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Preface

This dissertation is written in partial fulfillment of the requirements for the Habilitation à Diriger des

Recherches (HDR) at Pierre and Marie Curie University (UPMC) in Paris. According to the guidelines

by the UPMC thesis committee, the dissertation should review the candidate’s recent work, situating

it in the context of the international literature and outlining the prospects for future developments.

Here I broadly interpret “recent” as referring to work published after my appointment as CNRS

researcher [1]–[14]. However, for the sake of conciseness and in view of the experimental developments

at the LHC, the dissertation will focus mostly on my recent work on the production of MSSM Higgs

bosons at hadron colliders [6, 10, 12, 13, 14]. My work on the Higgs sector of the NMSSM [3, 8] and

on precision calculations of flavor observables in extensions of the SM [1, 4, 7, 9], will be summarized

more briefly, and I will not dwell on my work on split supersymmetry [15, 2] nor on my work aimed at

streamlining the interface between public codes for precision calculations in BSM theories [16, 5, 11].

Being necessarily focused on my own scientific production, this dissertation cannot aim at a com-

prehensive review of the different topics treated. Consequently, I will not even try to provide complete

lists of references, and I will cite only papers that are strictly relevant to the discussion. The readers

interested in the broader context are pointed once and for all to the many reviews already available

in the literature, such as, e.g., the one by S.P. Martin on supersymmetry [17], the ones by A. Djouadi

on the phenomenology of the Higgs boson(s) in the SM [18] and in the MSSM [19], and the one by

U. Ellwanger, C. Hugonie and A.M. Teixeira on the NMSSM [20].

Many of the results presented in this dissertation were obtained in collaboration with G. De-

grassi. Among the colleagues with whom I co-authored refs. [1]–[14], I should also mention B.C. Al-

lanach, E. Bagnaschi, N. Bernal, A. Delgado, S. Di Vita, A. Djouadi, P. Gambino, G.F. Giudice,

G. Hiller, D.R.T. Jones and A. Vicini. It is also my pleasure to acknowledge a collaboration with

K.H. Phan, as well as many fruitful discussions over the recent years with K. Benakli, M. Cacciari,

U. Ellwanger, K. Ender, A. Falkowski, M. Goodsell, T. Hahn, R. Harlander, S. Heinemeyer, H. Mantler,

M. Mühlleitner, S. Liebler, W. Porod, F. Riva, H. Rzehak, P. Skands, M. Spira, F. Staub and A. Stru-

mia – and probably quite a few others who I hope will forgive me for momentarily forgetting about

them.
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Chapter 1

Introduction

The discovery of a Higgs boson with mass around 125 GeV by the ATLAS and CMS experiments at the

Large Hadron Collider (LHC) [21, 22] marks the beginning of a new era in particle physics. The Higgs

mechanism, as realized in the Standard Model (SM) of the electroweak and strong interactions, now

stands on a firm ground as the correct description of electroweak symmetry breaking (EWSB). More

precise measurements at the LHC (and at a future e+e− collider) will tell us whether the properties

of the just-discovered particle follow the accurate predictions of the SM or deviate from them, turning

the Higgs boson into a portal through which new physics beyond the SM (BSM) can be accessed.

However, even if the Higgs boson proved to be fully SM-like, all of the issues that motivated the

physics community to consider possible extensions of the SM over the past four decades would still

stand. On the observational side, the SM does not account for neutrino masses and oscillations, it does

not include a suitable Dark Matter candidate, and it cannot justify the matter-antimatter asymmetry

in the Universe. On a more theoretical side, the SM suffers from the well-known hierarchy problem:

quantum corrections destabilize the Higgs-boson mass, inducing a quadratic dependence on the cut-off

scale used to regularize the loop integrals. If the SM was valid as an effective description of particle

physics up to the Planck scale MP ≈ 1019 GeV at which quantum-gravity effects become relevant, the

natural value for the Higgs boson mass (and for all the other masses resulting from EWSB) would

also be of the order of MP . A fantastically accurate cancellation between the Higgs-mass parameter

in the bare SM Lagrangian and the quantum corrections, occurring at all orders in perturbation

theory, would be required to ensure that the EWSB scale stays at its observed value of O(100 GeV).

Barring such an extreme fine tuning of the fundamental parameters of the theory, some new physics

must intervene at an energy scale not much larger than the EWSB scale, and stabilize the hierarchy

between the latter and the Planck scale.

Among the possible extensions of the SM, supersymmetry (SUSY) has long been considered the

most attractive candidate. At the price of doubling the particle content of the SM, by introducing a

bosonic (fermionic) superpartner for each known fermionic (bosonic) particle, SUSY provides a solution

to the hierarchy problem, because the quadratically divergent contribution of each SM particle to the
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quantum correction to the Higgs-mass parameter cancels against the contribution of its superpartner,

leaving behind a quadratic dependence on the SUSY-breaking mass of the latter (indeed, SUSY must

be broken, otherwise all of the superparticles would have the same mass as their ordinary SM partners).

Moreover, supersymmetric extensions of the SM can feature a suitable candidate for Dark Matter, a

natural mechanism to generate EWSB through quantum corrections, and an improved high-energy

convergence of the gauge couplings. On the minus side, direct searches at the LEP, at the Tevatron

and now at the LHC – after the first two-year run with reduced center-of-mass energy – have so

far failed to provide evidence for the existence of superparticles. The resulting lower bounds on the

superparticle masses bring back a certain degree of fine tuning in the EWSB process, unless rather

special patterns of SUSY-breaking parameters are considered.

A remarkable feature of SUSY extensions of the SM is the requirement of an extended Higgs sector,

with additional neutral and charged bosons. In such models the couplings of the Higgs bosons to matter

fermions and to gauge bosons can differ significantly from those of the SM Higgs. Moreover, in contrast

to the case of the SM, the Higgs-boson masses are not free parameters, as SUSY requires them to

be related to the gauge-boson masses. For example, in the minimal supersymmetric extension of the

SM, the MSSM, the tree-level mass of the lightest Higgs scalar is bounded from above by the Z-boson

mass. However, radiative corrections involving loops of SM particles and their superpartners alter the

tree-level predictions for the Higgs-boson masses, introducing a dependence on several superparticle

masses and couplings and allowing for a SM-like Higgs scalar with mass around 125 GeV. Similarly,

radiative corrections induced by superparticle loops can significantly alter the SM predictions for the

Higgs production and decay processes. Consequently, a measurement of the properties of the just-

discovered Higgs boson will allow us to constrain the parameter space of SUSY extensions of the SM,

independently of the actual observation of superparticles or additional Higgs bosons.

In order to use the information on the Higgs sector to discriminate between different SUSY ex-

tensions of the SM, precise calculations of their predictions for masses, production and decays of the

Higgs bosons are necessary. In many cases the inclusion of potentially large radiative corrections from

diagrams involving gluons or their superpartners, the gluinos, requires a two-loop calculation, with

all the related technical difficulties. Indeed, over the past two decades an impressive theoretical effort

has been devoted by several groups to a precise characterization of the Higgs sector of the MSSM.

For what concerns the predictions for the MSSM Higgs masses, full one-loop calculations have been

available since the mid-1990s, while the dominant two-loop corrections controlled by the strong gauge

coupling and the top and bottom Yukawa couplings, evaluated under the approximation of vanishing

external momentum in the Higgs-boson self-energies, had been computed by the early 2000s. Indeed, in

the early stages of my research activity I contributed to the computation of these two-loop corrections

[23, 24, 25, 26, 27], which were then implemented [28, 29] in existing codes for the calculation of the

MSSM mass spectrum [30, 31, 32, 33]. More recently, a nearly complete two-loop calculation of the

MSSM Higgs masses, including electroweak effects and part of the external-momentum dependence,

has become available, as have the leading three-loop effects.
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For what concerns the production of Higgs bosons [34, 35, 36], one of the most important mech-

anisms at the LHC is the loop-induced gluon fusion, where the coupling of the gluons to the Higgs

boson is mediated by loops of heavy colored particles. In the SM the dominant contributions to the

gluon-fusion amplitude arise from top-quark loops and, to a much lesser extent, bottom-quark loops.

The SM prediction for the Higgs-production cross section in gluon fusion is by now extremely ad-

vanced, including the full next-to-leading order (NLO) QCD corrections; the next-to-next-to-leading

order (NNLO) QCD corrections due to top-quark loops; soft-gluon resummation effects; the first-order

electroweak (EW) corrections; estimates of the next-to-next-to-next-to-leading order (NNNLO) QCD

corrections and of the mixed QCD-EW correction.

In the MSSM the effect of the bottom-quark loops can be considerably enhanced, and loops in-

volving the superpartners of the heavy quarks, the stop and sbottom squarks, can also give sizable

contributions, resulting in measurable deviations from the SM prediction for the cross section. How-

ever, in the MSSM the cross section is currently known only at the NLO (although approximate

calculations of some NNLO effects exist). The contributions of two-loop diagrams with quarks and

gluons can be obtained from the corresponding SM results with an appropriate rescaling of the Higgs-

quark couplings, and the contributions of two-loop diagrams with squarks and gluons had been fully

computed by the late 2000s. On the other hand, due to the number of different masses involved, a

full computation of the two-loop diagrams with quarks, squarks and gluinos has proved a much more

daunting task. Results based on a combination of analytic and numerical methods were presented in

refs. [37, 38], but neither explicit analytic formulae nor public computer codes have been made avail-

able so far (indeed, the codes turn out to be extremely slow and suffer from numerical instabilities,

which makes them unpractical for phenomenological applications).

However, the early results from SUSY searches at the LHC set preliminary lower bounds on the

squark and gluino masses of the order of the TeV, although for third-generation squarks the bounds

are somewhat weaker. This suggests that – if the MSSM is actually realized in nature – there might be

wide regions of its parameter space in which all of the Higgs bosons are lighter than the squarks and

the gluino. In the presence of such a hierarchy between the Higgs-boson mass and the superparticle

masses, approximate analytic results for the quark-squark-gluino contributions can be derived. This is

indeed one of the main subjects of my recent research. In particular, in refs. [6, 10, 12, 14] we provided

both the results of a Taylor expansion in the Higgs boson mass, which are valid in the top-stop-gluino

case for a Higgs boson lighter than the top quark, and the results of an asymptotic expansion in

the heavy superparticle masses that does not assume any hierarchy between the Higgs-boson mass

and the quark mass, thus covering both the top-stop-gluino and bottom-sbottom-gluino cases. The

former results confirmed and extended earlier calculations valid in the limit of vanishing Higgs-boson

mass [39, 40], whereas the latter were not previously available. As a byproduct of our calculations,

we also obtained new results for the two-loop SUSY-QCD contributions to the decays of Higgs bosons

into photons and into gluons.
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Unlike the exact two-loop results for the gluon-fusion amplitude, the approximate analytic results

of refs. [6, 10, 12, 14] can be easily implemented in public computer codes, allowing for an efficient

and accurate determination of the Higgs production cross section. Indeed, in ref. [13] we described the

implementation of our results in the POWHEG-BOX framework, which matches NLO-QCD computations

of matrix elements with parton-shower Monte Carlo generators such as PYTHIA or HERWIG. In addition

to the total cross section for Higgs-boson production in gluon fusion, the code allows us compute also

the rapidity and transverse-momentum distributions of the produced Higgs boson. Furthermore, our

results were implemented in the public code SusHi [41], which computes the total and differential

cross sections for Higgs production in gluon fusion and bottom-quark annihilation in the SM and in

the MSSM.

The situation in other SUSY extensions of the SM is much less advanced than the one in the MSSM.

Even in the simplest, next-to-minimal SUSY extension of the SM (NMSSM), where the addition of

a gauge-singlet field to the Higgs sector allows to reduce the fine-tuning problem of the MSSM, the

accuracy of the theoretical predictions for the Higgs-boson masses has until recently been stuck to

the level that for the MSSM had been achieved in the mid-1990s, and radiative corrections to Higgs

production and decay processes have only been studied at one-loop accuracy (if at all). For example,

when I co-authored a study of the NMSSM with gauge-mediated SUSY breaking [3] in 2007, the

dominant one-loop corrections to the Higgs masses controlled by the top and bottom Yukawa couplings

had been computed in the effective-potential approximation, i.e. neglecting the external momentum

in the self-energies, while the remaining one-loop and two-loop corrections were available only in a

leading-logarithmic approximation. In ref. [8] we took a few steps towards bridging the accuracy gap

between the NMSSM and MSSM calculations. In particular, we provided a full one-loop calculation

of the self-energies and tadpoles of the neutral Higgs bosons of the NMSSM, and we computed the

two-loop corrections to the neutral Higgs boson masses controlled by the strong gauge coupling in

the effective-potential approximation. We showed that both classes of corrections can induce shifts

of a few GeV in the light Higgs-boson masses, and they can also sizably affect the mixing between

singlet and MSSM-like Higgs scalars. Our results were later implemented in public codes [42, 43] for

the computation of the NMSSM mass spectrum, and they have become a standard ingredient of many

phenomenological analyses of the NMSSM.

Independently of the direct searches for new particles at high-energy colliders, BSM physics could

manifest itself through its effect on a number of well-measured low-energy observables. In particular,

the contribution of new particles could induce large deviations from the SM predictions in processes

that are suppressed in the SM, such as flavor-violating or CP-violating transitions. Extensions of the

SM with broken SUSY, such as the MSSM and the NMSSM, do indeed suffer from what is known as

the flavor problem. If the SUSY-breaking mass and interaction terms for the superpartners of the SM

fermions had a generic structure in flavor space, and if the superparticles had masses of at most a few

TeV (to avoid an excessive amount of fine tuning in the EWSB), processes such as meson-antimeson

transitions would receive very large contributions from loops involving superparticles, which is strongly
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ruled out by the good agreement between the SM predictions and the experimental measurements of

these processes. A natural solution to the flavor problem is the so-called Minimal Flavor Violation

(MFV) hypothesis, according to which the flavor-violating structure of the SUSY-breaking terms

is linked to the known structure of the Yukawa couplings, so that, just as in the SM, all flavor-

violating interactions are controlled by the CKM matrix. In such MFV scenarios, the superparticle

contributions to low-energy flavor observables are at most comparable to the SM contributions, and

the generally good agreement between measurements and SM predictions translates into constraints

on the parameter space of the different SUSY models.

The rare flavor-violating inclusive decay B → Xs γ is particularly well-suited as a precision test of

the SM and it extensions, thanks to its low sensitivity to non-perturbative effects. The SM prediction

for the branching ratio BR[B → Xs γ], which includes most of the NNLO QCD contributions as

well as the leading non-perturbative and electroweak effects, has an uncertainty of about 7% and

agrees within 1σ with the current experimental world average. In extensions of the SM, however, the

theoretical accuracy of the prediction for BR[B → Xs γ] is not at the same level as in the SM, and even

a complete NLO calculation is available only for some specific models. For what concerns the MSSM

with MFV, we computed in ref. [1] the contribution of two-loop diagrams involving gluinos to the

Wilson coefficients for the b → sγ transition, thus completing the NLO calculation of BR[B → Xs γ]

in that model. We had to overcome several hurdles, related to the large number of diagrams and,

more conceptually, to the fact that the MFV condition is affected by radiative corrections and must be

imposed on the squark-mixing matrices after renormalization. Later, we presented in ref. [9] a NLO

calculation of the Wilson coefficients for b→ sγ in a two-Higgs-doublet model (THDM) in which the

second Higgs doublet is a color octet, the so-called Manohar-Wise model [44].

We made our results available to the public in the computer code SusyBSG [4], which provides the

state-of-the-art calculation of BR[B → Xs γ] in the MSSM with MFV as well as in several versions of

the THDM. Since its publication in 2007, the code has been repeatedly updated and expanded, and it

has been used by many groups to analyze the constraints from flavor physics on the MSSM parameter

space. In particular, I co-authored a study of flavor violation in the MSSM with anomaly-mediated

SUSY breaking [7], in which we used SusyBSG to show that B → Xs γ provided the most stringent

constraints on the parameter space of the model.

This dissertation is organized as follows: in the next chapter I will summarize the structure of

SUSY extensions of the SM, namely the MSSM and the NMSSM, provide a brief overview of different

patterns of SUSY breaking and discuss some issues on the renormalization of the input parameters

that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will

review the results of refs. [6, 10, 12, 13, 14] on the production of MSSM Higgs bosons in gluon fusion.

In chapter 4 I will review the results of ref. [8] on the radiative corrections to the Higgs boson masses

in the NMSSM. In chapter 5 I will review the calculation of BR[B → Xs γ] in the MSSM with MFV,

refs. [1, 4]. Finally, in chapter 6 I will briefly summarize the outlook of my future research.
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Chapter 2

SUSY extensions of the SM

2.1 The Minimal Supersymmetric Standard Model

This section summarizes the particle spectrum of the MSSM. The purpose of the section is mainly

to fix the notation, thus I will not discuss the important issue of radiative corrections in the Higgs

sector, and I will skip information that is not relevant to the topics treated in the next chapters. For

an exhaustive introduction to the MSSM, the reader is pointed to ref. [17].

Superpotential and SUSY-breaking Lagrangian: The SUSY-conserving masses and interac-

tions of the quark, lepton and Higgs fields and of their superpartners are encoded in the superpotential,

an analytic function of the quark and lepton superfields Q, U c, Dc, L , Ec and of the Higgs superfields

H1 and H2. Assuming R-parity conservation, which forbids lepton- and baryon-number-violating

interactions, the MSSM superpotential reads

WMSSM = heH1LE
c + hdH1QD

c + huQH2U
c + µH1H2 , (2.1)

where sums over gauge and generation indices are understood (the SU(2)-doublet superfields are con-

tracted by the antisymmetric tensor ǫab, with ǫ12 = 1). The soft SUSY-breaking mass and interaction

terms for the MSSM scalars (i.e., terms that break SUSY without inducing quadratic divergences

through quantum corrections) are contained in the potential

Vsoft = m2
H1
H†

1H1 +m2
H2
H†

2H2 +m2
QQ

†Q+m2
L L

†L+m2
U ũ

∗
RũR +m2

D d̃
∗
Rd̃R +m2

E ẽ
∗
RẽR

+
(
TeH1L ẽ

∗
R + TdH1Q d̃

∗
R + TuQH2 ũ

∗
R +BµH1H2 + h.c.

)
, (2.2)

where for the scalar components of the quark and lepton superfields I define ũR = U c ∗, d̃R = Dc ∗,

ẽR = Ec ∗, Q = (ũL, d̃L)T and L = (ν̃L, ẽL)T . Again, sums over gauge and generation indices are

understood. Finally, the soft SUSY-breaking mass terms for the superpartners of the gauge bosons

(the gauginos) are contained in the Lagrangian

LG =
1

2

(
M1 b̃b̃+M2 w̃w̃ +M3 g̃g̃

)
+ h.c. , (2.3)
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where the gauginos are two-component spinors and sums over gauge indices are once more understood.

For simplicity, I will assume the parameter µ in eq. (2.1) and all the soft SUSY-breaking parameters

in eqs. (2.2) and (2.3) to be real, thus neglecting any additional source of CP violation beyond the

CKM matrix. Various conventions for the sign of the parameters µ in eq. (2.1) and Bµ in eq. (2.2)

are used in the literature. I adopt here the convention used in my papers on the two-loop corrections

to the MSSM Higgs masses [23]–[27] and production cross section [6, 10, 12, 14]. This is opposite to

the convention prescribed by the SUSY Les Houches Accord (SLHA) [16, 5].

The Higgs sector: Keeping only the dependence on the neutral components of the Higgs doublets,

the tree-level Higgs potential of the MSSM reads:

V0 = m2
1

∣∣H0
1

∣∣2 +m2
2

∣∣H0
2

∣∣2 +Bµ

(
H0

1H
0
2 + h.c.

)
+
g2 + g′ 2

8

(
|H0

1 |2 − |H0
2 |2
)2
, (2.4)

where: m2
1 = m2

H1
+ |µ|2, m2

2 = m2
H2

+ |µ|2; g and g′ are the SU(2)L and U(1)Y gauge couplings,

respectively. Each neutral Higgs field can be decomposed into vacuum expectation value (vev) plus

CP-even and CP-odd fluctuations as follows:

H0
1 = v1 +

1√
2

(S1 + i P1) , H0
2 = v2 +

1√
2

(S2 + i P2) . (2.5)

It is not restrictive to choose Bµ real and negative, so that v1 and v2 are real and positive. With

the convention of eq. (2.5) for the normalization of the Higgs vevs, the squared masses of the gauge

bosons are m2
W = g2 v2/2 and m2

Z = (g2 + g′ 2) v2/2, where v ≡ (v2
1 + v2

2)
1/2 ≈ 174 GeV. The masses

of the up-type quarks are mu = hu v2, and the masses of the down-type quarks and charged leptons

are md,e = hd,e v1 (here, e.g., hu denotes one of the three eigenvalues of the corresponding matrix of

Yukawa couplings).

The mass matrix for the CP-odd bosons is diagonalized by an angle β such that tan β = v2/v1.

One of the two eigenstates, G0, plays the role of the neutral would-be-Goldstone boson; the other, A,

is a physical pseudoscalar with tree-level squared mass

m2
A = − Bµ

cosβ sinβ
. (2.6)

The mass matrix for the charged components of the Higgs doublets is also diagonalized by the

angle β. One of the two eigenstates, G±, plays the role of the charged would-be-Goldstone boson; the

other, H±, is a physical charged scalar with tree-level squared mass m2
H± = m2

A +m2
W .

To determine the masses of the CP-even bosons, the minimum conditions of the tree-level Higgs

potential V0 can be used to replace m2
1 and m2

2 with combinations of m2
A and tanβ. The resulting

tree-level mass matrix, in the (S1, S2) basis, is

M0 =

(
m2

A sin β2 +m2
Z cos β2 −(m2

A +m2
Z) sinβ cos β

−(m2
A +m2

Z) sin β cosβ m2
A cos β2 +m2

Z sin β2

)
. (2.7)
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The tree-level matrix M0 is diagonalized by an angle α given by

tan 2α =

(
m2

A +m2
Z

m2
A −m2

Z

)
tan 2β , (2.8)

and the two eigenstates of M0 are denoted as h and H, with mh < mH . There is an upper bound on

the tree-level mass of the lightest eigenstate, m2
h < m2

Z cos2 2β.

In the MSSM the role of the SM Higgs boson is shared between the scalars h and H. In particular,

the couplings of the two scalars to massive vector bosons and to SM fermions are

ghV V =

√
2m2

V

v
sin(β − α) , ghuu =

1√
2

cosα

sin β

mu

v
, ghdd,hee = − 1√

2

sinα

cos β

md,e

v
, (2.9)

gHV V =

√
2m2

V

v
cos(β − α) , gHuu =

1√
2

sinα

sin β

mu

v
, gHdd,Hee =

1√
2

cosα

cos β

md,e

v
. (2.10)

In the so-called decoupling limit, mA ≫ mZ , the mixing angle in the CP-even sector simplifies to

α ≈ β − π/2. As a result, the tree-level mass of the lightest scalar becomes mh ≈ mZ | cos 2β|, and

its couplings to gauge bosons, quarks and leptons in eq. (2.9) become SM-like. On the other hand,

the mass of the heaviest scalar becomes mH ≈ mA , the couplings of H to two gauge bosons vanish

and the couplings of H to two up-type (down-type) SM fermions are suppressed (enhanced) by tanβ.

Therefore, in this limit, the Higgs sector of the MSSM reduces to a SM-like Higgs boson with tree-level

mass mh < mZ , and a heavy and mass-degenerate multiplet (H,A,H±) decoupled from the gauge

sector. However, radiative corrections mediated by quark and squark loops can lift the mass of the

SM-like Higgs boson up to the value mh ≈ 125 GeV suggested by the recent LHC results.

The sfermion sector: The Yukawa couplings (he, hd, hu) in eq. (2.1), as well as the mass terms

(m2
Q, m2

L, m2
U , m2

D, m2
E) and the trilinear interaction terms (Te, Td, Tu) in eq. (2.2), are 3×3 matrices

in generation space. The Higgs vevs induce additional mass terms for the superpartners of the SM

fermions (the sfermions). In particular, the trilinear interaction terms in eq. (2.2) induce a mixing

between the superpartners of the right-handed and left-handed SM fermions. The physical up-type

and down-type squarks (as well as the physical charged sleptons, which I will not discuss here) are

the eigenstates of the resulting 6×6 mass matrices.

In the so-called super-CKM basis, the quark fields are rotated in such a way that Yukawa couplings

in eq. (2.1) are flavor-diagonal, and the squarks are rotated in parallel to their superpartners. A

strict interpretation of the minimal-flavor-violation condition, which we adopted in our calculation of

BR[B → Xs γ] [1, 4], consists in assuming that all the soft SUSY-breaking matrices for the squark

masses and interactions in eq. (2.2) are flavor-diagonal in the super-CKM basis. In this case, the only

source of flavor violation in the squark sector is the CKM matrix, as in the quark sector. However,

for the mass matrices of the up-type and down-type squarks to be simultaneously flavor-diagonal in

the super-CKM basis, the soft SUSY-breaking mass matrix for the left-squark doublets m2
Q must be

not only diagonal, but also proportional to identity matrix.
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If the strict MFV condition is satisfied, or if – as will be the case in the calculations of Higgs-boson

properties in chapters 3 and 4 – one simply neglects any intergenerational mixing, the squark mass

matrices are block-diagonal for each generation. In this case the only mixing to be taken into account

is the one between the superpartners of the left-handed and the right-handed squarks. The trilinear

Higgs-squarks interactions are usually decomposed as the product of two flavor-diagonal matrices,

Tq = hq Aq (where q = u, d), and the mass matrices for the third-generation squarks, in the (q̃L, q̃R)

basis, read

Mt̃ =

(
m2

Q +m2
t + (1

2 − 2
3 sin2 θW )m2

Z cos 2β mt (At + µ cot β)

mt (At + µ cot β) m2
U +m2

t + 2
3 sin2 θW m2

Z cos 2β

)
, (2.11)

Mb̃ =

(
m2

Q +m2
b − (1

2 − 1
3 sin2 θW )m2

Z cos 2β mb (Ab + µ tan β)

mb (Ab + µ tan β) m2
D +m2

b − 1
3 sin2 θW m2

Z cos 2β

)
, (2.12)

where the soft SUSY-breaking parameters mQ, mU , mD, At and Ab are understood as the (3,3) entries

of the corresponding diagonal matrices in flavor space, and θW is the Weinberg angle. The stop and

sbottom mass matrices are diagonalized by the mixing angles θt and θb, respectively, and the resulting

mass eigenstates are denoted as (t̃1, t̃2) and (b̃1, b̃2), respectively. The relations between the squark

masses, mixing angle and left-right mixing terms read

sin 2θt =
2mtXt

m2
t̃1
−m2

t̃2

, sin 2θb =
2mbXb

m2
b̃1
−m2

b̃2

, (2.13)

where Xt ≡ At + µ cot β and Xb ≡ Ab + µ tan β.

The chargino/neutralino sector: The charged components of the superpartners of the Higgs

bosons, the higgsinos, mix with the charged winos, w̃± = (w̃1 ∓ iw̃2)/
√

2. In the formalism of two-

component spinors, the Lagrangian contains the mass terms

−
(
−iw̃− h̃−1

) ( M2 g v2

g v1 −µ

) (
−iw̃+

h̃+
2

)
+ h.c. . (2.14)

The above mass matrix, Mχ± , is diagonalized by two unitary matrices U and V such that U∗Mχ±V † =

diag(mχ±

1
,mχ±

2
), and the two-component chargino states, ordered by increasing mass, are

χ+
i = Vij ψ

+
j , χ−

i = Uij ψ
−
j , (2.15)

where ψ+ stands for (−iw̃+, h̃+
2 ) and ψ− for (−iw̃−, h̃−1 ). Under our simplifying assumptions all the

entries of the chargino mass matrix in eq. (2.14) are real. In this case U and V become real matrices,

as long as the chargino mass terms are allowed to take on negative signs.

10



The neutral components of the higgsinos, h̃0
1 and h̃0

2, mix with the neutral gauginos b̃ and w̃0. In

the two-component formalism, the Lagrangian contains the mass terms

−1

2

(
−ib̃ − iw̃0 h̃0

1 h̃0
2

)




M1 0 −g′ v1/
√

2 g′ v2/
√

2

0 M2 g v1/
√

2 −g v2/
√

2

−g′ v1/
√

2 g v1/
√

2 0 µ

g′ v2/
√

2 −g v2/
√

2 µ 0







−ib̃
−iw̃0

h̃0
1

h̃0
2




. (2.16)

The above mass matrix is diagonalized by a single unitary matrix N such that

χ0
i = Nij ψ

0
j , (2.17)

where ψ0 stands for (−ib̃, −iw̃0, h̃0
1, h̃

0
2) and χ0

i are the neutralino mass eigenstates ordered by in-

creasing mass. Again, we take all the entries of the neutralino mass matrix in eq. (2.16) as real and

allow the neutralino mass terms to take on negative signs, so that N is a real matrix.

Finally, being a color octet, the gluino does not mix with any other fermion and is not affected by

EWSB. At tree level the gluino mass coincides with the soft SUSY-breaking term, i.e., mg̃ = M3.

2.2 The Next-to-Minimal Supersymmetric Standard Model

The NMSSM provides an elegant solution to the so-called µ problem of the MSSM, i.e. the question

of how to relate the higgsino mass parameter µ in the superpotential, eq. (2.1), to the other mass

parameters in the soft SUSY-breaking scalar potential, eq. (2.2). Indeed, since µ enters the SUSY-

conserving part of the Lagrangian, its natural value would be around the high boundary scale at

which the MSSM is embedded in a larger theory. One possible solution to the problem, known

as Giudice-Masiero mechanism, consists in assuming that µ is in fact generated by SUSY-breaking

effects together with the soft terms. In the NMSSM, on the other hand, µ arises as the vev of the

scalar component of an additional chiral superfield S, singlet with respect to the SM gauge group

and coupled to the MSSM Higgs superfields H1 and H2 through a superpotential term λSH1H2 .

