
HAL Id: tel-00824372
https://theses.hal.science/tel-00824372v1

Submitted on 21 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic extraction of communication protocols for
web services composition

Kreshnik Musaraj

To cite this version:
Kreshnik Musaraj. Automatic extraction of communication protocols for web services composition.
Other [cs.OH]. Université Claude Bernard - Lyon I, 2010. English. �NNT : 2010LYO10288�. �tel-
00824372�

https://theses.hal.science/tel-00824372v1
https://hal.archives-ouvertes.fr

N° d’ordre |2|8|8|-|2|0|1|0| Année 2010

THESE DE L‘UNIVERSITE DE LYON
ECOLE DOCTORALE INFORMATIQUE ET MATHEMATIQUES

délivrée par

LʹUNIVERSITE CLAUDE BERNARD LYON I

préparée au

LABORATOIRE LIRIS UMR 5205 CNRS

pour lʹobtention du

DIPLOME DE DOCTORAT

(arrêté du 7 août 2006)

soutenue publiquement le 14 Décembre 2010

par

Kreshnik MUSARAJ

Extraction automatique de protocoles
de communication pour la

composition de services Web

Directeur de thèse : Mohand-Said HACID

devant la commission dʹexamen :

M Jérôme GENSEL Professeur Université Pierre Mendès rapporteur
M. Yamine AIT-AMEUR Professeur ENSMA rapporteur
Mme Karine ZEITOUNI Professeur Université de Versailles examinatrice
M. Omar BOUCELMA Professeur Université Marseille 3 examinateur
M. Mohand-Said HACID Professeur Université Lyon 1 directeur de thèse
M. Fabien DE MARCHI Maître de Conférences Univ. Lyon 1 co-directeur de thèse

AUTOMATIC EXTRACTION OF COMMUNICATION

PROTOCOLS FOR WEB SERVICES COMPOSITION

By
Kreshnik MUSARAJ

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT

UNIVERSITY CLAUDE BERNARD LYON 1
VILLEURBANNE, FRANCE

NOVEMBER 2010

© Copyright by Kreshnik MUSARAJ, 2010

RESUME : La gestion des processus-métiers, des architectures orientées-services et leur
retro-ingénierie s’appuie fortement sur l’extraction des protocoles-metier des services Web et
des modèles des processus-métiers à partir de fichiers de journaux. La fouille et l’extraction
de ces modèles visent la (re)découverte du comportement d'un modèle mis en œuvre lors de
son exécution en utilisant uniquement les traces d'activité, ne faisant usage d’aucune
information a priori sur le modèle cible.

Notre étude préliminaire montre que: (i) une minorité de données sur l'interaction sont
enregistrées par le processus et les architectures de services, (ii) un nombre limité de
méthodes d'extraction découvrent ce modèle sans connaître ni les instances positives du
protocole, ni l'information pour les déduire, et (iii) les approches actuelles se basent sur des
hypothèses restrictives que seule une fraction des services Web issus du monde réel satisfont.
Rendre possible l'extraction de ces modèles d'interaction des journaux d'activité, en se basant
sur des hypothèses réalistes nécessite: (i) des approches qui font abstraction du contexte de
l'entreprise afin de permettre une utilisation élargie et générique, et (ii) des outils pour évaluer
le résultat de la fouille à travers la mise en œuvre du cycle de vie des modèles découverts de
services. En outre, puisque les journaux d'interaction sont souvent incomplets, comportent des
erreurs et de l’information incertaine, alors les approches d'extraction proposées dans cette
thèse doivent être capables de traiter ces imperfections correctement.

Nous proposons un ensemble de modèles mathématiques qui englobent les différents aspects
de la fouille des protocoles-métiers. Les approches d’extraction que nous présentons, issues
de l'algèbre linéaire, nous permettent d'extraire le protocole-métier tout en fusionnant les
étapes classiques de la fouille des processus-métiers. D'autre part, notre représentation du
protocole basée sur des séries temporelles des variations de densité de flux permet de
récupérer l'ordre temporel de l'exécution des événements et des messages dans un processus.
En outre, nous proposons la définition des expirations propres pour identifier les transitions
temporisées, et fournissons une méthode pour les extraire en dépit de leur propriété d'être
invisible dans les journaux. Finalement, nous présentons un cadre multitâche visant à soutenir
toutes les étapes du cycle de vie des workflow de processus et des protocoles, allant de la
conception à l'optimisation.

Les approches présentées dans ce manuscrit ont été implantées dans des outils de prototypage,
et validées expérimentalement sur des ensembles de données et des modèles de processus et
de services Web. Le protocole-métier découvert, peut ensuite être utilisé pour effectuer une
multitude de tâches dans une organisation ou une entreprise.

MOTS-CLES : fouille de données, analyse de journaux d’interaction, inférence de modèles,
extraction de connaissances, protocole-métier, workflow, service Web.

DISCIPLINE : Informatique

INTITULE ET ADRESSE DE L'U.F.R. OU DU LABORATOIRE : Laboratoire
d'Informatique en Image et Systèmes d'information, LIRIS UMR CNRS 5205, UFR Sciences
et Technologies, Bâtiment Nautibus, 8 boulevard Niels Bohr, 69100 Villeurbanne

ii

TITLE : AUTOMATIC EXTRACTION OF COMMUNICATION PROTOCOLS FOR WEB
 SERVICES COMPOSITION

ABSTRACT: Business process management, service-oriented architectures and their reverse
engineering heavily rely on the fundamental endeavor of mining business process models and
Web service business protocols from log files. Model extraction and mining aim at the
(re)discovery of the behavior of a running model implementation using solely its interaction
and activity traces, and no a priori information on the target model.

Our preliminary study shows that: (i) a minority of interaction data is recorded by process and
service-aware architectures, (ii) a limited number of methods achieve model extraction
without knowledge of either positive process and protocol instances or the information to
infer them, and (iii) the existing approaches rely on restrictive assumptions that only a fraction
of real-world Web services satisfy. Enabling the extraction of these interaction models from
activity logs based on realistic hypothesis necessitates: (i) approaches that make abstraction of
the business context in order to allow their extended and generic usage, and (ii) tools for
assessing the mining result through implementation of the process and service life-cycle.
Moreover, since interaction logs are often incomplete, uncertain and contain errors, then
mining approaches proposed in this work need to be capable of handling these imperfections
properly.

We propose a set of mathematical models that encompass the different aspects of process and
protocol mining. The extraction approaches that we present, issued from linear algebra, allow
us to extract the business protocol while merging the classic process mining stages. On the
other hand, our protocol representation based on time series of flow density variations makes
it possible to recover the temporal order of execution of events and messages in the process.
In addition, we propose the concept of proper timeouts to refer to timed transitions, and
provide a method for extracting them despite their property of being invisible in logs. In the
end, we present a multitask framework aimed at supporting all the steps of the process
workflow and business protocol life-cycle from design to optimization.

The approaches presented in this manuscript have been implemented in prototype tools, and
experimentally validated on scalable datasets and real-world process and web service models.
The discovered business protocols, can thus be used to perform a multitude of tasks in an
organization or enterprise.

KEYWORDS: data mining, interaction log analysis, model inference, knowledge extraction,
business protocol, workflow, Web service

iii

Table of Contents

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xii

1 Introduction 1
1.1 Business Processes and Web services 2

1.1.1 Business processes . 2
1.1.2 Web services . 5

1.2 Key Research Issues . 16
1.3 Contributions . 19
1.4 Organization of the manuscript . 21

2 Log mining synopsis 22
2.1 Introduction . 22

2.1.1 Overview and motivation . 22
2.1.2 Out-of-scope topics . 25
2.1.3 Other survey studies . 26

2.2 Context and Preliminaries . 27
2.2.1 Terminology . 27
2.2.2 Employed models . 28
2.2.3 Classification criteria . 29

2.3 Model extraction in service-oriented architectures 29
2.3.1 Application on service protocols 30
2.3.2 Application of protocol mining to service interactions 33

2.4 Workflow model discovery . 34

iv

2.4.1 Markov chains for workflows 34
2.4.2 Learning Petri-net models . 35
2.4.3 Learning graph-based models 37

2.5 Pattern mining . 41
2.6 Summary . 43

3 A mathematical model for message dynamics 45
3.1 Preliminaries . 45

3.1.1 Notations and definitions . 45
3.1.2 Linear regression . 46

3.2 Correlation and discovery approach 48
3.2.1 Modeling the dynamics of business protocol messages. 50
3.2.2 Algorithmic procedures . 52
3.2.3 Result interpretation and visualization 56

3.3 Correlation and discovery: a use-case example 58
3.4 Experiments . 60
3.5 Summary . 61

4 Time series analysis of log data 63
4.1 Preliminaries . 63

4.1.1 Notations and definitions . 63
4.1.2 Problem statement . 66

4.2 Discovery heuristics and approach . 66
4.2.1 Theoretical considerations and methodology 66
4.2.2 Time series analysis for temporal graph extraction 75

4.3 Discovery algorithms and experiments 87
4.4 Related work . 91
4.5 Summary . 94

5 On timed transitions detection and extraction. 95
5.1 Introduction . 95
5.2 Context, problem and approach . 95

5.2.1 Timed business protocols . 95
5.2.2 Conversation logs . 97
5.2.3 Problem statement and assumptions 98
5.2.4 Overall presentation of the approach 98

5.3 Associating patterns with timed transitions 100
5.3.1 Episodes . 100
5.3.2 Order relation on sets of episodes 102

v

5.3.3 Timeouts . 105
5.3.4 Proper timeouts . 108

5.4 Extracting the proper timeouts . 115
5.4.1 Characterization of the satisfied proper timeouts 115
5.4.2 Quality measure based on statistical properties 119
5.4.3 Algorithm and experiments 123

5.5 Discussion and state of the art . 128
5.6 Summary . 129

6 Issues on assessment, simulation and log data. 130
6.1 Introduction . 130

6.1.1 Simulating Dynamic Behaviors:
Principles and Objectives . 132

6.2 The DOBS system . 133
6.2.1 Architecture . 133
6.2.2 Implementation . 137

6.3 Experiments and testing . 137
6.4 Related work . 140
6.5 Summary . 141

7 Conclusions and future work 143
7.1 Concluding summary . 143
7.2 Future work . 144

Bibliography 146

vi

List of Tables

2.1 Axis of comparison between some approaches on service protocol mining 33
2.2 Axis of comparison between graph-based methods 40
2.3 Comparative description of model solutions addressing workflows . . . 41
2.4 Overall synthesis of methods employed for discovery and noise robustness 44

3.1 Occurrence log line OL1 derived from the log in Table 3.1.2 48
3.2 Example of raw log ML1 of SOAP-based service execution messages . 48
3.3 General form of the correlation matrix with method result. 57
3.4 Single occurrence vector . 57
3.5 Occurrence log of sample protocol in Figure 3.6 58
3.6 Matrix of coefficients computed from the first three rows of Table 3.5 59
3.7 Coefficient matrix computed from the entire log in Table 3.5 59
3.8 Impact of M on scalability and performance. 60
3.9 Impact of N on scalability and performance. 61
3.10 Impact of noise on coefficient estimation with OLS 61

4.1 Experimental data . 90
4.2 Axis of comparison between temporal-oriented approaches 93

5.1 Proper timeouts satisfied by logs L1. 127

6.1 Performance metrics of simulated messages from TradingWS web service138
6.2 Statistical metrics of simulated messages from TradingWS web service 139

vii

List of Figures

1.1 Hierarchy of the Web services stack [11]. 9
1.2 A business protocol determines the execution order of operations in

their allowed sequences of messages. This model is mandatory for cor-
rectly terminating the Web service from all software or human clients [18]. 10

1.3 Layer-notation schematics of Web services composition [31]. 11
1.4 The business protocol of the OnlineTrading Web service. 13
1.5 Illustration of the two most common interaction scenarios between Web

services and business protocols. In the first scenario (blue arrows)
business processes make use of internal Web services for their imple-
mentation and integration. In the second scenario (magenta arrows),
business processes employ Web services to provide external function-
alities as input and output. 15

2.1 Raw data log samples (left column) and mined models from the corre-
sponding logs (right column) . 24

2.2 (a) snapshot of the log of a process view node, (b) corresponding cor-
relation graph Gψ1∨ψ2 ; we notice the two conversations that are repre-
sented by the two sub-graphs [105]. 32

2.3 Markov chain computed using the method in [85] 35
2.4 (a)The original process definition, (b) a KTAIL discovered FSM (c) a

Markov-based discovered FSM [78] 38

3.1 Modules of a business protocol P1. 49

viii

3.2 Simplified business protocol. 50
3.3 General form of a protocol state. 52
3.4 Example of worst-case complexity scenario. 55
3.5 Graph-represented equivalent of a linear equation where incoming mes-

sages (a) become outgoing (b). 57
3.6 Use-case for correlation and business protocol discovery. 58
3.7 States obtained from (a) equation 1, (b) equations 2, 4, 5, and (c)

equation 3 from the linear system in Equation 3.3.1. 60

4.1 Illustration of the problem of correctly defining the bijective function
that correlates points for the assessment of an affine transformation
between two flow density functions. The points circled in red need
to be excluded and express the shift to be taken into account by the
bijective function. 69

4.2 Illustration of how spikes allow to define the distance separating points
of two flow density functions that are to be correlated. 70

4.3 The impact of the number of sub-intervals(#SInt) on the flow density
functions. The PLF is (a) much more detailed with #SInt = 195, than
with (b) #SInt = 20. Observe that the number of message occurrences
(y axis) is inversely proportional to #SInt. 74

4.4 Slight changes in the FSM to be discovered may have consequences on
the difficulty level of the task. FSMs with less connections between
states are not necessarily the easiest to infer, despite their intuitively
simpler structure. 77

4.5 Illustration of (a) density flow functions of messages a, b, c, d and e, (b)
assessment of a FOAT between a and c, (c) FOAT validation between
d and e, issued from benchmark service protocols. 81

ix

4.6 Example of (a) two nodes in a temporal graph ordered via the label of
the edge that connects them. The direction of the arrow indicates the
order to be applied. (b) the linear sequence in Smin that is equivalent
to the connected component. 83

4.7 An illustration of the computational equivalence between a FOAT and
a MOAT . Once that abstract message types (labels) are introduced
in the notation, only the semantic difference between the label of a
message type and abstract message type of a s-node remains. 84

4.8 A protocol sample modeled by a DG, thus containing a circuit and cycle. 85
4.9 A protocol sample modeled by a MG, thus containing not only circuits

and cycles, but loops as well. 86
4.10 Complexity evolution as a function of the number of messages types,

intervals and equations of affine transformations. 91

5.1 Example of a timed business protocol [16,17]. 96
5.2 Protocol P1 (left) and associated logs L1 (right). 99
5.3 Various configurations associated with a timed transition having as

time constraint t. 103
5.4 General configuration associated with A and B. 106
5.5 Running times of overall discovery method (left) and partition process

(right). 127

6.1 Conceptual model of DOBS . 134
6.2 Behavior designer interface - SC component 136
6.3 Timeline sequencing of simulated TOMAEs from the WatchMe sce-

nario [119] . 139
6.4 Temporal distribution of simulated messages from TradingWS web ser-

vice in Figure 6.2 . 140
6.5 Scalability measures versus number of instances and events generated

for TradingWS. 141

x

6.6 Distribution of simulated messages (blue) of TradingWS and theoreti-
cal fitting function (red) . 142

xi

Acknowledgements

I would like to thank Professor Mohand-Said Hacid, my supervisor, for his many
suggestions and constant support during this research.

I would like to thank Professor Fabio Casati and Dr. Florian Daniel for their help
during my stay as a Visiting PhD in the University of Trento. I did enjoy working
with them. My work at the DISI laboratory was extremely productive, and this
would not have been possible without their contribution. Special thanks go to Didier
Devaurs for his important contribution to this research work, and to Tetsuya Yoshida
for his ideas and fertile research collaboration efforts.

Professor Boualem Benatallah expressed his interest in my work and supplied me
with the preprints of some of his recent joint work with Dr. Hamid Motahari, which
gave me a better perspective on my own results. I am also thankful to Professor
Alexandre Aussem for his guidance through the early months of my research work.
Cinzia Cappiello also collaborated and shared with me her knowledge on data quality
issues and uncertainty analysis and provided many useful references and friendly
encouragement.

I also thank the Rhone-Alpes Region. The Explora’Doc Scholarship, which was
awarded to me for the period 2009–2010, was crucial to the successful completion
of this project. This research work is part of the EU Framework 7 STREP project
COMPAS (215175, FP7-ICT-2007-1)1.

Of course, I am grateful to Sidonie and my parents for their support and love.

Lyon, France Kreshnik Musaraj
October 15, 2010

1http://www.compas-ict.eu/

xii

Chapter 1

Introduction

The design, maintenance, and management of Web services and business processes
has historically consumed important human and IT resources. This trend still contin-
ues today, despite all the successful efforts to improve the three underlying activities
(design, maintenance, and management). The work towards the enhancement of
business processes started with the quest for their automation [29, 141]. Process au-
tomation attempts to decrease human involvement in process management tasks by
employing the integration of systems and an automated execution of the business
logic. The common trend of process enhancement moved towards the necessity to an-
alyze and integrate process models, adapt them to specific and generic requirements,
and manage their complexity in terms of efficiency and readability of the process
model [29, 54,141].

Web services have emerged recently as the most suitable solution for business
process integration, external exposure, and implementation. Web services rely on
standards in order to achieve their objectives. Modeling and analyzing the behavior
of Web services, implementing and improving business processes, and their mutual
integration are hard-impact factors of success for companies and organizations [53,54].
Proof for this is the important number of tools aiming at the analysis of process and
service executions (we can mention for example the tools introduced in [46, 73]).
This is also backed up by research work in business process and service execution
monitoring [14,30], process discovery [56,144,148] and service interoperability analysis
[34, 106, 118, 136]. The widespread usage of Web services relies upon the capability
of reducing development and integration costs, and to increase business agility [101].
In addition, they enable the connection between process components without being
influenced by platform and language heterogeneity, as well as boundaries between
enterprises and organizations.

In order to expose the existing achievements and the features they lack, it is
important to explore the approaches, techniques and tools in enterprise systems.

1

2

This chapter is organized as follows. In Section 1.1, we describe how Web ser-
vices and their composition are currently considered in regards to the implementation
and integration of business processes. In Section 1.2, we discuss the research issues
addressed in this dissertation. In Section 1.3, we summarize our contributions. We
conclude by presenting the organization of this manuscript in Section 1.4.

1.1 Business Processes and Web services

1.1.1 Business processes
A business process is a ”structured, measured set of activities designed to produce a
specific output for a particular customer or market. It implies a strong emphasis on
how work is done within an organization, in contrast to a product focusing emphasis
on what. A process is thus a specific ordering of work activities across time and space,
with a beginning and an end, and clearly defined inputs and outputs: a structure for
action. ... Processes are the structure by which an organization does what is necessary
to produce value for its customers” [42]. In other words, a business process is a ”set
of coordinated tasks and activities, carried out manually or automatically, to achieve
a business objective or goal” [66, 86, 91, 141, 142]. In the context of today’s Web
services, a business process specifies ”the potential execution order of operations from a
collection of Web services, the data shared between these Web services, which partners
are involved and how they are involved in the business process, joint exception handling
for collections of Web services, and other issues involving how multiple services and
organizations participate” [90].

As [105] correctly points out, business processes can be divided into different types
based on the considered criteria. For example, the separation given in [6, 112] is:

• public business processes, which are those that an enterprise shares with its
business partners (e.g., clients and suppliers). This type of business processes
is used in the business-to-business integration (B2Bi) context [26],

• private business processes, which are internal to the enterprise. This type of
business processes is used in enterprise application integration (EAI) context [6].
In any enterprise, both public and private business processes are used together
to perform the overall operations of the business. The main difference between
the two is that private business processes include execution details that are not
present in the public business processes such as how a purchase order is actually
processed by various enterprise applications.

3

Another distinction can be made between:

• Management processes, the processes that govern the operation of a system.
Typical management processes include ”Corporate Governance” and ”Strategic
Management”.

• Operational processes, processes that constitute the core business and create
the primary value stream. Typical operational processes are Purchasing, Man-
ufacturing, Marketing and Sales, and

• Supporting processes, which support the core processes. Examples include Ac-
counting, Recruitment, Technical support.

Achieving the design, maintenance, and management of business processes, we
will need to recall their supporting theories and concepts.

Business process management (BPM).
Business process management is a management approach intended to align all as-
pects of an organization with the needs of clients. BPM is defined also as being
the task of ”supporting business processes using methods, techniques, and software
to design, enact, control, and analyze operational processes involving humans, orga-
nizations, applications, documents and other sources of information” [143]. It is ”a
total management approach that promotes business effectiveness and efficiency while
striving for innovation, flexibility, and integration with technology” [134]. Business
process management attempts to improve processes continuously and could therefore
be described as a ”process optimization process”. The Association of Business Process
Management Professionals (ABPMP) [1] launched a comprehensive body of knowl-
edge and a professional certification for BPM Professionals in 2007. The ABPMP
definition of Business Process Management is:

”Business Process Management is a disciplined approach to identify, design, ex-
ecute, document, monitor, control, and measure both automated and non-automated
business processes to achieve consistent, targeted results consistent with an organi-
zation’s strategic goals. BPM involves the deliberate, collaborative and increasingly
technology-aided definition, improvement, innovation, and management of end-to-end
business processes that drive business results, create value, and enable an organization
to meet its business objectives with more agility” [1].

The life-cycle of BPM is divided into categories that vary according to the differ-
ent sources. In [141], the business process management life-cycle is divided into four
phases: design, process-aware system configuration, process enactment, and diagno-
sis. In the design phase, the process is (re-)designed and modeled. In the configuration
phase, a process-aware system, e.g., a workflow management system, is configured and
in the process enactment phase the operational business process is executed. Finally,

4

in the diagnoses phase the process is monitored, analyzed, and process improvement
approaches are proposed. According to [134], the same life-cycle can be grouped into
five categories: design, modeling, execution, monitoring, and optimization. Business
process design aims at correctly identifying existing processes coupled with the design
of future processes that will be added. The modeling step takes as input the theoret-
ical design in order to provide the functional version of the process. This functional
version is enriched with the results of ”what-if” analysis on the considered processes.
Executing the process comes either in the form of software that simulate the process,
or as a definition of the process in a particular language. Moreover, business rules
and business rule engines [47,146] are also employed to run the process execution and
termination. Process monitoring handles the tracking of individual processes in or-
der to extract activity and execution information. Process mining, sometimes named
offline or post-mortem monitoring, is also considered to be part of this stage, and
analyzes the event logs instead of the runtime process instances. Process mining is
often used for delta analysis, and for many other objectives that will be detailed in
Chapter 2. The optimization step handles the analysis of the collected information
for the identification of bottlenecks and other errors that need to be corrected or
improved. The result of the analysis is then exploited in the design model.

Workflow management system (WfMS).
An intuitive definition of a Workflow Management System would be: ”A computer

system that manages and defines a series of tasks within an organisation to produce
a final result” [95]. WfMS allows the definition and design of different workflows
adapted to the target objective or process. For example, in a hospital, the medical
information regarding a patient might be automatically transmitted from the doctor
to a surgeon, in case a surgery operation is required. The workflow precisely defines
at each given step, what is the corresponding task to be fulfilled, and which data or
resources are transmitted to the next task. Workflow management systems provide a
means for the automatization of processes since they literally control the flow of tasks
and their order of execution and termination. In the preceding example, if the patient
has not undergone all the required medical checks and analysis, then the doctor waits
for the notification of their completion. In other words, the tasks are dependent from
one another and consequently the WfMS reflects the dependencies required for the
completion of each task.

A workflow is defined by the Workflow Management Coalition (WfMC) [95] as:

”... the automation of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant to another for action,
according to a set of procedural rules” [74, 95]. It is up to the WfMS to handle the

5

automated execution of a workflow. The same source defines a WfMS as:

”...a system that defines, creates and manages the execution of workflows through
the use of software, running on one or more workflow engines, which is able to in-
terpret the process definition, interact with workflow participants, and if necessary,
invoke the use of IT tools and applications” [74, 95].

Business process management system (BPMS)
Many vendors have created application suites which enable organizations to better

manage their business processes. These technologies typically involve tools to visually
design and model business processes, simulate and test business processes, automate,
control and measure business processes, and provide feedback and reporting on pro-
cess performance. Some vendors have combined these functions into business process
management suites that provide a complete integrated BPM platform, commonly
referred to as a BPMS.

Numerous organizations have a large number of legacy systems, typically designed
to support specific functions such as manufacturing or sales. In order to manage the
end-to-end work involved in business processes, a BPMS must be able to integrate
with legacy systems across the organization in order to control work, get information
or measure performance. As we have already pointed out, by leveraging web services
in a service oriented architecture construct, organizations can build and manage end-
to-end business processes across organizational silos and their legacy systems. Many
modern BPM technology solutions include the capability to interface to legacy sys-
tems through these standard interfaces, providing the tools to automate and orches-
trate work across the entire organization.

As BPM technologies were released into the market, a large number of IT orga-
nizations have begun to recognize that the technology can be leveraged to develop
applications faster and at a lower cost than traditional methods. The visual design
capabilities and standards-based interfaces create an environment where skilled soft-
ware engineers can quickly define the behavior of software which traditionally requires
significant effort to be developed.

1.1.2 Web services
”Web Services are self-contained, loosely-coupled modular business process applica-
tions that can be integrated with other services within and across enterprise bound-
aries to develop value-added applications” [9, 114]. Web services are based on the
industry standard technologies of WSDL (service description), UDDI (service adver-
tisement and syndication), and SOAP (service-client communication). A Web service

6

is a Web accessible application, identified with URIs, that supports direct interac-
tions with other software applications using XML-based messages via Internet-based
protocols [9]. In the following, we give an overview of how Web services are related
to business processes and in which way this relationship generates not only solutions
but also research issues that need to be tackled.

Web service standards
Let us introduce the main standards that are relevant to Web services.

- Simple Object Access Protocol (SOAP).
SOAP is ”a lightweight protocol intended for exchanging structured information in
a decentralized, distributed environment. It uses XML technologies to define an ex-
tensible messaging framework providing a message construct that can be exchanged
over a variety of underlying protocols. The framework has been designed to be in-
dependent of any particular programming model and other implementation specific
semantics.” [24, 102]. SOAP is intended to simplify the deployment of services by
omitting many of the features encountered in messaging frameworks of distributed
systems. Examples include ”reliability”, ”security”, ”correlation”, ”routing”, and
”Message Exchange Patterns” (MEPs). The SOAP Version 1.2 specification con-
sists in three parts. Part 1 of the SOAP Version 1.2 specification defines the SOAP
messaging framework consisting of:

• The SOAP processing model defining the rules for processing a SOAP message.

• The SOAP Extensibility model defining the concepts of SOAP features and
SOAP modules.

• The SOAP underlying protocol binding framework describing the rules for defin-
ing a binding to an underlying protocol that can be used for exchanging SOAP
messages between SOAP nodes.

• The SOAP message construct defining the structure of a SOAP message.

- Representational State Transfer (REST)
The Representational State Transfer concept definition was introduced and defined

in [65].
”The World Wide Web architecture has evolved into a novel architectural style

that I call ’representational state transfer.’ Using elements of the client/server, pipe-
and-filter, and distributed objects paradigms, this style optimises the network transfer
of representations of a resource. A Web-based application can be viewed as a dy-
namic graph of state representations (pages) and the potential transitions (links) be-
tween states. The result is an architecture that separates server implementation from

7

the client’s perception of resources, scales well with large numbers of clients, enables
transfer of data in streams of unlimited size and type, supports intermediaries (proxies
and gateways) as data transformation and caching components, and concentrates the
application state within the user agent components” [65].

The REST approach, when applied to Web services, presents many positive as-
pects. The technologies and methods upon which REST relies have been extensively
used and widely implemented. Since it uses directly the HTTP methods, it does not
add another layer. The main problem with HTTP messaging protocols and formats
such as SOAP and XML-RPC is that they add a supplementary burden by adding
another layer of abstraction onto HTTP rather than using the protocol as it was
designed. REST is centered around resources, rather than methods and functions.
This means that, provided an URI, all users know how to use it. In the case of Web
services, an additional information is required in order for a client to communicate
with a service of interest. This led to the following standard.

- Web Services Description Language (WSDL)
WSDL is an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented in-
formation. The operations and messages are described abstractly, and then bound to
a concrete network protocol and message format to define an endpoint. Related con-
crete endpoints are combined into abstract endpoints (services). WSDL is designed to
allow description of endpoints and their messages regardless of what message formats
or network protocols are used to communicate.

The W3C consortium defines gives in [33] the following description for WSDL:
A WSDL document defines services as collections of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages is separated from their con-
crete network deployment or data format bindings. This allows the reuse of abstract
definitions: messages, which are abstract descriptions of the data being exchanged,
and port types which are abstract collections of operations...

The concrete protocol and data format specifications for a particular port type
constitutes a reusable binding. A port is defined by associating a network address
with a reusable binding, and a collection of ports define a service. A WSDL document
uses the following elements in the definition of network services:

• Types, represented by a container for data type definitions using some type
system (such as XSD)

• Message, an abstract, typed definition of the data being communicated,

• Operation, an abstract description of an action supported by the service,

• Port Type, an abstract set of operations supported by one or more endpoints,

8

• Binding, a concrete protocol and data format specification for a particular port
type,

• Port, a single endpoint defined as a combination of a binding and a network
address,

• Service, a collection of related endpoints.
In this dissertation, the main importance of WSDL lies in the the fact

that it provides the entire set of message types and operations employed
in a Web service. As we will see in the following chapters, this is one of
the two main blocks upon which our discovery methods rely, the second
one being their timestamps.

Interactions of Web services
Interoperability schemas. As reported in [11], standardization is a fundamen-

tal part upon which rely the interactions of Web services. Web services standardiza-
tion initiatives such as SOAP and WSDL, as well as the family of WS-* specifications
(e.g., WS-Policy, WS-Security, WS-Coordination) aim at ensuring interoperability
between services developed using competing platforms. Figure 1.1 [11] provides an
overview of the hierarchy of Web services standards.

The information on how to interact with the services, i.e., what is the valid order
of operations invocation is visualized as a model, called interaction model [6,19,22,40].
The interaction model provides what an interface definition of the service cannot do,
i.e. the potential behavior of the service during its interactions with other entities.
Basically, there are three interoperability scenarios for Web services.

1. Client interaction
As we have already pointed out, during the execution of a Web service instance,

the client can communicate with the service by exchanging messages. Messages need
to follow one of the allowed sequences in order to obtain a correct communication.
This method is similar to a dialog, thus the possible sequences of messages that a
client may employ to communicate with a Web service is called a conversation. The
set of conversations are merged into a general model that describes the behavior of
the Web service with its external clients. In the case of Web services, this behavioral
model is called a business protocol [19,51] (Figure 1.2). The business protocol defines
the order in which the operations of a Web service can be executed.

2. Service orchestration
According to [117], orchestration refers to an executable business process that can

interact with both internal and external Web services. Orchestration always repre-
sents control from one party’s perspective and is associated with the private business

9

BPTrends March 2005 A Critical Overview of WS-CDL

Copyright © 2005 Alistair Barros, Marlon Dumas, Phillipa Oaks www.bptrends.com

1

A Critical Overview of the
Web Services Choreography Description Language

(WS-CDL)

Alistair Barros
Marlon Dumas
Phillipa Oaks

1 Introduction
There is an increasingly widespread acceptance of Service-Oriented Architectures (SOA) as a paradigm
for integrating software applications within and across organizational boundaries. In this paradigm,
independently developed and operated applications are exposed as (Web) services which are then
interconnected using a stack of standards including SOAP, WSDL, UDDI, WS-Security, etc. While the
technology for developing basic services and interconnecting them on a point-to-point basis has attained a
certain level of maturity and adoption, there remain open challenges when it comes to managing service
interactions that go beyond simple sequences of requests and responses or involve large numbers of
participants.

Standardization is a key aspect of the Web services paradigm. Web services standardization
initiatives such as SOAP and WSDL, as well as the family of WS-* specifications (e.g., WS-Policy, WS-
Security, WS-Coordination) aim at ensuring interoperability between services developed using competing
platforms. Figure 1 provides a quick (though partial) overview of the existing stack of Web services
standards.

SOAP, WSSecurity, WSReliableMessaging

Format

HTTP, HTTPS, SMTP

Transport

Messaging

(WS)BPEL, BPELJ, WSCDL

Coordination/Context/Transactions
WSCoordination, WSAtomicTransaction

XML

Description Advertisement

UDDIWSDL, XML Schema

WSBusinessActivity, WSCAF

WSPolicy

WSAcknowledgement, WSAddressing, ...

Composition/Processes

Figure 1. A view on the Web Services Stack

The standards in the category composition/processes deal with the interplay between services and

business processes. A number of discontinued standardization proposals in this category have been put
forward over the past years (e.g., WSFL, XLang, BPML, WSCL, and WSCI), leading to two ongoing
standardization initiatives: the Business Process Execution Language for Web Services (BPEL4WS, also
known as BPEL or WS-BPEL) [1] and the Web Services Choreography Description Language (WS-
CDL) [5]. The significant attention raised by this category of standards reflects the fundamental links that
exist between Business Process Management (BPM) and SOA. On the one hand, emerging BPM
techniques rely on SOA as a paradigm for managing resources (especially software ones), describing
process steps, or capturing the interactions between a process and its environment. On the other hand, a

Figure 1.1: Hierarchy of the Web services stack [11].

process of a service. In the enterprise-related context, the term business service is
used to refer to a service that uses (composes) a set of other services to implement
the private business process of the enterprise. The orchestration model, in this case,
is equivalent to the private business process model of the enterprise. Orchestration
models could be expressed using languages such as BPEL (as an executable BPEL
process) [55,117] or formal approaches such as Petri nets and process algebra [27,72].

3. Service composition and choreography
User queries could include both functional and non-functional requirements, and

may not be fulfilled by a single Web service. Hence, there is a need to combine a
number of suitable services to create a composite service that meets the requirements
of the user. This implies the need to establish composability of the component services
before the service composition can be instantiated. The core research activities within
this area include:

• Design and implement efficient algorithms for service composability based on
both functional and non-functional criteria,

• Develop algorithms and solutions for service composition to enable automatic,
on-demand and customized composition of services,

10

Figure 1.2: A business protocol determines the execution order of operations in their
allowed sequences of messages. This model is mandatory for correctly terminating
the Web service from all software or human clients [18].

• Evaluate the performance of the algorithms and architectures for Quality of
Service based service composition.

The different types of abstraction levels in which service composition takes place are
shown in Figure 1.3 [31].

Service choreography on the other hand is a form of service composition in which
the message-based interactions between partner services is defined from a global per-
spective (PO-JRA-2.2.1 [48,120]). In other words, the term defines the collaborative
processes involving multiple services where the interactions between these services are
considered from a global perspective [11].

The concept of service choreography can also be seen as an approach that allows
each involved party to describe its part in the interaction [117], and a more collab-
orative approach compared to service orchestration. Service choreographies can be
specified using graphical notations such as BPMN [79, 111] and Let’s Dance [152],
or using XML-based language such as WS-CDL (Web Services Choreography De-
scription Language) [84], and WSCI (Web Service Choreography Interface) [8] and
BPEL4Chor [49]. As reported in [105], these standards can also be employed for
expressing formal approaches such as process algebra [25,117].

11

Figure 1.3: Layer-notation schematics of Web services composition [31].

Business protocol
A business protocol is the specification of all possible conversations that a service

can have with its partners [6, 19]. A conversation consists of a sequence of messages
exchanged between two or more services to achieve a certain goal, for example to
order and pay for goods. Modeling business protocols brings several benefits to Web
services:

• it provides developers with information on how to program clients that can
correctly interact with a service;

• it allows the middleware to verify that conversations are carried on in accordance
with the protocol specifications, and hence relieving developers from implement-
ing the exception handling logic;

• it allows the middleware to check if a service is compatible (can interact) with
another or if it conforms to a certain standard, thereby supporting both service

12

development and binding [20];

• it provides the basis for monitoring and analyzing conversations, as the avail-
ability of a model can greatly facilitate the exploration and visualization of
conversation logs (logs storing messages exchanged among services).

We adopt the deterministic final state machines (FSM) as a formalism for proto-
cols [19]. It supports the constructs that are required to model biparty interactions
between a Web service and a client, i.e., the sequence and branching. In addition, it
is a simple and easy formalism to use and understand for non-expert users. Further-
more, it is suitable for modeling reactive behaviors.

