variance on the second, and so on. The
idea of such a transformation is to make the objective function in the transformed space
as similar as possible to the Sphere function, which is known to be simple for analysis and
optimization.

Figure 6.1-b illustrates an Adaptive Encoding Update iteration, where only the µ
(green/bold) best among λ generated offspring are used to compute a partial covariance
matrix Cµ (line 14), which replaces a fraction cµ of the current covariance matrix C (line
15). Additionally, the path of the mean of distribution (evolution path p) is recorded in
order to increase the variance of favorable directions (line 13, and bold arrow in Figure
6.1-b). A fraction c1 of the current covariance matrix C is also replaced by the rank-one
matrix of eigendirection p (line 15). However, the update in line 15 might become instable
if cµ + c1 > 1. Hence the parameter setting (line 3) needs to be chosen specifically for the
algorithm at hand.

It has been shown in [Hansen, 2008] that the AECMA-update applied to Evolution
Strategy with Cauchy distribution improves the performance on some non-separable func-
tions by a factor of roughly one thousand. These results and the fact that the Sphere-like
transformed space is usually simpler to analyze than the original one, make it reasonable
to explicitly exploit this property in search.

6.1.2.2 Coordinate Descent by Dichotomy

Coordinate Descent (CD) is probably one of the oldest multidimensional optimization
method. It became especially popular in numerical linear algebra under the name of
Gauss-Seidel method for solving systems of linear equations. In Evolutionary Computa-
tion community, when used for optimization, this method is called Coordinate Strategy
[Schwefel, 1993]. CD is based on the idea that an n-dimensional optimization problem
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Algorithm 6.2: Adaptive Encoding

1: given x1, . . . ,xµ
2: if Initialize then
3: wi ← 1

µ ; cp ← 1√
n
; c1 ← 0.5

n ; cµ ← 0.5
n

4: p← 0
5: C← I ; B← I

6: m←∑µ
i=1 xiwi

7: return.
8: end if
9: m− ←m

10: m←∑µ
i=1 xiwi

11: z0 ←
√
n

‖B−1(m−m−)‖(m−m−)

12: zi ←
√
n

‖B−1(xi−m−)‖(xi −m−)

13: p← (1− cp)p+
√
cp(2 − cp)z0 // evolution path update

14: Cµ ←
∑µ

i=1 wiziz
T
i // rank-µ update covariance matrix

15: C← (1− c1 − cµ)C+ c1pp
T + cµCµ // covariance matrix update

16: B◦DDB◦T ← eigendecomposition(C)
17: B← B◦D
18: return B

can be decomposed into n one-dimensional sub-problems. Each variable is updated in
turn, while all other variables remain fixed, by solving a one-dimension optimization sub-
problem using any suitable one-dimension optimization algorithm. Note that CD can be
viewed as a special case of Block Coordinate Descent, that partitions the coordinates into
N blocks: f is iteratively optimized with respect to one of the coordinate block while other
coordinates are fixed [Tseng, 2001]. Obviously, it is reasonable to use CD when dealing
with unimodal separable problems.

Adaptive Dichotomy

One of the simplest one-dimension optimization algorithm to use is a dichotomy
method (inspired by the bisection method to find a zero of a given function). Let us
consider an interval [a, b] where the optimum is known to lie, and assume that the value
of the objective function f is known at the center m = a+b

2 of the interval. Evaluate the

two points x1 = m− (b−a)
4 and x2 = m+ (b−a)

4 , centers of the left and right parts of [a, b].
If f is unimodal, only three cases are possible: x1 is better than m and x2, x2 is better
than m and x1, or both x1 and x2 are worse than m (if x1 and x2 are both better than
m, then the problem is multi-modal).

If x1 is better than m and x2, then the optimum lies in the interval [a,m): replace b
with m and x with x1. Similarly, if x2 is better than m and x1, replace a with m and
m with x2. Finally, if x1 and x2 are worse than m, then the optimum lies in the interval
(x1,x2): replace a with x1 and b with x2. In all 3 cases, we end up with a new interval [a, b]
which contains the optimum, whose length is half that of the original [a, b], and for which
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(a) CD ksucc=0.5, 80 evaluations. (b) CD ksucc=0.5, 80 evaluations. (c) CD ksucc=1.0, 117 evaluations.

(d) CD ksucc=2.0, 149 evaluations.(e) CD ksucc=2.0, 22231 evalua-
tions.

(f) ACiD ksucc=1.2, 325 evalua-
tions.

Figure 6.2: Coordinate Descent (CD) (a-e) and Adaptive Coordinate Descent (ACiD)
(f) on Sphere (a-d) and Rosenbrock (e,f) functions. The initial point x 0=(-3.1,-4,1)
and the target point xtarget with f(xtarget) < 10−10. While the CD with the dichotomy
(a,b) performs best on the Sphere function cyclically dividing by two the step size for the
corresponding coordinate (depicted as the line), the increasing of the step size by factor
ksucc in the case of successful sampling leads to a better but still slow convergence on
non-separable Rosenbrock function (e). The adaptation of the coordinate system allows
significantly speed up the search (f).
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we know the value of f at its center, thus closing the loop, and ready for next iteration.

When dealing with multi-dimensional problems, dichotomy steps can be achieved on
each coordinate successively: Figure 6.1-c illustrates the 2-dimensional case and displays
an example of one dichotomy step in each direction.

Another point of view on the dichotomy method is to consider it as a derandomized
(1 + 2)-EA algorithm with step-size adaptation: Assuming the current step-size is σ and
current solution is m, the basic step of the dichotomy method described above generates
2 offspring x1 and x2 in a deterministic way. The best of m, x1, and x2 becomes the next
parent, and σ is divided by 2. In the case of one-dimensional unimodal problems, if the
initial interval contains the global optimum, this algorithm will get an approximation as
wanted of. Similarly, in the case of multi-dimensional unimodal problems, if the initial
rectangle contains the global optimum, the algorithm will find it, either by running the
dichotomy method on each coordinate up to a given precision (see Figure 6.2-a), or by
alternating one step of the dichotomy method in each direction in turn (see Figure 6.2-
b). Figure 6.2-a shows the result of such an optimization of the Sphere function f(x) =∑n

i=1 x
2
i starting from the initial point x0 = (−3.1,−4.1). Dichotomy proceeds for 20

iterations for the first coordinate and then for 20 iterations for the second coordinate,
reaching the target function value 10−10 after 80 evaluations. Exactly the same result is
obtained by cyclically repeating this procedure over each coordinate in turn, as shown in
Figure 6.2-b. The second variant, however, seems to be more robust if the problem is
not perfectly separable, exploring a larger region of the search space rather than rapidly
reducing one dimension to a single value.

However, if the optimum lies outside the initial interval, or if the interval is somehow
transformed after a rotation of the coordinate system (e.g., due to Adaptive Encoding,
see Section 6.1.2.3), it might be necessary to allow more exploration in case of successful
sampling (one offspring was better than the parent m). Such dichotomy method with step-
size (interval) adaptation will be called Adaptive Dichotomy (AD), and works as follows:
Generate two offspring x1 and x2 as above. If at least one of these two offspring is better
than its parent m, then σ ← σksucc, otherwise σ ← σkunsucc. In the case of standard
dichotomy, ksucc = kunsucc = 0.5, which is suitable for the unimodal separable problems,
when initial interval contains the optimum. However, whereas kunsucc = 0.5 seems a good
choice for all situations, and will be used in the following, ksucc > 0.5 is mandatory in
most cases (otherwise, even on the Sphere function, the algorithm will not converge if the
initial domain does not contain the optimum). Figure 6.2-c and Figure 6.2-d illustrate
runs where the optimum does not lie in the initial rectangle. However, with ksucc = 1.0
and ksucc = 2.0 respectively, the Coordinate Descent with Adaptive Dichotomy converges,
though at the price of additional functions evaluations.
A more formal description of CD with Adaptive Dichotomy will be given in Section 6.1.2.3
(Algorithm 6.3).

Convergence Rates Before turning to Adaptive Encoding and non-separable func-
tions, let us analyze the convergence rate of CD with Adaptive Dichotomy on the Sphere
function, and compare it that of standard Evolution Strategies, whose behavior is well
studied in this context.
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6.1 Adaptive Coordinate Descent

Figure 6.3: Left: Evolution of distance to the optimum versus number of function eval-
uations for the (1+1)-ES, (1+1)-ES opt, CD ksucc=0.5, CD ksucc=1.0, CD ksucc=2.0 and
CD ksucc=2.0 ms on f(x) = ‖x‖2 in dimension 10. Right: Convergence rate c (the
lower the better) multiplied by the dimension n for different algorithms depending on the
dimension n. The convergence rates have been estimated for the median of 101 runs.

Linear convergence to the optimal point x∗ takes place if there is a constant c 6= 0,
such that

1

Tk
ln
‖xk − x∗‖
‖x0 − x∗‖ → c, (6.1)

where x0 is the initial point and xk the best point found after k iterations for a cost
of Tk fitness function evaluations.

The empirical convergence rate on the Sphere function of the proposed CD with ksucc =
0.5, 1.0 and 2.0, as well as that of two variants of (1+1)-Evolution Strategy, as estimated
from the median of 101 independent runs, is shown in Figure 6.3. The algorithm denoted
as ”(1+1)-ES” corresponds to the (1+1)-Evolution Strategy with the initial step-size σ0 =
1.8, while the search interval is [−3; 3]n. The ”(1+1)-ES opt” algorithm is the (1+1)
Evolution Strategy with the scale-invariant step-size: the optimal step-size for ES on
Sphere function is proved to be σ = 1.2

n ‖x− x∗‖, i.e., proportional to the distance to the
optimum.

It is clear that the convergence rate of the CD with (standard) dichotomy (ksucc = 0.5)
is linear with dimension n, and is equal to − ln (2)/2n = −0.3465/n. The rates for CD
with Adaptive Dichotomy, with ksucc = 1.0 and ksucc = 2.0 are 1.5 and 2.0 times slower,
respectively, than with ksucc = 0.5.

The recently proposed technique of mirrored sampling (ms) and sequential selection
for Evolution Strategy [Brockhoff et al., 2010], can also be used with the CD method
proposed here, because the sampled points are symmetric by definition. We hence propose
a modified version of the CD with Adaptive Dichotomy algorithm, called ”CD ksucc=2.0
ms ”, in which the second offspring is not evaluated if the first one is better than the
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Chapter 6. Exploring new frontiers using CMA-like algorithms

parent. This does reduce the number of fitness function evaluations, though marginally,
as can be seen in Figure 6.3 (line with label “ms”).

It is important to note that the optimal convergence rate of ”(1+1)-ES opt” is not
achievable in practice, because the optimal step-size is unknown for a given black-box
function. In the case of CD, parameter ksucc, which controls the exploration rate, can be
used to implicitly tune the target convergence rate.

A final remark on one-dimensional algorithms: Obviously, any other one-dimensional
optimization method could be used instead of the Dichotomy method. The Golden Section
method (also called Fibonacci method) is known to have a better convergence rate c =

− ln (1+
√
5

2 )/n = −0.4812/n. However, the Golden Section generates new points with
respect to two evaluated points on a line. Therefore, after a change of coordinate (due
to Adaptive Encoding, see next Section) it will require to recompute the fitness of these
rotated point whereas dichotomy only requires the fitness value of the center of the current
domain, that is preserved by the change of coordinate.

6.1.2.3 Adaptive Coordinate Descent

The Adaptive Encoding procedure (Section 6.1.2.1) iteratively learns the coordinate sys-
tems in which the objective function is “as close to separable as possible”. The Coordinate
Descent method (Section 6.1.2.2) takes advantage of the separability of the problem at
hand, iteratively optimizing n independent one-dimensional problems. Combining both
approaches leads to propose Adaptive Coordinate Descent (ACiD), which benefits from
these two ideas, interleaving CD and AE, learning the same coordinate transform than
the original AE, and performing CD steps in the transformed space.

Figure 6.1-d illustrates how AE acts on the iterations of one-dimensional search steps
of Figure 6.1-c. The advantages of ACiD over CD become obvious on non-separable
functions. Figure 6.2-e and Figure 6.2-f show sample runs of CD and ACiD respectively,
on Rosenbrock function in 2-D: ACiD (with ksucc = 2.0) quickly adapts an appropriate
coordinate system and finds the optimum 70 times faster than CD.

Algorithm 6.3 describes the proposed ACiD algorithm. Note that it also describes the
non-adaptive CD method by taking B = I and removing the call to AdaptiveEncoding
(line 30). Algorithm starts by randomly initializing the current parent m uniformly in
the given rectangle domain Πi[x

min
i , xmax

i ], and evaluating it. Initial step-sizes σi are set
to 1

4 of the corresponding interval length. ix is the index of the current coordinate, going
from 1 to n cyclically (line 8)1. The two offspring x1 and x2 are generated from m with
offset ±σix on coordinate ix (lines 9-11). If one of them has better fitness value than m

(minimization assumed here), m and fbest are updated accordingly (line 14 or 17). The
ix step-size σix is then updated multiplicatively depending on the success indicator (line
21 or 23). The coordinates and fitness of both offspring are then stored (lines 25 and 26).
At the end of the coordinate loop (i.e., when ix = n, line 29), the Adaptive Encoding
procedure is called to update the transformation matrix B, using information from the µ
best offspring encountered during the n coordinate steps (line 30).

1Random cycles were also tried, but no significant impact on performance was ever observed, so only
the cyclic variant is shown here for the sake of simplicity.
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6.1 Adaptive Coordinate Descent

Algorithm 6.3: ACiD

1: m← xmin
i:d + IUi:d(x

max
i:n − xmin

i:d )
2: fbest ← evaluate(m)
3: σi:d ← (xmax

i:d − xmin
i:d )/4

4: B← I

5: ix ← 0
6: impr← 1
7: while NOT Stopping Criterion do
8: ix ← ix + 1 mod. n // Cycling over [1, n]
9: x′1:d ← 0

10: x′ix ← −σix ; x1 ←m+Bx′ ; f1 ← evaluate(x1)
11: x′ix ← +σix ; x2 ←m+Bx′ ; f2 ← evaluate(x2)
12: succ← 0
13: if f1 < fbest then
14: fbest ← f1 ; m← x1 ; succ← 1
15: end if
16: if f2 < fbest then
17: fbest ← f2 ; m← x2 ; succ← 1
18: end if
19: if succ = 1 then
20: impr ← 1
21: σix ← ksucc · σix
22: else
23: σix ← kunsucc · σix
24: end if
25: xa(2ix−1) ← x1 ; fa(2ix−1) ← f1
26: xa2ix ← x2 ; fa2ix ← f2
27: if (ix = n) and (impr = 1) then
28: impr ← 0
29: xa ←

{
xa<:i|1 ≤ i ≤ 2n

}

30: B← AdaptiveEncoding(xa
1, . . . ,x

a
µ)

31: end if
32: end while

The proposed algorithm is deterministic, therefore the resulting solution for the noise-
less functions only depends on the starting point.

6.1.3 Experimental Validation

Adaptive Coordinate Descent has been benchmarked on the noiseless BBOB testbed.
Thanks to the publically available results of many algorithms on the same testbed, and
to automatic comparison procedures provided by this framework, ACiD results will be
compared to those of the state-of-the-art algorithms: BIPOP-CMA-ES, IPOP-CMA-ES,
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Figure 6.4: Performance analysis of ACiD in αccov × αcpath space. All colorscales are
different. See text for details.
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6.1 Adaptive Coordinate Descent

IPOP-aCMA-ES, (1+1)-CMA-ES and (1 + 2sm)-CMA-ES [Auger et al., 2010].