In this case, an effective higgsino mass parameter is generated as µeff = λ 〈S〉, where 〈S〉 is in turn

determined by the soft SUSY-breaking mass and interaction terms for the singlet. The scalar and

pseudoscalar components of the singlet superfield mix with the MSSM Higgs fields of matching parity,

while the fermion component (singlino) mixes with the MSSM higgsinos. The new superpotential term

also induces a quartic Higgs-scalar interaction controlled by the new coupling λ, which can bring the

additional benefit of increasing the tree-level prediction for the mass of the lightest Higgs boson. This

allows for a smaller contribution to the Higgs mass from radiative corrections involving top quarks and

stop squarks, thus reducing the so-called little hierarchy problem of the MSSM, i.e. the need for the

stop masses to be substantially larger than the weak scale, which brings back a degree of fine tuning

in the EWSB conditions. In this section I will only summarize how the Higgs sector of the NMSSM

differs from the one of the MSSM. For a comprehensive review of the NMSSM the reader is pointed

to ref. [20].
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In the NMSSM, the superpotential mass term for the MSSM Higgs doublets in eq. (2.1) is replaced

by a trilinear singlet-doublet interaction, plus a cubic interaction term for the singlet

µH1H2 −→ λSH1H2 +
κ

3
S3 . (2.18)

The corresponding term in the soft SUSY-breaking potential Vsoft, eq. (2.2), is replaced as

BµH1H2 −→ λAλ SH1H2 +
κ

3
Aκ S

3 , (2.19)

and Vsoft contains an additional mass term for the singlet, m2
S S

∗S. For simplicity the new parameters

λ, κ, Aλ and Aκ are all assumed to be real. Note also that the convention for the sign of λ in eqs. (2.18)

and (2.19) is the opposite of the one prescribed by the SLHA [5] and adopted in ref. [8]. Additional

terms which would be allowed by gauge symmetry, such as MSSM-like µ and Bµ terms and terms

linear or quadratic in S, are forbidden by a Z3 symmetry acting on the superfields H1, H2 and S.

The neutral components of the Higgs fields can be decomposed into their vevs plus their CP-even

and CP-odd fluctuations as

H0
i = vi +

1√
2

(Si + iPi) (i = 1, 2) , S = vs +
1√
2

(S3 + iP3) . (2.20)

Using the minimization conditions of the tree-level scalar potential to replace the soft SUSY-breaking

Higgs masses m2
H1
, m2

H2
and m2

S with combinations of the Higgs vevs and the trilinear couplings, the

tree-level mass matrix for the CP-even fields reads



ḡ2v2
1 − λ vs

v2

v1
AΣ (2λ2 − ḡ2)v1v2 + λ vsAΣ 2λ2 v1 vs + λ v2 (AΣ + κ vs)

(2λ2 − ḡ2)v1v2 + λ vsAΣ ḡ2v2
2 − λ vs

v1

v2
AΣ 2λ2 v2 vs + λ v1 (AΣ + κ vs)

2λ2 v1 vs + λ v2 (AΣ + κ vs) 2λ2 v2 vs + λ v1 (AΣ + κ vs) −λAλ
v1v2

vs
+ κvs (Aκ + 4κ vs)


 ,

(2.21)

where for brevity we define AΣ = Aλ + κ vs and ḡ2 = (g2 + g′ 2)/2. The CP-even mass matrix is

diagonalized by an orthogonal matrix RS, such that

hi = RS

ij Sj , (2.22)

where hi, with i = 1, 2, 3, are the CP-even mass eigenstates ordered by increasing mass. The upper

bound on the lightest-scalar mass is weaker than in the MSSM, thanks to an additional contribution

controlled by the singlet-doublet superpotential coupling:

m2
h1

< m2
Z cos2 2β + λ2 v2 sin2 2β , (2.23)

where again we define v2 ≡ v2
1 + v2

2 . Note however than the second term on the r.h.s. in eq. (2.23) is

significant only for small or moderate tanβ, which in turn suppresses the first term. Large values of

λ are thus required for mh1
to be significantly larger than mZ at tree level.

The tree-level mass matrix for the CP-odd fields reads



−λ vs
v2

v1
AΣ −λ vsAΣ −λ v2 (AΣ − 3κ vs)

−λ vsAΣ −λ vs
v1

v2
AΣ −λ v1 (AΣ − 3κ vs)

−λ v2 (AΣ − 3κ vs) −λ v1 (AΣ − 3κ vs) −4λκ v1 v2 − λAλ
v1v2

vs
− 3κAκ vs


 . (2.24)
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The CP-odd mass matrix is in turn diagonalized by an orthogonal matrix RP , such that

ai = RP

ij Pj , (2.25)

where ai stands for (G0, A1, A2). Here, G0 is the neutral would-be–Goldstone boson, while A1 and A2

are two physical pseudoscalars, ordered by increasing mass.

In the neutralino sector, the singlino s̃ mixes with the neutral components of the MSSM higgsinos

h̃0
1 and h̃0

2, which in turn mix with the neutral gauginos b̃ and w̃0. In the formalism of two-component

spinors, the Lagrangian contains the mass terms

−1

2

(
−ib̃ − iw̃0 h̃0

1 h̃0
2 s̃
)




M1 0 −g′ v1/
√

2 g′ v2/
√

2 0

0 M2 g v1/
√

2 −g v2/
√

2 0

−g′ v1/
√

2 g v1/
√

2 0 λ vs λ v2

g′ v2/
√

2 −g v2/
√

2 λ vs 0 λ v1

0 0 λ v2 λ v1 2κ vs







−ib̃
−iw̃0

h̃0
1

h̃0
2

s̃



,

(2.26)

The neutralino mass matrix is diagonalized by a unitary matrix N , such that

χ0
i = Nij ψ

0
j , (2.27)

where ψ0 stands for (−ib̃, −iw̃0, h̃0
1, h̃

0
2, s̃) and χ0

i are the neutralino mass eigenstates ordered by

increasing mass. Under our simplifying assumptions all the entries of the neutralino mass matrix in

eq. (2.26) are real. In this case N becomes a real matrix, as long as the neutralino mass terms are

allowed to take on negative signs.

Finally, the charged-Higgs and chargino sectors of the NMSSM are not directly affected by the

presence of the singlet superfield. The expressions for the corresponding mass matrices are the same

as in the MSSM, once we identify

tan β ≡ v2
v1
, µ ≡ λ vs , Bµ ≡ λ vsAΣ + λ2 v1v2 . (2.28)

In particular, the chargino mass matrix is as in eq. (2.14), and the charged-Higgs mass is

m2
H+ = − Bµ

cos β sin β
+ m2

W . (2.29)

If λ ≪ 1 and vs ≫ v the singlet and the singlino decouple from the Higgs and higgsino sectors of

the MSSM, respectively, leaving behind effective µ and Bµ terms as in eq. (2.28). Note that in this

limit Bµ ≈ λκ v2
s is driven to large values, unless κ≪ 1 as well.
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2.3 Patterns of supersymmetry breaking

Until superparticles are actually discovered, the only information available on their masses and cou-

plings comes in the form of exclusion bounds. The latter arise both from direct searches for super-

particles at high-energy colliders and from indirect constraints such as flavor-violating observables,

electroweak precision observables and the prediction for the Higgs-boson mass and couplings. An im-

portant aspect of (N)MSSM phenomenology consists in translating the experimental information on

the superparticles (or lack thereof) into bounds on the SUSY-breaking parameters of the considered

model. Moreover, in any computation of particle properties (such as, e.g., mass or production cross

section of Higgs bosons) it is necessary to choose a representative set of SUSY-breaking parameters

to assess the importance of the newly-computed contributions.

The soft SUSY-breaking Lagrangian in eqs. (2.2) and (2.3) contains more than a hundred indepen-

dent parameters, making a general analysis of the parameter space overly complicated. However, if

the soft SUSY-breaking mass and interaction terms for the sfermions had a generic structure in flavor

space, diagrams with sfermion exchange would induce unacceptably large contributions to flavor-

violating processes such as µ → eγ decay or K0–K̄0 mixing, unless the sfermion masses are much

larger than the TeV scale. Similarly, generic complex phases in the soft SUSY-breaking terms would

induce unacceptably large CP-violating effects. It is therefore reasonable to assume that the soft

SUSY-breaking mass and interaction terms for squarks and sleptons are, at least approximately, real

and flavor-universal, leading to the minimal-flavor-violation scenario described earlier.

Indeed, MFV scenarios can occur naturally. In most realizations of SUSY breaking, SUSY is

spontaneously broken in a hidden sector of particles that do not couple directly to squarks and slep-

tons, but share with them some interaction that eventually transmits the breaking of SUSY to the

visible sector. If the mediating interaction is flavor blind, the resulting soft SUSY-breaking terms for

squarks and sleptons are flavor-universal at the energy scale characteristic of the process that breaks

SUSY. Some amount of flavor violation still arises via the renormalization-group (RG) evolution of

the soft terms down to the weak scale. However, being controlled by the same Yukawa couplings that

induce flavor violation in the quark sector, these effects are not unacceptably large. Two flavor-blind

mediating interactions that are commonly considered in the literature are gravity and the ordinary

gauge interactions of the SM. A third well-studied mechanism, also involving supergravity, is anomaly

mediation. Each of these mechanisms is characterized by a small number of independent parameters at

the SUSY-breaking scale, and predicts a distinctive pattern of soft terms at the weak scale. Therefore,

assuming a specific mechanism of SUSY breaking allows to substantially simplify the analysis of SUSY

models. Public computer codes, such as SoftSusy [31], SuSpect [32] and SPheno [33], can then be

used to perform the RG evolution of the soft terms between the SUSY-breaking scale and the weak

scale and compute the mass spectrum of the model.

In the rest of this section I briefly review the most popular mechanisms of SUSY breaking. I also

discuss the alternative approach of setting “by hand” a specific pattern of soft terms at the weak scale,

without referring to an underlying SUSY-breaking mechanism at a higher scale.
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Gravity mediation: In this class of models it is assumed that the breaking of SUSY is transmitted

to the visible sector by interactions (in particular, gravity) that manifest themselves at the Planck

scale. The typical scale of the soft SUSY-breaking terms for the MSSM superpartners ismsoft ∼ F/MP ,

where F has dimensions of a squared mass and parameterizes the breaking of SUSY in the hidden

sector. In a particularly constrained class of models known as “minimal supergravity” (mSUGRA) or

“constrained MSSM” (CMSSM), it is assumed that the interactions that communicate the breaking

of SUSY to the visible sector are flavor-blind and insensitive to the gauge quantum numbers of the

superparticles. In this case the soft SUSY-breaking masses and trilinear interactions in eqs. (2.2) and

(2.3) have universal boundary conditions at the scale MP :

M1 = M2 = M3 = m1/2 , (2.30)

m2
H1

= m2
H2

= m2
0 , m2

Q = m2
L = m2

U = m2
D = m2

E = m2
0 I3 , (2.31)

Tu = A0 hu , Td = A0 hd , Te = A0 he , (2.32)

where I3 in eq. (2.31) represents the identity in flavor space. The soft SUSY-breaking parameters can

then be evolved down to the weak scale via the RG equations of the MSSM, allowing to determine

the full mass spectrum of the superpartners from the three Planck-scale parameters m1/2, m0 and A0

in eqs. (2.30)–(2.32), plus the parameters µ and Bµ and the known values of the various gauge and

Yukawa couplings.

In practice, the boundary conditions in eqs. (2.30)–(2.32) are usually imposed at the lower scale

MGUT ≈ 2× 1016 GeV at which the gauge couplings unify, and above which the MSSM is presumably

embedded in a grand-unified theory (GUT). Moreover, since any valid choice of GUT-scale param-

eters must reproduce the measured masses of the SM gauge bosons, it is convenient to exploit the

minimization conditions of the Higgs potential at the weak scale, and trade the two parameters Bµ

and µ2 for the vevs v1 and v2, or, equivalently, for the parameters v (which can be extracted from the

SM masses) and tan β. The CMSSM/mSUGRA scenarios are then characterized by just five input

parameters beyond those already present in the SM: universal GUT-scale masses for the scalars (m2
0)

and for the gauginos (m1/2), a universal trilinear coupling A0, plus tan β and the sign of µ.

In a less-constrained category of models inspired by gravity-mediated SUSY breaking, known as

non-universal-Higgs-mass (NUHM) models, the soft SUSY-breaking Higgs masses m2
H1

and m2
H2

are

not required to be equal to the sfermion masses at the GUT scale. This allows for two additional

input parameters, which are usually chosen as the weak-scale values of µ and Bµ.

In the NMSSM with minimal gravity mediation the GUT-scale boundary conditions on the soft

SUSY-breaking terms involving the singlet are m2
S = m2

0 and Aλ = Aκ = A0. The model contains

the additional superpotential couplings λ and κ, while µ and Bµ are no longer independent input

parameters. In practice, however, the NMSSM with fully universal GUT-scale boundary conditions

turns out to be very constrained, and only finely-tuned regions in the parameter space lead to the

correct EWSB. It is therefore convenient (and rather common in the literature) to relax the universality
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conditions, assuming, e.g., that the mechanism of SUSY breaking treats the singlet differently from

the other superfields. In that case, some of the soft SUSY-breaking terms (e.g., m2
S or Ak) can be

considered as independent parameters at the GUT scale, and possibly traded for weak-scale input

parameters such as the singlet vev vs.

Gauge mediation: In this class of models the breaking of SUSY still happens in a hidden sector, but

there is a set of messenger superfields that couple both to the SUSY-breaking sector and to the ordinary

gauge sector of the MSSM. One-loop diagrams with gaugino-messenger interactions induce soft SUSY-

breaking mass terms for the gauginos, while two-loop diagrams with both gaugino-messenger and

gauge-boson-messenger interactions induce soft SUSY-breaking mass terms for the MSSM sfermions

and the Higgs bosons. Since the gauge interactions are flavor-blind, the induced sfermion masses are

flavor-universal.

In the simplest model of gauge-mediated SUSY breaking the messengers belong to one fundamental

and one antifundamental multiplet of SU(5), and are characterized by a mass scale Mm and a SUSY-

breaking scale F , such that the messenger fermions have masses of order Mm and the messenger

scalars have square masses of order M2
m ± F . At the scale Mm, the SUSY-breaking masses for the

three MSSM gauginos and for the scalars (the latter denoted collectively as φ) read

Mi = ci
αi

4π

F

Mm
(i = 1, 2, 3) , (2.33)

m2
φ = 2

(
F

Mm

)2 3∑

i=1

(αi

4π

)2
ci Ci(φ) , (2.34)

where: αi = g2
i /(4π), with the gauge couplings ordered as (g′, g, gs); the constants ci are (5/3, 1, 1);

Ci(φ) is the quadratic Casimir invariant of the field φ for the gauge group with coupling αi. Eqs. (2.33)

and (2.34) are valid for F ≪ M2
m, but they can be easily generalized to the case of larger F , or to

the case of a more complicated messenger sector. It can be seen that the gaugino and scalar masses

are of the same order in the loop expansion, since the gaugino masses are of O(αi) and the squared

scalar masses are of O(α2
i ). The trilinear interaction terms Tu,d,e are generated only at two loops, thus

they are suppressed with respect to the scalar and gaugino masses and they can be approximately

considered equal to zero.

The MSSM with gauge-mediated SUSY breaking is therefore rather constrained. Once the struc-

ture of the messenger sector (i.e., number and gauge representation of the messenger multiplets) is

fixed, the mass spectrum depends only on F and Mm, plus the parameters µ and Bµ which are usually

traded for v and tan β at the weak scale. The evolution of the SUSY-breaking parameters from the

messenger scale Mm down to the weak scale generates some degree of flavor mixing in the sfermion

masses, as well as non-zero values for the trilinear terms, but these effects are generally small. Inci-

dentally, the small value of At at the weak scale suppresses the contribution from stop loops to the

lightest Higgs-boson mass, making it difficult to accommodate mh ≈ 125 GeV in gauge mediation.
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Treating v and tan β as independent inputs instead of µ and Bµ does, however, hide a problem

specific to models such as gauge mediation in which the soft terms are generated through loop effects.

If the “µ problem” of the MSSM described at the beginning of section 2.2 is addressed by the Giudice-

Masiero mechanism, the generic prediction Bµ/µ ∼ F/M holds, where F and M are the SUSY-

breaking parameter and the mass of the mediating field, respectively, for the considered mechanism of

SUSY breaking. In gravity-mediated models, where msoft ∼ F/M , the prediction is not problematic,

as it just implies that Bµ ∼ m2
soft when µ ∼ msoft. On the other hand, as appears from eqs. (2.33) and

(2.34), in gauge-mediated models the soft terms are suppressed by a loop factor, msoft ∼ α/4π×F/M .

In these models, the prediction of the Giudice-Masiero mechanism implies that Bµ is two or three

orders of magnitude larger than m2
soft, requiring an unnatural fine tuning in the Higgs sector.

For models that suffer from this so-called “Bµ problem”, the option of extending the Higgs sector

by a singlet S whose vev generates both µ and Bµ at the right size – see eq. (2.28) – seems particularly

appealing. However, in the NMSSM with gauge mediation the specific form of the soft terms does

not allow for a correct pattern of EWSB with an acceptable mass spectrum. The main difficulty lies

in generating a sufficiently large vev for the singlet, which requires either a large and negative m2
S

or large trilinear terms Aλ and Aκ. Indeed, the gauge-singlet nature of S means that it does not

acquire a SUSY-breaking mass term through eq. (2.34), and as mentioned above the trilinear SUSY-

breaking terms are not generated at leading order in the gauge couplings. In a paper of mine with

Delgado and Giudice [3] we studied the structure and phenomenology of a model that circumvents

this problem. By coupling the singlet directly to the messenger fields in the superpotential, a negative

m2
S and non-vanishing trilinears can be generated, at the price of just one additional parameter (the

singlet-messenger coupling ξ).

Anomaly mediation: In the conventional framework of gravity mediation, the breaking of SUSY

arises in a hidden sector and is then transmitted to the visible sector by direct (but Planck-scale-

suppressed) gravitational interactions between hidden-sector and visible-sector superfields. The re-

sulting soft SUSY-breaking terms are of the order of the gravitino mass, msoft ∼ m3/2 ∼ F/MP . In

addition to these direct effects, the breaking of SUSY is communicated to the visible sector by quan-

tum effects involving only supergravity. This mechanism is known as “anomaly mediation” because

the SUSY-breaking effects are associated to the anomaly of the conformal invariance of supergrav-

ity. The anomaly-mediated effects are always present whenever SUSY is broken, but, being due to

quantum corrections, they are suppressed by a loop factor with respect to the effects of direct gravity

mediation, i.e., msoft ∼ α/4π×m3/2. Therefore, anomaly mediation becomes relevant only when there

are no direct interactions between the visible sector and the hidden sector – as can be the case, e.g.,

in extra-dimensional models in which the two sectors live in separate branes.

The anomaly-mediated SUSY-breaking terms for the gaugino and scalar masses and for the trilinear

interactions are

Mi =
1

gi
m3/2

d gi

d lnQ
(i = 1, 2, 3) , (2.35)
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m2
φ =

1

2
m2

3/2

d γφ

d lnQ
, (2.36)

Tu,d,e = −m3/2
dhu,d,e

d lnQ
, (2.37)

where γφ is the anomalous dimension for the generic scalar φ (a matrix in flavor space in the case

of squarks and sleptons) and Q is the renormalization scale. The conditions in eqs. (2.35)–(2.37) are

RG-invariant to all orders in perturbation theory, thus they can be imposed at any value of Q. They

are also extremely constraining, since the only free parameters in anomaly-mediated models are the

gravitino mass m3/2 and the parameters µ and Bµ which as usual can be traded for v and tanβ at the

weak scale. Indeed, this class of models is so constrained that it is already ruled out, because eq. (2.36)

results in a negative squared mass for the sleptons. Several approaches proposed in the literature to

solve this so-called “tachionic slepton problem” rely on the combination of anomaly mediation with

other sources of SUSY breaking. A pragmatic (although not necessarily motivated) shortcut consists

in adding a a common mass parameter m2
0 for all the scalars at the GUT scale. In this case, the mass

spectrum of the model at the weak scale depends on only four parameters in addition to the SM ones:

m3/2, m
2
0, tan β and sign(µ).

Another peculiar aspect of anomaly-mediated models is that the soft SUSY-breaking masses and

trilinear interactions for squarks and sleptons are not flavor-diagonal at any renormalization scale.

However, the flavor mixing in the soft terms arises from combinations of matrices of Yukawa couplings,

therefore it is not substantially larger than the mixing in the quark sector. In a paper of mine with

Allanach, Hiller and Jones [7] we investigated the flavor structure of models with anomaly mediation.

We showed that the deviations from flavor-diagonality in the soft masses are in general suppressed, in

particular for small or moderate values of tanβ, and we investigated how this conclusion is affected by

different solutions to the tachionic slepton problem. We also studied the constraints on the parameter

space of the model resulting from several low-energy flavor observables, the most important of which

turned out to be the B → Xs γ branching ratio.

The “phenomenological (N)MSSM”: Referring to a specific mechanism of SUSY breaking at a

high boundary scale reduces drastically the number of independent input parameters, and simplifies

the phenomenological analysis of SUSY models. However, this simplification comes at a price: the

models are so constrained that potentially interesting regions of the (N)MSSM parameter space might

be difficult to access. A typical example is the region with |Xt|/MS ≈
√

6, in which the corrections

to the light Higgs boson mass arising from stop loops are maximized (here MS ≡ √
mt̃1

mt̃2
, and

Xt = At + µ cot β is the left-right mixing term in the stop mass matrix). The RG evolution of At

and the RG evolution of the soft SUSY-breaking stop masses are correlated, with the result that

|Xt|/MS < 1 at the weak scale, unless the trilinear Higgs-stop coupling is very large already at the

high scale. This is never the case in gauge-mediated and anomaly-mediated models, while in gravity-

mediated models this requires A0 to be considerably larger than both m1/2 and m0.
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An alternative approach, which makes it easier to study specific corners of the parameter space,

consists in fixing directly the soft SUSY-breaking terms at the weak scale, without referring to the

underlying mechanism of SUSY breaking. Of course, some simplifying assumptions still need to be

made, to avoid dealing with more than a hundred independent parameters. Given the absence of

large deviations from the predictions of the SM for CP-violating and flavor-violating processes, it is

convenient to assume that all the soft-SUSY breaking terms are real and flavor-diagonal at the weak

scale. Furthermore, the soft terms involving sfermions of the first two generations are often assumed

to be the same at the weak scale. When flavor-mixing effects are not important, the latter is usually a

good approximation also for models in which the soft terms are evolved down from universal boundary

conditions, because the deviations from flavor universality are driven only by the Yukawa couplings,

which are very small for the first two generations. With this set of simplifying assumptions, the mass

spectrum of the MSSM is described by 22 weak-scale parameters beyond those already present in the

SM: three gaugino masses (M1,M2,M3); five soft SUSY-breaking masses (mQ, mU , mD, mL, mE) and

three trilinear couplings (At, Ab, Aτ ) for the third-generation sfermions; eight equivalent parameters

for the first-two-generation sfermions; the superpotential parameter µ ; two additional parameters

in the Higgs sector, usually chosen as tan β and mA (indeed, the minimum conditions of the scalar

potential are used to trade the soft masses m2
H1

and m2
H2

for the vevs v1 and v2, with the combination

v2
1 + v2

2 fixed by the gauge boson masses, and Bµ is traded for mA). This 22-parameter framework is

sometimes referred to as “phenomenological MSSM”, or pMSSM.

In the case of the NMSSM, µ and mA are not independent parameters, because µ and Bµ are

induced by the vev of the singlet (moreover, mA would be ill-defined, because the MSSM-like pseu-

doscalar mixes with the CP-odd component of the singlet). In addition to the 19 independent soft

terms for gauginos and sfermions, the weak-scale input parameters of the “phenomenological NMSSM”

are the superpotential couplings λ and κ, the soft SUSY-breaking trilinear interactions Aλ and Aκ,

and two additional parameters that can be chosen as tanβ and the singlet vev vs (here the minimum

conditions of the scalar potential are used to trade the three soft masses m2
H1

, m2
H2

and m2
S for the

vevs v1, v2 and vs).

Split supersymmetry: In this scenario of SUSY breaking all of the MSSM scalars, with the ex-

ception of a SM-like Higgs, are assumed to be much heavier than the weak scale, while gauginos and

higgsinos are light. This is inspired by the fact that most of the problematic aspects of SUSY models

(such as, e.g, the flavor problem) are connected to the presence of new light scalars, while most of the

advantages (e.g., unification of gauge couplings and neutralino candidate for Dark Matter) are due to

the presence of new light fermions. Of course, taking the sfermions much heavier than the weak scale

reintroduces fine tuning in the EWSB, undermining the solution to the hierarchy problem which was

the original motivation for SUSY. However, it can be argued that an even larger fine tuning exists

anyway in the cosmological constant (which is 120 orders of magnitude smaller than its “natural”

scale M4
P ), and perhaps both problems can be solved together by another still-unknown mechanism.
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In phenomenological studies of split SUSY, the heavy scalars are integrated out at a common mass

scale MS . The effective theory valid below MS contains the SM particles plus gluino, charginos and

neutralinos, and it is fine-tuned and non supersymmetric. However, SUSY dictates the values of the

Higgs-higgsino-gaugino couplings and of the Higgs quartic coupling at the high boundary scale, making

the scenario extremely predictive. Indeed, the mass spectrum of split SUSY can be determined from

just six parameters in addition to the SM ones: the heavy scalar mass MS ; the angle β that rotates the

two Higgs doublets of the MSSM into a light SM-like Higgs and a heavy Higgs (the latter is integrated

out at the high scale together with the sfermions); the gaugino masses M1, M2 and M3; the higgsino

mass parameter µ. The number of independent inputs can be further reduced by assuming a specific

pattern (e.g., universality) for the three gaugino masses at the GUT scale.

A typical prediction of split SUSY is a long lifetime for the gluino, which can lead to peculiar

signatures at colliders (indeed, the gluino decays can only proceed via the exchange of heavy virtual

squarks and are therefore very suppressed). In an old paper of mine with Gambino and Giudice [15] we

presented a one-loop computation of the gluino decay widths, dealing in particular with the resumma-

tion of large corrections enhanced by ln(MS/mg̃) that are characteristic of split SUSY. In a subsequent

paper of mine with Bernal and Djouadi [2] we performed a comprehensive phenomenological analysis

of the split-SUSY scenario, based on a full one-loop determination of the Higgs, chargino and neu-

tralino masses. In particular, we considered scenarios where the gaugino masses are non-universal at

the GUT scale, which leads to features that are not present in the case of GUT-scale universality.

We discussed the constraints from collider searches and high-precision measurements, the cosmolog-

ical constraints on the relic abundance of the neutralino candidate for Dark Matter, and the gluino

lifetime. We then analyzed the decays of the Higgs boson (in particular decays into and contributions

of SUSY particles), of charginos and neutralinos (in particular decays into Higgs bosons and photons)

and of gluinos, and highlighted the effect of the different boundary conditions on the gaugino masses.

2.4 Input parameters and renormalization schemes

When the theoretical prediction for an observable is computed beyond the leading order in perturbation

theory, it becomes necessary to specify a renormalization scheme for the parameters entering the lower-

order terms in the calculation. For example, in the NLO-QCD (i.e., two-loop) calculation of the cross

section for Higgs production in gluon fusion, the parameters entering the LO (i.e., one-loop) Higgs-

gluon-gluon amplitude that are subject to O(αs) corrections require a renormalization prescription.

In the computation of radiative corrections within the SM, it is natural to choose the renormal-

ization conditions in such a way that the fundamental parameters of the model (e.g., the top Yukawa

coupling in the Lagrangian) are connected to experimentally measured quantities (e.g., the pole mass

of the top quark). Such set of renormalization conditions is often called “on-shell” (OS) scheme,

referring to the fact that the amplitudes entering the counterterms are evaluated with the external

particles on their mass shell. On the other hand, in SUSY extensions of the SM it is not (yet?) possi-
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ble to connect all of the fundamental parameters of the model to experimentally measured quantities.

Until superpartners of the SM particles and an extended Higgs sector are discovered, the parameters

of the soft SUSY-breaking Lagrangian, as well as (in the MSSM case) µ and tan β, remain essentially

free parameters. In such a situation, the choice of whether to connect the Lagrangian parameters

to measurable (but yet unmeasured) quantities such as the superparticle masses, or rather to define

them as running (i.e., renormalization-scale dependent and, strictly speaking, unphysical) parameters,

is essentially a matter of convenience, depending on the kind of analysis that is being performed on

the model’s parameter space.

When the parameters of the soft SUSY-breaking Lagrangian are obtained via RG evolution from

a set of high-energy boundary conditions, as in the gravity-mediation and gauge-mediation scenarios

described in the previous section, they are naturally expressed in the modified minimal-subtraction

scheme known as DR, which is based on dimensional reduction (DRED) and preserves the supersym-

metric Ward identities and the supersymmetric relations among couplings. In this case, it is convenient

to take all the parameters of the Lagrangian as they come from the RG evolution, and perform the

calculations directly in the DR scheme. In particular, the loop integrals are regularized in 4−2ǫ dimen-

sions using DRED, and the counterterms for the parameters entering the lower-order contributions

contain only divergent terms (i.e., poles in 1/ǫ) that are necessary to cancel the divergences of the

loop integrals. In the calculation of a physical observable, the implicit scale dependence of the running

parameters entering the lower-order terms is compensated for by an explicit scale dependence of the

higher-order terms, in such a way that the final result is scale independent up to the perturbative

order considered in the calculation.

If, on the other hand, we do not refer to a set of high-energy boundary conditions for the parameters

of the soft SUSY-breaking Lagrangian, but rather take them as input directly at the weak scale, we

may choose to express them in terms of yet-unmeasured physical observables. Due to the relative

simplicity of the renormalization procedure in the DR scheme, it is convenient to first perform the

calculation of a physical observable in that scheme, then translate the result to the desired scheme,

which we denote as R. To this purpose, we express the parameters xDR

i entering the lower-order terms

as xDR

i = xR

i +δxi, and expand perturbatively the lower-order terms around the xR

i , i.e. the parameters

renormalized in the scheme R. If all of the xR

i are connected to physical observables, and are therefore

scale independent, the effect of the resulting shifts in the higher-order terms will be to cancel their

dependence on the scale. Indeed, the explicit scale independence of the whole result in such an OS

scheme usually provides a first non-trivial check of the correctness of a calculation.

In the calculations of two-loop SUSY-QCD corrections that will be presented in this dissertation,

the δxi are one-loop shifts of O(αs), and the parameters that require a renormalization prescription

are the quark masses and the parameters entering the squark mass matrices and the Higgs-squark

couplings. Below I discuss in some detail the OS renormalization of the top/stop and bottom/sbottom

sectors, while the special case of the renormalization of the flavor-mixing matrix for the down-type

squarks, relevant to the calculation of BR[B → Xs γ], will be discussed separately in chapter 5.
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OS scheme for the top/stop sector: The top mass mt enters the calculations of two-loop QCD

corrections in SUSY extensions of the SM both as the proper mass for the top quark and as a proxy

for the Higgs-boson coupling to top quarks and to stop squarks, ht (indeed, the two are related at

tree level by mt = ht v2, and the vev v2 is not subject to O(αs) corrections). In the OS scheme, mt

is defined as the pole of the renormalized propagator for the top quark, and the corresponding shift

with respect to the DR definition is

δmt = Re Σ̂t(mt) , (2.38)

where Σ̂t(mt) is the finite part of the top self-energy computed at an external momentum equal to the

top mass.