The formalism has the notion of state, which makes it a useful tool for monitoring
service interactions. In general, many of the concepts presented in this dissertation
apply regardless of the protocol formalism being adopted. It should be noted that
constructs such as parallelism and synchronization are not needed in the bi-party
interactions between two services, and the adopted model (FSM) does not support
them, as well. In a FSM-based protocol model, states represent the different phases
through which a service may go during its interactions with a client (i.e., during a
conversation). Each state is labeled with a logical name, such as Logged In. A proto-
col has one initial state and a set of final states. Transitions are labeled with message
names, with the semantics that the exchange of a message (with the conversation in a
given state) causes the state transition to occur. A complete conversation corresponds
then to a possible instantiation of the protocol model, i.e., a path (set of transitions)
in the FSM resulting in a sequence of messages from the initial state to a final state.
Hence, such FSM describes the possible conversations supported by the service. A
business protocol can be expressed in standard languages, e.g., as an abstract BPEL
(Business Process Execution Language) process [55,83,117]. It can also be modelled
using graphical languages with formal foundations such as state machines [19], Infor-
mation Control Nets [61,123], state charts and other formalisms [22,51]. An example
of a realistic business protocol is provided in Figure 1.4. We can formally define a
business protocol, using finite state machines formalism, as follows [18]:

Definition 1 Business protocol (BP)
A business protocol [18] is a tuple P = (S, s0,F ,M,R) which consists of the
following elements:
1. S is a finite set of states.
2. s0 ∈ S is the initial state.
3. F ⊆ S is a set of final states. If F = ∅, then P is said to be an empty protocol.
4. M is a finite set of messages. For each message m ∈M , a function Polarity(P,m)
is defined which is positive (+) if m is an input message in P and negative (-) if m
is an output message in P . The notation m(+) (respectively, m(-)) is used to denote

13

the polarity of a message m.
5. a finite set R ⊆ S2×M of transitions. Each transition (s, s′,m) identifies a source
state s, a target state s′ and either an input or an output message m that is either
consumed or produced during this transition.

Figure 1.4: The business protocol of the OnlineTrading Web service.

Interactions of services and business processes
Figure 1.5 illustrates the two most common interaction scenarios between Web

services and business protocols. In the first scenario business processes make use
of Web services for their implementation and integration. In the second scenario,
business processes employ Web services to externalize their functionalities to other
services and/or to exploit existing services from the outside world in order to achieve
particular objectives. The figure shows the generic separation into layers, namely
the Resource, Internal Service, Business Process, and External Service layers.
The Resource layer includes various information systems including legacy systems,
workflows and enterprise resource planning (ERP). In this example, Web services
have been used to:

14

• encompass existing applications as services and also to develop new applications
required for the implementation of the business process,

• provide an external interface with users and applications outside the enterprise
or organization, and

• allow the consumption of third-party Web services either for particular sub-
contracted tasks or for integration with an external business process.

Services in both the Internal and External layers are called component services.
Component services may be composed with each other to form business services
[21, 58]. In this dissertation, we use the terms ”event” and ”message”, interchange-
ably, to refer to both meta-data and actual content of messages. A process instance
refers to an execution of a process, which involves performing a set of the process
tasks, to achieve a business goal. A process instance is also called a conversation in
the context of Web services. Correlation allows understanding which events belong
to the same process instance. Current business process automation approaches, e.g.,
workflow management systems (WfMS), only support operational business processes,
that is, business processes that are explicitly defined [141].

Web services for high-priority targets of business process
Since Web services are active parts of the steps of a process life-cycle, it becomes

obvious that services also need to be submitted to the same cycle in order to prove
that they are suitable for the expected functionalities. Yet to achieve these steps,
abstract specification information is required. Despite the existing standard specifi-
cations for integrating Web services at lower levels of abstractions, i.e., messaging,
where many of the issues have already been identified or even solved [89, 114], Web
services still lack specifications and standards aimed at higher levels of abstraction,
i.e., service interfaces, business protocols, and also policies. In fact, what is provided
at the higher levels of abstractions are languages to define the service specifications,
i.e., its interface, business protocol, and policies. Web service interfaces are usually
described using WSDL (Web Service Definition Language) [124]. If the business pro-
tocol specification is provided, it can be expressed using standard languages such as
BPEL (Business Process Execution Language) [55] or a modelling diagram such as
state diagrams [19,22,51].

It is highlighted in [18] that descriptions like WSDL are not sufficient for a so-
phisticated and automatic use of Web services, because they provide information
only about static properties. This is one of the main reasons that motivated authors
in [18] to define a higher level model, the so-called business protocol, which specifies
the external behaviour dynamics of a service (such as allowed conversations or tem-
poral constraints, c.f. Section 2.1). Since it is formalized by a finite-state machine,

15

Figure 1.5: Illustration of the two most common interaction scenarios between Web
services and business protocols. In the first scenario (blue arrows) business processes
make use of internal Web services for their implementation and integration. In the
second scenario (magenta arrows), business processes employ Web services to provide
external functionalities as input and output.

the business protocol offers automatic reasoning mechanisms for many applications,
such as correctness verification, compatibility testing, etc. Nevertheless, the busi-
ness protocol is not often specified in real life services. The reasons include lack of
time during implementation, and uncontrolled service evolution (making the initial
model obsolete). A possible solution consists in deriving the business protocol from
the conversation logs of a service when available. Solving this discovery problem
could also be very useful for re-engineering applications, such as service and process
implementation correctness checking, or service/process evolution.

Another usage of knowing Web service protocols is their application for business
process integration. Web services simplify interoperability and, therefore, application

16

integration [6,20,106,114] by providing (i) support for loosely coupled and decentral-
ized interactions, and (ii) standardization. Standardization helps reducing the costs
of application integration, which are to a large extent due to the fact that interacting
services have different interfaces, use different communication protocols, and support
different data formats and interaction models. A Web service can be characterized
at four levels of abstractions [43, 87, 140]: messaging, which specifies how the service
exchanges messages over communication networks, interface which defines the set of
operations that the service provides along with message formats and data type defi-
nitions, business protocol, which specifies the order in which operations of a service
can be invoked, and also policies, which give the details of business rules and tech-
nical requirements. Business-to-Business integration [6, 26] requires for two business
partners to integrate their services that the services offered by them should be able
to seamlessly interoperate at all levels of abstractions. This means both should agree
on the communication protocols and the data syntax that is used for message trans-
portation. In addition they should understand the content of exchanged messages in
the same way, business documents should arrive in the order they expect, and also
the business and enterprise policies and regulations should be respected.

1.2 Key Research Issues
In the previous section we mentioned the need to obtain service and process spec-
ifications at a higher level of abstraction than the existing standards allow so far.
Moreover, we stated that if the correlation information was not present in logs, then
the existing solutions that employ conversation mining [105,107,108] are jeopardized.
Consequently, this fact calls for an approach that does not rely on conversation mining
and thus does not require grammar inference algorithms to extract the state diagrams
from conversation logs. Nevertheless, the inverse should remain true i.e. discovering
the business protocol or process view must allow in principle to obtain the conver-
sations. In addition, it is clear that employing only a minimal and restricted set of
assumptions needs to exploit as much as possible the data available. For example,
the usage of timestamps cannot be limited to a mere basic ordering of the messages
that compose a conversation.

The first research issue is obviously the characterization of the problems by identi-
fying goals, the assumptions and related scenarios. This needs a ”divide to conquer”
approach for separating the problems into parts that should be addressed. In the
following, we give an overview of the key research issues that we identified in fulfilling
above requirements, and which are addressed in this dissertation.

17

1. Message flow discovery
Starting from the log of events recorded during the execution of a Web service the

first task is to determine the distribution of messages flowing through a protocol in-
stance. Let us consider an example in order to clarify the meaning of this step. Given
a state of the automata (See Figure 1.4) modeling a business protocol, one must fo-
cus on the transitions entering and leaving that state. The set of entering transitions
and the set of outgoing transitions are strictly related since modifying the former
will have a direct impact on the latter. Our concern in this part is to determine the
way this relation takes place, for each single state and for all states combined. This
way of approaching the poblem will free us from the obligation to correlate messages
into conversations. Nevertheless, this remains a difficult task. Indeed, if one does
no longer assume that logs contain the identifiers required for correlating messages,
then there is absolutely no indication on how messages follow each other during the
execution of a service instance. Timestamps become entirely useless because simple
ordering alone based on occurrence time is not sufficient to determine the exact se-
quence of message occurrence. Let us consider for example a set of messages and
their corresponding timestamps without any additional information: (a, 15), (b, 23),
(c, 25), (d, 30). If we use a simple order based on these timestamps, we face a set of
possible message arrangements that do not contradict this order: (i) a, b, c, d, (ii) a, c
and b, d, (iii) a, b, c and d, (iv) a and b, c, d etc. Thus, it is obvious that solving the
problem is not straightforward. Therefore, assessing the message flow of a protocol
is divided into three stages. First, the message flow dynamics need to be modeled at
the protocol state level. At the second stage, the message flow knowledge related to
each state of a protocol will be merged in order to obtain a preliminary version of the
extracted protocol model. Finally, the result will be evaluated based on the influence
of log imperfections and inconsistencies.

2. Mining temporal operators
This issue may be formulated as follows: How to make use, as much as possible, of

the timestamps of raw event logs in order to detect the occurrence order of messages?
Is it possible to obtain a deterministic model that converges towards the optimal solu-
tion? This task relates to the domain of temporal pattern mining [15,75,129,139,150].
As we have already pointed out, timestamps alone cannot be used for trivial temporal
ordering because logs represent collections of messages that originate from multiple
service instances executing in parallel. The execution of service instances being inde-
pendent from one instance to another, the timestamps will be without any correlation.
A solution to this problem would have been to correlate messages in order to identify
the protocol conversations [105,108]. Yet, in the scenario of realistic logs in which the
correlation information is entirely absent, conversation mining is no longer possible.
In such case, in order to establish the relationships between occurrences of messages,

18

we need a solution to extract the temporal facts that will allow us to define the re-
quired temporal operators and how they relate messages [5].

3. Business protocol inference
Discovering the business protocol of a service includes many technical challenges.

First, the model of the extracted protocol has to take into account the uncertainty of
the result, and to evaluate its relevance by means of confidence indexes and quality
criteria. This uncertainty comes mainly from the fact that service logs can contain
some ”noise” (i.e. some errors). Thus, tools are needed to analyze and clean data
before treating them. Finally, it is also important to propose tools that enable to
correct or refine the discovered protocol, according to what the user wants or knows
about it. Nevertheless, we look at protocol mining in such a way that most of these
issues are either already addressed during the mining process, or irrelevant. Infer-
ring the business protocol from message flow information and temporal operators is
a cross-solution that needs to avoid result ambiguity, effects of imperfections, and
high uncertainty. We will show how these flaws may be addressed in a satisfactory
manner, while using a minimally assumed information content.

4. Extracting timed transitions Up to this point, we have discussed the issues on
discovering the protocol whose traces are visible in logs. Now we intend to extract
the time-triggered transitions that do not send or receive messages in the process,
thus not directly visible in activity logs. Indeed, one of the most difficult problems
to tackle is the extraction of temporal constraints called timed transitions. This is
because they are not explicitly recorded in the logs. Some state changes are not
related to the emission of explicit messages but to temporal constraints (validity
period, expiration date, etc). We recall that in general, transitions are triggered
when the service sends or receives messages. A timed transition (also called implicit
transition) occurs automatically, after a time interval is elapsed since the transition
has been enabled (i.e. source state of the transition has become the current state),
or after some date is reached; it is labelled by the corresponding time constraint.
Note that, since the model is deterministic, a state cannot have several outgoing
timed transitions. Detecting timed transitions also requires that the conversations
are known in advance. In other words, the un-timed business protocol has already
been inferred. This calls for an update of the mined model once that timed transitions
have been discovered.

19

1.3 Contributions
Investigating the issues that are related to the topics described in the precedent
sections calls for formal frameworks, techniques, and implementation tools that enable
to achieve the set of objectives, as well as to assess and test the conformance and
suitability of the results obtained from the discovery process. To summarize, we
need mathematical tools for modeling the flow of messages and events in a business
protocol, determining the temporal relations between these events, simulating and
validating the models, and confirming the set of assumptions upon which rely the
different discovery modules.

Besides the characterization and definition of the problems in this area and iden-
tifying some research problems, we contributed to the following issues:

1. Correlation of the flow of message occurrences.
We present an approach for correlating the flow densities of messages and extract-

ing the business protocol of a web service in the realistic scenario in which corre-
lation information is entirely absent from interaction and activity logs. Correlation
is achieved through deterministic computations that provide a tested solid reliabil-
ity, robustness when dealing with complex structures, and very high performance and
scalability. An implemented algorithm is provided that is capable of recognizing com-
plex structures such as ramifications, simple and composite loops. Moreover, we give
a proposal of combining statistical computations in a deterministic result that discov-
ers the class of discoverable behavior models. The algorithm addressing these issues
aims at (i) providing the starting point for every single log-based mining method:
correctly correlated and instance-sequenced data, and (ii) allowing the easy and im-
mediate reconstruction of the model that visually displays the web service business
protocol (WSBP). In addition it has the capability of noise-proof robustness, thus
avoiding the necessity and risks of noise-filtering solutions.

2. Analyzing time series of message timestamps.
We present a variable grain-size algorithm that extends the usage of temporal

operators, and based on the study of cardinality properties allows the correlation be-
tween timeseries. The approach does not operate on any assumption on the existence
of extracted facts and is capable of inferring temporal data facts and handling the
pre-processing step. This approach allows to obtain a unique graph that models the
protocol and acts as an assessing step for the detection of protocol structure that are
complex to handle during the mining process. We present an implementation of the
approach in a separate tool that can also be integrated with the other algorithms.

20

3. Mining business protocols and inferring graph models.
We provide an algorithm that employs the results obtained from the extraction

of flow density models and the temporal operators between events and messages, in
order to build a unified business protocol. This corresponds to the almost-refined log
mining result, only to be enriched with the timed transitions, that we discover in the
next stage. The main advantage here is the flexibility of the extracted model with
regards to the formal model employed to represent the behavior of the business pro-
tocol. Indeed, determining the graph-based formalism (Finite-state machine(FSM),
Petri nets, Workflow nets [144], Information Control nets [61,123] etc...) for modeling
and analyzing the behavioral model is of no use and has no impact on the way our
algorithms proceed and the provided results.

4. Addressing issues related to mining non-logged timed transitions.
In the context of the discovery of the timed business protocol of a Web service

from its conversation logs, we also have focused on extracting timed transitions. We
provide an approach for recognizing and discovering these time-triggered events oc-
curring in a business protocol. We formally define a class of patterns called proper
timeouts and show that they reveal the presence of timed transitions in the business
protocol. Our contribution is based on a formal framework leading to the definition
of proper timeouts. We show that proper timeouts are the best representations of
timed transitions in conversation logs. We have given a simple characterization of
the set of proper timeouts satisfied by the logs. Moreover, we provide a polynomial
algorithm that has been implemented for extracting these patterns.

5. Technical issues: implementation and tools.
The previous contributions have been implemented in order to provide a general

framework for mining business processes and protocols. Model assessment and model
mining merge together, especially regarding the tasks: (i) checking the equivalence
between the specification and implementation, and (ii) obtaining the specification if
it does not exist. We provided DOBS (Dynamic mOdel Behavior Simulator), a
modeling-and-emulating generator tool which allows the expert of business processes,
web services, or any other dynamic behavior-based systems, to design, test and sim-
ulate a behavioral model such as a business process or a web service / application.
DOBS is designed to be used both as a testing and data generation tool, and is the
main tool upon which all the algorithms have been tested. This tool and the other
implemented algorithms are intended to improve model compliance while helping de-
cision support during all stages of model assessment evaluation and process life-cycle.

21

1.4 Organization of the manuscript
The reminder of this dissertation is organized as follows. In Chapter 2 we present
an overview on the current state of research in this area. In Chapter 3 we present
our approach for establishing the correlation between flow densities of messages. In
Chapter 4, we present our approach for extracting temporal patterns and relation-
ships. This will provide a first view of the protocol in the form of a temporal graph,
and afterwards as a complete business protocol. In Chapter 5 we show how timed
transitions will be mined from the conversations of the model discovered in Chapter
4. In Chapter 6, we present the tools for assessing and validating the mining results,
generating model-related logs, and assess the overall performances of our approaches.
We conclude the manuscript in Chapter 7.

Chapter 2

Log mining synopsis

2.1 Introduction
This chapter provides a relatively comprehensive and updated survey, as well as a
taxonomy of the works that seem to be the most appealing in regard of their potential
power of discovery and robustness towards imperfections in data. The taxonomy of
the survey is divided according to the main types of logs, namely (i) extraction of
web service protocols, (ii) workflow and process mining and (iii) pattern mining. A
common framework is provided for all the research papers on mining these types of
logs. Algorithms and formalized approaches are compared based on an analysis of
strong points and weaknesses. The dimensions used for comparing and analyzing
the references studied in this survey are chosen to reflect past achievements and
future directions. This survey details key papers and presents the novelty of related
work. The survey shows that the issues of correlating messages and events, using
semantic content, dealing with noise, and addressing privacy problems need to be
better resolved in future research.

2.1.1 Overview and motivation
The number of systems that continually produce interaction and operation-related
data becomes important. In many cases these systems are composed of web services
(WS), workflows, business processes, software architectures, heterogeneous network
transactions etc. The trends, patterns, and all the low-level data recorded during
the execution of all these systems, hold relevant information that needs to be mined.
These mining activities lead unavoidably to business decisions improvements and

22

23

many other applications. Moreover, this helps the optimization of the aforemen-
tioned systems. Nevertheless, the size of datasets composed of recorded activity is
prohibitive for manual analysis and efficient decision-making. Therefore, analysis
based on automatic mining methods and algorithms is mandatory for dealing with
huge quantities of logs. Knowledge discovery and data mining techniques aim at
extracting strategic information hidden in very large datasets. Their usefulness at
achieving this objective, and many others, is established.

Knowledge discovery has grown into a very large domain. This includes issues that
have emerged from three mainstreams, pattern mining, process workflow mining and
the more recent web services protocol discovery. The main goals and the problems
which arise during mining processes are often similar. The overall objective is to be
able to analyze logs of events or activities. No prior knowledge of the underlying soft-
ware, process or service is assumed. This analysis must obtain the hidden behavior
description structure in the presence of negative-influence factors (noise etc.). The
importance of mining and its applications is reflected by the quantity of publications
and tools in this field (as seen in the surveys provided in Section 4.1.2). This un-
derlines the need of leading a global investigation inside the fundamental approaches
and related methods.

The global issue handled in this survey is the discovery of behavior models from
logs. A behavior model is intuitively represented as a diagram of different forms and
variations. Examples of the behavior to be modeled are the possible interactions
with a web service, a workflow, or a business process. The common framework that
unifies all the papers presented in this survey is Data mining (DM) in the domain of
Knowledge discovery in databases (KDD). DM is commonly defined as the extraction
of patterns or models from observed data. ”Knowledge discovery in databases is
the nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” [63]. We also underline that in this survey the terms
”mining”, ”extraction”, ”discovery”, and ”inference” have the same meaning. In our
work we deal with information recorded inside logs. Some logs come from logging
applications of web services and collections of process and workflow data. Other logs
are constituted of recorded transactional data (commercial or other). Stored logs
contain automatically recorded entries for every detected activity. In this sense, logs
are a form of text-like databases. Their attribute-oriented structure makes them very
similar to the tables encountered in relational databases. Figure 2.1 illustrates the
main types of log data and extracted models that this survey considers. Each row of
the table corresponds to a predefined mining context. The left column of each row
provides the raw data, and the right column shows the model extracted from that
data. This clearly depicts the models that are sought in this state-of-the-art analysis.
Moreover, it shows the similarities and differences which motivate our separation into
three main directions.

24

A

B

D

C

AND-
split

C

B

DA
AND-
join

A

B

C
A
D

E
F
G

A EB C D F GA

case
identifier

task
identifier

case 1
case 1
case 2
case 1
case 2
case 1

task A
task B
task A
task C
task D
task B

message
identifier

instance
identifier

111
123
134
145
156

1
2
1
1
2

message
label

A
A
B
C
D

A???BC??D
?A?B???CD
??AB?C??D
AD??E??FG
A?D?E??FG
AD??E??FG

a) web service log b) mined service protocol

c) workflow log d) extracted workflow net

e) itemsets log f) inferred sequence of events

Figure 2.1: Raw data log samples (left column) and mined models from the corre-
sponding logs (right column)

25

Indeed, in this study, the sub-domain of DM included in the area of KDD is di-
vided into selected directions, from the more recent to the legacy one. These are (i)
web service business protocol and interaction extraction, (ii) workflow and process
discovery, and (iii) pattern mining (mining of sequential items). This separation into
three directions is based upon the origin of the data considered. Data issued from
logs of web services is of a different type than the type of data issued from workflow
logs, or database commercial patterns. This clusters the approaches in a natural way,
according to the criteria of data type. A more detailed presentation of the common
framework that unifies the papers in this study into these three directions is provided
in the first paragraph in Section 2.2 and Section 2.2.3.
The contributions of this Chapter can be listed as follows:

1. provide an overview of existing approaches and techniques on mining logs of
patterns, processes, workflows, and web services.

2. present a taxonomy based on features that classifies knowledge discovery and
data mining approaches according to relevant features.

3. survey existing knowledge discovery and data mining approaches based on this
taxonomy.

The Chapter is organized as follows: Section 2.1.2 details the topics and cate-
gories of log mining that are intentionally not included in this report. Section 2.1.3
provides other existing survey projects and the main reasons that call for a more
recent and complete survey. In Section 2.2 we provide the background knowledge
and preliminaries required for introducing and analyzing the considered methods and
approaches. Section 2.3 explores the backbone problems addressed in web service-
related discovery, throughout comparison between existing approaches. Section 2.4
contains a categorized and detailed review of issues and solutions for mining workflows
and processes. In Section 2.5 we focus on mining methods for sequential patterns.
Finally, we draw the analysis conclusions in Section 2.6, along with future guidelines
on open research issues.

2.1.2 Out-of-scope topics
Knowledge extraction from interaction logs is a very large and rich domain. Surveying
all the topics related to this field would require a long time. Therefore, the study in
this Chapter limits its scope within well defined boundaries. Here we deal with logs
generated during the execution of state diagram structures. The main representatives
of such structures are workflows, processes, interaction models of web services, etc.

26

This choice is based on the discovery of behavioral models based on graph represen-
tation. There are many other data sets which fall into the log mining domain. Yet,
all the data sets that are not issued by graph-based behavioral models are considered
to be out of scope for the present study. Such data logs include, but not limited
to, genetic data, click streams, web search queries and rare patterns. In conclusion,
the only perspective of this survey study is mining data that are associated with the
behavior of a given model, viz. behavior and interaction data. Another area that
is not addressed in this survey is grammar inference. Very good references on this
research field have already been provided in [7, 44].

2.1.3 Other survey studies
Efforts have been made in the past to provide surveys and partial taxonomies. Ex-
amples are:
- [62] where the authors provided a survey on mining methods in the context of
temporal databases and time-related data behavior.
- In [148], the authors start from the defintion of the workflow mining concept and
propose a common format for workflow logs. Several workflow mining approaches are
presented.
- In [69] the authors provide a description of the basic frequent itemset and association
rule mining problems and the most authoritative algorithms.
- In [99] the authors provide a survey on sequential pattern mining.
- The Data Mine [121] provides a large collection of downloadable papers, tools and
a very rich bibliography.
- In [125], the authors present a survey on papers addressing issues of temporal,
spatial and spatio-temporal data mining.
- In [68], the authors compare software tools on data mining and knowledge extraction.
- [137] provides a general overview of the state of the art regarding the application of
rough set theory in mining processes from data.

From these surveys, two conclusions can be drawn. First, an updated survey
is required on knowledge extraction from log textual databases. Second, a study
that specifically targets behavior model extraction from activity logs is much more
appropriate. The advantage for such a study becomes visible when during the inves-
tigation, the underlying taxonomy emerges. This allows to identify the issues to be
better addressed in the future.

27

2.2 Context and Preliminaries
Our taxonomy comes in the form of a hierarchical structure that relies on a level-based
categorization. We base our taxonomy on the type of the mining results and on what
constitutes the subject of the mining approach. The mining results can be divided
based on the extracted models. We may mention Petri nets, workflow nets, finite-state
machines, Markov models, and weighted or basic graphs. Clustering of references can
also be based upon the mined formal representations. We have for example intervals,
order operators, and sets of elements. Moreover, patterns can be divided by splitting
them into sequential patterns and temporal patterns. In sequential patterns the
appearance in groups of items is sought, while in temporal patterns it is the evolution
of given variable values over time that is relevant. Regarding models we distinguish
between web services (WS) protocols, and workflow nets. Intuitively, WS protocols
designate the messages exchanged during the execution of a WS or the interactions
between several WSs. Workflow nets model the sequences of activities and tasks
involved during the execution of a workflow or process.

2.2.1 Terminology
The following terms used throughout the survey, are defined in the bibliography of
this domain, and we recall their definitions in the following: A log (also called a trace)
is a collection of data entities that are most often recorded by software, or manually
entered by humans into computers. The different approaches make assumptions on
the type of logs they consider. Types of logs include event logs, conversation logs,
databases of itemsets of transactions, timeseries datasets or other variants. An event
refers to the log entry correponding to different types of activities in a system. This
includes different user-generated or automatic operations, or any triggered activity
such as tasks, messages etc. A task stands for a well-defined step in the workflow.
A message is the data entity exchanged during the cycles of client request-server re-
sponse during the execution of web services. Examples of a step would be an activity,
or a procedure outcome. A sequence is an ordered list of events. An execution instance
designates a sequence of events leading from the starting point, to the terminal point
of a behavioral model. The behavioral model is the model providing all the possible
correct behaviors that a given system may display (see Section 6.2.2). A conversa-
tion represents an execution instance in the context of web services. A transaction
consists of a set of attributes. An itemset is a non-empty set of items. The term time
series is defined as the time course of a set of variables under controlled conditions.
A temporal pattern is the time interval in which one or more time series assume a
behavior of interest. An occurrence of an entity represents an instance of that entity.
The occurrence time of an entity stands for the timestamp (recorded time in the log)

28

associated to the instance of that entity. Noise will designate all the different types
of imperfections occurring in logs, whatever their cause and nature. Uncertainty rep-
resents the notion of confidence attached to different sources of information when
different values exist for the same variable or attribute.

2.2.2 Employed models
Here we give the formal definitions of the models that are employed in the approaches
described in this chapter.

Definition 2 Deterministic finite state machine (DFSM)
A deterministic finite state machine is a tuple (Σ, S, s0, δ, F), where:
1. Σ is the input alphabet (a finite, non-empty set of symbols),
2. S is a finite, non-empty set of states,
3. s0 is an initial state, an element of S,
4. δ is the state-transition function,
5. F ∈ S is the set of final states. A DFSM is mainly employed as the basis for
modeling Markov chains and Business protocols. For more information on DFSM
please refer to [133].

Definition 3 Markov chain
A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov
property, namely that, given the present state, the future and past states are inde-
pendent. Formally speaking a Markov chain takes the form:
Pr(Xn+1 = x|X1 = x1, X2 = x2..., Xn = xn) = Pr(Xn+1 = x|Xn = xn) The possible
values of Xi form a countable set S called the state space of the chain. Markov chains
are often described by a directed graph, where the edges are labeled by the proba-
bilities of going from one state to the other states. A finite state machine can also
be used as a representation of a Markov chain. Additional information on Markov
chains can be found in [109].

Definition 4 Workflow nets (WN)
A workflow net [144] is a tuple N = (P, T, F) where:
1. P is a finite set of places,
2. T is a finite set of transitions such that P ∩ T = ∅,
3. F ⊆ (P × T) ∪ (T × P) is a set of directed edges, called the flow relation,
and such that if t̄ is a fresh identifier not in P ∪ T then N satisifies:
4. Object creation: P contains an input place i such that ·i = ∅,
5. Object completion: P contains an output place o such that o· = ∅,

29

6. Connectedness: N̄ = (P, T ∪ t̄, F ∪ {(o, t̄), (t̄, i)}) is strongly connected.
Points from 1 to 3 define a Petri net, also called a place/transition net. It is then

easy to see that a workflow net is a particular case of a Petri net. This is indicated
by points from 4 to 6 in the definition. ·i denotes the input nodes of P (i.e. the
nodes i such that exists a directed edge starting from i), and o· the output nodes (i.e.
the nodes o such that exists a directed edge ending at o). A workflow net is used to
model business processes as well as workflows in general.

2.2.3 Classification criteria
The taxonomy used in this survey is based on the event and the data types contained
within the logs. When considering event types, we have: workflow tasks, human
activities and decisions, software and human operations, and web service messages.
The first reasonable separation is thus based on the context of the behavior model that
is to be extracted. In this work we deal with three models: web services, workflows and
patterns. We recall that the approaches considered in this survey are also clustered
based on the model that is used for representing the discovered behavior. Those
models are discussed in the previous sections. A distinction between the existing
papers can also be made using the stochastic nature of the approach. In this case we
separate into probabilistic and deterministic methods. In a probabilistic algorithm
the results are bound to probability values and multiple solutions may exist. In
deterministic methods a single solution is provided for all discovery attempts.

2.3 Model extraction in service-oriented architec-

tures
Authors in [18] highlight that descriptions like WSDL are not sufficient for a so-
phisticated and automatic use of Web services (WS). This is because they provide
information only about static properties. For this reason, authors in [18] proposed a
higher level model, the business protocol. This model specifies the external behavior
dynamics of a Web service. Nevertheless, the business protocol is not often specified
in operational services. Potential reasons include lack of time during implementation,
or uncontrolled service evolution.

A solution is to infer the business protocol from the interaction logs of a service.
Solving this discovery problem could also be very useful for re-engineering applica-
tions. These applications include implementation correctness checking, or controlled

30

service evolution. Business Protocol Discovery (BPD) [108] is a particular case of a
more general issue: extracting a model from its instances.

2.3.1 Application on service protocols
Service protocol discovery is not an isolated issue. Model discovery is always part
of larger multi-functional service discovery architectures with wide-range objectives.
Some examples of these objectives are service compliance, comparison, verification,
testing, composition etc. Nevertheless, discovering service business protocols includes
many technical challenges. We can mention for example cleaning logs from noisy data,
and correlating events and messages into WS instances.

The first contribution to the above problems is proposed in [108]. The authors deal
with the problem of discovering protocol models by analyzing real-world interaction
logs. One of the achievements of this survey consists in identifying the different kinds
of log imperfections. Other contributions are a quantitative measure and an algorithm
to determine noisy conversations. An approach is proposed for generating protocols of
small sizes by leveraging algorithmic minimization techniques. A user-driven protocol
refinement is also made available. This is obtained through the definition of a notion
of distance between protocol models and conversations that cannot be generated by
the model. Furthermore, the method uses the manipulation operations that can
modify these conversations so that they can be accepted. The protocol discovery
approach proposed in [108] has two stages: (i) analyzing the log to automatically
estimate which conversations are noisy, and (ii) deriving a protocol that can accept
conversations estimated to be correct. The protocol derivation part also addresses
the problem of non exhaustive logs via discovery heuristics. This work handles most
of the problems mentioned in the previous paragraph, but relates only to untimed
business protocols. With the importance of temporal constraints in real life services
(viz. expiration dates), it becomes crucial to extend this discovery technique to
timed business protocols (TBP). Timed business protocols contain not only explicit
transitions (related to a message sending or reception), but also timed transitions.
Timed transitions represent implicit state changes that are triggered due to temporal
constraints.

Based on the elements above, one can identify the main reasons and motivations
that led to the discovery of timed transitions. One solution that explicitly deals with
this problem is proposed in [52]. Here, the authors use a deterministic approach
for mining timed transitions in conversation logs. The challenging issue of timed
transitions detection is that no information is recorded when such transitions are
triggered. A class of patterns called proper timeouts is defined, and it is shown
that they are the best representations of timed transitions in the logs. A formal

31

characterization of the set of proper timeouts satisfied by the logs is also provided.
The advantage of the method proposed in [52] is its performance in terms of temporal
complexity.

The work in [50] is very similar to [108], despite their different concerns. In [50] the
concepts of interaction and interaction protocol are used instead of conversation and
business protocol. It presents an interoperability problem between a client and services
that expose the same interface but have different protocols. The main advantage of the
approach in [50] is that it is fully automatic. However, this can be a serious drawback
for service re-engineering, where it is essential to allow a user driven refinement of
the model [108]. Two other limitations of [50] are: (i) model discovery modules are
supposed to be associated by service brokers with all new services, and (ii) noise is
not taken into account.

Let us focus our attention on combined approaches that employ finite-state ma-
chines (FSM) for modeling tasks and graph-based approaches for event correlation
and mining purposes. Indeed, graph-based solutions using FSM modeling were pro-
posed in [107]. This work deals with the discovery of process views. A process view is
the equivalent of a database view applied in the context of business processes. During
the first step, messages found in logs are correlated together into execution sequences
by means of time ordering and correlation conditions. Thus, an undirected correla-
tion graph is built using the set of messages to define vertices. Edges are defined
by the correlation conditions discovered between messages. At this stage, a graph
decomposition algorithm is run, which returns the maximal connected components of
the correlation graph. These components represent sequences of execution instances.
The identified sequences are afterwards used as the basis for the reconstruction of the
FSM which models the web service behavior in the form of a process view.

It should be noted that the approach exploits the monotonicity property for en-
hancing the efficiency. An example of the graph obtained through disjunction of
correlation conditions is given in Fig. 2.2 (≺ shows time precedence). Note that
mx and my stand for two messages and mx.OID (respectively my.OID) relates to
the corresponding attribute of messages whose values are used for the correlation
condition.

Following this work, we encounter the discovery method of [130], where the au-
thors model logs using graphs and employ graph theory techniques to extract the
conversations and build the Business Protocol. For converting the initial message
graph into a reduced one, the authors use the Dempster-Shafers mathematical theory
of evidence [131]. However, a more detailed analysis reveals that the assumptions
which allow to determine the first message of the service protocol, might not always
hold.

The main objective here is to establish methods for mining web service protocols.

32

name oID invID pID
PO m1 o1

PO m2 o2

Inv m3 o1 i1
Inv m4 o2 i2
Pay m5 i1 p1

Pay m6 i2 p2

(a)

m1 m2 m3 m4 m5 m6
≺ ≺ ≺ ≺ ≺

ψ1

ψ1

ψ2

ψ2

(b) ψ1 : mx.OID = my.OID, ψ2 : mx.invID = my.invID

Figure 2.2: (a) snapshot of the log of a process view node, (b) corresponding correla-
tion graph Gψ1∨ψ2 ; we notice the two conversations that are represented by the two
sub-graphs [105].

So far, the set of topics that are addressed include log cleansing and log imper-
fections characterization and detection. Afterwards, in the same research context we
encounter and include protocol conversation identification and mining as well as defin-
ing a model for protocol extraction solutions. Finally, we can mention user-interactive
mining and temporal constraints discovery. For the issues to be improved or dealt
with in the time to come, we can recall data quality which, does have an impact on the
discovery process. As data quality problems one can mention (i) temporal accuracy,
in which the event order recording does not follow the real-time execution sequence
event order, (ii) completeness, from the point of view of WS execution instances
recorded in logs compared to the existing paths in the protocol which are potentially
not explored or are discarded, and (iii) consistency, i.e. compare the design-time
model with other mined models that are inferred from the same data.

Table 2.1 displays some relevant papers in this area based on three characteristic
dimensions encountered in service protocol discovery. The analysis on the previous
references clearly indicates that research issues still open include the enhancement
or adaptation of precedent solutions by further relaxing initial hypothesis (e.g. as-
sumption of correlation information). Other open issues are the usage of less naive
approaches concerning support-based noise filtering and in-depth research on more
realistic and complex structures.

33

Table 2.1: Axis of comparison between some approaches on service protocol mining

Ref. Temporal aspects Accounting for
imperfections

Interoperability

[108] Untimed business pro-
tocols are considered,
temporal constraints
cannot be defined.

Support-based fil-
tering of erroneous
or infrequent mes-
sages.

Identical protocol
used on both sides
(service and client).

[50] N/A Imperfection-free
data is assumed.

Different busi-
ness protocols are
employed for the
service and client
side.

[52] Timed protocols are
used with temporal
constraints being the
primary target.

The method as-
sumes clean and
correct logs.

Approach engages
classic web services
based on a unique
protocol.

2.3.2 Application of protocol mining to service interactions
Web service interaction patterns [12] are abstractions of representative interaction
scenarios. They are not always extracted from execution data, but empirically derived
from the literature, standardization activities, and real-world use cases. They are
mainly used to benchmark service functionalities related to WS choreography and
orchestration.

In [57] a study on Web service interaction mining (WSIM) is reported. Instead of
directly offering a solution to mining, this works restricts to an introductory analysis
of the context in which mining takes place when considering WS activity traces. The
authors in [57] present a simplified view of only three levels of abstractions, namely
the WS operations, interactions and workflows. A further classification is also done
inside the WS interaction layer. The logs considered here are supposed to contain
any data that might be necessary during the mining process. Log events are mined
using a Prolog-based representation of mining rules.