6.1.3.1 Adaptive Encoding Calibration

The main parameters in Adaptive Encoding procedure that [Hansen, 2008] suggested to
calibrate are c1 and cµ. To scale them with the dimension we can define: c1 ← 0.5

nα1
and

cµ ← 0.5
nαµ (with ksucc = 2). Figure 6.4 illustrates the potential speedup for different values

of α1 and αµ w.r.t. to the baseline algorithm (α1 = 1.0 and αµ = 1.0). First, for each of 8
benchmark problems the baseline SP1 value to reach the target value 1e-10 is calculated
(30 runs, α1 = 1.0 and αµ = 1.0). Then this procedure is repeated for 10000, 4000 and
1500 times with random values of α1 (x-axis) and αµ (y-axis) on 2-, 10- and 40-dimensional
problems respectively (left, center, right). The average speedup for 8 tested problems is
plotted on top. It should be noted that the bottom left corner (respectively, top right
corner) of each small plot corresponds to large values of c1 and cµ (respectively, small
values of c1 and cµ).

It can be clearly seen that optimal parameters of α1 and αµ depend very much both
on the problem and its dimension. In 2-D the results are somewhat difficult to interpret,
while in 10-D and 40-D, they are much more illustrative. Some general observations:� very large α1 and αµ (bottom left corner) slow down the search, because the per-

formed PCA takes into account only local information, obtained from few recent
individuals, and, therefore is not sufficiently correct.� very small α1 and αµ (top right corner) also slow down the search, because the
covariance matrix stores a lot of outdated information.� the optimal α1 and αµ are located somewhere in the middle, but often close to the
”bad” region, where the performance quickly drops.� on some problems the Pareto shape is observed in the sense that a set of α1 and αµ

from the same ”front” leads to the same performance.

The baseline results (for α1 = 1 and αµ = 1) on Sphere and Linear Slope functions
can be improved by using quite large c1 and cµ. On Sum of Different Powers, the re-
sults are very sensitive to c1 and cµ and the optimal region is quite small. It would be
interesting to note that while the region of average speedup (top) seems to be quite large,
the actual region of choice is rather constrained by the region of Rotated Ellipsoid func-
tion, where the speedup quickly drops if α1 or αµ is smaller than 0.8 (in 40-D). Another
important observation is that α1-αµ hyper-parameters optimization problem sometimes
is multi-modal (let us forget about noise) as can be clearly observed for 40-dimensional
Discus function, where two peaks are located symmetrically to each other! This is rather
unexpected observation.

In overall, the baseline results can be improved by 10-70% by choosing optimal α1 and
αµ parameters for each problem.
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Chapter 6. Exploring new frontiers using CMA-like algorithms

6.1.3.2 Coordinate Descent Calibration

Next experiment is concerned with the sensitivity of parameter ksucc. Figure 6.5-
Left shows the performance of ACiD (in terms of BBOB-SP1) depending on ksucc, for
several problems in 10-D. ksucc determines how fast the step-size will increase for a given
coordinate if the last step along that coordinate was successful. There is a strong link
between ksucc and the covariance matrix learning coefficients c1 and cµ, since they both
determine the comparative impact of the new steps.

The experiments show that ACiD does not converge for ksucc ≤ 1 on non-separable
problems, whereas on the Sphere function, ACiD obtains nearly the same results than CD
with 0.5 ≤ ksucc < 1.0. The reason for this is easy to understand on a small example: if
kunsucc = 0.5 and ksucc = 1.1, then in the case of 2 consecutive unsuccessful steps, the step-
size σ is divided by 4; so in order to come back to initial step size, 13 consecutive successful
steps are needed! The optimal pair ksucc, kunsucc of course depends on the problem, and
on the other parameters of the ACiD, too. But ksucc = 1

kunsucc
= 2.0 seems to be both

robust and simple, at least for the BBOB problems.

6.1.3.3 Experimental Settings

In order to validate ACiD with a robust version, a value of ksucc = 2 will be used as a
baseline (while kunsucc = 0.5). Indeed, while other values for ksucc ∈ [0.5, 2.0] may lead to
faster convergence, they also sometimes result in premature convergence on some problems,
even on the Sphere function, as demonstrated by preliminary experiments. Also note that
the basic rates for the covariance matrix update are set to the simple values c1 =

0.5
n and

cµ = 0.5
n rather than the default ones (c1 = αc

0.2
(n+1.3)2+µw

, cµ = α
0.2(µw−2+ 1

µw
)

(n+2)2+0.2µw
, where

αc = 10 for CMA-ES, leading to c1 ≈ 2
n2 , cµ ≈ µw

n2 , [Hansen, 2008]). A total of 4 variants
will be tested in the following: the baseline described above is denoted ACiD; ACiD-
k succ1.5 is the same variant, but with ksucc = 1.5; ACiD-ms uses the value ksucc = 2, but
implements mirrored sampling and sequential selection (Section 6.1.2.2); finally, ACiD-
a cmu0.8 uses cµ = 0.5

n0.8 rather than the default value, as our experiments in Section
6.1.3.1 have shown that cµ is a sensitive parameter indeed, and the value of 0.5

n0.8 can bring
up to 10-70% improvement on some problems.

Because ACiD can be considered as (1 + 2)-EA, a restart procedure is necessary to
improve the performance on multi-modal functions. Similarly to the other (1 + 1)-CMA-
ES that ACiD will be compared to within BBOB testbed, the algorithm is restarted if
the improvements of the best solution is smaller than 10−25 during the last 10 + ⌊20n1.5⌋
function evaluations. The maximum number of function evaluations is 104n, and the initial
interval is [−3, 3]n. All results are statistics over 15 independent runs, one run per BBOB
problem instance (e.g., 15 runs on different instances of the Sphere functions).

The MatLab source code of ACiD is available online at
http://sites.google.com/site/acdgecco/.
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6.1.3.4 Results on Noiseless BBOB Testbed

Figure 6.5: Left: The performance of ACiD in 10-D: BBOB-SP1 (the average number
of function evaluations to reach target value 10−8 divided by success rate) versus step-size
multiplier ksucc. Right: BBOB-like results for noiseless functions in 20-D: ECDF for
ACiD (continuous lines) and (1+1)-CMA-ES (dashed lines), of the running time, normal-
ized by dimension n, needed to reach target precision fopt +10k (for k = +1,−1,−4,−8).
The vertical black line indicates the maximum number of function evaluations. Light yel-
low (or gray in b&w) lines in the background show similar ECDFs for target value 10−8

of all algorithms benchmarked during BBOB 2009.

Figure 6.5-Right presents the ECDFs of both ACiD and (1 + 1)-CMA-ES aggregated
over the 24 noiseless benchmark problems in 20-D. A closer look at the results (details not
shown here) reveals that for 50% of the solved functions, ACiD is faster about by 40%
than (1 + 1)-CMA-ES. ACiD converges on Attractive Sector function f6, while (1 + 1)-
CMA-ES does not. On Rosenbrock f8 and f9, Ellipsoid f2 and f10 and Discus f11, some
ACiD algorithms are up to 2 times faster than (1+1)-CMA. Furthermore, with a budget
of 1000n function evaluations, ACiD performs best in 20-D among all algorithms that
entered BBOB-2009 competition.

Figure 6.6 gives a more general view of similar experiments in 10-D and 40-D – but
here experiments with 50 different target values are aggregated. Overall, the functions are
not easy to solve. Even the best CMA-ES algorithm, BIPOP-CMA-ES, can solve less than
90% of the problems using maximum number of function evaluations (the large crosses).
Furthermore, the elitist algorithms (ACiD, (1+1)-CMA-ES, (1+2sm)-CMA-ES) are more
likely to get stuck in a local optimum than the generational algorithms (BIPOP-CMA-ES,
IPOP-CMA-ES and IPOP-aCMA-ES), especially in the case where the step-size decreases
after each unsuccessful step. The increase of the population size after restart in the case
of the premature convergence is the main tool, which leads to a superior performance of
the generational CMA-ES algorithms over the single-population algorithms on the multi-
modal problems. Indeed, only 10 out of 24 problems are unimodal and this 42% threshold
can be seen in Figure 6.6. However, the good news is that all ACiD algorithms have at least
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Chapter 6. Exploring new frontiers using CMA-like algorithms

Figure 6.6: Empirical cumulative distribution of the bootstrapped distribution of ERT
vs dimension for 50 targets in 10[−8..2] for all functions and subgroups in 10-D (Left) and
40-D (Right). The ”best 2009” line corresponds to the best result obtained by at least
one algorithm from BBOB 2009 for each of the targets.

comparable performance with (1 + 1)-CMA-ES and (1 + 2sm)-CMA-ES: they outperform
one another depending on the problem, but the differences are not significant.

6.1.3.5 Extension to Noisy Optimization

The original ACiD is an elitist algorithm, where offspring replaces the parent only if it is
better on f . This approach seems to be too ”greedy” if f is noisy and the algorithm may
suffer from premature convergence. To reduce this effect we propose here a very simple
modification: i). we manually set or check online whether f is noisy or not; ii). if f is noisy,
at each iteration we re-evaluate the best solution found so far before the line 8 of Algorithm
6.3. This simple modification increases the budget of evaluations by 50% per iteration,
but according to our (not shown here) preliminary experiments, drastically improves the
results on functions with moderate noise. We omit these preliminary experiments for
brevity.

6.1.3.6 Extension to Large-Scale Optimization

The original ACiD algorithm performs n dichotomy steps and evaluates 2 individuals iter-
atively on n principal components (overall 2n evaluations), then calls the Adaptive Encod-
ing procedure in line 30 of Algorithm 6.3. The computation complexity of the Adaptive
Encoding procedure is defined by the eigendecomposition of the covariance matrix C and
scales with O(n3). Thus, performing the eigendecomposition every n iterations or 2n func-
tion evaluations, the computational complexity of ACiD per function evaluation becomes
quadratic. The computational complexity is also quadratic for i). (µ, λ)-CMA-ES, where
the eigendecomposition of C is postponed, and ii). the recently proposed version of (1+1)-
CMA-ES [Suttorp et al., 2009] thanks to the use of Cholesky factor update. However, it
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Figure 6.7: Results for ACiD with linear time complexity (LACiD) on Sphere, Ellipsoid
and Rosenbrock functions for different problem dimensions. Left: SP1 to reach 10−8.
Right: CPU time per function evaluation.

should be noted that there is no version of CMA-ES which can be linear in time and at
the same time be able to learn the full covariance matrix (SEP-CMA-ES learns only the
diagonal of C [Ros and Hansen, 2008]). This is due to the procedure of sampling of new
offspring, which involves matrix-vector multiplication which is already quadratic in n .

In order to reduce the computational complexity of ACiD we may replace x′ix ← −σix
; x1 ← m +Bx′ in line 10 of Algorithm 6.3 by x1 ← m− σixB(:, ix)

T . Thus, we replace
quadratic in nmatrix-vector multiplication by linear in time multiplication of vector (ix-th
eigenvector) and scalar. In contrast, in (full covariance matrix based) CMA-ES in order to
generate an offspring we first should multiply its randomly generated pre-image vector x′1
by B, that is quadratic in n. However, we still have overall quadratic complexity of ACiD
due to eigendecompostion of C . To reduce the complexity to be linear we postpone the
eigendecomposition (lines 16-17 of Algorithm 6.2) and perform it only every n iterations.
We also should remove rank-µ update (remove lines 12 and 14, set cµ = 0) which would
lead to quadratic complexity of ACiD. We additionally simplify rank-one update such that
m equals to the best solution xbest found so far. We call this modified version of ACiD,
linear time ACiD (LACiD).

Figure 6.7-Left shows the results of (1+1)-CMA-ES and LACiD on Sphere, Ellip-
soid and Rosenbrock function for different problem dimensions. It should be noted that
the LACiD usually performs worse than the original ACiD because of described above
simplifications. However, as can be seen from the results, LACiD performs as well as
(1+1)-CMA-ES on Sphere function and slightly slower on Ellipsoid and Rosenbrock. The
loss of ACiD in comparison with (1+1)-CMA-ES is growing with dimension and is about
a factor of 1.5-2 for n = 512 (the results for (1+1)-CMA-ES are incomplete for large n
due to large required time of computations).

Figure 6.7-Right shows CPU time complexity per function evaluation (in seconds) for
(1+1)-CMA-ES and LACiD, estimated on Ellipsoid problem. While ACiD is invariant

167



Chapter 6. Exploring new frontiers using CMA-like algorithms

to orthogonal transformations of the search space, we generate a random initial coordi-
nate system defined by matrix B to imitate the optimization of Rotated Ellipsoid function
(otherwise, the computation of fitness function would be very expensive itself). For our ex-
periments we use fast version of (1+1)-CMA-ES proposed by [Suttorp et al., 2009], where
the Cholesky factor of C is used for sampling new solutions. The Cholesky factor (and
its inverse) is iteratively updated, thus, requiring only matrix-vector multiplication opera-
tions. It can be seen from the Figure that (1+1)-CMA-ES scales almost quadratically with
n and very closely to the computational complexity of one matrix-vector multiplication
operation. In contrast, LACiD scales almost linearly with n and is only by a factor of 10
slower than one scalar-vector multiplication. Thus, the complexity of LACiD is about 10n
operations.

In overall, the LACiD is about n times faster in terms of time and is about 2 times
slower in terms of number of function evaluations for n > 1000. If the objective function
is relatively cheap to compute, then the overall speedup for n = 1000 is about a factor of
500.

The LACiD can be compared to SEP-CMA-ES, proposed by [Ros and Hansen, 2008].
However, the latter is not suitable for learning the full covariance matrix, and, therefore,
does not solve Rotated Ellipsoid function in a reasonable number of function evaluations
[Ros and Hansen, 2008]. The same is also true for the elegant Rank-One NES (linear time
Natural Evolution Strategy), recently proposed by [Sun et al., 2011]. While CPU time
experiments performed on different platforms and languages are hardly comparable, it
should be noted that CPU cost of Rank-One NES is about 10−3 for n = 512, that is about
a factor of 100 slower than LACiD. As well as SEP-CMA-ES, Rank-One NES can be used
for non-separable optimization, but is efficient if only one (or few) principal components
are sufficient to reach the optimum quickly. However, it is not able to benefit from learning
all principal components.

6.1.4 Conclusion and Perspectives

The very powerful Covariance Matrix Adaptation part of the state-of-the-art CMA-ES
algorithm has been generalized into the Adaptive Encoding procedure that can be used
in conjunction with any optimization algorithm, gradually learning an optimal coordinate
system where the objective function at hand is (in the best case, and at least locally)
separable. Simple yet powerful algorithms can be used to optimize separable functions,
as for instance the Coordinate Descent (CD), that performs up to 2 times faster than
the (1 + 1)-ES on the Sphere function. The Adaptive Coordinate Descent algorithm
(ACiD) uses AE coupled with adaptive CD. ACiD has been shown to be competitive with
the CMA-ES algorithms and even up to 2 times faster than (1 + 1)-CMA-ES on several
functions of the BBOB test suite.

The superiority of the ACiD as an absolutely deterministic algorithm was not obvious a
priori. These experiments confirm the hypothesis that the efficiency of CMA-ES is greatly
due to the Adaptive Encoding procedure, and that the second component of the algorithm
(Evolution Strategies, and Gaussian mutations) can be replaced without significant (or
even any) loss of performance, at least in the case of the single-individual algorithms.
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6.1 Adaptive Coordinate Descent

The IPOP-aCMA-ES is the only algorithm among the ones presented here that uses all λ
offspring in its covariance matrix update. While the best µ points are used to increase the
variance along the successful directions, the worst λ−µ = µ points are used with negative
sign to exclude irrelevant directions of search. It is clear that such kind of negative update
can be applied to ACiD too. This will be the subject of further work.