Among the other parameters entering the Higgs-stop couplings and the stop mass matrix, see

eq. (2.11), those that receive O(αs) corrections are the soft SUSY-breaking masses mQ and mU and

the trilinear couplingAt. However, in the OS scheme commonly adopted for the calculation of radiative

corrections in the MSSM the renormalization conditions are imposed directly on the two stop-mass

eigenvalues, mt̃1
and mt̃2

, and on the stop mixing angle θt. The renormalized mQ, mU and At – which

usually remain the actual input parameters – are then interpreted as the parameters that would enter

a fictitious tree-level stop mass matrix that is diagonalized by the OS stop mixing angle and whose

eigenvalues are the OS stop masses. As for the top mass, the OS stop masses are defined as the poles

of the renormalized stop propagator (which in this case is a 2×2 matrix), and the shifts with respect

to the DR definition are

δm2
t̃1

= Re Π̂11(m
2
t̃1

) , δm2
t̃2

= Re Π̂22(m
2
t̃2

) , (2.39)

where Π̂ii(m
2
t̃i
) denotes the finite parts of the diagonal terms of the stop self-energy computed at an

external momentum equal to the corresponding stop mass.

An OS definition for the stop mixing angle is somewhat less obvious because, differently from

the case of the stop masses, θt is not directly a physical observable. The divergent part of the

counterterm for the stop mixing angle is fixed by the requirement that it cancels the divergence of the

anti-hermitian part of the stop wave-function renormalization (WFR) matrix. A straightforward OS

prescription consists in requiring that the counterterm cancels also the finite part of the anti-hermitian

WFR. The resulting shift with respect to the DR definition is

δθt =
1

2

Π̂12(m
2
t̃1

) + Π̂12(m
2
t̃2

)

m2
t̃1
−m2

t̃2

, (2.40)

where Π̂12(q
2) denotes the finite part of the off-diagonal self-energy of the stops.

The top/stop contributions to physical observables such as the Higgs mass and production cross

section can generally be expressed in terms of the five parameters mt, mt̃1
, mt̃2

, θt and At, plus other

parameters (such as, e.g., µ and tanβ) that are not subject to O(αs) corrections. However, those

parameters are not all independent, since they are related to each other by the definition of the stop

mixing angle in eq. (2.13). If the OS renormalization conditions for the four parameters mt, mt̃1
, mt̃2
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and θt are fixed by eqs. (2.38)–(2.40), the OS trilinear coupling At can be treated as a function of the

other parameters, and its shift with respect to the DR definition becomes

δAt =

(
δm2

t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

− δmt

mt
+ 2 cot 2θt δθt

)
Xt . (2.41)

OS scheme for the bottom/sbottom sector: A proper OS definition for the parameters entering

the bottom/sbottom sector involves several complications. The main ones are related to the fact that

the SUSY contributions to the shift δmb between the pole bottom mass and its DR equivalent contain

terms enhanced by tan β. If we proceed in analogy with the renormalization of the stop sector, i.e., we

define the OS bottom and sbottom masses and the sbottom mixing angle via conditions equivalent to

those in eqs. (2.38)–(2.40), and derive δAb from the other shifts as in eq. (2.41), it is easy to see that

δAb contains terms of O(αs µ
2 tan2 β/mg̃). As a result, the Higgs masses and couplings computed in

this “naive” OS scheme are subject to huge radiative corrections when tanβ & 30, putting the validity

of the perturbative expansion into question.

A possible solution to this problem was proposed in ref. [25] in the context of the calculation of

the two-loop O(αbαs) corrections to the MSSM Higgs masses, then extended in ref. [27] to cover also

the case of the Yukawa corrections, and finally revisited in ref. [10] in the context of the calculation

of the cross section for Higgs boson production in gluon fusion. The solution requires that we retain

only the leading terms in an expansion in the small bottom mass mb, and that we differentiate the

coupling that controls the Higgs-sbottom interactions, which we denote as hb, from the coupling that

controls the Higgs-bottom Yukawa interaction, which we denote as hY
b . At the tree level, of course,

the two couplings coincide and are related to the bottom mass by mb = hY
b v1 = hb v1, but beyond tree

level it is possible to impose renormalization conditions separately on hb, h
Y
b and mb. In the two-loop

calculation of the Higgs masses, only the definition of hb matters, because hY
b and mb affect only

corrections that are not sufficiently enhanced by powers of tan β to compensate for their suppression

by powers of mb. In the two-loop calculation of the cross section, on the other hand, a one-loop

definition is required also for hY
b and mb, as will be discussed in chapter 3.

Focusing here on the parameters that determine the sbottom masses and couplings, those requiring

a one-loop definition are mQ, mD, hb and Ab. Three of those parameters can be traded for mb̃1
, mb̃2

and θb, which allow for OS definitions analogous to those adopted in the stop sector:

δm2
b̃1

= Re Π̂11(m
2
b̃1

) , δm2
b̃2

= Re Π̂22(m
2
b̃2

) , δθb =
1

2

Π̂12(m
2
b̃1

) + Π̂12(m
2
b̃2

)

m2
b̃1
−m2

b̃2

. (2.42)

The OS definitions for hb and Ab , on the other hand, differ from those adopted in the stop sector.

Instead of relating hb to the pole bottom mass and treating Ab as a function of the other parameters,

we consider two quantities that are function of both hb and Ab:

X̃b = hb v1 (Ab + µ tan β) , Ỹb =
hb√
2

sinβ (Ab − µ cot β) . (2.43)
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These quantities allow for a natural interpretation: at tree level, X̃b ≡ hb v1Xb is the off-diagonal term

in the sbottom mass matrix, see eq. (2.12), while Ỹb is proportional to the coefficient of the trilinear

interaction (̃b1b̃
∗
2A). The relation between X̃b and θb in eq. (2.13), together with the OS definitions for

the sbottom masses and mixing angle in eq. (2.42), can immediately be translated into a prescription

for X̃b:

δX̃b =
1

2
cos 2θb

[
Π̂12(m

2
b̃1

) + Π̂12(m
2
b̃2

)
]

+ X̃b

Π̂11(m
2
b̃1

) − Π̂22(m
2
b̃2

)

m2
b̃1
−m2

b̃2

. (2.44)

The shift in Ỹb could be defined via a physical process such as, e.g., one of the decays b̃1 → b̃2A or

A → b̃1 b̃
∗
2 , but this definition would suffer from the problem of infrared (IR) singularities associated

with gluon radiation. To overcome this problem, and given our current ignorance of the MSSM

mass spectrum, we find it less restrictive to define δỸb in terms of the (̃b1b̃
∗
2A) proper vertex, at

appropriately chosen external momenta and including suitable wave function corrections, so that

the resulting combination is IR finite and gauge independent. Denoting the proper vertex b̃1b̃
∗
2A as

iΛ(p2
1, p

2
2, p

2
A), we define

δỸb = − i

2

[
Λ(m2

b̃1
,m2

b̃1
, 0) + Λ(m2

b̃2
,m2

b̃2
, 0)
]

+
Ỹb

2

Π̂11(m
2
b̃1

) + Π̂22(m
2
b̃1

) − Π̂11(m
2
b̃2

) − Π̂22(m
2
b̃2

)

m2
b̃1
−m2

b̃2

, (2.45)

whose IR finiteness and gauge independence were explicitly shown in ref. [25]. Finally, the shifts of

the parameters hb and Ab are related to those of X̃b and Ỹb by 1

δhb =
sin β

µ v

(
δX̃b − δỸb v cot β

)
, δAb =

√
2

h2
b µ v

(
X̃b δỸb − Ỹb δX̃b

)
, (2.46)

and the explicit evaluation of δhb and δAb shows that they are both free of tanβ-enhanced terms.

In any phenomenological analysis of the MSSM, we will need to make use of the experimental

information on the bottom mass to determine the numerical value of the OS Higgs-sbottom coupling

hb. To this effect, several steps are necessary: we take as input the SM bottom mass in the MS scheme,

mb(mb)
MS

SM
, as determined from the Υ masses; we evolve it up to some reference scale Q0 of the order

of the weak scale by means of suitable renormalization group equations; finally, we convert the SM

mass to the DR scheme, thus obtaining mb ≡ mb(Q0)
DR

SM
. Including the SUSY threshold corrections,

we can then extract the corresponding running mass in the MSSM:

m̂b ≡ mb(Q0)
DR

MSSM
=

mb (1 + δb)

1 + ǫb tan β
, (2.47)

where δb denotes terms in the SUSY contribution to the bottom self-energy that are not enhanced by

1Note that the normalization of the parameter v differs by a factor
√

2 from the one adopted in refs. [10, 25, 27].

24



tan β and, to O(αs),

ǫb =
αsCF

4π

2µmg̃

m2
b̃1
−m2

b̃2

(
m2

b̃1

m2
g̃ −m2

b̃1

ln
m2

b̃1

m2
g̃

−
m2

b̃2

m2
g̃ −m2

b̃2

ln
m2

b̃2

m2
g̃

)
, (2.48)

where CF = 4/3 is a color factor. The OS-renormalized Higgs-sbottom coupling hb is then obtained

from m̂b by subtracting the shift computed in eq. (2.46):

hb =
m̂b

v1
− δhb . (2.49)

By including ǫb tan β in the denominator of the r.h.s. of eq. (2.47), we “resum” in m̂b – and hence

in hb – the tan β-enhanced threshold corrections to the relation between the mass and the Yukawa

coupling of the bottom quarks, to all orders in an expansion in powers of αs tan β [45, 46].

An additional complication is due to the fact that the SU(2) symmetry of the soft SUSY-breaking

Lagrangian relates the parameter m2
Q in the upper-left entry of the sbottom mass matrix, eq. (2.12),

to the corresponding parameter in the upper-left entry of the stop mass matrix, eq. (2.11). In our OS

scheme, denoting the parameter in the sbottom mass matrix as m2
Q,b̃

and the one in the stop mass

matrix as m2
Q,t̃

, we have

m2
Q,b̃

= m2
Q,t̃

+ δm2
Q,t̃

− δm2
Q,b̃

, (2.50)

where, for q̃ = (t̃ , b̃),

δm2
Q,q̃ = cos2 θq δm

2
q̃1

+ sin2 θq δm
2
q̃2

− (m2
q̃1

−m2
q̃2

) sin 2θq δθq − 2mq δmq . (2.51)

In practice, we take mQ,t̃ as the actual input parameter, and compute mQ,b̃ by means of eqs. (2.50)

and (2.51). Finally, we write the sbottom mass matrix in terms of the OS-renormalized parameters

mQ,b̃, mD, hb and Ab, and diagonalize it to obtain the actual values of the sbottom masses and mixing

angle.

Our OS scheme for the sbottom sector, first outlined in ref. [25], has been subject of further study

by other groups, in the context of the calculation of two-loop corrections to the Higgs masses [47] and

of the one-loop corrections to stop decays into a sbottom and a charged Higgs or W boson [48]. The

authors of refs. [47, 48] also considered other schemes that avoid the occurrence of tanβ-enhanced

counterterm contributions, in particular a scheme in which hb and Ab are defined as DR-renormalized

quantities and θb is treated as a function of the other parameters. It turns out that, apart from some

pathological points of the parameter space, the results obtained in the “tan β-conscious” schemes

are in good agreement with each other. The calculation of the Higgs boson masses and mixing angle

implemented in the public computer code FeynHiggs [30] also relies on our OS scheme for the sbottom

sector. If the Higgs masses and mixing computed by FeynHiggs are in turn used as input of another

calculation – such as, e.g., the calculation of the Higgs production cross section – consistency requires

that the same scheme for the renormalization of the sbottom parameters be used in both calculations

(or, in alternative, that the input parameters for the sbottom sector be appropriately translated to

the different scheme used in the downstream calculation).
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Chapter 3

Higgs-boson production in gluon fusion

The main mechanism for the production of the SM Higgs boson at the LHC is the loop-induced

gluon fusion, where the coupling of the gluons to the Higgs is mediated by loops of quarks, primarily

the top. The knowledge of this process in the SM is quite advanced, including the full NLO-QCD

corrections; the NNLO-QCD corrections from top loops; soft-gluon resummation effects; the first-order

EW corrections; estimates of the NNNLO-QCD corrections and of the mixed QCD-EW corrections.

Nevertheless, the theoretical uncertainty of the SM calculation, estimated at 15% for the production

of a Higgs boson with mass around 125 GeV [34, 35, 36], remains significant.

In the MSSM the couplings of the neutral Higgs bosons to gluons are mediated primarily by top and

bottom quarks and their supersymmetric partners, the stop and sbottom squarks. As in the SM, gluon

fusion is one of the most important mechanisms for Higgs production. However, for the bosons whose

couplings to down-type fermions are enhanced by tan β, the production in bottom-quark annihilation

can also be important (or even dominant) in specific regions of the MSSM parameter space.

The cross section for MSSM Higgs boson production in gluon fusion is currently known at the NLO

(although approximate calculations of NNLO effects exist). The contributions arising from diagrams

with quarks and gluons, with full dependence on the Higgs and quark masses, can be obtained from

the corresponding SM results [49, 50] with an appropriate rescaling of the Higgs-quark couplings.

The contributions arising from diagrams with squarks and gluons were first computed under the

approximation of vanishing Higgs mass in ref. [51], and the full Higgs-mass dependence was included

in later calculations [52, 53, 54, 55]. On the other hand, a full calculation of the two-loop diagrams

with quarks, squarks and gluinos – which can involve up to five different particle masses – is still

missing. Calculations based on a combination of analytic and numerical methods were presented

in refs. [37, 38], but neither explicit analytic formulae nor public computer codes have been made

available so far.

Approximate results for the quark-squark-gluino contributions can however be obtained assuming

the presence of some hierarchy between the Higgs boson mass and the masses of the particles running

in the loops. If the Higgs boson is lighter than all the particles in the loops, it is reasonable to Taylor-
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expand the result in powers of the Higgs mass, with the first term in the expansion corresponding to

the so-called vanishing-Higgs-mass limit (VHML). This limit was adopted in ref. [39] for the calculation

of the top-stop-gluino contributions to scalar production and in ref. [40] for the analogous calculation

of pseudoscalar production. In refs. [6, 12] we reproduced the VHML result of refs. [39, 40], and we

discussed the validity of the VHML approximation by considering the next term in the expansion in

the Higgs mass.

While a Taylor expansion in the Higgs mass is indeed a viable approximation in the computation of

the top-stop-gluino contributions to the production of the lightest scalar h, it might not be applicable

to the production of the heaviest scalar H and of the pseudoscalar A, if their mass is comparable

to the mass of the top quark. Moreover, a Taylor expansion in the Higgs mass is certainly useless

in the calculation of the bottom-sbottom-gluino contributions, due to the presence of a light bottom

quark. To overcome these limitations, in refs. [10, 12, 14] we provided results for the production of

both scalars and pseudoscalars based on an asymptotic expansion in the superparticle masses, which

does not assume any hierarchy between the Higgs-boson mass and the mass of the quark in the loop.

In particular, we retained terms up to O(m2
φ/M

2), O(m2
t /M

2), O(mb/M) and O(m2
Z/M

2), where

mφ denotes a Higgs boson mass and M denotes a generic superparticle mass. Such an expansion is

applicable to both top-stop-gluino and bottom-sbottom-gluino contributions, as long as the squarks

and the gluino are heavier than the considered Higgs boson and the top quark.

After a summary of general results on Higgs production in gluon fusion, I discuss in this chapter our

calculations of the two-loop quark-squark-gluino contributions to the production of scalar [6, 10, 14]

and pseudoscalar [12] Higgs bosons, as well as our implementation of the SUSY contributions in public

codes for the computation of the Higgs-production cross section [13, 35, 36].

3.1 Higgs production via gluon fusion in the MSSM

Gluon-fusion cross section at NLO: The hadronic cross section for neutral Higgs boson produc-

tion at center-of-mass energy
√
s can be written as

σ(h1 +h2 → φ+X) =
∑

a,b

∫ 1

0
dx1dx2 fa,h1

(x1, µF ) fb,h2
(x2, µF )×

∫ 1

0
dz δ

(
z − τφ

x1x2

)
σ̂ab(z) , (3.1)

where φ = (h,H,A), τφ = m2
φ/s, µF is the factorization scale, fa,hi

(x, µF ), the parton density of the

colliding hadron hi for the parton of type a, (a = g, q, q̄) and σ̂ab the cross section for the partonic

subprocess ab → φ +X at the center-of-mass energy ŝ = x1 x2 s = m2
φ/z. The latter can be written

in terms of the LO contribution σ(0) as

σ̂ab(z) = σ(0) z Gab(z) . (3.2)

The LO partonic cross section for the gg → φ process can be written as

σ(0) =
Gµ α

2
s(µR)

128
√

2π

∣∣∣H1ℓ
φ

∣∣∣
2
, (3.3)
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where Gµ is the muon decay constant, αs(µR) is the strong gauge coupling expressed in the MS

renormalization scheme at the scale µR, and Hφ is the form factor for the coupling of the neutral

Higgs boson φ with two gluons, which we decompose in one- and two-loop parts as

Hφ = H1ℓ
φ +

αs

π
H2ℓ

φ + O(α2
s) . (3.4)

The coefficient function Gab(z) in eq. (3.2) can in turn be decomposed, up to NLO terms, as

Gab(z) = G
(0)
ab (z) +

αs

π
G

(1)
ab (z) + O(α2

s) , (3.5)

with the LO contribution given only by the gluon-fusion channel:

G
(0)
ab (z) = δ(1 − z) δag δbg . (3.6)

The NLO terms include, besides the gg channel, also the one-loop induced gq and qq̄ channels:

G(1)
gg (z) = δ(1 − z)

[
CA

π2

3
+ β0 ln

(
µ2

R

µ2
F

)
+ 2Re

(
H2ℓ

φ

H1ℓ
φ

)]

+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1 − z + z2)2 D1(z) + CA Rgg , (3.7)

G
(1)
qq̄ (z) = Rqq̄ , G(1)

qg (z) = Pgq(z)

[
ln(1 − z) +

1

2
ln

(
ŝ

µ2
F

)]
+ Rqg , (3.8)

where the LO Altarelli-Parisi splitting functions are

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1 − z)

]
, Pgq(z) = CF

1 + (1 − z)2

z
. (3.9)

In the equations above, CA = Nc and CF = (N2
c − 1)/(2Nc) (Nc being the number of colors),

β0 = (11CA −2Nf )/6 (Nf being the number of active flavors) is the one-loop β-function of the strong

coupling in the SM, and

Di(z) =

[
lni(1 − z)

1 − z

]

+

. (3.10)

The two-loop virtual contributions to gg → φ, regularized by the infrared-singular part of the contribu-

tions from one-loop gluon-fusion diagrams with the emission of a real gluon, gg → φg, are contained

in the first line of eq. (3.7). The second line of that equation contains instead the non-singular

contributions from real gluon emission. Eq. (3.8) contains the contributions due to the one-loop

quark-antiquark annihilation channel, qq̄ → φg, and to the one-loop quark-gluon scattering channel,

gq → qφ. General expressions for the functions Rgg, Rqq̄, Rqg entering eqs. (3.7) and (3.8) are avail-

able. They can be found in ref. [54] for the case of scalar production and in ref. [12] for the case of

pseudoscalar production (see also ref. [49] for an earlier computation of the quark contributions in

both cases).
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q

(a)

q̃i

(b)

Figure 3.1: Examples of one-loop diagrams for gg → φ involving a quark or a squark.

Form factors for scalar Higgs production: The form factors for the production of the lightest

and heaviest scalar mass eigenstates can be decomposed as

Hh = TF (− sinαH1 + cosαH2) , HH = TF (cosαH1 + sinαH2) , (3.11)

where TF = 1/2 is a color factor, α is the mixing angle in the CP-even Higgs sector and Hi (i = 1, 2)

are the form factors for the coupling of the neutral, CP-even component of the Higgs doublet Hi with

two gluons. Focusing on the contributions involving the third-generation quarks and squarks, and

exploiting the structure of the Higgs-quark-quark and Higgs-squark-squark couplings, we can write to

all orders in the strong interaction [6]

H1 = λt

[
mt µ s2θt Ft +m2

Z s2β Dt

]
+ λb

[
mbAb s2θb

Fb + 2m2
b Gb + 2m2

Z c
2
β Db

]
, (3.12)

H2 = λb

[
mb µ s2θb

Fb −m2
Z s2β Db

]
+ λt

[
mtAt s2θt Ft + 2m2

t Gt − 2m2
Z s

2
β Dt

]
. (3.13)

In the equations above λt = 1/ sin β and λb = 1/ cos β, and the parameters µ, Aq (for q = t, b) and

θq are defined in section 2.1 (note that in this section I use the notation sϕ ≡ sinϕ, cϕ ≡ cosϕ for a

generic angle ϕ). The functions Fq and Gq appearing in eqs. (3.12) and (3.13) denote the contributions

controlled by the third-generation Yukawa couplings, while Dq denotes the contribution controlled by

the electroweak, D-term-induced Higgs-squark-squark couplings. The latter can be decomposed as

Dq =
I3q

2
G̃q + c2θt

(
I3q

2
−Qq s

2
θW

)
F̃q , (3.14)

where I3q denotes the third component of the electroweak isospin of the quark q, and Qq denotes its

electric charge.

The one-loop parts of the form factors, H1ℓ
i , contain contributions from diagrams involving quarks

(figure 3.1a) or squarks (figure 3.1b). The functions entering H1ℓ
i are

F 1ℓ
q = F̃ 1ℓ

q =
1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) − 1

m2
q̃2

G1ℓ
0 (τq̃2

)

]
, (3.15)

G1ℓ
q =

1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) +
1

m2
q̃2

G1ℓ
0 (τq̃2

) +
1

m2
q

G1ℓ
1/2(τq)

]
, (3.16)

G̃1ℓ
q =

1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) +
1

m2
q̃2

G1ℓ
0 (τq̃2

)

]
, (3.17)

30



q

(a)

q̃i

(b)

q̃i

q̃j

q̃k

(c)

Figure 3.2: Examples of two-loop diagrams for gg → φ that do not involve gluinos.

q̃i g̃

q

q

(a)

q g̃

q̃i

q̃j

(b)

Figure 3.3: Examples of two-loop diagrams for gg → φ involving gluinos.

where τk ≡ 4m2
k/m

2
φ (with φ = h,H), and the functions G1ℓ

0 and G1ℓ
1/2 read

G1ℓ
0 (τ) = τ

[
1 +

τ

4
ln2

(√
1 − τ − 1√
1 − τ + 1

)]
, (3.18)

G1ℓ
1/2(τ) = −2 τ

[
1 − 1 − τ

4
ln2

(√
1 − τ − 1√
1 − τ + 1

)]
. (3.19)

It is useful to recall the behavior of G1ℓ
0 and G1ℓ

1/2 in the limit in which the Higgs boson mass is much

smaller or much larger than the mass of the particle running in the loop. In the VHML, which can

be applied to the top and squark contributions for the light-Higgs case,

G1ℓ
0 → −1

3
, G1ℓ

1/2 → −4

3
, (3.20)

while in the opposite case, i.e. τ ≪ 1, which is always relevant for the bottom contribution,

G1ℓ
0 → τ + O(τ2) , G1ℓ

1/2 → −2 τ +
τ

2
ln2(

−4

τ
) + O(τ2) . (3.21)

The analytic continuations are obtained with the replacement m2
φ → m2

φ + iǫ , thus the imaginary part

of G1ℓ
1/2 in eq. (3.21) can be recovered via the replacement ln(−4/τ) → ln(4/τ) − iπ.

The two-loop parts of the form factors, H2ℓ
i , contain contributions from diagrams involving quarks,

squarks, gluons and gluinos, such as the ones depicted in figures 3.2 and 3.3. The functions F 2ℓ
q , G2ℓ

q , F̃
2ℓ
q

and G̃2ℓ
q entering the two-loop parts of eqs. (3.12) and (3.13) can be decomposed as

F 2ℓ
q = Yq̃1

− Yq̃2
−

4 c22θq

m2
q̃1

−m2
q̃2

Yc2
2θq
, (3.22)
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G2ℓ
q = Yq̃1

+ Yq̃2
+ Yq , (3.23)

F̃ 2ℓ
q = Yq̃1

− Yq̃2
+

4 s22θq

m2
q̃1

−m2
q̃2

Yc2
2θq
, (3.24)

G̃2ℓ
q = Yq̃1

+ Yq̃2
. (3.25)

The various terms in eqs. (3.22)–(3.25) can be split in the contributions coming from diagrams

with (s)quarks and gluons (g, figures 3.2a and 3.2b); with a quartic squark coupling (4q̃, figure 3.2c);

with quarks, squarks and gluinos (g̃, figures 3.3a and 3.3b):

Yx = Y g
x + Y 4q̃

x + Y g̃
x (x = q, q̃1, q̃2, c

2
2θq

) . (3.26)

Furthermore, the term Yq entering eq. (3.23) contains only contributions from diagrams with a Higgs-

quark coupling, figures 3.2a and 3.3a, therefore Y 4q̃
q = 0. On the other hand, the terms Yq̃1

, Yq̃2
and

Yc2
2θq

in eqs. (3.22)–(3.25) contain only contributions from diagrams with a Higgs-squark coupling,

figures 3.2b, 3.2c, and 3.3b. Our computation of the quark-squark-gluino contributions to the terms

Yx in eq. (3.26) will be discussed in detail in section 3.2.

The contribution to the term Yq arising from two-loop diagrams with quarks and gluons (figure

3.2a) has been computed for arbitrary values of the Higgs and quark masses [49, 50]. If the contribution

of the one-loop diagram with a quark q to the form factors H1ℓ
i is expressed in terms of the quark

mass renormalized in the DR scheme, the two-loop quark-gluon contribution reads:

2m2
q Y

g
q = CF

[
F (2ℓ,a)

1/2 (xq) +

(
ln
m2

q

Q2
− 1

3

)
F (2ℓ,b)

1/2 (xq)

]
+ CA G(2ℓ,CA)

1/2 (xq) , (3.27)

where CF = 4/3 and CA = 3 are color factors, Q is the renormalization scale and exact expressions for

F (2ℓ,a)
1/2 , F (2ℓ,b)

1/2 and G(2ℓ,CA)
1/2 as functions of xq ≡ (

√
1 − τq − 1)/(

√
1 − τq + 1) are given in eqs. (2.12),

(2.13) and (3.8) of ref. [53], respectively. If the one-loop quark contribution to the form factors is

expressed in terms of the pole quark mass, the term multiplying F (2ℓ,b)
1/2 in eq. (3.27) is replaced by

4/3. In the VHML, i.e. for τq → ∞, the one-loop quark contribution and the two-loop quark-gluon

contribution do not depend on the quark mass, and eq. (3.27) reduces to 2m2
q Y

g
q = CF − 5CA/3 .

The contributions to the terms Yq̃1
, Yq̃2

and Yc2
2θq

arising from two-loop diagrams with squarks and

gluons (figure 3.2b) and from diagrams with a quartic squark coupling (figure 3.2c) can, to the accuracy

required by our expansions, be computed in the VHML. If the parameters entering one-loop squark

contributions to the form factors Hi in eqs. (3.12) and (3.13) are expressed in the DR renormalization

scheme at the scale Q, the two-loop contributions read [6]

Y g
q̃1

= − 1

2m2
q̃1

(
3CF

4
+
CA

6

)
, (3.28)

Y 4q̃
q̃1

= −CF

24

[
c22θq

m2
q̃1

+ s22θq
m2

q̃2

m4
q̃1

+
s22θq

m4
q̃1
m2

q̃2

(
m4

q̃1
ln
m2

q̃1

Q2
−m4

q̃2
ln
m2

q̃2

Q2

)]
, (3.29)

Y 4q̃
c2
2θq

= −CF

24

[
(m2

q̃1
−m2

q̃2
)2

m2
q̃1
m2

q̃2

−
m2

q̃1
−m2

q̃2

m2
q̃2

ln
m2

q̃1

Q2
−
m2

q̃2
−m2

q̃1

m2
q̃1

ln
m2

q̃2

Q2

]
. (3.30)
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The term Y g
c2
2θq

is zero, while the terms Y g
q̃2

and Y 4q̃
q̃2

can be obtained by performing the substitutions

q̃1 ↔ q̃2 in eqs. (3.28) and (3.29), respectively.

Form factors for pseudoscalar Higgs production: To fix the notation, the Lagrangian for the

interactions of the pseudoscalar A with quarks and squarks reads

L ⊃ i√
2
ht cβ A t̄γ5t +

i√
2
hb sβ A b̄γ5b +

i√
2

(
ht cβ ZtA t̃

∗
1t̃2 + hb sβ ZbA b̃

∗
1b̃2 − h.c.

)
, (3.31)

where Zt = At − µ tan β and Zb = Ab − µ cot β. The fact that the pseudoscalar only couples to

two different squark mass eigenstates, while gluons only couple to two equal eigenstates, implies that

the form factor HA receives neither one-loop contributions from diagrams with squarks nor two-loop

contributions from diagrams with squarks and gluons. However, contributions to H1ℓ
A do arise from the

diagram in figure 3.1a involving top or bottom quarks. Also, contributions to H2ℓ
A arise from two-loop

diagrams with quarks and gluons, figure 3.2a, as well as from two-loop diagrams with quarks, squarks

and gluinos, figures 3.3a and 3.3b.