A restrictive assumption is nevertheless used, that is, a workflow-ID and an
instance-ID are required and can only be available if provided by the WS itself in
advance. Moreover, it is assumed that message extraction is always possible due to
the fact that all interactions between web services take place through the exchange of

34

SOAP messages. We now know that with REpresentational State Transfer services
being increasingly implemented, this assumption is not always correct. This work
was continued in [56], where a classification of service-oriented systems is proposed,
altogether with descriptions of the directions taken by log mining in the context of
both rich and poor content log. The major contribution of [56] is a potential future
agenda in WS mining.

In short, these methodologies could be quite useful for a preliminary study prior
to the mining process. Thus, these might be used for defining the expectations on
both the discovery process and the results to be obtained from it. These include
questions such as: ”In which scenarios does the extraction take place?”, ”Which level
of abstraction should be utilized?”, or ”How results are to be interpreted?”, etc.

2.4 Workflow model discovery
Workflow patterns [70] are defined as substructures of the directed graph represent-
ing a workflow, and are extracted from execution logs. They do not contain explicit
temporal constraints. This model is supposed to be known for the generation of the
patterns, and only the frequent ones are considered. Indeed, the method in [70] does
not aim at knowledge extraction but at diagnosis and termination prediction. The
importance of log mining applied to workflows and business processes is fundamen-
tal. As is underlined in [71], workflow modeling does need some requirements that
jeopardize its efficiency and make it difficult to achieve. Such requirements include
human experience, time and financial resources. Other aspects that make modeling
even more difficult are also implementations which quite often do not obey to the de-
signed model. Moreover, models tend to change relatively quickly in order to adapt
to particular needs. These disadvantages, and others that we describe in the following
can be avoided by mining these models.

2.4.1 Markov chains for workflows
In [39] the authors have improved two existing methods and proposed a novel one for
software process model discovery from event logs. The first one, the RNET method,
is a statistical approach based on neural networks. It can characterize an execution
state based on the past behavior. While being an extension of the implementation
found in [41], it permits to take into account more event types. This is combined
with an easier extraction of the mined model.

The second method, KTAIL, computes a potential state by looking at the future
behavior instead of the past executions. The theoretical method for this extended

35

{B}{D}

{C}{ } {A}

{B,C}

31.671.5

3.25 2

1/4

3/4

1

1

1 1

1/3
1/31/3

Figure 2.3: Markov chain computed using the method in [85]

implementation can be found in [23]. The last and novel approach introduced in [39],
is based on Markov models. This method tends to ally the precedent solutions into
one, by making usage of both past and future executions.

In [85], the authors propose a solution for mining service models in cross - organiza-
tional workflows by modeling services using continuous-time Markov chains. A cross
- organizational business process is specified as requiring an external organization in
order to fulfill at least one of its tasks or activities. The concept of service hereby
is to be taken in a broad sense as an activity exchanged inside a requester/provider
environment, and not to be identified with web services. The basis for the method
is composed of service logs, each describing a single execution of the service to be
modeled. One should note that in this approach service execution instances are sup-
posed to be uniquely identified. Thus, it does not address the session identification
problem. An example of the Markov chain that results from this approach is shown
in Fig. 2.3.

More recently, the authors in [37] proposed a purely Bayesian approach aiming
at process inference by learning Markov models. This approach proves to be robust
especially against random noise. It provides another important answer regarding
model validation. The validation test is based on the probabilistic estimation that
two process-generated sequences belong to the same model.

2.4.2 Learning Petri-net models
In [144], the issue considered is the discovery of business process models in the form
of workflows based on event logs. These logs store events associated with a given
process. The workflow log containing the run-time process execution data represents
the basic information which is used in order to obtain a Petri-net representation
of the process model. The so-called α algorithm, constitutes a milestone for many

36

other improvements and methods that appeared later, namely [103, 127, 128]. Note
that in [103] noise and log imperfection issues are considered, while in [144] they are
not. The main idea in [144] lies on the definition of a class of workflow processes,
called Structured workflow net (SFW). This class describes the processes that can be
discovered by the α algorithm.

A formal proof is provided in order to show that there is a conditional equivalence
between the sound log-based discovered workflow and the initial SFW-net. This
discovery method assumes that the workflow instance to which an event refers, is
known in advance. Moreover, a unique task is associated with each event, thus
implying that the appearance of an event remains singular in respect to a task. These
assumptions may pose restrictions if this method is adapted for other domains such
as BPD (see Section 4.2.1). Despite the fact that the class of discoverable processes
subject to this algorithm is quite large, efforts are still needed in the future to cope
with its main limitations.

The first of these limitations comes from the fact that, as underlined by the
authors, actually there is no evidence that the coverage of the discoverable process
class is maximal. Another limitation to a more widespread usage of the method is
imposed by the mandatory requirement that no short cycles must reside inside the
initial workflow. A strong point of this approach is its linear complexity in the size
of logs that overwhelms the exponential complexity in the cardinality of the tasks’
set. Indeed, under normal circumstances the number of events is many times inferior
compared to the number of log entries. Again, this hypothesis may not always be
verified. Nevertheless, it does not eliminate adaptation perspectives in the future.
An improvement of [144] is provided in [45] which deals with single and double-cycle
identification in workflow logs.

In [103] a method is proposed for constructing the process model from process log
data. This is done by determining the relations between process tasks. The relation
mining is achieved through machine learning techniques for inducting rule sets. In
order to obtain this, the so-called Ripper algorithm is employed [36]. The rule sets
themselves are induced from simulated process log data generated by varying process
characteristics specifically noise and log size.

[103] is also an extension of [144], studying the effects of noise, log size and
imbalance in the process discovery. The concept of imbalance describes the scenario
in which, given the Petri net of a business process, a task may take place in different
percentages compared to another task. [103] relates on the effects of these three criteria
(noise, log size, and imbalance) on the discovery result.

Potential mining applications also include conformance testing as reported in [127].
Here, two aspects of conformance issues are addressed. First, a metric is defined to
calculate the fitness between a generated log and a process description. The fitness
determines whether or not a given log may potentially be the product of a given

37

process execution. Second, two additional metrics are proposed to measure the ap-
propriateness of a process model. The appropriateness verifies that the extracted
model reflects correctly the behavior that generates the logs. These two metrics, the
structural appropriateness aS and behavioral appropriateness aB, combined with the
fitness metric, allow for the quantification of conformance.

Recent improvements in the discovery of process models are provided in the fol-
lowing papers. In [64] the authors address the problem of discovering the process
model when the event log is provided as an unlabelled stream of events. The im-
provement consists in the absence of the identifier that correlates events to a process
instance. The model is evaluated by means of an iterative Expectaction-Maximization
procedure via a probabilistic approach.

In [81], the authors define commonly used process model constructs in the event
log and adopt pattern definitions that capture these considerations. This is used as
a method for transforming traces. This transformation is envisioned to be applied as
a pre-processing step for existing process mining techniques.

In [28] we encounter a set of techniques for employing the theory of regions to
transform a log into a Petri net, while avoiding the potential high complexity. The
approach proceeds by using decomposition techniques, or log event clustering in order
to work on projections. This allows the usage of classical region-based techniques for
process mining techniques.

The work in [92] provides a search algorithm whose discovery of the process is
based on past process modifications. This approach allows the extraction of a ref-
erence model. This reference model serves as a prototype that is used as a measure
against the future evolution of the process. Another interesting feature is the capabil-
ity of measuring the divergence between the mined reference model and the original
one.

2.4.3 Learning graph-based models
Here we present approaches whose tools used for modeling as well as mining are sup-
plied exclusively by graph theory. As stated in [78], the original finite-state machine
(FSM) model appears to be easily understood and the corresponding activity-based
model can be conveniently represented. Nevertheless, in the case of a reconstructed
FSM, a given state will probably be incapable to represent the semantic meaning
associated to it. This is because the transitions to multiple states may output the
same execution outcome.

This case is illustrated in Fig. 2.4. Indeed, Fig. 2.4(a) represents the FSM
of the software development process [38], which involves three sequential steps: code
modification, compilation, and testing. After the code is modified (G), the subsequent

38

Figure 2.4: (a)The original process definition, (b) a KTAIL discovered FSM (c) a
Markov-based discovered FSM [78]

compilation is performed and produces the result of either OK (I) or not OK (H). If the
compilation is not okay, the code has to be modified again and the procedure has to be
repeated; otherwise, a testing activity is performed. A successful testing (K) ends this
process, and a failed testing (J) calls for the repetition of the entire procedure. Fig.
2.4(b) and (c) show the FSMs discovered from two different algorithms viz. KTAIL
and Markov [38]. It is worth to notice that in Fig. 2.4(a), each state corresponds
to the execution of exactly one real-world activity. The transitions leaving a state
represent the possible execution results. Nevertheless, as Hwang and Yang correctly
point out [78], in a derived FSM, such as that in Fig. 2.4(b) or (c), a state may not
have its clear semantic meaning. Moreover, the execution outcome may appear in the
transitions of multiple states. Yet, this weakness had been addressed in [2], where
Agrawal et al. introduced the definition of a process using directed graph modeling.
In their paper [2], vertices represent the process activities and edges stand for the set
of control dependencies between the activities.

The authors in [2] define the issue of process mining in the context of graph theory.
Named Graph Mining, this definition considers the discovery as being the construction
of a compliant process graph, starting from the process execution logs. The heuristics
of the algorithmic solution in [2] is to represent each activity of a process execution
as an event associated with a precise instant. Therefore, a process execution instance
can be represented in its turn as a sequence of activities. At this point the algorithm
attempts to locate all detectable dependencies from the set of execution instances.
In other words, the objective is to obtain the dependency graph from the process
execution logs. A transitive reduction step is undertaken in order to minimize the
constructed graph. This reduction step is responsible of the polynomial complexity
of the overall algorithm. Cycles are considered by merging the vertices of a same
activity.

39

Another important contribution of Agrawal et al. is their probabilistic study of
noise occurrence in log sequences. The authors compute the probability of random
errors occurring during the process executions, in the sequences of activity during the
recording phase. Consequently, it can be proven that the probability of constructing
the correct graph is δ. This δ value is bounded by the condition in Formula 2.4.1:

δ ≥ 1−max(CT
mε

T , Cm
m−T (1

2)m−T) (2.4.1)

where T represents the number of errors occurring during m executions. In this
formula, CT

m is the notation of the number of k-combinations, and all variables of the
formula have already been introduced and known in advance. Formula 2.4.1 allows
to compute the probability of finding the correct result using the algorithm presented
in [2]. This result being generic for similar scenarios and more sophisticated and
robust than support-based noise estimations, it is thus more relevant in answering
noise detection issues.

This work was afterwards improved in [78] by considering the executions of activity
instances not as instant events but as time intervals delimited by the start and end
time. These instants are either directly available or inferred from raw data. While the
main algorithm, which presents a better performance, is a quite solid contribution, it
is clear that the thorough study of noise is of greater importance. Noise filtering is
achieved through statistical calculations of the probability of basic transition cases,
assuming that the noise probability of an instance is known in advance. Actually,
the same approach described in [2] is used in [78] for handling noise in data, but by
focusing on optimization issues regarding error occurrences.

Another solution which combines graph-modelling and statistical methods is en-
countered in [132]. By employing a measurement error model, this approach allows to
learn a restrained class of directed acyclic graphs. These particular graphs are called
the AND/OR workflow graphs and are inferred by means of polynomial algorithms.
The core algorithm proceeds by incrementally including child nodes to a partially
built graph following a specific order. The assumptions upon which relies the whole
approach are the classical ones that are found in the majority of workflow log based
solutions. One main limit is obviously the exclusion of cycles in the considered class
of graphs.

Table 2.2 summarizes the approaches described so far. The comparison dimensions
are based on graph cycles and error effects, both being major issues that greatly
influence graph mining efforts.

We summarize the entire Section 2.4 by listing the most relevant achievements
in this area. These include obtaining the representation of a given workflow using
event-based activity traces of the latter, providing approaches anchored on the past

40

Table 2.2: Axis of comparison between graph-based methods

Description Cyclic graphs Error handling

[78] Polynomial al-
gorithm employing
transitive reductions
for minimizing the
induced graph. Deals
with basic patterns.

The loops considered
are relatively simple
and do not account for
composed structures
viz. parallel split inside
a larger loop.

Very solid noise so-
lution based on com-
puting error bounds
for threshold estima-
tion. Noise-prone data
is handled.

[105] Polynomial
graph construction
method. Step-based
and user-guided graph
refinement and en-
hancement.

Loops are addressed
but approach could still
be improved. The se-
quence length can have
effects on the cycle dis-
covery.

Support-based error
analysis. Threshold is
defined based on data
ratios and does not
rely on a statistical
approach as in [78].

[2] Poynomial algo-
rithm centered around
the construction of
(a)cyclic graphs fol-
lowed by a transitive
reduction step and
edge marking method.

Cycles are easily iden-
tified since process ex-
ecution instances are
known in advance.

Minimize the effects of
noise by computing er-
ror probabilities in se-
quences. Does not di-
rectly deal with the im-
pact of noisy data in
the resulting graph.

and potentially future behavior of a process. Other objectives are the usage of run-
time process execution information and finally, conformance-testing using metrics for
fitness. As suggested by the present analysis and other works [71], future directions
for the upcoming research effort are numerous. These directions include (i) process
instance identification during the process discovery, (ii) extension of the class corre-
sponding to the discoverable processes, and (iii) taking short cycles into account. In
addition, the analysis of imperfections (noise, data integrity and quality) in activity
logs needs further investigation. Table 2.3 shows an organized and descriptive view
of references on workflow mining, based on the three dimensions that dominate the
actual bibliography.

41

Table 2.3: Comparative description of model solutions addressing workflows

Markov chains Petri nets

[38] Software process discovery from
event logs using neural networks for
studying past behavior and potential
future executions.

[144] Business process model discov-
ery employing order relations between
tasks to infer the model as a Petri net
(α algorithm).

[85] Service model mining by continu-
ous time Markov chain modeling. The
parameters are directly driven by oc-
currence and time-stamped data.

[103] Obtain the process model by de-
termining relations between tasks em-
ploying machine learning techniques
(Ripper algorithm).

[37] Extraction of software process in
the form of Markov model. The dy-
namics of the model are translated into
transition matrices.

[127] Further extension of [144] consid-
ering conformance testing by means of
metric-based evaluation of fitness and
appropriateness.

2.5 Pattern mining
The main idea in pattern mining is to recognize, model, categorize and abstract
patterns in data sequences. When considering this domain one can see numerous
patterns studied in the literature. For the purpose of this survey we focus our
attention on sequential patterns [3, 77, 97, 116, 144]. An analysis on temporal pat-
terns [15, 35, 75, 76, 82, 88, 113, 129, 145, 149] is provided in Chapter 4, since these
patterns are particularly related to the content of that chapter. We provide more
information on the core approaches and related papers in the following.

Sequential patterns [3, 116] are basically event subsequences. In [97] they are
called episodes and defined as directed acyclic graphs of events. They are extracted
from a sequence database [3, 116] or from event sequences [97], using levelwise [3, 97]
or pattern-growth [116] methods. It should be noted that only frequent patterns are
sought here. Even if they provide some information about the order of events, they
do not contain explicit temporal constraints.

One of the key references in this domain is [3]. Here the authors introduce the
discovery of sequential patterns and the set of algorithms which deal with a sequence
database. The sequences considered here represent a list of transactions and the
transaction itself a set of patterns. We stress on this data representation because
it shows a very powerful aspect of sequence mining. This capability of sequence
mining is the very rich data granularity that can be encapsulated inside a sequence.

42

The solution proposed in [3] uses time constraints in the algorithm for separating
adjacent pattern elements (Figures 2.1(e) and (f) illustrate this case). We recall that
this is a technique that is very often encountered in interval-based temporal data
mining (see Sect. 6.2.2). It should be noted that the term time constraint employed
here does not stand for a temporal constraint. The latter refers to time-triggered
events, while the former simply implies the usage of time-stamps in data during the
mining process for determining time intervals. At the same time, transaction-bound
constraints are not taken into account. This differs from what is done in many process,
workflow [103,127,128,144] and WS protocol mining methods [52,56,108].

In [97] we encounter a similar level-based organization of data. Sets of events,
called episodes, represent user actions. The main issue here is to detect patterns
of events, i.e. episodes, which have a high occurrence frequency. The algorithm
performs a level-wise search in the class of episodes. It should be noted that the
minimal frequency threshold employed here is basically the same as the one found in
all support-based frequency computations [57, 108, 144]. This approach is based on
the monotonicity property, stating that if an episode is frequent in an event sequence,
then all its sub-episodes are also frequent.

The algorithm presented in [116] adopts a different approach, compared to other
Apriori-like methods. Indeed, to reduce the number of potential candidates, the
Prefix − Span algorithm [116] obtains sequential patterns of larger size by ex-
ploiting uniquely shorter frequent patterns. The objective is to start with a se-
quence database which is in turn recursively projected into another set of smaller size
databases. The corresponding sequential patterns are therefore incremented in size
inside each projected database by using only the shorter frequent patterns provided
by the Prefix− Span algorithm. This allows to improve the overall performance.

In conclusion, the main achievements of the research community in sequential min-
ing are: (i) the extraction from sequences of frequent patterns based on occurrence
frequency using incremental approaches, and (ii) visualization of task-related order
relationships and process mining in the collaborative context. In upcoming works
regarding sequence pattern mining, the following aspects need further attention :

(i) Better account for resource dependencies and their effects on workflow dis-
covery. Doing so, would allow to further enrich discovery results and thus allow for
attractive enterprise solutions, knowing that they rely heavily on resource-related
workflows.

(ii) Use more generic approaches for process instance identification. This prob-
lem seems to be currently bypassed using strong hypothesis as for example, existing
session identifiers [57, 144].

43

2.6 Summary
In the context of knowledge discovery we presented in this Chapter a survey which
went through existing solutions to the general problem of discovering behavior models
from activity and interaction logs. The logs are assumed to be generated by structures
described by models similar to a graph or a state diagram. The main subjects for such
structures are processes, workflows, web services and patterns. The first contribution
of the Chapter is to try giving a clear view on the existing approaches in this area,
focusing on key papers and concisely reporting and analyzing related references. Its
second contribution is a taxonomy that structures the bibliography of behavior model
mining into separated layers in the context of DM in KDD.

The advantage offered by this taxonomy is materialized throughout the survey, and
the common framework that is proposed for encompassing references. The common
framework, the in-depth analysis and comparison of the approaches, and the updated
and enriched bibliography constitute the third contribution.

Table 2.4 summarizes the capabilities of some of the key references based on their
approach in dealing with behavior model extraction in the presence of noise. Noise
was selected because it is arguably the most important factor that can jeopardize the
model mining process.

Based on our work, several remarks can be drawn. Integration of approaches
will improve the discovery process provided by accommodating noise, incorrect log
entries, incomplete log data sets and heterogeneous data sources and formats. The
analysis conducted suggests that modeling tools (automatons, Petri-nets, etc.) need
to be adapted in order to support complex systems so that they can stress on and
reflect the level of granularity of real business processes and web services. Extensive
use of existing standards is mandatory for future research since it can in many cases
justify the usage of information data employed during knowledge discovery.

The quantity of information available in raw logs, has also to be reconsidered.
This would open new horizons for unexplored applications, for example using se-
mantic content for discovering constraints, and for improving existing ones. Another
example could be the usage of WS protocol message content, so far ignored, for session
identification, or false-constraint detection. Privacy issues also need to be considered,
be it for businesses or individuals, this being also supported by the study in [71].

In summary, there are a great number of open issues that need to be addressed.
Without being exhaustive, we mention the topics of correlating messages and events,
using semantic content, dealing with noise and data uncertainty, and privacy prob-
lems.

44

Table 2.4: Overall synthesis of methods employed for discovery and noise robustness

Ref. Mining method Noise filtering

[45, 144] Algorithmic discovery of the class
of structured workflows nets.
Further enriched with a taxon-
omy of recurrent patterns.

The impact of noise is considered
in the resulting decision rule sets
but no data screening is provided.

[105, 107,
108]

Graph-based message correlation
and finite-state machine con-
struction using graph decomposi-
tion algorithms.

Support-based filtering, may
present problems for complete-
ness of discovery.

[2] Extraction of directed cyclic
graphs using transitive and edge
marking reductions for inducing
subgraphs.

No data cleansing, yet offers a
probability value for successful re-
sults.

[39] Probability computation of oc-
currences of event sequences
based on a Markov model
which is converted into a non-
deterministic transition-labelled
FSM.

Since the approach is robust to
noise, no data filtering is pro-
posed.

Chapter 3

A mathematical model for message
dynamics

In this chapter we give a model that describes the mechanics of message flow during
the execution of a service, and describe how these mechanics can be retraced by using
the principle of the conservation of message occurrences.

3.1 Preliminaries

3.1.1 Notations and definitions
Let Msg be a set of message labels. A message type will refer to the label of a message.
A message occurrence is a couple M = (m, t), where m ∈ Msg is the message type,
and t ∈ IR+ is the timestamp of the message (denoted M.t). A message log (ML)
is a collection of entries e = (MID,m, s, r, c, t), where MID is the message unique
identifier, m is the message type, s and r denote the sender and the receiver of
message m, c the content of the message, and t is the corresponding timestamp. The
timestamps are local, in the sense that no global clock is needed. If x is a message
type, we will denote by x̄ the number of occurrences of x recorded in a message log
ML.

An occurrence log (OL) is an array in which each column denotes a message
type, and the corresponding row value provides the number of occurrences found
for that message type in a message log ML. In other words, every message log
MLi is represented as a single line in the occurrence log OL. A conversation is
a sequence of message occurrences C = 〈M1,M2, . . . ,Mn〉, where n ∈ IIN∗, and
M1.t < M2.t < · · · < Mn.t. Each web service client exchanges a precise sequence

45

46

of message occurrences (i.e. a conversation) during the interaction with the web ser-
vice provider. A conversation log file L is a multi-set of conversations.

Definition 5 The column rank of a matrix A is the maximal number of linearly
independent columns of A. Similarly, the row rank is the maximal number of linearly
independent rows of A. The column rank and the row rank being always equal, they
represent the rank of A. The rank of an m×n matrix is at most min(m,n). A matrix
that has a rank as large as possible is said to have full rank; otherwise, the matrix is
rank deficient.

3.1.2 Linear regression
During the runtime of a WS, a conversation of exchange messages takes place between
the client and the service provider. The business protocol visualizes all the possible
conversations that are allowed by this WS. When considering the protocol of a WS
during runtime, one observes that message occurrences do not appear or disappear
in a chaotic way. The first intuition is that the number of message occurrences for
different message types are correlated. This intuition leads to another one: there is a
law to which obeys the appearance of message occurrences in the log. For example,
if the loop-free conversation sequence 〈A,B,C,D〉 is followed three times, then one
naturally expects to find three occurrences for each message of this conversation.

The idea in this part of our contribution is to use linear regression methods to
derive the equations that describe the relationships which exist between the numbers
of different message occurrences. This is relevant for many reasons. First, in order to
achieve the correlations between messages, the linear regression method requires only
the number of occurrences for the given messages. To extract the full protocol after
the correlation step, the approach needs only the recorded timestamps of message
occurrences. Thus, an approach based on these intuitions and also linear regression
offers the advantage of requiring only a very restricted quantity of log information.
Second, linear regression is robust towards some of the forms of noise. In this chapter,
noise that may affect the result is considered to come in two different ways. It can
appear as missing message occurrences or erroneous timestamps. Both cases were
considered during experimentations.

In statistics, linear regression refers to any approach that models in a linear fashion
the relationship between one or more variables denoted by y and one or more variables
denoted by X = xi1, ..., xik. In such a case, the denomination ”linear model” is
employed. When considering a data set {yi, xi1, ..., xik}, i = 1, ..., n of statistical
variables, a linear regression method can be applied between the dependent variable
yi and the vector of regressors xi of size k iff the relationship between them is, at

47

least approximately, linear. This linear relationship between y and xi is expressed as
yi = β1xi1 + · · · + βpxip + εi = x′iβ + εi, i = 1, ..., n. For additional information on
the regression tools used in this part of our work please refer to [80]. We precise that
the linear regression inference is obtained by using the linear least squares approach.
Using linear regression for solving the issues of this topic requires the assumption that
the design matrix X must have full column rank p. For this property to be verified,
we must have n > p, where n is the sample size. The sample size represents the
number of entries in a given log.

Linear least squares (LLS) [32,60] is a method employed for computing the linear
regression and for fitting data to a mathematical or statistical model. The general
problem can be stated as follows. Consider an overdetermined system:

n∑
j=1

Xijβj = yi(i = 1, ...,m) (3.1.1)

of m simultaneous linear equations (hereafter referred to as SLE) in n unknown
coefficients, β1, β2, ..., βn with m > n, written in matrix form as Xβ = y where:

X =

X1,1 · · · X1,n

X2,1 · · · X2,n
...

Xm,1 · · · Xm,n

 β =

β1

β2
...
βn

 y =

y1

y2
...
ym

In statistics, LLS is the computational foundation for ordinary least squares anal-
ysis (OLS), which is the method of regression analysis employed in this chaper. The
formulas for linear least squares fitting were derived by Carl F. Gauss. The algorithms
presented here employ LLS because LLS is at the same time simple and efficient in
inferring the linear equations which describe the flow of messages in a business pro-
tocol. Ordinary least squares is the simplest and the most widely used method for
estimating the parameter β. OLS is often employed to model experimental and obser-
vational data. Suppose b is a ”candidate” value for an estimate of parameter β. Then
the expression yi − x′ib will be called the residual of i-th observation. The value of b
which provides the minimal value for this expression will be called the least squares
estimator for β.

48

Table 3.1: Occurrence log line OL1 derived from the log in Table 3.1.2
LR CT MO TT LP
2 2 1 1 1

Table 3.2: Example of raw log ML1 of SOAP-based service execution messages
MsgID Msg. label SenderID ReceiverID ... Timestamp
M1 LR 192.168.5.1 192.168.15.4 ... 10 : 01 : 07 13 : 52
M2 CT 192.168.15.4 192.168.5.1 ... 10 : 01 : 07 13 : 55
M3 MO 192.168.5.1 192.168.15.4 ... 10 : 01 : 07 13 : 60
M3 LR 192.168.5.1 192.168.21.7 ... 10 : 05 : 07 07 : 15
M4 CT 192.168.21.7 192.168.5.1 ... 10 : 05 : 07 07 : 26
M5 TT 192.168.5.1 192.168.21.7 ... 10 : 05 : 07 07 : 35
M6 LP 192.168.21.7 192.168.5.1 ... 10 : 05 : 07 07 : 46

3.2 Correlation and discovery approach
In this section we provide some introductory examples and describe how the process
of correlating messages and inferring the business protocol is achieved [104].
Example 1 Table 3.1 depicts the occurrence log OL1 which records the number
of occurrences for each type of message encountered in the log ML1. An example of
the logs considered in this chapter is given in Table 3.2. We recall that a message
type is represented by its label. Each single row in OL1 is deduced from an entire
raw message log MLi. Thus, an occurrence log can be seen as a very compact form
of raw web service logs. This form is at the basis of the approach presented here for
achieving the correlation of messages.

At this point we consider some characteristic structures obtained by the decom-
position of a typical business protocol into simple and composed modules that repeat
themselves in a FSM .

Figure 3.1 displays the structures that are most often encountered in a business
protocol. We can associate to each structure an equation describing the number of
message occurrences that enter and exit the corresponding state. The |a| notation,
where a is a message type, denotes the number of message occurrences of a that are
recorded in the log during the execution of the given structure.

A detailed study of log data associated to a known portion of a business protocol
reveals the strong relationship between the type of transitions and the respective
occurrences pattern. We notice that consecutive directed sequences of transitions
generate sets of time vectors that have cardinalities of the same order plus/minus
some slight difference. These set of vectors are also right-shifted on both bounds in
comparison to the time interval of the preceding message.

49

Figure 3.1: Modules of a business protocol P1.

Figure 3.1 illustrates also the case in which loops exist in the business protocol
model. The complexity of the protocol extraction process from logs is increased by
the existence of such loops. This is because their presence undermines many of the
properties that are otherwise verified in cycle-free automatons. Nevertheless, despite
the difficulty introduced by loops, it still remains possible to identify them by means of
their typical behavior. Indeed, as different sources and our experimentations seem to
indicate, messages associated to loops have very high frequencies (i.e. the cardinality
of loop message occurrences is very high). This is in contrast with structures like
sequential sequence branches, diverging ramifications, and timed transitions.

Remark: It should be kept in mind that one of the many differences between a
business protocol and a process workflow resides in the fact that workflows consider
tasks, which often execute in parallel. Parallelism is thus frequently encountered in
workflow models. But, in the case of a business protocol, the semantics of a Web
service protocol leads us to consider only sequential transitions. To each business
protocol instance which executes on a server corresponds only one execution path,
i.e. one conversation. If we may speak of parallelism, it has only a meaning in
the schematic model representation of a business protocol, but is meaningless when
speaking of real-time execution.

50

3.2.1 Modeling the dynamics of business protocol messages.

Proposition 1 The algebraic notation of a protocol is equivalent to its FSM
representation in terms of descriptive power.

Proof. The proof is straightforward. Since each equation of the SLE corresponds to

the flow of messages related to a state, then a SLE describes the set of states and the

set of transitions which connect them. In other words, this is identical to defining

a graph by specifying its sets of vertices and edges. The relationship between the

SLE of a protocol and the FSM of the same protocol is identical to the relationship

between the set-based definition of a graph and the visual graph model.

Consider the protocol sample shown in Figure 3.2. In all the protocol figures shown
in this part of the manuscript, the dashed circles (here S1) represent terminal states,
as opposed to full circles that designate normal states. This example will describe how
a set of linear equations describes the dynamics of messages in a business protocol
with loops. The SLE provided in Equation 3.2.1 describes this protocol in algebraic
terms. The equations marked with the same number of asterisks (*) or (**) are
algebraically equivalent.

Figure 3.2: Simplified business protocol.

51

1. c̄ = ā− b̄+ d̄+ h̄

2. b̄ = ā+ d̄− c̄+ h̄

3. d̄ = ē− f̄ (∗)
4. ē = b̄− ī (∗∗)
5. f̄ = ē− d̄ (∗)
6. ḡ = c̄

7. h̄ = f̄ + ḡ

8. ī = b̄− ē (∗∗)

(3.2.1)

The method for constructing the SLE starts by considering each state at a time.
Each linear equation is related to a state and provides the flow of messages in and out
that particular state. Since there are several potential messages entering or leaving
a state, then there may be several equations corresponding to a state. An equation
describes a linear relationship between the number of occurrences of all messages
that are directly related to a particular state. A given variable (a label with a bar)
in an equation represents the number of occurrences of the message having the same
label as the variable. On the right side of the equality sign are located all the other
variables related to the remaining messages of that same state. Each variable is
associated with a coefficient. The variables on the right side have either a + or −
sign. This sign is very important since positive-signed variables represent messages
that exit the corresponding state, and negative-signed variables stand for messages
entering that state. Theoretically, all coefficients are ±1, since a message can neither
be split in two, nor created or disappear. Nevertheless, since the logs we consider
here may exhibit defaults, such as missing messages, and because of existing loops
then the experimental coefficients may be non-integer values. Experimental results
however allow to define the interval inside which a coefficient value is considered as
trustworthy. Moreover, we exploit the high-value coefficients to detect the existence
of complex structures with unprecedented ease.

Consider the generic form of the state of a business protocol depicted in Figure
3.3.

For a given existing message Ak, 1 ≤ k ≤ m the following equation can be stated:

Āk =
n∑
j=1

B̄j −
m∑
l=1

Āl + Āk =
n∑
j=1

B̄j −
m∑

l=1,l 6=k
Āl (3.2.2)

where Āk denotes the number of occurrences of message type Ak that have transited
outside state State. Note the difference between the number of types of messages
(denoted by n) and the number of occurrences of each type of message. A type

52

Figure 3.3: General form of a protocol state.

of message example corresponds simply to a message label e.g. ”browseProducts”.
Equation (3) is correct since the total of messages occurrences entering a state is
obviously the same as the number of those exiting the same state. In other words:

n∑
j=1

B̄j −
m∑
l=1

Āl = 0 (3.2.3)

One can now see that Equation (3) is obtained by adding Āk to both sides of Equation
(3.2.3) which is arithmetically equivalent. Moreover, Equation (3.2.3) states the law
of conservation of the number of message occurrences.

3.2.2 Algorithmic procedures
Let us introduce the algorithms that exploit the SLE approach in different ways.

The naive approach: the n− delta algorithm

The naive version of the algorithm uses as input the log containing all message oc-
currences recorded during the web service activity. The corresponding pseudo-code
is shown Algorithm 1. The algorithm proceeds by taking a message type vector at
a time, and by computing the coefficients of all the possible equations that can be
obtained throughout all possible combinations of message type in equations of size i.
The provided result is the set of correlation matrices. The logical AND-sum of the
correlation matrix yields the final correlation matrix.
Theorem 1 The complexity of the naive-delta (n-delta) algorithm is O(2n)

Proof. Let n be the number of variables, i.e. the number of messages occurring in

the given protocol. We note by cj, j = 0, ..., k the coefficients of each variable in the

53

Algorithm 1 naive− delta
Require: Occurrence log A of n message types
Ensure: Mxi the set of correlation matrixes // n− 1 in total
1: for i = 1 to n− 1 do
2: B = A
3: while B 6= ∅ do
4: Choose an occurrence vector b ∈ B
5: Remove the column of b from B
6: Rs = B // Rs is the matrix of regressors
7: RegressorsSet = combinations(Rs, i) // the set of non-redundant combinations

of i elements.
8: while RegressorsSet 6= ∅ do
9: Choose ri ∈ RegressorsSet

10: // ri is an occurrence vector of size i
11: Remove the column of ri from RegressorsSet
12: C = OrdinaryLeastSquares(ri, b)
13: Insert correlation vector C in matrix Mxi

14: end while
15: end while
16: end for

equation. Let k represent the size of the right-hand part of a given equation. For

example, if we have a0 × c0 = a1 × c1 + a2 × c2 − a3 × c3 then k = 3. Let i be the

index of the variable on the left-hand of the equation.

We want to compute the number of correlation tests that are necessary for es-

tablishing all existing correlations between a variable xi and all the other existing

variables, in equations of size k+ 1. Then, the number of correlation tests is straight-

forward:

Ck
n−i = (n− 1)!

k!(n− i− k)! (3.2.4)

For n variables and fixed size k, there are n− k elements of the sequence. Hence, the

54

number of tests for a sequence of size k is :

n−k∑
i=1

Ck
n−i =

n−k∑
i=1

(n− 1)!
k!(n− i− k)! (3.2.5)

Thus, the number of correlation tests for all sequences’ lengths (i.e. for all possible

values of k) is:
n−1∑
k=1

n−k∑
i=1

Ck
n−i = 2n − n− 1 ≈ O(2n) (3.2.6)

Since n is known in advance for a given system, the above value of the last equation

is fixed, and represents the number of all the correlations that are to be tested using

the naive and exhaustive method to determine the existing satisfying coefficients

between all the variables. Because the linear complexity of n obviously has no effect

whatsoever on the overall complexity, therefore only the exponential term of the

expression is useful.

Remark: The correlation matrix Mx is obtained by the scalar sum of all the
matrices Mxi provided by Algorithm 3.2.2. Formally speaking Mx = ∑n−1

i=1 iMxi.

Improved version of n− delta

An improvement of the naive method is quite of interest, since it leads the path
toward delta with its optimal efficiency and very low complexity. This improvement
starts with the maximal value allowed for k. If, for the first value of k not all variable
correlations are established, then the GLS is re-run once again with k − 1. The loop
iterates decrementing k, as far as all of the variables are not correlated. This leads to
an interval of potential complexities whose values depend on the scenario considered.
The boundaries of this interval are:

(1) Worst case: Correlations must be tested until k = 1, at which stage all possible
combinations are to be run. In this case the complexity is O(2n). An illustration of
this worst case is provided in Figure 3.4.

(2) Best case: Only k = n − 1 has to be tested (i.e. correlations for a single
value of k are to be tested), in other words a loop on the entire matrix. Thus, the
complexity is O(n). An illustration of this optimal case is given in Figure 3.3. Of
course this requires that the entire protocol is contained in a single state.

55

Figure 3.4: Example of worst-case complexity scenario.

The optimal version of the delta algorithm, which is shown in Algorithm 2, uses
the same input as naive− delta. The algorithm proceeds in a much simpler fashion
by taking a message type vector at a time, and by computing only the coefficients
of the equations of size n − 1. This algorithm directly provides the final correlation
matrix.