Of course, the generational versions of CMA-ES outperform the single-individual ones
like (1 + 1)-CMA-ES and ACiD, on most multi-modal problems. But this is essentially
due to the restarts with increasing population size. Some further work will be concerned
with designing a generational extension of ACiD.

Partial experiments indicate that the off-line tuning of the covariance matrix learning
rates c1 and cµ can lead to 10-70% speedup depending on the problem and dimension:
more detailed experiments must be made in this direction. However, CMA-ES algorithms
would of course also profit from tuning their parameters for the BBOB benchmark.

Borrowing ideas from [Poš́ık, 2004], an extension of the Adaptive Encoding pro-
cedure to the non-linear case using Kernel Principal Component Analysis (KPCA)
[Scholkopf et al., 1996] is envisioned. Such extension should for instance make it feasi-
ble to sample the non-linear distribution along the parabolic shaped optimal valley of the
Rosenbrock function (see Section 6.4.1).

In ACiD, the evolution path somehow approximates the gradient of the fitness func-
tion, and this information is used in the Adaptive Encoding update. However, the line
search along the gradient could also be performed explicitly, as in quasi-Newton methods
(e.g., BFGS method [Shanno, 1970]) and Pattern Search methods (e.g., Hooke and Jeeves
method [Hooke and Jeeves, 1961]).

We anticipate successful applications of ACiD algorithm to constrained problems.
For CMA-ES in large dimensions, resampling the infeasible points does not work,
and leads to a rapid decrease of the step-size that further limits the exploration
[Arnold and Hansen, 2012]. Within ACiD, the resampling on a line is easy, both in the
transformed and in the original spaces.

Another possible extension of ACiD is concerned with surrogate models: the compu-
tationally cheap meta-model assisted one-dimensional search becomes favorable even with
some budget of 3 to 5 function evaluations, at least for unimodal problems. Furthermore,
in order to preserve the invariance properties of the ACiD, comparison-based surrogate
models can be used (see Chapter 4).

Finally, the one-dimensional search procedure used in ACiD could be replaced by some
k-dimensional search (k ≤ d). For k = 2, the budget is 2k = 4 function evaluations to
find the best of 8 possible states (see Figure 6.1-c). By taking into account all available
information, such as the projection of the evolution path on 2-D, we could increase the
chances to directly find new best points, for example in the corner. In this case, by simply
increasing both step-sizes, the resulting speedup would increase to 4. We suppose that
even such simple strategies, together with sequential selection, can make ACiD significantly
faster.
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Figure 6.8: Two examples when some parents (red points) might be preferred to other
parents (green points) for parent selection in multi-objective optimization, and MO-CMA-
ES in particular.

6.2 Reward-based Parent Selection

In Steady State variants of Multi-Objective CMA-ES (SS-MO-CMA-ES, see Section 2.4.4)
an offspring is generated from a uniformly selected parent. In our own experiments (see
Section 5.4.4) we observed that such selection may be inefficient if only few parents may
significantly improve current optimal Pareto front approximation. Figure 6.8 illustrates
two examples where this may be the case. A common case is when some non-dominated
points are already relatively close to the optimal Pareto front (Figure 6.8-Left), while
other non-dominated points are quite far but their mating selection might lead to a faster
convergence. A less common case we observed on IHR1 problem (a similar behaviour
is shown in Figure 6.8-Right, see also Section 5.4.4) when one offspring typically has
better chances to improve the overall quality of the population. In both cases it might
be reasonable to encourage parents which best contribute to the convergence toward the
optimal Pareto front.

In this Section, we investigate some alternative parent selection schemes for SS-MO-
CMA-ES, based on the conjecture that not all (non-dominated) parents are equal. The
new schemes involve the definition of multi-objective rewards, estimating the expecta-
tion of the offspring survival and its hypervolume contribution. Two selection modes,
respectively using tournament, and inspired from the Multi-Armed Bandit framework
[Auer et al., 2002], are used on top of these rewards.

This Section provides a more detailed description of the work published in
[Loshchilov et al., 2011b]. Section 6.2.1 details the proposed parent selection operators
and how they fit in the generic scheme of MO-CMA-ES. In Section 6.2.2, the resulting
algorithms are experimentally assessed on some well-known benchmark unimodal func-
tions, comparatively to the previous versions of MO-CMA-ES. Section 6.2.3 provides a
discussion with some perspectives for further research.
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6.2.1 New Parent Selections for Steady-State MO-CMA-ES

The original generational and steady-state versions of MO-CMA-ES are described in Sec-
tion 2.4.4.

After [Igel et al., 2007a], the more ”greedy” variant (µ≺+1)-MO-CMA outperforms all
other variants on unimodal problems. In contrast, on multi-modal problems such as ZDT4
and IHR4, (µ+1)-MO-CMA performs better than (µ≺+1)-MO-CMA [Igel et al., 2007a],
but it does not perform too well, and neither does the generational version of MO-CMA-
ES, comparatively to other MOEAs (see, e.g., [Igel et al., 2007b] for a comparison of the
generational MO-CMA-ES with NSGA-II on ZDT4).

These remarks naturally lead to propose more ”greedy” parent selection operators
within SS-MO-CMA-ES (line 4 of Algorithm 6.4), in order to further improve its perfor-
mances on unimodal problems, leaving aside at the moment the multi-modality issue. A
parent selection operator is based on i). a selection mechanism (line 4 of Algorithm 6.4,
and Algorithm 6.5), and ii). a rewarding procedure (line 16 of Algorithm 6.4, and Algo-
rithm 6.6). A family of such operators is presented in this Section; the selection procedure
either is based on a standard tournament selection (Section 6.2.1.1), or inspired from the
Multi-Armed Bandit paradigm (Section 6.2.1.2). The rewarding procedures are described
in Section 6.2.1.3.

6.2.1.1 Tournament Selection

Standard tournament selection is parameterized from a tournament size tsize ∈ IN. Given
a set Q, tsize-tournament selection proceeds by uniformly selecting tsize individuals (with
or without replacement) from Q and returning the best one according to the criterion at
hand (here, the ≺Qt criterion, see Section 2.4.1). The parent selection procedure (line
4 of Algorithm 6.4) thus becomes tournament selection (line 11 of Algorithm 6.5). The
rewarding procedure (line 16 of Algorithm 6.4) only computes for each parent its Pareto
rank and hypervolume contribution.

The Steady-State MO-CMA-ES using tsize-size Tournament Selection is denoted
(µ +tsize 1)-MO-CMA in the following, or (µ +tsize 1) for short. Parameter tsize thus
controls the selection greediness; the larger tsize, the more often points with high hyper-
volume contribution will be selected on average.

6.2.1.2 Multi-Armed Bandit Selection

Another parent selection procedure (line 4 of Algorithm 6.4) inspired from the Multi-
Armed Bandit (MAB) paradigm is described here. How to define the underlying rewards
(line 16 of Algorithm 6.4) will be detailed in next Section.

The standard MAB setting considers several options, also called arms, each one with
an (unknown but fixed) reward distribution [Auer et al., 2002]. The MAB problem is to
find a selection strategy, selecting an arm i, t in each time step t and getting an instance
of the corresponding reward distribution, such that this strategy optimizes the cumulative
reward.

171



Chapter 6. Exploring new frontiers using CMA-like algorithms

Algorithm 6.4: (µ+λ)-MO-CMA-ES Reward-based Parent Selection

1: initialize t ← 0, random parent population Qt=0

2: repeat
3: for k = 1, . . . , λ do

4: ik ← ParentSelection(Qt, k)

5: Generate offspring a′t+1
k using parent at

ik

6: Qt ← Qt ∪
{
a′t+1
k

}

7: end for
8: for k = 1, . . . , λ do
9: Update CMA-ES parameters of a′t+1

k and at
ik

10: end for
11: Qt+1 ←

{
Qt

≺:i|1 ≤ i ≤ µ
}

// Deterministic Selection according to ≺Qt

12: for k = 1, . . . , λ do
13: itparent ← ik

14: it+1
parent ←

{
iat+1

i =atik
|1 ≤ i ≤ µ+ λ

}

15: it+1
offspring ←

{
i
at+1
i =a′t+1

k
|1 ≤ i ≤ µ+ λ

}

16: Qt+1 ← ComputeRewards(Qt,Qt+1, itparent, i
t+1
parent, i

t+1
offspring, t,W )

17: end for
18: t← t+ 1
19: until stopping criterion is met.

The Upper Confidence Bound (UCB) algorithm yielding an optimal result has been
proposed by [Auer et al., 2002]; this algorithm proceeds by selecting the arm which max-
imizes

q̂i,t + C

√
2log

∑
k nk,t

ni,t
, (6.2)

the sum of an exploitation term q̂i,t (the empirical quality, or average of rewards the

arm has ever actually received) and an exploration term

√
2log

∑

k nk,t

ni,t
(ensuring that non-

optimal arms will be selected sufficiently often to enforce the identification of the truly
optimal arm). The constant C defines the trade-off between these two terms.

Considering that our setting is a dynamic one (as evolution proceeds toward the Pareto
front), no algorithm with theoretical guarantees is available, and some heuristic adaptation
of the above MAB algorithm is used:

1. The average reward of an arm (a parent) is replaced by its average reward q̂i,t along
a time window of size w;
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Algorithm 6.5: ParentSelection

1: given Qt, k;
2: if SelectionScheme = (µ + µ) then
3: ik ← k;
4: end if
5: if SelectionScheme = (µ + 1) then
6: ik ← U

(
1,
∣∣Qt
∣∣);

7: end if
8: if SelectionScheme = (µ≺ + 1) then
9: ik ← U

(
1,
∣∣ndom(Qt

∣∣);
10: end if
11: if SelectionScheme = (µ +tsize 1) then
12: ik ← U

(
1,
∣∣Qt
∣∣);

13: for k = 2, . . . , tsize do
14: icur ← U

(
1,
∣∣Qt
∣∣);

15: if icur < ik then
16: ik ← icur;
17: end if
18: end for
19: end if
20: if SelectionScheme = (µ + 1succ)or (µ + 1rank)or (µ+ 1∆H1)or (µ+ 1∆Hi) then
21: ik ← argmaxi

(
q̂ik,t

)
;

22: end if
23: return ik;

2. The exploration is enforced by selecting once every arm which i). occurs only once
in the time window, and ii). is about to disappear from the time window (it was
selected w time steps ago);

3. In all other cases, the selection is on the exploitation side, and the arm with best
average reward along the last w time steps is selected. The constant factor C of Eq.
(6.2) is set to 0.

In summary, the MAB-like selection always selects the parent with best average reward
in the last w time steps, except for case 2 (a current parent is about to disappear from
the time window). Parameter w thus controls the exploration strength of the selection.
Experimentally however, the sensitivity of the algorithm w.r.t. w seems to be rather low,
and w was set to 500 in all experiments (Section 6.2.2).

Figure 6.9 illustrates simple steps of MAB-based parent selection.

6.2.1.3 Defining Rewards

This Section describes the rewards underlying the MAB-like selection mechanism (Algo-
rithm 6.6). A key related issue is how to share the reward between parents and offspring.
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Algorithm 6.6: ComputeRewards

1: given Qt,Qt+1, itparent, i
t+1
parent, i

t+1
offspring, t,W

2: rt ← 0
3: if it+1

offspring ≤ µ then
4: // offspring will be inserted in population
5: if SelectionScheme = (µ+ 1succ) then
6: rt ← 1.0
7: end if
8: if SelectionScheme = (µ+ 1rank) then

9: rt ← 1.0− itoffspring−1

µ
10: end if
11: if SelectionScheme = (µ+ 1∆H1)or (µ+ 1∆Hi) then
12: Ft+1 ← NomDomFronts(Qt+1)
13: Ft ← NomDomFronts(Qt)
14: for i = 1, . . . ,min(

∣∣Ft+1
∣∣ ,
∣∣Ft
∣∣) do

15: Hi ←
∑

at+1∈Ft+1
i

∆H(at+1,Ft+1
i )−∑at∈Ft

i
∆H(at,Ft

i)

16: end for
17: if SelectionScheme = (µ+ 1∆H1) then
18: rt ← H1

19: end if
20: if SelectionScheme = (µ+ 1∆Hi) then

21: rt ←
{

Hi

2i−1 |argmini(Hi > 0), 1 ≤ i ≤ |Hi|
}

22: end if
23: end if
24: r∗

it+1
offspring

← r∗
it+1
offspring

∪
{
rt
}

25: end if
26: if it+1

parent ≤ µ then
27: // parent remains in population

28: r∗
it+1
parent

← r∗
it+1
parent

∪
{
rt
}

29: end if
30: for i = 1, . . . , µ do
31: if rt−W ∈ r∗i then

32: r∗i ← r∗i \
{
rt−W

}

33: end if
34: ni,t ← |r∗i |
35: if ni,t = 0 then
36: ni,t ← 1
37: q̂i,t ← 1.0
38: else
39: q̂i,t ← 1

ni,t

∑
r∈r∗i r

40: end if
41: end for
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6.2 Reward-based Parent Selection

Figure 6.9: Multi-Armed Bandits-based parent selection.

On the one hand, if an offspring survives, it is better that some old parents and might
thus be a good starting point for further advances toward the Pareto front. The offspring
must thus inherit a sufficient fraction of its parent reward, to enable its exploitation. On
the other hand, the reward of a parent should be high when it yields good-performing
offspring, and in particular no reward should be awarded to the parent if the newborn
offspring does not survive. Several reward indicators have been considered.

(µ + 1succ)

A first possibility is to consider boolean rewards. If an offspring makes it to the next
generation, both the offspring and the parent receive reward 1 (line 6 of Algorithm 6.6).
Formally:

rt = 1.0 if a′t+1
1 ∈ Qt+1

Such boolean rewards entail a very ”greedy” behavior. The newborn offspring, receiving 1
as instant reward, gets 1 as average reward over the time window; it will thus very rapidly
(if not immediately) be selected at next parent. Likewise, its parent which already had
a top average reward (it was selected), will improve its average reward and tend to be
selected again.

(µ + 1rank)

A smoother reward is defined by taking into account the rank of the newly inserted
offspring (line 9):

rt = 1.0− rank(a′t+1
1 )− 1

µ
if a′t+1

1 ∈ Qt+1

where rank(a′t+1
1 ) is the rank of the newly inserted offspring in population Qt+1 (using

comparison operator ≺Qt defined by Eq. (2.9); the top individual gets rank 0). Along
this line, the reward ranges linearly from 1 (for a non-dominated individual with best
hypervolume contribution) to 0. A newborn offspring will here be selected rapidly only if
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it makes it into the top-ranked individuals of the current population. The average reward
of the parent can decrease if its offspring gets a poor rank, even if the offspring survives.

(µ + 1∆H1)

Another way of getting smooth rewards is based on the hypervolume contribution
of the offspring. Let us set the reward to 0 for dominated offspring (noting that most
individuals are non-dominated at the end of evolution); for non-dominated offspring, one
sets the reward to the increase of the total hypervolume contribution from generation t to
t+ 1 (line 18):

rt =
∑

a∈Qt+1

∆H(a,Qt+1)−
∑

a∈Qt

∆H(a,Qt)

(µ + 1∆Hi)
In the early stages of evolution, many offspring are dominated and the above

hypervolume-based reward thus gives little information. A relaxation of the above reward,
involving a rank-based penalization is thus defined. Formally, if k denote the Pareto rank
of the current offspring, the reward is (line 21):

rt =
1

2k−1


 ∑

a∈ndomk(Q
t+1)

∆H(a, ndomk(Q
t+1))−

∑

a∈ndomk(Q
t)

∆H(a, ndomk(Q
t))




After the reward rt is estimated using one of the described above strategies, it should
be added to a list of rewards r∗

it+1
offspring

of offspring it+1
offspring (line 24) and to a list of

rewards r∗
it+1
parent

of parent it+1
parent. Of course, adding the reward makes sense only if the

parent survives (it+1
parent ≤ µ) and/or offspring survives (it+1

offspring ≤ µ). Note that the
newly created offspring inherits its parent’s list of rewards. For each individual i the list
of rewards r∗i should be shrinked to a size of time window W (line 32). If the new size ni,t
(line 34) of the list is 0 (i.e., i-th individual was checked last time at least W time steps
ago), then we reward i-th individual by 1 (lines 36-37) to be very likely selected in the
next generation. If the list of rewards is not null, then the average reward q̂i,t is computed
in line 39 to be used later in parent selection in line 21 of Algorithm 6.5.