The one-loop form factor H1ℓ
A can be decomposed into top and bottom contributions as

H1ℓ
A = TF

[
cot βK1ℓ(τt) + tan βK1ℓ(τb)

]
, (3.32)

where

K1ℓ(τ) =
τ

2
ln2

(√
1 − τ − 1√
1 − τ + 1

)
. (3.33)

We recall the behavior of K1ℓ in the limit in which the pseudoscalar mass is much smaller or much

larger than the mass of the particle running in the loop. In the VHML, which may apply to the top

contribution if mA is relatively small,

K1ℓ(τ) −→ − 2 , (3.34)

while in the opposite case, i.e. τ ≪ 1, which is relevant for the bottom contribution,

K1ℓ(τ) −→ τ

2
ln2(

−4

τ
) + O(τ2) . (3.35)

The two-loop form factor for pseudoscalar production can in turn be decomposed as

H2ℓ
A = TF

[
cot β

(
K2ℓ

tg + K2ℓ
tt̃g̃

)
+ tanβ

(
K2ℓ

bg + K2ℓ
bb̃g̃

)]
, (3.36)

where K2ℓ
qg denotes the quark-gluon contributions, and K2ℓ

qq̃g̃ denotes the quark-squark-gluino contri-

butions. If the one-loop form factor is expressed in terms of the running quark mass, renormalized in

the DR scheme at the scale Q, the two-loop quark-gluon contribution reads

K2ℓ
qg = CF

[
E (2ℓ,a)

t (xq) +

(
ln
m2

q

Q2
− 1

3

)
E (2ℓ,b)

t (xq)

]
+ CA K (2ℓ,CA)

t (xq) . (3.37)

Expressions for the functions E (2ℓ,a)
t , E (2ℓ,b)

t and K (2ℓ,CA)
t , valid for arbitrary values of xq, can be found

in eqs. (4.6), (4.7) and (4.12) of ref. [53], respectively.
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Gluonic and photonic Higgs decays: The results of our calculations for Higgs production in

gluon fusion can be directly applied to the NLO computation of the gluonic decay widths of the Higgs

bosons. At NLO in QCD, the decay width of a Higgs boson φ = (h,H,A) in two gluons reads

Γ(φ→ gg) =
Gµ αs(µR)2m3

φ

16
√

2π3

∣∣∣H1ℓ
φ

∣∣∣
2 (

1 +
αs

π
Cφ
)
, (3.38)

where Cφ = Cφ
virt + Cφ

ggg + Cφ
gqq̄ includes contributions from the two-loop virtual corrections and from

the one-loop real radiation processes φ → ggg, φ → gqq̄. The contribution of the two-loop virtual

corrections is similar to the corresponding contribution to Higgs production, eq. (3.7)

Cφ
virt = CA

π2

3
+ β0 ln

(
µ2

R

m2
φ

)
+ 2Re

(
H2ℓ

φ

H1ℓ
φ

)
, (3.39)

while the contributions of the real radiation processes can be extracted from refs. [49, 54, 12]. In the

VHML, they become

Cφ
ggg = − CA

(
π2

3
− 73

12

)
, Cφ

gqq̄ = − 7

6
Nf , (3.40)

where Nf is the number of light quark species, with the quarks treated as massless particles.

As a byproduct of our calculations, we can also provide the explicit results for the two-loop QCD

corrections to the quark/squark contributions to the photonic Higgs decay. The partial width for the

decay of a neutral Higgs boson φ in two photons can be written as

Γ(φ→ γγ) =
Gµ α

2
emm

3
φ

128
√

2π3
|Pφ|2 , (3.41)

where αem is the electromagnetic coupling and Pφ is defined, in analogy to the Hφ in eq. (3.3), as the

form factor for the coupling of the Higgs boson φ with two photons. At one loop, the form factors Ph

and PH receive contributions from all the electrically charged states of the MSSM (see, e.g., ref. [49] for

the explicit results), and at least one of them is usually dominated by the contribution of the diagram

involving the W boson. The form factor PA, on the other hand, receives one-loop contributions only

from quarks and charginos. However, only the contributions involving quarks or squarks receive QCD

corrections at two loops. We separate the one-loop part of the form factors and the two-loop QCD

corrections as

Pφ = P1ℓ
φ +

αs

π
P2ℓ

φ + . . . , (3.42)

where the ellipses stand for three-loop terms of O(α2
s) and for two-loop terms controlled by other

coupling constants. To convert the two-loop form factors for the Higgs-gluon-gluon coupling, H2ℓ
φ ,

into the corresponding form factors for the Higgs-photon-photon coupling, P2ℓ
φ , it is sufficient to set

CA = 0 and TF = 1 in our explicit formulae for H2ℓ
φ , and multiply the contributions involving the

quark/squark q by Q2
q Nc, where Qq is the electric charge and Nc = 3 is the number of colors.
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3.2 Computation of the quark-squark-gluino contributions

In this section I describe the computations of refs. [6, 10, 12, 14] for the top-stop-gluino and bottom-

sbottom-gluino contributions to the production of scalar and pseudoscalar Higgs bosons.

Taylor expansion and the low-energy theorem: The diagrams for the two-loop quark-squark-

gluino contributions to the Higgs-gluon-gluon amplitude can depend on as much as five different

masses (i.e., the masses of the quark, the two squarks and the gluino, plus the external momentum

which, for on-shell Higgs production, corresponds to the Higgs mass). An exact analytic evaluation

of such diagrams is, at the moment, beyond our computational ability, but an approximation can be

obtained by Taylor-expanding in the external momentum the integrands of the loop integrals. The

results can then be expressed in terms of vacuum integrals, i.e., integrals of diagrams with vanishing

external momenta, for which exact evaluations exist [56]. However, such an approximation is valid

only if the Higgs mass is below the lowest threshold encountered in the diagrams, thus it cannot be

applied to diagrams involving bottom quarks. For what concerns the top-stop-gluino contributions,

the approximation is good for the production of h (due to the upper bound on its mass in the MSSM),

while for H and A it is valid only in specific regions of the parameter space.

The zeroth-order term in the Taylor expansion, which corresponds to the result in the VHML, can

be obtained without even computing explicitly the Higgs-gluon-gluon vertex diagrams. The starting

point of our derivation is the low-energy theorem (LET) for Higgs interactions [57, 58], relating the

amplitude M(X,φ) for a generic particle configuration X plus an external Higgs boson φ of vanishing

momentum to the corresponding amplitude without the external Higgs boson, M(X). The LET

can be stated as follows: the amplitude M(X,φ) can be obtained by considering M(X) as a field-

dependent quantity via the dependence of the relevant parameters (masses and mixing angles) on φ.

The first term in the expansion of M(X) in the Higgs field, evaluated at the minimum of the Higgs

potential, corresponds to M(X,φ). Strictly speaking, in case M(X) contains infrared (IR) divergent

terms the theorem applies to the IR-safe part of the two amplitudes. If φ represents a pseudoscalar

Higgs boson and X a pair of vector bosons, an additional contribution to M(X,φ) is induced by the

axial-current anomaly. This contribution cannot be expressed in terms of derivatives of M(X) and

must be computed explicitly.

To derive the CP-even Higgs-gluon-gluon form factors in the VHML we apply the LET, identifying

M(X) with the gluon self-energy computed in the background-field gauge [59]. Then, the top/stop

contributions to the form factors Hi (i = 1, 2) are given by

Hi |top/stop

m2
φ
=0

=
2π

√
2v

αs TF

∂Πt(0)

∂Si
, (3.43)

where v ≈ 174 GeV is the EWSB parameter, Si (i = 1, 2) are the CP-even parts of the neutral

components of the two MSSM Higgs doublets and Πt(q2) denotes the top/stop contribution to the

transverse part of the adimensional (i.e. divided by q2) self-energy of the gluon. In analogy with the
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procedure of ref. [23] for the calculation of the corrections to the Higgs-boson masses, the dependence

of Πt(q2) on the Higgs fields Si can be identified through the field dependence of the top and stop

masses and of the stop mixing angle. The gluon self-energy depends also on a fifth field-dependent

parameter related to the phase difference between the top and stop fields. However, this parameter is

relevant only when one consider derivatives with respect to the CP-odd fields, thus it can be ignored

in our case. As in ref. [23], a lengthy but straightforward application of the chain rule allows us to

express the functions Ft , Gt , F̃t and G̃t entering eqs. (3.12)–(3.14) as combinations of the derivatives

of the gluon self-energy with respect to the top and stop masses and to the stop mixing angle. In

particular, we find for the two-loop terms Yx in eqs. (3.22)–(3.25)

Yt =
∂Π̃

∂m2
t

, Yt̃1
=

∂Π̃

∂m2
t̃1

, Yt̃2
=

∂Π̃

∂m2
t̃2

, Yc2
2θt

=
∂Π̃

∂c22θt

, (3.44)

where, to reduce clutter, we used the shortcut Π̃ ≡ (2/TF )Π2ℓ, t(0), after decomposing the gluon

self-energy in one- and two-loop parts as

Π(q2) =
αs

π
Π1ℓ(q2) +

(αs

π

)2
Π2ℓ(q2) + O(α3

s) . (3.45)

We computed the contributions to the gluon self-energy from the two-loop diagrams that involve

top and/or stops with the help of FeynArts [60], using a version of the MSSM model file adapted to the

background-field gauge. After isolating the transverse part of the self-energy with a suitable projector,

we Taylor-expanded it in powers of the squared external momentum q2. The zeroth-order term of the

expansion vanishes as a consequence of gauge invariance, while the first-order term corresponds indeed

to Π2ℓ, t(0). We evaluated the two-loop vacuum integrals using the approach of ref. [56], in which the

results are expressed in terms of a “master function” Φ(m2
1,m

2
2,m

2
3). Finally, we computed all the

derivatives of Π̃ that enter eq. (3.44), exploiting a recursive relation for the derivatives of the function

Φ given in appendix A of ref. [26].

We performed the two-loop computation using dimensional regularization (DREG) and modified

minimal subtraction (MS). However, it is convenient to express our results for the Higgs-production

form factors in terms of parameters renormalized in the DR scheme, which is based on dimensional

reduction (DRED) and preserves the supersymmetric Ward identities and relations. The conversion of

the parameters from the MS scheme to the DR scheme was discussed in ref. [61]. In particular, the DR

Higgs-quark-quark Yukawa couplings differ from their MS counterparts by a finite one-loop shift which,

when inserted in the one-loop part of a calculation, induces an additional two-loop contribution. On the

other hand, the couplings of the Higgs bosons to squarks, as far as strong corrections are concerned, are

the same in both schemes, and they are related by supersymmetry to the corresponding DR Yukawa

couplings. Specializing to our calculation, only the top contribution to H1ℓ
2 is going to induce an

additional two-loop contribution when the top Yukawa coupling is converted from its MS value to its

DR value, while the stop contributions to H1ℓ
1 and H1ℓ

2 can be directly identified as expressed in terms

of DR parameters. However, as can be seen from eqs. (3.13), (3.16) and (3.20), in the VHML the
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top-quark contribution to H1ℓ
2 goes to a constant, i.e. it does not actually depend on the top Yukawa

coupling. Therefore, in this limit we need not introduce any additional contribution to the two-loop

results obtained using DREG.

Our LET calculation does indeed yield the result of eq. (3.27), in the VHML, for the top-gluon

contributions to the form factor, and the results of eqs. (3.28)–(3.30) for the stop-gluon and four-stop

contributions. The formulae for the contributions of the two-loop diagrams that involve gluinos are

somewhat longer, but they have been presented in explicit form in the appendix of ref. [6].

To test the validity of our LET approach, we also computed directly the two-loop top/stop contri-

bution to the Higgs-gluon-gluon amplitude via a Taylor expansion in the external Higgs momentum

up to terms of O(m2
φ/M

2) – where φ = h,H, and M denotes generically the masses of the heavy

particles in the loop (i.e. top, stops and gluino). In the calculation of the Higgs-gluon-gluon amplitude

we followed the same strategy described above for the calculation of the two-loop gluon self-energy.

The zeroth-order term in the Taylor expansion reproduces the result that we obtained via the LET,

while the O(m2
φ/M

2) term in the expansion gives the first correction to the VHML. The analytic

expressions for the O(m2
φ/M

2) corrections are very long and we did not report them. However, as will

be described in section 3.3, we used those results to assess the validity of the Taylor expansion in the

region where the Higgs mass is comparable to (or even larger than) the masses of the heavy particles

running in the loops.

Asymptotic expansion in the SUSY masses: In the case of diagrams involving bottom quarks,

as well as in the case of diagrams involving top quarks if the Higgs boson is sufficiently heavy, the

evaluation of the quark-squark-gluino diagrams via a Taylor expansion in the Higgs mass is no longer

viable. However, in regions of the MSSM parameter space where all of the SUSY particles are heavier

than the Higgs boson and the quarks we can resort to an approximate evaluation of the diagrams via

an asymptotic expansion in the heavy masses.

After generating with the help of FeynArts the two-loop diagrams involving quark, squark and

gluino that contribute to the process g(q1) + g(q2) → φ(q), we separate them in two classes: in class

A the diagrams that can be evaluated via an ordinary Taylor expansion in powers of q2/M2, and in

class B the diagrams that require an asymptotic expansion. We recall that the Taylor expansion of

a two-loop diagram in the external momentum q2 is viable for values of q2 up to the first physical

threshold. In our case, diagrams with a physical threshold at q2 = 4m2
q, when Taylor-expanded in q2,

exhibit an infrared (IR) divergent behavior as mq → 0. Thus, these diagrams belong to class B.

The Taylor expansion allows us to express the diagrams belonging to class A in terms of two-loop

vacuum integrals that can be evaluated using the results of ref. [56]. To compute a diagram belonging

to class B, on the other hand, we isolate the part that becomes infrared (IR) divergent when mq and

q2 are sent to zero, and subtract it from the original diagram. The remainder, being by construction

IR-safe, can be evaluated via a Taylor expansion in the same way as the class-A diagrams, while the

IR-divergent part is evaluated separately, retaining its full dependence on mq and q2.
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The IR-divergent part of a diagram is isolated in the following way. We first note that in all

the diagrams entering our calculation one can choose a routing of momenta such that the connecting

propagators, i.e. the propagators that contain both integration momenta k1 and k2, are always accom-

panied by a heavy mass M . Furthermore, only one subintegration, let us assume the one on k2, is IR

divergent. Then, one can rewrite the connecting propagators using the identity

1

(k1 + k2)2 −M2
=

1

k2
1 −M2

− k2
2 + 2 k1 · k2

[(k1 + k2)2 −M2](k2
1 −M2)

. (3.46)

The first term on the r.h.s. of eq. (3.46) leads to a disconnected integral (product of two one-loop

integrals) that contains the IR-divergent contributions present in the original diagram. This term

can be evaluated exactly, i.e. for arbitrary q2, giving rise to the ln(q2/m2
q) terms that describe the

physical threshold. The second term, instead, leads to a two-loop integral with improved infrared

convergence in the k2 integration and improved ultraviolet convergence in the k1 integration. In

general, a repeated application of eq. (3.46) allows us to construct the IR-divergent part of any

diagram in terms of products of one-loop integrals with numerators that contain terms of the form

(ki · qj)m, (ki · kj)
n (i, j = 1, 2) where m, n are generic powers. The Passarino-Veltman reduction

method is then applied to eliminate the numerators and express the result in terms of the known

one-loop scalar integrals [62]. Finally, one verifies explicitly that the IR-divergent part of the original

diagram is canceled by the terms constructed via eq. (3.46), so that the result for the IR-safe part is

free of any ln(q2/m2
q) or q2/m2

q terms.

With the techniques described above, in refs. [10, 12] we obtained explicit analytic formulae for the

gluino contributions to the two-loop terms Yx in eqs. (3.22)–(3.25). In our general formula we retained

only terms that contribute to the form factors Hi up to O(m2
q/M

2), O(m2
φ/M

2) or O(m2
Z/M

2),

where M denotes a generic superparticle mass, but we did not make any assumption on the ratio

τq ≡ 4m2
q/m

2
φ. Assuming that the contribution of the one-loop diagram with a quark q to the form

factors H1ℓ
i is expressed in terms of the DR-renormalized quark mass, which we denote as m̂q, the

quark-squark-gluino contributions to the term Yq, arising from diagrams with a Higgs-quark coupling

(figure 3.3a), read

2m2
q Y

g̃
q =

4

3
F (2ℓ,b)

1/2 (τq)
δmq

mq

SUSY

− CF

4
G1ℓ

1/2(τq)
mg̃

mq
s2θq

(
m2

q̃1

m2
g̃ −m2

q̃1

ln
m2

q̃1

m2
g̃

−
m2

q̃2

m2
g̃ −m2

q̃2

ln
m2

q̃2

m2
g̃

)

+ s2θq

mq

mg̃
R1 +

m2
q

m2
g̃

R2 , (3.47)

where δmSUSY
q denotes the squark-gluino contribution to the quark self-energy, in units of αs/π,

expanded in powers of mq up to terms of O(m3
q). Ref. [12] contains explicit expressions for the quark-

mass-suppressed terms R1 and R2 in the second line of eq. (3.47), as well as for the terms Y g̃
q̃i

and Y g̃
c2
2θq

which arise from diagrams with a Higgs-squark coupling (figure 3.3b). As a check of the correctness of

our procedure, we verified that by taking the limit mφ → 0 in the results of our asymptotic expansion
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we obtain for the top-stop-gluino contributions the same result that we would obtain by expanding

the VHML results of ref. [6] in powers of mt up to and including O(m2
t /M

2).

Considering the hierarchy between the bottom mass and the other masses, we can choose to retain

only terms up to O(mb/M), O(m2
b/m

2
φ) or O(m2

Z/M
2) in the bottom-sbottom-gluino contributions.

To this effect, it is sufficient to Taylor-expand to O(τb) all the loop functions – such as, e.g., G1ℓ
1/2(τb) –

that enter our general formulae for the asymptotic expansion of the quark-squark-gluino contributions,

and drop all the terms that contribute beyond the desired order in powers of mb.

If the one-loop quark contribution to the form factors is expressed in terms of the pole quark mass,

which we denote as Mq, the first term in the right-hand side of eq. (3.47) cancels out. Moreover, if

the one-loop quark contribution expressed in terms of Mq is multiplied by the ratio m̂q/Mq, the term

Yq = Y g
q + Y g̃

q is further shifted as

2m2
q Yq −→ 2m2

q Yq − G1ℓ
1/2(τq)

δmq

mq
, (3.48)

where δmq is the total quark self-energy in units of αs/π, i.e. it contains both a a quark-gluon and a

squark-gluino contribution. As a result of this shift, the terms enhanced by mg̃/mq in the right-hand

side of eq. (3.47) cancel out as well. This manipulation amounts to differentiating, in the one-loop

contribution, between the parameter that describes the mass of the quark running in the loop – which

is identified with the pole mass – and the parameter that describes the Yukawa coupling of the quark

to the Higgs boson – which is identified with the DR mass. As will be discussed in section 3.4, the

definition of the quark mass and of the Higgs-quark coupling entering the one-loop result has a crucial

impact on the bottom-sbottom-gluino contributions, which, as appears from eq. (3.47), may contain

terms enhanced by the large ratio mg̃/mb.

On-shell scheme for the squark parameters: As mentioned above, our explicit results for the

two-loop form factors for scalar production have been derived under the assumption that the corre-

sponding one-loop form factors are expressed in terms of DR-renormalized parameters at some scale

Q. However, they can be easily adapted to a different renormalization scheme, such as, e.g., the OS

scheme described in section 2.4 and implemented in the code FeynHiggs for the calculation of the

Higgs boson masses and mixing angle. The effect on the two-loop form factors of the different defini-

tions of the quark masses and Yukawa couplings entering the quark contributions to the one-loop form

factors has already been discussed above. For what concerns the squark contributions, the conversion

from the DR scheme to a generic scheme R results in a shift in the two-loop form factors:

H2ℓ
i −→ H2ℓ

i +
∂H1ℓ,q̃

i

∂xk
δxk , (3.49)

where xk denote the parameters subject to O(αs) corrections that enter the squark contributions to

the one-loop form factors, H1ℓ,q̃
i , and δxk ≡ xDR

k − xR

k in units of αs/π. In the OS scheme of section

2.4, the parameters xk correspond to m2
t̃i
, θt, At and mt in the stop sector, and to m2

b̃i
, θb, Ab and hb
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in the sbottom sector (where we differentiate the Higgs-sbottom coupling hb from the bottom mass

and Yukawa coupling). The specific form of the shift in the two-loop form factors depends on the

expansion (Taylor or asymptotic) used to simplify the loop integrals, and detailed formulae for the

different cases can be found in refs. [6, 10, 14]. As a useful check of the consistency of our calculations,

we verified that in each case the explicit dependence on the renormalization scale Q cancels out of the

two-loop form factors when the one-loop form factors are fully expressed in terms of OS (and thus

scale-independent) parameters.

Pseudoscalar production: We also computed the quark-squark-gluino contributions to the form

factor for the production of the MSSM pseudoscalar A, using both a Taylor expansion and an asymp-

totic expansion in the heavy SUSY masses.

A non-trivial technical issue that arises in calculation of the form factor for pseudoscalar production

is the treatment of the Dirac matrix γ5 – an intrinsically four-dimensional object – within regularization

methods defined in a number of dimensions nd = 4−2ǫ. The original calculation of the two-loop quark-

gluon contributions of ref. [49] was performed in DREG, employing the ’t Hooft-Veltman prescription

[63] for the γ5 matrix and introducing a finite multiplicative renormalization factor [64] to restore

the Ward identities. In the context of supersymmetric models, it might be preferable to perform the

calculation in DRED, which, differently from DREG, preserves supersymmetry. The latter method

does not require the introduction of finite renormalization factors, but it involves additional subtleties

concerning the treatment of the Levi-Civita symbol εµνρσ .

In our calculation of the quark-squark-gluino contributions we avoided all problems related to

the treatment of γ5 by employing the Pauli-Villars regularization (PVREG) method. Since all the

diagrams contributing to the virtual NLO contributions to pseudoscalar production are at most log-

arithmically UV-divergent, PVREG can be implemented by subtracting from the original diagrams

the same diagrams with some of the masses replaced by a PV mass regulator MPV , and then taking

the limit MPV → ∞ after the calculation of the loop integrals. In particular, in the evaluation of

the quark-squark-gluino contributions to H2ℓ
A , see eq. (3.36), the two-loop integrals are regularized by

subtracting from each of them the same expression with m2
q̃1

and m2
q̃2

replaced by M2
PV . Being defined

in four dimensions, the PVREG method respects both SUSY and the chiral symmetry, therefore no

symmetry-restoring renormalization factors need to be introduced.

To start with, we tested our implementation of PVREG by computing the top-gluon contributions

via an asymptotic expansion in the top quark mass, and recovering the result obtained in DREG in

refs. [49, 53]. In our calculation, the IR divergences are regularized by giving a mass λ to the gluon,

while the UV divergences are regularized by subtracting to any term a replica in which λ is replaced

by MPV . The final result is then obtained taking the limits MPV → ∞ and λ→ 0. The fact that this

procedure gives the correct result is quite non-trivial, because it is known that, in general, regularizing

the IR divergences via a fictitious gluon mass does not respect the non-abelian symmetry of SU(3).

However, we quantize the Lagrangian employing the background-field method (BFM) [59], so that the
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external background gluons satisfy QED-like Ward identities. We also remark that within the BFM

the renormalization of the strong gauge coupling is due only to the wave function renormalization

of the external background gluons. Thus, the renormalization of αs decouples completely from the

rest of the calculation, and can be treated separately in the standard way. As a consequence, even

if PVREG is used to regularize the loop integrals, the LO partonic cross section σ(0) can be directly

expressed in terms of the running coupling αs(µR) as in eq. (3.3).

We then computed the top-stop-gluino contribution K2ℓ
tt̃g̃

in eq. (3.36) via a Taylor expansion in the

external Higgs momentum up to terms of O(m2
A/m

2
t ) and O(m2

A/M
2), where M denotes generically

the stop and gluino masses. Such expansion should give a reasonable approximation to the full result

when mA is small compared to the other masses, and is anyway restricted to values of mA below

the lowest threshold encountered in the diagrams (this usually means mA < 2mt). In the limit of

vanishing mA we find that our result for K2ℓ
tt̃g̃

can be cast in an extremely compact form:

K2ℓ
tt̃g̃

=

(
s2θt

2
− mt Zt

m2
t̃1
−m2

t̃2

) [
f(m2

g̃,m
2
t ,m

2
t̃1

) − f(m2
g̃,m

2
t ,m

2
t̃2

)
]
, (3.50)

where

f(m2
g̃,m

2
t ,m

2
t̃i
) = CF

mg̃

mt ∆

[
m2

t (m2
g̃ −m2

t +m2
t̃i
) ln

m2
t

m2
g̃

+m2
t̃i

(m2
g̃ +m2

t −m2
t̃i
) ln

m2
t̃i

m2
g̃

+ 2m2
g̃ m

2
t Φ(m2

g̃,m
2
t ,m

2
t̃i
)

]

+ CA
mt

mg̃ ∆

[
m2

t̃i
(m2

t̃i
−m2

t −m2
g̃) ln

m2
t

m2
g̃

+m2
t̃i

(m2
t −m2

t̃i
−m2

g̃) ln
m2

t̃i

m2
g̃

+m2
g̃ (m2

t +m2
t̃i
−m2

g̃)Φ(m2
g̃,m

2
t ,m

2
t̃i
)

]
, (3.51)

the function Φ(m2
g̃,m

2
t ,m

2
t̃i
) is given, e.g., in appendix A of ref. [26], and we introduced the shortcut

∆ = m4
t +m4

g̃ +m4
t̃i
− 2 (m2

t m
2
g̃ +m2

t m
2
t̃i

+m2
g̃ m

2
t̃i
) . As appears from eqs. (3.32) and (3.34), in the

limit of vanishing mA the one-loop top contribution to HA reduces to − cot β, i.e., it does not actually

depend on any parameter subject to O(αs) corrections. Therefore, the results in eqs. (3.50) and (3.51)

do not depend on the renormalization scheme in which the calculation is performed. The contributions

to K2ℓ
tt̃g̃

of the first order in the Taylor expansion in m2
A are too lengthy to be printed here, but in

section 3.3 we will discuss their relevance in a representative region of the MSSM parameter space.

The two terms between parentheses in eq. (3.50) come from the diagrams with pseudoscalar-top

and pseudoscalar-stop couplings in figures 3.3a and 3.3b, respectively. Inserting the explicit expressions

for s2θt and Zt we find

K2ℓ
tt̃g̃ =

mt µ

m2
t̃1
−m2

t̃2

(cot β + tan β)
[
f(m2

g̃,m
2
t ,m

2
t̃1

) − f(m2
g̃,m

2
t ,m

2
t̃2

)
]
, (3.52)

i.e., the explicit dependence of K2ℓ
tt̃g̃

on At drops out, leaving only a dependence on µ. This happens

because the µ term breaks the axial U(1) Peccei-Quinn symmetry of the MSSM potential, thus violating
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the Adler-Bardeen theorem [65] which would otherwise guarantee the cancellation of all contributions

from irreducible diagrams beyond one loop.

Even when the superparticles are much heavier than the pseudoscalar, the validity of the result

for K2ℓ
tt̃g̃

obtained via a Taylor expansion in m2
A becomes questionable if mA is close to or even larger

than mt. Moreover, the Taylor expansion can certainly not be applied to the bottom-sbottom-gluino

contributions. To cover these cases, we performed an asymptotic expansion of in the large superparticle

masses. More specifically, we considered the case (mA,mq) ≪ M without assuming any hierarchy

between mA and mq, and retained terms up to O(m2
A/M

2) and O(m2
q/M

2) in the expansion. Assuming

that the contribution of the quark q to H1ℓ
A in eq. (3.32) is expressed in terms of the pole quark mass,

we find

K2ℓ
qq̃g̃ = −CF

2
K1ℓ(τq)

mg̃

mq

(
s2θq

2
− mq Zq

m2
q̃1
−m2

q̃2

)(
m2

q̃1

m2
g̃ −m2

q̃1

ln
m2

q̃1

m2
g̃

−
m2

q̃2

m2
g̃ −m2

q̃2

ln
m2

q̃2

m2
g̃

)

− mq

mg̃
s2θq RA

1 +
2m2

q Zq

mg̃ (m2
q̃1

−m2
q̃2

)
RA

2 +
m2

q

m2
g̃

RA

3 − 1

2
K1ℓ(τq)

m2
A

m2
q̃1

−m2
q̃2

RA

4 ,(3.53)

where the one-loop function K1ℓ(τ) was defined in eq. (3.33), and explicit formulae for the terms RA

i

are given in eqs. (31)–(34) of ref. [12]. Again, in the bottom-sbottom-gluino contribution we retain only

the terms up to O(mb/M) and O(m2
b/m

2
A) (in particular, the terms RA

2 , RA
3 and RA

4 give contributions

of higher order in mb and can be neglected).

As in the case of the form factor for scalar production, the terms enhanced by mg̃/mq in eq. (3.53)

cancel out if the one-loop contribution of the quark q is multiplied by m̂q/Mq, resulting in a shift of

K2ℓ
q ≡ K2ℓ

qg + Kqq̃g̃ such that

K2ℓ
q −→ K2ℓ

q − K1ℓ(τq)
δmq

mq
. (3.54)

On the other hand, since the squarks do not contribute to pseudoscalar production at one loop, it is

not necessary to specify a renormalization prescription for the parameters in the stop and sbottom

sector.

Comparison with other calculations: The two-loop top/stop contributions to the form factors

for scalar and pseudoscalar Higgs production in the VHML had already been computed in refs. [39]

and [40], respectively, using an OS renormalization scheme. However, the analytic results of those

calculations were too long to be printed, and they were only made available in the form of a computer

code, evalcsusy.f. We compared our results for scalar and pseudoscalar production in the VHML

limit with those of evalcsusy.f, and found perfect numerical agreement after taking into account

the different convention for the sign of the superpotential parameter µ, see eq. (2.1), the different

normalization of the form factors and a different renormalization prescription for the stop mixing

angle.
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Indeed, in the calculation of ref. [39] the counterterm for θt is given by

δθt =
Π12(q

2
0)

m2
t̃1
−m2

t̃2

, (3.55)

where q0 is an arbitrary external momentum (a free input parameter of evalcsusy.f) chosen to

be of the order of the stop masses. The divergent part of the counterterm is in fact compelled to

have the form of eq. (2.40) – with the finite part of the self-energy replaced by the divergent part

– by the requirement that it cancel the poles of the anti-hermitian part of the stop WFR matrix.

The renormalization prescription given in eq. (3.55) does fulfill this requirement in the case of the

QCD corrections, but only because the divergent part of the O(αs) contribution to Π12(q
2) does not

depend on q2. In general, however, the prescription in eq. (3.55) does not cancel all the poles, unless

q20 = (m2
t̃1

+m2
t̃2

)/2. Therefore, we found it preferable to stick to the “symmetrical” prescription for δθt,

eq. (2.40), which can be more naturally applied to other loop corrections. Moreover, the prescription

in eq. (2.40) is the one implemented in FeynHiggs, and it should be adopted for consistency if that

code is used to compute the Higgs boson masses and mixing angle.

Formulae for the two-loop SUSY contributions to the form factors for scalar production, based on

an asymptotic expansion in the superparticle masses but restricted to the limit of zero squark mixing

and degenerate superparticle masses, were provided in ref. [66]. They confirmed – in the simplified

limit considered in that paper – the earlier results for the bottom/sbottom contributions given in our

ref. [10] (again, after taking into account differences in the overall normalization and in the convention

for the sign of µ). In our subsequent ref. [14] we checked that our results for the asymptotic expansion

of the top/stop contributions also agree with those of ref. [66] in the simplified limit.