The optimal approach: delta algorithm

Algorithm 2 delta

Require: Occurrence log A of n message types
Ensure: Mx the correlation matrix
1: B = A
2: while B 6= ∅ do
3: Choose an occurrence vector b ∈ B
4: Remove the column of b from B
5: Rs = A // Rs is the matrix of regressors
6: Remove the column of b from Rs
7: C = OrdinaryLeastSquares(Rs, b)
8: Insert correlation vector C in matrix Mx

9: end while

The complexity of Algorithm 2 is lower, as shows the following theorem.

Theorem 2 The complexity of the delta algorithm is O(n2)

Proof. Let n be the number of the variables, i.e. the number of messages occurring

in the given protocol. We want to compute the number of correlation tests between

a variable and the remaining variables. The right hand of the equations in this case

is set to n− 1. Then the number of all correlation tests that are needed is:
n−1∑
i=1

i = n(n− 1)
2 ≈ O(n2) (3.2.7)

56

In most web service protocols the number of message types n is generally low. To
give an idea on the order of magnitude, very large protocols such as eBay Trading
service achieve a maximum of 64 message types [59]. Thus the square polynomial
complexity has no significant impact on the overall performance of the algorithm. On
the other hand, what has more influence is the number of message occurrences stored
into logs. The complexity of the algorithm that counts the number of occurrences
for each message type will then determine the overall complexity of the approach. If
N is the number of all the different message occurrences stored in the service logs
and M the number of message types, then the complexity of the counting algorithm
is O(M × N). Since N is by many orders of magnitude greater than M , thus the
resulting complexity is O(N). In conclusion, the occurrence counting algorithm has
a linear complexity. A direct consequence of this result is that the overall process
of extracting the SLE that allows to mine the service business protocol has a good
performance. The minor influence of the polynomial sub-algorithm was confirmed by
experimental results on synthetic logs, as it is shown in Section 3.4.

3.2.3 Result interpretation and visualization
The result provided by the algorithm is a matrix composed of correlation vectors.
The vectors correspond to the columns of the matrix. This correlation matrix allows
to easily obtain the SLE corresponding to a protocol. Table 3.3 shows the generic
form of this array. Let m be the number of message types in a protocol and a1, a2,
... am the message types that need to be correlated. The correlation matrix provides
the coefficients that are to be used in an equation involving a variable ai on the left
side, and variables aj, (j 6= i) on the right side. If we have the matrix column shown
in Table 3.4, the corresponding equation that is derived from this column is:

1× ā = 1× b̄− 1× c̄+ 1× d̄+ 0× ē+ 0× f̄ = b̄− c̄+ d̄ (3.2.8)

This equation describes two possible cases, that are illustrated in Figure 3.5. Note
that the only difference between the two cases is the direction of message flow. In
Figure 3.5(a), messages b, d enter the state and a, c exit it, while in (b) we have the
reverse situation. The choice between these two possibilities is made by employing
the timestamps of message occurrences to establish order relationships.

The matrix is to be interpreted as follows: we consider each column at a time. If for
row k and column l the value ikl is 0, then the message type corresponding to that row
is not correlated to the message type associated with column l. Thus, each column
expresses via a proper linear equation the correlation between the corresponding

57

Figure 3.5: Graph-represented equivalent of a linear equation where incoming mes-
sages (a) become outgoing (b).

Table 3.3: General form of the correlation matrix with method result.
a1 a2 am−1 am

a1 0 i1,2 i1,m−1 i1,m
a2 i2,1 0 i2,m−1 i2,m
...
...
...
am−1 im−1,1 im−1,2 0 im−1,m
am im,1 im,2 im,m−1 0

message type and the other message types. Note in Table 3.3 that the diagonal values
of the correlation matrix are always zero. This is done arbitrarily since the correlation
between a message type and itself is always valid, thus not relevant. Furthermore,
experiments have shown that for a correlation to be correctly estimated, the coefficient
values ai are to be found in the interval: 0.91 < ai < 1.09.

Table 3.4: Single occurrence vector
a

a 0
b +1
c −1
d +1
e 0
f 0

58

Table 3.5: Occurrence log of sample protocol in Figure 3.6
a b c d e
10 5 5 3 2
12 7 5 3 4
15 8 7 5 3
20 13 7 9 4
31 14 17 8 6

3.3 Correlation and discovery: a use-case example

Figure 3.6: Use-case for correlation and business protocol discovery.

In the delta correlation method, not the naive or improved naive versions, if i
stands for the number of rows and j for the number of columns, then for the correlation
algorithm to correctly succeed, the data matrix must respect the condition i < j. This
condition was first discovered empirically during experiments. The mathematical
reason for this condition does exist, as the following example shows. Let us illustrate
how the approach achieves the correlation of messages and protocol discovery using
the following example.
Example 2 Consider the simple protocol in Figure 3.6. Table 3.5 shows the
occurrence log deduced from message logs issued by the protocol in Figure 3.6. When
the algorithm runs on the first three rows of this log, we obtain the resulting matrix
in Table 3.6. On the other hand, when the algorithm runs on the entire log, we obtain
the resulting matrix in table 3.7. Only now we observe that the result corresponds to
the expected solution. Thus, we observe that the condition i < j is necessary because
it provides the most convergent solution that the LSF method can find on a rank
deficient occurrence log.
Starting from the correlation matrix in Table 3.7 we obtain the linear system shown in
Equation 3.3.1. This linear system leads to the straightforward states shown in Figure
3.7. Equation 1 is translated into the first state (Figure 3.7(a)), while equations 2,

59

Table 3.6: Matrix of coefficients computed from the first three rows of Table 3.5
a b c d e

a 0 1 1 1 1
b 1 0 0 0 0
c 1 -1 0 -1 -1
d 0 0 -1 0 -1
e 0 0 -1 -1 0

Table 3.7: Coefficient matrix computed from the entire log in Table 3.5
a b c d e

a 0 0 1 0 0
b 1 0 0 1 1
c 1 0 0 0 0
d 0 1 -1 0 -1
e 0 1 -1 -1 0

4, 5 provide the state shown in Figure 3.7(b) and equation 3 gives the state (c) of
the same figure. From the SLE in Equation 3.3.1 we see that b̄ = d̄ + ē and the log
timestamps of b always precede those of d and e. Thus, the only possible outcome
that unifies these three states is the one already shown in Figure 3.6.
Loops are easily identified by the fact that the coefficients of message types generated
by loops have an absolute value much greater than 1. This is due to the fact that the
number of executions of a loop is in general higher than those of linear transitions.
In addition this number of executions is independent from the number of executions
of the other sequential transitions.

1. ā = b̄+ c̄

2. b̄ = d̄+ ē

3. c̄ = ā− d̄− ē
4. d̄ = b̄− ē
5. ē = b̄− d̄

(3.3.1)

60

Figure 3.7: States obtained from (a) equation 1, (b) equations 2, 4, 5, and (c) equation
3 from the linear system in Equation 3.3.1.

Table 3.8: Impact of M on scalability and performance.
Msg. type (M) Min. MT (s.) Max. MT (s.) Avg. MT(s.)

10 0.004 0.030 0.017
25 0.010 0.060 0.035
50 0.070 0.140 0.105
75 0.190 0.280 0.235
100 0.370 0.520 0.445
200 3.170 4.960 4.065

3.4 Experiments
Synthetic data generated by a business protocol simulator were used to test the cor-
rectness and performance of the algorithms 1. Experiments were conducted to study
the scalability of delta. The influence of noise was also investigated by introducing
errors in the logs. The desired percentage of errors introduced was variable so that
the evolution of the behavior of the algorithm would be clearer. The business proto-
cols employed for synthetic data generation are of realistic sizes (up to 100 message
types and 106 web service instance conversations). The implementation of the algo-
rithm and the experiments are conducted using Matlab. Nevertheless, the migration
towards other mathematical software requires little effort.

Table 3.8 shows the experimental results on the comparative performance of the
delta algorithm versus the scalability of message types. Min. MT , Max. MT and
Avg. MT stand for respectively Minimal, Maximal and Average Measured Time.
Table 3.8 clearly proves that employing OLS for constructing the correlation matrix
is efficient. Table 3.9 depicts the same comparative performance of the algorithm but
this time it is based on the number of message occurrences. One should observe the

1The simulation tool can be downloaded at http://liris.cnrs.fr/kreshnik.musaraj/technology/ sim-
ulation/index.html. The Matlab models used as well as the source code of the algorithms can be
downloaded at http://liris.cnrs.fr/kreshnik.musaraj/technology/ws/index.html

61

Table 3.9: Impact of N on scalability and performance.
Msg. occ. (N) Min. MT (s.) Max. MT (s.) Avg. MT(s.)

1000 0.10 0.50 0.30
2000 0.30 1.10 0.65
5000 0.92 2.50 1.71
10000 2.10 3.62 5.13
50000 27.50 32.06 29.78

1000000 57.01 67.29 62.15

Table 3.10: Impact of noise on coefficient estimation with OLS
∆ #Occurrences (%) Avg. ∆ #Coefficients (%)

1 ± 0.03
5 ± 0.7
10 ± 15.7
20 ± 45.0

convergence of Min. MT and Max. MT towards Avg. MT for increasing values of
M and N .

Table 3.10 shows the impact of noise on the values of coefficients estimated using
OLS. The first column provides the difference in percentage between the accurate
number of occurrences and the value reported on the noisy occurrence log. The second
column shows the percentage of divergence between the coefficients estimated using
perfect data and the values estimated using message logs subject to missing message
occurrences. It is important to notice that, when exposed to incorrect occurrence
logs, the method will provide the correlation matrix that best fits the data. In this
sense, the resulting protocol will be adapted to each occurrence log, thus the result
will evolve as a function of the accuracy of the log. Nevertheless, noise impacts mainly
the data contained in the recorded messages, and the rate of missing messages is much
lower than the rate of incorrect data. The only exception is the case of error-prone
log software, which goes beyond the scope of the present chapter.

3.5 Summary
In this chapter we have shown that extracting the protocol model without the assump-
tion of correlation information in service logs is a difficult, yet useful task. In order
to achieve this objective we have presented an approach that employs only the exis-
tence of message occurrences and their corresponding timestamps. We have proven

62

that with only two message attributes, namely the message type and timestamp, it
is possible to extract the non-oriented graph modeling the protocol. This result is
obtained through an equivalent representation of a business protocol in the form of a
simultaneous linear system. We have shown that the least squares method is capable
of obtaining this linear system, while at the same time being noise-resistent. Finally,
one should note the restriction that currently exists regarding this approach. Indeed,
a message type must appear only once in order for the approach to provide a correct
result. We are already investigating a solution for this limitation. Meanwhile, the
delta algorithm offers a solution to the issue of correlating messages related to the
corresponding states in the business protocol.

Chapter 4

Time series analysis of log data

In this chapter we present a variable grain-size algorithm that extends the usage of
temporal operators, and based on the study of cardinality properties, it allows the
correlation between timeseries. The approach does not operate on any assumption
on the existence of extracted facts and is capable of inferring temporal data facts and
handling the pre-processing step.

4.1 Preliminaries

4.1.1 Notations and definitions
The term time series is defined as the time course of a set of variables under controlled
conditions. A temporal pattern is the time interval in which one or more time series
assume a behavior of interest. The T1 notation will denote the type of time series
based on simple timestamps. This corresponds to logs that are timestamped using a
relative clock. The T1-type time series provides a graph modeling two-by-two message
relationships with Allen operators. The T2-notation represents the type of time series
that are based on the temporal evolution of the number of message occurrences. This
type corresponds to logs that are timestamped using a universal clock. The T2-type
time series provides proof on temporal order and the correlation between message
types based on the message flow density of occurrences. The terms time interval and
time window will be employed as synonyms of a continuous and finite time duration
precisely defined on the timeline. Noise will designate all the different types of imper-
fections occurring in logs, whatever their cause and nature. Uncertainty represents
the notion of confidence attached to different sources of information when different
values exist for the same variable or attribute.

63

64

Definition 6 A universal clock is the absolute timeline that follows the flow of
the real-world time. Its implementation corresponds to the system clock, mainly in
the UTC format.

Definition 7 A relative clock is one that is initialized at the runtime start of a WS
instance. Its existence and implementation are not real. The relative clock is used
only to obtain T1-type data for determining the message relationships based on the
Allen operators. A relative clock is obtained by shifting universal clock timestamps
by the timestamp value of the first message to occur in the protocol instance.

Note: Determining the first message to occur in the protocol instance is not
straightforward and we will show how to achieve it in the following.

Definition 8 The rate of the occurrence of a message type is defined as the ratio of
the number of occurrences #Mtype for that message type, per time unit Tunit. Hence
we denote:

R = #Mtype

Tunit
(4.1.1)

Definition 9 The flow density D of a message type is defined as the ratio of the
number of occurrences #Mtype for that message type, per time interval Iid. Formally
speaking:

D = #Mtype

Iid
(4.1.2)

Definition 10 A piecewise linear function (PLF) is a segmented mathematical
function that is composed of several linear functions, each function being defined on a
given interval of values. The algebraic notation requires the linear function equation
to be provided altogether with the interval of values in which the given linear function
applies. Intuitively, a PLF can also be defined as the set of points that separate two
intervals from one another.

Proposition 2 Let M be a message, #Mtype ∈ N the number of message occur-

rences, and Iid the identifier value of a temporal (sub)interval. The values of flow

density D are described by a positive, integer-valued, discrete domain and discontin-

uous function:

f : N→ N

65

f(t)→ #Mtype

Proof. The number of occurrences of messages during a temporal subinterval is ob-

viously a zero or positive integer value. The temporal interval being divided into a

constant number of subintervals, then the domain of the function is discrete. Since

the domain of the function is discrete, so will be the values of f . Thus, f as a

discrete-valued function is therefore discontinuous.

Proposition 3 The real-valued function f obtained by connecting the measured val-
ues of flow density D of a message type Mtype is a continuous PLF , also differentiable
except at D points.

Proof. The segment which connects two values of D is real valued and a linear func-

tion, thus a single segment is always continuous and differentiable. Since all the

segments composing the PLF are, given the definition of f , connected at the com-

puted values of flow density D, the PLF is entirely continuous. On the other hand,

the derivative of F at the connection points is no longer valid. Informally this is due

to the fact that the gradient (slope) of two adjacent segments is different and abrupt

in change.

Affine transformation

An affine transformation corresponds to shifting the origin of the coordinate system
according to a specified vector. It can also be interpreted as shifting each point of a
plane following the same unique vector. An affine transformation is verified iff: (i)
lines are transformed into lines (the co-linearity property) and (ii) the distance ratios
between points remain constant after the transformation. An affine transformation
can also be expressed as combined vertical and horizontal shifts.

66

Definition 11 Let LA, LB be the occurrence log entries for message types A and

B, P =
x
y

 ∈ LA, Q =
x′
y′

 ∈ LB be two points of type T2 time series. The affine

transformation (AT) of P into Q is formally computed as:
x′

y′

1

 =

1 0 Sx

0 1 Sy

0 0 1

×

x

y

1

 (4.1.3)

In Equation 4.1.3 we notice the horizontal shift constant Sx = x′ − x and the
vertical shift constant Sy = y′ − y. For more details on affine transformations, the
reader is referred to [153].

4.1.2 Problem statement
Now that we have introduced the notations and basic definitions along with the
required motivation, we may provide a rigorous definition of the issue of protocol
mining from activity logs in a realistic scenario.

Context: Let ML be a message log, i.e a log of message occurrences. Let m ∈
Msg be a message type. By definition, only the message label and the timestamps are
available from ML. The occurrences of messages are timestamped using a universal
clock.

Problem: Is it possible to reconstruct the business protocol of the web service that
generated the log ML in the first place?

4.2 Discovery heuristics and approach

4.2.1 Theoretical considerations and methodology
Let DA(t) and DB(t) be two time series describing the values over time t of the
flow density functions of A and B. We recall that the flow density function is de-
fined by the set of points that are computed from the occurrence log OL by the
computeF lowDensityData algorithm. The cardinality of DA(t) and DB(t) is the
same for all message types. In other words, at a given interval, each message type
has a unique value of flow density.

67

Property 1 Let DA(t) be the flow density function of message type A. Let fDA
(t)

be the PLF constructed from DA(t) according to Definition 10. There is a defined
function F : fDA

(t)→ DA(t) such that F is surjective.

Proof. Since each fDA
(t) is obtained from a flow density function DA(t), then the

conclusion is straightforward that for every fDA
(t) there is at least one flow density

function DA(t) such that F(DA(t)) = fDA
(t). F is then, by definition, a surjective

function.

To each PLF corresponds at least one flow density function, i.e. several FD func-
tions may define the same PLF , but every PLF is defined by at least one existing
FD.
Remark: We will see how in reality this function is bijective, by studying the gran-
ularity level and noise effects on the differentiation between two PLFs.

Up to this point, we announce another property of the flow density function that
is mandatory for the approach to work correctly.

Property 2 Let Pi ∈ DA(t) and Qj ∈ DB(t) be two flow density values of their
respective message type. There is a bijective function i : DA(t) × DB(t) → (Pi, Qj)
that correlates each point Pi to a unique point Qj based on their indexes i and j.

Proof. Consider Pi ∈ DA(t) and Qj ∈ DB(t). We have already shown that to each

subinterval value (x axis) corresponds an image of a flow density function. In other

words, all flow density functions are defined at every subinterval value. Two cases

are possible when correlating the points of DA(t) and DB(t). Either Pi and Qj are

located in the same subinterval, or they belong to different subintervals. In the first

case, the bijectivity of the function i is simply a consequence of the fact that the

values indexing subintervals are natural integers, thus being unique. In the second

case, to each point of Pi corresponds another point located at a fixed distance. More

formally:

∀Pi ∈ DA(t),∃Qj ∈ DB(t), j − i = ∆,∆ = Const. (4.2.1)

68

Since ∆ is fixed, and since all interval identifiers are unique, to each value i

corresponds only one image i+ ∆. This is by definition a bijective function.

This property simply reflects the fact that the number of values reflecting the
number of occurrences is the same for message types. Intuitively this means that
since the number of sub-intervals is the same for all flow density functions, then the
non-null values will be in the same number too (See Definition 9 and Proposition 2).
Each time we will write (Pi, Qi, it will be assumed that the bijection has been applied
between the two points P and Q. We will say that Pi and Qi are corresponding points.
The bijective property is important because it allows to determine whether a given
PLF can be obtained by the affine transformation of another.

Nevertheless, the bijective function that correlates points of two flow density func-
tions into unique couples of points needs to be defined according to our needs. Con-
sider for example the two flow density functions illustrated in Figure 4.1. There is
no apparent way of determining the function that associates DA(t) to DB(t). If an
AT test takes place by simply coupling the points of these two functions based on the
same interval value, the test will obviously fail. Yet, there is an affine transformation
that perfectly matches DA(t) into DB(t).

The solution to this problem comes from what we will call in this manuscript
the ”spike” phenomenon. A spike is observed as a sharp and considerably important
change between two consecutive values of a FD function. Spikes occur naturally
during the activity of a Web service, and are most often due to sudden changes in the
traffic load of a Web service server. The most known (and worst) occurrence of spikes
are bottlenecks in a server, but they generally occur for many reasons. For example,
it is easy to explain why the traffic of users exchanging messages with the server of a
stock exchange broker drops almost dead after 8 o’clock PM. Once the stock market
closes at this hour, no service is available on the stock values (except services running
for maintenance and backup purposes, not available to common client brokers).

Let us detail the procedure that allows to define the correlation function i :
DA(t) ×DB(t) → (Pi, Qj) by employing the spike events. First, we detect the high-
est differences between two consecutive points of DA(t). These differences will be
marked with the δ symbol in the upcoming illustration. Then, we identify the in-
tervals between which these extreme differences of flow density values occur. We
compute the distance (in number of subintervals) separating the most important
spikes. Then we iterate the same sequence of operations for DB(t). If the distance
between spikes for DA(t) is the same as those for DA(t), then this distance will define
i : LA × LB → (Pi, Qi+∆), where ∆ corresponds to the computed distance between
spikes. Note that using LA and DA(t) is equivalent, since the value of LA at a given
row is equal to the image of the same subinterval value of DA(t). The newly defined

69

function means that at a point P of DA(t) whose x coordinate is a (Px = a), cor-
responds the flow density value Q of DB(t) at the subinterval a + ∆ (Qx = a + ∆).
The whole process of determining the δ and ∆ values is illustrated in Figure 4.2. On
the other hand, if the spikes of DA(t) are entirely disconnected from the spikes of all
other flow density functions, then A is marked as a potential candidate for a loop.

One should beware of an incorrect interpretation that might lead to a misunder-
standing of the correlation function. Detecting the order of spikes will never allow to
determine the order relationships between message types. First, the distance between
two spikes is accounted for, even if one of the spikes is a positive difference, and the
corresponding spike on the other function is a negative difference. Second, even if
spikes are of the same sign of difference, detecting that the spikes of DA(t) occur
before their corresponding spikes on DB(t) is by no means sufficient to state that the
PLF of A can be obtained from an affine transformation of the PLF of B. Figure
4.2 is an obvious counter-example of such a misunderstanding.

Figure 4.1: Illustration of the problem of correctly defining the bijective function
that correlates points for the assessment of an affine transformation between two flow
density functions. The points circled in red need to be excluded and express the shift
to be taken into account by the bijective function.

70

Figure 4.2: Illustration of how spikes allow to define the distance separating points
of two flow density functions that are to be correlated.

Based on Proposition 3, we know that to the function of flow density D of a given
message type corresponds a unique PLF . In other words, each PLF describes the
temporal and quantitative dynamics of a message type. Therefore, the problem of
correlating message types m1 and m2 can be formulated as:
”Establish whether the PLF of m2 can be obtained from a translation transformation
of the PLF of m1 (or vice-versa)”.

Euclidean geometry provides many translation transformations. Not all of these
allow to reach our objective. The transformation that we need should be capable, in
principle, to shift a PLF in the direction given by a two-dimensional vector. Simply
put, all the coordinates of the points of a PLF will be modified according to fixed
values. By doing so, the distance between the points of a PLF will remain the same,
and consequently, the gradient of every segment of the PLF will be the same too.
The affine transformation provides such capability. Figure 4.1 that we have already
presented shows also a particular case example of an affine transformation.

Equation 4.1.3 in Definition 11 provides us with a straightforward way to assess
whether a given PLF may be the result of the AT of another PLF . To achieve
this we proceed as follows. We take two corresponding points of type T2 time series,

71

X =
x1

y1

 ∈ DA(t), Y =
x2

y2

 ∈ DB(t). From points X and Y we compute

Sx = x2 − x1 and Sy = y2 − y1 according to Definition 11. Then, for all points
X ∈ DA(t), we compute the AT of those points using Equation 4.1.3.

x3

y3

1

 =

1 0 Sx

0 1 Sy

0 0 1

×

x1

y1

1

 (4.2.2)

If DB(t) can be expressed as an AT of DA(t) (or vice-versa), one would expect that

Z =
x3 = x2

y3 = y2

 = Y , within a certain tolerance degree in order to count for potential

imperfections.
In the case of business protocols, several types of AT may occur. We define these

types as follows.

Definition 12 Let DA(t), DB(t) be two time series describing the values over time t
of the flow density functions of A and B. DA(t) and DB(t) will be labeled elementary
flow density functions. If verified, the AT between DA(t), DB(t) is a first-order
affine transformation (FOAT). A FOAT is defined as an assessed and verified
AT between only two elementary PLFs.

Definition 13 Let DA(t) = DA1(t) + ...+DAm(t), DB(t) = DB1(t) + ...+DBn(t),
m,n ∈ N, be the flow density functions defined respectively as the sum of the flow
density functions of message types A1 through Am and B1 through Bn. DA(t) and
DB(t) will be labeled a composed flow density functions. A multiple-order affine
transformation (MOAT) is defined as an assessed and verified AT between two
additive groups of PLFs, in this case one between DA(t) and DB(t).

One should observe that the sum of two or more FD functions corresponds to
the FD of a message type that is equivalent to the merging of the initial message
transitions.

Note: If m = n = 0 then we see that a FOAT is a particular case of a MOAT .

Flow density and granularity level effects

According to Definition 9, flow density is defined as the ratio of the number of occur-
rences counted for a message type, per time interval. This time window on the other
hand has an arbitrary length. It might have a length value of two seconds or two days.

72

It is obvious that this will have drastic effects on the flow density values. Moreover,
when considering a message log of a web service, the message labels and timestamps
cannot be used directly. Algorithm 4.2.1, illustrated below, is mandatory for obtain-
ing the flow density values, while accounting for the desired granularity level, i.e. the
length of the time window. The most important parameter of the algorithm is the
variable IntervalLength.

It is obvious that the smaller the window size, the greater will be the number
of values of the flow density functions. A very small sub-interval length will yield a
high frequency-like signal function. In contrast, when the interval size increases, the
PLF will continue to flatten until, at a given value (only 2 intervals are computed),
the PLF becomes a purely linear function defined by one single equation on the con-
sidered timeline. Both of these two extreme situations are to be avoided during the
discovery process. The first case (minimal length) increases the computation time
of D in a futile way. This time may be potentially very high for very long duration
timelines (months, years). The second case (maximal window length) will provide an
over-simplifed version of D that is useless for determining the temporal order of mes-
sages. Nevertheless, variations of these cases present advantages as we will see in the
following. Figure 4.3 provides a very clear illustration on the impact that the num-
ber of sub-intervals have on the output of the Algorithm computeF lowDensityData.
This Figure plots the flow density function of the message type login of the Trading
Web service (shown in Figure 1.4). The distinction is obvious between Figure 4.3(a),
where the number of sub-intervals is set to 195, and Figure 4.3(b), where the same
parameter is set to 20. In the second case, assessing the affine transformation with
another flow density function will be far easier, but detecting the temporal order will
prove to be quite difficult, whereas in the first case we have the opposite situation.

Definition 14 Let Ws be the time window size and Tt be the average transition
time of messages during the execution of the web service. The zoom value (Zv) of
the flow density time series is defined by the following ratio:

Zv = Tt
Ws

(4.2.3)

Zv has a high impact on the result of the log analysis. If the window size value
Ws is lower than the time required for a transition, then the horizontal shift will be
proportional to Zv. In other words, the horizontal shift will increase proportionally
with Zv. This proportionality is always valid.

By employing a relatively high value of Zv (denoted HZv) it is possible to deter-
mine the temporal order between two PLFs involved in a FOAT . This is achieved
thanks to the horizontal shift that becomes visible at high ranges of Zv. Moreover,
using the HZv range enables the recognition of the first message type that is issued at

73

Algorithm 3 computeF lowDensityData

Require: The array of message occurrence vectors V ectorsArray
Ensure: The matrix FD with the flow density data of all messages
1: IntervalLength = 1000 //length of time window
2: NumberOfV ectors = length(V ectorsArray)
3: CVM = createCompleteV ectorsMatrix(V ectorsArray);
4: Min = min(min(CVM))
5: Max = max(max(CVM))
6: min = Min
7: for V Counter = 1 to NumberOfV ectors do
8: min = Min
9: max = min+ IntervalLength

10: SingleV ectorSize = size(V ectorsArray(V Counter))
11: SingleV ectorSize = SingleV ectorSize(1, 1)
12: MCounter = 0 //Message counter
13: NextRowIndex = 1
14: ICounter = 1 //Interval counter
15: while NextRowIndex 6= (SingleV ectorSize+ 1) do
16: CurrentV ector = CVM(NextRowIndex, V Counter)
17: if CurrentV ector ∈ N then
18: if min 6 CurrentV ector 6 max then
19: OccurrenceV alue = CurrentV ector
20: MCounter = MCounter + 1
21: NextRowIndex = NextRowIndex+ 1
22: else
23: FD(ICounter, V Counter + 1) = MCounter
24: MCounter = 0
25: ICounter = ICounter + 1
26: min = max+ ε
27: max = min+ IntervalLength
28: end if
29: end if
30: end while
31: end for

74

Figure 4.3: The impact of the number of sub-intervals(#SInt) on the flow density
functions. The PLF is (a) much more detailed with #SInt = 195, than with (b)
#SInt = 20. Observe that the number of message occurrences (y axis) is inversely
proportional to #SInt.

the beginning of the service execution. Consequently, this provides the possibility to
calculate the relative T0 time instant. The T0 time instant denotes the starting point
of the service instance execution. Determining the value T0 in a deterministic way is
extremely important since it makes possible to (i) compute the values of the T1 type
time series, and (ii) to use existing approaches that do not have this capability [130].

On the other hand, using a relatively low or medium value of Zv (denoted re-
spectively LZv and MZv) allows to determine the affine transformations with a high
confidence level. Except some variations, two main scenarios encompass the possible
cases of affine transformations:
1. Purely horizontal shift of two flow density PLFs at MZv or LZv (Sx 6= 0, Sy = 0).
This identifies message types with the same occurrence cardinality but with a tempo-
ral latency. Only FOAT linear sequences have this pattern signature. An illustration

75

of this case was already provided in Figure 4.1.
2. No AT can be directly assessed between two given PLFs unless an extremely LZv
is employed. The segments composing the two PLFs might not necessarily have the
same gradient. Virtually, only MOATs can be detected between FD functions with
a satisfactory confidence level.

An exception may be the case in which Sx = 0, Sy = 0 yet there is a FOAT
between two elementary PLFs. If such a pattern is recognized, it is a proof of log
incompleteness.

4.2.2 Time series analysis for temporal graph extraction
Let us now introduce the temporal operators that will be used to determine the order
relationships between messages involved in FOATs and MOATs.

Definition 15 Let P be a business protocol. Let ML be the log of messages of
P collected during its execution. Let DA(t) and DB(t) be two PLFs and ATM =

1 0 Sx

0 1 Sy

0 0 1

 the affine transformation matrix assessed between the two PLFs.

1. If DB(t) = ATM ×DA(t) and Sx > 0 then DA(t) BEFORE DB(t)
2. If DB(t) = ATM ×DA(t) and Sx < 0 then DA(t) AFTER DB(t)
3. If DB(t) = ATM ×DA(t) and Sx = 0 then DA(t) IDENTICAL DB(t)

Allen introduced in [5] thirteen temporal operators to express all the possible
relationships between events. Then why do we limit to three the number of operators
used in the present approach? In order to understand this, we recall that the Allen
operators are applied on sequences of occurrences. We use a specifically tailored
definition of three of the original operators, namely B (BEFORE), A (AFTER), and I
(IDENTICAL). Our definition is not based simply on the comparison of relative clock
timestamps but on the parameters of the affine transformation itself. In other words,
we do not determine the temporal relationships directly on the events (messages
in our case). Instead, we assess the temporal relationships between FD functions.
When considering the order of FD functions, only three cases are sufficient to relate
any PLFs in binary ordering. In addition, the original Allen operators describe the
relationships between time series of type T1, while in our case, we need to correctly
order time series of type T2. This limits the number of required operators to three, as
opposed to the original thirteen, thus achieving a highly accurate result with a much
lower complexity.

76

Temporal analysis for digraph-modeled service protocols

We recall that a digraph (DG) is a graph that may contain circuits and cycles, but
cannot contain loops. The most important part of digraph extraction is the recogni-
tion of sequential patterns and their correct reconstruction. If message types A and
B are located in a linear sequence, then two consequences follow: (i) the number of
occurrences of A equals that of B, and (ii) all occurrences of A take place BEFORE
their corresponding occurrences of B. In such a case, DA(t) and DB(t) will yield
identical PLFs except that DB(t) will be shifted rightwards of DA(t). It should be
obvious that this shift is due to the elapsed time between the occurrence of A and B,
since no transition is instantaneous. This case is identified by the fact that Sx > 0
and Sy = 0. In short, a purely linear sequential pattern of two messages will be
identified by a horizontal shift at MZv or HZv.

Nevertheless, detecting and reconstructing linear sequence patterns depends on
the type of the considered digraph. Major distinctions exist between two main types of
structures that generate patterns of different sequence length behavior. The following
example illustrates this point.

Consider the protocol graph shown in Figure 4.4 (a). It can only generate (ex-
clusively) sequences of message occurrences of fixed length. The protocol graph in
Figure 4.4 (b) on the other hand, can yield sequences of variable length, due obviously
to the presence of a cycle. This deeply affects the required approach. The second
case being a more complex one than the first, we focus on the distinction between two
categories: the first is the DAG type, and the second is the more generic DG type.
When we consider a DAG, we immediately observe that this graph type contains
also sequences that are not linear (i.e. of the form a1 → a2 → a3). For example the
fragment in Figure 4.4 (a) b → d → e is not linear. In order to understand how to
deal with the general pattern scenario, we recursively analyze the elementary case
of linear DAG, and then apply deductions to the more generic digraph type. This
elementary case of purely linear sequence graph is defined as follows.

Definition 16 Let G = (V,E) be a graph. G is a directed acyclic graph of type
DAG2 if ∀v ∈ V , d(v) 6 2.

In other words, for each node of a DAG2 graph, there must be at most two edges
with other nodes of the graph. Unless we explicitly write the maximal degree allowed
for all nodes in the graph, by means of the preceding notation. The reader should
assume that the DAG abbreviation refers to its normal definition without any degree
restriction.

Lemma 3 Let P be a protocol modeled using a DAG2, in which message oc-
currences are recorded using timestamps of type T2. Consider the order operator

77

(a)

(b)

B

C

D
E

F

A

B

DE

CA

Figure 4.4: Slight changes in the FSM to be discovered may have consequences on
the difficulty level of the task. FSMs with less connections between states are not
necessarily the easiest to infer, despite their intuitively simpler structure.

BEFORE (also denoted <), its inverse AFTER (denoted >), and the equality oper-
ator IDENTICAL (denoted =). Let S be the set of flow density functions associated
to each message type of P . The order operator < applied to the elements of S defines
a strict order. In addition, this strict order is total.

Proof. A formal proof of this lemma would require a formal check of the properties

of transitivity, antisymmetry, and totality. In our case, a simpler proof is provided

by the structure of a DAG2. Since in a DAG2 all message types are already ordered

in a linear sequence, separated by vertices, then the temporal operators in Definition

15 also define a strict and total order between the message types of a DAG2.

Lemma 4 Consider the set of message types M. The order operator < appplied
to the elements of M defines a total and strict order.

78

Proof. Property 2 proves the existence of a surjective function between S and M

(via the existing transitivity property S, Dm,m∈M andM). Moreover, S and M are

linearly ordered sets. Hence, S and M are order isomorphic, and therefore have the

same order type. S being strictly and totally ordered, one can state the same thing

about M (Lemma 3).

Lemma 5 Consider P a protocol modeled using a DAG2 andM the associated set
of message types. Then, (M, <) divides the elements of M into a partition.

Proof. The proof of this lemma is supported by Lemma 3. Indeed, since the order

in a DAG2 is strict and total, the sets containing each a given message type of

this graph type will form a partition. If this was not the case, then it would imply

that the message types in a DAG2 are not strictly and totally ordered, which is a

contradiction.

Notice that in the case of Lemma 5 each set of the partition is composed of one
single message. This lemma appears to be too obvious, yet we will immediately see
why this partitioning of M is fundamental.

Definition 17 Let G = (V,E) be a graph. A super-node (abbreviated s-node) is a
newly created node, whose label encompasses two or more nodes vi ∈ V .

Definition 18 Let A1, · · · , Am ∈ M be m message types. An abstract message
type AM is a subset Ai ⊆M.

In other words, an abstract message type is a label identifier for a group of mes-
sage types. All the properties of individual messages composing an abstract message
are thus inherited by the latter. Occurrence log values of the elements of AM are
summed and their timestamps of occurrences are merged together.
Remark: The label of an abstract message type is also the label of an s-node.

Theorem 6 Let G = (V,E) be a DG2+ (G ∈ DG2+ ↔ G ∈ DG−DG2). There exist
(i) a minimal set of nodes and s-nodes, denoted Smin, (ii) a corresponding minimal
set of message types and abstract message types, denoted Mmin such that G can be
decomposed into purely linear sequences.

79

Proof. This theorem is a direct consequence of the model based on simultaneous linear

equations, that was introduced in the previous chapter. Indeed, each linear equation

of a simultaneous linear system represents a linear sequence. On the left side of such

an equation we have a message type, and on the right side of the equation we have

either a message type, or an abstract message type. The latter is formally defined in

Definition 18 as a set of two or more message types. In other words, once that the

simultaneous linear system of a protocol is constructed using the delta algorithm, we

immediately obtain the decomposition of G into purely linear sequences, as described

in this theorem.

Definition 19 Let G = (V,M) be the DG modeling a protocol P . The temporal
graph T = (Smin,R) of G is a potentially non-connected, directed graph defined as:
- Smin = {s|s ∈ M} : the set of nodes and s-nodes. The labels of nodes and s-nodes
are subsets of message labels. The edges of G are transformed into element nodes in
T .
- R : the set of arrows connecting those elements of Smin between which the temporal
order relation (<,>,=) is defined.