6.2.1.4 Discussion

The difficulty of associating a reward to a pair (parent, offspring) in Multi-Objective
optimization is twofold. On the one hand, defining absolute indicators (e.g., reflecting
some aggregation of the objective values) goes against the very spirit of MO. On the
other hand, relative indicators such as above-defined must be taken with care: they give
a snapshot of the current situation, which evolves along the population progresses toward
the Pareto front. The well-founded Multi-Armed Bandit setting, and its trade-off between
exploration and exploitation, must thus be modified to account for non-stationarity.

Another difficulty is related to the finiteness of the population: while new arms appear,
some old arms must disappear. The parent selection, e.g., based on the standard determin-
istic selection (≺Qt) is biased toward exploitation as it does not offer any way of “cooling
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Figure 6.10: Reward-based multi-objective optimization with bounded population.
”#6:+0.4” means reward 0.4 on 6th iteration.

down” the process. Such a bias is illustrated in Figure 6.10. Let the population size of
a steady-state EMOA be 5, and consider a sequence of 10 evolution steps, generating 10
new points oldest (respectively, newest) points are black (respectively, white). At each
iteration the parent with best reward generates an offspring, then 6 points are compared
using ≺Qt , and the worst point (crossed out) is eliminated. The instant parent reward re-
flects the quality of the offspring. Along evolution, some prospective points/arms are thus
eliminated because they progress more slowly than others, although they do progress, due
to the fixed population size. Expectedly, this bias toward exploitation adversely affects
the discovery of multi-modal and/or disconnected Pareto front. We will also discuss this
issue in Section 6.2.3.

6.2.2 Experimental Validation

This Section reports the experimental validation of the proposed schemes, comparatively
to the baseline MO-CMA-ES algorithms, detailing the experimental setting in Section
6.2.2.1 before discussing the experimental evidence in Section 6.2.2.3.

6.2.2.1 Experimental Setting

Algorithms.

The experiments involve:� The steady-state MO-CMA-ES with tournament-based parent selection, where the
tournament size tsize is set to 2 or 10 (respectively noted (µ+2 1) and (µ +10 1));� The steady-state MO-CMA-ES with MAB-based parent selection, considering the
four rewards described in Section 6.2.1.2 (respectively noted (µ+1succ), (µ+1rank),
(µ + 1∆H1) and (µ+ 1∆Hi));
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Figure 6.11: MO-CMA-ES on 30-dimensional (Left) ZDT1 problem and (Right) Shifted
ZDT1 (sZDT1) problem for different settings of the penalty parameter α.� The baseline algorithms include the generational (µ + µ)-MO-CMA and its steady-

state variants (µ+ 1)-MO-CMA and (µ≺ + 1)-MO-CMA (see Section 2.4.4).

All parameters of MO-CMA-ES are set to their default values [Igel et al., 2007b] (in partic-
ular, µ = 100); all algorithms only differ by their parent selection procedure. All reported
results are based on 31 independent runs with at most 200,000 fitness evaluations. Median
results are reported when the target precision was reached.

Problems.
The well-known bi-criteria ZDT1:3-6 and their rotated variants IHR1:3-6 have been

considered. Note however that the true Pareto front of all ZDT problems lies on the
boundary of the decision space, which might make it easier to discover. For the sake of an
unbiased assessment, the true Pareto front is thus shifted in decision space: x′i ← |xi − 0.5|
for 2 ≤ i ≤ n, where n is the problem dimension. The shifted ZDT problems are denoted
sZDT.

The set of recently proposed benchmark problems LZ09-1:5 [Li and Zhang, 2009] have
also been used for their complicated Pareto front in decision space (Figure 6.14).

The performance assessment procedure described in Section 2.4.5 is used.

6.2.2.2 Constraints Handling in MO-CMA-ES

In the original paper on MO-CMA-ES ([Igel et al., 2007b]) the following box-constraints
handling procedure was used. Consider an optimization problem with m objectives
f1, . . . , fm : X 7→ R with X = [xl1, x

u
1 ]× . . .× [xln, x

u
n] ⊂ Rn. For x ∈ Rn let feasible(x)=

(min(max(x1, x
l
1), x

u
1 ),. . ., min(max(xn, x

l
n), x

u
n))

T . The penalized fitness is defined as fol-
lows:

fpenaltym (x) = fm(feasible(x)) + α||x− feasible(x)||22, (6.3)

where α > 0 is a penalty parameter. [Igel et al., 2007b] suggest to set α = 10−6.
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In order to investigate the performance of MO-CMA-ES depending on the choice of α
we run the algorithm on ZDT1 problem. The results shown in Figure 6.11-Left confirms
that MO-CMA-ES is very sensitive to the value of α. MO-CMA-ES demonstrates almost
identical behaviour for α = 10−6 and α = 0 which can be interpreted as follows. (1+1)-
CMA-ES algorithm of the initial population relatively often samples offspring outside of
the box-constraint due to a relatively large step-size σ. The objective values of these
offspring are computed and penalized by a small location-based value proportional to α.
For a particular case of ZDT problems, where the Pareto front lies on the boundary of
the decision space, each box-outlier xi translates back in the feasible region, i.e., directly
on the Pareto front for x1 (given that ZDT problems are separable). In other words, MO-
CMA-ES samples points outside of the box and translates them back on the Pareto front
without significant penalization. This process can be clearly seen for small α in Figure
6.11-Left. In order to make penalization ”more realistic” we may increase α, and as can
be seen, it significantly worsen the results. Roughly speaking, there are different types
of constraint handling techniques, depending on whether the constraints tend to ”repel”
candidate solutions (that corresponds to large α), or to ”attract” candidate solutions (that
corresponds to small α). We argue that a reasonable value for α for ZDT1 problem (α
is problem-dependent) should be in the order of 1 rather than in order of 10−6. Indeed,
in this case, some trade-off of ”repel”/”attract” effects can be achieved such that the
influence of both is relatively negligible and the solution of ZDT1 can be found almost
as fast as the one of sZDT1 (a shifted variant of ZDT1). This is visible when looking at
the evolution of the hypervolume indicator for MO-CMA-ES with α = 1 on ZDT1 and
MO-CMA-ES with different α on sZDT1 at the point of 40.000 functions evaluations on
Figure 6.11-Right. As can be seen, the results of MO-CMA-ES on shifted ZDT1 function
(sZDT1) (as well as on IHR functions) are insensitive to α . . . and the case α = 1 for ZDT1
corresponds to a very similar behavior (though this is by no mean a proof).

We argue that the results of MO-CMA-ES on ZDT problems presented in
[Igel et al., 2007b] and several following papers should be reviewed and/or interpreted
w.r.t. the choice of α.

Note that a better box-constraints handling may be obtained by replacing the original
(1+1)-CMA-ES by the recently proposed prospective version of (1+1)-CMA-ES for con-
strained optimization [Arnold and Hansen, 2012], and this will be a part of our further
work.

6.2.2.3 Result Analysis

All empirical results are displayed in Table 6.1. These results show that the proposed al-
gorithms generally outperform the baseline MO-CMA-ES approaches, with the exception
of problems sZDT3, IHR6 and LZ09-5. A first general remark is that the steady-state
variants of MO-CMA-ES outperform the generational one on unimodal benchmark prob-
lems; as already noted in [Igel et al., 2007a], the greedier (µ≺ + 1)-MO-CMA is usually
faster than the original steady-state on sZDT and IHR problems; in counterpart, it is too
”greedy” on LZ09 problems (see below). Another general remark is that (µ+ 1∆Hi)-MO-
CMA is usually more robust and faster than (µ+1∆H1)-MO-CMA; this fact is explained as
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Figure 6.12: On-line performances of baseline and proposed variants of steady-state MO-
CMA-ES on sZDT1, IHR1, LZ09-3 and LZ09-4 problems (median out of 31 runs).

the former exploit a better informed hypervolume contribution-based reward, considering
also the contribution of dominated points.

The on-line performance of most considered algorithms on sZDT1, IHR1, LZ09-3 and
LZ09-4 shows the general robustness of (µ + 1rank)-MO-CMA (Figure 6.12, displaying
∆H(P ∗, P ) versus the number of function evaluations). The comparatively disappointing
results of (µ+1)-MO-CMA on IHR1 are explained from the structure of the Pareto front,
which includes an easy-to-find segment. This segment can be discovered by selecting the
extreme parent (in objective space), thus with probability 1/µ within a uniform selection
scheme. Quite the contrary, reward-based selection schemes quickly catch the fruitful
directions of search.

The price to pay for this is depicted in Figure 6.13, showing (µ + 1succ)-MO-CMA
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Figure 6.13: Typical behavior of (µ+1succ)-MO-CMA on sZDT2 (Left) and IHR3 (Right)
problems: premature convergence after 5,000 fitness function evaluations.

on sZDT2 and IHR3 problems. On these problems, a premature convergence toward a
small segment of the Pareto front is observed after circa 5,000 function evaluations. The
interpretation provided for this premature convergence goes as follows. As one part of the
Pareto front is easier to find than others, points aiming at this part quickly reach their
goal; due to non-dominated sorting (and to the fixed population size), these eliminate
other points, resulting in a very poor diversity (in objective space) of the population.
This remark suggests that some additional diversity preserving technique should be used
together with MO-CMA-ES; note that, even in the original MO-CMA-ES, a premature
convergence is observed on IHR3.

LZ09 problems have also been considered because of their non-linear Pareto front in
decision space (Figure 6.14), contrasting with the linear Pareto front of all sZDT and IHR
problems. The results depicted in Figure 6.14 show that (µ + 1rank)-MO-CMA better
approximates the Pareto front than (µ + 1) and (µ +10 1)-MO-CMA, for all problems
except LZ09-5. It is interesting to note that the results of (µ + 1rank)-MO-CMA after
100,000 fitness evaluations match those of MOEA/D-DE after 150,000 fitness evaluations
[Li and Zhang, 2009].

Overall (see also Table 6.1), (µ + 1rank)-MO-CMA and (µ +10 1)-MO-CMA perform
best on most problems, while (µ+1∆Hi)-MO-CMA is slightly more robust. Most generally,
all ”greedy” versions of MO-CMA-ES get better results on problems with a convex Pareto
front; on problems with a concave or disconnected Pareto front, they suffer from premature
convergence, entailed by a loss of diversity, due to non-dominated sorting and bounded
population size.

6.2.3 Conclusion and Perspectives

The goal and main contribution of the Section is to speed up MO-CMA-ES using new
parent selection schemes, based on tournament and reward-based approaches inspired from
the Multi-Armed Bandit framework, in order to quickly identify the most fruitful directions
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Table 6.1: Comparative results of two baseline EMOAs, namely generational and steady-
state MO-CMA-ES and several versions of steady-state MO-CMA-ES with different parent
selection schemes. Median number of function evaluations (out of 31 independent runs) to
reach ∆Htarget values, normalized by Best: a value of 1 indicates the best result, a value
X > 1 indicates that the corresponding algorithm needed X times more evaluations than
the best to reach the same precision.

∆Htarget 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01

sZDT1 sZDT2 sZDT3 sZDT6
Best 2500 12000 47000 2500 15000 59000 3000 18500 70000 4500 141200 .

(µ+ µ) 7.3 4.3 2.2 8.6 4.3 2.1 5.5 3 1.5 8.2 1 .
(µ+ 1) 6.5 3.9 2.1 7.6 3.9 2 5.1 2.8 1.4 7.2 1.1 .
(µ≺ + 1) 1.5 2.2 1.7 1 2 1.5 1.3 1.8 1.2 1 . .
(µ+2 1) 3.7 2.4 1.5 4.4 2.4 1.4 3.1 1.7 1 4.3 . .
(µ+10 1) 1.2 1 1.1 1.4 1 1.3 1 1 . 1.3 . .
(µ+ 1∆H1) 3.5 1.5 1 3.4 1.6 1 2.5 . . 1.7 . .
(µ+ 1∆Hi) 1.7 1.3 1 1.8 1.3 1 1.1 . . 1.5 . .
(µ+ 1succ) 1.2 1.7 1.1 1.6 . . 1 . . 2.1 . .
(µ+ 1rank) 1 1.4 1 1.4 . . 1 . . 1.7 . .

IHR1 IHR2 IHR3 IHR6
Best 500 1500 6000 1500 4000 8500 1000 . . 6000 . .

(µ+ µ) 8.4 8.8 6.9 6.4 4.8 3.3 8.2 . . 5.6 . .
(µ+ 1) 7 7.3 6.7 5.6 4.1 2.9 7 . . 5 . .
(µ≺ + 1) 1 1 3 1 1.6 1.7 1 . . 1 . .
(µ+2 1) 4 4.3 4 3.3 2.5 1.9 4 . . 3 . .
(µ+10 1) 2 1.6 1.1 1 1 1 1 . . 1 . .
(µ+ 1∆H1) 2 1.6 1 2 1.5 1.2 2.5 . . 1.4 . .
(µ+ 1∆Hi) 2 2.3 1 1.3 1.3 1.1 1.5 . . 1.2 . .
(µ+ 1succ) 2 2.3 2 5.3 2.7 1.7 1.5 . . 1.9 . .
(µ+ 1rank) 2 2 1.5 1.6 1.7 1.3 1.5 . . 1.6 . .

LZ09-1 LZ09-2 LZ09-3 LZ09-4
Best 500 6000 17000 3500 144000 . 1500 35000 120500 1000 10000 40500

(µ+ µ) 11.4 5.1 3.2 3.6 . . 4.1 1.2 . 5.7 3.2 2.4
(µ+ 1) 9 4.7 3 3.2 . . 3.6 1 . 5 3.9 2.5
(µ≺ + 1) 2 2.5 2.2 1 . . 1 . . 1 4.3 2.3
(µ+2 1) 6 2.8 1.9 2.2 . . 2.3 1.7 . 3.5 2.7 1.9
(µ+10 1) 2 1 1 1 . . 1 1.4 1.4 1.5 1 2
(µ+ 1∆H1) 9 2.1 1.5 2 . . 1.6 5.6 . 2 1.8 1

(µ+ 1∆Hi) 2 1.5 1.3 2.1 1 . 2 4.2 . 2.5 1.5 1

(µ+ 1succ) 1 2.1 1.4 3.5 . . 1.3 3.6 . 2 3.5 1.3
(µ+ 1rank) 1 1.9 1.3 5.8 1.1 . 1.3 1.6 1 1.5 2.4 1

LZ09-5
Best 1500 19000 .