Finally, our use of a low-energy theorem to compute higher-order corrections to Higgs-related

observables in the MSSM, see ref. [6], was subject to further investigation in two papers by other

groups. The authors of ref. [67] showed that a LET analogous to the one in eq. (3.43) – with the

gluon self-energy replaced by the bottom-quark self-energy – can be used to compute the two-loop

SUSY-QCD corrections to the decay h→ bb̄ . Indeed, the results of such calculation can be expressed

in terms of form factors analogous to the ones given by eqs. (3.12)–(3.13) and eqs. (3.15)–(3.17). The

authors of ref. [68] discussed instead the application of the LET to the computation of the three-loop

SUSY-QCD contributions to the form factors for Higgs production in gluon fusion. In that case there

are additional complications related to the renormalization of couplings of the Higgs bosons to the

so-called ǫ-scalars of DRED, and the LET of ref. [6] must be modified.

3.3 Stop contributions: comparing different expansions

The applicability of the Taylor expansion to the contributions of two-loop diagrams involving top

quarks and stop squarks is restricted to Higgs masses below the first threshold encountered in the

diagrams. Therefore, it depends first of all on the hierarchy between the Higgs mass and the top mass

(indeed, both stops are heavier than the top, except in very special regions of the MSSM parameter
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space). While the mass of lightest scalar h is always well below the threshold for real-top production,

this is not necessarily the case for the heaviest scalarH and the pseudoscalar A, and we can expect that,

for values ofmH andmA close to (or even above) 2mt, the Taylor expansion will fail to approximate the

correct result. On the other hand, we expect that the asymptotic expansion in the heavy superparticle

masses, which does not assume a specific hierarchy between the Higgs mass and the top mass, will

provide a reasonable approximation even above the real-top threshold, as long as the superparticles

are sufficiently heavy. To put these expectations on a more quantitative ground, we compared the

results of the Taylor expansion and those of the asymptotic expansion in a representative region of

the parameter space, considering both scalar [14] and pseudoscalar [12] production.

Scalar production: The SM parameters entering our calculation include the Z-boson mass mZ =

91.1876 GeV, the W -boson mass mW = 80.399 GeV and the strong coupling constant αs(mZ) = 0.118

[69]. For the pole mass of the top quark we take Mt = 173.2 GeV [70]. For the relevant SUSY

parameters we choose

mQ = mU = µ = 1 TeV , At = 2 TeV , mg̃ = 800 GeV , tan β = 5 , (3.56)

where mQ and mU are the soft SUSY-breaking masses for the left and right stops, respectively. For a

given value of the pseudoscalar mass mA, the scalar masses mh and mH and the mixing angle α are

computed including the leading one-loop corrections of O(αt) and the leading two-loop corrections of

O(αsαt) [23].

Figure 3.4 shows the real part of the SUSY (i.e., all except top-gluon) contributions to the two-

loop form factor for heaviest-Higgs production, H2ℓ
H , as a function of mH . Since, as mentioned above,

mH is not a free parameter in our calculation, its variation is obtained by varying mA between 100

GeV and 500 GeV. For simplicity, in the computation of the form factor we neglected the small D-

term-induced electroweak contributions. The left plot in figure 3.4 is obtained assuming that the

parameters mt, mt̃1
, mt̃2

and θt entering the one-loop part of the form factor, H1ℓ
H , are expressed in

the DR renormalization scheme at the scale Q = 1 TeV. In this case we extract the DR top mass

mt(Q) from the input value for the pole mass Mt by means of eq. (B2) of ref. [23], and we interpret the

input parameters mQ, mU and At in eq. (3.56) directly as running parameters evaluated at the scale

Q. The right plot, on the other hand, is obtained assuming that the parameters mt, mt̃1
, mt̃2

and

θt entering H1ℓ
H are expressed in the OS scheme described in section 2.4. In this case we identify mt

directly with the pole mass Mt, and we interpret the input parameters mQ, mU and At in eq. (3.56)

as the parameters that can be obtained by rotating the diagonal matrix of the physical stop masses

by the “physical” angle θt, defined through eq. (2.40).

In each plot, the dashed (blue) line represents the result obtained in the VHML, as given in ref. [6],

while the solid (red) line represents the result computed at the first order of a Taylor expansion in

m2
H, i.e. it includes the effect of terms of O(m2

H/m
2
t ) and O(m2

H/M
2) which were also computed in

ref. [6] but proved too lengthy to be presented in analytic form. The dot-dashed (black) line represents
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Figure 3.4: Real part of the SUSY contributions to H2ℓ
H , plotted as a function of mH. The choice of

SUSY parameters and the meaning of the different curves are explained in the text. The plot on the

left refers to the DR scheme, while the plot on the right refers to the OS scheme.

instead the result of the asymptotic expansion in the superparticle masses derived in ref. [14]. The

latter is applicable when both mt and mH are smaller than the generic superparticle mass M , as is

indeed the case here since M ≈ 1 TeV, but it does not require any specific hierarchy between mH and

mt.

The comparison between the dashed and solid lines shows that, as mH increases, the effect of

the terms of O(m2
H/m

2
t ) and O(m2

H/M
2) becomes more and more relevant, and the VHML does not

provide an accurate approximation to H2ℓ
H . Furthermore, the comparison between the dot-dashed and

solid lines shows that, even if the inclusion of the first-order terms pushes the validity of the Taylor

expansion up to larger values of mH, the Taylor expansion fails anyway when mH gets close to the

threshold for the production of a real top-quark pair in the loops. In that case one can use the result

of our asymptotic expansion in M , provided that the latter is still considerably larger than mH.

A few additional comments are in order concerning the comparison between the left (DR) and

right (OS) plots in figure 3.4. There is no reason to expect the plots to look similar to each other,

first of all because the difference between the values of H2ℓ
H in the two schemes is compensated for, up

to higher-order terms, by a shift in the value of the one-loop form factor, H1ℓ
H , and also because the

different interpretation of the input parameters in the two schemes means that, by using the numerical

inputs in eq. (3.56) for both schemes, we are in fact considering two different points of the MSSM

parameter space. This said, a striking difference between the two schemes is visible in the behavior of

the asymptotic expansion (i.e., the dot-dashed line) around the threshold for the production of a real
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Figure 3.5: Real part of the SUSY contributions to H2ℓ
h , plotted as a function of mA. The choice of

SUSY parameters and the meaning of the different curves are explained in the text. The plot on the

left refers to the DR scheme, while the plot on the right refers to the OS scheme.

top-quark pair in the loops. The fact that in the DR plot the threshold is located at a lower value of

mH than in the OS plot is an artifact, due to lower value of the MSSM running top mass with respect

to the pole top mass (indeed, for our choice of parameters mt(Q) = 144.3 GeV). The much sharper

behavior around the threshold of the dot-dashed line in the DR plot, on the other hand, can be traced

back to the contribution of the first term in the right-hand side of eq. (3.47) for Y g̃
t . That term reflects

the fact that the running top mass of the MSSM (i.e., including the stop-gluino contribution) is used in

the top-quark contribution to H1ℓ
H , and it is canceled out if the pole top mass (or, for that matter, the

running top mass of the SM) is used instead. Indeed, we checked that, in a “mixed” renormalization

scheme in which the stop contributions to H1ℓ
H are expressed in term of running parameters (including

the MSSM running top mass) but the top-quark contribution is expressed in terms of the pole top

mass, the qualitative behavior of the dot-dashed line around the threshold would be similar to the one

in the OS plot.

To conclude this discussion, we show in figure 3.5 the real part of the SUSY contributions to the

two-loop form factor for lightest-Higgs production, H2ℓ
h , as a function of the pseudoscalar mass mA,

which is varied in the same range used to produce figure 3.4. The meaning of the different curves is

the same as in figure 3.4, and again the left plot is obtained assuming that the parameters entering the

one-loop form factor H1ℓ
h are expressed in the DR scheme, while the right plot is obtained assuming

that they are expressed in the OS scheme.

In the MSSM the mass of the lightest Higgs scalar h is bounded from above, and for large enough
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values of the pseudoscalar mass it becomes independent of mA, as do the couplings of h to the top

quark and to the stops. Indeed, for the choice of SUSY parameters in eq. (3.56) our crude O(αt+αtαs)

calculation of the Higgs mass yields mh < 123.8 GeV in the DR plot and mh < 122.5 GeV in the OS

plot, and all the curves in figure 3.5 become essentially flat for mA > 250 GeV. Due to the relative

smallness of mh no real-particle threshold is crossed, thus the result of the asymptotic expansion

(dot-dashed line) is rather close to the result of the Taylor expansion at the first order in m2
h (solid

line).

However, a comparison between the left and right plots of figure 3.5 shows that in the DR calcu-

lation the VHML result (dashed line) provides a less-than-perfect approximation to H2ℓ
h , while in the

OS calculation the effect of the terms proportional to m2
h is small, and the VHML result essentially

overlaps with the other two results. This difference between the two schemes can again be traced to the

contribution of the first term in the right-hand side of eq. (3.47), i.e. to the choice of renormalization

scheme for the top mass entering the top-quark contribution to H1ℓ
h . Even in this case we checked

that, in a “mixed” scheme in which the top-quark contribution to H1ℓ
h is expressed in terms of the

pole top mass while the stop contributions are expressed in terms of running parameters, the VHML

would provide as good an approximation to H2ℓ
h as it does in the full OS scheme.

Pseudoscalar production: Since the squarks do not contribute to the one-loop form factor for

pseudoscalar production, the only parameters entering H1ℓ
A in addition to the quark masses are tanβ

and mA. Neither of those parameters is subject to one-loop O(αs) corrections, therefore we need

not specify a renormalization scheme for them (although it is natural to consider mA as the pole

pseudoscalar mass). The remaining input parameters are mg̃, µ, At, Ab and the soft SUSY-breaking

mass terms for stop and sbottom squarks, mQ, mU and mD. Since these parameters only enter the

two-loop part of the form factor for pseudoscalar production, in this discussion we need not specify a

renormalization scheme for them either. For simplicity, we will set all the SUSY-breaking parameters,

as well as the supersymmetric mass parameter µ, to a common value M . Note however that the squark

mass eigenstates differ from M , because of the supersymmetric (F-term and D-term) contributions to

the squark mass matrices as well as of the left-right mixing terms.

Figure 3.6 shows the top-stop-gluino contribution to the two-loop form factor for pseudoscalar

production, i.e., the term K2ℓ
tt̃g̃

entering eq. (3.36), as a function of the common SUSY mass M , for

mA = 150 GeV and tanβ = 2. Even for the lowest value of M considered in the plot, M = 100 GeV,

the stop and sbottom masses are above the threshold for real-particle production. The dashed line

represents the result obtained in the limit of vanishing mA, shown explicitly in eqs. (3.50) and (3.51),

while the solid line represents the result computed at the first order of the Taylor expansion in the

pseudoscalar mass, i.e. it includes the effect of terms of O(m2
A/m

2
t ) and O(m2

A/M
2) which are too long

to be presented in analytic form. In the computation of these additional terms we assumed that the

O(m2
A/m

2
t ) part of the one-loop top contribution, see eq. (3.34), is expressed in terms of the pole top

mass.
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tt̃g̃
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The solid and dashed lines are as in figure 3.6 above, while the dot-dashed line is the result of an

asymptotic expansion in M which does not assume a specific hierarchy between mt and mA.
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It can be seen in figure 3.6 that the two-loop top-stop-gluino contribution K2ℓ
tt̃g̃

is of non-decoupling

nature, i.e., it does not tend to zero when all the superparticle masses become large (note that we

increase the superpotential parameter µ together with the SUSY-breaking parameters). In addition,

the comparison between the solid and dashed lines shows that when the common SUSY mass M is

close to mA the combined effect of the terms of O(m2
A/m

2
t ) and O(m2

A/M
2) can be as large as 20%–

25% with respect to the result obtained for vanishing mA. However, when M increases the effect of

the terms of O(m2
A/M

2) becomes quickly negligible. The remaining discrepancy between the solid

and dashed lines for moderate to large values of M is due to the terms of O(m2
A/m

2
t ), and it amounts

to a modest 6% for the value of mA considered in this example.

To assess the importance of the terms of O(m2
A/m

2
t ) for larger values of mA, we plot in figure 3.7

the real part of K2ℓ
tt̃g̃

as a function of the pseudoscalar mass, up to a value mA = 500 GeV well above

the threshold for real top-quark production. The common SUSY mass is set to the relatively large

value M = 1 TeV, and tanβ = 2. As in figure 3.6, the dashed and solid lines represent the results

obtained at the zeroth and first order of the Taylor expansion in m2
A, respectively. The comparison

between those lines shows that when mA approaches 2mt the effect of the terms of O(m2
A/m

2
t ) gets as

large as 30% with respect to the result obtained for vanishing mA. However, it is natural to wonder

whether a Taylor expansion in m2
A can give an accurate approximation to K2ℓ

tt̃g̃
for values of mA close

to or larger than mt. To address this question, we show in figure 3.7 as a dot-dashed line the result

of the asymptotic expansion in M . This result was derived under the assumption that both mA and

mt are much smaller than M , which is indeed the case for M = 1 TeV, but it does not require any

specific hierarchy between mA and mt. The comparison between the dot-dashed and solid lines shows

that the Taylor expansion at the first order in m2
A provides a good description of the dependence of

K2ℓ
tt̃g̃

on the ratio mA/mt up to values of mA of the order of 250 GeV. On the other hand, when mA

reaches the threshold for real top production (i.e., at the cusp of the dot-dashed line) the result of the

asymptotic expansion in M is roughly 80% larger in absolute value than the result at the first order

of the Taylor expansion in m2
A, and a full 140% larger than the result obtained for vanishing mA.

In summary, the behavior of the different expansions of the two-loop SUSY contributions to the

form factor for pseudoscalar production follows qualitatively the case of heavy-scalar production dis-

cussed earlier. In particular, the compact result for K2ℓ
tt̃g̃

given in eqs. (3.50) and (3.51), which was

derived for mA = 0, can be safely applied only to scenarios in which mA is smaller than mt. While

the inclusion of the terms proportional to m2
A pushes the validity of the Taylor expansion up to larger

values of mA, the expansion fails when mA gets close to the threshold for real-top production. In that

case one can use the result of the asymptotic expansion in M , provided that the latter is sufficiently

larger than mA. Comparing figures 3.4 and 3.7 we can also note that, when the one-loop top contri-

bution is expressed in terms of the pole top mass, the behavior of the form factor for pseudoscalar

production around the real-top threshold is much sharper than in the case of scalar production. This

reflects the different threshold behavior of the functions G1ℓ
1/2(τ) and K1ℓ(τ) entering the leading terms

in the form factors for scalar and pseudoscalar production, respectively.
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3.4 Sbottom contributions: dealing with large corrections

In the calculation of the bottom/sbottom contributions, a judicious choice of the renormalization con-

ditions on the parameters entering the one-loop form factors is required to avoid the occurrence of

unphysically large contributions in the two-loop form factors. As discussed in section 2.4, the param-

eters that determine the couplings of the Higgs bosons to the bottom squarks cannot be renormalized

in a way analogous to the one usually adopted in the stop sector. In addition, the presence of large

contributions to the two-loop form factors depends on the definitions adopted for the Higgs-bottom

coupling and for the bottom mass.

Indeed, specializing eq. (3.47) to the case of the bottom/sbottom contributions, assuming that

the one-loop contribution to the form factors for scalar production is expressed in terms of the pole

bottom mass, and neglecting suppressed terms, we find the following result for the contribution of

bottom-sbottom-gluino diagrams with a Higgs-bottom coupling:

2m2
b Y

g̃
b = − CF

4
G1ℓ

1/2(τb)
mg̃

mb
s2θb

(
m2

b̃1

m2
g̃ −m2

b̃1

ln
m2

b̃1

m2
g̃

−
m2

b̃2

m2
g̃ −m2

b̃2

ln
m2

b̃2

m2
g̃

)
+ s2θb

mb

mg̃
R1 . (3.57)

Similarly, the bottom-sbottom-gluino contribution to the form factor for pseudoscalar production,

eq. (3.53), becomes:

K2ℓ
bb̃g̃

= −CF

2
K1ℓ(τb)

mg̃

mb

(
s2θb

2
− mb Zb

m2
b̃1
−m2

b̃2

)( m2
b̃1

m2
g̃ −m2

b̃1

ln
m2

b̃1

m2
g̃

−
m2

b̃2

m2
g̃ −m2

b̃2

ln
m2

b̃2

m2
g̃

)
−s2θb

mb

mg̃
RA

1 .

(3.58)

The equations above show that the bottom-sbottom-gluino contributions to the form factors for Higgs

production contain terms enhanced by the large ratio mg̃/mb. Recalling the limiting behavior of the

functions entering the one-loop form factors for small τb, eqs. (3.21) and (3.35), it is clear that those

terms are in fact of O(mbmg̃/m
2
φ) , i.e., they still vanish as mb → 0 but they are enhanced by the

ratio mg̃/mφ. Such terms arise from two-loop diagrams in which the helicity flip on the fermion

loop is achieved via a gluino mass insertion instead of a bottom mass insertion, and they by far

dominate the new-physics contribution to the two-loop part of the form factors. Alternatively, inserting

s2θb
= 2mb (Ab + µ tan β)/(m2

b̃1
− m2

b̃2
) in eqs. (3.57) and (3.58), the large two-loop contributions

manifest themselves as terms enhanced by a factor ∆b ≡ ǫb tan β, where ǫb is defined in eq. (2.48).

As mentioned in section 3.2, the contributions enhanced by mg̃/mb (or ∆b) cancel out of the two-loop

form factors if the bottom contributions to the one-loop form factors are computed in terms of the

pole bottom mass Mb, but they are further multiplied by m̂b/Mb, where m̂b is the DR mass given in

eq. (2.47). This manipulation corresponds to adopting a DR renormalization for the coupling that

controls the Higgs-bottom Yukawa interaction, denoted as hY
b in section 2.4.

A numerical example: We will now illustrate the effect of the two-loop bottom/sbottom contri-

butions to the form factors for Higgs-boson production in a region of the MSSM parameter space

characterized by large values of tan β.
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In addition to the input parameters used in section 3.3 for the numerical study of the top-stop-

gluino contributions, we take Mb = 4.49 GeV for the pole mass of the bottom quark, corresponding

to the SM running mass (in the MS scheme) mb(mb) = 4.16 GeV [71]. For the parameters in the

sbottom sector, (hb,mQ,b̃ ,mD, Ab), we adopt the OS scheme described in section 2.4, which avoids the

occurrence of unphysically large two-loop corrections. In our numerical example all the relevant SUSY-

breaking parameters, as well as the supersymmetric mass parameter µ, are set to a common value M

= 500 GeV, and the physical pseudoscalar mass mA is set to 150 GeV. The tree-level mass matrix for

the CP-even Higgs bosons h and H can be expressed in terms of mA and tanβ, in addition to mZ.

Since we are considering a region of the parameter space where the bottom/sbottom contributions

can be relevant, in the calculation of the Higgs masses and mixing angle α we include the one-loop

O(αt + αb) and two-loop O(αtαs + αbαs) corrections as in refs. [23, 25].

To visualize the effect of the two-loop bottom/sbottom contributions, we define a factor Kφ, where

φ = (h,H,A), containing the ratio of two-loop to one-loop form factors that enter eq. (3.7):

Kφ = 1 + 2
αs

π
Re

(
H2ℓ

φ

H1ℓ
φ

)
. (3.59)

In the left panel of figure 3.8 we plot as a function of tan β the factor Kh for the production of the

light scalar h, in a fully OS scheme in which the bottom-quark contribution to the one-loop form factor

is expressed in terms of the pole bottom mass. The one-loop form factors in the denominator of the

term between parentheses in eq. (3.59) contain both the top/stop and bottom/sbottom contributions,

computed under the approximations of eqs. (3.20) and (3.21). The lines in the plot correspond to

different computations of the two-loop form factors in the numerator: the dotted line includes only

the contributions of the top/stop sector computed in the VHML; the dashed line includes also the

contribution of two-loop diagrams with bottom quarks and gluons; the solid line includes the full two-

loop contribution of the bottom/sbottom sector computed in the asymptotic expansion; finally, the

dot-dashed line is obtained by approximating the bottom/sbottom contribution (with the exception

of the bottom-gluon diagrams) with just the terms enhanced by mg̃/mb in eq. (3.57).

From the comparison between the dotted and dashed lines it can be seen that, in the OS renormal-

ization scheme, the contribution to H2ℓ
1 of the two-loop diagrams with bottom quarks and gluons is

very small. This is due to a partial cancellation between the terms CF F (2ℓ,a)
1/2 and CA G(2ℓ,CA)

1/2 entering

the function Y g
b in eq. (3.27), and to the fact that, in this scheme, the term F (2ℓ,b)

1/2 is not enhanced by

the potentially large logarithm of the ratio between the bottom mass and the renormalization scale.

The solid line shows that the effect of the diagrams involving sbottoms can be very significant at large

tan β, more than doubling Kh. Indeed, in this scenario the coupling of the light Higgs boson to the

(s)bottom is considerably enhanced with respect to its SM value when tanβ gets large. However, the

proximity between the solid and dot-dashed lines shows that this sizable effect is almost entirely due

to the terms enhanced by mg̃/mb in the contribution of the two-loop bottom-sbottom-gluino diagrams

in which the light Higgs boson couples to the bottom quark.
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Figure 3.8: K factor for the production of a light Higgs boson h as a function of tanβ, for mA = 150

GeV and all SUSY mass parameters equal to M = 500 GeV. For the meaning of the different lines

see the text.
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Figure 3.9: Same as figure 3.8 for the heavy Higgs boson H.
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As discussed above, the terms enhanced by mg̃/mb can be canceled out in a “mixed” renormaliza-

tion scheme in which the Higgs-bottom Yukawa coupling hY
b is identified with the DR-renormalized

MSSM bottom mass m̂b instead of the physical mass Mb. In the right panel of figure 3.8 we present

the result of this manipulation, with m̂b evaluated at the scale Q = mh. The input parameters and

the meaning of the different lines are the same as for the plot in the left panel. The proximity between

the dashed and solid lines shows that the contribution of the two-loop diagrams involving sbottoms is

rather small in this renormalization scheme, at least for our choice of input parameters. However, Kh

still shows a sizable increase at large tan β. This is due to the fact that the shift in eq. (3.48) brings

back a large logarithm, ln(m2
b/m

2
h), in the contribution of the two-loop diagrams with bottom and

gluon (this logarithm compensates the scale dependence of the running mass m̂b).

In figure 3.9 we show instead the factor KH for the production of the heavy scalar H. The input

parameters and the meaning of the lines in the left and right panels are the same as in figure 3.8.

Since in this example the mass of the heavy Higgs boson is of the order of 150 GeV, i.e. well below

any threshold for heavy-particle production, we expect the VHML to hold reasonably well even for

H. From figure 3.9 it appears that the balance of the various contributions to KH in the two different

renormalization schemes is qualitatively similar to the one for Kh shown in figure 3.8: in the OS

scheme the factor KH receives a sizable contribution from the sbottom diagrams, largely dominated

by the terms enhanced by mg̃/mb in the diagrams controlled by the Higgs-bottom coupling; in the

“mixed” scheme, on the other hand, the sbottom contribution is rather small, but there is a sizable

contribution from the diagrams with bottom and gluon.

This said, the factor KH shows a peculiar dependence on tan β: for sufficiently large values of

tan β, it grows linearly in the OS scheme, while it reaches a plateau in the mixed scheme. This can be

easily understood by recalling that, for moderate-to-large tan β and for our choice of mA, the Yukawa

coupling of the heavy MSSM Higgs to bottom quarks is enhanced by tanβ with respect to the SM

value, while the coupling to top quarks is suppressed by tan β. Consequently, both the one-loop and

the two-loop form factors in KH are dominated by the contribution of the diagrams controlled by

the Higgs-bottom coupling, with the result that the coupling itself cancels out in the ratio. However,

the dominant contribution from the bottom-sbottom-gluino diagrams in the OS scheme contains an

additional tanβ-enhancement hidden in the product s2θb
mg̃/mb, which explains the linear rise of KH .

On the other hand, the dominant contribution of the bottom-gluon diagrams in the mixed scheme

possesses no further tan β-enhancement, which explains the plateau.

Finally, in figure 3.10 we show the factor KA for the production of the pseudoscalar A, as a function

of tan β, setting again mA = 150 GeV. The meaning of the lines in the left and right panels is the same

as in figures 3.8 and 3.9, with the caveat that the contributions of the top/stop sector are computed

at the first order of the Taylor expansion in m2
A instead of the VHML, and that we do not show

the dot-dashed line in the left panel. The comparison between figures 3.10 and 3.9 shows that, for

values of tan β larger than 10–15, the behavior of the bottom/sbottom contributions to pseudoscalar

production – in both renormalization schemes – follows very closely the corresponding behavior in the
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Figure 3.10: K factor for the production of a pseudoscalar Higgs A as a function of tan β, for mA = 150

GeV and all SUSY mass parameters equal to M = 500 GeV. The three lines show the effect of the

different two-loop contributions, in the OS scheme (left panel) and in the “mixed” scheme (right

panel).

case of heavy-scalar production. On the other hand, for small values of tanβ the top/stop contributions

to pseudoscalar production appear to be relatively larger, and to have a sharper dependence on tanβ,

than the corresponding contributions to scalar production.

Comparison with the effective-Lagrangian approximation: It is well known that, in the

MSSM, loop diagrams involving superparticles induce interactions between the quarks and the “wrong”

Higgs doublets, i.e., interactions that are absent from the tree-level Lagrangian due to the requirement

that the superpotential be a holomorphic function of the superfields [45]. Such non-holomorphic,

loop-induced Higgs-quark interactions result in tanβ-enhanced (or tanβ-suppressed) corrections to

the MSSM predictions for various physical observables. If all superparticles are considerably heavier

than the Higgs bosons they can be integrated out of the Lagrangian, in which case the loop-induced

corrections are resummed in effective Higgs-quark couplings. In particular, if gφ
b denote the tree-

level couplings of a neutral Higgs φ = (h,H,A) to bottom quarks (normalized to the SM value), the

corresponding effective couplings g̃φ
b read [46]

g̃h
b =

gh
b

1 + ∆b

(
1 − ∆b

cotα

tan β

)
, g̃H

b =
gH
b

1 + ∆b

(
1 + ∆b

tanα

tan β

)
, g̃A

b =
gA
b

1 + ∆b

(
1 − ∆b cot2 β

)
,

(3.60)

where, as mentioned earlier, ∆b ≡ ǫb tan β, with ǫb defined in eq. (2.48).
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In the calculation of processes involving the Higgs-bottom couplings, it is often found that the

tan β-enhanced corrections can be included to all orders in an expansion in powers of αs tan β by

inserting the effective couplings of eq. (3.60) in the lowest-order result. A comparison with our explicit

results for the two-loop form factors allows us to test the validity of that procedure in the case of the

production of both CP-even and CP-odd Higgs bosons in gluon fusion.

We recall that the bottom-quark contributions H1ℓ ,b
φ to the one-loop form factors for the production

of the Higgs boson φ = (h,H,A) read

H1ℓ ,b
h = −TF

sinα

cos β
G1ℓ

1/2(τb) , H1ℓ ,b
H = TF

cosα

cos β
G1ℓ

1/2(τb) , H1ℓ ,b
A = TF tan β K1ℓ(τb) . (3.61)

Assuming that H1ℓ ,b
φ are expressed in terms of the pole bottom mass, and that the Higgs-sbottom cou-

plings are renormalized in a way that avoids the introduction of additional tanβ-enhanced corrections,

we find that the two-loop form factors read

H2ℓ
h = H1ℓ ,b

h

[
− π

αs
∆b

(
1 +

cotα

tan β

)
+
CF

4

Ab − µ cotα

mg̃
s22θb

F

(
m2

b̃1

m2
g̃

,
m2

b̃2

m2
g̃

)]
+ . . . , (3.62)

H2ℓ
H = H1ℓ ,b

H

[
− π

αs
∆b

(
1 − tanα

tan β

)
+
CF

4

Ab + µ tanα

mg̃
s22θb

F

(
m2

b̃1

m2
g̃

,
m2

b̃2

m2
g̃

)]
+ . . . , (3.63)

H2ℓ
A = −H1ℓ ,b

A

π

αs
∆b (1 + cot2 β) + . . . , (3.64)

where the ellipses denote contributions suppressed by mb/M or m2
Z/M

2, as well as all of the contri-

butions from diagrams involving top and stop, and

F (x1, x2) =
1

1 − x1

(
1 +

lnx1

1 − x1

)
+

1

1 − x2

(
1 +

lnx2

1 − x2

)
− 2

x1 − x2

(
x1

1 − x1
lnx1 −

x2

1 − x2
lnx2

)
.

(3.65)

In practice, the effective-Lagrangian approximation consists in rescaling the one-loop bottom con-

tributions H1ℓ ,b
φ by the same factors that rescale the Higgs-bottom couplings gφ

b in eq. (3.60). Ex-

panding the rescaling factors to the first order in ∆b it is easy to see that the effective-Lagrangian

approximation does indeed reproduce the two-loop terms proportional to ∆b in eqs. (3.62)–(3.64).

It is also interesting to consider the so-called decoupling limit of the MSSM, mA ≫ mZ, in which

cotα→ − tan β and the light scalar h has SM-like couplings to fermions and gauge bosons. Eq. (3.60)

shows that in this limit the effective coupling of h to bottom quarks is equal to the tree-level coupling,

therefore in the effective-Lagrangian approximation there are no tanβ-enhanced contributions to H2ℓ
h .

Indeed, for cotα → − tan β the terms proportional to ∆b drop out of the two-loop form factor in

eq. (3.62). However, eq. (3.62) also shows that in the decoupling limit H2ℓ
h contains additional tanβ-

enhanced contributions, controlled by the left-right sbottom mixing Xb = (Ab + µ tan β), which are

not reproduced by the effective-Lagrangian approximation. However, when the implicit dependence

of the sbottom masses and mixing on the bottom mass is taken into account, such contributions turn

out to be partially suppressed by powers of mb. Indeed, taking for illustrative purposes the limit in

55



which the diagonal entries of the sbottom mass matrix as well as the squared gluino mass are all equal

to M2, and expanding the form factor in powers of mb, we find

H2ℓ
h ⊃ −H1ℓ ,b

h

CF

12

m2
b X

3
b

M5
+ TF

2CA + 25CF

18

m2
b X

2
b

M4
+ . . . , (3.66)

where the ellipses denote terms further suppressed by powers of mb or mZ, as well as all of the

contributions from diagrams involving top and stop. The first term in eq. (3.66) comes from the

expansion of the terms proportional to s22θb
in eq. (3.62), while the second comes from the expansion of

terms not shown in eq. (3.62). The contributions neglected by the effective-Lagrangian approximation

can be relevant for values of Xb large enough to compensate for the suppression due to mb. It should

however be recalled that in the decoupling limit H1ℓ ,b
h is not further enhanced by tan β, therefore –

differently from what happens in the case of the heavy Higgs bosons – the total form factor for h

production can still be dominated by the top/stop contributions even for large values of tan β.