Corollary 4.2.1. Consider G of Theorem 6. If G is a DAG2 then Smin = V

Corollary 4.2.2. Consider G of Theorem 6. The order < between the nodes in each

linear sequence of the decomposed graph G is strict and total.

Corollary 4.2.3. Let T = (Smin,R) be a temporal graph as defined in Definition 19.

The linear sequences stated in Theorem 6 are identifiable as the connected subgraphs

(connected components) of T .

Definition 20 Let T = (Smin,R) be the temporal graph of the digraph G = (V ,M)
modeling a protocol P . The order matrix MR is the equivalent array notation of T .
Formally speaking:

MR(i, j) = x, x ∈ {A,B, I, U}, i, j ∈ Smin (4.2.4)

80

The order matrix MR is very similar to the adjacency matrix of T , but it differs in
the sense that it provides not only the information on the existence of edges (0/1 as
in the case of the adjacency matrix of an (non-oriented, non-directed graph) between
nodes and s-nodes, but also the exact order operator validated between two (s-)nodes.
MR is very useful to compute and visualize in a compact format the result of the detec-
tion of ATs between PLFs and also the order relationships between the sets of nodes.

Lemma 7 Let G = (V,E) be a DG2+. The repartition of v ∈ V into the elements
of Smin is not a partition.

Proof. It is sufficient to employ the following counter-example: A message type may

often be common to two equations in an SLE. Thus, this message type would be an

element of more than one set of the partition, which contradicts the initial hypothesis

of the existence of a partition of v ∈ V into the elements of Smin.

Lemma 8 Let Smin be the minimal set of nodes and s-nodes of a DG2+. (Smin, <)
is not a totally ordered set.

Proof. The comparability condition is not satisfied since in a DG2+ we encounter

structures, such as for instance composed loops displayed in Figure 3.1, in which

message types may not always be compared using the three order operators AFTER,

BEFORE, and IDENTICAL.

Property 1 and Lemma 3 allowed us to deduce Lemma 4, which in turn shows that
once FOATs are assessed, message types can always be strictly and totally ordered.
Lemma 5 proves that this method solves the case of DAG2 discovery. Lemmas 7
and 8 clearly state that a DG cannot be discovered by assessing the discovery of
FOATs only, and that detecting and mining MOATs is mandatory for a complete
DG extraction. Theorem 6 provides the solution for extending the solvability proof
of DAG2 to DAG2+. Corollary 4.2.1 of Theorem 6 unifies the elementary case with
the generic case of the recursive study of DG mining analysis. Corollary 4.2.2 of
Theorem 6 assures us that despite the lack of a partial order between the elements of
Smin (proven in Lemma 8), the message types in the linear sequences are strictly and
totally ordered. In conclusion, if we succeed in obtaining Smin and detecting MOATs,
Theorem 6 and its Corollary 4.2.2 provide us with the theoretical framework that will
enable the total discovery of a DG.

81

A DG may contain cycles that disrupt the total and strict order defined by <.
To understand this, let us consider once again the cycle in Figure 4.4 (b). From this
figure we can write {a} < {b, d, e} < {c} and {d} < {e}, but nothing can be stated on
the cycle b→ d→ e without prior knowledge of this protocol graph fragment. If we
check the affine transformations of first order between a, b, c, d and e, the detection
will result in only two ATs that can be assessed: {a} < {c} and {d} < {e}. This
is quite visible when the PLFs of D{a}(t), D{c}(t), D{d}(t) and D{e}(t) are plotted
from experimental data in Figure 4.5. Notice in this figure that since there exists a
shift between flow density functions, the functions do not match on the entire value
interval, but this is not a sufficient reason to invalidate the existence of an affine
transformation.

Figure 4.5: Illustration of (a) density flow functions of messages a, b, c, d and e, (b)
assessment of a FOAT between a and c, (c) FOAT validation between d and e, issued
from benchmark service protocols.

82

At this stage we know how to detect FOATs starting from flow density data,
but acquiring the targets of MOAT candidates remains an open issue. Let us focus
once again on Definition 13: (i) ”A MOAT is defined as an assessed and verified AT
between two additive groups of PLFs...” and (ii) ”DA(t) and DB(t) will be labeled
a composed flow density functions”. The first sentence indicates that a MOAT will
be tested only in the presence of at least one flow density (FD) function which is
the sum of two or more elementary flow density functions. Obviously, an elementary
flow density function is simply a function corresponding to a single message type. A
composed flow density function is thus the algebraic sum of the flow density values
of several message types. This algebraic addition is made according to the bijective
function i : D1(t)×D2(t)→ (Pi, Qi), introduced in Property 2, that correlates all the
points of the flow density functions that need to be summed together. The second
sentence of the definition citation tells us that the MOAT will be valid as long as the
additive groups of PLFs are considered as such, i.e. splitting the composed PLF
will make a MOAT void and null. If we employ the terminology of Definitions 17 and
19, we may state that a MOAT will define the edge label (i.e. the temporal order
operator) between a s-node and a node, or between two s-nodes. Here we see the
strong equivalence connection between a s-node, a composed flow density function,
the connected components of T in Corollary 4.2.3, and the linear sequences of a
decomposed protocol graph in Theorem 6. Indeed, a s-node corresponds exactly to
the set of message types that define the flow density functions that are summed to
form a composed FD function. For example, if ∆ = {A,B,C} is a super-node then
we have unavoidably D∆(t) = DA(t) +DB(t) +DC(t). Moreover thanks to Corollary
4.2.3, we see that a couple s-node/s-node or node/s-node connected via an edge, is the
inverse graph notation of a linear sequence. For example, if we consider the simple
temporal graph in Figure 4.6 (a), in which A and B are two s-nodes, and the linear
sequence constructed from Smin shown in Figure 4.6 (b), then it is clear that the two
notations are symmetrically the same.

Proposition 3 states that the PLF obtained from a flow density function DM(t)
is continuous, and also differentiable except at the definition points of DM(t). This
means that a composed flow density function will also yield a composed PLF having
the same properties as an elementary PLF. As a result of the whole analysis, we
deduce that a MOAT can be expressed and tested in exactly the same way as a
FOAT . Only in this case, if we write MOAT ({A,B})↔ FOAT ({A,B}), one must
not lose sight of the fact that A and B can never be simultaneously message types in
the same expression. At least one of them is the label of a s-node, if not both. An
illustration is depicted in Figure 4.7 based on the DG protocol fragment provided in
Figure 4.7 (b). The computation method for assessing a FOAT is therefore identical
to the method for validating a MOAT . Nevertheless, one must keep in mind that
the semantics associated to the parameter labels are strictly different.

83

A B

(a)

(b)

<

BA

Figure 4.6: Example of (a) two nodes in a temporal graph ordered via the label of the
edge that connects them. The direction of the arrow indicates the order to be applied.
(b) the linear sequence in Smin that is equivalent to the connected component.

One last obstacle needs to be addressed in order to complete the basis of DG
discovery. In order to validate the existence of MOATs from flow density data,
we need to compute the composed PLFs by adding the elementary ones. Given n
message types for a protocol that is to be discovered, the complexity of computing
all the possible composed flow density functions is O(2n). Therefore, computing all
the combinations of additive functions is definitively not a good idea. In the case of
FOATs on the other hand, the number of AT tests for 1-to-1 ordering is n(n−1)

2 thus
yielding a complexity of O(n2) which is an acceptably low value for n = 50. But
then, how to identify the exact additive functions to be used? What defines the only
MOAT candidates that are worth to be tested? This is where the delta algorithm,
introduced previously, comes into play. We recall that the equations of an SLE
established through delta describe the quantitative dynamics of the flow of message
occurrences when all logged instances of a Web service are merged together. An
equation is the equality between the sets of message occurrences. When we discussed
the granularity level effects in Section 4.2.1, we stated that horizontal shift alone of 2
PLFs atMZv or LZv (Sx 6= 0, Sy = 0) identified equal occurrence cardinalities shifted
because of a temporal latency. This is the unique pattern of FOAT linear sequences.
As a consequence, obtaining the equations that provide the correct combinations of
message types having equal occurrence cardinalities puts us in the optimal position
for assessing MOATs between the PLFs of abstract messages.

Let us show with an example how delta solves the problem of obtaining s-nodes
from abstract messages, therefore allowing us to check for MOATs and define all the
temporal order operators existing between nodes and s-nodes. Consider the protocol
shown in Figure 4.8. Notice that this example contains a cycle: (F → E → D), and

84

1) 2)
FOAT(A,C)
FOAT(E,D)

MOAT({A,E},{B})=FOAT(F,B)
MOAT({B},{D,C})=FOAT(B,G)

B

DE

CA

Figure 4.7: An illustration of the computational equivalence between a FOAT and
a MOAT . Once that abstract message types (labels) are introduced in the notation,
only the semantic difference between the label of a message type and abstract message
type of a s-node remains.

a circuit: (B → E → C). Thus the protocol has the complete profile of a DG despite
its simplicity.

First let us present the discovery result of delta upon this protocol. The resulting
SLE is provided in Equation 4.2.5. If we run our method on the flow density data of
message types, only one FOAT candidate will be eventually assessed: {A}, {G}. We
will now focus on how delta reveals the MOAT candidates.

1. Ā = B̄ + C̄

2. C̄ + F̄ = Ē

3. B̄ + Ē = D̄

4. D̄ = F̄ + Ḡ

(4.2.5)

As a matter of fact, MOAT candidates are immediately revealed by the equations
composing the SLE in Equation 4.2.5. In other words, each equation indicates the
message types, and therefore the corresponding flow density functions that need to be
merged in order to obtain such PLFs that only horizontal shifts (within the appropri-
ate Zv range) will be observed. One must be careful not to erroneously consider (or
interpret) this procedure as one of data adaptation. Employing data for obtaining

85

Initial state

Terminal state

Legend
B

C D

D

FA

G

Figure 4.8: A protocol sample modeled by a DG, thus containing a circuit and cycle.

the list of MOAT candidates is a process of pruning the research space of MOAT
candidates by an exponential factor, therefore dramatically improving the efficiency
of the AT detection solution.

The first step before continuing is to rewrite each equation of the SLE containing a
negative-valued variable, such that every single variable has a positive sign. For exam-
ple, if an equation comes in the form X = Y −Z we rewrite it as X+Z = Y . This of
course is algebraically the same equation. The rewriting operation is not mandatory,
but still it is easier to interpret the abstract messages and s-nodes when their message
labels are of the same sign. Moreover, Definition 13 uses positive-valued functions,
and in the preceding chapter we saw that employing only positive signs in an equation
of a SLE made easy the usage of the conventional identification of messages entering
a protocol state (variables on the left of an equation) from those exiting the same
state (variables on the right of the equation). Let us continue with our list of MOAT
candidates: MOAT ({A}, {B,C}),MOAT ({C,F}, {E}),MOAT ({B,E}, {D}) and
MOAT ({D} , {F,G}). The next step consists of constructing the equivalent ab-
stract messages. Given an equation, each side of the equation presenting more than
one variable will be replaced by a single new variable that will be created and stand
for the label of a new abstract message. In this example we obtain Equation 4.2.6.

1. MOAT ({A}, {B,C}) = FOAT ({A}, {H})
2. MOAT ({C,F}, {E}) = FOAT ({I}, {E})
3. MOAT ({B,E}, {D}) = FOAT ({J}, {D})
4. MOAT ({D}, {F,G}) = FOAT ({D}, {K})

(4.2.6)

Up to this point, all that remains to be done is to run the algorithm for assessing
the FOATs between these variables. This will determine the temporal relations be-
tween them, something that the delta algorithm simply couldn’t provide. For example

86

FOAT ({A}, {H}) = ” < ”↔ {A} BEFORE {H}.

Temporal analysis for multigraph-modeled service protocols

A multigraph (MG) is a digraph that contains loops. Despite being intuitively a
slight modification, loops are important in process and service protocol mining. Let
us consider the following protocol modeled using the MG of Figure 4.9 in which we
introduce a loop transition.

Initial state

Terminal state

Legend
B

C D

D

H

FA

G

Figure 4.9: A protocol sample modeled by a MG, thus containing not only circuits
and cycles, but loops as well.

The existence of loops in a protocol requires a different approach of interpreting
the result. The loop transition will be labeled as H. In this case, the creation of
a new label required by the existing approach does not solve the problem. This is
because the very nature of the loop transition is such that no matter how we sum
its occurrence vector with the occurrence vectors of other messages, its values will
always be different from all the other PLFs. Therefore, no affine transformation can
be deduced and only one indirect solution remains. Once that delta detects that H
is a loop, we need to establish its precise location in the graph. To achieve this we
exploit the influence of the loop on the flow density functions of the messages that
are located after the loop node. One must pay attention to the fact that H being a
simple loop, i.e. it enters and exits the same state, it can be be connected to any state
if we use only the SLE solution, since adding H̄ on both sides of an equation works
for every equation! When the loop message H is followed during the execution of a
Web service protocol, it is obvious that it will introduce a time latency between the
occurrence time of D (the message type entering the loop node) and the occurrence
time of F and G (the message types exiting the loop node). Moreover, This latency

87

(delay), will necessarily be proportional to the number of times the loop is executed
in a row during the execution of a single protocol instance. So, one should expect
the PLF of H to delay (shift rightwards) the PLFs of following messages. This may
not be visible, unless we use a very high Zv. With a HZv we observe that the flow
density of messages following a loop is inversely proportional to the flow density of
the loop itself. In addition, the PLF of G will be shifted on the right much more
compared to the PLFs of say, A and B. In this case, the value of Sx will be greater
and most importantly, even variable. In conclusion, a very high Zv is needed only
for locating a loop, but to assess the rest of the protocol, a MZv range is needed,
otherwise Sx and Sy will be variable. To summarize, we stress that there is no optimal
Zv range. Speaking of such a range is meaningless since different Zv values must be
used according to the objective of each individual step of the Web service mining
process.

4.3 Discovery algorithms and experiments
Let us now focus on how the theoretical results of the previous sections are assembled
into algorithms, and how the implementations of these algorithms perform during
experimentation tests. Algorithm 2 is a central piece of this discovery approach since
it handles the assessment of an AT between two message types. In other words, it
can provide an answer to the question ”Provided the log data, is a given temporal
operator validated between two message types?” .

Algorithm 4 checkAffineTransformation

Require: Flow density log LA, LB for message types A and B and the Allen operator code
OperatorCode.

Ensure: The updated FOAT matrix containing the code value for the Allen operator
between A and B.

1: for all (Pi, Qi) ∈ i : LA × LB → (Pi, Qi) do

2:

(
Ri
1

)
=

xRi

yRi

1

 =

1 0 Sx
0 1 Sy
0 0 1

×
xPi

yPi

1

3: if xRi = xQi ± ε3 then
4: FOAT (A,B) = OperatorCode
5: else
6: FOAT (A,B) = 0
7: Break
8: end if
9: end for

88

Algorithm 3 allows to compute the supposed AT parameters, that will be used as
the input of Algorithm 2. In addition, Algorithm 3 addresses all the different scenar-
ios depending on, and according to, the values of Sx and Sy. Finally, Algorithm 4 is
employed in order to transform the order matrix into a temporal graph. Obtaining
the temporal graph is useful since it provides a far more readable mining result than
the array notation.

Algorithm 5 gamma

Require: Flow density log LA, LB for message types A and B.
Ensure: The assessment of a FOAT between A and B.
1: SampleSet = selectSampleV alues(LA, LB)

2: Pk =
(
xPk

yPk

)
∈ LA, Qk =

(
xQk

yQk

)
∈ LB

3: for all (Pk, Qk) ∈ SampleSet do
4: Sxk

= xQk
− xPk

5: Syk
= yQk

− yPk

6: end for
7: Sx = Sxk

=
∑#(Pk,Qk)

k=1 Sxi

#(Pk,Qk)

8: Sy = Syk
=
∑#(Pk,Qk)

k=1 Syi

#(Pk,Qk)
9: //Variance of Sxk

and Syk
are below tolerance margin

10: if σSxk
6 ε1 AND σSyk

6 ε1 then
11: if Sx > ε2 AND Sy < abs(ε2) then
12: checkAffineTransformation(LA, LB, 1)
13: else if Sx < −ε2 AND Sy < abs(ε2) then
14: checkAffineTransformation(LA, LB, 2)
15: else if Sx < abs(ε2) AND Sy < abs(ε2) then
16: checkAffineTransformation(LA, LB, 3)
17: end if
18: end if

This algorithm is thus not concerned with the discovery process itself, but with
the visualization task of the result. The present algorithms were implemented in the
Matlab programming language. Several additional algorithms were required in order
to complete the central core methods presented here with the required functionalities
and input data. Consequently, the entire set was constructed as a Matlab library1.
Extensive testing was undergone in order to see how the approach in general fitted the
discovery expectations. The tests were run on an Intel processor on a virtual machine

1The library with the source code of the algorithms and the data samples, along with the Matlab
models used, can be downloaded at http://liris.cnrs.fr/kreshnik.musaraj/technology/ws/index.html

89

with 1 GB of RAM. Table 4.1 shows the results obtained during the experimentations.

Algorithm 6 buildTemporalGraph

Require: Slabels: the set of labels that will serve as vertexes, which are provided by
delta(Occ.log), The order matrix MR with operator codes for the states.

Ensure: Graph of temporal relations between transition labels.
1: G = (V ertexes,Edges)
2: //Each edge will be identified by a label of the form BA→B where A, B are respectively

the inbound and outbound vertex labels.
3: V = Slabels
4: E = ∅
5: while NextRowIndex 6= (SingleV ectorSize+ 1) do
6: Chose a label l from Slabels
7: for all k ∈ Slabels, k 6= l do
8: if MFOAT (k, l) = A OR MFOAT (l, k) = B then
9: E = E ∪ {Bl→k}

10: end if
11: end for
12: Remove l from Slabels
13: end while

Measuring and assessing the performance of the gamma approach is more com-
plicated. This is because, as we saw in the previous sections, there are three dif-
ferent variables that evolve simultaneously and independently from one another: (i)
#MType, the number of normal and abstract message types, (ii) #SInt, the number of
sub-intervals defined in Algorithm 1, that translates the granularity of the flow den-
sity data retrieved from message logs, thus directly defining the Zv range, and (iii)
#ATEq, the number of linear equations provided by delta that need to be checked by
Algorithm 2 for their temporal relationship.

Figure 4.10 is obtained from plotting the experimental data measured during
tests.The data interpretation becomes much clearer, and new conclusions appear
when this figure is analyzed. Indeed, all experimental complexity plots remain lin-
ear, but we also notice an almost perfect alignment between the functions having
the same number of sub-intervals (#SInt), but different numbers of message types
(#MType). One can then immediately deduce that the influence of #MType on the
overall complexity is extremely limited. Hence, the most important parameter having
a consequent impact upon the complexity of gamma is #SInt. Meanwhile, we have
already explained that #SInt is in fact the direct reflect of the magnitude of Zv, so
at the end the granularity level will be the most influential factor when gamma is
deployed on real-world applications. In every case, the complexity remains strictly
linear on the magnitude of #ATEq (whose values are listed on the x axis of the plot).

90

Table 4.1: Experimental data
#MType #SInt #ATEq Min.MT(s.) Max.MT(s.) Avg.MT(s.)

10
100 45 0.02 0.04 0.03
500 45 0.08 0.10 0.087

1000 20 0.07 0.09 0.077
45 0.16 0.20 0.17

100
45 0.02 0.04 0.025
150 0.07 0.12 0.09
300 0.15 0.18 0.16

25 500
45 0.08 0.11 0.09
150 0.29 0.32 0.30
300 0.59 0.64 0.60

1000
45 0.17 0.19 0.18
150 0.57 0.62 0.58
300 1.14 1.20 1.16

1000
300 1.13 1.18 1.14
600 2.24 2.35 2.27
1225 4.38 5.52 4.70

50 5000
300 5.76 6.15 6.07
600 11.97 12.26 12.15
1225 20.40 31.96 25.45

10000
300 11.94 12.21 12.09
600 23.95 26.14 24.76
1225 43.68 46.23 44.42

1000
1225 4.53 8.13 7.03
2500 9.19 9.35 9.23
4950 18.07 18.53 18.37

100 5000
1225 24.60 25.20 27.80
2500 47.32 51.75 50.53
4950 76.32 101.47 88.75

10000
1225 46.35 49.70 47.63
2500 96.20 103.71 99.04
4950 198.56 201.56 199.30

91

Figure 4.10: Complexity evolution as a function of the number of messages types,
intervals and equations of affine transformations.

4.4 Related work
Several authors addressed the task of extracting temporal rules. Starting from the
Apriori-like technique encountered in [3] to extract sequential patterns we find another
extension in [96] which deals with the discovery of frequent episodes and episode rules.
In addition, several enriched approaches on the extraction of temporal association
rules and inter-transactional association rules are proposed [139,150].

On the other side we have the task of mining temporal rules on interval-based
data with which many peers try to deal with. [82] proposes another Apriori method
that eventually recognizes such patterns. This is done by employing a definition of
temporal patterns relying upon temporal relationships between interval-based events.
In [145], a mining technique is presented which is capable of discovering containment
relationships in series of interval events. The objective is achieved through deriving
events from numerical time series by means of a quantization step. In [88], a general
methodology encompasses the entire process of knowledge discovery in time series
databases, addressing both the preprocessing and the rule mining step.

In [35] the theory of fluent learning is employed in order to extract common

92

patterns in time series. Fluent learning is a statistical technique whose results with
multivariate time series with binary variables are considered relevant. Meanwhile, [76]
and [75] deal with mining informative temporal rules based on a set of sequences
of labeled intervals. This allows for more adaptability regarding the definition of
temporal patterns which is provided in [82]. In [149], a new method is presented for
mining temporal patterns of high frequencies. Afterwards, a deduction of temporal
rules is made from such patterns. This work is based on the research conducted in [75]
and on an algorithm proposed in [93]. We note that [93] deals with the discovery of
temporal patterns from interval-based data. A new formalization regarding the issue
of discovering frequent arrangements of temporal intervals can be found in [113]. The
method acts on a database of sequences of events, where each event occurs during a
time interval. Thus, it removes the assumption of handling only instantaneous events.

Compared to the works previously mentioned, the author in [75] suggests a formu-
lation of the problem of extracting rules from temporal patterns. This issue is very
closely related to the one described in [129]. In particular, the author proposes quali-
tative features to divide the time series into their corresponding segments. A method
is presented for mining temporal patterns from which informative rules are derived.
In [75] the issue of learning qualitative labels starting from temporal data in the form
of occurrence-times events is described. From the different techniques listed we may
cite smoothing, clustering and piecewise linear approximation. In comparison to [75],
the authors in [129] introduced a more general environment. This paper [129] deals
with several areas in the field of temporal data mining (TDM) [62, 94], that allows
one to extract qualitative labels from temporal data. Such an extraction proceeds
through a formalization of the framework upon which rely knowledge-based temporal
abstractions. By doing so the authors are capable of incorporating simultaneously the
task of episode mining and the general definition of a pattern into the same process.

Moreover, the process of deriving complex patterns is naturally contained into the
definition of complex temporal abstractions. The pattern inference process does not
have to be computed online with the rule mining step. The primary objective of the
work in [129] is to find relevant temporal rules between complex patterns based on a
set of time series. Following the ideas of [15], in [129] the process begins with raw time
series introducing a step for the extraction of an interval-based representation. The
representation is based on the formalism of Temporal Abstractions (TA). These are an
abstraction of patterns displaying a particular behavior in temporal data. In addition,
the set of abstractions of interest is constituted by following such a representation.
The framework presented in [15] was extended and enriched in [129]. This evolution
becomes visible through complex TA and a rule detection which permits rich patterns
to be located at the same time in the left and right side of the rule. Clearly, this
is an effort in dealing with problems encountered in previous proposals. Indeed, the
modeling that is taken into account is simplistic even if these proposals suggest a

93

qualitative representation of the time series [76] or achieve it through TA [15]. The
same may be stated on the patterns from which the temporal rules themselves are
discovered.

Table 4.2: Axis of comparison between temporal-oriented approaches

Temporal patterns
identification

Temporal rules ex-
traction

Segmentation of
time series

[3] Extraction of
sequential patterns
using Apriori-styled
methods.

[3, 96] Based on fre-
quent episodes and
rules of episodes.

[75, 129] Segmen-
tation is achieved
applying techniques
for learning qualita-
tive labels.

[35] Utilize fluent
learning (statisti-
cal approach) for
common patterns.

[139, 150] Mining
of temporal asso-
ciation rules and
inter-transactional
rules.

[93] Interval-
represented data
are used for char-
acterizing temporal
patterns.

Table 4.2 provides a compact view of these approaches. Each reference falls into
a given dimension/column if and only if it allows for the dimension objective to be
reached. One can clearly see that these dimensions are those encountered in the
references of this section.

For the papers related to the present section, the objectives that are pursued
are the extraction of temporal rules using interval-based data for time-based pattern
recognition and segmentation of time series employing qualitative features. Among
these features we can mention for example the occurrence time of events. An im-
portant task which remains to be tackled is the improvement of temporal patterns
inside other types of pattern discovery. This is because temporal patterns are often
addressed in a separate manner. In addition, they are almost universal and their
valuable information can be exploited for mining other sequential data. One last
objective would be to further improve methods that extract temporal patterns, since
these patterns are not explicitly revealed by time-stamped records.

94

4.5 Summary
In this chapter we have shown that correctly mining the temporal order relations
between message types is a very useful challenge, since solving it allows the recon-
struction of the oriented graph modeling the raw version of the business protocol.
Obtaining the oriented graph is the last step towards the extraction of the finite-state
machine, that yields the untimed service protocol. We have shown that using realistic
log data timestamped in the universal clock format is not an obstacle for correctly
mining the associated timeseries. The approach that we have presented in this chapter
solves the issue of temporal order in service logs by employing affine transformation
testing between flow density functions. This method achieves its objective because of
the underlying theoretical properties of the flow density functions. We have shown
that employing the delta algorithm of the previous chapter, enhanced the perfor-
mance of the gamma extraction algorithm. This leap is due to the conclusion that
second-order affine transformations can be tested as first-order affine transfomations,
thus simplifying the extraction of the temporal graph. The latter allows to obtain
the oriented graph of the service model. Finally, we underline the experimental con-
clusion that the most important factor impacting the gamma algorithm results is the
granularity level of flow density data.

Chapter 5

On timed transitions detection and
extraction.

So far, we investigated the discovery of the protocol whose traces are visible in logs.
In this chapter we intend to extract the time-triggered transitions that do not emit
or receive messages in the process, thus not directly visible in activity logs.

5.1 Introduction
One of the most difficult problems to tackle is the extraction of temporal constraints
called timed transitions. This is because they are not explicitly recorded in logs. In
this chapter, we present our approach for discovering such transitions. We formally
define a class of patterns called proper timeouts and show that they reveal the presence
of timed transitions in the business protocol. We also present a polynomial algorithm
for extracting such patterns, as well as some experiments.

5.2 Context, problem and approach

5.2.1 Timed business protocols
Some state changes are not related to the emission of explicit messages but to tem-
poral constraints (validity period, expiration date, etc). The basic model was thus
enhanced with timed transitions, and renamed timed business protocol [16, 17]. A
timed transition (also called implicit transition) occurs automatically, after a time

95

96

interval is elapsed since the transition has been enabled (i.e., the source state of the
transition has become the current state), or after some date is reached; it is labelled
by the corresponding time constraint. Note that, since the model is deterministic, a
state cannot have several outgoing timed transitions.

Figure 5.1: Example of a timed business protocol [16,17].

Example 3 Fig. 5.1 illustrates more in detail the timed business protocol, already
introduced in Chapter 1, describing the external behaviour of an order management
service. Explicit transitions are represented by solid lines, and timed transitions by
dotted lines. This protocol specifies that a customer must initially connect himself
(login operation), before looking for products (searchGoods). Then, the customer can
add or remove products from its cart (addToCart, removeFromCart), look for other
goods (searchGoods), or ask for a quote (quoteRequest), which will be valid only
during 3 days (i.e. 4320 min); during this period the goods can be ordered (order).
If the user does not do it, the conversation finishes after 3 days (through the timed
transition going out of Quoted state), and the order is canceled.

Using a business protocol (instead of a simple interface or code analysis) makes
many problems easier to solve, because it is a visual model of a service behaviour. For
example, it facilitates (i) the development of clients that can interact correctly with
a service, (ii) the evolution of a service, when adding new functionalities, constraints
or rules. As it is an automaton, it can be easily translated into a programming
language. Thus, it enables to perform many tasks in an automatic way, such as (i)
checking whether messages are sent or received according to specifications (i.e. service
execution correctness), (ii) testing whether a service is replaceable or compatible with
another one, or whether it conforms to a given standard. More generally, it provides a

97

high-level and precise language which allows expressing and reasoning about concepts
at their natural level of abstraction. As such, using business protocols can improve
service management, analysis and optimization.

5.2.2 Conversation logs
Extracting timed transitions would be very easy if we had access to ”internal” service
logs (defined in the implementation code): it should be enough to make sure that some
information is recorded whenever a timed transition is triggered. However it seems
not realistic, because in a management platform services are generally considered
as ”black boxes” whose external behaviour only (published in the interface) can be
observed, and not internal operations. In fact the logs we analyze are recordings of
conversations taking place between services (i.e. messages intercepted by servers or
by specific interception tools1); that is why they are called conversation logs. In the
sequel we will consider these logs from the point of view of a given service, i.e. we
will keep only the messages that it sends or receives. In the logs of this service, there
will be explicit traces of all triggered transitions except timed transitions, which are
not related to explicit messages.

Various ways for collecting interaction logs of a service have been described, for
example in [57]. According to service implementation and to the tools used for ex-
ecution management, different information can be logged. In realistic scenarios, at
least the content, the sender, the receiver and the timestamp of each message are col-
lected. However this information can be insufficient to separate conversations, which
can overlap2. It is highlighted in [108] that automatically providing a unique identifier
for each conversation (if it is not logged by the management tool) is a research topic
by itself. As such, it is assumed in [108] that this information is available. We will
make the same assumption. More precisely, we assume that, for each message, the
name, the timestamp and the conversation identifier are available.

We now give a more formal definition of logs. Let Msg be a set of message names.
A message occurrence is a couple M = (m, t), where m ∈ Msg is the message name
(denoted by M.name in the sequel), and t ∈ IR+ is the message timestamp (denoted
by M.time in the sequel). Formally, a conversation is a sequence of message occur-
rences C = 〈M1,M2, . . . ,Mn〉, where n ∈ IIN∗, and M1.time < M2.time < · · · <
Mn.time. A conversation log file L is a multi-set of conversations, called simply logs

1We do not give details about how logs are gathered. This issue is beyond the scope of our work.
2Overlapping conversations result from the interactions of several instances of the service with

different clients, in parallel. Isolating these conversations amounts to separating parallel executions
of the service.

98

L in the sequel.

Example 4 For a service defined with respect to the business protocol illustrated
by Fig. 5.1, we can, for instance, obtain the following logs:
〈 (login, 9:18), (searchGoods, 9:20), (addToCart, 9:21), (quoteRequest, 9:22), (cancel,
9:51) 〉 〈 (login, 11:03), (searchGoods, 11:04), (addToCart, 11:08), (quoteRequest,
11:12) 〉

5.2.3 Problem statement and assumptions
Recall that we focus on timed transitions, which are local properties of the business
protocol. The problem we address can be defined as follows: Let L be a conversation
log file of a service S, whose underlying timed business protocol P is not known;
extract from L the timed transitions of P .

In order to avoid technical problems, and to focus on the central issue, the problem
is simplified, by means of three restrictive working hypothesis, regarding the underly-
ing timed business protocol. First, we assume that transitions are uniquely labelled,
which means that there do not exist two transitions associated with the same message
(c.f. Fig. 5.2). This implies that each message in the file corresponds to only one
transition in the protocol. Second, we assume that no final state has an incoming
timed transition, because our method cannot discover a timed transition that reaches
a final state. Such transitions need an additional extracting technique that we plan
to consider in future work. Actually, we can expect that, in real life scenarios, a
notification message is sent when an expiration occurs. Finally, we assume that there
is no cycle in the business protocol.

To make sure that all timed transitions can be found, we also assume that logs are
complete, which means that all valid conversations are recorded in the logs. Finally, we
assume that logs are not noisy (i.e. they are correctly recorded, in the right sequence).

Example 5 Logs L1 (c.f. Fig. 5.2) will be our running example. Note that
timestamps are relative to the beginning of each conversation. Protocol P1, which
has been used for generating logs L1, is supposed to be unknown. Note also that
protocol P1 is intentionnally simplified compared to general business protocols, which
can contain much more information.

5.2.4 Overall presentation of the approach
We recall that a timed transition is part of a business protocol, which is an abstract
representation of a service behaviour. Since we only have logs (which are in fact

99

a

b

c
d

e

f

T.T. : 7

s

T.T. : 4

s

s

k

i

s

s

j

g

h

0

1

2

3

6

s5

s
4 s7

s
8

s
9

Figure 5.2: Protocol P1 (left) and associated logs L1 (right).

recordings of service executions, in the concrete domain), we cannot work at this
abstract level, and directly discover timed transitions. Furthermore, their occurrences
cannot explicitly be disclosed by logs, in contrary to explicit transitions, whose labels
are recorded. We need to identify some traces (i.e. some consequences) of a timed
transition, showing that it has been triggered. Thus, our problem is twofold: (i)
specify suitable patterns that could correspond to timed transitions, and (ii) extract
these patterns from the logs.

We define a class of patterns called proper timeouts, and give a condition for a
proper timeout to be satisfied by the logs. However, no equivalence can be found
between the presence of a timed transition, and the satisfaction of a proper timeout.
We present a necessary condition, which states that: if a timed transition belongs to
the business protocol, then a corresponding proper timeout is satisfied by the logs.
Conversely, we say that: a satisfied proper timeout reveals only the presence of a
potential timed transition. Indeed, another scenario leads also to the satisfaction of
a proper timeout, because it creates the same kind of traces in the logs. It occurs if,
in some state of the service, some messages always take longer to be sent or received
than others. In both scenarios, the presence of a timed transition will be presumed,
because logs by themselves are not sufficient to distinguish them.

Although we cannot establish an equivalence between these patterns, proper time-
outs are the best representations of timed transitions, in the logs. Due to the assump-
tion on logs completeness, all timed transitions can be found, because each one of
them involves the satisfaction of a proper timeout. That justifies the relevance of a
timed transition discovery method based on proper timeout mining.

A basic ”generate and test” approach for proper timeouts extraction would be
intractable, because it would suffer from combinatorial explosion. Instead, we propose
a simple characterization of the set of proper timeouts satisfied by the logs. It is
based on a specific (and totally ordered) partition of the occurring episodes, which

100

represent pairs of messages that occur consecutively in a conversation. Once this
partition is constructed, the set of proper timeouts is exactly given by its pairs of
consecutive elements. Finally, we propose an incremental algorithm for constructing
such a partition (presented in Section 4.2). This construction can be achieved in
polynomial time with respect to the input size (i.e. the number of episodes) using
only two simple operations (add and merge).

5.3 Associating patterns with timed transitions

5.3.1 Episodes
Let Msg be the set of message names, and L the conversation log file. To reason
about consecutive messages, we introduce the notion of episode occurrence.

Definition 21 An episode is a sequence of two message names α = 〈m,m′〉, with
m,m′ ∈ Msg.

Definition 22 Given an episode α = 〈m,m′〉, an occurrence of α is a sequence of
message occurrences 〈M,M ′〉 such that there exists a conversation C ∈ L satisfying:

M,M ′ ∈ C
M.name = m and M ′.name = m′

M.time < M ′.time

@M ′′ ∈ C such that M.time < M ′′.time < M ′.time

If such a sequence exists, we say that α occurs in conversation C.

Given an episode α, we denote by Occ(α) its set of occurrences. We say that α
occurs in logs L if α occurs in at least one conversation C of L, i.e. if Occ(α) 6= φ.
We denote by Ep the set of episodes that occur in logs L.

Proposition 4 Consider the set Pm = {α ∈ Ep | ∃m′ ∈ Msg, α = 〈m,m′〉}, for
each m ∈ Msg. Then, {Pm |m ∈ Msg} is a partition of Ep.

This means that one can partition the episodes, such that each part contains all
the episodes whose first element is a given message m. It will enable to decompose
our discovery task. Instead of analyzing all the episodes as a whole, we will treat each

101

element of this partition separately.

Example 6 Consider logs L1 (c.f. Fig. 5.2). Here, Ep = Pa∪Pb∪Pc∪Pd∪Pe∪Pf ,
where Pb = {〈b, c〉, 〈b, d〉, 〈b, e〉, 〈b, f〉, 〈b, g〉, 〈b, h〉} (note that for example 〈b, i〉 6∈ Pb),
etc. Moreover, Occ(〈b, h〉) = { 〈(b, 0), (h, 13)〉 , 〈(b, 0), (h, 15)〉 } (but 〈(b, 0), (h, 3)〉 6∈
Occ(〈b, h〉)), etc.