(µ+ µ) 3.4 1.6 .
(µ+ 1) 3.3 1.4 .
(µ≺ + 1) 1 . .
(µ+2 1) 2 1 .
(µ+10 1) 1 1.7 .
(µ+ 1∆H1) 1.3 . .
(µ+ 1∆Hi) 1.6 1.9 .
(µ+ 1succ) 1.3 . .
(µ+ 1rank) 1 . .
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Figure 6.14: Plots of all 10 populations found by (µ+1)-MO-CMA (Left), (µ+10 1)-MO-
CMA (Center) and (µ+1rank)-MO-CMA (Right) in the x1−x2−x3 space on LZ09-1:5
after 100,000 function evaluations.
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Chapter 6. Exploring new frontiers using CMA-like algorithms

of search. Experiments on several bi-objective problems have shown a significantly speedup
of MO-CMA-ES on unimodal problems (for both generational and previous steady-state
variants). However, the proposed approach results in a poor convergence on multi-modal
multi-objective problems, or problems where some parts of the Pareto front are much
easier to reach than others, such as IHR3 (Figure 6.13, and discussion in Sections 6.2.1.4
and 5.4.3).

These remarks open some perspectives for further research, aimed at preserving the
benefits of parent selection schemes while addressing the premature convergence on multi-
modal landscapes. A first perspective is to maintain the points located at the border of
the already visited region, and to give them some chance to produce offspring as well al-
though they are dominated. The question thus becomes to handle yet another exploration
vs exploitation dilemma, and distribute the fitness evaluations between the current pop-
ulation and the borderline points; it also remains to extend the reward definition for the
borderline points. Such an approach is similar in spirit to the so-called BIPOP-CMA-ES
designed to overcome premature convergence within single-objective evolutionary opti-
mization [Hansen et al., 2010b]; BIPOP-CMA-ES proceeds by maintaining one large pop-
ulation for exploration purposes, and a small one for fast and accurate convergence, for
exploitation purposes.

A second perspective is to design a more integrated multi-objective CMA-ES based
algorithm, by linking the reward mechanism used in the parent selection and the internal
update rules of CMA-ES. Indeed, the success rate used to control the (1+1)-ES evolution
and the empirical success expectation used in (µ + 1succ)-MO-CMA are strongly related.
Further work will consider how to use the success rate in lieu of reward for parent selection,
expectedly resulting in a more consistent evolution progress. Meanwhile, the CMA update
rules might want to consider the discarded offspring (possibly weighting their contribution
depending on their hypervolume contribution), since they might contain useful information
even though they are discarded.

Last but not least, the MO-CMA-ES and the proposed parent selection schemes must
be analyzed and compared with other state-of-the art MOEAs, specifically SMS-EMOA
[Emmerich et al., 2005], the first algorithm, to our best knowledge, to advocate the use
of steady state within EMO; it also proposed separable variation operators, resulting in
excellent results comparatively to MO-CMA-ES on separable problems. How to extend
these variation operators in the non-separable case, following ideas of Adaptive Encoding
will also be investigated.

6.3 Alternative Restart Strategies for CMA-ES

This Section focuses on analyzing and improving the restart strategy of CMA-ES (IPOP
and BIPOP), viewed as a noisy hyper-parameter optimization problem in a 2-dimensional
space (population size, initial step-size). Two restart strategies are defined. The first
one, NIPOP-aCMA-ES (for New IPOP-aCMA-ES), differs from IPOP-CMA-ES as it
simultaneously increases the population size and decreases the step size. The second
one, NBIPOP-aCMA-ES, allocates computational power to different restart settings de-
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pending on their current results. While these strategies have been designed with the
BBOB benchmarks in mind [Hansen et al., 2012], their generality is also demonstrated
on an independent real-world problem suite related to spacecraft trajectory optimization
[Vinko and Izzo, 2008].

The Section is organized as follows. The original restart strategies and their analysis
are presented in Sections 6.3.1 and 6.3.2, respectively. The proposed restart schemes are
described in Section 6.3.3. Section 6.3.4 reports on their experimental validation. The
Section concludes with a discussion and some perspectives for further research.

6.3.1 The CMA-ES with Restarts: IPOP and BIPOP CMA-ES

CMA-ES has been extended with restart strategies to accommodate multi-modal fitness
landscapes, and to specifically handle objective functions with many local optima. As
observed by [Hansen and Kern, 2004], the probability of reaching the optimum (and the
overall number of function evaluations needed to do so) is very sensitive to the population
size. The default population size λdefault has been tuned for unimodal functions; it is
hardly large enough for multi-modal functions. Accordingly, [Auger and Hansen, 2005]

proposed a “doubling trick” restart strategy to enforce global search: the restart (µ/µw, λ)-
CMA-ES with increasing population, called IPOP-CMA-ES, is a multi-restart strategy
where the population size of the run is doubled at each restart until meeting a stopping
criterion.

The BIPOP-CMA-ES instead considers two restart regimes. The first one, which
corresponds to IPOP-CMA-ES, doubles the population size at every restart irestart
(λlarge = 2irestartλdefault) and uses an initial step-size σ0large = σ0default.

The second regime uses a small population size λsmall and initial step-size σ0small, which
are randomly drawn in each restart as:

λsmall =

⌊
λdefault

(
1
2

λlarge

λdefault

)U [0,1]2
⌋
, σ0small = σ0default × 10−2U [0,1] (6.4)

where U [0, 1] stands for the uniform distribution in [0, 1]. Population size λsmall thus varies
in [λdefault, λlarge/2]. BIPOP-CMA-ES launches the first run with default population
size and initial step-size. In each restart, it selects the restart regime with less function
evaluations used so far. Clearly, the second regime consumes less function evaluations
than the doubling regime; it is therefore launched more often.

6.3.2 Preliminary Analysis

The restart strategies of IPOP- and BIPOP-CMA-ES can be viewed as a search in the
hyper-parameter space.

IPOP-CMA-ES only aims at adjusting population size λ. It is motivated by the results
observed on multi-modal problems [Hansen and Kern, 2004], suggesting that the popula-
tion size must be sufficiently large to handle problems with global structure. In such cases,
a large population size is needed to uncover this global structure and to lead the algorithm
to discover the global optimum. IPOP-CMA-ES thus increases the population size in each
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Figure 6.15: Restart performances in the 2-dimensional hyper-parameter space (popu-
lation size and initial mutation step size in log. coordinates). For each 20-dimensional
objective function (Rastrigin - Top-Left, Gallagher 21 peaks - Top-Right, Katsuuras -
Bottom-Left and Lunacek bi-Rastrigin Bottom-Right), the median best function value
out of 15 runs is indicated. Legends indicate that the optimum of the objective function
up to precision f(x) = 10−10 is found always (+), at least once (⊕) or never (◦). Black
regions are better than white ones.

restart, irrespective of the results observed so far; at each restart, it launches a new CMA-
ES with population size λ = ρirestartinc λdefault (see ◦ in Figure 6.15). Factor ρinc must be
not too large to avoid ”overjumping” some possibly optimal population size λ∗; it must
also be not too small in order to reach λ∗ in a reasonable number of restarts. The use
of the doubling trick (ρinc = 2) guarantees that the loss in terms of function evaluations
(compared to the “oracle“ restart strategy which would directly set the population size to
the optimal value λ∗) is at most about a factor of 2.

On the Rastrigin 20-D function, IPOP-CMA-ES performs well and always finds the
optimum after about 5 restarts (Figure 6.15, Top-Left). The Rastrigin function displays
indeed a global structure where the optimum is the minimizer of this structure. For such
functions, IPOP-CMA-ES certainly is the method of choice. For some other functions such
as the Gallagher function, there is no such global structure; increasing the population size
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Figure 6.16: An illustration of λ and σ hyper-parameters distribution for 9 restarts of
IPOP-aCMA-ES (◦), BIPOP-aCMA-ES (◦ and · for 10 runs), NIPOP-aCMA-ES (�) and
NBIPOP-aCMA-ES (� and many △ for λ/λdefault = 1, σ/σdefault ∈ [10−2, 100]). The
first run of all algorithms corresponds to the point with λ/λdefault = 1, σ/σdefault = 1.

does not improve the results. On Katsuuras and Lunacek bi-Rastrigin functions, the
optimum can only be found with small initial step-size (lesser than the default one); this
explains why it can be solved by BIPOP-CMA-ES, sampling the two-dimensional (λ, σ)
space.

Actually, the optimization of a multi-modal function by CMA-ES with restarts can
be viewed as the optimization of the function h(θ), which returns the optimum found by
CMA-ES defined by the hyper-parameters θ=(λ, σ). Function h(θ), graphically depicted in
Figure 6.15 can be viewed as a black box, computationally expensive and stochastic func-
tion (reflecting the stochasticity of CMA-ES). Both IPOP-CMA-ES and BIPOP-CMA-ES
are based on implicit assumptions about h(θ): IPOP-CMA-ES achieves a determinis-
tic uni-dimensional trajectory, and BIPOP-CMA-ES randomly samples the 2-dimensional
search space.

Function h(θ) also can be viewed as a multi-objective fitness, since in addition to the
solution found by CMA-ES, h(θ) could return the number of function evaluations needed
to find that solution. h(θ) could also return the computational effort SP1 (i.e., the average
number of function evaluations of all successful runs, divided by proportion of successful
runs). However, SP1 can only be known for benchmark problems where the optimum
is known; as the empirical optimum is used in lieu of true optimum, SP1 can only be
computed a posteriori.

6.3.3 Alternative Restart Strategies

Two new restart strategies for CMA-ES, respectively referred to as NIPOP-aCMA-ES and
NBIPOP-aCMA-ES, are presented.

If the restart strategy is restricted to the case of increasing population size (IPOP),
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we propose to use NIPOP-aCMA-ES, where we additionally decrease the initial step-
size by some factor ρσdec. The rationale behind this approach is that the CMA-ES with
relatively small initial step-size is able to explore small basins of attraction (see Katsuuras
and Lunacek bi-Rastrigin functions in Figure 6.15), while with initially large step-size
and population size, it will neglect the local structure of the function, but converge to
the minimizer of the global structure. Moreover, initially, relatively small step-size will
quickly increase if it makes sense, and this will allow the algorithm to recover the same
global search properties than with initially large step-size (see Rastrigin function in Figure
6.15).

NIPOP-aCMA-ES thus explores the two-dimensional hyper-parameter space in a de-
terministic way (see � symbols in Figure 6.16). For ρσdec = 1.6 used in this study, NIPOP-
aCMA-ES thus reaches the lower bound (σ = 10−2σdefault) used by BIPOP-CMA-ES after
9 restarts, expectedly reaching the same performance as BIPOP-CMA-ES albeit using only
a large population.

The second restart strategy, NBIPOP-aCMA-ES, addresses the case where the prob-
ability to find the global optimum does not much vary in the (λ, σ) space. Under this
assumption, it makes sense to have many restarts for a fixed budget (number of function
evaluations). Specifically, NBIPOP-aCMA-ES implements the competition of the NIPOP-
aCMA-ES strategy (increasing λ and decreasing initial σ0 in each restart) and a uniform
sampling of the σ space, where λ is set to λdefault and σ

0 = σ0default × 10−2U [0,1] The se-
lection between both regimes (NIPOP-aCMA-ES and the uniform sampling) depends on
the allowed budget, like in BIPOP-aCMA-ES. The difference is that NBIPOP-aCMA-ES
adaptively sets the budget allowed to each restart strategy, where the restart strategy
leading to the overall best solution found so far is allowed twice (ρbudget = 2) the budget
given to the other strategy.

6.3.4 Experimental Validation

The experimental validation of NIPOP-aCMA-ES and NBIPOP-aCMA-ES investigates
the performance of the approach comparatively to IPOP-aCMA-ES and BIPOP-aCMA-ES
on BBOB noiseless problems and one black-box real-world problem related to spacecraft
trajectory optimization. The default parameters of CMA-ES [Hansen and Ros, 2010a,
Hansen, 2009] are used. This Section also presents the first experimental study of BIPOP-
aCMA-ES2, the active version of BIPOP-CMA-ES [Hansen, 2009].

6.3.4.1 Performance on Rastrigin Function

Figure 6.17 shows one run of NIPOP-aCMA-ES on 20-dimensional Rastrigin function,
where 6 restart were performed before reaching the target objective function (cyan curve)
value 10−8. It should be noted that NIPOP-aCMA-ES finds the optimum even with each
restart smaller and smaller initial step-sizes (green curve), and it can be clearly seen that
the initially small step-size quickly increases and reaches an ”appropriate” value. This is

2For the sake of reproducibility, the source code for NIPOP-aCMA-ES and NBIPOP-aCMA-ES is
available at https://sites.google.com/site/ppsnbipop/
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Figure 6.17: One run of NIPOP-aCMA-ES on 20-dimensional Rastrigin function.

due to the fact that i). the multi-modality of Rastrigin function is hardly observable far
away from the optimum, and ii). relatively large population reinforces the latter effect. At
the same time, the performance is not surprising and corresponds to the results illustrated
in Figure 6.15.

To summarize, a smaller than default initial step-size does not necessarily lead to a
premature convergence, but can be adapted by CMA-ES to an ”appropriate” step-size.

6.3.4.2 Benchmarking with BBOB Framework

The BBOB framework is made of 24 noiseless and 30 noisy functions (see Section 2.3.3).
Only the noiseless case has been considered here. Furthermore, only the 12 multi-modal
functions among these 24 noiseless functions are of interest for this study, as CMA-ES can
solve the 12 other functions without any restart.

With same experimental methodology as in [Hansen et al., 2012], the results obtained
on these benchmark functions are presented in Figure 6.18 and Table 6.2. The results
are given for dimension 40, because the differences are larger in higher dimensions. The
expected running time (ERT), used in the figures and table, depends on a given target
function value, ft = fopt + ∆f . It is computed over all relevant trials as the number of
function evaluations required in order to reach ft, summed over all 15 trials, and divided
by the number of trials that actually reached ft [Hansen et al., 2012].

NIPOP-aCMA-ES. On 6 out of 12 test functions (f15, f16, f17, f18, f23, f24) NIPOP-
aCMA-ES obtains the best known results for BBOB-2009 and BBOB-2010 workshops.
On f23 Katsuuras and f24 Lunacek bi-Rastrigin, NIPOP-aCMA-ES has a speedup of a
factor from 2 to 3, as could have been expected. It performs unexpectedly well on f16
Weierstrass functions, 7 times faster than IPOP-aCMA-ES and almost 3 times faster than
BIPOP-aCMA-ES. Overall, according to Figure 6.18, NIPOP-aCMA-ES performs as well
as BIPOP-aCMA-ES, while restricted to only one regime of increasing population size.
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Figure 6.18: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all
functions and weakly structured multi-modal subgroup in 40-D. The “best 2009” line
corresponds to the best ERT observed during BBOB 2009 for each single target.

NBIPOP-aCMA-ES. Thanks to the first regime of increasing population size,
NBIPOP-aCMA-ES inherits some results of NIPOP-aCMA-ES. However, on functions
where the population size does not play any important role, it performs significantly bet-
ter than BIPOP-aCMA-ES. This is the case for f21 Gallagher 101 peaks and f22 Gallagher
21 peaks functions, where NBIPOP-aCMA-ES has a speedup of a factor of 6. It seems
that the adaptive choice between two regimes works efficiently on all functions except on
f16 Weierstrass. In this last case, NBIPOP-aCMA-ES mistakingly prefers small popu-
lations, with a loss factor 4 compared to NIPOP-aCMA-ES. According to Figure 6.18,
NBIPOP-aCMA-ES performs better than BIPOP-aCMA-ES on weakly structured multi-
modal functions, showing overall best results for BBOB-2009 and BBOB-2010 workshops
in dimensions 20 (results not shown here) and 40.

6.3.4.3 Interplanetary Trajectory Optimization

The NIPOP-aCMA-ES and NBIPOP-aCMA-ES strategies, designed for the BBOB bench-
mark functions, can possibly overfit this benchmark suite. In order to test the generality of
these strategies, a real-world black-box problem is considered, pertaining to a completely
different domain: Advanced Concepts Team of European Space Agency is making avail-
able several difficult spacecraft trajectory optimization problems as black box functions
to invite the operational research community to compare different derivative-free solvers
on these test problems [Vinko and Izzo, 2008].