The effective-Lagrangian approximation described above inspires possible variations of our “mixed”

renormalization scheme in which the Higgs-bottom Yukawa coupling hY
b is treated differently from the

mass of the bottom quark entering the loop. Indeed, in our numerical study we considered a DR

prescription for the coupling:

hY, DR
b =

m̂b

v1
=

mb

v1

1 + δb
1 + ∆b

, (3.67)

where m̂b is the DR-renormalized (and scale-dependent) bottom mass in the MSSM, mb is the corre-

sponding quantity in the SM and δb denotes the terms in the SUSY contribution to the bottom self-

energy that are not enhanced by tanβ. The concomitant shift in the two-loop form factor, eq. (3.48),

removes the terms proportional to ∆b, but introduces both terms proportional to ln(m2
b/Q

2) and

terms proportional to ln(m2
g̃/Q

2), where Q is the scale at which the running mass m̂b is expressed.

Consequently, for any reasonable choice of Q (earlier on we chose Q = mφ) the two-loop form factor

contains large logarithms, resulting in the large K factors in the right panels of figures 3.8–3.10.

An alternative definition of the coupling, closer to the one adopted in the effective-Lagrangian

approximation, is

hY, eff
b =

Mb

v1

1

1 + ∆b
. (3.68)

In this case, the term δmb/mb in eq. (3.48) is replaced by −∆b, and the shift in the two-loop form

factor removes only the terms proportional to ∆b , without introducing any logarithmically enhanced

contributions. Another option consists in replacing the pole massMb in eq. (3.68) with the SM running

mass mb computed at Q = mb (as a result of this replacement, the two-loop form factor changes only

by a small non-logarithmic term). While these schemes might seem preferable to the one in eq. (3.67)

in that they lead to smaller two-loop form factors, it must be kept in mind that this is due to an

accidental cancellation between terms proportional to CF and terms proportional to CA in the two-

loop bottom-gluon contribution, eq. (3.27). There is no argument suggesting that such cancellation

persists at higher orders in QCD, or that it is motivated by some physical property of the bottom

contribution to the gluon-fusion process. For example, it was noticed already in ref. [49] that the
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two-loop bottom-gluon contribution to the form factor for Higgs decay into two photons (obtained by

setting CA = 0 in the gluon-fusion result) is minimized when the bottom mass and Yukawa coupling are

expressed in terms of mb computed at Q = mφ/2, even if the one-loop bottom contribution has exactly

the same structure as the corresponding contribution to gluon fusion. Therefore, there is no obvious

reason to favor one of the possible “mixed” schemes over the others, and it would seem reasonable to

consider the difference between the results for the cross section obtained with the various schemes as

a measure of the uncertainty associated with the uncomputed higher-order QCD corrections.

Finally, it is possible to follow the effective-Lagrangian approximation one step further, and absorb

in the coupling of each Higgs boson φ with bottom quarks also the second term within parentheses in

eq. (3.60). In this case, both the coupling hY, φ
b and the accompanying shift in the two-loop form factor

depend on the Higgs boson under consideration. As appears from eq. (3.60), these additional terms –

originating from two-loop diagrams in which the Higgs boson couples to squarks – are suppressed by

powers of tanβ, and they are numerically relevant only for the light scalar h in the decoupling limit

where cotα→ − tan β.

3.5 Implementation in public codes

An important aspect of particle physics phenomenology consists in making the results of our calcu-

lations available to the physics community in the form of computer codes. In the absence of that,

even sophisticated theoretical efforts such as the full two-loop calculations of Higgs production in the

MSSM, see refs. [37, 38], remain of limited practical usefulness. In this spirit, the approximate results

for the two-loop SUSY contributions to Higgs-boson production described in this chapter have been

implemented in two independent public codes. Much of this “popularization” effort took place under

the umbrella of the LHC Higgs Cross Section Working Group (LHC-HXSWG), a joint collaboration

between ATLAS, CMS and the theory community aimed at producing agreements on cross sections,

branching ratios and pseudo-observables relevant to SM and MSSM Higgs boson(s), and at facilitat-

ing the comparison and combination of results. The studies performed within the LHC-HXSWG were

summarized in a series of CERN Yellow Reports [34, 35, 36].

The first implementation of our results for the SUSY contributions to gluon fusion, described

in refs. [13, 35], was in the form of a module for the so-called POWHEG BOX [72], a framework for

consistently matching NLO-QCD computations of matrix elements with parton-shower Monte Carlo

generators, avoiding double counting and preserving the NLO accuracy of the calculation. In the

context of that work, we also produced a POWHEG-BOX module for the gluon-fusion process in the SM,

in which we improved on an earlier contribution by another group [73] by including the full dependence

on the top-quark mass and the effect of bottom-quark loops through NLO. This module was later used

by the ATLAS collaboration in the analysis that lead to the discovery of the Higgs boson [21]. The

second implementation of our results for the SUSY contributions, by a group including one of the

authors of evalcsusy.f, was in the public code SusHi [41], which computes the total and differential
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cross section for Higgs production in gluon fusion and bottom-quark annihilation in the SM and the

MSSM.

In this section I summarize a study performed in collaboration with the authors of SusHi and

included in the third LHC-HXSWG report [36]. In particular, I provide some detail on the imple-

mentation of the two-loop SUSY contributions to gluon fusion in the POWHEG BOX and in SusHi and

compare the results of the two codes, both between each other and with the results of earlier cal-

culations by the LHC-HXSWG. Since the calculations of the gluon-fusion cross section implemented

in our POWHEG-BOX module and in SusHi largely coincide, the description that follows refers to both

codes (unless explicitly stated). However, it is important to remark that the two codes serve rather

different purposes: the POWHEG BOX, in conjunction with a Monte Carlo generator, allows to produce

sets of events that can be used to study the kinematic distributions of the Higgs boson at NLO and

at leading-logarithmic (LL) accuracy in QCD, taking also into account the effect of parton showers.

However, this approach can prove rather inefficient when one is interested only in the computation

of the total cross section. A dedicated code like SusHi, on the other hand, does allow for a fast

calculation of the total cross section for Higgs production, but it cannot be used directly to generate

event sets. Moreover, SusHi computes the differential distributions only at fixed order (i.e., NLO) in

QCD, without resumming the logarithms of the form ln(pφ
T /mφ) which may spoil the perturbative

convergence of the result for low values of the Higgs transverse momentum pφ
T .

Contributions to the gluon-fusion cross section: At the LO, the partonic cross section for

Higgs production via gluon fusion in the MSSM is induced by quark and squark loops, and we take

into account only the contributions from the top/stop and bottom/sbottom sectors. For what con-

cerns the first two generations, the quark contributions are negligible due to the smallness of the

corresponding Yukawa couplings, while the squarks contribute only via terms suppressed by the ratio

m2
Z/M

2, with significant cancellations among the different contributions in each generation (indeed,

the total contribution vanishes for degenerate squark masses).

Virtual effects at the NLO in QCD include the gluonic corrections to the LO quark and squark

contributions, as well as the mixed quark-squark-gluino contributions. While the gluonic corrections

to the quark contributions are implemented for generic quark and Higgs masses [49, 50], for the two-

loop contributions involving squarks we use the approximate results described in the previous sections,

which are valid as long as the Higgs mass does not exceed the lowest threshold for squark production.

In particular, for the production of the lightest scalar h we compute the contributions involving stops

via the Taylor expansion in m2
h [6, 39], and those involving sbottoms via the asymptotic expansion in

the SUSY masses [10]. For H and A production, on the other hand, we use the asymptotic expansion

for both stop and sbottom contributions [12, 14]. In addition, we use the full results of refs. [49, 54]

for the contributions to the NLO-QCD cross section that arise from one-loop diagrams involving the

emission of real quarks and gluons.

As discussed in section 3.4, the existence of non-decoupling, tan β-enhanced SUSY corrections to
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the bottom Yukawa coupling induces contributions to the gluon-fusion cross section that can become

numerically dominant in regions of the MSSM parameter space characterized by large tanβ. We follow

the effective-Lagrangian approach, and absorb these contributions in a redefinition of the Higgs-bottom

Yukawa coupling as in eq. (3.68). As a consequence, we need to shift accordingly the formulae for the

two-loop contributions, in order to avoid double counting.

In order to perform meaningful comparisons between the predictions of the SM and those of the

MSSM, it is crucial that the MSSM calculation reproduce the SM result when the SUSY particles are

heavy and the Higgs boson has SM-like couplings to quarks and gauge bosons. To this purpose, we

must adapt to the MSSM calculation two higher-order contributions that have been computed only

in the SM, i.e., the NNLO-QCD contributions induced by top-quark loops and the NLO electroweak

(EW) contributions. In particular, we define

σMSSM = (1 + δEW)σMSSM

NLO
+ g2

φtt

(
σSM,t

NNLO − σSM,t
NLO

)
, (3.69)

where δEW parameterizes the NLO-EW correction, gφtt is the factor that rescales the coupling of the

MSSM Higgs boson φ to top quarks and the cross sections within parentheses include only the top

contributions computed in the SM.

For the NNLO-QCD top-quark contributions entering eq. (3.69) we use known results computed in

the VHML, both for the SM Higgs [74] and for the pseudoscalar [75]. The NLO-EW contributions to

Higgs boson production in the SM have been computed in ref. [76]. For a SM Higgs boson sufficiently

lighter than the top threshold, those contributions are well approximated by the contributions coming

from two-loop diagrams in which the Higgs couples to EW gauge bosons, which in turn couple to the

gluons via a loop of light quarks [77]. Considering only these contributions, we can approximate the

EW correction as

δEW ≈ 2 gφV V αem TF Re

(
G2ℓ

lf

H1ℓ
φ

)
, (3.70)

where gφV V is the factor that rescales the coupling of the MSSM Higgs boson φ to gauge bosons,

the one-loop form factor H1ℓ
φ is computed in the MSSM (i.e., it contains both the quark and squark

contributions), and the explicit expression for the two-loop EW light-quark contribution G2ℓ
lf can be

found in ref. [77].

The inclusion in the MSSM calculation of the additional contributions in eq. (3.69) allows us to

properly account for the NNLO-QCD and the NLO-EW corrections to the production of the lightest

scalar h in scenarios where the SUSY particles are heavy. For what concerns the other neutral Higgs

bosons, their couplings to gauge bosons and to top quarks are suppressed in most of the parameter

space, if not downright absent (in the case of the coupling of A to gauge bosons), therefore the

additional contributions in eq. (3.69) are less important.

In the following we will compare our determination of the gluon-fusion cross section in the MSSM,

eq. (3.69), with the one employed in the early stages of the activities of the LHC-HXSWG [34, 35]. In

the latter, the NLO cross section σMSSM

NLO
was computed with the public code HIGLU [79], including only
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the top- and bottom-quark contributions rescaled by the appropriate Higgs-quark effective couplings.

The only SUSY effect included in the calculation was the tanβ-enhanced correction to the effective

Higgs-bottom couplings, i.e., the term ∆b entering eq. (3.60), and the electroweak correction δEW was

omitted.

Numerical examples: We are now ready to discuss the numerical effect of the different contribu-

tions that we have included in the computation of the cross section for Higgs production in gluon fusion.

As a representative choice for the MSSM parameters, we take the “light stop” scenario introduced in

ref. [78]:

mQ = mU = 500 GeV , µ = − 350 GeV , Xt = 1 TeV , mg̃ = 1.5 TeV , (3.71)

where mQ and mU denote the soft SUSY-breaking masses for the left and right stops, respectively,

and Xt = At + µ cot β (for the values of the remaining soft SUSY-breaking parameters see ref. [78]).

This scenario corresponds to stop masses around 325 and 670 GeV, i.e. light enough to induce sizable

contributions to the cross section but not (yet?) excluded by stop searches at the LHC. For the SM

input parameters we adopt the standard values prescribed by the LHC-HXSWG (in particular, we set

Mt = 172.5 GeV and Mb = 4.75 GeV). For each value of the pseudoscalar mass mA and of tanβ, we use

FeynHiggs [30] to compute the Higgs boson masses and mixing angle, as well as the tanβ-enhanced

correction to the Higgs-bottom coupling, ∆b . To compute the total gluon-fusion cross section we

use SusHi, and cross-check the results with a private code. It is useful to remark that the two-loop

calculations of the Higgs-boson masses and production cross section implemented in FeynHiggs and

SusHi, respectively, adopt the OS renormalization scheme for the parameters in the stop and sbottom

sectors described in section 2.4. As a consequence, the numerical values of the parameters for the

“light stop” scenario listed in eq. (3.71) can be passed to both codes as they are.

Figure 3.11 shows the contours in the mA− tan β plane of equal ratio between the cross section

for Higgs-boson production in gluon fusion computed by SusHi and the corresponding cross section

computed as in the earlier LHC-HXSWG reports, refs. [34, 35]. In particular, the former includes

the NLO-QCD calculation of both quark and squark contributions plus the dominant NNLO-QCD

and NLO-EW effects adapted from the SM calculation, while the latter includes only the NLO-QCD

calculation of quark contributions (supplemented with the tan β-enhanced SUSY corrections to the

Higgs-bottom couplings) and the dominant NNLO-QCD effects from top-quark loops. The plot on

the left in figure 3.11 refers to the production of the lightest scalar h, while the plot on the right refers

to the production of the heaviest scalar H. The red lines superimposed to each plot are the contours

of equal mass for the corresponding scalar (for H we only show the contours between 124 GeV and

128 GeV).

From the left plot in figure 3.11 it can be seen that, in the “light stop” scenario, the combined

effect of the squark contributions and the NLO-EW corrections tends to suppress the cross section for

h production, with a maximum effect of 8−10% in the region with mA larger than roughly 150 GeV,
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Figure 3.11: Ratio of the cross section for h (left) and H (right) production in gluon fusion in the

“light stop” scenario as computed by SusHi, over the corresponding cross section computed omitting

squark contributions and EW corrections.

where h has SM-like couplings to quarks and gauge bosons. It is useful to remark that this results from

a partial compensation between the contributions of stop loops, which in this scenario can reduce the

cross section of the lightest scalar by up to 14−16%, and the NLO-EW light-quark contributions, which

increase by approximately 6% the cross section of a SM-like scalar with mass around 125 GeV [77].

The right plot in figure 3.11 shows that in the case of H production the relative effect of the squark

contributions can be somewhat larger than in the case of h production (the NLO-EW light-quark

contributions, on the other hand, become negligible for sufficiently large mA, due to the vanishing

couplings of H to gauge bosons). However, a suppression of the order of 35−40% is reached only in

the lower-right corner of the plot, where mA is large and tanβ ranges between 5 and 10. In this region,

the coupling of H to top quarks is suppressed while the coupling to bottom quarks is not sufficiently

enhanced, resulting in very small gluon-fusion cross sections, of the order of tenths of a picobarn.

In regions of the MSSM parameter space where the Higgs coupling to bottom quarks is enhanced,

the transverse-momentum distribution of a scalar produced via gluon fusion can be distorted with

respect to the corresponding distribution of a SM Higgs boson. In order to investigate this effect, we

consider the point in the “light-stop” scenario with mA = 130 GeV and tanβ = 40, characterized by

the fact that both scalars have non-standard couplings to quarks and masses in the vicinity of the

LHC signal (indeed, FeynHiggs predicts mh = 122.4 GeV and mH = 129.3 GeV). This point is likely

to be already excluded by the ATLAS and CMS searches for neutral Higgs bosons decaying into τ+τ−

pairs, but it can still provide a useful illustration of the expected size of this kind of effects.
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Figure 3.12: Ratio of the transverse-momentum distribution for the MSSM scalar h (left) or H (right)

over the distribution for a SM Higgs with the same mass, in the “light stop” scenario with mA =

130 GeV and tanβ = 40. The meaning of the different curves is explained in the text.

In figure 3.12 we show the ratio of the transverse-momentum distribution for a MSSM scalar

produced via gluon fusion over the corresponding distribution for a SM Higgs with the same mass.

The plot on the left refers to the lightest scalar h, while the plot on the right refers to the heaviest

scalar H. In each plot, the continuous (red) line represents the ratio of distributions computed at NLO

by SusHi, while the two histograms are computed with the POWHEG implementation of gluon fusion of

ref. [13], modified by the adoption of the OS renormalization scheme for the squark parameters and

the inclusion of the results of ref. [14] for the squark contributions to H production. In particular,

the solid (black) histogram represents the ratio of distributions computed in a pure (i.e., fixed-order)

NLO calculation, while in the dashed (blue) histogram the distributions are computed with the POWHEG

method [72], in which the potentially large logarithms of the form ln(pφ
T /M

2
φ) are resummed via the

introduction of a Sudakov form factor and a parton-shower generator to describe multiple gluon

emission (in this case, we use PYTHIA [80]).

The plots in figure 3.12 show that, in this point of the MSSM parameter space, the enhancement of

the Higgs-bottom coupling results in both an enhancement of the total cross section and a distortion

of the transverse-momentum distribution, in particular for the heaviest scalar H (note the difference

in the scale between the left and the right plot). The comparison between the continuous line and the

solid histogram shows a very good agreement between the result obtained with SusHi and the pure

NLO result obtained with POWHEG. The effect of the resummation in POWHEG makes the transverse-

momentum distribution of the Higgs boson harder. The comparison between the solid and dashed

histograms shows that for h this effect is somewhat stronger than in the SM, while forH it is somewhat

weaker.
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Chapter 4

Higgs-boson masses in the NMSSM

Due to the crucial role of radiative corrections in pushing the prediction for the lightest-scalar mass

above the tree-level bound mh < mZ | cos 2β|, an impressive theoretical effort has been devoted in

the past two decades to the precise determination of the Higgs sector of the MSSM. After the early

realization [81] of the importance of the one-loop O(αt) corrections1 involving top and stop, full one-

loop computations of the MSSM Higgs masses have been provided [82, 83], leading logarithmic effects

at two loops have been included via the renormalization-group method [84], and genuine two-loop

corrections of O(αtαs) [85, 86, 87, 88, 23], O(α2
t ) [85, 88, 24], O(αbαs) [25, 47] and O(αtαb + α2

b)

[27] have been evaluated in the limit of zero external momentum. All of these corrections have

been implemented in public computer codes [30, 31, 32, 33] for the calculation of the MSSM mass

spectrum. In addition, a nearly complete two-loop calculation, including electroweak effects and part

of the external momentum dependence, has been performed [89], and even the leading three-loop

effects have been computed [90]. Finally, a vast literature is available on the dominant corrections to

the MSSM Higgs masses in the presence of CP-violating phases in the soft SUSY-breaking parameters.

Until about four years ago, when our ref. [8] was published, the computation of the radiative cor-

rections to the Higgs masses in the NMSSM was not quite as advanced as in the MSSM. The one-loop

contributions from diagrams involving top/stop and bottom/sbottom loops had been computed [91]

in the effective-potential approximation, i.e. neglecting the external momentum in the self-energies.

For what concerns the one-loop contributions from diagrams involving chargino, neutralino or scalar

loops (the contributions arising from gauge-boson loops are the same as in the MSSM) only the

leading-logarithmic terms had been computed [92]. Similarly, among the two-loop contributions only

the leading-logarithmic O(αtαs) and O(α2
t ) terms – borrowed from the MSSM results under the sim-

plifying assumption of fully degenerate SUSY masses – had been taken into account. All of these

corrections were implemented in a public computer code, NMHDECAY [42], which computes masses,

couplings and decay widths of the NMSSM Higgs bosons.

1Here αt,b = h2
t,b/(4π), where ht and hb are the top and bottom Yukawa couplings, respectively. I follow the standard

convention of denoting as O(αt) the one-loop corrections to the Higgs masses that are in fact proportional to h2
t m

2
t ,

i.e. h4
tv

2
2 . Similar abuses of notation affect the other one- and two-loop corrections.
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It is clear that, for a proper comparison between the MSSM and NMSSM predictions, and for

a precise characterization of the scenarios in which the phenomenology of the NMSSM Higgs sector

differs markedly from the MSSM case (for a review see ref. [93]), it would be desirable to compute

the masses and mixings in the NMSSM Higgs sector with an accuracy comparable to that of the

calculations implemented in the public codes for the MSSM mass spectrum. In ref. [8] we took a few

steps in this direction. First of all, we provided explicit formulae for the full one-loop corrections

to the mass matrices of the neutral CP-even and CP-odd Higgs bosons. In addition, we computed

the two-loop O(αtαs + αbαs) corrections in the approximation of zero external momentum, adapting

to the NMSSM case the effective-potential techniques (and, in part, the results) developed for the

MSSM in refs. [23, 24, 27, 26]. To fully match the accuracy of the MSSM codes it would also be

necessary to include the two-loop O(α2
t + αtαb + α2

b) corrections. These corrections, however, cannot

be straightforwardly adapted from the MSSM case and require a dedicated calculation.

In this chapter I present the results of ref. [8], and summarize some further developments on the

precise calculation of the Higgs-boson masses in the NMSSM.

4.1 One-loop corrections to the Higgs mass matrices

This section describes the calculation of the one-loop corrections to the neutral Higgs boson masses

in the NMSSM. We followed closely the approach2 of the MSSM calculation of ref. [83], which is the

one implemented in most public computer codes [31, 32, 33] that compute the mass spectrum of the

MSSM. For simplicity, we neglected the Yukawa couplings of the first two generations, and we assumed

all of the parameters in the NMSSM superpotential and soft SUSY-breaking Lagrangian to be real.

Including the one-loop corrections in the DR renormalization scheme, and using the minimization

conditions of the scalar potential to replace the soft SUSY-breaking Higgs masses with combinations

of the other parameters, the 3×3 mass matrices for the CP-even and CP-odd fields read

(
M2

S

)1loop

ij
=

(
M2

S

)tree
ij

+
1√
2

δij
vi
Ti − Πsisj

(p2) (4.1)

(
M2

P

)1loop

ij
=

(
M2

P

)tree
ij

+
1√
2

δij
vi
Ti − Πpipj

(p2) (4.2)

where: the tree-level mass matrices
(
M2

S

)tree
and

(
M2

P

)tree
are given in eqs. (2.21) and (2.24), respec-

tively, and they are expressed in terms of DR-renormalized parameters; vi stands for (v1, v2, vs); Ti is

the finite part of the one-loop tadpole diagram for the scalar Si; Πsisj
(p2) and Πpipj

(p2) are the finite

parts of the one-loop self-energies for scalars and pseudoscalars, respectively; p2 is the external mo-

mentum flowing in the self-energy. The explicit formulae for the scalar and pseudoscalar self-energies

and for the scalar tadpoles are collected in appendix B of ref. [8]. We checked that, in the limit in

which λ→ 0 while µ ≡ λ vs is constant, our results for the 2×2 upper-left submatrix of Πsisj
and for

2Note that, differently from ref. [83], here the Higgs vevs are normalized in such a way that (v2
1 + v2

2) ≈ (174 GeV)2.
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the tadpoles T1 and T2 coincide with the MSSM results of ref. [83], as does the pseudoscalar self-energy

ΠAA that we can obtain by rotating the 2×2 upper-left submatrix of Πpipj
by an angle β.

The radiatively-corrected squared mass of the n-th scalar or (physical) pseudoscalar can be ob-

tained by solving iteratively for the n-th eigenvalue of the corresponding mass matrix evaluated at an

external momentum p2 equal to the mass eigenvalue itself (we remark that this procedure includes

in the results for the masses also contributions that are formally of higher order in the perturbative

expansion). On the other hand, there is a well-known ambiguity in the definition of the radiatively-

corrected mixing matrices RS and RP , because the rotations that diagonalize the radiatively-corrected

mass matrices depend on the choice of external momentum in the self-energies. This ambiguity re-

flects the fact that the mixing matrices themselves are not physical observables. In our analysis we

will define the radiatively-corrected mixing matrix as the one that diagonalizes the mass matrix at

p2 = 0. This corresponds to the result obtained in the effective-potential approximation.

The tree-level mass matrices entering eqs. (4.1) and (4.2) depend on the combination of gauge

couplings ḡ2 = (g2 + g′ 2)/2, on the NMSSM superpotential couplings λ and κ and the associated soft

SUSY-breaking terms Aλ and Aκ, and on the three vevs v1, v2 and vs. As long as no experimental

information on the parameters of the NMSSM Higgs sector (nor on the validity of the NMSSM itself)

is available, λ, κ, Aλ, Aκ, vs and the ratio of vevs tan β can be considered directly as DR-renormalized

inputs at some reference scale Q. On the other hand, the DR values of v2 ≡ v2
1 + v2

2, g and g′ can

be extracted from the experimentally known SM observables. For example, starting from the muon

decay constant Gµ and the gauge-boson pole masses, we can make use of the relations

v−2 = 2
√

2Gµ

(
1 − ΠT

WW (0)

M2
W

− δVB

)
, (4.3)

ḡ2 = v−2M2
Z

(
1 +

ΠT
ZZ(M2

Z)

M2
Z

)
, g2 = 2 v−2M2

W

(
1 +

ΠT
WW (M2

W )

M2
W

)
. (4.4)

In eqs. (4.3) and (4.4), ΠT
V V (p2) (V = Z,W ) denotes the finite and transverse part of the self-energy

of the vector bosons, while δVB denotes the sum of vertex, box and wave-function-renormalization

corrections to the muon decay amplitude. The explicit formulae for the vector-boson self-energies are

collected in appendix B of ref. [8]. The SM contribution to δVB was computed long ago [94], and the

SUSY contribution can be obtained from the MSSM results given in eqs. (C.13)–(C.22) of ref. [83], by

simply extending the sum over the neutralinos to the five mass eigenstates of the NMSSM.

4.2 Two-loop corrections in the effective-potential approach

This section summarizes the computation of the two-loop corrections to the NMSSM Higgs mass

matrices in the effective-potential approach. The effective potential for the neutral Higgs sector can

be decomposed as Veff = V0 + ∆V , where ∆V contains the radiative corrections. The 3×3 mass

matrices for the CP-even and CP-odd fields can be decomposed as
(
M2

S

)eff
ij

=
(
M2

S

)tree
ij

+
(
∆M2

S

)
ij
,

(
M2

P

)eff
ij

=
(
M2

P

)tree
ij

+
(
∆M2

P

)
ij
, (4.5)
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and the radiative corrections to the mass matrices are

(
∆M2

S

)
ij

= − 1√
2

δij
vi

∂∆V

∂Si

∣∣∣∣
min

+
∂2∆V

∂Si∂Sj

∣∣∣∣
min

, (4.6)

(
∆M2

P

)
ij

= − 1√
2

δij
vi

∂∆V

∂Si

∣∣∣∣
min

+
∂2∆V

∂Pi∂Pj

∣∣∣∣
min

, (4.7)

where vi stands for (v1, v2, vs), and the derivatives of the correction ∆V are computed at the minimum

of Veff . The comparison between eqs. (4.6) and (4.7) and eqs. (4.1) and (4.2) highlights the corre-

spondence between tadpoles, self-energies and derivatives of the effective potential. In the calculation

of the MSSM Higgs boson masses it is customary to reorganize the corrections in such a way that(
M2

S

)tree
is expressed in terms of the non-zero eigenvalue of

(
M2

P

)eff
, which in the effective-potential

approximation corresponds to the physical A-boson mass. In the case of the NMSSM this reorganiza-

tion is not as practical, because there are two non-zero eigenvalues of
(
M2

P

)eff
. While it is possible to

absorb some of the radiative corrections in an “effective” trilinear coupling Ãλ, this parameter does

not allow for a direct physical interpretation. Therefore, we refrain from this manipulation as well and

leave eq. (4.6) as it stands. Throughout the calculation we assume that all the parameters entering

both the tree-level and one-loop parts of the mass matrices are renormalized in the DR scheme at a

renormalization scale that we denote by Q.

The O(αs) contribution to ∆V from two-loop diagrams involving top, stop, gluon and gluino

is the same for the MSSM and for the NMSSM, and has been computed, e.g., in refs. [87, 23]. The

corresponding O(αtαs) corrections to the mass matrices in eqs. (4.6) and (4.7) can in turn be computed

by exploiting the Higgs-field dependence of the parameters appearing in ∆V . As detailed in ref. [23],

if we neglect D-term contributions controlled by the electroweak gauge couplings the parameters in

the top/top sector depend on the neutral Higgs fields only through two combinations:

X ≡ |X| eiϕ = ht H
0
2 , X̃ ≡ |X̃ | eiϕ̃ = ht

(
AtH

0
2 + λS∗H0 ∗

1

)
. (4.8)

The top/stop O(αs) contribution to ∆V can be expressed in terms of five field-dependent parameters,

which can be chosen as follows. The squared top and stop masses

m2
t = |X|2 , m2

t̃1,2
=

1

2

[
(m2

Q +m2
U + 2 |X|2 ) ±

√
(m2

Q −m2
U )2 + 4 |X̃ |2

]
, (4.9)

a mixing angle θ̄t, with 0 ≤ θ̄t ≤ π/2, which diagonalizes the stop mass matrix after the stop fields

have been redefined to make it real and symmetric

sin 2 θ̄t =
2 |X̃ |

m2
t̃1
−m2

t̃2

, (4.10)

and a combination of the phases of X and X̃ that we can choose as

cos (ϕ− ϕ̃) =
Re(X̃)Re(X) + Im(X̃) Im(X)

|X̃ | |X|
. (4.11)
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A sixth parameter, the gluino mass mg̃, does not depend on the Higgs background. In the following

we will also refer to θt, with −π/2 < θt < π/2, i.e. the usual field-independent mixing angle that

diagonalizes the stop mass matrix at the minimum of the scalar potential.