We define now the concept of occurrence duration. Intuitively, the occurrence
duration of an episode occurrence is the difference between the message timestamps
in this occurrence. From this, we define the minimal (respect. maximal) occurrence
duration of an episode as the smallest (respect. greatest) occurrence duration of all
its occurrences. The occurrence duration interval of an episode is the interval which
includes all its occurrence durations.

Definition 23 Consider an episode α ∈ Ep. The duration of an occurrence 〈M,M ′〉
of α is M ′.time − M.time. The minimal occurrence duration of α is dmin(α) =
min{M ′.time − M.time | 〈M,M ′〉 ∈ Occ(α)}. Its maximal occurrence duration is
dmax(α) = max{M ′.time−M.time | 〈M,M ′〉 ∈ Occ(α)}. The occurrence duration
interval of α is [dmin(α); dmax(α)].

In the same way, we define the minimal (respect. maximal) occurrence duration
of a set of episodes as the minimum (respect. maximum) of all the minimal (respect.
maximal) occurrence durations of these episodes. The occurrence duration interval
of a set of episodes is the interval which includes all the occurrence durations of these
episodes.

Definition 24 Consider a set of episodes A ⊆ Ep (A 6= φ). The minimal occurrence
duration of A is Dmin(A) = min{dmin(α) |α ∈ A}. The maximal occurrence duration
of A is Dmax(A) = max{dmax(α) | α ∈ A}. The occurrence duration interval of
A is [Dmin(A);Dmax(A)].

Example 7 Consider logs L1 at Figure 5.2. The occurrence duration interval of
episode 〈c, k〉 is [2; 3]. The occurrence duration intervals of sets {〈a, c〉, 〈a, d〉} and
{〈a, h〉} are [1; 5] and [8; 10] respectively. They are disjoint and satisfy a precedence
relation on the time scale. Obviously, this is due to the timed transition between
states s2 and s3, triggered automatically at time 7 (after arrival in state s2) if none
of the messages c, d or e is emitted before.

Since it is the consequence of the presence of a timed transition, the precedence
relation presented in this example will be useful in the sequel. If the reasoning is

102

reversed, finding that such a relation is satisfied by the data could lead to the discovery
of a timed transition. Thus, we formalize this relation.

5.3.2 Order relation on sets of episodes
Definition 25 Consider A,B ⊆ Ep (A,B 6= φ). We say that A precedes B,
which is denoted by A ≺ B, if Dmax(A) < Dmin(B). We say that A and B are not
comparable, which is denoted by A ‖ B, if A ⊀ B and B ⊀ A.

Intuitively, the expression A ≺ B means that the occurrence duration interval of
A precedes that of B on the time scale, and that they are disjoint. We say also that
B follows A.

Property 3 Relation ≺ is a strict order relation on P(Ep) \ {φ}.

Proof. − Irreflexivity:

Consider A ⊆ Ep (A 6= φ). Dmin(A) ≤ Dmax(A) ⇒ Dmax(A) ≮ Dmin(A) ⇒ A ⊀ A.

Therefore, ∀A ⊆ Ep (A 6= φ), A ⊀ A.

− Asymmetry:

Consider A,B ⊂ Ep such that A ≺ B. As A ≺ B, we have: Dmax(A) < Dmin(B).

Since Dmin(A) ≤ Dmax(A) and Dmin(B) ≤ Dmax(B), we have: Dmin(A) < Dmax(B).

Thus, Dmax(B) ≮ Dmin(A), i.e. B ⊀ A. Therefore, ∀A,B ⊂ Ep, A ≺ B ⇒ B ⊀ A.

− Transitivity:

Consider A,B,C ⊂ Ep such that A ≺ B and B ≺ C. We have: A ≺ B ⇒ Dmax(A) <

Dmin(B) and B ≺ C ⇒ Dmax(B) < Dmin(C). Since Dmin(B) ≤ Dmax(B), we have:

Dmax(A) < Dmin(C), i.e. A ≺ C. Therefore, ∀A,B,C ⊂ Ep, we have: (A ≺ B and

B ≺ C) ⇒ A ≺ C.

Example 8 Consider logs L1 of Figure 5.2. We have:
· {〈a, c〉} ≺ {〈a, g〉}, for Dmax({〈a, c〉}) = 3 < 15 = Dmin({〈a, g〉})

103

· {〈a, c〉, 〈a, d〉} ≺ {〈a, g〉}, for Dmax({〈a, c〉, 〈a, d〉}) = 5 < 15 = Dmin({〈a, g〉})
· {〈a, c〉, 〈a, d〉} ≺ {〈a, g〉, 〈a, h〉}, for Dmax({〈a, c〉, 〈a, d〉})
= 5 < 8 = Dmin({〈a, g〉, 〈a, h〉})
· {〈a, c〉, 〈a, d〉, 〈a, e〉} ≺ {〈a, g〉, 〈a, h〉} for Dmax({〈a, c〉, 〈a, d〉, 〈a, e〉})
< Dmin({〈a, g〉, 〈a, h〉})
· etc

Proposition 5 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists
a timed transition, in the business protocol, between the state from which the transi-
tions corresponding to the elements of A are going out, and the one from which the
transitions corresponding to the elements of B are going out, then A ≺ B.

i) ii)

m

T.T. : t

s

s

...

...
m

.......

T.T. : t1

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

T.T. : t

s

s

...

...

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

T.T. : t n>

Figure 5.3: Various configurations associated with a timed transition having as time
constraint t.

Proof. Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ) such that A = {〈m,m′1〉, . . . ,

〈m,m′p〉} and B = {〈m,m′′1〉, 〈m,m′′2〉, . . . , 〈m,m′′q〉}. Since transitions of the business

protocol are uniquely labelled, A ∩B = φ.

Assume there exists a timed transition, in the business protocol, between the state

(denoted by s1) from which the transitions labelled by m′1, m′2, . . . , m′p are going

104

out, and the one (denoted by s2) from which the transitions labelled by m′′1, m′′2, . . . ,

m′′q are going out. To this transition is associated some time constraint t. During

a conversation, once state s1 is reached, if none of the messages m′1, m′2, . . . , m′p is

emitted before time t, the service reaches automatically state s2. In other words,

in a point of view which is global to all executions, we observe that: once state s1

is reached, messages m′1, m′2, . . . , m′p can be emitted only before time t, although

messages m′′1, m′′2, . . . , m′′q can be emitted only after.

• If the transition labelled by m comes into state s1 (c.f. Fig. 5.3 i)):

We have: ∀ 1 ≤ i ≤ p, dmax(〈m,m′i〉) < t, and ∀ 1 ≤ j ≤ q, dmin(〈m,m′′j 〉) > t.

As Dmax(A) = max1≤i≤p{dmax(〈m,m′i〉)} and Dmin(B) = min1≤j≤q{dmin(〈m,

m′′j 〉)}, we have: Dmax(A) < t < Dmin(B). Therefore, A ≺ B.

• Else (c.f. Fig. 5.3 ii)):

The state in which the transition labelled by m is coming is linked to s1 by a

sequence of n (n ≥ 1) timed transitions associated with time constraints t1, t2,

. . . , tn. Then we have: Dmax(A) < t+T < Dmin(B), where T = t1+t2+· · ·+tn.

Therefore, A ≺ B.

Remark. We can prove that, if there exists a sequence of m timed transitions (m ≥ 1)

between the states from which the transitions corresponding to the elements of A and

B respectively are going out, then A ≺ B. In this case, if t1, t2, . . . , tm are the time

constraints associated with the different timed transitions, the proof is similar, with

t = t1 + t2 + · · ·+ tm.

This proposition is a necessary condition for the existence of a timed transition.
Our problem would be solved if this condition was also sufficient (we would have an

105

object equivalent to a timed transition); but that is not the case.

Remark. The converse of Proposition 5 does not hold.

Counter-example. We have {〈a, c〉} ≺ {〈a, e〉} (for Dmax({〈a, c〉}) = 3 < 4 =
Dmin({〈a, e〉})) in logs L1, whereas the transitions labelled by c and e are going out
of the same state (c.f. Fig. 5.2).

Proposition 5 and the assumption on logs completeness guarantee that the set of
expressions A ≺ B verified by the logs encompasses all timed transitions. However,
these expressions can also give false information, about non-existent transitions. This
arises from the fact that the relation ≺ does not take into account all the information
induced by the presence of a timed transition. That is why we define in the sequel a
richer relation on sets of episodes.

5.3.3 Timeouts
Definition 26 A timeout is a triplet T (m,A,B), where m ∈ Msg, and A,B ⊂ Pm
(A,B 6= φ). We say that logs L satisfy the timeout T (m,A,B), which is denoted by
L � T (m,A,B), if: A ≺ B

∀ α ∈ Pm, {α} ∦ A or {α} ∦ B

If A = {〈m,m′1〉, 〈m,m′2〉, . . . , 〈m,m′p〉}, B = {〈m,m′′1〉, . . . , 〈m,m′′q〉}, and L �
T (m,A,B), we write: L � T (m, {m′1,m′2, . . . ,m′p}, {m′′1,
m′′2, . . . ,m

′′
q}).

Intuitively, the assertion L � T (m,A,B) means that, according to logs L, (i) oc-
currence durations of all the episodes in A are strictly less than occurrence durations
of all the episodes in B, and that (ii) there is no episode having one occurrence whose
duration belongs to the occurrence duration interval of A, and another occurrence
whose duration belongs to the occurrence duration interval of B. With this timeout
can be associated a deadline, greater than the maximum occurrence duration of all
the episodes in A (i.e. Dmax(A)), and less than the minimal occurrence duration of all
the episodes in B (i.e. Dmin(B)). The possible values for such a deadline are all real
numbers in the interval]Dmax(A);Dmin(B)[, called the expiry interval of T (m,A,B).

Example 9 T (b, {c, d, e}, {g, h}) is a timeout satisfied by logs L1 (c.f. Fig. 5.2).

106

Indeed, the sets {〈b, c〉, 〈b, d〉, 〈b, e〉} and {〈b, g〉, 〈b, h〉} satisfy the conditions of Defi-
nition 26 for Pb, i.e.
· {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉} (for Dmax({〈b, c〉, 〈b, d〉, 〈b, e〉})
< Dmin(〈b, g〉, 〈b, h〉}))
· ∀ α ∈ Pb, {α} ∦ {〈b, c〉, 〈b, d〉, 〈b, e〉} or {α} ∦ {〈b, g〉, 〈b, h〉} (for example {〈b, f〉} ≺
{〈b, g〉, 〈b, h〉})
We also verify that L1 � T (a, {c, d, e}, {g}), L1 � T (a, {c, d}, {g}), L1 � T (b, {f},
{c, d, e}), L1 � T (b, {f}, {g, h}), L1 � T (b, {f}, {c, d, e, g, h}), etc.
On the other hand, L1 2 T (a, {c}, {e}), for {〈a, d〉} ‖ {〈a, c〉} and {〈a, d〉} ‖ {〈a, e〉}.

Proposition 6 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists a
timed transition in the business protocol between the state from which the transitions
corresponding to the elements of A are going out, and the one from which the transi-
tions corresponding to the elements of B are going out, then L � T (m,A,B).

m

T.T. : t

s

s

...

...

1

m’1 m’2

m’p

2
m’’1

m’’2m’’q

> us’2s’1s’ T.T. : t’u
T.T. : t’1

1s’’
T.T. : t’’1

.......<v-1s’’vs’’
T.T. : t’’v

Figure 5.4: General configuration associated with A and B.

Proof. Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ) such that A = {〈m,m′1〉, . . . ,

〈m,m′p〉} and B = {〈m,m′′1〉, . . . , 〈m,m′′q〉}. Assume there exists a timed transition,

in the business protocol, between the state from which the transitions labelled by m′1,

m′2, . . . , m′p are going out, and the one from which the transitions labelled by m′′1,

107

m′′2, . . . , m′′q are going out. This configuration is illustrated by Fig. 5.4 (where u and

v can be equal to zero). According to Proposition 5, we already know that A ≺ B.

Consider α = 〈m,m′〉 ∈ Pm. m′ is associated with a transition going out of, either

state s1, or state s2, or one of the states s′1, s′2, . . . , s′u, or one of the states s′′1, s′′2,

. . . , s′′v.

• If it is s1, or one of the states s′1, s′2, . . . , s′u, we have:

∀ 1 ≤ j ≤ q, dmax(α) < t + ∑u
k=1 t

′
k < dmin(〈m,m′′j 〉). Thus: Dmax({α}) =

dmax(α) < min{dmin(〈m,m′′j 〉) | 1 ≤ j ≤ q} = Dmin(B). Then, {α} ≺ B, and

therefore {α} ∦ B.

• If it is s2, or one of the states s′′1, s′′2, . . . , s′′v, we have:

∀ 1 ≤ i ≤ p, dmin(α) > t + ∑u
k=1 t

′
k > dmax(〈m,m′i〉). Thus: Dmin({α}) =

dmin(α) > max{dmax(〈m,m′i〉) | 1 ≤ i ≤ p} = Dmax(A). Then, A ≺ {α}, and

therefore {α} ∦ A.

• Conclusion: ∀ α ∈ Pm, {α} ∦ A or {α} ∦ B.

Since A ≺ B, we have: L � T (m,A,B).

Remark. The converse of Proposition 6 does not hold.

Counter-example. The timeout T (b, {f}, {g, h}) is satisfied by logs L1, although
there is no timed transition between states s1 and s3 of protocol P1 (c.f. Fig. 5.2).
However, a chain composed of two timed transitions connects these states.

Proposition 6 and the assumption on logs completeness guarantee that each timed
transition of the business protocol can be found via some timeout satisfied by the logs.
However, a timeout is satisfied between two sets of episodes, if a timed transition is
present between the states corresponding to those sets of episodes, as well as if it is
a chain of timed transitions. Thus, we define a restricted class of timeouts, in order
to avoid such ambiguity. Another problem related to timeouts is that they are much

108

more numerous than timed transitions are (c.f. Ex. 10).

Example 10 Consider protocol P1 and logs L1 (c.f. Fig. 5.2). The timed transi-
tion between states s1 and s2 involves the satisfaction of T (b, {f}, {c, d, e}), but also
of T (b, {f}, {c, d, e, g, h}). The one between s2 and s3 leads to the satisfaction of
T (a, {c, d, e}, {g}), but also of T (a, {c, d}, {g}).

This example illustrates that several forms of ”redundancy” can appear. Never-
theless, we would like to give to the user the minimal information needed to find the
timed transitions. This is why we define proper timeouts.

5.3.4 Proper timeouts
Definition 27 A proper timeout is a triplet PT (m,A,B), where m ∈ Msg, and
A,B ⊂ Pm (A,B 6= φ). We say that logs L satisfy the proper timeout PT (m,A,B),
which is denoted by L � PT (m,A,B), if:

A ≺ B

∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B
∀X, Y ⊂ A (X, Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y

∀X, Y ⊂ B (X, Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y

IfA = {〈m,m′1〉, 〈m,m′2〉, . . . , 〈m,m′p〉}, B = {〈m,m′′1〉, . . . , 〈m,m′′q〉}, and L � PT (m,
A,B), for simplicity we write: L � PT (m, {m′1,m′2, . . . ,m′p}, {m′′1,m′′2, . . . ,m′′q}).

Intuitively, the assertion L � PT (m,A,B) means that, according to logs L, (i)
occurrence durations of all the episodes in A are strictly less than occurrence dura-
tions of all the episodes in B, and (ii) there is no episode, except those of A and
B, having occurrences whose durations belong to the occurrence duration interval of
A∪B (interval including the occurrence duration intervals of A and B), and that (iii)
there is no partition of A or B composed of two subsets ordered by the relation ≺.
Obviously, a proper timeout is a timeout. This result is formalized by the following
property, whose converse does not hold (c.f. Ex. 11).

Property 4 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If L � PT (m,A,B),
then L � T (m,A,B).

109

Proof. Considerm ∈ Msg, andA,B ⊂ Pm (A,B 6= φ). Assume that: L � PT (m,A,B).

Then we have: A ≺ B. Consider α ∈ Pm.

• If α ∈ Pm \ (A∪B), by assumption, we have: {α} ∦ A∪B, i.e. {α} ≺ A∪B or

A∪B ≺ {α}. Thus: dmax(α) < Dmin(A∪B) or dmin(α) > Dmax(A∪B). Then,

dmax(α) < Dmin(A) or dmin(α) > Dmax(A), for A ⊂ A ∪ B ⇒ [Dmin(A ∪ B) ≤

Dmin(A) and Dmax(A ∪ B) ≥ Dmax(A)]. Therefore, {α} ≺ A or A ≺ {α}, i.e.

{α} ∦ A.

• If α ∈ A, we have: dmax(α) ≤ Dmax(A). As Dmax(A) < Dmin(B) (for A ≺ B),

we have: dmax(α) < Dmin(B). Then, {α} ≺ B, and therefore {α} ∦ B.

• If α ∈ B, we have: dmin(α) ≥ Dmin(B). As Dmin(B) > Dmax(A) (for A ≺ B),

we have: dmin(α) > Dmax(A). Then, A ≺ {α}, and therefore {α} ∦ A.

• Conclusion: ∀ α ∈ Pm, {α} ∦ A or {α} ∦ B

Since A ≺ B, we have: L � T (m,A,B).

Example 11 PT (b, {c, d, e}, {g, h}) is a proper timeout satisfied by logs L1 (c.f.
Fig. 5.2), because {〈b, c〉, 〈b, d〉, 〈b, e〉} and {〈b, g〉, 〈b, h〉} satisfy the conditions of
Definition 27, for Pb, i.e.
· {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· {〈b, f〉} ∦ {〈b, c〉, 〈b, d〉, 〈b, e〉, 〈b, g〉, 〈b, h〉}
· ∀X, Y ⊂ {〈b, c〉, 〈b, d〉, 〈b, e〉} (X, Y 6= φ) such that X ∪ Y = {〈b, c〉, 〈b, d〉, 〈b, e〉}, we
have X ⊀ Y
· {〈b, g〉} ‖ {〈b, h〉}
We also verify that, for example, L1 � PT (a, {c, d, e}, {h}).
On the other hand, we have:
· L1 2 PT (b, {f}, {g, h}), for {〈b, c〉} ‖ {〈b, f〉, 〈b, g〉, 〈b, h〉}
· L1 2 PT (b, {f}, {c, d, e, g, h}), for {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· L1 2 PT (a, {c, d}, {g}), for {〈a, e〉} ‖ {〈a, c〉, 〈a, d〉, 〈a, g〉}

Proposition 7 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If there exists a
timed transition, in the business protocol, between two states s1 and s2 such that the

110

sets of transitions going out of s1 and s2 respectively are in bijection with A and B,
then there exist A′ ⊆ A and B′ ⊆ B (A′, B′ 6= φ) such that L � PT (m,A′, B′).

Proof. Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). Assume there exists a timed

transition, in the business protocol, between two states s1 and s2 such that the sets

of transitions going out of s1 and s2 are in bijection with A and B respectively.

Consider {A1, A2, . . . , Ax} the partition (which can be reduced to one element) of A

such that:

− A1 ≺ A2 ≺ · · · ≺ Ax (knowing that ≺ is an order relation), and

− ∀ 1 ≤ k ≤ x, ∀ X, Y ⊂ Ak (X, Y 6= φ) such that X ∪ Y = Ak, we have X ⊀ Y .

Consider {B1, B2, . . . , By} the partition (which can be reduced to one element) of B

such that:

− B1 ≺ B2 ≺ · · · ≺ By, and

− ∀ 1 ≤ k ≤ y, ∀ X, Y ⊂ Bk (X, Y 6= φ) such that X ∪ Y = Bk, we have X ⊀ Y .

Denote by m′1, m′2, . . . , m′p the elements of Ax, and by m′′1, m′′2, . . . , m′′q the elements

of B1. This configuration is illustrated by Fig. 5.4 (where u and v can equal zero).

According to Proposition 6, we already know that L � T (m,Ax, B1), and thus Ax ≺

B1. Consider α = 〈m,m′〉 ∈ Pm \ (Ax ∪B1). m′ is associated with a transition going

out of, either state s1, or state s2, or one of the states s′1, s′2, . . . , s′u, or one of the

states s′′1, s′′2, . . . , s′′v.

• If it is one of the states s′1, s′2, . . . , s′u, we have:

∀ 1 ≤ i ≤ p, dmax(α) < ∑u
k=1 t

′
k < dmin(〈m,m′i〉); and ∀ 1 ≤ j ≤ q, dmax(α) <∑u

k=1 t
′
k < dmin(〈m,m′′j 〉). Thus: dmax(α) < min({dmin(〈m,m′i〉) | 1 ≤ i ≤

p} ∪ {dmin(〈m,m′′j 〉) | 1 ≤ j ≤ q}), i.e. Dmax({α}) < Dmin(Ax ∪ B1). Then,

{α} ≺ Ax ∪B1, and therefore {α} ∦ Ax ∪B1.

111

• If it is one of the states s′′1, s′′2, . . . , s′′v, we have:

∀ 1 ≤ i ≤ p, dmin(α) > t + t′′1 + ∑u
k=1 t

′
k > dmax(〈m,m′i〉); and ∀ 1 ≤ j ≤ q,

dmin(α) > t+t′′1+∑u
k=1 t

′
k > dmax(〈m,m′′j 〉). Thus: dmin(α) > max({dmax(〈m,m′i〉)

| 1 ≤ i ≤ p} ∪ {dmax(〈m,m′′j 〉) | 1 ≤ j ≤ q}), i.e. Dmin({α}) > Dmax(Ax ∪ B1).

Then, Ax ∪B1 ≺ {α}, and therefore {α} ∦ Ax ∪B1.

• If it is state s1 (which implies that x ≥ 2):

Since α ∈ Pm \ Ax, we have: α ∈ Al, with 1 ≤ l ≤ x − 1. Thus: dmax(α) ≤

Dmax(Al) < Dmin(Ax) (for Al ≺ Ax, by transitivity). Furthermore, ∀ 1 ≤ j ≤ q,

dmax(α) < t + ∑u
k=1 t

′
k < dmin(〈m,m′′j 〉). Then, dmax(α) < Dmin(B1), and

therefore Dmax({α}) = dmax(α) < Dmin(Ax∪B1). Accordingly, {α} ≺ Ax∪B1,

and thus {α} ∦ Ax ∪B1.

• If it is state s2 (which implies that y ≥ 2):

Since α ∈ Pm \ B1, we have: α ∈ Bh, with 2 ≤ h ≤ y. Thus: dmin(α) ≥

Dmin(Bh) > Dmax(B1) (for B1 ≺ Bh, by transitivity). Furthermore, ∀ 1 ≤ i ≤

p, dmin(α) > t + ∑u
k=1 t

′
k > dmax(〈m,m′i〉). Then, dmin(α) > Dmax(Ax), and

therefore Dmin({α}) = dmin(α) > Dmax(Ax ∪B1). Accordingly, Ax ∪B1 ≺ {α},

and thus {α} ∦ Ax ∪B1.

• Conclusion: ∀ α ∈ Pm \ (Ax ∪B1), {α} ∦ Ax ∪B1.

By assumption, we have also:

• ∀ X, Y ⊂ Ax (X, Y 6= φ) such that X ∪ Y = Ax, we have X ⊀ Y ;

• ∀ X, Y ⊂ B1 (X, Y 6= φ) such that X ∪ Y = B1, we have X ⊀ Y .

Therefore, L � PT (m,Ax, B1), with Ax ⊆ A and B1 ⊆ B (Ax, B1 6= φ).

112

Remark. The converse of Proposition 7 does not hold.

Counter-example. We have L1 � PT (a, {h}, {g}), although the transitions labelled
by h and g are going out of the same state (c.f. Fig. 5.2). The satisfaction of this
proper timeout is explained by the fact that, in logs L1, after message a has been
emitted, message g always takes longer to be emitted than message h.

According to Proposition 7 and the assumption on logs completeness, since each
timed transition involves the satisfaction by the logs of a proper timeout, we can find
all of them. However, we can discover more proper timeouts than there are timed
transitions, if some messages always take longer to be sent or received than the mes-
sages associated with all other transitions of the same state. The following theorem
states that this is the only possible alternative.

Theorem 9 Consider m ∈ Msg, and A,B ⊂ Pm (A,B 6= φ). If L � PT (m,A,B),

then there exist in the business protocol:

• either two states s1 and s2, such that s2 is linked to s1 by a timed transition,

that A corresponds to a subset of the transitions going out of s1, and that B

corresponds to a subset of the transitions going out of s2,

• or one state s, such that A∪B corresponds to a subset of the transitions going

out of s, and that the messages in B always take longer to be emitted than those

in A.

Proof. Considerm ∈ Msg, andA,B ⊂ Pm (A,B 6= φ). Assume that L � PT (m,A,B),

i.e.:

A ≺ B (1)

∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B (2)

∀X, Y ⊂ A (X, Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y (3)

∀X, Y ⊂ B (X, Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y (4)

113

Denote by sm the state of the business protocol in which the transition labelled by m

is coming. Since A,B ⊂ Pm, the elements in A ∪ B correspond to transitions which

are going out of, either sm, or a state linked to sm by a timed transition, or by a

sequence of timed transitions.

• If all these transitions are going out of the same state (sm or another):

Since A ≺ B, we know that the messages associated with the elements of B

always take longer to be emitted than those associated with elements of A.

• If these transitions are going out of two different states s1 and s2:

s1 and s2 are linked by a sequence of p timed transitions, where p ≥ 1 (if p = 1,

it is a single timed transition). Without loss of generality, we can assume that

s1 is at the ”beginning” of the sequence, and s2 at the ”end”. Let E1 and E2

denote the sets of episodes from Pm corresponding to the transitions going out

of s1 and s2 respectively.

We have: A ∪B ⊆ E1 ∪ E2, (A ∪B) ∩ E1 6= φ, and (A ∪B) ∩ E2 6= φ.

Assume that E1 ∩A = φ. We have A ⊆ E2, and therefore E1 ∩B 6= φ. Assume

that E2∩B 6= φ. We have (E1∩B)∪ (E2∩B) = B. Since s2 is linked to s1 by a

sequence of timed transitions, we have: E1∩B ≺ E2∩B, which contradicts (4).

Then, E2 ∩ B = φ, and thus B ⊆ E1. As A ⊆ E2, and s2 is at the end of the

timed transitions sequence, we have: B ≺ A, which contradicts (1). Therefore,

E1 ∩ A 6= φ.

Assume that E2 ∩A 6= φ. We have (E1 ∩A) ∪ (E2 ∩A) = A. Since s2 is linked

to s1 by a sequence of timed transitions, we have: E1 ∩ A ≺ E2 ∩ A, which

contradicts (3). Therefore, E2 ∩ A = φ. Then, A ⊆ E1, and thus E2 ∩ B 6= φ.

As we cannot have E1 ∩ B 6= φ, we have: B ⊆ E2. Thus, A and B correspond

114

to two sets of transitions going out of s1 and s2 respectively.

Assume that p ≥ 2 (i.e. the sequence is composed of several transitions). There

exists a state s3 ”between” s1 and s2. Let E3 denote the set of episodes from

Pm associated with the transitions going out of s3. Consider α ∈ E3. We have:

dmin(α) < Dmax(B) = Dmax(A ∪ B) (for A ≺ B), and thus A ∪ B ⊀ {α}.

Furthermore, dmax(α) > Dmin(A) = Dmin(A ∪ B) (for A ≺ B), and thus

{α} ⊀ A∪B. Therefore, {α} ‖ A∪B with α ∈ Pm \ (A∪B), which contradicts

(2). Consequently, p = 1, i.e. s2 is linked to s1 by a single timed transition.

• If these transitions are going out of n states s1, s2, . . . , sn (with n ≥ 3):

Let E1, E2, . . . , En denote the sets of episodes from Pm which correspond to the

transitions going out of s1, s2, . . . , sn respectively. We have: A ∪ B ⊆ ⋃ni=1 Ei,

and ∀ 1 ≤ i ≤ n, (A∪B)∩Ei 6= φ. Assume that: ∃ i ∈ J1;nK such that A ⊆ Ei.

If I = J1;nK \ {i}, we have: card(I) ≥ 2, and ∀ k ∈ I, B ∩ Ek 6= φ. Therefore,

∃ j ∈ I such that B ∩ Ej ≺
⋃
k∈I\{j}(B ∩ Ek), which contradicts (4). Thus,

@ i ∈ J1;nK such that A ⊆ Ei. If J = {k ∈ J1;nK | A ∩ Ek 6= φ}, we have:

card(J) ≥ 2. Therefore, ∃ j ∈ J such that A ∩ Ej ≺
⋃
k∈J\{j}(A ∩ Ek), which

contradicts (3). Thus, we cannot have n ≥ 3.

Although we cannot ensure a total mapping between these objects, proper time-
outs are the best possible representations of timed transitions, in the logs, for practical
purposes. Theorem 9 guarantees that, if we discover a proper timeout in the logs,
then there is a timed transition in the business protocol, or some messages take longer
to be emitted than others, knowing that the logs by themselves are not sufficient to
detect such an alternative. Thus, we will say that: a satisfied proper timeout reveals
the presence of a potential timed transition. That justifies the relevance of the devel-
opment of a timed transition discovery method based on the research of the proper
timeouts satisfied by the logs.

115

5.4 Extracting the proper timeouts
The ”naive” discovery method consists in generating all possible proper timeouts, and
testing for each one of them if the conditions of Definition 27 are satisfied. However,
this method is double exponential because (i) the number of candidates is exponential,
and (ii) for each candidate, if A ≺ B, we must check that all subsets of A and B are
not comparable with respect to ≺. Instead, we propose a new characterization of the
set of proper timeouts satisfied by the logs, which will enable us to construct this set
in a simple way.

5.4.1 Characterization of the satisfied proper timeouts
This characterization is formalized by the following theorem. It states that: for a set
Pm of episodes whose first message is m, if we build a partition Π of Pm such that (i)
Π is totally ordered by the relation ≺, and (ii) for each element of Π, there does not
exist a sub-partition of this element composed of two subsets ordered by the relation
≺; then (a) there is a proper timeout ”between” each pair of consecutive elements
in Π, and (b) these are the only proper timeouts satisfied by the logs and related to
message m .

Theorem 10 Consider m ∈ Msg, im ∈ IIN∗, and {P (1)
m , P (2)

m , . . . , P (im)
m } a partition

of Pm. The following assertions are equivalent:

i)

P (1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and

∀ 1 ≤ i ≤ im, ∀X, Y ⊂ P (i)
m (X, Y 6= φ) such that X ∪ Y = P (i)

m , we have X ⊀ Y

ii)

∀ 1 ≤ i < im, L � PT (m,P (i)

m , P (i+1)
m), and

∀A,B ⊂ Pm (A,B 6= φ) such that L � PT (m,A,B), we have:

∃ i ∈ J1; im − 1K such that A = P (i)
m and B = P (i+1)

m

Proof. Consider m ∈ Msg, im ∈ IIN∗, and {P (1)
m , P (2)

m , . . . , P (im)
m } a partition of Pm.

i)⇒ ii): Assume that
P (1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and

∀ 1 ≤ i ≤ im,∀X, Y ⊂ P (i)
m (X, Y 6= φ) such that X ∪ Y = P (i)

m , we have X ⊀ Y

116

Consider i ∈ J1; im − 1K.

• P (i)
m ≺ P (i+1)

m .

• ∀X, Y ⊂ P (i)
m (X, Y 6= φ) such that X ∪ Y = P (i)

m , we have X ⊀ Y .

• ∀X, Y ⊂ P (i+1)
m (X, Y 6= φ) such that X ∪ Y = P (i+1)

m , we have X ⊀ Y .

• Consider α ∈ Pm \ (P (i)
m ∪P (i+1)

m). Since {P (j)
m | 1 ≤ j ≤ im} is a partition of Pm,

∃ j ∈ J1; imK \ {i, i+ 1} such that α ∈ P (j)
m .

– If j < i, then P (j)
m ≺ P (i)

m and P (j)
m ≺ P (i+1)

m . As {α} ⊆ P (j)
m , we have:

{α} ≺ P (i)
m and {α} ≺ P (i+1)

m . Thus, {α} ≺ P (i)
m ∪ P (i+1)

m , and thereby

{α} ∦ P (i)
m ∪ P (i+1)

m .

– If j > i + 1, then P (i)
m ≺ P (j)

m and P (i+1)
m ≺ P (j)

m . As {α} ⊆ P (j)
m , we have:

P (i)
m ≺ {α} and P (i+1)

m ≺ {α}. Thus, P (i)
m ∪ P (i+1)

m ≺ {α}, and thereby

{α} ∦ P (i)
m ∪ P (i+1)

m .

– Conclusion: ∀ α ∈ Pm \ (P (i)
m ∪ P (i+1)

m), {α} ∦ P (i)
m ∪ P (i+1)

m .

• Therefore, L � PT (m,P (i)
m , P (i+1)

m).

Consequently, ∀ 1 ≤ i < im, L � PT (m,P (i)
m , P (i+1)

m).

Consider A,B ⊂ Pm(A,B 6= φ) such that L � PT (m,A,B). We have:

A ≺ B (1)

∀ α ∈ Pm \ (A ∪B), {α} ∦ A ∪B (2)

∀X, Y ⊂ A (X, Y 6= φ) such that X ∪ Y = A, we have X ⊀ Y (3)

∀X, Y ⊂ B (X, Y 6= φ) such that X ∪ Y = B, we have X ⊀ Y (4)

• Since A ⊂ Pm and {P (j)
m | 1 ≤ j ≤ im} is a partition of Pm, we know that:

∃ i ∈ J1; imK such that A∩P (i)
m 6= φ. We can define IA = {i ∈ J1; imK |A∩P (i)

m 6=

117

φ}, iA = max(IA) and I ′A = IA \ {iA}. Assume that I ′A 6= φ. We have:

A = ⋃im
i=1(A ∩ P (i)

m) = ⋃
i∈IA

(A ∩ P (i)
m) = (A ∩ P (iA)

m) ∪ (⋃i∈I′
A

(A ∩ P (i)
m)), with

A ∩ P (iA)
m ⊂ A and ⋃

i∈I′
A

(A ∩ P (i)
m) ⊂ A. However, ∀ i ∈ I ′A, i < iA, and thus:

∀ i ∈ I ′A, P (i)
m ≺ P (iA)

m . Since ∀ i ∈ IA, A ∩ P (i)
m ⊆ P (i)

m , we have: ∀ i ∈ I ′A,

A ∩ P (i)
m ≺ A ∩ P (iA)

m . Therefore ⋃i∈I′
A

(A ∩ P (i)
m) ≺ A ∩ P (iA)

m , which contradicts

(3). Thereby, I ′A = φ. Consequently, ∃! i ∈ J1; imK such that A ∩ P (i)
m 6= φ, i.e.

∃ i ∈ J1; imK such that A ⊆ P (i)
m .

• In the same way (and according to (4)), we prove that: ∃ j ∈ J1; imK such that

B ⊆ P (j)
m .

• Assume that: A P (i)
m . Consider α ∈ P (i)

m \ A ⊂ Pm \ A.

– If α ∈ B, since A ≺ B, we have: A ≺ {α}.

– If α 6∈ B, α ∈ Pm \ (A ∪ B) and, according to (2), {α} ∦ A ∪ B. Thus,

{α} ∦ A, i.e. {α} ≺ A or A ≺ {α}.

– Conclusion: ∀ α ∈ P (i)
m \ A, we have: {α} ≺ A or A ≺ {α}.

Define X = {α ∈ P (i)
m \ A | {α} ≺ A} ⊂ P (i)

m and Y = {α ∈ P (i)
m \ A | A ≺

{α}} ⊂ P (i)
m . We have: P (i)

m \ A = X ∪ Y , and thus P (i)
m = X ∪ Y ∪ A. As

A 6= P (i)
m , we have: X 6= φ or Y 6= φ.

– If X 6= φ and Y = φ:

Since ∀ α ∈ X, {α} ≺ A, we have: X ≺ A. Therefore, P (i)
m = X ∪ A with

X ≺ A, which contradicts i).

– If X = φ and Y 6= φ:

Since ∀ α ∈ Y , A ≺ {α}, we have: A ≺ Y . Therefore, P (i)
m = Y ∪ A with

A ≺ Y , which contradicts i).

118

– If X 6= φ and Y 6= φ:

We have: X ≺ A and A ≺ Y . Therefore, X ≺ (A ∪ Y) with P (i)
m =

X ∪ (Y ∪ A), which contradicts i).

Consequently, A = P (i)
m .

• In the same way, we prove that: B = P (j)
m .

• Assume that: j < i. Then we have: P (j)
m ≺ P (i)

m , i.e. B ≺ A, which contradicts

(1). Therefore j ≥ i.