The following results consider the 18-dimensional bound-constrained black- box func-
tion ”TandEM-Atlas501”, that defines an interplanetary trajectory to Saturn from the
Earth with multiple fly-bys, launched by the rocket Atlas 501. The final goal is to max-
imize the mass f(x), which can be delivered to Saturn using one of 24 possible fly-by
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Figure 6.19: Comparison of all CMA-ES restart strategies on the Tandem fitness function
(mass): median (left) and best (right) values out of 30 runs.

sequences with possible maneuvers around Venus, Mars and Jupiter.

The first best results was found for a sequence Earth-Venus-Earth-Earth-Saturn
(fmax = 1533.45) in 2008 by [Addis et al., 2008]. The best results so far (fmax = 1673.88)
was found in 2011 by [Stracquadanio et al., 2011].

All versions of CMA-ES with restarts have been launched with a maximum budget of
108 function evaluations. All variables are normalized in the range [0, 1]. In the case of
sampling outside of boundaries, the fitness is penalized and becomes f(x) = f(xfeasible)−
α ‖x− xfeasible‖2, where xfeasible is the closest feasible point from point x and α is a
penalty factor, which was arbitrarily set to 1000.

As shown in Figure 6.19, the new restart strategies NIPOP-aCMA-ES and NBIPOP-
aCMA-ES respectively improve on the former ones (IPOP-aCMA-ES and BIPOP-aCMA-
ES); further, NIPOP-aCMA-ES reaches same performances as BIPOP-aCMA-ES.

The best solution found by NBIPOP-aCMA-ES 3 improves on the best solution found
in 2008, while it is worse than the current best solution, which is blamed on the lack of
problem specific heuristics [Addis et al., 2008, Stracquadanio et al., 2011], on the possibly
insufficient time budget (108 fitness evaluations), and also on the lack of appropriate
constraint handling heuristics (that might be improved using the technique proposed in
[Arnold and Hansen, 2012]).

6.3.5 Conclusion and Perspectives

This contribution of this Section regards two new restart strategies for CMA-ES. NIPOP-
aCMA-ES is a deterministic strategy simultaneously increasing the population size and
decreasing the initial step-size of the Gaussian mutation. NBIPOP-aCMA-ES implements
a competition between NIPOP-aCMA-ES and a random sampling of the initial mutation

3 x =[0.83521, 0.45092, 0.50284, 0.65291, 0.61389, 0.75773, 0.43376, 1, 0.89512, 0.77264, 0.11229,
0.20774, 0.018255, 6.2057e-09, 4.0371e-08, 0.2028, 0.36272, 0.32442]; fitness(x) = mass(x) = 1546.5
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step-size, adaptively adjusting the computational budget of each one depending on their
current best results. Besides the extensive validation of NIPOP-aCMA-ES and NBIPOP-
aCMA-ES on the BBOB benchmark, the generality of these strategies has been tested on
a new problem, related to interplanetary spacecraft trajectory planning.

The main limitation of the proposed restart strategies is to quasi implement a deter-
ministic trajectory in the θ space. Further work will consider h(θ) as yet another expensive
noisy black-box function, and the use of a CMA-ES in the hyper-parameter space will be
studied. The critical issue is naturally to keep the overall number of fitness evaluations
beyond reasonable limits. A surrogate-based approach will be investigated, learning and
exploiting an estimate of the (noisy and stochastic) h(θ) function.

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f3 15526 15602 15612 15646 15651 15656 15/15

BIPOP-a 2395(2759) ∞ ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/8
NBIPOP- 8177(9018) ∞ ∞ ∞ ∞ ∞ 4e7 0/15
NIPOP-a 4615(5541) ∞ ∞ ∞ ∞ ∞ 4e7 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f4 15536 15601 15659 15703 15733 2.8e5 6/15

BIPOP-a ∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/8
NBIPOP-∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15
NIPOP-a ∞ ∞ ∞ ∞ ∞ ∞ 4e7 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f15 1.9e5 7.9e5 1.0e6 1.1e6 1.1e6 1.1e6 15/15

BIPOP-a 1.2(0.5) 1.1(0.5) 1.1(0.4) 1.1(0.4) 1.1(0.4) 1.1(0.4) 15/15
IPOP-aC 0.72(0.3) 0.43(0.1)↓20.60(0.4) 0.61(0.4) 0.62(0.5) 0.63(0.5) 8/8
NBIPOP-1.0(0.4) 0.71(0.3)↓2 0.75(0.3) 0.76(0.3) 0.77(0.3) 0.77(0.3) 15/15
NIPOP-a 0.92(0.3) 0.61(0.2)↓ 0.55(0.2) 0.56(0.2) 0.57(0.2) 0.58(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f16 5244 72122 3.2e5 1.4e6 2.0e6 2.0e6 15/15

BIPOP-a 1.3(0.4) 0.96(0.3) 0.80(0.4) 0.54(0.3) 0.50(0.3) 0.51(0.3) 15/15
IPOP-aC 0.91(0.3) 1.1(0.5) 1.0(0.9) 0.51(0.7) 1.4(1) 1.4(1) 8/8
NBIPOP-0.97(0.3) 0.78(0.4) 0.34(0.1)↓3 0.38(0.3)↓2 0.46(0.4) 0.74(1) 15/15
NIPOP-a 1.2(0.4) 0.65(0.2) 0.23(0.1)⋆↓40.21(0.2)↓30.16(0.1)

⋆
↓30.18(0.1)↓315/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f17 399 4220 14158 51958 1.3e5 2.7e5 14/15

BIPOP-a 1.1(0.3) 0.64(0.2) 1.6(1) 1.1(0.4) 1.4(1) 0.87(0.4) 15/15
IPOP-aC 1.0(0.4) 0.52(0.2) 1.3(1) 1.3(0.9) 0.97(0.2) 0.83(0.3) 8/8
NBIPOP-1.0(0.4) 0.57(0.2) 1.2(1) 1.2(0.5) 1.0(0.3) 0.81(0.3) 15/15
NIPOP-a 0.97(0.3) 0.52(0.1) 0.97(1) 1.00(0.4) 1.1(0.6) 0.70(0.2)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f18 1442 16998 47068 1.9e5 6.7e5 9.5e5 15/15

BIPOP-a 0.94(0.2) 0.51(0.8) 1.0(0.4) 0.98(0.4) 0.88(0.7) 0.67(0.5) 15/15
IPOP-aC 0.96(0.4) 0.68(0.9) 1.0(0.4) 0.66(0.2)↓ 0.45(0.4) 0.48(0.2) 8/8
NBIPOP-1.0(0.2) 0.97(1) 1.1(0.6) 0.93(0.4) 0.57(0.4) 0.53(0.3) 15/15
NIPOP-a 0.95(0.2) 0.58(0.8) 0.75(0.1) 0.71(0.2)↓ 0.50(0.3) 0.42(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f19 1 1 1.4e6 2.6e7 4.5e7 4.5e7 8/15

BIPOP-a 396(82) 6.7e4(5e4)0.87(0.7) 1.2(1) 1.0(0.9) 1.0(1.0) 9/15
IPOP-aC 462(122) 4.4e4(2e4)0.57(0.5) 0.34(0.1)↓20.20(0.1)↓20.20(0.1)↓2 8/8
NBIPOP- 424(90) 8.3e4(6e4)0.97(0.6) 0.81(0.5) 1.1(0.9) 1.1(0.9) 9/15
NIPOP-a 436(102) 8.2e4(4e4)1.9(6) 0.48(0.3)↓ 0.32(0.2)↓ 0.32(0.2)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f20 222 1.3e5 1.6e8 ∞ ∞ ∞ 0

BIPOP-a 4.0(0.4) 9.0(4) 0.34(0.4) . . . 0/15
IPOP-aC 3.9(0.8) 8.1(5) 0.18(0.2) . . . 0/8
NBIPOP-4.0(0.8) 8.5(3) 0.39(0.4) . . . 0/15
NIPOP-a 4.0(0.6) 6.5(2) 0.32(0.3) . . . 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f21 1044 21144 1.0e5 1.0e5 1.0e5 1.0e5 26/30

BIPOP-a 7.5(11) 60(19) 37(56) 37(56) 37(56) 37(55) 15/15
IPOP-aC 7.1(11) 421(491) ∞ ∞ ∞ ∞ 3e6 0/8
NBIPOP- 4.9(6) 10(20) 5.1(8) 5.1(8) 5.1(8) 5.1(8) 15/15
NIPOP-a 14(22) 440(890) 173(228) 172(227) 171(226) 171(201) 12/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f22 3090 35442 6.5e5 6.5e5 6.5e5 6.5e5 8/30

BIPOP-a 12(20) 343(565) 201(223) 200(222) 200(201) 199(214) 4/15
IPOP-aC 144(492) 93(127) ∞ ∞ ∞ ∞ 3e6 0/8
NBIPOP- 12(6) 112(120) 32(41) 32(39) 32(40) 32(40) 12/15
NIPOP-a 179(468) 583(914) ∞ ∞ ∞ ∞ 4e7 0/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f23 7.1 11925 75453 1.3e6 3.2e6 3.4e6 15/15

BIPOP-a 8.4(9) 7.8(7) 1.3(1) 1.9(1) 1.00(0.4) 0.99(0.4) 15/15
IPOP-aC 9.2(13) ∞ ∞ ∞ ∞ ∞ 4e6 0/8
NBIPOP-8.6(11) 10(12) 1.6(2) 1.3(0.4) 0.58(0.2) 0.59(0.2) 15/15
NIPOP-a 5.9(7) 61(18) 11(3) 0.72(0.2) 0.36(0.2)⋆ 0.38(0.2)⋆ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
f24 5.8e6 9.8e7 3.0e8 3.0e8 3.0e8 3.0e8 1/15

BIPOP-a 3.6(4) 1.4(1) ∞ ∞ ∞ ∞ 4e7 0/15
IPOP-aC ∞ ∞ ∞ ∞ ∞ ∞ 1e7 0/8
NBIPOP-2.1(3) 0.19(0.2) 0.97(1) 0.97(1.0) 0.97(1) 0.97(1.0) 2/15
NIPOP-a 1.2(1) 0.15(0.2) 0.44(0.5) 0.44(0.5) 0.44(0.5) 0.44(0.5) 4/15

Table 6.2: Overall results on multi-modal functions f3 − 4 and f15 − 24 in dimension
n = 40: Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 for precision ∆f ranging in 10i,
i = 1 . . . − 7. The median number of conducted function evaluations is additionally given
in italics, if ERT(10−7) = ∞. #succ is the number of trials that reached the final target
fopt + 10−8. Best results are printed in bold.

6.4 Other Approaches

In this Section, we very briefly describe several approaches that we investigated, but whose
detailed description is omitted.
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Figure 6.20: Kernel PCA-based CMA-ES on 2-dimensional Rosenbrock function. Kernel
PCA was built using 20 red training points and tested (without evaluation) on 1000
blue test points to demonstrate the learned distribution. Left: generation k. Right:
generation k + 2.

6.4.1 Kernel PCA-based CMA-ES

Kernel Principal Component Analysis (Kernel PCA or KPCA) is an extension of PCA
to non-linear PCA using kernel methods [Scholkopf et al., 1996]. The original PCA can
be formulated in terms of dot product between data points, therefore, it can be extended
to non-linear case by replacing dot product in the original space by kernel function to
compute dot product in a reproduced kernel Hilbert space [Aronszajn, 1950].

We implemented a version of CMA-ES decomposed into CSA-ES and Adaptive En-
coding procedure, replacing the original PCA by KPCA in the latter. Thus, instead of
sampling new points on principal components in the original search space, we sample new
points on principal components found in some feature space. However, finding pre-images
of sampled points in the original space for their further evaluation of f is not straight-
forward, but can be done solving so-called pre-image problem [Kwok and Tsang, 2004].
Another difficulty is to reformulate step-size adaptation rule to be adequate to metrics of
the feature space, we did not find any elegant solution for this problem, and, therefore,
use CSA-ES adaptation for points in the original space.

Figure 6.20 illustrates generations k (Left) and k + 2 (Right) of the KPCA-based
CMA-ES on 2-dimensional Rosenbrock, where KPCA was built using 20 best (red) points
found so far and tested to illustrate the sampling distribution using 1000 (blue) test points.
It can be seen that KPCA clearly can catch non-linear landscape of Rosenbrock function
and sample accordingly, in contrast to the original CMA-ES which would sample on 2
principal components (some ellipsoid). We suppose that the extension of CMA-ES to
non-linear case, in the sense of learning non-linear principal components, is a prospective
direction of research. However, for robustness of the algorithm several issues should be
addressed: step-size control, pre-image problem, computational complexity. Some of these
issues were already discussed in [Pošık, 2007], where a KPCA-based GA was proposed.
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Figure 6.21: Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all
noise-less functions in 20-D. The ”best 2009” line corresponds to the best ERT observed
during BBOB 2009 for each single target.

6.4.2 High-precision BFGS

In Section 4.3.3.7, we showed that IPOP-s∗aACM-ES and BIPOP-s∗aACM-ES algorithms
outperform BFGS on a set of 24 noise-less BBOB benchmark problems. A more detailed
analysis of the results of BFGS [Ros, 2009] demonstrates that the algorithm performs quite
well in the beginning of the optimization of ill-conditioned problems (5 problems out of
24), i.e., reaches target objective values 101, 100, 10−2 relatively quickly in comparison with
other algorithms, but then slows down and hardly finds better target objective values. We
suppose that this happens mainly due to a of loss of precision of estimation of gradient of
f (and as a consequence, of Hessian of f) and its cumulation during the optimization. A
discussion about updating BFGS formula in ill-conditioned environment can be found in
[Powell, 1987].

In order to check whether the performance of BFGS degrades because of numeri-
cal/rounding problems or some other reasons, we implemented a version of BFGS with
high-precision arithmetic, referred to as pBFGS. The MatLab implementation of BFGS
was rewritten in C++ and integrated with a software packages for high-precision arith-
metic called ARPREC [Bailey et al., 2002]. ARPREC supports arbitrary high level of
numerical precision (up to approximately ten million decimal digits). In our experiments
we found that double-double precision with about 32 decimal digits (double precision
has about 16 digits) is sufficient to overcome numerical problems observed on BBOB
benchmark problems. Having more decimal digits we may benefit from using a deviation
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value ǫ = 10−12 (estimating the gradient as f ′(x) = f(x+ǫ)−f(x)
ǫ ), smaller than the default

ǫ = 10−8 used for gradient estimation in the finite difference method.

Figure 6.21 shows the results of benchmarking pBFGS and BFGS in comparison with
BIPOP-s∗aACM-ES and BIPOP-aCMA-ES on noise-less BBOB testbed. It can be clearly
seen that the results for pBFGS are much better than for BFGS, and high-precision
computation indeed leads to a faster and more robust convergence. However, the results
of pBFGS with restarts are still worse than the ones of BIPOP-s∗aACM-ES.

An important remark is that in order to demonstrate the performance of pBFGS
without loss of precision, we implemented not only the high-precision version of BFGS,
but also a high-precision version of BBOB framework. The loss of performance occurs not
only on the side of BFGS which computes the finite difference, but also on the side of BBOB
framework which evaluates objective values for candidates, different in the decision space
by a small ǫ value. It should be noted that a double-double version of some programming
code is usually computationally more expensive, thus, the speedup from the use of pBFGS
should be larger than the loss (typically a factor of 2) because of slower computations of
f . Moreover, in a black-box scenario the source code of f is unavailable.