With a lengthy but straightforward application of the chain rule for the derivatives of the effective

potential, the corrections to the Higgs mass matrices in eqs. (4.6) and (4.7) can be expressed as 3

(
∆M2

S

)
11

=
1

2
h2

t µ
2 s22θt

F3 − h2
t tan β

µAt

m2
t̃1
−m2

t̃2

F , (4.12)

(
∆M2

S

)
12

= h2
t µmt s2θt F2 +

1

2
h2

t At µ s
2
2θt
F3 + h2

t

µAt

m2
t̃1
−m2

t̃2

F , (4.13)

(
∆M2

S

)
22

= 2h2
t m

2
t F1 + 2h2

t Atmt s2θt F2 +
1

2
h2

t A
2
t s

2
2θt
F3 − h2

t cot β
µAt

m2
t̃1
−m2

t̃2

F ,(4.14)

(
∆M2

S

)
13

=
1

2
ht λmt µ cot β s22θt

F3 + ht λmt
At + 2µ cot β

m2
t̃1
−m2

t̃2

F , (4.15)

(
∆M2

S

)
23

= ht λm
2
t cot β s2θt F2 +

1

2
ht λAt mt cot β s22θt

F3 + ht λ cot β
mtAt

m2
t̃1
−m2

t̃2

F ,(4.16)

(
∆M2

S

)
33

=
1

2
λ2m2

t cot2 β s22θt
F3 − λ2 cot β

m2
t At

µ (m2
t̃1
−m2

t̃2
)
F (4.17)

(
∆M2

P

)
11

= −h2
t tan β

µAt

m2
t̃1
−m2

t̃2

FA , (4.18)

(
∆M2

P

)
12

= −h2
t

µAt

m2
t̃1
−m2

t̃2

FA , (4.19)

(
∆M2

P

)
22

= −h2
t cot β

µAt

m2
t̃1
−m2

t̃2

FA , (4.20)

(
∆M2

P

)
13

= −ht λ
mtAt

m2
t̃1
−m2

t̃2

FA , (4.21)

(
∆M2

P

)
23

= −ht λ cot β
mtAt

m2
t̃1
−m2

t̃2

FA , (4.22)

(
∆M2

P

)
33

= −λ2 cot β
m2

t At

µ (m2
t̃1
−m2

t̃2
)
FA , (4.23)

where the functions Fi, F and FA are combinations of the derivatives of ∆V evaluated at the minimum

of the effective potential:

F1 =
∂ 2∆V

(∂m2
t )

2
+

∂ 2∆V

(∂m2
t̃1

)2
+

∂ 2∆V

(∂m2
t̃2

)2
+ 2

∂ 2∆V

∂m2
t ∂m

2
t̃1

+ 2
∂ 2∆V

∂m2
t ∂m

2
t̃2

+ 2
∂ 2∆V

∂m2
t̃1
∂m2

t̃2

, (4.24)

F2 =
∂ 2∆V

(∂m2
t̃1

)2
− ∂ 2∆V

(∂m2
t̃2

)2
+

∂ 2∆V

∂m2
t ∂m

2
t̃1

− ∂ 2∆V

∂m2
t ∂m

2
t̃2

3The differences with respect to eqs. (23)–(34) and (39) of ref. [8] are due to the fact that this dissertation adopts the

opposite convention for the sign of λ and µ
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−
4 c22θt

m2
t̃1
−m2

t̃2

(
∂ 2∆V

∂c2
2θ̄t
∂m2

t

+
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃1

+
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃2

)
, (4.25)

F3 =
∂ 2∆V

(∂m2
t̃1

)2
+

∂ 2∆V

(∂m2
t̃2

)2
− 2

∂ 2∆V

∂m2
t̃1
∂m2

t̃2

− 2

m2
t̃1
−m2

t̃2

(
∂∆V

∂m2
t̃1

− ∂∆V

∂m2
t̃2

)

+
16 c22θt

(m2
t̃1
−m2

t̃2
)2

(
c22θt

∂ 2∆V

(∂c2
2θ̄t

)2
+ 2

∂∆V

∂c2
2θ̄t

)
−

8 c22θt

m2
t̃1
−m2

t̃2

(
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃1

− ∂ 2∆V

∂c2
2θ̄t
∂m2

t̃2

)
,(4.26)

F =
∂∆V

∂m2
t̃1

− ∂∆V

∂m2
t̃2

−
4 c22θt

m2
t̃1
−m2

t̃2

∂∆V

∂c2
2θ̄t

, (4.27)

FA =
∂∆V

∂m2
t̃1

− ∂∆V

∂m2
t̃2

−
4 c22θt

m2
t̃1
−m2

t̃2

∂∆V

∂c2
2θ̄t

+
2 zt µ cot β

At s22θt
(m2

t̃1
−m2

t̃2
)

∂∆V

∂cϕt−ϕ̃t

. (4.28)

In eqs. (4.12)–(4.28) above we adopted the shortcuts cφ ≡ cosφ and sφ ≡ sinφ for a generic angle φ.

The parameters µ and tan β are defined in eq. (2.28), and zt ≡ sign(At + µ cot β).

At one loop the top and stop contributions to ∆V depend only on the corresponding masses. In

units of Nc/(16π
2), where Nc = 3 is a color factor, the one-loop expressions for the functions appearing

in eqs. (4.12)–(4.23) are

F 1ℓ
1 = ln

m2
t̃1
m2

t̃2

m4
t

, F 1ℓ
2 = ln

m2
t̃1

m2
t̃2

, F 1ℓ
3 = 2 −

m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

ln
m2

t̃1

m2
t̃2

, (4.29)

F 1ℓ = F 1ℓ
A = m2

t̃1

(
log

m2
t̃1

Q2
− 1

)
−m2

t̃2

(
log

m2
t̃2

Q2
− 1

)
. (4.30)

Inserting eqs. (4.29) and (4.30) in eqs. (4.12)–(4.23) we recover the well-known results [91] for the

one-loop top/stop corrections to the NMSSM Higgs boson masses in the effective-potential approach.

Explicit expressions for the derivatives of the contribution to ∆V from two-loop diagrams with

top, stop, gluino and gluon are provided in appendix C of ref. [8]. Rearranging the various terms, it

can be shown that the 2×2 upper-left submatrices of ∆M2
S and ∆M2

P correspond to the O(αtαs)

corrections derived in ref. [23] for the MSSM in the DR renormalization scheme. On the other hand,

the corrections to the third row and third column of the mass matrices, which are specific to the

NMSSM, were not previously available. If the one-loop part of the corrections is expressed in terms of

OS parameters, the two-loop corrections must be supplemented with counterterm contributions that

account for the shift from DR to OS, as described in section 2.4. The required O(αs) shifts in the

parameters mt, m
2
t̃1
, m2

t̃2
, s2θt and At can be found in appendix B of ref. [23].

The computation described above allows us to obtain also the two-loop O(αbαs) corrections induced

by the bottom/sbottom sector, which can be relevant for large values of tan β. To this purpose, the

substitutions t → b, tanβ ↔ cot β,
(
∆M2

S,P

)
11

↔
(
∆M2

S,P

)
22

and
(
∆M2

S,P

)
13

↔
(
∆M2

S,P

)
23

must be performed in eqs. (4.12)–(4.28). In the case of the bottom/sbottom corrections, however,

passing from the DR to the OS scheme involves additional complications, as explained in ref. [25].
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In the case of the MSSM, the computation of the two-loop O(α2
t +αtαb +α2

b) corrections induced

by the Yukawa interactions of quarks, squarks, Higgs bosons and higgsinos is also available [27].

In contrast to the case of the O(αtαs + αbαs) corrections, however, this computation cannot be

straightforwardly extended to the NMSSM, because the Higgs and higgsino sectors are extended by

the presence of the singlet superfield.

Finally, since Veff generates one-particle-irreducible Green’s functions at vanishing external mo-

mentum, it is clear that the effective-potential approach neglects the momentum-dependent effects in

the Higgs self-energies. The complete computation of the physical masses of the CP-even and CP-odd

Higgs bosons requires the full, momentum-dependent two-point functions (a detailed discussion of the

correspondence between the effective-potential approach and the full computation has been given in

ref. [24]). However, in the last paper of ref. [89] it has been shown by direct calculation that, in the

MSSM, the numerical effects of the two-loop momentum-dependent contributions to the Higgs boson

masses are very small. There is no reason to expect that such effects would be much larger in the

NMSSM.

4.3 Numerical examples

This section contains a brief discussion of the numerical effect of the one- and two-loop corrections to

the NMSSM Higgs masses presented in sections 4.1 and 4.2, respectively.

Among the Lagrangian parameters that enter the computation of the NMSSM Higgs masses, the

gauge and third-family Yukawa couplings, as well as the EWSB parameter v, can be extracted from the

known values of various SM observables by taking into account the appropriate radiative corrections.

We use the following input values for our analysis: the gauge boson masses MZ = 91.1876 GeV and

MW = 80.40 GeV; the muon decay constant Gµ = 1.16637×10−5 GeV−2; the strong coupling constant

αs(MZ) = 0.1189; the pole top mass Mt = 173.1 GeV; the running bottom mass mb(mb) = 4.23

GeV; the tau mass mτ = 1.777 GeV. Consistency with our computation of the one-loop radiative

corrections requires that all the parameters entering the tree-level mass matrices be expressed in the

DR renormalization scheme at a common scale Q0, which we take of the order of the soft SUSY-

breaking masses. For consistency with the computation of the two-loop O(αtαs + αbαs) corrections,

the top and bottom masses and Yukawa couplings entering the one-loop part of the corrections must

also be expressed in the DR scheme. We determine the running electroweak gauge couplings and v

directly at the scale Q0 by means of eqs. (4.3) and (4.4). This procedure neglects the resummation of

potentially large logarithms of the ratio of the weak scale to the scale Q0 (incidentally, we also neglect

the small SUSY contributions to δVB), but it is accurate enough for the purposes of our study. The top

pole mass is converted into the corresponding running mass, then both the top and bottom masses are

evolved up to the scale Q0 by means of the SM renormalization group (RG) equations. At that scale

the SM running masses are converted into NMSSM running masses by the inclusion of gluino-induced

threshold corrections (which are the same as in the MSSM). The tau mass enters only the one-loop

69



part of the calculation and is not subject to QCD corrections, thus we use directly the pole mass.

Finally, the strong gauge coupling αs enters only the two-loop part of the calculation, therefore its

precise definition amounts to a higher-order effect. We evolve αs from MZ to Q0 by means of the SM

RG equations.

To exemplify the effect of the one- and two-loop corrections to the neutral Higgs masses in the

NMSSM, we choose the SUSY input parameters in such a way that the scalar component of the singlet

is relatively light and has a sizable mixing with the lightest MSSM-like scalar. For what concerns the

Higgs sector, we keep −λ as a free parameter4 and fix the remaining parameters as

κ = −λ/5 , tan β = 2 , Aλ = 500 GeV , Aκ = −10 GeV , µ = −250 GeV , (4.31)

where we take µ as a proxy for the singlet vev vs = µ/λ. We adopt a common soft SUSY-breaking

mass MS for all of the squarks and sleptons, and fix the remaining soft SUSY-breaking parameters as

At = Ab = Aτ = −1.5MS , M3 = 2MS , M2 = 2/3MS , M1 = MS/3 . (4.32)

All of the parameters in eqs. (4.31) and (4.32) are meant as DR running parameters at the scale

Q0 = MS .

Figures 4.1 and 4.2 exemplify the effect of the one-loop corrections to the NMSSM scalar masses. In

figure 4.1 we plot the squared rotation matrix elements (RS
13)

2 and (RS
23)

2, which measure the strength

of the singlet component in the two lightest scalars h1 and h2, as a function of −λ for MS = 300 GeV.

In figure 4.2 we plot the masses of the two lightest scalars for the same choices of inputs. In both

plots, the dotted lines correspond to the tree-level results; the dashed lines include the one-loop O(αt)

and O(αb) corrections computed in the effective-potential approach; finally, the solid lines correspond

to the results of the full one-loop calculation. For the full one-loop calculation of the rotation matrix

the external momentum in the scalar self-energies is set to zero. It can be seen in figure 4.1 that, at

small |λ|, the lightest scalar h1 is dominantly MSSM-like while h2 is dominantly singlet. When |λ|
increases the mixing between singlet and lightest MSSM-like Higgs increases as well. Meanwhile, the

heaviest scalar h3 has a mass of the order of 600 GeV and its singlet component is always small. It is

interesting to note that – at least in this point of the parameter space – the value of |λ| for which the

two lightest mass eigenstates cross over (i.e., h1 becomes dominantly singlet) depends quite strongly

on the accuracy of the calculation. In particular, when only the quark/squark contributions to the

radiative corrections are included the crossover occurs for much lower values of |λ| than in the full

one-loop calculation. Figure 4.2 shows the effect of the radiative corrections to the two lightest scalar

masses. The rise with |λ| in the tree-level masses is due to the well-known NMSSM contribution to

the Higgs quartic coupling proportional to λ2 sin2 2β. The comparison between the dotted and dashed

lines shows that the O(αt) corrections induced by top and stop loops have a particularly large effect

4 For consistency with the convention adopted for the MSSM parameter µ in the gluon-fusion calculation, this disser-

tation adopts for the sign of λ and µ the opposite convention w.r.t. ref. [8]. Consequently, the plots in figures 4.1, 4.2

and 4.5, which are taken from ref. [8], must be interpreted as showing results as a function of −λ.
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Figure 4.1: The squared rotation matrix element (RS

i3)
2, measuring the singlet component in the

scalars h1 and h2, as a function of −λ, for MS = 300 GeV. The values of the other input parameters

and the meaning of the different curves are described in the text.
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Figure 4.2: The masses of the two lightest scalars h1 and h2 as a function of −λ, for MS = 300 GeV.

The values of the other input parameters and the meaning of the curves are described in the text.

71



200 400 600 800 1000 1200
M

S
  [GeV]

0

0.2

0.4

0.6

0.8

1

(R
i3

)2
one loop
two-loop leading log
full two looph

2

h
1

Figure 4.3: The squared rotation matrix element (RS

i3)
2, measuring the singlet component in the
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Figure 4.4: The masses of the two lightest scalars h1 and h2 as a function of MS , for λ = −0.5. The

values of the other input parameters and the meaning of the different curves are described in the text.
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on mh1
for small values of |λ|, when h1 is light and mostly MSSM-like. The O(αb) corrections induced

by bottom and sbottom loops are also included in the dashed lines, but they are negligible due to the

small value of tanβ. When |λ| increases the O(αt) corrections are shared between mh1
and mh2

, and

become less relevant due to the increase in the tree-level masses. However, even for the heavier scalar

h2 these corrections can still amount to several GeV at large |λ|. Finally, the comparison between the

solid and dashed lines in figure 4.2 shows that the remaining one-loop corrections – which constitute

one of the original contributions of ref. [8] – are also relevant, and can account for shifts of 5–10 GeV

in both masses.

Figures 4.3 and 4.4 exemplify the effect of the two-loop corrections to the NMSSM scalar masses. In

figure 4.3 we plot (RS

13)
2 and (RS

23)
2 as a function of MS for λ = −0.5. In figure 4.4 we plot the masses

of the two lightest scalars for the same choices of inputs. In both plots, the dotted lines correspond

to the full one-loop results (again, the rotation matrix is computed at zero external momentum); the

dashed lines include the two-loop leading-logarithmic O(αtαs) contribution to the (2,2) entry of the

scalar mass matrix as was implemented in NMHDECAY [42], i.e.

(
∆M2

S

)LL

22
= 6

αtαs

π2
m2

t log2 M
2
S

m2
t

. (4.33)

Finally, the solid lines correspond to the results of our two-loop O(αtαs + αbαs) calculation. It can

be seen in figure 4.3 that for small MS the lightest scalar h1 is mostly MSSM-like while h2 is mostly

singlet. When MS increases, the radiative corrections increase the mixing between singlet and MSSM-

like Higgs. Figure 4.4 shows that the two-loop corrections to the lightest scalar mass are positive and

relatively small. This is a typical feature of the DR computation, in contrast to the OS computation in

which the two-loop corrections are negative and much larger (for a discussion of this issue in the MSSM

see ref. [29]). It is interesting to note that, in this scenario, the leading-logarithmic term accounts

only for a fraction (30% to 60%, increasing with MS) of the total O(αtαs) contribution to the (2,2)

entry of the scalar mass matrix. Indeed, the leading-logarithmic approximation of eq. (4.33) neglects

potentially large contributions controlled by powers of the ratio At/MS , as well as the possibility

of mass splittings among stops and gluino. The effect of the O(αtαs) corrections to the entries of

the scalar mass matrix other than (2,2) is also non-negligible. The comparison between the dashed

and solid curves for h1 in figures 4.3 and 4.4 shows that, in this point of the parameter space, the

non-leading-logarithmic contributions contained in our two-loop calculation induce a shift of 1–2 GeV

in mh1
, and have a sizable effect on the mixing matrix as well (on the other hand, the near overlap

of the dashed and solid curves for h2 in figure 4.4 is the result of an accidental cancellation). One

of the attractive features of the NMSSM is the viability of scenarios in which MS is not much above

the weak scale. It is clear from figures 4.3 and 4.4 that, in those scenarios, the leading-logarithmic

approximation is not satisfactory, and a reliable evaluation of the two-loop corrections requires at least

the complete O(αtαs + αbαs) calculation.

To conclude this section, we show in figure 4.5 the effect of the radiative corrections to the mass

of the lightest physical pseudoscalar A1. For the choice of parameters considered in this example A1
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Figure 4.5: The masses of the lightest physical pseudoscalar A1 as a function of −λ, for MS = 300

GeV and κ set equal to either −λ/5 or −λ/3. The values of the other input parameters and the

meaning of the different curves are described in the text.

is almost entirely singlet, therefore its mass is hardly affected by the one- and two-loop corrections

involving quark/squark loops. The pseudoscalar A2, on the other hand, is almost entirely MSSM-like,

but its tree-level mass is of the order of 600 GeV, thus it is also not much affected by the radiative

corrections. However, the Higgs self-interactions and the Higgs-higgsino interactions controlled by

the superpotential couplings λ and κ do induce non-negligible corrections to the lightest pseudoscalar

mass. The dashed and solid lines in figure 4.5 correspond to the tree-level and one-loop determinations

of mA1
, respectively, as a function of −λ. The input parameters are chosen as in eqs. (4.31) and (4.32),

but we show two sets of curves corresponding to κ = −λ/5 and κ = −λ/3. From the comparison

between the dashed and solid curves it can be seen that the one-loop corrections to mA1
can amount

to several GeV when |λ| and κ take on relatively large values. The two-loop corrections computed

in section 4.2 include only the quark/squark contributions, therefore the corresponding curves would

essentially overlap with the one-loop curves.

4.4 Further developments

In the years following the publication of ref. [8] the interest in the NMSSM as a plausible SUSY

extension of the SM has risen, because the relatively large mass of the scalar found at the LHC makes

the prediction of an additional contribution to the Higgs quartic coupling particularly appealing.
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The results of ref. [8] for the one-loop corrections to the masses of the neutral Higgs bosons of the

NMSSM were subsequently confirmed by two independent calculations. In ref. [43], the full one-loop

tadpoles and self-energies were computed automatedly with the Mathematica package SARAH [95], and

found to be in perfect agreement with ref. [8] (taking into account that the Yukawa couplings of the

first two generations were neglected in the latter paper). In ref. [96] the same one-loop computation

was performed with FeynArts [60], again yielding perfect agreement with ref. [8].

The authors of ref. [96] also considered the effect of expressing the parameters in the tree-level

mass matrices in eqs. (4.1) and (4.2), i.e.,

g , g′ , v , vs , tan β , λ , κ , Aλ , Aκ , (4.34)

in renormalization schemes different from DR. They found that trading g, g′, v and Aλ in the tree-level

mass matrices for αem and the pole massesMZ , MW andMH± , and shifting the one-loop corrections by

appropriate counterterm contributions, has a negligible impact on the results for the masses and mixing

of the CP-even Higgs bosons. On the other hand, an OS scheme in which also the parameters λ, κ, vs

and Aκ are traded for physical observables (namely, combinations of the pole masses of pseudoscalars,

charginos and neutralinos) was found to induce unphysically large corrections for λ→ 0, because some

of the counterterms involved in the DR–OS conversion diverge in that limit. In a follow-up paper,

ref. [97], the authors also studied the effect of allowing for CP-violating phases in the parameters that

enter the tree-level mass matrices of the Higgs bosons, as well as in the stop-mixing term At entering

the one-loop corrections.

The results for the one- and two-loop corrections to the Higgs boson masses presented in this

chapter have been implemented in public codes for the computation of the NMSSM mass spectrum,

and, as a result, they have become a standard ingredient of many phenomenological analyses of the

NMSSM. In particular, I collaborated with the authors of NMHDECAY [42] in upgrading the partial one-

loop calculation implemented in that code, which was based on the effective-potential results of ref. [91]

and the leading-logarithmic results of ref. [92], to the full one-loop calculation described in section

4.1. In collaboration with K.H. Phan, I also computed the full one-loop corrections to the charged

Higgs mass, which were not included in ref. [8]. These corrections were found to be in agreement with

ref. [43], and they were also implemented in NMHDECAY. Finally, the two-loop corrections described in

section 4.2 were implemented both in NMHDECAY – replacing the crude leading-logarithmic result of

eq. (4.33) – and in the NMSSM version of SPheno [43].
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Chapter 5

BR[B → Xs γ] in the MSSM with MFV

The radiative B decays play a key role in the program of precision tests of the Standard Model and

its extensions. The inclusive decay B → Xs γ is particularly well suited to this precision program,

thanks to its low sensitivity to non-perturbative effects. The present experimental world average

for the branching ratio of this decay, with a 1.6 GeV lower cut on the energy of the photon, is

BR[B → Xs γ]ex = (3.43±0.21±0.07)×10−4 [98]. The SM prediction for the branching ratio with the

same cut on the photon energy is BR[B → Xs γ]th = (3.15 ± 0.23) × 10−4 [99, 100] and includes most

of the NNLO perturbative QCD contributions as well as the leading non-perturbative and electroweak

effects. Both experiment and SM prediction have an uncertainty of about 7%.

New Physics (NP) can in principle induce sizable contributions to the decay B → Xs γ, hence the

good agreement between the SM prediction and the experimental result puts severe constraints on the

flavor structure of NP models. However, the theoretical accuracy of the predictions for BR[B → Xs γ]

in extensions of the SM is not at the same level as in the SM. Complete NLO-QCD calculations are

available for minimal extensions such as the Two-Higgs-Doublet Model (THDM) [101, 102, 103, 9]

and the Left-Right symmetric model [103]. In the case of the MSSM, the NLO-QCD contributions

were first computed under the simplifying assumption of Minimal Flavor Violation (MFV), according

to which the quark and squark mass matrices can be simultaneously diagonalized and the only source

of flavor violation is the CKM matrix. In this scenario, the contributions of two-loop diagrams that

include gluons and charginos were computed in refs. [103, 104], while the contributions involving

gluinos were first considered in the heavy gluino limit in ref. [104], and in an effective-Lagrangian

approach in refs. [105, 106, 107]. After a partial two-loop calculation [108], the full computation of the

two-loop gluino contributions to B → Xs γ in the MSSM with MFV was finally presented in ref. [1].

In scenarios with a generic (i.e., non-MFV) flavor structure of the squark mass matrices, on the

other hand, the dominant contributions to B → Xs γ arise from diagrams that involve flavor-violating

quark-squark-gluino vertices (rather than electroweak charged-current vertices controlled by the CKM

matrix). The NLO-QCD contributions in these scenarios were recently computed in ref. [109], and

can be seen as complementary to the ones computed in ref. [1] for the MFV case.
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Once again, the usefulness of complicated two-loop calculations risks being rather limited, unless

the results are made available to the physics community in the form of computer codes. Several codes

for the determination of the MSSM mass spectrum and other SUSY observables (e.g. FeynHiggs [30],

SuSpect [32], SPheno [33], NMHDECAY [42], micrOMEGAs [110], CPsuperH [111] and SuperIso [112])

contain calculations of BR[B → Xs γ] in various approximations. However, in all of these codes

the two-loop gluino contributions to B → Xs γ are included, if at all, only in the effective Lagrangian

approximation of refs. [105, 106, 107], which is valid in the limit of heavy superpartners and large tanβ.

In ref. [4] we presented a new fortran code, SusyBSG, dedicated to the full NLO-QCD calculation of

BR[B → Xs γ] in the MSSM with MFV. The code includes the full results of ref. [1] for the two-

loop gluino contributions to the Wilson coefficients of the magnetic and chromo-magnetic operators

relevant to the B → Xs γ decay, and the results of refs. [103, 104] for the two-loop gluon contributions.

For the sake of comparison, SusyBSG can also provide evaluations of BR[B → Xs γ] in the SM and in

various versions of the THDM, as well as in the MSSM with two-loop gluino contributions computed

in the effective-Lagrangian approximation.

In this chapter I describe the NLO-QCD calculation of BR[B → Xs γ] implemented in SusyBSG,

focusing in particular on the two-loop gluino contributions presented in ref. [1].

5.1 NLO determination of BR[B → Xs γ]

This section summarizes the weak-scale matching conditions for the ∆B = 1 effective Hamiltonian in

the MSSM with Minimal Flavor Violation, as well as the NLO relation between the Wilson coefficients

computed at the weak scale and the branching ratio for the decay B → Xs γ.

The ∆B = 1 effective Hamiltonian at the matching scale µ0 where the heavy particles are integrated

out of the theory is given by

H = −4GF√
2
V CKM ∗

ts V CKM

tb

∑

i

Ci(µ0)Qi(µ0) , (5.1)

where GF is the Fermi constant and V CKM

ts , V CKM

tb are elements of the CKM matrix. The operators

relevant to our calculation are

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL) , (5.2)

Q2 = (s̄LγµcL)(c̄Lγ
µbL) , (5.3)

Q3 = (s̄LγµbL)
∑

q

(q̄γµq) , (5.4)

Q4 = (s̄LγµT
abL)

∑

q

(q̄γµT
aq) , (5.5)

Q5 = (s̄LγµγνγρbL)
∑

q

(q̄γµγνγρq) , (5.6)

Q6 = (s̄LγµγνγρT
abL)

∑

q

(q̄γµγνγρT aq) , (5.7)
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Figure 5.1: Diagrams contributing at LO to the Wilson coefficients of the magnetic and chromo-

magnetic operators. A photon or gluon is attached in all possible ways to the particles in the loops.
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Figure 5.2: Same as figure 5.1 for the diagrams involving flavor-changing quark-squark-gaugino or

quark-squark-neutralino interactions, relevant only in presence of flavor mixing in the sdown sector.

Q7 =
e

16π2
mbs̄Lσ

µνbRFµν , (5.8)

Q8 =
gs

16π2
mbs̄Lσ

µνT abRG
a
µν . (5.9)

Additional operators Q′
i can be obtained via the exchange L ↔ R in eqs. (5.2)–(5.9). However, in

MFV scenarios the contributions of those operators to the b → sγ transition are suppressed by the

ratio ms/mb , and can be neglected under our approximations.

When the QCD corrections are considered, the Wilson coefficients of the operators Qi can be

organized in the following way

Ci(µ0) = C
(0) SM
i (µ0) + C

(0) H±

i (µ0) + C
(0) SUSY

i (µ0)

+
αs(µ0)

4π

[
C

(1) SM
i (µ0) +C

(1) H±

i (µ0) + C
(1) SUSY

i (µ0)
]
, (5.10)

where the various LO contributions are classified according to whether the corresponding diagrams

contain only SM fields, a physical charged Higgs boson and an up-type quark, or two superparticles.

The expressions for C
(0) SM
i and C

(0) H±

i can be found, e.g., in ref. [101], while those for C
(0) SUSY

i can

be found, e.g., in eq. (4) of ref. [104]. Note that at LO only the coefficients of the magnetic and

chromo-magnetic operators Q7 and Q8 receive contributions from diagrams involving non-SM fields,

depicted in figure 5.1. The one-loop gluino- and neutralino-exchange diagrams depicted in figure 5.2

do not contribute to C
(0) SUSY

7,8 under the MFV assumption, but can contribute to both C
(0) SUSY

7,8 and

C
′ (0) SUSY

7,8 in the presence of flavor mixing in the sdown sector.
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The NLO coefficients C
(1) SM
i and C

(1) H±

i contain the gluonic corrections to the SM and charged-

Higgs contributions, and can be found for instance in ref. [101]. Formulae for C
(1) H±

i in the so-called

Manohar-Wise model [44], which features an additional color-octet scalar with the same electroweak

quantum numbers as the SM Higgs, can be found in ref. [9]. Concerning the NLO supersymmetric

contributions C
(1) SUSY

i , the chargino-gluon contributions can be found in refs. [103, 104]. The full

computation of C
(1) SUSY

i in the MSSM with MFV includes also the contributions from diagrams

involving both a gluino exchange and electroweak charged-current interactions. The two-loop gluino

contributions to C
(1) SUSY

7,8 were computed in ref. [1], and will be discussed in section 5.2. In addition,

there are one-loop gluino contributions to C
(1) SUSY

1,2 that can be found in appendix A of ref. [4].

The Wilson coefficients must be evolved from a matching scale of the order of the heavy-particle

masses down to a low scale µb, where the matrix elements for the b → sγ decay are computed. In

SusyBSG we follow the approach of ref. [113], in which the branching ratio for B → Xs γ with a cutoff

E0 on the photon energy in the rest frame of B is related to the measured rate BR[B → Xc e ν̄]exp by

BR[B → Xs γ]Eγ>E0

BR[B → Xc e ν̄]exp
=

∣∣∣∣
V CKM ∗

ts V CKM

tb

V CKM

cb

∣∣∣∣
2 6αem

π C

[
|K|2 +

∣∣K ′
∣∣2 +B(E0) +N(E0)

]
, (5.11)

where C is the “non-perturbative semileptonic phase-space factor” defined in appendix C of ref. [113].

The quantities B(E0) and N(E0) represent the gluon-bremsstrahlung and non-perturbative contribu-

tions, respectively, and are also described in ref. [113]. The factor K contains the contributions to

the b → sγ amplitude from the operators Qi in eqs. (5.2)–(5.9), and is dominated by the effective

Wilson coefficient for the magnetic operator at the low scale. The factor K ′, which we include here

at LO only, contains instead the contribution of the “primed” operators with inverted quark chirality,

relevant only when the MFV assumption is relaxed.

The factor K can be written as

K = Kc + r(µt) [Kt +KNP] + εew . (5.12)

Following ref. [113] we separate K into the light-quark contribution Kc, the top-quark contribution

Kt, the new-physics contribution KNP and the electroweak correction εew. For the latter we adopt

the results of ref. [114], including the available NP contributions where appropriate. We compute the

top and NP contributions to the matching conditions for the Wilson coefficients at a scale µt of the

order of the top mass, and in Kt and KNP we keep the bottom Yukawa coupling renormalized at µt

by introducing the quantity

r(µt) ≡
mMS

b (µt)

m1S
b

=
mMS

b (µt)

mMS
b (µb)

×
[
1 − αs(m

1S
b )

4π

(
16

3
+ 8 ln

m1S
b

µb

)
+

2

9
αs(m

1S
b )2

]
, (5.13)

where the “1S mass” m1S
b is defined as half of the perturbative contribution to the Υ-mass. The ratio

of masses on the r.h.s. of eq. (5.13) accounts for the evolution of the running bottom mass from µt to

µb, while the term in the square brackets accounts for the shift between mMS
b (µb) and m1S

b .