• Assume that: j > i + 1. Then we have: P (i)
m ≺ P (i+1)

m ≺ P (j)
m , i.e. A ≺

P (i+1)
m ≺ B. Consider α ∈ P (i+1)

m ⊂ Pm \ (A ∪ B). We have A ≺ {α} ≺ B,

and thus: {α} ⊀ A and B ⊀ {α}. Thereby, {α} ⊀ A ∪ B and A ∪ B ⊀ {α}.

Thus, {α} ‖ A ∪ B with α ∈ Pm \ (A ∪ B), which contradicts (2). Therefore,

j ∈ {i, i+ 1}.

• If j = i, then A = B, which is impossible, for A ≺ B. Therefore, j = i+ 1.

• Conclusion: ∃ i ∈ J1; im − 1K such that A = P (i)
m and B = P (i+1)

m

Consequently, ∀A,B ⊂ Pm (A,B 6= φ) such that L � PT (m,A,B), we have:

∃ i ∈ J1; im − 1K such that A = P (i)
m and B = P (i+1)

m .

ii)⇒ i):

∀ i ∈ J1; im − 1K, since L � PT (m,P (i)
m , P (i+1)

m), we have:

• P (i)
m ≺ P (i+1)

m

• ∀X, Y ⊂ P (i)
m (X, Y 6= φ) such that X ∪ Y = P (i)

m , we have X ⊀ Y

• ∀X, Y ⊂ P (i+1)
m (X, Y 6= φ) such that X ∪ Y = P (i+1)

m , we have X ⊀ Y

119

Therefore, P (1)
m ≺ P (2)

m ≺ · · · ≺ P (im)
m , and ∀ 1 ≤ i ≤ im, ∀ X, Y ⊂ P (i)

m (X, Y 6= φ)

such that X ∪ Y = P (i)
m , we have X ⊀ Y .

Example 12 The set of proper timeouts satisfied by logs L1 (c.f. Fig. 5.2) and
related to message b is exactly {PT (b, {f}, {c, d, e}) , PT (b, {c, d, e}, {g, h}) } . In-
deed, the partition { {〈b, f〉} , {〈b, c〉, 〈b, d〉, 〈b, e〉} , {〈b, g〉, 〈b, h〉} } of Pb satisfies the
conditions of Theorem 10 i)
· {〈b, f〉} ≺ {〈b, c〉, 〈b, d〉, 〈b, e〉} ≺ {〈b, g〉, 〈b, h〉}
· ∀X, Y ⊂ {〈b, c〉, 〈b, d〉, 〈b, e〉} (X, Y 6= φ) such that X ∪ Y = {〈b, c〉, 〈b, d〉, 〈b, e〉}, we
have X ⊀ Y
· {〈b, g〉} ‖ {〈b, h〉}

This example illustrates that, given m ∈ Msg and the partition3 Π of Pm satisfying
Theorem 10 i), the set of proper timeouts satisfied by the logs and related to message
m is exactly given by the set of pairs of consecutive elements in Π. In the sequel we
present an algorithm for constructing such a partition in an incremental way.

5.4.2 Quality measure based on statistical properties
In this dissertation we investigate the possibility of assessing a quality measure in the
case of an experimentally confirmed assumption of logs presenting the statistical prop-
erties of an Exponential distribution. For an elaborate introduction to the statistical
tools used in this article the reader is referred to [126] for the Poisson distribution,
and more details on the Exponential distribution can be found in [10,138].
Definition 28 Consider α an episode. We define the occurrences′ random variable
as the number of occurrences of α taking place in the same time interval. Formally
speaking :

χ(α) = Card{M2.time | ∃〈M1,M2〉, 〈M3,M4〉 ∈ Occ(α),
M2.time ∈ [M4.time± ε]}

Intuitively, this variable represents the number of the occurrences of a given episode
whose time occurrences are located in the same time interval the length value of
which is two times ε, since ε represents the radius from M4. Also note that ε might
eventually be different for each episode, since different episodes might very easily
present different densities of occurrences that might require adaptable values of ε.

3The considered set of proper timeouts being unique, this partition is unique too.

120

Definition 29 Let 〈M1,M2〉 be an occurrence of the episode α = 〈m1,m2〉. We
define ξ as the random variable representing the occurrence duration for all occur-
rences of α. In other words, given the episode occurrence 〈M1,M2〉 of α = 〈m1,m2〉,
ξ is defined as being the waiting time for the occurrence of M2 after M1.
Hypothesis : Consider an episode α = 〈m1,m2〉 ∈ Ep. Let ξαi

, αi ∈ Occ(α) be
the independent random variables of occurrence durations of α. Then, ξαi

follows an
Exponential distribution.

This means that the values of inter-arrival waiting times between messages in a
conversation path follow the Exponential distribution. As reported in [138], in real-
world scenarios, the hypothesis of a constant rate (or probability per unit time) is
often not satisfied but still it remains approximatively constant during fixed-length
time intervals. We point out that a web service instance satisfies the memorylessness
property requirement as our experiments have shown. Memorylessness is a property of
certain probability distributions wherein any derived probability from a set of random
samples is distinct and has no information (i.e. ”memory”) of earlier samples.
Theoretical reasoning: Consider the homogeneous Poisson distribution N(t) with
rate parameter λ, and let Tk be the time of the k-th dialog occurrence, for k ∈
[1, 2, 3..., n]. It is obvious that the number of occurrences before some fixed time
t, which is determined by the timed transition, is less than k if and only if the
waiting time until the k-th occurrence is more than t. In other words, the event
[N(t) < k] takes place if and only if the event [Tk] > t also does. This implies that
the probabilities of these events are the same:

P [Tk > t] = P [N(t) < k]

Thus we obtain:

P [N(t) < k] = 1− (P [N(t) = k] + P [N(t) = k + 1] + . . .+ P [N(t) = k + i] + . . .) =
1−

∞∑
i=0

P [N(t) = k + i] = 1−
∞∑
i=0

exp(−λt)(λt)k+i

(k+i)!

This being an exponential form, the distribution of waiting time values should there-
fore be exponential.
Consequence: Let ξαi

, αi ∈ Occ(α) be the independent random variables of occurrence
durations of α. Then, ∑i ξi follows an Erlang distribution.
The reason why this is verified can be understood with ease. Each client that is going
to use the service corresponding to this protocol will follow a path from the initial
state to a terminal one. This means that each service client instance will generate one
and only one conversation. Meanwhile, the waiting time for the next message to occur
is independent of the preceding messages. In other words, the ξαi

random variables
are independent from one another. At the same time, each ξαi

variable follows the

121

same distribution as the theoretical reasoning and experiments show, so they are
distributed in an identical manner. When these two conditions are simultaneously
satisfied then the sum of the random variables follows the Erlang distribution.
Property 5 Consider an episode α and the random variable χ(α) associated to it.
Then, χ(α) follows a Poisson distribution.

This property is directly verified once that the exponential distribution of the inter-
arrival time is proved since the two distributions are strictly correlated between them.
Nevertheless we list the requirements met by this random variable that motivate
furthermore this idea. The random variable γ(σ) satisfies the following criteria :
1. Dialog occurrences arrivals are independent
2. ∀α ∈ Occ(α) the random variables defined by χ(α) share the same probability
space.
3. These random variables have the same probability distribution.
4. The time considered here is continuous and obeys to an exponential distribution.
For a more detailed view of these requirements the reader is referred to [4, 126].

Heuristics for quality measure

The reason for using a stochastic approach is the fact that statistical data contained
within Web services logs are non-stationary, i.e. its statistical properties vary with
time.

Let us assume that a timed transition exists immediately after a given message(or
set of messages). This implies that there are not any occurrences of this(these) mes-
sage(s) after the timed transition activation. Moreover, a message whose occurrences
are located in two of more different paths of the finite-state machine, i.e. different
conversations leading to terminal states, obeys to the same statistical behavior. This
however does not necessarily mean that the rate parameter of the distribution is al-
ways the same, since this assumption is not realistic. We recall that the occurrences’
time of the messages are not related to absolute time but to a relative time whose
initialization point is fixed as the service instance startup. Even if this is simple to
achieve, it still remans important to not overlook this fact. The main idea behind the
quality measure proposed in this paper for having a supplementary proof on whether
or not a discovered timed transition has strong chances to be authentic is to compute
the probability of message occurrence events.

One of the main advantages offered by stochastic modelling is its resistance toward
noise in logs. Indeed, even if there may be incorrect or erroneous entries, these are
not going to influence the overall result since they are not taken into consideration
for the statistical fitting function is defined by messages having the largest support.
Definition 30 Let 〈M1,M2〉 be an occurrence of episode α = 〈m1,m2〉 such that α ∈
Ep and be Occ(α) its occurrence set. Consider the event E of having an occurrence

122

of α such that the corresponding occurrence duration is bigger than dmax(α). We
define the quality measure ∆(α) of α in relationship with a timed transition by the
probability P [E].

Proposition 8 Consider an episode α ∈ Ep, Occ(α) its occurrences’ set, k the

cardinality of Occ(α) and the event E described in the preceding definition.Then,

P [E] =
k−1∑
i=0

(exp(−λdmax(α))(λdmax(α))i
i!) (5.4.1)

Proof. Let us calculate the probability of the event E. E is formally defined as

[∃〈M1,M2〉 ∈ Occ(α),M2.time−M1.time > dmax(α)].We can therefore write: P [∃〈M1,

M2〉 ∈ Occ(α),M2.time −M1.time > dmax(α)] ⇔ P [Tk > dmax(α)] = P [Ndmax(α) <

k|k = |Occ(α)|] =
k−1∑
i=0

(P [Ndmax(α) = i]). Thus, we obtain the precedent equation.

The idea laying behind the definition of a quality measure is based on the fact that
the more this measure is elevated for a particular episode, the higher is the probability
of encountering occurrences of the episode in the given time interval. Therefore, if
no occurrence is found, we conclude that the source of this discontinuity that caused
the occurrence interruption should be a timed transition. However, we should keep in
mind that the λ parameter used to calculate the quality measure, is being calculated
from logs and consequently it is not always as accurate as we would wish it to be.

Limitations of stochastic processes

Despite the advantages that we have seen so far, the probability-based quality measure
encounters nevertheless difficulties in facing some particular situations. When these
scenarios take place, the result of this measure might not always be as expected. Here
we discuss these cases.
Unstable rate parameter If the rate parameter λ of the exponential distribution
takes very different values for the same prefix during separated time intervals, this
might potentially lower the quality measure. This difficulty can be overcome by
preprocessing log data in order to separate them into clusters belonging to the same
time intervals, so that the messages composing the episodes into each cluster have
the same rate parameter, thus avoiding conflicts during probability calculations. The

123

reason that allows this solution to work is that λ remains quite stable during fixed-
length time intervals.
Incomplete logs Another problem arises when there are not enough samples inside
the logs for a message preceding a timed transition. In this case, the computed rate
parameter λ might be very different from the real parameter. Thus, the calculation of
the probability would be severely influenced and consequently it would be impossible
to predict whether the result is correct or not.This approach provides the correct
results as long as the statistical behavior is known in advance and the logs are rich
enough to make possible the retrieval of the statistical parameters.

5.4.3 Algorithm and experiments
The construction process is expressed by Algorithm 1. The input is composed of
a given message name m, the set Pm of episodes whose first message is m, and the
occurrence duration intervals of all episodes in Pm (derived from the logs by the global
algorithm presented in the sequel). The output is the partition Π of Pm satisfying
Theorem 10 i). Π is constructed incrementally, starting with an empty partition,
and inserting one by one the elements of Pm in such a way that Theorem 10 i) is
satisfied at each step. This means that the sets composing Π are strictly ordered by
≺. In order to describe the general step of the algorithm, let us now consider that
Π is already partly constructed. Let α be an episode of Pm not yet considered. A
single pass is made over the partition in order to determine (i) whether the occurrence
duration intervals of some elements of Π overlap the one of α, and (ii) between which
sets of Π α is located according to ≺ (which is done by comparing their occurrence
duration intervals). If there is no overlap, a new set containing α is created and
inserted into the partition in compliance with ≺. If the overlap takes place with only
one element of Π, α is simply inserted in this set. If the overlap occurs between α and
several elements of Π, they are necessarily consecutive according to ≺; as such they
are merged and α is inserted into the resulting set. Let us highlight that once a set
is created in the partition, it is never split. In fact, the algorithm is based on three
simple set operations: creation, insertion and merge. As for each episode α ∈ Pm only
one pass is made over the partition, the complexity of this algorithm is O(|Pm|2).

Proof. Correctness of Algorithm 1.

The termination of the partitionPm algorithm is guaranteed by the fact that Pm is

finite. Its soundness and completeness are proven by showing that, at each step of the

algorithm (i.e. for each new element inserted in the partition), the property stated in

124

Algorithm 7 partitionPm

Require: m, Pm, and ∀α ∈ Pm, the Occurrence Duration Interval of α (denoted by
ODI(α))

Ensure: Π the partition of Pm satisfying Theorem 10 i)
1: Π = ∅
2: while Pm 6= ∅ do
3: Choose episode α ∈ Pm; Remove α from Pm
4: Overlap = ∅; Binf = ∅; Bsup = ∅
5: // pass made over the partition
6: for all set S ∈ Π do
7: if ODI(S) ∩ODI(α) 6= ∅ then
8: Insert S into Overlap
9: else if S ≺ {α} then

10: Binf = S
11: else
12: Bsup = S; goto line 15
13: end if
14: end for
15: // update of the partition
16: if Overlap = ∅ then
17: Insert {α} into Π between Binf and Bsup
18: else if |Overlap| = 1 then
19: Insert α into the set S of Π that belongs to Overlap
20: else
21: Merge all the sets of Π that belong to Overlap and insert α into the resulting set
22: end if
23: end while

125

Theorem 10 i) is satisfied. This is obvious in the first step. In the general step, let us

assume that the property was satisfied in the previous step. Then, different scenarios

have to be analyzed:

• Overlap is empty. If {α} has to be inserted at the beginning of the partition:

we find that Binf is empty and that Bsup is the first element of Π (and {α} is

inserted before Bsup). If it has to be at the end of the partition: we find that Binf

is the last element of Π and that Bsup is empty (and {α} is inserted after Binf).

Otherwise: we find that Binf and Bsup are two consecutive elements of Π such

that Binf ≺ {α} ≺ Bsup (and {α} is inserted between Binf and Bsup). Thus {α}

is inserted in accordance with the order relationship between partition elements,

which ensures that the first part of the property is still satisfied. Furthermore,

this insertion does not change the fact that the sets of the partition cannot be

decomposed. Thus, the second part of the property is also still satisfied.

• Overlap contains only one element. Since α is inserted into this set, the order of

the partition elements is preserved. Since the occurrence duration intervals of

this set and of α are not disjoined, this insertion does not enable to decompose

this set. The other sets of the partition remain non decomposable.

• Overlap contains several elements. Let us denote them by E1, E2, . . . , Ek, and

assume without loss of generality that E1 ≺ E2 ≺ · · · ≺ Ek. Let us denote

E1 ∪ E2 ∪ · · · ∪ Ek ∪ {α} by E. We have Binf ≺ {α} ≺ Bsup, and ∀ 1 ≤ i ≤

k ,ODI(Ei) ∩ ODI(α) 6= ∅. Thus, in the partition, we have · · · ≺ Binf ≺

E1 ≺ E2 ≺ · · · ≺ Ek ≺ Bsup ≺ Therefore, · · · ≺ Binf ≺ E ≺ Bsup ≺

. . . . Furthermore, since ∀ 1 ≤ i ≤ k ,ODI(Ei) ∩ ODI(α) 6= ∅, E cannot be

126

decomposed. The other sets of the partition remain non decomposable.

Example 13 Given logs L1 (c.f. Fig. 5.2), algorithm partitionPm constructs the
partition Π of Pa = {〈a, c〉, 〈a, h〉, 〈a, e〉, 〈a, g〉, 〈a, d〉}, by including the episodes one
by one (the final result being independent of the insertions order):

• 〈a, c〉: in the first stage, the first set is created; Π = {{〈a, c〉}}

• 〈a, h〉: since {〈a, c〉} ≺ {〈a, h〉} (i.e. there is no overlap), 〈a, h〉 is inserted in a
new element of the partition after {〈a, c〉}; Π = {{〈a, c〉}, {〈a, h〉}}

• 〈a, e〉: as {〈a, c〉} ≺ {〈a, e〉} and {〈a, e〉} ≺ {〈a, h〉}, 〈a, e〉 is inserted in a new
part between {〈a, c〉} and {〈a, h〉}; Π = {{〈a, c〉}, {〈a, e〉}, {〈a, h〉}}

• 〈a, g〉: since {〈a, h〉} ≺ {〈a, g〉}, 〈a, g〉 is inserted in a new set of the partition
after {〈a, h〉}; Π = {{〈a, c〉}, {〈a, e〉}, {〈a, h〉}, {〈a, g〉}}

• 〈a, d〉: as {〈a, d〉} ‖ {〈a, c〉} and {〈a, d〉} ‖ {〈a, e〉} (i.e. they overlap), {〈a, c〉}
and {〈a, e〉} are merged; Π = {{〈a, c〉, 〈a, e〉, 〈a, d〉}, {〈a, h〉}, {〈a, g〉}}.

The global method for extracting all the proper timeouts satisfied by the logs is
divided in two steps. The first one is a preprocessing of the data, performed in order
to compute the set of message names Msg, the set of episodes Ep, and the occurrence
duration intervals of all episodes in Ep. A single pass is made over the logs, during
which the occurrence duration of each sequence of two consecutive messages is calcu-
lated4. The second step consists in constructing the partition {Pm |m ∈ Msg} of Ep,
and running algorithm partitionPm for each m ∈ Msg. The size of the logs being far
greater than the number of episodes, the first step will be the most costly. Thus the
complexity of the global algorithm is O(|L|).

Example 14 The proper timeouts satisfied by logs L1 (c.f. Fig. 5.2), and extracted
by the global method, are listed in Table 5.1.

Experiments. We implemented our discovery process to test its scalability. Tests
were performed on a computer with an Intel Pentium 4, 2.8 GHz processor, 2 GB of
RAM, running Microsoft Windows XP Professional Edition SP2. In order to easily
have a large amount of data, we employed the DOBS tool, that will be introduced
in the following chapter. The implementation of the discovery algorithm is written

4In other words, we use an analysis window of length 2 over the data.

127

Table 5.1: Proper timeouts satisfied by logs L1.

proper timeout expiry interval

Pa
PT (a, {c, d, e}, {h})
PT (a, {h}, {g})

]6; 8[
]10; 15[

Pb
PT (b, {f}, {c, d, e})
PT (b, {c, d, e}, {g, h})

]3; 6[
]10; 13[

in Java (version 1.5.0− 06) using the Eclipse development environment and the java
−Xms512m −Xmx1024m instruction for defining the heap size of the JVM. The
maximum time for each test was set to 19 hours. Results of our experiments are
presented in Fig. 5.5. They confirm the complexity results we established formally:
(i) partition complexity is quadratic wrt the number of episodes, (ii) partition time
is very small compared to preprocessing time, and (iii) global discovery (i.e. log
preprocessing and partition) complexity is linear wrt the size of logs. Considering
the size of logs, the running time is reasonable enough to state that our method
is scalable. The final test will be to run our algorithm on real-life data in further
experiments.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600

T
im

e
(m

in
ut

es
)

Number of conversations (x1000)

Overall complexity

Proper Timeout Discovery

Figure 5.5: Running times of overall discovery method (left) and partition process
(right).

128

5.5 Discussion and state of the art
As illustrated previously, elements of the partition {Pm |m ∈ Msg} of Ep are treated
separately. Thus, with each part Pm will be associated a set of discovered proper
timeouts. This process can seem redundant, in a sense that, if two transitions labelled,
for example, by messages a and b enter in the same state from which a timed transition
is going out, then two different proper timeouts will be satisfied by the logs (one
for Pa and another for Pb), and interpreted as representing two different potential
timed transitions. In fact, it is possible to realize that there is only one, by using
cross-checking between all sets of proper timeouts (c.f. Ex. 15), which can be done
automatically.

This cross-checking can also enable to reject some proper timeouts which cannot
represent timed transitions (c.f. Ex. 15). Indeed, as already explained, a proper
timeout is satisfied if, in some state of the service, some messages take longer to be
sent or received than others. However, cross-checking can be inefficient, if there is
no contradicting proper timeout, to reject a ”fake” timed transition. In such a case,
only a domain expert having some knowledge about the service can make a decision.
More generally, the verification of the discovered proper timeouts by an expert could
always increase the confidence about the result.

Example 15 Consider the proper timeouts satisfied by logs L1 (c.f. Table 5.1).
PT (a, {h}, {g}) is rejected because it cannot represent a timed transition. Indeed,
L1 � PT (b, {c, d, e}, {g, h}) implies that {〈b, h〉} ‖ {〈b, g〉}; thus, h and g label two
transitions going out of the same state (and g takes longer to be emitted than h,
only after a has been emitted). Regarding the ”redundancy” problem, we can see
that PT (a, {c, d, e}, {h}) and PT (b, {c, d, e}, {g, h}) represent the same timed tran-
sition, because there is a correspondence between the involved sets of messages.
Finally, the result consists only in two timed transitions: one corresponding to
PT (b, {f}, {c, d, e}), and the other corresponding to PT (a, {c, d, e}, {h}) and PT (b, {c,
d, e}, {g, h}).

Recall that we assumed that we have complete logs. It can be seen as a very
assumption, but it is not. In fact, we ask only for valid conversations (i.e. the ones
which finish in a final state), and not for all paths of the business protocol, to be
separately represented in the logs. Furthermore, services generally do not allow a
lot of operations, and complex services are mainly constructed by composing more
simple ones. As such, for a given service, the set of valid conversations is quite small.
Second, logs completeness is mainly a theoretical assumption, made in order to prove
that our algorithm can discover all timed transitions in this case. In fact, we do not
ask for logs to be complete in real life scenarios. Thus, some timed transitions can

129

be missed. In a re-engineering point of view, this can mean that some operations are
useless, and justify an evolution of the service.

5.6 Summary
In order to mine the timed business protocol from activity logs, we presented in this
chapter an approach for extracting the timed transitions of the service protocol. In
order to achieve this objective, we have defined the concept of proper timeouts. Proper
timeouts are defined in such a way, that they can be the optimal formal representation
of timed transitions. In addition, we have provided an algorithm for identifying these
proper timeouts. Nevertheless, we conclude that the need for an expert analysis is
still requires, since we have shown that discovered proper timeouts might not always
represent time transitions. However, given the fact that these transitions are not
stored in logs, extracting proper timeouts represents an important complementary
solution to the global issue of business protocol discovery.

Chapter 6

Issues on assessment, simulation
and log data.

Model assessment and model mining, along with what-if analysis, are three key pro-
cesses which are important in software design and engineering, service-oriented archi-
tectures and business process management. Model assessment evaluates the compli-
ance of a model towards its specification before or after implementation. Model min-
ing allows the extraction of the implemented model from its activity logs and without
prior knowledge on the model itself. This chapter presents DOBS, a model evaluation
and data generation tool for the improvement and testing of model compliance and
correctness and for assisting the process of mining state diagrams or flowcharts, such
as business processes, web services etc. DOBS is a continuous time/discrete event
simulator that allows the design, simulation and testing of a behavioral model before
its implementation, or to check and evaluate an existing real-world model such as a
business process or web service for compliance requirements towards specifications.
The data generation feature allows to analyze the output as well as to test mining
methods on large amounts of realistic high-quality data. Experimental results show
the efficiency and effectiveness of DOBS in modeling and analyzing the model behav-
ior, testing multiple execution scenarios, as well as the huge production capacity of
realistic configurable data.

6.1 Introduction
The first motivation of the this chapter is the need for data for preliminary validation
of model assessment and mining algorithms. This is a problem that is common to all
the research community working on data mining. For example, during QDB 2009 [122]
participants pointed out that authentic data sets are extremely hard to obtain for a

130

131

researcher. Indeed, only researchers employed in R&D departments, or those partici-
pating in particular collaborations involving partners from data-generating fields (or
which are in possession of these data sets) such as medical centers, large businesses,
government agencies, service providers etc. can make usage of such datasets. All
the other researchers are faced with a continuous and disturbing lack of data, despite
exceptions like the logs provided by [115]. This concerns not only real-world data but
also synthetic sources such as generators, simulators, etc. Typical scenarios where
data generation and model simulation are strongly required are model assessment,
what-if analysis and model mining. The other motivation is the need for a generic
simulator that, by emulating business processes, workflows, and web services, can be
used for what-if analysis.

Model assessment (also referred to as model compliance) addresses the issue of
conformance towards a policy, standard, law or technical specification that has been
clearly defined [147]. This also includes but is not limited to conforming towards busi-
ness regulations and stated user service requirements [119]. As the authors in [151]
point out in their survey, compliance toward regulations is finding more and more
attention in the eyes of the research community. Applications of model assessment
include workflow checking, protocol verification, and constraint validation [98]. Fac-
tors that motivate model compliance utility are: cost of the implementation prototype
just for assessing the model, cost of re-implementing once that assessment results are
negative, risk of testing on real-world already deployed systems, complexity of de-
signed systems which prohibits exhaustive static verification and validation.

Concrete and oriented applications are mining of workflows, business processes
and software specifications, business protocol discovery and web application behavior
extraction. Applications include: post-mortem monitoring, checking the equivalence
between the specification and implementation, obtaining the specification if it does
not exist, checking for security flaws, verifying that constraints in the execution flows
are satisfied, checking if the designed model is correct, complete and finite (i.e. no
deadlocks, infinite loops, bottlenecks), verify performance parameters on given parts
of a model. Yet data for mining is extremely hard to get mainly for confidentiality
reasons, or because the data is used for commercial purposes.

Model assessment and model mining merge together in synergy, especially regard-
ing the tasks of (i) checking the equivalence between the specification and implemen-
tation and (ii) obtaining the specification if it does not exist. In this double-sided
context we present DOBS (Dynamic mOdel Behavior Simulator), a modeling-and-
emulating generator tool which allows the expert of business processes,web services,
or any other dynamic behavior-based systems, to design, test and simulate a behav-
ioral model such as a business process or a web service / application. It also allows to
generate activity data, of both low and high level of abstraction, from the simulation
of the service protocol execution and testing. DOBS can thus be used as a testing

132

or data generation tool, or both. It can improve model compliance while helping
decision support during all stages of model assessment evaluation life-cycle. DOBS
utility for compliance analysis may vary depending on the context of its usage since
critical systems require both pre/post assessment, whereas nominal systems should
in principle require only pre-implementation assessment.

The chapter is organized as follows: Section 6.1.1 describes the principles and ob-
jectives of DOBS. Section 6.2 describes its architecture and implementation. Section
6.3 provides experimental results on the capabilities of DOBS. Section 6.4 explores
existing attempts in achieving similar objectives as those of DOBS. Finally, we draw
some conclusions in Section 6.5, along with future improvements.

6.1.1 Simulating Dynamic Behaviors:

Principles and Objectives
DOBS is an analysis and decision support compliance verifier and simulation tool for
data generation, modeling, optimization and validation of compliance in processes,
services and software. The core of DOBS is a discrete event simulator that allows
for the reproduction of the behavior of dynamic models. DOBS is thus mainly de-
signed for simulating business processes, web services, workflows and software control
charts. This can be used to play what-if scenarios in case of a future update, allowing
experts to assess problematic points, and the impact of every modification on the
evaluation criteria. By doing so, DOBS avoids the expensive and time-consuming
task of implementing changes on the software/real application level.

The design principles of DOBS are based on what is generally expected from a
tool of this kind. DOBS should allow through its graphical user-interface to model
very complex structures in far less time compared to the amount of time required
for implementing mock-ups or prototypes on the source code level. The modules
composing DOBS were designed to interoperate seamlessly, so that the user can con-
centrate on the semantics of the result and of the model. The target user of DOBS
is an individual which is familiar with workflows. This encompasses a wide range of
potential users, such as management personnel, software designers, process and web
service experts, etc.

The main objectives of DOBS are to assess and comply with (i) the quality of
the model behavior in terms of completeness, scalability, and consistency, and (ii) the
properties and quality of generated data in terms of temporal consistency, pattern
coherence, and statistical properties. DOBS also targets the generation of text logs
from live executions of processes and service. In the case of an existing running
model, DOBS allows to check the conformance between the specification model using

133

its GUI, and the real system.
The completeness criterion requires the model execution to cover all existing tran-

sitions, in other words every component of the behavior model is to be explored. Scal-
ability expresses the capacity of DOBS in performing in both a rapid and reliable way
when simulating large, complex, and multiple-instance models. Consistency on the
other hand, assures that the designed model behaves according to the specification,
and does not show unexpected, undefined, or non-deterministic behaviors. Temporal
consistency ensures for temporal data to correctly follow the time logic specified in
the model. For example, timestamps are supposedly processed and logged in the re-
quired order without undesired value alteration and overlapping. Pattern coherence
ensures that structures such as loops, parallel execution branches and time-triggered
events are correctly translated into data patterns. Statistical properties are also to
be verified in order to check that generated data values do conform to expectations,
therefore increasing the probability of a positive data and behavior assessment.

We note in the end that in this Chapter we explicit units that represent the data
which is logged into activity logs (traces) into the following set: Tasks, Operations,
Messages, Activities, and Events. In the following, all these interaction units will be
referred to as a TOMAE.

6.2 The DOBS system

6.2.1 Architecture
The architecture of the DOBS tool is shown on Figure 6.1 which depicts the concep-
tual schema of its main components: the Graphical User Interface (GUI), the Block
Library (BL), the Simulator Controller(s) (SC), the Data Generator(s) (DG), the Log
Pre-processing Library (LPL), and the Model Explorer (ME).

- The GUI component is ubiquitous and it is the starting and ending point for
every simulation step. It mainly allows users to load a simulation model from a file and
store it, to design and run a model from scratch by means of the Block Library(BL)
and Model Explorer(ME) modules.

- The Model Explorer (ME) is responsible for defining and configuring all the
data variables that the model is going to employ as of input, output or internal
type, as well as events which are going to be triggered during runtime of the model
simulation.

- The Simulator Controller (SC) component implements the behavior specific
to the targeted model. SC has six main sub-components which are described as
follows:

134

Figure 6.1: Conceptual model of DOBS

1. The Input Data (ID) receives all incoming data from outside the SC and even-
tually prepares them for further usage.
2. The Basic Components (BC) block provides the elementary modules that will
compose the automata whose execution represents the behavior of the model. These
modules include states, transitions, super-states, junction points, user-written func-
tions, etc.
3. The Internal Logic Statements (ILS) is composed of single and optional statements
such as variable instantiation, arithmetics and so on. These statements are edited
and inserted directly into the transition labels of the automata, and executed if and
only if the event identifying the transition is triggered and the associated condition
returns the boolean true value. For an illustration of ILS, see Figure 6.2.
4. The TOMAE Flow/Order Control represents the core of SC. It implements the
user-specified behavior by means of transition connections between states, enforcing
transition constraints over determined values, probabilistic transition selection em-
ploying the input random user-defined distribution generated by DG.
5. The Debugging Interface (DI) offers functionalities that allow a quick detection of
errors made during the modeling phase in DOBS.

135

6. The Simulation Data (SD) is in charge of all data that is of interest to the model
from the designer point of view.

- The Data Generators (DG) module has the task of grouping all blocks whose
function is to generate all the necessary data that will be used and processed during
a simulation. DG is composed of three sub-components:
1. The Temporal Data (TD) provides realistic time values that are associated to
TOMAE occurrences or state and transition activations in any given point of the
model flowchart. DOBS uses continuous time values and the time interval can be de-
fined by the user as finite (fixed-duration simulation) or infinite (very long duration
of the simulation).
2. The Model Attribute Values (MAV) constitute the set of data that will be associ-
ated to every attribute of an existing TOMAE in the flowchart.
3. The Decision-making Variables (DV) are part of a particular, yet important group
of DG. These variables bear the decision of TOMAE selection in multiple-choice sce-
narios. For example, when several transitions exit the same state, it will be the task
of a DV to generate the value that will be used to discriminate the selected transition
or TOMAE to be followed on the next simulation step.

- The Block Library Module (BL) provides all the elementary blocks that
will compose every model. Three sub-components constitute this module. They are
categorized based on their functionalities:

The Source module includes all blocks that are responsible for data, value and
noise generation. The Sinks module constitutes the set of blocks acting as the output
interface. The Functions module is the most flexible part. It is composed of both
pre-defined and new user-written functions that enhance the capabilities of existing
library blocks in BL.The Routing module is composed of blocks that channel the data
and other values between the model components.
These blocks allow users to design lighter models which are not visually overloaded
with simple connections that quickly overload the GUI.

- The objective of the Data Output Module (DOM) is to ensure the appro-
priate handling of the output incoming from the SC module. More precisely, its two
components Data Logging (DL) and Data Visualization (DV) deal respectively with
(i) recording the SC simulation data by utilizing the correct data type storage format
which comes in the form of arrays, matrices, cell arrays, and symbolic values, and
(ii) provide the appropriate data visualization interfaces by using either numerical
displays for direct value reading, or plotting functions for observation of patterns or
statistical study. Examples are depicted in Figure 6.3 and 6.4 that are described in
detail in Section 6.3.

- The Log Pre-processing Library (LPL) constitutes the final stage of the
DOBS usage flow, and deals with the crucial task of (i) cleaning logs from redundant

136

and other irrelevant data (c.f. Log Cleaner (LC) sub-component) and (ii) reorganizing
data structures and manipulating data content in order to make it fit for further
usage, as well as testing its properties in order to ensure that the output corresponds
to the users’ expectations before feeding the output to furthermore processing and
analysis steps. Testing also includes visualization techniques, an example of which is
illustrated in Fig.6.4.

An illustration of the SC block design interface is given in Figure 6.2. The diagram
on this figure is a simulation model of the fictious TradingWS web service. One can
see on this figure the states through which this service goes as well as the transitions
that are taken upon satisfaction of the corresponding conditions. The lines of text
that appear on the interface are the ILS statements.

Figure 6.2: Behavior designer interface - SC component

137

6.2.2 Implementation
DOBS is implemented in the Matlab Simulink environment [100], and the LPL module
is written in the Matlab programming language1. The Matlab Simulink environment
was selected mainly because it has the required features for an efficient implemen-
tation of DOBS. Among these features we can mention the set of existing blocksets
and toolboxes. The choice was also influenced by the opportunity to graphically de-
sign dynamic models using the Simulink environment. This software package is well
known for modeling, simulating, and analyzing dynamic systems. It also allows for
simultaneously simulating several models at a time which is a useful feature.

Moreover, MATLAB offers interesting features through its programming language
and graphic capabilities. Its high-level matrix/array language with control flow state-
ments, functions, data structures, input/output, and object-oriented programming
features, allowed for a rapid creation of the necessary functions that constitute the
LPL module. Also, this software offers extensive facilities for displaying vectors and
matrices as graphs, as well as annotating and printing these graphs.

The final reason for this choice is the existence of very numerous libraries that are
made freely available from many academic researchers. Nevertheless, since Matlab
is not a free software we also explored other candidates. Indeed, Scilab [135] offers
a quite interesting option, with its Scicos code generator whose functionalities are
unfortunately quite limited compared to those of Simulink, notably regarding the
dynamic simulation capabilities. Octave [67] on the other hand is even more limited
since it only offers a command-line interface thus allowing only for the LPL library
to be tested upon it.

6.3 Experiments and testing
This section presents an experimental evaluation of DOBS based on several key cri-
teria. The main objectives of the experiments were to check that DOBS meets its
objectives provided in Section 6.1.1. We briefly recall them: (i) the quality of the
model behavior in terms of completeness, scalability, and consistency, and (ii) the
properties and quality of generated data in terms of temporal consistency, pattern
coherence, and statistical properties.

DOBS was used to generate data for (i) the WatchMe scenario [119] in order to
assess compliance restrictions (ii) the Drug Dispensation process [120] for process min-
ing based on uncertain data, and (iii) the mockup commercial web service TradingWS

1The model files, along with a demo video, as well as additional informa-
tion on the scenarios that are implemented using DOBS can be downloaded at
http://liris.cnrs.fr/kreshnik.musaraj/technology/simulation/

138

Table 6.1: Performance metrics of simulated messages from TradingWS web service
Instances Time (sec.) # Generated events
500 69 7485
1000 135 14778
2500 331 36080
5000 652 71207
10000 1473 132562
25000 3409 353549

(whose behavior model is given in Figure 6.2) for client service behavior simulation.
For all three scenarios transition selections are randomly chosen following a uniform
distribution at generation time. TOMAE inter-arrival times were independently con-
figured in order to assure that no correlation occurred during the simulation. This is
in fact a required condition for a realistic simulation.

Table 6.1 provides samples of simulations based on varying values for occurrences
of entire instances and messages. One can notice the linear progression of the time
required for simulation and generation versus both the number of messages and in-
stances. This result becomes even more visible in Figure 6.5.