Despite the uncovered difficulties of using the high-precision arithmetic within BFGS,
we now have a better estimation of its ”best case” performance. It would be also interest-
ing to find a better implementation of BFGS with pBFGS-like performance, a promising
candidate might be an implementation suggested in [Voglis et al., 2012] with an adaptable
ǫ (see also [Voglis et al., 2009]). However, given that pBFGS is already outperformed by
BIPOP-s∗aACM-ES, it also may completely fail under certain rank-preserving transforma-
tions of f .

6.4.3 Comparison-based Multi-objective Optimization and Comparison-
based Hypervolume Indicator

A natural extension of s∗ to surrogate-assisted multi-objective optimization would be to
build individual f̂i surrogates for each of fi objectives (i is the index of objective). The
use of ordinal regression-based surrogate models will lead to their invariance w.r.t. rank-
preserving transformation of f̂i. Surprisingly, this is a new feature for multi-objective
optimization in the sense that most of MOEAs are not invariant w.r.t. rank-preserving
transformations of fi, because they use value-based metrics in the environmental selection
(e.g., crowding distance, hypervolume indicator, epsilon indicator). Before going into
details of the extension of s∗, we wondered whether we could make MOEAs invariant
w.r.t. rank-preserving transformations of fi. We propose the following simple solution to
this problem.

During the optimization we evaluate ℓ candidate solutions xj , j = 1, . . . , ℓ, on f and
store corresponding objective values fi(xj) in archives Ai. Finally we have m such archives
(m is the number of objectives) containing ℓ objective values of evaluated points. Then,
objective values can be sorted such that we can associate to each candidate solution xj not
only its raw objective value fi(xj), but also its rank-based objective value f ranki (xj) which
corresponds to the rank of its solution among other solutions on objective fi. Thus, we may
simply replace the raw objective values by rank-based values, and this does not change any
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Pareto dominance relations among the points. We may use such intermediate procedure
within any MOEAs, making them invariant w.r.t. rank-preserving transformations of fi.

Our preliminary experiments within rank-based NSGA-II showed quite similar results
to the original NSGA-II. Two important aspect should be noted: i). the fact of using rank-
based objectives values does not change position of optimal Pareto front in the decision
space, but ii). it may change the final Pareto front approximation, because the objectives
now are differently scaled. The described above aspects mean that it is rather unlikely to
have the same Pareto front approximation from the rank-based and value-based versions
of the same MOEA, because their objectives are different.

Using the proposed rank-based framework, Quality Indicators also become rank-based.
We anticipate interesting theoretical and practical results from rank-based hypervolume
indicator. The fact that all objective values are integers and that adding a new point
into a set we shift objective values of some points by +1 or -1 may bring some interesting
results on computational complexity of hypervolume indicator computation. It should be
noted, that the sorting of points in archives Ai is actually not required, since the operation
of insertion, deletion and access can be performed in O(log(ℓ)) operations by representing
archives as trees.

6.5 Discussion

In this Chapter, we investigated a set of algorithms based on CMA-ES for continuous op-
timization problems with different properties: single-objective (ACiD, NBIPOP-aCMA-
ES, NIPOP-aCMA-ES), multi-objective (MO-CMA-ES with reward-based parent selec-
tion), large scale (ACiD, LACiD with linear time complexity) and multi-modal (NBIPOP-
aCMA-ES, NIPOP-aCMA-ES).

We showed that simple deterministic coordinate descent method, performed on princi-
pal components of an adaptive coordinated system is at least as efficient as (1+1)-CMA-
ES algorithm which operates by adapting multi-variate normal distribution in a stochastic
way. The proposed Adaptive Coordinate Descent (ACiD) was also extended to LACiD,
which requires only about 10n elementary operations per function evaluation in contrast
to the fastest version of (1+1)-CMA-ES with O(n2) computational complexity. The over-
all speedup of LACiD in comparison with (1+1)-CMA-ES is in the order of n. To further
improve the original ACiD in terms of number of function evaluations one should consider
alternative strategies for search on principal components. A more extreme modification
would be to replace PCA by Kernel PCA and perform the search on kernel principal
components, which might be beneficial for highly non-linear optimization problems. A
possible solution to further reduce the number of operations per function evaluation of
LACiD would be to call the eigendecomposition even less often; this, however, may in-
crease the overall number of function evaluations to reach the optimum. To reduce the
O(n2) space complexity of LACiD, one should consider iterative search on principal com-
ponents of a smaller dimension nsmall << n. This may allow to extend the algorithm to
n > 10000, but should be carefully done to prevent the explosion of overall number of
function evaluations on fully non-separable ill-conditioned problems.
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As was shown for MO-CMA-ES, not all parent individuals are equally interesting
for generating offspring, and the proposed reward-based parent selection schemes may
significantly speedup the convergence toward the optimal Pareto front. These schemes
are efficient not only during the convergence phase of the search, but also for optimal
µ-distribution approximation before all points become equally prospective. While the
schemes were tested for MO-CMA-ES where (1+1) selection scenario is applied, they
also can be extended to multi-parent scenario (e.g., for NSGA-II) by sharing the reward
between the parents.

The proposed alternative restart strategies for CMA-ES, NIPOP and NBIPOP, im-
prove the results on multi-modal functions, especially in larger dimensions, thanks to
a different principles of search in (λ, σ)-space of hyper-parameters of CMA-ES and the
adaptive allocation of budgets of function evaluations for different regimes of restarts de-
pending on their performance. We envision that the results can be further improved if the
restarts of CMA-ES are viewed as individual evaluations in (λ, σ)-space: perform some
surrogate-assisted search in this space. While the use of restarts of CMA-ES is currently
a dominating approach to deal with multi-modal optimization, we suppose that the pop-
ulation size can be adapted during the search depending on the observed landscape. Our
preliminary results suggests that a speedup of a factor of about 2 can be achieved by ad-
justing the population size during the search depending on the fitness-distance correlation
metric. The latter can be be translated to the rank-based fitness distance correlation by
using ranks of fitnesses and distances of individuals. Further research should also consider
alternative niching methods [Shir and Bäck, 2006].

It also would be interesting to incorporate the Multi-Armed Bandits approach into
CMA-ES for adaptive selection of different regimes, e.g., different regimes of uncertainty
handling, parameters adaptation, etc.
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Chapter 7

Conclusion

In this thesis, we have explored a wide range of approaches to the problem of efficient
continuous optimization. What have we learned about continuous optimization, and what
are the most promising direction for future research? This final Chapter seeks to answer
these questions.

7.1 Summary of Contributions

In this thesis, we followed the strategy described in Chapter 1 and searched for optimal
approaches to continuous optimization by first performing an exploitation step (Chapters
4 and 5) aiming at improvements with respect to ”greedy” indicators of performance
(e.g., number of function evaluations to reach the optimum), and then an exploration step
(Chapter 6) aiming at introducing new prospective paradigms and approaches that would
keep the diversity on a sufficiently rich level for further improvements. We applied our
strategy to CMA-ES as a candidate algorithm with a relatively good performance at least
in single-objective case (see Section 2.3.3).

In the exploitation part of the thesis we proposed to use ordinal regression-based
(comparison-based) surrogate (approximate) models for expensive continuous optimization
within CMA-ES.

In Chapter 4, we first showed why ordinal regression-based surrogates should be pre-
ferred to metric regression-based surrogates in the black-box scenario, when the landscape
of the objective function is unknown. The most important reason is that the ordinal
regression-based (comparison-based) surrogate models are invariant with respect to rank
preserving transformations of the objective function. This, indeed, represents a source of
robustness. Another source of such robustness is the invariance with respect to orthog-
onal transformations of the search space, which can be obtained from the information
about correlations between the variables, provided by the covariance matrix adapted by
CMA-ES. We showed that the approach of Support Vector Machines can be efficiently
used to build surrogates models for surrogate-assisted CMA-ES such that the described
above invariance properties, inherent to CMA-ES, can be preserved. When the surro-
gate model is built using a set of hyper-parameters and a set training points, it can be
directly optimized by CMA-ES for a given number of generations, which is a function
(e.g., linear function) of the estimated model quality. An important contribution of this
thesis is the proposed surrogate model hyper-parameters adaptation procedure: the user
is only needed to define the range of controlling hyper-parameters of the surrogate learn-
ing, and the procedure will optimize them automatically during the optimization of the
objective function, such that the surrogate model is (optimized to be) best suited to the
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current search region. The proposed framework s∗ and its CMA-ES instances IPOP-s∗

aACM-ES and BIPOP-s∗aACM-ES were extensively benchmarked on BBOB noiseless and
noisy benchmark problems, where they improved (often by a factor of 2-3) the best know
results for certain problems obtained from more than 40 other classical and Evolutionary
Algorithms. The aggregated results for noiseless problems are best illustrated in Figure
4.19. We also showed that the approach can be efficiently parallelized: this is, indeed, not
the case for many surrogate-assisted algorithms (e.g., some trust-region based algorithms).

In Chapter 5, we investigated surrogate-assisted multi-objective search within MO-
CMA-ES and NSGA-II using a relatively simple model exploitation procedure based on
offspring pre-selection. We proposed to build Aggregated Surrogate Model of the origi-
nal multi-objective problem in order to aggregate the information about the preferences
between solutions in the objective space. Different sources of preference information can
be used: Pareto dominance, Quality Indicators or Decision Maker based preferences. In
contrast to ”multi-surrogate” approaches, the proposed ASM model represents a single ob-
jective which imitates an aggregated preference which the optimization algorithm should
follow. In the procedure of model exploitation, λPre offspring per one parent are gen-
erated for pre-selection of the best candidate for its later evaluation on the expensive
function. The experimental validation of ASM-assisted MO-CMA-ES and NSGA-II algo-
rithms showed that ASM models significantly speedup the search (by a factor of about 2)
in the phase of convergence toward the optimal Pareto front, but tends to lack of diversity
in the phase of the optimal Pareto front approximation.

In the exploration part of the thesis, we presented a set of approaches which we de-
veloped in order to explore and extend the frontiers of Evolutionary Computation, and
CMA-ES in particular, answering some questions which have arisen in the exploitation
part of the thesis.

In Chapter 5, we proposed Adaptive Coordinate Descent answering the question
whether we could efficiently exploit a potential separability of the decorrelated search space
provided by Adaptive Encoding procedure. The final algorithm was shown to be com-
petitive with (1+1)-CMA-ES, while being deterministic and based on simple dichotomy
method. The extension of ACiD to large scale optimization, linear time ACiD (LACiD),
demonstrated slightly worse performance than (1+1)-CMA-ES in terms of number of func-
tion evaluations (a loss of about a factor of 2 for n = 512 on Ellipsoid and Rosenbrock
functions), but linear time complexity in contrast to quadratic time complexity of the
fastest version of (1+1)-CMA-ES. In fact, LACiD scales with 10n elementary operations
that is about 10−8n seconds per function evaluation (see Figure 6.7). Thus, with this
algorithm we explored the extreme opposite of surrogate-assisted search for expensive
optimization - large scale optimization with cheap function evaluations.

Answering the question whether we could improve the results of multi-objective opti-
mizers without using surrogate models, we proposed to look more carefully at the dynamic
of success of parent individuals in offspring sampling. We showed that reward-based par-
ent selection schemes can be highly beneficial for MO-CMA-ES allowing the algorithm to
quickly catch fruitful directions of search.

Our observations of a relatively small speedup of BIPOP-s∗aACM-ES on multi-modal
problems (due to difficult to learn the fitness landscapes) motivated the development of
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simple restarts strategies for CMA-ES, NIPOP and NBIPOP, which were found to be
competitive to the original restart schemes, IPOP and BIPOP. The new schemes are often
faster than the original restarts schemes especially in higher dimensions, where the alter-
native exploration of (λ, σ)-space and the adaption of computational budgets of regimes
of restarts are especially beneficial. In order to check against overfitting to BBOB bench-
mark problems, the proposed restarts schemes were tested on the real-world problem of
interplanetary trajectory optimization, where they also showed good performance.

7.2 Future Directions

Here we would like to mention several directions of future research which look the most
promising, of course, without pretending to cover everything that is important for EC, and
CMA-ES in particular. Some of these ideas were already discussed in the corresponding
Chapters and Sections.

There is a global goal to find an extremely cheap and fast (in terms of computational
complexity and memory requirements and number of functions evaluations) optimization
algorithm, suitable for different classes of optimization problems. It seems difficult to find
such algorithm in a near future (if it exists) and we rather should think of a Pareto set of
algorithms which better or worse satisfy the described above objectives.

A subspace of computationally cheap algorithms is covered by SEP-CMA-ES, Rank-
One NES and linear time ACiD. They, however, have different performance and memory
requirements. For example, the linear time ACiD is suitable for learning the full covariance
matrix and performs well on Rotated Ellipsoid problem, but requires O(n2) memory space
in order to store the covariance matrix. Thus, the primary interest in this direction would
be to further explore these algorithms to find i). a version of linear time ACiD with linear
space complexity; ii). a version of the original CMA-ES which uses linear time offspring
sampling procedure and, thus, can be linear in time; iii). versions of SEP-CMA-ES and
Rank-One NES which may learn few more principal components and, thus, performs better
on fully non-separable problems.

Our preliminary results show that s∗aACM-ES algorithms can be further improved by a
factor of up to 2 by more carefully looking at the surrogate model exploitation procedure.
This would further shift to the left the curves of s∗aACM-ES algorithms presented in Figure
4.19. We also anticipate good results from the use of different surrogate learning techniques
and their simultaneous adaptation to the current region of search. The primary interest
in surrogate-assisted search would be to i). reduce the time and space complexity of the
used surrogate learning procedure; ii). improve the accuracy of surrogates on multi-modal
functions.