80



Explicit formulas for the light-quark and top contributions to K as implemented in SusyBSG can

be found in appendix D of ref. [4]. After factoring out r(µt), the NP contribution reads

KNP =

[
1 − 2

9
αs(m

1S
b )2

] [
η

4

23

t C
(0) NP
7 (µt) +

8

3

(
η

2

23

t − η
4

23

t

)
C

(0)NP
8 (µt)

]

+
αs(µb)

4π

{
8∑

k=1

η
(ak+ 11

23)
t

[
fk C

(1)NP
1 (µt) + hk C

(1)NP
2 (µt) + ek C

(1) NP
4 (µt)

]

+η
4

23

t

[
ηtC

(1)NP
7 (µt) − 2

(
12523

3174
− 7411

4761
ηt −

2

9
π2 − 4

3
ln
m1S

b

µb

)
C

(0)NP
7 (µt)

−8

3
ηtC

(1)NP
8 (µt) − 2

(
−50092

4761
+

1110842

357075
ηt +

16

27
π2 +

32

9
ln
m1S

b

µb

)
C

(0)NP
8 (µt)

]

+η
2

23

t

[
8

3
ηtC

(1)NP
8 (µt) − 2

(
2745458

357075
− 38890

14283
ηt −

4

9
π2 − 16

9
ln
m1S

b

µb

)
C

(0) NP
8 (µt)

]}
,

(5.14)

where ηt = αs(µt)/αs(µb), the “magic numbers” fk , hk , and ek can be found in appendix D of ref. [4]

and references therein, and, following the classification in eq. (5.10), we define CNP
i ≡ CH±

i + CSUSY

i .

In addition to µt and µb, the NLO result for BR[B → Xs γ] described above depends on two

renormalization scales entering the light-quark contribution Kc: a weak scale µW at which we compute

the contributions to the matching conditions for the Wilson coefficients coming from loops with light

quarks, and the scale µc at which we express the running charm mass entering the matrix elements.

The dependence on these four scales is part of the theoretical uncertainty of the NLO calculation,

and could be partially compensated for by implementing in SusyBSG the lengthy NNLO contributions,

which have been computed only for the SM [99, 100]. However, it is safe to expect that the users

of SusyBSG will be mainly interested in the deviation from the SM prediction induced by the NP

contribution of eq. (5.14), which is known at NLO only. In this situation, a pragmatic approach

consists in adjusting the four renormalization scales in such a way that SusyBSG reproduces the known

NNLO result of the SM when KNP = 0. To this effect, we adopt the default values

µt = µW = 2mW , µb = 2.5 GeV , µc = 1 GeV. (5.15)

Using these values for the scales, and setting the SM input parameters to the partially outdated values

used in ref. [99], we obtain a SM prediction for BR[B → Xs γ] of 3.15 × 10−4, in agreement with the

NNLO result of ref. [99]. If we use instead the same input values as in ref. [115], we obtain a SM

prediction for BR[B → Xs γ] of 3.27 × 10−4, in agreement with the NNLO result of ref. [115]. Very

good agreement, within at most 2%, is also found at various values of tan β and mH± with the partial

NNLO implementation of the type-II THDM from ref. [99].

It should be noted, however, that µc in eq. (5.15) is adjusted to a very low value in order to

mimic the NNLO contributions that are not present in our calculation. Therefore, in this case, the
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variation of the renormalization scales should not be used to estimate the intrinsic uncertainty of our

calculation. Indeed, the result of the NLO calculation depends quite sharply on µc around the value

that reproduces the NNLO result. For example, using µc = 1.224 GeV, with the other scales fixed as in

eq. (5.15) and the remaining input parameters set as in ref. [99], we find BR[B → Xs γ] = 3.29×10−4,

a 4% variation from the result of ref. [99].

Concerning the theoretical uncertainty of our prediction, we recall that in the SM analysis of

refs. [99, 100] the error is dominated by a 5% uncertainty due to unknown O(αsΛQCD/mb) non-

perturbative contributions to the matrix elements. An additional ∼ 4% intrinsic uncertainty stems

from the perturbative part of the calculation and from the estimate of missing NNLO contributions.

The parametric uncertainty in the SM is only about 3%. All of these sources of uncertainty are present

in the MSSM calculation as well. Therefore, we recommend using at least a 7% intrinsic uncertainty,

throughout the parameter space, to be added in quadrature with the parametric uncertainty.

5.2 Two-loop gluino contributions to the Wilson coefficients

This section describes the calculation of the two-loop gluino contributions to the Wilson coefficients

of the magnetic and chromo-magnetic operators presented in ref. [1]. At NLO, the supersymmetric

contribution C
(1) SUSY

7,8 can be decomposed as

C
(1) SUSY

7,8 = C
(1) g̃
7,8 + C

(1) χ±

7,8 , (5.16)

where C
(1) g̃
7,8 contains two-loop diagrams with a gluino together with a Higgs or W boson, while C

(1) χ±

7,8

corresponds to two-loop diagrams with a chargino together with a gluon or a gluino or a quartic squark

coupling. It should be recalled that, unlike C
(1) SM
7,8 and C

(1) H±

7,8 , the two-loop gluonic corrections to

the chargino loops are not UV finite: as shown in [104], in order to obtain a finite result one has to

combine them with the chargino-gluino diagrams. The chargino-gluon two-loop contributions have

been fully computed in refs. [103, 104]. On the other hand, two-loop contributions involving gluinos

(in both C
(1) g̃
7,8 and C

(1) χ±

7,8 ) have been considered in ref. [104] only in the heavy-gluino limit. We are

now going to relax this approximation and to compute C
(1) SUSY

7,8 for arbitrary gluino mass. We restrict

our calculation to the MFV scenario, i.e. we assume that the mass matrices for quarks and squarks

can be simultaneously diagonalized, so that the tree-level quark-squark-gluino interaction does not

violate flavor, and diagrams such as the one in figure 5.2a vanish.

The two-loop diagrams containing a gluino or a quartic squark coupling that contribute to C
(1) g̃
7,8

and C
(1) χ±

7,8 are shown in figures 5.3 and 5.4, respectively. Together with the diagrams with gluons,

they complete the QCD contribution to the Wilson coefficients of Q7,8 in the MSSM under the MFV

assumption. The effective theory is trivial, and the Wilson coefficients are directly given by the result of

the Feynman diagrams. We followed the same methods employed in [101], in particular we performed

our calculation in the background-field gauge [59], neglected terms suppressed by powers of mb/MW

or mb/MSUSY (after factoring out a bottom mass in the definition of the operators Q7 and Q8), and
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Figure 5.3: Feynman diagrams containing a gluino and a W or a Higgs boson (φ = H±, G±). A

photon or gluon is attached in all possible ways to the particles in the loops.
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Figure 5.4: Same as figure 5.3 for diagrams containing a chargino and a gluino or a quartic squark

coupling. The index i labels the three generations of up-type quarks and squarks.
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regularized the ultraviolet divergences using dimensional regularization (DREG). In principle, suitable

shifts must be introduced in the χ±dũ couplings to restore supersymmetric Ward identities that are

not respected by DREG [61]. However, the resulting contributions to C
(1) χ±

7,8 were already included in

the gluon-chargino contributions computed in ref. [104]. The result for each of the diagrams in figures

5.3 and 5.4 depends on a number of mass and coupling parameters; it can be simplified assuming the

up-type squarks of the first two generations to be degenerate in mass, and neglecting the masses of all

quarks of the first two generations. These assumptions allow us to exploit the unitarity of the CKM

matrix and factor out the combination V ∗
tsVtb in the effective Hamiltonian of eq. (5.1).

The complete calculation of the two-loop gluino contribution presents a novel feature with respect

to the heavy-gluino analysis of ref. [104], namely the need for flavor-changing counterterms. Indeed,

there are two-loop gluino diagrams that contain the effective flavor-changing interactions b̃sg̃ or bs̃g̃

(see, e.g., diagrams (a) and (b) in figures 5.3 and 5.4, respectively). These one-loop electroweak vertices

are divergent and need to be renormalized. The corresponding contributions were irrelevant in ref. [104]

because they are suppressed by inverse powers of the gluino mass. We therefore distinguish between

flavor-conserving counterterms, already considered in ref. [104], and flavor-changing counterterms of

electroweak origin.

Flavor-conserving counterterms are of O(αs) and originate from the masses of the bottom and top

quarks, from the masses and left-right mixing of the up-type squarks that enter the one-loop diagrams

with charginos, and from the flavor-diagonal part of the on-shell wave-function renormalization (WFR)

of the external quarks. The finite parts of these counterterms depend on our choice of renormalization

scheme for the masses and mixing angles that enter the one-loop results. In order to facilitate the

inclusion and resummation of some large higher-order effects, one can also distinguish between the top

and bottom masses that originate from the loops or from the use of equations of motion, and those

arising from Yukawa couplings or their supersymmetric equivalent.

In the MFV framework, the remaining flavor-changing counterterms are of electroweak origin and

arise from the renormalization of the flavor mixing of quarks and squarks and from the flavor-changing

part of the external-leg WFR. To discuss them, we start from the gluino-quark-squark interaction

Lagrangian in the super-CKM basis, where the matrices of Yukawa couplings are diagonal and the

squarks are rotated parallel to their fermionic superpartners:

L ⊃ −gs

√
2
(
ḡa bL T

a b̃∗L − ḡa bR T
a b̃∗R + ḡa sL T

a s̃∗L − ḡa sR T
a s̃∗R

)
+ h.c. (5.17)

where gs is the strong coupling constant and T a are SU(3) generators. We can restrict to the mixing

between second and third generations, and since we are neglecting ms, we need not consider the terms

involving sR or s̃R. Upon renormalization of the mixing matrices, the bare quark and squark fields are

rotated as follows:



d̃1

d̃2

d̃3


 = (U r + δU)




b̃L

b̃R

s̃L


 ,

(
d1 L

d2 L

)
= (uL r + δuL)

(
bL

sL

)
. (5.18)
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The MFV assumption translates into the requirement that the renormalized mixing matrices be flavor

diagonal:

U r =

(
B 0

0 1

)
=




cos θb sin θb 0

− sin θb cos θb 0

0 0 1


 , uLr =

(
1 0

0 1

)
, (5.19)

where B is a 2×2 mixing matrix in the sbottom sector and θb is the sbottom mixing angle. Under

this requirement, the mass eigenstates for the down-type squarks relevant to our calculation can be

identified with the usual sbottoms b̃1 and b̃2 and the left super-strange s̃L. However, even if we assume

that the renormalized mixing matrices for quarks and squarks are flavor-diagonal, this is not the case

for the corresponding counterterms δuL and δU . They generate the flavor-changing interactions:

L ⊃ −gs

√
2
[

(δU †
3i +B†

1i δu
L
21) sL g

a T a b̃i + (δU31 − δuL
21) ḡ

a bL T
a s̃∗L − δU32 ḡa bR T

a s̃∗L

]
+ h.c.

(5.20)

As already mentioned, additional flavor-changing renormalization effects are due to the on-shell WFR

of the external quarks (see diagrams (f) and (g) in figures 5.3 and 5.4). The divergent parts of the

mixing counterterms δuL and δU are determined in a gauge-invariant way by the requirement that

they cancel the divergence of the anti-hermitian part of the corresponding WFR matrix [116]. Using

ms → 0 and neglecting terms suppressed by mb/MW , we obtain:

δuL
21 = −1

2

[
ΣL

sb(0) + 2ΣS
sb(0)

]
, (5.21)

where we have decomposed the generic quark self-energy as

Σij(p) ≡ ΣL
ij(p

2) 6pPL + ΣR
ij(p

2) 6pPR + ΣS
ij(p

2)(miPL +mjPR) , (5.22)

PL and PR being chiral projectors. The counterterm for the squark mixing matrix is instead

δUik =
1

2
Σj 6=i

Πij(m
2
j ) + Π∗

ji(m
2
i )

m2
i −m2

j

Ujk , (5.23)

which, for the terms that appear in eq. (5.20), specializes to:

δU †
3i =

1

2

Πs̃Lb̃i
(m2

s̃L
) + Πs̃Lb̃i

(m2
b̃i

)

m2
b̃i
−m2

s̃L

, δU3j = −1

2
Σi

Πs̃Lb̃i
(m2

s̃L
) + Πs̃L b̃i

(m2
b̃i

)

m2
b̃i
−m2

s̃L

Bij . (5.24)

Once the flavor-changing vertices of eq. (5.20) are inserted into one-loop diagrams with a gluino

and a down-type squark, the resulting counterterm contributions cancel the UV poles arising from: i)

the diagrams (d) and (e) in figure 5.3 and (e) in figure 5.4; ii) the diagrams (a) and (b) in figure 5.4

with the photon or gluon attached to the down-type squark or to the gluino; iii) the flavor-changing

WFR diagrams (f) and (g) in figures 5.3 and 5.4. The remaining UV poles of the diagrams in figures

5.3 and 5.4 are canceled by the flavor-conserving counterterms, but for a residual pole in the diagrams

with gluino and chargino of figure 5.4. This is the pole that was found in ref. [104] in the limit of

heavy gluino; it is compensated for by a corresponding pole in the diagrams with gluon and chargino.
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The finite parts of the counterterms in eqs. (5.21) and (5.24) are related to the way we interpret the

MFV requirement in eq. (5.19). In particular, if we perform a minimal subtraction we are imposing

the MFV condition on the MS-renormalized parameters of the Lagrangian evaluated at some scale

µMFV. In this scheme C
(1) SUSY

7,8 contains logarithms of the ratio MSUSY/µMFV, where MSUSY represents

the mass of the superparticles entering the loops. An alternative option consists in subtracting also the

finite part of the anti-hermitian WFR: this results in a conventional (and gauge-dependent) on-shell

renormalization scheme [116], in which C
(1) SUSY

7,8 is independent of µMFV. In practice, the use of on-shell

mixing counterterms is equivalent to assuming that MFV is valid at the scale of the supersymmetric

masses entering the loops.

It is thus clear that, in models where the MFV condition is imposed at a scale much larger than

the superparticle masses (such as, e.g., gravity-mediation models where one identifies µMFV with the

GUT scale), the Wilson coefficients computed in the minimal subtraction scheme contain very large

logarithms of MSUSY/µMFV. In this case, no matter which renormalization scheme is chosen, the fixed-

order calculation does not provide a good approximation to the correct result. Indeed, in such models

the soft SUSY-breaking mass parameters – which are flavor-diagonal at the scale µMFV – must be

evolved down to MSUSY with the appropriate RGE, thus generating some flavor violation in the squark

mass matrices. When the squark mass matrices are diagonalized, the resummed logarithms of the

ratio MSUSY/µMFV are absorbed in the couplings of the resulting squark mass eigenstates with the

gluinos (and the charginos and neutralinos). Typically, the effects of the RG-induced flavor mixing

are relatively small, and in SusyBSG we include them only at LO, in the one-loop diagrams with gluinos

and down-type squarks of figure 5.2a – which would vanish if the MFV condition was valid at the

low scale MSUSY – and in the one-loop diagrams with charginos and up-type squarks of figure 5.1c.

Once the logarithmic effects have been taken into account in this way, the genuine two-loop MFV

contributions in C
(1) SUSY

7,8 can be computed by setting artificially µMFV ∼ MSUSY. In this case, using

either the on-shell scheme or the minimal subtraction scheme to renormalize the flavor mixing will

give basically the same result.

To conclude this section, I list several studies and comparisons that we performed to check the

correctness of our calculation:

• We verified that the flavor-changing counterterms in eqs. (5.21) and (5.24) renormalize correctly

the d̃d′g̃ vertex, and that their divergent parts can be reproduced starting from the known

one-loop RG equations of the MSSM [117].

• Ref. [108] presented a calculation of the tan β-enhanced part of the contribution to the Wilson

coefficients coming from the diagrams (b) in figure 5.3 that involve a charged Higgs boson. We

verified that, if we restrict our calculation to the same subset of diagrams and adopt the same

input parameters as in ref. [108], we can reproduce exactly figure 8 of that paper.

• A calculation of the QCD contributions to the Wilson coefficients from the diagrams (d) in figure

5.4, involving a chargino and a quartic squark coupling, was presented in ref. [103]. We checked
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that, if we assume MFV in the up squark sector and perform a MS renormalization, we find

complete agreement with the analytic formulae of ref. [103]. On the other hand, the contribution

of the diagrams (d) in figure 5.4 is removed by the corresponding counterterm contribution if

the squark masses and mixing are defined on shell.

• As already mentioned, the results for C7,8 depend on the renormalization scheme for a number

of parameters. In the case all parameters are renormalized in the on-shell scheme, the QCD

corrections to the Wilson coefficients still depend on the matching scale µ0 at which the effective

operators Q7,8 are renormalized, see eq. (5.1). This dependence can be expressed in terms of the

LO anomalous dimension matrix [104] and we reproduce it correctly.

5.3 Treatment of the tan β-enhanced contributions

As discussed in sections 2.4 and 3.4, in the MSSM the relation between the bottom quark mass mb and

the bottom Yukawa coupling hb is subject to tan β-enhanced threshold corrections [45]. If the bottom

Yukawa coupling entering the one-loop part of the Wilson coefficients is expressed in terms of the SM

value of the running bottom mass, the SUSY threshold corrections induce counterterm contributions

that, although being formally of higher order in the loop expansion, are enhanced by powers of tanβ

and may therefore be sizable when tan β is large. However, such potentially large corrections can

be absorbed in the one-loop results by a suitable redefinition of the bottom Yukawa coupling [46].

In SusyBSG we multiply the contributions of the one-loop diagrams that involve a bottom Yukawa

coupling by a factor κ, defined as

κ =
1 + δb

1 + ǫb tan β
, (5.25)

where δb and ǫb are SUSY contributions to the bottom self-energy, see eq. (2.47), and the O(αs) part

of ǫb, denoted below as ǫ
(s)
b , is given in eq. (2.48). This manipulation amounts to defining hb in terms

of the MSSM running bottom mass in the one-loop contributions to the Wilson coefficients, with the

result that the counterterm contributions at higher orders do not contain terms enhanced by powers of

tan β. For consistency we multiply by κ also the contributions of the two-loop diagrams that involve

a bottom Yukawa coupling, but we neglect there the small effect of δb.

In addition to the tan β-enhanced contributions that arise from the threshold corrections to the

bottom mass, there are tan β-enhanced contributions arising from corrections to the Higgs-quark-quark

vertices [105, 106, 107]. All the contributions of this kind controlled by the strong gauge coupling are

fully accounted for by the explicit two-loop calculation described in section 5.2.

The tan β-enhanced contributions to the Wilson coefficients controlled by the top and bottom

Yukawa couplings are implemented in SusyBSG using the effective-Lagrangian approach of refs. [105,

106, 107]. They include a contribution of O(αt) to the bottom-quark self-energy,

ǫ
(t)
b =

αt

4π

At µ

m2
Q −m2

U

(
m2

Q

µ2 −m2
Q

ln
m2

Q

µ2
− m2

U

µ2 −m2
U

ln
m2

U

µ2

)
, (5.26)
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such that we must use ǫb = ǫ
(s)
b + ǫ

(t)
b when computing the factor κ in eq. (5.25). In addition, there

is a contribution to the Wilson coefficients arising from a correction of O(αt) to the effective G+–t–b

vertex:

δC7,8 = − ǫ
(t)
b tan β

1 + ǫb tan β
F

(2)
7,8

(
m2

t/m
2
W

)
, (5.27)

where the loop functions F
(2)
7,8 (x) are defined, e.g., in eq. (2.4) of ref. [105]. In the limit of heavy

superparticles the contribution in eq. (5.27) cancels an analogous term originating from the redefinition

of the bottom Yukawa coupling, thus ensuring the decoupling of new-physics effects from the SM

contribution.

There are also contributions to the Wilson coefficients involving the bottom Yukawa coupling and

higher powers of tanβ [107, 118]:

δC7,8 = − ǫ
(t)
b ǫ

(b)
t tan2 β

(1 + ǫb tan β)(1 + ǫ
(s)
b tan β)

F
(2)
7,8

(
m2

t/m
2
H±

)

− a7,8 ǫ
(t)
b tan3 β

(1 + ǫb tan β)2(1 + ǫ
(s)
b tan β)

m2
b

36m2
H±

, (5.28)

where a7 = 1, a8 = −3 and the O(αb) vertex correction ǫ
(b)
t is defined as

ǫ
(b)
t = − αb

4π

Ab µ

m2
Q −m2

D

(
m2

Q

µ2 −m2
Q

ln
m2

Q

µ2
− m2

D

µ2 −m2
D

ln
m2

D

µ2

)
. (5.29)

Being suppressed by an additional loop factor and bym2
b/m

2
H± , respectively, the two terms in eq. (5.28)

tend to be numerically small, but, as stressed in ref. [107], they can become relevant in special cases

where the leading O(αs) and O(αt) effects cancel each other.

When implementing in SusyBSG the tanβ-enhanced contributions controlled by the top and bottom

Yukawa couplings, eqs. (5.26)–(5.29), we have neglected the mixing between superpartners, approx-

imating the squark masses with the corresponding soft SUSY-breaking terms and the masses of the

higgsino components of charginos and neutralinos with the superpotential parameter µ. Indeed, the

effective-Lagrangian approach used to derive these results relies on the assumption that the superpart-

ners are much heavier than the weak scale and can be integrated out of the theory, leaving behind only

non-decoupling corrections to the Higgs-quark-quark vertices. In this case the effect of the mixing,

which is due to the breaking of electroweak symmetry, can reasonably be expected to be small, and

anyway is of the same order of magnitude as other effects that are neglected under the effective La-

grangian approximation. Formulae for the tanβ-enhanced contributions to the Wilson coefficients that

take into account the effect of superpartner mixing have been presented in refs. [105, 110, 119, 120].

Finally, it is important to remark that in scenarios with a generic (i.e., non-MFV) flavor structure

of the soft SUSY-breaking terms there are additional tanβ-enhanced NLO contributions [121] which

are not accounted for by SusyBSG.
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5.4 Further developments

Conceptual issues: The issue of the renormalization of quark and squark mixing matrices in the

MFV scenario, summarized here in section 5.2, was further elaborated on by different groups. The

authors of ref. [118] pointed out that the chargino-stop contributions to the flavor-changing WFR of

the external quarks – see diagrams (f) and (g) in figure 5.4 – contain potentially large terms enhanced

by tanβ, which are not absorbed in the bottom Yukawa coupling by the manipulation in eq. (5.25).

They discussed how to resum those terms to all orders in the perturbative expansion through an

effective-Lagrangian approach. It is interesting to note that the presence of these tan β-enhanced

terms depends on the choice of a minimal renormalization condition for the quark mixing matrix

entering the quark-squark-gluino vertex. If, instead, the MFV condition in eq. (5.19) is imposed on

the mixing matrix renormalized on shell, the tanβ-enhanced terms in the flavor-changing WFR of

the external quarks are canceled by the finite part of the counterterms for the quark-mixing matrix,

eqs. (5.20) and (5.21).

The authors of ref. [122] applied the renormalization procedure outlined in section 5.2 to the full

one-loop computation of the flavor-changing decay t̃1 → c χ0
1, for which an approximated leading-

logarithmic result had been presented long ago in ref. [123]. They imposed minimal renormalization

conditions on the quark and squark matrices, and investigated the occurrence of potentially large

logarithms of µMFV when the MFV condition is imposed at a high scale. Finally, they showed how the

large logarithms can be resummed with a RGE procedure analogous to the one described in section

5.2 and implemented in SusyBSG.

The code SusyBSG: After its publication in ref. [4], our code has undergone several improvements

and extensions. For example, the THDM calculation has been extended to include the results of

ref. [9] for the Manohar-Wise model, in which there is an additional color-octet scalar with the same

EW quantum numbers as the SM Higgs. Also, we have included in the calculation of the branching

ratio the effect of the chirally-swapped operators Q′
7,8, retaining in particular the contributions of one-

loop diagrams with gluino and sdown squarks. In MFV scenarios, where the departure from flavor

diagonality in the sdown sector is induced by RG evolution, the effect of these new contributions is

suppressed by ms/mb and can be neglected. However, with this extension the code can be used –

albeit with only LO-QCD accuracy – to determine BR[B → Xs γ] in non-MFV scenarios in which the

soft SUSY-breaking masses induce a sizable b̃L−s̃R mixing.

At the time of writing, SusyBSG has been employed by different groups in about thirty phenomeno-

logical analyses of the MSSM and of the THDM. In particular, in a paper of which I am co-author [7]

we used SusyBSG to investigate the flavor structure of the MSSM with anomaly-mediated SUSY break-

ing, and found that B → Xs γ provided the strongest constraints on the parameter space of the model.

We also investigated the constraints arising from the decay Bs → µ+µ−, for which only a 95% ex-

clusion bound existed back in 2009. The AMSB predictions for the branching ratios of those two

rare decays, as a function of tan β in a scenario with a gravitino mass m3/2 = 40 TeV, are shown for
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Figure 5.5: Constraints on the AMSB parameter space from the rare decays B → Xs γ (left) and

Bs → µ+µ− (right), for m3/2 = 40 TeV. The plots are from ref. [7], which adopted for the sign of µ

the opposite convention with respect to this dissertation.

illustration in figure 5.5. In the two plots, the solid (dotted) lines include (do not include) the effect

of the one-loop diagrams with flavor-changing gluino-quark-squark interactions. A detailed analysis

would certainly be warranted, but it is likely that the recent observation of Bs → µ+µ− by the LHCb

experiment [124], with a rate compatible with the SM prediction, induces on this and on many other

MSSM scenarios bounds comparable to or even stronger than those arising from B → Xs γ.

90



Chapter 6

Outlook

The discovery at the LHC of a Higgs boson with mass around 125 GeV puts the phenomenological

studies of the Higgs sector in SUSY extensions of the SM in an entirely new perspective. In order to

remain viable, a point in the parameter space of a given SUSY model must not only pass all the (ever

stricter) experimental bounds on superparticle masses, but also lead to the prediction of a scalar with

mass, production cross section and decay rates compatible with those measured at the LHC. This, in

turn, puts new emphasis on the need for accurate theoretical predictions of those quantities.

In the case of the MSSM, the two-loop characterization of the Higgs sector – with information on

masses, production and decays – is quite advanced, at least for what concerns the dominant corrections

controlled by the strong gauge coupling and the top and bottom Yukawa couplings. Nevertheless, the

theoretical accuracy of the prediction for the lightest-scalar mass implemented in many public codes

for the calculation of the MSSM mass spectrum was estimated to be about 3 GeV [28, 29], i.e., already

comparable to the accuracy of the mass measurement at the LHC. Leaving aside the fact that the

current estimate of the accuracy should itself be reassessed in the light of the new information on the

Higgs boson, it is clear that an improvement in the prediction for the MSSM Higgs masses, with the

inclusion of the remaining two-loop effects and at least the dominant three-loop effects, will at some

point become unavoidable.

Indeed, a substantial effort is still needed to combine the existing predictions for the properties

of the MSSM Higgs bosons in a consistent way, and make them available to the experimentalists in

the form of computer programs that can be efficiently used to analyze the LHC data. In this context,

my plans for the short/medium term include: i) the development of a new code for the calculation of

the MSSM mass spectrum in split-SUSY scenarios where some of the superparticles are much heavier

than the weak scale; ii) detailed studies of the theoretical uncertainty of the NLO predictions for

the Higgs-production cross section in the MSSM, in collaboration with the authors of SusHi; iii) the

inclusion of the bottom-quark annihilation process – which for some choices of the MSSM parameters

can prevail over gluon fusion – in our POWHEG implementation of Higgs production; iv) the inclusion of

the two-loop SUSY-QCD contributions to the Higgs decays into photons or gluons in the existing codes
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for the computation of the Higgs decay width. Each of these steps will also involve phenomenological

studies of the MSSM parameter space to assess the relevance of the various contributions.

The situation in other SUSY extensions of the SM is much less advanced than in the MSSM.

Even in the simplest non-minimal extension, the NMSSM, only a partial two-loop calculation of the

Higgs masses is available, and radiative corrections to Higgs production and decay processes have

been studied only at one-loop accuracy (if at all). In order to bring the accuracy of the predictions for

the NMSSM Higgs sector to the level already achieved in the MSSM, and to allow for a meaningful

comparison between the two models, at least two steps will be necessary. The first is the adaptation to

the NMSSM of the results for the two-loop SUSY-QCD contributions to Higgs production and decays

that were computed for the MSSM in the past few years. The second step is the computation of the

two-loop corrections to the NMSSM Higgs masses controlled only by the top and bottom Yukawa

couplings. As in the case of the MSSM, the results of these calculations should then be implemented

in public computer codes. Another subject that I could explore in the medium term is the precise

characterization of the Higgs sector in SUSY models with Dirac gauginos.

The second main line of my research in the coming years – somewhat complementary to the preci-

sion computation of the properties of the Higgs bosons – will consist in working out the implications

for different BSM scenarios of any new information that should come from the LHC and from other

sources, such as, e.g., direct and indirect searches for Dark Matter. Obviously, the timing and the

direction of this kind of research will depend on the experimental developments, and cannot be fore-

seen in much detail. At the time of writing, it seems likely that – barring last-minute surprises at

the Summer 2013 conferences – neither superparticles nor an extended Higgs sector were discovered

in the first two years of ATLAS and CMS operations, nor did LHCb measure sizable deviations from

the SM predictions in the flavor sector. However, the Higgs-boson mass turned out to be sitting in

a particularly fortunate range where various search channels, sensitive to different Higgs couplings,

contribute to its discovery. This provides different ways to test whether the properties of the Higgs

boson follow the SM predictions or they are affected by new physics, even if the new physics fails to

manifest itself directly in the data collected so far. For example, an excess in the rate of Higgs-boson

decays into photons – for which the evidence is still inconclusive – would constitute a striking man-

ifestation of physics beyond the SM. The interpretation of such an excess in the context of different

SUSY (and non-SUSY) models, based on state-of-the-art computations of the relevant observables,

would certainly become a priority of my research activity. In any case, the data collected at the LHC

after the 2013–2014 shutdown, during which the collider will be upgraded to its design energy and

luminosity, should clarify whether it is indeed SUSY that stabilizes the weak scale, thus determining

the direction of my research in the longer term.
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