We show in Table 6.2 the experimental results on the selection rate of multiple
transitions. This corresponds to the criteria of completeness and consistency. Indeed,
the results show that all of the considered messages were executed according to the
specified behavior in Figure 6.2. Moreover, the divergence between the expected selec-
tion rate and the experimental rate is quite low. This non-zero divergence corresponds
to what is expected from a real execution of the model. In addition, messages d, r,
g, and f have the highest level of divergence. This is due to their loop-based behav-
ior and this provides further proof that the pattern coherence criterion is respected
during simulation.

Figure 6.3 illustrates the correct temporal evolution of occurrences of TOMAEs
when using a relative timeline, i.e. a clock reset to zero at the beginning of each
model instance simulation. Figure 6.4 clearly shows that TOMAEs are correlated
during the simulation as expected. On the right hand of the chart one sees that the
dynamics of the four considered messages are indeed correlated. This derives from
the structure of the TradingWS service that connects these messages. The visual
pattern on the right provides further proof that the temporal constraints are not
violated during log generation and transformation. Both plots were obtained using
the LPL module for data cleansing and visualization. Figure 6.5 depicts the temporal
performance of DOBS during generation increasing quantities of data, with the impact
of both instance and event number. On the other hand, Figure 6.6 demonstrates that
DOBS does preserve the statistical properties of data by comparing the parameters of

139

Table 6.2: Statistical metrics of simulated messages from TradingWS web service
Message type (abbrevia-
tion)

Selection rate in mutiple-
choice transitions (%)

Estimated difference
with expected rate

loginOK (b) 0.50556 +5.561× 10−3

loginFail (c) 0.49443 −5.561× 10−3

browseProducts (d) 0.22849 +28.49× 10−3

addToList (e) 0.20552 +5.527× 10−3

order (r) 0.55121 +51.21× 10−3

viewDetails (g) 0.17361 −26.39× 10−3

deleteFromList (f) 0.16776 −31.27× 10−3

confirmProductList (t) 0.20236 −2.361× 10−3

output data with the theoretical estimation of the statistical distribution (Exponential
distribution in this case).

Figure 6.3: Timeline sequencing of simulated TOMAEs from the WatchMe scenario
[119]

140

Figure 6.4: Temporal distribution of simulated messages from TradingWS web service
in Figure 6.2

6.4 Related work
Existing attempts to design and build tools that might achieve similar goals to those
of DOBS present limitations since they are designed to deal with particular situa-
tions, hence suffering from non-generic functionalities which severely restricted their
extensive usage. Several tools address the issue of simulation and data generation of
state-diagrams.

In [13] the authors present SYMIAN, a decision support tool for the improvement
of incident management performance. This tool tests corrective measures for the
IT support organization by improving performance measures. Since this simulation
tool is targeting the performance optimization of IT management processes in a very
precise manner, it is thus not possible to employ it for more generic goals such as
the ones of DOBS. The main difference between DOBS and SYMIAN is the target
objective: the former addresses assessment analysis and data generation, while the
latter considers only performance issues. In that sense, SYMIAN can be seen as a
potential application case of the more universal DOBS.

The Sage-Combinat toolbox [110] also offers interesting capabilities in exploring
weighted automatons, which corresponds indeed to one of the many features of DOBS.
This toolbox runs on the former MuPad application, which no longer exists since it
was actually acquired by The Mathworks and incorporated into the Symbolic Math

141

Figure 6.5: Scalability measures versus number of instances and events generated for
TradingWS.

Toolbox for Matlab [100]. Yet, exploring finite-state machines is a very narrow ap-
plication of Sage-Combinat, which, as an algebraic combinatorics tool, has objectives
that extremely diverge from the scope of the domains considered in this part of our
work. Nevertheless, this toolset has the important property of guaranteeing that all
the transitions of a given automata are explored. We have shown in the previous
section that this property is indeed fundamental, this is why a particular attention
was given to the fact that DOBS could offer the same guarantee. Also, since the ap-
plication which served as a running platform for Sage-Combinat is no longer officially
available, this severely limits any future usage.

DOBS incorporates a new and innovative approach that provides for the first
time a proposal and implementation framework for modeling the inner mechanisms
of state diagrams in the context of processes, web services and software. Thus DOBS
supports behavior analysis and data generation for these systems.

6.5 Summary
Simulation of business processes, web service business protocols, and other structures
based on state diagrams for assessment analysis and data generation for mining appli-
cations is a complex task. Nevertheless achieving these objectives is very helpful for

142

Figure 6.6: Distribution of simulated messages (blue) of TradingWS and theoretical
fitting function (red)

assisting and allowing these analysis and mining applications to be tested. This chap-
ter described and detailed the DOBS tool for the improvement and testing of model
compliance and correctness and for assisting the process of mining state diagrams or
flowcharts.

Chapter 7

Conclusions and future work

7.1 Concluding summary
Protocol mining by means of message correlation for web service business protocol
mining is an important step in SOA architectures. This domain requires further
attention since it is far from being exhaustively explored. This motivates the efforts
on establishing automatic methods for message correlation relying on virtually no
assumptions on the logs used as starting point. This concerns not only the properties
of log data (absence of noise, statistical properties, etc.), but also the data content
itself, which is subject to change in large measures depending on the context and
SOA implementations. We presented a method for: (i) Correlation of messages using
almost no information aside message timestamps, (ii) Modeling of the dynamic flow of
messages into a business protocol, (iii) Business protocol generation from the algebraic
description of the flow of messages, and (iv) A linear-complexity algorithm for the
correlation and discovery process. We provided an algebraic form that is equivalent
to the finite-state machine notation of a business protocol to continue on obtaining
the linear system that described a business protocol by means of linear regression
techniques. This was achieved via the Ordinary Least Squares estimator that was
shown to be noise-resistent while providing the coefficients of the linear equations.

We continued by presenting a variable grain-size algorithm that extends the usage
of temporal operators, and based on the study of cardinality properties allows the
correlation between timeseries. The approach does not operate on any assumption
on the existence of extracted facts and is capable of inferring temporal data facts and
handling the pre-processing step. In addition, we introduced a multiple-parameter
configuration that based on the theoretical contributions, allows for the extraction of
the temporal graph that models the temporal relationships existing between messages.
This result was built on the capability of assessing the affine transformations between

143

144

flow data density functions. Moreover, we deduced from experimental results that
despite the false-appearance of potentially high complexity, the gamma algorithm
remains robust and is influenced only by one main parameter, i.e. the granularity
level.

In the context of the discovery of the timed business protocol of a Web service from
its conversation logs, we focused on extracting timed transitions. Our contribution
was based on a formal framework leading to the definition of proper timeouts. We
have shown that proper timeouts are the best representations of timed transitions
in conversation logs. We have given a simple characterization of the set of proper
timeouts satisfied by the logs. We also proposed a polynomial algorithm for extracting
these patterns.

Finally, we presented our contribution in simulating business processes, web ser-
vice business protocols, and other structures based on state diagrams for assessment
analysis and data generation for mining applications. We have shown that achieving
these objectives is very helpful for assisting and allowing these analysis and mining
applications to be tested. In addition, we described and detailed the DOBS tool for
for the improvement and testing of model compliance and correctness and for assisting
the process of mining state diagrams or flowcharts.

7.2 Future work
One of our main future work is to combine the delta algorithm with other methods
that already provide protocol mining from conversation logs. An on-going effort is
addressing the extension of the algorithm into the Business Process mining domain. In
order to achieve this, the delta algorithm needs to be adapted to account for process-
specific patterns such as parallel transitions, AND-splits, AND-joins, etc. Another
perspective that we plan to investigate is the adaptation of the delta algorithm in
order to extract cross-organizational service protocol, and to mine logs generated from
composite web services.

As for the analysis of temporal series, we plan to employ similar approaches that
appear to be very promising. One of these approaches is already at an advanced stage
and is based on the usage of continuous functions, instead of piecewise linear func-
tions. We intend to explore the advantages of the derivability of such functions, for
determining the time shifts, and thus the temporal order between messages. Another
future objective of high added value is to automatically compute the optimal values
of Zv for the different objectives (assessing a FOAT, computing the horizontal and
vertical shift of PLFs, etc.).

As future work for the extraction of temporal constraints, our first objective is
to broaden our method: we plan to deal with more general business protocols, with

145

cycles, and where transitions are not necessarily uniquely labelled, or having timed
transitions entering in a final state. It would be also relevant to analyze noisy logs
and to propose a probabilistic method. Another interesting prospect would be to
make use of our technique to discover the entire business protocol. In fact, the
result we propose to a user contains not only proper timeouts but also some local
knowledge about transitions. We would like to investigate whether gathering this
local information could lead to a coherent global knowledge about the protocol.

Regarding our DOBS tool, we plan to furthermore enhance it with the incorpo-
ration of more explicit compliance concerns, in order to test, for high-level semantic
constraints, for example security, privacy, protocol specified actions etc.

A particular interest will be devoted to incorporating other statistical models as a
basis for model design. For example, statistical distributions for the inter-arrival time
between TOMAEs in a model will include the exponential and Erlang distributions
which can be very helpful in designing telecommunication-based systems, extending
therefore the potential applications for DOBS. Another important feature that will be
added is to provide DOBS as a service which will be accessible over the web. Finally,
DOBS will be completed with adapter modules in order to link its input entry point
with BPEL or other object models, such as for example the BPMN Modeler for
Eclipse [79]. Metrics for assessing the similarity and divergence between models are
also part of future capabilities that will be integrated into DOBS.

Bibliography

[1] ABPMP, Association of business process management professionals, Available

at http://www.abpmp.org/ (2010).

[2] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann, Mining process
models from workflow logs, EDBT ’98 (Valencia, Spain), Springer, Mar 1998,
pp. 469–483.

[3] Rakesh Agrawal and Ramakrishnan Srikant, Mining sequential patterns, ICDE
’95 (Taipei, Taiwan), IEEE Computer Society, Mar 1995, pp. 3–14.

[4] Arnold O. Allen, Probability, statistics and queueing theory, with computer sci-
ence applications, Academic Press, 1978.

[5] James F. Allen, Maintaining knowledge about temporal intervals, Commun.
ACM 26 (1983), no. 11, 832–843.

[6] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju, Web Ser-
vices: Concepts, Architecture and Applications, Springer Verlag, 2004.

[7] Habrard Amaury, Modeles et techniques en inference grammaticale probabiliste :
de la gestion du bruit a lÕextraction de connaissances, Ph.D. thesis, Universite
Jean Monnet de Saint-Etienne, Saint-Etienne, France, 2004.

146

147

[8] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi,
David Orchard, and Stefano Pogliani, Web service choreography interface (wsci)
1.0, W3C Note. Available at http://www.w3.org/TR/wsci/ (2002).

[9] D. Austin, A. Barbir, C. Ferris, and S. Garg, Web services ar-
chitecture requirements, W3C Working Group Note. Available at

http://www.w3.org/TR/wsa-reqs/ (2004).

[10] Gerrald Baillardgeon, Probabilites et statistiques avec applications en technolo-
gie et ingenierie, Editions SMG, 2002, pp. 238–240.

[11] Alistair Barros, Marlon Dumas, and Phillipa Oaks, A critical overview of the
web service choreography description language.

[12] Alistair Barros, Marlon Dumas, and Arthur H. M. ter Hofstede, Service inter-
action patterns, Business Process Management 2005 (Nancy, France), Springer,
Sep 2005, pp. 302–318.

[13] Claudio Bartolini, Cesare Stefanelli, and Mauro Tortonesi, Symian: A simu-
lation tool for the optimization of the it incident management process, DSOM
’08: Proceedings of the 19th IFIP/IEEE international workshop on Distributed
Systems: Operations and Management (Berlin, Heidelberg), Springer-Verlag,
2008, pp. 83–94.

[14] Catriel Beeri, Anat Eyal, Tova Milo, and Alon Pilberg, Monitoring business
processes with queries, VLDB ’07: Proceedings of the 33rd international con-
ference on Very large data bases, VLDB Endowment, 2007, pp. 603–614.

[15] Riccardo Bellazzi, Cristiana Larizza, and Paolo Magni, Temporal data min-
ing for the quality assessment of hemodialysis services, Artificial Intelligence in
Medicine 34 (2005), no. 1, 25–39.

148

[16] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk Toumani, Com-
patibility and replaceability analysis for timed web service protocols, BDA ’05
(Saint-Malo, France), Oct 2005.

[17] , On temporal abstractions of web services protocols, CAiSE ’05 Short
Paper Proceedings (Porto, Portugal), Springer, June 2005, pp. 39–44.

[18] Boualem Benatallah, Fabio Casati, and Farouk Toumani, Analysis and man-
agement of web service protocols, Conceptual Modeling - ER ’04 (Shanghai,
China), Springer, Nov 2004, pp. 524–541.

[19] , Representing, analysing and managing web service protocols, Data &
Knowledge Engineering 58 (2006), no. 3, 327–357.

[20] Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge, and Hamid
R. Motahari Nezhad, Service mosaic: A model-driven framework for web ser-
vices life-cycle management, IEEE Internet Computing 10 (2006), no. 4, 55–63.

[21] Daniela Berardi, Automatic composition services: Models, techniques and tools,
Ph.D. thesis, Universita degli Studi di Roma, La Sapienza, Roma, Italy, 2005.

[22] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger, Web service
interfaces, WWW ’05: Proceedings of the 14th international conference on
World Wide Web (New York, NY, USA), ACM, 2005, pp. 148–159.

[23] Alan W. Biermann and Jerome A. Feldman, On the synthesis of finite state
machines from samples of their behavior, IEEE Transactions on Computers 21

(1972), no. 6, 592–597.

[24] Don Box, David Ehnebuske, Gopal Kakivaya, Layman An-
drew, and al., Simple object access protocol (soap) 1.1. w3c note,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

149

[25] Antonio Brogi, Carlos Canal, Ernesto Pimentel, and Antonio Vallecillo, For-
malizing web service choreographies, Electron. Notes Theor. Comput. Sci. 105

(2004), 73–94.

[26] Christoph Bussler, B2b integration: Concepts and architecture, Springer, 2003.

[27] Javier Cámara, Carlos Canal, Javier Cubo, and Antonio Vallecillo, Formalizing
wsbpel business processes using process algebra, Electron. Notes Theor. Comput.
Sci. 154 (2006), no. 1, 159–173.

[28] Josep Carmona, Jordi Cortadella, and Michael Kishinevsky, Divide-and-conquer
strategies for process mining, BPM ’09: Proceedings of the 7th International
Conference on Business Process Management (Berlin, Heidelberg), Springer-
Verlag, 2009, pp. 327–343.

[29] Fabio Casati, Malu Castellanos, Umeshwar Dayal, and Norman Salazar, A
generic solution for warehousing business process data, VLDB ’07: Proceedings
of the 33rd international conference on Very large data bases, VLDB Endow-
ment, 2007, pp. 1128–1137.

[30] Malu Castellanos, Fabio Casati, Ming-Chien Shan, and Umesh Dayal, ibom: A
platform for intelligent business operation management, ICDE ’05: Proceedings
of the 21st International Conference on Data Engineering (Washington, DC,
USA), IEEE Computer Society, 2005, pp. 1084–1095.

[31] ICT Centre, Service management framework, Available at

http://research.ict.csiro.au/.

[32] Samprit Chatterjee and Ali S. Hadi, Regression analysis by example, 3rd ed.,
ch. 2, pp. 21–50, Wiley-Interscience, New York, 2000.

150

[33] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana,
Web services description language (wsdl) 1.1, W3C Working Group Note. Avail-
able at http://www.w3.org/TR/wsdl (2001).

[34] Jen-Yao Chung, Kwei-Jay Lin, and Richard G. Mathieu, Guest editors’ in-
troduction: Web services computing–advancing software interoperability, Com-
puter 36 (2003), no. 10, 35–37.

[35] Paul R. Cohen, Fluent learning: Elucidating the structure of episodes, IDA’ 01:
4th International Conference on Advances in Intelligent Data Analysis, 2001,
pp. 268–277.

[36] William W. Cohen, Fast effective rule induction, In Proceedings of the 12th
International Conference on Machine Learning, Morgan Kaufmann, 1995,
pp. 115–123.

[37] Alberto Colombo, Ernesto Damiani, and Gabriele Gianini, Discovering the soft-
ware process by means of stochastic workflow analysis, J. Syst. Archit. 52 (2006),
no. 11, 684–692.

[38] Jonathan E. Cook and Alexander L. Wolf, Automating process discovery through
event-data analysis, ICSE ’95: Proceedings of the 17th international conference
on Software engineering, ACM, 1995, pp. 73–82.

[39] Jonathan E. Cook and Alexander L. Wolf, Discovering models of software pro-
cesses from event-based data, ACM Transactions on Software Engineering and
Methodology 7 (1998), no. 3, 215–249.

[40] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weer-
awarana, The next step in web services, Commun. ACM 46 (2003), no. 10,
29–34.

151

[41] Sreerupa Das and Michael C. Mozer, A unified gradient-descent/clustering ar-
chitecture for finite state machine induction, Advances in Neural Information
Processing Systems 6, Morgan Kaufmann, 1994, pp. 19–26.

[42] Thomas H. Davenport, Process innovation: reengineering work through infor-
mation technology, Harvard Business School Press, Boston, MA, USA, 1993.

[43] Booth David, Champion Michael, Ferris Chris, and McCabe Fran-
cis, Web services architecture, W3C Working Draft. Available at

http://www.w3.org/TR/2003/WD-ws-arch-20030514/ (2003).

[44] Colin de la Higuera, A bibliographical study of grammatical inference, Pattern
Recogn. 38 (2005), 1332–1348.

[45] A.K.A. de Medeiros, Wil M.P. van der Aalst, and A.J.M.M. Weijters, Work-
flow mining: Current status and future directions, On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture
Notes in Computer Science, Springer, 2003, pp. 389–406.

[46] Wim De Pauw, Man Lei, E. Pring, L. Villard, M. Arnold, and John F. Morar,
Web services navigator: visualizing the execution of web services, IBM Syst. J.
44 (2005), no. 4, 821–845.

[47] Tom Debevoise, Business process management with a business rules ap-
proach: Implementing the service oriented architecture, BookSurge Publishing,
Charleston, SC, USA, 2007.

[48] Gero Decker, Oliver Kopp, and Alistair Barros, An introduction to service chore-
ographies, Information Technology 50 (2008), no. 2, 122–127.

[49] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske, Bpel4chor:
Extending bpel for modeling choreographies, Web Services, IEEE International
Conference on 0 (2007), 296–303.

152

[50] Giovanni Denaro, Mauro Pezzé, Davide Tosi, and Daniela Schilling, Towards
self-adaptive service-oriented architectures, TAV-WEB ’06 (Portland, Maine,
USA), ACM, Jul 2006, pp. 10–16.

[51] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh,
Interaction protocols as design abstractions for business processes, IEEE Trans.
Softw. Eng. 31 (2005), no. 12, 1015–1027.

[52] Dider Devaurs, Kreshnik Musaraj, Fabien De Marchi, and Mohand Said Hacid,
Timed transition discovery from web service conversation logs, 20th Interna-
tional Conference on Advanced Information Systems Engineering (CAISE’08),
ACM, 2008, pp. 53–56.

[53] Gartner’s Application Development and Maintenance Research., Business activ-
ity monitoring: Calm before the storm. id number: Le-15-9727, Available at

http://www.gartner.com/resources/105500/105562/105562.pdf (2002).

[54] , Note m-16-8153, the bpa market cathes another major updraft,
Available at http://www.gartner.com (2002).

[55] Jordan Diane and Evdemon John, Web services business process
execution language version 2.0, OASIS Standard. Available at

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (2007).

[56] Schahram Dustdar and Robert Gombotz, Discovering web service workflows
using web services interaction mining, Int. J. Business Process Integration and
Management 1 (2006), no. 4, 256–266.

[57] Schahram Dustdar, Robert Gombotz, and Karim Baïna, Web services interac-
tion mining, Tech. Report TUV-1841-2004-16, Technical University of Vienna,
Vienna, Austria, Sep 2004.

153

[58] Schahram Dustdar and Wolfgang Schreiner, A survey on web services composi-
tion, Int. J. Web Grid Serv. 1 (2005), no. 1, 1–30.

[59] eBay Developers Program, The ebay trading api, available at
http://developer.ebay.com/products/trading/, 2010.

[60] Allen L. Edwards, Introduction to linear regression and correlation, ch. 3,
pp. 20–32, W.H.Freeman & Co Ltd, San Francisco, 1976.

[61] Clarence A. Ellis, Formal and informal models of office activity, Information
Processing, 1983, pp. 11–22.

[62] Roddick John F. and Spiliopoulou Myra, A survey of temporal knowledge discov-
ery paradigms and methods, IEEE Trans. on Knowl. and Data Eng. 14 (2002),
no. 4, 750–767.

[63] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, From data
mining to knowledge discovery: an overview, American Association for Artificial
Intelligence, 1996, pp. 1–34.

[64] Diogo R. Ferreira and Daniel Gillblad, Discovering process models from unla-
belled event logs, BPM ’09: Proceedings of the 7th International Conference
on Business Process Management (Berlin, Heidelberg), Springer-Verlag, 2009,
pp. 143–158.

[65] Roy Thomas Fielding, Architectural styles and the design of network-based soft-
ware architectures, Ph.D. thesis, Irvine, California, USA, 2000.

[66] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth, An overview of
workflow management: From process modeling to workflow automation infras-
tructure, DISTRIBUTED AND PARALLEL DATABASES, 1995, pp. 119–153.

[67] GNU, Octave, Available at http://www.gnu.org/software/octave/.

154

[68] Michael Goebel and Le Gruenwald, A survey of data mining and knowledge
discovery software tools, SIGKDD Explorer Newsletter 1 (1999), no. 1, 20–33.

[69] Bart Goethals, Survey on frequent pattern mining, Manuscript, 2003.

[70] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, and Domenico Saccà, Min-
ing and reasoning on workflows, IEEE Transactions on Knowledge and Data
Engineering 17 (2005), no. 4, 519–534.

[71] Chunqin Gu, Hui you Chang, Yang Yi, and Sun Yat-sen, Overview of work-
flow mining technology, GRC ’07: IEEE International Conference on Granular
Computing, 2007, IEEE, 2007, pp. 347 – 347.

[72] Rachid Hamadi and Boualem Benatallah, A petri net-based model for web ser-
vice composition, ADC ’03: Proceedings of the 14th Australasian database con-
ference (Adelaide, Australia), Australian Computer Society, Inc., Feb 2003,
pp. 191–200.

[73] Hewlett-Packard, Hp openview solutions, Available at

http://www.managementsoftware.hp.com (2010).

[74] David Hollingsworth, The workflow reference model, Available at

http://www.wfmc.org/standards/docs/tc003v11.pdf (1995).

[75] Frank Höppner, Knowledge discovery from sequential data, Ph.D. thesis, TU
Braunschweig, FB 1: Mathematik, Informatik, Braunschweig, Germany, Jan-
uary 2003.

[76] Frank Höppner and Frank Klawonn, Finding informative rules in interval se-
quences, Intelligent Data Analysis Int. Journal 6 (2002), 237–256.

[77] Hesuan Hu, Zhiwu Li, and Anrong Wang, Mining of flexible manufacturing
system using work event logs and petri nets, ADMA ’06: 2nd International
Conference Advanced Data Mining and Applications, 2006, pp. 380–387.

155

[78] San-Yih Hwang and Wan-Shiou Yang, On the discovery of process models from
their instances, Decision Support Systems 34 (2002), no. 1, 41–57.

[79] Intalio Inc., Soa tools bpmn modeler, Available at

http://www.eclipse.org/bpmn/ .

[80] Ilse C. F. Ipsen, Numerical matrix analysis: Linear systems and least squares,
Society for Industrial and Applied Mathematics, January 2009.

[81] R.P. Jagadeesh Chandra Bose and Wil M.P. van der Aalst, Abstractions in
process mining: A taxonomy of patterns, BPM ’09: Proceedings of the 7th In-
ternational Conference on Business Process Management (Berlin, Heidelberg),
Springer-Verlag, 2009, pp. 159–175.

[82] Po-Shan Kam and Ada Wai-Chee Fu, Discovering temporal patterns for interval-
based events, Proceedings of the 2nd International Conference on Data Ware-
housing and Knowledge Discovery (DaWaKÕ00, Springer, 2000, pp. 317–326.

[83] Baina Karim, Benatallah Boualem, Casati Fabio, and Toumani Farouk, Model-
driven web service development, CAiSEÕ04: Proceedings of the 16th IntÕl
Conf. Advanced Information Systems Engineering, Lecture Notes in Computer
Science, vol. 3084, ACM, 2004, pp. 290–306.

[84] N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon, Web services choreog-
raphy description language version 1.0, w3c candidate recommendation, Nov.
2006, Available at http://www.w3.org/TR/ws-cdl-10/.

[85] Justus Klingemann, Jurgen Wasch, and Karl Aberer, Deriving service models in
cross-organizational workflows, Proceedings of RIDE - Information Technology
for Virtual Enterprises (RIDE-VE ’99), 1999, pp. 100–107.

[86] Ryan K. L. Ko, A computer scientist’s introductory guide to business process
management (bpm), Crossroads 15 (2009), no. 4.

156

[87] Heather Kreger, Fulfilling the web services promise, Commun. ACM 46 (2003),
no. 6, 29–ff.

[88] Mark Last, Yaron Klein, and Abraham Kandel, Knowledge discovery in time
series databases, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 31 (2001), no. 1, 160–169.

[89] Neal Leavitt, Are web services finally ready to deliver?, Computer 37 (2004),
no. 11, 14–18.

[90] Frank Leymann and Dieter Roller, Workflow-based applications, IBM Syst. J.
36 (1997), no. 1, 102–123.

[91] , Production workflow: concepts and techniques, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2000.

[92] Chen Li, Manfred Reichert, and Andreas Wombacher, Discovering reference
models by mining process variants using a heuristic approach, BPM ’09: Pro-
ceedings of the 7th International Conference on Business Process Management
(Berlin, Heidelberg), Springer-Verlag, 2009, pp. 344–362.

[93] Ming-Yen Lin and Suh-Yin Lee, Fast discovery of sequential patterns through
memory indexing and database partitioning, J. Inf. Sci. Eng. 21 (2005), no. 1,
109–128.

[94] Weiqiang Lin, Mehmet A. Orgun, and Graham J. Williams, An overview of
temporal data mining, 1st Australian data mining workshop (ADM02), 2002,
pp. 83–90.

[95] Workflow management Coalition, Terminology and glossary. document number
wfmctc-1011, Available at http : //www.wfmc.org/standards/docs/TC −
1011 term glossary v3.pdf (1999).

157

[96] Heikki Mannila and Hannu Toivonen, Discovering generalized episodes using
minimal occurrences, International Conference on Knowledge Discovery and
Data Mining (KDD-96), AAAI Press, 1996, pp. 146–151.

[97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo, Discovery of frequent
episodes in event sequences, Data Mining and Knowledge Discovery 1 (1997),
no. 3, 259–289.

[98] Elisabetta De Maria, Angelo Montanari, and Marco Zantoni, Checking workflow
schemas with time constraints using timed automata, OTM Workshops, 2005,
pp. 1–2.

[99] Florent Masseglia, Maguelonne Teisseire, and Pascal Poncelet, Sequential pat-
tern mining: A survey on issues and approaches, Encyclopedia of Data Ware-
housing and Mining (London, UK), Information Science Publishing, 2005.

[100] The Mathworks, Matlab and simulink, Available at

http://www.mathworks.com.

[101] Cantara Michele, User survey analysis: Soa, web services and web 2.0 user
adoption trends and recommendations for software vendors, north america and
europe, 2005-2006, Available at http://www.gartner.com (2007).

[102] N. Mitra and Y. Lafon, Simple object access protocol (soap) 1.2. w3c recom-
mendation, http://www.w3.org/TR/soap/.

[103] Laura Măruşter, A. J. Weijters, Wil M.P. van der Aalst, and Antal Bosch, A
rule-based approach for process discovery: Dealing with noise and imbalance in
process logs, Data Mining in Knowledge Discovery 13 (2006), no. 1, 67–87.

158

[104] Kreshnik Musaraj, Tetsuya Yoshida, Florian Daniel, Mohand-Said Hacid, Fabio
Casati, and Boualem Benatallah, Message correlation and web service pro-
tocol mining from inaccurate logs, International Conference on Web Services
(ICWS’10), 2010, pp. 259–266.

[105] Hamid R. Motahari Nezhad, Discovery and adaptation of process views, Ph.D.
thesis, Computer Science and Engineering, Faculty of Engineering, UNSW, Syd-
ney, Australia, 2008.

[106] Hamid R. Motahari Nezhad, Boualem Benatallah, Fabio Casati, and Farouk
Toumani, Web services interoperability specifications, Computer 39 (2006), 24–
32.

[107] Hamid R. Motahari Nezhad, Boualem Benatallah, Régis Saint-Paul, Fabio
Casati, and Periklis Andritsos, Process spaceship: discovering and exploring
process views from event logs in data spaces, Very Large Data Bases 1 (2008),
no. 2, 1412–1415.

[108] Hamid R. Motahari Nezhad, Régis Saint-Paul, Boualem Benatallah, and Fabio
Casati, Protocol discovery from imperfect service interaction logs, ICDE ’07
(Istanbul, Turkey), IEEE, Apr 2007, pp. 1405–1409.

[109] James R. Norris, Markov chains, Cambrige Press, Cambridge, MA, 1998.

[110] CNRS France & others NSF USA, Sage-combinat: Extensible tool-
box for computer exploration in algebraic combinatorics, Available at

http://wiki.sagemath.org/combinat.

[111] Tech. Rep. OMG, Business process modeling notation (bpmn) specification, final
adopted specification, Feb. 2006, Available at www.bpmn.org/.

[112] David O’Riordan, Business process standards for web services, 2002.

159

[113] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos,
Discovering frequent arrangements of temporal intervals, ICDM ’05: Proceed-
ings of the 5th IEEE International Conference on Data Mining, 2005, pp. 354–
361.

[114] Michael P. Papazoglou and Dimitrios Georgakopoulos, Introduction: Service
oriented computing, Commun. ACM 46 (2003), no. 10, 24–28.

[115] Greg Pass, Abdur Chowdhury, and Cayley Torgeson, A picture of search, The
First International Conference on Scalable Information Systems, 2006.

[116] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto,
Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu, Mining sequential patterns
by pattern-growth: The prefixspan approach, IEEE Transactions on Knowledge
and Data Engineering 16 (2004), no. 11, 1424–1440.

[117] Chris Peltz, Web services orchestration and choreography, Computer 36 (2003),
46–52.

[118] Shankar R. Ponnekanti and Armando Fox, Interoperability among inde-
pendently evolving web services, Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware (New York, NY,
USA), Springer-Verlag New York, Inc., 2004, pp. 331–351.

[119] European Commision Seventh Framework Programme, Compliance-
driven models, languages, and architectures for services, Available at

http://www.compas-ict.eu/.

[120] , Managing assurance, security and trust for services, Available at

http://www.master-fp7.eu/.

[121] Andy Pryke, The data mine, 2010, http://www.the-data-mine.com/.

160

[122] QDB09, 7th International Workshop on Quality in Databases at VLDB’09,
2009.

[123] Aubrey J. Rembert, Comprehensive workflow mining, ACM-SE 44: Proceedings
of the 44th annual Southeast regional conference (New York, NY, USA), ACM,
2006, pp. 222–227.

[124] Chinnici Roberto, Moreau Jean-Jacques, Ryman Arthur, and Weerawarana
Sanjiva, Web services description language (wsdl) 2.0, W3C Recommendation.
Available at http://www.w3.org/TR/wsdl20/ (2007).

[125] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou, An updated bibli-
ography of temporal, spatial, and spatio-temporal data mining research, TSDM
’00: Proceedings of the 1st International Workshop on Temporal, Spatial, and
Spatio-Temporal Data Mining-Revised Papers (London, UK), Springer-Verlag,
2001, pp. 147–164.

[126] Sheldon Ross, A first course in probability, Prentice Hall, 2006, pp. 171–184.

[127] Anne Rozinat and Wil M. P. van der Aalst, Conformance testing: Measuring
the fit and appropriateness of event logs and process models, Business Process
Management Workshops, 2005, pp. 163–176.

[128] , Decision mining in prom, Business Process Management, 2006,
pp. 420–425.

[129] Lucia Sacchi, Cristiana Larizza, Carlo Combi, and Riccardo Bellazzi, Data min-
ing with temporal abstractions: learning rules from time series, Data Mining
Knowledge Discovery 15 (2007), no. 2, 217–247.

161

[130] Belkacem Serrour, Daniel P. Gasparotto, Hamamache Kheddouci, and Boualem
Benatallah, Message correlation and business protocol discovery in service in-
teraction logs, 20th International Conference on Advanced Information Systems
Engineering (CAISE’08), 2008, pp. 405–419.

[131] Glenn Shafer, A mathematical theory of evidence, Princeton University Press,
1976.

[132] Ricardo Silva, Jiji Zhang, and James G. Shanahan, Probabilistic workflow min-
ing, KDD ’05 (Chicago, Illinois, USA), ACM, Aug 2005, pp. 275–284.

[133] Michael Sipser, Introduction to the theory of computation, PWS, Boston, 1997.

[134] P.A Smart, Harry Maddern, and Roger S. Maull, Understanding business pro-
cess management: Implications for theory and practice, British Journal of Man-
agement 20 (2008), no. 4, 491–507.

[135] Open Source, Platform for numerical computation, Available at

http://www.scilab.org.

[136] Michael Stal, Web services: beyond component-based computing, Commun.
ACM 45 (2002), no. 10, 71–76.

[137] Zbigniew Suraj, Discovering concurrent process models in data: A rough set
approach, Proceedings of the 12th International Conference on Rough Sets,
Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC’09), Delhi, In-
dia, Springer Berlin / Heidelberg, 2009, pp. 12–19.

[138] Kishor T. Trivedi, Probability and statistics with reliability, queueing and com-
puter science applications, John Wiley and sons, 2004.

[139] A.K.H. Tung, Hongjun Lu, Jiawei Han, and Ling Feng, Efficient mining of in-
tertransaction association rules, Knowledge and Data Engineering, IEEE Trans-
actions on 15 (2003), no. 1, 43–56.

162

[140] Mark Turner, David Budgen, and Pearl Brereton, Turning software into a ser-
vice, Computer 36 (2003), no. 10, 38–44.

[141] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske,
Business process management: A survey, Business Process Management, 2003,
pp. 1–12.

[142] Wil M.P. van der Aalst, Kees Van Hee, Max Hee, Remmerts De Vries, Jaap
Rigter, Eric Verbeek, and Marc Voorhoeve, Workflow management: Models,
methods, and systems, MIT Press, Cambridge, MA, USA, 2002.

[143] Wil M.P. van der Aalst, Arthur H. M. Ter Hofstede, and Mathias Weske, Busi-
ness process management: A survey, Proceedings of the 1st International Con-
ference on Business Process Management, volume 2678 of LNCS, Springer-
Verlag, 2003, pp. 1–12.

[144] Wil M.P. van der Aalst, A.J.M.M. Weijters, and Laura Maruster, Workflow
mining: Discovering process models from event logs, IEEE Transactions on
Knowledge and Data Engineering 16 (2004), no. 9, 1128–1142.

[145] Roy Villafane, Kien A. Hua, Duc Tran, and Basab Maulik, Knowledge discovery
from series of interval events, Journal of Intelligent Information Systems 15

(2000), 71–89.

[146] Barbara von Halle, Business rules applied: Building better systems using the
business rules approach, Wiley, Hoboken, NJ, USA, 2001.

[147] Wikipedia, Regulatory compliance, Available at

http://en.wikipedia.org/wiki/Compliance (regulation).

[148] W. M. P. Wil M.P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, Workflow mining: a survey of issues and
approaches, Data Knowl. Eng. 47 (2003), no. 2, 237–267.

163

[149] Edi Winarko and John F. Roddick, Discovering richer temporal association
rules from interval-based data, Proceedings of the international conference on
data warehousing and knowledge discovery DaWaK (Copenhagen, Denmark),
2005, pp. 315–325.

[150] Li Yingjiu, Ning Peng, Wang X. Sean, and Jajodia Sushil, Discovering calendar-
based temporal association rules, Data Knowl. Eng. 44 (2003), no. 2, 193–218.

[151] Ernst & Young, European fraud survey 2009,
http://www2.eycom.ch/publications/items/fraud eu 2009/

200904 EY European Fraud Survey.pdf.

[152] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofstede,
Let’s dance: A language for service behavior modeling, Cooperative Information
Systems 2006 International Conference - CoopIS ’06, vol. 4275/2006, Springer
Berlin / Heidelberg, 2006, pp. 145–162.

[153] Daniel Zwillinger, Crc standard mathematical tables and formulae, affine trans-
formations.”, CRC Press, Boca Raton, FL, USA, 1995.