A natural perspective for s∗aACM-ES would be its extension to multi-objective opti-
mization. This would require the rank-based formulation of multi-objective optimization
and rank-based Hypervolume indicator (i.e., invariant with respect to the rank-preserving
transformations of objectives) as discussed in Section 6.4.3. The surrogate model exploita-
tion procedure, however, might be more complicated and less efficient since the accuracy
of models for different objectives may differ significantly (e.g., from ideal to random pre-
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diction). Alternatively, if we succeed to carefully replace PCA by Kernel PCA in Adaptive
Encoding part of CMA-ES, then the use of ASM surrogate models for multi-objective op-
timization seems to be prospective. In this case, Kernel PCA-based s∗aACM-ES would
learn the distribution of non-dominated points and sample offspring according to this dis-
tribution. We may evaluate these offspring on ASM model learned from the preference
information, thus, unifying the single-objective and multi-objective surrogate-assisted op-
timization.
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[Fialho et al., 2010] Álvaro Fialho, Raymond Ros, Marc Schoenauer, and Michèle Sebag.
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Assisted Evolution Strategies. Frontiers in Evolutionary Robotics. I-Tech Education
and Publishing, Vienna, Austria, pages 209–220, 2008. (Cited on page 71)

[Helsgaun, 2009] Keld Helsgaun. General k-opt submoves for the Lin–Kernighan TSP
heuristic. Mathematical Programming Computation, 2009. (Cited on page 17)

215



BIBLIOGRAPHY

[Herbrich et al., 1999] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learn-
ing for ordinal regression. In Artificial Neural Networks, 1999. ICANN 99. Ninth In-
ternational Conference on (Conf. Publ. No. 470), volume 1, pages 97–102. IET, 1999.
(Cited on pages 5, 62, and 80)

[Hoffmann and Holemann, 2006] F. Hoffmann and S. Holemann. Controlled Model As-
sisted Evolution Strategy with Adaptive Preselection. In International Symposium on
Evolving Fuzzy Systems, pages 182–187. IEEE, 2006. (Cited on page 71)

[Holland, 1969] J.H. Holland. Adaptive Plans Optimal for Payoff-only Environments. De-
fense Technical Information Center, 1969. (Cited on page 15)

[Holland, 1975] J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, USA, 1975. (Cited on page 15)

[Hooke and Jeeves, 1961] Robert Hooke and T. A. Jeeves. “ Direct Search” Solution of
Numerical and Statistical Problems. J. ACM, 8(2):212–229, April 1961. (Cited on
pages 13 and 169)

[Horn et al., 1994] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic
algorithm for multiobjective optimization. In Evolutionary Computation, 1994. IEEE
World Congress on Computational Intelligence., Proceedings of the First IEEE Confer-
ence on, pages 82–87, 1994. (Cited on page 41)

[Horowitz, 2001] Joel L. Horowitz. The bootstrap. In In Handbook of Econometrics, pages
3159–3228. Elsevier Science, 2001. (Cited on page 66)

[Houle et al., 2010] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert,
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box Optimization Benchmarking of IPOP-saACM-ES on the BBOB-2012 Noisy
Testbed. In Terence Soule and Jason H. Moore, editors, Genetic and Evolutionary
Computation Conference (GECCO Companion), pages 261–268. ACM Press, July 2012.
(Cited on pages 79 and 98)

[Loshchilov et al., 2012d] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Black-
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Figure 1: Average surrogate model error in the space of model hyper-parameters measured
in 10 runs of Ranking SVM with RBF kernel (First Row), Polynomial kernel with degree
2 (Second Row) and Polynomial kernel with degree 30 (Third Row) on Sphere (Left
Column) and Rosenbrock (Right Column) functions in 10-D after 1000ℓ iterations of
the SMO algorithm. The observed best pair of hyper-parameters is denoted as ’*’.
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Figure 2: Average surrogate model error in the space of model hyper-parameters measured
in 10 runs of SVR with RBF kernel on (Left Column) Sphere and (Right Column)
Rosenbrock functions in 10-D (First Row) and its scaled variants f2 and f4 (Second
and Third Rows) after 100ℓ iterations of the SMO algorithm. The observed best pair
of hyper-parameters is denoted as ’*’.
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Figure 3: Average surrogate model error in the space of model hyper-parameters measured
in 10 runs of Ranking SVM (Left Column) and (1:N) rank-based SVR (Right Column)
with RBF kernel and ℓ = 2048 training points on Sphere function in 2-D (First Row),
10-D (First Row) and 40-D (First Row) after 1000ℓ (respectively, 100ℓ) iterations of
the SMO algorithm for Ranking SVM (respectively, SVR). The observed best pair of
hyper-parameters is denoted as ’*’.
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Figure 4: Average surrogate model error in the space of model hyper-parameters measured
in 10 runs of Ranking SVM (Left Column) and (1:N) rank-based SVR (Right Column)
with RBF kernel and ℓ = 2048 training points on Rosenbrock function in 2-D (First Row),
10-D (First Row) and 40-D (First Row) after 1000ℓ (respectively, 100ℓ) iterations of
the SMO algorithm for Ranking SVM (respectively, SVR). The observed best pair of
hyper-parameters is denoted as ’*’.
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B.1 Dual Form of ASM Learning Problem

Introducing the non-negative Lagrangian multipliers α
(∗)
i and β

(∗)
i for each constraint (5.2-

5.7) respectively (where (∗) is either (up) or (low)), the dual form is:

L(w, ρ, ξ(∗), α(∗), β(∗)) =
1

2
||w||2

+C
∑ℓ

i=1(ξ
up
i + ξlowi ) + C

∑m
i=ℓ+1 ξ

up
i + ρ

−∑ℓ
i=1 α

up
i (ρ+ ǫ+ ξupi − < w,Φ(xi) >)

−∑ℓ
i=1 α

low
i (< w,Φ(xi) > −ρ+ ǫ+ ξlowi )

−∑m
i=ℓ+1 α

up
i (ρ− ǫ+ ξupi − < w,Φ(xi) >)

−∑ℓ
i=1 β

up
i ξupi

−∑ℓ
i=1 β

low
i ξlowi

−∑m
i=ℓ+1 β

up
i ξupi

Computing the KKT conditions leads to:

∂L

∂w
= w +

ℓ∑

i=1

(αup
i − αlow

i )Φ(xi) +
m∑

i=ℓ+1

αup
i Φ(xi) = 0 (1)

∂L

∂ρ
= 1−

ℓ∑

i=1

(αup
i − αlow

i )−
m∑

i=ℓ+1

αup
i = 0 (2)

∂L

∂ξupi
= C − αup

i − β
up
i = 0 (3)

∂L

∂ξlowi

= C − αlow
i − βlowi = 0 (4)

∂L

∂ξupi
= C − αup

i − β
up
i = 0 (5)

Therefore, at the saddle point we have:

w =

ℓ∑

i=1

αlow
i Φ(xi)−

m∑

i=1

αup
i Φ(xj) (6)

1 =

m∑

i=1

αup
i −

ℓ∑

i=1

αlow
i (7)

C = αup
i + βupi = αlow

i + βlowi (8)
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Reporting these equalities, the Lagrangian becomes:

L(w, ρ, ξ, α, β) =

= −1
2 ||w||2 − ǫ

(∑ℓ
i=1(α

up
i + αlow

i )−∑m
i=ℓ+1 α

up
i

)

= −1
2 ||w||2 − ǫ

(
2
∑ℓ

i=1 α
up
i − 1

)

Let us first define some additional notations. Denote

Kij = K(xi,xj) =< Φ(xi),Φ(xj) >

and

γi =

{
(αup

i − αlow
i ) if i = 1 . . . ℓ

αup
i otherwise

Then:

L(w, ρ, ξ, α, β) = −1

2

m∑

i,j=1

γiγjK(xi,xj)− ǫ
(
2

ℓ∑

i=1

αup
i − 1

)

Eliminating the β(∗) thanks to relations (8), the dual problem to solve in (α(∗)) is:
Maximize

L̃(α(∗)) = −1

2
||w||2 − ǫ

(
2

ℓ∑

i=1

αup
i − 1

)
(9)

subject to

m∑

i=1

γi =

m∑

i=1

αup
i −

ℓ∑

i=1

αlow
i = 1 (10)

0 ≤ α(∗)
i ≤ C (11)

B.2 Solving the Dual Problem

Following [Smola and Schölkopf, 2004], the idea is to iterate exact resolutions of the maxi-
mization problem by varying only two of the α’s multipliers. Thanks to the sum constraint
(Eq. (7) or (10)), one of the α variables can be eliminated. As the resulting function,
now depending on a single variable, is quadratic, its optimization can be solved analyt-
ically. It remains to choose the pair of α indices; this choice has a large impact on the
overall computational cost for large regression problems, and several heuristics have been
proposed [Glasmachers and Igel, 2008]. It turns out that the best results in our problem
were obtained for a uniform selection of the α indices.
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B.2.1 The One-dimensional Maximization Problem

Using the same formulation as [13], let ϕi denote the model value at point xi, that is

ϕi = F(xi) =< w,Φ(xi) >=

m∑

j=1

γjKij

Maximizing the Lagrangian as a function of variables i and j only, amounts to maximize
(after removing terms that do not depend on those variables):

L̂ij(α(∗)
i , α

(∗)
j ) = −1

2

[
γ2iKii + γ2jKjj + 2γiγjKij

]

−γi
[∑

k 6=i,j γkKki

]
−γj

[∑
k 6=i,j γkKkj

]
−ǫ
(
γ̂i + γ̂j

) (12)

where γ̂i = 2 ∗ αup
i for Pareto points, and γ̂i = 0 for dominated points.

From Eq. (10), it comes:

γi + γj = γoldi + γoldj
def
= Γ (13)

Moreover,for all i ∑

k 6=i,j

γkKki = ϕi − γoldi Kii − γoldj Kij

Using the above in (12) for i and j, and eliminating j thanks to the summation
constraint (γi = Γ− γj) leads to a “single” variable maximization problem with unknown
either α∗

i , if xi is a dominated point, or αup
i / αlow

i , knowing that at most one is non-zero:

L̂(α(∗)
i ) = −1

2

[
γ2iKii + (Γ− γi)2Kjj + γi(Γ− γi)Kij

]

−γi
[
ϕi − γoldi Kii − (Γ− γoldi )Kij

]

−(Γ− γi)
[
ϕj − (Γ− γoldi )Kjj − γoldi Kij

]

−ǫ
(
γ̂i + γ̂j

)

= −1
2γ

2
i η − γi(ϕi − ϕj − γoldi η)− ǫ(γ̂i + γ̂j)

(14)

where

η
def
= Kii +Kjj − 2Kij =

= < Φ(xi)− Φ(xj),Φ(xi)− Φ(xj) > > 0 if i 6= j
(15)

and after having neglected with no loss of generality the terms that do not depend on any

of the α
(∗)
i .

We now need to distinguish the different cases to instantiate the γ
(∗)
i and γ̂i.
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Dominated-Dominated

When both xi and xj are dominated, we have

γi = αup
i and γ̂i = 0

and same holds for j. Thanks to the reduced sum-constraint (13), the one-dimensional
Lagrangian becomes

L̂(αup
i ) = −1

2
(αup

i )2η − αup
i (ϕi − ϕj − αup,old

i η) (16)

The maximum is thus reached for

αup
i = αup,old

i +
ϕj − ϕi

η
(17)

Because αup
k ∈ [0, C] for all k, the bounds for αup

i are now [max(0,Γ− C),min(C,Γ)].
Whenever one of the bounds is violated, αup

i is reset to the bound, and in all cases, αup
j is

computed according to the sum-constraint (13).

Pareto-Dominated

Suppose that xi is non-dominated, and xj is dominated. Then

γi = αup
i − αlow

i and γ̂i = 2 ∗ αup
i

γj = αup
j and γ̂j = 0

We have to distinguish 2 cases, depending on which of αup,old
i and αlow,old

i is not 0.

αup,old
i 6= 0

In this case, at least in some neighborhood of the current value αup,old
i ,

γi = αup
i and γ̂i = 2 ∗ αup

i

Thanks to the reduced sum-constraint (13), the one-dimensional Lagrangian becomes

L̂(αup
i ) = −1

2
(αup

i )2η − αup
i (ϕi − ϕj − αup,old

i η + 2ε) (18)

The maximum is thus reached for

αup
i = αup,old

i +
ϕj − ϕi − 2ε

η
(19)

From the reduced sum-constraint (13) we deduce the same bounds as in previous
section for αup

i , i.e. [max(0,Γ − C),min(C,Γ)]. However, whereas the same action must
be taken when the upper-bound is reached (set αup

i to the upper bound, and compute
αup
j according to the sum-constraint (13), the situation is different if αup

i violates its lower
bound: if that bound is strictly positive (i.e. Γ−C with Γ > C), again αup

j should simply
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be computed according to the sum-constraint (13). But if the lower bound is 0, it is likely
that increasing αlow

i might increase the Lagrangian further.
In the latter case, one has to consider again the reduced Lagrangian (12), but with

now
γi = −αlow

i and γ̂i = 0 but with γoldi = αup,old
i

which hence gives

L̂(αup
i ) = −1

2
(αlow

i )2η + αlow
i (ϕi − ϕj − αup,old

i η) (20)

whose maximum is reached for

αlow
i = −αup,old

i +
ϕi − ϕj

η
(21)

αlow,old
i 6= 0

In this case, at least in some neighborhood of the current value αlow,old
i ,

γi = −αlow
i and γ̂i = 0

The reduced sum constraint (13) becomes

−αlow
i + αup

j = Γ (22)

and the one-dimensional Lagrangian now reads

L̂(αlow
i ) = −1

2
(αlow

i )2η + αlow
i (ϕi − ϕj + αlow,old

i η) (23)

Its maximum is this reached for

αlow
i = αlow,old

i +
ϕi − ϕj

η
(24)

The bounds for αlow
i are now [max(0,−Γ),min(C,C −Γ)]. As in the previous case, if αlow

i

hits it upper bound, or its strictly positive lower bound, αup
j should simply be computed

according to the constraint (22). But if it hits its 0 as its lower bound, here again maxi-
mization might be pursued, in a similar way than in previous section: the solution is given
by

αup
i = −αlow,old

i +
ϕj − ϕi − 2ε

η
(25)

αup,old
i = αlow,old

i = 0
In this case, that could probably enter in both previous cases, both options should be
explored: looking into the domain where αup

i > 0, it comes from equation (19) that the

maximum value is reached for αup
i =

ϕj−ϕi−2ε
η while in the domain αlow

i > 0, equation (24)

gives that the maximum is reached for αlow
i =

ϕi−ϕj

η . If both quantities are negative (i.e.

0 < φj − φi < 2ε), the solution is αup
i = αlow

i = 0. Otherwise, only one of these quantities
is positive, and should be retained – with the same truncations than in sections B.2.1 or
B.2.1.
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Pareto-Pareto

Suppose now that both xi and xj belong to the Pareto front. Then

γi = αup
i − αlow

i and γ̂i = 2 ∗ αup
i

γj = αup
j − αlow

j and γ̂j = 2 ∗ αup
j

As in previous section, we have to distinguish different cases depending on which is non
zero from αup

i and αlow
i , and from αup

j and αlow
j .

αup,old
i > 0 and αup,old

j > 0

Thanks to the reduced sum-constraint αup
i + αup

j = Γ, the one-dimensional Lagrangian
now reads

L̂(αup
i ) = −1

2
(αup

i )2η − αup
i (ϕi − ϕj − αup,old

i η) (26)

Its maximum is this reached for

αup
i = αup,old

i +
ϕj − ϕj

η
(27)

The bounds for αlow
i are, again, [max(0,Γ − C),min(C,Γ)]. If either αup

i or αup
j hits the

0 lower bound, maximization should be continued in the corresponding domain (either
αup
i = 0, αlow

i > 0 or αup
j = 0, αlow

j > 0).

αlow,old
i > 0 and αup,old

j > 0

The reduced sum-constraint now reads −αlow
i + αup

j = Γ, and the one-dimensional La-
grangian becomes

L̂(αlow
i ) = −1

2
(αlow

i )2η + αlow
i (ϕi − ϕj + αlow,old

i η − 2ε) (28)

Its maximum is this reached for

αlow
i = αlow,old

i +
ϕi − ϕi − 2ε

η
(29)

The bounds for αlow
i are here [max(0,−Γ),min(C,C − Γ)]. Again, if one of the α’s hits

the 0 bound, maximization should be continued in the other domain.

αup,old
i > 0 and αlow,old

j > 0

Similarly, the reduced sum-constraint now reads αup
i −αlow

j = Γ, and the one-dimensional
Lagrangian becomes

L̂(αup
i ) = −1

2
(αup

i )2η − αup
i (ϕi − ϕj − αup,old

i η + 2ε) (30)

Its maximum is this reached for

αup
i = αup,old

i +
ϕj − ϕi − 2ε

η
(31)
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The bounds for αup
i are here [max(0,Γ),min(C,C + Γ)]. Again, if one of the α’s hits the

0 bound, maximization should be continued in the other domain.

αlow,old
i > 0 and αlow,old

j > 0

The reduced sum-constraint now reads αlow
i + αup

j = −Γ, the term in ǫ hence vanishes,
and the onedimensional Lagrangian becomes

L̂(αlow
i ) = −1

2
(αlow

i )2η + αlow
i (ϕi − ϕj + αlow,old

i η) (32)

Its maximum is this reached for

αlow
i = αlow,old

i +
ϕi − ϕj

η
(33)

The bounds for αlow
i are here [max(0,−C − Γ),min(C,−Γ)], and again, if one of the α’s

hits the 0 bound, maximization should be continued in the other domain.
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